
UNIVERSITY OF PISA

Department of Computer Science

Ph.D. Thesis

FSCL

Homogeneous programming, scheduling and execution on

heterogeneous platforms

Candidate Supervisor

Gabriele Cocco Dott. Antonio Cisternino

December 2014

Acknowledgements

I wish to thank my parents, who have always believed in me, accepting and
understanding every single choice I made along the road of life.
I thank my supervisor Antonio Cisternino, for his suggestions, his efforts and
his valuable support throughout the years of my Ph.D. research.
Finally, I thank Davide Morelli and Andrea Canciani, who collaborated with
me to build and validate the scheduling strategy, a critical part of the whole
research.

Contents

I Foundation of the Ph.D. Thesis 13

1 Introduction 15

2 Programming, scheduling and execution on heterogeneous plat-
forms 19
2.1 OpenCL . 19

2.1.1 OpenCL execution and memory model 20
2.1.2 A summary on OpenCL programming 25

2.2 High-level programming languages and libraries 27
2.3 Scheduling frameworks for heterogeneous platforms 34

3 Conclusions 39
3.1 Thesis proposal . 41

II FSCL: a framework for high-level parallel program-
ming and execution 43

4 Overview of the research 45

5 F#: a flexible multi-paradigm language 49
5.1 Language constructs . 51

5.1.1 Variables and functions 51
5.1.2 Data-types . 56
5.1.3 Quotations . 58

5.2 Conclusions . 59

6 FSCL kernel language 61
6.1 Introduction and main approach 61
6.2 Kernel language programming and object model 63

6.2.1 FSCL computing elements 64
6.2.2 FSCL computing expressions 69

6.2.3 Abstraction and flexibility in FSCL composition 73

6.2.4 Notes on the execution model and on data constraints . . 75

6.2.5 Dynamic metadata . 77

6.3 Conclusions . 81

7 FSCL Compiler 83

7.1 FSCL Compiler structure . 83

7.2 Abstract compilation process and components 85

7.2.1 Steps and processors . 85

7.2.2 Type-handlers . 87

7.3 Coordination of steps, processors and type-handlers 88

7.4 Native compilation process and components 89

7.4.1 Expressions parsing, Kernel Flow Graph and Computing
Expression Module . 89

7.4.2 Kernel compilation, kernel equivalence and Kernel Module 92

7.4.3 Native compiler components 101

7.5 Compiler configuration and extensibility 103

7.6 Conclusions . 105

8 FSCL Runtime 107

8.1 FSCL Runtime structure . 107

8.2 Computing expression execution, caching and data management 111

8.2.1 Device and kernel resource caching 114

8.2.2 Data management . 115

8.3 Scheduling and execution control via metadata 123

8.4 Multithread execution . 124

8.5 Conclusions . 126

9 Runtime scheduling engine 127

9.1 General approach and strategy 128

9.2 Code analysis and feature extraction 130

9.2.1 Feature finalizer building 132

9.2.2 Cache miss estimation 141

9.3 Prediction model, profiling and regression 153

9.3.1 Completion-time prediction model 155

9.4 The FSCL runtime scheduling engine 158

9.5 Conclusions . 159

III Validation 161

10 Validation of the programming model 165

10.1 Black-Scholes . 165

10.2 K-Means . 168

10.3 Tiled matrix multiplication . 171

10.4 Average image complexity . 174

10.5 Conclusions . 176

11 Validation of the prediction model for device-selection 179

11.1 System setup, training samples and features 180

11.1.1 Training set . 180

11.1.2 Features . 181

11.2 Fitting residuals, completion time prediction and best-device
prediction accuracy . 183

11.2.1 Fitting residuals . 183

11.2.2 Completion time prediction 184

11.2.3 Impact of the feature set on the completion time predic-
tion accuracy . 188

11.2.4 Best-device prediction 190

11.2.5 Interpretation of the regression coefficients 190

11.2.6 Conclusions . 192

12 Validation of compilation, scheduling and execution efficiency195

12.1 Impact of optimisations on performances 196

12.2 FSCL versus Aparapi and OpenCL 200

12.3 Impact of feature evaluation and device selection on average
completion time . 200

12.3.1 Single versus hybrid execution for multi-kernel programs 205

12.4 Conclusions . 208

IV Conclusions 211

13 Research, challenges and results 213

14 Limitations, refinements and future works 217

14.1 Research refinements . 217

14.2 Concurrent researches . 222

Appendices 225

A Definitions of the elements of the kernel language 227

B Definitions of equivalence of kernels and metadata 229
B.1 Equivalence of metadata . 229
B.2 Equivalence of kernels . 230
B.3 Equivalence of Kernel Modules 231

C Source code of samples used in language validation 233
C.1 Black-Scholes . 233

C.1.1 FSCL . 233
C.1.2 Aparapi . 234
C.1.3 Dandelion . 235

C.2 K-Means . 236
C.2.1 FSCL . 236
C.2.2 Aparapi . 237
C.2.3 Dandelion . 239

C.3 Tiled matrix multiplication . 240
C.3.1 FSCL . 240
C.3.2 Aparapi . 241
C.3.3 Dandelion . 242

C.4 Average image complexity . 242
C.4.1 FSCL . 242
C.4.2 Aparapi . 243
C.4.3 Dandelion . 245

List of Figures

2.1 Abstract view of host and devices in OpenCL 20

2.2 OpenCL index space showing work-items and their relative global,
local, work-group IDs . 21

2.3 OpenCL conceptual organization of memory regions 24

6.1 Generic structure of an FSCL application 64

6.2 FSCL application employing pure functional composition 74

6.3 FSCL application employing pure imperative composition 74

7.1 Structure of the FSCL compiler 84

7.2 Example of partial and absolute ordering of steps 86

7.3 Example of the KFG of a computing expression 91

7.4 Computing Expression Module instantiation and filling 92

7.5 Kernel compilation and caching 93

7.6 Steps of the native compiler pipeline in the order or execution . 102

8.1 Steps of the native runtime pipeline in the order or execution . . 108

8.2 Structure of the FSCL runtime 108

8.3 Interactions between programmer, runtime and compiler 110

8.4 Kernel Flow Graph for the K-Means computing expression . . . 113

8.5 Timeline and interactions with OpenCL devices in executing
K-Means . 114

8.6 Device information stored by the runtime 115

8.7 Kernel information stored by the runtime 116

8.8 Structure of the managed buffers cache 120

8.9 Process of creation of a managed buffer 121

8.10 Structure of the unmanaged buffers cache 123

9.1 Finalizer construction and evaluation 131

9.2 Kernel to finalizer mapping for a feature that counts memory
reads . 132

9.3 Impact of memory access stride on the index part of a cache
address . 148

9.4 Data loaded into cache when scanning the first column of a matrix152
9.5 Cache lines reused when scanning the columns 1-15 of a matrix 153
9.6 Cache eviction when scanning the first column of a matrix . . . 154

11.1 Fitting residuals . 184
11.2 Measured and predicted completion time 186
11.3 Measured and predicted completion time 187
11.4 Impact of features on prediction error for Logistic map 189
11.5 Impact of features on prediction error for Matrix multiplication 189
11.6 Best device prediction relative accuracy 191

12.1 Impact of successive optimisations on Vector addition 198
12.2 Impact of successive optimisations on Matrix multiplication tiled 198
12.3 Impact of successive optimisations on Convolution 199
12.4 Impact of successive optimisations on Matrix transpose 199
12.5 Aparapi vs FSCL vs OpenCL for Vector addition 201
12.6 Aparapi vs FSCL vs OpenCL for Matrix multiplication tiled . . 201
12.7 Aparapi vs FSCL vs OpenCL for Convolution 202
12.8 Aparapi vs FSCL vs OpenCL for Matrix transpose 202
12.9 Speedup of best-device over random device selection 204
12.10Completion times for each kernel in the Newton’s method 207
12.11Completion times of single device execution and hybrid execu-

tion, logarithmic scale . 209
12.12Completion times of discrete-GPU-only versus hybrid execution 209

Abstract

The last few years has seen activity towards programming models, languages
and frameworks to address the increasingly wide range and broad availability
of heterogeneous computing resources through raised programming abstraction
and portability across different platforms.

The effort spent in simplifying parallel programming across heterogeneous
platforms is often outweighed by the need for low-level control over computa-
tion setup and execution and by performance opportunities that are missed due
to the overhead introduced by the additional abstraction. Moreover, despite
the ability to port parallel code across devices, each device is generally charac-
terised by a restricted set of computations that it can execute outperforming
the other devices in the system. The problem is therefore to schedule compu-
tations on increasingly popular multi-device heterogeneous platforms, helping
to choose the best device among the available ones each time a computation
has to execute.

Our Ph.D. research investigates the possibilities to address the problem
of programming and execution abstraction on heterogeneous platforms while
helping to dynamically and transparently exploit the computing power of such
platforms in a device-aware fashion.

12

The Thesis in structured in four parts. In the first part we present today’s
situation in heterogeneous systems, we identify the major issues induced by
spreading heterogeneity and we discuss the implications. We analyse the most
recent and relevant works in high-level programming, scheduling and execution
on heterogeneous platforms, which represent the starting point of our Ph.D.
research. The part is concluded with the formalization of the Thesis proposal.

In the second part we present the research conducted. We define the context
of our work and we discuss the approaches adopted to reach the goals that our
proposal entails. The presentation is organized following the timeline and the
structure of our research and the inter-dependencies between the goals.

In the third part we validate the results obtained against the state of the
art in heterogeneous programming and execution. We evaluate the benefits of
our work and we identify the principal limitations.

In the fourth part we summarise the work conducted and the relevant
outcomes. We briefly propose again the statement of the Thesis and we match
it against the results obtained. Finally, we present the implications of our
work, the possible refinements and the potential future research.

Part I

Foundation of the Ph.D. Thesis

Chapter 1

Introduction

In the last few years computing has become increasingly heterogeneous, offer-
ing a broad portfolio of different parallel devices, ranging from CPUs, through
GPUs to APUs1 and coprocessors. Most of the recent CPUs available on the
market contain two parallel processing resources, which are a multicore CPU
and a GPU. Given this on-die heterogeneity and the set of recent technologies
for multi-GPU (e.g. SLI) nowadays desktop and laptop computers possibly ex-
pose one or more multicore CPUs and multiple GPUs. Intel recently released
a coprocessor for cluster nodes and desktop systems, called ”Xeon Phi”, which
is characterized by hybrid architecture and execution model.

Researches on manifacturing and optimizing hardware for heterogeneous
platforms has been very active, as demonstrated by the effort spent by the
majority of the silicon industries in this new kind of processing resources [3,
45,55].

Not only has the variety of devices increased, but it has spread towards
systems traditionally characterised by single computing resources, such as net-
books and mobile phones, which nowadays are equipped with multicore CPUs
and GPUs. Heterogeneity on mobile devices is a hot trend in the mobile mar-
ket [47].

Given the spread of heterogeneous solutions across different systems, from
mobile phones to desktop PCs, and the constantly dropping price of hard-
ware components, heterogeneous configurations are increasingly popular and
affordable for a broad range of users. This means that computing power is not
only becoming highly heterogeneous but it is also becoming available to users
that are unaware of the underlying parallel computing power and of how to
exploit it. With the term “users”, we refer to either developers with no parallel

1APU is the term used by some processors brands to refer to a CPU and a GPU integrated
onto the same die

16 Chapter 1. Introduction

programming skills or software that is not designed to dynamically leverage
multiple heterogeneous devices.

The major problem that comes from the unawareness of platform hetero-
geneity is the underutilization of computing power. We consider underutiliza-
tion of heterogeneous computing power a consequence of two principal aspects:
the difficulty of programming across different, parallel devices and the com-
plexity in understanding, exploiting and adapting to a highly dynamic set of
resources.

To enhance portability, software tends to target the CPU, which is a com-
puting resource available in the majority of systems. Similarly, generic pro-
grammers tend to be more productive in developing software that run sequen-
tially on CPUs, because of the lack of parallel programming skills or because
of the effort required to guarantee the software be able to fallback and adapt
to different machine configurations. This is particularly true when the set of
target platforms is extremely varied in terms of configurations, ranging from
CPU-only systems up to machines equipped with multiple, different GPUs
and coprocessors. When effort in exploiting multiple devices is spent, software
tends to adopt a device-unaware usage policy, where the available resources
are treated as an homogeneous set of computing nodes. Provided with an ho-
mogeneous programming layer, such a policy is easier to apply than one which
takes into account the specific characteristics of each device in the set.

On mobile devices, the unawareness of the available resources and the lack
of a strategy to get the most out of each of them can increase the power/battery
consumption. In the last few years, research has demonstrated that CPUs and
GPUs are described by two very different power consumption profiles. Whereas
GPUs are described by an overall higher consumption, they tend to be more
energy-saving in terms of performance per-watt [2, 12,41].

In cloud computing, an inproper use of the available resources can lead to
massive overspending. While load-balancing across the resources represents a
good improvement [8,36], extending the traditional notion of cloud computing
to provide a cloud-based access model that is heterogeneity-aware can play a
key role to boost performance and energy efficience [17].

It is important to consider that the spread of heterogeneous platforms is
not only widening the set of programmers that work on such platforms, but
it also affects the type of computations possibly run on them. While research
and industrial parallel computing centers are likely to accelerate specific, com-
plex and long-lasting algorithms, programmers of today’s heterogeneous plat-
forms often develop and execute lightweight and more generic computations.
Therefore, approaches that leverage the high completion times of the running
computations to cover the scheduling overhead may turn out to be too ex-

Chapter 1. Introduction 17

pensive when applied to more generic and lightweight programs. Similarly,
approaches based on task-subdivision of computations may be unfit to handle
the generality of algorithms that run on today’s heterogeneous platforms.

To address the issues related to spreading heterogeneity and the dynam-
icity of platform configurations, research should focus on two different but
interrelated aspects.

The first aspect is the complexity of programming across different parallel
devices, especially considered the broad audience of programmers working on
heterogeneous systems. To widen the range of programmers able to exploit the
set of parallel resources populating heterogeneous platforms, an homogeneous
and abstract programming layer should be provided. Whereas abstraction and
expressiveness can make it easier for generic programmers to develop across
devices, flexibility must be also taken into account to guarantee the largest
range of algorithms to fit the programming model.

The second aspect is the difficulty to detect and characterize the set of de-
vices that populate heterogeneous platforms in order to use them in a device-
aware fashion. To get the most out of such platforms, the runtime support
of an homogeneous programming layer must be able to transparently and dy-
namically analyse both the code to execute and the resources available in the
running system. Coupling this information plays a key role in improving re-
source utilization and dynamic adaptation to different system configurations.

Given the wide variety of computations, possibly lightweight, that can be
scheduled on today’s heterogeneous systems, a pressing challenge of code anal-
ysis and scheduling is to be efficient, in order to guarantee that the overhead
doesn’t outweigh the time saved by running computations on the devices with
the highest performance.

Finally, to enhance portability across systems and programmers, an ab-
stract programming, scheduling and execution layer must be ready-to-go, which
means to be able to transparently discover all the information needed about
the running platform for self-configuration and deployment.

The two aformentioned challenges stress the need for research on raising
abstraction over parallel programming and execution on heterogeneous plat-
forms, hiding the complexity of the underlying system to the programmers
while providing dynamic device- and computation-aware scheduling and exe-
cution to leverage the whole set of available computing resources.

Research towards high-level programming and execution on heterogeneous
platforms should be particularly inspired by a technical report from the Uni-
versity of Berkeley [7], which states:

The struggle is delivering performance while raising the level of

18 Chapter 1. Introduction

abstraction. Going too low may achieve performance, but at the
cost of exacerbating the software productivity problem, which is
already a major hurdle for the information technology industry.
Going too high can reduce productivity as well, for the programmer
is then forced to waste time trying to overcome the abstraction to
achieve performance.

Depite the years passed since this report was published, balancing abstrac-
tion and performance in parallel programming and execution is still an open
problem. Actually, this challenge is renovated and underlined by the today’s
widespread heterogeneity of parallel computing power. Whereas performance
is still a pressing challenge, the need of higher programming and execution ab-
straction is stressed by the increasing variety of available hardware resources
and by the generality of the programs running on them.

Chapter 2

Programming, scheduling and
execution on heterogeneous
platforms

Recenty effort has been spent to address the increasing heterogeneity of the
computing platforms. In this chapter we present the state of the art of this
research from both the perspective of programming abstraction and the one of
scheduling and execution support.

The chapter is organized in four sections. In the first section we present
and discuss OpenCL, which is the today’s standard-de-facto for parallel pro-
gramming across different resources. In the second section we show and discuss
the most recent and relevant efforts to increase the abstraction over parallel
programming on heterogeneous systems. In the third section we present the
relevant works that try to address the problem of efficient scheduling and exe-
cution on multi-device platforms. Finally, in the fourth section we summarize
the state of the art, we discuss the major flaws and the open challenges, and
we formulate our Ph.D. Thesis proposal.

2.1 OpenCL

Originally developed as a private API by Apple and published in 2009, OpenCL
is an open specification for writing and executing programs for heterogenous
platforms.

In the last couple of years, thanks to the huge contribution from the pro-
gramming community and to the many companies that decided to support it
on their own devices, OpenCL has become one of most popular solutions for
heterogeneous programming.

20
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

2.1.1 OpenCL execution and memory model

From the OpenCL point of view a system is made of one or more devices
grouped into platforms. Each platform generally corresponds to a specific
manifacturer (e.g. AMD, Intel) with its own OpenCL-to-executable compiler
and runtime support (called client driver). Whereas multiple devices can
populate a system, the OpenCL specification stands that there is one only host,
running on the CPU, whose task is to coordinate the execution of computations
on the devices (figure 2.1).

The OpenCL specification describes a device abstracted from the particular
hardware configuration. An OpenCL device is made of one or more compute
units (CUs) which are further divided into one or more processing elements
(PEs). On a GPU, compute units map to independent cores that execute in
parallel multiple instructions on multiple data, while processing elements map
to the arithmetic and logic units in each core. On a CPU, both compute units
and processing elements generally correspond to CPU cores.

An OpenCL application runs on the host according to the native model of
the host platform. The OpenCL application submits commands to run compu-
tations on the processing elements of a device. The processing elements within
a compute unit execute a single stream of instructions as SIMD units (Single
Instruction Multiple Data) or as SPMD (Single Program Multiple Data) units.

Figure 2.1: Abstract view of host and devices in OpenCL

The distinction between host and devices is not only conceptual but af-
fects the typical code structure of OpenCL programs. A program is in fact
made of two distinct parts: the kernel code and the host code. The kernel
code implements the parallel computation (kernel) to run on the device, while
the host code handles resource allocation, computation setup, scheduling and

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 21

synchronisation with the execution of the kernel on the device.

OpenCL defines an index space for parallel kernel execution. An instance
of the kernel executes for each point in this index space. This kernel instance
is called work-item and is identified by its point in the index space, which
provides a global ID for the work-item. Each work-item executes the same
code but the specific execution path through the code and the data used can
vary per work-item.

Work-items are organized into work-groups. The work-groups represent a
coarse-grained decomposition of the index space. Work-groups are assigned a
unique work-group ID with the same dimensionality as the index space used
for the work-items. Work-items are assigned a unique local ID within a work-
group so that a single work-item can be uniquely identified by its global ID or
by a combination of its local ID and work-group ID. The set of work-items in
a given work-group execute concurrently on the processing elements of a single
compute unit (figure 2.2).

Figure 2.2: OpenCL index space showing work-items and their relative global,
local, work-group IDs

OpenCL context resources

The host defines a context for the execution of the kernels, which includes the
following resources:

22
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

Devices A collection of OpenCL devices to be used by the host for the exe-
cution of kernels;

Kernels The set of parallel computations to run

Program Objects The program source and executable that implement the
kernels;

Memory Objects A set of memory objects visible to the host and to the
devices.

Program objects contain compiled kernels and other information essential
for the execution on the device. To create a program object, the host uses
specific OpenCL functions, submitting the sources of the kernels forming the
program and obtaining an opaque pointer to the executable code. OpenCL
kernels are therefore compiled into executables at (host) runtime.

Memory objects contain data that can be accessed and possibly modified by
the instances of a kernel. These objects can be of two types: buffer objects, and
image objects. A buffer object stores a one-dimensional collection of elements
whereas an image object is used to store a two or three-dimensional texture,
frame-buffer or image.

Elements of a buffer object can be scalar data (e.g. int, float), vector
data (e.g. float4, int8), or user-defined structures. An image object instead
represents a buffer that can be used as a texture or a frame-buffer, whose
elements are selected from a list of predefined image formats.

The context and all its resources are created and manipulated by the host
using the OpenCL API.

The host also creates a data structure called a command-queue to coor-
dinate the execution of kernels on the devices. The host submits commands
into the command-queue which are then scheduled onto the devices within the
context. These commands include:

Kernel execution commands Execute a kernel on the processing elements
of a device;

Memory commands Transfer data to, from, or between memory objects, or
map/unmap memory objects to/from the host address space;

Synchronization commands Constrain the order of execution of commands.

Commands scheduled on the queue execute asynchronously between the
host and the device and can run relative to each other in an in-order or out-
of-order mode. Programmers can choose a specific relative ordering when
creating the command-queue.

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 23

Kernel execution and memory commands submitted to a queue generate
event objects, which are used to control the execution between commands and
to synchronize the host with the device.

OpenCL memory model

Work-items executing a kernel have access to four distinct memory regions, as
illustrated in figure 2.3.

Global memory This memory region allows access from all work-items in
all work-groups. Work-items can read from or write to any element of
memory objects placed in global memory;

Constant Memory A region of global memory that remains constant during
the execution of a kernel. The host allocates and initializes memory
objects placed into constant memory. Work-items have read-only access
rights to the elements of these objects;

Local Memory A memory region local to a work-group. This memory region
can be used to share data among the work-items in a work-group;

Private Memory A region of memory private to a work-item. Data placed
in one work-item private memory is not visible to the other work-items.

The application running on the host uses the OpenCL API to create mem-
ory objects in global/constant memory and to enqueue memory commands
that operate on these objects.

Since the host is defined outside of OpenCL, the memory hierarchies of
the host and the device are generally separated and independent from each
other. Interactions between host and device memory occur by either explicitly
copying data or by mapping/unmapping regions of a memory object. To copy
data explicitly, the host enqueues commands to transfer data between the
memory object and host memory. The mapping/unmapping functions instead
allow the host to map a region from the memory object into its address space.
Once a region from the memory object has been mapped, the host can read or
write to this region. The changes to the content of the mapped region possibly
performed by the host are visible to the device after the region is unmapped.

When a memory object is created, some memory-flags can be specified to
determine the placement in the memory and the access to the object. For
example, AllocHostPtr flag specifies that the application wants the OpenCL
implementation to allocate memory from host accessible memory, while Use-
HostPtr flag indicates that the application wants to use memory referenced by
a user-provided pointer as the storage bits for the memory object.

24
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

Figure 2.3: OpenCL conceptual organization of memory regions

Synchronization between commands and processing elements

There are two domains of synchronization in OpenCL:

• Work-items in a single work-group

• Commands enqueued to command-queues in a single context

Synchronization between work-items in a single work-group is achieved
using a work-group barrier in the kernel code. All the work-items in a work-
group must execute the barrier before any are allowed to continue. OpenCL
doesn’t provide any mechanism of synchronisation between work-groups.

The synchronization points between commands in command-queues are:

Command-queue barrier A command-queue barrier ensures that all previ-
ously queued commands have finished execution and any resulting up-
dates to memory objects are visible to subsequently enqueued commands
before they begin execution. This barrier can only be used to synchronize
commands in a single command-queue;

Waiting on an event All the OpenCL API functions that enqueue com-
mands return an event that identifies the command and the memory
objects involved. A subsequent command waiting on that event is guar-
anteed that updates to those memory objects are visible before the com-
mand begins execution.

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 25

2.1.2 A summary on OpenCL programming

OpenCL represents the today’s standard for programming across heteroge-
neous devices, thanks to which parallel algorithms can be developed once to
be then executed on a wide variety of different devices. Despite the porta-
bility and the homogeneity of coding, OpenCL shows various drawbacks and
limitations.

With regards to programming, OpenCL coding is low-level and requires
non-trivial parallel programming skills to guarantee the correctness of kernel
execution. In addition, host-side and device-side models are quite different
from each other, from both the language object-model and the concurrency
paradigm points of view.

OpenCL kernels are written in a subset of C99 with some restrictions and
extensions. For example, parameters of kernels that are pointers must come
along with a global, constant or local qualifier. Pointers-to-pointers are not
supported, which means that vector elements can be only of primitive or struct
types. Kernel functions must return void and the library functions defined in
the C99 standard headers are not supported1. On the other hand, host-side is
programmed according to the native model of the host platform. Whereas C
(without restrictions) is the specification language of the OpenCL API, various
wrappers have been built over the latest years to support the execution of
kernels from within different languages, like C# and Python.

Some data-types, like vector types (e.g. float4, int8, half16) and image-
specific types (e.g. image2d t) are available only on the kernel-side. On the
host-side, programmers must use different data-types, such as regular pointers
to primitive types (e.g. float*, int*, half*) in place of pointers to vector types
(float4*, int8*, half16*) and the opaque cl mem to hold image data.

The concurrency model is also different between the host and the device.
On the device, individual processing elements within a group synchronize with
each other in a shared-memory fashion. On the other hand, synchronisation
between the host and the device and between individual commands submit-
ted by the host is based on events and explicit messages (commands), which
resembles the message-passing paradigm.

From the productivity point of view, host-side coding is mostly boilerplate.
The steps to code in the host are in fact the same, independently from the ker-
nel executed. These steps include loading kernel sources, compiling them,
instantiating a device, creating buffers, setting up kernel arguments, schedul-

1This refers to OpenCL Specification 1.2. The new OpenCL specification 2.0 removes
some of these restrictions

26
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

ing the kernel and waiting for its completion. Nevertheless, host-side coding
requires time and effort to guarantee the correctness of execution, especially
in allocating/initializing buffers and setting up kernel arguments. Whenever a
programming mistake is introduced in the host-side (e.g. because of incorrect
buffer size with consequent out-of-bounds accesses), kernel execution may fail
or interrupt obscurely. Programmers are therefore asked to spend time and
energy in coding how a computation has to be executed instead of strictly
focusing on what the computation has to do (i.e. the kernel).

Despite the recent availability of debugging and profiling tools, debugging
OpenCL computations is still difficult and error-prone. OpenCL compilers/-
client drivers are characterized by quite basic, and sometime obscure, error
reporting, which is definitely not as advanced as in compilers like GCC and
Clang-LLVM. Recently, real-time debugging of kernels executing on a device
became possible, but programmers must use specific, third-party tools. Pro-
ductivity in spotting and fixing coding mistakes as well as in detecting runtime
issues is therefore very limited.

From the perspective of execution, OpenCL doesn’t provide any help to
optimise code for specific types of devices nor to understand which of the
available devices should be selected to execute a particular kernel with high
performance.

Even though kernels can run across different types of devices, to obtain the
highest performance device-specific optimisations must be applied. For exam-
ple, vector data-types can speed up computations on CPUs, while on most
GPUs2 they can be counterproductive. The memory access pattern is another
aspect that can be deeply affected by optimisations for different types of de-
vices. GPUs tend to perform better under interleaved accesses (i.e. successive
work-items access successive elements of a buffer) while performance on CPUs
in higher when a single work-item accesses a contiguous stride of memory, im-
proving cache-usage and exploiting prefetching. To run efficient code across
devices, OpenCL programmers must therefore be aware of the specific charac-
teristics of the available devices and code different kernels, each optimised for
a specific device.

2Especially GPUs with an instruction set not based on Very Long Instruction Word(s)
(VLIW)

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 27

2.2 High-level programming languages and li-

braries

From the early ages of general purpose programming on GPU (GPGPU), var-
ious researches have been focusing on the definition of an abstraction layer to
simplify parallel programming on heterogeneous platforms.

Nowadays, CUDA and OpenCL are the two major solutions for program-
ming on GPUs. Even though OpenCL obtained a wider popularity thanks
to its industry standard specification and to the broad support, OpenCL and
CUDA are very similar to each other, from both the abstract execution model,
the memory model, and the programming-style points of view. For this reason,
most of the relevant research of the last few years has leveraged OpenCL or
CUDA as the “ground layer” over which to build a more abstract and easy
way to express and execute parallel computations.

The first attempts to make parallel programming easier and more con-
fortable are represented by language bindings for CUDA and OpenCL APIs
[1,15,46,75]. Despite the ability that these solutions provide to program CUDA
and OpenCL host-side using languages different from C/C++ (e.g. Java, C#),
they do not introduce any significant abstraction over the low-level APIs.

Given the popularity of the LLVM compiler, and especially of its interme-
diate representation (IR), some recent efforts have been spent on extending the
LLVM backend to map the IR to the specific intermediate or target represen-
tation of GPU executables [21,44]. LLVM has been employed to transparently
extend the set of target device types of CUDA programs, traditionally GPUs
only, to CPUs and to all the architectures supported by LLVM. While lever-
aging LLVM IR can enhance architecture-specific optimisations, deliver cross-
device execution transparency and, more generally, hide the heterogeneity of
the platform to the frontend/users [73], from the programming abstraction
perspective there have been no significant improvements. On top of these so-
lutions, the developers continue to use the OpenCL/CUDA C/C++ API but
relying on LLVM to produce the intermediate representation between code
and brand-specific instruction sets. Nonetheless, being an open-source com-
piler, LLVM (and LLVM frontends like CLANG) may be succesfully employed
to define more abstract programming models for heterogeneous platforms.

C++ AMP [30] is an open specification for implementing data-parallelism
which represents a more interesting research from the point of view of program-
ming abstraction. C++ AMP exposes reshaped programming constructs/pat-
terns (e.g. parallel for each), lambdas and custom data-types (e.g. array view)
to express data-parallelism on collections. C++ AMP supports both GPU ex-

28
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

ecution3 and CPU vector (SSE) processing. Lambda expressions represent a
powerful and productive construct to express parallel code, especially in case
of recurrent, succinct computations.

While leveraging on language constructs that C++ programmers are com-
fortable with, such as arrays and lambdas, the API also introduces additional
language features for composition/dispatching that require a certain effort to
be understood and used correctly. Native data-types (e.g. array) come along
with brand new types (e.g. array view) that are specifically used in place of na-
tive types to drive a certain execution/memory behaviour (e.g. data-transfer
on-request). The definition of custom types in order to drive the runtime
behaviour, such as enabling a particular optimization, can be confusing and
difficult to assimilate. We consider pragma directives, gcc-like attributes and
.NET custom attributes examples of programming features that are more in-
dependent from the content of the computation and, for this reason, more
suitable to express meta-information.

SkePU [22] is one of the most popular libraries for data-parallelism based
on skeletons. Skeleton programming is an approach that shows several advan-
tages from both the coding and the execution support points of view. Skeletons
are intuitively mapped to specific, well-known processing behaviours, are para-
metric (i.e. customizable) and easy to compose with each other. This makes
skeleton programming easy to learn and to apply productively. The abstraction
provided by skeletons makes them also the perfect candidates for transparent
target-specific optimisations. Finally, given the intrinsic restrictions on the
code used to parametrize skeletons, such as on the input and output type,
the correctness of skeleton-based parallel programs is easy to validate. The
principal drawback of SkePU and, more generally, of skeleton programming,
is the restricted flexibility. If a skeleton library doesn’t provide any opaque
“container” to define computations that go beyond the provided skeletons, the
set of algorithms that can be effectively expressed using the model exposed by
the library is very narrow.

Muesli [14] is another popular skeleton-based library. Muesli supports and
seemlessly integrates both data and stream paralellism. In particular, a Muesli
program is a stream-based computation, where each “node” of the stream can
express data-parallelism. Muesli also introduces the concept of sequential com-
putations inside parallel programs, especially to distribute and collect stream
data. Despite the effort to enhance flexibility by joining stream parallelism,
data-parallelism and sequential functions, Muesli designs new functions and
data-types (e.g. distributed arrays and matrices) instead of leveraging native

3On November 12, 2013 the HSA Foundation [3] announced a C++ AMP compiler that
outputs to OpenCL

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 29

and possibly expressive language constructs.

FlumeJava [11] is a Java library for programming and executing data-
parallel pipelines. The target of FlumeJava is to extend the flexibility of the
map-reduce pattern by enabling multiple instances of such pattern to act as
stages of a pipeline. The programming model is centered around a set of par-
allel collections, each of which exposes a number of operations that can be
performed on its instances. Single operations on collections can be composed
in a chain to form a pipeline. The collection functions provided suffer from the
same flexibility constraints of most skeleton-only solutions, leading to difficul-
ties to express out-of-scheme computations. In addition, similarly to Muesli
and C++ AMP, the programming model and language are based on a set of
additional, custom collection types and functions (e.g. PCollection, parallelDo,
groupByKey), which yields a loose integration within the host language.

SkelCL [64] represents an effort to raise abstraction over OpenCL program-
ming through skeleton definition and composition in C++. Differently from
the other skeleton-based approaches considered, SkelCL embraces predefined
function composition to express dependencies between computations and func-
tional arguments to express higher-order skeletons (i.e. skeletons that compose
other skeletons). Whereas pre-existing language features are employed to com-
pose skeletons, brand new types are exposed to represent collections of data to
process, similarly to other skeleton libraries. From the programming produc-
tivity point of view, a major flaw in the design of the SkelCL library consists
in the way programmers specify the operators (arguments) to instantiate the
skeletons. In fact, operators are expressed as quoted lambdas (strings). Since
compiler syntax and type checking doesn’t apply to the content of strings,
programming mistakes are detected only at runtime, when the OpenCL code
is generated and executed.

Intel Threading Building Blocks (TBB) [57] is a library that provides a
solution for enabling parallelism in C++ code in a way that is easily accessible
to developers writing loop- and task-based applications. Similarly to C++
AMP, Intel TBB exposes a set of new language features to express parallel
iterations (e.g. parallel for, parallel invoke) and a set of data-types, called
“concurrent containers” to parallel processing data. The main advantage of
TBB is that, differently from other pattern- or skeleton-based libraries, it pro-
vides programmers a way to define computations that do not fit the scheme of
any particular parallel pattern. This is accomplished introducing a complimen-
tary model based on explicit flow-graph creation. The developers that need
more flexibility than the one delivered by the high-level, pattern-based model
can leverage flow-graph node instantiation and inter-connection to “shape” a
parallel computation. The principal flaw in the design of these multiple ab-

30
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

straction levels is the profound difference between the respective programming
and object models (loop-like constructs versus flow-graph node/edge objects),
which may incur doubling the effort to get comfortable using the library and
make it difficult to compose and coordinate parallel computations coded at
different levels.

Similarly to TBB, Marrow [48] allows working at multiple levels of ab-
straction. Marrow is a skeleton framework for the orchestration of OpenCL
computations which enables programmers to combine and nest parallel com-
putations. The developers can use and compose the set of provided skeletons
or define custom kernels and combine them with other computations in the
parallel program. The most interesting aspect of Marrow, that distinguishes
it from TBB and from many other patterns/skeletons solutions, is the ability
for computations expressed at different abstraction levels to be composed with
each other. The principal limitation of this framework is instead the same
of TBB, which is the inhomogeneity of the models exposed by different pro-
gramming levels. The high-level interface is in fact based on library functions
(skeletons) and their compositions, while the low-level requires custom kernels
in OpenCL, escaping the context of the framework, and to load the source
files containing the kernels into wrappers (called KernelWrappers) in order to
compose custom kernels with other computations.

Microsoft Accelerator [70] is a framework that exposes data parallelism to
program GPUs on .NET, leveraging the abstraction provided by the Virtual
Machine to hide the complexity of GPU programming and execution mentation
by compiling the data-parallel operations on the fly to optimized GPU pixel
shader code and API calls. While the performance of Accelerator programs
is closer to the one of to hand-written pixel shaders, the programming model
lacks of integration with the host language, exposing additional data types (e.g.
parallel arrays) and custom reduction and transformation operations that limit
productivity.

Dandelion [58] is probabily the most inspiring framework for our research.
In Dandelion, parallel programs are expressed using LINQ [49] operators. Be-
ing a pre-existent and very popular model to work on collections, programmers
should find in LINQ a simple and familiar programming context. LINQ oper-
ators act as a set of composable skeletons that can be parameterized. Starting
from LINQ expressions, Dandelion is able to build a flow graph and to schedule
the graph nodes for execution on multiple devices, handling data-transfer and
synchronization transparently to the programmer. From our perspective, the
major limitation of this programming and execution layer is the choice of LINQ
to act as an embedded Domain Specific Language (DSL) to express parallel-
lism. LINQ has been primarily designed to enhance and simplify querying and

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 31

updating data for arbitrary data stores. With the set of operators provided,
such as select, where and groupby, LINQ strictly resembles the SQL language.
Whereas intuitively mapped to some specific types of parallel patterns (e.g.
map-reduce), these relational operators may be difficult to use to express more
general parallel computations, such a parallel prefix. In fact, according to the
authors, Dandelion provides a library of parallel patterns that can be joined
with the relational operators. While this library extends the flexibility of the
programming model, mixing relational-operators and patterns-functions un-
dermines the homogeneousness of the model.

In [67] F# metaprogramming features are extensively discussed and ap-
plyed to demonstrate the ability to access specific programming domains from
within F# in an expressive and extensible way. The F# quotations infrastruc-
ture is presented and applied to express high-level parallel computations in
terms of point-wise operations, reduction operations and transformation oper-
ations of vector types. Quotations act as an unobtrusive construct to access
the (typed) Abstract Syntax Tree of high-level programs, unleashing the possi-
bility to provide custom interpretation of arbitrary F# expressions at runtime.
For execution, the interpreter of the high-level programs relies on Microsoft
Accelerator [70]. In other terms, the runtime support accesses the high-level
language constructs via quotations and provides their semantic in terms of
Accelerator API calls.

Herlan [33] is a Scheme-based function language to express and execute par-
allel programs on GPUs. In Harlan, GPU computations are expressed using
declarative constructs, raising abstraction over low-level, error-prone coding
in CUDA or OpenCL. In addition, programming abstraction allows the com-
piler to enhance runtime efficiency, transparently optimising data movement
and overlapping CPU and GPU computations. Whereas functional program-
ming unleashes high abstraction and expressive composition, Harlan currently
exposes only a very limited set of high-level parallel skeletons/pre-defined func-
tions, such as reduce and scan, forcing programmers to explicitly code kernels
even for very common patterns. In addition, Harlan does its best to run the
kernel on the GPU, automatically determining the thread-space configuration.
While this choice provides additional abstraction, it limits the flexibility of
kernel execution and seems difficult to adapt to kernels where the number of
threads spawn is hard to deduce from the code or from the size of the processed
data4.

Aparapi [5] is a framework for integrated OpenCL programming in Java.
Unlike regular OpenCL bindings, Aparapi enable programmers to code OpenCL

4A common case in reduction-like kernels, which are generally executed iteratively on the
GPU, spawning each time a number of threads that is half the input size

32
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

kernels as Java methods, porting OpenCL types and programming constructs
to the Java language. In addition, Aparapi automatizes the OpenCL host-side,
allocating OpenCL resources, generating the kernel executable and coordinat-
ing the execution on the device. Aparapi relies on running in a Virtual Ex-
ecution Environment (VEE) and on the introspection capabilities offered by
Virtual Machines (VMs) to raise abstraction over OpenCL kernel- and host-
side programming. We think that VMs play a key-role in defining high-level,
abstract programming models and APIs, especially for the ability to dynam-
ically inspect code and to drive the execution behaviour on the basis of spe-
cific information extracted from the running program. Nonetheless, from the
kernel-side perspective, OpenCL kernels expressed as Java methods strictly
map to (a subset of) their C/C++ counterparts, without allowing higher-level
Java contructs or data-types. For example vector types (e.g. float4), tuples
or other custom types cannot to be used, while support for custom structs
is very limited5. Given the possibilities offered by the virtual environment to
map and perform custom interpretation of code constructs and types, more
abstract features may be introduced in kernel coding without narrowing the
flexibility of OpenCL. In addition, besides the ability to write kernels as Java
methods exploiting type checking, host-side code generation and other facili-
ties, Aparapi doesn’t provide any more abstract way to express parallel com-
putations. This means that even very simple and common patterns for which
parallel implementations have been long studied (e.g. map, reduce, sort) must
be hand-coded whenever needed6.

Alea GPU [19] if a .NET development environment for programming and
execution on GPUs, which supports .NET languages, including C#, F# and
VB. In Alea GPU, the programmer develops parallel computations as high-
level (e.g. F#) functions, relying on the underlying framework to generate
CUDA code which is then transparently executed on the target device. The
Alea GPU F# frontend employs quotations, an interesting and nearly-unique
language feature, to introspect the AST of parallel computations and transpar-
ently provide their execution. While the set of solutions to simplify parallel pro-
gramming and execution on GPU looks promising, Alea GPU introduces some
additional language constructs and data types that limit its full integration in
the host language, such as new vector containers (e.g. deviceptr<float> in
place of the pre-existing array of float). In addition, while host-side coding
(i.e. the program that schedules and coordinates the execution of computa-
tions) certainly requires less effort then in OpenCL/CUDA, we see many points

5Structs and vector types are fully supported by the OpenCL specification
6The latest news about Aparapi report high-order functions to express such patterns will

be available soon with the release of Java 8

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 33

where additional abstraction can be introduced, for example by automating the
allocation of vector arguments. Finally, F# provides a set of native functions
working on collections that can be employed as skeletons to enhance productiv-
ity in expressing common parallel computations, making parallel programming
and execution fully transparent. Nontheless Alea GPU, at least at the time of
writing, neither supports nor takes into account these functions.

Collection processing plays a major part in Java 8 Streams API, which
lets programmer express sophisticated data processing queries as pipelines of
collection operators [65]. In Java 8, the programmer can use and chain the
available set of collection functions (e.g. map, reduce, scan) and run the entire
processing in a stream-based fashion on the CPU. The main limitation of Java
8 stream processing is the same that describe the majority of skeleton/patterns
solutions, which is the inability to express computations that escape the strict
set of available patterns. In addition, Java 8 Streams only support stream
parallelism and does not leverage any parallel device apart from multicore
CPUs.

In [26] a new class hierarchy on top of Java 8 Stream is proposed to support
OpenCL execution and to extend stream processing by allowing user-defined
functions to be expressed and composed with predifined operators. From one
side, the research seems proposing a guideline for implementing parallel op-
erators more than exposing a model to parallel programmers. In other terms
the user of the model has neither the visibility of the OpenCL layer nor the
ability to implement a new operator without explicitly generating the OpenCL
C implementation of the operator itself. Code generation is indeed discussed
only for the single operator available in the proposed framework at the time of
writing (i.e. array map), which suggests that ad-hoc solutions must be applied
to define new operators and “connect” them to OpenCL. This leads to assume
that the programmers who define new operators are unlikely to be the same
programmers who use the operators for coding parallel programs.

Nessos Streams [28] is an F# project inspired to Java 8 Streams that pro-
vides F# programmers with a continuation-passing-style composition of collec-
tion processing. Like Java 8 Streams, stream parallelism is the only choice and
no support for execution on GPUs, FPGAs or different accelerators is provided.
Unlike Java 8 Streams, composing Nessos Streams with user-defined computa-
tions is possible, even though parallel execution of custom computations must
be explicitely defined by the programmer.

34
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

2.3 Scheduling frameworks for heterogeneous

platforms

Scheduling on multi-device systems has been a fervent research area in the
last decade. In this section we present and discuss the most recent works
in this field, particularly focusing on scheduling approaches for CPU-GPU
heterogeneous systems.

In SkePU [22], the parallel program interpreter supports multiple back-
ends (OpenMP, OpenCL, CUDA) and multi-device execution based on equal
partitioning of the input data. Specific characteristics of the available comput-
ing devices are therefore not considered. An interesting aspect of the SkePU
runtime is instead the tunable context-aware implementation selection. De-
pending on the properties of the context where a skeleton is applied (e.g. in-
put size), different, optimised skeleton implementations for different execution
units are automatically selected.

We consider automatic selection of the best “variant” for a computation
to be important in heterogeneous systems and complimentary to the device-
awareness in scheduling. In fact, whether the programmers specifiy a par-
ticular device for execution or leave the system free to choose it, optimised
implementation for the device where the computation will run should be used.
Nonetheless, for certain algorithms no optimisations can make a device out-
perform another one, which is why we consider automatic variant selection
complimentary to best-device selection for a given computation.

In [66] an intermediate infrastructure between the client driver and the
OpenCL programmer is proposed to enable multi-device cooperative execu-
tion of kernels. OpenCL programmers are asked to define a divide function
associated to a kernel in order to declare the partitioning scheme of the kernel
itself. The divide function is parametric on a partitioning factor which encodes
the granularity of the partition. The runtime uses a granularity adaptation
strategy to explore the partitioning factor range in a two-phase fashion. In a
first phase, the engine produces and saves statistics about execution time for
each partitioning factor. In a second phase it uses and updates these statis-
tics to choose the appropriate partitioning factor. The main limitation of this
approach, besides the need for the users to explicitely define a partitioning
function, is the device-unawareness. An instance of the kernel runs on each
available device and operates on a different chunk of the input. The system
doesn’t support device-selection for kernel execution on the basis of the partic-
ular algorithm to run or on the peculiar characteristics of the available devices.

Many OpenCL programs, such as FFT and LU factorisation, are made of
multiple and potentially iterative kernels. In such cases the scheduling options

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 35

are mainly two: either to execute successive kernels sequentially, partitioning
each of them on the available resources, or to schedule each kernel on the
estimated best device, possibly computing different kernels in parallel. Since
the infrastructure proposed in [66] and, more generally, the device-unaware
partitioning approaches only considers the first option, scheduling may deliver
sub-optimal results whenever the speedup obtained from executing different
kernels on different devices is higher than the one resulting from per-kernel
cooperative execution. This is particularly true for programs made of ker-
nels differently “shaped” from each other, that is where different kernels are
best-scheduled on different devices. Furthermore, partitioning single kernels
by distributing work items between multiple resources requires synchroniza-
tion and communications between them, which can incur significant runtime
overhead.

FluidiCL [53] proposes a similar, device-unaware scheduling approach for
CPU-GPU systems, based on partitioning individual OpenCL kernels for con-
curent execution on multiple devices. The partitioning scheme is applied to
the OpenCL working space, part of which is assigned to the CPU and part
to the GPU. In this way, CPU and GPU are assigned each a subset of the
global work-groups to execute. This approach suffers from the aformentioned
limitations characterizing every device-unaware scheduling approach.

