
University of Pisa

Master Thesis

A fast optimization algorithm for
Moving Horizon Estimation

Candidate:

Bruno Morabito

Supervisors:

Prof. Ing. Gabriele Pannocchia

Prof. Ing. Rolf Findeisen

Prof. Ing. Claudio Scali

May 2015

Master’s Degree in Chemical Engineering

Department of Civil and Industrial Engineering

http://www.unipi.it/
 http://www.dici.unipi.it/

Declaration of Authorship

I, Bruno Morabito, declare that this thesis titled, ’A fast optimization algorithm for

Moving Horizon Estimation’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“Continue to act thus, my dear Lucilius, set yourself free for your own sake;

gather and save your time, which till lately has been forced from you, or filched away, or

has merely slipped from your hands. Make yourself believe the truth of my words, that

certain moments are torn from us, that some are gently removed, and that others glide

beyond our reach. The most disgraceful kind of loss, however, is that due to carelessness.

Furthermore, if you will pay close heed to the problem, you will find that the largest

portion of our life passes while we are doing ill, a goodly share while we are doing

nothing, and the whole while we are doing that which is not to the purpose. What man

can you show me who places any value on his time, who reckons the worth of each day,

who understands that he is dying daily? For we are mistaken when we look forward to

death; the major portion of death has already passed. Whatever years be behind us are

in death’s hands.

Therefore, Lucilius, do as you write me that you are doing: hold every hour in

your grasp. Lay hold of today’s task, and you will not need to depend so much upon

tomorrow’s. While we are postponing, life speeds by. Nothing, Lucilius, is ours, except

time. We were entrusted by nature with the ownership of this single thing, so fleeting

and slippery that anyone who will can oust us from possession. What fools these mortals

be! They allow the cheapest and most useless things, which can easily be replaced, to be

charged in the reckoning, after they have acquired them; but they never regard themselves

as in debt when they have received some of that precious commodity, time! And yet time

is the one loan which even a grateful recipient cannot repay.

You may desire to know how I, who preach to you so freely, am practising. I

confess frankly: my expense account balances, as you would expect from one who is free-

handed but careful. I cannot boast that I waste nothing, but I can at least tell you what

I am wasting, and the cause and manner of the loss; I can give you the reasons why I

am a poor man. My situation, however, is the same as that of many who are reduced to

slender means through no fault of their own: every one forgives them, but no one comes

to their rescue.

What is the state of things, then? It is this: I do not regard a man as poor, if

the little which remains is enough for him. I advise you, however, to keep what is really

yours; and you cannot begin too early. For, as our ancestors believed, it is too late to

spare when you reach the dregs of the cask. Of that which remains at the bottom, the

amount is slight, and the quality is vile. Farewell.”

Letter from Seneca to his friend Lucilius

UNIVERSITY OF PISA

Abstract

Chemical Engineering

Department of Civil and Industrial Engineering

Master Thesis in Chemical Engineering

A fast optimization algorithm for Moving Horizon Estimation

by Bruno Morabito

The Moving Horizon Estimation (MHE) is a technique that allows to estimate the states

of a system considering constraints, either when they are affected by noise or are not

measured. This method can be associated with control techniques such as Model Pre-

dictive Control (MPC).

The core of the mathematics formulation of MHE consists of an optimization problem

that can easily become huge as the horizon and the number of states of the system

increase. This leads inevitably to a large computational time that makes difficult the

implementation of the algorithm for on-line purpose. In this work we develop a fast

and simple algorithm that solves the MHE problem using the Nesterov’s Fast Gradient

Method that, under certain assumption, solves the optimization problem faster than

using the standard optimization algorithms such as Interior Point Method or Active Set

Method. Contrary to the MPC problem, the Hessian resulting from the MHE is time-

varying. This poses a problem on the calculation of the eigenvalues which are required

by the Fast Gradient method, therefore we implement also a fast algorithm for obtaining

a upper and lower bound on the eigenvalues of the Hessian.

