
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Model-based design for automotive control unit

Relatore: Prof. Roberto SALETTI

Candidato:

Rosario POLIZZANO

Anno Accademico 2015-16

Alla mia famiglia
e a mio nonno Agostino

« Nella misura in cui le leggi matematiche si
riferiscono alla realtà, esse non sono certe.
E nella misura in cui sono certe, non si
riferiscono alla realtà »

A. Einstein

Abstract
My thesis aims at studying the Model-Based design techniques for the automotive ECUs (Elec-

tronic Control Unit).
The main aspects of my work are: willingness to understand the software architecture and

the network topology of an automotive ECU and apply the concepts of Model-Based design to
implement the logic of some vehicle functions (VFs).

In particular two vehicle functions were analyzed: Vehicle Speed & Odometer and Emergency
Stop Signalling.

This VFs are generally responsibility of the BCM ECU. In automotive electronics, BCM is
intended as the Body Control Module, generic term for an electronic control unit used to monitor
and to control many electronic accessories built in the vehicle. Typically is used to control ser-
vice accessories like power windows, power mirrors, etc. and to control and to monitor security
accessories like central locking, alarm and immobilizer system.

Model-Based design work starts with the requirements analysis, followed by the architecture
design to converge in a detailed model design in order to define the architecture of the model and
development of the functional logic. This workflow enables me to stay in the same environment
from requirement to test, minimizing the amount of work. In addition, testing can begin at
the requirement phase when I simulate the executable specifications in models to verify that the
requirements are met. As a result, defects are caught and removed earlier, lowering the total cost
of development.

The treatise is structured as follow: in chapter 1, an introduction will show the reasons for
Model-Based design techniques as modern automotive environment; in chapter 2, I will discuss
about Model-Based design techniques and its advantages; in chapter 3, I will discuss about in-
vehicle networks and protocols; chapter 4 focuses on AUTOSAR architecture; in chapter 5 I will
discuss about the supporting tools for Model-Based design and testing; in chapter 6, I will show
the case study, so the works about the two vehicle functions under analysis; finally, chapter 7 will
draw my conclusions.

Ringraziamenti
Il lavoro di tesi presentato in questo elaborato è frutto del mio impegno supportato da persone che
hanno dedicato parte del loro tempo e delle loro raffinate conoscenze per suggerirmi ed ascoltarmi.

In primo luogo vorrei ringraziare il Prof. Roberto Saletti per il supporto, per la Sua disponibilità,
per i consigli e suggerimenti.

Un ringraziamento va anche ai colleghi di TXT e-solutions, in particolare Lorena Capuana, mia
tutor aziendale, e Mirko Zanotel, che hanno supportato il mio lavoro di tesi presso la sede aziendale.

Ringrazio poi di cuore la mia famiglia: i miei genitori, che mi hanno sostenuto sia moralmente
che economicamente durante questo percorso di studi universitari permettendomi di giungere a questo
importante traguardo e per avere avuto ruolo determinante nella mia educazione e crescita; e mio
fratello Agostino, per il suo supporto morale e per i suoi consigli.

Ringrazio infine i miei coinquilini “Il Mata”, Domenico e Giancarlino, il coinquilino acquisito, per
aver reso le giornate a casa sempre allegre e spensierate e tutti gli amici che hanno contribuito a rendere
la vita universitaria una bellissima esperienza.

Impossibile poi dimenticarsi dei nonni i quali hanno anche contribuito alla mia educazione e crescita.
Desidero inoltre ringraziare tutti i Professori che hanno contribuito alla mia crescita formativa.

Contents
1 Introduction 10

2 Model-based software design 11
2.1 Why model-based software design . 11

2.1.1 Traditional development vs. Model-Based Design 11
2.1.2 Advantages of Model-Based Design . 13
2.1.3 Benefits of the project methodology . 14
2.1.4 The V-shaped model . 16

3 In-vehicle Networks and Protocols 20

4 AUTOSAR 22
4.1 Autosar architecture structure . 23

4.1.1 AUTOSAR Software . 23
4.1.2 Autosar Runtime Enviroment (RTE) . 24
4.1.3 Basic Software . 24

4.2 AUTOSAR Operating System . 25
4.3 Internal Behavior of AUTOSAR Software Components 25
4.4 Summary . 26

5 Supporting tools for Model-Based Design 26
5.1 MATLABő . 26
5.2 Simulinkő . 27
5.3 Stateflow . 28

5.3.1 What Is a Finite State Machine? . 29
5.3.2 Finite State Machine Representations . 29

5.4 CANoe . 37
5.4.1 What is CANoe? . 37
5.4.2 MATLAB/Simulink . 39

6 Case study 39
6.1 Requirements analysis of ECU and System Design . 40

6.1.1 BCM and BSM ECUs (Electronic Control Unit) 40
6.1.2 Vehicle Functions (VFs) . 41

6.1.2.1 Vehicle Speed & Odometer . 41
6.1.2.2 Emergency Stop Signalling (ESS) . 44

6.2 Architecture design . 44
6.2.1 Vehicle Speed & Odometer . 46
6.2.2 Emergency Stop Signalling (ESS) . 47

6.3 Module (SW-Component) design . 48
6.3.1 Vehicle Speed & Odometer . 48
6.3.2 Emergency Stop Signalling (ESS) . 54

6.4 Unit test design . 57
6.5 Unit testing . 62

6.5.1 Vehicle Speed & Odometer . 62
6.5.2 Emergency Stop Signalling (ESS) . 70

7 Conclusions 77

List of Figures
1 Automotive car diagram . 10
2 Traditional development methods . 12
3 Model-Based Design - system-level model . 13
4 Model-Based Design shifts defect discovery to early development phases 14
5 Projects behind schedule . 15
6 Total Development Costs and ROI Advantage by Market 15
7 ROI Calculation in Automotive . 16
8 V-shaped development model (1) . 17
9 V-shaped development model (2) . 18
10 Vehicular Netwoking . 21
11 Automotive bus systems comparison . 22
12 Autosar architecture diagram . 23
13 Virtual Function Bus . 24
14 Exemplary mapping of Runnables to Operating System tasks 26
15 Matlab’s screenshoot . 27
16 Application examples of projects using Simulink . 28
17 Graphical and non-graphical stateflow chart . 30
18 Graphical object . 31
19 Stateflow’s Model Explorer . 32
20 Transition Label Example . 34
21 Default transition with a label - example . 35
22 Connective Junction - example . 36
23 Default Transition to a Junction - example . 36
24 The Stateflow Debugging window to start simulation with breakpoints 37
25 CANoe user interface . 38
26 V-cycle software development (3) . 40
27 Functional Diagram . 42
28 Partial Travel Distance . 43
29 AUTOSAR - Application SW Component . 45
30 Vehicle Speed & Odometer Architecture Design . 46
31 Vehicle Speed & Odometer - signals list . 47
32 Emergency Stop Signalling Architecture Design . 47
33 Emergency Stop Signalling - signals list . 48
34 Vehicle Speed & Odometer - design datail (1) . 49
35 Vehicle Speed & Odometer - design datail (2) . 50
36 Vehicle Speed & Odometer - design datail (3) . 52
37 Vehicle Speed & Odometer - design datail (4) . 53
38 Emergency Stop Signalling (ESS) - design datail (1) . 54
39 Emergency Stop Signalling (ESS) - design datail (2) . 55
40 Emergency Stop Signalling (ESS) - flow chart . 56
41 Data logging setup . 57