In [72] a mechanism to predict the performance of computations on single-
ISA heterogeneous systems is proposed. Prediction is based on collecting run-
time information about instruction- and memory-level parallelism using the
CPI stack. Using this information, the approach estimates the relative speedup
or slowdown obtained by scheduling the profiled computation on different com-
puting resources. The principal limitation of this apporoach is the inapplicabil-
ity to heterogeneous systems where the devices have instruction sets different
from each other. Multi-ISA heterogeneity is far more likely a popular scenario
than single-ISA, especially in CPU-GPU systems. A second limitation consists
in the difficulty to employ the Performance Impact Estimation (PIE), which
is the “metric” used for scheduling, in situations where different computations
are composed each other. In these scenarios, the scheduling policy should take
into account the impact on data-transfer due to scheduling computations in-
teracting with each other on different devices. The problem that arises is how
to combine PIE with quantities expressed in different units, such as the cost
of data-transfer, possibly expressed in time units.

In [73] an algorithmic feature-based classification approach is proposed to
determine the shape of computations and to consequently deduce the class
(CPU or GPU) which a computation belongs to. To reduce the overhead
of feature extraction, some information (static features) are collected when a

36
Chapter 2. Programming, scheduling and execution on heterogeneous

platforms

kernel is compiled while others (runtime features) are computed at kernel ex-
ecution time. The main problem of this approach is the inability to capture
information that comes from considering the program structure and the in-
put or work-item domain size together. For example, estimating the number
of cache misses requires features, such as the set of memory access strides,
that can only be statically precomputed but for which the evaluation must be
delayed at runtime, when the input size is known. In addition, this classifi-
cation approach leverages the estimation of a speedup quantity to determine
whether to schedule a computation on the CPU or on the GPU. Whereas the
authors state that completion time is not a reliable information to use, com-
pletion time is nonetheless an objective metric that allows adapting to highly
dynamic systems, such as systems with multiple CPUs and no GPUs or with
both integrated and discrete GPUs. It has been shown [18] that integrated
GPUs are beneficial to speeding up computations characterised by peculiar
combinations of memory and computation boundaries. Since integrated and
discrete GPUs are often identical from the perspective of the architecture and
of the runtime model with the only exception of the memory subsystem, it may
be very difficult to determine a combination of static and runtime features to
describe, in terms of the speedup quantity, this particular kind of integrated
devices. Moreover, a binary CPU/GPU classification like the one proposed
can’t take into account the potential overhead of copying data whenever two
successive kernels are scheduled on different devices. Such an overhead, which
may outweigh the benefit of scheduling each kernel on it’s own best device,
can instead be taken into account in case of completion-time-based classifica-
tion. In fact, once the cross-device data-copy overhead is computed and the
best (lowest) completion time of two kernels predicted, it’s trivial to compare
the sum of the two with the completion time obtained in scheduling both the
kernels on the same device saving the copying overhead. Finally, this feature-
based classification approach leverages Support Vector Machines (SVMs), with
a Gaussian Kernel to predict whether an algorithm would run faster on the
GPU or on the CPU. An important limitation of this classification method
is that it is very hard, if not impossible, to interpret the model created by
an SVM, which has to be accepted or rejected only looking at the prediction
results.

These considerations are supported by [42], where an interesting set of
approaches to scheduling and partitioning dataflow graphs is discussed and
evaluated, showing that traditional greedy per-kernel policies such as data-
locality preservation are insufficient to accurately determine an optimal/sub-
optimal scheduling strategy. This work underlines the importance of taking
into account cross-device data-transfers to implement an accurate scheduling

Chapter 2. Programming, scheduling and execution on heterogeneous
platforms 37

policy for a wide range of workflows.
In [37] a case study is discussed for estimating the completion time of

workflows based on algorithmic features extraction and on the exploration
of a set of estimation functions (regression models) to detect the ones that
maximize prediction accuracy. Whereas completion time is indisputably the
most flexible metric to employ in a scheduling policy, since it can be naturally
composed with other aspects that may influence the scheduling decision (e.g.
data-transfer latency), the work proposed exclusively focuses on a restricted
set of sequential tasks, drawn from the UCI Machine Learning Repository,
whose features are already available as parts of the information contained in
the dataset. We claim that in a situation where heterogeneous platforms are
becoming a standard for the execution of arbitrary computations, genericity
of algorithms and automatic feature extraction are two of the most relevant
research aspects for successful scheduling strategies.

In [10] a machine-learning approach is proposed for dynamic task schedul-
ing and load-balancing of batch programs on heterogeneous platforms. To tune
scheduling policy dynamically, the approach relies on periodic execution of a
pilot program to estimate the throughput of a batch of tasks before scheduling
the whole batch. The result of successive executions of the pilot programs are
collected, stored and used to improve the scheduling quality over time. The
application of the approach considered is very limited, since it is specifically
designed for, and validated against, batch processing of financial option pric-
ing programs. Nevertheless, the authors particularly stress a point that we
consider fundamental, which is the efficiency of the scheduling policy. In par-
ticular, the approach takes also into account the overhead introduced by the
pilot program and tries to balance this overhead with the potential speedup
that can be achieved with the information provided when running the pilot.

Chapter 3

Conclusions

Despite the range of research on raising abstraction over OpenCL and, more
generally, over heterogeneous platform programming and execution, OpenCL
is still the most popular and widespread solution.

We see two main contributing factors. The first is the complexity of many
high-level programming models and of the set of language constructs exposed
to express parallelism. In some cases, the programming model provided is
implemented through a brand-new set of control-flow constructs, data-types
and functions that programmers have to learn from scratch. In other terms,
the integration of such models into the host language is very limited. Since
the complexity of the model is close to the one that characterizes OpenCL, the
developers tend to prefer OpenCL low-level programming, which is as least
more popular, supported and consolidated.

In other cases, the integration in the host language is not particularly lim-
ited, but it’s inexpressive. Expressive models expose concrete constructs that
can be intuitivly mapped to concepts of the abstract domain in which pro-
grammers are supposed to work. Some solutions tend to employ pre-existing
constructs of the host language that are instead difficult to map to the typical
abstract concepts of parallelism, making the application of such solutions hard
and counter-intuitive.

The second factor that limits the spread of high-level programming so-
lutions is the lack of flexibility. Many parallel programming languages and
libraries, especially those based on skeletons and programming patterns, fo-
cus exclusively on simplifying coding by making it as abstract as possible. If
from one side this increases productivity in developing common, structured
parallel programs by composing building blocks, from the other it narrows the
set of algorithms that can be expressed. Whenever a computation lies outside
the boundaries defined by the set of available patterns, programmers have to
switch to a different programming solution.

40 Chapter 3. Conclusions

From the scheduling point of view, device-unaware approaches that con-
sider the available computing resources as an homogeneous set of nodes hardly
fit today’s heterogeneity. Whereas these approaches can deliver good per-
formance in the case of task-based applications and provide load balancing,
assuming task-partitioning of computations and exploiting devices without
considering their specific characteristics may incur in poor performance for
generic algorithms on many heterogeneous systems. Some parallel programs
are not easily partitioned into computation units; in many cases, the explicit
programmers’ intervention to define task subdivision may be required. In ad-
dition, in case of programs made of two (or more) interrelated computations,
device-unaware approaches generally try to balance the load on the various de-
vices, without considering whether scheduling both the computations on the
same device delivers higher performance thanks to the particular suitability
of the device to accelerate the specific computations to run. For example,
programs apparently massively parallel may be faster on a CPU if they con-
tain a sensible number of divergent branches, which is a well-known cause of
performance degradation on GPUs.

Recently, the market has been characterized by the availablity of an increas-
ing variety of different devices and of cross-device interconnection solutions,
such APUs from AMD, programmable on-chip GPUs with CPU-GPU ring bus
from Intel, OpenCL-enabled FPGAs from Altera, Multi-GPU SLI interconnec-
tion and the Intel Xeon Phi coprocessor. In terms of hardware characteristics,
some devices are subtly different from each other but are possibly characterized
by quite distinct subsets of computations that each can execute outperform-
ing the others [18]. Given this, an analytical characterization of devices is
difficult to achieve, other than being inflexible to the dynamicity of systems
configurations.

We see in machine-learning the ideal candidate to cope with this dynam-
icity, as well as with the impossibility to assume certain structures of the
computations to run and with the difficulty to capture the differences between
devices on the basis of their hardware specification.

The major limitation of the machine-learning approaches for heterogeneous
CPU-GPU systems considered is the metric used for scheduling and the com-
plexity of the method employed. While estimating the value of quantities like
speedup [73] and performance impact [72] may produce reliable results in some
cases, such quantities hardly capture a variety of subtle causes of differences in
performance between integrated and discrete GPUs. In addition, these quan-
tities are not suitable to be used together with other “concrete” information,
such as data-transfer or computation-launching overhead, in order to refine
the scheduling policy to improve overall performance.

Chapter 3. Conclusions 41

3.1 Thesis proposal

Heterogeneity is on track to be the dominant aspect of parallel computing
in the years to come. The increasing popularity of heterogeneous multi-device
systems, from desktop computers to mobile phones, gives rise to the problem of
giving access to such a computing power to a wide community of programmers
and to a nearly unbounded set of programs.

The state of the art in raising abstraction over heterogeneous programming
show various limitations, such as loose integration in the host language, lack
of flexibility to express complex computations and inhomogeneity within the
programming model.

Most of the recent research in scheduling on heterogeneous multi-device
systems addresses the problem of load-balancing in a device-unaware fashion,
instead of focusing on device-aware classification of parallel computations. We
think that being able to specialize a device for the execution of the specific
computations for which it is the “best” (e.g. the most efficient) device in the
running system plays a key role in exploiting the increasing heterogeneity of
today’s platforms.

Our Proposal consists in investigating the today’s challenges and open
problems in programming, scheduling and execution on heterogeneous plat-
forms. In particular, we research the possibilities of leveraging the abstraction
and the introspection capabilities of Virtual Execution Environments and of
languages running on Virtual Machines to design a high-level, homogeneous
parallel programming layer and to transparently collect code and platform in-
formation in order to support efficient, dynamic and device-aware scheduling
and execution of parallel programs.

Part II

FSCL: a framework for
high-level parallel programming

and execution

Chapter 4

Overview of the research

The state of the art in programming, scheduling and execution on heteroge-
neous platforms discussed in chapter 2 constitutes the starting point of our
Ph.D. research.

We consider the integration of parallel models into pre-existing, popular
languages a key strategy to ease heterogeneous programming, cutting the learn-
ing curve and allowing the programmers to feel comfortable with moving from
traditional, sequential programming to parallel computing. For this reason,
we start investigating the most suitable language to host an abstract and ex-
pressive parallel model. In chapter 5 we introduce F#, which is the language
we choose to serve as host. We present the most relevant aspects and features
of F#, particularly focusing on those suitable to be reused to express parallel
programming constructs and their composition.

Once choosing the host language, we start designing an abstract and flexible
model to express parallel computations from within F#. We discuss the details
of this model, called FSCL kernel language, in chapter 6.

Whereas F# is the host language for our model, OpenCL is used as the
ground layer for scheduling and execution. We leverage OpenCL to build
executables starting from high-level F# programs and to interact with the
device driver for the execution and coordination of parallel computations.

Given F# as a source language and OpenCL as the target layer, we research
a way to map our high-level programming model to OpenCL. In chapter 7
we present the FSCL compiler, which is the result of our efforts to define a
strategy to trasparently map high-level parallel programming constructs to
OpenCL kernel- and host-side.

Finally, given a model for high-level parallelism and a way to translate the
constructs of this model into OpenCL, we investigate a scheduling approach
that leverages the differences among the devices in a platform to dynamically
execute computations on each one’s most efficient device. As a side research,

46 Chapter 4. Overview of the research

we also invest our efforts in performing efficient code analysis and device char-
acterization in order to maintain the performance of the abstraction layer
comparable to low-level OpenCL execution. The result is discussed in chapter
8, where we present the the FSCL runtime, and in chapter 9, dedicated to the
scheduling approach for multi-device heterogeneous systems.

As a whole, the result of our research on a model to raise abstraction over
programming, scheduling and execution for heterogeneous platforms consists
in the FSCL framework. From a high-level view, the framework is composed
of three main components: a programming model, a compiler and a runtime.
Each of these components addresses a subset of the challenges on which our
research is based.

From the perspective of addressing the problems of abstraction, flexibility
and efficiency of the programming and execution layer, the framework can be
described in terms of four major features, listed below.

Abstract and expressive programming model From the programming
point of view, our research introduces a model that brings OpenCL pro-
gramming into F# and raises abstraction over regular low-level OpenCL
coding, exploiting pre-existing language constructs and coupling abstrac-
tion and expressiveness to enhance productivity while preserving fine-
grain control on coding whenever required.

Automatic per-device optimisation To obtain the highest performance,
OpenCL requires coding different versions of a kernel, each optimised
for a particular type of device. Starting from the abstract programming
model exposed, the FSCL framework is able to transparently generate
optimised OpenCL code depending on the particular device chosen for
execution.

Transparent and efficient device-aware scheduling One of the most press-
ing problems induced by today’s heterogeneity is to detect the set of
computations that a specific device can execute outperforming the other
devices in a platform. As a result of our research, the framework provides
a transparent device performance estimation and a scheduling policy to
help programmers to exploit the heterogeneity of multi-device systems,
selecting the best device for each computation to run.

Transparent and efficient parallel execution In OpenCL, the developers
have to spend noticeable efforts in host-side coding to setup and coor-
dinate the execution of kernels. The FSCL framework automates the
entire process, from resource allocation to scheduling and coordinating
kernels, allowing the programmers to focus exclusively on defining the
content of parallel computations.

Chapter 4. Overview of the research 47

One problem that can be introduced by a too abstract object model is
the lack of flexibility, which makes it difficult or impossible to express algo-
rithms that do not fit the restricted set of built-in patterns. Similarly, limiting
the flexibility of a parallel execution model results in a loose control over re-
source allocation and usage whenever such a fine-grained control is required.
Therefore, our research concentrates on providing a good balance between ab-
straction and flexibility for all the major features of the framework, possibly
introducing multiple abstraction levels at which programmers can see and ex-
ploit a feature.

Chapter 5

F#: a flexible multi-paradigm
language

In this chapter we present F#, which is the host language of our parallel
programming model as well as the language used to develop the entire FSCL
framework. First of all, we explain what F# is and why we select it as the host
language for our model, showing the advantages to use a functional/object-
oriented language to expose an abstract, expressive and flexible parallel pro-
gramming API. Then, we introduce some of the most widely used F# con-
structs to allow a deeper comprehension of the object-model exposed by the
FSCL framework, of the code-analysis approach for scheduling and of the ex-
amples proposed throughout this Thesis.

F# is an open-source, multi-paradigm programming language built on top
of the Common Language Runtime (CLR). It shares a core language with
OCaml [62], which in turn comes from the ML family of programming lan-
guages. F# also shares some features with Haskell [51], which is a purely
functional programming language.

The main difference between F# and many other functional languages is
that it completely integrates imperative and object-oriented paradigms inside
the functional one. Programming with F# tends to be more object-oriented
than in other functional languages. Programming also tends to be more flex-
ible. F# embraces techniques such as dynamic loading, dynamic typing, and
reflection, and it adds high-level and expressive programming features like quo-
tations and active patterns. Furthermore, F# bridges the gap between static
and dynamic typing and between compiled and interpreted languages, combin-
ing the programming styles typical of dynamic languages with the performance
and robustness of a compiled language.

F# allows writing type-safe functional programs in a succinct and efficient

50 Chapter 5. F#: a flexible multi-paradigm language

way, while combining the advantages of typed functional programming with a
well-supported runtime system. For these reasons, in the last few years F#
has become a very popular, cross-platform first class language.

Since the object-model that FSCL exposes to code parallel computation is
heavily based on functions and function composition (section 6.2), one of the
most important reasons why we choose F# resides in its functional nature. In
F# functions are first-class objects : functions can be passed as parameters,
returned from a subroutine and assigned to variables.

Given that functions are the basic building-blocks of F#, expressive syntax
constructs are provided to work with functions. As an example, F# defines
an operator for function composition, which is the operator (�). Given two
functions f and g, it is straightforward to express the function composition of
f and g (i.e. to build a function that represents the composition of f and g):

let f el = // ...
let g el = // ...
// Build the composition of f and g
let composition = f >> g
// Apply the composition
let result = composition(input)

Function composition is a concept that can be intuitively mapped to parallel
programming, for example to model the pipeline paradigm in stream paral-
lelism (i.e. the n-th stage of a pipeline applies a function to the result pro-
duced by the (n-1)-th stage). In pure data parallelism, function composition
can express a dependency or data-flow between two computing nodes.

F# collection functions represent another set of F# built-in constructs
that can be expressively reused to define and compose parallel computations.
Native F# functions like Array.map, Array.scan, Array.reduce directly map to
some of the most popular parallel skeletons.

The choice of F# to host the our parallel programming model is also driven
by a powerful language construct called quotations. Thanks to quotations, it is
possible to retrieve the AST (Abstract Syntax Tree) of an arbitrary expression
at runtime. Once obtained, the AST can be visited, analyzed, transformed
and evaluated.

Another reason for choosing F# is that it runs on .NET and Mono, which
are both widely used and well consolidated software frameworks. Programs
written in .NET/Mono execute in a software runtime environment called Com-
mon Language Runtime (CLR). The CLR provides the appearance of an appli-
cation virtual machine, providing benefits such as isolation, standardization,
and portability. Moreover, the CLR implements many important services such

Chapter 5. F#: a flexible multi-paradigm language 51

as security, memory management, and exception handling. Not only F# runs
on .NET/Mono, but it is also fully integrated with Visual Studio and Xa-
marin Studio, which are two of the most advanced integrated development
environments. Thanks to this integration, F# programmers can benefit of a
consolidated set of tools and facilities, such as code completion, intellisense,
visual debugging, code refactoring and visualization of type errors at coding
time. Finally, F# is open-source and fully supported across Windows, OSX
and Linux.

5.1 Language constructs

In this section we give an overview of programming in F#. This is not intended
to be an exhaustive guide to F# programming but only an introduction to
the subset of F# constructs used in our parallel programming model and in
the examples proposed throughout this Thesis. For more details on the F#
programming language, refer to the bibliography [69].

5.1.1 Variables and functions

The main keyword of F# is let : it is used to define variables, functions, and
procedures. This keyword simply binds a value to a name. The left hand of
a let binding can be a ”simple” variable but also a function. In the following
listing the value of the expression 2 + 3 is bound to the variable v and a
function f is defined. This function takes an integer argument and multiplies
it by 2.

let v = 2 + 3
let f it = it * 2

Since functions in F# are first-class citizens, even the definition of a function
can be considered as a binding. In fact the function f can be also defined as
follows:

let f = (fun a -> a * 2)

This way to define the function f emphasizes the fact that f can be considered
a variable bound to a functional value, whose type is function from integer
to integer (indicated with the notation int → int). Furthermore, it allows to
introduce another important feature of F#, which is lambda expressions.

52 Chapter 5. F#: a flexible multi-paradigm language

The syntax of a lambda expression is the following:

fun arg_1 arg_2 arg_N -> body

A lambda expression can be considered the definition of an anonymous func-
tion. To point out the equivalence of functions and any other kind of values, a
lambda expression can also be viewed as an instance or value of some function
type T → U. As like as any other value, lambda expressions can be passed as
parameters, used as return values and more.

F# provides two styles to pass arguments to a function. The first is known
as curried form, which is the most common approach to specify the argu-
ments of a function in functional programming. In the curried form, function
parameters and function call arguments are separated by whitespaces.

The second style is called tupled form, which is the most popular form
in object-oriented and imperative programming languages. In tupled form,
parameters and arguments are comma-separated. In the following listing the
curried form is used to declare foo, while bar is declared using the tupled form.

let foo a b c d = (a * b) + (c * d)
let bar (a,b,c,d) = (a * b) + (c * d)

let foo_result = foo 2 4 5 8
let bar_result = bar (2,4,5,8)

From the F# language definition point of view, tupled and curried functions
are not different from each other. In fact, a tupled function can be seen as
a curried function with one only parameter of a particular tuple type. For
example, the function bar in the previous example can be seen as a function
that takes an argument of type “tuple of four integers” and returns an integer.

Currying is a concept that goes beyond F# functions definition. In mathe-
matics and computer science, currying refers to the technique of transforming
a function that takes multiple arguments into a chain of functions each of
which takes one only argument. F# does exactly this: when the programmer
defines a curried function with N arguments F# represents it as a chain of N
one-argument functions.

Consider the following curried function:

let foo a b c = (a * b) + c

Chapter 5. F#: a flexible multi-paradigm language 53

To exemplify how F# represents this function we re-write it using lambda
expressions, allowing to view it as a chain of one-argument functions:

let foo = (fun a -> (fun b -> (fun c -> (a * b) + c)))

This rewriting changes neither the semantic of the function nor the way it can
be applied.

Currying is tighly related to the concept of partial application, which is a
powerful mechanism widely employed in our research. To understand partial
application, we consider again the curried function:

let foo a b c = (a * b) + c

Since foo is represented as a chain of one-argument functions, we can apply it
to one, two or three arguments. In other terms, all the following expressions
are valid:

let a = foo 2
let b = foo 2 3
let c = foo 2 3 4

Anyway, only the last application returns the expected value (2 ∗ 3) + 4. The
other expressions constitute a partial application of foo, since only a subset
of the three arguments has been provided. Once partially applied, a function
can be “finished to be applied” by supplying the remaining arguments to the
result of the partial application, as shown in the following listing:

// Foo has three arguments, partial application
let partial = foo 2
// Finish to evaluate foo
let result = partial 3 4

Among the other benefits, partial application allows to naturally and clearly
express functions and function calls (applications) composition. As already
said, F#, functions can be composed using the operator �, which is defined
as follows:

(>>): (’a -> ’b) -> (’b -> ’c) -> ’a -> ’c

54 Chapter 5. F#: a flexible multi-paradigm language

Given two functions f and g, their composition is expressed as:

f >> g

As like as in many other languages, function calls can be chained using the
well-known syntax:

g(f(argument))

F# also introduces a set of pipe operators that allows to chain function
calls in a left-to-right fashion, as illustrated below.

argument |> f |> g

Sometimes a function takes the result of another function as well as some
other input values. For example, consider a function f that performs a map-
ping on an input array and a function g that takes the resulting array and
multiplies each element for a specific scalar value.

let f (input:int[]) =
let output = Array.zeroCreate<int> (input.Length)
// Compute
...
// Return
output

let g (input:int[]) (m:int) =
Array.map (fun a -> a * m) input

The two functions can be composed as discussed so far:

let multiplier = 3

let composition = f >> g
// Regular call
let result = composition someArray multiplier
// Pipelining
let result = (someArray, multiplier) ||> composition

Chapter 5. F#: a flexible multi-paradigm language 55

Alternatively, we can partially apply g to the multiplier and compose the
result of partial application with f , as follows:

let multiplier = 3
// Compose f with the partial application of g
let composition = f >> (g multiplier)
// Regular call
let result = composition someArray
// Pipelining
let result = someArray |> composition

Partial application is extremely common when functions require a set of
input values that are known at different times, and plays an important role in
the entire parallel programming language proposed in our research.

Collections and collection functions

The F# language introduces three major collection types: Array, along with
multi-dimensional versions Array2D and Array3D, List and Seq (Sequence).
Arrays are traditional index-based collections of values, each of which can be
read and set. Lists are linked chains of values, each of which can be only read.
As like as arrays, lists can be accessed by index1. Finally, sequences are generic
enumerable sets of values.

For each of these types, F# exposes a set of functions to enable program-
mers to work on collections using the functional paradigm. In the following
list we describe some of the collections functions exposed by the Array type:

Array.map f a Builds a new array whose elements are the results of applying
f to each of the elements of a.

Array.map2 f a b Builds a new array whose elements are the results of ap-
plying f to the corresponding elements of the two arrays pairwise.

Array.filter f a Returns a new array containing only the elements of the
input collections a for which the given predicate f returns true.

Array.reverse a Reverses the input array a.

Array.sortBy f a Sorts the elements of the array a into a new array, using
the given projection f for comparison.

1Accessing lists by index incur an higher cost if compared to accessing arrays, since
accessing the i-th element of a list requires to access the previous i-1 elements

56 Chapter 5. F#: a flexible multi-paradigm language

Array.reduce f a Applies f to each element of the array a, threading an
accumulator through the computation. If the length of a is n, then
reduce computes f (... (f (f a[0] a[1]) a[2]) ... a[n-1]).

Collection functions can be composed to perform non-trivial computations
on collections. The following sample shows how to combine collection functions
to compute the histogram of an image. In the first step, the luminance is
extracted from RGB components using the map function. In the second step,
the luminance values are grouped by key through the Seq.groupBy function,
where the key is the index of the bucket where to store the value. The size of
each bucket is then computed and, finally, the resulting collection if converted
to array (since Seq.groupBy returns an instance of type Seq).

let image = // an array of pixels

let histogram =
image |>
// Get Luminance from RGB
Array.map(fun p -> (0.2126 * p.R + 0.7152 * p.G + 0.0722 * p
.B)) |>

// Classify into N buckets
Array.groupBy(fun l -> (int) (l * (float)N)) |>
// For each group compute the size
Array.map(fun key elems -> Seq.length element)

Given their flexibility and the ease-of-use, F# collection functions are very
popular in the F# programming community.

5.1.2 Data-types

F# defines some data types that are extremely unseful and productive. The
first is the tuple type. The following example illustrates a tuple containing
three values. The first an integer, the second is a float and the third is a
string.

// The type of tup is (int * float * string)
let tup = (20, 2.0, "hi")

The type of a tuple is represented with the notation type1 ∗ type2 ∗ ...typen.

In F#, programmers usually can’t change the value bound to a variable. In
other terms, variables are immutable. There are two ways to define variables
whose value can change during their lifetime. The first is by marking a variable

Chapter 5. F#: a flexible multi-paradigm language 57

as mutable, which allows new values to be assigned to it using the operator
”←”:

let mutable v = 0
v <- 10
v <- 142

Another common mechanism to implement a mutable state is known as ref-
erence cells (or ref cells). From the programmer’s perspective, ref cells play
much the same role as pointers in imperative programming languages.

Ref cells can be defined by using the keyword ”ref ”. The value hold in a ref
cell can be accessed using the de-reference operator “!” and can be changed
using the assignment operator “:=”, as shown in the following example.

let cell = ref "hi" //reference cell containing strings
cell := "hi there" //now cell contains "hi there"
let s = !cell //s = "hi there"

Another frequently used construct provided by F# is the discriminated
union. A discriminated union represents a finite, well-defined set of choices.
Discriminated unions often constitute basic blocks to build up more compli-
cated data-structures including linked lists and trees. The following listing
illustrates the syntax reserved to discriminated unions:

type NameOfTheType =
| Case1
| Case2 of dataType1
| Case3 of dataType2
...

//Declare variables of type NameOfTheType
let v1 = Case1
let v2 = Case2(value of type dataType1)
...

It can be said that discriminated unions do not appear much different from
enum values. This construct is instead more powerful, since it can be para-
metric (generic type) and can be defined recursively.

58 Chapter 5. F#: a flexible multi-paradigm language

For example, the following union recursively models a binary-tree data-
structure, where each node contains an integer and a string:

type Tree =
| Leaf of (int * string)
| Node of (int * string) * (tree * tree)

A particular example of discriminated unions is the optional type, whose
instances represent optional values. The instances of an optional type either
store a value or don’t store anything. The following example shows the defi-
nition of the optional type (built-in in the F# core) and its usage.

//’a is a generic type parameter
type Option<’T> =

| Some of ’T
| None

let v1 = None
let v2 = Some(2) //Type is Option<int>
let v3 = Some("hi there") //Type is Option<string>
...

5.1.3 Quotations

F# quotations is a feature that allows retrieval of AST of an arbitrary F# ex-
pression at runtime. In particular, thanks to F# quotations the programmer
can analyze the tree representation of the code and give it an arbitrary inter-
pretation. The interpretation of a quoted expression is also called evaluation.

By wrapping an expression into ”<@” and ”@>” the programmer “forces”
F# not to evaluate the expression but to build and return its AST.

For example, in the following case:

let sum = <@ 2 + 3 @>

F# doesn’t evaluate the expression 2+3 (assigning 5 to sum). Instead, sum
is assigned to an instance of the class Quotations.Expr<int>, whose (printed)
value is:

Call (None, Int32 op_Addition[Int32,Int32,Int32](Int32, Int32),
[Value (2), Value (3)])

Chapter 5. F#: a flexible multi-paradigm language 59

The class Quotations.Expr represents the generic type of AST nodes. The
actual kind of the expression contained in a node can be discovered using
pattern-matching. The F# namespace FSharp.Quotations defines a set of
patterns to check the specific kind of expression (if the expression encodes a
method call, a variable reference, the creation of a new object, a for/while
loop, etc.).

The quotations mechanism comes with a feature, called “splicing”, that
allows the composition of quotations. Thanks to the splicing operator “%”, a
complex quoted expression can be built starting from quoted sub-expressions.
The following listing shows how a quoted expression can created either by
defining it in one go or by composing independent sub-expressions:

//The expression (2 + 3).ToString() is defined at one go
let sumToString = <@ (2 + 3).ToString() @>

//First define the expressions ’’2’’ and ’’3’’
let two = <@ 2 @>
let three = <@ 3 @>
//Then compose them to form a sum
let sum = <@ %two + %three @>
//Refer sum and call ToString
let sumToString = <@ %sum.ToString() @>

Quotations are one of the major reasons why we choose F# to host our
high-level parallel programming model and to build the entire programming,
scheduling and execution layer. In fact, thanks to the ability to unobtrusively
obtain the abstract representation of code at runtime, we can transparently
analyse the code of high-level programs, perform optimizations and semantic
controls and produce a low-level representation of the program to schedule and
execute.

5.2 Conclusions

In this chapter we presented F#, an expressive multi-paradigm, open-source
and cross-platform language. We discussed the advantages that make F# the
most appropriate language to host our model for programming heterogeneous
platforms. The most relevant advantage resides in the set of constructs it pro-
vides, which can be naturally mapped to some of the most common concepts
of parallel programming, such as composition of parallel computations and
parallel skeletons. Moreover, F# comes with a nearly unique feature called
quotations, which allows the retrieval of the AST of arbitrary expressions at

60 Chapter 5. F#: a flexible multi-paradigm language

runtime. This means that it is possible to get “for free” the abstract rep-
resentation of the body of a function or of a class member. Thanks to this
feature, code analysis, optimizations and transformations can be performed
transparently, without the need for external programs, such as code parsers,
precompilers or rewriting tools.

Chapter 6

FSCL kernel language

The FSCL Kernel Language represents the result of our research in integrating
OpenCL parallel programming in a modern and powerful language, allowing
the expression of parallel applications in a flexible, safe and expressive way.
From the FSCL framework point of view, the kernel language is the layer that
exposes data-types, operators, functions and, globally, an object-model, to
write parallel programs from within F#. In this chapter we present the FSCL
programming model, we discuss its integration into F# and we summarize the
most relevant language features on which the model relies.

6.1 Introduction and main approach

In all the languages, APIs and libraries for parallel programming, one of the
most important aspects to consider is the balance between abstraction and
flexibility. An abstract and expressive language exposes an intuitive model
and a set of programming constructs that naturally shape the domain the
language is designed for. This makes the language easy to learn and intuitive
to use. The major drawback of the close fitting to a specific domain is the lack
of flexibility, which makes the language unfit to express computations that
cross the boundaries of the domain. To the contrary, low-level languages offer
a more generic model and often a broader set of data-types and functions,
which turn into a longer learning-curve and a higher level of programming
difficulty. Nonetheless, the flexibility of such languages makes them suitable
to express many computations that are difficult or impossible to code at high
abstraction levels.

As discussed in section 2.2, many high-level parallel programming libraries
[14, 22, 64] based on skeletons and patterns are characterized by a strong in-
flexibility. Whenever the structure of a computation can’t fit the provided

62 Chapter 6. FSCL kernel language

patterns, the computation has to be coded relying on a lower-level approach,
such as OpenCL or native threading. A question that arises when develop-
ing an application made of multiple, parallel computations, is how to connect
the computations coded with the high-level library to the ones that require
a low-level, more flexible model. Since in many cases interoperability with
computations developed beyond the library boundaries is not supported, pro-
grammers are forced to fallback to the low-level approach to code the entire
parallel application.

To increase the flexibility while preserving an overall high level of abstrac-
tion, some parallel libraries provide multiple levels of abstraction [48,57]. Un-
fortunately, these libraries are characterized by an inhomogeneity between the
models exposed at different levels. For example, Intel TBB high-level program-
ming is based on custom constructs/functions (i.e. parallel do, parallel for),
while low-level model is based on explicit flow-graph creation and intercon-
nection. This inhomogeneity tends to incur a longer learning-curve and make
it difficult to fully understand and control compositionality of computations
expressed at different abstraction levels.

The FSCL programming layer focuses on the problem of balancing abstrac-
tion and flexibility by offering multiple levels of programming, each of which
characterized by a particular combination of abstraction and flexibility. Un-
like other solutions, the various levels of abstractions are based on the same
functional object-model. Computations coded at different levels are therefore
fully composable with each other in a natural way.

Another aspect to consider when integrating a new model in a pre-existing
language is the set of native constructs that can be reused, without introducing
new language features but providing a different interpretation for the existing
ones. In our research we focus on the identification of those language constructs
that are expressive for parallel programming, which means they can be easily
and naturally mapped to some of the most important concepts of parallelism,
such as skeletons, stream execution and parallel data-flow. Whereas reusing
contructs saves programmer from learning a new set of functions and types,
reusing expressive constructs also allows to feel comfortable to program in the
new domain.

From the perspective of data-types, array and sequences are extremely
popular collection types, widely used in regular, sequential programming. F#
exposes a set of native functions to work on collection types, such as Array.map,
Array.reduce and Array.scan. Besides being popular in the F# programmer
community, these functions are also very expressive for parallel programming,
since they directly map to some of the most common data-parallel skeletons. In
addition, as discussed in section 5.1.1, F# exposes a set of function composition

Chapter 6. FSCL kernel language 63

operators that can be used to chain functions and function calls inline. As
like as collection functions, these operators represent built-in constructs that
map naturally to some fundamental concepts of parallel programming, such as
stream pipelines and dependencies in data-flow graphs.

In designing a parallel programming model to be integrated into F#, we
leverage this set of native types and functions, enabling programmer to write
parallel applications (re)using most of the language constructs they are already
accustomed to.

6.2 Kernel language programming and object

model

The FSCL kernel language programming model is based on three principal
abstract concepts: computing elements, computing expressions and computing
programs.

Computing element A computing element is a function that represents the
unit of execution of a parallel program. A computing element is atomic,
in the sense it cannot be divided into sub-units.

Computing expression A computing expression is recursively defined as ei-
ther a single computing element or a composition of computing expres-
sions.

Computing program A computing program is an user-defined host program
which coordinates the execution of one or more computing expressions.

In the rest of this Thesis, we refer to FSCL computing elements also using
the term “kernels”, because of their analogy to the OpenCL units of paral-
lel computing. Similarly, we refer to a computing expression using the term
“kernel expression” or, whenever not confusing, “expression”1.

The generic structure of an FSCL application is illustrated in figure 6.1.
The programming model is based on an FSCL program that execute one or
more computing expressions. The concept of FSCL program is analogous to the
OpenCL concept of host-side, which generally corresponds to the main func-
tion in a console application or to some other user-defined functions. The main
program orchestrates (composes) kernel expressions in an imperative/object-
oriented context. Data produced by a kernel expression is possibly bound to
variables and passed to successive kernel expressions.

1In some contexts, expression may refer to an element of the generic domain of F#
expressions

64 Chapter 6. FSCL kernel language

Figure 6.1: Generic structure of an FSCL application

Each computing expression can be a single computing element or a com-
position of elements. More precisely, by definition 6.2, the arguments of a
computing expression can be (sub)expressions in their turn, leading to a finite
but possibly unlimited hierarchy of expressions.

Unlike the composition of expressions in the imperative/object-oriented
FSCL program, which is user-defined, the composition of elements inside a
computing expression is intrinsic in the specific type of composition used (sec-
tion 6.2.2). In other terms, execution, coordination and appropriate data-
passing among multiple FSCL expressions in an FSCL program is on the user,
while coordination and data-passing among computing elements in the expres-
sion is built-in and implicit in the semantic of the composition.

Inside a computing expression, some of the elements composed effectively
represent parallel computations, while others can be user-defined regular (se-
quential) functions (e.g. mySequentialFunction in figure 6.1).

In section 6.2.2 we describe two major ways to apply this model, each
of which represents a different combination of abstraction and flexibility in
composing kernels.

6.2.1 FSCL computing elements

In the FSCL kernel language object-model computing elements are expressed
as particular F# functions. Throughout the rest of this section and except
where stated differently, with the term “function” we refer to either F# module
functions, static/instance methods or lambdas.

The FSCL programming model exposes three types of computing elements:

Chapter 6. FSCL kernel language 65

custom kernels, collection kernels and sequential functions.

Custom kernel A custom kernel is an F# function that represents an user-
defined computation that one-to-one maps to an OpenCL kernel.

Collection kernel A collection kernel is a native F# function working on
collection types (section 5.1.1) used to express a data-parallel skeleton.

Sequential function In FSCL, a sequential function is a native or user-
defined function that is neither a custom kernel nor a collection kernel.

Collection kernels are used to express skeletal parallelism in a simple but
effective way. The semantic of such functions is intrinsic and they can be used
with no changes from regular, sequential F# programs. Custom kernels instead
represent parallel computations that go beyond the boundaries of a skeleton
or pattern and allow the flexibility of low-level OpenCL kernel programming.

These two classes of functions represent different levels of abstraction to
express parallel computations. Custom kernels represent the lowest level of
abstraction and the highest flexibility, since they preserve the power of OpenCL
C programming to express a very wide range of algorithms. Collection kernels
instead allow hiding from OpenCL the programmer, raising the abstraction at
the price of a limited flexibility.

Functions that do not belong to one of these classes are treated as se-
quential functions which run on the CPU. The choice to support sequential
functions is mainly driven by the will to provide the highest composition ca-
pabilities. In many complex computations there are in fact some steps that
are inherently sequential. Supporting sequential functions allows the compo-
sition of these steps with parallel computations without the need to “slice” a
computing expression.

Custom kernels

At a glance, custom kernels are OpenCL kernels coded in F#. Depite some
minor syntax differences, every computation that can be coded as an OpenCL
C99 kernel can be expressed using an F# function as well.

66 Chapter 6. FSCL kernel language

In listing 6.1 and 6.2 we show, respectively, a vector addition kernel written
in OpenCL C99 and in FSCL (F#).

_kernel void VectorAdd (_global float* a, _global float* b,
_global float* c, int length) =

int gid = get_global_id(0)
if(gid < length)
c[gid] = a[gid] + b[gid]

Listing 6.1: OpenCL C99 kernel for vector addition

[<ReflectedDefinition; Kernel>]
let VectorAdd(a: float32[], b: float32[], c: float32[], wi:
WorkItemInfo) =

let gid = wi.GlobalID(0)
if gid < a.Length then

c.[gid] <- a.[gid] + b.[gid]

Listing 6.2: FSCL custom kernel for vector addition

The major differences between OpenCL C kernels and FSCL custom ker-
nels are the custom attribute Kernel associated with the F# function, that
allows the FSCL framework to recognize it as a kernel, and the additional func-
tion parameter of type WorkItemInfo, which holds all the information related
to the work-items space, such as the global/local work size and the space rank
(section 2.1). It would be possible to avoid this parameter and to encode each
work-space-related information using a function as in OpenCL C, preserving
syntax similarities. Nevertheless, passing this information using an additional
parameter makes it easier to fallback to multithread execution and to enhance
debugging capabilities, as discussed in section 8.4. In addition, the presence of
such a parameter is used to determine if a lambda function represents a ker-
nel. In listing 6.3 we show the vector addition kernel expressed using a lambda
function. Since programmers cannot associate the (static) Kernel attribute to
the lambda, the FSCL kernel language requires the presence of a WorkItem-
Info parameter to determine if a lambda represents a custom kernel. Thanks
to the introspection capabilities offered by the CLR, the FSCL framework is
able to inspect the functions parameters/arguments and to detect whether a
lambda represents a kernel, giving programmers an additional construct which
is particularly useful and productive to express lightweight computations.

Chapter 6. FSCL kernel language 67

fun(a:float32[], b:float32[], c:float32[], wi:WorkItemInfo) ->
let gid = wi.GlobalID(0)
if gid < a.Length then

c.[gid] <- a.[gid] + b.[gid]

Listing 6.3: FSCL custom kernel for vector addition expressed as a lambda

The FSCL framework exposes the entire OpenCL kernel language object-
model23, allowing programmers to write arbitrarily complex OpenCL kernels
without escaping the F# environment. Even though the programming abstrac-
tion level is the same of OpenCL, coding kernels as F# functions introduces
some advantages, such as type-checking and type-safety, intellisense and code
completion. In addition, FSCL introduces some higher-level constructs, listed
below, that can be used in coding custom kernels without compromising flex-
ibility:

Intrinsic array length When coding OpenCL C kernels, the length of each
array must be explicitely passed as an additional parameter. In FSCL,
programmers can code F# kernels without the need to pass the length of
each input/output array. Whenever the length of an array is required in
the kernel body, programmers can use the well-known Length property
or GetLength method.

Multi-dimensional arrays The OpenCL specification doesn’t support multi-
dimensional array parameters (i.e. pointer-of-pointers). Working on con-
ceptually multi-dimensional data in OpenCL requires to spent efforts to
calculate the proper index to access memory. In FSCL, programmers
can instead use native, multi-dimensional arrays (Array2D, Array3D).

Ref variables Reference cells can be employed to pass information to/from
the kernel without using arrays. Conceptually a ref cell represents the
storage for a value, which maps expressively to singleton arrays used in
OpenCL whenever the result of a kernel is a single value (i.e. an array
containing one only element).

Structs and tuples Structs and tuples containing primitive or structured
fields can be passed to F# kernels and can be created and used inside
the kernel body4. Tuples are particularly expressive as a shorthand rep-

2In particular, the OpenCL specification 1.2
3Currently only the part of the OpenCL API relative to images is not supported
4OpenCL supports structures containing primitive or struct types

68 Chapter 6. FSCL kernel language

resentation for very popular data types to process, such as 2D/3D points
in space and key-value pairs.

Return types The OpenCL specification demands that kernel functions re-
turn void. FSCL removes this restriction and allows F# kernels to return
any value. As discussed in the rest of this chapter, allowing custom ker-
nels to return values plays a key role in compositionality.

Generic kernels FSCL allows the definition and use of generic, custom F#
kernels. For example, programmers can write a parallel matrix multi-
plication once, based on generic element types supporting addition and
multiplication operators. Once defined, such a kernel can be executed
on matrices containing integer, float and other numeric elements.

Since all these high-level constructs and facilities are optional5, they do not
restrict the flexibility of custom kernels and can instead improve programmers’
productivity and shorten the kernel development process.

Among all these high-level features built on top of the OpenCL specifica-
tion, the most relevant is the ability for a kernel to return a value, since this
feature makes it possible for custom kernels to be composed with each other
and with other computing elements, such as sequential functions and collection
kernels.

Collection kernels

In section 5.1.1 we introduced some of the built-in F# functions to work on
collections of data. As already said, these functions are particularly popular in
the F# community, mainly due to their ability to express non-trivial collection
processing in a way that is succinct and easy to compose.

Besides being built-in and easy to use, they come with an intrinsic and
potentially parallel behaviour. For example, the map function specifies that
a particular user-defined operation is applied elementwise to the input collec-
tion, but it doesn’t specify that the operation is executed sequentially, from
the first to the last element. The same reasoning holds for many other col-
lection functions, like sort and filter, for which parallel implementations have
been long studied. Some restrictions must instead apply to specific collection
functions, like reduce and scan, when their semantic is parallel. For example,
parallel reduce and scan force the operator to be commutative and associative.

FSCL leverages these popular collection functions to build a higher level
of programming abstraction over custom kernel coding. Programmers can use

5The developers can still write kernels that return void or explicitely pass the length of
an array as an additional parameter

Chapter 6. FSCL kernel language 69

such functions to define parallel, skeletal computations without any syntax
change with respect to regular F# programming on collections. The FSCL
compiler and runtime are able to transparently discover and identify each
collection function used in a computing expression and to generate and execute
the corresponding parallel OpenCL implementation.

Sequential functions

As already discussed, a function that is not recognized as a custom kernel or
as a collection function is executed in the traditional way (i.e. sequentially on
the CPU).

While allowing sequential computations to be part of parallel programs
may sound counter-intuitive, there are various reasons why we choose to allow
the developers to use and compose them with custom and collection kernels.

The first reason is that some computations are inherently sequential [7,16].
Stream generation in stream-based algorithms, computing the optimal vector
in a positive linear program, Huffman coding, are all examples of problems for
which it is hard to define a parallel implementation or to gain a speedup from
parallel execution. Despite their nature, such inherently sequential computa-
tions are heavily used together with parallel ones to solve larger problems. For
example, Huffman coding is a fundamental step of the JPEG encoding/decod-
ing pipeline, in which other steps (e.g. Discrete Cosine Transform) are suitable
for massive parallelisation. By allowing sequential functions to be composed
with custom and collection kernels, we give a chance to express larger compu-
tations from within the FSCL framework, especially those where parallel and
sequential execution is interleaved.

A second reason to support sequential functions in kernel expressions is that
once inside quotations (section 5.1.3), the framework is able to inspect their
code and to acquire information otherwise difficult or impossible to retrieve.
Such information, like the way parameters are accessed, can be used to deeply
optimise the execution of the entire computing expression (section 8.2.2).

6.2.2 FSCL computing expressions

As discussed in the previous section, the FSCL kernel language exposes three
types of computing elements. To express richer and more complex computa-
tions, elements can be composed with each other. Computing elements compo-
sition represents a structured way to define how a set of elements are executed
and how data flow among each other.

Composition of computing elements in FSCL is very similar to composing
functions in regular F# programming. In particular, given two F# functions

70 Chapter 6. FSCL kernel language

f and g, there are two major ways to compose them:

• Function composition: f and g are composed according to the classic
definition of functional composition (i.e. g(f(x)) or, equivalently in F#,
x |> f |> g);

• High-order function: g can be an high-order function taking f as (part
of) the input (i.e. g(f, x) or, equivalently in F#, x |> g(f)).

