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ABSTRACT 

 

 

Background: An intricate cross-talk connects Tissue Factor (TF) to inflammation and is 

amplified by locally active angiotensin(ang)II, that stimulates TF expression. High glucose 

may activate pro-inflammatory pathways and increase glucose-mediated angII production. 

Aim: To evaluate the effect of Renin Angiotensin System (RAS) blockade on TF 

expression in peripheral blood mononuclear cells (PBMCs) exposed to normal glucose 

(NG) and high glucose (HG), and stimulated by lipopolysaccharide (LPS), a well known 

pro-inflammatory agent.  

Methods: PBMCs, from healthy donors were LPS-stimulated and exposed to NG and HG. 

TF mRNA levels, antigen expression and pro-coagulant activity were assessed by Real 

Time-PCR, ELISA and 1-stage clotting assay respectively, in absence or presence of 

pharmacological intervention. 

Results: LPS stimulation increased TF expression in NG, an effect down-regulated by 

Aliskiren, a direct renin inhibitor, zofenopril, an angiotensin converting enzyme inhibitor, 

olmesartan, an angII type1 receptor (AT1R)  blocker and Compound21, an highly selective 

angII type 2 receptor (AT2R)  agonist. As compared with NG, HG amplified the LPS-

stimulation of TF expression, an effect that Aliskiren, Zofenopril and Compound21 down- 

regulated in HG with a similar behavior to that in NG, while OLM activity was potentiated 

in HG.  

Conclusions: Our data disclose tight connections between the apparently unrelated 

domains of innate immunity and metabolic and cardiovascular regulation, expanding the 
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restrictive view of angII as a peptide mainly involved in the control of blood pressure and 

water and salt homeostasis. 
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1. INTRODUCTION 

 

1.1 Tissue Factor (TF). 

 

Tissue factor (TF), also known as thromboplastin or CD142, is a glycosylated 

transmembrane protein consisting of a single polypeptide chain with a molecular weight of 

about 45 kDa [1]. The TF gene is located on chromosome 1 and consists of 6 exons [2]. 

After transcription of the TF gene F3, the primary TF transcript is processed on post-

transcriptional level [3, 4], which consequently leads to generation of two naturally 

occurring isoforms: membrane-bound “full-length” (fl)TF  and soluble “alternatively 

spliced” (as)TF [5, 6]. Due to alternative splicing the fifth exon of the primary TF 

transcript is excluded [6, 7] and translation of this messenger (m)RNA splice variant leads 

to the generation of asTF on protein level that lacks the transmembrane domain that is 

therefore soluble [6]. TF is the principal initiator of the clotting cascade and a major 

regulator of  haemostasis and thrombosis [8]. The coagulation cascade is initiated as soon 

as TF comes into contact with circulating activated factor VII (FVIIa), resulting in the TF-

FVIIa complex. The TF-VIIa complex activates factor IX, which in turn activates factor X; 

alternatively, factor X is directly converted to factor Xa by TF-FVIIa. In complex with 

factor Va and calcium (Ca
2+

), Factor Xa catalyzes the conversion of prothrombin to 

thrombin, thereby leading to fibrin formation, platelet activation, and, ultimately, 

generation of a thrombus. Beside its primary function as initiator of the blood coagulation 

cascade [6, 9, 10], flTF plays an important role in a variety of other biological processes, 

such as migration and proliferation of vascular smooth muscle cells (VSMCs) [11], 
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protease-activated receptor (PAR-)2-mediated cell signaling and tumor progression [9, 12, 

13].  

In the vessel wall, TF is constitutively expressed in sub-endothelial cells such as VSMCs 

leading to rapid initiation of coagulation when the vessel is damaged [14]. TF is also 

present in different pools that are in contact with the circulating blood: associated with 

endothelial cells, white cells and platelet [15], associated with cell-derived microparticles 

(MP)[16] and present in a soluble form lacking the transmembrane domain [6]. In contrast 

with sub-endothelial cells, endothelial cells and monocytes, that show very little to no 

basal expression of TF under physiological conditions, express TF in response to various 

stimuli. Endothelial TF is induced by cytokines such as tumor necrosis factor-α (TNF-

α)[17], interleukin(IL)-1β [18], or CD40 ligand [19], by biogenic amines such as serotonin 

[20] and by mediators such as thrombin, oxidized LDL, or vascular endothelial growth 

factor (VEGF) [21-23]. In monocytes TF expression can be induced by inflammatory 

stimuli such as C-reactive protein [24] or CD40 ligand [25], platelet-derived growth 

factor(PDGF)-BB, angiotensin(ang)II, oxidized LDL [26, 27] and endotoxin 

(lipopolysaccharide, LPS) [28, 29].  

1.2 TF role in thrombosis. 

 

TF expression by endothelial cells and monocytes following inflammatory stimuli 

contribute to the development of acute thrombotic events. TF activity is significantly 

higher in the lesions present in patients with unstable angina or myocardial infarction, 

compared to patients with a stable form of angina [30, 31]. The antigen levels of TF in 

plasma is associated with an increased risk of death from cardiovascular causes [32] and 
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with an increase in the thickness of the carotid intima-media, considered a marker of 

atherosclerosis [33]. Acute coronary patients have higher levels of TF bound to monocytes 

[34], and of circulating TF [35, 36] compared to patients with stable angina and normal 

subjects, suggesting a potential release of TF at the level of the coronary artery during the 

acute ischemia. Pathological studies have identified TF, present in the atherosclerotic 

plaque, as a candidate molecule responsible for the thrombogenicity associated with plaque 

rupture [37]. Monocytes infiltrate the intimal layer and then transform into macrophages 

and foam cells, which represents a hallmark of the inflammatory nature of atherosclerosis 

[38]. In this inflammatory environment, cytokines such as TNF-α and  ILs are released and 

induce expression of TF. During the early stages of atherogenesis, enhanced TF expression 

is observed in monocytes [14]; at later stages, TF expression is also detected in foam cells, 

endothelial cells, and VSMCs [14, 39]. TF is present in the necrotic core of plaques as 

well, predominantly associated with microparticles derived from perishing foam cells, 

macrophages, or lymphocytes [39, 40]. Lipid-rich plaques with a thin cap, a large lipid 

core, extensive macrophage infiltration, and abundant TF expression are more prone to 

rupture than collagen-rich, fibrous plaques. Rupture of an atherosclerotic plaque exposes 

its highly procoagulant content to the circulating blood; thereby, TF-laden macrophages as 

well as TF-containing microparticles originating from the necrotic core initiate thrombus 

formation and related complications leading acute myocardial infarction (MI) but also to 

those that characterize the course of hypertension [41]. 