42 Loading .asc file in Canoe enviroment . 58
43 Configuration setup to read log file . 58
44 Playback signals . 59
45 Graphics export in .mat format . 59
46 Import log file in Matlab’s workspace . 60
47 Matlab’s workspace with signals test . 60
48 Viewing signals with Simulink Scope (1) . 61
49 Viewing signals with Simulink Scope (2) . 61
50 Vehicle Speed & Odometer - Simulink Model . 62
51 Test vehicle speed signal - model output (1) . 63
52 Test vehicle speed signal - model output (2) . 64
53 Travel distance calculation - model output . 65
54 Travel distance from Canoe log file - expected output . 66
55 Signals from Canoe - log file . 67
56 Travel distance and available massage - model output 68
57 VSO_generation signal - frequency calculation - model output 69
58 Emergency Stop Signalling - Simulink Model . 70
59 SCOPE 1 - data log 1 . 71
60 CANoe - data log 1 . 72
61 SCOPE 1 - data log 2 . 73
62 CANoe - data log 2 . 74
63 SCOPE 1 - data log 3 . 75
64 CANoe - data log 3 . 76

1 Introduction
Many industries are under pressure to reduce their development times when they produce unique and
innovative products. Working efficiently is indispensable to success in a globalized market, especially
for high-tech industries such as automotives, aerospace and communications, where electronic controls
are a vital part of each new product. The increasing utilization of embedded software in application
domains has resulted in a staggering complexity that has proven difficult to manage with conventional
design approaches. Because of its capability to address the corresponding software complexity and
productivity challenges, Model-Based Design is quickly becoming the preferred software engineering
paradigm for the development of embedded system software components across application domains
[1]. The amount of things that the modern softwares have to perform is growing always more, so the
complexity of the software to be produced is becoming bigger and bigger. The table below shows how
lines of code has grown in the last 30 years and how the software demand has become bigger. One
of the first things to note is that, around the 80’s, there were one thousand lines of code about in
vehicles: this means that the software was very tiny, there were few operations to be performed. For
example, the cost of this software and the electrical engineering parts were less than 9% of the vehicle
cost. Another thing which stands out is the ten thousands lines of code around 90’s: this explains how
the demand was growing dramatically just after 10 years. For instance, the cost of this software and
the electrical engineering parts risen up to 20% of the vehicle cost. A final point to note is that, in
2010, the lines of code is in the range of some tens of million, some order of magnitude grown. More
specially, the cost of this software and the electrical engineering parts was about 30% of GAS vehicle
and 65% of electric/hybrid vehicle cost.

Figure 1: Automotive car diagram

Finally, the trend shown in the table is pointing up that the complexity of software for automotive
application is increased exponentially and is too dicult to manage. The amount of software used in
modern cars, for every operation inside it, is very likely to be controlled by a micro-processor that
runs some software. By 2010, premium class vehicles are expected to contain one gigabyte of on-board

10

software [2]. Reason for this large increase is the demand of new functionalities on one hand, and the
availability of powerful and cheap hardware on the other hand. In addition, electronics in cars allows
to reduce consumption, to increase safety, performance and comfort.

The modern automotive environment needs reusable software such that it has to be easily embedded
in several frameworks. This aspect leads to the model-based design project methodology as it allows
the user to model some algorithms starting from a finite state machine, following a certain workflow,
obtaining a reusable generated-code to embed in a micro-controller. It is important to underline that
the algorithm itself can be in common with some other functionalities, so the code integration of its
related code can be done several times in different environments or cases.

In traditional design processes, design information is communicated and managed as text based
documentation. Frequently this documentation is difficult to comprehend. Code is created manually
from specification and requirements documents that are time consuming and error prone. There is
little tracking to ensure that changes are correctly implemented. Designs, such as those for avionics
and automotive systems, have become too complex to develop and coordinate without the creation of
a design environment common to all involved developers.

2 Model-based software design
Complexities and uncertainties surrounding embedded software developments continue to escalate
development costs. Engineering costs associated with design delays are further aggravated by the
failure of most embedded designs to approximate design expectations. Annual surveys by Embedded
Market Forecasters (EMF) of embedded developers have clearly shown that software development
is responsible for more than 80% of design delays and associated design complications. Whether the
system is poorly conceived and specied or whether crucial algorithms fail to adequately address systems
performance, traditional methods of embedded software development are evolving to a process known
as Model-Based design (MBD). Model-based design is used to more clearly define design specications,
to test systems concepts and to automatically develop code for rapid prototyping and for software
development. In addition, model-based design technologies, including simulation modeling, rapid
prototyping and automatic code generation offers better design results and considerable savings to
OEM developers [3].

2.1 Why model-based software design
2.1.1 Traditional development vs. Model-Based Design

In a traditional development process, requirement, design, implementation, and test tasks are per-
formed sequentially in different tool environments, with many manual steps (Figure 2). Requirements
are captured textually, using documentation management tools such as IBM DOORS. Designs are
created using domain-specific tools, which precludes system-level testing until after implementation in
software or hardware. The designs are then manually translated into code, which is a time consuming
and defect-prone process. At each phase, some defects are introduced, leaving the test phase to be the
catch-all for all the defects that have accumulated throughout the previous phases. As a result, the
test phase constitutes the bulk of development time and cost. Lack of a common tool environment,
multiple manual steps, and defects discovery contributes to increase in the development time and cost
[11].

11

Figure 2: Traditional development methods

Model-Based Design (Figure 3) starts with the same set of requirements as a traditional process.
Rather than serving as a basis for textual specifications, however, the requirements are used to develop
an executable specification in the form of models. Engineers use these models to clarify requirements
and specifications. The models are then elaborated to develop a detailed design. Using the tools for
Model-Based Design, engineers can simulate the design at the system level, uncovering interface defects
before implementation. Once the design is finalized, the engineers automatically generate production
code and test cases from the models. This workflow enables engineers to stay in the same environment
from requirement to test, minimizing the amount of manual work. In addition, testing can begin at
the requirement phase when engineers simulate their executable specifications in models to verify that
the requirements are met. As a result, defects are caught and removed earlier, lowering the total cost
of development.

12

Figure 3: Model-Based Design - system-level model

2.1.2 Advantages of Model-Based Design

Organizations that adopt Model-Based Design realize savings ranging from 20 − 60%, when compared
to traditional methods [12, 13]. The bulk of these savings come from better requirements analysis
combined with early and continuous testing and verification. As requirements and designs are simulated
using models, defects are uncovered much earlier in the development process, when they are orders of
magnitude less costly to fix (Figure 3).

13

Figure 4: Model-Based Design shifts defect discovery to early development phases

2.1.3 Benefits of the project methodology

A model-based development process is specifically attractive in embedded domains like Automotive
Software due to the fact that development in these domains is driven by two strong forces: on one
side the evolutionary development of automotive systems, dealing with the iterated integration of new
functions into a substantial amount of existing/legacy functionality from pervious system versions;
and on the other side platform-independent development, substantially reducing the amount of reengi-
neering or maintenance caused by fast changing hardware generations. As a result, a model-based
approach is pursued to enable a shift of focus of the development process on the early phases, support-
ing a function-based rather than a code-based engineering of automotive systems. Thus, the pragmatic
question arises whether a model-based approach - focusing on model of functionality as the most stable
asset - is an economic approach in a domain driven by functional evolution as well as by hardware
revolutions. On the one hand model-based development promises considerable productivity increases,
improvements in quality and cost savings. On the other hand, it brings challenges since the use of
model-based design results in a major process redesign. The introduction of model-based development
influences established development processes, required resources and thereby also the organizational
structure. In addition, high investment costs for tools and for training of the employees are neces-
sary. There is a controversy in the automotive industry about the benefit of model-based software
development. Some companies seem to benefit of a model-based design and some don’t. Although
model-based development is used by several car producers and suppliers. To give some ideas, let’s take
into account Telecom applications, so something that requires the product to be updated. The main
idea is to maximize the profit derived by a certain product, so money that companies can earn.