The algorithm has been validated through several simulations on linear random systems

and then applied on two practical examples. The first consists in applying the MHE

together with MPC in a anaerobic digestor for methane production. Anaerobic digestion

plants often suffer from a slow and unreliable on-line measurement systems therefore

the automatic control is often difficult, for this reason we aim to solve this problem

estimating most of the states instead of measuring them so as to apply the control action

with the estimated information. The second is a chemical plant section consisting of two

CSTR reactors and a nonadiabatic flash separator where we suppose some states are

not measurable.

http://www.unipi.it/
http://ingegneriachimica.diccism.unipi.it/
 http://www.dici.unipi.it/

Acknowledgements

I would like to express my sincere thanks to Prof. Gabriele Pannocchia and Prof.

Rolf Findeisen who made my awesome experience at the Otto von Guericke University

possible, who gave me advice, guidance, help and great opportunities for my career and

life.

I am thankful to all the members of the Findeisen research group, in particular

to Makus Kögel who showed a remarkable patience with my numerous questions and

concerns, to Eric Bullinger who gave me lots of useful tips and suggestions and to Ulrike

Thürmer for her kindness on helping me with bureaucratic issues.

Furthermore I would like to show my gratitude to my amazing friends of Pisa

with whom I have spend the last five years. All of them gave me an incredible support,

help and inspiration and have been my second family for all that time. A particular

appreciation goes to Giuseppe Forte, Marina Polignano and Giacomo Bartali with whom

I have shared great part of the most intense moments of a student’s life and my flatmate

Raffaele Zaccara who has been standing me for the last four years.

To my family, of course, goes all my gratitude for their support and teaching.

