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Abstract

In component-based software engineering, large software systems are decomposed
into components with clearly described interfaces in order to make developers from
different teams work effectively together. The interfaces specify the assumptions and
guarantees of the interaction behavior by declaring functional and non-functional
properties. More specifically, we work within the Refinement Calculus of Component
and Object Systems (rCOS), a formal framework and methodology for component-
based development, which supports separation of concern, component design at
different levels, and model-driven development. The components we consider are
open, in the sense that components may require services from the environment in
order to provide their own services.

Deadlock is difficult to check and avoid when composing components, because the
open components are composed based on the assumption/guarantee relation of their
provided and required services. Game semantics may be used to provide intuitive
understanding for the assumption/guarantee relation, but there is little support for
implementation of components specified in game semantics. A well established deno-
tational model of components is needed to describe what the components can provide
and require, and also which services may cause deadlock. In order to improve the
techniques for checking whether two components can be composed without causing
deadlocks, we present a new automata-based approach to model the dependency
relation of the invocations to provided and required services. We develop an inter-
face model, called input deterministic automata, which defines all the unblockable
sequences of invocation to the services provided by a component. We also present an
algorithm that, for any given component automaton, generates the interface model
that has the same input deterministic behaviors. Correctness of the algorithm is
proved.

The automata-based model provides an operational and intuitive description of the
interaction behaviors of components. A denotational trace-based model of compo-
nents is also given, inspired by the failure divergence semantics in CSP. Similar to
CSP, a failure in the trace-based model is a pair of an alternating sequence of in-



vocation to provided and required services, and a set of invocations to the provided
services that may not be blocked after the alternating sequence.

Components need to be adapted for reuse in different contexts. A coordinator com-
ponent is introduced to adapt a component by filtering out the provided services.
The composition operation, called coordination, is also defined. An algorithm is de-
veloped to synthesize a coordinator, for any given component automaton, to obtain
the interface model of the coordinator-automaton composition.

Components are often replaced by new, better ones, with more provided and less
required services. To guarantee the correctness of such a substitution, we introduce
a suitable refinement notion, for both the automata-based and trace-based models.
Finally, we prove that the automata-based refinement entails the trace-inclusion one.
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Notations

These following notations are used through the thesis.

For any w1, w2 ∈ L∗, the sequence concatenation of w1 and w2 is denoted as w1̂ w2
an A ◦ B is {w1̂ w2 | w1 ∈ A, w2 ∈ B} where A,B ⊆ L∗ are two sets of sequences
of elements from L.

Given a sequence of sets of sequences 〈A1, . . . , Ak〉 with k ≥ 0, we denote A1◦ · · · Ak
as conc(〈A1, . . . , Ak〉). ε is used as notion of empty sequence, that is, ε̂ w = w ε̂ = w.

Let ` be a pair (x, y), we denote π1(`) = x and π2(`) = y. Given any sequence of
pairs tr = 〈`1, . . . , `k〉 and a set of sequences of pairs T , it is naturally extended that
πi(tr) = 〈πi(`1), . . . , πi(`k)〉, πi(T ) = {πi(tr) | tr ∈ T} where i ∈ {1, 2}.

Let tr ∈ A and Σ ⊆ L, tr |̀ Σ is a sequence obtained by removing all the elements
that are not in Σ from tr . And we extend this to a set of sequences T |̀ Σ = {tr |̀
Σ | tr ∈ T}. Similarly, tr � Σ is a sequence obtained by removing all the elements
in Σ and T � Σ = {tr � Σ | tr ∈ T}.

Given a sequence of pairs tr , tr |̀ 1P is a sequence obtained by removing the elements
whose first entry is not in P . For a sequence of elements α = 〈a1, · · · , ak〉, pair(α) =
〈(a1, {a1}), · · · , (ak, {ak})〉.
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Chapter 1

Introduction

There is an increasing demand for software systems in modern societies. They
are widely used in our daily life and work, for example, control systems of aircraft,
trains and cars, e-banking, office system, and various applications on PCs and mobile
devices, etc. Despite a lot of progress made in programming techniques and tools,
developing reliable software and delivering the implementation in time is still a
challenge, due to the growing complexity of software systems. Component-based
and model-driven methodologies integrated with sound systematic formal semantics
and automatic tools are promising approaches to tackle these problems.

Model-Driven Development In the model-driven architecture (MDA) approaches [Obj01,
WBHR08, Szy02], software artifacts are treated as models in every stage of software
development, such as requirements, design, coding, testing, deploying, and mainte-
nance. The focus is shifted from program codes to behavioral models, which are
easier to be specified and understood by domain experts and software developers.
The model-driven methodology is to develop software with models as basis and
automatic model transformation techniques to refine high level specifications into
machine code stepwise. Especially, there is great tool support of MDA for the mod-
eling, developing, validation and verification. In a software development, the models
are defined as platform independent and platform specific . A PIM is a model of
a software system, independent of programming languages, operating systems, and
hardware, while a PSM is a model of a software system, that is built for a specific
platform. Separating PIM and PSM facilitates model reuse for different platforms
by transforming PIMs to PSMs with automatic model transformation techniques.
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Component-Based Software Engineering In component-based software engi-
neering (CBSE) [Szy02], software systems or components are built by composing
smaller components which may be developed by different teams of developers or
reused from existing components. To support this aim, clearly defined interfaces de-
scribing how the components can be used are the key for component reuse. The MDA
of component-based software with sound formal semantics support is an effective so-
lution to handling the software complexity, predictability, and correctness. CBSE is
widely accepted and used in industry on popular platforms like JavaBean [BMH06],
Common Object Request Broker Architecture (CORBA) [Gro06], and Microsoft
Component Object Model [Box98].

Recent survey papers [LW07, CSVC11] on software components show that, up to
now, a formal common and sufficiently precise definition of software components is
still a problem in CBSE community. The widely used definition given by Szyper-
ski [Szy02] states that

“ A Software component is a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by
third parties.”

This definition implies that the key characteristic of a software component is the
contractually specified interfaces that support third-party composition.

In order to develop reliable and reusable components, independent development,
and compositional reasoning, in this thesis, we would develop an interface theory to
support modeling, composition, refinement, and coordination.

1.1 Motivation

The interfaces play the key role in component-based development for third party
composition, component reuse, independent development and substitutability. To
fulfill this aim, interfaces should be enhanced with contracts. As in [HLL+12],
contracts can be classified into the following four levels:

1. Syntactic level: describes signatures of the methods or services assuring they
communicate through allowable methods and permissible data types of pos-
sible parameters, and type-checking techniques can verify and guarantee the
compatibility at this level [Pie02].
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2. Functionality level: describes what the method does functionally, which can
be checked assured by pre/post-conditions and invariants [HLL+12].

3. Interaction level, or called communication level: shows the temporal order and
dependence relation of service or method invocations, which can be modeled
by labeled transitions systems, finite state machine, or process algebras for
different abstract levels and verification techniques.

4. Extra-functional level: or called quality-of-service, describes the performances
of services, which can be modeled in queue theory and timed automata [AD94].

In this thesis, we consider the interfaces at the interaction level, modeling the pro-
tocols of communication between components, for instance, the order of method
invocation. Violation of this protocol would cause incompatibility, for example, the
method readFile() cannot be called before openFile() in a file system and the with-
Draw() service must be disabled to the clients before the credit card is checked to
be valid in e-banking component. Programming libraries, like Java APIs, are kinds
of components that are widely used for building software systems.

The above examples are components that only provide methods and this kind of
components are called closed components. However, when components provide ser-
vices to the environment, during which the component may need to require services
from the environment too. Thus, components are called open if they provide meth-
ods and also require methods of other components. Hence, closed components are
special cases of open components. We will call the open components as components
in this thesis. Components act as service providers in the sense that the aim is to
specify a set of methods that can be called by others and make the requirement as
less as possible. In general, a component has provided and required interfaces which
specify what the component provides to and requires from the environment, which is
the context for the component, such as the client and other components. A compo-
nent can be viewed as is in Fig.1.1. The provided interface specifies methods, which
are called provided services in this thesis. The required interface specifies methods
that the component needs, which are called required services. Thus, a component
interact with the environment by providing services while requiring services and this
is also the basis for the component composition. Interaction protocol describes the
order of the service invocations, and given any allowable order of provided services,
it is important to know the requirement in order to support independent develop-
ment. And the sequence of provided methods specified in the interaction protocols
should never be blocked during run-time.

Next, we will introduce the techniques for the interface theory we have developed
in this thesis.
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Figure 1.1: Component Interfaces

Automata-based models We adopt automata-based techniques for modeling
interaction behaviors of components. The automata-based models are intuitive and
can be directly used in model checking for verification.

In this thesis, we consider two models of components, that are abstract model and
interface model. An abstract model describes possible interaction behaviors of the
component, that is, sequences of invocations to the provided and required services
of the components. However, a sequence of invocation to services of the abstract
model may be blocked due to non-determinism, that is, the next allowable service
is not determined after a certain sequence of service invocations. The automata-
based abstract model is called component automaton. Invocation to provided and
required services are modeled as provided and required events. The sequence of
alternating provided and required events is trace of component automaton, and
called provided,and required trace when the trace is projected into the set of provided
and required events, respectively. A provided event is non-blockable at given state,
if the component can always provide this service at this state.

Interface models The interface model is for the third party composition, so the
interaction protocols specified in interface models should not contain sequences that
may be blocked. In this thesis, we call this property as interface property, as it
would support the non-blockable composition. A abstract model is also called an
interface model of components, if it satisfies the interface property. The automata-
based interface model is called component interface automaton in this thesis. A
component automaton is input-deterministic, if after any sequence of invocation
to provided services, the component will always reach states at which the set of
non-blockable provided events are same. Input-determinism is then proved to be
equivalent to the interface property. An algorithm is presented to check whether an
abstract model satisfies the interface property. And another algorithm is developed
to produce an interface model for any given abstract while preserving all the non-
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blockable behaviors.

Coordination The components we have discussed so far are passive in the sense
that they act as service providers. They specify a set of provided services that can be
invoked by the environment and the required services are enclosed inside the service
body of provided services which are called by the component when the corresponding
provided services are invoked. In order to make component reuse more flexible and
adaptive, components should be able to be coordinated and constrained.

Consider a one-place buffer component which provides put and get and the inter-
action protocol is (put · get)∗, which means get can be called after put recursively.
In order to build a buffer with a larger capacity, i.e., two-place buffer, an active
component is needed to invoke get from the first buffer and put of the second buffer
internally. Such kinds of components are called process components(processes, for
simplicity). Automata-based model of process is called process automaton and the
alphabet of the label is action. Coordination of a component automaton by a process
automaton is defined by internalizing the provided events of the component follow-
ing control flow of the process. The result component automaton contains internal
and anonymous events, which is a extension of the previous component automaton.

However, some components provide some sequence of provided services that are
non-blockable, but in practice, these sequences should not be allowed. For instance,
if an existing buffer component provides put and get, and it is developed in the way
without any constraining on the temporal order of calling put and get. The inter-
action protocol is (put + get)∗. In order to build a more reasonable buffer based on
this one, a component which constrains the sequence of provided services is needed.
We call such component as coordinator component(coordinator for simplicity). Co-
ordination is defined by filtering certain transitions of the component automaton by
the coordinator.

Substitutability Component substitutability is another important issue in com-
ponent based development for maintenance and incremental development. Trivial
case is that a component can be replaced by a new implementation as long as the
interfaces do not change, because components interact with each other via inter-
faces. A more complicated case is that a component is replaced by a component
with a “better” interface model. In abstract models, we use term refinement for
“better than” relation. It is challenging, especially for open component with both
provided and required services. The intuitive idea is that a better interface model
should be able to provide more services and require less. Alternating simulation
technique [AHKV98, DAH01] is used to define such refinement relation for interface
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automata [DAH01]. The idea is that a refined interface simulates the other on the
input and be simulated on the output by the other. We use simulation technique
to define the refinement relation, but the difference is that the refined model should
be better at avoiding deadlock and providing less blockable services.

Trace models Existing models describing interaction behaviors of components by
capturing the operational steps of executions. During building the automata-based
interface models, inspired by the failure-divergence semantics of CSP [Hoa85], we
propose to describe interface models of components by traces, which are alternating
sequences of invocation to provided/required traces and refusal sets of provided
services. We aim to show the interface of components in a denotational perspective
and some primary results are obtained, such as plugging composition is consistent
with that of automata-based models.

1.2 Related Work

There are a lot of languages describing the interaction protocols of components
such as ADLs (architecture description languages) [MT00], behavioral protocols of
SOFA components [PV02], behavioral models of FRACTAL components [BHM05]
and BIP [BMP+07]. These models focus on describing the order of method invo-
cation and support for composition and compatibility checking, however, the guar-
antee/assumption of provided and required methods between a component and its
environment is implicit.

Interface models The most closely to work of interface models are the Input/Out-
put(I/O) Automata [LT89, LT87] and the Interface Automata [DH01, DAH01,
DAH05]. Their target focus on distributed embedded systems. While we focus on
building interfaces to facilitate component compositions in the provided/required
relation.

Our approach is positioned in between these existing approaches. I/O automata are
defined by Lynch and Tuttle to model concurrent and distributed discrete event sys-
tems. The main features of the I/O automata are input-enabledness and pessimistic
compatibility. The input-enabledness requires that all the input actions should be
available at any state. The pessimism is that two components are compatible if
there is no deadlock in the composition for any environment. On the contrary, our
interface model does not require that all inputs are always enabled, because there
are guards for provided services in software components, while the interface model
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is input-deterministic to guarantee that all the sequences of provided services with
possible internal behaviors interleaved can never be blocked when the environment
calls.

Alfaro and Henzinger introduce interface automata to model reactive components
that have an assume-guarantee relation with the environment. Two components are
compatible in an optimistic way in the sense that two components are compatible if
there exists one environment that can make the composition avoid deadlock. This
compatibility condition may be too relaxed since the usability of the provided service
of a component depends not only on the components to be composed with and also
the environment for the composition. To this end, Giannalopoulou et al [EGP08,
GPB02] develop assume-guarantee rules and tools to reason about compatibility and
weakest assumptions for any given interface automaton, while Larson et al [LNW06]
present interface models for any given I/O automaton by splitting assumptions from
guarantees. In contrast to these approaches, we present an interface model that
directly specifies the unblockable sequences of provided services independent of the
environment and develop an algorithm to generate such interface model based on
the execution model of any given component.

In work [YS97], protocols specify the constraints of messages passing and method
invocations, quite similar to interface automata. Compatibility is about deadlock
free and subprotocols are defined based on similar idea of alternating simulation.
However, internal events are not considered in this paper. Other loosely related
work are architecture description languages (ADLs), Wright [AG97], a formal basis
for architectural connection is defined by CSP expressions. Software architecture de-
scribes the elements from which system are built, interactions among these elements,
pattern that guides their composition, and constraints [SG96]. ADLs (architectural
description language) [AG97], most based on CSP [Hoa85] and CCS [Mil95], have
been proposed as modeling components, interfaces,interaction, and constraints to
support architecture-based development. A survey of ADLs (architecture descrip-
tion languages) can be found in [MT00]. ADLs model components and interactions,
but they don’t provide enough mechanism to support the third party composition
for components.

The behavioral mode in paper [BHM05] presents hierarchical components of Frac-
tal. The model describes both functional behavior and also life-cycle management
of components. It will be growing complicated as components are composed and
internal hierarchical structure is also described. This behavioral is difficult in sup-
porting component reuse. The behavior protocols, expressed as a regular language
like language, for Sofa components [PV02] describes the hierarchical structure of
components. It contains framework protocol specifies the external behaviors and
architecture protocol for internal synchronization between sub-components. It is
mainly used to formal verification instead of compositions.
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In the Behavior, Interaction, Priority (BIP) framework [BB13, BBS06, BS08, BSS09,
Sif05, GS05, GGMC+07, GS12], components into three layers: behaviors specified
as a set of transitions, interaction about communication between behaviors, and pri-
orities used to choose possible interactions. It mainly targets for the heterogeneous
component. We share the idea of correctness by construction that certain proper-
ties, such as deadlock-freedom and liveness, should be preserved in the composition.
However, our model focus on the provided/required relations between components
and aim at solving the deadlock caused by non-determinism.

Coordination Reo is a channel-based framework for coordinating interactions
among components [Arb04, JA12, BSAR06]. Port automata [Kra11][KC09] is the
abstract version of constraints automata [BSAR06] without data constraints for the
Reo. Transitions of the port automata models connector for synchronization behav-
iors of components by synchronizing the ports. And the transition with none port
means the internal transition. Whether components are already implemented or in
the design phrase, the constraints on the sequence of provided or required service
invocations naturally exists. On the other hand, in the theory of interface-based
design, software component is development by refining the interface into implemen-
tation according to the topdown development idea. Our model aims at showing
how the components can be used due to business logic or detailed programming
structure. The process automata coordinate component automata by actively in-
voke provided services and internalize the service. The coordinator automata is a
filter to constrain the provided services.

Refinement There are two main techniques to define refinement for formal mod-
els. Failure-divergence refinement technique of CSP [Hoa85] and simulation tech-
niques from CCS [Mil95]. The closest idea is alternating simulation in [DH01], which
is a game semantics that a component and its environment. Besides a refined com-
ponent should provide more and require less, we enhanced the simulation relation
with refusals to trim out the transitions that are blockable. In models with modal-
ities [LNW07b, LNW07a, RBB+09, RBB+11, LV12], transitions are differentiated
by may and must, which may or must be implemented in the system. In summary,
we define the refinement relation not only considering the alternating simulation
between provided and required events, but also requiring that a refined interface
should be better at avoiding failure and provide less services that are blockable.
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1.3 Contribution

We present a novel interface modeling framework supporting the component-based
development with the idea correct-by-construction and facilitate component reuse
for software developers. The contributions of the thesis are summarized as follows.

− Based on the work of rCOS method, we define a full semantics model of rCOS
components which are modeled as labeled state transition system, which is
also a basis for the automata-based models.

− As to our knowledge, the automata-based model we develop is the first to
explicitly describe the dependence relation between provided and required in-
terfaces of software components. In this model, given sequence of provided
services, it is easy to produce the requirement the component needs. This
explicit structure of provided/required relation helps developing components
according to the interface model.

− We contribute to the concept of interface by defining what we call interface
property. We believe that as an interface model of components for third party
composition, it should be able to guarantees non-blockableness during run
time. That is, the sequences of provided services specified in the interface
model can not be blocked as long as the requirement is satisfied. We also
develop an algorithm to check whether an abstract model of components are
suitable as an interface model for such component. Furthermore, we present
an interface generating algorithm, which transforms any given abstract model
of components into an interface model by disallowing the services that may be
blocked. The composition of components is defined.

− We present a trace-based model describing behaviors and interface behaviors
of components from the denotational perspective. This helps compatibility
checking directly by trace inclusion and coincides with the automata-based
model.

− We present the refinement relation for our interface models to support the
independent implementation and substitutability of components by simula-
tion and trace-inclusion techniques. The refinement focuses on non-blockable
behaviors and guarantees less failure behaviors. This is quite contrary to in-
tuitive idea that an abstract model should implement and refine the interface
model, because component reuse is mainly based on refinement relation be-
tween interface models instead of abstract models.

− Process automaton is introduced to coordinate component automaton by ac-
tively internalizing provided events. A simple and easy-understanding coor-
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dinator component is introduced to coordinator the order of service invoca-
tion among components and also filter out certain services which may cause
deadlock or violate the security policy. Components can be reused in various
context with specific coordinators.

1.4 Organization of the Thesis

The rest of the thesis is organized in the following way.

In Chapter 2, we made a survey of the work on rCOS (the Refinement Calculus
of Component and Object Systems) and have a systemic formal techniques in the
use of model-driven development of component-based software system. A primary
introduction of UTP, the basis of rCOS language, is introduced. Then we introduce
the design of object-oriented and component-based programming with the seman-
tics. Closed components are a package of codes with an interface, called provided
interface, which specifies the functionality of the provided methods and also the
protocol for using these methods. Closed components are self-contained and the
implementation can directly provide services to the environment. On the contrary,
open components extend closed components by required interfaces which contain
services that services in the provided interfaces need in order to perform their job.
The dependency relation between services in the provided and required interfaces
are described.

Chapter 3 presents an automata-based model of components, in which invocation to
services are modeled as events. Symbolic states and sets of available transitions are
used to model the guards which control the accessibility to the provided services.
We study the conditions under which a sequence of invocation to provided services
can be blocked or not, and characterize the components which provide only non-
blockable services as interface models or component interface automata. And the
non-blockableness property is defined as the interface property, a criteria of interface
models.

An algorithm is developed to produce, for any component automaton, a component
interface automaton which preserves all the non-lockable behaviors of the original
ones. Components are composed in such a way that they synchronize on the services
that are provided by one and required by the other, and behave independently oth-
erwise. We explicitly define a compatibility property as to whether two components
are compatible or not. Refinement relation between component automata is defined
by the state simulation technique in such a way that a refined component automaton
can provide more and require less services, and therefore less likely cause deadlock
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or livelock.

A practical example of components Alarm and Timer is used through this chapter
and shows the use of our model.

Chapter 4 gives a denotational description of components, called failure models,
where components are specified by all the possible behaviors and the behaviors
which can be blocked. We show that the failure models can be directly derived
from the automata-based models. Plugging operation is defined for failure models
and proved to be consistent with the plugging operation in component automata.
Refinement of failure models is defined as trace inclusion.

Chapter 5 presents a coordinator component to coordinate service invocation among
components by constraining the order of invocation to provided services which are
independent with each other. A component may be reused by being coordinated by
a coordinator according to the requirement of a new context. We also show that
the component interface automata can be obtained by the coordination between
the given component automaton and a synthesized coordinator. An algorithm is
developed to synthesize such interface coordinator and correctness is proved.

Chapter 6, we summarize the main results of the thesis and discuss the possible
research topics for future work.

1.5 Origins of the Chapters

Part of the material presented in this thesis has been published in some publications
or has been submitted for publication, in details:

The summary and survey work of rCOS in Chapter 2 is published as a book chap-
ter in [DFKL13]. The work of component automata, component interface automata,
and the composition operations are published as conference papers [DFL+12, DZZ13].

The denotational description of component-based software in Chapter 4 and coor-
dination in Chapter 5 are published as conference paper [DZ14].
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Chapter 2

rCOS

In this chapter, we will introduce the Refinement Calculus of Component and
Object Systems(rCOS) based on a literature survey of the publications of last
decade [CHL06, CZ06, CLM07, CLL+07, CLS+07, CLS08, CHH+08, CMS09, CLR+09,
HLL05a, HLL05b, HLL06a, HLL06b, LH06, DFKL13] by the rCOS group lead by
Zhiming Liu et al. rCOS is a formal framework which supports design and model-
driven development in component-based software engineering. And I define the full
semantics model of rCOS components and then derive a general labeled state tran-
sition system model of components, which is also a basis for the automata-based
models in the next chapter. In the following part, we will first give a general back-
ground of rCOS and the theoretic basis, UTP. Then closed and open components
are discussed respectively with the semantic model which is described as labeled
state transitions system.

The Aim and Theme of rCOS The aim of the rCOS method is to bridge the gap
between formal techniques, together with their tools, and their potential support to
practical software development by defining the unified meanings of component-based
architectures at different levels of abstraction in order to support seamless integra-
tion of formal methods in modeling software development processes.It thus provides
support to MDA with formal techniques and tools for predictable development of
reliable software. Its scope covers theories, techniques, and tools for modeling, anal-
ysis, design, verification and validation. A distinguishing feature of rCOS is the
formal model of system architecture that is essential for model compositions, trans-
formations, and integrations in a development process. This is particularly the case
when dealing with safety critical systems (and so must be shown to satisfy certain
properties before being commissioned), but beyond that, we promote with rCOS the
idea that formal methods are not only or even mainly for producing software that is
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safety critical: they are just as much needed when producing a software system that
is too complex to be produced without tool assistance. As it will be shown in this
chapter, rCOS systematically addresses these complexity problems by dealing with
architecture at a large granularity, compositionality, and separation of concerns.

2.1 Unified Semantics of Sequential Programming

The rCOS method supports programming software components that exhibit inter-
acting behavior with the environment as well as local data functionality through
the executions of operations triggered by interactions. The method supports inter-
operable compositions of components for that the local data functionality are im-
plemented in different programming paradigms, including modular, procedural and
object-oriented programming. This requires a unified semantic theory of models of
programs. To this end, rCOS provides a theory of relational semantics for object-
oriented programming, in which the semantic theories of modular and procedural
programming are embedded as sub-theories. This section first introduces a theory
of sequential programs, which is then extended by concepts for object-oriented and
reactive systems.

To support model-driven development, models of components built at different de-
velopment stages are related so that properties established for a model at a higher
level of abstraction are preserved by its lower level refined models.

2.1.1 Designs of Sequential Programs

We first introduce a unified theory of imperative sequential programming. In this
programming paradigm, a program P is defined by a set of program variables, called
the alphabet of P , denoted by αP , and a program command c written in the following
syntax, given as a BNF grammar,

c ::= x := e | c; c | c� b� c | c u c | b ∗ c (2.1)

where e is an expression and b a boolean expression; c1 � b � c2 is the conditional
choice equivalent to “if b then c1 else c2” in other programming languages; cuc is the
non-deterministic choice that is used as an abstraction mechanism; b ∗ c is iteration
equivalent to “while b do c”.

A sequential program P is regarded as a closed program such that for given initial
values of its variables (that form an initial state), the execution of its command c will
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change them into some possible final values, called the final state of the program, if
the execution terminates. The semantics of programs in the above simple syntax is
defined based on UTP [HH98] as relations between the initial and final states.