1.3 Bidirectional relation between Inflammation and TF. 

 

Inflammation and coagulation play pivotal roles in the pathogenesis of vascular disease. 

Increasing evidence points to extensive cross-talk between these two systems, that closely 
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interact: coagulation considerably affects inflammatory activity and inflammation leads to 

activation of coagulation. Coagulation factors may activate PARs of which 4 types (PAR 1 

to 4) have been identified, all belonging to the family of transmembrane domain, G-

protein–coupled receptors expressed on mononuclear cells or endothelial cells [42], which 

may affect, for example, cytokine production or inflammatory cell apoptosis. Thrombin 

binds PARs 1, 3, and 4 and induces the production of several cytokines and growth factors, 

whereas PAR-2 can be activated by the TF-factor VIIa complex, resulting in a up-

regulation of inflammatory responses in macrophages (production of reactive oxygen 

species and cell adhesion molecules) and affect neutrophil infiltration and pro-

inflammatory cytokine expression (e.g. TNF-α, IL-1β)  [43]. On the other hand activation 

of coagulation and fibrin deposition as a consequence of inflammation is well known and 

can be viewed as an essential part of the host defense of the body against, for example, 

infectious agents or non identical cells, in an effort to contain the invading entity and the 

consequent inflammatory response to a limited area. An exaggerated or insufficiently 

controlled response may, however, lead to a situation in which coagulation and thrombosis 

contribute to disease, as illustrated by the fact that thrombus formation on a ruptured 

atherosclerotic plaque, containing abundant inflammatory cells, is the pathological basis of 

acute arterial thrombotic events such as MI or unstable angina [44]. Expression of TF by 

inflammatory cells and probably due to sustained exposure to pro-inflammatory factors, 

such as IL-6,  PDGF and monocyte chemoattractant protein (MCP)-1 in the unstable 

plaque may initiate activation of coagulation, and the thrombin generated will both activate 

platelets and result in the formation of a platelet-fibrin thrombus [45]. Blocking TF activity 

completely abrogates inflammation-induced coagulation activation in models of 

experimental endotoxemia or bacteremia, whereas antibodies that inhibit the contact 

system have no effect on thrombin formation [46, 47].  
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1.4 NF-kB and Induction of TF expression by pro-inflammatory stimuli. 

 

Pro-inflammatory agents such as TNF-α and LPS are able to induce the synthesis of TF by 

the activation of nuclear transcription factor NF-kB [48]. NF-kB is a protein that controls 

networks of chemokine modulating, growth factor–modulating, translational control, and 

cellular survival genes [49]. NF-kB is a family of highly inducible DNA-binding proteins 

that consists of a group of dimeric complexes of members of the Rel protein family of 

which the p50-p65 eterodimer is the most common. In resting cells, NF-kB proteins are 

found mainly in the cytoplasm and form a complex with with a family of cytoplasmic 

inhibitors I-kBs, after cellular activation IκB is phosphorylated and degraded, allowing the 

transfer of NF-kB into the nucleus, where it binds to specific recognition sequences of 

target genes that code for pro-inflammatory and pro-atherogenic proteins [50]. The 

promoter of TF gene is partially under the control of NF-kB [28].  

 

1.5 Angiotensin II as a modulator of TF expression. 

 

Several studies have linked angiotensin(ang)II, the main effector of the renin-angiotensin 

aldosterone system (RAAS), to the synthesis of TF. A growing body of evidence gathered 

over the past several years has shown the wide ranging pro-thrombotic and pro-coagulant 

potential of angII including platelet sensitization, inhibition of fibrinolysis by PAI-1 

stimulation and activation of TF expression [51]. Notably, TF modulation may occur 

locally by activation of a local RAS contained within the monocytes/macrophages complex 

in atherosclerotic plaques. AngII influences the expression of pro-inflammatory molecules 
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with mechanisms that overlap those typical of the pro-inflammatory cytokines, such as 

TNF-α [52, 53] activating NF-kB. The binding of angII to angII type 1 receptor (AT1R) 

induces the activation of NF-kB and the increase of synthesis of TF in monocytes [26, 54], 

as well as in aortic endothelial cells of rat [55], and in VSMCs [56].  

Furthermore the inhibition of RAS in vitro induces a decrease of the expression of TF [26, 

57-60]. 

 

1.6 Renin Angiotensin Aldosterone System. 

 

The RAAS is a peptidergic system with endocrine characteristics which regulates the 

circulatory homeostasis. The system, present in most animal species, consists of several 

elements able to increase their circulating levels in response to the reduction in 

intravascular volume and to the decrease in renal perfusion pressure [61]. RAAS  

maintains blood pressure and body fluid volume homeostasis through arteriolar 

vasoconstriction, increased sympathetic activity and tubular Na
+
 reabsorption and 

stimulation of aldosterone release from the adrenal cortex [62].  

The substrate of the system, angiotensinogen, is an α-glycoprotein of high molecular 

weight, released from the liver [63] that is cleaved of the N-terminal portion in the 

circulation by the enzyme renin to form the decapeptide angiotensin(ang)I. Renin is 

synthesized by the cells juxtaglomerular (JG) of the kidney as a pre-pro-hormone, pro-

renin, which is converted to renin by proteolytic removal of a peptide segment of 43-amino 

acids in its N-terminal portion. The renin secretion is stimulated by a fall in perfusion 

pressure or decrease in the transport of NaCl and by an increased activity of the 

sympathetic nervous system. Renin secretion and activity represents the rate-limiting step 
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of the RAAS [64-67]. The inactive decapeptide angI is hydrolyzed by angiotensin-

converting enzyme (ACE), which removes the C-terminal dipeptide to form the 

octapeptide angII [Ang-(1-8)], a biologically active, potent vasoconstrictor. ACE is a 

membrane-bound exopeptidase and is localized on the plasma membranes of various cell 

types, including vascular endothelial cells, microvillar brush border epithelial cells (e.g., 

renal proximal tubule cells), and neuroepithelial cells [67]. AngII is the primary effector of 

a variety of RAAS-induced physiological and pathophysiological actions. At least 4 

angiotensin receptor subtypes have been described. The angII type 1 receptor (AT1R) 

mediates most of the established physiological and pathophysiological effects of angII. 

