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Introduction

In this thesis we present the notion of essential dimension and give estimates for
the essential dimension of the algebraic group PGL,,. Essential dimension was
introduced for finite groups by J.Buhler and Z.Reichstein in [5] and was extended
to the class of algebraic groups over algebraically closed fields by Z.Reichstein
in [25]. Later A.Merkurjev generalized it to functors in his notes [19]; we will
follow this approach.

The essential dimension of an algebraic object is a formalization of the famil-
iar concept of minimal number of 'parameters’ needed to describe it and thus
gives an idea of the complexity of its structure. Let us consider for example
the case of quadratic extensions of a field. Fix k a base field, K/k an extension
and suppose that L/K is a quadratic extension of K. If char(k) # 2 the reso-
lution formula of equations of degree 2 tells us that L is generated by a square
root of an element in K, so that F = K(a), where o®> = a € K. It follows
then that the extension L/K is in fact defined on the smaller field k(a), since
L ~ k(a) ®p(q) K. This means that it is suffices a single parameter to describe
quadratic extensions of fields, namely that their essential dimension is at most
1. Tt should be noted, however, that for the extension k(t'/2)/k(t), where t is
algebraically independent over k, there is not a minimal field of definition; there
is instead a minimal value of the transcendence degree of the fields over which
it is defined, and we will take this as a measure of the complexity.

More formally, consider a functor F' from the category of field extensions of a
fixed base field k to the category of sets. Let L/k an extension and a € F(L) an
element. We will say that a descends to a sub-field k € K < L if there exists an
element b € F(K) such that b is mapped to a by the map F(K) — F(L). The
essential dimension of a is the least transcendence degree among the fields to
which descends, and the essential dimension of the functor F' is the supremum
of the essential dimensions of elements a € F(K) for K any extension of k.
This generality makes the notion of essential dimension very flexible since it is
applicable to many cases of interest: for example, F(K) could be the class of
isomorphism of quadratic forms on K", or of n-dimensional K-algebras, or of
elliptic curves defined over K, and so on. In general we think of F' as specifying
the type of algebraic object we want to work with.

Essential dimension, which is defined in elementary terms, has surprising
connections to many problems in algebra and algebraic geometry. For instance,
consider the functor F' that associates to the field K the classes of isomorphism
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of central simple algebras of degree n over K; for an extension L/K the maps
F(K) — F(L) are given by base change. Let’s see how the essential dimension
of a central simple algebra gives important information on its structure. Recall
that a central simple algebra A/K of degree n is a crossed product if it contains
a commutative Galois sub-algebra L/K of degree n. Let us restrict to the case
in which the degree is a prime power n = p”. In 1972 Amitsur [1] showed that
for r = 3 a generic division algebra of degree p” is not a crossed product, solving
a long-standing open problem. For r = 1, 2 it is not known whether or not every
central simple algebra A of degree p” is a crossed product. If the answer was
positive for the case r = 1, that would imply that every central simple algebra of
prime degree is cyclic. If the base field contains a primitive n-th root of unity w,
a cyclic algebra has a very simple presentation: there exist a,b e K* such that
it is isomorphic to the algebra generated by the symbols z and y with relations
" = a, y" = b and zy = wyz. We see therefore that a cyclic algebra is defined
over the field k(a,b) for suitable a,b € K and consequently that its essential
dimension is at most 2. It is clear then that if every central simple algebra of
prime degree was a crossed product the essential dimension of F' would be 2.
This is indeed true for p = 2,3: the case p = 2 is easy and the case p = 3
was solved by Wedderburn in 1921 [36]. The case of general p is however very
much open and the lower bounds that we present for the essential dimension of
F become trivial in this case.

This thesis is divided into four parts. In the first part we give a brief in-
troduction of the theory of central simple algebras by sketching the main facts.
Particular attention is given to crossed products and to the cohomological de-
scription of the Brauer group. We also discuss Azumaya algebras, which are a
generalization of central simple algebras to commutative rings.

In the second part, we explain the very important relation between PGL,,-
torsors, Azumaya algebras and Brauer-Severi schemes, using descent theory.

In the third part we focus on general theorems about essential dimension.
We discuss versal pairs and show that in the case of a smooth algebraic groups
G, there generic fibers of torsors rising from representations are versal. This is
useful for computations and gives one of the main methods to estimate essential
dimension. We will also discuss the notion of essential p-dimension, which is
often easier to compute.

In the fourth part we give bounds of the essential dimension of PGL,,. Upper
bounds are given by studying the structure of the universal division algebra,
while lower bounds rely on an important result about the essential dimension
of algebraic tori.



Notation

Here we fix the notation that will be used in the sequel.

We will usually denote by k the base field. Other fields will be denoted
by capital letters K, F, E, L and L/K will denote an extension. The category
of field extension of k with field maps fixing k is C;. The rings we consider
are unitary, but not necessarily commutative. They will usually be denoted by
letters A, B, and D in the case of division rings; the notation A°? will denote
the opposite ring. Homomorphisms of rings are supposed to take the unit into
the unit. Modules over a ring are also unitary, meaning that 1-m = m for every
m € M and M a module. The group of n x n matrices over a ring R is M,,(R).
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Chapter 1

Noncommutative rings

In this chapter we introduce the theory of non-commutative algebras. This is a
very well-known theory and here we will only give the basic definitions and state
the results we need, mainly without proofs. We will be particularly interested
in the case of central simple algebras, which are one of the main objects of study
in this thesis. Unless explicitly stated, rings in this section are not assumed to
be commutative. Our standard references are [13], [15] and [10].

1.1 General properties

When talking about modules we will implicitly mean right modules.

Definition 1.1.1. A module M over a ring A is simple if it is non-zero and has
no non-trivial sub-modules.

Definition 1.1.2. A division ring is a non-zero ring such that every non-zero
element has an inverse.

Modules over division rings have many of the familiar properties of vector
spaces and in particular they always admit a basis.
The following is a simple and important result known as Schur’s lemma.

Lemma 1.1.3. Let M be a simple module over a ring A. Then Enda (M) is a
division ring.

Proof. See [13, Theorem 1.1.1]. O

Proposition 1.1.4. Consider a module M over a ring A. The following are
equivalent:

1) M is a sum of simple modules

2) M is a direct sum of simple modules

3) for any sub-module N € M there exists a sub-module N’ such that M =~
N®N'.
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Proof. See [15, Theorem 2.4]. O

Definition 1.1.5. A module M over a ring A is semi-simple if it has one of
the equivalent properties of the previous proposition.

Definition 1.1.6. A ring is semi-simple if it is semi-simple as a right module.

Lemma 1.1.7. Quotients and sub-modules of semi-simple modules are semi-
simple.

Proof. This is an easy application of characterization (3) of semi-simplicity. In
fact, suppose that M is a semi-simple R-module, N a sub-module, and P a
quotient.

If T is a sub-module of N, it is also a sub-module of M, so that there exists a
sub-module U such that M =~ T@®U. It is easy then to see that N =~ T@®(UnN),
which shows that N is semi-simple.

If S is a sub-module of P, consider its lifting S’ to M and take again W
such that M =~ S’@W. Then W maps into a sub-module of P and P is a direct
sum of this module and S. O

It is easy to see from the previous lemma that A is semi-simple as a ring if
and only if every right module is semi-simple.

Suppose now that A is semi-simple and write A =~ @;csI; where I; are right
ideals of A. The identity of A is expressed as a finite sum, so J is also finite.
Furthermore if we write A =~ A1 ® Ay @ --- @ A where we group together the
isomorphic components, the A; are uniquely determined up to isomorphism,
they are two-sided ideals and have a ring structure such that A ~ A; x Ay X

<X A,

Definition 1.1.8. In the above notation, a ring A is simple if it is semi-simple
and s = 1, that is there is only one simple right module up to isomorphism.

We want to give now a very important structure theorem for semi-simple
rings, which is due to Wedderburn. One first needs the following lemma.

Lemma 1.1.9. Let D be a division ring, V" a finite dimensional D-module and
A = Endp(V). The natural homomorphism D — End4(V4) is an isomorphism.

Proof. See [15, Theorem 3.3]. O

Theorem 1.1.10 (Wedderburn). Let A be any semi-simple ring. Then A =~
M, (D1) x -+- x M, (D,) for suitable division rings Dj, ..., D, and positive
integers nq,...,n,. The number r is uniquely determined, as are the pairs
(n1,D1), ..., (nr, D;.) up to permutation and isomorphism. There are exactly
r mutually non-isomorphic right simple modules over A.

Proof. See [15, Theorem 3.5]. O

We now introduce an important tool in the characterization of semi-simple
rings.
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Definition 1.1.11. Let A be a ring. The Jacobson radical of A is the intersec-
tion of all maximal right ideals; it is denoted by J(A).

The Jacobson radical is immediately seen to be a right ideal, but in fact is
a two-sided ideal. It has many different characterizations, see for example [13],
pages 9 - 10 - 11. We will use the following.

Proposition 1.1.12. Let A be a ring. The Jacobson radical of A is the set of
elements of A such that annihilate every simple A-module.

Definition 1.1.13. A ring A is a k-algebra if there is a map of rings k — A
with image contained in the center of A. We say that it is finite dimensional
algebra if it is so as a vector space over k. We say that it is central if its center
is k.

An immediate corollary of the Wedderburn theorem is the classification of
central simple algebras over algebraically closed fields.

Corollary 1.1.14. Let k be an algebraically closed field. Then every central
simple algebra is isomorphic to M,,(k) for some n.

Proof. This follows from Wedderburn’s theorem and the fact that there are no
non-trivial finite dimensional division algebras over algebraically closed fields.
See [10, Corollary 2.1.7] or [13, Lemma 2.1.5]. O

Theorem 1.1.15. A finite dimensional algebra A over k is semi-simple if and
only if its Jacobson radical is zero.

Proof. Suppose that A is semi-simple and write A =~ A1 @ --- @ A,, with each
A; being simple. Let € J(A). From Proposition 1.1.12 we have that A;x = 0
for each 1 < i < n, and so Az = 0, which means z = 0.

Conversely, suppose that J(A) = 0. The algebra A is finite-dimensional and
so there are only finitely many maximal right ideals: call them I4,...,I,. But
then we have that A is isomorphic to a sub-module of A/I; ®---@® A/I,, which
is semi-simple. From Lemma 1.1.7 we have that A is semi-simple. O

Observe that we used the fact that A is finite dimensional only in the second
part of the proof.
From the theorem it is easy to deduce the following.

Theorem 1.1.16. A finite dimensional algebra A over k is simple if and only
if it is non-zero and has no non-trivial two-sided ideals.

Proof. Suppose that A # 0 and that it has no non-trivial two-sided ideals.
Then the Jacobson radical, which is a two-sided ideal, is null and so from the
previous theorem A is semi-simple. In fact A is simple, because we can write
A~ AP -- @A, with A; two-sided ideals which are simple rings; the hypotheses
forces n = 1.

On the other hand, suppose that A is simple. Suppose also that I < A is
a two-sided ideal such that I # 0, A. The ring A is in particular semi-simple,
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so there exists a right ideal J such that A =~ I @ J as right A-modules. If V/
is a simple right A-module, we have that I =~ V*® and J = V". Recall that
the automorphisms of A as a right A-module are given by left multiplication of
elements of A, so that they necessarily are automorphisms of I. But from the
presentation we discussed, we can switch two copies of V in I and J with and
A-module automorphism, which is absurd. We deduce then that no I with the
supposed properties can exist. O

We end this brief treatment mentioning a particular case of algebras that
arise from representations. Let G be a group and define the algebra k[G] to
be the vector space spanned by linearly independent elements e, for g € G and
with multiplication given by linear extension of the rule e, - e, = egp. It is
immediate that left k[G] modules correspond to G-representations. We will
need the following important classical result due to Maschke.

Theorem 1.1.17. Let G be a finite group and k a field of characteristic zero
or coprime with the order of G. Then the ring k[G] is semi-simple.

Proof. See [13, Theorem 1.4.1]. O

1.2 Central simple algebras

We restrict our attention now to the special case of finite dimensional algebras
over a field k£ that are both simple and central. These are called central simple
algebras. We will not specify the base field when it is clear from the context.

From the Wedderburn theorem we know that every central simple algebra is
a matrix ring with coefficients in a division ring, but in fact much more can be
said. Let’s begin with a technical result, which is very important in the study
of central simple algebras.

Theorem 1.2.1. Let A and B be two simple algebras over k; suppose also that
A is central. Then the algebra A ®j B is simple and Z(A ®x B) = Z(B).

Proof. See [13, Lemma 4.1.1]. O

In particular if both A and B are central simple algebras, their tensor product
is also central simple over the same field, meaning that the class of central
simple algebras over a field is closed by tensor product. Moreover, if K /k is any
extension, the algebra A ®; K is central simple over K, so we have a natural
extension of scalars.

If A is a central simple algebra, it is clear that so is the opposite algebra
A°P. Being this association intrinsic, it is natural from the above to investigate
the nature of A ®; A°P.

Proposition 1.2.2. If A is a central simple algebra, then A®Qy AP =~ Endy(A).

Proof. See [13, Theorem 4.1.3]. O
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Definition 1.2.3. Let A be a central simple algebra over the field k. A field
K /k is a splitting field for A if A®y, K is isomorphic to M, (K) for some n. We
shall also say that K splits A or that A is split over K.

It follows from Corollary 1.1.14 and Theorem 1.2.1 that an algebraically
closed field over k is always a splitting field. The dimension as a vector space is
invariant for extension of scalars, so we see that the dimension over k of every
central simple algebra is a square.

We give now two definitions that play an essential role in the theory of
central simple algebras.

Definition 1.2.4. Let A be a central simple algebra, and D a division algebra
such that A is isomorphic to M,, (D) for some n. The number /dim(A) is the
degree of A and the number /dimy (D) is the index of A.

There is an important relation between splitting fields and fields contained
in a division algebra. In fact maximal sub-fields are splitting fields, and splitting
fields of minimal degree can be embedded in the division algebra. One can ask
if there are maximal fields which have nice properties; while it is always possible
to find a separable maximal field, there are division algebras that do not admit
maximal fields that are Galois over their center. We begin with a technical
lemma.

Lemma 1.2.5. Let A be a central simple algebra and K/k a splitting field of
finite degree. Then indy(A) divides the degree of the extension.

Proof. According to the Wedderburn theorem A =~ M, (D) for some division
algebra D, determined up to isomorphism. Let m = indg(A4) = v/dimyD. We
have that A ®x K ~ M, (D Qi K), so K is a splitting field also for D, and
D®y K = M,,(K). Tt follows that K™ has a natural structure of left D-module
and

m - [K : k] = dim, K™ = (dim},D) - (dimpK™) = m? - dimp K™
The thesis follows by [K : k] = m - dimp K™. O

Remark 1.2.6. Let D be a central simple division algebra over k and K /k be a
finite extension of degree n = degy (D) that is also a splitting field for D. Then
dimpK™ =1 so that D and K" are isomorphic as D-modules. From the fact
that D ® K = M, (K) we have that K € Endp(K™) = EndpD = D.

A converse of the remark is given by the following theorem.

Theorem 1.2.7. Let D be a finite division algebra over k. If K is a maximal
field in D containing & then the degree of the extension K /k is equal to the
degree of D and K is a splitting field for D.

Proof. See [13, Corollary and Theorem 4.2.2]. O
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Theorem 1.2.8. If D is a finite division algebra over k, then it admits a
separable maximal subfield over k.

Proof. See [13, Theorem 4.3.3]. O

Definition 1.2.9. Let A be a central simple algebra. If A contains a Galois
extension of K of degree equal to the degree of A, then A is called a crossed
product.

It has been for a long time an open question whether all algebras were crossed
products, until Amitsur gave a counterexample in 1972, [1].
A particular case of crossed products are cyclic algebras.