States It is assumed that an infinite set of names X representing state variables
with an associated value space V . A state of X is a function s : X → V and Σ is
used to denote the set of all states of X .

This allows us to study all the programs written in our language. For a subset X
of X , we call ΣX the restrictions of Σ on X the states of X; an element of this
set is called state over X. Note that state variables include both variables used
in programs and auxiliary variables needed for defining semantics and specifying
properties of programs. In particular, for a program, we call ΣαP the states of
program P .

For two sets X and Y of variables, a state s1 over X and a state s2 over Y , we define
s1 ⊕ s2 as the state s for which s(x) = s1(x) for x ∈ X but x /∈ Y and s(y) = s2(y)
for y ∈ Y . Thus, s2 overwrites s1 in s1 ⊕ s2.

State Properties and State Relations A state property is a subset of the states
Σ and can be specified by a predicate over X , called a state predicate. For example,
x > y + 1 defines the set of states s for that s(x) > s(y) + 1 holds. We say that a
state s satisfies a predicate F , denoted by s |= F , if it is in the set defined by F .

A state relation R is a relation over the states Σ, i.e., a subset of the Cartesian prod-
uct Σ×Σ, and can be specified by a predicate over the state variables X and their
primed version X ′ = {x′ | x ∈ X}, where X ′ and X are disjoint sets of names. We
say that a pair of states (s, s′) satisfies a relation predicate R(x1, . . . , xk, y

′
1, . . . , y

′
n)

if
R(s(x1)/x1, . . . , s(xk)/xk, s′(y1)/y′1, . . . , s′(yn)/y′n)

holds, denoted by (s, s′) |= R. Therefore, a relational predicate specifies a set of
possible state changes. For example, x′ = x+ 1 specifies the possible state changes
from any initial state to a final state in which the value of x is the value of x in
the initial state plus 1. However, x′ ≥ x + 1 defines the possible changes from an
initial state to a state in which x has a value not less than the initial value plus 1. A
state predicate and a relational predicate only constrain the values of variables that
occur in the predicates, leaving the other variables to take values freely. Thus, a
state predicate F can also be interpreted as a relational predicate such that F holds
for (s, s′) if s satisfies F . In addition to the conventional propositional connectors
∨, ∧ and ¬, we also define the sequential composition of relational predicates as the
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composition of relations

R1;R2 =̂ ∃x0 • R1(x0/x
′) ∧R2(x0/x), (2.2)

where x0 is a vector of state variables; x and x′ represent the vectors of all state
variables and their primed versions in R1 and R2; and the substitutions are element-
wise substitutions. Therefore, a pair of states (s, s′) satisfies R1;R2 iff there exists
a state s0 such that (s, s0) satisfies R1 and (s0, s

′) satisfies R2.

Designs A semantic model of programs is defined based on the way we observe the
execution of programs. For a sequential program, we observe which possible final
states a program execution reaches from an initial state, i.e., the relation between
the starting states and the final states of the program execution.

Definition 2.1.1 (Design). Given a finite set α of program variables (as the alphabet
of a program in our interest), a state predicate p and a relational predicate R over α,
we use the pair (α, p ` R) to represent a program design. The relational predicate
p ` R is defined by p ⇒ R that specifies a program that starts from an initial state
s satisfying p and if its execution terminates, it terminates in a state s′ such that
(s, s′) |= R.

Such a design does not observe the termination of program executions and it is
a model for reasoning about partial correctness. When the alphabet is known,
we simply denote the design by p ` R. We call p the precondition and R the
postcondition of the design.

To define the semantics of programs written in Syntax (2.1), we define the operations
on designs over the same alphabet. In the following inductive definition, we use a
simplified notation to assign design operations to program constructs. Note that on
the left side of the definition, we mean the program symbols while the right side uses
relational operations over the corresponding designs of a program, i.e., we identify
programs with a corresponding design.

x := e =̂ true ` x′ = e ∧
∧

y∈α,y 6≡x
y′ = y,

c1; c2 =̂ c1; c2

c1 � b� c2 =̂ b ∧ c1 ∨ ¬b ∧ c2,

c1 u c2 =̂ c1 ∨ c2,

b ∗ c =̂ (c; b ∗ c) � b� skip,

(2.3)

where we have skip =̂ true ` ∧
x∈α(x′ = x). We also define chaos =̂ false ` true.

In the rest of the paper, we also use farmed designs of the form X : p ` R to denote
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that only variables in X can be changed by the design p ` R. So x := e = {x} :
true ` x′ = e.

However, for the semantics definition to be sound, we need to show that the set
D of designs is closed under the operations defined in (2.3), i.e., the predicates
on the right-hand-side of the equations are equivalent to designs of the form p `
R. Notice that the iterative command is inductively defined. Closure requires the
establishment of a partial order v that forms a complete partial order (CPO) for
the set of designs D.
Definition 2.1.2 (Refinement of designs). A design Dl = (α, pl ` Rl) is a refine-
ment of a design Dh = (α, ph ` Rh), if

∀x, x′ • (pl ⇒ Rl)⇒ (ph ⇒ Rh)

is valid, where x and x′ represent all the state variables and their primed versions
in Dl and Dh.

We denote the refinement relation by Dh v Dl. The refinement relation says that
any property satisfied by the “higher level” design Dh is preserved (or satisfied)
by the “lower level” design Dl. The refinement relation can be proved using the
following theorem.
Theorem 2.1.1. Dh v Dl when

1. the pre-condition of the lower level is weaker: ph ⇒ pl, and

2. the post-condition of the lower level is stronger: pl ∧Rl ⇒ Rh.

The following theorem shows that v is indeed a “refinement relation between pro-
grams” and forms a CPO.
Theorem 2.1.2. The set D of designs and the refinement relation v satisfy the
following properties:

1. D is closed under the sequential composition “;”, conditional choice “ � b� ”
and non-deterministic choice “u” defined in (2.3),

2. v is a partial order on the domain of designs D,

3. v is preserved by sequential composition, conditional choice and non-deter-
ministic choice, i.e., if Dh v Dl then for any D

D;Dh v D;Dl, Dh;D v Dl;D,
Dh � b�D v Dl � b�D, Dh uD v Dl uD,
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4. (D,v) forms a CPO and the recursive equation X = (D;X) � b� skip has a
smallest fixed-point, denoted by b∗D, which may be calculated from the bottom
element chaos in (D,v).

For the proof of the theorems, we refer to the book on UTP [HH98]. D1 and D2 are
equivalent, denoted as D1 = D2 if they refine each other, e.g., D1 uD2 = D2 uD1,
D1 � b � D2 = D2 � ¬b � D1, and D1 u D2 = D1 iff D1 v D2. Therefore, the
relation v is fundamental for the development of the refinement calculus to support
correct by design in program development, as well as for defining the semantics of
programs.

When refining a higher level design to a lower level design, more program variables
are introduced, or types of program variables are changed, e.g., a set variable im-
plemented by a list. We may also compare designs given by different programmers.
Thus, we must relate programs with different alphabets.

Definition 2.1.3 (Data refinement). Let Dh = (αh, ph ` Rh) and Dl = (αl, pl ` Rl)
be two designs. Dh v Dl if there is a design (αh ∪ αl, ρ(αl, α′h)) such that ρ;Dh v
Dl; ρ. We call ρ a data refinement mapping.

Designs of Total Correctness The designs defined above do not support rea-
soning about termination of program execution. To observe execution initiation and
termination, we introduce a boolean state variable ok and its primed counterpart
ok ′, and lift a design p ` R to L(p ` R) defined below:

L(p ` R) =̂ ok ∧ p⇒ ok ′ ∧R.

This predicate describes the execution of a program in the following way: if the
execution starts successfully (ok = true) in a state s such that precondition p holds,
the execution will terminate (ok ′ = true) in a state s′ for which R(s, s′) holds. A
design D is called a complete correctness design if L(D) = D. Notice that L is a
healthy lifting function from the domain D of partially correct designs to the domain
of complete correct designs L(D) in that L(L(D)) = L(D). The refinement relation
can be lifted to the domain L(D), and Theorem 2.1.1 and 2.1.2 both hold. For
details of UTP, we refer to the book [HH98]. In the rest of the paper, we assume
the complete correctness semantic model, and omit the lifting function L in the
discussion.

Linking Theories We can unify the theories of Hoare-logic [Hoa69] and the pred-
icate transformer semantics of Dijkstra [DS90]. The Hoare-triple {p}D{r} of a pro-
gram D, which can be represented as a design according to the semantics given
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above, is defined to be p ∧ D ⇒ r′, where p and r are state predicates and r′ is
obtained from r by replacing all the state variables in r with their primed versions.

Given a state predicate r, the weakest precondition of the postcondition r for a design
D, wp(p ` R, r), is defined to be p ∧¬(R;¬r). Notice that this is a state predicate.

This unification allows the use of the laws in both theories to reason about program
designs within UTP. The unifying theory is extended to object-oriented specification
and design [KLWZ09, ZLLQ09].

2.1.2 Reactive Systems and Reactive Designs

The programs that have been considered so far in this section are sequential and
object-oriented programs. For these programs, our semantic definition is only con-
cerned with the relation between the initial and final states and the termination of
execution. In general, in a concurrent or reactive program, a number of components
(usually called processes) are running in parallel, each following its own thread of
control. However, these processes interact with each other and/or with the environ-
ment (in the case of a reactive program) to exchange data and to synchronize their
behavior. The termination of the processes and the program as whole is usually not
a required property, though the enabling condition and termination of execution of
individual actions are essential for the progress of all processes, i.e., they do not
show livelock or deadlock behavior.

There are mainly two different paradigms of programming interaction and synchro-
nization, shared memory-based programming and message-passing programming.
However, there can be programs using both synchronization mechanisms, in dis-
tributed systems in which processes on the same node interact through shared vari-
ables, and processes on different nodes interact through message passing. We define
a general model of labeled transition systems for describing the behavior of reactive
systems.

Reactive Designs In general a reactive program can be considered as a set of
atomic actions programmed in a concurrent programming language. The execution
of such an atomic action carries out interactions with the environment and changes
of the state of the variables. We give a symbolic name for each atomic action, which
will be used to label the state transitions when defining the execution of a reactive
program.

The execution of an atomic action changes the current state of the program to



30 CHAPTER 2. RCOS

another state, just in the way a piece of sequential code does, thus it can be specified
as a design p ` R. However, the execution requires resources that might be occupied
by another process or a synchronization condition. The execution is then suspended
in a waiting state. For allowing the observation of the waiting state, we introduce the
new boolean state variables wait and wait ′ and define the following lifting function
on designs

H(D) =̂ wait ′ � wait �D,

specifying that the execution cannot proceed in a waiting state. Note that wait is not
a program variable, and thus cannot be directly changed by a program command.
Instead, wait allows us to observe waiting states when talking about the semantics
of reactive programs. We call a design D a reactive design if H(D) = D. Notice
that H(H(D)) = H(D). The proofs of the following theorems are referred to the
book on UTP [HH98].

Theorem 2.1.3 (Reactive design). The domain of reactive designs has the following
closure properties:

H(D1 ∨D2) = H(D1) ∨H(D2),
H(D1;D2) = H(D1);H(D2),

H(D1 � b�D2) = H(D1) � b�H(D2).

Given a reactive design D and a state predicate g, we call g N D a guarded design
and its meaning is defined by

g N D =̂ D � g � (true ` wait ′).

Theorem 2.1.4. If D is a reactive design, so is g N D.

For non-reactive designs p ` R, we use the notation g N (p ` R) to denote the
guarded design g N H(p ` R), where it can be proved H(p ` R) = (wait ∨ p) `
(wait ′�wait �R). This guarded design specifies that if the guard condition g holds,
the execution of design proceeds from non-waiting state, otherwise the execution is
suspended. It is easy to prove that a guarded design is a reactive design.

Theorem 2.1.5 (Guarded design). For guarded designs, we have

g1 N D1 � b� g2 N D2 = (g1 � b� g2) N (D1 � b�D2),
g1 N D1; g2 N D2 = g1 N (D1; g2 N D2),
g N D1 ∨ g N D2 = g N (D1 ∨D2),

g N D1;D2 = g N (D1;D2).
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A concurrent program P is a set of atomic actions, and each action is a guarded
command in the following syntax:

c ::= x := e | c; c | c� b� c | c� c | g N c | b ∗ c (2.4)

Note that x := e is interpreted as command guarded by true. The semantics of the
commands is defined inductively by

x := e =̂ H(true ` x′ = e
∧
y∈α,y 6≡x y

′ = y)
g N c =̂ c� g � (true ` wait ′)

g1 N c1 � · · ·� gn N cn =̂ (g1 ∨ · · · ∨ gn) N (g1 ∧ c1 ∨ · · · ∨ gn ∧ cn)

and for all other cases as defined in equation (2.3) for the sequential case. The
semantics and reasoning of concurrent programs written in such a powerful language
are quite complicated. The semantics of an atomic action does not generally equal
to a guarded design of the form g N p ` R. This imposes difficulty to separate
the design of the synchronization conditions, i.e., the guards, from the design of the
data functionality. Therefore, most concurrent programming languages only allow
guarded commands of the form g N c such that no guards are in c anymore. A set
of such atomic actions can also be represented as a Back’s action system [BvW94],
a UNITY program [CM88] and a TLA specification [Lam94].

Labeled State Transition Systems Labeled transition systems are often used
to describe the behavior of reactive systems, and we will use them in the following
sections when defining the semantics of components. Hence, the remaining part
of this section deals with basic definitions and theorems about labeled transition
systems. Intuitively, states are defined by the values of a set of variables including
both data variables and variables for the flow of control, which we do not distinguish
here. Labels represent events of execution of actions that can be internal events or
events observable by the environments, i.e., interaction events.

Definition 2.1.4 (Labeled transition system). A labeled transition system is a
tuple

S = 〈var , init,Ω,Λ〉,

where

− var is the set of typed variables (not including ok and wait), denoted S.var,
we define Σvar to be the set of states over var ∪ {ok,wait},

− init is the initial condition defining the allowable initial states, denoted by
S.init, and
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− Ω and Λ are two disjoint sets of named atomic actions, called observable and
internal actions, respectively; actions are of the form a{c} consisting of a name
a and a guarded command c as defined in Syntax (2.4). Observable actions
are also called interface actions.

In an action a{c}, we call c the body of a. For Γ = Ω ∪ Λ and for two states s and
s′ in Σvar ,

− an action a ∈ Γ is said to be enabled at s if for the body c of a the implication
c[s(x)/x]⇒ ¬wait ′ holds, and disabled otherwise.

− a state s is a divergence state if ok is false and a deadlock state if wait =
true.

− we define −→ ⊆ Σvar × {a|a{c} ∈ Γ} × Σvar as the state transition relation
such that s a−→ s′ is a transition of S, if a is enabled at s and s′ is a post-state
of the body c of action a.

Notice that this is a general definition of labeled transition systems that includes
both finite and infinite transition systems, closed concurrent systems in which pro-
cesses share variables (when all actions are internal), and I/O automata. Further, it
models both data rich models in which a state contains values of data variables, and
symbolic state machines in which a state is a symbol represents an abstract state
of a class of programs. In later sections, we will see the symbols for labeling the
actions can also be interpreted as a combination of input events triggering a set of
possible sequences of output events.
Definition 2.1.5 (Execution, observable execution and stable state). Given a la-
beled transition system S,

1. an execution of S is a sequence of transitions s0
a1−→ s1

a2−→ · · · an−→ sn of S,
where n ≥ 0 and si (0 ≤ i ≤ n) are states over var ∪ {ok,wait} such that s0
is an initial state of S.

2. a state s is said to be unstable if there exists an internal action enabled in s.
A state that is not unstable is called a stable state.

3. an observable execution of S is a sequence of external transitions

s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn

where all ai ∈ Ω for i = 1, . . . , n, and s
a==⇒ s′ if s and s′ there exist internal

actions τ1, . . . , τk+` as well as states tj for k, ` ≥ 0 such that

s
τ1−→ · · · τk−→ tk

a−→ · · · τk+`−−→ s′.
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Notice that the executions (and observable executions) defined above include chaotic
executions in which divergence states may occur. Therefore, we give the semantic
definitions for transitions systems below following the ideas of failure-divergence
semantics of CSP.

Definition 2.1.6 (Execution semantics). Let S = 〈var , init,Ω,Λ〉 be a transition
system. The execution semantics of S is defined by a pair (ED(S), EF(S)) of exe-
cution divergences and execution failures, where

1. A divergence execution in ED(S) is a finite observable execution sequence of
S

s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn

where there exists an divergence state sk, k ≤ n. Notice that if sk is a diver-
gence state, each sj with k ≤ j ≤ n is also a divergence state.

2. The set EF(S) contains all the pairs (σ,X) where σ is a finite observable
execution sequence of S and X ⊆ Ω such that one of the following conditions
hold

(a) σ is empty, denoted by ε, and there exists an allowable initial state s0
such that a is disabled at s0 for any a ∈ X or s0 is unstable and X can
be any set,

(b) σ ∈ ED(S) and X can be any subset of Ω, i.e., any interaction with the
environment can be refused,

(c) σ = s0
a1==⇒ · · · ak==⇒ sk and for any s in the sequence, s(ok) = true and

sk(wait) = false, and each a ∈ X is disabled at sk, or sk is unstable and
X can be any set.

The semantics takes both traces and data into account. The component X of
(σ,X) ∈ EF(S) is called a set of refusals after the execution sequence tr . We
call the subset ExTrace(S) = {σ | (σ, ∅) ∈ EF(S)} the normal execution traces, or
simply execution traces.

When interaction behavior and properties are the main interest, we can omit the
states from the sequences and define the interaction divergences ID(S) and inter-
action failures IF(S) as

ID(S) = {a1 . . . an | s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn ∈ ED(S)}
IF(S) = {(a1 . . . an, X) | (s0

a1==⇒ s1
a2==⇒ · · · an==⇒ sn, X) ∈ EF(S)}

We call the set T (S) = {σ | (tr , ∅) ∈ IF(S)} the normal interaction traces, or sim-
ply traces. Also, when interaction is the sole interest, abstraction would be applied
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to the states so as to generate transition systems with symbolic states for the flow of
control. Most existing modeling theories and verification techniques work effectively
on transition systems with finite number of states, i.e., finite state systems.

Definition 2.1.7 (Refinement of reactive programs). Let

Sl = 〈var , init l,Ωl,Λl〉 and Sh = 〈var , inith,Ωh,Λh〉

be transition systems. Sl is a refinement of Sh, denoted by Sh v Sl, if ED(Sl) ⊆
ED(Sh) and EF(Sl) ⊆ EF(Sh), meaning that Sl is not more likely to diverge or
deadlock when interacting with the environment through the interface actions Ω.

Notice that we, for simplicity, assume that Sl and Sh have the same set of variables.
When they have different variables, the refinement relation can be defined through
a state mapping (called refinement mapping in TLA [Lam94]).

A labeled transition system is a general computational model for reactive programs
developed in different technologies. Thus, the definition of refinement will lead to a
refinement calculus when a modeling notation of reactive programs is defined that
includes models of primitive components and their compositions. We will discuss
this later when the rCOS notation is introduced, but the discussion will not be
in great depth as we focus on defining the meaning of component-based software
architecture. On the other hand, the following theorem provides a verification tech-
nique for checking refinement of transition systems that is similar to the relation of
simulation of transition systems, but extended with data states.

Definition 2.1.8 (Refinement by simulation). For two transition systems Sh and
Sl such that they have the same set of variables,

− let guardh(a) and guard l(a) be the enabling conditions, i.e., the guards g for
an action a with body g N c in Sh and Sl, respectively,

− nexth(a) and next l(a) are the designs, i.e., predicates in the form of p ` R,
specifying the state transition relations defined by the body of an action a{g N
(p ` R)} in Sh and Sl, respectively,

− g(Ωh), g(Λh), g(Ωl) and g(Λl) are the disjunctions of the guards of the interface
actions and invisible actions of the programs Sh and Sl, respectively,

− inext(Sh) = ∨
a∈Λh guardh(a) ∧ nexth(a) the state transitions defined by the

invisible actions of Sh, and

− inext(Sl) analogously defined as inext(Sh) above.
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We have Sh v Sl if the following conditions holds

1. Sl.init ⇒ Sh.init, i.e., the initial condition of Sh is preserved by Sl,

2. for each a ∈ Ωl, a ∈ Ωh and guard l(a)⇔ guardh(a),

3. for each a ∈ Ωl, a ∈ Ωh and nexth(a) v next l(a), and

4. ¬g(Ωh) ⇒ (g(Λh) ⇔ g(Λl)) ∧ (inext(Sl) ⇒ inext(Sh)), i.e., any possible in-
ternal action of Sl in an unstable state would be a transition allowable by an
internal action of Sh.

When inext(Sh) v inext(Sl), the fourth condition can be weakened to

¬g(Ωh)⇒ (g(Λh)⇔ g(Λl))

In summary, the first condition ensures the allowable initial states of Sl are allowable
for Sh; the second ensures Sl is not more likely to deadlock; the third guarantees
that Sl is not more non-deterministic, thus not more likely to diverge, than Sh,
and the fourth condition ensures any refining of the internal action in Sl should
not introduce more deadlock because of removing internal transitions from unstable
states. Notice that we cannot weaken the guards of the actions in a refinement as
otherwise some safety properties can be violated.

This semantics extends and unifies the theories of refinement of closed concur-
rent programs with shared variables in [CM88, Lam94, BvW94, LJ99] and failure-
divergence refinement of CSP [Ros98]. However, the properties of this unified se-
mantics still have to be formally worked out in more detail.

Design and verification of reactive programs are challenging and the scalability of the
techniques and tools is fundamental. The key to scalability is compositionality and
reuse of design, proofs and verification algorithms. Decomposition of a concurrent
program leads to the notion of reactive programs, that we model as components in
rCOS. The rCOS component model is presented in the following sections.

2.2 Closed Components

The aim of this section is to develop a unified model of architecture of components,
that are passive service components (simply called components) and active coordi-
nating components (simply referred to as processes). This is the first decision that
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we make for separation of concerns. The reason is that components and processes
are different in nature, and they play different roles in composing and coordinat-
ing services to form larger components. Components maintain and manage data to
provide services, whereas processes coordinate and orchestrate services in business
processes and workflows. Thus, they exhibit simpler semantic behaviors than “hy-
brid” components that can have both passive and active behaviors when interacting
with the environment. However, as a semantic theory, we develop a unified semantic
model for all kinds of architectural components - the passive, active and the general
hybrid components. We do this step by step, starting with the passive components,
then the active process and finally we will define compositions of components that
produces general components with both passive and active behavior. We start in
this section with the simplest kind of components - primitive closed components.
They are passive.

A closed and passive component on one hand interacts with the environment (user-
s/actors) to provide services and on the other hand carries out data processing and
computation in response to those services. Thus, the model of a component con-
sists of the types of the data, i.e., the program variables, of the component, the
functionality of the operations on the data when providing services, and the pro-
tocol of the interactions in which the component interacts with the environment.
The design of a component evolves from the techniques applied during the design
process, i.e., decomposing, analyzing, and integrating different viewpoints to form a
correctly functioning whole component, providing the services required by the envi-
ronment. The model of a component is separated into a number of related models of
different viewpoints, including static structure, static data functionality, interaction
protocol, and dynamic control behavior. This separation of design concerns of these
viewpoints is crucial to a) control the complexity of the models, and b) allow the
appropriate use of different techniques and tools for modeling, analysis, design, and
verification.

It is important to note that the types of program data are not regarded as a difficult
design issue anymore. However, when object-oriented programming is used in the
design and implementation of a component-based software system, the types, i.e., the
classes of objects become complicated and their design is much more tightly coupled
with the design of the functionality of a component. The rCOS method presents
a combination of OO technology and component-based technology in which local
data functionality is modeled with the unified theory of sequential programming, as
discussed in the previous section.
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2.2.1 Specification Notation for Primitive Closed Compo-
nents

To develop tool support for a formal method, there is a need for a specification
notation. In rCOS, the specification notation is actually a graphical input notation
implemented in a tool, called the rCOS modeler.1 However, in this chapter the
specification notation is introduced incrementally so as to show how architectural
components, their operations and semantics can be defined and used in examples.
We first start with the simplest building blocks2 in component software, which we call
primitive closed components. Closed components provide services to the environment
but they do not require services from other components to deliver the services.
They are passive as they wait for the environment to call their provided services,
having no autonomous actions to interact with the environment. Furthermore, being
primitive components, they do not have internal autonomous actions that result from
interaction among sub-components. We use the notation illustrated in Fig. 2.1 to
specify primitive closed components, which is explained as follows.

Interfaces of Components The provided interface declares a list of methods
or services that can be invoked or requested by clients. The interface also allows
declarations of state variables. A closed component only provides services, and thus,
it has only a provided interface and optionally an internal interface, which declares
private methods. Private methods can only be called by provided or private methods
of the same component.

Access Control and Data Functionality The control to the access and the
data functionality of a method m, in a provided or internal interface, is defined by
a combination of a guard g and a command c in the form of a guarded command
g N c.

The components that we will discuss in the rest of this section are all primitive closed
components. This definition emphasizes on the interface of the provided services.
The interface supports input and output identifications, data variables, and the
functional description defined by the bodies of the interface methods. On the other
hand, the guards of the methods are used to ensure that services are provided in
the right order.