These include actions on the cardiovascular system (vasoconstriction, increased blood 

pressure, increased cardiac contractility, vascular and cardiac hypertrophy), kidney (renal 

tubular sodium reabsorption, inhibition of renin release), sympathetic nervous system, and 

adrenal cortex (stimulation of aldosterone synthesis) [67, 68]. The AT1 receptor also 

mediates effects of angII on cell growth and proliferation, inflammatory responses, and 

oxidative stress [68, 69]. This receptor, which is typical of the G protein-coupled receptor 

superfamily containing 7 membrane-spanning sequences, is widely distributed on many 

cell types in angII target organs. The angII type 2 receptor (AT2R) is abundant during 

fetal life in the brain, kidney, and other sites, and its levels decrease markedly in the 

postnatal period. There is some evidence that, despite low levels of expression in the adult, 

the AT2Rs, whose activation tends to counteract the biological effects of AT1R-mediated 

responses, might mediate vasodilation and anti-proliferative, anti-inflammatory and 

apoptotic effects and inhibit growth and remodeling in the heart [68, 70-76]. In the kidney, 

it has been proposed that activation of AT2R may influence proximal tubule sodium 

reabsorption [67, 69, 77]. The angII type 4 receptor (AT4R) are thought to mediate the 

release of plasminogen activator inhibitor 1 by angII and by the N-terminal truncated 
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peptides (angIII and angIV), but the function of the angII type 3 receptor (AT3R) is 

unknown [67].  

 

1.7 Intracellular Renin Angiotensin System. 

 

One of the most significant advancements in the past two decades has been the discovery 

of local or tissue RASs [78, 79]. The intracellular RAS is characterized by the presence of 

its components inside the cell and synthesis of angII at an intracellular site. The primary 

nature of RAS components, such as the presence of signal peptides in AGT and renin, and 

the transmembrane nature of ACE, is generally thought not to be supportive of an 

intracellular system. However, the existence of differentially glycosylated isoforms of 

AGT [80, 81], alternatively spliced forms of renin [82, 83], intracellular and secreted forms 

of ACE [84], alternative angII-generating enzymes (such as cathepsins and chymase) [85, 

86], and detection of these components intracellularly, under certain cellular conditions 

[84, 87], support the hypothesis of an intracellular RAS. In addition to its intracellular 

presence or synthesis, angII should be able to mediate biological effects from an 

intracellular location, to be functionally relevant. Local systems are regulated 

independently of the circulatory RAS but can also interact with the latter and have been 

demonstrated in heart [88, 89], in kidneys [90], in brain [91], in pancreas [92], and 

reproductive [78], lymphatic [78], and adipose tissues [93].  

Growing evidence also showed the cytokine-like potential of locally-synthesized angII to 

act in a paracrine, autocrine and possibly intracrine manner to promote endothelial 

dysfunction and vascular inflammation, two main components of the atherogenic process 
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[94, 95]. Regarding this aspect, an intracellular RAS is present in monocytes, a cellular 

population capable of generating the whole set of RAS components, including renin, 

angiotensinogen, ACE and angII [96-99] and endowed with AT1Rs [100] and AT2Rs 

[101].  

 

1.8 High glucose-induced intracellular synthesis of angII. 

 

RAS activation plays a relevant role in diabetes [102], a prothrombotic state [103] to which 

elevated glucose, the disease hallmark, may contribute by activating pro-inflammatory 

pathways [104-106] and increasing the cellular content of RAS components [87, 107-109]. 

In particular, in a study on rat mesangial cells, high glucose resulted in a time-dependent 

increase in the expression of the genes encoding prorenin, AGT, ACE and cathepsin B. 

The increase in renin activity was accompanied by a several-fold increase in intracellular 

angII concentrations, which localized predominantly in the nucleus [87]. In human renal 

mesangial cells, angII levels increased only in cell lysates, and not in the medium, 

following high-glucose exposure [110]. In another study, intracellular angII synthesis was 

studied in Neonatal Rat Ventricular Myocytes (NRVMs), in response to elevated glucose 

levels. Receptor-mediated internalization of angII was prevented by an AT1 receptor 

blocker (candesartan) in the cellular medium. High glucose-induced intracellular angII 

synthesis was accompanied by increased intracellular retention and decreased extracellular 

levels of AGT and renin, consistent with intracellular angII generation. Additional 

experiments, using specific enzyme inhibitors, determined that renin and chymase, but not 

ACE, were responsible for high glucose-induced intracellular angII synthesis [111].  
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1.9 RAS Pharmacological inhibition. 

 

Different clinical strategies have been developed for inhibiting the RAAS.  

β-Blockers. In 1970, Laragh and colleagues have shown that in hypertensive patients, 

therapy with β-blockers (propanolol) reduced of about 75% plasma levels of renin as 

blocking the release of renin beta-1-mediated by the kidney. In addition to the suppression 

of renin release, there is evidence that the β-adrenergic receptor blockade may inhibit the 

conversion of intrarenal prorenina in renin [66, 112]. 

ACE Inhibitors (ACEIs). ACEIs block the action of ACE, and thus the conversion of 

angI to angII. The reduction of angII levels causes a dose-dependent reduction of cardiac 

preload and after-load, with a drop in systolic blood pressure and diastolic, while in 

normotensive and hypertensive patients without cardiac dysfunction, it causes little or no 

change in cardiac output and capillary pressure [113]. ACEIs also decrease renal vascular 

resistance, determine increase in renal blood flow and promote the excretion of water and 

sodium. 

AT1R Blockers (ARBs). ARBs act by antagonizing the angII effects mediated by AT1R, 

reducing systemic blood pressure by decreasing systemic vascular resistance [114]. 

Direct Renin Inhibitors (DRIs). DRIs are the newest class of agents that block RAS and 

recently they have been approved for the treatment of hypertension. They block renin 

catalytic activity, the RAS initial step [115]. 

– Aliskiren Aliskiren, potent renin inhibitor, is the first nonpeptide to be approved by 

the FDA and EMEA for the treatment of hypertension. It is given either as a single 

agent and in combination with other antihypertensive agents. It is a highly 

lipophilic molecule that improves its oral bioavailability [115]. Subsequent studies 
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in normotensive subjects have demonstrated an efficient RAS blockade with 

Aliskiren [116, 117].  