Bruno Morabito

Pisa, May 2015

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables ix

Abbreviations x

Symbols xi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis overview . 2

1.3 Literature review . 3

1.3.1 Contribution of this work . 4

1.4 Notation . 4

1.4.1 System notation . 4

1.4.2 Optimization notation . 6

2 Optimal control and estimation 7

2.1 Optimal control . 8

2.1.1 Model Predictive Control . 8

2.1.2 Linear Quadratic Regulator . 8

2.1.3 Controllability . 9

2.2 Estimation . 11

2.2.1 Luenberger Observer . 11

2.2.2 Kalman Filter . 11

2.2.3 Full Information Estimation . 12

2.2.4 Moving Horizon Estimation . 13

v

Contents vi

2.2.4.1 Observability . 14

2.3 Different MHE formulations . 15

2.3.1 Noises and states as optimization variables 16

2.3.2 Only noises as optimization variables 17

2.3.3 Only states as optimization variables 19

3 Theoretical background on optimization problems 23

3.1 Optimization problem . 23

3.2 Optimization sets . 24

3.2.1 Affine and convex set . 24

3.2.2 Operation that preserve convexity 25

3.3 Optimization functions . 26

3.3.1 Affine functions . 26

3.3.2 Convex functions . 26

3.3.2.1 First order conditions . 26

3.3.2.2 Second order condition 27

3.3.3 Operation that preserve convexity 28

3.3.4 Optimality . 29

3.4 Convex optimization . 29

3.4.1 Local and global optima . 30

3.4.2 Optimal criterion for differentiable f 30

3.4.3 Unconstrained problem . 31

3.4.4 Problem with only equality constraint 32

3.5 Linear optimization problems . 32

3.6 Quadratic optimization problem . 33

3.7 Duality . 34

3.8 Optimal condition . 36

3.8.1 Strong duality and Slater’s constraint qualification 37

3.8.2 Karush-Kuhn-Tucher (KKT) optimality conditions 38

4 Review on optimization algorithms 39

4.1 Unconstrained minimization . 39

4.1.1 Strong convexity . 40

4.1.2 Condition number . 41

4.2 Descent methods . 42

4.2.1 Convergence analysis . 43

4.2.2 Gradient descend method . 45

4.2.3 Conclusions . 45

4.2.4 Steepest descend direction . 45

4.2.5 Newton’s method . 47

4.3 Equality constrained minimization . 49

4.3.1 Newton’s method with equality constraints 51

4.4 Interior point method . 52

4.4.1 Logarithmic barrier . 52

4.4.2 Inner iterations - Newton method 55

4.5 Nesterov’s Fast gradient method . 56

4.5.1 Estimate sequence . 57

Contents vii

5 MHE algorithm and validation 60

5.1 System . 60

5.2 Estimation . 61

5.2.1 Arrival cost matrix update . 62

5.3 Optimization - Fast Gradient method . 62

5.4 Stopping criteria selection . 63

5.5 Algorithm bottleneck . 66

5.6 Comparison of various eigenvalues algorithms 67

5.6.1 Robustness of FG to error on the eigenvalues 68

5.6.2 eig,eigs and irbleigs . 69

5.6.3 eig, Inverse Iteration and Power Iteration methods. 69

5.7 Performance of Fast Gradient with Inverse Iteration and Cholesky factor-
ization (FGIIC). 73

5.7.1 Conclusions . 77

5.7.2 Final algorithm set-up . 77

6 Examples of application 79

6.1 Upflow Anaerobic Sludge Blanket reactor (UASB) 79

6.1.1 Results . 82

6.2 Two reactor chain with flash separator . 84

6.2.1 Results . 88

7 Summary and Conclusions 90

7.1 Other possible research directions . 90

A Linear algebra 92

A.1 Closed set and closed function . 92

A.2 Pseudo-inverse . 92

A.3 Positive semi-definite and positive definite functions 93

B Systems theory 94

B.1 Lyapunov function . 94

C Matlab codes 96

C.1 Fast Gradient method . 96

C.2 Inverse Iteration with Cholesky factorization 98

Bibliography 100

List of Figures

2.1 Graphical representation of the moving horizon. 13

3.1 Examples of convex and non-convex set. 25

3.2 Graph of a convex function. 27

3.3 Optimal condition for convex differentiable functions. 31

3.4 Geometric interpretation of a Linear optimization problem 33

4.1 Example Interior Point Method . 54

5.1 Comparison between stopping criteria methods - Linear scale. 65

5.2 Comparison between stopping criteria methods - Logarithmic scale. 65

5.3 Difference in FG iteration between ideal and tailored stopping criteria. . . 66

5.4 Most time-demanding steps in the FG algorithm. 67

5.5 Time spent for gradient and eigenvalue computation with the matrix di-
mension. 67

5.6 Difference on iterations of the FG when we have errors on the eigenvalues. 68

5.7 Comparison eig,eigs and irbleigs. 70

5.8 Time spent for a MHE problem varying horizon length. 74

5.9 Error on the states with Inverse Iteration method. 75

5.10 Non-converged simulations . 76

5.11 Time distribution bottleneck . 77

5.12 Bottleneck of the algorithm as a function of the condition number. 78

6.1 Example 1: Upflow Anaerobic Sludge Blanket reactor (UASB) 79

6.2 Closed loop control system. Moving Horizon Estimation with Model Pre-
dictive Control. 83

6.3 Example 1: UASB estimated states. 83

6.4 Example 2: plant section. 85

6.5 Example 2: estimated states. 88

6.6 Example 2: Computational time. 88

viii

List of Tables

5.1 Fast gradient algorithm settings. 75

5.2 Time distribution for the MHE problem solved through FG with Inverse
iteration . 76

6.1 Example 1 : Parameters and steady state values. 81

6.2 Example 1: Comparison with KF. 84

6.3 Example 2: Parameters and steady state values. 87

ix

Abbreviations

AS Active Set

EKF Estended Kalman Filter

FG Fast Gradient

FIE Full Inoformation Estimation

II Inverse Iiteration

KF Kalman Filter

LP Linear Programming

LS Linear Sistem

MHE Moving Horizon Estimation

MPC Model Predictive Control

NLS Non Linear Sistem

NMPC Nonlinear Model Predictive Control

UASB Upflow Anaerobic Sludge Blanket reactor (UASB)

UKF Unscented Kalman Filter

x

Symbols

R(A) Range of matrix A.

N (A) Kernel of matrix A.

R Set of real numbers.