1http://rcos.iist.unu.edu
2In the sense of concepts and properties rather than size of software, e.g., measured by number

of lines of code.

http://rcos.iist.unu.edu
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1 component K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1N c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2N c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { gN c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1N d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2N d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { hN d /∗ functionality definition ∗/ };
14 }
15 class C1{...}; class C2{...}; ... // used in the above specification
16 }

Figure 2.1: Format of rCOS closed components

Based on the theory of guarded designs presented previously, we assume that in a
closed component the access control and data functionality of each provided interface
method m is defined by a guarded design g N D. For a component K, we use K.pIF
to denote the provided interface of K, K.iIF the internal interface of K, K.var the
variables of K, K.init the set of initial states of K. Furthermore, we use guard(m)
and body(m) to denote the guard g and the body D of m, respectively. For the sake
of simplicity but without loosing theoretical generality, we only consider methods
with at most one input parameter and at most one return parameter.

We define the behavior of component K by the transition relation of K defined in
the next subsection.

2.2.2 Labeled Transition Systems of Primitive Closed Com-
ponents

We now show that each primitive closed component specified using the rCOS no-
tation can be defined by a labeled transition system. To this end, for each method
definition m(T1 x;T2 y){c}, we define the following set of events

ω(m) = {m(u){c[u/x, v/y]} | u ∈ T1}.

We further define Ω(K) = ⋃
m∈K.pIF ω(m). Here, there is a quite subtle reason why

the return parameter is not included in the events. It is because that
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− returning a value is an “output” event to the environment and the choice of a
return value is decided by the component itself, instead of the environment,

− we assume that the guards of provided methods do not depend on their return
values,

− we assume a run to complete semantics, thus the termination of a method
invocation does not depend on the output values of the methods, and

− most significantly, it is the data functionality design, i.e. design p ` R, of a
method, that determines the range of non-deterministic choices of the return
values of an invocation for a given input parameter, thus refining the design
will reduce the range of non-determinism.

Definition 2.2.1 (Transition system of primitive closed component). For a primi-
tive closed component K, we define the transition system

K = 〈K.var , K.init,Ω(K), ∅〉

A transition s
m(u)−−−→ s′ of K is an execution of the invocation m(u) if the following

conditions hold,

1. the state space of K is the states over K.var, ΣK.var ,

2. the initial states of K are the same initial states of K,

3. s and s′ are states of K,

4. m(u) ∈ Ω(K) and it is an invocation of a provided method m with in input
value u,

5. s⊕u satisfies guard(m), i.e., m is enabled in state s for the input u (note that
we identify the value u with the corresponding state assigning values to inputs
u = u(in)), and there exists a state v of the output parameter y of m

6. (s⊕ u, s′ ⊕ v) ∈ body(m).

We omit the empty set of internal actions and denote the transition system of K
by = 〈K.var , K.init,Ω(K)〉. A step of state transition is defined by the design
of the method body when the guard holds in the starting state s. For transition
t = s

m(u)−−−→ s′, we use pre.t, post.t and event.t to denote the pre-state s, the post-state
s′ and the event m(u), respectively.
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Definition 2.2.2 (Failure-divergence semantics of components). The execution
failure divergence semantics 〈ED(K), EF(S)〉 (or the interaction failure di-
vergence semantics 〈ID(K), IF(S)〉) of a component K is defined by the se-
mantics of the corresponding labeled transition system, i.e., by the execution failure-
divergence semantics 〈ED(K), EF(K)〉 (or the interaction failure-divergence seman-
tics 〈ID(K), IF(K)〉).

The traces traces(K) of K are also defined by the traces of the corresponding tran-
sition system: traces(K) =̂ traces(K).

Example 2.2.1. To illustrate a reactive component using guarded commands, we
give an example of a component model below describing the behavior of a memory that
a processor can interact with to write and read the value of the memory. It provides
two methods for writing a value to and reading the content out of the memory cell
of type Z, requiring that the first operation has to be a write operation.

1 component M {
2 provided interface MIF {
3 Z d;
4 bool start = false;
5 W(Z v) { trueN (d := v; start := true) }
6 R(; Z v) { startN (v := d) }
7 }
8 }

Remarks page We would like to make the following important notes on the ex-
pressiveness of this model by relating it to traditional theories.

1. This model is very much similar to the model of Temporal Logic of Actions
(TLA) for concurrent programs [Lam02]. However, “actions” in TLA are au-
tonomous and models interact through shared variables. Here, a component
is a passive entity and it interacts with the environment through method invo-
cations. Another significant difference between rCOS and TLA is that rCOS
combines state-based modeling of data changes and event-based description of
interaction protocols or behavior.

2. In the same way as to TLA, the model of components in rCOS is related
to Back’s action systems [BvW94] that extends Dijkstra’s guarded commands
language [DS90] to concurrent programming.

3. Similar to the relation with I/O automata, the rCOS model of components
combines data state changes with event-based interaction behavior. The latter



2.2. CLOSED COMPONENTS 41

can be specified in CSP [Hoa85, Ros98]. Indeed, failure-divergence semantics
and the traces of a component K are directly influenced by the concepts and
definitions in CSP. However, an event m(u) in rCOS is an abstraction of the
extended rendezvous for the synchronizations of receiving an invocation to m
and returning the completion of the execution of m. This assumes a run
to complete semantics for method invocations. For the relation between I/O
automata and process algebras, we refer to the paper by Vaandrager [Vaa91].

4. Other formalisms like, e.g. CSP-OZ [Fis00, HO02], also combine state and
event-based interaction models in a similar way. These approaches and also
similar combinations like Circus [WC02] share the idea of rCOS that different
formal techniques are necessary to cope with the complexity of most non-
trivial applications. Contrary to rCOS, they promote the combination of fixed
existing formal languages, whereas the spirit of rCOS is to provide a general
semantic framework and leaving the choice of the concrete applied formalisms
to the engineers.

The above relations show that the rCOS model of components unifies the seman-
tics models of data, data functionality of each step of interaction, and event-based
interaction behavior. However, the purpose of the unification is not to “mix them
together” for the expressive power. Instead, the unification is for their consistent
integration and the separation of the treatments of the different concerns. There-
fore, rCOS promotes the ideas of Unifying Theories of Programming [HH98, BG77]
for Separation of Concerns, instead of extending a notation to increase expressive
power.

2.2.3 Component Contracts

We continue with defining necessary constructs for component-based design, i.e.,
contracts.

Definition 2.2.3 (Contract). A component contract C is just like a primitive
component, but the body of each method m ∈ C.pIF is a guarded design gm N (pm `
Rm).

So each closed component K is semantically equivalent to a contract. Contracts
are thus an important notion for the requirement specification and verification of
the correct design and implementation through refinements. They can be easily
modeled by a state machine, which is the vehicle of model checking. The contract
of component M of Example 2.2.1 on page 40 is given as follows.
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1 component M {
2 provided interface MIF {
3 Z d; bool start = false;
4 W(Z v) { trueN ({d,start}:true ` d’ = v ∧ start’ = true) }
5 R(; Z v) { startN ({v}: true ` v’ = d) }
6 }
7 }

Notice that in both the component M of Example 2.2.1 and its contract, the state
variable start is a protocol control variable.

Clearly, for each contract C, the labeled actions in the corresponding transition
system C are all of the form m(T1 x;T2 y){g N (p ` R)}. Notice that in general
a method of the provided interface can be non-deterministic, especially at a high
level abstraction. Some of the traces are non-deterministic in a way that a client
can still get blocked, even if it interacts with K following such a trace from the
provided interface. Therefore, traces(K) cannot be used as a description of the
provided protocol of the component, for third party composition, because a protocol
is commonly assumed to ensure non-blocking behavior.

Definition 2.2.4 (Input-deterministic trace and protocol). We call a trace tr =
a1 · · · an of a component transition system K input-deterministic or non-blockable
if for any of its prefixes pref = a1 · · · ak, there does not exist a set X of provided
events of K such that ak+1 ∈ X and (pref , X) ∈ IF(K). And for a closed compo-
nent K, we call the set of its input deterministic traces the provided protocol of
K, and we denote it by PP(K) (and also PP(K)).

For the rest of the chapter, We use the notion “component” also for a “contract”,
as they are specifications of components at different levels of abstractions and for
different purposes.

2.2.4 Refinement between Closed Components

Refinement between two components Kh and Kl, denoted by Kh v Kl, compares the
services that they provide to the clients. However, this relation is naturally defined
by the refinement relation Kh v K l of their labeled transitions systems. Also, as a
specialized form of Theorem 2.1.8, we have the following theorem for the refinement
relation between two primitive closed components.

Theorem 2.2.1. If Kh v Kl, PP(Kh) ⊆ PP(Kl).
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Proof. The proof is given by induction on the length of traces. From an initial state
s0, e is non-blockable in Kh only if e is enabled in all the possible initial states of Kh.
Hence, if e is non-blockable in Kh, so is it in Kl. Assume the theorem holds for all
traces of length no longer than k ≥ 1. If a trace tr = e1 . . . ekek+1 is not blockable in
Kh, all its prefixes are non-blockable in Kh, thus so are they in Kl. If tr is blockable
in Kl, then there is an X such that ek+1 ∈ X and (e1 . . . ek, X) ∈ IF(Kl). Because
Kh v Kl, IF(Kl) ⊆ IF(Kh), thus (e1 . . . ek, X) ∈ IF(Kh). This is impossible
because tr is not blockable in Sh. Hence, we have tr ∈ PP(Kl).

Thus, a refined component provides more deterministic services to the environ-
ment, because protocols represent executions for which there is no internal non-
determinism leading to deadlocks.

The result of Theorem 2.2.1 is noteworthy, because the subset relation is reversed
compared to the usual subset relation defining refinement; for instance, we have
IF(Kl) ⊆ IF(Kh) and T (Kl) ⊆ T (Kh), but PP(Kh) ⊆ PP(Kl). However, a
bit of thought reveals that this actually makes sense, because removal of failures
leads to potentially more protocols. For traces this is a bit more surprising, but
in failure-divergence semantics the traces are derived from failures, so they are not
independent. This also leads to the fact that the correctness of the theorem actually
depends on the divergences: the theorem cannot hold in the stable-failures model
and the traces model, because both have a top element regarding the refinement
order. For both of these top elements (the terminating process for the trace model
and the divergent process for the stable-failures model) the set of protocols is empty.

The semantic definition of refinement of components (or contracts) by Definition 2.1.2
does not directly support to verify that one component Ml refines another Mh. To
solve this problem, we have the following theorem.

Theorem 2.2.2. Let Cl and Ch be two contracts such that Cl.pIF = Ch.pIF, (simply
denoted as pIF). Mh vMl if there is a total mapping from the states over Cl.var to
the states over Ch.var, ρ : Cl.var 7−→ Ch.var, that can be written as a design with
variables in Cl.var and Ch.var ′ such that the following conditions hold.

1. Mapping ρ preserves initial states, i.e., ρ(Cl.init) ⊆ Ch.init.

2. No guards of the methods of Ch are weakened — undermines safety, or strength-
ened — introduces likelihood of deadlock, i.e., ρ⇒ (guard l(m)⇔ guardh(m)′)
for all m ∈ pIF, where guardh(m)′ is the predicate obtained from guardh(m)
with all its variables replaced by their primed versions,

3. The data functionality of each method in Cl refines the data functionality of
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the corresponding method in Ch, i.e., for all m ∈ pIF,

ρ; bodyh(m) v bodyl(m); ρ.

The need for the mapping to be total is to ensure that any state in the refined
component Cl implements a state in the “abstract contract” Ch. With the upward
refinement mapping ρ from the states of Cl at the lower level of abstraction to the
states of Ch at a higher level of abstraction, the refinement relation is also called
an upward simulation and it is denoted by Cl �up Ch. Similarly, we have a theorem
about downward simulations, which are denoted by Cl �down Ch.

Theorem 2.2.3. Let Cl and Ch be two contracts. Ch v Cl if there is a total mapping
from the states over Ch.var to the states over Cl.var, ρ : Ch.var 7−→ Cl.var, that can
be written as a design with variables in Cl.var ′ and Ch.var such that the following
conditions hold.

1. Mapping ρ preserves initial states, i.e., Cl.init ⊆ ρ(Ch.init).

2. No guards of the methods of Ch are weakened — undermines safety, or strength-
ened — introduces likelihood of deadlock, i.e., ρ⇒ (guard l(m)′ ⇔ guardh(m))
for all m ∈ pIF, and

3. The data functionality of each method in Cl refines the data functionality of
the corresponding method in Ch, i.e., for all m ∈ pIF,

bodyh(m); ρ v ρ; bodyl(m).

The following theorem shows the completeness of the simulation techniques for prov-
ing refinement between components.

Theorem 2.2.4. Ch v Cl if and only if there exists a contract C such that

Cl �up C �down Ch.

The proofs and details of the discussion about the importance of the above theorems
can be found in [CZ06].

2.3 Open Components

The components defined in the previous section are self-contained and they imple-
ment the functionality of the services, which they provide to the clients. However,
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component-based software engineering is about to build new software through reuse
of exiting components that are adapted and connected together. These adapters
and connectors are typical open components. They provide methods to be called by
clients on one hand, and on the other, they require methods of other components.

2.3.1 Specification of Open Components

Open components extend closed components with required interfaces. The body of
a provided method may contain undefined methods that are to be provided when
composed with other components. We therefore extend the rCOS specification no-
tation for closed components with a declaration of a required interface as given in
Fig. 2.2.

1 component K {
2 T x = c; // state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1N c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2N c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { gN c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1N d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2N d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { hN d /∗ functionality definition ∗/ };
14 };
15 required interface J { // required services
16 T y = d;
17 n1(parameters), n2(parameters), n3(parameters)
18 };
19 class C1{...}; class C2{...}; ... // used in the above specification
20 }

Figure 2.2: Format of rCOS primitive open components

Notice that the required interface declares method signatures that do not occur in
either the provided or the internal interfaces. It declares method signatures without
bodies, but for generality we allow a required interface to declare its state variables
too.

Example 2.3.1. If we “plug” the provided interface of the memory component M
of Example 2.2.1 into the required interface of the following open component, we
obtain an one-place buffer.



46 CHAPTER 2. RCOS

1 component Buff {
2 provided interface BuffIF {
3 bool r = false, w = true;
4 put(Z v) { wN (W(v); r := true; w := false) }
5 get(; Z v) { rN (R(; v); r := false; w := true) }
6 }
7 required interface BuffrIF {
8 W(Z v), R(; Z v)
9 }

10 }

2.3.2 Semantics and Refinement of Open Components

With the specification of open components using guarded commands, the denota-
tional semantics of an open component K is defined as a functional as follows.

Definition 2.3.1 (Semantics of commands with calls to undefined methods). Let K
be a specification of an open component with provided interface K.pIF, state variables
K.var, internal interface K.iIF and required interface K.rIF, the semantics of K
is the functional JKK : C(K.rIF) 7−→ C(K.pIF) such that for each contract C in
the set C(K.rIF) of all the possible contracts for the interface K.rIF, JKK (C) is a
contract in the set C(K.pIF) of all contracts for the interface K.pIF defined by the
specification of the closed component K(C) in which

1. the provided interface K(C).pIF = K.pIF,

2. the state variables K(C).var = K.var, and

3. the internal interface K(C).iIF = K.iIF ∪ K.rIF, where the bodies of the
methods in K.rIF are now defined to be their guarded designs given in C.

Definition 2.3.2. Let K1 and K2 be specifications of open components with the same
provided and required interfaces, respectively. K2 is a refinement of K1, K1 v K2,
if K1(C) v K2(C) holds for any contract C of the required interface of K1 and K2.

The following theorem is used to establish the refinement relation of instantiated
open components.

Theorem 2.3.1. Let K be a specification of open components. For two contracts
C1 and C2 of the required interface K.rIF, if C1 v C2 then K(C1) v K(C2).

To establish a refinement relation between two concretely given open components
C1 v C2, a refinement calculus with algebraic laws of programs are useful, e.g.
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c;n(a, y) = n(a, y); c for any command if a and y do not occur in command c.
However, the above denotational semantic semantics is in general difficult to use for
checking of one component refines another or for verification of properties.

We define the notion of contracts for open components by extending the semantics
of sequential programs and reactive programs to those programs in which commands
contain invocations to undefined methods declared in the required interface of an
open component.

Definition 2.3.3 (Design with history of method invocations). We introduce an
auxiliary state variable sqr, which has the type of sequences of method invocation
symbols and define the design of a command that contains invocations to undefined
methods as follows,

− x := e = {x} : true ` x′ = e, implying an assignment does not change sqr,

− each method invocation to an undefined method n(T1 x;T2 y) is replaced by a
design

{sqr , y} : true ` y′ ∈ T2 ∧ sqr ′ = sqr · {n(x)},

where · denotes concatenation of sequences, and

− the semantics for all sequential composition operations, i.e., sequencing, con-
ditional choice, non-deterministic choice, and recursion, are not changed.

A sequential design that has been enriched with the history variable sqr introduced
above can then be lifted to a reactive design using the lifting function.

With the semantics of reactive commands, we can define the semantics of a provided
method m(){c} in an open component. Also, given a state s of the component, the
execution of an invocation to m() from s will result in a set of sequences of possible
(because of non-determinism) invocations to the required methods, recorded as the
value of sqr in the post-state, denoted by sqr(m(), s).

Definition 2.3.4 (Contract of open component). The contract K of an open com-
ponent K is defined analogously to that of a closed component except that the se-
mantics of the bodies of provided methods are enriched with sequence observables as
defined in Definition 2.3.3.

For further understanding of this definition, let us give the weakest assumption on
behavior of the methods required by an open component. To this end, we define the
weakest terminating contract, which is a contract without side-effects, thus leaving
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all input variables of a method unchanged, and setting its output to an arbitrary
value. The weakest terminating contract wtc(rIF) of the required interface rIF is
defined such that each method m(x; y) ∈ rIF is instantiated with

m(x; y){true N (true ` x′ = x)}.

Thus, wtc(rIF) accepts all invocations to its methods and the execution of a method
invocation always terminates. However, the data functionally is unspecified.

Proposition 2.3.1. We have the following conjectures, but their proofs have not
been established yet.

1. Given two open components K1 and K2, K1 v K2 if K1 v K2.

2. K is equivalent to K(wtc(K.rIF)).

2.3.3 Transition Systems

Given an open component K, let

− pE(K) = {m(u) | m(T1 x;T2 y) ∈ K.pIF ∧ u ∈ T1}, and

− rE(K) = {n(u) | n(T1 x;T2 y) ∈ K.rIF ∧ u ∈ T1}

be the possible incoming method invocations and outgoing invocations to the re-
quired methods, respectively. Further, let Ω(K) = pE(K) × 2rE(K)∗ . With this
preparation, we can define the transition systems of open components:

Definition 2.3.5 (Transition system of open component). Let K be an open com-
ponent, we define the labeled state transition system

K = 〈K.var , K.init,Ω(K), ∅〉,

such that s m(u)/E−−−−→ s′ is a transition from state s to state s′ if

− (s, s′) |= c[u/x, v/y′], where c is the semantic body of the method m() in K,
and

− E is the set of sequences of invocations to methods in K.rIF, recorded in sqr
in the execution from state s that leads to state s′. Here the states of K do
not record the value of sqr as it is recorded in the events of the transition.
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Notice E in s
m(u)/E−−−−→ s′ is only the set of possible traces of required method in-

vocations from s to s′, not from the initial state of the transition system K. The
definition takes non-determinism of the provided methods into account. It shows
that each state transition is triggered by an invocation of a method in the provided
interface. The execution of the method may require a set of possible sequences
of invocations to the methods in the required interface. Therefore, we define the
following notions for open component K.

− For each trace tr = a1/E1 . . . ak/Ek, we have a provided trace tr> = a1 . . . ak
and sets of required traces tr< = E1 · · ·Ek, where · is the concatenation oper-
ation on set of sequences.

− For each provided trace pt, Q(pt) = ⋃ {tr< | tr ∈ T (K), tr> = pt} is the set
of all corresponding required traces of pt.

− A provided trace pt is a non-blocking provided trace if for any trace tr
such that tr> = pt, tr is a non-blocking trace of K.

− The provided protocol of K, denoted by PP(K) is the set of all non-blocking
provided traces.

− The required protocol of K is a union of the sets of required traces of non-
blocking provided traces RP(K) = ⋃

pt∈PP(K)Q(pt).

The model of an open component is a natural extension to that of a closed compo-
nent, and a closed component is a special case when the required interface is empty.
Consequently, the set of required traces of a closed component is empty.

2.4 Processes

All components that we have defined so far are passive in the sense that a component
starts to execute only when a provided method is invoked from the environment (say,
by a client). Once a provided method is invoked, the component starts to execute
the body of the method, provided it is enabled. The execution of the method is
atomic and follows the run to complete semantics. However, it is often the case that
active software entities are used to coordinate the components when the components
are being executed. For example, assume we have two copies of component Buff
in Example 2.3.1, say B1 and B2 whose provided interfaces are the same as Buff ,
except for put and get being renamed to puti and geti for Bi, respectively, where
i = 1, 2. We can then write a program P that repeatedly calls get1(; a); put2(a)
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1 process P {
2 T x = c; // initial state of process
3 actions { // guarded commands
4 a1 { g1N c1 };
5 ...
6 ak { gkN ck }
7 };
8 required interface J { // required services
9 T y = d;

10 n1(parameters), n2(parameters), n3(parameters)
11 };
12 internal interface { // locally defined methods
13 n1(parameters) { h1N d1 /∗ functionality definition ∗/ };
14 n2(parameters) { h2N d2 /∗ functionality definition ∗/ };
15 ...
16 n(parameters) { hN d /∗ functionality definition ∗/ };
17 };
18 class C1{...}; class C2{...}; ... // used in the above specification
19 }

Figure 2.3: Format of rCOS process specifications

when both get1 and put2 are enabled. Then, P glues B1 and B2 to form a two-place
buffer. We call such an active software entity a process.

2.4.1 Specification of Processes

In this section, we define a class of processes that do not provide services to clients
but only actively calls provided services of other components. In the rCOS specifi-
cation notation, such a process is specified in the format shown in Fig. 2.3. In the
body of an action (which does not contain parameters), there are calls to methods
in both the internal interface section and the required interface section, but not to
other methods.

2.4.2 Contracts of Processes

Notice that the actions, denoted by P.ifa, are autonomous in the sense that when
being enabled they can be non-deterministically selected to execute. The execution
of an action is atomic and may involve invocations to methods in the required
interface P.rIF , as well as program statements and invocations to methods defined
in the internal interface P.iIF . We will see later when we define the composition of
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1 process P {
2 T x = c; // initial state of process
3 actions { // reactive designs
4 a1 { /∗ g1 N c1 design enriched by history variables sqr ∗/ };
5 ...
6 ak { /∗ gk N ck design enriched by history variables sqr ∗/ }
7 };
8 required interface J { // required services
9 T y = d;

10 n1(parameters), n2(parameters), n3(parameters)
11 };
12 class C1{...}; class C2{...}; ... // used in the above specification
13 }

Figure 2.4: Format of rCOS process contracts

a component and a process that execution of an atomic action a in P synchronizes
all the executions of required methods contained in a, i.e., the execution of a locks
all these methods until a terminates. For instance, in the two place buffer example
at the beginning of this section, get1(; a); put2(a) is the only action of the process P .
When this action is being executed, B1 cannot execute another get until this action
finishes.

The denotational semantics of a process P is similar to that of an open component
in the sense that it is a functional over the set C(P.rIF) of the contracts of interface
P.rIF such that for each contract C in C(P.rIF), JP K (C) is a fully defined process,
called a self-contained process, containing the autonomous actions P.ifa. In this way,
a failure-divergence semantics in terms of actions in P.ifa and a refinement relation
can be defined following the definitions of Sect. 2.1.

However, we apply the same trick as we did when defining the semantics in Defini-
tion 2.3.3 for the body of a provided method in an open component, which contains
calls to undefined methods. Therefore, the execution of an atomic action a in a
process from a state s records the set sqr of possible sequences of invocations to
methods declared in the required interface.

Definition 2.4.1 (Contract of process). Given a specification of a process P in the
form shown in Fig. 2.3, its contract P is defined analogously to Definition 2.3.4
by enrichment with history variables, i.e., it is specified as shown in Fig. 2.4.

Example 2.4.1. Consider two instances of the Buff component, B1 and B2, ob-
tained from Buff by respectively renaming put to put1 and put2 as well as get to
get1 and get2. We design a process that keeps getting an item from B1 and putting
it into B2 when get1 and put2 are enabled. The contract of the process is specified
as follows.
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1 process Shift {
2 T x = c; // state of process
3 actions { // reactive designs
4 move { {sqr}: (get1(; x); put2(x) };
5 // equals to true ` sqr ′ = {get1(; a) · put2(a) | a ∈ Z}
6 }
7 required interface J { // required services
8 get1(; Z x), put2(Z x)
9 };

10 }

Notice that there is no guard for the process in the above example, it will be enabled
whenever its environment are ready to synchronize on the required methods, i.e.,
they are enabled in their own flows of execution. Now we are ready to define the
transition system for a process.

2.4.3 Transition Systems

Given a process P , we define the set ωP = 2P.rIF∗ to be the set of all sets of
invocations sequences to methods in the required interface of P . Following the way
in which we defined the transition system of an open component, we define the
transition system of a process.

Definition 2.4.2 (Transition system of processes). The transition system P of a
process P is the quadruple 〈P.var , P.init, ωP, ∅〉, where for E ∈ ωP , states s, s′ of
P , and an action a of P with body c,

s
a/E−−→ s′ if (s⊕ {sqr 7→ ∅}, s′ ⊕ {sqr 7→ E}) ` c

holds.