AT2R agonists. The AT2R activation tends to counteract the biological effects of AT1R-

mediated responses including their pro-inflammatory potential [68, 70, 71, 73, 74, 118]. 

However, experimental verification of that hypothesis has been delayed by the absence of 

specific AT2R agonists, as previous studies addressing that issue [119] had only to rely 

upon pharmacological AT2R blockade, an approach encumbered by several conceptual 

and methodological pitfalls [76, 120].  

– Compound (C) 21 is a recently synthesized, highly selective AT2R agonist [121]. 

The specificity of the response of the compound C21 was evaluated in relation to 

those induced by angII in mechanisms in which it has a AT2R direct stimulation. 

C21 is able to induce neurite outgrowth in vitro with a similar effect to that angII 

mediated, an effect inhibited by the AT2R antagonist PD123,319. In vivo C21 

increases in a concentration-dependent manner the alkaline duodenal secretion, an 

effect inhibited, also in this case, by the AT2R antagonist [121]. In rats in which 

was induced MI, C21-dependent AT2R stimulation decreases the synthesis of 

various pro-inflammatory cytokines such as IL-6, IL-2, as well as the inhibition, in 

the peri-infarct area, of caspase 3 and Fas-Ligand expression indicating an anti-

apoptotic effect C21-mediated [122]. The anti-inflammatory effects modulated by 

C21 are confirmed also in endothelial cells and human fibroblasts, where it has 

been demonstrated that AT2R stimulation inhibits NF-kB, with consequent 

reduction of pro-inflammatory cytokines expression [123]. 
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1.10 RAS Pharmacological inhibition and TF modulation. 

 

Inhibition of the RAS downregulates TF expression in numerous experimental models. In 

vitro experiments with monocytes isolated from normal volunteers have shown that 

preincubation of LPS-stimulated monocytes with the ACE inhibitor, captopril, caused a 

significant reduction of TF activity, TF mRNA, and NF-kB translocation into the nuclei. 

Fosinopril and idrapril showed similar effects [59]. Blocking the RAS downstream, with 

the AT1R blocker Losartan, also inhibited TF activity in the same model [59] and 

prevented the upregulation of TF mRNA synthesis by rat aortic endothelial cells [55]. 

Similar results were obtained by He and colleagues, who showed that human peripheral 

blood monocytes cultured in the presence of angII express a procoagulant activity identical 

to TF, as well as TF mRNA, an effect inhibited by Losartan, an AT1R  antagonist [38]. Del 

Fiorentino and colleagues have reported that blocking the RAS with the ACE inhibitor 

zofenopril, with the AT1R blockers olmesartan and with the direct renin inhibitor, 

aliskiren, inhibited TF synthesis and function in TNF-α stimulated human umbilical vein 

endothelial cells [58]. Valsartan-treated transgenic rats overexpressing the human renin 

and angiotensin genes showed inhibited NF-kB activation and TF synthesis as compared 

with placebo controls [124]. The role of RAS inhibition in TF synthesis was also 

investigated in humans. Three different AT1R blockers, losartan, irbesartan, and 

candesartan, or placebo, were administered to 122 hypertensive patients for 2 months. All 

treatments, as expected, caused a significant reduction of blood pressure, with no 

difference among them. TF activity was measured at the beginning and at the end of the 

study period; all treatments reduced TF activity with different potencies 

(candesartan>irbesartan>losartan) [125]. In coronary artery disease patients has observed a 

decreased circulating TF activity after treatment with enalapril, an ACE inhibitor [36]. 
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2. AIMS 

 

 

The aims of this work were twofold. First, to evaluate the effect of RAS inhibition, with 

aliskiren (ALI), a direct renin inhibitor (DRI), zofenopril (ZOF), an ACE inhibitor (ACEI), 

olmesartan (OLM), an AT1R blocker (ARB) and Compound(C)21, an highly selective 

AT2R agonist on TF expression in Peripheral Blood Mononuclear Cells (PBMCs) exposed 

to LPS, the principal glycolipid component of the outer membrane of Gram-negative 

bacteria and a well characterized inflammatory stimulus signalling through the redox-

sensitive NF-kB pathway. 

Second, to evaluate the effect of increasing glucose concentrations on TF expression in 

PBMCs exposed to LPS and in that experimental setting to investigate the modulating 

potential of RAS blockade on the antigenic and functional expression of LPS-induced TF.  
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3. MATERIALS AND METHODS 

 

3.1 Cell isolation and culture. 

 

Peripheral blood mononuclear cells (PBMCs) were obtained from unpooled buffy coats 

left over from blood bank draws taken from healthy donors, with the approval of the local 

ethics committee. According to local procedures, individuals with a history of 

hypertension, either on antihypertensive drugs or not, are excluded from blood donation. 

As detailed elsewhere [126], leukocytes were isolated from fresh buffy coats diluted 1:1 

with sodium citrate 0.38% in saline solution, mixed gently with 0.5 volume of 2% Dextran 

T500 and left for 40 min for erythrocyte sedimentation. The leukocyte-rich supernatant 

was recovered and centrifuged for 10 min at 200xg. The pellet was resuspended in 30 ml 

of sodium citrate solution, layered over 15 ml of Ficoll-Hypaque and centrifuged for 30 

min at 350xg at 20°C. The PBMC-rich ring was recovered, washed twice in sodium citrate 

0.38% and resuspended in no glucose RPMI 1640 medium (Sigma Chemical, St Louis, 

Missouri, USA) supplemented with 100 U/ml penicillin-streptomycin. The final PBMC 

preparations typically contain 25–35% monocytes, 65–75% lymphocytes and less than 5% 

neutrophils [126].  

After isolation, cells resuspended in polypropylene tubes (3x10
6
 cells/ml) were exposed to 

experimental drugs or their appropriate vehicle in presence of different D-glucose 

concentrations (5.5 mM, heretofore referred to as Normal Glucose, NG, or 50 mM 

heretofore referred to as High Glucose, HG) or equivalent amounts of L-Glucose as a 

control for osmolarity 30 min prior to LPS (Escherichia coli 026:B6 LPS; Sigma 
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Chemical), 0.1 μg/mL, and left to incubate for 18 hs at 37°C in a 5% CO2 atmosphere until 

assay.  