These two forms of composition of functions strictly resemble the ones
exposed by the FSCL programming model to compose computing elements or,
more precisely, computing (sub)expressions.

Function composition Given four computing expressions e1, e2, e3 and e4,
the following expressions are valid computing expressions resulting from
function composition:

• e1 |> e2 and e2(e1)

• (e1, e2) ||> e3 and e3(e1, e2)

• (e1, e2, e3) |||> e4 and e4(e1, e2, e3)

Collection composition Given an FSCL computing expression e1 and a col-
lection function f (e.g. Array.map), f(e1) is an FSCL computing expres-
sion. The resulting expression represents the application of the pattern
defined by the collection function, where the operator (i.e. the functional
parameter of the collection function) is a computing expression6.

Please note that, formally, “>>” is the only F# operator for function com-
position, while the pipeline operators like “|>” are used to apply a function
or to chain function calls, which means the input must be defined. Anyway,
given an input of the appropriate type, function composition and pipeline op-
erators can be transformed one to each other. In addition, the FSCL object
model supports the F# function composition operator “>>” as like as the set
of built-in pipeline operators. In other terms, given two computing expres-
sions e1 and e2 of the appropriate types, both the following expressions are
recognized as valid FSCL computing expressions.

6For simplicity, we do not consider the difference between a collection composition op-
erator containing calls to kernels and one with only calls to sequential functions (which is
translated to an OpenCL kernel). A more precise definition of collection composition is
reported in appendix A

Chapter 6. FSCL kernel language 71

// Function composition of e1 and e2
let result = data |> (e1 >> e2)
// Pipe e1 and e2
let result = data |> e1 |> e2

For these reasons, from now on we refer to the result of applying a pipeline
operator with the term “function composition”.

It is important to underline that collection functions in FSCL have a twofold
purpose. From one side, they represent single units of parallel execution (i.e.
computing elements). From the other, they are used to compose other com-
puting elements or, more generally, expressions. The specific behaviour of a
collection function depends on the context. If the operator of a collection
function doesn’t call any custom/collection kernel, the function is treated as
a collection kernel and mapped to an OpenCL kernel. If instead the opera-
tor calls one or composes multiple kernels, the collection function acts as a
higher-order composer, similarly to high-order skeletons [14,22].

To clarify how collection functions are treated depending on the context
and how function and collection composition can be used together, we walk
through a real-world example: obtaining the average luminance from an image.
In F# the algorithm can be expressed using a composition of two collection
functions, as illustrated in the following listing.

let image = // an array of pixels (struct with R, G, B fields)

let histogram =
image |>
// Get Luminance from RGB
Array.map(fun p -> (0.2126 * p.R + 0.7152 * p.G + 0.0722 * p
.B)) |>

// Get the average
Array.average

Listing 6.4: F# program to compute the average luminance of an image

The exact same code can be used to (parallel) compute the average lu-
minance of an image in FSCL (listing 6.5). In particular, Array.map and
Array.reduce are considered collection kernels, for which the corresponding
parallel implementation can be generated. The only differences from the regu-
lar F# program are the quotation marks delimiting the expression and the call
to the Run() method to trigger the OpenCL-based parallel execution (chapter
8).

72 Chapter 6. FSCL kernel language

let image = // an array of pixels (struct with R, G, B fields)

let histogram =
<@ image |>

// Get Luminance from RGB
Array.map(fun p -> (0.2126 * p.R + 0.7152 * p.G + 0.0722 *
p.B)) |>

// Get the average
Array.average

@>.Run()

Listing 6.5: FSCL program to compute the average luminance of an image

If instead of processing a single image we want to process a set of images,
the resulting FSCL program is the one illustrated in listing 6.6. The computing
expression Array.map |> Array.average is now “wrapped” in another collection
function (another Array.map). The innermost map is considered a kernel
that processes in parallel the set of image pixels, while the outermost map is
treated as a collection composition, which defines how the operator expression
is executed and applied to the input collection of images.

let images = // an array of images

let histogram =
<@ images |>

// Process each image
Array.map(fun image ->

image |>
// Get Luminance from RGB
Array.map (fun p -> (0.2126 * p.R + 0.7152 * p.G +
0.0722 * p.B)) |>

// Get the average
Array.average)

@>.Run()

Listing 6.6: FSCL program to compute the average luminance of an array
of images

In the example the operator expression contains a function composition of
collection kernels. Nonetheless, since custom and collection kernels are both
F# functions, custom kernel can be used in place of collection kernels to express
computations that are difficult to fit in specific collection functions. In both
the cases (collection or custom kernels), a collection function whose operator
contains calls to kernels is treated as a collection composition.

Chapter 6. FSCL kernel language 73

For the formalization of the distinction between collection kernels and col-
lection compositions see appendix A, which contains the definitions of the
elements of the kernel language.

Array.map is probably the most relevant collection function among the
ones available to compose (sub)expressions. In a pure data-parallel model this
collection function represents the map skeleton, where each worker is in its turn
a data-parallel computation. In the example 6.6, each worker is a data-flow of
two nodes: the first performs a data-parallel map on the pixels of the input
image, while the second performs a data-parallel reduction. In a stream-based
execution, Array.map can instead represent the farm skeleton.

Even if one of the most expressive, Array.map is not the only collection
function that can be intuitively associated to a specific coordination of nested
parallel computations. For example, Array.filter is a built-in F# collection
function used to filter out the elements of the an input collection that do
not satisfy a particular condition. When the operator is an FSCL computing
expression containing kernel calls, this collection function can naturally express
the execution of a parallel computation that can result in a failure for certain
items of the input data. In chapter 10 we present additional examples of
function and collection composition.

6.2.3 Abstraction and flexibility in FSCL composition

According to the FSCL programming model, FSCL programs are user-defined
host programs that executes one or more computing expressions. Each com-
puting expression “executes” a single computing element (collection/custom
kernel, sequential function) or a set of elements/sub-expressions according to
the specific composition used.

While this model is fully supported by the FSCL framework, there are two
major “views” that can be built over it, each of which has a particular combi-
nation of abstraction and flexibility. These views represent the boundaries of
the composition model.

Pure function/collection composition Computing elements are composed
in a single expression using function and collection composition. The ex-
pression determines the shape of execution and the data flow between
computing elements. The FSCL main program executes this expression;

Impervative-style composition Each computing element forms a distinct
kernel expression. The FSCL program executes the set of expressions.
This means that the imperative/object-oriented user-defined program
determines the execution and the data flow among the elements.

74 Chapter 6. FSCL kernel language

Whereas collection kernels and custom kernels represent two different levels
of abstraction to express a parallel computation, these two views represent
different levels of abstractions to express parallel composition.

Function and collection composition determines the highest level of ab-
straction. Programmers compose computing elements in a single expression
and the FSCL main program executes it (figure 6.2), coordinating kernels and
passing data among them in a way that is intrinsic and trasparent to the user.

Figure 6.2: FSCL application employing pure functional composition

Imperative-style composition represents instead the highest level of flexi-
bility, leading to a code that closely resembles OpenCL host-side programs.
Programmers execute the computing elements independently from each other,
taking care of synchronization and data-passing (figure 6.3).

Figure 6.3: FSCL application employing pure imperative composition

Chapter 6. FSCL kernel language 75

The FSCL program illustrated in listing 6.6 is an example of pure functional
composition. The entire algorithm is encoded in a single computing expression,
which is executed by the programmer using the Run method.

In listing 6.7 we show an equivalent FSCL program that employ pure
imperative-style composition. As illustrated, each computing expression con-
tains a single kernel and is executed independently from the others. Data-
passing among the kernels is determined by the programmer, storing the result
of an expression and passing it to the successive expression. In addition, the
collection function Array.map used to apply the map-average kernels to each
input image is outside the context of the quotations. Given this, the function
is executed in the traditional fashion, leveraging the CLR (i.e. it is not treated
as a collection composition).

let images = // an array of images

let histogram =
// Process each image
images |>
Array.map(fun image ->

// Get avg luminance
let lumaData =
<@

image |>
Array.map (fun p -> (0.2126 * p.R + 0.7152 * p.G

+ 0.0722 * p.B))
@>.Run()
// Now compute average
let avg =
<@

lumaData |>
Array.average

@>
avg)

@>.Run()

Listing 6.7: FSCL program to compute the average luminance of an array
of images (imperative-style composition)

6.2.4 Notes on the execution model and on data con-
straints

When considering an FSCL computing expression, there are two aspects that
concern its execution: how single computing elements are executed and how

76 Chapter 6. FSCL kernel language

each composition function is handled. We briefly discuss the execution model
of computing expressions in this section since it leads to a restriction on data
usage. We consider the execution model in more details in chapter 8.

Parallel computing elements (custom kernels and collection kernels) are
translated to OpenCL kernels and run according to the OpenCL execution
model (section 2.1).

The runtime behaviour of function and collection compositions can be in-
stead manifold. A function composition of kernels can be interpreted as a
stream-based pipeline or as a simple data-flow where kernels are executed one
after the other. For example, in listing 6.6, the set of images can be consid-
ered as an unique block of data to process or as a stream of images7. Similarly,
each image processed in the sub-expression can be viewed as an atomic block
of data or as a stream of pixels. In case of pure data-parallelism, each step
of a function composition executes after the previous ones complete. In case
of stream-based execution, multiple steps can run concurrently on different
elements of the stream (e.g. on different images, on different pixels).

Similarly, a collection function like Array.map, when used to compose
sub-expressions, can map to multiple execution behaviours. The simplest
behaviour corresponds to sequential execution, which means that the sub-
expression forming the operator is applied sequentially and linearly to the set
of elements of the input data. In case of parallel execution, as already dis-
cussed, such a function can act as a stream-parallel farm or as an higher-order
data-parallel map.

Another aspect of function and collection composition is whether the execu-
tion is performed on the host or on the device. Traditionally, OpenCL doesn’t
support nesting kernels. For this reason, collection compositions cannot map
to OpenCL kernels which executes other kernels, but must instead run on the
host-side. In this perspective, single computing elements express device-side
parallelism while function and collection composition express host-side paral-
lelism (i.e. parallel execution of (parallel) kernels). With the recent release of
the specification 2.0, OpenCL introduces the chance for a kernel to trigger the
execution of other kernels independently from the host. This means that col-
lection compositions may effectively map to OpenCL kernels that coordinate
the execution of the (sub)kernels forming the collection operator.

From the programmers’ point of view, the execution model of collection
and function composition should not be a concern as long as it is completely
transparent. For the purpose of our research, we adopt a pure data-parallel
model, with multithread execution of function and collection composition, as

7This is particularly true if instead of an array of images we process a sequence (seq) of
images, since F# sequences are lazy and therefore naturally mapped to a stream of elements

Chapter 6. FSCL kernel language 77

discussed in chapter 8. We discuss the chance to extend this model to support
streaming and OpenCL execution of collection compositions in chapter 14.

The FSCL runtime, which is the component of the framework that handles
scheduling and execution of computing expression, guarantee per-expression
race-freedom. Given the concurrent execution of multiple sub-expressions, the
FSCL runtime restricts the computing elements composed in an expression to
be side-effect free. Kernels and sequential functions can access data declared
outside their scope, but accesses must be read-only. This means that the
only way to pass data between computing elements is through each element’s
return value. Given this restriction, concurrent sub-expressions coordinated
by multiple threads cannot lead to race conditions.

In case of expressions containing single, custom kernels (figure 6.3), the
runtime imposes a relaxed condition. The single kernel forming the comput-
ing expression can have side effects and, in particular, can write to arrays
declared and accessible outside the expression. In fact, the runtime guaran-
tees per-expression race-freedom, while race-freedom across-expressions must
be guaranteed by the programmer who writes the FSCL program. Since in
the specific case considered the expression is made of a single custom kernel,
the absence of per-expression race-conditions is guaranteed even if the kernel
has side-effects. The choice to introduce a relaxed condition for single, custom
kernels, is driven by the will to allow programmers coming from OpenCL C,
where kernels can read and write buffer parameters, to develop and execute
FSCL kernels in the traditional OpenCL-style.

6.2.5 Dynamic metadata

In OpenCL, programmers associate information with kernels and kernel param-
eters using modifiers and gcc-style attributes. Examples of such information
are the memory space used to allocate the buffer for a particular parameter,
the access rights to a buffer or the work size requested by a kernel.

In listing 6.8 we illustrate the usage of modifiers and attributes in an
OpenCL C kernel (bold font).

__attribute__((reqd_work_group_size(64, 0, 0)))__
_kernel VectorAdd(_constant float* a,

_constant float* b,
_global float c) {

int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

Listing 6.8: OpenCL C99 kernel with attributes

78 Chapter 6. FSCL kernel language

Information associated with kernels and kernel parameters through at-
tributes and modifiers are related to the implementation of the code more
than to its semantic. In other terms, this information represents a way to drive
the compilation and the OpenCL runtime behaviour. For example, switching
from the parameter modifier constant to global doesn’t affect the body of
the kernel8. Instead, it is information that the OpenCL driver uses to allo-
cate and to give access to the buffer matching the parameter. Similarly, the
reqd work group size attribute associated to a kernel doesn’t affect the com-
putation behaviour, but it’s instead a way to constrain the work-size when the
kernel is executed.

Since this information does not change the semantic of a kernel but instead
affect OpenCL compilation and execution, FSCL exposes them via the custom
attributes mechanism. Listing 6.9 shows the same attributes used in listing
6.8 but applied to an FSCL kernel.

[<ReflectedDefinition>]
[<WorkGroupSize(64,0,0)>]
let VectorAdd([<AddressSpace(AddressSpace.Constant)>]

float32[] a,
[<AddressSpace(AddressSpace.Constant)>]
float32[] b,
[<AddressSpace(AddressSpace.Global)>]
float32[] c,
wi: WorkItemInfo) =

let gid = wi.GlobalID(0)
c.[gid] <- a.[gid] + b.[gid]

Listing 6.9: FSCL kernel with static metadata

Metadata implemented as custom attributes are forced to be statically de-
fined and associated with a kernel, a parameter or to the return type. This
implies the need to change or duplicate the definition of an FSCL kernel when-
ever the value of a metadata must change. This is particularly problematic
in testing environments, where different combinations of address-space and
memory-flags for specific buffers might be subjects to several changes. In
multi-device systems, the same kernel may obtain the highest, overall per-
formance by using different buffer memory-flags for different devices9. Static
definition of metadata also prevents from using them to associate information
with collection kernels. In fact, unlike custom kernels, collection kernels lever-

8The only exception is the local modifier, which implies that the buffer is allocated
per-group and shared among the work-items in the group

9In many cases, CPUs and discrete GPUs obtains respective highest performance under
a different set of flags for the buffers used

Chapter 6. FSCL kernel language 79

age native F# collection functions, whose definition can’t be manipulated.
For these reasons, our reasearch leads to the definition of a more flexible

approach to associate meta-information to kernels, called dynamic metadata.

Definition 1. [Dynamic metadata] Given m an abstract meta-information,
p1, p2, .. pn its properties of type t1, t2, , .. tn, a dynamic metadata is defined
as a tuple formed by:

• A CLR custom attribute (object inheriting from System.Attribute) of
type A with properties of type t1, t2, .. tn;

• A function, called metadata-function, of type f : t1 ∗ t2 ∗ .. tn ∗ twrap →
twrap, where:

– twrap is an arbitrary type

– Given an instance el of type t and n arguments a1, a2, .. an,
f(a1, a2, .. an, el) = el. In other terms, the partial application of f
to a1, a2, .. an results in the identity function.

Custom attributes, which represent the “static representation” of dynamic
metadata, are used to associate information to a kernel definition or to a kernel
parameter/return type at coding-time. When the programmer wants to asso-
ciate the same information dynamically (i.e. at kernel compilation/execution
time) the corresponding metadata-function can be used to “wrap” a kernel call
or a kernel argument.

In the rest of this Thesis, when referring to FSCL dynamic metadata, we
use the term “metadata type” to indicate the type of the CLR custom attribute
or the metadata-function. When no distinction has to be made beween the
static and the dynamic representations of dynamic metadata, we use the term
“metadata value” to refer to either an instance of the CLR custom attribute
or to a call to the corresponding metadata-function. Finally, with the generic
term “metadata” we refer to an arbitrary meta-information associated to a
kernel.

In listing 6.10 we illustrate how the same metadata used in listing 6.9
can be associated to kernels and parameters dynamically. The WorkGroup-
Size meta-information has three integer properties, which are the work size
required for each dimension of the work-items space. In listing 6.9 a custom
attribute is used to associate that information to the kernel definition. Instead,
in listing 6.10 we wrap a call to the kernel in the WorkGroupSize metadata-
function, which takes an argument for each property of the custom attribute.
In case of metadata associated to a parameter, the metadata-function wraps
the corresponding argument.

80 Chapter 6. FSCL kernel language

let arr1, arr2, arr3 = ...
WorkGroupSize(64, 0, 0,

VectorAdd((AddressSpace(AddressSpace.Constant),
arr1),

(AddressSpace(AddressSpace.Constant),
arr2),

(AddressSpace(AddressSpace.Global),
arr3)))

Listing 6.10: FSCL kernel with dynamic metadata

Thanks to dynamic metadata, programmers can define kernels once and
compile/execute them multiple times with different sets of meta-information
associated.

Metadata are not only used to represent predefined OpenCL attributes and
modifiers. In fact, since the FSCL framework places various layers on top of
OpenCL, additional metadata that do not match any of the OpenCL built-in
attribute/modifier are provided. These additional metadata are used by the
FSCL framework layers, such as the FSCL compiler and the runtime.

One of the most relevant additional metadata is DeviceType, which is used
by the FSCL compiler to generate optimized OpenCL source code for a spe-
cific type of device (GPUs, CPUs, Accelerators, etc.). Since OpenCL doesn’t
provide any automatic code optimisation, this is an information without any
match in the OpenCL world. Instead, as described in chapter 7, the FSCL com-
piler is able to exploit this meta-information to output device-specific OpenCL
code for collection kernels.

Even though they do not match any OpenCL built-in attribute or modifier,
these additional information are exposed using the same dynamic metadata
infrastructure. This allows to pass meta-information to the set of framework
layers and to the OpenCL compiler/driver in a simple and homogeneous way.

Restrictions on dynamic metadata

Programmers are allowed to extended the set of dynamic metadata that can
be associated to kernels and to kernel parameters and return types. Nonethe-
less, there are some restrictions that applies to both built-in and user-defined
metadata.

The first restriction is the uniqueness of target type: if a metadata can be
associated to a kernel, it can’t be associated to a parameter or to a return type.
Similarly, metadata for kernel parameters cannot be used for kernels or return
types and metadata for return types cannot be used for kernels or parameters.

Chapter 6. FSCL kernel language 81

We formalize this restriction, which is particularly important for both the
FSCL compiler and the runtime (section 7.4.2).

Definition 2. [Uniqueness of dynamic metadata target type] Given a dynamic
metadata m, the set of target types T = {Kernel, Parameter, ReturnType}
and two targets t1, t2, we indicate with type(t1) ∈ T (type(t2) ∈ T) the type
of t1 (t2). Uniqueness of dynamic metadata target type states that m can be
associated to both t1 and t2 if and only if type(t1) = type(t2)

The second restriction demands at most one instance of a particular dy-
namic metadata for a specific target. In other terms, it is not possible to use
two dynamic metadata of the same type for the same target. For example, it
is not possible to specify the metadata DeviceType twice for a specific kernel.

Definition 3. [Dynamic metadata disjointness by type and target] Given two
dynamic metadata values m1 and m2, with M1 the type of m1 and M2 the type
of m2, and a target t instance of T ∈ {Kernel, Parameter, ReturnType}, if
both m1 and m2 are associated to t then M1 6= M2

6.3 Conclusions

In this chapter we presented the FSCL kernel language, which is the pro-
gramming and object-model exposed to express parallel computations and to
compose them.

The language is based on two levels of abstraction. At the higher level,
programmers employ collection functions and function composition. Since this
involves using and composing built-in F# functions without any change from
regular, sequential F# coding, programming at this level has the benefit of a
complete transparency from the underlying OpenCL layer and a zero-length
learning curve.

The flexibility issues of this programming level may come from two different
sides. From the first, a computing element can’t be expressed using a collection
function. In such a case, the developer can code a custom kernel and plug it
into the composition without the need to change the other elements, which
can continue to be expressed at the highest level of abstraction.

From the second, function and collection composition are not flexible enough
to express the coordination of computations that form the parallel program. In
this case, the computing expression can be divided into multiple parts (expres-
sions), executed by the FSCL program independently from each other, relying
on the program itself to coordinate the execution of the various parts.

The approach to FSCL programming can be summarised in two statements:

82 Chapter 6. FSCL kernel language

• Use F# collection functions to implement parallel computations as long
as they are flexible enough to express the computation to execute. If
a computation cannot be expressed using a collection function, use a
custom kernel;

• Compose computations using collection composition and function com-
position as long as these constructs are flexible enough to express the
logic of execution and the dependencies between computations. If differ-
ent parts of the parallel program are not feasible to be composed using
collection and function composition, place them in separated expressions
and coordinate them explicitely in the host program.

The main advantage of the model proposed is the ability to compose com-
puting elements at different levels of abstraction (collection kernels and cus-
tom kernels) and to mix function/collection and imperative-style composition.
Thanks to this, the developer can code at the most appropriate level with
fine-grained control, without the need to port the entire application to the
low-level when only part of it doesn’t fit the higher one.

Chapter 7

FSCL Compiler

In chapter 6 we presented the FSCL kernel language, which is the programming
model exposed by FSCL to express parallelism in a flexible and abstract way.
FSCL programmers leverage native collection functions and custom kernels
to develop parallel computations, which can be composed with each other
through function and collection composition. A single kernel or a composition
of multiple kernels is referred as computing (or kernel) expression.

In this chapter we introduce the result of our research towards a strategy
to map the high-level object-model exposed by the framework to the low-level
OpenCL model. This mapping is performed by the FSCL compiler, which is
the component of the framework resposible to process computing expressions
in order to generate:

1. A graph representing the dependencies/coordination of computing ele-
ments in the expression, called Kernel Flow Graph (KFG);

2. The OpenCL source code for each custom/collection kernel in the ex-
pression.

7.1 FSCL Compiler structure

The FSCL compiler is a source-to-source compiler whose main purpose is to
transform FSCL kernels into OpenCL kernel sources. This purpose is accom-
plished progressively through a compilation pipeline. One after the other, the
steps of this pipeline generate the target (OpenCL) representation of FSCL
kernels.

Since the compilation process is thought to be fully customizable and ex-
tensible (section 7.5), one of the core components of the compiler is the com-
piler configuration infrastructure (figure 7.1). This component is responsible

84 Chapter 7. FSCL Compiler

for taking a set of steps that should process, organize and validate them and
finally instantiate the compilation pipeline.

Figure 7.1: Structure of the FSCL compiler

On top of the configuration infrastructure the compiler exposes a set of
native compilation steps and data-structures. These components represent the
default structure and behaviour of the compilation process or, in other terms,
the default instance of the compilation pipeline. Without any specific user-
defined settings, this is the pipeline that executes whenever an FSCL comput-
ing expression is compiled.

As discussed in section 6.2.5, the FSCL kernel language allows programmers
to associate meta-information to kernels and to its paramters and return type.
Some of this information can be inspected and used by the compiler pipeline
to drive its own behaviour. Therefore a third, important component of the
FSCL compiler is the compiler metadata infrastructure, which is responsible
to retrieve and analyze kernel metadata.

Finally, the compiler project exposes an API to configure, extend and use
the compiler. The FSCL runtime (chapter 8) interacts with the compiler
through this API to compile the computing expression before being futher
processed and executed.

In the rest of this chapter we firstly describe the compilation process and
components from an abstract point of view. Then we present and discuss
the details of the native compilation pipeline. Finally, we briefly talk about
compilation extension and customisation.

Chapter 7. FSCL Compiler 85

7.2 Abstract compilation process and compo-

nents

From an abstract point of view, the compiler pipeline is a function that takes
an object and returns an object. There are three components involved in the
implementation of this function: steps, processors and type-handlers.

7.2.1 Steps and processors

The compiler pipeline is made by a set of steps (or stages), each of which is
made of a set of processors. As the name suggests, a step is a sequential,
independent processing action of the compiler pipeline. For example parsing,
preprocessing, AST transformation and code generation are steps. To perform
its tasks a step requires a set of processors, each of which accomplished a subset
of the tasks assigned to the step. For example the code generation step emits
the target code of a kernel. Each processor of this step generates the code
for a particular AST node. The transformation step manipulates the AST
to produce an abstract representation that is closer to the OpenCL language.
Each processor of this step transforms a particular language construct.

The steps of the pipeline are executed sequentially, from the first to the
last one. In other terms, the steps orchestration is sequential. While steps
are orchestrated in a fixed way, the orchestration of the processors inside a
step depends on the particular step considered. Some steps may test their
processors against the input and select the first processor that is able to process
it. Other steps may execute the entire set of processors in the same way the
pipeline executes steps.

The orchestration establishes the model used to run the set of processors
of a step or the set of steps of a pipeline (e.g. all the processors, the first
suitable, all until one fails), but it doesn’t specify the order in which the
steps/processors are considered. The specific order of execution of steps/pro-
cessors is determined from the dependencies that each step/processor declares.
To express inter-processor and inter-step dependencies FSCL employs custom
attributes. Each step and processor of the compiler pipeline is characterized
by the following set of information needed to determine the execution order.

ID A globally unique step/processor identifier.

Step ID For a processor, the globally unique identifier of the step it belongs
to.

After The step/processor dependencies, represented by a list of IDs of step-
s/processors that must be executed before the current one.

86 Chapter 7. FSCL Compiler

Before A list of IDs of steps/processors that must be executed after the cur-
rent one.

In most of the cases the dependency list provided by After is enough to or-
der processors/steps and the Before property is left unspecified. Nevertheless,
this information is needed to guarantee the highest flexibility in extending and
configuring the compiler (section 7.5).

Given the set of inter-dependencies metadata, the configuration infrastruc-
ture is able to build a pipeline where the execution order of steps and processors
respect all the inter-step and inter-processor dependencies. In case of depen-
dencies too strict to be respected (e.g. cyclic dependencies), the infrastructure
reports an error at pipeline-build time.

Figure 7.2 shows an example of ordering a set of steps. From the partial
order determined from the Before/After properties of each step, an absolute
order is built. Note that C → A→ B → D is another valid absolute order.

Figure 7.2: Example of partial and absolute ordering of steps

Chapter 7. FSCL Compiler 87

7.2.2 Type-handlers

In a compilation process, the set of types employed in the high-level model
generally differs from the set of low-level data-types. In the specific case of
F#-to-OpenCL compilation, the set of F# types is wider than the set of valid
OpenCL C99 types. In addition, OpenCL only allows to extend the set of
types involved in a kernel with custom structs, while F# gives more freedom
to declare custom types.

We can identify two sets of types involved in the compilation process: source
types and target types. In FSCL-to-OpenCL compilation, the source types are
all the types that the programmers can use in coding FSCL computations.
During the compilation, many of these types are mapped to different types to
obtain a type-system that is closer to the OpenCL one. For example, since
OpenCL doesnt support multi-dimensional arrays, each multi-dimensional ar-
ray is replaced with the corresponding one-dimensional version, manipulating
indexing expressions to guarantee the correctness of accesses. F# records and
ref cells are another example of source types that are transformed during com-
pilation. Records are replaced with structs and ref cells with singleton arrays.
At the end of this transformation, the set of types employed in the representa-
tion of the code is restricted to a subset of the original one, which is what we
call target types. Type-handlers come into play to produce the target OpenCL
code for this restricted set of types. In other terms, a type-handler is an entity
responsible for declaring a set of valid target types and producing the string
representation for each of them. For this reason, type-handlers are mainly used
in the latest compilation steps (codegen), where the target code is generated.

In table 7.1 we show the matching between source types, target types and
OpenCL code representation for some valid source types. The matching is
established by the set of type-handlers involved in the compilation process. In
the table, we specifically show the source-target matching established by the set
of native type-handlers (i.e. type-handlers of the native compilation pipeline).
Compiler extensions allow developers to define additional type-handlers or to
replace the existing ones.

As the table reports, some types are identical across their source, target
and OpenCL code representation (e.g. int). Other data-types, like float32
have only a different OpenCL string representation. Multi-dimensional array
types (e.g. int[,]) are replaced with the corresponding one-dimensional array
types. The target type for a reference cell of type T ref is the array type T[].
Finally, complex source types like tuples and F# structures are replaced with
target struct types.

88 Chapter 7. FSCL Compiler

Source type Target type OpenCL code

int int “int”

float32 float32 “float”

float float “double”

T[] T[] “T*”

T[,] T[] “T*”

T ref T[] “T*”

T * U

type tuple_TU =
struct

val mutable fst: T
val mutable snd: U

end

‘‘struct tuple_TU {
T fst;
U snd;

}’’

Table 7.1: A set of FSCL source types with matching OpenCL target types
and code representation

7.3 Coordination of steps, processors and type-

handlers

The core of the FSCL compiler is an infrastructure that exposes basic, abstract
data-types for steps, processors and type-handlers and a mechanism to load,
configure and organize these components into a pipeline. The compiler core
expects a set of concrete components to be defined by inheriting from the
appropriate pre-existing abstract types (e.g. IStep, IProcessor, ITypeHandler)
and to be submitted to the pipeline builder. The builder validates the inter-
steps and inter-processors dependencies, instantiates each steps with its set of
processors and provides each step/processor the set of type-handlers for type-
checking and target-type code generation. The result of the pipeline building
process is an object that exposes a Compile method. When invoked, this
method triggers the sequential execution of the steps in the appropriate order
and returns the value produced by the last one.

In the next section, we discuss the native compilation pipeline, which is
made of a set of concrete components that implement FSCL-to-OpenCL map-
ping. As already said, this is a specific instance of the unlimited set of pipelines
that can be built over the FSCL compiler core. In section 7.4.3 we briefly dis-
cuss the possibilities that the FSCL compiler offers to extend/replace the set
of native steps thanks to the abstraction and the generality of its core.

Chapter 7. FSCL Compiler 89

7.4 Native compilation process and components

The FSCL compiler comes with a native set of steps, processors, type-handlers
and metadata which are used to build the default (native) compilation pipeline.
Whenever programmers do not specify a different configuration, this is the
compilation pipeline executed to process FSCL computing expressions.

The input of the native compilation pipeline is a quoted computing ex-
pression, that is a composition of collection/custom kernels and sequential
functions wrapped into an F# quotation. As discussed in section 5.1.3, F#
quotations allow us to unobtrusively obtain the AST of the quoted expression,
which can be consequently analysed and transformed.

The output of the native compilation is a data-structure, called Comput-
ing Expression Module (CEM), which contains all the information produced
during the compilation process, including the graph that represents the com-
position of the elements in the expression and the OpenCL source code for
each kernel. We describe this data-structure in section 7.4.2.

In this section we firstly describe the process of parsing a computing ex-
pression to build the Kernel Flow Graph, which is the data-structure used to
represent the composition of computing elements. Then, we introduce the con-
cepts of kernel equivalence and metadata equivalence, which are used to identify
a particular kernel and to characterize the result of its compilation. This is
particularly important to enhance the efficiency of the whole FSCL framework
and, especially, to avoid the compilation of already-compiled kernels. Finally,
we briefly describe the set of native steps and the native data-structures used
to represent the output of the compilation of a kernel and the output of the
entire compiler pipeline.

For simplicity, in this section we use the terms “compilation” and “com-
piler” to refer to the native compilation process and to the compiler built with
the native set of components. As discussed in the next section, a part of the
pipeline (more precisely, the first step) is applied computing-expression-wise,
which means that the steps are executed only once for the whole input expres-
sion, while the rest of the pipeline is applied kernel-wise, that is independently
to each kernel in the expression. With the term “kernel-compilation (pipeline)”
we refer to the set of consecutive steps in the pipeline that globally perform
FSCL-to-OpenCL compilation of single FSCL kernels.

7.4.1 Expressions parsing, Kernel Flow Graph and Com-
puting Expression Module

When an FSCL computing expression is submitted for compilation, the first
step performed by the native compiler pipeline is to build the Kernel Flow

90 Chapter 7. FSCL Compiler

Graph (KFG) in order to represent the composition of computing elements
inside the expression.

In line with the programming model presented in chapter 6, the KFG can
contain four types of nodes:

• Kernel nodes, which represent calls to collection and custom kernels;

• Sequential nodes, which represent calls to functions executed sequentially
on the host;

• Collection composition nodes, which encapsulate the composition of sub-
expressions using high-order collection functions;

• Data nodes, which represent the input (arguments) of the expression.

In the KFG there is no node representing function composition, since it is
implicitly encoded in the dependencies between the nodes of the graph.

In figure 7.3 we show the KFG created for a computing expression that
encodes the K-Means clustering algorithm [40]. The input of the computation
is the set of points to cluster and the initial set of cluster centers. It is important
to note that while the set of points is the input of the first kernel in the
expression (i.e. Array.groupBy), the cluster centers are passed to the (utility)
function nearestCenter. The compiler is able to recognize references to global
variables/properties1 from within computing expressions and to generate the
appropriate KFG data nodes. The OpenCL source of elements referencing
global data is also properly generated to guarantee data is passed correctly
from the top-level node to the specific, nested elements where the reference is
found. In other terms, the programming model and the compiler are able to
handle closures and partial-application (section 5.1.1).

Once processed by Array.groupBy, data is passed to the Array.map node.
Since the operator of this collection functions is a composition of kernels, the
function is treated as a collection composition. Therefore, a macro node is
created to represent it, while for the sub-expression forming its operator a
subgraph (sub-KFG) of two nodes is created. The input/output of the macro
node is properly connected to the input/output of the sub-graph. The first
element in the sub-expression is a collection kernel (Array.reduce), while the
second and last element is a sequential function that finalizes the calculation of
the cluster centroid. Once built, the KFG is passed to the successive steps of
the compilation pipeline. Currently, the compiler doesn’t perform any global

1With “global variables/properties” we indicate variables/properties declared outside
the context of the quotation and, more generally, data that can be referenced from multiple
kernels/functions

Chapter 7. FSCL Compiler 91

analysis or transformation on the graph, which is in fact an immutable data-
structure. Nevertheless, the KFG and the information produced for each kernel
during compilation may be employed to fuse together or to optimize some
nodes in the future. We discuss potential KFG transformations techniques in
section 14.1.

Figure 7.3: Example of the KFG of a computing expression

As already briefly discussed, the first step of the native compilation pipeline
(i.e. the computing expression parser) instantiates a data-structure called
Computing Expression Module (CEM), which contains the KFG along with
other relevant information. The rest of the pipeline is applied kernel-wise,
which means that each step is applied repeatedly and independently to each
kernel node in the KFG (figure 7.4). Sequential functions are not compiled,
since they do not need any processing to be properly executed on the CLR. At
the end of the pipeline the CEM contains, in addition to the KFG, the output
of the compilation of each kernel node (including the OpenCL source code).

92 Chapter 7. FSCL Compiler

Figure 7.4: Computing Expression Module instantiation and filling

7.4.2 Kernel compilation, kernel equivalence and Ker-
nel Module

Once the KFG has been built, the compiler processes the set of kernel nodes
independently from each other. The compiler is a cross-expression stateful
compiler, which means it maintains a state across successive compilations of
computing expressions. In particular, the compiler keeps a cache with the
kernels compiled so far. When a kernel node is processed, the compiler firstly
checks if the cache contains an equivalent kernel. In such a case, the kernel
is not processed by the kernel-compilation pipeline but cloned from the cache,
saving compilation overhead (figure 7.5).

For this process to work, a criteria of equivalence of kernels must be defined.
In the rest of this section we formalize this definition and we present the data-
structure used to store the information resulting from the compilation of single
FSCL kernels.

Equivalence of explicit kernels, collection kernels and lambdas

In the CLR, F# module functions and static/instance methods can be iden-
tified with an object of type MethodInfo. Since instances of such type can be
tested against equality and given that FSCL custom kernels are (user-defined)
F# functions, the MethodInfo object represents the ideal kernel identifier.

In case of collection kernels, such as Array.map, the output of the com-
pilation process is not only affected by the particular collection function, but
also by the operator applied to the elements of the collection. For this reason,
collection functions are identified by a tuple, where the first item is the Method-

Chapter 7. FSCL Compiler 93

Figure 7.5: Kernel compilation and caching

94 Chapter 7. FSCL Compiler

Info associate to the collection function, while the second is the MethodInfo of
the operator. While Array.map accepts as argument the operator to apply to
each element of the input, some other collection functions, like Array.reverse,
do not expect any. In such a case, the kernel can be uniquely identified by the
MethodInfo of the collection function.

In FSCL, programmers can also use lambda functions to express kernels
and collection functions operators. Even though each lambda object expose an
Invoke method whose MethodInfo may be used to uniquely identify it, the type
and the container assembly of lambda functions are dynamically generated,
which makes testing for equality fail.

For this reason, in case of lambdas we apply a structural equivalence ap-
proach. Given two lambda functions, they are considered structurally equiva-
lent under alpha conversion (or alpha renaming) if the respective ASTs have
the same structure and each matching pair of nodes are equal up to a coherent
variable renaming.

To formalize the concept of structural equivalence of ASTs, let’s define node
(or expression) equality the equality definition provided by F# for instances
of the F# Expr type. Given two nodes, we say that they are equal if and only
if they hold the F# expression equality. We use the “=” operator to express
the equality of nodes.

Given a node n and two variables var1 and var2 of the same type, we
denote with n[var2/var1] the node obtained by replacing each reference to var1
with a reference to var2.

We can now introduce the concept of structural equivalence under alpha
conversion for AST nodes. We use the “≡struct” symbol to express this equiv-
alence.

Definition 4. [Node structural equivalence under alpha conversion] Given two
AST nodes n1 and n2, they are structurally equivalent under alpha conversion
if and only if one of the following conditions is satisfied.

• n1 = Let(var1, val1, body1), n2 = Let(var2, val2, body2), var1 and var2
are of the same type, val1 ≡struct val2 and body2[var1/var2] ≡struct body1

• n1 = For(var1, st1, en1, incr1, body1), n2 = For(var2, st2, en2, incr2, body2),
var1 and var2 are of the same type, st1 ≡struct st2, en1 ≡struct en2,
incr1 ≡struct incr2 and body2[var1/var2] ≡struct body1

• n1 = n2

The definition considers let-bindings and for-loops independently from the
rest of the AST node types, since in the FSCL kernels these constructs are the
only two that can introduce a new variable in the context.

Chapter 7. FSCL Compiler 95

Once defined structural equivalence for arbitrary nodes, we can define the
equivalence of ASTs.

Definition 5. [AST structural equivalence under alpha conversion] Given two
ASTs with n1 and n2 the respective root nodes, they are structurally equivalent
under alpha conversion if only if n1 ≡struct n2 (definition 4)

Structural equivalence of ASTs is more powerful then code string equality,
since it holds also when renaming the set of variables declared. For exam-
ple, the following two lambdas holds structural equivalence, even though their
string representations are different from each other.

fun a b c ->
let mutable d = a * 2
for i = 0 to b do

d <- d + i
c * d + 2

fun e f g ->
let mutable h = e * 2
for j = 0 to f do

h <- h + j
g * h + 2

Listing 7.1: Equivalent lambdas under alpha conversion

In addition, testing structural equivalence is more efficient than comparing the
string representation of two ASTs, especially for verbose kernels.

To summarize what has been discussed in this section, we generalize the
concept of equivalence of kernels. We firstly introduce the concept of equiva-
lence of functions, for which we use the symbol ≡fun.

Definition 6. [Function equivalence] Given two module functions, instance/static
methods or lambdas f1 and f2, they are considered equivalent if and only if
one of the following conditions is satisfied.

• f1 and f2 are modules functions or instance/static methods, M1/M2 is
the MethodInfo associated to f1/f2 and M1 = M2

• f1 and f2 are lambdas and f1 ≡struct f2

We can now formalize the concept of kernel equivalence. We use the symbol
≡ker to denote equivalence of kernels.

96 Chapter 7. FSCL Compiler

Definition 7. [Kernel equivalence] Given two kernels k1 and k2, from the
compilation point of view they are considered equivalent if and only if one of
the following conditions is satisfied.

• k1 and k2 are custom kernels or lambdas and k1 ≡fun k2

• k1 and k2 are collection kernels, F1 = {f11, ..f1n} and F2 = {f21, ..f2n}
are the respective sets of operators (arguments) to apply, k1 ≡fun k2 and
∀i=1 .. nf1i ≡fun f2i

Equivalence of compiler metadata

In the previous subsection we discussed the concept of equivalence of kernels.
Two equivalent kernels represent identical input computations for the kernel-
compilation pipeline.

As introduced in section 6.2.5, programmers can use dynamic metadata to
drive the compilation output and, more specifically, the steps and processsors
behaviour. For example, the output of the compilation of a collection func-
tion is affected by the DeviceType metadata. If the device type specified is
GPU, GPU-optimised code is produced. Otherwise, CPU-optimised code is
generated. Another item of metadata that affects the compilation output is
AddressSpace, which is used to declare the memory space used to allocate the
buffer for a particular parameter.

Therefore, whereas for kernel equivalence it is sufficient to describe when
two kernels are considered the same input, the concept of metadata equivalence
must be introduced to define when the compilation process produces the exact
same output.

Even if CLR structural equality may be employed to compare metadata, the
concept of equivalence of two dynamic metadata is not based on the metadata
themeselves, but on the steps or processors whose behaviour is affected by the
metadata. In fact, given a metadata type whose domain is made of a set of
values, a step or processor may behave differently for some combinations of
values while behaving in the same way for other combinations. For example,
the collection kernels parser, which is part of the native compiler components,
produces diffent results depending on whether the value of the DeviceType
metadata is “Cpu” or not. The code generated when DeviceType is “Gpu”,
“Accelerator” and “Other” is the same. This means that, from the parser
point of view, two DeviceType metadata values are equivalent when they are
both “Cpu” or both different from “Cpu”. Another step may use the same
metadata but produce different results under different conditions.

Given that the equivalence of metadata, in terms of the output produced
by the kernel-compilation, is determined by the steps and processors in the

Chapter 7. FSCL Compiler 97

compilation pipeline, it is up to each step and processor in the pipeline to
declare:

• The types of metadata that can affect the step/processor behaviour

• For each metadata type, a comparer used to establish when two meta-
data values are equivalent, in terms of whether they lead to the same
step/processor behaviour

We now introduce the formal concept of equivalence of sets of metadata
values, which is used to establish the equivalence of the outputs of the kernel-
compilation pipeline for a given kernel under different sets of associated meta-
data values. By definition 1, a dynamic metadata is made of a (static) CRL
custom attribute and of a metadata-function to associate the metadata to a
specific target at runtime. In this section we consider only the static represen-
tation of metadata. Metadata equivalence can be easily extended to metadata-
functions by transforming the set of metadata-functions associated with a ker-
nel (call) to the set of corresponding instances of CLR custom attributes. The
compiler actually applies this transformation in order to reduce the twofold
representation of dynamic metadata values to uniform representation based
on CLR custom attributes.

Let’s define a metadata comparer for a metadata type M a function that
given two values of M returns true if they are equivalent and false otherwise.

metadata comparer : M ∗M → bool

The metadata equivalence for a set of given comparers can be formalized
ad follows.

Definition 8. [Metadata equivalence] Let M be a metadata type (type inher-
iting from the built-in Attribute type) and MC = {mc1,mc2, ..mcn} a given
set of metadata comparers for M . For each pair of metadata values m1, m2

where typeof(m1) = typeof(m2) = M , m1 is equivalent to m2 under the set
MC (m1 ≡MC m2) if and only if:

∀mc ∈MC : mc(m1,m2)

Given a compilation pipeline and the set M of metadata types declared
to be used by the pipeline steps and processors, the set of metadata values
specified by the programmer may not match M . In fact, programmers may
employ metadata that are not used by the compiler (e.g. they may be used by
the runtime) or may not specify a value for one or more compiler metadata.

98 Chapter 7. FSCL Compiler

For this reason, we define the concept of complete set of metadata values,
which represents a transformation of the input set of metadata values to per-
fectly match the set of metadata types declared to be used by the compiler
components.

Definition 9. [Complete set of metadata values] Given a set of metadata types
M = {m1,m2, .. mn} and a set of metadata values MV = {mv1,mv2, .. mvm},
we indicate with default(m) the default value of a metadata type m. We define
complete set of metadata values for M under the set of comparers MV the set
MV[M] where:

• ∀m ∈M : ∃mv ∈MV : typeof(mv) = m→ mv ∈MV[M]

• ∀m ∈M : @mv ∈MV : typeof(mv) = m→ default(m) ∈MV[M]

The construction of the complete set of metadata values filters the input set
of metadata values from each elements whose type is not declared to be used
by any component of the pipeline. In addition, it adds to the set the default
value of each metadata type used by the pipeline that is left unspecified by
the programmer.

Given a pipeline with a set M of metadata types that the steps/processors
declare, we can partition M into three subsets KM,RM,PM , which are re-
spectively the set of metadata that can be associated to a kernel, to a kernel
return type and to a kernel parameter. We call this separation per-target-type
metadata partition.

Given the restriction imposed by definition 2, we know that if a metadata
type M belongs to one of this three partitions it can’t belong the other two.

Given a kernel K, Pars its parameters and MV the set of metadata values,
we can partition MV into three subsets:

• KMV : the set of metadata values associated to the kernel;

• RMV : the set of metadata values associated to the kernel return type;

• PMV : the set of metadata values associated to the kernel parameters.
PMV = {pmv1, pmv2, .. pmvn}, where n = |Pars| and pmvi (i = 1 .. n)
is the set of metadata values for the ith parameter.

We call this separation per-target metadata-value partition.
With the definitions provided so far, we can now describe when two sets

of input metadata values are equivalent to each other. As in definition 9, we
denote with typeof(m) the type of a metadata value m and with MV[M] the
complete set obtained by matching a set of metadata values MV with a set of

Chapter 7. FSCL Compiler 99

metadata types M . Given a set of comparers MC, we denote with MC(M)
the subset made of all the comparers for the metadata type M . Finally, given
the per-target partition {KMV,RMV, PMV } of the metadata values specified
for a kernel K, we denote with PMV (p) the set of metadata values for the
parameter p, for each parameter p of K.