N Set of natural numbers.

Z Set of relative numbers.

Rn Euclidean space of dimension n.

Rn×n Matrix of dimension n× n.

X Set of constraints on the states.

V Set of constraints on the measurement error.

x Vector of system states.

u Vector of system inputs.

y Vector of system outputs.

w Disturbance on the states.

v Disturbance on the measurements.

f Generic function.

r Rayleigh Quotient.

g(·) Equality constrains vector.

h(·) Inequality constraints vector.

x̂ Stacked vector of optimization variables. x̂ = (x̂Tk , x̂
T
k+1, ..., x̂

T
k+j)

x̃0 Best a priori information about the states.

A Matrix of the states.

B Matrix of the inputs.

C Matrix of the outputs.

J Cost function of MHE/MPC problem.

xi

Symbols xii

G Lagrange dual function.

H Matrix of the Quadratic Programming problem.

L Luenberger Observer matrix.

L Lagrange function (Chapter 2).

L Largest matrix eigenvalue (from Chapter 4).

N Horizon length (number of steps).

R Variance matrix of the measurements disturbances.

Q Variance matrix of the states disturbances.

dom Domain.

cond Condition number.

relint Relative interior.

rank Rank of a matrix.

min
(·)

(f(·)) Minimum of function f .

‖x‖2 Euclidean norm (
√
xTx).

‖x‖A Weighted Euclidean norm (
√
xTAx).

∇(·) Gradient.

(̂·) Optimization variable.

(·)T Matrix or vector transposition.

(·)k Discrete variable at time k.

(·)+ Discrete variable one step ahead in time.

(·)j|k Value of the variable at time j calculated at time k.

(·)− A priori variable (not update with the last measurements).

(·)∗ Optimal point.

Pj|k Prior weighting Matrix.

Γ Controllability matrix.

Ω Observability matrix.

λ, µ Lagrange multipliers.

µ Smallest eigenvalue (from Chapter 4).

ε Tollerance.

To my family.

xiii

Chapter 1

Introduction

1.1 Motivation

State estimation on dynamical systems plays an important role in feedback control, states

monitoring, fault detection and system optimization. The problem of state estimation

arises either when we the state is not physically measurable or is disturbed by an noise

that we want to filter. For example in the field optimal control, where a control action

is applied to a system (e.g.: a chemical plant, a robot, a vehicle etc...) in order to lead

a cost function to a minimum, we need to know the states of the system in order to

compute the most appropriate control action. These states are often given by a state

estimator. Various state estimator algorithms have been implemented and important

results have been carried out in recent years.

Maybe the most famous and widespread state estimation technique is the Kalman Filter

[1], used, for example, in objects tracking (e.g., missiles, faces, heads, hands), economics,

navigation and in many computer vision applications (like stabilizing depth measure-

ments, feature tracking, cluster tracking, fusing data from radar etc.). The main advan-

tage of this method is its recursiveness, namely it does not require to store past data

in order to estimate the most likely states at the next time step. This property has

revealed to be of huge importance for obtaining fast solution and has allowed the on-line

application of this method. Nevertheless, Kalman filter has some disadvantages: firstly

it does not take into account constraints on the variables [2], secondly the solution of

the problem loses its simplicity if we cannot assume gaussian distributed noises or the

system model is not linear. This forces us to previously linearise the system, in this case

we talk about Extended Kalman Filter [3]. The Unscented Kalman Filter (UKF) [4] is

applicable directly on nonlinear problem but does not allow to introduce constraints.

Considering state constraints can significantly improve the estimation performance [5]

(usually they are physical bound, such as the maximum level of liquid in a tank) and

1

Chapter 1. Introduction 2

dealing directly with nonlinear problem would ease the burden of the linearisation step.

In order to solve those limitations an approach that has recently received much interest

is the Moving Horizon Estimation (MHE). This method constructs an weight function

which has a minimum when the values of its variables are (approximately) near the the

values of real system states. Intuitively we can thing of the MHE approach like a way

that, given the outputs of a system from a certain time in the past up to the present

moment, and given an estimation of the noise variance that effects the system, gives us

the most likely system states that are causing those specific outputs.