14

Figure 5: Projects behind schedule

The Figure 5 shows that, comparing developments using traditional approach with the ones with
model-based design, there are significant improvements (MDD is the acronym of Model-driven design,
i.e. model-based). The most important result is that the amount of projects that are late is significantly
reduced (about 85%) and there is a reduction of the delay for those projects which come late: so instead
of 2.3 months we have now 1.8 months of average. These results mean that with this kind of approach
it is possible to meet more effectively time constraints, so the time-to-market is easier to meet. Next
to this, even if products come late, the delay is reduced. This last point means that companies are
going to save money they would have otherwise lost. Another important aspect is listed below:

Figure 6: Total Development Costs and ROI Advantage by Market

This table presents the summary data for comparative ROI (Return On Investment) analysis for six
specific vertical application market segments [14]. MBD has been more frequently used by automotive
and transportation engineers for more than a decade while medical applications of MBD are important
to traceability requirements of the Center for Devices and Radiological Health (CDRH). We can see
from Figure 7 that Industrial Automation represents a negative percentage with the usage of this
approach. This is due to the fact that that market segment is quite diverse from the others. This
table indicates that industrial automation still relies heavily on physical prototyping, and the use of
modelling is still relatively new. So, this data might reflect the need to develop stronger modelling
skills in that workforce. Moreover, Telecom and Transportation are the field in which MBD marks
the main advantages. As mentioned in Figure 7, in particular in the Automotive field, MBD allow
companies to save their money, with a reduction of 38, 8% explained in terms of single costs. It seems
that even if there are some more months behind the projects, the total cost significantly decreases.

15

Figure 7: ROI Calculation in Automotive

2.1.4 The V-shaped model

The software development process which may be considered an extension of the waterfall model is the
V-shaped development model as follows:

16

Figure 8: V-shaped development model (1)

The V-Model demonstrates the relationships between each phase of the development life cycle and
its associated phase of testing. The horizontal and vertical axes represent time or project completeness
(left-to-right) and level of abstraction, respectively. It is possible to highlight two main phases of this
development process: the verification phase and the validation phase as the following figure illustrates:

17

Figure 9: V-shaped development model (2)

The first phase can be explained taking into account these four processes [4]:

• Requirement analysis, in which the requirements of the system are collected by analysing the
needs of the user(s). This phase is concerned with establishing what the ideal system has to
perform. However it does not determine how the software will be designed or built. Usually,
the users are interviewed and a document called the user requirements document is generated.
The user requirements document will typically describe the system’s functional, interface, per-
formance, data and security requirements as expected by the user. The users carefully review
this document as this document would serve as the guideline for the system designers in the
system design phase. The user acceptance tests are designed in this phase. There are different
methods for gathering requirements of both soft and hard methodologies including: interviews,
questionnaires, document analysis, observation, throw-away prototypes, use cases and static and
dynamic views with users;

• System design, where system engineers analyse and understand the business of the proposed
system by studying the user requirements document. They figure out possibilities and techniques
by which the user requirements can be implemented. If any of the requirements are not feasible,

18

the user is informed of the issue. A resolution is found and the user requirement document
is edited accordingly. The software specification document which serves as a blueprint for the
development phase is generated. This document contains the general system organization, menu
structures, data structures etc. It may also hold example business scenarios, sample windows,
reports for the better understanding. Other technical documentation like entity diagrams, data
dictionary will also be produced in this phase. The documents for system testing are prepared
in this phase;

• Architecture design, that is the phase of the design of computer architecture and software archi-
tecture. It can also be referred to as high-level design. The baseline in selecting the architecture
is that it should realize all which typically consists of the list of modules, brief functionality of
each module, their interface relationships, dependencies, database tables, architecture diagrams,
technology details etc. The integration testing design is carried out in the particular phase;

• Module design, which can also be referred to as low-level design. The designed system is broken
up into smaller units or modules and each of them is explained so that the programmer can start
coding directly. The low level design document or program specifications will contain a detailed
functional logic of the module, in pseudocode: database tables, with all elements, including their
type and size; all interface details with complete API references; all dependency issues and error
message listings; complete input and outputs for a module. The unit test design is developed in
this stage.

The second phase is developed in 7 steps:

• Unit testing that is a method by which individual units of source code are tested to determine
if they are fit for use. A unit is the smallest testable part of an application. In procedural
programming a unit may be an individual function or procedure. Unit tests are created by
programmers or occasionally by white box testers. The purpose is to verify the internal logic
code by testing every possible branch within the function, also known as test coverage. Static
analysis tools are used to facilitate in this process, where variations of input data are passed to
the function to test every possible case;

• Integration testing in which the separate modules will be tested together to expose faults in the
interfaces and in the interaction between integrated components. Testing is usually a black box
as the code is not directly checked for errors;

• System testing that will compare the system specications against the actual system. After the
integration test is completed, the next test level is the system test. System testing checks if the
integrated product meets the specied requirements. This latter aspect is this still necessary after
the component and integration tests because:

– in the lower test levels, the testing was done against technical specications, i.e., from the
technical perspective of the software producer. The system test, though, looks at the system
from the perspective of the customer and the future user. The testers validate whether the
requirements are completely and appropriately met;

– many functions and system characteristics result from the interaction of all system compo-
nents.As a consequence, they are only visible on the level of the entire system and can only
be observed and tested there.

19

• User acceptance testing that is the phase of testing used to determine whether a system satises the
requirements specied in the requirements analysis phase. The acceptance test design is derived
from the requirements document. The acceptance test phase is the phase used by the customer
to determine whether to accept the system or not. Acceptance testing helps:

– to determine whether a system satises its acceptance criteria or not;
– to enable the customer to determine whether to accept the system or not;
– to test the software in the "real world" by the intended audience.

The purpose of acceptance testing is to verify the system or changes according to the original needs.

3 In-vehicle Networks and Protocols
Nowadays vehicle systems can be seen as sophisticated distributed systems where mainly Electronic
Control Units (ECUs), sensors, and actuators are networked to function properly in an efficient manner.
A typical automotive application is known to use one or more ECUs to function properly, and most
advanced cars are equipped with around 70 ECUs that send and receive more than 2500 signals.
Automotive communications are adapted to bus systems to exchange data between ECUs, sensors
and actuators. In order to function exactly as required by vehicle tasks, ECUs need to communicate
and exchange reliable signals between them. The safety requirement of the function impacts directly
the constraint of the signals exchanged between ECUs. Low and medium safety needs are already
addressed in currently employed communication protocols with mechanisms like error detection. The
role of fault tolerant communication is to address the higher communication safety needs. The fault
tolerant communication increases the dependability of signal transmission between ECUs, sensors and
actuators. It is imperative that all the receivers of a signal are guaranteed to get the same value [15].
There are several bus networks that have been developed or improved in automotive communications
to meet the different requirements for automotive applications. There are several different system
communication for automotive applications: Controller Area Network (CAN), Local Interconnection
Network (LIN), FlexRay and Media Oriented System Transport (MOST).