Definition 1.2.10. A central simple algebra over k is cyclic if contains a cyclic
extension of the center of degree equal to the degree of A.

Crossed products and in particular cyclic algebras, have a nice description of
the algebra structure. In order to obtain it, we first need an important theorem,
known as Skolem-Noether theorem.

Theorem 1.2.11 (Skolem-Noether). Let A be a central simple algebra over k
and B € A a simple sub-algebra over k. If f: B — A is an algebra homomor-
phism, it exists an invertible element a of A such that f(r) = aza™? for all »
in B.

Proof. See [13, Theorem 4.3.1]. O

Theorem 1.2.12. Let A be a cyclic central simple algebra over k of degree n
and let K /k be a maximal sub-field cyclic of degree n over k. Then there exists
an element a € A* such that A~ K ®aK ®---®a™ 'K as a K-vector space.

Proof. The algebra A has a K ®; K-module structure given by (e ® f)(x) =
exf for e,f € K and x € A. There is an isomorphism ¢ : K ® K — K"
defined as p(e ® f) = (ea(f),ea?(f), -+ ,ea™ 1(f)), where o is a generator
of the Galois group of K over k. Consider the projections m; : E" — E on
the i-th component; the algebra A is then isomorphic as a K ®; K-module
to o H(Ker(m))A® -+ ® o Y(Ker(n,))A. A simple calculation shows that
Ker(m;) is generated over k by elements of the form o'(e) ® 1 — 1 ® e, so
that calling A; = {z € Alsuch that o'(e)x = ze for all e € K}, we have
A=A1@@An

Using the Skolem-Noether theorem, there exists an element a € A* such that
o(e) = aea™! for all e € K, so that A; = {x € A| a’ea"'x = ze for all e € K}.
It is obvious that a’K € A;, so we conclude for dimensional reasons. O

If the base field k has a primitive n-th root of unity w then we get even
nicer presentations. Choose a,b € k* and define the algebra (a,b),, the algebra
generated over k by the symbols x and y with relations 2™ = a, y™ = b and
xy = wyz. By the previous theorem and by Kummer theory, in this case every
cyclic algebra is isomorphic to the algebra (a,b),, for some a,b € k*.



1.2. CENTRAL SIMPLE ALGEBRAS 15

We want to present now the important result that all division algebras of
degree 3 are cyclic. We first need to define the norm and the trace for central
simple algebras, which are tools that have independent interest.

Definition 1.2.13. Let A be a central simple algebra of degree n over k. The
norm of an element a € A* is the determinant of the linear map x — ax.
Similarly one defines the trace of an element in A. The norm is a multiplicative
function, whereas the trace is additive.

Let now A be a central simple algebra of degree n and K be a splitting
field. If we choose an isomorphism f : A ®y K — M, (K), we can compute the
determinant and the trace of f(a®1). From Skolem-Noether these do not depend
on the chosen isomorphism, and general theory assures that their values are in
k: see for example [10] pages 37 and 38. We will call these functions reduced
norm and reduced trace and denote them by Nrd4 and Trd 4 respectively. They
are linked to the usual norm and trace by the following result.

Proposition 1.2.14. Let A be a central simple algebra of degree n, then
Ny = Nrdy and Trpp, =n-Trda.

Proof. See [10, Proposition 2.6.3]. O
We follow the paper [12] of Haile.

Proposition 1.2.15. Let D be a central simple division algebra of degree n
over k. Let K be a maximal sub-field. Then
(1) There is an element d € D* such that Trd(kd) = 0 for all k € K.
(2) Let d be as in (1). There is a k sub-space V of K such that dim;V =n—1
and Trd(k=td) = Trd(d='k) = 0 for all ke V — {0}.

In particular there is an (n — 1) dimensional sub-space W of D such that
Trd(w) = Trd(w=!) = 0 for all w e W — {0}.

Proof. (1) There is a k-linear transformation U from D to KV given by U(d)(k) =
Trd(kd) for all d € D, k € K. The result follows comparing dimensions over
k.

(2) Given d as in (1), there is a k linear map S on K given by S(k) =
Trd(d='k). Since dimyKer(S) = n—1 and by the choice of d, it suffices to take
any (n — 1) dimensional subspace of Ker(S).

Finally it suffices to take W = d=1V. O

We remark that since the kernel of the map U in (1) has dimension at least
2

n® —n, if n > 3 we can take d € Ker(U) and not lying in K*.
Corollary 1.2.16. If D is a central simple division algebra of degree three over
k, then there is an element d € D — k such that d° € k.

Proof. From the proposition there is an element d € D* such that Trd(d) =

Trd(d=—') = 0. Tt follows that the minimal polynomial of d over k is of the form

23 — a for some a € k*, that is d° € k. O
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Theorem 1.2.17 (Wedderburn). Let D be a division algebra of degree 3. Then
there is an element d € D — k such that d® € k. Moreover if z is any element of
D — k such that 23 € k, then D contains a cyclic maximal subfield K such that
zeLand xLz~ ! = L.

Proof. By the corollary there is an element « € D — k such that 23 € k. Let
3 =aand K = k().

Let us first note that if U and V are two-dimensional k-subspaces of K,
then there is an element ¢ € K such that ¢cU = V. In fact, there exist k-linear
functionals f and g in K~ such that U = Ker(f) and V = Ker(g). Now KV is
a one-dimensional K-space, so there exists an element ¢ € K* such that cg = f,
and so cU = V.

To motivate the proof of the theorem, we first observe that if there is a
cyclic maximal subfield L = k(f) with zLz~! = L, then (0z)* = Ny (0)a €
k since the conjugation by z gives a generator of the Galois group of L/k.
Similarly (622)3 € k. Conversely if there is an element § € D — K such that
(0z)3,(02%) € k, then L = k() satisfies zLz~! = L and hence is our desired
extension being a cubic Galois extension. We have only to check that 6 and
6z~ commute, because 6 ¢ K. Let Nrd : D* — k* denote the reduced norm.
Because 3, (0x)3, (022)3 € k, it follows that Nrd(x) = a, Nrd(fz) = (0x)3
and Nrd(0z?) = (02?)3. Moreover Nrd(0x?) = Nrd(6z)Nrd(x) and hence
(022)3 = a(fx)3. Tt follows that x0x%0x = afx0, and so x0z~10 = fzz~ 1.

So it suffices to find § € D — K such that (6z)3,(02%)% € k. Now for any
y € D, we define K, = {c € K|Tr(y~tc) = 0}. It is easy then to see that if
ce€ K, then K., = cK,.

By the remark following the proposition there is an element d € D — K
such that Trd(ed) = 0 for all ¢ € K. We claim there is an element ¢ € K*
such that K.q 2 kz + kxz?. To see this note that either K; = K (in which
case the claim is proved) or [Ky, : k] = 2. In this second case because K, and
kx + kz? are two-dimensional subspaces of K, there is an element ¢ € K such
that ¢Kyg = kx + kx?. Since cKy = K.q, we have proved the claim. Letting
0 = cd, we have Trd(6z) = Tdr((0z)~') = Trd(02?) = Trd((0z*)~1) = 0.
Hence (0x)3, (02?)3 € k and we are done. O

Corollary 1.2.18. Every central division algebra of degree three is cyclic.

1.3 The Brauer Group

We have seen that the class of central simple algebras over k is closed under
tensor product, which is an associative and commutative operation. It is then
natural to look for a group structure in which the operation is given by the
tensor product. It is indeed the case that a proper quotient of the class of
central simple algebras is a group under tensor product. This group, which is
called Brauer group, is a very important invariant of the base field £ and has
been studied extensively. One of the main properties of the Brauer group is
that it has a cohomological description, which is quite useful.
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Definition 1.3.1. Let A and B be two central simple algebras. We say that A
and B are Brauer equivalent if A®y M, (k) =~ B ®k M,,(k) for some n,m € N.
The set of central simple algebras modulo Brauer equivalence is called Brauer
group. We use the notation Br(k).

As mentioned above, the group operation on Br(k) is the tensor product:
it is well-defined, associative, commutative and the inverse of an algebra is the
opposite algebra by Proposition 1.2.2. For every extension of fields K /k there is
a natural base-change map Br(k) — Br(K), which is an homomorphism. We
denote the kernel of this map by Br(K /k), and call it the relative Brauer group.
It is clear from the definition that if A is a central simple algebra over k, then
its class in Br(k) is in the subgroup Br(K/k) if and only if A is split by K.

We want now to present the cohomological description of the Brauer group.
In order to achieve this, we have to develop a little more the theory of crossed
products. Our treatment will follow that of Herstein in [13].

Proposition 1.3.2. If A is a central simple algebra over k that is split by K,
then it is Brauer equivalent to a central simple algebra for which K is a maximal
sub-field.

Proof. We can suppose that A is a division algebra. By Lemma 1.2.5 we have
that indy(A) divides [K : k]. Taking n = [K : k]/indi(A), define A’ = A ®y
M, (k). Now recall that Remark 1.2.6 tells us that K < A’. Since K is a
splitting field for A’, we have the thesis. O

Corollary 1.3.3. If A is a central simple algebra over k, then it is Brauer
equivalent to a crossed product.

Proof. 1t is always possible to find a Galois splitting field. O

Now let A be a crossed product, with K maximal Galois subfield of degree n
over k. Let G be the Galois group. By Skolem-Noether, for every o € G, there
is an element x, € A such that o(c) = 2, 'cz, for all c € K. The x, are linearly
independent over K, so that their linear span over K is all of A for dimensional
reasons.

If 0,7 € G and ¢ € K, then the computation z 'z, lcz,x, = (07)(c) =
r; cx,, shows that 2., (2,7,)" ' € K. So 252, = x4, f(0,T) where f(o,7) €
K* and we obtain a function f : G x G — K*. If o,7,v € G, a simple com-
putation yields the property f(o,7v)f(r,v) = f(or,v)v(f(o,v)); furthermore
zof(e,e)~t = 1. We isolate these properties in the following definition.

1

Definition 1.3.4. Let K be a normal extension of F' with Galois group G. A
function f : G x G — K* is called a factor set on G in K if, for all o,7,v € G

we have f(o,7v)f(r,v) = f(or,v)v(f(0o,V)).

We have seen that when we have a crossed product we can obtain a factor
set; conversely if we are give a base field k, a Galois extension K with Galois
groups GG, and a factor set f on G in K, we can construct a crossed product of
which f is a factor set. In fact consider the algebra (K, G, f) which is the direct
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sum of a copy of K for each element of G (with generator z, for o € G), with
product defined by the rules cz, = x,0(c) and 2,2, = 2, f(0,7) for all c€ K,
o,7 € G. Tt is easy to see that (K, G, f) is indeed a central simple algebra over
k and that it is a crossed product (see [13], pag 109, for more detail). Moreover
it follows from what we have seen that any central simple algebra A is Brauer-
equivalent to an algebra (K, G, f) for some choices of K and f. We have also
proved in Proposition 1.3.2 that if K/k is a Galois extension, every class in
Br(K/k) is represented by an algebra (K, G, f).

It is important now to address the problem of when two algebras (K, G, f)
and (K, G, g) are isomorphic. Let us begin by noticing that if we choose A, €
K*, the elements y, = x5\, span A over K and multiply by the rule y,y, =
YorA;iT( Ao )Ar f(0, 7). This shows that A\;17 (A, )\, f(o,7) is a factor set and
gives rise to an algebra isomorphic to A.

The converse is also true. Let ¢ be an isomorphism of the k algebras (K, G, g)
and (K, G, f), which we suppose to be generated by z, and x, respectively.
Then the y, = ¥(z,) induce the automorphism o on K in A, so that y, = x5\,
for Ay € K*. This shows that g(o,7) = A\; 7(A )\, f(0, 7).

Definition 1.3.5. Two factor sets f, g are equivalent if there exists a function
A : G — K* such that g(o,7) = A\;27(A\;) A\, f(0,7) for all 0,7 € G.

What we have proved is that two algebras (K, G, f) and (K, G, g) are isomor-
phic if and only if f and g are equivalent. Thanks to this fact, when studying
crossed products, we can choose a factor set f such that f(o,e) = f(e,0) =1
for all o € G. In fact, it suffices to take A(o) = o(f(e,e)~!) to obtain an
equivalent factor set with the desired property. If f is a factor set such that
f(o,e) = f(e,o) =1 for all o € G we call it normalized.

If f, g are two factor sets, we can define their multiplication in the obvious
way and a calculation shows that we obtain again a factor set. Factor sets
form a group under multiplication, with unit element the factor set which is
identically 1. The factor sets that are equivalent to the unity form a subgroup
and we see that the quotient group is precisely H?(G, K*). We have seen that
this group is in one-to-one correspondence with the isomorphism classes of the
algebras (K, G, f). Remark 1.3.2 and ours previous considerations tell us that
this induces a one-to-one correspondence between H?(G,K*) and Br(K/k).
Next we prove that we have actually an isomorphism of abelian groups.

As a first step we have the following lemma.

Lemma 1.3.6. If K /k is a Galois extension with Galois group G, then (K, G, e) ~

Proof. See [13, Lemma 4.4.2]. O
We conclude by the following theorem.

Theorem 1.3.7. If K/k is a Galois extesion with Galois group G and if f, g
are factor sets then [(K, G, f)] - [(K,G,g)] = [(K, G, fg)] in Br(k).

Proof. See [13, Theorem 4.4.3]. O
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Finally we have obtained the cohomological description of the Brauer group.

Theorem 1.3.8. Let k be a field and K /k a Galois extension with group G.
Then Br(k) ~ H?(k) and Br(K/k) ~ H*(G, K*).

We conclude this section on the Brauer group by stating some important
results that are obtained thanks to the theorem.

Theorem 1.3.9. The Brauer group is a torsion group.

Proof. See [13, Theorem 4.4.4] and [10, Theorem 4.4.8]. O

Definition 1.3.10. The period of a central simple algebra is the order of its
associated element in the Brauer group.

There is an important relationship between index and period.

Theorem 1.3.11. Let A be a central simple algebra over k. Then its period
divides its index, and they have the same prime factors.

Proof. See [10, Proposition 4.5.13] or [13, Corollary], page 121. O

Theorem 1.3.12 (Brauer). Let D be a central division algebra over k. Consider
the primary decomposition indi(D) = p** - p/*r. Then we may find central
division algebras D; for 1 <1 < r such that

D;D1®kD2®k"'®kDr

and indk(D;) = p;"*. Moreover, the D; are uniquely determined up to isomor-
phism.

Proof. See [10, Theorem 4.5.16] or [13, Theorem 4.4.6]. O

1.4 Azumaya algebras

In this section we will give a very brief introduction to the theory of Azumaya
algebras, which are a generalization of central simple algebras to rings. They
were first studied over local rings by Azumaya [3] and then over arbitrary rings
by Auslander and Goldman [2]. Our main references are [23] and [14].

Let us begin with the local case. Fix R a local ring with maximal ideal m
and A a not necessarily commutative algebra over R.

Definition 1.4.1. We say that A is an Azumaya algebra over R if it is free of
finite rank as an R-module and if the map A®pr A°? — Endr(A) sending a®b
to the endomorphism x — axb is an isomorphism.

Proposition 1.4.2. Let A be an Azumaya algebra over R. Then A has center
R; moreover, for any ideal I of A, I — I n R gives a bijection between the
ideals of A and those of R.
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Proof. See [23, IV, Proposition 1.1]. O

It follows from the previous Proposition that an Azumaya algebra over a
field is a central simple algebra, and from Proposition 1.2.2 we see that in fact
the converse is also true.

Proposition 1.4.3. If A is an Azumaya algebra over R and R’ is a commutative
local R algebra, then A ®g R’ is an Azumaya algebra over R’. Furthermore, if
B is free of finite rank as an R-module and B ® g R/m is an Azumaya algebra
over R/m, then B is an Azumaya algebra over R.