PBMCs incubated without either LPS or drugs were also included to obtain baseline 

values. All reagents and solutions used for cell isolation and culture were prepared with 

endotoxin-free water and glassware was rendered endotoxin-free by exposure to high 

temperature. Drugs were kept in stock solution and diluted in serum-free RPMI at the 

appropriate concentrations immediately before use. Cell viability as assessed by dimethyl 

thiazolyl diphenyl tetrazolium (MTT) was verified (85% or more of viable cells) 

throughout all experimental phases. 

 

3.2 TF pro-coagulant activity (PCA). 

 

PCA was assessed by a one-stage clotting time test in PBMCs disrupted by three freeze–

thaw cycles, as previously described [126]. In brief, disrupted cells (100 ml) were mixed 

with 100 ml of normal human plasma at 37°C, adding 100 ml of 25 mmol/l CaCl2 at 37°C. 

Time to clot formation was recorded and values converted to arbitrary units (AU) by 

comparison with a human brain TF calibration curve covering clotting times from 20 to 

600 s, corresponding to 1000 and 0 AU, respectively. Experiments were run in triplicate 

and averaged. As contaminating platelets (typically less than 1 platelet/PBMC) may 

contribute to PCA [127], we performed the clotting assay in PBMC-free preparations in 

preliminary experiments containing a comparable number of platelets. PCA under these 

conditions was undetectable. 
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3.3 TF antigen (ag). 

 

Cells were disrupted by three repeated freeze–thaw cycles and debris pelleted by 

centrifugation at 100xg for 1 h at 4°C and supernatants used for ELISA (Imubind TF kit 

Sekisui Diagnostics, West Malling, United Kingdom). Briefly, 100 ml of the TF standards 

or the supernatant samples were incubated overnight at 4°C in microwells precoated with a 

murine antihuman TF capture antibody. The captured TF was detected using a biotinylated 

antibody fragment. Then, binding of streptavidin-conjugated horseradish peroxidase (HRP) 

completed the formation of the antibody–enzyme detection complex, and the addition of 

tetramethylbenzidine substrate and its subsequent reaction with the HRP created a blue 

coloured solution. The sensitivity of the method was increased by the addition of 0.5 mol/l 

sulfuric acid stop solution, which yielded a yellow colour. Solution absorbances were 

measured in a microplate reader at 450 nm. TF ag levels were expressed in pg/ml using a 

reference curve created by the TF standards. Within and between assay variability was 3.5 

and 5.5%, respectively. 

 

3.4 TF mRNA. 

 

Total RNA was extracted from PBMCs using the Rneasy mini kit (Qiagen). RNA 

concentration and purity were determined by optical density measurement via Nanodrop 

(Thermo Fisher Scientific, Wilmington, Delaware USA). A mixture of 0.5 ng total RNA 

per sample was retro-transcribed with random primer-oligodT into complementary DNA 
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(cDNA) using the Quantitect Reverse Transcription Kit (Qiagen, Hilden, Germany). The 

retro-transcription cycle was performed at 25°C for 5 min, 42°C for 30 min and 95°C for 3 

min. RealTime-PCR was carried out in a iQ5 Real Time PCR System and SsoAdvanced 

Sybr Green Supermix (Bio-Rad Laboratories, Hercules, CA) was employed on the basis of 

the manufacturer’s instructions with a final reaction of 20 µl. RealTime-PCR was 

performed under the following conditions: 95°C, 30s; 40 cycles 95°C, 5s, 60°C, 15s;a final 

melting protocol with ramping from 65°C to 95°C with 0,5°C increments of 5sec was 

performed. The primers sequence for realtime-PCR were: TF, sense 5’-

TTGGCAAGGACTTAATTTATACAC-3’, antisense 5’-CTGTTCGGGAGGGAATCAC-

3’; GAPDH, sense: 5’-CCCTTCATTGACCTCAACTACATG-3’ and antisense: 5’-

TGGGATTTCCATTGATGACAAGC-3’ (Sigma-Aldrich, St. Louis, MO). All samples 

were analysed in duplicate and averaged. The relative expression of the target gene was 

normalized to the level of GAPDH in the same cdna. 

 

3.5 Experimental Design. 

3.5.1  Effect of RAS Blockers on LPS-induced TF ag expression and PCA. 

 

Aliskiren (ALI), a direct renin inhibitor (DRI)[128], zofenopril (ZOF), an angiotensin 

converting enzyme inhibitor (ACEI)[129], olmesartan (OLM)[130], an angII type 1 

receptor blocker (ARB) or vehicle were added at log-increasing (10
−11

–10
−6

 M) steps to 

PBMCs LPS-stimulated (0.1 μg/mL) under NG conditions to delineate the profile of the 

respective inhibitory concentration-response curves.  
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In additional series, PCA was characterized by adding an antihuman TF antibody (30 

μg/mL, 30 minutes), which neutralizes the procoagulant activity of both TF and TF/FVIIa 

complexes (affinity purified inhibitory goat anti-human-TF IgG, epitope-specific for amino 

acid sequence 1-25, American Diagnostica), to suspensions of LPS-stimulated PBMCs 

under either HG or NG conditions. 

3.5.2  Effect of AT2R agonism and antagonism on LPS-induced TF expression. 

 

To establish the effect of C21, a specific AT2R agonist [121], on TF ag and PCA and 

delineate its concentration–response profile, LPS-stimulated PBMCs were exposed at log-

increasing drug concentrations (10
-8

–10
-5

 M). To assess the effect of C21 on TF 

transcription, levels were quantified in LPS-stimulated PBMCs in absence or presence of 

maximally effective drug concentrations (10
-5

 M). To validate the underlying assumption 

of AT2R agonism by C21, additional experiments were run in LPS-stimulated PBMCs 

preincubated with maximally effective concentrations of PD123,319 or OLM (10
-6

 M for 

both). 

To evaluate, also, the effect of AT2R blockade per se on TF ag and PCA and delineate its 

concentration–response profile, LPS-stimulated PBMCs were exposed at log-increasing 

concentrations PD123,319 (di(trifluoroacetate) salt hydrate, Sigma, Milan, Italy, 10
-11

–10
-6

 

M), an AT2R antagonist [131]. 

3.5.3 Effect of Glucose on TF expression. 

 

To evaluate the effect of glucose on TF expression, LPS-stimulated PBMCs were exposed 

to four increasing concentrations of D-Glucose (5.5, heretofore referred to as normal 

glucose, NG, 16.5, 26 and 50 mM) using L-Glucose as a control for osmolarity changes. 
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The effect of 50 mM D-glucose (the concentration achieving the maximum effect, 

heretofore referred to as HG) on TF expression was then compared to NG in PBMCs 

activated by LPS.  