20

Figure 10: Vehicular Netwoking

In a car, there are several operating fields with different requirements regarding the corresponding
bus system. Each of the automotive bus systems is used to serve a certain communication requirement
between the automotive electronic components [10]. In the following figure a comparison of these
different networks is presented:

21

Figure 11: Automotive bus systems comparison

4 AUTOSAR
Driven by the advent of innovative vehicle applications, contemporary automotive architecture has
reached a level of complexity which requires a technological innovation. For this reason was founded
AUTOSAR (Automotive system open architecture) partnership that is an alliance in which the ma-
jority of OEM, suppliers, tool providers and semiconductor companies work together to develop and
establish a standard for automotive electric/electronic (E/E) architectures to find a ways to manage
the increasing complexity of in-vehicle electronics. The aim is to solve some principal goals:

• decoupling of software from underlying hardware

• development of software without dependency of the system structure sharing of software between
manufactures

• relocating of software to a different Electronic Control Unit (ECU) in a vehicle

• better tool support for the development process and even compatible tooling between the man-
ufactures

• replaceability of hardware components without much effort to customize the software [16]

22

4.1 Autosar architecture structure
Basically AUTOSAR is a global approach to the software development of a whole vehicle. The ar-
chitecture is shown in the following figure and it covers the relations between all software running on
one ECU. At the bottom of this diagram the ECU with the complete hardware is located. The other
big layer is the Runtime Environment (RTE), which is arranged at a higher level. Everything between
the RTE and the hardware is called Basic Software (BSW) and this is the infrastructural basis to run
other applications. The AUTOSAR software is arranged above the RTE layer and contributes the
functional part of the software [16].

Figure 12: Autosar architecture diagram

4.1.1 AUTOSAR Software

The AUTOSAR Software is realized by several Software Components (SWCs), which provide the
functional behavior of the system. The communication between SWCs and other components or with
parts of the BSW is done through the RTE.

AUTOSAR distinguishes two kinds of SWCs:

• AUTOSAR Software Component: The AUTOSAR Software Component is independent from the
underlying hardware. That is done with the abstraction through the RTE and BSW

• Sensor/Actuator Components: are special AUTOSAR Software Components which encapsulate
the dependencies of the application on specific sensors or actuators

23

4.1.2 Autosar Runtime Enviroment (RTE)

The application components are linked and communicate through an virtual bus, Virtual Function Bus
(VFB). Through VFB a software component doesn’t need to know wich components it is communica-
tiong with and on wich ECU these components are implemented. The VFB is implemented through
Autosar Runtime Environment (RTE) [17].

Figure 13: Virtual Function Bus

4.1.3 Basic Software

The BSW only provides infrastructural functionality to run the SWCs.
In the following is an overview of the several parts of the BSW given:

• Services: this provides some basic services like e.g. memory and fash management and diagnostic
protocols

• Communication: this are Communication stacks for inter-ECU communication like e.g. Con-
troller Area Network (CAN), Local Interconnect Network (LIN), FlexRay, etc.

• Operating System: the operating system provides priority based scheduling of tasks and protec-
tion mechanisms

• Microcontroller Abstraction Layer (MCAL): this is the lowest layer of the the Basic Software,
and consists of standardized functions that frees the hardware from the software. This layers
is composed of internal drivers having direct access to the microchip’s internal peripherals and
memory-mapped external devices

24

• ECU abstraction layer : since the MCAL just abstracts the microcontroller the ECU abstraction
does the same for the whole ECU. This layer provides interfaces to the drivers in the Microcon-
troller Abstraction Layer, and drivers for external devices

• Complex Device Drivers: due to performance reasons the complex device drivers directly access
the hardware

4.2 AUTOSAR Operating System
In terms of a normal personal computer, the whole BSW would be called the operating system.
However, for automotive architectures a strict distinction is done. The operating system is just a
lightweight system, which provides scheduling of tasks, event mechanisms and resource mechanisms.
The resource mechanisms are used for the handling of mutual exclusive execution in critical sections
and they have nothing to do with physical resources.

AUTOSAR defines a standard for an operating system [18], which is based on the OSEK–OS
standard. One main attribute of this operating system is, that it is statically configured and typically
the operating system is compiled and linked with all other software. The configuration is done with
the OSEK Implementation Language (OIL). For release 3.0 this configuration has changed to an XML
format and so XML based descriptions are used for the whole AUTOSAR standard. Some basic
features of the operating system are described in the following list:

• statical configuration

• real–time performance

• runs on low–end microcontroller without external resources

• priority based scheduling of tasks

• protection mechanisms for memory access and timing

The AUTOSAR specification for the operating system just mainly describes differences to OSEK–OS.
So the following explanations are based on the OSEK–OS specification.

4.3 Internal Behavior of AUTOSAR Software Components
The executable part of an AUTOSAR Software Component is provided by the implementation of
Runnables. Runnables are for example functions in a programming language like C, or compiled
MATLAB/Simulink models. Since the unit of execution in AUTOSAR is an Operating System task
(OS task), all Runnables must be mapped to such an OS task to be executed. This mapping is done
during the configuration of an ECU. An OS task may contain only one Runnable or a sequence of
Runnables. The execution of a Runnable inside a task can furthermore depend on a special event or
some timing constrains.

25

Figure 14: Exemplary mapping of Runnables to Operating System tasks

There is no need to map all Runnables of one component to the same OS task. It may on the
contrary be useful to distribute the Runnables of one component to different OS tasks, since the
Runnables have to be executed concurrently. An exemplary mapping of Runnables to OS tasks is
shown in Figure 14 [18].

4.4 Summary
With the AUTOSAR software architecture the software part of an AUTOSAR application can be
developed as independent as possible from the hardware parts. The software architecture enables this
with two main abstraction layers, namely the Runtime Environment layer and the Basic Software layer.

The Basic Software layer additionally provides services that can be used by each AUTOSAR ap-
plication. Through that, frequently used functionality is also encapsulated and provided by the AU-
TOSAR software architecture.

On the Application layer the AUTOSAR Software Components are using Ports that encapsulate
interfaces to guarantee type safety during the communication between these components. The com-
munication itself is handled by the Virtual Function Bus (VFB).

The VFB as specification is represented during runtime by the Runtime Environment, which is
generated uniquely for each ECU in the AUTOSAR system. This concept also supports the creation of
nearly hardware independent software in the automotive industry and therefor reduces the complexity
of the resulting systems.

5 Supporting tools for Model-Based Design
In this section there is an introduction of MATLAB® and Simulink® as well as a description of the
main features of Stateflow®.

5.1 MATLAB®

MATLAB is a high-level language and interactive environment for development algorithms, for the
numerical calculation, for the display and analysis of data. The technical problems, using MATLAB,
can be solved more quickly than with traditional programming languages, such as C, C ++ and

26

Fortran. Indeed it is not necessary to manage the task of low level, such as declare variables, specify
the type of data and allocate memory. MATLAB is a platform very efficient for the acquisition of data
from other files, from other applications, from databases and from external devices. Very important
for this thesis it has been the ability to import data from Canoe to obtain a graphical representation of
important signals for the unit testing of the model. With MATLAB we can make the whole process of
data analysis, acquisition, visualization and numerical analysis, to produce a graphical representation
of the output. In MATLAB they are available all functionality necessary to display the data produced
by the experiments with 2-D graphics and 3-D (Fig. 2.23). The latter can be saved in many formats,
including GIF, JPEG, BMP, EPS. There are available separately toolbox that extend the MATLAB
environment, allowing the resolution of particular classes of problems.