Proof. See [23, IV, Proposition 1.2]. O

Corollary 1.4.4. If A and A’ are Azumaya algebras over R, then A®r A’ is an
Azumaya algebra over R. Furthermore, the matrix ring M,,(R) is an Azumaya
algebra over R.

Proof. Both statements follow from the previous Proposition and the corre-
sponding statement for central simple algebras. O

We have a generalized Skolem-Noether theorem for Azumaya algebras in the
local case.

Theorem 1.4.5 (Skolem-Noether). Let A be an Azumaya algebra over R, then
every automorphism of A as an R-algebra is inner.

Proof. See [23, IV, Proposition 1.4]. O

Corollary 1.4.6. The automorphism group of M,(R) as an R algebra is
PGL,(R) = GL,(R)/R*.

Proof. The algebra M, (R) is Azumaya over R and its units are GL,(R). O

We now are ready to approach the global case. From now on, R is a com-
mutative ring and A is a R-algebra.

Definition 1.4.7. We say that A is an Azumaya algebra over R if it is finitely
presented and for every localization at a maximal ideal m of R, we have that
A, is an Azumaya algebra over R, in the previous sense.

Proposition 1.4.8. The following are equivalent:

1) A is an Azumaya algebra over R

2) A is finitely presented and for every localization at a prime ideal p of R, we
have that A, is an Azumaya algebra over the local ring R,

3) A is a faithfully projective R-module such that the canonical map AQp AP —
Endgr(A) is an isomorphism.

Proof. It follows from Proposition 1.4.3, [14, Théoréme 5.1] and [14, Lemme
5.2]. O

Definition 1.4.9. We say that an R-algebra R’ splits an Azumaya algebra A
if AQr R =~ M, (R').
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We have seen that central simple algebras are split by a finite extension of
their center. In fact a maximal subfield is always a splitting field. These results
generalize to Azumaya algebras.

Proposition 1.4.10. For every maximal commutative sub-algebra S of an Azu-
maya algebra A over R, the product of A induces an isomorphism A ®g S =~
Endg(A), where A is considered as an S-module by right multiplication.

Proof. See [14, Proposition 6.1]. O

Proposition 1.4.11. Let R be a local ring and A an Azumaya algebra over
R. Then A has a maximal commutative sub-algebra S such that A is a free
S-module.

Proof. See [14, Théoreme 6.4]. O

From the previous results, we can finally deduce the following important
theorem.

Theorem 1.4.12. Let A be an R-algebra. The following are equivalent:

1) A is an Azumaya algebra over R

2) for every p € Spec(R) there is a finitely generated free R, algebra that splits
Ap

3) for every p € Spec(R) there exist f € R —p and a finitely generated free Ry
algebra that splits Ay

4) There exists an etale and faithfully flat R-algebra that splits A

Proof. See [14, Théoreme 6.6]. O

Proposition 1.4.13. Every endomorphism of an Azumaya algebra is an auto-
morphism.

Proof. Being an isomorphism is a local property, and in the local case the thesis
follows from Skolem-Noether. For a different point of view see [14, Corollaire
5.4]. O

Proposition 1.4.14. Let A be an Azumaya algebra over R. The group
Autr(A)/Int(A)

is torsion.

Proof. See [14, Corollaire 3.2]. O

Let us conclude this section with a remark on the Brauer group of a ring,
which we can define in analogy with the field case. Two Azumaya algebras A
and A, are called Brauer equivalent if there exist two faithfully projective R-
modules P; and P, such that 41 ®g Endg(P1) = As ®g Endg(P,). The class
of Azumaya algebras over R modulo Brauer equivalence has an abelian group

structure, called Brauer group. If S is an R-algebra we have a base-change map
Br(R) — Br(S).



22

CHAPTER 1. NONCOMMUTATIVE RINGS



Chapter 2

Descent theory

In this chapter we assume that the reader is familiar with descent theory and
Groethendick topologies. Our references are [34] and [23]. We shall also use
some basic concepts for group schemes, as in [35].

The aim here is to use descent theory to relate central simple algebras to
PGL, (k)-torsors and Brauer-Severi varieties.

2.1 Projective linear group scheme

Definition 2.1.1. The fppf topology on the category Sch/S of S-schemes is
the topology in which the coverings {U; — U} of an object U consist of jointly
surjective collections of flat maps locally of finite presentation.

We call the category of affine schemes and scheme morphisms Aff. This
is a subcanonical site with the fppf topology by [34, Theorem 2.55]. Let GL,
be the functor Aff — Grp such that GL,(S) = GL,(I'(S,Og)) for all affine
schemes S. Then GL,, is represented by the group scheme

Z[T117 7TTLTL7T]

GlLnz = Spec( Tdet(T;; — 1)

)

and so defines a sheaf on Aff. The group scheme GL; 7 is just G,,.
Consider now the functor F': Af f — Grp defined by

and its Zariski sheafification F. We want to show that F' is representable by an
affine group scheme, which we call projective linear group.

Let PGL,, be the functor Af f — Grp such that PGL,(S) = Auts(M,(5)).
It is easy to see that PGL, is representable: indeed any automorphism of
M, (S) as an S-algebra may be regarded as an endomorphism of M, (S) as an S
module and thus PGL,, is a subfunctor of M,,2. Futhermore, the condition that
an endomorphism be an automorphism of algebras is described by polynomials,

23
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and hence PGL,, is represented by a closed subscheme of M,,2, which we call
PGL,, 7. Thus PGL, is also a sheaf for the fppf topology.

Proposition 2.1.2. The functors F' and PGL,, are isomorphic.

Proof. We have a natural transformation F' — PGL,, such that if U € F(S5)
then U — ¢, where oy(X) = UXU!. Since PGL, is a sheaf, this nat-
ural transformation factors through F, and we want to show that this is an
isomorphism.

Let S be an affine scheme. Then every automorphism of M, (S) as an S-
algebra is locally in the Zariski topology inner by the Skolem-Noether theorem
in the local case. It follows that there is a Zariski cover U; of S such that
the restrictions of the automorphism to the U; is in the image of F(U;) —
PGL,(U;), hence the surjectivity is proved.

The proof of the injectivity is analogous. Let a € F/(S) an element that goes
to the identity. By the definition of sheafification, there exists a fppf cover U;
of S such that the restrictions of a to U; are in the image of F(U;) — F(U;).
But then these restrictions are in fact in T'(U;, Oy,)* since M, (T'(U;, Oy,) has
center I'(U;, Oy,). Then they are trivial in F(U;), and by the properties of the
sheafification, a is trivial. O

In fact we have also proved the following.

Corollary 2.1.3. The sequence
1—-G,, - GL, - PGL, — 1

is exact as a sequence of sheaves for the Zariski topology.

2.2 Equivalence

Consider the site of affine schemes Af f with the fppf topology. Consider now the
category whose objects are pairs (A, R), where R is a ring and A is an Azumaya
algebra over R of rank n. The morphisms from a pair (A, R) to (B, S) are maps
of rings A — B and R — S such that the diagram

R—— §

L

A—— B

is commutative. Let us call this category Azm(n). It is immediate that Azm/(n)°?
is fibered over Af f with respect to the functor that associates Spec(R) to (A, R),
the fibered product of Spec(S) — Spec(R) with A being A ®pr S. In fact this
category is fibered in grupoids, since we have seen that every endomorphism of
and Azumaya algebra is an automorphism.

Next, let us consider the category of PG L,-torsors over affine schemes. An
object in this category is a PGL,, g-torsor T — Spec(R) for the fppf topology.
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By descent theory every such T is affine: see for example [23, I, Theorem 2.23].
The morphisms of this category are again commutative diagrams

U T

| |

Spec(S) —— Spec(R)

such that the map U — T is PGL,, g invariant. We call this category BPGL,,,
and it is easy to see that it is fibered in grupoids over Af f.

We shall introduce one more category, but first we need the following defi-
nition.

Definition 2.2.1. A Brauer-Severi scheme of rank n over the affine scheme
S is a scheme P over S such that there exists a flat surjective locally of finite
presentation map S’ — S for which P xg S’ is isomorphic to the projective
space of dimension n — 1 over 5.

Consider the category whose objects are pairs (P, X) where X is an affine
scheme, and P is a Brauer-Severi scheme of rank n over S. As usual morphisms

are maps
Q —— P

| |

Spec(S) —— Spec(R)

such that the diagram is commutative. This is a fibered category over Af f.

We restrict our attention to the subcategory whose morphisms are cartesian

diagrams, which is fibered in grupoids. We call this subcategory BS(n).
Finally we can state the main result, of which we only sketch the proof.

Theorem 2.2.2. The fibered categories Azm(n)°?, BPGL, and BS(n) are
equivalent.

Let us begin by constructing a morphism of fibered categories F' : Azm(n) —
BPGL,. Consider an Azumaya algebra A over the ring R. We associate to A the
functor I4 : Aff/Spec(R) — Sets, which is defined by putting I4(Spec(S)) =
Isos(M,(S),A®, S), that is the set of S-isomorphisms between the matrix
algebra M, (S) and A®, S. The functor I4 has a natural PGL, g right action,
given by matrix multiplication. Locally in the Zariski topology an Azumaya
algebra is split by an algebra that is a free module over its center, so locally in
the fppf topology Azumaya algebras are matrix algebras. From this it follows
that the functor 14 is a PG Ly, g-torsor in the fppf topology. Then an application
of descent theory shows that I,4 is representable in Af f/Spec(R) by an affine
scheme T4: see [23, III, Theorem 4.3] or [34, Theorem 4.33]. We define F'(A) =
Ta. If f: A— Band g: R— S is a morphism in Azm(n) between (A, R) and
(B, S), we can restrict T4 to the category Aff/Spec(S), where is is represented
by Ta Xspec(r) Spec(S). The map f extends to a map fs : A®Qr S — B
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which is necessarily an isomorphism. Then there is an isomorphism Tp —
T'A X spec(r) Spec(S), which gives a morphism in BPGL,,. Thus we have defined
F on objects and morphisms; it is immediate that F' is a morphism of fibered
categories.

Conversely, we want to show that from a PGL,-torsor we can get an Azu-
maya algebra. Let Spec(A) — Spec(R) be a PGL, g-torsor. On Spec(A)
we can consider the quasi-coherent sheaf of algebras defined by the A-algebra
M, (A). Of course, M, (A) is an Azumaya algebra over A. We want to give
M, (A) the structure of a PGL,, 4 invariant object, and to do so we must first
give an action. This is the same as giving M, (A) the structure of a PGL,, 4
comodule. Let PGL, r = Spec(C). Since Spec(A) is a PGL,, g-torsor, we
have a map of R-algebras p: A — A®pg C that corresponds to the action. We
have another map p: A - A ®pg C that corresponds to the second projection
PGLy R Xspec(r) Spec(A) — Spec(A), and is defined by p(a) = a ® 1. The
map p : M,(A) - M,(A) ®g C given by p defines a PGL,, a-comodule. In
fact this defines the required structure of invariant object by [34, Proposition
3.49]. The fibered category Azm(n) is a stack in the fppf topology due to [34,
Theorem 4.23] and an easy generalization of [34, Theorem 4.29]. Then descent
theory along torsors gives us an Azumaya algebra M, over R; it is obvious
that this association is functorial. The algebra M, is characterized as being
the sub-algebra of M, (A) where p and p coincide. This can also be described
as the algebra of invariants of the action of PGL,, 4 on M, (A). We leave to
the reader to verify that the two functors we defined are one the inverse of the
other, so that Azm(n)°? and BPGL,, are indeed equivalent categories.

Let us show now that BPGL,, and BS(n) are also equivalent. We start with
the functor BS(n) — BPGL,, which is analogous to the functor Azm(n)? —
BPGL,. If P — Spec(R) is a Brauer-Severi scheme, consider the functor Ip :
Aff/Spec(R) — Grp such that Ip(Spec(S)) = Isospec(s)(]P’gfl,P X Spec(R)
Spec(S)). This functor is a fppf sheaf and has a right PGL,, r action. Locally in
the fppf topology, this action is trivial, since the automorphisms of the projective
space are the projectivisation of the linear group. Then Ip is a PGL,, torsor,
hence representable by an affine scheme.

Conversely, now we construct a functor BPGL,, — BS(n)°?. Consider a
PGL,, r-torsor Spec(A) — Spec(R). We have a right action of PGL,, r on
Pz_l X Spec(R) SPec(A) = }P’Z_l. The class of maps from Brauer-Severi schemes
to their bases is made of flat proper morphisms of finite presentation since they
are so in a fppf cover; see Vistoli 2.36 and [11, IV.17.16.3]. They are also clearly
local in the fppf topology. Then [34, Theorem 4.38] and [34, Proposition 4.20]
tell us that the category BS(n) is a stack for the fppf topology and by descent
theory we obtain a Brauer-Severi scheme P4 — Spec(R).

This completes the sketch of proof of the theorem. We will be particularly
interested in the study of central simple algebras, and so we will restrict our
attention to the full subcategory of Af f given by fields. Brauer-Severi schemes
over a field are called Brauer-Severi varieties, and they are split by a finite field
extension.
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Remark 2.2.3. Recall that if f : Y — X is smooth and surjective and X is
quasi-compact, then there exists an affine scheme X', a surjective étale mor-
phism A : X’ — X and an X-morphism g : X’ — Y : see [11, IV.17.16.3] It
follows that if G is a smooth group scheme, then G-torsors for the fppf and étale
topology are the same. From the preceding discussion we deduce then that in
fact Brauer-Severi schemes are split by an étale surjective map.

Remark 2.2.4. Brauer-Severi schemes have one more characterization, which
we only state. Let P — S be a proper flat locally of finite presentation map,
and suppose also that the geometric fibers are projective spaces of rank n — 1.
Then P is a Brauer-Severi scheme.

2.3 Cohomology

We are going to show that from the preceding discussions one can recover the
cohomological description of the Brauer group.

Consider a site C, an object X in C and a covering U = (U; % X)ier. For
any (p+ 1)-tuple (ig, ..., p) with the i; in I we write U;y xx - xx U;, = Us;...q,,-
Let P be a presheaf on C. The canonical projection

G-y

:Uiox"'XUij,lei X oo x Us

0 ip J+1 ip

induces a restriction morphism

PU

i0~~ij~~~i,,)

- P(Umzp)
which we write as res;. Define a complex
C.(U,P) = (Cp(uvp)vdp)in

as follows:
c*U,P) = || P(Ui-.,)
Ip+1
and d? : CP(U,P) — CPTY(U,P) is the homomorphism such that if s =
(Sio~~~ip) € CP(U,P), then

p+1
(A8)igipir = Y, (=1)res;(s; 5 i)

j=0

It is easy to see that this is indeed a complex. The cohomology groups
of (CP(U, P),dP) are called Cech cohomology groups of P with respect to the
covering U of X, and are denoted as H? (U, P).

A second covering V = (V; ¥ X)jes is called a refinement of U if there is a
map 7 : J — I such that for each j, ¢; factors through ¢,;, that is, ©¥; = ¢,;n;
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for some n; : V; — Urj. The map 7, together with the family (7;), induces
maps 77 : CP(U, P) — CP(V, P) as follows: if s = (s;,...4,) € CP(U, P), then

(778) jorjp = T€Sns xoxmz, (Srjo-7i)
These maps 7P commute with d and hence induce maps on the cohomology
p(V,U,7): H?(U, P) — HP(V, P)
Lemma 2.3.1. The map p(V,U,T) does not depend on 7 of the 7;.