Definition 10. [Equivalence of sets of metadata values] Let P be a pipeline, M
the set of metadata types used by its components and MC the set of metadata
comparers. Let {KM,RM,PM} be the per-target-type metadata partition of
M .

Let K be a kernel and Pars its set of parameters.
Given MV1, MV2 two sets of metadata values, let {KMV1, RMV1, PMV1}

and {KMV2, RMV2, PMV2} the respective per-target metadata-value parti-
tions of MV1[M] and MV2[M] (complete sets of metadata values).

We say that MV1 is equivalent to MV2 for the pipeline P (MV1 ≡P MV2)
if and only if all the following conditions are satisfied:

• ∀m1 ∈ KMV1,m2 ∈ KMV2 : M = typeof(m1) = typeof(m2) →
m1 ≡MC(M) m2

• ∀m1 ∈ RMV1,m2 ∈ RMV2 : M = typeof(m1) = typeof(m2) →
m1 ≡MC(M) m2

• ∀p ∈ Pars : ∀m1 ∈ PMV1(p),m2 ∈ PMV2(p) : M = typeof(m1) =
typeof(m2)→ m1 ≡MC(M) m2

When the FSCL compiler is instantiated, it collects the set of metadata
types exposed by the steps and processors in the pipeline, together with the
related comparers. For each kernel node of the KFG, metadata-values asso-
ciated to the kernel, to the parameters and to the return type are extracted
and collected into separated sets. Then, each individual set is matched (defi-
nition 9) with the corresponding set of metadata types collected at compiler-
instantiation time. If a value of a metadata type is not in this set, the value is
discarded. If instead the value of a metadata type is missing, a default value
is created. The resulting complete set of metadata values is stored with its
target for later use, as explained in the next section.

Compilation invariance and Kernel Module

In the previous sections we formalized the concept of kernel equivalence and of
metadata equivalence. Kernel equivalence defines when two kernel nodes repre-
sent the same input of the kernel-compilation pipeline. Metadata equivalence

100 Chapter 7. FSCL Compiler

instead defines when, given two sets of metadata values, the kernel-compilation
pipeline behaves in the same way regardless which set is used.

In this section we merge the two concepts to define when the compilation
is invariant to a kernel.

Definition 11. [Kernel compilation invariance] Given a kernel-compilation
pipeline P and, two input kernels k1 and k2, the respective sets MV1 and MV2
of metadata-values, we say that P is invariant to the transformation of input
(k1,MV1)↔ (k2,MV2) if and only if the following conditions are satisfied:

• k1 ≡ker k2

• MV1 ≡P MV2

This definition is particularly important because it states that the kernel-
compilation part of the native pipeline is a function of the input kernel and of
its set of metadata values. In other terms, given two FSCL kernels, we only
need to obtain the respective MethodInfo objects (or the AST of the body in
case of lambdas) and the sets of metadata values associated to them to know
whether the compilation of two kernels will produce the exact same output.

This information is extracted by the kernel parsing step, which is the sec-
ond step of the native compiler pipeline, and used to instantiate a Kernel Mod-
ule (KM) data-structure for each kernel node. Once instantiated, this data-
structure is filled and modified by the rest of the kernel-compilation pipeline
steps. The only immutable information stored in a Kernel Module is the iden-
tifier of the kernel (MethodInfo or AST) and the set of metadata values, which
together identify the module (section 7.4.3).

The other information, progressively built during the compilation, is sum-
marized in the list below:

Kernel data The set of information about the kernel, such as the list of
parameters, the return type and the AST of its body.

Functions data The set of information about utility functions called by the
kernel.

Directives The list of directives that need to be inserted when generating
the target code. An example is #pragma OPENCL EXTENSION cl khr
fp64: enable, which is a directive required to enable double precision in
OpenCL.

Global types The set of custom types (e.g. structs, tuples) used in the kernel
or in the utility functions.

Chapter 7. FSCL Compiler 101

Code The OpenCL code generated for kernel, functions, global types defini-
tions and directives.

Kernel and function data contain additional, structured information, such
as the set of original and generated (e.g. explicit size for arrays) parameters.
In addition, for each parameter the compiler inspects the AST to determine
the way it is accessed (read, write, read and write) and stores this information
together with the parameter itself. This information coming from AST analysis
is exploited by the runtime to optimise buffer allocation and reuse during
execution (chapter 8).

From the definition 11, we can derive the following definition of equivalence
of Kernel Modules, which is the property used to check if the kernel cache
contains an already-compiled equivalent kernel.

Definition 12. [Kernel Module equivalence] Given a kernel compilation pipeline
P and two input kernels k1 and k2, let km1 and km2 the Kernel Modules re-
sulting from respectively parsing k1 and k2. Let kid1, kid2, MV1 and MV2
the identifiers (MethodInfo or AST node) of the two kernels and the sets of
metadata values contained in the respective Kernel Modules. We say that
km1 is equivalent to km2 for the pipeline P (km1 ≡P km2) if and only if P is
invariant to the transformation (kid1,MV1)→ (kid2,MV2)

7.4.3 Native compiler components

The set of steps that form the native compiler pipeline can be partitioned
into three groups: computing-expression-wise, kernel-wise and function-wise.
This subdivision reflects the structure of an arbitrary computing expression.
A computing expression contains a composition of elements, which can be cus-
tom/collection kernels or sequential functions. In its turn, a kernel/sequential
function can call one or more utility functions.

The computing expression parsing step is the first step of the native com-
pilation pipeline. As already described, the purpose of this step is to build the
KFG to represent the composition of computing elements in the expression.
After the KFG has been built, the kernel-wise steps are applied to each node
of the KFG that represents a custom/collection kernel in order to generate the
corresponding OpenCL source representation.

The first kernel-wise step, which is the second of the entire pipeline, extracts
the identifier of the kernel and the associated metadata values to inspect the
cache for equivalent kernels in order to save compilation time. If no equivalent
kernel is found, the compilation proceeds. As like as part of the set of native
steps is applied independently to each kernel node, a subset of the kernel-
wise steps is applied independently to the kernel function and to each utility

102 Chapter 7. FSCL Compiler

function called by the kernel or by another utility function. This subset is
referred to as the set of function-wise steps.

In figure 7.6 we illustrate the set of native steps and we identify the three
groups of steps discussed.

Figure 7.6: Steps of the native compiler pipeline in the order or execution

In the following list we briefly describe each step of the native pipeline.

Computing expression parsing (computing-expression-wise) As already
told, this is the step of the pipeline that parses the input expression and
instantiates the KFG.

Kernel module parsing (kernel-wise) this is the step of the kernel-pipeline
that parses an FSCL kernel and instantiates the Kernel Module data-
structure with the least set of information needed to identify it.

Kernel module preprocessing (kernel-wise) This step analyses the body
of the parsed kernel to extract all the information that are shared between
the kernel and the utility functions called by the kernel. The first action
of the step is to spot all the calls to reflected functions from within
the kernel body. For each of these functions a new data-structure to
hold the function private information is created and stored in the Kernel
Module. Then, the body of the kernel and the one of each utility function
is inspected to detect the set of user-defined data structures used. This
information is stored and used to generate an OpenCL type definition for
each custom data-structure. After this step, the Kernel Module contains

Chapter 7. FSCL Compiler 103

a “raw” placeholder for all the data that are shared module-wise by the
kernel and its utility functions

Kernel and functions preprocessing (function-wise) For the kernel and
for each function, the step performs some actions on the function header
to make it closer to the target OpenCL representation. For example,
additional parameters are generated to hold the size of array arguments,
while return type and return expressions are collected, generating an
additional parameter to hold the returned value.

Kernel and functions transformation (function-wise) This is the most
complex step of the pipeline, whose purpose is to transform the AST to
obtain an abstract representation of the code that is closer to OpenCL.
Multi-dimensional arrays are replaced with the respective one-dimensional
versions, appropriately manipulating the indices used to access them.
Reference cells are replaced with sigleton arrays and optional/tuple val-
ues are replaced with references to the properly generated struct types.

Kernel and functions postprocessing (function-wise) Once the AST has
been transformed to a normalized version, closer to the OpenCL repre-
sentation, a final analysis of the tree is performed to collect statistics and
other code information.

Kernel and functions codegen (function-wise) This step traverses the
normalized AST of the kernel and of each utility function to generate
the corresponding OpenCL source code. At the end of this step, each
computing element in the module is associated to a string containing its
OpenCL code.

Kernel module codegen (kernel-wise) The OpenCL source code of the
kernel and of each utility function is assembled together and with di-
rectives and user-defined data-types definitions. The output is a valid
OpenCL source representing the whole module, which can be passed to
an OpenCL-to-binary compiler to generate the kernel executable. The
source code is stored in the Kernel Module, which is then returned as
the result of the pipeline.

7.5 Compiler configuration and extensibility

As introduced at the beginning of this chapter, the FSCL compiler is built to
be completely customizable and extensible. Even if a detailed description of
the compiler extensibility and customization infrastructure goes beyond the

104 Chapter 7. FSCL Compiler

scope of this Thesis, we dedicate this section to introduce the customization
mechanism for two main reasons. The first reason is to underline the overall
capabilities of the compiler project. Since the entire set of steps, processors
and type-handlers can be replaced and extended, the FSCL compiler should
be viewed as a dynamic compilation infrastructure more than just an F# to
OpenCL source-to-source compiler. In fact, with the appropriate set of pipeline
components, the project can implement any object-model transformation. The
second reason is to consider the compiler from the perspective of configura-
tion and deployment. From the beginning of this Thesis, we pointed out the
need for an abstract and flexible heterogeneous programming and execution
framework to fulfil the requirements of a very wide target of users. From the
programming point of view, this implies providing a model that can be used by
both “sequential” programmers, leveraging on the functional composition of
well-known patterns, and by more experienced programmers capable of under-
standing and using custom kernels and imperative-style composition to express
more complex algorithms. From the framework usage point of view, abstrac-
tion maps to the simplicity of deployment, while flexibility maps to the ability
for the (experienced) users to extend and configure the framework to fit each
one’s specific needs.

The FSCL compiler configuration infrastructure is based on automatic and
transparent self-configuration whenever the compiler runs on a platform for
the first time. This includes retrieving essential platform information and
producing and storing configuration files for later use. Users with no particular
needs are completely unaware of this setup: the compiler is able to load,
organize and use the set of native components without requiring any user
input.

Whenever a particular, different configuration is required, the compiler
gives the chance to define custom steps, processors and type-handlers and to
plug them into the compilation pipeline. New components can be added to
an empty compilation pipeline or to a pipeline already populated with the set
of native components. In the first case the user defines a new compilation
pipeline from scratch, while in the second he extends the native one.

Thanks to the information about inter-steps and inter-processors depen-
dencies that can be retrieved via introspection/reflection, the configuration
infrastructure is able to detect the order of execution of custom components,
potentially merging them with the native ones. In particular, information
(Before, After) is associated to each step and processor to declare arbitrary
dependencies between user-defined components (for which the user has the
control on the source code) and pre-existing native or custom components
that have been already deployed, which the user has no control.

Chapter 7. FSCL Compiler 105

7.6 Conclusions

In this chapter we presented and discussed the FSCL compiler, which is the
part of the FSCL framework responsible to build an abstract and structured
representation of the composition of elements in a computing expression and
to generate the OpenCL source, along with other information, for each kernel.

Since the compiler is generally invoked everytime a computing expression is
executed, compilation efficiency is required in order to reduce the overhead at
runtime (chapter 8). For this reason, the compiler maintains a cache of already-
compiled kernels. The information stored are used to prevent full-compilation
of a kernel when an equivalent version is found in cache.

To balance efficiency and flexibility of compilation behaviour, we intro-
duced the concept of equivalence of kernels. The equivalence of kernels depends
on both the input kernels and on the steps forming the compiler pipeline. In
fact, the same input kernel may result in two different outputs depending on
the meta-information associated to the kernel and used by a compiler step (or
more) to drive its own behaviour. Once the equivalence of kernels and meta-
data has been defined, the compiler can succesfully determine if the cache
contains a kernel that is equivalent to the one being processed. If so, the defi-
nition of equivalence establishes that the cached data exactly match the output
expected for the kernel. Therefore, the rest of kernel- and function-wise steps
can be skipped and the content of the output Kernel Module for the kernel
being processed can be cloned from the cache.

The compiler is designed to require zero-configuration. Once instantiated
through its parameterless constructor, the compiler is able to process comput-
ing expressions using the built-in set of steps, processors and type-handlers.
At the same time, the compiler offers fine-grained configuration capabilities.
Programmers can extend or replace the native compilation pipeline with user-
defined compiler components, which can ported across systems and loaded
automatically whenever the compiler is instantiated.

Chapter 8

FSCL Runtime

Built on top of the compiler, the FSCL runtime is the part of the framework
that handles OpenCL-to-executable compilation, scheduling and execution of
FSCL computing expressions. In this chapter we present this part of the
framework, discussing the results of our research in raising abstraction over
traditional OpenCL host-side coding while keeping the runtime efficiency close
to the one that characterize low-level OpenCL programs.

A very important part of our research consists in investigating a flexible
and transparent strategy to exploit the heterogeneity of multi-device platforms
through an adaptive, device-aware scheduling approach. The FSCL runtime
scheduling engine, which represents the result of this research as well as a
fundamental component of the framework, is discussed in chapter 9.

8.1 FSCL Runtime structure

From the perspective of the internal structure, the FSCL compiler and the
runtime are similar to each other. The first similarity is that both the compiler
and the runtime are based on a configurable and extensible pipeline of steps.

Whereas the set of steps of the compiler globally build the KFG represen-
tation of a computing expression and generate the OpenCL source for each
kernel element (figure 7.4), the steps of the (native) runtime pipeline schedule
each kernel on a device, produce the executable code from kernel sources and fi-
nally coordinate the execution on the OpenCL devices. The output produced
by the runtime pipeline is the result of executing the computing expression
(figure 8.1).

Since the abstract view of the runtime pipeline is based on the same con-
cepts of steps and processors already described in section 7.2.1, in this chapter
we discuss only the native components and behaviour of the runtime. The con-

108 Chapter 8. FSCL Runtime

Figure 8.1: Steps of the native runtime pipeline in the order or execution

figuration and the extensibility features discussed in section 7.5 for the FSCL
compiler apply with no relevant changes to the FSCL runtime.

In terms of framework components, the FSCL runtime is structured as
shown in figure 8.2. Similarly to the compiler, the entire runtime framework
is based on a configuration infrastructure and on a set of metadata. In the
FSCL compiler, metadata are used to drive the compilation output. Runtime
metadata are instead used to drive scheduling and execution.

Figure 8.2: Structure of the FSCL runtime

Chapter 8. FSCL Runtime 109

On top of the configuration and metadata infrastructures there are three
major components, which represent the native steps of the runtime.

OpenCL-to-executable compilation This is the step that interacts with
the appropriate OpenCL compiler/client driver to obtain the executable
code from OpenCL sources.

Scheduling engine The scheduling engine is the component responsible to
determine on which available device to schedule each kernel in the in-
put computing expression. As already said, the importance of this step
leads us to dedicate an entire, separate chapter to the scheduling system
(chapter 9).

Execution engine This is the step that handles the execution of each kernel
on its target device, creating and managing all the OpenCL resources re-
quired and coordinating the flow of data among the computing elements
in the expression. We discuss the relevant aspects of the execution engine
in section 8.2.

On top of all the components, the FSCL runtime exposes an API. Whereas
the compiler API allows the programmers to trigger the compilation process
and to configure and extend the compiler pipeline, the runtime API allows to
trigger the execution of a computing expression and to configure and extend
the runtime.

It is important to note that the input of the runtime is a quoted comput-
ing expression (figure 8.1) and not the Computing Expression Module data-
structure produced by the FSCL compiler. This is due to the fact that the
FSCL runtime is not a component that “runs after” the compiler but that
instead includes (or uses) the compiler.

In fact, even though the runtime and the compiler are two separated parts
of the FSCL framework, the compiler is thought to be transparent to the
developers of FSCL programs.

The typical flow of actions involving the programmer, the runtime and the
compiler is illustrated in figure 8.3. The programmer asks the runtime to run a
(quoted) FSCL computing expression. Under the hood, the runtime interacts
with the FSCL compiler to generate the Computing Expression Module, which
contains the Kernel Flow Graph and the OpenCL source of each kernel. Each
kernel node in the KFG is then analyzed to determine the device where to
schedule and execute it. When a device has been chosen, the runtime interacts
with the appropriate OpenCL compiler to produce the kernel executable for
the specific device. When the executable of each kernel has been produced,
the runtime executes the expression, interpreting the composition operators

110 Chapter 8. FSCL Runtime

(function/collection composition) and running the kernels on each one’s target
device. The result of the whole computing expression is eventually returned
to the programmer.

Figure 8.3: Interactions between programmer, runtime and compiler

The whole process, from FSCL-to-OpenCL compilation to scheduling and
execution of kernels and composition operators, is completely transparent to
the programmer. From the programmer’s perspective, parallel execution of a
computing expression is therefore not different from evaluating an F# expres-
sion from both the syntax and the semantic point of view.

Evaluating an expression is performed by calling the Eval method on the
quotation object1. The result is the value of quoted expression.

let comp = <@
input |>
Array.map(fun i -> i * 2) |>
Array.reduce (+)

@>

// Evaluate the quotation
let result = comp.Eval()

Similarly, FSCL computing expressions are executed by calling the Run
method on the quotation object. The result is, again, the value of the quoted

1The Eval extension method is part of the F# powerpack project. Recently, F# provided
a native API to evaluate expressions

Chapter 8. FSCL Runtime 111

expression. From an abstract point of view, the major difference is that
whereas Eval evaluates a computation in the traditional, sequential fashion,
leveraging on the CLR, Run leverages OpenCL parallel execution2.

let comp = <@
input |>
Array.map(fun i -> i * 2) |>
Array.reduce (+)

@>

// Run in parallel
let result = comp.Run()

Compared to OpenCL host-side coding to create, execute and coordinate
kernels, FSCL host-side automatizes the whole process, reducing the program-
mer’s effort to a single method call.

Investigating an expressive way to reduce the efforts spent in traditionally
time-consuming host-side coding is one of the targets of our research. Thanks
to the one-method API to run computing expressions and to the similarity
between regular evaluation of an F# expression and parallel execution of an
FSCL computing expression, programmers should find it easy and intuitive to
develop and run FSCL programs.

8.2 Computing expression execution, caching

and data management

In chapter 9 we present and discuss the scheduling strategy applied to each
kernel in the input computing expression to determine the best device for
execution. After scheduling each kernel on a device, the runtime handles the
execution of the whole computing expression, that is of each node of the KFG.

As anticipated in section 6.2.4, kernels are executed on each one’s target
device according to the OpenCL model. All the required resources are created
(e.g. context, command-queue, buffers), kernel arguments are prepared and
finally the execution of the OpenCL kernel on the device is performed.

Data nodes are evaluated using the native F# quotation-evaluation feature.
Similarly, sequential functions are executed on the host (CPU) leveraging the
CLR and on the reflection API to pass the arguments and to apply the function.

2This is true if the computing expression contains collection kernels, sequential functions
and collection/function compositions. In case of custom kernels, the “evaluation” using the
Run method leads to the correct result, while the traditional Eval method would interpret
(execute) the custom kernel in the wrong way

112 Chapter 8. FSCL Runtime

The remaining nodes to consider are the ones that represent compositions
of elements. The FSCL runtime runs function and collection compositions
by executing the operators concurrently whenever feasible. In other terms,
different threads are spawned to execute independent sub-expressions (or the
same sub-expression applied to different input data).

F# exposes three native operators for function composition, depending on
the number of parameters of the functions considered. We can formally define
the execution strategy of function composition as follows.

Definition 13. [Function composition execution] Given four computing ex-
pressions e1, e2, e3 and e4:

• e1 |> e2 is a computing expression that executes e2 after e1 completes
(no concurrency).

• (e1, e2) ||> e3 is a computing expression that executes e3 after both e1
and e2 complete. The expressions e1 and e2 execute concurrently.

• (e1, e2, e3) |||> e4 is a computing expression that executes e4 after e1, e2
and e3 complete. The expressions e1, e2 and e3 execute concurrently.

Currently, the runtime supports multithread execution of two collection
composition functions, which are Array.map and Array.filter. Even though
these two functions alone already unleash high flexibility in expression com-
position, we plan to support additional functions in the future. The runtime
behaviour of Array.map and Array.filter can be defined as follows.

Definition 14. [Array.map composition execution] Given a computing expres-
sion k of type T → U and an input array inp of type T [],
(Array.map k inp) is a computing expression that executes k concurrently on
the elements of inp. If out is the output of the Array.map execution, then
∀i∈{0,1, .. lenght(a)}out[i] = k(inp[i]).

Definition 15. [Array.filter composition execution] Given a computing ex-
pression k of type T → bool and an input array inp of type T [],
(Array.filter k inp) is a computing expression that executes k concurrently
on the elements of inp. Foreach i ∈ {0, 1, .. lenght(inp)}, let ko = k(inp[i]) ∈
{true, false}. If out is the output of the Array.filter, then ko = true ⇐⇒
el ∈ out. In other terms, the output array contains only the elements of the
input for which the k returns true. The relative order of the elements in the
input collection is preserved.

Chapter 8. FSCL Runtime 113

In section 7.4.1 we illustrated the KFG for K-Means, a very popular al-
gorithm for cluster analysis. For convenience, we replicate the KFG of the
algorithm in figure 8.4.

Figure 8.4: Kernel Flow Graph for the K-Means computing expression

In figure 8.5 we illustrate the steps performed by the FSCL runtime to
execute K-Means. After Array.groupBy has been executed as a kernel on a
device, the Array.map composition spawns a thread for each group generated
by Array.groupBy (only two threads are considered in the illustration). Each
thread executes the sub-expression that represents the collection operator using
a different group as input. If concurrent instances of this sub-expression require
to access the same device to run a kernel, kernel executions are enqueued onto
the target device one after the other.

It is important to underline that the runtime virtually spawns a thread
for each input element when executing a collection composition function. The
current implementation of the runtime in fact uses a thread pool, which is
more efficient than spawning a thread for each item of collections that contain
thousands or millions of elements.

114 Chapter 8. FSCL Runtime

Figure 8.5: Timeline and interactions with OpenCL devices in executing K-
Means

8.2.1 Device and kernel resource caching

To effectively run a kernel on an OpenCL device, three relevant data-structures
must be allocated and properly initialized. The first is the OpenCL context,
which is the environment where work-items executes. It includes references
to buffers and command queues. The second is the OpenCL device pointer,
which represents a specific OpenCL device among the ones available in the
running system. The last one is the OpenCL command-queue, used to submit
commands to a device, including transferring data and scheduling kernels for
execution.

To reduce the overhead at kernel-execution time, the runtime allocates and
initializes these information only once, the first time a device is chosen to
execute a kernel. Once created, they are stored in a in-memory data-structure
for successive usage (figure 8.6).

As like as for device-specific data, the runtime keeps a cache of compiled
(binary) kernels. As shown in figure 8.7, the cache is conceptually structured
hierarchically. The top level of the hierarchy stores kernels with different
OpenCL source code. The level is made of a list of FSCL Kernel Modules,
each of which includes all the information obtained when the FSCL kernel was

Chapter 8. FSCL Runtime 115

Figure 8.6: Device information stored by the runtime

compiled to OpenCL3. Since by definition of Kernel Module equivalence, two
equivalent FSCL Kernels Modules have, among the other information, identi-
cal OpenCL sources, the set of FSCL Kernels Modules stored are inequivalent
to each other. In other terms, if P is the compilation pipeline applied to ker-
nels, for each pair of stored Kernel Modules k1, k2, k1 6≡P k2 (definition 12).
For each FSCL Kernel Module the runtime stores the data relative to each
OpenCL device where the kernel has been executed so far. These data include
the executable code for the specific device (OpenCL Program and OpenCL
Kernel objects). In other terms, the second level of the hierarchy stores kernel
executables (for the same OpenCL source) with different binary code.

8.2.2 Data management

Since data processed by OpenCL kernels is stored into buffers, to execute
a kernel the runtime must create an OpenCL buffer for each vector (array)
parameter. In this section we use the term “vector” to refer to a collection of
data that abstracts for the specific implementation (array, OpenCL buffer).

Allocating, initializing and transfering data across buffers has a cost that
can overweights the cost of kernel execution. In order to reduce data-transfer
and copy the runtime introduces a management layer that handles buffer cre-
ation, reusing and disposal.

Given an FSCL computing expression, we can identify two main types of
vectors that flow through it: vectors that have both managed (i.e. array) and
unmanaged (i.e. OpenCL buffer) representations (or variants) and vectors

3Since the FSCL compiler already stores the output of FSCL-to-OpenCL kernel compi-
lation, the top level of the runtime cache hierarchy is actually made of pointers (references)
to the matching elements in the compiler cache in order to avoid data duplication

116 Chapter 8. FSCL Runtime

Figure 8.7: Kernel information stored by the runtime

that only need an unmanaged representation. A vector that requires both the
variants is a vector that can be accessed from within the managed code (i.e.
code executed on the host leveraging on the CLR), such as inside sequential
functions and outside computing expressions. If a vector is instead accessible
exclusively by kernels, no managed variant is needed, since OpenCL kernels
work exclusively on (unmanaged) buffers.

We show some examples of data flowing through computing expressions to
allow a deeper comprehension of which data require the managed variant and
which data only need the unmanaged variant.

The first example (listing 8.1) only considers a function composition of
custom and collection kernels. We use a bold font to highlight vector data
accessed by the various computing elements. The vectors a, b and c repre-
sent the input of expression and inherently have a managed representation
(array) created by the programmer. Note that the vector a is used by both
the Array.reverse kernel and by myCustomKernel, while b is used by both
Array.map2 and by the utility function utilityCall of the Array.map function.
Other vector data that flow through the computing expression are the results
returned by Array.reverse, Array.map2 and Array.map, which do not need a
managed variant, since none of the intermediate outputs can be referred in the
managed environment. An exception is the last kernel in the composition (my-
CustomKernel), whose output buffer is bound to the managed variable result.
Since the content of the output produced by this kernel can be accessed from
within the managed environment (in particular from within the host program)

Chapter 8. FSCL Runtime 117

both the managed and the unmanaged variants are needed.

let a = Array.zeroCreate<float32> 2.0f
let b = Array.zeroCreate<float32> 3.0f
let c = Array.zeroCreate<float32> 4.0f

let result =
<@ (a |> Array.reverse, b) ||>

Array.map2 myFunCall |>
Array.map (fun el -> utilityCall el b) |>
myCustomKernel a c

@>.Run()

Listing 8.1: Example of function composition with corresponding vector
data

In the case of computing expressions containing sequential functions and
collection compositions, the distinction between data that require the managed
variant and data requiring only the unmanaged variant is more complicated,
as illustrated in listing 8.2. In the example, Array.map is used to coordinate a
sub-expression made of a kernel call and sequential lambda. Since the operator
binds each set (buffer) produced by Array.groupBy to a variable (i.e. data) the
buffer requires a managed variant. This is particularly true since a sequential
lambda is accessing data. Differently from data, the variable key is not con-
sidered, since it is a scalar value. The result of the execution of myKernel is
another vector that needs a managed representation, since it is bound to the
variable output referenced from within the sequential lambda.

let a = Array.zeroCreate<float32> 2.0f

let result =
<@ a |>

Array.groupBy (fun a -> a % 5.0f) |>
// A collection composition
Array.map (fun (key, data) ->

// A sub-kernel
myKernel data |>
// A sequential lambda (function)
fun output ->

data.Length - output.Length)
@>.Run()

Listing 8.2: Example of function and collection composition with
corresponding vector data

118 Chapter 8. FSCL Runtime

The examples proposed show the set of vectors that need a managed rep-
resentation is the set of vectors that are bound to a name inside or outside
the computing expression. We say “bound to a name” instead of “bound to a
variable” since data allocated outside a computing expression may be associ-
ated to an object field or property and not necessarily to a local variable. In
other terms, a managed variant is needed whenever vector data can be accessed
outside kernels.

It is important to note that if a vector needs a managed variant then there is
a way to access it from within managed code. The opposite statement is instead
generally false, as demonstrated in listing 8.3. The example is identical to 8.2
except for the sequential function that doesn’t access the vector bound to data.
In the reshaped example, the vector bound to data doesn’t require a managed
variant, since no managed code is accessing its content. The execution may be
performed by properly passing each unamanged buffer (group) produced by
Array.groupBy to myKernel without allocating the corresponding managed
array. The same reasoning holds for the buffer bound to output, which is not
accessed by the sequential lambda.

let a = Array.zeroCreate<float32> 2.0f

let result =
<@

a |>
Array.groupBy (fun a -> a % 5.0f) |>
// A collection composition
Array.map (fun (key, data) ->

// A sub-kernel
myKernel data |>
// A lambda not accessing data
fun output ->

())
@>.Run()

Listing 8.3: Example of function and collection composition with vector
data that do not need managed variant

The FSCL runtime estimates the need for a vector to have a managed rep-
resentation by checking whether the vector can be referred from within the
managed environment. Even though this check is unprecise when sequential
functions and collection composition are employed in a computing expression,
it is more efficient than inspecting the AST of all the sequential functions in-
volved to determine if a vector is effectively accessed from within code running
on the CLR.

Chapter 8. FSCL Runtime 119

The runtime handles vectors that require a managed variant and vectors
that do not require it using two different types of buffers, respectively called
managed buffers and unmanaged buffers. Whereas an unmanaged buffer only
contains a reference to an OpenCL buffer, managed buffers store the associa-
tion between the managed (array) and unmanaged (OpenCL buffer) variants
of vector data. The reason to handle the two kinds of vectors separately is
driven by the fact that when a vector is bound to a name, it is likely to be
referred (by name) multiple times, like in the example 8.1.

The runtime uses the managed representations to “compare” buffers4, that
is to check if an FSCL kernel is accessing a buffer already created. More
precisely, the runtime checks if the argument of a kernel is a reference to an
array that corresponds to the managed representation of a pre-existing buffer.
If so, conceptually the unmanged variant (i.e. the OpenCL buffer) could be
passed to the new kernel instead of creating and initializing a new one.

We say “conceptually” because to reuse the OpenCL buffer associated to
the managed array some conditions must hold. The first requirement is that
the buffer context must match the context of execution of the kernel whose
argument is being processed. Since a different context is created for each
OpenCL device, this means that the device for which the stored buffer was
created must be the same device where the current kernel is scheduled5. The
second requirement is that the memory flags possibly specified for the argument
in order to drive OpenCL buffer allocation must be compatible with the ones
associated to the stored buffer (section 8.3). For example, if the stored buffer
has been created using the AllocHostPtr OpenCL flag while the argument
being processed comes with the CopyHostPtr flag (to be used when creating the
buffer for it), an incompatibility is found. If flags and context are compatible,
the pre-existing OpenCL buffer is used. Otherwise, a new OpenCL buffer must
be created.

Given these conditions, the FSCL runtime organizes managed buffers into
an hierarchical data-structure, as illustrated in figure 8.8. The top-level in-
dexing is given by the managed representations of the buffers (i.e. arrays).
OpenCL buffers corresponding to a particular array are additionally grouped
by context.

In figure 8.9 we illustrate the process of retrieving/creating a new managed
buffer by checking the managed buffer cache and validating the context and
the flags associated to the buffer.

A question that arises for managed buffers is how to keep them synchro-

4Array comparison is performed by reference
5We discuss potential improvements based on global analysis of the computing expression

in section 14.1

120 Chapter 8. FSCL Runtime

Figure 8.8: Structure of the managed buffers cache

nised during the computing expression execution. Thanks to the restriction
for computing elements to be side-effect free, synchronisation is easy to accom-
plish.

In fact, the only buffers on which a computing element can write are the
vectors created inside the element body, which are possibly returned and used
by successive computing elements. Whenever a computing element creates a
buffer that possibly requires a managed variant, a new array is created, which
means the buffer will not match any pre-existing cached buffer (the address
of the new array is not equal to the address of any array representing the
managed variant of a cached buffer).

Given this, when a compatible pre-existing buffer is found in cache, the
buffer can be used without the need of synchronisation. In fact, the buffer
either correponds to an array declared outside the quotation containing the
computing expression, or it corresponds to a buffer returned from a kernel and
then bound to a managed variable (e.g. because it is used by a sequential
function). In the first case, the buffer is read-only for all the elements in the
expression. In the second, the only entity capable of writing the buffer is
the computing element that created and returned it, which has been already
executed.

For the same reasons, if the cached buffer is found incompatible because of
the memory-flags or the context, the buffer can be copied without the need to
keep the stored buffer and its copy synchronised with each other.

For what regards the synchronisation between the managed and the un-

Chapter 8. FSCL Runtime 121

Figure 8.9: Process of creation of a managed buffer

122 Chapter 8. FSCL Runtime

managed variants of the same vector, data-transfer is required only two cases.
The first is when an unmanaged buffer is firstly bound to a name, that is when
the managed environment must access an unmanaged buffer for the first time.
This happens whenever an unmanaged buffer is returned to the programmer
or it is accessed by a sequential function or by the operator of a collection
composition. In this case the unmanaged buffer is promoted to managed and
the content of the array is read from the OpenCL buffer. Note that neither the
array nor the OpenCL buffer can be modified at this point. The second situ-
ation where cross-variants data-transfer is needed is when an OpenCL buffer
is required for the argument of a kernel that is a pre-existing array. If the
cache check fails, a new managed buffer is created and the OpenCL buffer is
initialised with the content of the array. Again, since this is the argument of
a kernel, the kernel can’t change it and the array cannot be modified as well
(at least until the computing expression ends).

Since unmanaged buffers do not match any data accessible from within the
managed environment, they are stored and reused in a different way respect to
managed buffers. As already discussed, an OpenCL buffer can be reused only if
the OpenCL context for which it is required is the same context used to create
it. Therefore, unmanaged buffers are organized per-context. The set of buffers
in the same context is stored in a list ordered by buffer size, as illustrated in
figure 8.10. Buffer selection is performed using a first-fit approach.

When a new unmanaged buffer is required, the runtime inspects the list of
pre-existing buffers with the appropriate context and picks the smallest buffer,
in the order, whose size is greater or equal than the required one. The flags
compatibility check is performed as for managed buffers. Once selected, the
buffer information is updated considering the required buffer size to ensure
data transfers and accesses are handled appropriately6.

Unamaged buffers are locked during the execution of a kernel to avoid
race-conditions due to multiple concurrent kernels that try to reuse the same
pre-existing unmanaged buffer. In addition, since unmanaged buffers cannot
be accessed by the managed environment, no synchronisation between variants
is needed.

Other than managing buffers in order to reuse them, the runtime applies
some optimisations to data allocation and transfer, which emulate the common
principles of a good OpenCL programmer. For example, in case the target
device is a CPU, buffers are created with some OpenCL memory-flags that

6The size of the buffer re-used must be conceptually updated to the size of the buffer
required for the specific computation to prevent runtime errors due to a buffer size different
from the one expected

Chapter 8. FSCL Runtime 123

Figure 8.10: Structure of the unmanaged buffers cache

ensure no copy is performed78.
Buffers that are created and returned from a kernel are allocated with

ReadWrite flags, even if the kernel only writes them. This choice is driven
by the consideration that if a buffer is created, written and returned from a
kernel, it is likely that successive kernels will read it. Allocating the buffer
with WriteOnly flags would incur data-copy whenever a kernel tried to read it
(cause of memory-flags incompatibility).

All the optimisations applied by the runtime are local to a kernel. In
other terms, no global analysis of data usage across the computing elements is
performed. For example, a returned buffer is always allocated using ReadWrite
memory flags, even if no successive kernels access it. We discuss possible
improvements in chapter 14.

8.3 Scheduling and execution control via meta-

data

The highest level of abstraction in coding the host side is given by completely
automatic execution. To execute a parallel computation, the programmers

7UseHostPtr flag is used, passing the pointer to the already-allocated content of the
buffer

8On discrete GPUs, copying data often results in higher performance, since data is placed
and accessed in the GPU memory, which is faster than accessing host memory across the
PCI-express bus

124 Chapter 8. FSCL Runtime

have only to call the method Run on a quoted expression and wait for the
result.

The FSCL runtime exposes an additional level of abstraction for kernel
execution, which allows control over scheduling, buffer allocation and data
transfer, at the price of a lower transparency.

In section 6.2.5 and 7.4.2 we presented the concept of dynamic metadata
and we discussed how they can be employed to drive kernel compilation. The
same mechanism of metadata is also used by the runtime to enable control
over kernel execution.

For what regards buffer allocation and data-transfer, there are three major
aspects that the programmers can control. The first is the set of OpenCL
flags used when creating a buffer, which can be set using the MemoryFlags
attribute or the homonymous metadata-function. The second aspect is the
way data is transferred between arrays and OpenCL buffers, controlled using
the BufferRead/WriteMode metadata. Data transfer can happen calling the
OpenCL EnqueueRead/WriteBuffer function or the EnqueueMapBuffer func-
tion, which maps the buffer into the host memory space.

Finally, programmers can force transferring data to and from buffers, over-
riding the default behaviour based on the results of access analysis 9 and on
the context-dependent optimisations discussed in the previous section.

To override automatic scheduling, programmers can force the device where
a kernel must be executed, using the Device metadata to declare the platfor-
m/device to use. If this metadata is associated to a kernel, the runtime skips
kernel analysis/scheduling and executes the kernel on the device specified.

8.4 Multithread execution

The main purpose of the FSCL runtime is to handle scheduling and execution
of FSCL kernels on OpenCL devices. Nevertheless, the runtime gives also the
chance to run a kernel or an entire computing expression in multithread mode.

9Access analysis is performed by the Function and kernel postprocessing step of the native
compilation pipeline (7.4.3)

Chapter 8. FSCL Runtime 125

To run an expression using the F# threading API, the developers have
only to pass RunningModel.Multithread as the (optional) argument of the Run
method, as shown in the following listing:

let comp =
<@

input |>
Array.map(fun i -> i * 2) |>
Array.reduce (+)

@>

// Run using OpenCL
let result = comp.Run()
// Run using multithreading
let result = comp.Run(RunningModel.Multithread)

In case of multithread execution of a kernel, the runtime launches a number
of threads equal to the number of CPU cores, each of which executes a subset
of the work-groups. If the global size of the domain is Gs and the size of
each group is Ls, then Ng = dGs/Lse is the number of groups10. If C is the
number of CPU cores, each thread executes a set of approximatively Ng/C
groups. Work-groups within the set are executed in order of work-group ID.
Work-items inside a group are executed in order of local ID.

Kernel arguments to which the Local metadata is associated, which cor-
responds to OpenCL local buffers (section 2.1), are handled appropriately by
using a different array for each work-group executed. Similarly, OpenCL barri-
ers are mapped to CLR barriers to guarantee the semantic of the computation
in terms of synchronization points. For what concerns the rest of the kernel
code, the FSCL kernel language provides a CLR-based implementation of the
built-in OpenCL kernel-side functions 11. This means that multithread execu-
tion can be handled correctly without any change to the code of the kernels in
the computing expression.

There are two relevant reasons why we choose to support multithread ex-
ecution:

Debugging capabilities Despite the integrated or third-party solutions for
debugging and profiling, debugging OpenCL applications is often diffi-
cult and forces the programmers to learn and to get comfortable with
very specific programs and tools. Thanks to multithread execution, it is

10For simplicity we consider a linear work-item domain, but the approach handles 2D/3D
domains as well

11Math functions like pown, mad, atan and memory functions like vload and vstore

126 Chapter 8. FSCL Runtime

possible to test kernels and computing expression using traditional tools
like gdb and integrated visual debuggers (e.g. visual debugging in Visual
Studio or Xamarin Studio).

Fallbacking to multithreading Multithread execution not only represents
a choice for the programmers, but it is also the execution mode au-
tomatically selected whenever the running system doesn’t expose any
OpenCL device12. Automatic fallback to multithread execution enhances
the ubiquitousness of computing, allowing to port computations across a
wide variety of systems without compromising the execution capabilities.

8.5 Conclusions

In this chapter we presented the FSCL runtime, which is the component of the
FSCL framework responsible for raising abstraction over kernels and, more
generally, computing expressions execution. From the programmers’ point of
view, executing a computing expression consists in a single method invocation
on the quoted expression. The runtime transparently handles the interaction
with the FSCL compiler, the scheduling on the set of available devices and the
execution and coordination of the computing elements in the expression.

Despite the high abstraction delivered through an host-side API made of a
single method call (compared to regular OpenCL host-side coding), the run-
time implements a set of caching and optimisation strategies that allows to
limit the execution overhead. In addition, the FSCL runtime exposes a set of
metadata to control placement, initialization and data-transfer of buffers as
well as to override the choices of the scheduling policy. Whereas custom ker-
nels represent the low-level layer of kernel programming, this set of metadata
represent the low-level layer of host-side programming.

Multithread execution is supported in place of OpenCL-based execution
without any change to the computing expressions and to the custom/collec-
tion kernels they contain. This execution mode comes in handy to inspect and
validate the runtime behaviour of computing expressions without the need to
rely on a third-party OpenCL debugger. Since the runtime automatically fall-
backs to multithreading when no OpenCL devices are found in the running
platform, multithread execution represents also a way to enhance the ubiqui-
tousness of FSCL programs.

12This may be due to driver malfunctioning or to the lack of devices supporting OpenCL

Chapter 9

Runtime scheduling engine

One of the most relevant aspects of our research is to investigate a way to
help the programmer to exploit the heterogeneity of today’s parallel platforms
in a device-aware fashion. In this chapter we present and discuss the result
of this reasearch, which is implemented in the scheduling engine of the FSCL
runtime.

We can summarize the most relevant challenges of a scheduling policy as
follows:

Flexibility and transparency A scheduling policy should require little to
no user input. The scheduling infrastructure must be able to transpar-
ently and dynamically extract all the needed information from the set of
devices populating the running system. If code analysis is required, the
infrastructure should be trasparent also in retrieving information from
the code to execute. The scheduling policy may be characterized by a
different accuracy on different platforms and for different computations.
Nonetheless, it should be able to execute without failures in any case,
possibly misestimating certain device characteristics or ignoring certain
parts of a computation in code analysis.

Efficiency at runtime Given the possibly generic and lightweight nature of
the algorithms running on heterogeneous platforms, for a given compu-
tation a device may show a completion time that is only few milliseconds
lower than the completion time on the other devices. Nevertheless, run-
ning the computation multiple times can turn a couple of milliseconds
into a significant amount of time saved. Since the input may change
across successive executions, the scheduling policy may need to be re-
applied each time. If the time needed to select the best device for exe-
cution is higher than the per-execution time saved by running on such

128 Chapter 9. Runtime scheduling engine

device, the advantage of a device-aware scheduling would turn into a per-
formance bottleneck. For this reason, one of the goals of the scheduling
strategy is to be efficient.

9.1 General approach and strategy

Given a computation, it is possible to identify some aspects (or features) of
its code that imply a certain runtime behaviour in terms of control flow and
usage of hardware resources. Two of the most popular runtime aspects on
which many researches have been conducted are branching behaviour and cache
usage [50,52,54]. Some runtime aspects, such as the number of instructions and
the amount of cache misses/evictions, have a deep impact on the completion
time of a computation. Given these considerations, the basic idea on which
our scheduling approach relies is to find the way certain code features are
correlated to the completion time.

In the last few years, many analytical models have been proposed to pre-
dict the performance of specific device types, using code features and device
characteristics [35,43]. The major limitation of analytical models is that they
often require to explicitly specify some code information or some parameters
of the target architecture, which are difficult to retrieve or to estimate auto-
matically. In addition, analytical models are generally unreliable in case one
or more parameters of the model are missing or sensitive to errors in the es-
timation of their values. This makes analytical models difficult to employ in
highly-dynamic systems, where the architecture parameters may be subject to
changes on the basis of the specific platform where the model is evaluated.
This is particularly true if the model is integrated in a library/framework that
aims to hiding from the users the specific machine configuration.

Simulation- and profiling-based approaches enable a higher abstraction over
the details of the running platform. These approaches generally leverage col-
lecting runtime information (e.g. the trace of execution) for a surrogate of the
program, obtained by sampling the input or building a restricted, lightweight
version of the program code. A model is then applied to estimate the per-
formances of the real program starting from the collected data [20, 74]. The
main problem of these approaches is that runtime profiling and simulation may
incur a significant overhead.

Machine-learning shows various advantages over analytical and simulation-
based approaches. At first, machine-learning strategies for performance predic-
tion and scheduling are naturally transparent to the programmers and highly
adaptive. Secondly, machine-learning can capture subtle interactions between
the software and the underlying system that are not expressed in analytical

Chapter 9. Runtime scheduling engine 129

models for sake of simplicity or because these interaction are actually unkown.
Machine-learning approaches are also easy to refine through the extension of
the training/feature set. Finally, machine-learning can introduce a substantial
overhead in training the system, but applying the model built is generally effi-
cient. This allows us to isolate most of the overhead of performance prediction
at deploy time, strongly reducing the impact at runtime.

The last decade has seen much research towards statistical approaches to
predict computing performance. In [76] random forests are used to build a
performance prediction model, which achieves not satisfying R2 values, indi-
cating that a consistent portion of the information is not modeled properly.
In [39] K-Nearest Neighbor is employed to predict completion time on the
basis of code and input similarities, while in [37] Sparse Polynomial Regres-
sion is applied to a set of automatically selected features for completion time
estimation. We think that linear regression should be favoured, because it
is an easier approach, it offers an understandable model and it is suitable to
progressive refinements. As stated in [37], some non-linear aspects may be
impossible to model using linear methods. Nonetheless, linear regression is a
feasible approach if the relation between the dependent variable and the ex-
planatory variables (e.g. completion time and code features) is linear, which
shifts the problem to meaningful feature selection. For example, whereas the
size of the input matrices (n) has not a linear relation with the completion time
in matrix multiplication (n3 for sequential implementations), the completion
time is linear on the number of operations/memory accesses. The problem is
therefore to select the appropriate features to consider in order to predict the
completion time.

The issue that arises with the heterogeneity of today’s platforms is that
the completion times on different devices may have different relations with
specific sets of features. Some features that have a well-known impact on
the CPU, such as the number of cache misses, may have less-to-no impact
on the completion time of GPUs. Similarly, GPUs specific execution and
memory models promote memory access patterns to optimise the usage of
hardware resource (e.g. coalescing, reducing bank-conflicts) that negatively
affect or do not significantly affect the completion time on CPUs. Therefore,
the major issue is to determine which features should be used to reliably predict
the completion time on a variety of different devices. In case of analytical
approaches, a different model for each specific device or device type must
be defined and applied. In case of simulation and profiling, the overhead
introduced may not scale with the number of devices in the platform.