3.5.4  Effect of AT2R agonism and AT1R blockade  on LPS-induced TF expression in 

PBMCs exposed to HG. 

 

To assess the effect of AT2R agonism and AT1R blockade on LPS-induced TF expression 

under HG conditions, C21 or OLM were added at log-increasing (10
-8

-10
-5

 M) steps to 

LPS-stimulated PBMCs with NG as a control.  

3.5.5 Effect of AT2R agonism in AT2R-blocked PBMCs exposed to HG. 

 

To evaluate the C21 AT2R specificity, C21 was added at log-increasing (10
-8

-10
-5

 M) steps 

to LPS-stimulated PBMCs exposed to NG or HG, after a pre-incubation of 30 minutes with 

PD123,319 (10
-6

 M, , Sigma Milan, Italy), a specific AT2R antagonist. 

3.5.6 Effect of angII on LPS-induced TF PCA under NG and HG conditions. 

               

To assess the assumption of the involvement of locally expressed angII in our system, 

angII was tested in PBMCs exposed to NG or HG.  

3.5.7 Effect of NF-kB inhibition on LPS-induced TF PCA under NG and HG 

conditions.    

 

To test the involvement of NF-kB in our system,  BAY 11-7082 (10-5 M Sigma, Milan, 

Italy), a well characterized inhibitor of NF-kB [132], the key controller of TF gene 

expression [8], was added in LPS-stimulated PBMCs exposed to NG and HG. 
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3.5 Statistics 

 

Mann Whitney test for unpaired data and Wilcoxon test for paired data were used on 

absolute data or percent changes from control conditions. Data were reported as means±SD 

unless otherwise reported. A two-tailed p-level <0.05 was the threshold for statistical 

significance. 
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4. RESULTS 

 

LPS stimulation (0.1 μg/mL) increased TF PCA (from 0.0054±0.0033 to 0.93±0.36 AU, 

n=33, p<0.001), TF ag expression (from 32±24 to 1486±388 pg/mL, n=19, p<0.001) and 

TF mRNA (from 0.005±0.0027 to 0.65±0.5 normalized fold expression, n=8, 

p<0.001)(Fig.1 panels a,b,c respectively). 
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Fig.1. LPS stimulation (0.1 μg/mL) increased TF PCA (n=33, panel a), TF ag expression (n=19, panel b) and 

TF mRNA (n=8, panel c). *** p<0.001 

 

To LPS-stimulated PBMCs was added an anti-human TF antibody (30 μg/mL), which 

neutralizes the TF PCA (from 0.93±0.36 to 0,019±0,0095 AU, n=5, p<0.001) (Fig.2). 
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Fig. 2. The anti-human TF antibody (30 μg/mL) neutralizes the TF PCA LPS-stimulated (n=5). *** p<0.001  
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4.1 Effect of RAS Blockers on LPS-induced TF expression. 

 

ALI, ZOF and OLM downregulated LPS-activated TFAg expression and PCA to a 

comparable extent as regards maximum efficacy under NG conditions (TFAg: 

ALI:−44±6%, n=6, ZOF:−40±19%, n=6, OLM:−37±5%, n=5; PCA: ALI:−44±22%, n=11, 

ZOF:−52±15%, n=6, OLM:−48±18%, n=5, p<0.001 vs vehicle for all). However, 

inhibition by ALI achieved its peak at 10
−11

 M and decreased at higher drug 

concentrations, a pattern opposite to that of both ZOF and OLM (Fig. 3, left and right 

panels). 

 

Fig. 3. Decreasing inhibition of LPS-stimulated TFAg (left panel, n=6) and PCA (right panel, n=11) by 

ascending concentration of aliskiren vs the opposite behaviour of zofenopril and olmesartan. For the sake of 

clarity, figures report only mean values. * p<0.001 Aliskiren vs Zofenopril; & p<0.001 Aliskiren vs 

Olmesartan; ! p<0.05 or less vs 10
−11

 M values. 
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4.2 Effect of AT2R agonism and antagonism on LPS-induced TF 

expression.    

C21 downregulated in a concentration-dependent manner TFag and PCA, an effect 

antagonized by PD123,319 and left unchanged by OLM (Fig. 4, left and right).  

 

Fig.4. C21 downregulates lipopolysaccharide-stimulated tissue factor antigen (left, n=13) and PCA (right, 

n=14), an effect antagonized by PD123,319 (10
-6

 M, n=6 and 14, respectively) and left unchanged by OLM 

(10
-6

 M, n=7 and 10, respectively). For the sake of clarity, only mean values are reported. ! p<0.001 C21 vs. 

vehicle; * p<0.001 C21 vs. C21+PD123,319. 

 

C21 blunted LPS-induced TF mRNA (from 0.82±0.57 to 0.24±0.13 normalized fold 

expression, n=5 each, p<0.001), a 3.5-fold inhibition (Fig. 5). 

 

Fig.5. C21 (10
-5

 M) inhibits lipopolysaccharide-induced tissue factor mRNA stimulation. Mean±SD, n=5 

each; * p<0.001. 
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PD123,319 per se did not affect LPS-induced TF PCA and antigen expression (Fig. 6, left 

and right). 
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Fig.6. PD123,319 effect on lipopolysaccharide-stimulated TF PCA (right, n=11) and ag expression (left, 

n=7). For the sake of clarity, only mean values are reported.  

 

 

4.3 Effect of Glucose on TF expression.   

 

Increasing D-glucose up to a 50 mM concentration augmented LPS-induced PCA without 

evidence of a plateau. Equimolar L-glucose concentrations were neutral (Fig. 7).  

 

Fig. 7. Increasing D-Glucose concentrations (black bars) augment LPS (100 ng/mL)-induced PCA as 

opposed to the ineffectiveness of L-glucose (gray bars). Mean±SD, n=11; * p<0.001 vs 5.5 nM, & p<0.001 

vs 26 nM, £ p<0.001 vs 16.5 nM, NS=Not significant vs 5.5 nM.         
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As compared with NG, HG amplified the stimulatory effect of LPS also on TF ag (from 

1486±388 to 2652±622 pg/mL, n=19, p<0.001) and TF mRNA (from 0.65±0.5 to 

0.85±0.53 normalized fold expression, n=8, p<0.01) (Fig. 8, panels a and b, respectively). 
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Fig.8. HG amplified the stimulatory effect of LPS on TF ag (n=19, panel a) and TF mRNA (n=8, panel b) 

*** p<0.001, ** p<0.01 

 

4.4 Effect of AT2R agonism and AT1R blockade on LPS-induced TF 

expression in PBMCs exposed to HG.      