Proof. See [23, III, Lemma 2.1]. O

Hence, if V is a refinement of I, we get a homomorphism p(V,U) : H?(U, P) —
H?(V, P) depending only on V and U. Tt follows that if U, V,WW are three cov-
erings of X such that W is a refinement of ¥V and V is a refinement of U/, then
oW, U) = p(W,V)p(V,U). Thus we may define the Cech cohomology groups
of P over X to be H?(X,P) = h_H)lFIp(Z/l, P), where the limit is taken over all
coverings U of X.

Consider a category with a terminal object X.

Proposition 2.3.2. To any exact sequence of sheaves of groups
1-G ->G->G" -1
there is associated an exact sequence of pointed sets
15 G(X) > G(X) > G'(X)S H(X,G') > H(X,G) — H'(X,G")
Proof. The map d is defined as follows: let g € G"(X), and let (U; — X)

be a covering of X such that there exist g; € G(U;) that map to g|y, under
G(U;) —» G"(U;); then

d(.g)ij = (gi Uij)_1<gj Uij)

The other maps are obvious and the checks that have to be done are routine. [J

Let G be a group sheaf and S a torsor for G. Let (U; — X) be a cover that
trivializes S and choose s; € S(U;) for every U;. Then there is a unique g;; €
G(Uij) such that (si|v,;)gi; = (sjlv,;). Note that (gi;) is a 1-cocycle, and that
if the choice of the s; is changed, then g = (g;;) is replaced by a cohomologous
cocycle. Also the cohomology class in unaltered if S is replaced by an isomorphic
torsor or another covering. Thus S defines an element ¢(S) € H'(X,G).

Proposition 2.3.3. The map S — ¢(5) defines a one-to-one correspondence
between isomorphism classes of sheaf torsors for G and elements of H'(X, Q)
under which the trivial class corresponds to the distinguished element.
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Proof. We construct the inverse mapping. Let U4 = (U; — X) be a cover-
ing of X, and let C°(U,G) and C'(U, G) be the sheaves V — [[, G(U; x V),
V =[], ;G(Uiy; x V). These are sheaves because, for example, U, G) =
[17+(G|v,), where 7; are the maps U; — X. Let d : C° — C' be the mapping
(hi) — (h;'h;). Now fix a 1-cocycle g for G relative to U. For any V, g re-
stricts to an element g|y of T'(V,C*(U,G)), and we define S to be the subsheaf
of C°(U, G) such that T'(V, S) is in the inverse image of g|y for any V. There is
an obvious right action of G on S, namely ((s;), g) — (97 's;). Suppose now that
g is the trivial cocycle, that is gi; = (g:lv,,) " (g5]uv,,) for some (g;) € [T, G(Us).
Then the map G — S that sends a section h of G over V to (h™ |y wv,)(gilvxu,)
is an isomorphism that commutes with the action of G. Since g becomes trivial
on each U;, and the definition of S commutes with restriction, this shows that
Slu, = G|y, that is, S is a G-torsor. Finally one checks that the 1-cocycle cor-
responding to S is the original cocycle g and conversely that the torsor defined
by the cocycle obtained by a given torsor, is isomorphic to the given torsor.
This shows there is a one-to-one correspondence between isomorphism classes
of torsors that become trivial on a given covering U and elements H' (U, G).
Passing to the limit we obtain the thesis. O

Corollary 2.3.4. Let G be an affine group scheme. There is a canonical bijec-
tion between the set of fppf G-torsors over a base scheme X modulo isomorphism
and H}ppf (X,G). If G is a smooth they are also in bijective correspondence

with HL (X, Q).

Proof. The firs part is a consequence of the Proposition and the fact that fppf
G-torsors are representable. For the second part, we already remarked that if
the groups is smooth, then fppf torsors are the same as étale torsors. O

Recall now the exact sequance of étale sheaves
1- Gy, —>GLygp— PGL,p— 1
in the category Aff/Spec(R).
Theorem 2.3.5. There is a canonical injective homomorphism
Br(R) — H%(Spec(R),G,,)

Proof. We have shown in Theorem 2.2.2 that Azumaya algebras over R are in
correspondence with PGL,, r torsors in the fppf topology. Then it follows from
Corollary 2.3.4 that they are also in correspondence with H},(Spec(R), PGL,, r).
Furthermore, by descent theory for quasi-coherent sheaves, the set H, L(Spec(R), GLy R)
is in correspondence with the set of isomorphism classes of locally free mod-
ules of rank n over R. Let us show that the map H},(Spec(R),GL, r) —
H!,(Spec(R), PGL, ) sends an R module to the module of its endomorphisms.
Let E be an R-module and U = (U;) a Zariski covering of Spec(R) that trivi-
alizes E through maps ¢;. Then E correponds to the 1-cocycle (¢; '¢;). Con-
sider A = Endg(E) and the isomorphisms ; M, (R;) — Endg,(E;), where



30 CHAPTER 2. DESCENT THEORY

Yi(a) = d)iagbi_l. Thus A corresponds to the 1-cocycle (¢i_11/1j) = (yj), where
a;j(a) = qb;qujaqS;qui. This is in the image of (¢;'¢;) because the map
GL, r, — PGL, r, maps u to the automorphism of M, (R;) given by con-
jugation by wu.

There is a an exact sequence of pointed sets

H,(Spec(R), Gyp,) — HY(Spec(R), GLy ) — HY (Spec(R), PGLy ) >
< 12 (Spec(R), G)

The first part is just the exact sequence of Proposition 2.3.2. We can continue
that exact sequence because G, is in the center of GL,, g. The map d is defined
as follows: let v € HY(Spec(R), PGL, r) be represented by a cocycle (c;;) for
the covering (U;). After refining (U;), we may assume that each ¢;; is in the
image of an element c;; € I'(Ui;, GLy r); the d(v) is the class of the 2-cocycle
(@ijr) where

aiji = i (cip) el € T(Uije, Gin)

Moreover, d(c(AQrA")) = de(A)de(A’), where ¢(A) denotes the class in HY,(Spec(R), PG Ly, r)
of an Azumaya algebra A. The verification of the exactness and the other state-
ments are routine.

Thus we have obtained an injective homomorphism

Br(Spec(R)) — Hst (Spec(R), G,)

By Milne Theorem 2.17 there is a canonical isomorphism HZ(Spec(R),G,,) —
HZ,(Spec(R),G,,), and so we have concluded. O

Corollary 2.3.6. If k is a field, Br(k) — H?(k,k*) is an isomorphism.

Proof. This follows from [23, IV, Corollary 2.12] and the fact that for fields étale
cohomology is the same as Galois cohomology. O



Chapter 3

Essential dimension

In this chapter we are finally going to talk about essential dimension. We will
study its basic properties, following [4]. For a more complete point of view on
the subject, see the introductory papers [26] and [21].

3.1 (General properties

Fix a base field k. We denote by Cj the category of field extensions of k, with
morphism field maps that fix k. Let F': C;, — Sets be a functor.

Definition 3.1.1. Let a € F(K), with K/k a field extension. We say that a is
defined over an intermediate field £ € E < K if there is an element b € F(E)
such that F'(E — K)(b) = a.

Definition 3.1.2. If a € F(K) with K/k a field extension, we define the es-
sential dimension of a as ed(a) = min trdeg(E : k), where E runs over the
extensions of k over which a is defined.

Definition 3.1.3. The essential dimension of F is the supremum of ed(a) for
all ¢ € F(K) and all the extensions K /k.

Let us show some examples. First consider the trivial functor F' such that
F(K) = S for every K, where S is a fixed non-empty set. It is clear that the
essential dimension of F' is zero, since every element of F(K) is defined over
k. Next, consider the forgetful functor F' such that assigns to each field its
underlying set. If a is an element in F/(K), then the essential dimension of a is
zero if it is algebraic, one otherwise. It is clear then that edy(F) = 1. Finally,
fix an integer n and a set S = {a,b} with a # b. Define the functor F' on an
extension K /k to be {a} if trdeg(K : k) < n, and S otherwise. The essential
dimension of F' is n, and this shows that the essential dimension of a functor
can be arbitrary large.

Now we study the behavior of essential dimension with respect to elementary
operations on functors.

31
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Definition 3.1.4. Let k' /k be a field extension and consider the natural functor
G : Cp — Cp. For a functor F : C, — Sets, we define Fjs to be the functor
Fod.

Proposition 3.1.5. If k¥'/k is a field extension, then edy (Fy/) < edy(F).

Proof. If edy(F) = oo, the results is obvious. Let edi(F) = n. Take K/k'
a field extension and a € F(K). There is a subextension k¥ € F < K with
trdeg(E : k) < n such that a is in the image of the map F(E) — F(K). The
composite extension E’ = Ek’ then satisfies trdeg(E’ : k') < n and a is in the
image of the map F(E’') — F(K). Thus ed(a) < n and edy/ (Fj) < n. O

Proposition 3.1.6. Let f : FF — G be a surjection of functors. Then ed(G) <
ed(F).

Proof. Let K/k be an extension and b € G(K). By surjectivity, there is an
element a € F(K) such that fx(a) = b. Suppose that ed(F') = n and take
a subextension k € F < K such that trdeg(E : k) < n and such that a €
im(F(F) — F(K)). The thesis now follows from the naturality of f. O

Proposition 3.1.7. Let F and G be two functors. Then, if we still denote by
X the functor it represents, ed(F x G) < ed(F) + ed(G).

Proof. Consider K /k a field extension and (a,a’) € F(K) x G(K). Take two
extensions kK € E < K and k € E' ¢ K with trdeg(E : k) < ed(F') and
trdeg(E’ : k) < ed(G), such that a and @’ come from F(F) and G(E’). This
means that exist b € F(E) and b’ € G(E') such that bx = a and b} = o/. Now
take L = FE’ and notice that (bz,, b} ) maps to (a,a’). The thesis follows from
trdeg(EE' : k) < trdeg(E : k) + trdeg(E’ : k). O

Proposition 3.1.8. Let X be a scheme locally of finite type over k. Then
ed(X) = dim(X).

Proof. Every point p € X(K) has least field of definition k(p), so ed(X) =
supy trdeg(k(p)) = dim(X). O

Definition 3.1.9. Let F' be a functor. A classifying scheme of F' is a locally
of finite type k-scheme X such that there is a surjection X — F'.

Corollary 3.1.10. If X is a classifying scheme of F' then ed(F) < dim(X).

3.2 Essential p-dimension

Let F : C, — Sets be a functor, K/k a field extension, z € F(K) and Ky a
field extension of k. We say that x is p-defined over Ky if there are morphisms
Ky — K’ and K — K’ in C;, for some field K'/k and an element z¢ € F'(Ky)
such that K’/K is a finite extension of degree prime to p and (z¢)x’ = xx in
F(K'). We define the essential p-dimension of = as edy,(x) = min trdegi(Ky),
where the minimum is taken over all fields of p-definition K of x. The essential
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p-dimension of the functor F is ed,(F') = sup edp,(x), where the supremum runs
over all field extensions K /k and all 2 € F(K).

Remark 3.2.1. It follows from the definition that ed,(z) = min ed(xr), where
L runs over all finite and prime to p extensions of K. In particular, for every p,
we have that ed,(F) < ed(F').

Remark 3.2.2. The general properties proved above hold also in the case of
the essential p-dimension.

Essential p-dimension is in some sense the 'local’ version of essential dimen-
sion. Most of the existing methods for proving lower bounds on the essential
dimension are in fact well suited for problems that are not sensitive to prime-to-
p extensions, and thus for computations the essential p-dimension. On the other
hand most of the difficult and important problems are sensitive to prime-to-p
extensions. For instance, it is not known if every division algebra of prime de-
gree is a crossed product, however every such algebra becomes a crossed product
after a prime-to-p extension of its center: see Rowen and Saltman [31].

3.3 Essential dimension of algebraic groups

In this section we are going to define the essential dimension of algebraic groups,
that are group schemes of finite type over a base field k. This definition is due to
Reichstein, who first introduced it in [25]. The definition is given using Galois
cohomology, for which the standard reference is Serre’s book [33]. See also [10]
for a more elementary introduction.

Definition 3.3.1. Let G be an algebraic group. The essential dimension of
G is defined as edy(G) = ed,.(H(—, Q)).

The functor H'(—,G) : C — Sets is the first Cech cohomology group of
Gal(K*®,K) with values in G(K?®). This group is the same as the first Cech
cohomology group for G in the étale topology on Cj, which we have seen to
describe the isomorphism classes of G-torsors on Spec(k). In the case G =
PGL,, j we have seen that the functor of torsors is isomorphic to the functor of
central simple algebras and that of Brauer-Severi varieties. Thus the essential
dimension of PGL,, , is precisely the object of study of this thesis.

Remark 3.3.2. Since the object of interest of the thesis is the projective linear
group, in the sequel we shall always assume that the algebraic group G is smooth.

Now we give some simple examples.

Example 3.3.3. Consider the affine group GL,, . Using descent theory the
same way we did for PGL, ; we see that the groups H'(K,GL, ) classify
vector spaces that become isomorphic in a finite extension of K. Clearly two
such vector spaces are already isomorphic over K since dimension is a com-
plete invariant, so H'(K,GL, ) = 0 for every K/k. This fact is known as
Hilbert Theorem 90. Of course, this shows that edy(GL,, ) = 0. In particular,
edk (Gm) =0.
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Example 3.3.4. Consider the affine group SL,, ;. We have an exact sequence
in the étale topology

1> 8Ly —GLpy — Gy — 1

Taking the exact sequence in cohomology we see that H'(K,SL, k) = 0 for
every K, so that edy(SLy ) = 0.

Example 3.3.5. Consider now the finite constant group scheme S, over k.
This is the functor group of automorphisms of the k-algebra k™. We remark
here that if K/k is a Galois extension with group G, then Spec(K) — Spec(k)
is a G torsor for the étale topology. Thus by descent along torsors, H!(k,S,,)
classifies the set of isomorphism classes of commutative k-algebras A such that
there exists a finite Galois extension K /k with A®Q, K =~ K™. These are precisely
the étale algebras. The essential dimension of S,, is unknown, but it has been
proved by Buhler and Reichstein in [5] that |n/2] < ed;(S,) < n—3 for n = 5.

Definition 3.3.6. Let C be a category, G a functor C — Grp and F a functor
C — Sets. We say that G acts freely on F if the action of G(X) on F(X) is
free for every object X. If C = Sch/S, G is a group object in Sch/S and X is
an S-scheme, we say that G acts freely on X if G(T) acts freely on X (T for
every S-scheme T

There is a geometric interpretation of the definition of free action. Consider
G a group scheme over S and X a scheme over S. Let x € X be a point. The
scheme-theoretic stabilizer of x is the pull-back of the diagram

GXSx

|

Spec(k(z)) —— X

where the vertical map is the composite G xgz — G xg X — X. We denote
it by G,; it is a group scheme over Spec(k(x)) and is a closed group subscheme

of G xg {z}.

Proposition 3.3.7. Let G be an algebraic group over k and X an algebraic
variety over k. Then G acts freely on X if and only if G, is trivial for all points
re X.

Proof. See [6, 1T, Chapter 2, Corollary 2.3]. O

Free actions give rise to torsors in a natural way.

Theorem 3.3.8. Let G act freely on a S-scheme of finite type X such that the
second projection G xg X — X is flat and of finite type. Then there exists a
non-empty G-invariant dense open subscheme U of X satisfying the following
properties:

1) There exists a quotient map 7 : U — U/G in the category of schemes.

2) 7 is onto, open and U/G is of finite type over S.

3) m: U+ U/G is a flat G-torsor.
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Proof. See [7, V, Théoréme 8.1]. O

Definition 3.3.9. Let G act on X. An open subscheme U which satisfies the
conclusion of the above theorem will be called a friendly open subscheme of X.

Definition 3.3.10. Let 7 : X — Y be a G-torsor. For any field extension K /k
we define a map 0 : Y(K) — H(K,G) as follows: for any y € Y(K), the fiber
X, is a torsor over Spec(K), and we set d(y) to be the isomorphism class of X,
over Spec(K).