In order to combine flexibility and efficiency, we decide to adopt a machine-
learning strategy that merges the analytical and the profiling approaches. The

130 Chapter 9. Runtime scheduling engine

machine-learning strategy that we employ starts from the definition of a pro-
cess to perform code analysis and to extract a set of relevant features from
arbitrary computations (kernels), leveraging the F# quotations mechanism.
Once defined, the process is applied to a set of predefined kernels (training
samples), which are also executed on each available device to determine the
corresponding completion time. Training sample execution can be viewed as a
way to profile the platform, in the sense of collecting runtime information on
how the platform reacts to the scheduling of different computations. Given the
set of features extracted from the training samples and the completion time
on each device, we apply a regression algorithm in order to build a model for
each device. Each model correlates the set of features to the completion time
on a specific device.

For each kernel to execute, we apply the models built through regression to
the set of features extracted from the kernel in order to estimate the completion
time on each device. The scheduling policy finally selects the device with the
lowest expected completion time.

In the rest of this chapter we discuss the details of our scheduling approach.
We start presenting the process to extract features from arbitrary computa-
tions. Then, we introduce the regression model used to profile the platform
in order to build a set of device models. Finally, we discuss how these two
building blocks are joined in the FSCL runtime scheduling engine.

9.2 Code analysis and feature extraction

The main problem in code analysis for feature extraction is that for most
computations the value of a feature depends on the input.

Like in [73], we aim at reducing the runtime scheduling overhead. Instead of
separating features into a static and a dynamic set, which makes it difficult to
capture information depending on both the program structure and the specific
input, we statically 1 precompute features, analysing the Abstract Syntax Tree
(AST) of the kernel and building a finalizer for each feature, which completes
the evaluation of the feature value as soon as the input is known.

To formally define the concept of feature finalizer, we consider a given
kernel k and we indicate with body(k) the root node of its AST and with
pars(k) = [p1, p2, .. pn] the list of kernel parameters. Let valf, k, a1, .. an be
the value of a feature f for a kernel k given a set of actual arguments, one for
each parameter. The feature finalizer fz for a feature f and a kernel k consists

1With “statically” we mean at kernel compilation time, that is the first time a particular
kernel is seen

Chapter 9. Runtime scheduling engine 131

in a function that takes the same arguments of k and returns an estimation of
valf, k, a1, .. an .

Definition 16. [Feature finalizer] Given a kernel k, pars(k) = [p1, p2, .. pn]
its parameters and [t1, t2 .. tn] the parameter types. Let f be a feature, tf its
type and valf,k, a1, .. an its value for k given a set of actual arguments.

A feature finalizer is a function fz, where:

fz : t1 ∗ t2 ∗ ..tn → tf such that fz(a1, a2, .. aN) u valf,k, a1, .. an

In the F# object model a feature finalizer is an anonymous function (lambda)
that encapsulates the code to compute the feature value that cannot be stati-
cally evaluated because of a dependency on the kernel input.

Feature finalizers are computed the first time a kernel is seen and stored in
a data-structure for future use, as illustrated in figure 9.1.

Figure 9.1: Finalizer construction and evaluation

Once built, a feature finalizer can be applied to multiple, different sets of
kernel arguments to retrieve the matching feature value. Thanks to the static
analysis of the kernel AST and the construction of a lambda that generally
contains very lightweight code2, the overhead of completing feature evalutation
at kernel execution time, which corresponds to applying the lambda to the
kernel arguments, is mostly irrelevant.

2For features counting particular constructs in a kernel, such as the number of memory
accesses, the finalizer code contains only few arithmetic operations

132 Chapter 9. Runtime scheduling engine

Building a feature finalizer for a particular kernel consists in mapping the
kernel to a lambda function, preserving the set of parameters but replacing the
body. Figure 9.2 shows this mapping between a matrix multiplication kernel
and a feature that counts the number of accesses to the elements of the input
arrays.

Figure 9.2: Kernel to finalizer mapping for a feature that counts memory reads

9.2.1 Feature finalizer building

In this section we illustrate the process of mapping the AST of a kernel to
the AST of the finalizer for a particular feature. For simplicity, we only con-
sider features that estimate the occurrence of certain events at runtime (e.g.
the number of memory accesses) through counting the occurrence of specific
language constructs in the kernel body. For this type of features, the finalizer
building process is parametric on the set of constructs that contribute to the
feature value. The process can be specialized and adapted to extract features
that have no one-to-one relation with the occurrence of specific language con-
structs, such as the estimated number of cache misses. We discuss an example
of specialized finalizers in section 9.2.2.

Throughout this section, we use the terms “mapping”, “processing” and
“generating” to refer to the creation of a finalizer AST node from a kernel AST
node. In addition, we often say that an action (e.g. sum, subtraction, ceiling) is
performed on the values of the feature computed for the children of a particular
node. To be formally correct we should say that, given the results of processing
the children of a particular node, a new node representing a particular action
(e.g. a node representing a call to the sum function) is created and the results
are set as its children. Finally, unless otherwise stated, we use the terms “AST
node”, “AST subtree” (rooted in a node) and “expression” (F# representation
of an AST node/subtree) interchangeably.

Chapter 9. Runtime scheduling engine 133

The process of building a feature finalizer for a specific feature and a given
kernel is based on three functions, respectively called map, smap and dmap.

The function map is responsible to define the mapping between any node
nkernel of the kernel AST and the corresponding node nfinalizer of the finalizer
AST, which expresses the value of the feature for the substree rooted in nkernel.
To perform this mapping, the function relies on smap and dmap as shown in
the equation 9.1. The map function acts as a proxy: if the node to map is
succesfully processed by smap, the result of this processing is returned as it is.
Otherwise, the dmap function is applied to the input node.

map(n) =

{
v if smap(n) = Some(v)

dmap(n) otherwise
(9.1)

The function smap maps only “interesting” nodes of the kernel AST. In
other terms, smap is responsible to define the value of the feature for the set of
AST nodes that are interesting for the feature considered. For example, in case
of counting memory read accesses, the interesting nodes are those representing
the access to an array element. If applied to a non-interesting node, smap
returns the special value None.

smap(n) =

Some(v), if n is interesting

where v is the AST node that contains

the feature value for the tree rooted in n

None otherwise

(9.2)

Finally, the function dmap is responsible to define the mapping of non-
interesting nodes, possibly composing the values of the feature computed for
the children of a node in order to express the feature value for the node itself.
This function represents the generic part of the process. In other terms dmap
is invariant to the specific feature considered, which only affects the definition
of smap.

Given a node n, the behaviour of dmap is manyfold, depending on the
specific type of node considered.

Variable binding nodes. A node in the form 〈let x = y in body〉 is mapped
to a finalizer node 〈ny + nbody〉3, where ny is the feature value for y and
nbody the feature value for body.

Variable reference nodes and constant value nodes. Var references and
constant values are mapped to 〈0〉 (i.e. to a node holding the value 0).

3The operator (+) stands for an AST node encapsulating a call to the “sum” function

134 Chapter 9. Runtime scheduling engine

Conditional nodes. Conditional nodes are handled returning the average of
the feature value computed in the if-branch and the one computed in the
else-branch. In other terms, a node is in the form 〈if c then a else b〉 is
mapped to a finalizer node 〈nc + (0.5 ∗ na + 0.5 ∗ nb)〉, where na, nb and
nc are, respectively, the feature value in a, b and c.

For loop nodes. A node in the form 〈for i in a .. s .. b do c〉4, where s
is the increment of i in each iteration, is mapped to the finalizer node
〈na+nb+ns+b(b−a+1)/sc∗nc〉, where na, nb, nc and ns are, respectively,
the feature value in a (the initial value of the iteration variable), b (the
final value of the iteration variable), c (the loop body) and s (the update
of the iteration variable). The expression b(b − a + 1)/sc ∗ nc means
that the feature value for a loop node is obtained multiplying the feature
value for the body of the loop by the trip count of the loop (e.g. the
numer of accesses performed globally by a loop is equal to the number
of accesses in the loop body multiplied by the loop trip count).

While loops. The finalizer builder is able to estimate the trip count for a
limited by heavily used variety of while loops. The first constraint is that
the guard of the loop must be in the form 〈var opc expr〉, where var is a
variable and opc a comparison operator. The second is that the variable
var must be updated only once and in the form var ← var opa expr,
where opa is an arithmetic operator. Finally, expr must not depend on
mutable or iteration variables.

For example, a node in the form 〈while v < a do b〉, where v is declared
as 〈let v = c〉 and updated in the form 〈v ← v ∗ d〉 is mapped to the
finalizer node 〈blogd(a − c)c ∗ nb〉 where nb is the feature value for the
loop body b. While loops that do not respect this contraint are mapped
to 〈0〉 (i.e. they do not contribute to the feature value).

Nodes that represent a call to a kernel utility function. A node in the
form 〈utilityFun(args)〉 is mapped to a node representing a call to the
finalizer built for utilityFunction. This means that when a call to an
utility function is found, the entire finalizer building process is recursively
applied to it, which results in a finalizer associated to the utility function.
In other terms, if fzutility is the finalizer for the function utilityFun, then
a node in the form 〈utilityFun(args)〉 is mapped to 〈fzutility(args)〉.

Other non-interesting nodes. Non-interesting nodes that are not consid-
ered in the preceding cases are mapped to the sum of the feature values

4This syntax includes also F# loops in the form 〈for i = a to b do c〉, where the
increment of the variable is implicitly set to 1

Chapter 9. Runtime scheduling engine 135

computed for their children. For example, a node representing a cast
(e.g. 〈(float)expr〉) is mapped to 〈nexpr〉, which is the feature value for
the child expr. A call to a function that is not an utility function (e.g.
〈Math.Pow(expr1, expr2)〉 is mapped to the sum of children’s feature
values 〈nexpr1 + nexpr2〉).

We summarize the dmap function in the equation 9.35.

dmap(n) =

dmaplet(val, b) n = Let(var, val, b)

0 n = VarRef(var) or

n = Value(val)

dmapseq(fst, snd) n = Sequential(fst, snd)

dmapif (cnd, ifb, elb) n = IfThenElse(cnd, ifb, elb)

dmapfor(st, sp, en, b) n = For(var, st, sp, en, b)

dmapwhile(st, en, up, b) n = While(var < en, b) and

var value before the loop is st and

var is updated in b as var ← var ∗ up

dmaputil(args) n = Call(uf, args) and uf is an

utility function

dmapoth(ch) otherwise, where ch are the

children of n

(9.3)

5For simplicity we express only the mapping for while loops where the variable is multi-
plied by an expression in each iteration, but a similar mapping can be expressed in case of
sum, substraction or division

136 Chapter 9. Runtime scheduling engine

dmaplet(val, b) = map(val) +map(b) (9.4)

dmapseq(fst, snd) = map(fst) +map(snd)

dmapif (cnd, ifb, elb) = map(cnd) + 0.5 ∗ (map(ifb) +map(elb))

dmapfor(st, sp, en, b) = map(st) +map(en) +map(sp)+⌊
en− st+ 1

sp

⌋
∗map(b)

dmapwhile(st, en, up, b) = blogup(en− st)c ∗map(b)

dmaputil(args, fz) =
∑
a∈args

map(a) + fz(args)

dmapother(children) =
∑

c∈children

map(c)

Note that dmap calls map on the children of the input node in order to
guarantee that every interesting node in the AST is processed by smap.

Similarly, the function smap can rely on map to compute the feature values
for the children of an interesting node. For example, if the set of interesting
nodes is made of calls (applications) of arithmetic operations, the function
smap described in the equation 9.2 can be specialized as follows.

smaparith(n) =

1 +map(a) +map(b) if n = a+ b or

n = a− b or

n = a ∗ b or

n = a/b or

n = a%b

None otherwise

Given the definition of map, smap and dmap, the process of building a
feature finalizer for a feature f and a kernel k can be described as a function

Chapter 9. Runtime scheduling engine 137

that returns a lambda with the same parameters of k and with the body
generated by applying map to the root of k, using a specialization of the smap
function according to the specific feature to extract.

Definition 17. [Feature finalizer building process] Given a kernel k, be root(k)
the root of the AST of k and pars(k) the set of parameters of the kernel. We
indicate with fun〈P 〉 → 〈B〉 a lambda with a set of parameters P and a body
that is represented by the AST stored in B.

The process of building a finalizer for a kernel k and a feature f , given
smapf the function to map interesting nodes for f is described by a function
fzbuild defined as:

fzbuild(smapf , k) = fun 〈pars(k)〉 → 〈map[smapf](root(k))〉

were map[smapf] is the fuction defined in equation 9.1 where the call to
smap is replaced by a call to smapf .

Finalizer AST validation

When considering the behaviour of a finalizer, in terms on the nodes that
populate its AST, there are some restrictions that should be applied for sake
of correctness and efficiency. For example, the finalizer should not contain
references to local or iteration variables declared in the kernel, since none of
those variables are part of the finalizer AST. More generally, we define valid
finalizer nodes the set of AST nodes that can appear in a finalizer AST.

Definition 18. [Valid finalizer node] Given an AST node n, we say that n is
a valid finalize node if and only if it expresses one of the following constructs.

1. Constant value;

2. Reference to a parameter;

3. Call to a function or access to a property related to the length/rank of
an array parameter, where the arguments are valid nodes;

4. Call to an arithmetic/OpenCL built-in function, where the arguments
are valid nodes;

5. Call to a function related to the work-item domain (e.g. global-size,
work-group ID), where the arguments are valid nodes;

6. Call to the feature finalizer relative to a kernel utility function where the
arguments are valid nodes.

138 Chapter 9. Runtime scheduling engine

We assume that the function smap always produces valid finalizer nodes.
Assuming that both dmap and smap produce valid nodes, the function map
produces valid nodes as well, since it simply forwards the result of either smap
or dmap depending on whether the input node is interesting or not. The only
function that can generate invalid nodes is therefore dmap. To determine the
cases where this function can produce invalid nodes, we consider the equation
9.3. For each case we apply induction, assuming that the result of applying
the function to the children of a node returns a set of valid nodes and verifying
whether the composition of these nodes results is a valid node.

In case of a let-binding, a variable reference, a constant value or a branch,
which are the first four cases of equation 9.3, the nodes built represent arith-
metic operations applied the results of processing the children of the input node
(case 4 of definition 18). This means that if processing the children produces
valid nodes, the node built as the combination of them is valid.

The result of processing a node that matches the last case of equation 9.3
(other non-interesting nodes) is valid, since it represents the sum of the nodes
generated for the children of the input.

The only cases in which dmap can generate invalid nodes are therefore
when the input node is a for loop, a while loop or a call to an utility function.
This is because in these particular cases some nodes of the kernel AST become
part of the finalizer AST “as they are”, without being processed by the dmap
function. In case of a call to an utility function, the nodes of the kernel that
become part of the finalizer are the arguments of the call. In case of a loop,
the nodes preserved in the mapping are the expressions of the boundaries of
the iteration variable.

In the sample 9.1 we illustrate a kernel for which the finalizer building
process to extract the number of memory reads generates an AST containing
an invalid node.

let myKernel(a:float[], b:float[], c:float[]) =
let count = a.Length
let endIdx = count - 1
for i = 0 to endIdx do

c.[i] <- a.[i] + b.[i]

Listing 9.1: Memory read count feature depending on local variable

Chapter 9. Runtime scheduling engine 139

According to the rules defined in thre equation 9.3, the finalizer generated
is the one shown in listing 9.2. The finalizer body contains a reference to
the kernel local variable endIdx, violating the rules expressed in the definition
18. Note that other than being an invalid node, the local variable reference
introduces a free variable in the function context, which prevents the function
from being evaluated6.

fun (a:float[], b:float[], c:float[]) ->
// (a.Length) feature value
0 +
// (For loop) feature value
(endIdx + 1) *
// (Var set) feature value: 0 left hand, 2 right hand
(0 + 1 + 1)

Listing 9.2: Memory read count finalizer

Since local variables are extensively used in most of the kernels, we define a
variable unfolding procedure to allow feature values to depend on kernel local
variables, lifting references to such variables when generating the finalizer AST
in order to obtain a valid finalizer.

To implement this procedure, while traversing the kernel AST we keep
track of the immutable local variables and of their values using a stack σ.
When the function dmap generates finalizer nodes containing kernel nodes (i.e.
in case of processing for/while loops or utility function calls), the variable
unfolding procedure recursively processes these kernel nodes, replacing each
variable reference with the corresponding value in the stack.

The process doesn’t support unfolding of mutable variables, since tracking
the updates of a mutable variable is generally unpredictable. Therefore, if the
variable considered for unfolding is mutable, the unfolding process is inter-
rupted and the kernel node is mapped to 〈0〉 (i.e. the node doesn’t contribute
to the feature).

In the example 9.1, when processing the for loop node the variable unfold-
ing procedure is applied to the nodes endIdx (the final value of the iteration
variable) and to 0 (the initial value of the iteration variable). The local vari-
able endIdx is replaced with its value in σ, which is count − 1. Since this
expression contains another local variable reference (i.e. count), the process
is recursively applied to replace count with its value, which is a.Length. The
expression resulting from variable unfolding is therefore a.Length − 1, which
doesn’t contain any local variable reference.

6Trying to evaluate a quotation containing the function definition triggers an error, re-
porting that the free variable is not defined in the translation context

140 Chapter 9. Runtime scheduling engine

Given the application of variable unfolding, the finalizer AST becomes the
one shown in the sample 9.3, which unlike the one reported in the sample 9.2
contains no free variables and can be evaluated.

fun (a:float[], b:float[], c:float[]) ->
// (a.Length) feature value
0 +
// (For loop) feature value
(a.Length - 1 + 1) *
// (Var set) feature value: 0 for left hand, 2 for right
hand

(0 + 1 + 1)

Listing 9.3: Memory read count finalizer with variable unfolding

After variable unfolding has been applied, the dmap function checks that
the resulting expression is valid according to the definition 18. In the sample
9.4 we show a case where the validation fails. When processing the for loop,
the dmap function firstly applies variable unfolding to endIdx and to 0, respec-
tively obtaining the expressions myCustomFun(a.Length) − 1 and 0. Then,
the resulting expressions are validated. Whereas 0 is a valid node (first case
of the definition 18), myCustomFun(a.Length)− 1 is invalid since it contains
a call to a function that doesn’t fall in any of the four classes of function calls
considered in the definition 18. The entire loop node is therefore mapped to
〈0〉, which means that its contribution to the feature value is ignored.

let myKernel(a:float[], b:float[], c:float[]) =
let endIdx = myCustomFun(a.Length)
for i = 0 to endIdx do

c.[i] <- a.[i] + b.[i]

Listing 9.4: Memory read count that depends on custom function

We choose to map unhandled nodes to 0 to enhance the robustness of the
scheduling policy and, more generally, of the runtime. Whereas this choice can
lead to significant errors in feature values and consequently to poor scheduling
quality, it allows to support the execution of a wider set of computations and in
particular of kernels for which precise feature extraction may fail. The runtime
can nonetheless be configured to interrupt feature extraction if one or more
kernel nodes cannot be mapped to finalizer nodes. In this case, the framework
randomly selects a device for kernel execution.

Once a valid finalizer AST has been produced, we perform a final processing
to further reduce the overhead of evaluating the finalizer at runtime, which

Chapter 9. Runtime scheduling engine 141

consists in folding constants and pruning the subtrees that do not contain any
reference to the arguments. Each of these subtrees is evaluated and replaced by
a node containing the evaluation result (i.e. a constant). The result of applying
constant folding and pruning to the sample 9.3 is illustrated in listing 9.5.

fun (a:float[], b:float[], c:float[]) ->
// 0+ removed, -1+1 folded, 0+1+1 pruned
a.Length * 2

Listing 9.5: Memory read count finalizer after constant folding

9.2.2 Cache miss estimation

So far we illustrated the finalizer building process for program-constructs-based
features, which means for features that estimate the occurrence of certain con-
structs at runtime. For the first class of features the finalizer code is an arith-
metic expression with a dependency on the kernel actual arguments, like the
one shown in listing 9.2. The evaluation of the finalizer is therefore extremely
efficient. In addition, estimating the occurrence of constructs is a process that
can be parametrized on the particular interesting AST nodes, which allows
to describe the kernel-to-finalizer mapping in terms of a generic part (i.e. the
dmap function) and a part specific for the construct, or set of constructs, which
directly contribute to the feature value (i.e. the smap function).

The process can be adapted to extract also resource-usage-based features,
such as the estimated number of cache misses or the bandwidth required by
a kernel, which derive from considering the code structure together with the
characteristics of the available devices (e.g. the cache size, the core clock, the
memory bandwidth). In the this section we describe the process of extracting
a feature that represents the estimation of the number of cache misses during
kernel execution. This feature is used in the validation part of this Thesis
(chapter 11).

To estimate the number of cache misses, we extract them memory access
strides and the trip count of loops containing memory accesses. Since we
exclusively consider cache misses generated by accessing vector arguments,
throughout this section we use the terms “memory address/access” and “vector
index/access” interchangeably.

Like in the previous section, we underline the fact that everytime we apply
actions/operations on AST nodes, such as sum, multiplication, absolute value
and ceiling, we do not intend to express their execution but the creation of
AST nodes that represent such actions/operations. For example, when we

142 Chapter 9. Runtime scheduling engine

write n+m, where n and m are AST nodes, the operator + must be intended
as a shorthand representation of a node that encodes a call to the function
“sum”, whith n and m the node children.

In estimating the number of cache misses, we make the following assump-
tions.

• The threads (work-items) access each vector with an inter-work-item
constant offset. For example, if the first work-item accesses the first
element of a vector and the second work-item accesses the fourth element,
the third work-item accesses the seventh (i.e. constant 3-elements offset).
More formally, given m a memory access in the kernel, let 0 ≤ t ≤ gsize
be the index of a work-item, gsize the total number of work-items and
idx(m, t) the index of the vector accessed by the work-item with index
t. The assumption can be expressed as follows:

∀t∈1..gsize−2 : idx(m, t)− idx(m, t− 1) == idx(m, t+ 1)− idx(m, t)

• Work-items are processed in row-major order. In case of a 2D work-
item space, the work-item with index (row, col) executes after the item
(row, col − 1) and the item (row + 1, 0) after the item (row, ncols − 1),
where ncols is the width of the work-items space.

• If the address of a memory access is function of a loop iteration variable,
the offset between addresses generated at consecutive iterations of the
loop is constant. For example, if in the first iteration a vector is accessed
at index 0 and in the second iteration at index 10, in the third iteration
the index accessed is 20. We formalize this assumption considering a
memory access m in the kernel that depends on an iteration variable v.
We indicate with vi the value associated to the variable in the ith iteration
of the loop and with idx(m, vi) the index accessed in the ith iteration. If
itcount is the total number of iterations, the assumption can be expressed
similarly to the assumption of inter-work-item constant offset.

∀i∈1..itcount−2 : idx(m, vi)− idx(m, vi−1) == idx(m, vi+1)− idx(m, vi)

• For each vector, we consider only the “deepest” access in the loops hi-
erarchy of the kernel. In terms of the AST, we consider exclusively the
access to the vector that has the highest number of for or while loops as
ancestors. From an abstract point of view, this means that we consider
the access that is likely to be occur more frequently. In case of multi-
ple accesses to the same vector at the same level (i.e. contained in the
same loop), we take into account only the first access. In the rest of this
section we refer to this access as the key access.

Chapter 9. Runtime scheduling engine 143

• The trip count of a loop doesn’t depend on any of the iteration variables
of the outer loops. The example 9.2.2 illustrates the case of a nested loop
that has a dependency on the iteration variable i of the parent loop. In
particular, the initial value of the iteration variable j of the nested loop
depends on i.

for i = starti to endi do
for j = i + 1 to endj do

...

• Each vector has its own cache. As a consequence, if an access acc to a
vector causes eviction, the evicted lines exclusively contains data belong-
ing to the same vector accessed in acc. In other terms, each vector evicts
its own cache lines.

• The CPU cores and work-items running on them shares the entire cache.
This is an aproximation, since the specification of the CPU used reports
that half cache is shared by groups of 2 cores (of the 4 available).

• We do not consider the associativity of the cache. In the platform used
to evaluate the scheduling strategy (chapter 11), the CPU (L2) cache
has a size of 2MB, with cache lines of 64 bytes. From the point of view
of cache miss estimation, a cache address is logically divided into and
offset, which is stored in the 6 least significant bits (64B line), and an
index, which is stored in the bits 6-21 (15 bits to address 32k lines).

• No part of the vector is present in the cache before the first access and
cache prefetching is disabled.

We estimate the number of cache misses generated at kernel runtime inde-
pendently for each vector accessed, as we illustrate in the rest of this section.

144 Chapter 9. Runtime scheduling engine

For a given vector we consider the hierarchy of loops in the kernel, as shown
in the sample 9.6, starting from the innermost loop that contains an access to
the vector and bubbling up to the outermost.

let kernel (myArray:float32[], ws:WorkItemInfo) =
...
for i = starti to endi do

...
for j = startj to endj do

...
for k = startk to endk do

myArray.[ws.GlobalID(0)]

Listing 9.6: Hierarchy of loops

The hierarchy of loops in the kernel body are then wrapped in n additional
loops, where n is the work-space size (from 1D up to 3D) and every call to
the GlobalID OpenCL function7 is replaced with a reference to the iteration
variable of the corresponding loop, as shown in the example 9.7. With this
manipulation, which agrees with the second assumption (order of execution
of work-items), the execution of consecutive work-items is treated as a loop
like all the other loops in the kernel. This allows to simplify and uniform
the estimation of cache misses caused by the entire work-items space (i.e. the
whole execution of the parallel program).

let kernel (myArray:float32[], ws:WorkItemInfo) =
...
for workItemXIndx = 0 to ws.GlobalSize(0) - 1 do

for i = starti to endi do
...
for j = startj to endj do

...
for k = startk to endk do

myArray.[workItemXIndx]

Listing 9.7: Additional loops for the work-items space

7At kernel execution time, this function returns the identifier of the current work-item
for a given dimension. In case of 3D work-item space, the first thread id is 0, 0, 0 (x, y and
z), the second 1, 0, 0, and so on.

Chapter 9. Runtime scheduling engine 145

As already said, we define key access the deepest access to the vector. This
is the only access considered to estimate the number of cache misses. In the
sample 9.8, the key access is myArray.[i, j, k], since it is the first access to the
vector that occurs in the deepest loop.

let kernel (myArray:float32[], ws:WorkItemInfo) =
for workItemXIndx = 0 to ws.GlobalSize(0) - 1 do

for i = starti to endi do
myArray.[i]

for j = startj to endj do
myArray.[i*j]

for k = startk to endk do
// Key access
myArray.[i*j*k]
...
myArray.[i*j*k+1]

Listing 9.8: Key access in an hierarchy of loops

In the rest of the section, we indicate with ka(v) the expression (AST
subtree) of the key access to a vector v. This expression can be extracted
performing an initial kernel AST traversal.

To describe how loops are analysed and which information is bubbled up,
we consider a kernel containing n nested loops, including the additional loops
for the work-items space, and we indicate with lv1, lv2, .. lvn the iteration
variables of the loops, from the outermost to the innermost. For each loop we
build two expressions respectively encoding the following information. Once
built, these expressions are passed to the parent loop.

• The estimated number of faults in executing the subtree rooted in the
loop;

• Whether or not the loop can be entirely executed without causing evic-
tion.

For simplicity, but without lack of generality, we assume that each loop iter-
ates at least twice. This allows to present the process of building an estimator
for the number of cache misses without considering surrounding conditions,
enhancing readability and comprehension. These condition are nonetheless
handled by the framework. In particular, if the trip count of a loop in the
hierarchy is zero, then no access to the vector is performed and the estimated

146 Chapter 9. Runtime scheduling engine

number of cache misses is 0. In case of a loop iterating once, the number of
cache misses estimated for the loop body if forwarded as it is to the parent.

We use the key access index expression to estimate the stride between
accesses performed at consecutive iterations of the loop. In analyzing the ith
loop, with 1 ≤ i ≤ n, let initi and stepi be the initial expression associated
to the iteration variable and the expression that encodes the update to the
variable in each iteration. The expression 〈initi+stepi〉 represents the value of
the iteration variable in the second iteration. We obtain the expressions of the
index generated in the first and second iterations by replacing each reference
to the iteration variable lvi respectively with 〈initi〉 and 〈initi + stepi〉. The
references to the iteration variables of the others loops in the hierarchy are set
to the respective initial values.

To formalize the construction of this expression for a given vector, we
consider an expression n and we indicate with def(n) the expression that
results from processing n, replacing each and every reference to the iteration
variables of the loops in the hierarchy with the corresponding initial expression.
We also indicate with n[e/v] an expression that results from replacing each
reference to the variable v with the expression e. If T is the type of the
elements contained in the vector, we indicate with size(T) the size in bytes of
each element.

The equation 9.5 represents the process of construction of an AST that
represents the access stride in bytes between consecutive iterations of the ith
loop.

stridei(v) = |def(ka(v))[initi + stepi/lvi]− def(ka(v))[initi/lvi]| ∗ size(T)
(9.5)

In addition to the stride, we build the expression representing the trip
count of the loop, formalized in the equation 9.6, where initi, endi and stepi
are respectively the initial/final value (expressions) of the iteration variable
and the expression encoding the increment.

tripi =

⌊
endi − initi + 1

stepi

⌋
(9.6)

How the stride and the trip count expressions are employed depends on
whether the loop is the innermost loop or an outer loop.

Innermost loop (nth loop). For the innermost loop, we use the stride and
the trip count to build an expression that represents the estimation of
the number of cache misses in executing the loop. If we indicate with
lsize the size of a cache line, the expression max(1, blsize/striden(v)c)

Chapter 9. Runtime scheduling engine 147

represents the number of iterations that fit a cache line. For example,
if the cache line is 64B and the stride is 16B, the cache line accessed
changes every 4 iterations. The max function is used to express that
even when the stride is greater than the line size (i.e. the ratio is 0) at
least one iteration fits a cache line (in particular, in this case a different
cache line is accessed in each iteration).

We divide the trip count by the number of loops that fit a cache line to
obtain the estimated number of misses in executing the loop, as defined
in equation 9.7.

faultsn(v) =

tripn

max

(
1,

⌊
lsize

striden(v)

⌋)
 (9.7)

The stride and the trip count are also used to build an expression that
encodes whether the execution of the loop causes the eviction of some
lines. In particular, let least1(stride) be the position (starting from 0)
of the least significant bit in the stride that is set to 18. If csize and
lsize are respectively the size of the cache and the of the cache line, then
csize/lsize is the number of lines in the cache and laddr = log2(csize)
and lindex = log2(csize/lsize) are respectively the length (size in bits) of
a cache address and of its index part.

It is important to note that if the least significant 1 in the stride is the nth
bit, then all the addresses generated with this stride have the the same
least significant n − 1 bits, since the n − 1 least significant bits of the
stride are 0. This means that if the least significant 1 falls in the index
part of a cache address, some bits of the index are always the same for
each and every address generated, as shown in figure 9.3. Consequently,
the number of lines eligible to store data is lower than the number of
lines in the cache.

For example, if the stride is 512 the least significant 1 is stored in the bit
8. In case of a 2MB cache with lines of 64 bytes, the index is stored in
the bits 6-20. Since the least significant 1 is in position 8, two bits of the
index (bit 6 and 7) have the same value for all the addresses generated
and only the 13 most significant bits contribute to determine the cache
line. Consequently, only 213 = 8K lines are eligible to store data, out of
the 215 = 32K lines in the cache.

8Again, since ka is an expression, we indicate with least1() the expression that contains
a call to a function to obtain the least significant 1

148 Chapter 9. Runtime scheduling engine

Figure 9.3: Impact of memory access stride on the index part of a cache address

From the figure we deduce that the number of bits of the index part
of a cache address that contribute to determine the cache line is laddr −
least1(stride). Obviously, regardless the position of the least signifi-
cant 1 bit, no more than lindex bits are required to address a cache line.
This means that the actual number of useful bits to address a cache
line is min(laddr − least1(stride), lindex). From this expression we ob-
tain the number of lines available to store the vector data, which is
2min(laddr−least1(stride),lindex).

If the number of useful lines is greater than the loop trip count, the
cache can store all the data accessed during the execution of the loop.
In other terms, the loop can be entirely executed without causing evic-
tion. Otherwise, at a certain iteration the memory access will cause the
replacement of a line containing previously-loaded data (equation 9.8).

evictn(v) = 2min(laddr−least1(stride),lindex) < tripn (9.8)

= 2min(log2(csize)−least1(stride),log2(csize/lsize)) < tripn

= min(2log2(csize)−least1(stride), 2log2(csize/lsize)) < tripn

= min

(
csize

2least1(stride)
,
csize

lsize

)
< tripn

=
csize

max(2least1(stride), lsize)
< tripn

Chapter 9. Runtime scheduling engine 149

Outer loop (ith loop with i < n). In case of an outer loop we consider the
child (i.e. outermost nested) loop. If the child loop reports cache eviction
(i.e. evicti+1(v) is true), we estimate a number of misses for the outer
loop equal to the number of misses reported by the child multiplied by
the trip count tripi(v) of the loop. In other terms, we estimate that in
each iteration of the outer loop the inner loop causes the same number
of faults.

If the child loop reports no eviction, we consider the stride between con-
secutive accesses happening at consecutive iterations of the outer loop
(equation 9.5, using the index of the outer loop). If the stride in bytes
is smaller than the cache line size, it means that consecutive iterations
of the outer loop reuse data loaded in the previous iterations. There-
fore, we estimate the number of faults for the outer loop as the prod-
uct of the number of faults reported by child by the number of times
an iteration of the outer loop cannot reuse data loaded in the previ-
ous iterations. Given the stride in bytes stridei(v) and the line size
lsize, blsize/stridei(v)c represents the number of iterations that can
reuse previously-loaded data. Given the trip count tripi, the number of
times an iteration cannot reuse data loaded in the previous iterations
can be expressed as dtrip/blsize/strdce. We multiply this expression by
the number of faults in the child loop to express the number of faults of
in the parent loop.

In the equation 9.9 we formalize how the informations coming from the
analysis of the nested loop are combined to express the number of faults
for the outer loop. The if-otherwise in the equation represents an if then
else AST node, built and bubbled up along the loop hierarchy.

faultsi(v) =

tripi ∗ faultsi+i(v) if evictsi+i(v)

tripi⌊
lsize

stridei(v)

⌋
 ∗ faultsi+i(v) otherwise

(9.9)

For what regards cache eviction, if the executing the child loop causes
eviction we assume that executing the outer loop causes eviction as well.
If the child loop reports no eviction, then we compare the outer loop trip
count with blsize/stridei(v)c, which is the number of iterations of the
outer loop that can reuse previously-loaded data. If the first is smaller

150 Chapter 9. Runtime scheduling engine

than the second, than the outer loop can execute entirely without causing
eviction (i.e. the data loaded by all the outer loop iterations fit the
cache). In this case, the parent loop reports no eviction (equation 9.10).

evicti(v) = evictsi+i(v) || tripi(v) >

⌊
lsize

stridei(v)

⌋
(9.10)

The equations 9.5 to 9.10 globally define how the kernel AST nodes rep-
resenting loops are mapped to finalizer nodes. All the nodes that do
no represent loops are only considered to check if any of the children
contains loops. In other terms, they do no map to finalizer nodes. Note
that, according to 9.9, if faults0(v) (0 stands for the index, in the hi-
erarchy of loops, of the outermost loop) is an expression that holds the
estimated number of misses for the entire kernel. Given this, similarly to
the definition 17, we can express the process of building the cache miss
finalizer as stated in the definition 19.

Definition 19. [Cache miss finalizer building process] Given a kernel k,
let v be a vector parameter, ka(v) be the key access to v and 0 be the
index of the outermost loop in the hierarchy of loops containing ka(v).

The process of building a finalizer that estimates the number of cache
misses in accessing v during the execution of k is described by a function
cachebuild defined as:

cachebuild(k) = fun 〈pars(k)〉 → 〈faults0(v)〉

Variable unfolding, AST validation and pruning introduced in section 9.2.1
for the extraction of a generic feature are applied with no changes in the
construction of the estimated cache misses finalizer, in order to guarantee that
the tree encoding the number of cache misses for the entire kernel execution
exclusively depend on the set of kernel arguments contain only valid nodes.

Example of cache miss estimation

We conclude this section illustrating ad example of cache miss estimation. In
particular, we consider a kernel that sums the elements along each column of an
NxN matrix (listing 9.9). To execute the kernel, N work-items are launched,
each of which operates on the column corresponding to its own index.

Chapter 9. Runtime scheduling engine 151

let kernel (input:float[,], output:float[], ws:WorkItemInfo) =
let threadIdx = ws.GlobalID(0)
let mutable accum = 0.0f
for r = 0 to input.GetLength(0) - 1 do

accum <- accum + mat.[r, threadIdx]
output.[threadIdx] <- accum

Listing 9.9: Row sum kernel

In listing 9.10 we show the hierarchy of loops, including the additional loop
to iterate on the work-items space.

for threadIdx = 0 to ws.GlobalSize(0) - 1 do
for r = 0 to input.GetLength(0) - 1 do

mat.[r, threadIdx]

Listing 9.10: Key access and loops in the row sum kernel

To compute the estimated number of cache misses, we consider a 512x512
elements matrix where each element is a 4 byte floating point or integer value.
The cache size is 2MB with cache lines of 64 bytes. Consequently, the length
of a cache address is 21 bits, with 6 bits of offset and 15 bits of index.

When the first work-item starts, in each iteration a slice (first 16 elements)
of a matrix row is loaded into the cache, as illustrated in figure 9.4.

Note that the index of the key access is [r, threadIdx], which corresponds
to a flat 1D index9 (r ∗ input.GetLength(1)) + threadIdx.

Considering the innermost loop and the key access index, we apply the
equation 9.5 to obtain the access stride between consecutive iterations, which is
(((r+1)∗input.GetLength(1))−(r∗input.GetLength(1)))∗4 = (1K−512)∗4 =
2K bytes.

The equation 9.6 is applied to determine the trip count, which is 512.
By applying the equation 9.7 we obtain the number of misses generated

during the execution of the loop, which is 512/max(1, 64/2K) = 512/1 = 512.
This means that the work-item generates a cache miss in each iteration of the
loop.

Finally, we use the equation 9.8 to verify whether the loop causes eviction.
Since the least significant 1 bit of the 2K stride is in position 11, the equation
returns 2M/max(211, 64) = 2M/2K = 1K. Since 1K is greater than the trip
count (512), the loop doesn’t cause eviction. This means that when the work-
item ends, the set of data loaded during the overall execution of the loop is

9Even though the matrix is 2D, the layout in memory is flat row-major.

152 Chapter 9. Runtime scheduling engine

Figure 9.4: Data loaded into cache when scanning the first column of a matrix

stored in cache.
Moving to the outer loop, we obtain the stride by setting r to 0 in the

expression of the key access index (r ∗ input.GetLength(1)) + threadIdx and
evaluating the result for threadIdx = 0 and for threadIdx = 1. The result is
(threadIdx + 1 − threadIdx) ∗ 4 = 4 bytes. In fact, at each iteration of the
innermost loop, consecutive work-items access consecutive elements of a row.
The trip count of the loop is 512, which is equal to the number of columns and
to the number of spawn work-items.

Since the inner loop doesn’t cause eviction, we apply the second case of
the equation 9.9, resulting in an estimated number of misses for the outer loop
equal to (512/(64/4)) ∗ 512 = 4K cache misses, which represents the total
number of cache misses since the loop is the outermost in the hierarchy. Note
that the term 64/4 = 16 suggests that cache eviction takes place once every
16 work-items. This situation is illustrated in figure 9.5. As shown, since 16
elements (64 bytes) of each row are loaded into the cache by the execution of
the first work-item, successive work-items find those lines already in cache.

To conclude, we consider what happens if the size of the input matrix is
1024x1024. In this case the stride of the innermost loops is 4K, the trip count
is 1024 and the number of cache misses is 1024 as well.

Since the least significant 1 bit of the 4K stride is in position 12, when
applying the equation 9.8 we obtain 2M/max(212, 64) = 2M/4K = 512. Since

Chapter 9. Runtime scheduling engine 153

Figure 9.5: Cache lines reused when scanning the columns 1-15 of a matrix

this value is smaller than the trip count (1024), the loop causes eviction. In
particular, only 512 consecutive iterations can run without causing eviction.
This situation is illustrated in figure 9.6. As shown, successive work-items do
not find the data in cache, which entails that the same number of cache misses
is generated for each work-item executed.

The total number of cache misses for the kernel is calculated applying the
first case of the equation 9.9, resulting in 1024 ∗ 1024 = 1M misses.

9.3 Prediction model, profiling and regression

Over the years, linear modeling has been largely employed to describe or es-
timate the dependency of certain phenomena from a set of known variables
in most of the scientific research fields [9, 23, 38, 59, 63]. The pourpose of lin-
ear regression is to model the relationship between a dependent variable, also
called measured variable or regressand, and a set of independent variables, also
known as explanatory variables or regressors.

In the completion-time-prediction model described in this chapter, the de-
pendent variable is the completion time on a device, while the explanatory
variables are the set of chosen features. The output of linear regression is a
parameter vector (also known as set of regression coefficients) which correlates

154 Chapter 9. Runtime scheduling engine

Figure 9.6: Cache eviction when scanning the first column of a matrix

the features to the completion time. Conceptually, the parameter vector de-
termines the impact of each feature on the time required for a computation to
complete.

Linear regression is a powerful modeling tool which assumes a linear rela-
tionship between the dependent variable and the explanatory variables. This
does not imply that only linear behaviors can be explained: as long as the de-
pendent variables expose the same kind of non-linearity that characterizes the
dependent variable, linear regression represents a suitable method. As already
briefly discussed, for many algorithms the completion time is non-linear with
respect to the size of the input, but can be linear with respect to certain fea-
tures. For example, matrix multiplication completion time is non-linear with
respect to the size of the input but is linear with respect to the number of
arithmetic operations. Using this number as an explanatory variable, linear
regression is able to build a model capable of expressing completion time as
the dependent variable.

Linear regression is defined by formula 9.11

y = Xβ + ε (9.11)

Where:

Chapter 9. Runtime scheduling engine 155

• y is the dependent variable

• X is the matrix of the explanatory variables

• β is the vector that contains the regression coefficients

• ε is the error term (fitting residuals)

Ordinary linear regression is sensitive to outliers in the dependent variable
[6]. Completion time is likely to contain outliers, mainly caused by certain
sporadic effects that are not considered in the model or to the instability of the
system where the measurement is performed. For example, many algorithms
show outliers for few specific combinations of cache and input size that cause
particularly aggressive cache eviction. Outliers can be introduced also by heavy
task in the system that steals computing resources from the running tests
or by driver instability. In ordinary linear regression, outliers can have a
severe, negative impact on the quality of the model built. For this reason,
our prediction model employs a robust regression method instead of ordinary
regression [32] [25].

As described in the previous section, FSCL can efficiently extract and eval-
uate kernel features, leveraging a mixed static and runtime approach. Despite
the generality of the feature-extraction process, not every feature can be used
in the prediction model. The first restriction for a feature to be employed in the
prediction model is to “count” the occurrences of a certain aspect, measuring
or predicting the usage of a particular computing resource. In addition, valid
features are characterized by non negativity, null empty set (i.e. an empty
program must have all features equal to zero) and countable additivity (i.e. if
a feature has values x1 and x2 for two programs p1 and p2, then if p3 represents
serial execution of p1 and p2, the feature value for p3 must be equal to x1 +x2).

An example of valid feature is the number of instructions (or memory
accesses), because it counts an aspect of the program, it can’t hold negative
values, an empty program has no instructions and sequentially running two
programs causes the execution of a number of instructions equal to the sum of
the respective instructions count.

9.3.1 Completion-time prediction model

To describe our completion-time prediction model, we firstly need to introduce
some definitions of the entities involved in building the model.

Definition 20. [Program] A program is a particular FSCL kernel

156 Chapter 9. Runtime scheduling engine

Definition 21. [Program case (or instance)] A program case is a pair made
of a program and a set of actual arguments for its parameters. A case repre-
sents a particular execution of a specific program, detemined by the arguments
supplied.

Definition 22. [Benchmark case (or instance)] A benchmark case is a program
case associated with its completion time on a device

Definition 23. [Benchmark (or Training Sample)] A benchmark is a program
where each case is benchmark case. A benchmark represents a program for
which we assess the completion time for all its cases.

Definition 24. [Target case (or instance)] A program case for which we want
to predict the completion time

Benchmarks are used to build a linear model for each available OpenCL
device in the running system. Each model correlates a set of features to the
completion time on a specific device. For each device a linear model is sepa-
rately built starting from the following data:

• A set of benchmarks: for each benchmark we consider several cases by
varying the input size. Each benchmark case is executed on the device
to obtain the corresponding completion time

• A set of features: each feature captures a certain aspect of a program.
The chosen features are extracted from each benchmark case.

• A matrix A where each column is a feature and each row is a benchmark
case.

• A vector t with the completion times of the benchmark cases on the
considered device, in the same order of the cases in A

After having defined a set of branchmarks and features, a matrix A and a
vector t, we build the matrix of the explanatory variables X (definition 9.11)
from A.

Linear regression assumes homoscedasticity (i.e. constant variance) in the
error terms. In particular, the error on a feature should not be correlated to
the completion time. In our model we instead expect the errors on features
to be affected by such a correlation. To deal with this issue, we employ the
Weighted Least Squares method, which is a generalization of ordinary least
squares that relaxes this assumption by normalizing the equations using the
variance of the completion time. For our model, we set the dependent variable

Chapter 9. Runtime scheduling engine 157

y as the componentwise normalization of t by its standard deviation (i.e.
y[i] = t[i]/σ(t[i]), so that all of the samples can be assumed to be identically
distributed. Consistently, we also normalize each row of A in the same way.

Finally, we add to the resulting matrix a unary column, normalized like
t, which constitutes the intercept of the linear regression. Conceptually, the
intercept represents the time needed to start any computation, independently
from the specific benchmark case being measured.

y =

t1/σ(t1)
t2/σ(t2)

...
tm/σ(tm)

 (9.12)

X =

1/σ(t1) a1,1/σ(t1) a1,2/σ(t1) · · · a1,n/σ(t1)
1/σ(t2) a2,1/σ(t2) a2,2/σ(t2) · · · a2,n/σ(t2)

...
...