      

C21 down-regulated in a concentration dependent manner LPS-induced TF PCA without 

differences between NG and HG (Fig.9, panel a) while the concentration dependent 

inhibitory effect of OLM was greater in HG than in NG (Fig.9, panel b). Similar data were 

obtained evaluating TF ag and TF mRNA (Fig.10, panel a and panel b respectively).      
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Fig. 9. C21 downregulated in a concentration dependent manner LPS-induced TF PCA in NG maintaining 

unchanged its effect in HG (panel a, n=12). Figures report mean±SD, *** p<0.001, ** p<0.01 vs. vehicle in 

NG, ! p<0.001 vs. vehicle in HG. OLM downregulated in a concentration dependent manner LPS-induced TF 

PCA in NG potentiating its effect in HG (panel b, n=12). ** p<0.01, * p<0.05 OLM in HG vs. OLM in NG, ! 

p<0.001 vs. vehicle in NG, $  p<0.001 vs. vehicle in HG.   
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Fig.10. C21 and OLM downregulated LPS-induced TF ag (panel a, n=7) and TF mRNA (panel b, n=8) in 

NG. OLM inhibitory effect on TF ag and TF mRNA was potenziated in HG (panel a and panel b 

respectively). Figures report mean±SD. ! p<0.05, !!! p<0.001 vs. vehicle in NG; $$ p<0.01, $$$ p<0.001 vs. 

vehicle in HG; * p<0.05, *** p<0.001 OLM in HG vs. OLM in NG 

 

4.5 Effect of AT2R agonism in AT2R-blocked PBMCs exposed to HG.  

   

The pre-treatment with PD123,319 (10
-6

 M) inhibited C21 downregulation of LPS-induced 

TF PCA in NG and in HG (Fig.11) demonstrating AT2R specificity of these effects also 

under HG conditions. These results has also been confirmed with TF ag (Fig.12). 
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Fig.11. The pre-treatment with PD123,319 (10
-6

 M) inhibited C21 effect in NG and in HG (left panel and 

right panel, respectively)(n=6) Figures report mean±SD. ** p<0.01, * p<0.05 vs. C21+ PD123,319.  
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Fig.12. The pre-treatment with PD123,319 (10
-6

 M) inhibited C21 effect in NG and in HG (left panel and 

right panel, respectively)(n=6) Figures report mean±SD. ** p<0.01, * p<0.05 vs. C21+ PD123,319. (NG: 

3±15%, n=6, p<0.001 vs C21 alone; HG:  9±30%, n=6, p<0.001 vs C21 alone) 

  

4.6 Effect of angII on LPS-induced TF PCA under NG and HG 

conditions.   

     

AngII (10
-6 

M) stimulated TF PCA in NG (from 0,005±0,002 to 0,01±0,006 AU, n=14, 

p<0.01) and in HG (from 0,011± 0,007 to 0,02± 0,01 AU, n=10, p<0.05), an effect 

inhibited by OLM (10
-6 

M)(NG: 10
-6 

M -38±17%, n=4, p<0.01; HG: 10
-6

 M -59±3%, n=4, 

p<0.001)(Fig.13).  
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Fig.13. AngII (10
-6

 M) stimulated TF PCA in NG (n=14) and in HG (n=10), an effect inhibited by OLM (10
-6 

M) in NG and in HG (n=4).  Figures report mean±SD. *** p<0.001, ** p<0.01, * p<0.05  

 

                

 4.7 Effect of NF-kB inhibition on LPS-induced TF PCA under NG and 

HG conditions.    

 

BAY 11-7082, a NF-kB inhibitor, abolished at a 10
-5

 M concentration the LPS-stimulated 

PCA in PBMCs exposed to NG or HG (NG: -95±3%, n=8, p<0.001; HG: -99±0.3%, n=8, 

p<0.001). 

 

 

Fig. 14. BAY 11-7082, a NF-kB inhibitor (10
-5

 M) abolished the LPS-stimulated PCA in PBMCs exposed to 

NG and HG (n=8). Figures report mean±SD. *** p<0.001  
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5. DISCUSSION 

 

 

Our results highlight the ability of the RAS and in particular of its main effector, angII, to 

modulate the expression of TF in monocytes a cellular population capable of generating 

the whole set of RAS components: angII [99], renin [96], angiotensinogen [98], ACE [97], 

angII receptors [100, 101]. The antagonism of LPS-stimulated TF expression by a highly 

heterogeneous group of drugs such as ALI, ZOF, OLM sharing angII blockade as the only 

common pharmacological denominator, confirms the involvement of the RAS in the TLR-

4 signalling pathway reported by others in different experimental conditions [133]. In 

addition, our data provide original evidence suggestive of endotoxin-mediated activation of 

the upstream and rate-limiting step of the system since TF inhibition by ALI, a direct renin 

inhibitor, was maximal at concentrations (10
−11

 M) coincident with those inhibiting the 

interaction of human renin with its substrate angiotensinogen (6×10
−12

 M)[128]. The 

peculiar inhibitory concentration-response relationship of ALI, characterized by fading 

efficacy as a function of increasing drug concentrations, a trend opposite to that elicited by 

ZOF and OLM opens obvious but unanswered questions about mechanisms although 

unrestrained renin production as a reaction to a disrupted angII-mediated negative feed-

back by ALI may plausibly facilitate its binding to newly identified (pro)renin 

receptor((P)RR)s [134] and promote the synthesis of counteracting pro-thrombotic 

mediators independent of the classical pathways operated by angII [135]. 