Let us proceed by studying certain torsors that arise from group represen-
tations, which will be useful later.

Definition 3.3.11. We say that G acts generically freely on X if there exists
a non-empty G-stable open subscheme U of X on which G acts freely.

Proposition 3.3.12. Let G be an algebraic group over k acting linearly and
generically freely on an affine space A(V'), where V is a finite dimensional k-
vector space. Let U be a non-empty friendly open subscheme of A(V') on which
G acts freely. Then U/G is a classifying scheme of H!(—,G). In particular we
have ed(G) < dim(V) — dim(G).

Proof. We have to show that, for any field extension K /k, the map ¢ : U/G(K) —
HY(K,G) is surjective. Let g € Z!(K,G), that is a Galois 1-cocycle. We
twist the action of Gal(K*®/K) over V(K?) by setting v *v = v-v - g(v)~! for
all v € Gal(K*°/K) and v € V(K?®). A quick check shows that this action is
Gal(K?/K) semilinear, that is v = (Av) = y(A)(y = v) for all A € K*. By Galois
descent the invariant set V(K®)Ge(K"/K)* is o K-linear subspace such that is
isomorphic to V/(K*®) when base-changed to K*. It is then in particular Zariski
dense, so that it intersects the dense open subset U. Let vy € U(K) be an
invariant point for the new action . If 7 is the projection map U — U/G, we
want to show that d(m(vg)) = g. First of all the fact that vy is invariant implies
that vg - g(y) = v-vo for every v € Gal(K®/K). Then for every v € Gal(K°/K),
v 7(vg) = w(y-vg) = 7(vo - g(y)) = m(vg), where the last equality holds since U
is a G-torsor. From this we have that m(vy) € U/G(K). Recalling the explicit
description of the relation between torsors and cocycles, and using once again
that vg - g(y) = v - vo we see that in fact d(w(vg)) = g. O

We remark here that any algebraic group has a generically free action over
some vector space. Indeed, G is isomorphic to a closed subgroup of some GL,,,
and in suffices to take V' = M, (k).

In particular we see that the essential dimension of an algebraic group is
finite.

3.4 Versal pairs

In this section we introduce the notion of versal pairs and show how it can be
used to compute the essential dimension of algebraic groups.
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Let k be a field and Uy, be the category of all commutative k-algebras with
homomorphism of k-algebras as morphisms. Every functor F : U — Sets de-
fines by restriction a functor Cp, — Sets. We shall relate the essential dimension
of this restriction with versal pairs.

Definition 3.4.1. Let F : U, — Sets be a functor and (a, K) be a pair such
that K is an extension of k and a € F(K). We say that the pair (a, K) is a versal
pair if for every extension L/k and every element b € F'(L), there exist a local
k-subalgebra O of K and an element ¢ € F(O) such that F(O — K)(c) = a,
there is a morphism O — L in Uy, such that F(O — L)(c) = b.

Definition 3.4.2. Let F' : U}, — Sets be a functor which has a versal pair. We
say that a versal pair (a, K) is nice if for any k € L < K and o’ € F(L) such
that @ = a, the pair (a’, L) is versal. We say that F is nice if it has a nice
versal pair.

Proposition 3.4.3. Let F' : U — Sets be a functor which has a versal pair.
Then the essential dimension of the restriction of F' to Cy, is at most the minimum
transcendence degree of the fields for which there is a versal pair. Moreover, if
F is nice, then ed(F') = edi(a), where (a, K) is any nice versal pair.

Proof. Let L/k be any field extension, and let b € F/(L). Let (a, K) be a versal
pair such that trdeg(K : k) is minimal. Since (a, K) is versal, then b comes
from an element of F(x(0)), where (O) is the residue field of some local k-
algebra O. Then ed(b) < trdeg(k(O) : k) < trdeg(K : k). This proves the first
assertion.

Let now (a, K) be a nice versal pair. Take a subextension k € L < K with an
element ¢’ € F'(L) such that a = o), and trdeg(L : k) = ed(a). By assumption,
(a’, L) is versal, so by the preceding point edy(F') < trdeg(L : k) = ed(a). On
the other hand, ed(a) < edy(F') by definition of essential dimension. O

Definition 3.4.4. Let f : X — Y be a G-torsor with Y irreducible. We say
that it is classifying for G if, for any field extension &’/k and for any torsor P’
of G over k'/k, the set of points y € Y(k') such that P’ is isomorphic to the
fiber f~1(y) is dense in Y.

Remark 3.4.5. The proof of Proposition 3.3.12 actually tells us that we obtain
a classifying torsor. Furthermore one can always find a reduced classifying torsor
for G. Indeed, take X — Y a classifying torsor for G and let ¢ : V.. — Y
be the canonical reduced scheme associated to Y. Then pulling back the torsor
X — Y along ¢ gives a torsor which is isomorphic to X,.eq — Yyeq and which is
also classifying.

Definition 3.4.6. Let G be an algebraic group over k, K a field extension of
k and P — Spec(K) a G-torsor. We say that P is k-generic if

1) there exists an integral scheme Y with function field £(Y) = K and a G-
torsor f : X — Y whose generic fiber f~1(n) — Spec(K) is isomorphic to
P — Spec(K).
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2) For every extension k'/k with k' infinite, for every non-empty open set U of
Y and for every G-torsor P’ — Spec(k’), there exists a k’-rational point © € U
such that f~1(z) =~ P'.

Generic torsors are by definition generic fibers of classifying torsors.

Proposition 3.4.7. Let P — Spec(k(Y)) be a generic torsor. Then (P, k(Y)
is a versal pair for the functor of G-torsors.

Proof. Take T — Spec(L) any torsor defined over L/k. Since X — Y is a
classifying torsor, there exists a L-rational point y : Spec(L) — Y such that
T — Spec(L) is the pullback along y. Take Oy, the local ring at the point y and
let ¢ : Spec(Oy,,) — Y be the canonical morphism. Consider P’ — Spec(Oy,y)
the torsor obtained by pulling back X — Y along ¢. The local ring Oy,
in naturally a sub k-algebra of k(Y), so P — Spec(k(Y)) is a pullback of
P’ — Spec(Oy,y). Moreover, the morphism y : Spec(L) — Y factorizes through
Spec(k(y)); if we denote by P” — Spec(k(Y)) the torsor obtained by pulling
back P’ — Spec(Oy,,) along the morphism Spec(k(y)) — Spec(Oy,y), it is clear
that T — Spec(L) comes from P” — Spec(k(y)). This shows the thesis. O

Definition 3.4.8. Let f: X —» Y and f': X’ — Y’ be two G-torsors. We say
that f’ is a compression of f if there is a diagram

x -4 x
I Lr
X/ _}_L_) Y’

where ¢ is a G-equivariant rational dominant morphism and h is a rational
morphism.

Remark 3.4.9. Take as above a compression of f : X - Y and let U € Y the
open subscheme on which h is defined. Taking the pullback of X’ — Y’ along
h, one obtains a G-torsor f” : P — U which fits into a diagram

X -» P - X

Lf L L
Y --» U > Y

and f” is a compression too. So we can basically reduce a compression to a
pullback.

Lemma 3.4.10. Let g : X --» X’ be a rational dominant G-equivariant mor-
phism between generically free schemes. Then exists X, and X|) friendly open
subschemes of X and X’ such that g induces a compression of torsors

Xo -3 X}

l l
Xo/G " Xx1JG
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Proof. Take U some friendly open subscheme of X. Since g is dominant, we can
find an open subscheme U’ of X’, which lies in the image of g. Intersecting U’
with some friendly open set of X’ gives a friendly open set X{ in the image of
U. Then X, = g~ !(X}) is the desired open set. O

Proposition 3.4.11. Let f : X — Y be a G-torsor with Y integral. Let
T — Spec(k(Y)) be its generic fiber; then its essential dimension is equal to the
smallest dimension of the base scheme of a compression of f.

Proof. Let f and T be as above. Let f' : X’ — Y’ be a compression of f
and T' — Spec(k(Y’)) its generic fiber. By Remark 3.4.9 one can suppose
that the compression is a pullback. But then it is clear that 7" maps to T
under H*(k(Y’),G) —> H'(k(Y),G), so that the essential dimension of T —
Spec(k(Y')) is at most the dimension of the scheme Y.

Conversely suppose there is a subextension k € K' € K = k(YY) to-
gether with a torsor 7" over K’ such that 7" maps to T under H'(K',G) —
H'(k(Y),G); we have to find a G-torsor f' : X’ — Y’ such that T” is iso-
morphic to its generic fiber and a compression from f to f/. We can suppose
everything to be affine, since the problem is local. So let us write Y = Spec(A),
X = Spec(B), T = Spec(P), T" = Spec(P') and let k[G] denote the algebra of
(. We have to find a subring A’ of K’ whose field of fractions is K’, a G-torsor
B'/A’ such that P’ ~ B’ x 4» K and a rational compression from B’/A’ to B/A.

Since K is of finite type over k, we can write it as K = k(«y, ..., a,); since
P is of finite type over K we write it P = K[f1, ..., Bm]- In the same way we
write K/ = k(o),...,a) and P’ = K'[f1, ..., Bi]-

Since both P’ x v P’ and P’ xj, k[G] are finitely generated algebras over K’
one can find a polynomial f in the o} such that B’ x 4» B’ = B’ x, k[G] where
A" = k[d']y and B' = A'[#']. It is clear that P’ = B’ x4 K’, so we have to
find a rational morphism from B’/A’ to B/A. The image of A’ under the map
A’ € K' € K lies in a subring of the form k[a], for some polynomial g in the
a;. Now A = k[a]p for some h and we have a natural map A" — A,. In the
same way one finds a rational map B’ — B,, compatible with the previous one.
Then the thesis follows. O

Lemma 3.4.12. Let f' : X’ — Y’ be a compression of a classifying torsor
f:X =Y. Then [’ is also classifying.

Proof. Let
x -%4ox
lf L
X/ _I;L_) Y/

be such a compression. Let k//k be a field extension with &’ infinite and let
P’ e HY(K',G). Since f is classifying one can find a &’ rational point y € Y (k')
which lies in U, the open set on which h is defined, such that f~!(y) ~ P’
Then the fiber of f” at h(y) clearly gives a torsor isomorphic to P’. O
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Corollary 3.4.13. Let T — Spec(K) be a generic G-torsor, K’ < K and
T" — Spec(K') such that Tj; = T. Then T” is also a generic torsor.

Proof. Take a classifying G-torsor X — Y which is a model for T'. Then, by the
proof of Lemma 3.4.10, defining 7" over a smaller field means compressing the
torsor X — Y. Since the compression of a classifying torsor is again classifying
it follows that T' comes from a generic torsor. O

The following Corollary is very important for some computations of essential
dimension.

Corollary 3.4.14. The functor of G-torsors is nice. Furthermore, if T €
HY(K,G) is a generic torsor, then the essential dimension of G is equal to
the essential dimension of T'.

Using compressions we are able to describe the behavior of essential dimen-
sion with respect to closed subgroups.

Theorem 3.4.15. Let G be an algebraic group and H a closed algebraic sub-
group of G. Then

ed(H) + dim(H) < ed(G) + dim(G)
In particular, if G is finite, we have ed(H) < ed(QG).

Proof. Let A(V') be an affine space on which G acts generically freely. Take U
open in A(V) such that U/G and U/H both exist and are torsors. Now take a

G-compression
g

U --» X
l l
vig sy

such that dim(Y) = ed(G). Since the stabilizer in H of a point is a subgroup
of G, it follows that H acts generically freely on U and on X too. Now g
is also H-equivariant and by Lemma 3.4.10 g gives rise to an H-compression
U — U/H. It follows that

(X) — dim(H)
(Y) + dim(G) — dim(H)
ed(G) + dim(G) — dim(H)

ed(H) < dim
= dim

O

We conclude this section with an example. Consider the algebraic group
PGL, over Spec(k). There is a natural representation of PGL, (k) on the
k-vector space M, (k) x M, (k) given by conjugation, that is

g(mi,ms) = (gmig™", gmag™")
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This gives a generically free representation of PG L,,. Then we obtain a torsor,
whose generic fiber given a versal pair for PGL,. More precisely we have a
commutative diagram

P N Spec(k[zij, yij])

l |

Spec(k(xij,yi;) TG ®) ——— Spec(k[zij, yi;]) TG ®)

where 1 < 4,5 < n and P is the generic torsor.

From the description of the relation between PG L,, torsors and Azumaya al-
gebras, we see that from P one obtains a central simple algebra M,, (k(x;;, y;;)) 75 *)
which is called also universal algebra and denoted by UD(n). Then Corollary
3.4.14 tells us that ed,(PGL,,) = edi(UD(n)).



Chapter 4

Computations

In this chapter we will use the general theory developed so far to give estimates
of the essential dimension of PGL,,.

Upper bounds in the case of algebraically closed fields were first given in
[16] by Lorenz and Reichstein, and then in the general case in [17] by Lorenz,
Reichstein, Rowen and Saltman. We will also present estimates for the essential
p-dimension, following [22], which were sharpened by A. Ruozzi in [32].

Lower bounds are more difficult to produce. The first lower bounds are due
to Reichstein and Youssin in [27]. These were sharpened in the work of A.
Merkurjev in [20], which we will follow.

4.1 Upper bounds

Here we give upper bounds of the essential of PGL,, for n odd using central
simple algebras. Almost all the discussion in taken from [17].

4.1.1 Essential dimension of crossed products

In this subsection we will denote by G a finite group and H a subgroup of G.
Let us briefly recall the main definitions. We will assume that the characteristic
of the base field is coprime with the order of G.

Definition 4.1.1. A G-module is a left module over the ring Z[G]. A G-lattice
is a G-module that is free of finite rank over Z. A G-lattice M is called a
permutation lattice if M has a Z-basis that is permuted by G, and permutation
projective if M is a direct summand of some permutation G-lattice.

A G-module M is called faithful if the only element of G acting trivially is
the identity. The G/H augmentation ideal w(G/H) is defined as the kernel of
the natural augmentation map Z[G/H] = Z[G] ®z[x) Z — Z. Thus there is a
short exact sequence of G-lattices

0 - w(G/H) - Z[G/H] - Z — 0

41
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Lemma 4.1.2. Let dg(w(G/H)) denote the minimum number of generators of
w(G/H) as a Z[G]- module. For any r > dg(w(G/H)) take an exact sequence

0 M —Z[G]" L w(G/H) -0

where f maps the standard basis of Z[G]" to a set of r generators. Then M is
a faithful G-lattice if and only if r > 2 or H # {1}.

Proof. 1t is enough to show that M ®zQ is G-faithful, thus we may work over the
algebra Q[G], which is semi-simple due to Maschke’s theorem. Since f®id splits,
we have a Q[G]- isomorphism (w(G/H)®z Q) ® (M ®z Q) = Q[G]". Similarly,
the canonical exact sequence Z[GlwH — Z[G] — Z[G/H] gives (w(G/H) ®z
Q) ®Q®QwH = Q[G]. Therefore, M ®7 Q =~ Q[G]" ' ®Q® Q[G]wH.

If » > 2 then Q[G]"~! is G-faithful, and if H # {1} then wH ®z Q is H-
faithful and so Q[GlwH = (wH®7Q) 1% is G-faithful. In either case, M ®7Q is
faithful, as desired. On the other hand, r = 1 and H = {1} leads to M®;Q = Q
which is not faithful. O

We shall call a central simple algebra A/F an (E,G/H)-crossed product if
A has a maximal subfield L whose Galois closure E over F' has the property
that Gal(E/F) = G and Gal(E/L) = H. We will say that A is a G/H-crossed
product if it is an (E, G/H) crossed product for some faithful G-field E.