Figure 15: Matlab’s screenshoot

5.2 Simulink®

Simulink is an environment for multi-domain simulation and Model-Based Design used for dynamic
and embedded systems. It ’an interactive graphical environment and provides a customizable set
of block libraries that allow you to design, simulate, implement and test a variety of time-varying
systems, of control them, to process signals, video and images (Fig. 2.24). there are many add-ons that
extend Simulink software to other domains and providing tools for the project, for the implementation,
verification and validation of specifications. Simulink is integrated with MATLAB, which ensures access
immediately to a large number of tools. These allow: the development of algorithms, analysis and
visualization of the simulations, the creation of groups script processing, customizing the model and
definition signals, parameters and test information.

27

Main features:

• Libraries of expandable building blocks

• Editor with interactive graphics to assemble and manage the diagrams blocks

• Ability to manage complex projects subdividing models hierarchically

• Model Explorer to create and configure signals and parameters

• Application programming interfaces (APIs) that allows the user to connect with other simulation
programs and use codes embedded

• The blocks of Embedded MATLAB Function to transfer algorithms MATLAB Simulink and
embedded system implementations

• Arrangements for the simulation (Normal, Accelerator, Rapid Accellerator)

• Debugger chart and a profiler to examine the results of the simulation and diagnose unexpected
behavior of the project

• Full access to MATLAB to analyze and visualize the results, for customize the environment of
the model and to define the signal, the parameters and test information

• Analysis of the model and tools for the diagnosis, for the verification of the consistency of the
model and for the identification of errors

Figure 16: Application examples of projects using Simulink

5.3 Stateflow
In this chapter is descripted the main functionally of Stateflow that are used to create a model design.

28

5.3.1 What Is a Finite State Machine?

Stateflow charts can contain sequential decision logic based on state machines. A finite state machine
is a representation of an event-driven (reactive) system. In an event-driven system, the system makes
a transition from one state (mode) to another, if the condition defining the change is true.

5.3.2 Finite State Machine Representations

An approch to represent relationships among the inputs, outputs and states of a finite state machine
is to designing event-driven systems is to model the behavior of the system by describing it in terms
of transitions among states. The occurrence of events under certain conditions determine the state
that is active. State-transition charts and bubble charts are graphical representations based on this
approach.

Stateflow Chart Representations A Stateflow chart can contain sequential and combinatorial
logic in the form of state transition diagrams, flow charts, state transition tables, and truth tables. A
state transition diagram is a graphical representation of a finite state machine. States and transitions
form the basic building blocks of a sequential logic system. Another way to represent sequential logic
is a state transition table, which allows you to enter the state logic in tabular form. You can also
represent combinatorial logic in a chart with flow charts and truth tables. The Stateflow charts is
represented as a simulink block library [6].

Stateflow Chart Objects Stateflow charts consist of graphical and nongraphical objects:

29

Figure 17: Graphical and non-graphical stateflow chart

How insert Graphical Objects ? The following table lists each type of graphical object you can
draw in a chart and the toolbar icon to user for drawing the object [7].

30

Figure 18: Graphical object

Non-graphical Objects To define data and event objects that do not appear graphically in the
Stateflow Editor, howeverit is possible to see them in the Model Explorer.

31

Figure 19: Stateflow’s Model Explorer

Data Objects A Stateflow chart stores and retrieves data that it uses to control its execution.
Stateflow data resides in its own workspace, but you can also access data that resides externally in
the Simulink model or application that embeds the Stateflow machine. You must define any internal
or external data that you use in a Stateflow chart.

Event Objects An event is a Stateflow object that can trigger a whole Stateflow chart or individual
actions in a chart [7].

What Is a State? A state describes an operating mode of a reactive system. In a Stateflow chart,
states are used for sequential design to create state transition diagrams. States can be active or
inactive. The activity or inactivity of a state can change depending on events and conditions. The
occurrence of an event drives the execution of the state transition diagram by making states become
active or inactive. At any point during execution, active and inactive states exist.

State Decomposition Every state (or chart) has a decomposition that dictates what type of sub-
states the state (or chart) can contain. All substates of a superstate must be of the same type as the
superstate decomposition. State decomposition can be exclusive (OR) or parallel (AND).

Exclusive (OR) State Decomposition Substates with solid borders indicate exclusive (OR)
state decomposition. Use this decomposition to describe operating modes that are mutually exclusive.
When a state has exclusive (OR) decomposition, only one substate can be active at a time.

Parallel (AND) State Decomposition Substates with dashed borders indicate parallel (AND)
decomposition. Use this decomposition to describe concurrent operating modes. When a state has
parallel (AND) decomposition, all substates are active at the same time [7].

32

Ordering for Parallel States Although multiple parallel (AND) states in the same chart execute
concurrently, the Stateflow chart must determine when to activate each one during simulation. This
ordering determines when each parallel state performs the actions that take it through all stages of
execution. Unlike exclusive (OR) states, parallel states do not typically use transitions. Instead, order
of execution depends on:

• explicit ordering: specify explicitly the execution order of parallel states on a state-by-state
basis

• implicit ordering: override explicit ordering by letting a Stateflow chart use internal rules to
order parallel states

Parallel states are assigned priority numbers based on order of execution. The lower the number, the
higher the priority.

The priority number of each state appears in the upper right corner. Because execution order is
a chart property, all parallel states in the chart inherit the property setting. You cannot mix explicit
and implicit ordering in the same Stateflow chart [8].

State Labels The label for a state appears on the top left corner of the state rectangle with the
following general format:

name_state
entry:entry actions
during:during actions
exit:exit actions.

State Actions

After the name, you enter optional action statements for the state with a keyword label
that identifies the type of action.

Entry Action
Preceded by the prefix entry or en for short. The actions are executed when

the state becomes active.

During Action
Preceded by the prefix during or du for short. The actions are executed when

state On is already active and any event occurs.

Exit Action
Preceded by the prefix exit or ex for short. The actions are executed when

the state becomes inactive [7].

What Is a Transition? A transition is a line with an arrowhead that links one graphical object to
another. In most cases, a transition represents the passage of the system from one mode (state) object
to another. A transition typically connects a source and a destination object. The source object is
where the transition begins and the destination object is where the transition ends.

33

Transition Label Notation A transition is characterized by its label. The label can consist of
an event, a condition, a condition action, and/or a transition action.Transition labels have the following
general format:

event[condition]{condition_action}/transition_action

Transition Label Example Use the following example to understand the parts of a transition
label.

Figure 20: Transition Label Example

Event Trigger Specifies an event that causes the transition to be taken, provided the condition,
if specified, is true. Specifying an event is optional. The absence of an event indicates that the
transition is taken upon the occurrence of any event. Specify multiple events using the OR logical
operator (|). In the example, the broadcast of event E triggers the transition from On to Off as long
as the condition [off_count==0] is true.

Condition Specifies a Boolean expression that, when true, validates a transition to be taken for
the specified event trigger. Enclose the condition in square brackets ([]). In the preceding example,
the condition [off_count==0] must evaluate as true for the condition action to be executed and for
the transition from the source to the destination to be valid.

Condition Action Follows the condition for a transition and is enclosed in curly braces ({}). It
is executed as soon as the condition is evaluated as true and before the transition destination has been
determined to be valid. If no condition is specified, an implied condition evaluates to true and the
condition action is executed. In the example, if the condition [off_count==0] is true, the condition
action off_count++ is immediately executed.

Transition Action Executes after the transition destination has been determined to be valid
provided the condition, if specified, is true. If the transition consists of multiple segments, the transition
action is only executed when the entire transition path to the final destination is determined to be

34

valid. Precede the transition action with a /. In the example, if the condition [off_count==0] is true,
and the destination state Off is valid, the transition action Light_off is executed [7].