The main problem with the MHE problem is the computational effort required for solving

the algorithm that precludes us to use it when the computing power is limited and/or

the data sampling rates are excessive. As we are going to show the bottleneck of this

approach is usually the optimization algorithm, namely the algorithms that, given the

cost function, founds its minimum, usually represented by a particular set of states

at time k. A review on the optimization algorithm for MHE and Nonlinear Model

Predictive Control (NMPC) can be consulted in [6]. In order to solve this bottleneck

we are going to apply the Fast Gradient Method of Nesterov (FG) [7] and we are going

to show that under the assumption of box constraints (as well as other simple sets of

constrains) this method easily fits our problem and gives a faster solution than other

standard optimization techniques.

1.2 Thesis overview

This thesis consists of 5 chapters :

� In the present chapter, we discuss about the motivation and the goal of this work,

about the mathematical notation used along it and a literature review that covers

the state of the art of MHE. Respect to the huge number of publications regard-

ing the MPC, the MHE is still a new argument in the scientific community, this

explains the little amount of literature available.

� In Chapter 2 we report the theory concerning optimal control (in particular MPC)

and MHE. Starting from the general case in discrete-time systems we make our

way to the MHE formulation used in this work, which represent, together with the

Fast Gradient method, an unusual approach to the MHE problem.

� In Chapter 3 we are going to have a look at the theoretical background that we need

for a clear understanding of the problem. In particular we are going to give some

fundamental concepts on the optimization problem, convex optimization, and the

conditions that hold in the optimal point. We point out that different formulation

Chapter 1. Introduction 3

lead to different problem structure that can be useful for a particular type of

optimization algorithm and can reduce the condition number of the problem.

� In Chapter 4 we are going to resume the most important optimization algorithms

and techniques, such as Descend method, Newton’s Method, Interior Point method

and finally the Nesterov’s Fast Gradient method.

� In Chapter 5 we show the results that led us to the final version of the algorithm.

We deal discuss about the class of system that we have studied, our approach to

the estimation and control problems, how we have dealt with constraints, algo-

rithms that have been used for the simulations, stopping criteria and eigenvalues

computation. We are going to see that the Fast Gradient together with the In-

verse iteration method and Cholesky decomposition necessary for computing the

eigenvalues, we can solve the problem faster than the other standard optimiza-

tion techniques, and furthermore the time required grows linearly with the matrix

dimension.

� In Chapter 6 we apply our algorithm in two examples: an Upflow Anaerobic Sludge

Blanket (UASB) reactor and a plant section composed by two CSTR reactors with

a flash separator. In the UASB case we aim to control the reactor with a MPC

based controller, so we need to estimate some states that cannot be reliably mea-

sured on-line. In the other example we do not control the system (which is stable)

but we only estimate two states that we assume not measurable. Furthermore we

compare the speed of the algorithm with the Matlab solver quadprog and we point

out that the FG algorithm is faster than its built-in methods.

� In Chapter 7 we resume briefly the results and we point out some other possible

enhancement of the algorithm as well as other possible future research directions.

1.3 Literature review

The literature on MHE in linear systems appears scarce. Abrol et al [8] use MHE based

on In Situ Adaptive Tabulation (ISAT) [9] in nonlinear discrete-time and continuous-

time systems. ISAT can be used to store solution to the optimal estimation problem

at every time step by running the MHE off-line and then using the ISAT stored model

trajectories to retrieve the closest solution. The limitation of this method is of course the

large storage requirement, but the authors claim that nowadays this rarely becomes a

problem in storage and retrieval techniques. In this study they have carried simulations

on a two-state CSTR reactor more than 300 times faster than standard MHE with good

estimation accuracy.

Chapter 1. Introduction 4

Darby et al.[10] have implemented a lookup table and function evaluation for real-time

implementation of MHE and have tested it on a linear system. However, the number of

polytopes generated in the approach tends to grow combinatorially with the number of

constraints, which limits the size of the problem that can be handled.