Since the degree of a G/H crossed product is equal to [G : H|, we see that
isomorphism classes of (E,G/H) crossed products are in bijective correspon-
dence with the relative Brauer group B(L/F'), which is in turn identified with
the kernel of the restriction homomorphism H?(G, E*) — H?(H, E*).

A G-module M is called H!-trivial if H'(H,M) = 0 for every H < G.
Equivalently, M is H! trivial if Extg(P, M) = 0 for all permutation projective
G-lattices P.

Lemma 4.1.3. Given an exact sequence 0 - M — P — w(G/H) — 0 of
G-lattices, with P permutation, let N be an H'-trivial G-module. Denote the
kernel of the restriction homomorphism H?(G, N) — H?(H, N) by K(G/H, N).
Then there is a natural isomorphism ¢y : Homg(M, N)/Im(Homg(P,N)) —
K(G/H,N).

Here the word ’natural’ means that for every homomorphism N — N’ of
H'-trivial G-modules, the following diagram commutes

Home(M, N)/Im(Homg(P,N)) —2 K(G/H,N')

T T

Homg (M, N)/Im(Homea(P,N)) —2 K(G/H,N)

Proof. See [30, Theorem 1.4]. O
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In subsequent applications we will always take N = E*, where F is a faithful
G-field. Note that E* is H'-trivial by Hilbert’s Theorem 90. In the identifi-
cation of K(G/H,E*) with (E,G/H) crossed products, we shall denote the
(E,G/H) crossed product associated to a G-homomorphism f : M — E* by
Alg(f).

Definition 4.1.4. Let A/F and B/K be central simple algebras. We call B/K
a rational specialization of A/F if there exists a field F’ containing both F' and
K such that F'/K is rational and B ®x F' =~ A®p F'. This is equivalent to
requiring that degA = degB and A embeds in some B(ty, ..., t,), where ty, ..., t,
are independent variables over F.

If S is a set of central simple algebras, we say that an algebra A in S
has the rational specialization property in S if every element of S is a rational
specialization of A.

‘We need one more technical lemma.

Lemma 4.1.5. Let A/F and B/K be central simple algebras. If A’ ~ AQp F’
for some rational field extension F'/F then ed(A) = ed(A’). In particular, if A
is a rational specialization of B, then ed(A) < ed(B).

Proof. See [17, Lemma 2.7]. O
Consider now an exact sequence of G-modules
0—>M-—>P—->wG/H)—0
with P permutation and M faithful.

Lemma 4.1.6. Let E be a G-field and f : M — E* be a homomorphism of
G-modules. If k(f(M)) is contained in a faithful G-subfield Ey of E then Alg(f)
is defined over Ef'.

Proof. Since f is the composition of fy : M — E& with the inclusion Ef — E*,
Lemma 4.1.3 tells us that A = Alg(fo) ®@gg EC. O

Theorem 4.1.7. Let p : M — k(M)* be the natural inclusion. Then D =
Alg(p) has the rational specialization property in the class of G/H crossed
products containing a copy of k in their center. In particular, ed(A) < rank(M)
for any G/H crossed product A/F with k € F.

Proof. Write A = Alg(f) for some G-homomorphism f : M — E* where F
is a faithful G-field with E¢ = F. Let E(P) denote the fraction field of the
group algebra E[P],with the G-action induced from the G-action on E and
P. By [17, Proposition 2.4], there exists an E-isomorphism j : E(P) = E(t)
of G-fields, where t = (¢1,...,t,) are indeterminates on which G acts trivially
and r = rank(P). Therefore, E(P)¢ =~ E®(t) = F(t) is a rational extension
of F. Let f; : M — E(t)* denote the composition of f with the natural
inclusion E* — E(t)*. Then Alg(f;) = Alg(f) ®r F(t) = A®p F(t). By
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the Lemma 4.1.3, Alg(f:) = Alg(f; + g|lm) for any g € Homg (P, E(t)*). Let
g be the composite g : P — E(P)* — E(t)* and let ¢ be the G-module map
@ : M — E(t)* defined by o(m) = fi(m)g(m). Now we will show that ¢
lifts to an embedding of G-fields k(M) — E(t). Indeed, modulo E*, p(m) =
g(m) € P < E(t)*. Hence, {¢(m)}men is an E-linearly independent subset
of E(t), and so the map k[p] : k[M] — E(¢), is a G-equivariant embedding
of the group ring k[M] into E(t). This embedding lifts to an embedding of
G-fields ¢ : k(M) = Q(k[M]) — E(t), as claimed. So ¢ o u = ¢, and hence
D ®yarye F(t) = Alg(¢pop = Alg(p) = Alg(f;) = A®p F(t). This proves that
A is a rational specialization of D.
The previous lemmas imply that ed(A) < ed(D) < trdegik(M)C = rank(M).
O

Corollary 4.1.8. Let A be a G/H crossed product. Then
ed(A) <r|G|—[G:H]+1
where r = dg(w(G/H)) if H # {1} and r = maz{2,dc(w(G/H))} it H = {1}.
Proof. Applying Theorem 4.1.7 to an exact sequence
0— M —Z[G]" L w(G/H) -0
we obtain

ed(A) < rank(M) = rank(Z[G]") — rank(w(G/H)) = r|G| — [G : H] + 1

4.1.2 Brauer factor sets

Here we briefly review some results of the theory of Brauer factor sets, following
[29]. Let A be a central simple algebra over k of degree n. Suppose K is a
maximal separable subfield of A over k and F is the normal closure of K, with
G = Gal(E/k). Then K = k(u) for some v in K, implying that the minimal
polynomial of u has degree n, and E is its splitting field over K. Let r; be its
roots in F, for 1 <4 < n. The group G permutes the r; and thus can be viewed
as a subgroup of the permutation group on n elements.

There exists an element v in A such that A = KvK, and one can view
naturally A € A®, K = M, (K) < M,(E). Write v = (v;;) € M,(E), where
each v;; is non-zero due to A = KvK. Let ¢, = vl-jvjkvi_kl. Then the set of
the c;j1 satisfies the following conditions:

1) o¢ijk = Coiojor for all oin G
2) CijkCikm = CijmCikm.-

A set of n3 elements in E that satisfies these conditions is called Brauer

factor set. We show now that conversely, a Brauer factor set gives rise to a
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central simple algebra. Let (c;;i) be a Brauer factor set and consider the k-
vector subspace A = {(a;;) € Mp(FE)|oa;j = Ggi0j for all o in G}. On A we
define an associative multiplication by the rule

n
az] Z aljcljkbjk €ik

Then A is a simple k-algebra which can be injected into M, (F) via the map
(aij) = X;(cijiaij)ey;. If we take the trivial Brauer set that is identically 1,
then we obtain the matrix algebra.

Suppose that (c;;x) and (c};;,) are Brauer factor sets with respect to the same
field K /k. The ensuing simple algebras are isomorphic if and only if there are
some elements w;; in E such that:

1) owij = Wei,oj
2) C;jk: = wijwjkwi_,clcijk.

In these case the two sets are called equivalent. A Brauer set (c;j;i) is called
normalized if c;; = ¢iji = cju = 1 and cpjy = c;}c for all 4, j, k.

Let us state now the results that we will need.

Theorem 4.1.9. For any Brauer factor set (¢;;) there is a normalized Brauer
factor set equivalent to (c;;x)?. In particular, if n is odd then every Brauer
factor set has an equivalent normalized Brauer factor set.

Proof. Let ¢ = cijkcgjll Then ( ¢i;1) is a normalized Brauer set equivalent

to (cijk)- In n is odd, consider ¢, = (c;jk)("“)/z. This is normalized and
equivalent to (c;;i). See [29, Theorem 4] for more detail. O

We will need the following version of Lemma 4.1.6.

Proposition 4.1.10. Let A be an (E,G/H) crossed product defined by a re-
duced Brauer factor set (c;;n). Suppose that (c;;p) is contained in a faithful
G-subfield Ey of E. Then A is defined over Ef'.

Proof. There is an exact sequence
0 - w(G/H)® — P — w(G/H) — 0

where P is the permutation sublattice P = @dl#QGC#H Z(g1 ®z ga2) of
Z|G/H]%.

In fact, tensoring the exact sequence 0 —» w(G/H) — Z|G/H] — Z — 0
with w(G/H) on Z we obtain the previous one via the identification w(G/H) ®z
Z|G/H] =~ P given by sending the elements (§; — ¢2) ®z g2 to §1 ®z ga-

The G-module w(G/H)®? has the convenient set of generators Yijn = (Gi —
gj) ®z (g; — gn), where i, j, h range from 1 to [G : H]. If f : w(G/H)®§ — E*
is a G-module homomorphism then the elements ¢;;;, = f(y;;n) form a reduced
Brauer factor set for Alg(f). Conversely, for any reduced Brauer factor set
(¢ijn) in E*, there exists a homomorphism f : w(G/H)® — E* such that
f(yijn) = cijn : see [30, Corollary 1.3]. O
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4.1.3 Universal algebras

In this subsection we shall assume that G = S,, and H = S,,_;. We will use the
notations Z[S,/Sn—1] = U, and w(S,/Sn—1) = An—1. The natural generators
of U,, will be denoted by uq, ..., u, and the symmetric group S,, permutes them
via o(u;) = uy(;). Notice that A, _; is the sublattice of U,, generated by u; —u
as i ranges from 2 to n.

Recall that the universal division algebra UD(n) is the localisation over the
non-central elements of the algebra generated by two generic matrices X and
Y. Tt is a division algebra of degree n by [28, Theorem 3.2.6]. We may assume
without loss of generality that X is diagonal and we denote the diagonal entries
of X by ¢/, and the entries of Y by (;;, where ¢/, and (;; are algebraically
independent variables over k. The group S,, permutes these variables as follows
2 0(Cis) = Co(iyoiy and a(Cis) = Coiyo(s)-

We identify the multiplicative group generated by ¢/, with the S, lattice U,
via {}; < u;, and the multiplicative group generated by (;; with U, ®z U,, via
Cij < u; ®z uj. Consider the exact sequence

0— Ker(f) > Uy @U®2 L 4, 1 —0

of Sy,-lattices, where f(u;,u;j®up) = u; —uyp. This sequence is the sequence
of Proposition 4.1.10 for G = S,, and H = S,,_1, with two extra copies of
U, added: the second copy of U, is the sublattice of UZ?? that is spanned
by all elements u; ® w;. Both copies of U, belong to Ker(f), and in fact
Ker(f) = U, ®U, ® A%, where A% is identified with the sublattice of U®??
that is spanned by all elements (u; — u;) ® (w; — Un,).

Let E = k(Ker(f)) and F = E*. By [8, Theorem 3] Theorem 3, F is
naturally isomorphic to the center Z(n) of UD(n). Note that E = F({}1,...,¢}p)
is generated over F' by the eigenvalues of the generic matrix X. Consequently,
UD(n) is an (E, S, /S,_1) product and ES»-! is isomorphic to the maximal
subfield Z(n)(X) of UD(n); see [24] Section II.1.

Theorem 4.1.11. Let n > 5 be an odd integer. Then UD(n) is defined over
FO = k(/\2 Anfl)s'”.

Proof. We need to construct a reduced Brauer factor set contained in Ey =
k(A* An_1). Note that the S, action on Ey is faithful.

The computation in [29] Section 2 shows that the elements ¢;;5, = (;; <j’l<i711 €
E* form a Brauer factor set of UD(n). If n is odd, UD(n) has a normalized
Brauer factor set (c;;;,) given by

ntl — — —1yntl
Ciin = (cijn/eng) = = (GijCi' GnCry CniCin') 2

Now observe that gijgj—ilgjhg,jjlghiqf is precisely the element of U®22 we iden-

tified with (u; —uj) A (u; — up). O

We have seen in the previous chapter that the universal division algebra
gives a versal pair for the algebraic group PGL,, so we have obtained an upper
bound for the essential dimension of PGL,, for n odd.
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Theorem 4.1.12. The essential dimension of PGL,, i, is at most (n—1)(n—2)/2
if n > 5 is odd.

4.1.4 Essential p-dimension

In this subsection we prove an upper bound for the essential p-dimension of
PGL,,. This will be a consequence of an upper bound of the essential dimension
of crossed products with certain properties. Here we follow the work of Meyer
and Reichstein, [22]

In the sequel we will use once more the notation introduced at the beginning
of the chapter.

Lemma 4.1.13. Let G # {1} be a finite group, H be a subgroup of G and
Hy,...,H, be subgroups of H. Let

0— M — @PZ[G/H;] - w(G/H) -0
i=1
be an exact sequence of G-lattices. Assume that H does not contain any

nontrivial normal subgroup of G. Then the G-action on M is not faithful if and
only if s=1and H; = H.

Proof. To determine whether or not the G-action on M is faithful, we may
replace M by Mg = M ®z Q. After tensoring with Q, the sequence splits, and
we have an isomorphism w(G/H)q ® Mg = ®;_,Q[G/H;].

Assume that r > 2. Then H, is a subgroup of H, we have a natural surjective
map Q[G/H,] — Q[G/H]. Using complete irreducibility over @ once again,
we see that Q[G/H] is a subrepresentation of Q[G/H,]. Thus the previous
isomorphism tells us that Q[G/H,_1] is a subrepresentation of Mg. The kernel
of the G-representation on Q[G/H,._1] is a normal subgroup of G contained in
H,_1; by our assumption on H, any such subgroup is trivial. This shows that
H acts faithfully on Q[G/H,_1] and hence on M.

Assume now that r = 1. Our exact sequence assumes the form

0 — Mg — Q[G/H:] = w(G/H)g — 0

If H = Hy then M ~ Z, with trivial G-action.
We want to show that if H; < H then the G-action on Mg is faithful. Denote
by Q[1] the trivial representation of some group. Observe that
Q[G/H:] = Ind$;, Q[1] = Ind§ Indfy Q[1] = IndGQ[H/H;]

~ Ind§}(w(H/Hy)go ® Q[1]
~ Ind§ew(H/Hy)q ® Q[G/H)
=~ IndGw(H/H))g ®w(G/H)o ® Q[1]

and we obtain Mg = IndGw(H/H1)o@®Q[1]. If H; = H, then the kernel of the

G-representation Ind$%w(H/H)g is a normal subgroup of G contained in Hj.
By our assumption on H, this kernel is trivial. O
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Lemma 4.1.14. Let V be a Z[G]-submodule of w(G/H). Then the set Gy =
{g€ G|g— 1€V} is a subgroup of G containing H.

Proof. The inclusion H € Gy follows directly from the definition.
To see that Gy is closed under multiplication, suppose g, g € Gy, so that
g—1and ¢’ —1liein V. Then

also lies in V. O

Definition 4.1.15. We say that g1, ..., gs € G generate G over H if the subgroup
generated by g1, ...,¢9s and H is the entire G.

Theorem 4.1.16. Let A be a G/H crossed product. Suppose that
1) g1, ..., 95 € G generate G over H

2) if G is cyclic then H # {1}.

Then ed(A) < Y7 |[G: (H nH%)| —[G: H] + 1.

Proof. We claim that the elements g; —1, ..., gs — 1 generate w(G/H) as a Z|G]-
module.

Indeed, let V' be the Z[G]-submodule of w(G/H) generated by these ele-
ments. Lemma 4.1.14 and condition (1) tell us that V contains g — 1 for every
g € G. Translating these elements by G, we see that V contains a — b for every
a,be G. Hence, V = w(G/H), as claimed.

Fori=1,..,s let S; = {g€ Glg-(g; —1) = gi — 1} be the stabilizer of g; — 1
in G. We may assume here that g; is not in H, otherwise it could be removed
since it is not needed to generate G over H. Then clearly g € S; if and only if
99; = g; and § = 1. From this it is easily seen that S; = H n HY%. Thus we
have an exact sequence

0— M — @_,Z[G/S;] > w(G/H) — 0

where ¢ sends a generator of Z[G/S;] to i — 1 € w(G/H). By Theorem 4.1.7 it
remains to show that G acts faithfully on M.