What Is a Default Transition? A default transition specifies which exclusive (OR) state to enter
when there is ambiguity among two or more neighboring exclusive (OR) states. A default transition
has a destination but no source object. For example, a default transition specifies which substate of
a superstate with exclusive (OR) decomposition the system enters by default, in the absence of any
other information, such as a history junction. A default transition can also specify that a junction
should be entered by default.

Default Transition with a Label Example This example shows a default transition with a label.

Figure 21: Default transition with a label - example

When the chart wakes up, the data p and v initialize to 10 and 15, respectively.

What is a Connective Junction? The connective junction enables representation of different
possible transition paths for a single transition. Connective junctions are used to help represent the
following:

Variations of an if-then-else decision construct, by specifying conditions on some or all of the
outgoing transitions from the connective junction

• A self-loop transition back to the source state if none of the outgoing transitions is valid

• Transitions from a common source to multiple destinations

• Transitions from multiple sources to a common destination

• Transitions from a source to a destination based on common events

35

Figure 22: Connective Junction - example

Default Transition to a Junction The default transition to the connective junction defines that
upon entering the chart, the destination depends on the condition of each transition segment [7].

Figure 23: Default Transition to a Junction - example

Debugging techniques The Stateflow environment allows debugging the charts with an animation
of state machine. Debug tool and the Stateflow Debugging window appears as shown in the following
figure where the Delay (sec) has been set to 1 sec so that the animation will proceed at the slowest
speed.

36

Figure 24: The Stateflow Debugging window to start simulation with breakpoints

To observe the behavior of our Stateflow chart in slow motion, we will set breakpoints in the
debugger to pause simulation during run-time activities [9]. Breakpoints that can set are listed below:

5.4 CANoe
The Multibus Development and Test Tool for ECUs and Networks

5.4.1 What is CANoe?

CANoe[10] (by Vector Informatik GmbH) is a versatile tool for the development, testing and analysis
of entire ECU networks as well as individual ECUs. It supports network designers, development and
test engineers at OEMs and suppliers over the entire development process – from planning to the start-
up of entire distributed systems or individual ECUs. At the beginning of the development process,

37

CANoe is used to create simulation models which simulate the behavior of the ECUs. Over the further
course of ECU development, these models serve as the basis for analysis, testing and the integration
of bus systems and ECUs. This makes it possible to detect problems early and correct them. Graphic
and text based evaluation windows are provided for evaluating the results. CANoe contains the Test
Feature Set for easy and automated test execution. It is used to model and execute sequential test
sequences and automatically generate a test report. The Diagnostic Feature Set is also available within
CANoe for diagnostic communications with the ECU.

Figure 25: CANoe user interface

Overview of Advantages

• Only one tool for all development and test tasks

• Easy automated testing

• Simulate and test ECU diagnostics

• Detect and correct error situations early in the development process

• User-friendly graphic and text-based evaluation of results

38

5.4.2 MATLAB/Simulink

Development engineers use the CANoe MATLAB/Simulink integration for functional and application
prototyping, integrating complex MATLAB models in CANoe tests and simulations and for developing
control algorithms in real-time applications. CANoe and the Simulink models communicate directly
via signals and system or environment variables.

The CANoe MATLAB/Simulink integration supports three different execution modes:

• in the HIL or online mode, code is generated from the Simulink model that is added as a DLL at
a simulated node in CANoe. The model is calculated in real time with CANoe. Automatically
generated system variables can be used to make post-run changes to model parameters without
recompiling

• in offline mode, the two programs are coupled. Simulink provides the time base, and CANoe is
in Slave mode. The entire system operates in simulated mode. It is not possible to access real
hardware here

• the sychronized mode is similar to offline mode in its operation. However, in synchronized mode
CANoe provides the time base that is derived from the connected hardware. This enables access
to real hardware in this mode. One limitation is that the Simulink model must be computed
faster than in real time, because in this mode the Simulink simulation is slowed down to adapt
the overall simulation to the CANoe simulation time

6 Case study
With reference to the V-cycle software development my work is based on the following aspects:

39

Figure 26: V-cycle software development (3)

6.1 Requirements analysis of ECU and System Design
Requirements analysis, also called requirements engineering, is the process of determining user ex-
pectations for a new or modified product. These features, called requirements, must be quantifiable,
relevant and detailed. In software engineering, such requirements are often called functional specifica-
tions. Systems design is the process of defining the architecture, components, modules, interfaces, and
data for a system to satisfy specified requirements. In the particular case that I examined the System
Design is determined by the customer that divides the high-level system specification into subsystems
for which he desires a separate application component. The reason for this choice lies in the desire
to make models, then the individual features of the vehicle, modular and easily integrable in different
projects.

6.1.1 BCM and BSM ECUs (Electronic Control Unit)

In automotive electronics, BCM is intended as the Body Control Module, generic term for an electronic
control unit used to monitor and to control all the electronic accessories built in the vehicle. Typically
is used to control service accessories like power windows, power mirrors, air conditioning and to control
and to monitor security accessories like central locking, alarm, immobilizer system.So the BCM is the
core component for the realization of a broad range of functions. In addition the BCM plays a deciding

40

role in cost efficiency as it allows for the amount of wiring within the vehicle to be significantly reduced
by providing interfaces for bus systems. Instead, BSM is intended as the Braking System Module, an
electronic control unit used to implement safety functionally, for example Electronic Stability Control
(ESP) is a computerized technology that improves a vehicle’s stability by detecting and reducing loss
of traction (skidding), coordinating the action of the brakes and motormanagement, Anti-lock Braking
System (ABS) is an automobile safety system that allows the wheels on a motor vehicle to maintain
tractive contact with the road surface according to driver inputs while braking, preventing the wheels
from locking up (ceasing rotation) and avoiding uncontrolled skidding and other functions which will
not be mentioned because they are not purpose of this thesis.

6.1.2 Vehicle Functions (VFs)

In the following sections a Vehicle Function (VF) will be presented and described.
As mentioned in Chapter 1,

...in traditional design processes, design information is communicated and managed as text
based documentation. Frequently this documentation is difficult to comprehend. Code is
created manually from specication and requirements documents that are time consuming
and error prone...

Well, this is the most dicult stage of the design process because information are rarely clear and in
most cases ambiguous.

Due to Non-Disclosure Agreement (NDA), variable names and some other re-
stricted information will be hidden or renamed.

6.1.2.1 Vehicle Speed & Odometer This Vehicle Function (VF) describes how BCM manages
travel distance calculation and the transmission of this information to the other nodes. It also manages
the hardwired generation of the vehicle speed information.

The following figure shows the functional diagram of the VF:

41

Figure 27: Functional Diagram

It is possible to distinguish each single unit of the diagram and its relative role. The BCM acquires
not driven wheels pulse counter and the related fail status from C-CAN bus. Calculates and transmits
on B-CAN and C-CAN bus the odometer signal. Gateway (C-CAN → B-CAN) of the not driven
wheels counter and the related fail status and also of the vehicle speed and of the related fail staus.
Generate and transmits hardwire the vehicle speed information (VSO).

Working conditions
The VF is enabled at Ignition ON.

Functional requirements
Vehicle Speed and Odometer management

BCM provides via CAN the real wheels circumference value used in the specific car version through
theWheel Circumference signal. BCM acquires the signals VehSpd and VehSpdFailSts in BSM_STS_C
message sent from BSM and transmits it again on CAN bus.