In [11] a primal barrier Interior-Point method algorithm has been applied on a linear

system exploiting the structure of the KKT system which has been shown to be symmet-

ric indefinite. The computational time in this approach grows linearly with the horizon

length.

1.3.1 Contribution of this work

We propose for the MHE in constrained, linear time-discrete systems a simple, tailored

algorithm based of Nesterov’s fast gradient method which has been successfully applied

in the Model Predictive Control (MPC) problem in [12], [13], [14], [15], [16]. Since the

MHE and MPC formulation have several common characteristics, the idea is to use this

method to the estimation problem. Furthermore we propose to eliminate the noise from

the optimization variables in such a way that we obtain a sparse formulation with only

the states as optimization variables. In contrast to MPC, in MHE the Hessian matrix

and consequently its eigenvalues are time-varying due to the arrival cost. Since the

considered gradient method requires the largest and smallest eigenvalues of the Hessian,

we compute them at each step using the Inverse Iteration method[17] enhanced with the

Cholesky factorization.

1.4 Notation

1.4.1 System notation

In the continuous-time case and for a generic nonlinear system, we write the system

model with the following system of differential equations:

dx

dt
= f(x, u, t) (1.1)

y = h(x, u, t) (1.2)

x(t0) = x0 (1.3)

where x ∈ Rn is the vector of the states, u ∈ Rm is the vector of the inputs, y ∈ Rp is

the vector of the outputs and t ∈ R is the time.

Chapter 1. Introduction 5

We are going to refer to a linear continuous- time time-invariant model using the fol-

lowing notation:

dx

dt
= Ax+Bu+Gw (1.4)

y = Cx+Du+ v

x(0) = x0

in which A ∈ Rnxn is the state transition matrix, B ∈ Rnxm is the input matrix, C ∈ Rpxn

is the output matrix and D ∈ Rpxm allows a direct coupling between u and y, but in

many cases, like in this work, is not considered, namely D = 0.

In the majority of the applications a discrete time model is used, since in practice the

measurements of states or output are taken with discrete sampling. In this case we refer

to our system with the notation:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k) (1.5)

x(0) = x0

in which k ∈ N is a nonnegative integer denoting the sample number, and is connected

to time by t = k∆, where ∆ is the sampling time.

More simply we can write:

xk+1 = Axk +Buk

yk = Cxk +Duk (1.6)

x0 given

or to reduce the notation further:

x+ = Ax+Bu

y = Cx+Du (1.7)

x(0) = x0

in which the + means the state at the next sample time.

Chapter 1. Introduction 6

1.4.2 Optimization notation

Let J(ẑ) ∈ RNn×Nn → R be a convex function. We define the constrained minimization

problem as:

min
ẑ
J(ẑ) (1.8a)

such that:

gi(ẑ) = 0 k = 0, ..., N − 1, (1.8b)

hi(ẑ) ≤ 0 k = 0, ..., N − 1, (1.8c)

in which gi represent the i−th equality constraint and hi the i−th inequality constraint.

In the optimization context, the notation (̂·) represents the optimization variable, usually

made of a vector of states, noises or inputs at a certain time k. For matter of simplicity

we stack all the variable at different time in one vector, e.g :

ẑ = (ẑTk , ẑ
T
k+1, ..., ẑ

T
k+j)

T k, j ∈ Z

Chapter 2

Optimal control and estimation

The problem of optimal control and estimation are often correlated due to the fact that

we need to know the states’ evolution along the time in order to compute an optimal

control action. An control action is optimal when it minimizes a given cost function

that is designed usually by the engineers depending on the cost items of the system. For

example, we want to travel from a city to another with our car as fast as possible but,

at the same time, we want to spare our petrol. The engineer’s job is to weight those

two conflicting requirements (the time and the consumption of fuel) in a unique cost

function that, through the optimization problem, will give us a optimal control action

(how much we have to push the accelerator).

Optimal control and estimation not only work together but are often considered dual

in the sense of their similar formulation [6] [18]. Indeed, both try to minimize the cost

function (also called objective function) which variables are usually constrained, along a

time horizon which can be finite or infinite. In the estimation case, solving the objective

function means find the most likely states sequence that give the output we can measure.