We can define the execution failure-divergence semantics (ED(P ), EF(P )) and in-
teraction failure-divergence semantics (ID(P ), IF(P )) for process P in terms of the
transition system P . The interaction traces and the failure-divergence refinement
of processes follow straightforward. However, a process can non-deterministically
invoke methods of components, and its whole trace set is taken as the required
protocol

RP(P ) =
⋃
{E1 · · ·Ek | /E1 · · · /Ek ∈ T (P )}.
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2.5 Summary and Discussion

The chapter gives a brief introduction to rCOS, the formal methodology of component-
based design and development. It defines and gives sound formal foundation of
closed and open components, processes, and how components are composed and
refined. More details about rCOS can be found in the list of publications by Zhim-
ing Liu et al [CHL06, CZ06, CLM07, CLL+07, CLS+07, CLS08, CHH+08, CMS09,
CLR+09, HLL05a, HLL05b, HLL06a, HLL06b, LH06, LQL+05, DFKL13]. The se-
mantics of the component architecture is based on unified labeled transition systems
with a failure-divergence semantics and refinement for sequential, object-oriented,
and reactive designs. Our semantics particularly integrates a data-based as well
as an interaction-based view. This allowed us to introduce a general and unified
model of components, which are the building blocks of a model-driven software ar-
chitecture: primitive closed components, open components, as well as active and
passive generalized components. Construction of models and model refinements are
supported by the rCOS Modeler tool. The method has been tested on enterprise
systems [CHH+08, CLR+09], remote medical systems [XLD10] and service oriented
systems [LH06].
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Chapter 3

Automata-based Model of
Components

In this chapter, we motivate and present an automata-based model describing the in-
teraction behaviors of components. This automata-based model of components can
be used in rCOS for easy checking of correct composition. We focus on the com-
munication protocols of components and are concerned with the provided-required
relation between a component and its environment.

Services provided by a component can be used required in any order, for example,
readFile() cannot be called before openFile() in a file system. And to provide a
service, the component may need to require services from outside, for example,
a cardPay service of the storeseller component may need services verifyCard and
transaction from the bank component. The requirement for given provided service
of a component can be captured a regular set of sequences of invocations to services
that should be provided by the environment. Before giving the formal definition of
the models, we first introduce the needed techniques of automata theory and regular
set.

Th interaction behavior of components may contain services that cannot be called
during run-time due to non-determinism. We consider the input-determinism as
the interface property for non-blockable composition. We develop an algorithm for
checking whether the automata-based models satisfy the interface property. And
another algorithm is presented for generating an interface model for any abstract
model of components, and the generated interface model should satisfy the interface
property and all the behaviors of the interface should be accepted by the abstract
model. Components interact by service invocation or sending/receiving messages.
Interaction style can be synchronous or asynchronous. The synchronous interaction
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means that the component will wait until receiving the reply after sending the
request, and then continue next instruction. In the asynchronous style, a component
continue to execute before receiving the reply of a request that is just sent. According
to the number of components involved, interaction can be classified as one-to-one,
or one-to-many, called broadcast. Composition operations can be different based on
different interaction styles.

Substitutability is another important issue in component-based development, espe-
cially during the maintenance stage of life cycle. A component can be replaced by
a new component as long as it conforms to the interface model. Further, a compo-
nent with a new and better interface model should surely fit this replacement. Such
criteria for judging whether an interface model ’better than’ another is defined as re-
finement relation between interface models. Intuitively, a better one should provide
more services while requiring less and less likely cause deadlock. The refinement
relation will be discussed and studied based on traces and stepwise simulation on
the provided/required events.

3.1 Background

In this chapter, we first briefly introduce finite state machine and regular set

3.1.1 Finite State Machine

A finite sate machine (FSM) or finite state automaton, or simply a state machine
is widely used in mathematics for computation and in computer science as a formal
language. It contains a finite set of states and transitions from one state to another
by performing certain actions. The sequences of actions that record transitions from
the initial state to the accepting state. For details, we refer the readers to [HMU79].

Definition 3.1.1 (Finite state machine). An automaton A over Act is a tuple
A = (Q, q0,F ,Act, T )

− a finite set Q = {q0, . . . , qn} of states;

− a state q0 ∈ Q called the initial, or start, state;

− a subset F of Q called the accepting states;

− a finite set Act of actions, sometimes called an alphabet;
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− a subset T of Q× Act ×Q called the transitions.

A transition (q, a, q′) ∈ T is usually written q
a−→ q′. A FSM is called deterministic

if for any transitions q a−→ q1 and q a−→ q2, it implies that q1 = q2.

An finite state machine is usually represented by a transition graph, whose nodes
are states and whose arcs are the transitions. As an example consider the following
finite state machine A over the alphabet {a, b}: The set of states is {0, 1, 2} where

0start

1

2

a

b
b

a

0 is the initial state and 2 is the accepting state. And it is obviously deterministic.

In the classical automaton theory, the behavior of an FSM A0 is usually taken to
be the set of strings over Act which the it accepts and this set is called the language
of A0.

Definition 3.1.2 (Language of a FSM.). Let A be an automaton over Act, and
s = a0, . . . , an is a string over Act. Then A is said to accept s if there is a sequence
of transitions in A, from q0 to an accepting state, whose arcs are labeled successively
by a0, . . . , an.

The Language of A, denoted by L(A), is the set of strings accepted by A.

3.1.2 Regular sets

We consider a set of strings over a given set Act, and would build by operations
from other sets. Three important operations are:

Union : S1 ∪ S2

Concatenation : S1 · S2 =̂ {s1s2 | s1 ∈ S1, s2 ∈ S2}
Iteration : S∗ =̂ {ε} ∪ S ∪ S · S ∪ · · ·

The iteration S∗ consists of all strings s1s2 · · ·Sn, for n ≥ 0, such that si ∈ S for
each i. The notion ε is for the empty string.
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Definition 3.1.3 (Regular sets). A set of strings over Act is said to be regular
if it can be built from the empty set ∅ and the singleton sets {a}, for each a ∈ Act,
using operations of union, concatenation, and iteration.

The regular set can also be written in expression way, called regular expression. In
the expression, a is for singleton set {a}, and ε is for the set {ε}. Conventionally, +, ·,
and ∗ are used for set union, concatenation, and iteration. For example (b+a · b) ·a∗
stands for the set of strings {b, ab, aba, ba, · · · }. It is well-known in the classical
theory that the following holds.

S · ε = S

S · ∅ = ∅
(S1 · S2) · S3 = S1 · (S2 · S3)
(S1 + S2) · T = S1 · T + S2 · T
T · (S1 + S2) = T · S1 + T · S2

Since automata theory and algebra of regular set are classic and well-founded, the
details of proofs the following propositions can be seen in [HMU79].

Proposition 3.1.1. The relation between finite state machines and regular sets are:

− For any finite state machine A, the language L(A) is a regular set.

− Given a regular set S over Act, there is a deterministic finite state machine
whose language is S. We use M(S) to denote one of machines with least
states.

3.2 Component Automata

A closed component provide services without the need to require from other com-
ponents when it is deployed. For example, the package of Java APIs can be seen
as a closed component and the APIs can be used by application developers. Here,
we consider to develop an Alarm component, illustrated in Figure 3.1, which will
require methods from Java API class Timer, Blink, and Sound. The Alarm com-
ponent is open in the sense that it provide services while requiring services from
other components. In order to fulfill a provided service, inside the provided service
body, the component will invoke the required services.Since the basic control flow is
sequence, branch or iteration, it is fair enough that the set of possible sequences of
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/∗∗ The alarm component would provide basic methods, such as
∗ set, cancel, and change the alarm time.
∗ once the ring is fired, the alarm will call the Blink and Sound components to make an alert.
∗ when alarm is stoped, it will call the Blink and Sound to turn off the alert
∗/

import Timer, Blink, and Sound;
public class Alarm{

void set(){
Timer.start();
Timer.addNotification();

}
void cancel(){

Timer.stop();
Timer.removeNotification();

}
void change(){

Timer.stop();
Timer.removeNotification();
Timer.start();
Timer.addNotification();

}
void ring(){

Blink.lightOn();
Sound.On();

}
void stop(){

Blink.lightOff()
Sound.Off();

}
}

Figure 3.1: Alarm
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required service invocation can be modeled by a regular set over the required events
which model the service invocation. The procedure of invocation to an provided ser-
vice of a component is abstracted as provided event. Besides provided and required
services, there are also events that are triggered inside, for example, event fire will
be triggered internally and autonomously when the specified interval of time elapses
in component Timer. These kinds of events are called internal events. And the
internal events will also cause a possible sequence of invocation to required services,
which can also be captured by a regular set.

Therefore, we use a pair of provided/internal event and a regular set over required
events to model a step of the whole procedure of executions of a given provided
service of the component during run time.

We aim to model the interaction behaviors of component as the provided-required
dependence relation. Thus, the sets of provided, internal, and required events should
be disjoint.

Now, we present the automata-based model for the interaction behaviors of com-
ponents, called component automata. The states are abstract symbolic states. The
guards of transitions are encoded in the symbolic states such that in some states, the
transitions are enabled or disabled, representing that the provided services are avail-
able or unavailable. A specific state which may be called error or illegal is introduced
and denoted as f . The details of how the error state is produced will be discussed in
the composition operation part. The set of provided, internal, required events are
denoted as P ,A, and R. The label for transitions consists a pair of P or A, and a
regular set over R. The alphabet set can be denoted as Σ(P,A,R) = (P ∪ A)× R,
where R is the set of non-empty regular sets over R.

Definition 3.2.1 (Component Automaton). A component automaton is a tuple
C = (S, s0, P, R,A, δ) where

− S is a finite set of states;

− s0 ∈ S is the initial state;

− f ∈ S is the error state;

− P , R, and A are disjoint and finite sets of provided, required, and internal
events, respectively;

− δ ⊆ S \ {f} × Σ(P,R,A) × S is the transition relation, where Σ(P,A,R) =
(P ∪ A)× R, where R is the set of non-empty regular sets over R.
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Notes. Unless stated otherwise, we only use f for the error state and state variable
s with any sub or superscript denotes the non-error state in S. Without causing
misunderstanding, throughout the thesis, we assume that the default tuple for com-
ponent automaton Ci is (Si, si0, f , Pi, Ri, Ai, δi) for any subscript i and similarly for
any superscript.

Conventions. The alphabet set Σ(P,R,A) is denoted as Σ(C), or even Σ for
simplicity when causing no confusions. A transition (s, `, s′) ∈ δ is usually written
s

`−→ s′, and s
w/T−−→ s′ if ` = (w, T ); T is called requirement of w at state s and

T = {ε} indicates that the component can directly provide w at state s without
requiring from others. Transition s

w/{ε}−−−→ s′ can also be simply written s
w−→ s′

or s w/−→ s′. The component automaton is called closed, if the requirement in all
transitions is {ε}, and open, otherwise.

A sequence of transitions s1
`1−→ s2

`2−→ · · · `n−→ sn+1 is denoted s1
`1,...,`n====⇒ sn+1.

If w ∈ P , then s w/T−−→ s′ is called an provided transitions step, and internal transition
step, otherwise. s w/T−−→ f is called failure transition, and can be written s

w/•−−→ f for
simplicity, because when w is triggered at state s whether externally or internally,
the component will be stuck in an error state no matter what the requirement is.

The internal events are prefixed with ′;′ to differentiate them from the provided
events if needed. We use τ to represent any internal event, when there is no need
to differentiate the internal events. We write s w/•−−→ s′ for s w/T−−→ s′, when T is not
essential.

At state s, the set of available provided/internal events out(s) is defined as

{w ∈ P ∪ A | ∃s′, w, T • s w/T−−→ s′}.

Then, outP (s) = out(s) ∩ P and outA(s) = out(s) ∩ A are used to denote the
set of available provided and internal events at state s. Here, we do not assume
outP (s) = P , which is mandatory in the input-enabled model.

Example 3.2.1. The Alarm component provides services, such as set,change, and
cancel the alarm time, ring and stop the alert. The component also requires ser-
vices from Timer, such as start, addNotificatioin, and removeNotification, from
Blink component the turnOn and turnOff, and from Sound component, the turnOn
and turnOff the alert sound. To model the alarm component, the provided events
may be noted as {set, cancel, change, ring, stop} and the set of required events is
{Tstart,Tstop,Tadd,Tremove,BlinkOn,BlinkOff , SoundOn, SoundOff }. From the



62 CHAPTER 3. AUTOMATA-BASED MODEL OF COMPONENTS

program of Alarm, the elements of alphabet can be (set,Tstart·Tadd), (change,Tstop·
Tremove ·Tstart ·Tadd), (cancel,Tstop ·Tremove), (ring,BlinkOn · SoundOn), and
(stop,BlinkOff · SoundOff ). The component automaton of Alarm is graphically
shown in Figure 3.2. The states are 0, 1, and 2 where 0 is the initial state. State f
is omitted, since it is not reachable.

0start 1 2

set/Tstart · Tadd

cancel/Tstop · Tremove

change/Tstop · Tremove · Tstart · Tadd

ring/BlinkOn · SoundOn

stop/BlinkOff · SoundOff

Figure 3.2: Component automaton of Alarm CAlarm

Unless otherwise stated, the following definitions are given for component automaton
C = (S, s0, f , P, R,A, δ).

Definition 3.2.2 (Execution). An alternating sequence of states and labels of the
form e = 〈s1, `1, . . . , sk, `k, sk+1〉, with k > 0 and si

`i−→ si+1 for each i with 0 < i ≤ k,
is called an execution segment (or simply execution) of the component automaton
C at state s1. It is called an execution of C, if s1 is the initial state s0.

The set of all executions of component C at state s is denoted E(C, s), and E(C) if
s is the initial state.

In component automaton CAlarm of the Alarm component,

〈0, (set,Tstart · Tadd), 1, (ring,BlinkOn · SoundOn), 2, (stop,BlinkOff · SoundOff )〉

is an execution. The 〈1, (change,Tstop·Tremove·Tstart ·Tadd), 1, · · ·〉 is an execution
segment at state 1.

Next, we define trace of components, a sequence of labels, representing the possible
interaction behaviors of components.

Definition 3.2.3 (Trace, Provided trace, Required trace). The traces, pro-
vided traces, and required traces are defined as follows.

− A sequence of elements of Σ, tr = 〈`1, . . . , `k〉 is called a trace of component
automaton C at state s, if there exists an execution segment e ∈ E(C, s) such
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that tr is obtained by removing states from e. That is, there exists s′ such that
s

tr==⇒ s′. It is called a trace of the component, if s is the initial state.
The set traces(C, s) (or written traces(s)) of all traces of C at state s is denoted

traces(C, s) = {tr ∈ Σ∗ | ∃s′ • s tr==⇒ s′}.

The set traces(s0) of all traces of C, can also be written traces(C).

− A sequence pt ∈ P ∗ of provided events is called a provided trace of C at state
s, if there exists tr ∈ traces(s) such that pt = π1(tr) |̀ P . And we write
ptraces(tr) for π1(tr) |̀ P . It is called a provided trace of C, if s is the initial
state. The set of all provided traces of C at s is denoted as ptraces(C, s) (or
simply ptraces(s))

ptraces(s) = {ptraces(tr) | tr ∈ traces(s)}

Similarly, we also write ptraces(C) for ptraces(s0), which is the set of all
provided traces of C.

− Given a trace tr ∈ traces(s) of s, π2(tr) is a sequence of regular set over R,
and we write rtraces(tr) for conc(π2(tr)) which is used to denote a regular set
that is the concatenation of these regular sets sequentially. For a provided trace
pt ∈ ptraces(s) of C at state s, the set of required traces, or called requirement,
of pt is defined as

rtraces(pt) =
⋃

∀tr•ptraces(tr)=pt
rtraces(tr).

Any element rt ∈ rtraces(pt) is called a required trace of pt. We use rtraces(s)
as the regular set of all required traces of provided traces of state s. That is,

rtraces(s) =
⋃

pt∈ptraces(s)
rtraces(pt)

. Similarly, rtraces(s0) is also written rtraces(C), representing the regular set
of all required traces of component automaton C.

Given a provided trace pt ∈ ptraces(s), we write s pt==⇒ s′, if there exists tr ∈ traces(s)
such that s tr==⇒ s′ with ptraces(tr) = pt.

In component automaton CAlarm of the Alarm component, we see that

〈(set,Tstart · Tadd), (ring,BlinkOn · SoundOn), (stop,BlinkOff · SoundOff )〉

is a trace of CAlarm, pt = 〈set, ring, stop〉 is a provided trace, and the requirement
of pt is the regular set {〈Tstart,Tadd,BlinkOn, SoundOn,BlinkOff , SoundOff 〉}.

From the definition, we can get the following propositions directly.
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Proposition 3.2.1. The set traces(s) and ptraces(s) of C at state s are regular and
prefix closed.

Proof. We take the state s as the initial state and all states are accepting states.
The statement is true from the classic automaton theory.

However, the regular set rtraces(s) is not prefix closed. For example, in CAlarm, the
prefix 〈Tstart〉 of the required trace 〈Tstart,Tadd,BlinkOn, SoundOn,BlinkOff , SoundOff 〉
is not a required trace.

Next, we consider an service component that contains non-determinism during re-
quiring services from the environment.

Example 3.2.2. We consider the component presented in Fig. 3.3. The set of pro-
vided events are login, print, and read. There is an internal event ; wifi. These
model logging into the system, printing a document, reading emails, and automati-
cally connecting to wifi, respectively. The required events are unu1 , unu2 , conmail,
and conprint, which model connecting to wifi spot unu1 , unu2 , email server, and
printer, respectively.

Email service is available whenever the component is connected to the internet. How-
ever, Printer service is only available when the component is connected with wifi spot
unu1 .

0

start

1

2

3

login ; wifi/unu1

; wifi/unu2

read/conmail

print/conprint

read/conmail

Figure 3.3: Component Cic

In the component model of Fig. 3.3, one possible execution is
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e = 〈0, (login, {ε}), 1, (; wifi, {unu1}), 2, (read, {conmail}), 2, (print, {conprint}), 2〉.

In execution e, pt = 〈login, read, print〉 is a provided trace and the set of required
traces of pt is rtraces(pt) = {〈unu1 , conmail, conprint〉}.

The above examples are about automata-based models of components. Next we
build the several closed component automata.

Example 3.2.3. We first take a look at the codes of Blink, and Sound (seen in Fig-
ure 3.4). For simplicity, we only select the provided methods needed in this example.
In Java API, exceptions are raised when the methods are not invoked properly dur-
ing run time. Here, we try to build a model which presents the protocols and blocks
the illegal invocations. The methods provided by Blink component are abstracted as
BlinkOn and BlinkOff. Similarly, SoundOn and SoundOff are provided events in
Sound component. The corresponding component automata are graphically shown
in Figure 3.5.

public class Blink{
void turnOn();
void turnOff();

}
public class Sound{

void turnOn();
void turnOff();

}

Figure 3.4: Timer, Blink, and Sound Component

start

BlinkOn

BlinkOff
start

SoundOn

SoundOff

Figure 3.5: Component automaton CBlink and CSound

The set of provided traces of CBlink is (BlinkOn ·BlinkOff )∗ · (ε+ BlinkOn). The set
of provided traces of CSound is (SoundOn · SoundOff )∗ · (ε+ BlinkOn).
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3.3 Component Interface Automata

3.3.1 Motivation

Component automata are abstract models of the implementation of components and
specify all the possible behaviors which may be performed by the component during
interaction with the environment. However, if components are not designed or imple-
mented properly, they may contain errors which would cause problems when we use
services provided by these components. For example, there is a bad-designed Blink
component shown in Figure 3.6. In CBBlink, the provided trace 〈BlinkOn,BlinkOff 〉
may be blocked during run time, because the component may transit to state 2 at
which BlinkOff is not available. The internal transitions can cause non-determinism
which will also cause errors. For example the provided service print is not available,
if wifi spot unu1 is connected. A loop of the internal events, will also cause unstabil-
ity or errors. Let’s consider a bad-designed alarm component shown in Figure 3.7.
The change may run internally and change the alarm time. Another cause for errors
is the failure transitions that lead the component to the error state.

0start

1

2

BlinkOn

BlinkOn

BlinkOff

Figure 3.6: Component automaton CBBlink of a bad Blink

0start 1 2

set/Tstart · Tadd

cancel/Tstop · Tremove

; change/Tstop · Tremove · Tstart · Tadd

ring/BlinkOn · SoundOn

stop/BlinkOff · SoundOff

Figure 3.7: Component automaton CbadAlarm of a bad Alarm

3.3.2 Non-blockableness

In this section, we will study the issues about what kinds of provided traces are
non-blockable, what kinds of component automata can only provide non-blockable
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services, called component interface automata, whether there is a way to produce
a component interface automaton for a given component automaton while some
important properties are preserved.

Intuitively, if a provided event a is non-blockable at state s then any invocation to
a cannot be blocked, when the automaton is at state s.

Before giving the formal definition of non-blockable events, we illustrate the idea by
some more examples. For example, consider state 0 of the component automaton
shown on the left of Fig. 3.8. From the viewpoint of the environment, the component
automaton may be at 0 or 1, because there is an internal transition from 0 to 1. We
assume that after some time, the component will eventually move to state 1, because
0 is not a stable state. So we can see that event c ∈ outP (0) is blocked at state 0,
because c /∈ outP (1). However, if the environment requires b, the component can
react to this invocation successfully, that is, b is non-blockable at state 0. The non-
blockable provided events are determined by the internally reachable stable states.
In the component automaton shown on the right part of Fig. 3.8, there are no
internally reachable stable states from state 0, therefore the set of its non-blockable
provided events is empty. We should also assure the component to avoid the error
or divergent state, so any events which may lead the automaton to such states are
also blockable.

0start 1 2

3

45
τ/T1

a/T2

c/T5

a/T3

b/T4

0start 1

2 3
τ/T1a/T2

τ/T3

b/T4

Figure 3.8: Non-Blockable Events

Unless otherwise stated, the following concepts are defined in component automaton
C = (S, s0, f , P,R,A).

We say a state is stable if there is no possible internal transition from it.

Definition 3.3.1 (Stable state). A state s is stable, if out(s) ⊆ P .

In the component automaton Cic in Figure 3.3, state 0, 2, and 3 are stable. In the
automaton shown in the left part of Figure 3.8, states 1, 2, 3, 4, and 5 are stable.

Next, we define the kinds of states that can be internally reached from certain state,
if there exists a sequence of internal transitions between these two states.
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Definition 3.3.2 (Internally reachable). State s′ is internally reachable from
state s, if there exist transitions s tr==⇒ s′ such that π1(tr) ∈ A∗. We write internal(s, s′),
if s′ is internally reachable from s.

The set intR(s) of all states that are internally reachable from state s is defined as

intR(s) = {s′ ∈ S | internal(s, s′)} ∪ {s}

Note that the internally reachable state from s contains itself, that is s ∈ intR(s).

In component automaton shown in the left part of Figure 3.8, state 1 is internally
reachable from state 0. In the component automaton on the right part, intR(0)
consists of states 0 and 1.

State s is divergent, if there exists a loop of internal transitions at s or s can transit
to such kinds of states via a sequence of internal transitions.

Definition 3.3.3 (Divergent state). State s is divergent, if internal(s, s) or there
exists state s′ such that internal(s, s′) and internal(s′, s′).

We use div to represent any divergent states.

In component automaton CbadAlarm of the bad Alarm component , state 1 is diver-
gent. And both states 0 and 1 in component automaton shown in the right part of
Figure 3.8 are divergent.

When a component is in divergent states, it may stay in such states forever with-
out responding to any invocations from outside. Even when considering fairness
conditions, we cannot assure how long the component can respond to other invoca-
tions. Therefore, here we should try to make component avoid divergent states in
the interface models.

For state s, we use notation intRs(s) for the set of stable states that are internally
reachable from state s, except that the set is empty when the states can internally
reach a divergent state. That is,

intRs(s) =

∅, if div ∈ intR(s)
{s′ is stable | s′ ∈ intR(s)}, otherwise

We call a provided event illegal, if it can lead the automaton to the error or divergent
states.
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Definition 3.3.4 (Illegal provided event). A provided event a at state s is called
illegal, if it can internally lead the automaton to the error or divergent state. The
set of illegal provided events of state s is defined:

ill(s) = {a | s a==⇒ t, t is error or divergent}

Now we define the provided events that can not be blocked at given state. A provided
event is non-blockable at state s, if it is available at any stable states that internally
reached from state s, and a cannot lead the component automaton to any divergent
state or the error state.

Definition 3.3.5 (Non-blockable provided events). For any s ∈ S, the set of
non-blockable provided events at state s is

non-blockable(s) =
⋂

r∈intRs(s)
(outP (r) \ ill(r))

It is trivial that non-blockable(s) is empty, when s is divergent.

For example, in CbadAlarm, the non-blockable provided events at the initial state s is
empty, the set will lead the component into the divergent state 1. In the component
automaton shown in the left part of Figure 3.8, both a and b are non-blockable at
state 0 or 1.

The non-blockable provided events assure that a single provided event is non-
blockable at a given state. Next, we would study whether a given provided trace can
be blocked or not by the component, as long as all the requirement of the provided
trace is satisfied. This is especially important when the component is closed or an
independent team is developing or searching the component that would provide all
the services that are required here.

Let’s consider the component automaton shown in Fig. 3.9. We can see that a is
non-blockable at state 0, but, after the invocation of a, the component determines
whether to move to state 1 or 3 by requiring services in T1 or T2. So from the view
of the clients, both of b and c may be blocked after a. This can be taken from of
view of a game between the component and its environment. The provided events
are determined or chosen by the environment, while the component decides which
requirement to choose. We say a provided trace is non-blockable, if every prefix of
it is non-blockable and the sequent provided event is non-blockable.