In case of absence of the message BSM_STS_C for a time < T_absent:

• BCM shall transmit the last received values of VehSpd and VehSpdFailSts signals

In case of absent of the message BSM_STS_C for a time T_absent:

• VehSpd signal value shall be set to 0 km/h, while the signal VehSpdFailSts shall indicate the
value Fail_present

If afterwards the signals VehSpd and VehSpdFailSts will be again available (BSM_STS_C is received
from BSM), BCM shall start again its normal functionalities.

42

BCM receives via the CAN network the cumulative counters (LHRPulseCounter and RHRPulsec-
ounter) of the rear wheels speed sensors pulses received from BSM. Using these values and the Wheel
Circumference programmed in memory (EOL Proxi), BCM calculates the related travel distance
(odometer signal) of the car as average of the rear wheels counters, and transmits it on the CAN
bus. BCM for the rear wheel pulses counter, can calculate the delta between two consecutive pulse
counter value with the following formula:

• DPulseCounter = [((MaxValue_PulseCounter + Actual_PulseCounter_Value) Last_PulseCounter_Value
) Mod (MaxValue_PulseCounter)]

• LHR Partial Travel Distance [m] = (D LHRPulseCounter / N_ppr) * WheelCircumference [m]

• RHR Partial Travel Distance [m] = (D RHRPulseCounter / N_ppr) * WheelCircumference
[m]

Where N_ppr is the number of pulses for wheel revolution as defined in the message map. BCM shall
calculate the Partial Travel Distance as listed in the following table:

Figure 28: Partial Travel Distance

The Total Travel Distance is updated adding the Partial Travel Distance as indicated in the fol-
lowing formula:

Travel Distance [m] = Travel Distance [m] + PartialTravelDistance [m]

In case of absence of the message BSM_STS_C for a time T_absent, BCM shall behave as follows:

• during the message absence, BCM shall transmit the last transmitted values of TravelDistance
signal

• if afterwards the message BSM_STS_C is still anavailable, BCM shall transmit the value pre-
viously stored, and never reset this value to zero

• if afterwards the message BSM_STS_C is again available, BCM shall start again its normal
functionalities

VSO hardware signal BCM generation

BCM shall send on the wired signal called VSO_generation the vehicle speed information received
via CAN signals as result of Vehicle Speed calculation. VSO output shall generate a square wave
pulse, duty-cycle 50%.

Vehicle speed is defined as:

43

V.vehicle [mm/s] = Frequency VSO [Hz] * 250 [mm/pulse]

VSO_generation signal shall have 0 pulse/s and a high digital level when the vehicle speed is equal
to 0 km/h, instead when the vehicle speed is not valid VSO_generation signal shall have a low digital
level.

Max Frequency allowed is 300 Hz.

6.1.2.2 Emergency Stop Signalling (ESS)

Due to Non-Disclosure Agreement (NDA), all the detailed information are
hidden.

What is ESS?

The idea of Emergency Stop Signaling (ESS) systems is to catch following drivers’ attention with
special urgency. When the ESS system senses emergency braking, it automatically activates the hazard
lights until the vehicle starts moving again - providing a warning to any surrounding traffic.

Sensing emergency braking

The idea to estimate an emergency braking is that the BCM shall estimate vehicle deceleration by
means of consecutive samples of the internal signal VehicleSpeed. The deceleration is calculated in the
following way:

• ∆Ti = (reception time of last VehicleSpeed) – (reception time of previous VehicleSpeed)

• ∆Vi = (last VehicleSpeed) - (previous VehicleSpeed)

• Di = ∆Vi/∆Ti

The Sensing emergency braking function uses the following calibration parameters:

• DEC_ON (m/s2)

• DEC_OFF (m/s2)

• SpeedLimit (km/h)

The value Dec_On will be used as threshold to detect hard braking, instead the value Dec_Off will
be used as threshold to detect when the absent hard braking. The value SpeedLimit will be used to
activate the function only if the vehicle speed is over SpeedLimit value.

6.2 Architecture design
With reference to AUTOSAR architecture the functional model implemented is identifiable in a SW
Component:

44

Figure 29: AUTOSAR - Application SW Component

Each Application SW Component (SWC) encloses a part of functional algorithm. The AUTOSAR
SWC communicates with other features/components and with the services of the Basic Software (BSW)
Layer through the layer RTE → need for interfaces standardization.

The architecture design description is independent of the actual implementation of the software
component. Among the necessary data to be specified are the interfaces (input/outputs).

45

6.2.1 Vehicle Speed & Odometer

Figure 30: Vehicle Speed & Odometer Architecture Design

The following diagram explains the signals information:

46

Figure 31: Vehicle Speed & Odometer - signals list

6.2.2 Emergency Stop Signalling (ESS)

Figure 32: Emergency Stop Signalling Architecture Design

The following diagram explains the signals information:

47

Figure 33: Emergency Stop Signalling - signals list

6.3 Module (SW-Component) design
Using Simulink® and Stateflow® within Model-Based Design we can integrate state machines and
control logic designed in Stateflow with Simulink blocks, subsystems, and components. Stateflow
is used to enable or disable Simulink subsystems that represent specific tasks, such as startup and
shutdown, or individual controller types. Another common procedure involving both Simulink and
Stateflow is controlling the behavior of system components.

In this section the implementation details of the models will be described.

6.3.1 Vehicle Speed & Odometer

Firstly we need to detect the key status in order to set the correct program flow.
The relative Stateflow implementation is described below:

48

Figure 34: Vehicle Speed & Odometer - design datail (1)

When the event occours, the stateflow chart is activated and if the conditions activate the Igni-
tionOn state (OR type), the states:

• Partial travel distance calculation and VehicleSpeed management

• Frequency calculation

• Total travel distance calculation

• Frequency calculation

49

are activated at the same time because these states are AND type as is described in the section 5.

Figure 35: Vehicle Speed & Odometer - design datail (2)

50

In Partial_Travel_Distance_Calculation state the vehicle speed signal management is implemented
with a three OR state where State_one or Absent_signal is the initial state (see default transition to
the connective junction). When State_One is activated, the only way to exit from this state is the
arrival of an event while the available_message signal is equal to 1, so the absent_signal state becomes
active and the VehSpd_out signal assume the last value (see vehicle function requirements - section
6.1.2.1) instead the counter data is incremented everytime the stateflow chart is activated and, because
the event is periodic, the data counter is used as a timer, therefore if the counter has the counter_timer
value (a time equal to T_absent has elapsed) the Fail_state becomes active and VehSpdFailSts signal
takes value equal to 1.

51

Figure 36: Vehicle Speed & Odometer - design datail (3)

The logic that calculates total travel distance is implemented with four OR states in which the
condition that decides which of four states shall be actived depends on the status of the LHRFail,

52

RHRFail and available_message signals. The default transition to a junction connection (see above
figure) defines that upon entering the chart, the destination depends on the condition of each transition
segment.

Figure 37: Vehicle Speed & Odometer - design datail (4)

The BCM have to generate the VSO_generation wired signal (a square wave pulse with 50% duty-
cycle). The frequency of this signal is calculated by the model that gets vehicle speed information
from a network signal that came from BSM ECU:

53

V.vehicle[mm/s] = Frequency VSO [Hz]*250[mm/pulse]

The VSO_generation signal is physically generated by a PWM driver drived by a basic software module
(BSW module).

6.3.2 Emergency Stop Signalling (ESS)

In order to set the correct program flow it is required to detect the key status.
Its relative Stateflow implementation is described below:

Figure 38: Emergency Stop Signalling (ESS) - design datail (1)

When IgnitionOn key status is detected the model calculates the vehicle speed in m/s, the decel-
eration and detects emergency brake signalling.