By Lemma 4.1.13 G fails to act faithfully on M if and only if » = 1 and
Sy = H = HY9. But this possibility is ruled out by (2). Indeed, assume that
s =1and S; = H = H%. Then G = {g1,H) and H = H9. Hence, H
is normal in G. Condition (2) tells us that H = {1}. Moreover, in this case
G = {g1,H) = {g1) is cyclic, contradicting (2). O

Theorem 4.1.17. Let A be a G/H-crossed product. Suppose that H is con-
tained in a normal subgroup N of G and G/H is generated by r elements.

Furthermore, assume that either H # {1} or r > 2. Then

ed(A) <r[G:H]-[N:H]|-[G:H]+1
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Proof. Let t1,...,t, € G/N be a set of generators for G/N. Choose ¢1,...,9, € G
representing ty,...,t, and let H' = (H,H9,..., H9). Since H < N and N is
normal in G, H' is a subgroup of N. The group H’ depends on the choice
of ¢1,...,9- € G such that ¢;N = ¢;. Fix ¢1,...,¢t, and choose ¢g1,...,9, € G
representing them, so that H' has the largest possible order; this is equivalent
to requiring that it has the smallest possible index in N, which we denote by
m. In particular m = [N : H'] < [N : (H9%9 - H)] for any ¢ = 1,...,r and any
ge N.

Choose a set of representatives n; = 1,ns,...,n,, € N for the distinct left
cosets of H' in N. We will show that the elements {g;n;|i = 1,...,7;j = 1,...,m}
generate G over H. Indeed, let Gy be the subgroup of G generated by these
elements and H. Since n; = 1, Go contains gi, ..., g,-, hence Gy contains H’.
Moreover, G contains n; = g; 1(g1nj) for every j, hence Gy contains all of
N. Finally, since t; = g1 N, ....,t, = ¢,N generate G/N, we conclude that Gy
contains all of G.

We now apply Theorem 4.1.16 to the elements {g;n;}. Substituting

[G:H]-[H:(H-H%")
for [G : (H n H9"3)], we calculate

ed(a) < Z Z[G :(Hn H9)] - [G:H]+1

3

I
Q
=
NgE

[H:(H-H%™)—[G:H]|+1

- [c H].ZZ[N:[(Jj\giglmj)]—[G:H]+l
<[G H]-ii[N:H]f[G:H]+1

m

—
<.
Il
—

O

Corollary 4.1.18. Let A/K be a central simple algebra of degree n. Suppose
that A contains a field F, Galois over K and Gal(F/K) can be generated by
r > 1 elements. If [F: K| = n then we further assume that r > 2. Then

n2
d(A) <K re—=—= — 1
ed(A) <r K] n +
Proof. By [22, Lemma 2.1] we may assume that F' is contained is a subfield L of
A such that L/K is a separable extension of degree n = deg(A). Denote by E
the Galois closure of L over K and by G the associated Galois group. Consider
also H = Gal(E/L) and N = Gal(E/F). Then A/K is a G/H-crossed product,
and it suffices to apply the previous theorem. O
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Corollary 4.1.19. Let n = p® for some natural number s > 2. Then

2
ed(PGL,;p) <2 —n+1
D

Proof. Call A = UD(n) the universal algebra. In [31] Rowen and Saltman
showed that A" = AQk K’ contains a field F, Galois over K’ with Gal(F/K) =
Z/p x Z/p. Thus Corollary 4.1.18 tells us that

2
ed(PGLy;p) = ed(A;p) < ed(A') < 2" —n +1
p

This is the thesis. O

4.2 Lower bounds

As previously mentioned, here we follow the work of Merkurjev in [20]. We refer
to the book of J.P. Serre [33] for Galois cohomology and profinite groups.

4.2.1 Preliminaries

Let k be a base field, k* a separable closure and I" = Gal(k®/k). The character
group Ch(k) of k is defined as

Homeont(T,Q/Z) = H' (k,Q/Z) =~ H?*(k,7Z)

where Homeont(T', Q/Z) are the continuous homomorphism from the profinite
group I' to the discrete group Q/Z. For a character y € Ch(k), set k(x) =
(k*)Ker() | If ¢ < Ch(k) is a finite subgroup, set k(¢) = (k*)"Ker(X) | where the
intersection is taken over all x € ¢. The Galois group G = Gal(k()/k) is abelian
and ¢ is canonically isomorphic to the character group Ch(G) = Hom(G,Q/Z)
of G.

If ¥’ < k is a subfield and x € Ch(k’), we write x for the image of y under
the natural map Ch(k’) — Ch(k) and k(x) for k(xx)-

Remark 4.2.1. If ¢ € Ch(k) is a finite subgroup, then the character x4 is
trivial if and only if y € ¢.

Lemma 4.2.2. Let ¢, ¢ < Ch(k) be two finite subgroups. Suppose that for
a field extension K/k, we have ¢x = ¢ in Ch(K). Then there is a finite
subextension K'/k in K /k such that ¢ = ¢, in Ch(K').

Proof. Choose a set of characters {x1, ..., Xm} generating ¢ and a set of charac-
ters {x}, ..., Xin} generating ¢’ such that (x;)x = (x})x for alli. Let n; = x;—x}-
As all n; vanish over K, the finite field extension K’ = k(n1, ..., m) of k can be
viewed as a subextension in K/k. As (x;)x' = (X}) k', we have ¢pxr = ¢hr. O
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Consider now the cup-product
Ch(k) ®z k* = H*(k,Z) ®z H°(k, (k*)*) — Br(k)

that takes x ® a to the class x U (a) in Br(k) that is split by k(x).

For a finite subgroup ¢ < Ch(k) write Braec(k(¢)/k) for the subgroup of
decomposable elements in Br(k(¢)/k) generated by the elements y U (a) for all
X € ¢ and a € k*. The indecomposable relative Brauer group Brinq(k(¢)/k) is
the factor group Br(k(¢)/k)/Briec(k(9)/k).

Let now E be a complete field with respect to a discrete valuation v and
K its residue field. Let p be a prime integer different from char(K). There
is a natural injective homomorphism Ch(K){p} — Ch(E){p} of the p-primary
components of the character groups that identifies Ch(K){p} with the character
group of an unramified field extension of E. For a character x € Ch(K){p}, we
write x for the corresponding character in Ch(E){p}. By [9] Chapter 7.9. there
is an exact sequence

0 — Br(K){p} > Br(E){p} % Ch(K){p} — 0

If a € Br(K){p}, then we write a for the element i(a) in Br(E){p}. It holds,
for example, that if a = x U (@) for some x € Ch(K){p} and a unit u € E, then

a=xu (u).

Proposition 4.2.3. Let E be a complete field with respect to a discrete valu-
ation v and K its residue field of characteristic different from p. Then

1) ind(a) = ind(a) for any a € Br(K){p}

2) Let b = a+ (xu(x)) for an element a € Br(K){p}, x € Ch(K){p} and x € E*
such that v(x) is not divisible by p. Then ind(b) = ind(ag ) - ord(x)

3) Let E'/E be a finite field extension and v the discrete valuation on E’ ex-
tending v with residue field K’. Then for any b € Br(E){p}, one has 0,/ (bg/) =
e - 0y(b) K, where e is the ramification index of E'/E.

Proof. See [9, Proposition 8.2]. O

The choice of a prime element 7 in F provides with a splitting of the sequence
(1) by sending a character x to the class x u (7) in Br(E){p}. Thus, any
be Br(E){p} can be written in the form b = a + (x v (7)) for x = 0,(b) and a
unique a € Br(K){p}.

The homomorphism

sz : Br(E){p} — Br(K){p}

defined by s, (b) = a, where a is given by the above relation, is called a special-
ization map. We have s,(d) = a for any a € Br(K){p} and s, (xu(z)) = xu(a),
where y € Ch(K){p}, © € E* and u is the unit in E such that z = ur*®).

Moreover, if v is trivial on a subfield k¥ € F and ¢ < Ch(k){p} a finite
subgroup, then s;(Briec(E(¢)/E)) S Briec(K(4)/K).
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Remark 4.2.4. For an abelian group A we write ,A for the subgroup of all
elements in A of exponent p.

This technical lemma will be used later on.

Lemma 4.2.5. Let (E,v) be a complete discrete valued field with the residue
field K of characteristic different from p containing a primitive p?>-th root of
unity. Let 7 € Ch(E) be a character of order p? such that p -7 is unramified,
that is p-n = & for some v € Ch(K) of order p. Let x €, Ch(K) be a character
linearly independent from v. Let a € Br(K) and set b = a + (x v (x)) € Br(E),
where x € E* is an element such that v(z) is not divisible by p. Then

1) If n is unramified, that is n = f for some u € Ch(K) of order p?, then
an(bE(n)) =p- ind(aK(MX))

2) If 7 is ramified, then there exists a unit u € F* such that K(v) = K(a'/?)
and ind(bp(,) = ind(a — (x U (@?))) k().

Proof. (1) If n = i for some p € Ch(K), then K(u) is the residue field of E(n)
and we have

bee) = ar( + (Xx g v (2))
As x and v are linearly independent, the character x k() is nontrivial. The first
statement follows from Proposition 4.2.3 (2).

(2) Since p - n is unramified, the ramification index of E(n)/F is equal to p,
hence E(n) = E((uz?)?”) for some unit u € E. Note that K(v) = K (a'/?) is
the residue field of E(n). As u'/Pz is a p-th power in E(n), the class

bem) = xw)y — (XK @) Y ul/?))

(
is unramified. It follows from Proposition 4.2.3 (1) that the elements bg,) in
Br(E(n)) and ax(,) — (Xx () U (@"/P)) in Br(K(v)) have the same indices. [

4.2.2 Brauer group and algebraic tori

Remark 4.2.6. Let S be an algebraic torus over k. We embed S into the
quasi-trivial torus P = Ry, (G, 1), where L in an étale k-algebra and Ry, is
the Weil restriction. Then S acts on the vector space L by multiplication, so
that the action on P is regular. If T is the factor torus P/S, then the S-torsor
P — T is versal.

Let F be a field, ¢ a subgroup of ,Ch(F) of rank r and L = F(¢). Let
G = Gal(L/F) and choose a basis x1, ..., x, of ¢. We can view each x; as a
character of G, that is a homomorphism x; : G — Q/Z. Let o1, ...,0, be the
dual basis for G, that is x;(o;) = ((% + Z)6;j.

We call R the group ring Z[G]. Counsider the surjective homomorphism of
G-modules k : R — R taking the basis element e; to o; — 1; the image of k is
the augmentation ideal I of R. Define N; the element 1 + 0; + 07 + -+ + af_l
of R, and call N = ker(k).
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Lemma 4.2.7. Consider the elements e;; = (0;—1)e; —(0;—1)e; and f; = Nye;
for 7,7 =1,...,7. The G-module N is generated by e;; and f;.

Proof. See [20, Lemma 3.4]. O

Now let €¢; : R™ — Z be the i-th projection followed by the augmentation
map e. It follows from the lemma that €;(N) = pZ for every i. Moreover, the G-
homomorphism [ : N — Z" defined by m — (e1(m)/p, ..., -(m)/p) is surjective.
Set M = Ker(l) and Q = R"/M.

Lemma 4.2.8. The G-module M is generated by the e;;.
Proof. See [20, Lemma 3.5]. O

Let P?, 5%, T¢ and V¢ be the algebraic tori over F with character G-modules
R",Q,M,I and N, respectively.

Let K/F be a field extension and set KL = K ®p L. The exact sequence of
G-modules 0 — I — R — 7Z gives an exact sequence of the tori

1 -Gy — Ryp(Gpr) »U—1
Taking cohomology we obtain the exact sequence
0 - HY (K, U%) - H*K,G,,) - H*KL,G,,)
Hence H'(K,U?) ~ Br(KL/K).

Lemma 4.2.9. The homomorphism (K*)" — HY(K,U?) ~ Br(KL/K) in-
duced by
U’ — 8% - Gr,

takes (21, ...,2) to D ((xi) K U (@)).
Proof. See [20, Lemma 3.6]. O

Corollary 4.2.10. The map H'(K,U?) — H'(K, S?) induces an isomorphism
HY(K,S%) = Bria(KL/K).

The previous Corollary and the triviality of the group H!(K, P?) give us a
commutative diagram

V(K) — HY(K,U?) Br(KL/K)

. |

T(K) —— H' (K, S?) == Brina(KL/K)

with surjective homomorphisms.
Consider K = F(V) and choose an element

a € Br(L(T)/F(T)) (4.2.1)
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corresponding to the generic point of T' over F(T) in the above diagram. Con-
sider also the exact sequence of G-modules

0— L*®N — L(V)* — Div(Vg) — 0
Then H?(G, N) = Z/p"Z, see [20] 3.3.

Lemma 4.2.11. If r > 2, then the class p"~'a in Br(F(T)) does not belong to
the image of Br(F) — Br(F(T)).

Proof. See [20, Corollary 3.9]. O

4.2.3 Essential dimension of algebraic tori

Let S be an algebraic torus over F' with splitting group G. We assume that
G is a p-group of order p". Let X be the G-module of characters of S. A
p-presentation of X is a G-homomorphism f : P — X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank is called minimal.

Theorem 4.2.12. Let S be an algebraic torus over F' as above and f: P — X
a minimal p-presentation of X. Then ed,(S) = rank(Ker(f)).

Proof. See [18, Theorem 1.4]. O

Corollary 4.2.13. Suppose that X admits a surjective minimal p-presentation
f:P — X. Then ed(S) = ed,(S) = rank(Ker(f)).

Proof. A surjective G-homomorphism f yields a generically free representation
of S of dimension rank(P). Then

edp(S) < ed(S) < rank(P) — dim(S) = rank(Ker(f))
O

In this subsection we derive from Theorem 4.2.12 an explicit formula for the
essential p-dimension of algebraic tori. Define the group X = X/(pX + IX).
For any subgroup H < G, consider the composition X <> X — X. For every
k, let V4, denote the image of the homomorphism [ [, -, X H X, where the
coproduct is taken over all subgroups H with [G : H| < p*. We have the

sequence of subgroups 0 =V_;cVpc---cV, = X.

Theorem 4.2.14. It holds the following explicit formula for the essential p-
dimension of S:

T

ed,(S) = Z (rankVj, — rankVi_)p* — dim(S)
k=0
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Proof. Set by, = rank(Vy); by Theorem 4.2.12 it suffices to prove that the small-
est rank of the G-module P in a p-presentation of X is equal to > _,(bx —
bp—1)p*. Let f: P — X be a p-presentation of X and A a G-invariant basis of
P. The set A is the disjoint union of the G-orbits A;, so that P is the direct
sum of the permutation G-modules Z[A;]. The composition f:P>X—>Xis
surjective. As G acts trivially on X, the rank of the group f(Z[A ;1) is at most
1 for all j and f(Z[A;]) < V} if \Aj| < pF. Tt follows that the group X/Vj is

generated by the images under the composition P LX - XV, of all Z[A;]
with |A4;| > p*. Denote by ¢j the number of such orbits A4;, so we have

cx = rank(X/Vi) = b, — by,

Set ¢, = by — ¢, so that by > ¢, for all k and b, = ¢,.. Since the number of
orbits A; with [A;] = p" is equal to cy_1 — cx, we have

rank(P) = Z (cr—1 — cr)p® = Z (ck — C;c—l)pk
k=0 k=0
= p’+20k =P = bp” +Zbk -7

k=0
r

= > (be — bp—1)p"

k=0

It remains to construct a p-presentation with P of rank Y, _,(by — br_1)p". For
every k = 0 choose a subset X in X of the pre-image of Vi under the canonical
map X — X with the property that for any = € V}, there is a subgroup H, € G
with 2 € X+ and [G : H,] = p* such that the composition

Xe = Vi = Vie/Viea

yields a bijection between Xj and a basis of Vi/Vi_1. In particular | Xy| =

bk - bkfl. Call
P= ]_[ 11 zlG/H,]

k=0 zeXy

and consider the G-homomorphism f : P — X taking 1 in Z[G/H,] to z in
X. By construction, the composition of f with the canonical map X — X is
surjective. As G is a p-group, the ideal pR,) + I of R,y is the Jacobson radical
of the ring R,y = R®z Z(). By Nakayama lemma f, is surjective. Hence
the cokernel of f is finite of order prime to p. The rank of the permutation
G-module P is equal to

ZT: Z p* Z | Bi|p" = 2<bk_bk 1)pF

k=0 be By
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The following computation will be used in the sequel.