Definition 3.3.6 (Non-blockable trace). A provided trace 〈a1, · · · , ak〉 of state s
with k ≥ 0 is non-blockable at state s, if for any 1 ≤ i ≤ k, ai ∈ non-blockable(s′)
for any s′ such that s 〈a1,··· ,ai−1〉=======⇒ s′.
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0start
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Figure 3.9: Non-blockable traces

A trace tr is non-blockable at s, if ptraces(tr) is non-blockable at s.

We use uptraces(s) and utraces(s) to denote the set of all non-blockable provided
traces and non-blockable traces at state s, respectively. uptraces(s) and utraces(s)
are also written as uptraces(C) and utraces(C), respectively, when s is the initial
state.

For example in component automaton of Figure 3.9, 〈a〉 is non-blockable, while both
〈a, c〉 and 〈a, b〉 may be blocked.

3.3.3 Component Interface Automata

The abstract model of components are not suitable as interfaces for third party
composition, if it contains traces that may be blocked during run-time. In this part,
we study the interface property Θ, which is the standard or criteria for whether a
component automaton can be used as interface model or not.

Now, we introduce input-determinism and prove that it is equivalent with Θ. We
then develop an algorithm to check whether a component automaton satisfies the
interface property or not. Then we present an algorithm to construct an component
interface automaton I(C) for any given component automaton C, such that I(C)
and C have the same non-blockable traces.

Definition 3.3.7 (Component interface automaton). The interface property Θ
states that all provided traces are non-blockable. A component automaton C is called
component interface automaton (or interface automaton for short), if it satisfies Θ.
That is, all provided traces of C are non-blockable and f or div cannot be internally
reachable from s0.

We usually use I with proper sub or super scripts to denote a component interface
automaton.

It directly follows that all traces of a component interface automaton are non-
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blockable.

We can see that component automata CAlarm, CBlink, and CSound are also component
interface automata.

However, it is not easy to check whether a component automaton C satisfies Θ.
Then we introduce property input-determinism, which is slightly different from the
traditional definition. In the traditional definition, input-determinism means that
at given state, with same input/provided event, the next state is determined. We
say a component automaton is input-deterministic, if the set of non-blockable events
are always same at any state that is reached by the same provided trace from the
initial state.

Definition 3.3.8 (Input-determinism). Given a component automaton C, we
say it is input-deterministic if neither f or div is reachable from s0, and for any
provided trace pt, states s1 and s2 such that

s0
pt==⇒ s1 and s0

pt==⇒ s2,

then
non-blockable(s1) = non-blockable(s2).

That is, each state of set {s ∈ S | s0
pt==⇒ s} has the same non-blockable provided

events.

The following theorem states that all the traces of an input-deterministic compo-
nent automaton are non-blockable, and vice versa. That is, input-determinism is
equivalent with Θ.

Theorem 3.3.1. A component automaton C is input-deterministic iff C is a com-
ponent interface automaton.

Proof. Both input-determinism and interface property require that f or div is not
internally reachable from the initial state. So we only need to prove the following.

First, we prove the direction from left to right. From the input-determinism of C,
it follows that for each provided trace pt = (a0, . . . , ak) and for each state s with
s0

tr==⇒ s and π1(tr) = 〈a0, . . . , ai〉 for 0 ≤ i ≤ k − 1, the set non-blockable(s) is the
same. Since pt is a provided trace, so ai+1 ∈ non-blockable(s). This shows that all
provided traces are non-blockable, and so all traces are non-blockable too.
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Second, we prove the direction from right to left by contraposition. We assume that
C is not input-deterministic, so there exist traces tr1 and tr2 with ptraces(tr1) =
ptraces(tr2) and s0

tr1==⇒ s1, s0
tr2==⇒ s2 such that non-blockable(s1) 6= non-blockable(s2).

Then, we assume that there is a provided event a such that a ∈ non-blockable(s1)
and a /∈ non-blockable(s2). Now ptraces(tr2) · a is a provided trace of C, but it is
blockable.

In the following, we present Algorithm 1 to check whether C satisfies the interface
property or not. Based on Theorem 3.3.1, the idea is check whether the component
automaton is input-deterministic or not. The procedure is to construct the set of
states that can be reached by the same provided trace. The algorithm will return
true or false, representing C |= Θ and C 6|= Θ, respectively. If there exists two
states in such set that their non-blockable provided events are different, then the
algorithm will return false. After traversing all these sets successfully, the algorithm
return with true.

Algorithm 1: Check whether C |= Θ or C 6|= Θ
Input: C = (S, s0, f, P,R,A, δ)
Output: true or false

1: if f or div ∈ intR(s0) then
2: return false
3: end if
4: Initialization: Q0 = {s′ | s′ ∈ intR(s0)}; todo := {Q0}; done := ∅
5: while todo 6= ∅ do
6: choose Q ∈ todo; todo := todo \ {Q}; done := done ∪ {Q};
7: if ∃s1, s2 ∈ Q • non-blockable(s1) 6= non-blockable(s2) then
8: return false
9: end if

10: for each a ∈ ⋃
s∈Q

non-blockable(s) do

11: Q′ := ⋃
s∈Q
{s′ | s a==⇒ s′}

12: if Q′ /∈ (todo ∪ done) then
13: todo := todo ∪ {Q′}
14: end if
15: end for
16: end while
17: return true

Now, we give and prove the correctness of Algorithm 1. We show that the algorithm
will always terminate and the complexity is exponential with the size of state set in
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worst case. The return result true and false represents that component automaton
C is input-deterministic or not.

Theorem 3.3.2 (Correctness of Algorithm 1). Given component automaton C,
the algorithm Y(C)

1. Y(C) terminates and the complexity of time in the worst case is exponential
with the size of state set S.

2. C is input-deterministic iff Y(C) is true

Proof. The proof is:

1. The size of set 2S is that of 2|S|, where |S| is the size of state set S. 2|S| is finite
because |S| is finite. From Line 4, 6, 12, and 13, we see that todo is disjoint
with done, and the size of done increases in every iteration of the while-loop
(Line 5-24). Besides, the union done ⊆ 2S. So todo will eventually be empty,
which means the algorithm will terminate. The worst case is todo∪done = 2S.

2. we prove the contrapositive statement that C is not input-deterministic, iff
Y(C) is false.

− Direction from left to right: if C is not input-deterministic, then there
will be two cases: 1). f or div is reachable from s0. we can see the
Y(C) returns false at line 1-2; 2). there exists provided trace pt, s1,
and s2 such that s0

pt==⇒ s1 and s0
pt==⇒ s2, then non-blockable(s1) 6=

non-blockable(s2). Let pt = 〈a0, . . . , ak〉, during every iteration of while-
loop, in Line 10, we ai for 0 ≤ i ≤ k and choose the newly added set
Q′ in Line 6. Then the algorithm will either return false, or there exists
Q′ that both s1 and s2 are in Q′. Then from Line 7, the algorithm will
return with false.

− Direction from right to left: if it returns from Line 2, then obviously,
C is not input-deterministic. If the algorithm returns false at line 8,
then there exists a set Q which consists of two state s1 and s2 such that
non-blockable(s1) 6= non-blockable(s2). From Line 11, we trace set Q
back to Q0, and get a provided trace pt such that s0

pt==⇒ s1 and s0
pt==⇒ s2.

So we prove that C is not input-deterministic.

From the two directions above, we prove that C is input-deterministic iff the
algorithm returns true
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In the following, we present an algorithm (see given in Algorithm 2) that, given
component automaton C, constructs an interface automaton I(C) which shares the
same non-blockable traces with C.

The aim of this algorithm is to filter out the transitions which may be blocked. We
will consider the component automaton Cfoo graphically shown in Figure 3.10 to il-
lustrate the general idea of constructing a component interface automaton from Cfoo.
First, it is obvious that 〈b, c〉, and 〈a, c, a〉 are all blockable. The transition 1 c/T3−−→ 2
is not blockable if the previous transitions is labeled with a/T1, and blockable if it
is a b transition. This implies that we cannot obtain the interface automaton by
removing the possible blockable transitions directly. State 1 needs to be split into
different states and these states preserve the non-blockable transitions. Inspired by
Algorithm 1, we build set Q ⊆ S which is a set of states that are reachable via any
non-blockable provided trace pt from the initial state. Then provided events, which
are non-blockable at each state of Q, are non-blockable after provided trace pt. For
example, after a-transition, Cfoo may be in any state of {1, 3}; after b-transition, it
may be {1, 4}. The next transition of state 1 can be divided based on non-blockable
provided events of {1, 3} and {1, 4}. So, we use a pair of a state and a state set
as the notion for the states in the expected interface automaton. Here, ({1, 3}, 1)
and ({1, 4}, 1) are states in the interface automaton. The transitions of ({1, 3}, 1)
preserve the transition of 1 by filtering out the provided events that are blockable
in any state of {1, 3}.

The non-blockable provided event of {1, 3} is {c}, and similarly the state set is
{0, 2} after c-transition from {1, 3}. So ({0, 2}, 0) and ({0, 2}, 2) are also states in
the interface automaton. Now the following transitions can be added: ({1, 3}1) c/T3−−→
({0, 2}, 2) and ({1, 3}3) c/T6−−→ ({0, 2}, 0).
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Figure 3.10: Example automaton Cfoo

Algorithm 2 can traverse all the non-blockable provided events and produce the
corresponding states to preserve all the non-blockable transitions. If the error state
f or div can be reached from the initial state s0, then the algorithm exits with
an empty automaton, which means all provided traces are blockable. Otherwise,
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each state of I(C) is of the form (Q, r), where Q is a subset of states of C and
r ∈ Q, the initial state is (Q0, s0) with Q0 = {s′ | s′ ∈ intR(s0)}. Q records all
reachable states from each state s′ ∈ Q′, (suppose (Q′, r′) has been added as a
state of I(C)), by executing a provided event a, where a ∈ ⋂

s′∈Q′
non-blockable(s′).

By induction, we can see that all traces of I(C) are non-blockable. On the other
hand, all the states that can be reached from states in Q′ via each provided event
b ∈ ⋂

s′∈Q′
non-blockable(s′) with possible internal events before/after b will consist a

Q such that (Q, r) is one state of I(C). So all non-blockable traces of C are also
contained in I(C) by inductive way.

Algorithm 2: Construction of Interface Automaton I(C)
Input: C = (S, s0, f, P,R,A, δ)
Output: I(C) = (SI , (Q0, s0), f, P,R,A, δI), where SI ⊆ 2S × S

1: if f or div ∈ intR(s0) then
2: exit with δI = ∅
3: end if
4: Initialization: SI := {(Q0, s) | s ∈ Q0} with Q0 = {s′ | s′ ∈ intR(s0)};
δI := ∅; todo := SI; done := ∅

5: while todo 6= ∅ do
6: choose (Q, r) ∈ todo; todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}
7: for each a ∈ ⋂

s∈Q
non-blockable(s) do

8: Q′ := {s′ | s a==⇒ s′, s ∈ Q}
9: for each (r a/T−−→ r′) ∈ δ do

10: if (Q′, r′) /∈ (todo ∪ done) then
11: todo := todo ∪ {(Q′, r′)}
12: SI := SI ∪ {(Q′, r′)}
13: end if
14: δI := δI ∪ {(Q, r)

a/T−−→ (Q′, r′)}
15: end for
16: for each r

w/T−−→ r′ with r′ ∈ Q and w ∈ A do
17: if (Q, r′) /∈ (todo ∪ done) then
18: todo := todo ∪ {(Q, r′)}
19: SI := SI ∪ {(Q, r′)}
20: end if
21: δI := δI ∪ {(Q, r)

w/T−−→ (Q, r′)}
22: end for
23: end for
24: end while
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Analysis of Algorithm 2. The main part is while-loop (Line5-24). Besides the
initialization statement(Line 4), state set SI is extended in Line 12 and 19. Provided
transitions are added in Line 14 of for-loop (Line 9-15); Internal transitions are added
in Line 19 of for-loop (Line 16-22). We use Q to denote {Q | (Q, s) ∈ done} after the
algorithm terminates. From Line 12, we can see the state set SI of I(C) is {(Q, s) |
Q ∈ Q, s ∈ Q}. For simplicity, we write non-blockable(Q) = ⋂

s∈Q
non-blockable(s).

We now prove the following lemma stating that the set of states that are reached
by a non-blockable provided trace is one element in Q

Lemma 3.3.1. For any non-blockable provided trace pt of C, there exists Q ∈ Q
such that Q = {s | s0

pt==⇒ s}.

Proof. We prove this by induction on the length of non-blockable provided trace.

The base case follows directly since Q0 ∈ Q. Given non-blockable provided trace
pt · a, by hypothesis induction, there exists Q ∈ Q such that Q = {s | s0

pt==⇒ s}. By
Definition 3.3.6, a ∈ ⋂

s∈Q
non-blockable(s). So, there exists for-loop of Line 7-15 for

event a. In Line 8 and Line 10, we can see that Q′ = {s′ | s a==⇒ s′, s ∈ Q} is added.
Therefore, Q′ = {s | s0

pt·a==⇒ s} and Q′ ∈ Q′.

Thus, the lemma is proved.

Given a transition (Q, s) a/T−−→ (Q′, s′), we can deduce that s a/T−−→ s′ and Q′ = {r′ |
r

a==⇒ r′, r ∈ Q}.

From Line 14, it implies that for Q,Q′ ∈ Q and a ∈ non-blockable(Q) such that
Q′ = {s′ | s a==⇒ s′}, if s a/T−−→ s′ with s ∈ Q and s′ ∈ Q′, then (Q, s) a/T−−→ (Q′, s′).
From Line 16-22, it indicates that given Q ∈ Q, for s, s′ ∈ Q and w ∈ A, if there
s

w/T−−→ s′, then (Q, s) w/T−−→ (Q, s′).

Now we can get the following lemma stating that the non-blockable transitions are
preserved in the I(C).

Lemma 3.3.2. Given a non-blockable trace tr, if s0
tr==⇒ s, there exists (Q0, s0) tr==⇒

(Q, s).

Proof. We prove this by induction on the length of tr . The base case follows directly
from Line 16-22. Consider non-blockable trace tr · (w, T ) of C, then there exists
s0

tr==⇒ s1 and s1
w/T−−→ s2. We let pt be π1(tr) |̀ P . From Lemma 3.3.1, there
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exists Q ∈ Q such that Q = {s | s0
pt==⇒ s}. By hypothesis induction, there exists

(Q0, s0) tr==⇒ (Q, s1). If w ∈ A, then s2 ∈ Q, so (Q0, s0) tr ·(w,T )=====⇒ (Q, s2). If w ∈ P ,
then there exists Q′ = {s′ | s w==⇒ s′, s ∈ Q}, due to tr · (w, T ) is non-blockable.
That means (Q, s1) w/T−−→ (Q′, s2). So, (Q0, s0) tr ·(w,T )=====⇒ (Q′, s2).

Thus, the lemma is proved.

Next, the next lemma shows that for any provide trace of I(C), the reached states
are in same Q ∈ Q.

Lemma 3.3.3. For any provided trace pt, if there exists (Q0, s0) pt==⇒ (Q1, s1) and
(Q0, s0) pt==⇒ Q2, s2, then Q1 = Q2.

Proof. We prove this by induction on length pt.

The base case follows directly because Q0 is set. We consider pt · a such that
(Q0, s0) pt·a==⇒ (Q1, s1) and (Q0, s0) pt·==⇒ (Q2, s2). By induction hypothesis, there
exists Q such that (Q0, s0) pt==⇒ Q, s′1 and (Q0, s0) pt==⇒ (Q, s′2). Then there exists
(Q, s′1) a==⇒ (Q1, s1) and (Q, s′2) a==⇒ (Q2, s2). From Line 14 and Line 7, it is obvious
that a ∈ ⋂

s∈Q
non-blockable(s). Therefore, Q1 = Q2 = {s′ | s a==⇒ s′, s ∈ Q}.

Correctness of Algorithm 2 is given formally in the following theorem that the algo-
rithm will terminate, the result I(C) |= Θ, and I(C) preserves all the non-blockable
traces of C.

Theorem 3.3.3 (correctness of Algorithm 2). The following properties holds for
Algorithm 2, for any component automaton C:

1. The algorithm always terminates. Complexity for worst case is O(2|S| ∗ |S|)

2. I(C) is input deterministic,

3. utraces(C) = utraces(I(C)).

Proof. The proof is:

1. It is similarly to that of Theorem 3.3.2. The termination of the algorithm
can be obtained because todo will be eventually empty, because the set done
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increases for each iteration of the loop in the algorithm, and the union of done
and todo is bounded by SI which is obviously finite. The size of state set SI is
limited by 2|S| ∗ |S|, and one state is handled during every while loop, so the
complexity is O(2|S| ∗ |S|).

2. If f or div is internally reachable from s0, then I(C) is empty, so it is input-
deterministic.
From Lemma 3.3.3 and Definition 3.3.8, it is deduced that I(C) is input-
deterministic.

3. From Lemma 3.3.2 and input-determinism of I(C), we see that C and I(C)
have the same non-blockable traces. That is, utraces(C) = utraces(I(C)).
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Now, consider component automaton Cfoo shown in Figure 3.10. We build the
interface automaton I(Cfoo), graphically shown in Figure 3.11. The Q includes {0},
{1, 4}, {1, 3}, {0, 2}, and {2, 5}. It is obvious that I(Cfoo) is input-deterministic
and preserves all the non-blockable traces of Cfoo.

{0},0

start

{1, 3},1 {0, 2},2

{1, 4},1 {2, 5},2

{1, 3},3

{1, 4},4{2, 5},5

{0, 2},0

a/T1

b/T2

c/T3

d/T4

a/T5c/T6

b/T7

d/T8

Figure 3.11: Interface automaton I(Cfoo)

Example 3.3.1. In the internet connection component automaton 3.3, the provided
trace 〈login, read〉 is non-blockable but 〈login, print〉 may be blocked during execu-
tion, because after login is called, the component may transit to state 3 at which
print is not available. Algorithm 2 generates the interface model of Cic, shown in
Fig. 3.12.

{0},0

start

{1,2,3}, 1

{1,2,3},2

{1,2,3},3

{2,3}, 2

{2,3}, 3

login

; wifi/{unu1}

; wifi/{unu2}

read/{conmail}

read/{conmail}

read/{conmail}

read/{conmail}

Figure 3.12: Interface model of Component Cic

Again, let’s see the automaton shown in Figure 3.9 that we know that c is non-
blockable at state 3, but c is blockable globally in the sense that there exists a
trace a that 0 a−→ 3, but 〈a, c〉 is blockable. We call these events, refusals, that are
non-blockable at certain states but may be blocked in traces.
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Definition 3.3.9 (Refusals). Given component automaton C, for each state s of
C, there may be several sets Q such that (Q, r) is a state of I(C). Then, the refusals
of state s is

refusals(s) = non-blockable(s) \
⋃

(Q,s)∈SI

non-blockable(Q, s)

Obviously, for input-deterministic automaton, the refusal set at each of its states
is empty. We get the proposition that, for any non-blockable provided trace, if
it reaches this state, then concatenation with the non refusal event will be non-
blockable. .

Proposition 3.3.1. It directly follows from the definition of refusals:

1. For any state s of a component automaton, refusals(s) = ∅,

2. For any non-blockable provided trace pt such that s0
pt==⇒ s. then for any

a ∈ non-blockable(s) \ refusals(s), pt · a is non-blockable.

Remarks. The component interact with its environment in the game way that
provided events are determined by the environment and requirement is determined
by the component. With the purpose to provide services that are not blockable, we
restrict the interface model to provide only non-blockable provided traces. There
are two possible uses in interface-based design or component reuse.

− In I(C), a lot of services may be disabled. This will help the developers to
choose another component to reuse or try to develop a component with better
interface models.

− In view of independent development or separate of concern, the developers,
responsible for searching or developing the required services, can focus on
their work on fulfilling the requirement without worrying about affecting the
provided services of the component.

3.4 Composition Operation

“Components are for composition” [Szy02]. A component interacts with other com-
ponents by providing services and requiring services. A closed component provides
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services without the need to require services from other components. We consider
closed components as stable service providers, while open components will provide
services under assumptions that the required services are guaranteed. Composition
allows for components interacting with each other to build up new components. It
also enables reusability and decomposition of components. In this section, we will
introduce some basic composition operators of component automata.

Components are composed by connecting the required services of one component
to compatible provided services of another component. For example, the Alarm
component synchronizes with components Timer, Blink, and Sound by method in-
vocation.

Component automata are composed by synchronizing on shared events which are
required events of one and provided events of the other.

The requirement of a given provided/internal event is modeled as regular set over
required events. Therefore, firstly, we present the composition between the require-
ment of a given provided/internal events with a component automaton.

3.4.1 Product of Component Automata and Finite State
Machine

For a set of sequences T , we use M(T ) to denote the minimal deterministic finite
state machine which recognize T [HMU79]. And,M(T ) is of the form (Q,Σ, q0, F, σ),
where

− Q is the finite set of states,

− q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states,

− Σ is the input alphabet,

− σ ⊆ Q× Σ×Q are the transitions.

Suppose a component automaton C1 with a transition s1
a/T−−→ s2, which means C1

requires all the traces in T in order to provide a, and another component automa-
ton C2 that can provide these required services in T . We define internal product
between M(T ) and C2 to implement the synchronization of C1 and C2 on T , and
calculate the new required traces for a. This composition operation is partial, be-
cause provided traces of C2 may not be able to satisfy the requirement specified in
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T . If the requirement is satisfied, we denote C2 |=shared M(T ), and C2 6|=shared M(T )
otherwise.

Before giving the formal definition, we illustrate the intuitive idea by one example.

Example 3.4.1. In Fig. 3.13, the required trace is {〈a, b, c〉}, and the component
automaton provides 〈a, b〉. And the shared set is {a, b}. C |={a,b} M , and required
traces of the composition are {〈x, y, z, c〉, 〈x′, y, z, c〉}.

However, C 6|={a,b,c} M , because c is not provided by component C. And also
C 6|={a,b,x} M , because x can not be provided to component C.

start

M

a b c start

C

a/{x, x′} τ/{y} b/{z}

start

Composition of C and M

{x, x′} {y} {z} {c}

Figure 3.13: Product (1)

Given a finite state machine M and component automaton C, assume that their
current states are q and s, respectively and there exists transition q

a−→ q′ with a ∈
shared of finite state machine M , then provided event a is expected of C. However,
if a /∈ non-blockable(s), this causes the request of a fail. If a ∈ non-blockable(s), but
there exists transition s a/T−−→ s′ that T also requires services of shared, the invocation
of a also fails, because this is deadlock caused by cyclic invocation.

We use events to denote the alphabet set for any set or sequences, and for example,
events(T ) means the set of events appearing in T .

Now, we define the composition operation, called internal product, between compo-
nent automaton C and finite state machine M under a given set of events shared. It
is called internal, because, finite state machine represents a regular set of required
events issued from another component which is internally determined by that com-
ponent.

Definition 3.4.1 (Internal product). Given a component automaton C and a
finite state machine M , the composition of C and M under the event set shared is
C Cshared M = (Q′,Σ′, σ′, q0, F

′), where
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− Q′ = S ×Q, q′0 = (s0, q0);

− Σ′ = Σ1 ∪ Σ2 where Σ1 is any set of regular sets over R, and Σ2 is a set of
singleton {a} where a ∈ (Σ \ shared);

− σ′ is the smallest set given by the following rules:
For reachable state (s1, r1) ∈ Q′, and if s1

a/T−−→ s2 with a ∈ E ∪A and t1 b−→ t2.

– if events(T ) ∩ shared 6= ∅ or b ∈ shared ∧ b /∈ non-blockable(s1), then
C 6|=shared M and exit;

– otherwise if a ∈ A, (s1, r1) T−→ (s2, r1) ∈ σ′;

– otherwise if b /∈ shared, (s1, r1) {b}−−→ (s1, r2) ∈ σ′;

– otherwise if a == b, (s1, r1) T−→ (s2, r2) ∈ σ′;

− F ′ = {(s, r) | s ∈ S, r ∈ F}.

In the above definition of σ′, the extended version of sequence of transitions is, by
induction, for reachable state (s, r), and transitions s tr==⇒ s′ of C, r α==⇒ r′ of M , if
ptraces(tr) is non-blockable and

ptraces(tr) = α |̀ (shared), and events(π2(tr)) ∩ shared = ∅

then in the composition, there exists(s, r) sq==⇒ (s′, r′) such that

sq |̀ Σ1 = π2(tr)|̀ Σ1, and sq |̀ Σ2 = R(α)|̀ Σ2

where R(α) is a sequence obtained by replacing every element a of sequence α by
{a}. Then we get the following lemma.

We deduce the condition for C |=shared M from the composition operation, that
is, the conditions for how the automaton C satisfies the requirement declared as M
under the share event set . We use L(M) for the set of sequences that are recognized
by M . The lemma states that component C can satisfy requirement M under shared,
iff the requirement specified by M under shared can be satisfied non-blockably by
the component without the need to require any services in shared.

Lemma 3.4.1. C |=shared M , if and only if

1. L(M) |̀ shared ⊆ uptraces(C), and

2. For every pt ∈ L(M) |̀ shared, rtraces(pt) ∩ shared = ∅.
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Proof. The proof is:

1. Direction ” =⇒ ” by contraposition.
Assume that L(M) |̀ shared * uptraces(C), so there exists α · a ∈ L(M) |̀
shared and α ∈ uptraces(C), but α · a /∈ uptraces(C). Then there will be a
reachable state (s, r) such that a /∈ non-blockable(s) and r

a−→ r′, that implies
C 6|=shared M .
Assume that there exists pt · a ∈ L(M) |̀ shared and for all rtraces(pt) ∩
shared = ∅, but rtraces(pt · a) |̀ shared 6= ∅. This implies that there exists a
reachable state (s, r) such that s a/T−−→ s′ and r a−→ r′ with events(T )∩ shared 6=
∅, so C 6|=shared M .