...
. . .

...
1/σ(tm) am,1/σ(tm) am,2/σ(tm) · · · am,n/σ(tm)

 (9.13)

We can now apply y (as defined in the equation 9.12) and X (as defined
in the equation 9.13) to the equation 9.11, and solve it using linear regression.
The results of linear regression are:

• β: the set of regression coefficients, which describe the completion time
on the considered device in terms of a linear combination of the features.

• ε: the fitting residuals. Analyzing the residuals allows to assess the
quality of the fitting. Residulas of a good fit not only should be small
but also should show no correlation to the features and to the completion
time.

Completion time is an unreliable measure, subject to unpredictable errors
due to the presence of running processes and tasks in the system during the
execution of the measured program. Since we expect the presence of outliers
in the data, as already said we employ a robust regression method, which uses
the Iteratively Reweighted Least Squares algorithm [34] to identify and discard
the outliers.

Once β has been calculated, we can use formula 9.14 to predict the comple-
tion time of a target program (case) on the device considered. In this formula,
x is a vector that contains the same features used in X but calculated on a
target program.

t = xβ (9.14)

158 Chapter 9. Runtime scheduling engine

Robust linear regression is performed independently for each OpenCL de-
vice available, building y in equation 9.12 starting from the completion times
of the benchmark cases on the device.

9.4 The FSCL runtime scheduling engine

The scheduling engine couples the feature extraction approach and the pre-
diction model to select the best-device for each kernel submitted to the FSCL
runtime for execution.

At deploy time (i.e. when the framework is installed on a new machine)
the engine profiles the system using a set of training samples. For each case of
a training sample, the engine extracts the relevant features and executes the
case on each available device to get the corresponding completion time.

With the set of features and the completion times computed for each case
of each training sample, the engine builds a matrix on which rebust linear
regression is applied.

The features extracted from the training samples, the vector of comple-
tion times and the regression coefficients for each device, are stored in a file
for futher usage. Everytime an FSCL program is loaded for execution, the
scheduling engine transparently loads those information from the file into an
in-memory data-structure.

The first time a particular kernel is seen, the engine transparently builds
the finalizers for the relevant features and stores them in the kernel cache
(section 8.2.1).

At kernel execution time, the call arguments are used to evaluate the final-
izers, which are combined with the model (i.e. regression coefficients) of each
device to determine the corresponding completion time.

Finally, the engine selects the device with the lowest estimated completion
time.

The engine can adapt to dynamic changes to the device set and to the set of
features in the running platform. If a profiled device is not available at kernel
execution time (e.g. the device has been unplugged or it is malfunctioning),
the successive device in (ascending) order of completion time is chosen. If a
new device is discovered, the runtime profiles it and enriches the information
stored in the data file with the completion times of the training samples on
the new device. Whenever a new feature is added10, the engine computes it
for each case of each training sample and finally re-runs linear regression. In

10By customizing/extending the scheduling policy with the introduction of a new feature

Chapter 9. Runtime scheduling engine 159

case of dropping a feature, linear regression is re-run on the matrix that results
from dropping the column corresponding to that feature.

9.5 Conclusions

In this chapter we discussed our approach to schedule FSCL kernels in a device-
aware fashion on multi-device heterogeneous systems. The approach is based
on three main points:

1. A process to extract features from kernels;

2. A set of training samples;

3. A robust linear regression algorithm that, for each device, builds a model
that correlates the features to the completion time on the device.

We leverage the F# quotations mechanism to perform code analysis for
feature extraction. Thanks to the F# API to create and evaluate expressions,
we define a process for efficient feature extraction that is partially applied at
kernel-compile-time and partially at kernel-execution-time. For a given kernel,
features are precomputed when the kernel is compiled (i.e. the first time
the kernel is seen), delaying to kernel-execution-time only a small amount of
processing.

System profiling and model construction via linear regression are performed
transparently at framework deploy-time and, possibly, whenever the device set
or the feature set change.

Currently, the scheduling policy is locally greedy. The best device is chosen
for each kernel to execute in a contextless fashion, ignoring how kernels interact
with each other in the flow graph. This means, for example, that the engine
doesn’t take into account the time spent in transferring data across devices
when two successive kernels are respectively scheduled on different devices.
We discuss an extension the current scheduling strategy in order to consider
data-transfer overhead in section 14.1.

Part III

Validation

Introduction

In part II we presented the FSCL framework, which synthesizes the research
in raising abstraction over OpenCL programming, scheduling and execution.

In this part we validate our results against the targets discussed in part I.
Separated validation is discussed for each of the goals of our research. In

chapter 10 we validate the FSCL programming model. In particular, we take
into account a set of real-world algorithms and we show how they can be
expressed with the FSCL kernel language. We validate the combination of ab-
straction and flexibility provided by the multiple levels of abstraction, showing
that programmers can code at the lower-level only the parts of an application
that do not fit the available collection functions, while keeping the rest of the
program at the highest level of abstraction.

In chapter 11 we validate the model proposed to predict the completion time
on each available device on the executing platform. We present and discuss the
prediction errors in both estimating the completion time for a specific device
and in selecting the best-device for a given computation. We also assess the
average speedup obtained by applying the scheduling policy, considering the
overhead of feature extraction and device selection.

Finally, in chapter 12 we focus on the efficiency of the abstraction layer.
We validate the efficiency of the scheduling engine, especially considering the
overhead introduced by features evaluation, and the efficiency of the whole
runtime. We compare completion times of FSCL computations with equivalent
programs written in OpenCL C99 and in other frameworks. We show that the
overhead introduced by the runtime layer on the low-level OpenCL execution
is mostly irrelevant.

Chapter 10

Validation of the programming
model

In this chapter we validate the FSCL programming model against a set of
popular algorithms, taking into account both abstraction and flexibility. We
show that the language can be employed succesfully to express a wide variety
of computations, possibly coding different parts of a computation at different
levels of abstraction.

For each algorithm, we show the FSCL code and we underline its relevant
aspects. We also discuss the way the same algorithm would be expressed using
different high-level programming models and languages (section 2.2). In par-
ticular, we consider the equivalent implementations in Aparapi [5], which rep-
resents today’s framework most similar to FSCL, and in Dandelion [58], which
is one of the most recent and relevant works on abstract parallel programming
models based on pre-existing language features to represent patterns/skeletons.

10.1 Black-Scholes

BlackScholes is a popular algorithm that implements a formula derived from
the homonymous model developed for theoretical estimation of the price of
European-style options. The Black-Scholes model provides a partial differen-
tial equation for the evolution of an option price under certain assumptions [71].
For European options, the closed-form solution for this equation is the follow-
ing.

Given:

• S, the current option price

• X, the strike price

166 Chapter 10. Validation of the programming model

• T , the time to expiration

• R, the continuously compounded risk free interest rate

• V , the implied volatility for the underlying stock

• Vcall, the price for an option call

• Vput, the price for an option put

• cnd, the cumulative normal distribution function

The price of option call/put is estimated as follows:

Vcall = S ∗ cnd(d1)X ∗ eRT ∗ cnd(d2)

Vput = X ∗ eRT ∗ cnd(−d2)− S ∗ cnd(−d1)

d1 =
log(S

X
) + (r + v2

2
)

v

√
T

d2 =
log(S

X
) + (r − v2

2
)

v

√
T

The parallel implementation is shown in listing 10.1. We define an utility
function cnd to calculate the cumulative normal distribution and a function
blackScholes to calculate the sample of call and put price from a given sample
of stock price, strike price, time to expiration, volatility and interest rate. At
line 30 we populate an array of samples to pass to the computation. Since
the computation is performed independently on each input sample, we use the
Array.map function to express the kernel. Each work-item of the resulting
OpenCL kernel applies blackScholes to a different input sample.

Chapter 10. Validation of the programming model 167

1 [<ReflectedDefinition>]
2 let cnd(d:float) =
3 let A1 = 0.31938153
4 let A2 = -0.356563782
5 let A3 = 1.781477937
6 let A4 = -1.821255978
7 let A5 = 1.330274429
8 let RSQRT2PI = 0.39894228040143267793994605993438
9 let K = 1.0 / (1.0 + 0.2316419 * (fabs(d)))

10

11 let nd = RSQRT2PI * Math.Exp(-0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))
)))

12 if d > 0.0 then
13 1.0 - nd;
14 else
15 nd
16

17 [<ReflectedDefinition>]
18 let blackScholes R V (S,X,T) =
19 let sqrtT = Math.Sqrt(T)
20 let d1 = (Math.Log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT)
21 let d2 = d1 - V * sqrtT
22 let cndD1 = cnd(d1)
23 let cndD2 = cnd(d2)
24 let expRT = Math.Exp(-R * T)
25 (S * cndD1 - X * expRT * cndD2,
26 X * expRT * (1.0 - cndD2) - S * (1.0 - cndD1))
27

28 // Setup data
29 let rnd = new Random()
30 let hSXT = Array.create 1024 (
31 rnd.NextDouble() * (25.0) + 5.0,
32 rnd.NextDouble() * (99.0) + 1.0,
33 rnd.NextDouble() * (9.75) + 0.25)
34 let R, V = 0.02, 0.30
35

36 // Run Blackscholes
37 let result =
38 <@
39 hSXT |>
40 Array.map(blackScholes R V)
41 @>.Run()

Listing 10.1: Blackscholes algorithm in FSCL

The FSCL code for parallel Black-Scholes is entirely expressed using the
highest level of abstraction offered by the FSCL programming model. In par-
ticular, since we exclusively use collection functions, the underlying OpenCL
layer is not visible. In addition, the code perfectly matches a possible regular,
sequential implementation of the Black-Scholes algorithm in F#. The FSCL
framework “parallelizes” the execution by interpreting the Array.map func-
tion as a kernel, generating the corresponding OpenCL kernel and running the
kernel on one of the available OpenCL devices in the system.

In Aparapi, Black-Scholes can be similarly implemented, but it requires
the explicit definition of a kernel to perform a map on the input array. The
implementation in Dandelion can instead leverage the Select LINQ function
to act as a map on the input collection. The programmers have only to take

168 Chapter 10. Validation of the programming model

care of using the appropriate custom data-types provided, instead of working
with regular arrays.

10.2 K-Means

K-Means is a popular algorithm for vector quantization, widely used for cluster
analysis in data mining. K-Means partitions an input set of observations into
a set of clusters such that each observation belongs to the cluster with the
nearest mean, resulting in a subdivision of the observations space into Voronoi
cells.

In listing 10.2 we perform geometric K-Means, where an observation is a
point in the cartesian space. The algorithm starts from a set of k initial centers
randomly chosen from the set of input points. In our example, k = 3 and the
initial centers are the first k input points (line 16). At line 24 the points are
grouped into clusters on the basis of each one’s nearest center. We use the F#
Array.groupBy collection function, which is executed as an OpenCL kernel
leveraging the nearestCenter utility function to compute the nearest center for
a each given point. The output of Array.groupBy is an array of pairs (key,
items), where items is in its turn an array containing the points for which key
is the selected center. At line 25 we process each group to calculate the new
center as the geometric mean of the points in the group. We use a higher-order
collection function, Array.map, to process the set of groups. For each group,
we execute a reduction (line 27) to sum the points component-wise (i.e. x and
y values) and we divide the resulting values by the size of the group. Since the
process applied to each group is a computing expression, where Array.reduce
is executed as a kernel and the dividing function as a sequential function, the
high-order Array.map is considered a collection composition. The runtime
therefore spawns a set of threads to operate (i.e. calculate the new geometric
mean) concurrently on each group.

Chapter 10. Validation of the programming model 169

1 [<ReflectedDefinition>]
2 let nearestCenter (centers: (float * float)[]) (point: float * float) =
3 let mutable minIndex = 0
4 let mutable minValue = Double.MaxValue
5 let x,y = point
6 for curIndex = 0 to centers.Length - 1 do
7 let cx,cy = centers.[curIndex]
8 let curValue = Math.Sqrt(Math.Pow(x - cx, 2.0) + Math.Pow(y - cy, 2.0))
9 if curIndex = 0 || minValue > curValue then

10 minValue <- curValue
11 minIndex <- curIndex
12 minIndex
13

14 // Prepare data
15 let rnd = new Random()
16 let k = 3
17 let points = Array.init 1024 (fun i -> (rnd.NextDouble() * 5.0, rnd.NextDouble() * 3.0))
18 let centers = Array.init k (fun i -> points.[i])
19

20 // Run kmeans
21 let kmeans =
22 <@
23 points |>
24 Array.groupBy(fun i -> nearestCenter centers i) |>
25 Array.map (fun (key, data) ->
26 data |>
27 Array.reduce(fun (cx,cy) (x,y) -> (cx + x, cy + y)) |>
28 (fun (a,b) -> (a/(double)(Seq.length data), b/(double)(Seq.length data))))
29 @>.Run()

Listing 10.2: KMeans algorithm in FSCL

Like Black-Scholes, the K-Means algorithm can be entirely coded at the
highest level of abstraction offered by the FSCL kernel language and the un-
derlying OpenCL layer is not visible to the programmers. This is particularly
due to the ability to use collection functions of arbitrary order to coordinate
sub-expressions.

Since Aparapi doesn’t expose any skeleton to work on collections, the
K-Means implementation requires an explicit kernel for Array.groupBy and
Array.reduce. Grouping values on GPUs is particularly tricky, since Open-
CL/CUDA do not support multi-dimensional arrays. Efficient grouping on
GPU is even more complicated and generally requires to define/use a high per-
formance sorting algorithm optimised for this type of devices [60]. In addition
to explicitly coding each collection function as a kernel, Aparapi programmers
must independently execute each kernel and coordinate them, since no form
of high-level composition and coordination of kernels is provided.

K-Means is the example considered to illustrate the programming model
of Dandelion in the presentation paper [58]. With Dandelion, this algorithm
can be easily expressed as a composition of LINQ operators. It is not clear
which restrictions are imposed on the data-types processed, since the paper
doesn’t mention them and the code of the project is not available at the time
of writing. A natural representation of 2D points is a tuple of two float or

170 Chapter 10. Validation of the programming model

integer values. Since FSCL is able to properly map tuples to OpenCL valid
data-types, programmers can freely use them to define and execute computing
expressions. Dandelion may instead require different solutions to work with
non-primitive types (e.g. structs).

It is important to note that the listing 10.2 reports a single pass of the
K-Means algorithms, which is usually iterated multiple times to converge to a
stable set of centroids. Programmers can iterate the K-Means pass without es-
caping the quotation context, as illustrated in listing 10.3. Iterative execution
on progressively refined sets of centroids can be performed using a third-order
collection function, which is Array.fold (line 5). The input array at line 4 is
used to trigger the execution of the fold function 100 times. Each iteration exe-
cutes in a state bound to the currCenters variable, which contains the current
set of centroids. The sub-expression executed at each iteration corresponds
to the single pass considered in listing 10.2. The result of this sub-expression
(new set of centroids) encodes the state for the successive iteration. With the
implementation provided, the K-Means pass can be viewed as an user-defined
state-transition function. Given a state (centroids) as a set of points, the
sub-expression computes the next state (new set of centroids).

1 // Run kmeans iteratively
2 let kmeans =
3 <@
4 [| 1 .. 100 |] |>
5 Array.fold(fun currCenters _ ->
6 points |>
7 Array.groupBy(fun i -> nearestCenter currCenters i) |>
8 Array.map (fun (key, data) ->
9 data |>

10 Array.reduce(fun (cx,cy) (x,y) -> (cx + x, cy + y)) |>
11 (fun (a,b) -> (a/(double)(Seq.length data), b/(double)(Seq.length data))))

) centers
12 @>.Run()

Listing 10.3: Iterations in K-Means

Iterative K-Means can be expressed in Dandelion using an high-order LINQ
aggregate operator. To the contrary, Aparapi would demand an additional
effort in host-side coding to coordinate the iterative execution of the K-Means
step.

Host-side execution contexts, like F# quoted computing expressions in
FSCL, chains of LINQ operators in Dandelion and Java kernels in Arparapi,
do not only represent the boundaries of the abstraction provided to compose
computations but also the boundaries of manipulations, optimisations and,
more generaly, the scope of the computations interpreter (runtime). In other
terms, the execution support of the constructs provided is generally limited
to a single context. Therefore, when a context is split into multiple contexts,

Chapter 10. Validation of the programming model 171

not only the host-side abstraction decreases but also the performance is neg-
atively affected. In case of FSCL, multiple quotations/computing expression
are needed whenever function/collection composition is not flexible enough to
express the particular orchestration of kernels required. Since each quotation
implies a “setup” time to obtain the AST object, to parse the quotation and
to analyze its content, splitting a quotation may incur a significant overhead.
Differently from FSCL, Aparapi introduces a different context for each kernel,
since no concept of composition of kernels is provided. Given that iterative ex-
ecution of kernels is a very popular scheme for problems that cannot be solved
in a single pass, Aparapi introduces some features to maintain a state across
successive execution of kernels in order to limit the impact on performance. A
chance to maintain a state across kernels is given by explicit buffer handling,
which overcomes the impact of transferring back (i.e. device to host) data
that are not accessed by the host but are instead the input of successive kernel
instances. Despite the possibility to improve performance thanks to the con-
trol over data allocation and transfer, when enabling explicit buffer handling,
the developers have to manually read and write buffers, which reduces the
abstraction and considerably limits the programmers’ productivity. Another
possibility to iterate a kernel efficiently in Aparapi is to wrap it into the iterate
function, which nonetheless doesn’t provide any way for a kernel to update the
state. In both the cases, efficient iterative or multi-kernel execution is possible
only leveraging special constructs that do not integrate seamlessly with the
rest of the API. To the contrary, FSCL allows to embed host-side coordina-
tion of kernels into the quotation context, enabling optimisations and efficient
execution while leveraging an homogeneous set of contructs.

10.3 Tiled matrix multiplication

So far we considered examples of FSCL programs based exclusively on col-
lection functions to express kernels and to compose them. In this section we
show an advanced algorithm for matrix multiplication based on tiling. The al-
gorithm is particularly efficient on GPUs since it leverages device local memory
(section 2.1) to reduce the number of accesses to global buffers.

Tiled matrix multiplication requires the definition of a MatMul custom
kernel, illustrated in listing 10.4. The work-item domain is two-dimensional.
Given two input matrices matA and matB, each 2D work-group of size w ∗ h
multiplies a stride of h rows of matA by a stride of w columns of matB. In
the specific example, the size of each group is set to 16 ∗ 16 (line 38)1.

1This implies that input matrices must be of a size multiple of 16

172 Chapter 10. Validation of the programming model

Each group horizontally scans matA at blocks of 16∗16 elements (line 18).
The matrix matB is instead scanned vertically using the same block size (line
29). At each step, a block of matA and one of matB are loaded from global to
local memory (lines 22 and 23). Each thread than performs the dot product of
a row of the first block by a column of the second, updating the cross-blocks
accumulator Csub (line 26). When all the blocks of matA and matB have
been scanned, each thread in a group can write (the final value of) the element
of the output matrix matC to the global buffer (line 31).

1 [<ReflectedDefinition; Kernel>]
2 let MatMul(matA: float32[,], matB: float32[,], matC: float32[,], wi: WorkItemInfo) =
3 let bx, by = wi.GroupID(0), wi.GroupID(1)
4 let tx, ty = wi.LocalID(0), wi.LocalID(1)
5 let block_sz = wi.WorkSize(0)
6 let matAWidth = matA.GetLength(1)
7 let matBWidth = matB.GetLength(1)
8

9 // Index of the first/last block of A processed
10 let aBegin = block_sz * by
11 let aEnd = aBegin + matAWidth - 1
12 // Index of the first block of B processed
13 let bBegin = block_sz * bx
14

15 let mutable b = bBegin
16 let mutable Csub = 0.0f
17 // Loop over all the sub-matrices of A and B
18 for a in aBegin .. block_sz .. aEnd do
19 let As = local(Array2D.zeroCreate<float32> block_sz block_sz)
20 let Bs = local(Array2D.zeroCreate<float32> block_sz block_sz)
21 // Load the matrices from global memory
22 As.[ty, tx] <- matA.[ty, a + tx]
23 Bs.[ty, tx] <- matB.[b + ty, tx]
24 wi.Barrier(CLK_LOCAL_MEM_FENCE)
25 // Multiply the two matrices together
26 for k = 0 to block_sz - 1 do
27 Csub <- Csub + (As.[ty, k] * Bs.[k, tx])
28 wi.Barrier(CLK_LOCAL_MEM_FENCE)
29 b <- b + block_sz
30 // Write the block sub-matrix to device memory
31 matC.[block_sz * by + ty, block_sz * bx + tx] <- Csub
32

33 // Prepare data
34 let rnd = new Random()
35 let a = Array2D.init 1024 1024 (fun i -> (float32)(rnd.NextDouble()))
36 let b = Array2D.init 1024 1024 (fun i -> (float32)(rnd.NextDouble()))
37 let c = Array2D.zeroCreate<float32> 1024 1024
38 let workSize = WorkSize([| 1024L; 1024L |], [| 16L; 16L |])
39

40 // Run matrix multiplication
41 <@ MatMul(a, b, c, workSize) @>.Run()

Listing 10.4: Tiled matrix multiplication

Differently from the previous examples, tiled matrix multiplication requires
the definition of a custom kernel. Since the developers operate at the lowest
level of abstraction, they have visibility of the underlying OpenCL layer (i.e.
work-size, local memory, barriers).

Nonetheless, the FSCL kernel language provides some facilities to make cus-

Chapter 10. Validation of the programming model 173

tom kernel programming easier and more productive if compared to OpenCL
C kernel coding. For example, programmers can use the GetLength method to
retrieve the size of the input/output matrices, saving from explicitly passing
additional arguments to the kernel. In addition, matrices can be represented
with the native Array2D type, which allows to separately address rows and
columns. This saves from complex index calculations on flat arrays that con-
ceptually represent multi-dimensional data and simplifies iterating through
and accessing specific elements of the matrices.

It’s important to note that the custom kernel considered has side effects.
In fact, the matrix matC is written by the kernel and its content is accessible
outside the context of the quoted expression. This is an exeption to the rule
provided by the FSCL kernel language (section 6.2.4) for computing expres-
sions containing a single custom kernel, introduced to simplify FSCL program-
ming for OpenCL C programmers. Nonetheless, it is possible to rewrite the
kernel to remove side-effects, as illustrated in listing 10.5. Side-effects removal
is performed by moving the allocation of matC into the kernel body (line 3)
and by using it as the kernel return value.

1 [<ReflectedDefinition; Kernel>]
2 let MatMul(matA: float32[,], matB: float32[,], wi: WorkItemInfo) =
3 let matC = Array.zeroCreate<float32> (matA.GetLength(0)) (matB.GetLength(1))
4 // Per-work-item code
5 ...
6 // Per-work-item code end, return
7 matC
8

9 // Run matrix multiplication
10 let c = <@ MatMul(a, b, workSize) @>.Run()

Listing 10.5: Tiled matrix multiplication with no side-effects

Since FSCL matrix multiplication is expressed through a custom kernel,
the resulting code is similar to the one obtained implementing the algorithm
in Aparapi. Nonetheless, FSCL enhances productivity in coding matrix mul-
tiplication by allowing programmers to use multi-dimensional arrays, keeping
the code compact and clean.

It’s not clear whether and how Dandelion provides support for user-defined
computations, beyond the built-in LINQ operators and library functions. In
the paper [58], the authors claim the availability of an Accelerated annota-
tion that can be used to mark functions that already have an existing “high-
performance” (low-level) implementation. The developer can use that anno-
tation in the form Accelerated(dev, dll, op) on a .NET function to override
the default cross-compilation. Through this annotation, the programmer tells
the system that the particular .NET function considered can be replaced by
the function op in the DLL dll to execute on the device dev. This makes

174 Chapter 10. Validation of the programming model

custom kernel invocation similar to the regular .NET PInvoke of functions in
unmanaged libraries, which leads us to assume that user-defined kernels must
be developed outside the Dandelion environment (e.g. in CUDA).

10.4 Average image complexity

One of the most important aspects of the FSCL programming model is the abil-
ity to compose computing elements developed at different levels of abstraction.
In this section we consider an algorithm that exemplifies this kind of compo-
sitionality. The problem that the algorithm solves consists in computing the
average complexity of an image, in terms of the number of “details” it con-
tains. Considering this definition of complexity, a picture of a blue, clear sky
or of a sand beach is characterized by a very low complexity. To the contrary,
a metropolitan landscape or a foliage are highly complex.

To accomplish the task of computing the average complexity of an image,
we apply a Sobel filter to the black-and-white version of the input image [61].
The Sobel filter detects the edges in the input image, producing an image
(matrix) where the elements belonging to borders are bright (i.e. float values
close to 1) while the elements belonging to “flat” zones are dark (i.e. float
values close to 0). We then elaborate the output of Sobel filtering by counting
the number of pixels belonging to borders.

In listing 10.6 we illustrate the FSCL code of the algorithm. The first step
consists in converting the input image to black-and-white (line 30)2, producing
a float 2D array where each element is in [0, 1]. We use the Array2D.map
collection function to process each pixel independently from the others. The
resulting 2D array is then processed by the parallel implementation of Sobel
filtering, which requires the definition of a custom kernel SobelFilter2D (line
2). To compute the complexity once Sobel has been applied, we leverage the
Array2D.averageBy collection function, whose operator maps each element of
the input array to the corresponding value used in average calculation (line 34).
Since we want to count the pixels that belong to borders (which have a bright
color), we map to 1 each element whose value is above a certain threshold
(0.8 in the example) and to 0 all the others. In the example, Array2D.map,
SobelFilter2D and Array2D.averageBy are mapped to OpenCL kernels and
executed on each one’s most efficient device.

2Sobel filtering could be also applied separately to each channel of an RGB image

Chapter 10. Validation of the programming model 175

1 [<ReflectedDefinition, Kernel>]
2 let SobelFilter2D (wi: WorkItemInfo) (inIm: float32[,]) =
3 // Create output image using FSCL kernel return capability
4 let outIm = Array2D.zeroCreate<float32> (inIm.GetLength(0) - 2) (inIm.GetLength(1) - 2)
5

6 // Work-item computation
7 let x = wi.GlobalID(0)
8 let y = wi.GlobalID(1)
9 let width = outIm.GetLength(1)

10 let height = outIm.GetLength(0)
11 let mutable Gx = 0.0f
12 let mutable Gy = Gx
13

14 if x < width && y < height then
15 // Read each texel component and calculate the filtered value using neighbouring texel

components
16 Gx <- inIm.[y, x] + 2.0f * inIm.[y, x + 1] + inIm.[y, x + 2] - inIm.[y + 2, x] - 2.0f *

inIm.[y + 2, x + 1] - inIm.[y + 2, x + 2]
17 Gy <- inIm.[y, x] - inIm.[y, x + 2] + 2.0f * inIm.[y + 1, x] - 2.0f * inIm.[y + 1, x + 2]

+ inIm.[y + 2, x] - inIm.[y + 2, x + 2]
18 outIm.[y, x] <- Math.Sqrt(Gx * Gx + Gy * Gy)/2.0f
19 // Return
20 outIm
21

22 // Prepare data
23 let image = // Load image into an Array2D<float4> instance
24 let threshold = 0.8f
25

26 // Run avg complexity
27 let avgNoise =
28 <@ image |>
29 // To black-and-white
30 Array2D.map(fun p -> (0.2126f * (float32)p.x + 0.7152f * (float32)p.y + 0.0722f * (float32)p.

z)) |>
31 // Sobel
32 SobelFilter2D wi |>
33 // Count pixels over the white threshold
34 Array2D.averageBy (fun it ->
35 if it > threshold then
36 1.0f
37 else
38 0.0f)
39 @>.Run()

Listing 10.6: Average image complexity calculation in FSCL

Even though the three-steps execution is easy to understand, we may op-
timize the sample by merging the Array2D.map and the Sobel kernel. In
particular, the Sobel kernel may perform color-to-bw conversion for each pixel
considered right before calculating the gradients Gx and Gy3.

It is important to underline the importance for a custom kernel to return
values, introduced by the FSCL kernel language on top of classic OpenCL
kernel programming. Thanks to this, the Sobel-filtering custom kernel can
be composed with other computing elements and the entire algorithm can be
express in a single computing expression.

As like as the other algorithms, average image complexity in Aparapi de-

3This reasoning applies to regular, sequential programming as well

176 Chapter 10. Validation of the programming model

mands to the programmers to explicitly define each kernel involved. In the
specific case, this means creating a function for Array2D.map, one for SobelFil-
ter2D and one for Array2D.averageBy. In Dandelion, Sobel filtering is difficult
to express leveraging the provided set of LINQ operators. Therefore program-
mers should escape the Dandelion environment to code it in OpenCL/CUDA
and bind them to the managed environment via PInvoke (if supported), as
discussed in section 10.3. Thanks to the homogeneous representation of col-
lection and custom kernels as (particular) F# functions, in FSCL it is instead
possible to compose high-level collection kernels and lower-level custom kernels
using the same function composition operators that F# programmers employ
in traditional, sequential programming.

10.5 Conclusions

In this chapter we demonstrated the capabilities of the FSCL programming
model presented and discussed in chapter 6. We walked through some non-
trivial examples of real-world parallel algorithms that can be expressed in
FSCL properly combining kernels, sequential functions and their composition.

The most relevant aspect of the model resides in the ability to combine
computing elements defined at different levels of abstraction, that is custom
and collection kernels. Some algorithms, like K-Means and Black-Scholes, can
be entirely developed on the highest level of abstraction, without the need for
the programmer to know anything about OpenCL programming. Since the
FSCL code that expresses the algorithms is close to its sequential counterpart,
if not the same, parallel execution can be obtained with few to no efforts,
without requiring particular parallel programming skills. Whenever required,
programmers can express more complex computations through custom kernels,
which deliver the same, high flexibility of OpenCL kernel programming but in
a safer environment.

In FSCL, collection functions can be used not only to express single, par-
allel computations on the elements of an input collection but also to compose
sub-expressions. High-order collection functions, like Array.map in K-Means,
increase the flexibility of the abstract programming level without the need to
escape the expression environment. Without higher-order collection function,
the computing expression used to code algorithms like K-Means should be di-
vided into multiple expressions to be composed, executed and coordinated by
the programmer.

Finally, FSCL employs very popular F# programming constructs and tech-
niques like closures and partial application. When writing a computing ex-
pression, programmers can partially apply kernels or utility functions (e.g.

Chapter 10. Validation of the programming model 177

nearestCenter center, in the K-Means example, is a partial application of the
nearestCenter function) and refer to data declared outside the quotation en-
vironment (e.g. the variable threshold in the Array.averageBy operator of the
average image complexity sample). The FSCL compiler and runtime are able
to detect these constructs and techniques and to generate and execute OpenCL
kernels where data is correctly and reliably passed among kernels and utility
functions to reach the scope where data is effectively used.

Chapter 11

Validation of the prediction
model for device-selection

In chapter 9 we presented the FSCL runtime scheduling engine. The engine
is characterized by a strategy to extract relevant features from the code of
arbitrary kernels and by a prediction model, based on linear regression, to
correlate the features to the completion time on each available device in the
running system.

In this chapter we validate the prediction model discussed in section 9.3.
In order to validate the model, we firstly define a set of relevant features to
extract and a set of programs that form the training set. Then, we extract
the chosen features from each training sample case. Finally, we build a device
model (i.e. set of regression coefficients) independently for each device in the
running system. Given a device d, we run each sample case on d to obtain the
corresponding completion time. With the set of feature values and completion
times for all the sample cases, we create the matrix of the explanatory variables
X and a dependent vector y (9.3), which contains the completion time of the
cases on the specific device. We finally apply linear regression to X and y to
obtain the device model. While feature extraction is performed once, linear
regression is repeated for each device in the system.

Once the set of device models has been built, we use it to predict the com-
pletion time of a set of testing programs. Each test is also executed to measure
its actual completion time. Finally, we calculate the accuracy in selecting the
best device for each test in terms of the ratio between the completion time of
the estimated fastest device and the measured lowest completion time across
the set of devices.

180 Chapter 11. Validation of the prediction model for device-selection

11.1 System setup, training samples and fea-

tures

To validate the prediction model we setup a heterogeneous system equipped
with an APU and a discrete GPU. The APU is a chipset that includes a CPU
and a GPU on-die. In the rest of this chapter, with “D-GPU” we indicate the
discrete GPU and with “I-GPU” the on-die GPU.

• AMD Fusion A10-5800K (CPU with an integrated AMD HD 7660D
GPU)

• AMD HD 7970 (discrete GPU)

• 4GB DDR3 Ram - 1333 Mhz

• Windows 7 64 bit

11.1.1 Training set

In the definition of the training set, we focus on including computations that
stress only specific features and device characteristics with a minimal effect on
the others. Since this set of samples constitutes the “basis” used to predict
the completion time of other computations, we want to start from a minimal
set of samples (i.e. small basis) capable of describing a possibly wide set of
other algorithms and progressively refine it by introducing additional samples.

After some early experiments, we decide to use the following three algo-
rithms to form the training set used to build the device models. All the
algorithms work on single precision floating point values (32 bit).

Vector addition This kernel performs an element-wise sum of two vectors,
where each work-item sums the elements matching its own global index.
Given the very short execution time and the extremely lightweight nature
of the computation, this sample allows to focus on the data-transfer time
and on the contribution of the work-space size to the completion time.
We execute the kernel varying the input size from 1MB up to 128MB
with 1MB step.

Matrix multiplication naive A matrix multiplication kernel where each work-
item in a 2D work-space multiplies a row of the first matrix by a column
of the second. The first matrix is accessed with a cache-friendly pat-
tern, while the second is accessed with a matrix-width stride that may
incur many cache misses. For this reason, matrix multiplication allows

Chapter 11. Validation of the prediction model for device-selection 181

to capture the impact of cache misses on completion time. We run this
kernel starting from 64x64 elements matrices up to 2048x2048, with a
64-elements step.

Logistic map A logistic map performed on each element on an input vector
filled with random floating point values. Since each work-item performs
one only memory access and many arithmetic operations, this sample
captures the impact of floating point operations on the completion time.
We execute the kernel varying the input size from 1MB up to 128MB
with 1MB step and the number of iterations per-work-item from 1000 to
10000.

For each training sample we produce 30 cases characterized by different
input sizes. Each case is then run 100 times to get the average completion
time and the standard deviation. The total training time, including running
the samples, is approximatively two hours.

11.1.2 Features

The selection of the features to extract is related to the aspects stressed by the
set of training samples. We consider memory accesses and operations (arith-
metic, logic and trascendental) two of the most relevant features to use in
order to characterize the completion time. While a given operation takes a
fixed, similar amount of time to complete, memory accesses have a different
impact depending on whether the data acessed is in cache or not. For this
reason, instead of considering the amount of memory accesses we estimate the
number of cache misses. We estimate this number by detecting the size of the
data cache and cache line on a specific device1 and by computing the strides
of memory accesses in the sample. A first approximation introduced is consid-
ering each array separately as if each array was stored in a separate, private
data cache. At kernel-compilation time we precompute the access strides to
each (global) array and we count the number of accesses with a certain stride
by assessing the total trip-count of the loops containing the memory access
operations. A second approximation is introduced by considering the largest
stride among the memory accesses in a loop, as if the block of memory between
the lowest and the highest addresses was entirely used. At kernel-execution
time we complete the evaluation of the strides and the relative trip count. This
information is then coupled with the cacheline and the size of the data cache
to estimate the number of cache misses.

1This information can be retrieved through the OpenCL device-query API or running
micro-benchmarks

182 Chapter 11. Validation of the prediction model for device-selection

Given a certain number of operations and memory accesses per-work-item,
the completion time should be affected by the total number of work-items
launched. Therefore, we add the work-space size to the set of the computed
features.

Number of operations executed per thread This feature represents the
computation as if all of the work-items could perform operations in a pure
parallel fashion. In terms of the generic special map function described
by the equation 9.2 and the feature finalizer process described in 17
(section 9.2.1), the number of operations can be described as follows.

fzbuildops(k) = fzbuild(smapops, k)

where smapops is defined as:

smapops(n) =

1 + dmap(a) + dmap(b) n = a+ b or

n = a− b or

n = a ∗ b or

n = a/b or

n = a%b or

n = a|||b or

n = a&&&b or

n = a ∧ ∧ ∧ b or

n = a <<< b or

n = a >>> b or

n = a||b or

n = a&&b

None otherwise

Global work-items This feature corresponds to the amount of work-items
spawn to execute a computation. Given a kernel, let params be its set
of parameters and ws ∈ params the parameter holding the information
about the work-item space (section 6.2.1). The finalizer for this feature
is expressed as follows:

fzbuildws(k) = fun 〈params(k)〉 →
〈ws.GlobalSize(0) ∗ ws.GlobalSize(1) ∗ ws.GlobalSize(2)〉

Chapter 11. Validation of the prediction model for device-selection 183

In case of 1D work-items space, ws.GlobalSize(1) and ws.GlobalSize(2)
are both 1. In case of 2D work-item space, ws.GlobalSize(2) is 1.

Total number of operations executed This feature represents the compu-
tation as if all of the operations had the same cost and were executed in
a sequential order. This number is obtained as the multiplication of the
total number of work-items by the operations executed by each item.

fzbuildtot−ops(k) = fun 〈params(k)〉 → 〈fzbuildwork(k)∗fzbuildops(k)〉

Cache misses This feature captures the time spent waiting for memory ac-
cesses that do not hit the cache. The formal definition of this features
is given is section 9.2.2 (definition 19). All the training samples and the
benchmarks used to evaluate the quality of completion time prediction
(section 11.2.2) respect the assumptions and the constraints imposed by
the process to build the cache miss estimator.

Kernel-launch overhead The cost of starting a kernel. Since the value of
this feature is always 1 (intercept), linear regression charges it with the
part of the completion time that it is not able to properly describe in
terms of the other features (non-linear terms).

This set of features should be sufficient to investigate the costs of launching
a kernel, the amount of time spent performing arithmetic/logic/trascendental
operations and the overhead of memory accesses. Several other factors may
contribute to the completion time, but we want to start from the coarsest
model and progressively refine it as for the set of training samples.

11.2 Fitting residuals, completion time pre-

diction and best-device prediction accu-

racy

With the setup described in the preceding section we compute the values of
the features and the completion times on the available devices for each training
sample case.

11.2.1 Fitting residuals

Figure 11.1 shows the residuals of the fitting for both CPU, discrete GPU and
integrated GPU. Since we normalize X by t (section 9.3), the residuals are
shown as relative values. The analysis of the residuals reveals the following:

184 Chapter 11. Validation of the prediction model for device-selection

1 100 10000

-0
.4

-0
.2

0
.0

Residuals for CPU

CPU completion time

re
si
d
u
a
ls

(r
el
a
ti
v
e)

1 5 20 100

-1
.2

-0
.8

-0
.4

0
.0

Residuals for D-GPU

D-GPU completion time
re
si
d
u
a
ls

(r
el
a
ti
v
e)

2 5 20 100 500

-0
.1
5

-0
.0
5

0
.0
5

Residuals for I-GPU

I-GPU completion time

re
si
d
u
a
ls

(r
el
a
ti
v
e)

Figure 11.1: Fitting residuals

• Most of the residuals lie near 0, which in general indicates a good fit.

• Residuals are larger for completion times close to zero. This is expected,
because cases that have a very short completion time are more likely to
be affected by measurement errors induced by the influence of external
and unpredictable effects, such as the presence of other processes run-
ning in the system. This also suggests that we should expect a relevant
prediction error for programs that complete in a short time.

11.2.2 Completion time prediction

To evaluate the error in predicting the completion time of computations using
the models built for the devices in the running platform, we define a set of test
samples.

Sum of matrix rows This kernel sums the rows of a two-dimensional ma-
trix, producing a vector whose size is equal to the matrix width. Each
work-item performs a reduction along a column. As for all the matrix-
based samples, we run this kernel starting from 64x64 elements matrices
up to 2048x2048, with a 64-elements step.

Sum of matrix columns This kernel sums the columns of a two-dimensional
matrix, which results in a vector matching the matrix height. Each work-
item performs a reduction along a row.

Matrix multiplication advanced (tiled) A more complex matrix multi-
plication algorithm which employs local memory to prevent multiple ac-
cesses to the same elements of the global memory. The algorithm is the
same used to validate the programming model in section 10.3.

Chapter 11. Validation of the prediction model for device-selection 185

Sobel filtering A Sobel 3x3 filtering algorithm, identical to the one shown
in section 10.4.

Convolution filtering A generalization of Sobel filtering, with a generic in-
put filter varying in size from 3x3 to 19x19 elements.

Matrix transpose naive Matrix transpose perfomed by making each work-
item to transpose a single element of the matrix.

Matrix transpose advanced Matrix transpose that leverages local memory
in order to make successive work-items to read and write successive ma-
trix elements, enabling coalescing and reducing channel/bank conflicts.

In the set of test samples we also include the training samples used to build
the device models. Using a set of samples to predict themeselves provides, in
addition to the set of residuals, an insight on the quality of the fitting.

In figures 11.2 and 11.3 we compare the measured completion time and
the estimated completion time for each test sample by varying the input size.
The left column reports the measured completion time on CPU, discrete GPU
and integrated GPU, while the right column shows the predicted completion
time on the same devices. To be easily compared with each other, both the
completion times are expressed in the same logarithmic scale.

The first three samples illustrated in figures 11.2 and 11.3 are the training
samples used to build the device models. As expected, the predicted comple-
tion times of these programs is very close to the measured completion times.

The overall behaviour of most of the samples shows a simple relation be-
tween the input size and the completion time. Two noticeable exceptions are
MatMulNaive and SumRows, whose non-monotonicity is well above measure-
ment noise. A possible explanation for the evident spikes in the graphs is the
eviction of many cache lines when accessing memory with a stride of 4KB, 6KB
and 8KB. These spikes are correctly estimated thanks to the the cache-miss-
estimation feature. The same behaviour is correctly predicted in SumRows,
even though it does not belong to the set of training samples. This is consis-
tent with our expectation: the aforementioned spikes are indeed caused by a
particularly aggressive cache eviction.

The prediction of CPU completion times is generally more accurate than
the prediction of GPUs. This is mainly due to the fact that the cache-miss-
estimation feature models the cost of accessing memory from the CPU with
sufficient accuracy, while it doesn’t properly fit the GPUs, where the cost of
memory accesses depends on the access pattern in a different way. To ac-
curately predict the completion time on GPUs, additional information must

186 Chapter 11. Validation of the prediction model for device-selection

0 20 40 60 80 100 120

1
5

5
0

VectorAdd

measured completion time

case

ti
m
e
(l
o
g
)

0 20 40 60 80 100 120

1
5

5
0

VectorAdd

predicted completion time

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
1
0
0

MatmulNaive

measured completion time

case

ti
m
e
(l
o
g
)

0 10 20 30 40 50 60

1
1
0
0

MatmulNaive

predicted completion time

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

0 50 100 150 200 250 300

1
5

Logistic

measured completion time

case

ti
m
e
(l
o
g
)

0 50 100 150 200 250 300

1
5

Logistic

predicted completion time

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
5

2
0

SumRows

measured completion time

case

ti
m
e
(l
o
g
)

0 10 20 30 40 50 60

1
5

2
0

SumRows

predicted completion time

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
5

2
0

Sobel

measured completion time

case

ti
m
e
(l
o
g
)

0 10 20 30 40 50 60

1
5

2
0

Sobel

predicted completion time

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

Figure 11.2: Measured and predicted completion time

Chapter 11. Validation of the prediction model for device-selection 187

0 100 200 300 400 500

1
5

2
0

1
0
0

Convolution

measured completion time

case

ti
m
e
(l
o
g
)

0 100 200 300 400 500

1
5

2
0

1
0
0

Convolution

predicted completion time

case

ti
m
e
(l
o
g
)

CPU

D-GPU

I-GPU

0 20 40 60 80 100 120

1
5

5
0

5
0
0

TransposeAdvanced

measured completion time

case

ti
m
e
(l
o
g
)

0 20 40 60 80 100 120

1
5

5
0

5
0
0

TransposeAdvanced

predicted completion time

case

ti
m
e
(l
o
g
)

CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
2

5
1
0

SumCols

measured completion time

case

ti
m
e
(l
o
g
)

0 10 20 30 40 50 60

1
2

5
1
0

SumCols

predicted completion time

case

ti
m
e
(l
o
g
)

CPU

D-GPU

I-GPU

0 20 40 60 80 100 120

1
5

2
0

1
0
0

Transpose

measured completion time

case

ti
m
e
(l
o
g
)

0 20 40 60 80 100 120

1
5

2
0

1
0
0

Transpose

predicted completion time

case

ti
m
e
(l
o
g
)

CPU

D-GPU

I-GPU

Figure 11.3: Measured and predicted completion time

188 Chapter 11. Validation of the prediction model for device-selection

be retrieved and analysed, such as coalescing in reading and writing mem-
ory, ALU fetch ratio2 and channel/bank conflicts. In addition, information
about the usage of LDS (Local Data Share) memory are needed to improve
the prediction of MatMulAdvanced and TransposeAdvanced.

11.2.3 Impact of the feature set on the completion time
prediction accuracy

We illustrate how the selection of the features influences the accurancy of the
completion time prediction. In particular we assess how the quality of the
prediction is affected by considering an increasing number of representative
features.

In figures 11.4 and 11.5 we show the impact of feature selection on the error
of completion time prediction for two of the samples in the testing set. In the
first figure we consider the Logistic map sample. The top-left graph reports
the measured completion times on the set of available devices by varying the
input size. The rightmost figure in the first row (predicted completion time 1)
illustrates the completion times predicted using one only feature, which is the
total number of operations3. Conceptually, the result is the completion time
predicted as if the computation was sequential. Symmetrically, the leftmost
figure in the second row illustrates the completion times predicted using only
the number of operations per-thread (work-item), as if the computation was
fully parallel. Finally, the rightmost figure in the second row reports the
prediction using the entire set of features except the cache-miss estimation.
The set of graphs demonstrates the dependency of the prediction accuracy
from the set of features chosen. In particular, by joining different, meaningful
features, each one stressing a particular aspect of the computation, we are able
to closely estimate the measured completion time.

In figure 11.5 we consider another sample, which is Matrix multiplication
naive. Again, the top-left graph reports the measured completion times by
varying the input size. The rightmost figure in the first row illustrates the
prediction resulting from using only the number of operations per-thread. The
bottom-left figure instead shows the completion time predicted exclusively
leveraging the cache-miss estimation feature. As expected, only the spikes
correponding to the input sizes that cause particularly frequent cache misses
are modeled. The rightmost figure in the second row reports the prediction
using both the features, which “combines” the respective contributions to the
completion time.