Example 4.2.15. Let F' be a field, ¢ a subgroup of ,Ch(F) of rank r, L = F(¢)
and G = Gal(L/F). We have an exact sequence N — (R)" — [ — 0. It
follows from Lemma 4.2.7 that N < pR" + I", hence the first homomorphism
in the sequence is trivial. The middle group is isomorphic to (Z/pZ)", hence

rank(l) =r.

For any subgroup H < G, the Tate cohomology group H°(H,I) ~ H~(H,Z)
is trivial; it follows that the group I7 is generated by Ny for all € I, where
Xy = DYpep h € R. Since I is of period p with the trivial G-action, the classes
of the elements Nyx in I are trivial if H is a nontrivial subgroup of G. It follows
that the maps I — T are trivial for all H # 1. With the previous notation we
have Vg =---=V,_q and V,. = I. By the Theorem 4.2.14

edp(U¢) =7rp" — dim(U¢) =rp —p +1=(r—-1)p +1

and the rank of the permutation module in a minimal p-presentation of I is
equal to rp”. Therefore, k : R" — I is a minimal p-presentation of I that
appears to be surjective. By Corollary 4.2.13,

ed(U?) = ed,(U?) = (r — 1)p" — 1

Consider now the torus S®. The homomorphism k factors through a surjec-
tive map R” — (), which is then necessarily a minimal p-presentation of Q.
According to Theorem 4.2.14

ed(S%) = edy(S?) = rp" — dim(S%) = (r — 1)p" —r +1

4.2.4 Degeneration

Let F be a field, p a prime integer different from char(F) and ¢ <, Ch(F) a
finite subgroup. For an natural number k and a field extension K/F, denote
B{ = {a € Br(K){p} such that ind(ak(s)) < p*}. On the set BY(K) consider
the following equivalence relation: two elements a and o’ are equivalent if and
only if a—a’ € Brge.(K(¢)/K). Denote by F,f(K) the set of equivalence classes.
We view B,‘f and F]f’ as functors from Fields/F to Sets.

Remark 4.2.16. If ¢ is the zero subgroup, then F,f = B,f ~ Alg(p") ~
PGL(p") — torsors.

Remark 4.2.17. The set B(K) is naturally bijective to Br(K(¢)/K) and
ng(K) ~ Brind(K(¢)/K). By Corollary 4.2.10 the latter group is naturally
isomorphic to H!(K, S%).

Let ¢’ < ¢ be a subgroup of index p and n € ¢\¢'. Let E/F be a field
extension such that ng ¢ ¢y in Ch(E). Choose an element a € B,f(E) Let E’

be a field extension of F' that is complete with respect to a discrete valuation
v’ over F' with residue field E and set

d = i+ (s U (x)) € Br(E')
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for some 2 € E'* such that v/ (z) is not divisible by p. By Proposition 4.2.3 (2)
ind(ap (g)) = p-ind(apy) < p**t, hence o’ € Bl‘fH(E’).

Proposition 4.2.18. Suppose that for any finite field extension N/FE of degree
prime to p and any character p € Ch(N) of order p? such that p-p € ¢n\@y,
we have ind(an (g ) > p*~!. Then

o’ 3
edfk“(a’) > edp* (a) + 1

Proof. Let M/E' be a finite field extension of degree prime to p, My < M
a subfield over F and a € B,fH(MO) such that (af)y = ay, in F and

¢/
tr.degp (M) = edgk“(a’). We have

ahyy — () m € Braec(M(¢')/M) (4.2.2)
We also have
ahy = ay + (1y v (2)) (4.2.3)

and 0 (a’) = q-nE, where ¢ = v'(x) is relatively prime to p. Extend the discrete
valuation v’ on E’ to a unique discrete valuation v on M. The ramification index
¢’ and inertia degree are both prime to p, thus the residue field N of v is a finite
extension of F of degree prime to p. By Proposition 4.2.3 (3)

Oy(ay) =€ - 0p(ad) =¢€q-nn

Let vy be the restriction of v to My and Ny its residue field. It follows from
4.2.2 that

du(ahy) — Ou((ag)r) € dy

Recall that ng ¢ ¢'5; as [N : E] is not divisible by p, it follows that ny ¢ ¢/y. By
the preceding, 0, ((ag) ) # 0, which means that (af)as is ramified and therefore
vg is nontrivial, so that vy is a discrete valuation on M.

Let n9 = 0y, (af,) € Ch(Np){p}. By Proposition 4.2.3 we have

0u((ag)ar) = e~ (mo)n

where e is the ramification index of M /My, hence (no)n # 0. It follows from
the preceding that

eq-ny —e- ()N € by

As €'q is relatively prime to p, nn € (¢y, (n0)n) in Ch(N). Let p* be the order
of (no)n. It holds that v,(e) =t — 1 and

P (o) € on\dly

Choose a prime element my in My and write

(ag) g, = @o + (o U (m0))
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in Br(My), where ag € Br(No)p.
Applying the specialization homomorphism s, : Br(M)p — Br(N)p to
4.2.2, 4.2.3 and the previous relation, we get

an — (ag)n € Braec(N(¢',m0)/N)

It follows that an (¢ .n,) = (a0)N(4,ne) I Br(N(¢',m0)). We have

(a6>MO(¢f) = (a'AO)NO(d) + ((ﬁO)NO(d) v (7))

As no nontrivial multiple of (n)x belongs to ¢y, the order of the character
(110) No () 1s at least p*. It follows from Proposition 4.2.3 (2) that

ind(a0) Ny (¢,m0) = 11A(0) 47, (4r1/0TA(10) Ny (1) < PHLpt = et
By the previous relations, we have ind(ay (g py)) < p" L.
Suppose that t > 2 and consider the character p = p no)n of order p?
in Ch(N). We have p-p = p"~L(no)n € ¢n\¢y. Moreover, the degree of the
field extension N(¢',19)/N(¢, p) is equal to p'~2. Hence

=2 (

t—2 _  k—t+1 =2 _ k-1
<p "D =p

ind(an(y,p)) < nd(an g n) P

This contradicts the assumption, therefore ¢ = 1, which means ord(no)ny = p.

Then e and p are coprime and it follows that (no)n € {¢'y,nn). Moreover,

(' noyn = {¢',m)n = ¢n. By Lemma 4.2.2, there is a finite subextension

Ni/Ny of N/Ny such that {(¢',n0)n, = ¢n,. Replacing Ny by N1 and ay by

(ap)N,, we may assume that (¢',70)n, = ®n,. In particular, 7o is of order p in
Ch(Ny). Now

ind(ao)NO(¢) = ind(ao)No(ti"xﬂO) < pk

so we have aq € B,‘f(NO).
It follows that
an = (ao)N € Braec(N(¢)/N)

hence the classes of ay and (ag)ny are equal in F,f(N) The class of an in
F ,f (N) is then defined over Ny, therefore

&' 2
edf’““(a’) = tr.degp(Mo) > tr.degr(No) + 1 > eds* (a) + 1

4.2.5 Multiple degeneration

In this subsection assume that the base field F' contains a primitive p?-th root of
unity. Let ¢ be a subgroup in ,Ch(F') of rank r and choose a basis x1, ..., xr of
¢. Let E/F be a field extension such that rank(¢g) = r and let a € Br(E){p}
be an element that is split by E(¢). Let Ey = E, Ey, ..., E, be field extensions
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of F such that for any & = 1,2,...,r, the field E} is complete with respect to
a discrete valuation vg over G and Fj_1 is its residue field. For any k choose
elements xj € E}f such that vy () is not divisible by p and define the elements
ay, € Br(Fg){p} inductively by ag = a and a = ay_1 + ((&kEkfl U (1)) Let
@1, be the subgroup of ¢ generated by Xxg+1, ..., Xr- Thus, ¢g = ¢, ¢, = 0 and
rank(¢x) = r — k. Note that the character (xx)g,_. (¢,) is not trivial. It follows
from Proposition 4.2.3 that

ind(ak) B (g) = P ind(ar—1) By, (651

for any k. As ind(ap(g)) = 1, we have ind(ax) g, (4,) = p* for all k; in particular
ap € B;fk (Ek)

The following lemma gives conditions on the element a such that the hy-
pothesis of Proposition 4.2.18 are satisfied.

Lemma 4.2.19. Suppose that p"~ta ¢ Im(Br(F) — Br(FE)). Then for every
k =0,1,...,r and any finite field extension N/Ej if degree prime to p and any
character p € Ch(N) of order p? such that p- p € (¢r)n\(¢rs1)n, We have

ind(ar) N(gp,,,) > D" (4.2.4)

Proof. Let’s proceed by inductions on r; the case r = 1 is trivial. Suppose that
the inequality does not hold for some k, a finite extension N/FE}, and a character
p € Ch(N). Suppose first that k& < r — 1, consider the fields F' = F(¢r41),
E' = E(¢r+1), B} = Ei(dr+1), N = N(dr+1), the sequence of characters
(xi)r and the sequence of elements a; = (a;)g; € Br(E;) for i =0,1,....k + 1.
As (a})nr(p) = (k)N (gysr,)s the mequahty does not hold for the term aj, of
the new sequence, the field extension N’/E; and the character p/y. Note that
pFap ¢ Im(Br(F') — Br(E')), because otherwise, taking the norm map for the
extension F’/F of degree p"~*~1 we would get p"~'a € Im(Br(F) — Br(E)).
By induction, the inequality 4.2.4 holds for all the terms of the new sequence,
in particular for a}, a contradiction.

Thus we can assume that k = r — 1. We construct a new sequence of fields
Ey, E1, ..., E, such that each E; is a finite extension of Ej; of degree prime to
p as follows. We set Er_l = N and let E be an unramified extension of E,.
with the residue field E,_;. The fields E’j with j < r — 1 are constructed by
descending induction on j. If we have constructed Ej as a finite extension of
E; of degree prime to p, then we extend the valuation v; to Ej and let E;_; to
be its residue field. Replacing F; by E; and a; by (a;) £,» We may assume that
N=E,_;.

Suppose that the character p is unramified with respect to v,._1, thatis p =
for a character u € Ch(E,._2) of order p?. By Lemma 4.2.5 (1)

ind(ar-2) g, (x, 1,0 = nd(ar-1)p, 1 (p)/p = ind(ar-1) g, 1(p,.0)/0 <P °
Consider the fields F' = F(x,-1), E' = E(xy-1), E} = Ei(xy-1), N' =
N(xr-1), the sequence of characters xi,..., xr—2,xr and the elements a) €
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Br(E}) for i = 0,1,...,r — 1 defined by a; = (a;)g; for i <7 —2and a;_; =
ar—2 + (Xr U (zr—1)) over E/_;. As (a_o)nr(u) = (@r—2)N(y,_,,p)» the in-
equality above shows that the result does not hold for the term a,_, of the
new sequence, the field extension N’/E/_, and the character p/y. Note that
p"2ap ¢ Im(Br(F') — Br(E'")), as otherwise, taking the norm map for the
extension F'/F of degree p, we get p"~'a € Im(Br(F) — Br(E)). By induc-
tion, the result holds for all the terms of the new sequence, in particular for
ah._,, a contradiction.

Suppose now that p is ramified. Note that p - p is a nonzero multiple of
(Xr)E,_,- As the result fails for a,_1, we have ind(a,—1)g, () < p"2. By
Lemma 4.2.5 (2), there exists a unit u € E,_; such that E,_o(x,) = E._o(a'/?)
and

ind(ar—2 — (Xr—1 U (al/p)))Er—Z(Xr) = z'nd(arfl)wal(p) < pT_Q
By descending induction on j we show that there exists a unit u; in E;;; and
a subgroup 0; < ¢ of rank r — j — 1 such that {x1,...,xj, Xr—1y N 0; = 0,
E;(xr) = B; (/") and

ind(a; — (xo—1 0 (@) 5,6, < P’ (4.2.5)

If j =r—2, weset u; = uand 0; = {x,}. Let us prove the inductive step. The
field Ej(a;/”) = Ej;(xr) is unramified over E;, hence v;(u;) is divisible by p.

Modifying u; by a p?-th power, we may assume that Uy = uj,lx;n” for a unit
uj—1 € F; and an integer m. Then

1 s
(a5 = (=10 (@) 5,0,) = b+ (07U () 5,00,)
where n = x; —mx,—1 and b = (aj—1 — (xr—1 v (ﬂ}@l)))Ej_l(gj). As 7 is not con-
tained in 6}, the character ng, () is not trivial. Set 0;_; = (0}, n); it follows
from Proposition 4.2.3 (2) that ind(bg, g, ,) = (a; —(xr—1U (ﬂ;/p)))Ej(gj)/p <
p’~1. Applying the inequality 4.2.5 in the case j = 0, we get

g, = (Xr—1 © (W%)) g(ay)
for an element w € E* such that E(w'/?) = E(x,). The degree of the extension
E(0)/E is equal to p"~! and E(w'/?) < E(f). Taking norm for the extension
E(6y)/E, we get that p"~'a is a multiple of x,_; U (w). As the character x,.

is defined over F, we may assume that w € F*, hence p"~la € Im(Br(F) —
Br(FE)), a contradiction. O

Corollary 4.2.20. Suppose that p"~ta ¢ Im(Br(F) — Br(E)). Then

edﬁlg(Pr)(ar) > edg‘b—torsors (a) +r
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Proof. By iterated application of Proposition 4.2.18 and by Example 4.2.15 we
have
Alg(p") FTW Ffjlil
ed; (ar) =edy” (a,) = edp (1) +1>---
0
0

b
= edgl 1 (al) + (T’ — 1) > 6d5 Sy —torsors

+r = edp (a) +r
O

Theorem 4.2.21. Let F be a field and p an integer different from char(F').
Then
edy(Algr(p")) = (r = 1)p" +1

Proof. As ed,(Algr(p")) = ed,(Algr: (p")) for any field extension F’'/F, we can
replace F' by any field extension. In particular, we may assume that F' contains
a primitive p?-th root of unity and there is a subgroup ¢ of ,Ch(F) of rank r.
Let T? be the algebraic torus constructed in the section about algebraic tori.
Set E = F(T?) and let a € Br(EL/E) be the element defined in 4.2.1. Let
ar € Br(FE,) be the element of index p" constructed in the beginning of the
subsetcion. By Lemma 4.2.11 the class p"~!a in Br(E) does not belong to the
image of the map Br(F) — Br(E). It follows from the previous Corollary that

edﬁlQ(PT)(ar) > edgqbftorsors(a) i

The S?-torsor a is the generic fiber of the versal S?-torsor P? — S, hence a
is a generic torsor (see Remark 4.2.6). Then

6d§¢7t0rsors (a) _ €dp(S¢)

The essential p-dimension of S? is given by ed,(S?) = (r—1)p" —r + 1. Putting
all the results together, we have the thesis. O

Corollary 4.2.22. Let k a field of characteristic different from p. Then
ed,(PGL,2) = p* +1

Proof. This follows directly by the previous Theorem and Corollary 4.1.19. [
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