2. Direction ”⇐= ” by contraposition.
If C 6|=shared M , from Definition 3.4.1, there exists reachable state (s, r) that
s

a/T−−→ s′ where events(T ) ∩ shared 6= ∅, then there exists pt ∈ L(M) |̀ shared
and α ∈ rtraces(pt) that events(α) ∩ shared 6= ∅.

Or, r b−→ r′ with b ∈ shared, but b /∈ non-blockable(s), then there exists
β ∈ L(M) |̀ shared but β /∈ uptraces(C).

Thus, the lemma is proved.

The following lemma presents the sufficient and necessary condition for a sequence
to be accepted by the internal product, if C |=shared M .

Lemma 3.4.2. In the composition C Cshared M such that C |=shared M , sequence
sq of Σ∗ accepted by C Cshared M , if and only if there exists α ∈ L(M) and tr ∈
utraces(C) such that

ptraces(tr) |̀ P = α |̀ shared
sq |̀ Σ1 = π2(tr)|̀ Σ1 and sq |̀ Σ2 = R(α)|̀ Σ2.

Proof. For sequence sq, let sq |̀ Σ1 and sq |̀ Σ2 be 〈T0, . . . , Tm〉 and 〈{a0}, . . . , {an}〉,
respectively. The proof is:

− Direction ” =⇒ ” :
Since sq ∈ L(C Cshared M), then there should exist α that α ∈ L(M). From
Lemma 3.4.1, α |̀ shared ∈ uptraces(C). Then, there exists tr ∈ utraces(C)
such that ptraces(tr) |̀ P = α |̀ shared.
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There exists (s, q) such that q ∈ F (s0, q0) sq==⇒ (s, q). From Definition 3.4.1,
s0

tr==⇒ s and q0
α==⇒ q are the transitions involved to generate (s0, q0) sq==⇒ (s, q).

So, when projecting sq to alphabet of Σ1 and Σ2, the order should be preserved,
that is,

sq |̀ Σ1 = π2(tr)|̀ Σ1 and sq |̀ Σ2 = R(α)|̀ Σ2.

− Direction ”⇐= ” :
There exists s0

tr==⇒ s and q0
α==⇒ q with q ∈ F .

Let syn = 〈a0, . . . , ak〉 be ptraces(tr) |̀ P and α |̀ shared. So there exists
states s1, s2, . . . , sk of C and q1, q2, . . . , qk of M such that si

ai/Ti−−−→ () and
qi

ai−→ () for each 1 ≤ i ≤ k. By Definition 3.4.1, there exists (si, qi)
Ti−→ (), if

(si, qi) is reachable.
Let 〈b1, b2, . . . , bm〉 be sq |̀ Σ2 = R(α) |̀ Σ2. So there exists states q′1, q′2, . . . , q′m
of M such that q′i

bi−→ (), for each 0 ≤ i ≤ m. By Definition 3.4.1, there exists
(s′, q′i)

{bi}−−→ () for each 1 ≤ i ≤ m and any s′ ∈ S, if (s′, q′i) is reachable.
Let 〈c1, c2, . . . , cn〉 be π1(tr) |̀ A. Then, there should be states s′1, s′2, . . . , s′n
of C such that s′i

ci/T
′
i−−−→ () of C. By Definition 3.4.1, there exists (s′i, q′)

T ′i−→ ()
for each 1 ≤ i ≤ n and any state q′ ∈ Q, if (s′i, q′) is reachable.

From above, it follows that (s0, q0) sq==⇒ (s, q). This shows sq ∈ L(C Cshared M).

Thus, the lemma is proved.

Example 3.4.2. Consider the requirement of provided service ring in Alarm com-
ponent. It can be represented as Mring in Figure 3.14. The component automata of
Blink is CBlink. The event set shared is {BlinkOn}. The alphabet set of composition
is {{ε}, {SoundOn}}. The initial state is (a, 0). BlinkOn ∈ non-blockable(0), and
events({ε}) ∩ shared =. So, there is (0, a) {ε}−→ (1, b). At state (1, b), SoundOn /∈
shared, so, there is (1, b) {SoundOn}−−−−−−→ (2, b) and (1, b) is an accepting state. The lan-
guage of C CBlinkOn Mring is {〈{ε}, {SoundOn}〉}. The concatenation of elements
of sequence from the language represents the new requirement for provided service
ring.

3.4.2 Product of Component Automata

We compose two components if their services are disjoint, except a provided service
of one may coincide with required service of the other.



86 CHAPTER 3. AUTOMATA-BASED MODEL OF COMPONENTS

0start 1

CBlink

BlinkOn/{ε}

BlinkOff{ε}
astart b c

Mring

BlinkOn SoundOn

0,astart 1,b 1,c

CBlink C{BlinkOn} Mring

{ε} {SoundOn}

Figure 3.14: Composition of CBlink and Mring

Definition 3.4.2 (Composable). Two component automata C1 and C2 are com-
posable, if

− (P1 ∪R1 ∪ A1) ∩ A2 = ∅

− (P2 ∪R2 ∪ A2) ∩ A1 = ∅

− P1 ∩ P2 = ∅

− R1 ∩R2 = ∅

We let shared(C1, C2) = (P1 ∩R2) ∪ (P2 ∩R1).

Given component automaton C, we use C(s) to denote the same automaton except
the initial state is s, i.e., (S, s, f, P,R,A, δ) where s ∈ S.

Given two composable components, if the service required by one and provided by
the other, this service should be hidden in the composition. The internal events of
these components are still internal in the composition. The shared would not be
considered as internal events, because the synchronization will happen inside the
scope of service body where the required event is. For example, s w/{a}−−−→ s′ and
r

a/T−−→ r′ will be composed to (s, r) w/T−−→ (s′, r′). Event a happens internally in
service body of w. If w is an internal event of a component, it means w can happen
in the component and obviously a cannot happen at any state actively.

Now, we define composition operation, called product, of component automata. Two
component automata synchronize on events in shared. Consider component au-
tomata C1 and C2, if requirement T of provided/internal event w of C1 contains
shared events, in the product, requirement will be updated based on the internal
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product betweenM(T ) and component automaton C2. If C2 6|=M(T ), the product
will go to f state when w is invoked, because it means the services provided by C2
is not enabled In the composition, we still use f as error state for any component
automaton for simplicity.

Definition 3.4.3 (Product). Given two composable component automata C1 and
C2, product C1⊗C2 is defined as (S, s0, f, P,R,A, δ), and shared = (P1∩R2)∪ (P2∩
R1) where

− S = S1 × S2, s0 = (s1
0, s

2
0), and we still use f to denote the error state;

− P = (P1 ∪ P2) \ shared;

− R = (R1 ∪R2) \ shared;

− A = A1 ∪ A2;

− δ is defined as follows, for any reachable state (s1, s2) ∈ S:

– If there is s1
w/T−−→ s′1 of C1, where f /∈ intR(s′1),

∗ if C 6|=shared M(T ), then (s1, s2) w/{ε}−−−→ f is added into δ;
∗ otherwise, the following set of transitions are added in δ:

{(s1, s2) w/T ′−−−→ (s′1, s′2) |

T ′ = {conc(`) | q0
`==⇒ (s′2, t) in M, (s′2, t) ∈ F}}

where C2(s2) Cshared M(T ) is (Q,R, q0, F, σ).

– Symmetrically, if there is s2
w/T−−→ s′2 of C2, transitions are added to δ

similarly to the above.

Notes: conc(`) is the regular set obtained by concatenating all the elements of the
sequence `.

Example 3.4.3. We build CAlarm ⊗ CBlink. The automata we mention in this ex-
ample are graphically shown in Figure 3.15

In the product,

shared = {BlinkOn,BlinkOff },
P = {set, change, cancel, ring, stop}, and
R = {Tstart,Tstop,Tadd,Tremove, SoundOn, SoundOff }.
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astart b c

M1

Tstart Tadd a,0start b,0 c,0

CBlink Cshared M1

{Tstart} {Tadd}

0,0start 1,0 2,1

CAlarm ⊗ CBlink

set/Tstart · Tadd

cancel/Tstop · Tremove

change/Tstop · Tremove · Tstart · Tadd

ring/SoundOn

stop/SoundOff

Figure 3.15: Composition of CAlarm and CBlink

Here, we show how transitions are added by presenting two cases here. The oth-
ers are similar. The initial state is (0, 0), we get (0, 0) set/Tstart·Tstop−−−−−−−−−→ (1, 0), from
CBlink Cshared M1 where M1 is the finite state machine accepting Tstart ·Tstop. At
state (1, 0), from CBlink Cshared Mring, there is transition (1, 0) ring/SoundOn−−−−−−−−→ (2, 1).

Product operator is defined based on the internal product of a finite state ma-
chine for the requirement and a component automaton that provides services. From
Lemma 3.4.1, we know the conditions of C |=shared M by trace inclusions. Here, we
present a lemma stating a solution for calculating new requirement in the composi-
tion.

Lemma 3.4.3. In the definition of C1 ⊗ C2, given a reachable state (s1, s2) and
s1

w/T−−→ s′1 such that C(s2) |=shared M(T ), for any set SQ of sequences of regular set
over R, there exists (s1, s2) w/conc(SQ)−−−−−−−→ (s′1, s′2), if and only if for each sq ∈ SQ there
exists s2

tr==⇒ s′2 of C2 and α ∈ T such that α |̀ shared ∈ ptraces(tr) and

sq |̀ Σ1 = π2(tr)|̀ Σ1, and sq |̀ Σ2 = R(α)|̀ Σ2

where Σ1 is a set of regular sets over R2 and Σ2 is a set of singleton 〈a〉 where
a ∈ R1 \ shared. conc(SQ) = {conc(sq) | sq ∈ SQ}.

Proof. This lemma follows directly from Lemma 3.4.2 and Definition 3.4.3.

From this lemma, the new requirement of transitions added in Definition 3.4.3 can
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be written
T ′ = {conc(sq) |∃tr ∈ traces(C(s2)), α ∈ T•

α |̀ shared = ptraces(tr) ∧
sq |̀ Σ1 = π2(tr)|̀ Σ1 ∧
sq |̀ Σ2 = R(α)|̀ Σ2}

3.4.3 Plugging

Product is the general composition for any composable components and it is com-
plicated because of the service invocation may happen from both sides. In practice,
however, software engineers usually reduce the dependency of components on the en-
vironment by plugging closed components into open components. This only requires
to check whether services provided by the component can satisfy the requirement
declared in the required interface of open components.

We say component C2 is pluggable to C1, in the composition of C1 and C2, component
C2 only provide services to C1 without requiring any service from C2.
Definition 3.4.4 (Pluggable). Given two component automata C1 and C2, C2 is
pluggable to C1, if they are composable, and P2 ⊆ R1.

We see that component automata CBlink and CSound of Blink and Sound components
are pluggable to CAlarm of Alarm component. Next, the plugging operation is defined
as product of pluggable component automata.
Definition 3.4.5 (Plugging). Given two automata C1 and C2, if C2 is pluggable
to C1, then the plugging C1�C2 is C1 ⊗ C2.

In plugging, shared = P2 P = P1, R = (R1 ∪R2) \ P2, and A = A1 ∪ A2.

Actually, the example CAlarm⊗CBlink is also C, and can be written CAlarm�CSound.

The following theorem states that the conditions that a provided trace is preserved
in the plugging, and the traces of plugging can be directly calculated from traces of
the two component automata.
Theorem 3.4.1. Consider two automata C1 and C2 that C2 is pluggable to C1.
Given a sequence pt of P .

1. pt ∈ ptraces(C1�C2), if and only if pt ∈ ptraces(C1) and rtraces1(pt) |̀ P2 ⊆
uptraces(C2).
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2. if pt is provided traces of both C1 and C1�C2, the relation between rtraces1(pt)
and rtraces(pt) is as follows:

rtraces(pt) = {conc(sq) |∃tr ∈ traces(C2), α ∈ rtraces1(pt)•
α |̀ P2 = ptraces(tr) ∧
sq |̀ Σ1 = π2(tr)|̀ Σ1 ∧
sq |̀ R2 = R(α)|̀ R2}

where Σ1 is set of regular sets of R1.

Proof. The proof is:

1. This is proved from Lemma 3.4.1.
Direction =⇒: pt ∈ ptraces(C1�C2), then there must be pt ∈ ptraces(C1)
and during every step transition C2 |=P2 M where M is the requirement of
element of pt. By Lemma 3.4.1, traces1(pt) |̀ P2 ⊆ uptraces(C2).
Direction⇐=: becauseR2∩P1 =, it can be similarly deduced from Lemma 3.4.1.

2. This is proved from Lemma 3.4.3 by induction on the length of transitions.
The base case directly follows from Lemma 3.4.3. Consider (s1

0, s
2
0) tr==⇒ (s1

1, s
1
2)

and (s1
1, s

1
2) w/T ′−−−→ (s1

2, s
2
2). There is s1

1
w/T−−→ s2

1. Let pt1 be ptraces(tr). By
induction hypothesis, there is:

rtraces(pt) = {conc(sq) |∃tr ∈ traces(C2), α ∈ rtraces1(pt)•
α |̀ P2 = ptraces(tr) ∧
sq |̀ Σ1 = π2(tr)|̀ Σ1 ∧
sq |̀ R2 = R(α)|̀ R2}

By Lemma 3.4.3, there is:
T ′ = {conc(sq) |∃tr ∈ traces(C2(s2

1)), α ∈ T•
α |̀ P2 = ptraces(tr) ∧
sq |̀ Σ1 = π2(tr)|̀ Σ1 ∧
sq |̀ R2 = R(α)|̀ R2}

So,
rtraces(pt · (w |̀ P )) = rtraces(pt) · T ′ =

{conc(sq) | ∃tr ∈ traces(C2), α ∈ rtraces1(pt) · T•
α |̀ P2 = ptraces(tr) ∧
sq |̀ Σ1 = π2(tr)|̀ Σ1 ∧
sq |̀ R2 = R(α)|̀ R2}
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The following corollary directly follows as a special case of Theorem 3.4.1 that C2
is a closed component automaton. When all required services are provided non-
blockably, the plugging can be easily obtained. Note that states in component
automata are only symbolic notions to be used to control the order of service invo-
cation. So, in C1�C2 when R2 is ∅ and C2 provides all the services required by C1
on P2 non-blockably, we keep the notions of states of C1 in the plugging.

Corollary 3.4.1. Given two automata C1 and C2 such that C2 is pluggable to C1
and R2 = ∅:

− given any pt, the relation between rtraces(pt) and rtraces1(pt) is: rtraces(pt) =
{sq |̀ R | sq ∈ rtraces1(pt)}.

− if rtraces(C1) |̀ P2 ⊆ uptraces(C2), then C1�C2 = (S, s0, f , P1, R1 \ P2, A1 ∪
A2, δ

′
1) where δ′1 is obtained from δ1 by replacing elements in R2 with ε.

In the example of CAlarm�CBlink, we see rtraces(CAlarm) |̀ PBlink = (BlinkOn ·
BlinkOff )∗ + (BlinkOn · BlinkOff )∗ · BlinkOn. And the required traces are obvi-
ously non-blockablein CBlink. So, all the provided traces of CAlarm are preserved
in the plugging. From the corollary, the plugging CAlarm�CBlink�CSound (shown
in Figure 3.16) can be directly obtained by removing the BlinkOn, BlinkOff , and
SoundOn, SoundOff .

start

CAlarm�CBlink�CSound

set/Tstart · Tadd

cancel/Tstop · Tremove

change/Tstop · Tremove · Tstart · Tadd

ring/{ε}

stop/{ε}

Figure 3.16: Composition of CAlarm and CBlink and CSound

3.4.4 Composition of Component Interface Automata

The product operation is not closed for component interface automata, that is, the
product of two component interface automata may contain blockable traces. This is
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because of what we call output-non-determinism of components. Components may
decide which required trace to choose when providing services. This is sometimes a
design error for some components. For example, in a bad designed pay component,
it provides pay and requires cash or card. The transitions step will consist transition
(pay, {cash, card}). In this case, to guarantee safe call of pay, both cash and card are
required. A “better” design should let the clients to choose the way to pay. Then,
it provides cashpay and cardpay which require cash and card, respectively.

Here, I use one personal experience as an example to show the idea how new block-
able behavior arises in the product of interfaces.

Example 3.4.4. There are two component interface automata I1 and I2, shown in
Fig. 3.17. Interface I1 provides a smart-connect service which can choose either 3G
or wifi based on which one is faster at run-time. However, there is a internet phone
call app, of which the interface I2 shows that service call is only available when wifi
is connected, due to a configuration which aims to use 3G as less as possible. So, in
product I1 ⊗ I2, 〈smartCon, call〉 is blockable.

0start 1

I1

smartCon/{3G,wifi}

0start

1

2 3

I2

3G/

wifi/

call/

0,0start

1,1

1,2

1,3

1,4

I1 ⊗ I2

smartCon/

smartCon/

call/

Figure 3.17: Product of two component interface automata

So we introduce a new composition operator of component interface automata based
on product and Algorithm 2.

Definition 3.4.6 (Composition). Given two composable component interface au-
tomata I1 and I2, the composition I1 ‖ I2 is I(I1 ⊗ I2).

In Figure 3.17, so I1 ‖ I2 should be I1 ⊗ I2 by removing the call transition. This
makes the interface very “limited”, but this is still very useful and important to let
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the clients be aware of this rather than to face failure in making call during run
time.

The composition seems restrictive, however, we believe that any services that may
be blocked during run time should not be presented to the clients in the interface.
The interface property that all behaviors specified in the interfaces should be non-
blockable is important in building reliable software system.

3.4.5 Hiding and Renaming

In this part, we definehiding and renaming for flexible reuse of components. The
meaning is intuitive from this composition.

We think the compositions are intuitive enough that we will only give the definitions
without going to details about properties, such as traces, blockableness, and interface
properties of these two compositions.

Definition 3.4.7 (Hiding). Given a component automaton C and a set of provided
events E ⊆ P , hiding E from C is C\E = (S, s0, f, P \ E,R,A ∪ E, δ′) where δ′ is
obtained from δ by removing transitions of E

Given a alphabet set P ′ with fresh variables different from P . f : P → P ′ is a
partial transformation, which renames p ∈ P as f [p] in P ′.

Definition 3.4.8 (Renaming). Given a component automaton C and a partial
injective function f : P∪R∪A→ P ′∪R′∪A′ where all P,R,A, P ′, R′, A′ are disjoint
with each other. Renaming C by f is f [C] = (S, s0, f , f [P ], f [R], f [A], f [δ]), where
f [δ] is the transition set by renaming corresponding label names of each transition
by f in δ.

3.5 Refinement

Then we study refinement relation between component automata. Refinement is one
of the key issues in component based development. It is mainly for substitution at
interface level. We define a refinement relation by state simulation technique [Mil95].
The intuitive idea is state s′ simulates s, if at state s′ more provided events are
non-blockable, less required traces are required and the next states following the
transitions keep the simulation relation, which is similar to alternating simulation
in [DH01].
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Let C be a component automaton, some non-blockable provided events at a given
state s may also be refused. For example, provided event c at state 3 may be
refused shown in Fig. 3.9. which is caused by non-determinism after provided event
a is called. Therefore, the refusal set at s, i.e., refusals(s) in Definition 3.3.9, is a
subset of non-blockable(s). Therefore, the refusal set by our definition is a little
different from the one in CSP.

Below, we define a strong simulation relation between states. Refinement relation
between component automata then will be defined based on the simulation relation
between its initial states. So, in the following definition, we will not claim whether
these two states and transitions are in the same or different automata. We recall
that refusals(s) = non-blockable(s) \ ⋃

(Q,s)∈SI
non-blockable(Q, s). That is also

⋂
(Q,s)∈SI

(non-blockable(s) \ non-blockable(Q, s)).

And we get

non-blockable(s) \ refusals(s) =
⋃

(Q,s)∈SI

non-blockable(Q, s)

Definition 3.5.1 (Strong simulation). A binary relation R over the set of states
of component automata is a simulation if and only if whenever s1Rs2:

1. refusals(s2) ⊆ refusals(s1);

2. if s2
w/−→ f with w ∈ A ∪ P , then s1

w/−→ f ;

3. if s1
w/T−−→ s′1 with w ∈ A ∪ non-blockable(s1) \ refusals(s1), there exists s′2 and

T ′ such that s2
w/T ′−−−→ s′2 where T ′ ⊆ T and s′1Rs′2;

4. for any transitions s2
w/T ′−−−→ s′2 with w ∈ A ∪ non-blockable(s1) \ refusals(s1),

then there exists s′1 and T such that s1
w/T−−→ s′1 where T ′ ⊆ T and s′1Rs′2;

We say that s2 simulates s1, written s1 . s2, if (s1, s2) ∈ R. C2 refines C1, denoted
by C1 valt C2, if there exists a simulation relation R such that s1

0Rs2
0, where div or

f are not internally reachable from s1
0 and s2

0, and P1 = P2, R2 = R1, and A1 = A2.

First, refusals(s2) ⊆ refusals(s1) is used to assure that s2 is less likely to allow events
that are in blockable traces. Second, we would like to remove the case s2

a/−→ f and
s1

a/−→ s′1, that means s2 is better at avoiding the error state. Third, it implies for
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any non-blockable and non-refusal provided transitions, s2 can always do same as
s1, that shows s2 can provide as much as s1. Fourth, for all transitions that are
non-blockable and non-refusal in s1, the requirement at state s2 is simulated by s1,
that is, s1 always requires as much as s2. By these, we would expect state s2 can
provide as much as s1 while requiring less, and s2 is better at avoiding error and
blockable transitions.

We get the following proposition.

Proposition 3.5.1. Given a simulation relation R, for each (s1, s2) ∈ R.

1. state s1 is stable, if and only if s2 is stable.

2. s1 is divergent, if and only if s2 is divergent.

3. if a ∈ non-blockable(s1) \ refusals(s1), then a ∈ non-blockable(s2). That
is non-blockable(s1) \ refusals(s1) ⊆ non-blockable(s2) \ refusals(s2), since
refusals(s2) ⊆ refusals(s1).

Proof. The proof is:

1. In the definition, when w ∈ A, it implies that if one has internal transition,
the other also has internal transition.

2. because they simulate each other on internal transitions.

3. if a /∈ non-blockable(s2), there exists transs2trs′2 with ptraces(tr) = a such
that either s′2 is divergent or error state, or that a /∈ outP (s′2) where s2 is stable.
From both cases, we can deduce that a /∈ non-blockable(s1). By contradiction,
it is proved.

Next, we show that refinement relation is reflexive and transitive.

Proposition 3.5.2. Refinement is reflexive and transitive.

Proof. Reflexivity: for any component automaton C, R = {(s, s) | s ∈ S} is a
simulation relations with (s0, s0) ∈ R. So C valt C.

Transitivity is that, for any C1, C2, and C3 such that C1 valt C2 and C2 valt C3,
then C1 valt C2.
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Let R1 and R2 be the strong simulation for the refinement C1 valt C2 and C2 valt C3,
respectively. We would prove that R = {(s1, s3) | ∃s • (s1, s) ∈ R1, (s, s3) ∈ R} is a
strong simulation relation. For any (s1, s3) ∈ R, there exists s such that (s1, s) ∈ R1
and (s, s3) ∈ R2,

1. refusals(s) ⊆ refusals(s1) and refusals(s3) ⊆ refusals(s). So, refusals(s3) ⊆
refusals(s1).

2. if s3
w/−→ f , then s

w/−→ f which implies s1
w/−→ f .

3. if s1
w/T1−−−→ s′1 with w ∈ A ∪ non-blockable(s1) \ refusals(s1), there exists s′

and T such that s w/T−−→ s′ and (s′1, s′) ∈ R1. From last proposition, we know
w ∈ A∪ non-blockable(s) \ refusals(s). Thus, there exists s′3 and T3 such that
s3

w/T3−−−→ s′3, T3 ⊆ T and (s′, s′3) ∈ R2. So (s′1, s′3) ∈ R.

4. for any s3
w/T3−−−→ s′3 with w ∈ A ∪ non-blockable(s1) \ refusals(s1), because

non-blockable(s1) \ refusals(s1) ⊆ non-blockable(s) \ refusals(s), there exists
s′ and T that s w/T−−→ s′, T3 ⊆ T , and (s′, s′3) ∈ R2. Then there also exits s′1
and T1 such that s1

w/T1−−−→ s′1, T ⊆ T1, and (s′1, s′) ∈ R1. Thus, (s′1, s′3) ∈ R.

We see that automaton of CbadBlink in Figure 3.6 is refined by CBlink in Figure 3.5.
The simulation set is {(0, 0), (1, 1), (2, 1)}. In CbadBlink, refusals(1) = {BlinkOff }.
In CBlink, refusals(1) = ∅.

Simulation in CCS [Mil95] is used to differentiate non-determinism which traces
cannot do. For example in the following example (shown in Figure 3.18), s0 strongly
simulates r0 and the strong simulation relation set is {(s0, r0), (s1, r1), (s2, r2)}. But
r0 can’t simulate s0. In the view of providing non-blockable traces, we think the
one with r0 as initial state is better. We constrain the simulation on refusal set.
Then in our definition, r0 strongly simulates s0, that is, s0 . r0 with the simulation
relation set {(s0, r0), (s1, r1), (s3, r1)}. non-blockable(s1) \ refusals(s1) = ∅, because
refusals(s1) = {b} and non-blockable(s1) = {b}. non-blockable(r1) \ refusals(r1) =
{b}, because non-blockable(r1) = {b} and refusals(r1) = ∅.