Moreover, we document for the first time the inhibitory potential of AT2R stimulation on 

inflammation-mediated pro-coagulant response by down-regulating TF expression. In 

particular TF mRNA down-regulation by C21 likely reflects NF-kB inhibition, a crucial 

controlling step in gene transcription in response to inflammatory agonists [8], consistent 
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with previous reports obtained in different experimental systems with C21 itself [123] and 

other AT2R agonists [118]. Inhibition by C21 of IL-6 production in TNF-α stimulated 

human and murine dermal fibroblasts [123] and primary rat astrocytes exposed to LPS 

[136] and reduced expression of inflammatory mediators in experimental models of 

myocardial and renal damage [122, 137, 138] as well as the additional evidence reviewed 

in detail elsewhere [76, 136] strengthen our conclusions. An obvious question raised by 

these results considers the reasons for the discrepancy between the inhibition induced by 

AT2R stimulation and the missing response to AT2R antagonism, this latter an already 

reported behaviour [119] for which several explanations might be envisaged. In fact, 

despite their predominance in foetal life, AT2R number decrease after birth and AT1Rs 

overcome the quantitative distribution of the other subset in adulthood by several fold 

[120]. Therefore, studies with the AT2R antagonist PD123,319 are easily bound to produce 

negative or equivocal results, as it is difficult to antagonise biological effects whose 

baseline functional expression is negligible [120]. As a matter of fact, unchanged levels of 

AT2R mRNA in inflamed human glomerular endothelial cells [119] suggest that the effect 

of C21 might represent the result of a pharmacological manipulation of physiologically 

silent binding sites exposed to an agonist attaining concentrations at the receptor site far 

exceeding those achieved by angII, the endogenous ligand [76, 136]. Other possible, not 

alternative explanations for the neutral effect of the AT2R antagonism may relate to the 

difficulty of eliciting some additional stimulation in an already stimulated system of which 

RAS activation is one of the several and interacting signalling pathways.  

Another relevant outcome of this study was the TF sensitivity of LPS-primed PBMCs to 

augmented ambient D-glucose, an effect independent of osmolarity changes and requiring 

cellular uptake and subsequent metabolism of the molecule, given the inefficacy of 
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equimolar concentrations of the impermeant L-isomer. RAS activation plays a relevant role 

in diabetes [102], a prothrombotic state [103] to which elevated glucose, the disease 

hallmark, may contribute by activating pro-inflammatory pathways [104-106] and  

increase glucose-mediated angII production reported by other authors in isolated cell 

systems exposed to HG [87, 107, 108]. The HG-dependent activation of 

inflammation/coagulation-related protein expression is due, at least partly, via increased 

oxidative stress [104]. Although not documented in our setting, the subsequent chain of 

intracellular events were likely to include, according to the available evidence, increased 

generation of reactive oxygen species (ROS) resulting from activation of NADPH oxidase 

and mitochondrial metabolism [106] acting as signalling molecules for NF-kB [104], a 

redox-sensitive transcription factor critical for the expression of genes encoding TF-

stimulating pro-inflammatory cytokine [105] and TF itself [8]. In accord with these data 

we observed that BAY 11-7082, a well characterized NF-kB inhibitor [132], completely 

abolished the pro-coagulant response to endotoxin, in normal and high glucose. The data 

are also coherent with previous reports of HG-induced overexpression of Toll-like 

receptor(TLR)4 [139] and CD14 [140], the LPS-receptor complex that, by recruiting 

adaptor proteins to the cytoplasmic Toll/interleukin-1 receptor domain, initiates a series of 

intracellular events leading to NF-kB activation [141]. In that complex chain of events 

RAS and TLR-4 are interconnected signalling pathways [57, 133, 142] making RAS 

activation an active part of the wide spectrum of biological responses finalized to defend 

the host from invading bacteria [141] and in which activation of the clotting cascade is a 

prominent part [44]. 

In the above delineated experimental context, C21, an AT2R agonist, modulated the 

expression of TF in NG [60] and its efficacy was unchanged by exposure to HG quite in 
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contrast with the enhanced response to OLM, an AT1R antagonist, an expected behavior 

explained by several, not alternative nor exhaustive mechanisms including increased 

glucose-mediated angII production [87, 108, 111], upregulated AT1R [143-146] or AT1R 

activation as a consequence of other mechanisms unrelated to receptor density or affinity 

[147].  

In conclusion, our results open insofar unexplored and potentially relevant facets to our 

understanding of the complex links connecting angII to inflammation ad coagulation and 

are useful to delineate more precisely the determinants of the atherothrombotic risk in 

diabetic patients [103]. Downregulation of responses finalized to defend the host from 

invading bacteria by blockade of a biological system pivotal to the onset and evolution of 

diabetes [102] and cardiovascular disease [100] discloses tight connections between the 

apparently unrelated domains of innate immunity and metabolic and cardiovascular 

regulation expanding the restrictive view of angII as a peptide mainly involved in the 

control of blood pressure and water and salt homeostasis. 
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ABBREVIATIONS 

 

 

ACE  Angiotensin Converting Enzyme  

ACEI  Angiotensin Converting Enzyme Inhibitor  

AGT  Angiotensinogeno 

ALI              Aliskiren 

ANOVA ANalysis Of VAriance  

ARBS Angiotensin II Receptor Blockers  

AS TF      Alternatively Spliced  Tissue Factor 

AT1R Angiotensin II Type 1 Receptor  

AT2R Angiotensin II Type 2 Receptor  

AT3R Angiotensin II Type 3 Receptor  

ATR4 Angiotensin II Type 4 Receptor  

DRI   Direct Renin Inhibitor  

ELISA Enzyme Linked Immuno-Sorbent Assay 

FL TF      Full-Length  Tissue Factor  

HG             High Glucose   

ICAM-1 Intercellular Adhesion Molecule 1  

I-kB  Inhibitor  of  Nuclear Factor κappa B  
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IL               Interleukin  

JG Juxtaglomerular Cells   

LPS Lipopolisaccaride  

MCP-1     Monocyte Chemoattractant Protein – 1 

MI                 Myocardial Infarction  

MP             Microparticles 

NF-kB  Nuclear Factor kB  

NG             Normal Glucose    

NO Nitric Oxide   

NRVMs Neonatal Rat Ventricular Myocytes  

OLM          Olmesartan 

PAR-1  Protease Activated Receptor 1  

PAR-2 Protease Activated Receptor 2  

PDGF Platelet Derived Growth Factor  

RAAS Renin Angiotensin Aldosterone System  

RAS Renin Angiotensin System  

SD Standard Deviation  

TF ag Tissue Factor Antigen  

TF PCA     Tissue Factor Pro-coagulant activity  

TF Tissue Factor  
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TGF-β Transforming Growth Factor βeta  

TNF-α Tumor Necrosis Factor-αlpha   

VCAM-1  Vascular Cell Adhesion Molecule 1  

VEGF Vascular Endothelial Growth Factor  

VSMCs Vascular Smooth Muscle Cells  

ZOF           Zofenopril 