2The occupancy of GPU ALUs during the time a memory request is served
3Number of operations per work-item multiplied by the number of items

Chapter 11. Validation of the prediction model for device-selection 189

0 50 150 250

1
5

measured completion time

Logistic

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

0 50 150 250

1
5

predicted completion time 1

simple

case

ti
m
e
(l
o
g
)

0 50 150 250

1
5

predicted completion time 2

simple per thread

case

ti
m
e
(l
o
g
)

0 50 150 250
1

5

predicted completion time 3

simple, simple per thread and worksize

case

ti
m
e
(l
o
g
)

Figure 11.4: Impact of features on prediction error for Logistic map

0 10 20 30 40 50 60

1
1
0
0

measured completion time

MatmulNaive

case

ti
m
e
(l
o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
1
0
0

predicted completion time 1

simple

case

ti
m
e
(l
o
g
)

0 10 20 30 40 50 60

1
1
0
0

predicted completion time 2

cache misses L3

case

ti
m
e
(l
o
g
)

0 10 20 30 40 50 60

1
1
0
0

predicted completion time 3

simple, cache misses L3

case

ti
m
e
(l
o
g
)

Figure 11.5: Impact of features on prediction error for Matrix multiplication

190 Chapter 11. Validation of the prediction model for device-selection

11.2.4 Best-device prediction

The quality of completion-time prediction is only partially related to the qual-
ity of best-device guessing. A very precise prediction of the measured comple-
tion times leads to a reliable best-device guess, but errors that may affect the
completion time prediction do not necessarily imply a specific error in guess-
ing the most efficient device. It is sufficient to consider a linear model that
overestimates the completion time by a constant factor independently from
the input size and the device. In such a case, the quality of the completion
time estimation is low, but the one of best-device guessing may be instead very
high. For example, we may estimate a completion time of 10 and 20 seconds
for two different devices, while the respective measured completion time is 20
and 30 seconds. While this implies an error in completion time prediction, the
device predicted to be the most efficient is the first one, which corresponds to
the real best device between the two considered.

For this reason, we evaluate the accuracy of best-device prediction. Figure
11.6 shows the frequency of the relative prediction accuracy, measured as the
ratio between the completion time of the device predicted by our algorithm
and the actual optimal device. We also show the geometric mean of the relative
accuracy (red line). A geometric mean equal to 1 corresponds to situations
where the algorithm always predicts the correct device. When the geometric
mean is near to 1 the algorithm does not always predict the best device across
the input sizes, but the performance degradation is low, hence the error is ne-
glectable. Higher values of the geometric mean correspond to situations where
the difference between the predicted device and the best device is relevant. For
example, a geometric mean close to 2 means that the predicted device usually
takes twice the time than the best device.

The programs in the basis (VectorAdd, MatMulNaive and Logistic) show
an ideal behaviour, with a geometric mean very close to 1, or exactly 1. Mat-
mulAdvanced and Convolution also show an ideal prediction error. SumRows,
Sobel and TransposeAdvanced have a very low geometric mean, with the vast
majority of the predictions being accurate. Transpose is plotted on a different
x scale, because it is the only algorithm for which we obtain prediction errors
larger than 2. The geometric mean for this test sample is therefore high (close
to 2), even though most of the predictions were accurate (the frequency of the
bin relative to 2 is considerably higher than the others combined together).

11.2.5 Interpretation of the regression coefficients

Each linear regression coefficient can be easily interpreted as the time needed
to perform one unit of the corresponding feature. As explained in section 9.3

Chapter 11. Validation of the prediction model for device-selection 191

VectorAdd

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
4
0

1
0
0

MatmulNaive

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
3
0

6
0

Logistic

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
1
5
0

3
0
0

SumRows

best device prediction relative accuracy

fr
eq

u
en

cy
1.0 1.5 2.0 2.5 3.0 3.5

0
1
0

2
5

Sobel

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
5

1
5

Convolution

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
2
0
0

5
0
0

TransposeAdvanced

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
6
0

1
2
0

SumCols

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.5 2.0 2.5

0
2

4
6

Transpose

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2
0

4
0

Figure 11.6: Best device prediction relative accuracy

192 Chapter 11. Validation of the prediction model for device-selection

a valid feature “counts” the occurrences of a certain phenomenon, while the
corresponding coefficient quantifies the time needed for each occurrence. The
linear regression applied to the training samples creates a linear model for each
device, with a coefficient for each feature. In our experiments, the coefficient
for the total number of instructions executed feature for the CPU is 0.24e− 9.
If we consider this coefficient, the value of the corresponding feature and the
completion time on the CPU, we can estimate the number of operations per
second of the CPU. The particular value of the regression coefficient for the
total numer of instructions leads to an estimated 4.2e9 operations per second,
which means 2.1e9 operations per second on each of the two CPU cores. This
number is close to the declared operating frequency of the CPU, between 3.8
and 4.2 GHz. A similar evaluation can be done for the GPUs.

Given that we count high-level instructions that may not have a one-to-one
match with low level executable code, we expected a larger estimation error.
Moreover, not all of the low-level instructions require exactly a single clock cy-
cle and many other relevant behaviours are not modeled, such as superscalarity
and the effect of branches. Nonetheless, the coefficients and their correspond-
ing physical values are surprisingly close. This shows that our method can
accomplish a twofold pourpose: predict the completion time of computations
running on heterogeneous platforms and estimate the characteristics of the
available devices.

11.2.6 Conclusions

In this chapter we evaluated the best-device prediction model presented in
chapter 9 and employed by the FSCL runtime for scheduling kernels in a
device-aware fashion.

We built a set of training samples, trying to include programs that stress
different characteristics of the various devices. We also defined a set of features
that capture the impact of the degree of parallelism and of the operations and
memory accesses on the completion time. We applied the regression model
described in section 9.3 on these data to obtain a set of regression coefficients
for each device in the running platform.

The analysis of the residuals demonstrated a good fitting, with most of the
errors concentrated on computations with a very short completion time, which
are indeed particularly sensitive to noise. A very short completion time is the
result frequently obtained when running lightweight computations working on
small datasets. In such cases, all the devices show a very similar completion
time, dominated by overhead of the abstraction layer, as discussed in chapter
12. Therefore, errors in predicting the best device should not turn into a
sensible loss of performance.

Chapter 11. Validation of the prediction model for device-selection 193

After evaluating the fitting, we assessed the quality of completion time pre-
diction by defining a set of test samples and evaluating the prediction error on
the basis of the measured completion times. In most of the cases we are able
to reliably predict the completion time on the various devices. In particular,
the prediction of the completion time on the CPU is very close to the mea-
sured value. Thanks to the cache-miss-estimation feature, the model is able to
predict the combinations of code and input size that lead to aggressive cache
eviction.

During the validation of the prediction model we also tried to apply the
SVM method (including the kernel) proposed in [73] to our data, without being
able to replicate the best device prediction accuracy stated in the article. In
contrast to SVM methods with kernel tricks, a simple approach like linear
regression allows us to analyse the regression coefficients, which can be easily
interpreted, and makes it possible to verify and manipulate the features and
the training samples used in order to improve accuracy.

In addition to completion-time prediction we also evaluated the quality of
best-device guessing. The best-device guessing probability shows a geometry
mean close to 1 in most of the cases, which corresponds to a good guess of the
most efficient device. In some other cases the mean is higher, suggesting that
we should investigate refining the set of features to describe certain completion-
time-related aspects that our model is not taking into account, such as conflicts
and coalescing in accessing memory.

Chapter 12

Validation of compilation,
scheduling and execution
efficiency

The efficiency of an abstraction framework for parallel programming and exe-
cution is key to for its success. This is particularly true if the framework targets
a broad audience of users, from people working on text analysis and manip-
ulation, through developers of images processors to programmers involved in
scientific high-performance computing. We see in the lack of comparable per-
formance one of the prominent reasons behind the difficulties for high-level
programming frameworks to gain a popularity similar to the one that charac-
terizes OpenCL.

In this chapter we evaluate the efficiency of FSCL, using the same setup
used to validate the accuracy of completion time prediction and best-device
selection in chapter 11 (three devices, five features). In the first section we
analyze the impact of the various strategies proposed in this Thesis in order to
increase the efficiency of the abstraction framework and we assess the speedup
produced by progressively enabling different optimisations. In the second sec-
tion we evaluate the performance of FSCL against Aparapi [5] and OpenCL.
Finally, in the last section, we evaluate the benefit of applying the device-aware
scheduling algorithm proposed in our work, comparing the resulting average
completion time to the one obtained with random device selection.

In both FSCL and OpenCL, the “core” of the program execution is a
kernel executable running on a device. In OpenCL, the kernel is coded by the
programmer in C, while in FSCL the kernel source is generated from collection
functions or custom kernels. In all the cases, there are no differences in terms
of executable code between an user-defined OpenCL kernel and an FSCL-
generated kernel. Therefore, selecting a GPU, a CPU or a coprocessor may

196Chapter 12. Validation of compilation, scheduling and execution efficiency

affects the overall completion time but doesn’t affect the overhead introduced
by FSCL over “raw” OpenCL programs. In other terms, since we are interested
in assessing the overhead introduced by FSCL over OpenCL, the particular
device chosen for execution is irrelevant. The device selected for execution is
also irrelevant in assessing the impact of the FSCL optimisation strategies,
such as feature finalisers 9.2 and kernel equivalence 7.4.2, which are applied
on high-level programs in a way that is the same regardless the device where
the program will run. For these reasons, we choose the 4-core CPU to execute
the samples used to evaluate the impact of optimisations and to compare the
efficiency of FSCL respect of OpenCL.

12.1 Impact of optimisations on performances

Throughout our research we focused on a set of models and approaches to
guarantee the efficiency of kernel compilation, scheduling and execution. In
this section we validate the set of choices that we took when designing the
language model, the compilation process and the runtime behaviour, which
can be summarized as follows:

Feature extraction and evaluation through finalizers In section 9.2 we
presented a model to efficiently extract information from arbitrary ASTs.
The model is based on precomputing as much information as possible at
kernel-compilation time (i.e. the first time the kernel is seen), delivering
the final evaluation at kernel-execution time, that is when the actual
arguments of the kernel call are provided.

Kernel-compilation invariance and kernel equivalence Given the defi-
nition of kernel and metadata equivalence (section 7.4.2), the FSCL com-
piler can detect when a kernel has been already compiled, which means
that an equivalent version has been already seen, processed and stored
internally. When an equivalent version of a kernel to process is found, the
stored information (i.e. the content of the Kernel Module data-structure)
can be used, stopping the kernel-compilation pipeline ahead of time.

OpenCL device and kernel binaries caching When a kernel is scheduled
on a device, the FSCL runtime must allocate some OpenCL resources
and generate the executable code for the specific device from OpenCL
source code. To reduce the overhead, the runtime creates device-specific
resources only the first time the device is used, storing them locally for
future use. Similarly, as discussed in section 8.2, executable code is

Chapter 12. Validation of compilation, scheduling and execution efficiency197

generated only the first time the particular combination of kernel and
device is seen.

In figure 12.1, 12.2, 12.3 and 12.4 we show the impact of enabling pro-
gressive optimisations for a heterogeneous subset of the training samples used
to validate the scheduling approach (chapter 11). Since the optimisations are
always applied in the same way independently from the specific device used,
we use a single device (the multicore CPU) of the three available to assess the
impact of progressive optimisations.

For each algorithm, we compute the average completion time for different
input sizes and under a different subset of optimisations. The most relevant
performance impact is given by the feature finalizer building process, that
isolates most of the analysis overhead at kernel-compilation time. Traversing,
building and evaluating expressions has such an impact on perfomances that,
if applied each time a kernel is executed, would determine almost the entire
computation completion time. Once applied the two-step feature-evaluation
model, the efficiency of the framework sensibly increases.

The second, relevant optimisation applied is reusing the output of already-
compiled kernels (kernel-equiv check in the figures). Since generating the
OpenCL source from FSCL kernels involves traversing and manipulating ASTs
(F# expressions), in addition to deeply interacting with the reflection/intro-
spection services provided by the CLR, the compiler pipeline has a relevant
impact on performances.

The third and fourth optimisations consist in reusing device-specific OpenCL
resources already allocated and the set of cached executables of kernels sched-
uled on a device. While further reducing the completion time, the impact
on performance is orders of magnitude lower than the effect of the first two
optimisations considered.

198Chapter 12. Validation of compilation, scheduling and execution efficiency

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

Vector size (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

0
20

40
60

80
10

0
12

0

No optimisation
Feature precalc
Feature precalc + kernel equiv check
Feature precalc + kernel equiv check + device cache
Feature precalc + kernel equiv check + device cache + binary cache

Figure 12.1: Impact of successive optimisations on Vector addition

32 64 128 256 512 1K 2K

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

0
20

0
40

0
60

0
80

0

No optimisation
Feature precalc
Feature precalc + kernel equiv check
Feature precalc + kernel equiv check + device cache
Feature precalc + kernel equiv check + device cache + binary cache

Figure 12.2: Impact of successive optimisations on Matrix multiplication tiled

Chapter 12. Validation of compilation, scheduling and execution efficiency199

32 64 128 256 512 1K 2K

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

0
10

0
20

0
30

0
40

0 No optimisation
Feature precalc
Feature precalc + kernel equiv check
Feature precalc + kernel equiv check + device cache
Feature precalc + kernel equiv check + device cache + binary cache

Figure 12.3: Impact of successive optimisations on Convolution

32 64 128 256 512 1K 2K

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

0
50

10
0

15
0

20
0

No optimisation
Feature precalc
Feature precalc + kernel equiv check
Feature precalc + kernel equiv check + device cache
Feature precalc + kernel equiv check + device cache + binary cache

Figure 12.4: Impact of successive optimisations on Matrix transpose

200Chapter 12. Validation of compilation, scheduling and execution efficiency

12.2 FSCL versus Aparapi and OpenCL

In this section we consider the optimised version of the FSCL framework and we
assess its efficiency compared to other heterogeneous programming solutions.
For each algorithm of the four considered in the previous section we take into
account the equivalent OpenCL C program, which represents the lowest bounds
in completion time or, symmetrically, the highest possible performance. We
also evaluate an equivalent program developed in Aparapi [5], which represents
the today’s framework most similar to FSCL from both the programming and
the execution model perspectives. For each of the three solutions considered
(including FSCL), we execute each algorithm 100 times and we take the average
completion.

As like as in assessing the speedup obtained by enabling different FSCL
optimisations, we use a single device (the multicore CPU) of the three available
to validate the performance of FSCL against Aparapi and OpenCL.

Figures 12.5, 12.6, 12.7 and 12.8 show the comparison between the com-
pletion times of Aparapi, FSCL and OpenCL programs. Aparapi and FSCL
are characterized by similar completion times, especially for very small input
sizes, where the impact of working on a virtual execution environment is par-
ticularly evident. For the same reason, the advantage of low-level OpenCL
execution is noticeable. As the input size grows, the FSCL execution shows
relevant performance speedup, placing itself between Aparapi and OpenCL.
It’s important to note that, whereas the generation of OpenCL code and the
steps implemented to execute kernels may be similar in FSCL and Aparapi,
FSCL also performs feature-extraction and device selection.

By increasing the input size, the gap between the completion time of FSCL
and the one of OpenCL becomes narrow, especially in matrix multiplication,
whose execution time is orders of magnitude higher than the overhead intro-
duced by the abstraction framework.

12.3 Impact of feature evaluation and device

selection on average completion time

Reducing the absolute overhead over regular OpenCL C programming and
execution is not the only goal of the framework efficiency. As discussed in
the introduction of chapter 9 and in section 9.2, transparent scheduling is
meaningful as long as the processing required to select the best device doesn’t
overweight the computation time saved. In particular, the scheduling over-
head plus the completion time on the selected device should be lower than
the completion time expected by randomly picking a device. We verify this

Chapter 12. Validation of compilation, scheduling and execution efficiency201

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

Vector size (elements)

C
o
m
p
le
ti
o
n
ti
m
e
(m

s)

0
1
0

2
0

3
0

4
0

Aparapi

FSCL

OpenCL

Figure 12.5: Aparapi vs FSCL vs OpenCL for Vector addition

32 64 128 256 512 1K 2K

Matrix side (elements)

C
o
m
p
le
ti
o
n
ti
m
e
(m

s)

0
1
0
0

2
0
0

3
0
0

4
0
0

Aparapi

FSCL

OpenCL

Figure 12.6: Aparapi vs FSCL vs OpenCL for Matrix multiplication tiled

202Chapter 12. Validation of compilation, scheduling and execution efficiency

32 64 128 256 512 1K 2K

Matrix side (elements)

C
o
m
p
le
ti
o
n
ti
m
e
(m

s)

0
5

1
0

1
5

2
0

2
5

3
0

Aparapi

FSCL

OpenCL

Figure 12.7: Aparapi vs FSCL vs OpenCL for Convolution

32 64 128 256 512 1K 2K

Matrix side (elements)

C
o
m
p
le
ti
o
n
ti
m
e
(m

s)

0
5

1
0

1
5

2
0

2
5

3
0

Aparapi

FSCL

OpenCL

Figure 12.8: Aparapi vs FSCL vs OpenCL for Matrix transpose

Chapter 12. Validation of compilation, scheduling and execution efficiency203

assertion for the set of algorithms considered so far, assessing the speedup of
best-device selection over random selection. If tbest is the completion time on
the best device, tavg is the average completion time on the set of available
devices and tschedule is the overhead introduced by device selection1, we can
define best-device-speedup the ratio between tavg and tbest + tschedule:

Best-device-speedup =
tavg

tbest + tschedule

When this ratio is lower than 1, the scheduling overhead outweighs the
time saved by executing on the device with the lowest completion time. When
equal to or higher than 1, the overhead of code analysis and device selection
is balanced by the performance obtained running on the chosen device. The
higher the speedup the more convenient is to apply the best-device scheduling
strategy.

In figure 12.9 we show the best-device-speedup for the algorithms consid-
ered. As illustrated, applying the device-aware scheduling strategy leads to a
relevant speedup in most of the cases, even though a small overhead is intro-
duced to analyze kernel code and to apply the set of device-specific models
to the extracted features. The benefit of proper device-selection is embarrass-
ingly high in case of matrix multiplication, where the performance on the best
device (discrete GPU) is orders of magnitude higher than the one obtained in
the worst case scenario (CPU). To the contrary, the completion time of vector
addition is mostly uniform across the devices. For this reason, device-aware
scheduling can’t improve the performance obtained with random device selec-
tion. Nevertheless, the slowdown caused by the scheduling overhead is very
low (about 10%).

1This time includes the time needed to evaluate the feature finalizers

204Chapter 12. Validation of compilation, scheduling and execution efficiency

Vector addition speedup

Vector size (elements)

S
p
ee
d
u
p

1
.0
0

1
.1
0

256K 1.5M 3M 4M 5M 6M 7M 8M

Matrix mult tiled speedup

Matrix side (elements)

S
p
ee
d
u
p

0
2
0

6
0

1
0
0

64 320 576 832 1.1875K 1.625K 2K

Convolution 3x3 speedup

Matrix side (elements)

S
p
ee
d
u
p

1
.2

1
.6

2
.0

64 320 576 832 1.1875K 1.625K 2K

Matrix transpose speedup

Matrix side (elements)

S
p
ee
d
u
p

1
.0

1
.4

1
.8

2
.2

64 512 1K 1.625K 2.5K 3.25K 4K

Figure 12.9: Speedup of best-device over random device selection

Chapter 12. Validation of compilation, scheduling and execution efficiency205

12.3.1 Single versus hybrid execution for multi-kernel
programs

To assess the overall benefit of automatic best-device selection in running an
FSCL program, we develop and execute Newton’s method for the approxima-
tion of matrix inverse [31], which is a procedure suitable to be expressed in its
parallel form by composing multiple kernels.

Starting from an initial seed (matrix) X0, Newton’s method iteratively con-
verges to the inverse of a given matrix A according to the following equations:

X0 = AT ∗ 1

‖A‖1 ∗ ‖A‖∞
(12.1)

Xk+1 = 2Xk −XkAXk (12.2)

We precompute the norms and we assign to a variable α the scalar multi-
plier for AT defined in the equation 12.1.

α =
1

‖A‖1 ∗ ‖A‖∞

The FSCL parallel algorithm to perform k iterations of the Newton’s method
is shown in the listing 12.1. To iteratively execute the method we use the Ar-
ray.fold collection function (line 5). At each iteration, given the current state
X, we multiply X by 2 (line 7) and we perform two matrix multiplications
(line 8). The results of these two computations constitute the input of the Ar-
ray.map2 function (line 11), which subtracts the second from the first accord-
ing to the equation 12.2. The initial seed (state) is computed by transposing
the input matrix A (line 13) and multiplying the result by α.

The kernels involved in the computation are MatMult (executed twice),
MatTransp, Array2D.map and Array2D.map2. In particular, two kernels are
generated for Array2D.map2. The first is generated for the computation at
line 7 and the second for the computation at line 142 The function Array.fold
is instead executed on the host, since it is an higher-order collection function.

2The two computations are not structurally equivalent, since the functional arguments
are inequivalent lambdas.

206Chapter 12. Validation of compilation, scheduling and execution efficiency

1 // Run kmeans iteratively
2 let inverse =
3 <@
4 [| 1 .. k |] |>
5 Array.fold(fun it X _ ->
6 (
7 (Array2D.map(fun i -> i * 2.0)),
8 (MatMult ws A X |>
9 MatMult ws X)

10) ||>
11 Array2D.map2(fun i j -> i - j))
12 (A |>
13 MatTransp ws |>
14 Array2D.map(fun i -> i * multip))
15 @>.Run()

Listing 12.1: Newton’s method for matrix inverse approximation

We set the variable k, which represents the number of Newton’s method it-
erations, to 10 and we consider a range of matrix sizes from 64x64 to 1024x1024
elements. For each input size, execution is performed 100 times and the average
completion time is finally computed.

In figure 12.10 we show the completion times of the kernels composing the
FSCL program, each executed independently. As illustrated, matrix multipli-
cation is the only kernel where the discrete GPU is the device with the lowest
overall completion time. In all the other cases, the CPU is generally the most
efficient device. The intergated GPU isn’t the favorable device for any kernel
in the program.

Since the discrete GPU is not the best device for all the kernels in the FSCL
program, it is meaningful to investigate whether hybrid execution allows to
lower the completion time of single-device execution.

To evaluate the benefit of hybrid execution, we consider four different
scheduling configurations:

• All the kernels on the CPU;

• All the kernels on the Integrated GPU;

• All the kernels on the Discrete GPU;

• Kernels automatically scheduled each on its estimated best device.

In case of hybrid execution, we assess that the scheduling strategy always
selects the discrete GPU for matrix multiplication and matrix transpose in-

Chapter 12. Validation of compilation, scheduling and execution efficiency207

5
50

50
0

10
00

0

64 192 320 448 576 704 832 960

Matrix mult

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

Discrete GPU
Integrated GPU
CPU

1
2

5
10

64 192 320 448 576 704 832 960

Matrix transpose

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

Discrete GPU
Integrated GPU
CPU

2
5

10

64 192 320 448 576 704 832 960

Array2D.map2

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

Discrete GPU
Integrated GPU
CPU

1
2

5
10

64 192 320 448 576 704 832 960

Array2D.map

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

Discrete GPU
Integrated GPU
CPU

Figure 12.10: Completion times for each kernel in the Newton’s method

208Chapter 12. Validation of compilation, scheduling and execution efficiency

dependently from the input size, while the CPU is always selected to execute
Array2D.map and Array2D.map2.

In figure 12.11 we compare the completion times of the four configurations
in logarithmic scale. As shown, the completion times of hybrid and discrete-
GPU-only execution are close to each other, mainly due to the impact of matrix
multiplication, whose completion time is about two orders of magnitude higher
than the completion times of the other algorithms. Nevertheless, in the range
of sizes 192-832 elements, hybrid execution performance outweighs best single-
device execution performance (i.e. single-execution on the discrete GPU). The
performance gap is underlined in figure 12.12, which shows the completion
times of discrete GPU and hybrid execution only.

For very small input sizes hybrid execution has no impact on performance,
since the completion times of all the devices are very similar to each other. Pro-
cessing big matrices (896-1024 elements) represents another case where hybrid
execution has negative or no impact on performance. This is mostly due to the
effect of cross-device data-transfer, which outweighs the time saved scheduling
each algorithm on the best device, suggesting that both execution time and
data-transfer overhead should be taken into account in the scheduling policy
to improve overall performance of multi-kernel/multi-device FSCL programs.
We discuss the possibility to extend the scheduling strategy to consider the
impact of data transfer in chapter 13.

Even though not constant, the time required to evaluate a set features has
a low variance across the algorithms. This time mainly depends on the size
of the finalizer AST, which in its turn depends on the length and complexity
of the kernel code. Considering our samples, the time ranges from 0.14 mil-
liseconds for samples with very small ASTs (vector addition, transpose) to 0.5
milliseconds for samples with a quite complex code structure (matrix multi-
plication and convolution). Half a millisecond is an overhead that is generally
order of magnitudes lower than the time saved scheduling on the faster de-
vice, even for quite small input sizes. Further improvements may be obtained
evaluating multiple features using a single finalizer, which would reduce the
computation load, and compiling quotations into IL when building the feature
finalizers.

12.4 Conclusions

In this chapter we evaluated the efficiency of FSCL, focusing on the impact on
performances of the optimisations applied by the set of framework layers. As
expected, the two most relevant performance improvements are the feature-
finalizer construction and the kernel equivalence check. The first improvement

Chapter 12. Validation of compilation, scheduling and execution efficiency209

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1K

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(s

ec
)

Discrete GPU
Integrated GPU
CPU
Hybrid best

Figure 12.11: Completion times of single device execution and hybrid execu-
tion, logarithmic scale

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1K

Matrix side (elements)

C
om

p
le

ti
on

ti
m

e
(m

s)

0
50

10
0

15
0

Integrated GPU
Hybrid best device

Figure 12.12: Completion times of discrete-GPU-only versus hybrid execution

210Chapter 12. Validation of compilation, scheduling and execution efficiency

allows to isolate most of the code-analysis at kernel-compilation time, strongly
reducing the overhead when the kernel is executed. The second optimisation
saves from re-generating the OpenCL sources for already-compiled kernels,
interrupting the compilation pipeline ahead of time.

Given the optimisations introduced, the FSCL framework can transpar-
ently execute kernels with performances close to the ones delivered by low-level
OpenCL programs. This is especially true for non-trivial algorithms, for which
the computing time on the device is particularly high.

Other than verifying the suitability of the high-level programming and ex-
ecution framework to be used in place of low-level OpenCL without compro-
mising performances, we assessed the efficacy of the device-aware scheduling
approach in terms of the speedup provided over random device selection. The
results show that in most of the cases, paying the cost of feature extraction
and device-guessing results in a sensible performance improvement. The only
scenario where the scheduling engine represents a slowdown is when the com-
pletion times on the available devices are close to each other. Despite the
negative impact on performances, our validation assessed that the slowdown
introduced is mostly irrelevant, primarly thanks to the efficiency of feature-
finalizers evaluation.

Part IV

Conclusions

Chapter 13

Research, challenges and results

In this Thesis we presented our research towards raising abstraction over pro-
gramming and execution on heterogeneous platforms. In particular, we fo-
cused on two major challenges, which are the complexity of programming
across different parallel devices and the difficulty to characterize the set of
available devices in order to schedule parallel computations in a device- and
computation-aware fashion.

Throughout our research, we tried to balance abstraction and flexibility.
From the programming perspective, abstraction enhances productivity and
extends the audience towards developers with few to no parallel programming
skills. Flexibility allows instead to widen the range of computations that can be
expressed with the provided model, increasing the applicability of the language
to accelerate algorithms coming from an heterogeneous set of scientific fields.

From the perspective of scheduling computations on multi-device systems,
abstraction allows to hide the details of the running platform to the program-
mers, enhancing the ubiquitousness of parallel programs and simplifying dy-
namic exploitation of the available computing power. Flexibility gives the
chance to the users to tune or override the decisions of the scheduling policy.

Finally, from the perspective of execution and coordination, abstraction
simplifies the composition of computing elements and data-passing among
them, allowing the developers to focus on defining what the parallel computa-
tions have to do instead of spending time coding how they should be executed.
Flexibility comes into play to enable control over data allocation, initialization
and data passing to optimise the execution and to enhance runtime perfor-
mance.

A third aspect taken into account, especially in the programming model, is
expressiveness. An expressive programming interface helps the developers to
feel comfortable with the concrete language features provided because intuitive
to map to the corresponding abstract concepts.

214 Chapter 13. Research, challenges and results

Finally, a struggling challenge is to embrace abstraction, flexibility and
expressiveness while delivering efficiency. For this reason, each step of our
research was permeated by strategies to preserve the high performances of
low-level programming layers and of user-defined scheduling and execution
approaches.

We defined a parallel programming model seamlessly integrated in F#.
The model is based on a set of parallel computing units and a set of opera-
tors/functions to compose and coordinate them in a way that strictly resembles
regular F# functional processing on collections. The model exposes two differ-
ent combinations of abstraction and flexibility in both defining and composing
computations.

The developers can code parallel computations and their compositions
leveraging on built-in F# collection functions, with no differences from regu-
lar, sequential collection processing and no visibility of the underlying OpenCL
layer. Collection functions are expressive, succinct and well-known all across
the F# community.

To improve the flexibility of skeleton-based solutions, enabling a wider
range of algorithms to be expressed, our programming model allows to re-
place one or more collection functions with custom kernels, which directly map
to OpenCL kernels. Custom kernels break the abstraction over the underly-
ing OpenCL layer but, at the same time, improves productivity of low-level
OpenCL programming thanks to additional, high-level constructs (e.g. tuples,
multi-dimensional arrays, return types) and to type checking and other services
characterizing Virtual Machine languages.

To improve the flexibility of composing parallel computations, the model
gives the chance to “break” a composition of computations into multiple ex-
pressions, each of which can be executed separately in the imperative/object-
oriented host-side program. The programmers are responsible for ensuring the
correct order of execution and the appropriate data passing, with a fine-grained
control over composition and coordination at the price of a lower abstraction.

To map the elements of our programming model to the underlying OpenCL
layer we developed a source-to-source compiler, capable of analysing the com-
position of computations in the input expression and to generate the OpenCL
source code for each kernel that the expression contains.

Thanks to the F# quotations mechanism, exposing an expression to the
compilation process is unobtrusive, only requiring to put the expression within
the quotation delimiters in order to obtain its Abstract Syntax Tree.

We defined an equivalence model for computations and user-defined anno-
tations (metadata) in order to reduce the overhead at runtime. The equivalence

Chapter 13. Research, challenges and results 215

model is employed to determine when two inputs produce the same compila-
tion output and, consequently, to avoid full-compilation of already-compiled
computations.

To execute a parallel program, we investigated an abstract execution layer
with performances close to the low-level OpenCL host-side programming. The
result is a runtime framework that cuts off host-side coding, including resource
allocation, kernel compilation, device discovery and data-transfer, allowing
programmers to focus exclusively on coding computations while delivering fully
automatic execution and coordination.

Flexibility is achieved through the same annotation mechanism exposed to
control compilation. At runtime, annotations enable the developers to control
the memory-placement of buffers, the data-transfer criteria and the scheduling
policy applied to parallel computations.

While delivering much higher abstraction over parallel execution, we inves-
tigated various approaches to preserve the runtime performance. We defined a
strategy to cache compiled kernels and device-specific OpenCL resources. We
also proposed a model to create and reuse buffers depending on whether they
can be accessed or not from the managed environment and from multiple com-
putations. Finally, despite the transparency of the execution layer, the runtime
framework emulates good-programming practices in data-allocation and trans-
fer, depending on the particular usage of data and on the characteristics of the
device chosen for execution.

For scheduling kernels, we proposed a self-contained, adaptive strategy ca-
pable of dynamically discovering the platform configuration and of self-training
to build a completion-time prediction model for the devices populating the
platform.

We defined a model for efficient feature-extraction from ASTs that precom-
putes features at kernel-compilation time, strongly reducing the overhead at
kernel-execution time.

We built a prediction model based on robust linear regression in order to
correlate code features and completion time for arbitrary OpenCL devices.

We finally joined these two models to create a scheduling algorithm that
generates a completion-time prediction model for each device in the running
platform at deploy-time, using an extensible set of training samples. At run-
time, the engine transparently extracts the relevant features from each com-
putation to run and estimates the performance on each available device, even-
tually selecting the one with the lowest completion time.

All the researches conducted and the models and strategies proposed have
been implemented in the FSCL framework, which is an open-source cross-

216 Chapter 13. Research, challenges and results

platform project hosted on GitHub [27].

Chapter 14

Limitations, refinements and
future works

We see many potential future developments of our research in raising abstrac-
tion over heterogeneous programming, scheduling and execution. In this chap-
ter we examine some of the most relevant from our perspective. In the first
section we summarize the principal limitations of the results obtained and we
discuss potential refinements and improvements. In the second section we pro-
pose some interesting concurrent researches that can draw ispiration from our
work and leverage the results of our research.

14.1 Research refinements

The FSCL programming model delivers a combination of abstraction and flex-
ibility that allows to express a wide variety of parallel computations, selecting
the best-fitting abstraction level from time to time. On top of OpenCL speci-
fication 1.2, the model introduces high-order collection functions and function
composition operators to express host-side (multithread) parallelism in exe-
cuting kernels. Despite the high expressiveness of collection functions and
function composition, the FSCL programming model is constrained by the
“target” OpenCL model.

In OpenCL, the host-side is the only entity responsible for scheduling and
coordinating kernels on the available devices. In particular, kernels cannot
schedule other kernels and wait for their result. The relation between the
host and the set of devices in OpenCL strictly resembles the one between the
scheduler (also known as master) and the workers (slaves) in the farm skeleton.

Among the influences on the FSCL programming and execution model
generated by this host-device interaction scheme, the two most evident are the

218 Chapter 14. Limitations, refinements and future works

inability for a custom FSCL kernel to call (execute) other kernels and the need
to execute function and collection composition on the host-side.

With the recent release of version 2.0 of the specification, OpenCL intro-
duced a new feature called kernel-side command-queue, that allows a kernel to
schedule other kernels independently from the host. This new feature has an
impact on the OpenCL layer that may allow even more expressive high-level
models to be mapped to OpenCL. For example, since kernels can schedule
the execution of other kernels, the FSCL language could be extended to al-
low custom kernels to use (call) collection functions, such as Array.map and
Array.groupBy. The compiler could be consequently instrumented to detect
such calls, to generate the source for each kernel and finally to “replace” each
call with the OpenCL code needed to schedule the corresponding kernel. This
extension would spread the usage of collection functions across all the levels
of the FSCL programming and execution model. Depending on the case and
with complete freedom, the compiler/runtime may in fact interpret a certain
collection function as an host-side coordination of kernels or as an OpenCL
kernel. This interpretation may be also driven by particular optimisations
(e.g. interpret a collection function as a kernel to run on the GPU in order to
avoid stealing CPU resources from another concurrent kernel executing on the
CPU).

Moreover, this extension would make the FSCL kernel language completely
symmetrical from the programmer’s perspective. Currently, operators of col-
lection functions can execute custom kernels (i.e. collection composition), but
custom kernels cannot execute collection functions. Similarly, the operator
of a collection function can contain a call to another collection function, but
custom kernels cannot contain calls to other custom kernels. In other terms,
collection functions can be nested with no restrictions, while strong restric-
tions apply to custom kernels. OpenCL 2.0 kernel-side command queues may
play a key role in removing these limitations that break the symmetry of the
language components.

F# provides a nearly-unique feature called type providers [13, 68]. Type
providers provide types, properties, and methods at runtime, eliminating bar-
riers to working with diverse information sources. In our work, type providers
may be succesfully employed to allow to use and compose already defined
OpenCL C kernels in the FSCL environment, exposing them as F# functions
(i.e. the opposite process of FSCL compilation) or as a data structure that
contains all the informations needed, such parameters types, to execute the
kernel from within the FSCL Runtime.

For what regards the data-types used by computing expressions, it would

Chapter 14. Limitations, refinements and future works 219

be interesting to investigate how F# seq, which is a lazy collection type, can
be employed to enhance expressiveness and flexibility. In particular, lazy col-
lections could be used to model a data-stream in stream-parallelism. Lazy
collection may therefore represent a way for the programmer to specify that a
computing expression, or part of it, should execute on a stream of data.

Other than a set of constructs to define and compose parallel computa-
tions, the FSCL kernel language defines a metadata infrastructure to associate
meta-information to the elements of a computing expression in order to drive
compilation and execution (section 6.2.5).

Metadata are tighly coupled with the definition of kernel equivalence and,
consequently, with the one-time-compilation strategy that allows to reuse the
OpenCL-source generated for kernels, strongly reducing the overhead of FSCL-
to-OpenCL compilation. For this reason, the FSCL framework allows to asso-
ciate metadata exclusively to single computing elements. Nontheless, metadata
may be succesfully employed to associate information to function composition
operators and to collection composition functions as well. For example, meta-
data could be used to define the runtime behaviour of a collection composition
function (e.g. Array.map), such as whether to run it multithreading or se-
quentially.

As discussed in section 6.2.4, for the purpose of our research we provided
a multithread implementation of collection compositions. As previously men-
tioned, the release of OpenCL 2.0 enables kernels to schedule other kernels
independently from the host, unleashing the possibility to map to OpenCL
also collection and function compositions, acting as kernels executing other
(sub)kernels. Since this would translate both composition functions and col-
lection/custom kernels to OpenCL sources, extending the metadata infrastruc-
ture to cover both kernels and the constructs used to compose them is even
more important to guarantee the homogeneusness of metadata application.

Since metadata can affect the compilation output, our programming and
compilation model formalizes the definition of Kernel Module equivalence (def-
inition 12) to determine when two FSCL kernels are mapped to the same
OpenCL kernel. Extending the metadata infrastructure to function and col-
lection composition requires to introduce a similar definition for collection
functions and function operators used to compose sub-expressions. It is also
required to investigate how the inequivalence between two compositions affects
the equivalence of the kernels composed. An interesting example is given by a
computing expression with a pattern Array.map |> Array.reduce. Metadata
could be associated to the function composition operator “|>” to drive the
compiler to merge the map and the reduce kernels. In such a case, the two
kernels would be mapped to a single OpenCL kernel source. It is therefore im-

220 Chapter 14. Limitations, refinements and future works

portant to define how the metadata associated to map and reduce are threated
and whether it is possible to reuse pre-exiting, independent compilation out-
puts for map and reduce.

Merging kernels in a metadata- or content-dependent way entails the mu-
tability of the Kernel Call Graph generated by the compiler parsing step.
Currently, this graph is forced to be immutable to be able to stop the compila-
tion pipeline as soon as the graph has been built and the OpenCL source code
has been generated for each kernel node. Introducing the chance of reshaping
the KCG in a later stage of the pipeline would force to execute, at least, all
the stages that preceed it, potentially increasing the compilation overhead.
Nonetheless, we see many transparent optimisations possibly applied to the
KCG and to its content, such as utility-functions inlining, optimising data-
passing and fusing kernels and/or sequential functions together. A potential
refinement of our research consists in investigating the set of relevant optimi-
sations that can be applied to the KCG built by the FSCL compiler and on a
proper balance between KCG mutability and compilation/execution efficiency.

Given the simplicity of the model, the chance to give an intuitive meaning
to the regression coefficients and the general prediction error obtained, the
scheduling approach proposed seems extremely promising. Nevertheless, the
GPU completion time of some algorithms is hard to be reliably predicted with
the samples and the set of features used. It is therefore important to investigate
further on indentifing a set of features that can closely describe the completion
time on GPUs. Among the aspects that can influence the runtime behaviour
of GPUs we see the chance of cohalesching memory accesses, the degree of
potential latency-hiding1 and the estimated number of channel/bank conflicts
in accessing global/local memory.

To design GPU-specific features it is possible to exploit the results of vari-
ous researches on analytical modelling GPUs.

The feature-extraction strategy we developed is flexible enough to inspect
several aspects of a program with a single AST traversal. The main limitation,
well-known and long-studied in the area of static code analysis, is given by the
presence of branch nodes and while-loops. We are able to estimate the trip
count of while-loops for some popular but restriced cases. For conditional nodes
we assign equal probability to the if- and the else-branch. While assigning equal
probability to the branches of a condition may have only a limited effect on the
prediction of the CPU completion time, GPUs completion time is generally

1Latency-hiding is a GPU runtime aspect that leverages one-cycle context-switch to cover
the latency of expensive operations, such as accessing global memory

Chapter 14. Limitations, refinements and future works 221

deeply affected, especially when branches are divergent2. In fact, divergent
branches are a well-known cause of performance degradation on GPUs, since
when encountered, the runtime executes the if- and the else-path one after the
other, properly masking the output.

A potential refinement of our feature-extraction model should focus on
introducing a form of branch-prediction and extending the set of loops for
which it is possible to compute the trip count.

The FSCL runtime applies a greedy scheduling strategy. Each kernel in a
computing expression is scheduled on the best device of the platform, without
considering where the other kernels are scheduled or how scheduling affects
data transfer and copy. In addition, the FSCL runtime currently creates a
different set of OpenCL resources, including contexts, for each device in the
running system.

For global, optimal scheduling there are many cross-kernel aspects that
must be taken into account when instantiating OpenCL resources and selecting
a device for execution.

For example, if two successive kernels are respectively best-scheduled on
different devices, there are mainly three choices that the runtime can take.
The first option is to schedule the kernels on the each one’s best device and
pay the overhead of data copy. The second is to create an unique context
for the two kernels, allowing data (buffers) to be shared at the price of a
possibly higher overhead to allocate and access them. Finally, sub-optimal
local scheduling can be applied to one of the kernels in order to guarantee that
both the kernels execute on the same device (and context).

In case of concurrent execution of two, or more, kernels (e.g. e1 and e2
in e1, e2 |> e3), a problem arises when the two kernels are best-scheduled on
the same device. In this case, the device runs one OpenCL kernel after the
other. The runtime may therefore choose to perform sub-optimal scheduling
for one of the two kernels in order to parallelize the execution on multiple,
different devices. Memory and CPU cores contention are another aspect to
consider to improve overall performances [29]. In case of concurrent execution
on the CPU and on an integrated GPU, the memory system accessed is shared
among the kernels. From a global perspective, scheduling kernels on a discrete
GPU, if available, when some other kernels run on the CPU may contribute
to speedup the computation, since CPUs and discrete GPUs have separated
memory systems. Similarly, whereas the CPU seems to be the best device for
certain algorithms, we should consider than the CPU cores are used to execute
the whole host system, including the compiler, the code to setup OpenCL re-

2A divergent branch is a branch where different work-items in a single group/wavefront
follow different paths

222 Chapter 14. Limitations, refinements and future works

sources and to interact with the OpenCL client driver, as well as the threads
launched to coordinate sub-expressions (i.e. collection and function composi-
tion). The sharing of CPU computing power between the various components
of the framework and the kernels/threads is therefore another point that may
be considered when scheduling kernels.

It’s important to note that since our scheduling approach is entirely based
on completion-time, serveral of these refinements can be easily applied. For
example, the decision of whether to schedule two successive kernels on each
one’s best device or on the same device can check if the completion time in
case of sub-optimal scheduling is lower than the best-scheduled completion
time plus the time to copy data3. This is possible thanks to the fact that
completion time is a metric. Completion times can therefore be coherently
summed, subtracted and compared.

14.2 Concurrent researches

Nowadays, cloud computing is becoming extremely popular, stimulating re-
searches on scheduling strategies for tasks/agents and on device-aware ex-
ploitation of possibly heterogeneous nodes [17, 45]. Whereas FSCL custom
kernels represent a one-to-one mapping with OpenCL kernels, collection func-
tions used to express kernels and to compose them completely hide the under-
lying execution layer. A potential future research may start from the abstrac-
tion provided by F# collection functions and focus on a strategy to map F#
collection programming to cloud computing in order to schedule and execute
collection functions as parallel cloud agents.

The completion time prediction model that we defined in our research can
be considered as a function that, given an input computation, tells how con-
venient it is to execute the computation on a particular device.

A question that may arise is under which conditions this function is in-
vertible. Conceptually, the inverted function tells, given the completion time
on a device, the shape (i.e. the features) of the computation that has such a
completion time.

We see at least two interesting researches that can start from focusing on
the invertibility of the function that describes our prediction model. The first
concerns deducing the behaviour/structure of a black-box program from its
completion-time.

3Cross-device data copy overhead can be easily obtained with appropriate micro-
benchmarks

Chapter 14. Limitations, refinements and future works 223

The second research, which is possibly a specialization of the first one, re-
gards tooling systems that can help the developers to shape and optimize their
code. In the last couple of years, many efforts have been spent on techniques to
instrument GPU code and to provide the programmers of a reliable set of tools
to analyze, profile and optimize heterogeneous, parallel programs [4,24,56]. A
function that correlates a specific completion time to a set of program features
may be succesfully employed to drive static and dynamic optimisations. This is
particularly true considering the expressiveness of regression coefficients (sec-
tion 11.2.5), each of which can be interpreted as the impact that a specific
feature has on the completion time. Therefore, it would be interesting to in-
vestigate on a way to suggest or to automatically apply code optimisations on
the basis of such coefficients, in order to lower the completion time or another
target metric, such as energy consumption.

In the model proposed for scheduling, completion time is the quantity to
predict in order to decide where to run a kernel. Nevertheless, the model is
enough generic to allow to use any other meaningful metric in place of comple-
tion time, such as energy consumption. Concurrent researches may therefore
employ the prediction and scheduling model resulting from our research and
apply it to predict the energy consumption of parallel computations, possibly
scheduling each computation on the most energy-efficient device.