The above definition is quite similar to the alternating simulation given in [DH01].
But they are different, and main differences include: first of all, in our definition, we
only require a pair of states keep the simulation relation w.r.t. the provided services
that could not result in deadlock; in addition, we also require a refinement should



3.5. REFINEMENT 97

s0start

s1 s2

s3 s4

a/

a/

c/

b/

r0start r1 r2
a/ b/

Figure 3.18:

have smaller refusal sets at each location, which is similar to the stable failures model
of CSP. Also notice that our refinement is not comparable with the failure refinement
nor the failure-divergence refinement of CSP, because of the different requirements on
the simulation of provided methods and required methods. However, if we suppose
no required methods, our definition is stronger than the failure refinement as well
as failure-divergence refinement as we explained above.

The simulation is altering on provided/internal events and requirement. That
means, when s1 . s2, s2 can provide as much as s1 but require less for the sim-
ulated provided/internal events. So, in the following example of Figure 3.19, there
exists r′0 . s′0

s′
0start s′

1
a/{α, β, γ}

r′
0start

r′
1

r′
2

a/{α}

b/{β}

Figure 3.19:

The following theorem indicates the component interface automaton constructed
by Algorithm 2 is a refinement of the considered component automaton w.r.t. the
above definition, which justifies that we can safely use the resulted component in-
terface instead of the component at the interface level. The theorem also states that
the Algorithm 2 preserves the refinement relation. The proof is mainly to find a
simulation relation.

Theorem 3.5.1. The following two properties hold for the refinement relation:

1. Given a component automaton C, then C valt I(C).

2. Given two component automata C1 and C2 such that C1 valt C2, then

I(C1) valt I(C2)

.
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Proof. We prove the first part by R = {(s, (Q, s)) | s ∈ S, (Q, s) ∈ SI} and show R
is a simulation relation.

For any sR(Q, s),

1. refusals(Q, s) ⊆ refusals(s), because refusals(Q, s) = ∅, and f is not reachable
in (Q, s).

2. If s a/T−−→ s′ with a ∈ non-blockable(s)\refusals(s), From definition of refusals(s),
there a ∈ ⋃

(Q′,s)∈SI
non-blockable(Q′, s). So a ∈ non-blockable(Q, s) that im-

plies there exists Q′ such that (Q, s) a/T−−→ (Q′, s′). Obviously, s′R(Q′, s′).

If s ;w/T−−−→ s′ with ;w ∈ A, then (Q, s) ;w/T−−−→ (Q, s′). Obviously, s′R(Q, s′),

3. for any (Q, s) e/T−−→ (Q′, s′) with e ∈ A∪non-blockable(s)\refusals(Q, s). Then
s

e/T−−→ s′ and s′R(Q′, s′).

From above, we see R is a simulation relation. So C valt I(C), because s0R({s0}, s0).

Now we prove the second part of the theorem. Let R be a simulation relation for
C1 valt C2 and (s1

0, s
2
0) ∈ R.

We consider relation R′ and it is the smallest set constructed by the following rules:

1. ((Q1
0, s

1
0), (Q2

0, s
2
0)) ∈ R′,

2. ((Q1, s1), (Q2, s2)) ∈ R′ and (s′1, s′2) ∈ R′,

s1
w/T−−→ s′1 s2

w/T ′−−−→ s′2 T ′ ⊆ T

((Q1, s
′
1), (Q2, s

′
2)) ∈ R′ w ∈ A

s1
a/T−−→ s′1 s2

a/T ′−−→ s′2 T ′ ⊆ T

(δ1(Q1, a), s′1), (δ2(Q2, a), s′2) ∈ R′ a ∈ non-blockable(s1) \ refusals(s1)

where δ(Q, a) = {s′ | ∃s ∈ Q, T • s a==⇒ s′}

We need to prove R is a simulation relation and ((Q1
0, s

1
0), (Q2

0, s
2
0)) ∈ R′, where

(Q,
0s

1
0) and (Q2

0, s
2
0) are the initial states of I(C1) and I(C2).

First, it can be proved that if ((Q1, s1), (Q2, s2)) ∈ R′ then (s1, s2) ∈ R by the
structural induction. For any ((Q1, s1), (Q2, s2)) ∈ R′,
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1. refusals(Q1, s1) = refusals(Q2, s2) = ∅, because refusals in interface automata
are empty. f is not reachable.

2. we prove the next two cases:

− if (Q1, s1) w/T−−→ (Q′1, s′1) with w ∈ A, then Q′1 = Q1 and s1
w/T−−→ s′1. Be-

cause (s1, s2) ∈ R, so there exists s′2 and T ′ ⊆ T such that s2
w/T ′−−−→ s′2. So,

(Q2, s2) w/T ′−−−→ (Q2, s
′
2). From the definition, we see ((Q1, s

′
1), (Q2, s

′
2)) ∈

R′

− if (Q1, s1) a/T−−→ (Q′1, s′1) with a ∈ non-blockable(Q1, s1) \ refusals(Q1, s1),
then s1

a/T−−→ s′1 and Q′1 = δ(Q1, a) and a ∈ non-blockable(s1). Because,
non-blockable(s1) \ refusals(s1) = ⋃

(s,Q)∈S1
I

non-blockable(s,Q), so a ∈

non-blockable(s1). Then because (s1, s2) ∈ R and a ∈ non-blockable(s1)\
refusals(s1), then there is s2

a/T ′−−→ (s′2) such that T ′ ⊆ T and (s′1, s′2) ∈ R.
Let Q′2 be δ(Q2, a). Then there exists (Q2, s2) a/T ′−−→ (Q′2, s′2). From the
definition of R′, we see ((Q′1, s′1), (Q′2, s′2)) ∈ R′.

3. we need to prove the two cases:

− for any tranQ2, s2w/T
′Q2, s

′
2 with w ∈ A, it implies that s2

w/T ′−−−→ s′2.
Since (s1, s2) ∈ R, so there exists T and s′1 such that T ′ ⊆ T , s1

w/T−−→
s′1, and (s′1, s′2) ∈ R. Then there exists (Q1, s1) w/T−−→ (Q1, s

′
1). So,

((Q1, s
′
1), (Q2, s

′
2)) ∈ R′.

− for any (Q2, s2) a/T ′−−→ (Q′2, s′2) with a ∈ non-blockable(Q1, s1)\refusals(Q1, s1),
then s2

a/T ′−−→ s′2, Q′2 = δ(Q2, a) and a ∈ non-blockable(s1). Because,
non-blockable(s1) \ refusals(s1) = ⋃

(s,Q)∈S1
I

non-blockable(s,Q), so a ∈

non-blockable(s1). Then, because (s1, s2) ∈ R and a ∈ non-blockable(s1)\
refusals(s1), then there is s1

a/T−−→ (s′1) such that T ′ ⊆ T and (s′1, s′2) ∈ R.
Let Q′1 be δ(Q1, a). Then there exists (Q1, s1) a/T−−→ (Q′1, s′1). From the
definition of R′, we see ((Q′1, s′1), (Q′2, s′2)) ∈ R′.

The above proof shows that R′ is a simulation relation. And from definition of R′,
then ((Q1

0, s
1
0), (Q2

0, s
2
0)) ∈ R′. So I(C1) valt I(C2).

Next, we would discuss about the relation of traces in the refinement relation. First,
we need define a relation between traces, which is preorder.
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Definition 3.5.2. We define the following relation between traces. � is a smallest
set defined by following rules:

1. ε � ε,

2. 〈(w, T )〉 � 〈(w, T ′)〉, if T ′ ⊆ T and w ∈ A ∪ P ,

3. tr1 · tr2 � tr ′1 · tr ′2, if tr1 � tr ′1 and tr2 � tr ′2.

It can be proved by structural induction that this relation is preorder, that is,
reflexive and transitive.

The following lemma gives extension version of Definition 3.5.1.

Lemma 3.5.1. For two component automaton C1 and C2, if C1 valt C2 with R as
the simulation relation.

1. If s1
0

tr1==⇒ s1 with ptraces(tr1) ∈ uptraces(C1), then ptraces(tr1) ∈ uptraces(C2)
and there exists s2 and tr2 such that s2

0
tr2==⇒ s2, tr1 � tr2, and (s1, s2) ∈ R.

2. If s2
0

tr2==⇒ s2 with ptraces(tr2) ∈ uptraces(C1), there exists s1 and tr1 such that
s1

0
tr1==⇒ s1, tr1 � tr2, and (s1, s2) ∈ R.

Proof. The proof is by induction on the length of transitions. The base case follows
directly from Definition 3.5.1.

1. We consider s1
0

tr1·(w/T )======⇒ s1 with ptraces(tr1) · (w |̀ P ) ∈ uptraces(C1). Then
there exist s1

0
tr1==⇒ s′1 and s′1

w/T−−→ s1. By induction hypothesis, ptraces(tr1) ∈
uptraces(C2) and there exist s′2 and tr2 such that s2

0
tr2==⇒ s′2, tr1 � tr2, and

(s′1, s′2) ∈ R. By Propositions 3.5.1 and 3.3.1, uptraces(tr1) ·w ∈ uptraces(C2),
if w ∈ P . Because ptraces(tr1) · w is non-blockable, if w ∈ P , then w /∈
refusals(s′1). So by Definition 3.5.1. There exist s2 and T ′ such that s′2

w/T ′−−−→ s2,
T ′ ⊆ T , and (s1, s2) ∈ R. So s2

0
tr2·(w,T ′)======⇒ s2, tr1 · (w, T ) � tr2 · (w, T ′), and

(s1, s2) ∈ R.

2. We consider s2
0

tr2·(w/T ′)======⇒ s2 with ptraces(tr1) · (w |̀ P ) ∈ uptraces(C1). Then
there exist s2

0
tr2==⇒ s′2 and s′2

w/T ′−−−→ s2. By induction hypothesis, there exist s′1
and tr1 such that s2

0
tr2==⇒ s′2, tr1 � tr2, and (s′1, s′2) ∈ R. Because ptraces(tr1)·w

is non-blockable, if w ∈ P , then w /∈ refusals(s′1). So by Definition 3.5.1.
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There exist s1 and T such that s′1
w/T−−→ s1, T ′ ⊆ T , and (s1, s2) ∈ R. So

tr1 · (w, T ) � tr2 · (w, T ′), s1
0

tr1·(w,T )=====⇒ s1, and (s1, s2) ∈ R.

From the lemma, we prove the following theorem shows that a refined component
have more non-blockable provided traces and less required traces.

Theorem 3.5.2. Given two component automata C1 and C2, if C1 valt C2, then

1. uptraces(C1) ⊆ uptraces(C2),

2. for any non-blockable trace tr1 ∈ utraces(C1), then there exists tr2 ∈ utraces(C2)
and tr1 � tr2.

3. for any non-blockable trace tr2 ∈ utraces(C2) if ptraces(tr2) ∈ uptraces(C1),
then there exists non-blockable tr1 ∈ utraces(C1) such tr1 � tr2.

Proof. The theorem naturally follows from Lemma 3.5.1 and Proposition 3.5.1.

From this theorem, we also see that uptraces(C1) ⊆ uptraces(C2) and for any pt ∈
uptraces(C1), there is rtraces1(C2) ⊆ rtraces2(C1).

The following theorem states that the refinement relation of interfaces is preserved
by the composition operator over component automata. Composition operator is
monotonic with refinement relation, that is, we can always replace a component
I1 with a more refined one I2 such that I1 valt I2, compositions with the same
component automaton preserves the refinement relation that I1 ⊗ C valt I2 ⊗ C.
However, the general version, if C1 valt C1 and C2 valt C ′2, then C1⊗C2 valt C ′1⊗C ′2,
does not hold. This is discussed in next section.

Theorem 3.5.3. Given a component automaton C and two component interface
automata I1 and I2 such that C is composable with C1 and C2, if I1 valt I2, then
I1 ⊗ C valt I2 ⊗ C.

Proof. Assume the simulation relation of I1 valt I2 is R. We first prove the relation
R′ = {((s1, s), (s2, s)) | (s1, s2) ∈ R and s ∈ S} has the following property.

Consider ((s1, r), (s2, r)) ∈ R. By Lemma 3.4.1, (s2, r) leads to the error state
implies (s1, r) leads to the error states. We prove by considering the following two
cases.
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First, C1 and C2 requires services from C. If (s1, r)
w/T ′1−−−→ (s′1, r′), we assume that

s1
w/T1−−−→ s′1 and r

tr==⇒ r′. C1 and C2 are non-blockable component automata, so
w ∈ A∪non-blockable(s1)\ refusals(s1). By simulation, there exists s2

w/T2−−−→ s′2 that
T ′2 ⊆ T ′1. Then (s2, r)

w/T ′2−−−→ (s′2, r) that T ′2 ⊆ T ′1, by Lemma 3.4.3.

For any (s2, r)
w/T ′2−−−→ (s′2, r′) with w ∈ A ∪ non-blockable(s2) and w /∈ F(s1, r), then

there exists s2
w/T2−−−→ s′2, r tr==⇒ r′. Then w ∈ A∪non-blockable(s1) and w /∈ F(s1). By

simulation relation, there exists s1
w/T1−−−→ s′1 with T2 ⊆ T1. Then (s1, r)

(w/T ′1)−−−−→ (s′1, r′)
where T ′2 ⊆ T ′1 by Lemma 3.4.3.

Second, C require services from C1 and C2, respectively. If (s1, r)
w/T ′1−−−→ (s′1, r′), we

assume that s1
tr1==⇒ s′1 and r

w/T==⇒ r′. Because C1 and C2 are two non-blockable
component automata, there exists s2

tr2==⇒ s′2 that π2(tr2) ⊆ π2(tr1) and π1(tr2)|̀ P2
=

π1(tr1)|̀ P1
by simulation. Then (s2, r)

w/T ′2−−−→ (s′2, r′) that T ′2 ⊆ T ′1, by Lemma 3.4.3.

For any (s2, r)
w/T ′2−−−→ (s′2, r′), then there exists s2

tr2==⇒ s′2 and r
w/T−−→ r′. Because C1

and C2 are non-blockable component automata, there exists s1
tr1==⇒ s′1 that π2(tr2) ⊆

π2(tr1) and π1(tr2)|̀ P2
= π1(tr1)|̀ P1

by simulation. Then (s1, r)
(w/T ′1)−−−−→ (s′1, r′) where

T ′2 ⊆ T ′1 by Lemma 3.4.3.

refusals(s2) ⊆ refusals(s1), then refusals(s2, r) ⊆ refusals(s1, r).

For both cases, s′1Rs′2, so (s′1, r′)R′(s′2, r′), this implies that R′ is an simulation
relation.

Now, we show that the refinement relation is preserved in the composition of inter-
face automata.

Corollary 3.5.1. Given two component interface automata I1, I2, I ′1, and I ′2 such
that I1 valt I ′1 and I2 valt I ′2, if I1 is composable with I2, then I ′1 is composable with
I ′2 and I1 ‖ I2 valt I ′1 ‖ I ′2.

Proof. Because the refinement relation requires they have same provided, required,
and internal events. So, I ′1 is composable with I ′2 too. I1 ⊗ I2 valt I ′1 ⊗ I ′2 from
Theorem 3.5.3. By Lemma 3.5.1, I(I1 ⊗ I2) valt I(I ′1 ⊗ I ′2), that is I1 ‖ I2 valt I ′1 ‖
I ′2.
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Refinement relation is not preserved in the composition of component automata.
However, we show that plugging is monotonic with refinement.

Theorem 3.5.4. Given four component automata C1, C ′1, C2, and C ′2, such that
C1 valt C ′1 and C2 valt C ′2, if C2 is pluggable to C1 and C ′2 is pluggable to C ′1, then

C1�C2 valt C ′1�C ′2.

Proof. Let R1 and R2 be the strong simulations for C1 valt C ′1 and C2 valt C ′2. First
we prove (s1, s

′
1) ∈ R1 and (s2, s

′
2) ∈ R2. Let R ⊆ {((s1, s2), (s′1, s′2)) | (s1, s

′
1) ∈

R1, (s2, s
′
2) ∈ R2} be a set of relations defined by following rules.

1. s1
0, s

2
0, r

1
0, and r2

0 are initial state of C1, C2, C
′
1, and C ′2, respectively.

((s1
0, s

2
0), (r1

0, r
2
0)) ∈ R

2. For ((s1, s2), (s′1, s′2)) ∈ R,

− if w ∈ A, (s1, s2) w/T−−→ (r1, r2) and T ′ ⊆ T

such that (s′1, s′2) w/T ′−−−→ (r′1, r′2), (r1, r
′
1) ∈ R1, and (r2, r

′
2) ∈ R2, or

− if a ∈ non-blockable(s1, s2) \ refusals(s1, s2), (s1, s2) a/T−−→ (r1, r2), and
T ′ ⊆ T such that (s′1, s′2) a/T ′−−→ (r′1, r′2), (r1, r

′
1) ∈ R1, (r2, r

′
2) ∈ R2,

then,
((r1, r2), (r′1, r′2)) ∈ R

Similarly, R is a simulation relation by structural induction. So, C1�C2 valt
C ′1�C ′2.

3.6 Discussion and Conclusion

3.6.1 Internal Transitions

The component follows the run-to-complete semantics of the provided services. An
invocation to the provided services is executed in the atomic way, i.e. once one
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provided service is invoked, before its completion no other invocation to provided
services can be accepted. However, in composition with other components, internal
transitions may interleave the required traces. Next, we will discussion about how
internal transitions are kept on interface model.

Internal transitions are kept on interface model mainly because the required traces
for internal transitions cannot be removed or be put to the previous or next tran-
sitions, which can change the scope for run-to-complete, and we show these in the
following examples.

The component automaton C with internal transition is shown in Fig. 3.20. First,
we consider removing the internal transition by adding the required traces to the
previous transitions. Then we can interpret the ”required traces” as causality traces
which means that invocation to provided event a may cause 〈x, y〉. It is obvious to
see that a can get blocked in C ′ ⊗ C1, while non-blockable in C ⊗ C1

start

C

a/{x} τ/{y}
start

C ′

a/{x · y}

start

C1

x/ c/ y

Figure 3.20: Traces that are caused

Let’s automata shown in Fig. 3.21, if we put the required traces to the next tran-
sition, we can interpret as required traces. It means that in order to call a, the
environment should provide x before. However, we can see that C ′ ⊗ C1 is empty,
while C ⊗ C1 is shown in Fig. 3.21.

Besides, even in product of C1 and C2, we claim that the internal events are A1∪A2.
However, strictly, it is a subset of A1∪A2. Internal events may happen independently
and it is determined by the component when to take the internal step. However after
being composed with anther component, some “internal” events may disappear. For
example, in a component, there is 0 a/T0−−→ 1 ;b/T1−−−→ 1 c/T3−−→ 2. If in another component
for provided event p which requires a · c, then internal event ; b will be moved inside
the scope of provided event p. Then ; b is not internal event any more and can be
abstracted away without affecting the composition.
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start

C

τ/{x} a/{y}
start

C ′

a/{x · y}

start

C1

x/ b/{a}
start

C ⊗ C1

τ/ b/{y}

Figure 3.21: Traces that are required

3.6.2 Substitution

The refinement relation we defined is proved for interface substitution, not any com-
ponent automaton. Let’s consider one counter example shown in Fig. 3.22 that from
the intuitive idea, we know that I(C1) ‖ I(C2) is refined by C1 ⊗ C2, which shows
that refinement relation is not preserved in the general composition of component
automata. So further study on refinement, specifically substitution of general com-
ponent automata, is left for future work.

3.6.3 Summary

We have presented a model of components that abstracts the data states away,
thus focusing only on interactions and study the non-determinism caused by both
internal behavior and non-deterministic choice of required events. Thus, we define
the interface property as all the services provided are non-blockable with all the
required services are given. We then study the interface property is equivalent to
input-determinism which states that after any transitions with same sequence of
provided events, the component will be at states that have same non-blockable
provided events. An algorithm is developed to check whether a given component
automaton satisfies the interface property or not. Further, an algorithm is developed
to generate the interface model for any given component automaton while preserving
all the non-blockable behaviors.

Components are composed by service invocation, thus, component automata syn-
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start

C1

a/{y}

a/{x}

c

b

start

I(C1)

a/{x}

a/{y} start

C2

y/

x/

z/{c}

z/{b}

start

I(C1) ‖ I(C2)

a/

a/ start

C1 ⊗ C2

a/

a/

z/

z/

Figure 3.22: Component substitution

chronize on shared events that are provided in one and required in the other. One
specific composition operation, called plugging, is defined for a closed component
and an open component. A refinement relation between component automata is de-
fined by state simulation technique with the intuitive idea that a refined component
would provide more services while requiring less.



Chapter 4

Trace-based Model of Components

In the previous chapter, we gave operational descriptions of the interaction behaviors
of components by automata-based models. In this chapter, we will present a trace-
based model of components, called failure models, which can be taken as denotational
descriptions of components. The basic element of the trace-based model consists
of a sequence of service invocations and a set of service invocations that may be
blocked. The related concepts can also be defined for the failure model, such as
input-determinism, non-blockableness, composition operation, and refinement, etc.
For any component, the failure model can be directly obtained from the automata-
based model and it is proved that the concepts defined in these two models are
consistent.

In Chapter 2, the publication of a component specifies what a component provides
and requires, and also the protocol of the dependency order of invocation to provided
and required methods. The order of method invocations of a component can be
deduced from the guards of methods and the initial state.

4.1 Trace-based Model

In Chapter 3, traces and refusals are defined for component automata. In this part,
we use these as basic elements to describe the possible interaction behaviors that
are allowed and refused in the components.

Same as in component automata, we use P , R, and A as the set of events repre-
senting invocation to provided, required, and internal services. The service invoca-
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tion is a pair of provided/internal event and a set of sequences of required events.
For example, in a buffer component, the method body of put includes a required
method call write. The execution of a complete invocation to put is modeled as a
pair (put,write). Generally, the alphabet set of all provided/internal invocations is
Σ(P,A,R) = (P ∪ A)× R where R is the set of non-empty regular sets over R.

In the following, without explicit saying, we use Pi, Ri, and Ai as the set of provided,
required, and internal events, respectively for component Mi.

Definition 4.1.1 (Trace). In component M , a trace is a sequence of elements in
Σ(P,A,R). The set of all traces of M is denoted as traces(M), and traces are
prefixed closed in traces(M).

The traces of component M are all the possible interaction behaviors, but some
may be blocked due to non-determinism caused by internal event, non-deterministic
choice of required events, and abstraction. Traces are not enough to express non-
determinism compared with state transition systems.

For example, 〈w, a〉 is a trace in the closed component described in Fig. 4.1(I), but
it may be blocked due to non-deterministic choice between the next states after 〈a〉.
And similarly the trace 〈w〉 may be blocked in the closed component described in
Fig. 4.1(II), because the component may transit to state 1 due to internal event.

0start
1

2

3

4

(I)

w
a

w
b

0start
1

2

3

(II)

τ
a

w

Figure 4.1: Non-determinism

Another problem of traces is that some trace may directly lead to the deadlock state
or livelock state, like in the component described in Fig. 4.2(I) and (II).

0

start

f
(I)

w 0

start

1
(II)

w
τ

Figure 4.2: Deadlock and Livelock
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In CSP [HH98, Ros98], the set refusals is introduced to describe the set of events
that are refused. For example, both {a} and {b} are refusal in Fig. 4.1, but {a, b} is
not, because a and b cannot be both refused after 〈w〉. In practice, we should avoid
such uncertainty, so we call non− blockable all the events that cannot be refused. A
pair of a trace and a set of non-blockable events is called a failure of the component.

Definition 4.1.2 (Failure). A pair (tr ,N ) ∈ traces(M) × 2P is called a failure of
component M , if after the execution of trace tr, only provided events in N are non-
blockable. All the failures of component M is denoted as failures(M) and given a
failure (tr , X) ∈ failures(M), then there exists (a, T ) with a ∈ X and X ′ such that
(tr 〈̂(a, T )〉, X ′) ∈ failures(M).

The definition implies that given (tr ,N1) and (tr ,N2) of component M , then N1 =
N2. So, given a failure (tr , X), we denote X = N (tr).

4.1.1 Failure Model of Components

Now, a formal definition of failure model of components is given in the following.

Definition 4.1.3 (Failure model of components). A failure model of component M
is a tuple (P,R,A, failures(M)) where P , R, and A are the set of provided, required,
and internal events, respectively, and failures(M) ⊆ 2Σ(P,A,R)×2P is the failure set.

In the following, the failure model of Mi is denoted as (Pi, Ri, Ai,F(Mi)) for any
subscript i.

Given a failure model M , it is easy to derive all the traces of M , that is,

traces(M) = {tr | (tr , X) ∈ failures(M)}.

A provided trace of component is a possible sequence of events that the component
can provide to the environment, that is, pt is a provided trace, if there exists a trace
tr ∈ traces(M) and pt = tr |̀ P . We also say the provided trace of tr is pt, denoted
as pt = ptraces(tr). The set of all the provided traces of component M is written
as ptraces(M).

Given a provided trace pt of component M , the required traces of pt is

rtraces(pt) = {conc(sq) | ∃tr • pt = π1(tr) ∧ sq = π2(tr)}

. The set of all required traces of component M is written as rtraces(M).
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Similarly, we say a provided trace is non-blockable, if it can be called without being
blocked by the component with all the required traces are provided.