In the following image a detail of the implementation:

54

Figure 39: Emergency Stop Signalling (ESS) - design datail (2)

55

This logic can be summarized with the following flow-chart:

Figure 40: Emergency Stop Signalling (ESS) - flow chart

56

6.4 Unit test design
In Section 3 of this paper it is explained that sensors, actuators and control units of a vehicle can
communicate via bus. Through the use of hardware and software tools (diagnosis tool) we can acquire
the network message and analyze and displayed them on a PC. Log files (.asc) contain the information
about the state and the messages that populate the network for all the time of recording.

Figure 41: Data logging setup

CANoe is the tool that I used to open these files (.asc) and, after appropriate operations for
the environment configuration, it’s possible to reproduce the signals of interest and extract them in
readable format for the matlab environment (.mat).

57

Figure 42: Loading .asc file in Canoe enviroment

Figure 43: Configuration setup to read log file

58

Figure 44: Playback signals

Figure 45: Graphics export in .mat format

59

Figure 46: Import log file in Matlab’s workspace

Figure 47: Matlab’s workspace with signals test

60

Figure 48: Viewing signals with Simulink Scope (1)

Figure 49: Viewing signals with Simulink Scope (2)

61

6.5 Unit testing
Unit testing that is a method by which individual units of source code are tested to determine if they
are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit
may be an individual function or procedure. Unit tests are created by programmers or occasionally
by white box testers. The purpose is to verify the internal logic code by testing every possible branch
within the function, also known as test coverage. Static analysis tools are used to facilitate in this
process, where variations of input data are passed to the function to test every possible case.

6.5.1 Vehicle Speed & Odometer

Figure 50: Vehicle Speed & Odometer - Simulink Model

62

Figure 51: Test vehicle speed signal - model output (1)

63

Figure 52: Test vehicle speed signal - model output (2)

64

Figure 53: Travel distance calculation - model output

65

Figure 54: Travel distance from Canoe log file - expected output

66

Figure 55: Signals from Canoe - log file

67

Figure 56: Travel distance and available massage - model output

68

Figure 57: VSO_generation signal - frequency calculation - model output

69

6.5.2 Emergency Stop Signalling (ESS)

Figure 58: Emergency Stop Signalling - Simulink Model

70

Figure 59: SCOPE 1 - data log 1

71

Figure 60: CANoe - data log 1

72

Figure 61: SCOPE 1 - data log 2

73

Figure 62: CANoe - data log 2

74

Figure 63: SCOPE 1 - data log 3

75

Figure 64: CANoe - data log 3

76

7 Conclusions
Automotive systems engineering requires a sustainable integration of new methods, development pro-
cesses, and tools that are specifically adapted to the automotive domain. Model-based design is one
potential methodology to carry out design, implement and manage such complex distributed systems,
and their integration into one cohesive and reliable system to meet the challenges for the automotive
industry in terms of requirements capture, modelling, auto coding, code checking and the verification
of the software functions.

Specifically, this thesis has explored: the use of block definition for structural modelling of the
system; and use state machine and transitions, for modelling the functional behaviour of the vehicle
function. The listed diagrams in the model provide a clearly structured visualization of the function.
Several types of diagrams represent the design requirements in both structural and behavioural view-
points of the system with relevant concerns. This model facilitates the formulation of the textual form
specification documents and avoids interpretation leeway.

The direction for future work could focus on generating the code starting from the model in
Simulink/Stateflow and transferring it into the dSPACE ControlDesk to enable real-time animation:
it is a feasible and effective approach to the development of an automotive vehicle function. With
the coding implementation of the Simulink/Stateflow model the C or C++ code can be generated
automatically for different targets by selecting corresponding system target files.

The application of ECUs on the vehicle is constantly increasing to address the challenges of in-
creasing complexity while developing and maintaining electronic applications within the automotive
industry. The reliability of the vehicle funciton is directly affected by the quality of the embedded
software in the ECUs which is developed from the software code. As a consequence, automatic code
generation and static analysis are highly important benefits that make the development of a vehicle
function efficient and effective. Therefore, further investigation of functional modelling has focused on
the comparison of quality and efficiency of the code.

77

References
[1] J. Zander, I. Schieferdecker, and P. J. Mosterman, Eds., Model-Based Testing for Embedded

Systems. CRC Press, 2011.

[2] A. Pretschner, M. Broy, I. Kruger, and T. Stauner, “Software engineering for automotive systems:
A roadmap,” in Future of Software Engineering, 2007. FOSE ’07, 2007, pp. 55-71.

[3] J. Krasner, “Model-based design and beyond: Solutions for today’s embedded systems require-
ments” in EMBEDDED MARKET FORECASTERS American Technology International, 2004.

[4] I. GUIDE, “What is V-model- advantages, disadvantages and when to use it?”, testing throughout
the testing life cycle ed., 2012.

[5] E. Liversidge, “The death of the v-model” Harmonic Software Systems Ltd, Tech. Rep., Dec.
2005.

[6] “Stateflow’s Mathworks guide” R2014b, cap. 1

[7] “Stateflow’s Mathworks guide” R2014b, cap. 2

[8] “Stateflow’s Mathworks guide” R2014b, cap. 3

[9] “Introduction to Stateflow® with Application”, Steven T. Karris

[10] “CANoe_ProductInformation_EN.pdf”, http://vector.com

[11] Measuring Return on Investment of Model-Based Design By Joy Lin, Aerospace Industry Mar-
keting Manager, MathWorks

[12] MathWorks, Swedish Space Corporation Develops Satellite Guidance,
Navigation, and Control Software for Autonomous Formation Flying,
www.mathworks.com/company/user_stories/userstory51480.html?by=industry

[13] MathWorks, BAE Systems Achieves 80% Reduction in Software-Defined Radio Development Time
with Model-Based Design

[14] J. Krasner, “Comparing embedded design outcomes with and without modelbased design", in
EMBEDDED MARKET FORECASTERS, Oct. 2011.

[15] R. Schwering, “Foundamentals of the lin protocol”, Vector Informatik GmbH, Tech. Rep., 2004.

[16] AUTOSAR. Technical Overview, v2.1.0, 2007

[17] AUTOSAR. Specification of the Virtual Functional Bus, v1.0.0, 2007

[18] AUTOSAR. Specification of Operating System, v2.1.0, 2007

78

	Introduction
	Model-based software design
	Why model-based software design
	Traditional development vs. Model-Based Design
	Advantages of Model-Based Design
	Benefits of the project methodology
	The V-shaped model

	In-vehicle Networks and Protocols
	AUTOSAR
	Autosar architecture structure
	AUTOSAR Software
	Autosar Runtime Enviroment (RTE)
	Basic Software

	AUTOSAR Operating System
	Internal Behavior of AUTOSAR Software Components
	Summary

	Supporting tools for Model-Based Design
	MATLAB®
	Simulink®
	Stateflow
	What Is a Finite State Machine?
	Finite State Machine Representations

	CANoe
	What is CANoe?
	MATLAB/Simulink

	Case study
	Requirements analysis of ECU and System Design
	BCM and BSM ECUs (Electronic Control Unit)
	Vehicle Functions (VFs)
	Vehicle Speed & Odometer
	Emergency Stop Signalling (ESS)

	Architecture design
	Vehicle Speed & Odometer
	Emergency Stop Signalling (ESS)

	Module (SW-Component) design
	Vehicle Speed & Odometer
	Emergency Stop Signalling (ESS)

	Unit test design
	Unit testing
	Vehicle Speed & Odometer
	Emergency Stop Signalling (ESS)

	Conclusions