Not only the scheduling model is flexible enough to be used to schedule com-
putations on the basis of some other metrics different from completion time,
but the FSCL runtime configuration infrastructure allows to employ multiple
scheduling models and policies. The developer can choose a different policy
for each computing expression to execute and/or develop custom schedulers
and plug them into the framework. Future researches may investigate the
possibilities offered by dynamic, hybrid scheduling policies, focusing on the
potential applications and on the required degree of scheduling-control (i.e.
per-computing-expression versus per-kernel policy). We find in cloud com-
puting a particularly oustanding area where hybrid scheduling policies may
provide noticeable benefits. From the cloud users point of view, the cost of
cloud computing is generally expressed on a time basis: the longer it takes for
a computation to complete the higher the price paid. To the contrary, service
providers account the cost of processing in the cloud on a power-consumption
basis. Future works may inspect this dicotomy and investigate on a way to ap-
ply different scheduling policies in a context-dependent fashion. For example,
computations could be characterized by specific priorities, possibly deducing
the priority from the context where a compution is declared (e.g. library,
namespace) or from the frequency of usage. A completion-time-based schedul-
ing policy would consequently apply to high-priority computations, while low-

224 Chapter 14. Limitations, refinements and future works

priority tasks would be assigned to each one’s most power-efficient device/node.

Appendices

Appendix A

Definitions of the elements of
the kernel language

Definition 25. [FSCL parallel computing expression] Given an expression e,
we say that e is a parallel sub-expression (parsub(e)) if and only if one of the
following conditions is satisfied:

• e is a custom or collection kernel

• e is a function composition with arguments e1, e2, .. en such that ∃e′ ∈
{e1, e2, .. en}(m) : parsub(e′)

• e is a collection composition with operators e1, e2, .. en such that ∃e′ ∈
{e1, e2, .. en}(m) : parsub(e′)

• e is a computing expression wrapper in the form fun pars −> body and
parsub(body)

Definition 26. [FSCL custom kernel] A custom kernel is either a module func-
tion or instance/static method marked with the Kernel attribute or a lambda
containing a parameter of type WorkItemInfo. Given a function/method-
/lambda m, let attrs(m) be the set of custom attributes associated to m.
Given an attribute a, let typeof(a) be the type of a. Given a lambda l, let
pars(l) be the set of parameters and typeof(p) the type of a parameter p. An
expression e is a kernel if and only if one of the following conditions is satisfied:

• e is a function/method reference, m is the MethodInfo of the func-
tion/method called and ∃a′ ∈ attrs(m) : typeof(a′) = Kernel

• e is a lambda and ∃p′ ∈ pars(e) : typeof(p′) = WorkItemInfo

228 Chapter A. Definitions of the elements of the kernel language

Definition 27. [FSCL collection kernel] Given a collection function f with
operators e1, e2, .. en, we say that f is a collection kernel if and only if
∀e ∈ {e1, e2, .. en} : not parsub(e) (no operator is a parallel computing
expression)

Definition 28. [FSCL sequential function] Given a function f , we say that f
is a sequential function if it is neither a custom kernel nor a collection kernel

Definition 29. [FSCL function composition] Given four computing expres-
sions e1, e2, e3 and e4, the following expressions are valid computing expres-
sions resulting from function composition:

• e1 |> e2 and e2(e1)

• (e1, e2) ||> e3 and e3(e1, e2)

• (e1, e2, e3) |||> e4 and e4(e1, e2, e3)

Definition 30. [FSCL collection composition] Given a collection function f
with operators e1, e2, .. en, we say that f is a collection composition if and
only if ∃e ∈ {e1, e2, .. en} : parsub(e) (at least one operator is a parallel
computing expression)

Definition 31. [FSCL computing expression wrapper] Given an expression
e, we say that e is a computing expression wrapper (wrapper(e)) if and only
if e is a lambda in the form fun pars −> body where body is a computing
expression.

Definition 32. [FSCL computing element] A computing element is either a
collection kernel, a custom kernel or a sequential function

Definition 33. [FSCL computing expression] A computing expression is either
the application of a computing element (kernel/function call) or the application
of a composition (function/collection composition)

Definition 34. [FSCL computing program] A computing program is an user-
defined function that executes one or more computing expressions. If e is a
computing expression, then <@ e @>.Run() represents the execution of e.

Appendix B

Definitions of equivalence of
kernels and metadata

B.1 Equivalence of metadata

Definition (Dynamic metadata). Givenm an abstract meta-information, p1, p2, .. pn
its properties of type t1, t2, , .. tn, a dynamic metadata is defined as a tuple
formed by:

• A CLR custom attribute (object inheriting from System.Attribute) of
type A with properties of type t1, t2, .. tn;

• A function, called metadata-function, of type f : t1 ∗ t2 ∗ .. tn ∗ twrap →
twrap, where:

– twrap is an arbitrary type

– Given an instance el of type t and n arguments a1, a2, .. an,
f(a1, a2, .. an, el) = el. In other terms, the partial application of f
to a1, a2, .. an results in the identity function.

Definition (Uniqueness of dynamic metadata target type). Given a dynamic
metadata m, the set of target types T = {Kernel, Parameter, ReturnType}
and two targets t1, t2, we indicate with type(t1) ∈ T (type(t2) ∈ T) the type
of t1 (t2). Uniqueness of dynamic metadata target type states that m can be
associated to both t1 and t2 if and only if type(t1) = type(t2)

Definition (Dynamic metadata disjointness by type and target). Given two
dynamic metadata values m1 and m2, with M1 the type of m1 and M2 the type
of m2, and a target t instance of T ∈ {Kernel, Parameter, ReturnType}, if
both m1 and m2 are associated to t then M1 6= M2

230 Chapter B. Definitions of equivalence of kernels and metadata

Definition (Metadata equivalence). Let M be a metadata type (type inher-
iting from the built-in Attribute type) and MC = {mc1,mc2, ..mcn} a given
set of metadata comparers for M . For each pair of metadata values m1, m2

where typeof(m1) = typeof(m2) = M , m1 is equivalent to m2 under the set
MC (m1 ≡MC m2) if and only if:

∀mc ∈MC : mc(m1,m2)

Definition (Complete set of metadata values). Given a set of metadata types
M = {m1,m2, .. mn} and a set of metadata values MV = {mv1,mv2, .. mvm},
we indicate with default(m) the default value of a metadata type m. We define
complete set of metadata values for M under the set of comparers MV the set
MV[M] where:

• ∀m ∈M : ∃mv ∈MV : typeof(mv) = m→ mv ∈MV[M]

• ∀m ∈M : @mv ∈MV : typeof(mv) = m→ default(m) ∈MV[M]

Definition (Equivalence of sets of metadata values). Let P be a pipeline, M
the set of metadata types used by its components and MC the set of metadata
comparers. Let {KM,RM,PM} be the per-target-type metadata partition of
M .

Let K be a kernel and Pars its set of parameters.
Given MV1, MV2 two sets of metadata values, let {KMV1, RMV1, PMV1}

and {KMV2, RMV2, PMV2} the respective per-target metadata-value parti-
tions of MV1[M] and MV2[M] (complete sets of metadata values).

We say that MV1 is equivalent to MV2 for the pipeline P (MV1 ≡P MV2)
if and only if all the following conditions are satisfied:

• ∀m1 ∈ KMV1,m2 ∈ KMV2 : M = typeof(m1) = typeof(m2) →
m1 ≡MC(M) m2

• ∀m1 ∈ RMV1,m2 ∈ RMV2 : M = typeof(m1) = typeof(m2) →
m1 ≡MC(M) m2

• ∀p ∈ Pars : ∀m1 ∈ PMV1(p),m2 ∈ PMV2(p) : M = typeof(m1) =
typeof(m2)→ m1 ≡MC(M) m2

B.2 Equivalence of kernels

Definition (Node structural equivalence under alpha conversion). Given two
AST nodes n1 and n2, they are structurally equivalent under alpha conversion
if and only if one of the following conditions is satisfied.

Chapter B. Definitions of equivalence of kernels and metadata 231

• n1 = Let(var1, val1, body1), n2 = Let(var2, val2, body2), var1 and var2
are of the same type, val1 ≡struct val2 and body2[var1/var2] ≡struct body1

• n1 = For(var1, st1, en1, incr1, body1), n2 = For(var2, st2, en2, incr2, body2),
var1 and var2 are of the same type, st1 ≡struct st2, en1 ≡struct en2,
incr1 ≡struct incr2 and body2[var1/var2] ≡struct body1

• n1 = n2

Definition (AST structural equivalence under alpha conversion). Given two
ASTs with n1 and n2 the respective root nodes, they are structurally equivalent
under alpha conversion if only if n1 ≡struct n2.

Definition (Function equivalence). Given two module functions, instance/static
methods or lambdas f1 and f2, they are considered equivalent if and only if
one of the following conditions is satisfied.

• f1 and f2 are modules functions or istance/static methods, M1/M2 is the
MethodInfo associated to f1/f2 and M1 = M2

• f1 and f2 are lambdas and f1 ≡struct f2

Definition (Kernel equivalence). Given two kernels k1 and k2, from the com-
pilation point of view they are considered equivalent if and only if one of the
following conditions is satisfied.

• k1 and k2 are custom kernels or lambdas and k1 ≡fun k2

• k1 and k2 are collection kernels, F1 = {f11, ..f1n} and F2 = {f21, ..f2n}
are the respective sets of operators (arguments) to apply, k1 ≡fun k2 and
∀i=1 .. nf1i ≡fun f2i

B.3 Equivalence of Kernel Modules

Definition (Kernel compilation invariance). Given a kernel-compilation pipeline
P and, two input kernels k1 and k2, the respective sets MV1 and MV2 of
metadata-values, we say that P is invariant to the transformation of input
(k1,MV1)↔ (k2,MV2) if and only if the following conditions are satisfied:

• k1 ≡ker k2

• MV1 ≡P MV2

232 Chapter B. Definitions of equivalence of kernels and metadata

Definition (Kernel Module equivalence). Given a kernel compilation pipeline
P and two input kernels k1 and k2, let km1 and km2 the Kernel Modules
resulting from respectively parsing k1 and k2. Let kid1, kid2, MV1 and MV2
the identifiers (MethodInfo or AST node) of the two kernels and the sets of
metadata values contained in the respective Kernel Modules. We say that
km1 is equivalent to km2 for the pipeline P (km1 ≡P km2) if and only if P is
invariant to the transformation (kid1,MV1)→ (kid2,MV2)

Appendix C

Source code of samples used in
language validation

C.1 Black-Scholes

C.1.1 FSCL

[<ReflectedDefinition>]
let cnd(d:float) =

let A1 = 0.31938153
let A2 = -0.356563782
let A3 = 1.781477937
let A4 = -1.821255978
let A5 = 1.330274429
let RSQRT2PI = 0.39894228040143267793994605993438
let K = 1.0 / (1.0 + 0.2316419 * (fabs(d)))

let nd = RSQRT2PI * Math.Exp(-0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))
)))

if d > 0.0 then
1.0 - nd;

else
nd

[<ReflectedDefinition>]
let blackScholes R V item =

let S,X,T = item
let sqrtT = Math.Sqrt(T)
let d1 = (Math.Log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT)
let d2 = d1 - V * sqrtT
let cndD1 = cnd(d1)
let cndD2 = cnd(d2)
let expRT = Math.Exp(-R * T)
(S * cndD1 - X * expRT * cndD2,
X * expRT * (1.0 - cndD2) - S * (1.0 - cndD1))

// Alloc and init data
let rnd = new Random()
let hSXT = Array.create 1024

rnd.NextDouble() * (25.0) + 5.0,
rnd.NextDouble() * (99.0) + 1.0,
rnd.NextDouble() * (9.75) + 0.25)

234 Chapter C. Source code of samples used in language validation

let R, V = 0.02, 0.30

// Run BlackScholes
let result =
<@
hSXT |>
Array.map(blackScholes R V)

@>.Run()

Listing C.1: Black-Scholes in FSCL

C.1.2 Aparapi

// Avoid using custom struct, seems not supported or unstable
public static class BlackScholesKernel extends Kernel {

final int size;
final float[] s;
final float[] x;
final float[] t;
final float[] result;

final float R = 0.02f;
final float V = 0.30f;

public BlackScholesKernel(float[] hs, float[] hx, float[] ht) {
s = hs;
x = hx;
t = ht;
size = hs.length;
result = new float[size * 2];

}

float cnd(float d) {
float A1 = 0.31938153f;
float A2 = -0.356563782f;
float A3 = 1.781477937f;
float A4 = -1.821255978f;
float A5 = 1.330274429f;
float RSQRT2PI = 0.39894228040143267793994605993438f;
float K = 1.0f / (1.0f + 0.2316419f * (abs(d)));

float nd = RSQRT2PI * exp(-0.5f * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5
)))));

if (d > 0.0f)
nd = 1.0f - nd;

return nd;
}

void blackScholes(float R, float V, float S, float X, float T, float[] outData, int idx) {
float sqrtT = sqrt(T);
float d1 = (log(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
float d2 = d1 - V * sqrtT;
float cndD1 = cnd(d1);
float cndD2 = cnd(d2);
float expRT = exp(-R * T);
outData[idx] = S * cndD1 - X * expRT * cndD2;
outData[idx + 1] = X * expRT * (1.0f - cndD2) - S * (1.0f - cndD1);

}

@Override public void run() {
int gid = getGlobalId(0);
blackScholes(R, V, s[gid], x[gid], t[gid], result[gid]);

Chapter C. Source code of samples used in language validation 235

}

public float[] getResults() {
return result;

}
}

public static void runBlackScholes() {
int size = 1024;

// Prepare data
float[] s = new float[size];
float[] x = new float[size];
float[] t = new float[size];
for (int i = 0; i < size; i++) {

s[i] = (float) (Math.random() * 25.0 + 5.0);
x[i] = (float) (Math.random() * 99.0 + 1.0);
t[i] = (float) (Math.random() * 9.75 + 0.25);

}

// Compute black scholes
BlackScholesKernel k1 = new BlackScholesKernel(s, x, t);
k1.execute(Range.create(Device.firstGPU(), size, 128));
float[] results = k1.getResults();
k1.dispose();

}

Listing C.2: Black-Scholes in Aparapi

C.1.3 Dandelion

// We assume Dandelion support custom structs
struct SXTRV {

public float s;
public float x;
public float t;

public SXT(float hs, float hx, float ht)
{

s = hs;
x = hx;
t = ht;

}
}

float cnd(float d) {
float A1 = 0.31938153f;
float A2 = -0.356563782f;
float A3 = 1.781477937f;
float A4 = -1.821255978f;
float A5 = 1.330274429f;
float RSQRT2PI = 0.39894228040143267793994605993438f;
float K = 1.0f / (1.0f + 0.2316419f * ((d < 0? -d : d)));

float nd = RSQRT2PI * (float)Math.Exp(-0.5f * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4
+ K * A5)))));

if(d > 0.0f)
return 1.0f - nd;

return nd;
}

Vector blackScholes(SXT item, float R, float V) {

236 Chapter C. Source code of samples used in language validation

float S = item.s;
float X = item.x;
float T = item.t;
float sqrtT = (float)Math.Sqrt(T);
float d1 = (float)(Math.Log(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
float d2 = d1 - V * sqrtT;
float cndD1 = cnd(d1);
float cndD2 = cnd(d2);
float expRT = (float)Math.Exp(-R * T);
return new Vector(S * cndD1 - X * expRT * cndD2,
X * expRT * (1.0f - cndD2) - S * (1.0f - cndD1));

}

IQueryable<Vector> blackScholesKernel(IQueryable<SXT> data, float R, float V) {
return data.Select(item => blackScholes(item, R, V));

}

void runBlackScholes() {
int size = 1024;
Random rnd = new Random();

// Prepare data
SXT hSXT = new SXT[size];
for(int i = 0; i < size; i++) {

hSXTRV[i] = new SXT(
(float)rnd.NextDouble() * 25.0f + 5.0,
(float)rnd.NextDouble() * 99.0f + 1.0f,
(float)rnd.NextDouble() * 9.75f + 0.25f);

}
float R = 0.02f;
float V = 0.30f;

// Run BlackScholes
var result = blackScholesKernel(hSXT.AsDandelion(), R, V);

}

Listing C.3: Black-Scholes in Dandelion

C.2 K-Means

C.2.1 FSCL

[<ReflectedDefinition>]
let nearestCenter (centers: (float * float)[]) (point: float * float) =

let mutable minIndex = 0
let mutable minValue = Double.MaxValue
let x,y = point
for curIndex = 0 to centers.Length - 1 do

let cx,cy = centers.[curIndex]
let curValue = Math.Sqrt(Math.Pow(x - cx, 2.0) + Math.Pow(y - cy, 2.0))
if curIndex = 0 || minValue > curValue then

minValue <- curValue
minIndex <- curIndex

minIndex

// Prepare data
let rnd = new Random()
let k = 3
let points = Array.init 1024 (fun i -> (rnd.NextDouble() * 5.0, rnd.NextDouble() * 3.0))
let centers = Array.init k (fun i -> points.[i])

Chapter C. Source code of samples used in language validation 237

// Run kmeans
let kmeans =
<@

points |>
Array.groupBy(fun i -> nearestCenter centers i) |>
Array.map (fun (key, data) ->

data |>
Array.reduce(fun (cx,cy) (x,y) -> (cx + x, cy + y)) |>
(fun (a,b) -> (a/(double)(Seq.length data), b/(double)(Seq.length data))))

@>.Run()

Listing C.4: K-Means in FSCL

C.2.2 Aparapi

public static final class Point {
public float x;
public float y;

}

public static class NearestCenterKernel extends Kernel {
final Point[] points;
final Point[] centers;
final int[] association;
final int size;

public NearestCenterKernel(Point[] p, Point[] c) {
points = p;
centers = c;
association = new int[p.length];
size = c.length;

}

public int nearestCenter (Point[] centers, Point p, int size) {
int minIndex = -1;
float minValue = 0;
for(int curIndex = 0; curIndex < size; curIndex++) {

Point c = centers[curIndex];
float curValue = (float)sqrt(pow(p.x - c.x, 2.0) + pow(p.y - c.y, 2.0));
if(minIndex < 0 || minValue > curValue) {

minValue = curValue;
minIndex = curIndex;

}
}
return minIndex;

}

@Override public void run() {
int i = getGlobalId(0);
int cIndex = nearestCenter(centers, points[i], size);
association[i] = cIndex;

}

public int[] getAssociations() {
return association;

}
}

public static class GroupByCenterKernel extends Kernel {
final Point[] points;
final int[] association;

238 Chapter C. Source code of samples used in language validation

final Point[] sortPoints;
final int[] count;

public GroupByCenterKernel(Point[] p, int[] a) {
points = p;
association = a;
count = new int[p.length];
sortPoints = new Point[p.length];

}

@Override public void run() {
int i = getGlobalId(0);
int n = getGlobalSize(0);

// Key is the association
int a = association[i];

int pos = 0;
int found = 0;
int j = 0;
while(found == 0 && j < n)
{

float curA = association[j];
if((a > curA) || ((a == curA) && (j < i))) {

found = 1;
}
else {

pos++;
}
j++;

}
sortPoints[pos].x = points[i].x;
sortPoints[pos].y = points[i].y;
// Incr set count
atomicAdd(count, a, 1);

}

public int[] getCounts() {
return count;

}
public Point[] getSortPoints() {

return sortPoints;
}

}

public static class CentroidKernel extends Kernel {
final Point[] sortPoints;
final int[] count;
final Point[] centroids;

public CentroidKernel(Point[] s, int[] c, int totalCount) {
count = c;
sortPoints = s;
centroids = new Point[totalCount];

}

@Override public void run() {
// Each thread perform linear reduction (avg) for a group
int i = getGlobalId(0);
int startIdx = 0;
for(int j = 0; j < i; j++)

startIdx += count[j];
int endIdx = startIdx + count[i] - 1;

float newX = 0.0f;
float newY = 0.0f;
for(int j = startIdx; j <= endIdx; j++) {

newX += sortPoints[j].x;
newY += sortPoints[j].y;

Chapter C. Source code of samples used in language validation 239

}
centroids[i].x = newX/(float)count[i];
centroids[i].y = newY/(float)count[i];

}

public Point[] getCentroid() {
return centroids;

}
}

public static void runKMeans() {
int size = 1024;
int cCount = 3;

// Prepare data
final Point[] points = new Point[size];
final Point[] centers = new Point[cCount];
for (int i = 0; i < size; i++) {

points[i] = new Point();
points[i].x = (float) (Math.random() * 100);
points[i].y = (float) (Math.random() * 100);

}
for (int i = 0; i < cCount; i++) {

centers[i] = points[i];
}

// Compute nearest centers
NearestCenterKernel k1 = new NearestCenterKernel(points, centers);
k1.execute(Range.create(Device.firstGPU(), size, 128));

// Now group by center
GroupByCenterKernel k2 = new GroupByCenterKernel(points, k1.getAssociations());
k2.execute(Range.create(Device.firstGPU(), size, 128));

// Sequentially compute total count
int totalCount = 0;
for(int i = 0; i < k2.getCounts().length; i++)

totalCount += k2.getCounts()[i];

// Finally, recompute centroid per-group
CentroidKernel k3 = new CentroidKernel(k2.getSortPoints(), k2.getCounts(), totalCount);
k3.execute(Range.create(Device.firstGPU(), totalCount, 1));

k1.dispose();
k2.dispose();
k3.dispose();

}

Listing C.5: K-Means in Aparapi

C.2.3 Dandelion

int NearestCenter(Vector vector, IEnumerable<Vector> centers) {
int minIndex = 0;
double minValue = Double.MaxValue;
int curIndex = 0;
foreach (Vector center in centers) {

double curValue = (center - vector).Norm2();
if (minValue > curValue) {

minValue = curValue;
minIndex = curIndex;

}

240 Chapter C. Source code of samples used in language validation

curIndex++;
}
return minIndex;

}

IQueryable<Vector> OneStep(IQueryable<Vector> vectors, IQueryable<Vector> centers) {
return vectors.GroupBy(v => NearestCenter(v, centers)).Select(g => g.Aggregate((x, y) => x+y)/

g.Count());
}

void runKMeans() {
Random rnd = new Random();
int k = 3;

// Prepare data
Vector[] points = new Vector[1024];
Vector[] centers = new Vector[3];
for(int i = 0 ; i < points.Length; i++) {

points[i] = new Vector(rnd.NextDouble() * 5.0, rnd.NextDouble() * 3.0);
}
for(int i = 0 ; i < centers.Length; i++) {

centers[i] = points[i];
}

// Run computation
OneStep(points.AsDandelion(), centers.AsDandelion());

}

Listing C.6: K-Means in Dandelion

C.3 Tiled matrix multiplication

C.3.1 FSCL

[<ReflectedDefinition; Kernel>]
let MatMul(matA: float32[,], matB: float32[,], matC: float32[,], wi: WorkItemInfo) =

let bx = wi.GroupID(0)
let by = wi.GroupID(1)

let tx = wi.LocalID(0)
let ty = wi.LocalID(1)

let block_size = wi.WorkSize(0)
let matAWidth = matA.GetLength(1)
let matBWidth = matB.GetLength(1)

let aBegin = block_size * by
let aEnd = aBegin + matAWidth - 1
let bBegin = block_size * bx

let mutable b = bBegin
let mutable Csub = 0.0f

let As = local(Array2D.zeroCreate<float32> block_size block_size)
let Bs = local(Array2D.zeroCreate<float32> block_size block_size)

for a in aBegin .. block_size .. aEnd do
As.[ty, tx] <- matA.[ty, a + tx]
Bs.[ty, tx] <- matB.[b + ty, tx]

Chapter C. Source code of samples used in language validation 241

wi.Barrier(CLK_LOCAL_MEM_FENCE)

// Multiply the two matrices together
for k = 0 to block_size - 1 do

Csub <- Csub + (As.[ty, k] * Bs.[k, tx])
wi.Barrier(CLK_LOCAL_MEM_FENCE)

b <- b + block_size

matC.[block_size * by + ty, block_size * bx + tx] <- Csub

// Prepare data
let rnd = new Random()
let a = Array2D.init 1024 1024 (fun i -> (float32)(rnd.NextDouble()))
let b = Array2D.init 1024 1024 (fun i -> (float32)(rnd.NextDouble()))
let c = Array2D.zeroCreate<float32> 1024 1024
let workSize = WorkSize([| 1024L; 1024L |], [| 16L; 16L |])

// Run matrix multiplication
<@

MatMul(a, b, c, workSize)
@>.Run()

Listing C.7: Tiled matrix multiplication in FSCL

C.3.2 Aparapi

public void MatMul() {
final int size = 1024;
final int BLOCK_SIZE = 16;

// Prepare data
final float[] matA = new float[size * size];
final float[] matB = new float[size * size];
final float[] matC = new float[size * size];

final float[] As_$local$ = new float[BLOCK_SIZE * BLOCK_SIZE];
final float[] Bs_$local$ = new float[BLOCK_SIZE * BLOCK_SIZE];

for (int i = 0; i < size * size; i++) {
matA[i] = (float) (Math.random());
matB[i] = (float) (Math.random());

}

// Define the kernel
Kernel kernel = new Kernel(){

@Override public void run() {
int bx = getGroupId(0);
int by = getGroupId(1);

int tx = getLocalId(0);
int ty = getLocalId(1);

int aBegin = size * BLOCK_SIZE * by;
int aEnd = aBegin + size - 1;

int aStep = BLOCK_SIZE;
int bBegin = BLOCK_SIZE * bx;
int bStep = BLOCK_SIZE * size;

int a = aBegin;
int b = bBegin;

242 Chapter C. Source code of samples used in language validation

float Csub = 0.0f;

while(a <= aEnd) {
As_$local$[ty * BLOCK_SIZE + tx] = matA[a + (size * ty) + tx];
Bs_$local$[ty * BLOCK_SIZE + tx] = matB[b + (size * ty) + tx];
localBarrier();

for(int k = 0; k < BLOCK_SIZE; k++) {
Csub = Csub + (As_$local$[ty * BLOCK_SIZE + k] * Bs_$local$[k * BLOCK_SIZE +

tx]);
}
localBarrier();

b = b + bStep;
a = a + aStep;

}

int c = (size * BLOCK_SIZE * by) + (BLOCK_SIZE * bx);
matC[c + (size * ty) + tx] = Csub;

}
};

// Run kernel on the first GPU device
kernel.execute(Range.create2D(Device.firstGPU(), size, size, 16, 16));
kernel.dispose();

}

Listing C.8: Tiled matrix multiplication in Aparapi

C.3.3 Dandelion

No Dandelion library is available yet to test. Since Dandelion seems to lack
support for user-defined kernels, tiled matrix multiplication may result impos-
sible to express.

C.4 Average image complexity

C.4.1 FSCL

[<ReflectedDefinition, Kernel>]
let SobelFilter2D (wi: WorkItemInfo) (inIm: float32[,]) =

// Create output image using FSCL kernel return capability
let outIm = Array2D.zeroCreate<float32> (inIm.GetLength(0) - 2) (inIm.GetLength(1) - 2)

// Work-item computation
let x = wi.GlobalID(0)
let y = wi.GlobalID(1)
let width = outIm.GetLength(1)
let height = outIm.GetLength(0)
let mutable Gx = 0.0f
let mutable Gy = Gx

if x < width && y < height then
// Read each texel component and calculate the filtered value using neighbouring texel

components
Gx <- inIm.[y, x] + 2.0f * inIm.[y, x + 1] + inIm.[y, x + 2] -

Chapter C. Source code of samples used in language validation 243

inIm.[y + 2, x] - 2.0f * inIm.[y + 2, x + 1] - inIm.[y + 2, x + 2]
Gy <- inIm.[y, x] - inIm.[y, x + 2] + 2.0f * inIm.[y + 1, x] -

2.0f * inIm.[y + 1, x + 2] + inIm.[y + 2, x] - inIm.[y + 2, x + 2]
outIm.[y, x] <- Math.Sqrt(Gx * Gx + Gy * Gy)/2.0f

// Return
outIm

// Prepare data
let image = // Load image into an Array2D<float4> instance
let threshold = 0.8f

// Run noise calculation
let avgComplex =

<@
image |>
// To black-and-white
Array2D.map(fun p -> (0.2126f * (float32)p.x + 0.7152f * (float32)p.y + 0.0722f * (float32

)p.z)) |>
// Sobel
SobelFilter2D wi |>
// Count pixels over the white threshold
Array2D.averageBy (fun it ->

if it > threshold then
1.0f

else
0.0f)

@>.Run()

Listing C.9: Average image complexity in FSCL

C.4.2 Aparapi

public static final class RGBA4Pixel {
public float r;
public float g;
public float b;
public float a;

}

public static class SobelBWFilterKernel extends Kernel {
final RGBA4Pixel[] input;
final float[] output;
final int width;
final int height;

public SobelBWFilterKernel(RGBA4Pixel[] i, int w, int h) {
input = i;
output = new float[(w - 2) * (h - 2)];
width = w;
height = h;

}

float toBw(RGBA4Pixel p) {
return 0.2126f * p.r + 0.7152f * p.g + 0.0722f * p.b;

}

@Override public void run() {
int x = getGlobalId(0);
int y = getGlobalId(1);
int outWidth = getGlobalSize(0);
int outHeight = getGlobalSize(1);

244 Chapter C. Source code of samples used in language validation

float Gx = 0.0f;
float Gy = Gx;

if(x < outWidth && y < outHeight) {
Gx = toBw(input[(y * outHeight) + x]) + 2.0f * toBw(input[(y * outHeight) + x + 1]) +

toBw(input[(y * outHeight) + x + 2]) -
toBw(input[((y + 2) * outHeight) + x]) - 2.0f * toBw(input[((y + 2) * outHeight) + x +

1]) - toBw(input[((y + 2) * outHeight) + (x + 2)]);

Gy = toBw(input[(y * outHeight) + x]) - toBw(input[(y * outHeight) + x + 2]) + 2.0f *
toBw(input[((y + 1) * outHeight) + x]) -

2.0f * toBw(input[((y + 1) * outHeight) + x + 2]) + toBw(input[((y + 2) * outHeight) +
x]) - toBw(input[((y + 2) * outHeight) + x + 2]);

output[y * outHeight + x] = sqrt(Gx * Gx + Gy * Gy)/2.0f;
}

}

public float[] getResults() {
return output;

}
}

public static class ReduceKernel extends Kernel {
final float[] input;
final float[] output;
final float threshold = 0.8f;
final int slicePerThread;

public ReduceKernel(float[] i, int slice) {
input = i;
output = new float[i.length / slice];
slicePerThread = slice;

}

@Override public void run() {
// Serial reduction, each thread reduces an input slice
int gid = getGlobalId(0);
if(gid * slicePerThread < input.length) {

float accum = 0.0f;
for(int i = gid * slicePerThread; i < min((gid + 1) * slicePerThread, input.length); i

++) {
accum += input[i] >= threshold? 1.0f : 0.0f;

}
output[gid] = accum;

}
}

public float[] getResults() {
return output;

}
}

public static void runAvgComplex() {
int size = 1026;
int reduceSlice = 128;

final RGBA4Pixel[] image = // Load image into an RGBA4Pixel[] instance

// Sobel filter
SobelBWFilterKernel k1 = new SobelBWFilterKernel(image, size, size);
k1.execute(Range.create2D(Device.firstGPU(), size, size, 128, 128));

// Now do reduce to (partially) count border pixels
ReduceKernel k2 = new ReduceKernel(k1.getResults(), reduceSlice);
k2.execute(Range.create(Device.firstGPU(), k1.getResults().length / reduceSlice, 1));

// Finish reduction
float[] partialRed = k2.getResults();

Chapter C. Source code of samples used in language validation 245

float count = 0.0f;
for(int i = 0; i < partialRed.length; i++)

count += partialRed[i];

// count is the avg complexity
// ...

// Dispose
k1.dispose();
k2.dispose();

}

Listing C.10: Average image complexity in Aparapi

C.4.3 Dandelion

No Dandelion library is available yet to test. Since Dandelion seems to lack
support for user-defined kernels, average image complexity via Sobel filtering
may result impossible to express in an optimal form like in FSCL or Aparapi.
Sobel algorithm could be instead expressed through a combination of Take,
Skip and other filtering operators, which nonetheless causes a computation
partitioning (including scheduling and execution) that is far from any common
implementation parallel Sobel filtering.

Bibliography

[1] Cloo (OpenCL Object Oriented) project, 2010.

[2] Yuki Abe, Hiroshi Sasaki, Martin Peres, Koji Inoue, Kazuaki Murakami,
and Shinpei Kato. Power and Performance Analysis of GPU-Accelerated
Systems. In Presented as part of the 2012 Workshop on Power-Aware
Computing and Systems, Hollywood, CA, 2012. USENIX.

[3] AMD. HSA Foundation Overview, 2011.

[4] AMD. AMD CodeXL webpage, 2013.

[5] AMD. Aparapi framework homepage, 2014.

[6] Francis J. Anscombe. Graphs in statistical analysis. The American Statis-
tician, 27(1):17–21, 1973.

[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, Katherine A. Yelick, Meetings Jim Dem-
mel, William Plishker, John Shalf, Samuel Williams, and Katherine
Yelick. The Landscape of Parallel Computing Research: A View from
Berkeley. Technical report, TECHNICAL REPORT, UC BERKELEY,
2006.

[8] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Her-
mann De Meer, Minh Quan Dang, and Kostas Pentikousis. Energy-
Efficient Cloud Computing. Comput. J., 53(7):1045–1051, September
2010.

[9] Angela Blanco-Fernndez, Ana Colubi, Marta Garca-Brzana, and Manuel
Montenegro. A Linear Regression Model for Interval-Valued Response
Based on Set Arithmetic. In Rudolf Kruse, Michael R. Berthold, Chris-
tian Moewes, Mara ngeles Gil, Przemysaw Grzegorzewski, and Olgierd

248 Bibliography

Hryniewicz, editors, Synergies of Soft Computing and Statistics for Intel-
ligent Data Analysis, number 190 in Advances in Intelligent Systems and
Computing, pages 105–113. Springer Berlin Heidelberg, January 2013.

[10] M. Bogdanski, P.R. Lewis, T. Becker, and Xin Yao. Improving Schedul-
ing Techniques in Heterogeneous Systems with Dynamic, On-Line Opti-
misations. In 2011 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), pages 496–501, June 2011.

[11] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. Flume-
Java: Easy, Efficient Data-parallel Pipelines. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’10, pages 363–375, New York, NY, USA, 2010. ACM.

[12] Kwang-Ting Cheng and Yi-Chu Wang. Using mobile GPU for general-
purpose computing; a case study of face recognition on smartphones. In
2011 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pages 1–4, April 2011.

[13] David Christiansen. Dependent type providers. pages 25–34. ACM, 2013.

[14] Philipp Ciechanowicz, Michael Poldner, and Herbert Kuchen. The Mn-
ster Skeleton Library Muesli: A comprehensive overview. ERCIS Working
Paper 7, Westflsche Wilhelms-Universitt Mnster (WWU) - European Re-
search Center for Information Systems (ERCIS), 2009.

[15] Codeplex. OpenCL.NET project on Codeplex, 2010.

[16] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms.
Information and Control, 64(13):2–22, January 1985.

[17] Steve Crago, Kyle Dunn, Patrick Eads, Lorin Hochstein, Dong-In Kang,
Mikyung Kang, Devendra Modium, Karandeep Singh, Jinwoo Suh, and
John Paul Walters. Heterogeneous Cloud Computing. In Proceedings of
the 2011 IEEE International Conference on Cluster Computing, CLUS-
TER ’11, pages 378–385, Washington, DC, USA, 2011. IEEE Computer
Society.

[18] Mayank Daga. On the Efficacy of a Fused CPU+GPU Processor (or APU)
for Parallel Computing. 2011.

[19] Daniel Egloff. Taming GPU Threads with F# and Alea GPU, 2014.

Bibliography 249

[20] Pablo de Oliveira Castro, Eric Petit, Asma Farjallah, and William
Jalby. Adaptive sampling for performance characterization of applica-
tion kernels. Concurrency and Computation: Practice and Experience,
25(17):2345–2362, 2013.

[21] Jiun-Hung Ding, Wei-Chung Hsu, Bai-Cheng Jeng, Shih-Hao Hung, and
Yeh-Ching Chung. HSAemu: A Full System Emulator for HSA Platforms.
In Proceedings of the 2014 International Conference on Hardware/Soft-
ware Codesign and System Synthesis, CODES ’14, pages 26:1–26:10, New
York, NY, USA, 2014. ACM.

[22] Johan Enmyren and Christoph W. Kessler. SkePU: A Multi-backend
Skeleton Programming Library for multi-GPU Systems. In Proceedings of
the Fourth International Workshop on High-level Parallel Programming
and Applications, HLPP ’10, pages 5–14, New York, NY, USA, 2010.
ACM.

[23] F. Farahnakian, P. Liljeberg, and J. Plosila. LiRCUP: Linear Regression
Based CPU Usage Prediction Algorithm for Live Migration of Virtual
Machines in Data Centers. In 2013 39th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), pages 357–364,
September 2013.

[24] Naila Farooqui, Karsten Schwan, and Sudhakar Yalamanchili. Efficient In-
strumentation of GPGPU Applications Using Information Flow Analysis
and Symbolic Execution. In Proceedings of Workshop on General Purpose
Processing Using GPUs, GPGPU-7, pages 19:19–19:27, New York, NY,
USA, 2014. ACM.

[25] John Fox. Applied regression analysis, linear models, and related methods.
Sage Publications, Inc, 1997.

[26] Juan Jos Fumero, Michel Steuwer, and Christophe Dubach. A Com-
posable Array Function Interface for Heterogeneous Computing in Java.
In Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming, ARRAY’14, pages
44:44–44:49, New York, NY, USA, 2014. ACM.

[27] Gabriele Cocco. FSCL framework website, 2014.

[28] Gian Ntzik. F# Streams, 2014.

250 Bibliography

[29] Chris Gregg, Jeff Brantley, and Kim Hazelwood. Contention-Aware
Scheduling of Parallel Code for Heterogeneous Systems. In 2nd USENIX
Workshop on Hot Topics in Parallelism, HotPar, Berkeley, CA, June 2010.

[30] Kate Gregory and Ade Miller. C++ AMP: Accelerated Massive Paral-
lelism with Microsoft Visual C++. ”O’Reilly Media, Inc.”, September
2012.

[31] C. Guo and N. Higham. A SchurNewton Method for the Matrix
\lowercase{\boldmathp}th Root and its Inverse. SIAM Journal on Ma-
trix Analysis and Applications, 28(3):788–804, January 2006.

[32] David C. Hoaglin, Frederick Mosteller, and John W. Tukey. Exploring
data tables, trends, and shapes, volume 101. John Wiley & Sons, 2011.

[33] Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun
Chauhan, and Andrew Lumsdaine. BYRD Declarative Parallel Program-
ming for GPUs. 2011.

[34] Paul W. Holland and Roy E. Welsch. Robust regression using iteratively
reweighted least-squares. Communications in Statistics-Theory and Meth-
ods, 6(9):813–827, 1977.

[35] Sunpyo Hong and Hyesoon Kim. An Analytical Model for a GPU Archi-
tecture with Memory-level and Thread-level Parallelism Awareness. In
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009. ACM.

[36] Ching-Hsien Hsu, Shih-Chang Chen, Chih-Chun Lee, Hsi-Ya Chang,
Kuan-Chou Lai, Kuan-Ching Li, and Chunming Rong. Energy-Aware
Task Consolidation Technique for Cloud Computing. In 2011 IEEE Third
International Conference on Cloud Computing Technology and Science
(CloudCom), pages 115–121, November 2011.

[37] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and
Mayur Naik. Predicting Execution Time of Computer Programs Using
Sparse Polynomial Regression. In John D. Lafferty, Christopher K. I.
Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, edi-
tors, NIPS, pages 883–891. Curran Associates, Inc., 2010.

[38] Takashi Isobe, Eric D. Feigelson, Michael G. Akritas, and Gutti Jo-
gesh Babu. Linear regression in astronomy. The Astrophysical Journal,
364:104–113, November 1990.

Bibliography 251

[39] Michael A. Iverson, Fusun Ozguner, and Lee C. Potter. Statistical predic-
tion of task execution times through analytic benchmarking for scheduling
in a heterogeneous environment. In Heterogeneous Computing Workshop,
1999.(HCW’99) Proceedings. Eighth, pages 99–111. IEEE, 1999.

[40] Anil K. Jain. Data Clustering: 50 Years Beyond K-means. Pattern Recogn.
Lett., 31(8):651–666, June 2010.

[41] Y. Jiao, H. Lin, P. Balaji, and W. Feng. Power and Performance Char-
acterization of Computational Kernels on the GPU. In Green Computing
and Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on
Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
pages 221–228, December 2010.

[42] Adam Eversole Jon Currey and Christopher J. Rossbach. Scheduling
Dataflow Execution Across Multiple Accelerators. 2014.

[43] P.J. Joseph, K. Vaswani, and Matthew J. Thazhuthaveetil. A Pre-
dictive Performance Model for Superscalar Processors. In 39th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2006.
MICRO-39, pages 161–170, December 2006.

[44] Justin Holewinski. PTX Back-End: GPU Programming with LLVM,
November 2011.

[45] Ketan Paranjape, Steve Hebert, and Bob Masson. Heterogeneous Com-
puting in the Cloud: Crunching Big Data and Democratizing HPC Access
for the Life Sciences. Technical report, 2014.

[46] Andreas Klckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-
based Approach to GPU Run-time Code Generation. Parallel Comput.,
38(3):157–174, March 2012.

[47] MarketsandMarkets. Heterogeneous Mobile Processing & Computing
Market by Component (processor, GPU, DSP, connectivity), Technology
Node (45nm-5nm), Application (Consumer, Tele-communication, Auto-
motive, MDA, Medical), & Geography Forecast & Analysis to 2014 2020.
Technical report, 2014.

[48] Ricardo Marques, Herv Paulino, Fernando Alexandre, and Pedro D.
Medeiros. Algorithmic Skeleton Framework for the Orchestration of GPU
Computations. In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors,

252 Bibliography

Euro-Par 2013 Parallel Processing, number 8097 in Lecture Notes in Com-
puter Science, pages 874–885. Springer Berlin Heidelberg, January 2013.

[49] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. pages 706–706.
ACM, 2006.

[50] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and Henri
Bal. A Detailed GPU Cache Model Based on Reuse Distance Theory.
hgpu.org, January 2014.

[51] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.
O’Reilly Media, Inc., 1st edition, 2008.

[52] C. Ozturk and R. Sendag. An analysis of hard to predict branches. In
2010 IEEE International Symposium on Performance Analysis of Systems
Software (ISPASS), pages 213–222, March 2010.

[53] P. Pandit and R. Govindarajan. Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices. 2014.

[54] C.D. Panirwala. Exploring Correlation for Indirect Branch Prediction.
North Carolina State University, 2012.

[55] Pankaj Singh. FUSION APU & TRENDS/ CHALLENGES IN FUTURE
SoC DESIGN, 2011.

[56] Paulius Micikevicius. GPU Performance Analysis and Optimisation, 2012.

[57] James Reinders. Intel Threading Building Blocks. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, first edition, 2007.

[58] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin,
and Dennis Fetterly. Dandelion: A Compiler and Runtime for Hetero-
geneous Systems. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 49–68, New York, NY,
USA, 2013. ACM.

[59] Paul E. Roundy and William M. Frank. Applications of a Multiple Linear
Regression Model to the Analysis of Relationships between Eastward-
and Westward-Moving Intraseasonal Modes. Journal of the Atmospheric
Sciences, 61(24):3041–3048, December 2004.

Bibliography 253

[60] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen,
Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort on CPUs
and GPUs: A Case for Bandwidth Oblivious SIMD Sort. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 351–362, New York, NY, USA, 2010. ACM.

[61] G. T. Shrivakshan and Dr C. Chandrasekar. A Comparison of various
Edge Detection Techniques used in Image Processing. 1986.

[62] Joshua B. Smith. Practical OCaml (Practical). Apress, Berkely, CA, USA,
2006.

[63] Swetha P. T. Srinivasan and Umesh Bellur. Novel Power and Comple-
tion Time Models for Virtualized Environments. arXiv:1411.3201 [cs],
November 2014. arXiv: 1411.3201.

[64] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL - A Portable
Skeleton Library for High-Level GPU Programming. In 2013 IEEE In-
ternational Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum, volume 0, pages 1176–1182, Los Alamitos, CA, USA,
2011. IEEE Computer Society.

[65] Xueyuan Su, Garret Swart, Brian Goetz, Brian Oliver, and Paul Sandoz.
Changing Engines in Midstream: A Java Stream Computational Model
for Big Data Processing. PVLDB, 7(13):1343–1354, 2014.

[66] Alexandre Denis Raymond Namyst Marie-Christine Counilh Syl-
vain Henry, Denis Barthou. SOCL: An OpenCL Implementation with
Automatic Multi-Device Adaptation Support. 2013.

[67] Don Syme. Leveraging .NET Meta-programming Components from F#:
Integrated Queries and Interoperable Heterogeneous Execution. In Pro-
ceedings of the 2006 Workshop on ML, ML ’06, pages 43–54, New York,
NY, USA, 2006. ACM.

[68] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, Wonseok Chae, Uladzimir Matsveyeu, and Tomas Petricek.
F#3.0 - Strongly-Typed Language Support for Internet-Scale Informa-
tion Sources. Technical Report MSR-TR-2012-101, Microsoft Research,
September 2012.

[69] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F# 2.0.
Apress, Berkely, CA, USA, 1st edition, 2010.

254 Bibliography

[70] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data Par-
allelism to Program GPUs for General-purpose Uses. In Proceedings of
the 12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XII, pages 325–335,
New York, NY, USA, 2006. ACM.

[71] Ioan Trenca, Maria Miruna POCHEA, and Angela Maria FILIP. Op-
tions evaluation - Black-Scholes model vs. binomial options pricing model.
Finante - provocarile viitorului (Finance - Challenges of the Future),
1(12):137–146, 2010.

[72] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and
Joel Emer. Scheduling Heterogeneous Multi-cores Through Performance
Impact Estimation (PIE). In Proceedings of the 39th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’12, pages 213–224,
Washington, DC, USA, 2012. IEEE Computer Society.

[73] Yuan Wen. Smart Multi-Task Scheduling for OpenCL Programs on
CPU/GPU Heterogeneous Platforms. 2014.

[74] J.R. Wernsing and G. Stitt. A scalable performance prediction heuristic
for implementation planning on heterogeneous systems. In 2010 8th IEEE
Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia),
pages 71–80, October 2010.

[75] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A
Programmer-Friendly Interface for Accelerating Java Programs with
CUDA. In Proceedings of the 15th International Euro-Par Conference
on Parallel Processing, Euro-Par ’09, pages 887–899, Berlin, Heidelberg,
2009. Springer-Verlag.

[76] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. Performance and power
analysis of ATI GPU: A statistical approach. In Networking, Architecture
and Storage (NAS), 2011 6th IEEE International Conference on, pages
149–158. IEEE, 2011.