Definition 4.1.4 (non-blockableness). A provided trace pt = 〈a0, · · · , ck〉 with k > 0
is non-blockable, if for any prefix pt ′ = 〈a0, · · · , ci〉 with k > i > 0 of pt and for
any failure (sq, X) ∈ F(M) such that pt ′ = ptraces(sq), we have ai+1 ∈ X. A trace
tr is non-blockable, if ptraces(tr) is non-blockable.

Given a provided trace pt, we denote non-blockable(pt) as ⋂{N (tr) | ptraces(tr) =
pt}.

For the failure model M , the set of all non-blockable provided traces is written as
uptraces(M) and the set of all non-blockable traces is written as utraces(M).

The failure model is a denotational description of components and it may also con-
tain traces that may be blocked. So we present an input-deterministic failure model
in which all traces are non-blockable.

Definition 4.1.5. A failure model M is input-deterministic, also called interface
model, if all the traces are non-blockable.

In last chapter, components are modeled as component automata, and we give the
definition of failures for component automata.

Definition 4.1.6 (failure of component automata). Let C be a component automa-
ton, (tr , X) ∈ traces(C)× 2P is a failure, if

tr ∈ traces(C) and X =
⋂

s0
tr==⇒s

non-blockable(s).

All the failures of C is written as failures(C).

Next, we give the failure model of components described as component automata.

Definition 4.1.7 (failure model of component automata). The failure model of
component automaton C is (P,R,A, failures(C)) and written as JCKF .

The following theorem states the failure model is consistent with component au-
tomata in traces, provided traces, and input-determinism.

Theorem 4.1.1. Let C be a component automaton and JCKF is the failure model
of C. So,
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− traces(C) = traces(JCKF ), ptraces(C) = ptraces(JCKF ),

− C is input-deterministic, if and only if JCKF is input-deterministic.

Proof. For any trace tr ∈ traces(C), it implies that there exists state s such that
s0

tr==⇒ s, so there is a failure (tr , X) ∈ failures(C). Then tr ∈ traces(JCKF ). For
any trace tr ∈ tracesJCKF , then there exists X such that (tr , X) ∈ failures(JCKF ),
so (tr , X) ∈ failures(C). That means tr ∈ traces(C). From above, traces(C) =
traces(JCKF ). Then it is obvious that ptraces(C) = ptraces(JCKF ).

Since the input-determinism is equivalent with that all traces are non-blockable, we
only need to prove that for any provided trace pt that pt is non-blockable in C, if
and only if pt is non-blockable in JCKF . First, we prove the direction from left to
right. Let pt be 〈a1, · · · , ak〉 with k ≥ 0. For any k > i ≥ 0 and any state s that
s0

tr==⇒ s with ptraces(tr) = 〈a0, · · · , ai〉, ai+1 ∈ non-blockable(s). So there exists
a failure (tr , X) ∈ failures(C) such that ai+1 ∈ X. By Definition 4.1.4, we get pt
is non-blockable in JCKF . The other direction can be proved similarly. So, C is
input-deterministic if and only if JCKF is input-deterministic.

4.1.2 Plugging Operation

In this part, we present the plugging operation of failure models. In component-
based design, the final goal for component software designers is to make components
closed, which means that components provide services or methods without relying
on other components so that they can be reused directly.

Definition 4.1.8 (pluggable). Given two failure models M1 and M2, M2 is pluggable
to M1, if the following conditions are satisfied

− P2 ⊆ R1 and R2 = ∅,

− A2 ∩ (P1 ∪R1 ∪ A1) = ∅

The plugging operation is to check whether the requirement of open components can
be satisfied by the given closed components and return the composite components.

Definition 4.1.9 (Plugging). Given two failure models M1 and M2, and M2 is
pluggable to M1, the plugging M1�M2 is given by

− P = P1,
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− R = R1 \ P2,

− A = A1 ∪ A2,

− (tr , X) ∈ failures(M1�M2), if

– (tr1, X1) ∈ failures(M1),
– rtraces(tr1) |̀ P2 ⊆ uptraces(M2),
– tr = tr1 � P2,
– X = {a ∈ X1 | tr 〈̂(a, T )〉 ∈ traces(M1) ∧ rtraces(tr 〈̂(a, T )〉) |̀ P2 ⊆

uptraces(M2)}.

The plugging component C1 is compatible with the plugged component C2, if C1
can provide all the services required by C2 non-blockably.

Definition 4.1.10 (Compatibility). Given two failure models of components M1
and M2 such that M2 is pluggable to M1, we say M2 is compatible with M1 if
rtraces(M1) |̀ P2 ⊆ uptraces(M2).

We see that the compatibility checking is easily done by trace-inclusion checking.

The following theorem shows the compositional properties of failure models.

Theorem 4.1.2. Given component C1 and C2, if C2 is pluggable to C1, then JC2KF
is pluggable to JC1KF , and JC1KF �JC2KF = JC1�C2KF .

Proof. If C2 is pluggable to C1, it is trivial that JC2KF is pluggable to JC1KF by
Definition 3.4.4 and Definition 4.1.9. The next part of the theorem follows directly
from Theorem 3.4.1.

4.2 Refinement

In Chapter 3, refinement is defined by state simulation. In this part, we study
the refinement relation between components by failure set. The preorder of traces
defined in Definition 3.5.2 is used to give the following definition.

Definition 4.2.1 (Failure refinement). Given two failure models M1 = (P1, R1, A1,F1)
and M2 = (P2, R2, A2,F2), M2 is a refinement of M1, denoted as M1 vf M2, if
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− P1 = P2, R1 = R2, and A1 = A2;

− uptraces(M1) ⊆ uptraces(M2).

− Given any pt ∈ uptraces(M1),

– if tr2 ∈ utraces(M2) with ptraces(tr2) = pt, there exists tr1 ∈ utraces(M1)
such that tr2 � tr1 and N (tr2) \ non-blockable(ptraces(tr2)) ⊆ N (tr1) \
non-blockable(ptraces(tr1));

– if tr1 ∈ utraces(M1) with ptraces(tr1) = pt, there exists tr2 ∈ utraces(M2)
such that tr2 � tr1 and N (tr2) \ non-blockable(ptraces(tr2)) ⊆ N (tr1) \
non-blockable(ptraces(tr1));

The next theorem states that the refinement relation of failure models is consistent
with that of automata-based models

Theorem 4.2.1. Let C1 and C2 be two component automata, C1 valt C2, iff
JC1KF vf JC2KF .

Proof. The proof is:

− ”⇒ ” : It is naturally from Theorem 3.5.2.

− ” ⇐: ” We introduce relation R = {(s1, s2) | ptraces(tr1) = ptraces(tr2) =
pt ∈ uptraces(C1) ∧ tr1 � tr2 ∧ s1

0
tr1==⇒ s1 ∧ s2

0
tr2==⇒ s2}, which is obviously an

alternating simulation. So C1 valt C2.

4.3 Summary

This chapter presents a failure model of component software. Though, we have
similar definitions in Chapter 3, in this chapter, we want to model and describe
components by the failure set instead of deriving from the automata-based mod-
els. The atomic behavior of the component is the procedure of a service request
from the environment or internally triggered by the component itself, and a set of
possible sequences of services invocations which are provided by the environment.
Such atomic behaviors should happen in the certain orders constrained by the flow
of control, so the interaction behaviors of the component are sequences of atomic
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behaviors, which are called traces. The component may end up in deadlock or
livelock due to non-determinism which may be caused by the internal behavior or
non-deterministic choice of the required services. Non-blockable events are used to
guarantee avoidance of the deadlock or livelock.

The failure model of components can be derived from the automata-based models.
Components are composed by plugging the component which provide services to
the components which need these services. Two components are compatible if the
requirement of the plugged component is satisfied by the plugging component. The
failure model supports easier compatibility checking by the checking trace inclusion
of non-blockable provided traces of one closed component and required traces of the
plugged open component.

The refinement relation between failure models is defined based on trace inclusion
and proved to be consistent with state simulation in component automata.

There are some challenging work left for the future, such as the general composition
operation of failure models, and the completeness and soundness properties.



Chapter 5

Coordination

In this chapter, we will present two kinds of software entities to adapt the use of
software components more flexible.

5.1 Process Component

Process components (processes, for short) of rCOS are well introduced and studied
in Section 2.4. In this section, we will present the automata-based model for the
processes and automata-based composition operation of processes. A process be-
haves as a client of services and make service invocations actively based on its own
control of flow.

The interface models of components we have studied in Chapter 3 describe the
interaction behaviors of components by the provided/required relations. A software
component acts as service provider and it behaves in a passive way that it starts to
work only when the provided services are invoked by the environment and it then
may need to require services from the environment to satisfy the requirement of the
environment.

The process component is built
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5.1.1 Process Automata

The events issued by processes are called actions. Required events in component au-
tomata should be guaranteed when the corresponding provided events are triggered,
otherwise, deadlock will happen, while actions of processes will happen whenever
the they are provided and enabled by the components.

Definition 5.1.1 (Process Automata). A process automaton is modeled as automa-
ton P = (Q, q0, A, δ) where Q is a set of states, q0 ∈ Q is the initial state, A is the
alphabet set of actions, and δ is the transition relation.

5.1.2 Coordination

A process coordinates a component by actively triggering the provided events of the
component.

Definition 5.1.2 (Coordination). Given a component automaton C = (S, s0, f , P, R,
A, δ) and a process automaton P = (Q, q0, E, δP ), C is coordinatable by P if E ⊆ P ,
and coordination C ′ is C × P = (S ′, s′0, f , P ′, R,A′, δ′) where

− S ′ = S ×Q, s′0 = (s0, q0), and (f , q) for any q ∈ Q is noted as f ;

− P ′ = P \ E;

− R′ = R;

− A′ = A ∪ E;

− transition set δ′ is defined as the smallest set by the following rules. For any
reachable state (s, q) where s m/T−−→ s′ and q e−→ q′,

1. if m == e, then (s, q) ;m/T−−−→ (s′, q′),

2. if m ∈ P ′, then (s, q) m/T−−→ (s′, q).

For example, given two one-place buffer, one may want to connect these two buffers
to build a buffer with a larger capacity.

Example 5.1.1. Consider the example of component alarm, blink, and sound shown
in Figures 3.5 and 3.2. Component timer provides all services that component
alarm needs. So the composition of these components is a closed component shown
in Figure 5.2. We consider a process PRing which will internally and autonomously
invoke ring based on internal clock.
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0start 1
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0start 1

Buffer2

put2 /{ε}
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2 3

Buffer1 ⊗ Buffer2 ⊗ Shift × Process

put1 /{ε}

get2 /{ε}

put1 /{ε}

; shift

get2 /{ε}

Figure 5.1: one-place buffers and coordination
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cancel/{ε}

change/{ε}

; ring/{ε}

stop/{ε}

Figure 5.2: Composition of CAlarm and CBlink and CSound and CT imer

5.2 Coordinator Component

In this part, we introduce a coordinator component which is used to adapt the
components to be reused by obeying new constraints. Components are composed
in the way that they synchronize on services that are provided by one and required
by the other, and behave independently otherwise. A coordinator is used to avoid
invocations to services that the components want to hide from the environment.
Coordination operation between components and coordinators is defined and an
algorithm is developed to synthesize a coordinator for any given component such
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that the coordinator could make the component avoid possible deadlock.

The allowed or unblockable order of invocation to provided services is implicitly
implemented in the components, that is, computation is mixed with protocol. As
in the rCOS components introduced in Chapter 2, a guard is used to control acces-
sibility to services in the provided interface. This limits reuse of components and
also is against the principle of separation of concern.

For example, consider a one-place buffer which provides services put and get which,
in turn, require write and read from the memory, respectively. If it is designed and
implemented as in Fig. 5.3(B1), then this buffer can only be reused in the context
with strict constraint about the order of put and get. However, if it is designed as
in Fig. 5.3(B2), then this buffer can be more widely reused. Software engineers can
reuse buffer B2 by designing a specific component as the protocol which is simpler,
because it considers only the control of flow without worrying about the functionality
or computation of services. This specific component can be called a filter, adapter,
or connector, and we use the term coordinator in this thesis. In the example shown
in Fig. 5.3, we can see that coordination of B2 by C1 is exactly equivalent with
buffer B1 in the sense of functionality of services and protocol. And buffer B2 can
be also reused in the context where data is not wiped after invocation to get and
can be continuously reused until the data is updated by invocation to put, which is
achieved by coordinating the buffer by coordinator C2 shown in Fig. 5.3.

0start 1

Buffer1 B1

put/〈write〉

get/〈read〉

0start

Buffer2 B2

put/〈write〉

get/〈read〉

0start 1

Coordinator C1

put

get

0start 1

Coordinator C2

put

get

put

Figure 5.3: one-place buffer

The above examples shows that separation of computation and protocol can in-
crease reuse of components. Now, we use a more practical example showing that a
coordinator can be used to filter out services that may cause unfairness.

Example 5.2.1. Consider an online marketplace system which provides a consumer-
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to-consumer platform for retail stores. It consists of stores and a payment component
trusted by both stores and clients. The store component, called eStore, is presented
in Fig. 5.4(i). It provides services select, pay ′, and deliver, which model select-
ing items, obtaining the money from payment component, and delivering the paid
items to the clients, respectively. The payment component, called ePayand shown in
Fig. 5.4(ii), provides services pay and confirm which model receiving money from the
clients and being confirmed by the client after the items are received. It requires ser-
vice pay ′ that the component will transfer the money to the store. The composition
of eStore and ePay is in Fig. 5.4(iii).

0start 1

2

(i) eStore

select/

deliver/pay ′/
0start 1

(ii) ePay

pay/

comfirm/{pay ′}

start

(iii) eStore⊗ ePay

select/
deliver/

pay/
confirm/

pay/

deliver/

pay/ select/

Figure 5.4: online shopping system

In the above example, the provided trace 〈select · deliver〉 is allowed, which means
that the store may not get paid even if it delivers the items bought by the clients.
So such online marketplace system is unsafe for the store retailers. We introduce
a kind of specific components, called coordinator, to filter out services provided by
components that should not be allowed.

A coordinator is modeled as a labeled transitions system, the formal definition is
given below.

Definition 5.2.1 (coordinator). A coordinator F is a deterministic labeled transi-
tion system (Q, q0, E, σ), where
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− Q is the set of states with q0 ∈ Q as the initial state;

− E is the set of active events;

− σ is a set of transition.

Similarly, the set of traces of coordinator F , written as traces(F ), is

{〈a0, a1, · · · , ak〉 | q0
a0−→ · · · ak−→ qk+1}.

The default signature of Fi is (Qi, q
i
0, Ei, σi) for any subscript i.

Example 5.2.2. In order to filter out the unexpected provided traces in Fig. 5.4(iii),
we can exploit coordinator F shown in Fig. 5.5.

0start 1

23

select

pay

deliver

confirm

Figure 5.5: Coordinator F

5.2.1 Coordination Operation

Components are coordinated in the way that all the sequences of services provided
should also obey the constraint of the coordinators. The formal definition is given
below.

Definition 5.2.2 (Coordination). Given a component automaton C and a coordi-
nator F , we say C is coordinatable by F , if E ⊆ P , and the coordination of C by
F , C n F , is a component automaton (S ′, s′0, f, P ′, R′, A′, δ′), where

− S ′ = S ×Q, s′0 = (s0, q0), and (f, q) with any q is denoted as f ;

− P ′ = P , R′ = R, and A′ = A;

− δ′ is a set of transitions complying with the following rules:

– if s w/T−−→ s′ and t w−→ t′, then (s, t) w/T−−→ (s′, t′);
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– s
w/T−−→ s′ with w /∈ E, then (s, t) w/T−−→ (s′, t).

The following theorem shows the failure set of coordination.

Theorem 5.2.1. Given component automaton C and coordinator F , if C is coordi-
natable by F , the failure set for coordination CnF , failures(CnF ) is {(tr , D\D′) |
(tr , D) ∈ failures(C), π1(tr)|̀ E ∈ traces(F ), D′ = {a | π1(tr)|̀ E 〈̂a〉 /∈ traces(F )}}

Proof.

The following corollary is trivially derived from Theorem 5.2.1.

Corollary 5.2.1. Given component automaton C and coordinator F , if C is coor-
dinatable by F , then

− traces(C n F ) = {tr | tr ∈ traces(C) ∧ ptraces(C) ⊆ traces(F )},

− ptraces(C n F ) = {tr | tr ∈ ptraces(C) ∧ ptraces(C) ⊆ traces(F )},

− utraces(C n F ) = {tr | tr ∈ utraces(C) ∧ ptraces(C) ⊆ traces(F )}, and

− uptraces(C n F ) = {tr | tr ∈ uptraces(C) ∧ ptraces(C) ⊆ traces(F )}.

Example 5.2.3. Now, we can see how the component eStore ⊗ ePay shown in
Fig. 5.4(iii) is coordinated by coordinator in Fig. 5.5. The result is presented in
Fig. 5.6.

0start 1

23

select/

pay/
deliver/

confirm/

Figure 5.6: Coordination of (eStore⊗ ePay) n F

5.2.2 Synthesizing Interface Coordinator for Component Au-
tomata

In this part, we will show that given any component automaton C, there exits
a coordinator F such that coordination of C by F is equivalent the component
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interface automaton I(C) constructed by Algorithm 2. In practice, however, it can
be implemented by designing a coordinator which can filter out all the possible
blockable traces.

We now present a procedure in Algorithm 3 that, given a component automaton,
constructs a coordinator which only records unblockable provided traces. The ba-
sic idea is similar to the construction of a deterministic automaton from a non-
deterministic one, and the only difference is that in the algorithm only the deter-
ministic traces are kept.

Algorithm 3: Construction of Interface coordinator
Input: C = (S, s0, f , P,R,A, δ)
Output: G(C) = (Q, q0, E, σ)

1: Initialization: q0 = {s′ | s′ ∈ intR(s0)}, Q := {q0}, E := P, σ := ∅,
todo := {q0}

2: while todo 6= ∅ do
3: choose one q ∈ todo and todo := todo \ {q}
4: for each a ∈ ⋂

s∈q non-blockable(s) do
5: let q′ be {s′ | s ∈ q • s 〈a〉==⇒ s′}
6: if q′ /∈ Q then
7: add q′ to Q and todo
8: end if
9: σ := σ ∪ {q a−→ q′}.

10: end for
11: end while

Lemma 5.2.1. Given any component automaton C, let G(C) = (Q, q0, E, σ). Then
q0

sq==⇒ q, iff
q = {s′ | sq ∈ uptraces(C) ∧ s0

sq==⇒ s′}

.

Proof. We prove the following by induction on sq.

− ⇒. The base case follows trivially. For q0
sq̂ 〈a〉===⇒ q1, then there exists q2

such that q0
sq==⇒ q2 and q2

a−→ q1. By induction hypothesis, q2 = {s′ | sq ∈
uptraces(C) ∧ s0

sq==⇒ s′}. From Line 9 and Lines 4-8 of Algorithm 3, we
have a ∈ ⋂

s∈q2 non-blockable(s), then sq 〈̂a〉 ∈ uptraces(C) because of sq ∈
uptraces(C). And q1 = {s′ | s ∈ q2 • s

〈a〉==⇒ s′}, that is q1 = {s′ | sq 〈̂a〉 ∈
uptraces(C) ∧ s0

sq==⇒ s′}. This proves the direction ”⇒ ”.
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− ⇐. The base case follows trivially. For a state q = {s′ | sq 〈̂a〉 ∈ uptraces(C) ∧

s0
sq̂ 〈a〉===⇒ s′}, then, there exists q′ = {s′ | sq ∈ uptraces(C) ∧ s0

sq==⇒ s′}.
Then q = {s′ | s ∈ q′ • s 〈a〉==⇒ s′} and a ∈ ⋂

s∈q′ non-blockable(s), because
sq 〈̂a〉 ∈ uptraces(C). By induction hypothesis, we have q0

sq==⇒ q′. And,
q = {s′ | s ∈ q′ • s 〈a〉==⇒ s′}. From line 4-9 of Algorithm 3, there exists q′ a−→ q,

then q0
sq̂ 〈a〉===⇒ q. This proves the direction ”⇐ ”.

Three key correctness properties of the algorithm are stated in the following theorem.

Theorem 5.2.2 (Correctness of Algorithm 3). Given any component automaton C,
the following properties hold for Algorithm 3:

− the algorithm always terminates;

− G(C) is deterministic;

− traces(C n G(C)) = utraces(C).

Proof. − The termination of the algorithm is obtained, because todo will even-
tually be empty: the size of power set of state S is bounded, only fresh state is
added to todo, and for each iteration of the loop a state from todo is removed.

− Assume that there exists q a−→ q1 and q
a−→ q1, then from Algorithm 3, we

have q1 = q2 = {s′ | s tr==⇒ s′, with s ∈ q • ptraces(tr) = 〈a〉}. So G(C) is
deterministic.

− By Lemma 5.2.1, we can get traces(G(C)) = uptraces(C). By Corollary 5.2.1,
traces(CnG(C)) = {tr | tr ∈ traces(C) ∧ ptraces(C) ⊆ traces(coordinator(C))},
and because traces(coordinator(C)) = uptraces(C), so traces(C n G(C)) =
utraces(C).

Example 5.2.4. The component automaton in Fig. ?? is not input-deterministic.
A coordinator shown in Fig. 5.7(i) is obtained by Algorithm 3. We use state a as
shorthand for {1, 2, 3}. The coordination of Cic n G(C) is given in Fig. 5.7(ii)
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read/{cserv}

read/{cserv}

Figure 5.7: Coordination of Component Cic by a synthesized coordinator

5.3 Summary

In this chapter, we have motivated and introduced process and coordinator compo-
nents, which can be used to coordinate services provided among components and
filter out certain sequence of service invocation that may violate the security policy in
a new context. Process components are used to actively invoke services provided by
software components and coordinator components increase the flexibility of reusing
components by constraining certain provided services. The coordination operation
is defined and an algorithm is developed to produce an interface coordinator for any
component automaton to obtain the interface model of the coordinator-automaton
composition.

However, coordination is widely studied in component-based and service-oriented
software development. Reo is a channel-based coordination language that can
be used to coordinate and orchestrate components by connectors [Arb04, JA12,
BSAR06]. BIP is formal framework for component-based design that separates
computation and interaction, and the order of transitions is controlled by priority
set of events in which interaction events are ordered [BB13, BBS06, BS08, BSS09,
GGMC+07, GS12]. In [CGP09], filters are introduced to make web services avoid
deadlock. The main difference is that we provide a way of coordinating by actively
invoking services or constraining services of one component instead of modeling the
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connectors among components
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Chapter 6

Conclusion and Future Work

Nowadays, software system is growing more and more complex and widely used in
our daily life and work. Developing large reliable software system effectively is a
challenge in software engineering. Component-based software development is con-
sidered as a solution. Components are composed and reused through interfaces,
thus a well founded interface theory is important to support component reuse, com-
position, verification, and substitutability. In this thesis, we focus on sequences of
method invocation between components, called interaction protocols.

In this thesis, we present an interface theory of software components in component-
based software development. We introduce the rCOS methodology and define full
semantics model of rCOS components and derive a general labeled transition system
of components. Then, we introduced the automata-based and trace-based models of
component software motivated by the needs to describe interaction behaviors and
check compatiblity , and bring up a kind of input-deterministic models as inter-
faces which assure the non-blockableness of services provided by the component. A
provided service may be blocked for several reasons, for example, the guard of this
service is false; invocation to such service leads the component to a state at which
there is internal loop or to the error state. We have presented an algorithm to check
whether any given component automaton is input-deterministic and also an algo-
rithm to obtain the interface model of the given component automaton. Correctness
of the algorithms are proved.

Refinement relation defined by state simulation technique is developed and proved to
be sound for interface substitution. A refined component should be able to provide
more services while requiring less, and more likely to avoid deadlock or livelock.

The automata-based model is operational description of interaction behaviors of
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components. A denotational model, called failure model of software components
is defined for easier checking of compatiblity of components. The failure model
contains sequences of allowable alternating provided/required events and a set of
events that are not blocked. Refinement based on trace inclusion is defined for the
failure models. Plugging composition is proved to be consistent between failure
models and automata-based models.

Instead of modeling connectors between components, we present automata-based
model of two coordination components for software components. Process component
coordinates components by actively invoking provided services of components and
internalizing these services. A coordinator component, which is a simple automaton,
is introduced and proved to be able to filter out the blockable services provided by
the coordinated components.

The future work can go in the following directions.

Refinement Further work is needed to study the relation between C1 ⊗ C2 and
C ′1 ⊗ C ′2 where C1 and C2 are refined by C ′1 and C ′2, respectively. A refinement
relation which can preserve both safety and liveness property is also needed.

Extension of expressiveness of required interface In this thesis, we assume
that invocation to required services is totally determined by components, that is
non-deterministic choice for the environment, so that in order to guarantee non-
blockableness of provided traces, the environment must provide all the required
traces. We would try to extend the expressiveness of the required interface, i.e, a
possible subset of required traces can guarantee the related provided service.

Failure model We have defined plugging operation of failure models and a general
composition operation of failure models is needed.

Extension with timing characteristics In the alarm component, we see that
the ring service should be triggered based on the time. We would extend our model
for component software with hard and soft timing assumption and guarantees, which
support timing, deadlock, and scheduling analysis of applications in the presence of
timed requirement.
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[GS05] Gregor Gössler and Sifakis, Joseph. Composition for component-based mod-
eling. Science of Computer Programming, 55(1):161–183, 2005.
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