We can obtain a simple solution of the optimization problem in the case of infinite

horizon for unconstrained and linear problem, obtaining the Linear Quadratic Regulator

(LQR) control law in the control side and the Kalman Filter in the estimation side. In

case of nonlinear systems or/and constrained systems the solution becomes non recursive

thus, while in the Kaman Filter or LQR controller we need to store only the data at

the previous time step, in those cases we should store all the past data, that of course is

not possible with an infinite horizon. That is why the Model Predictive Control (MPC)

(control problem) and the Moving Horizon Estimation (estimation problem) use a finite

horizon and summarize the “ignored” information in a single term.

Roughly we can say that the MPC looks at the future, predicting the behaviour of the

system along a certain horizon and choosing consequently the best, or “cheapest” control

action. The MHE instead looks at the past and tries to predict the state of the system

with the information that it has collected along a certain horizon.

7

Chapter 2. Optimal control and estimation 8

2.1 Optimal control

2.1.1 Model Predictive Control

In the most general case we deal with nonlinear systems, so we talk about Nonlinear

Model Predictive Control (NMPC) [18] [19], furthermore we only consider discrete time

optimization since it is more likely the case in real applications. The NMPC formulation

is the following:

J(x̂, û) =

NMPC−1∑
k=0

[Lk(x̂k, ûk)] + E(x̂NMPC
) (2.1a)

min
x̂,û

J(x̂, û) (2.1b)

such that: x̂0 − x̄0 = 0, (2.1c)

x̂k+1 − fk(x̂k, ûk) = 0 k = 0, ..., NMPC − 1, (2.1d)

gi(x̂k, ûk) = 0 k = 0, ..., NMPC − 1, (2.1e)

hi(x̂k, ûk) ≤ 0 k = 0, ..., NMPC − 1, (2.1f)

r(x̂NMPC
) ≤ 0. (2.1g)

Lk and E are general weight functions while NMPC is the horizon length, that is the

number of time step in the future that we consider in the optimization (for other notation

see § 1.4.2). This is an example of Nonlinear programming (NLP) [20] problem and,

in general, only a numerical solution exists, even for linear systems, and it requires

the application of optimization algorithms that can deal with constraints e.g. Interior

Point method, Active Set etc.. The solution consists of {uj} control inputs with j =

1, ...NMPC − 1 and {xl} states with j = 1, ...NMPC , the control system takes only the

first optimized input u0 and applies it to the plant and then, at the next time step, the

optimization is carried out again obtaining new {uj} and {xl}.

If we consider only linear systems, do not consider the constraints and choose quadratic

weighting costs it is possible to find an analytical and quite simple solution. This solution

gives us a control law uk = −Kxk that minimize the cost function. In this case we talk

about Linear Quadratic Regulator.

2.1.2 Linear Quadratic Regulator

In the regulation problem, we want to drive state and input to zero by solving an

optimization problem that found the minimum of this objective function:

J(x(0),u) =
1

2

N−1∑
k=0

[
xTkQxk + uTkRuk

]
+

1

2
xTNPfxN (2.2)

Chapter 2. Optimal control and estimation 9

subject to x∗ = Ax + Bu, where u = (uT0 , ..., u
T
i ..., u

T
N−1) represent the control input

at different time steps. Q,Pf and R are chosen to be real diagonal matrices (therefore

symmetric), furthermore Q and Pf are positive semidefinite and R is positive definite.

These assumption guarantee that the solution to the control problem exist and is unique.

The solution to this problem will be an optimal control policy u(·) that minimize the cost

function J(·). Furthermore they have to be chosen in order to weight more the control

action or the state that we want to drive to zero as soon as possible since, generally, it

is the most expensive in terms of energy, fuel consumption etc. Thanks to the quadratic

form and the absence of constraints, we can solve the LQR problem that consist of

minimizing the Eq. 2.2 using the principle of dynamic programming of Bellman [21].

The solution is recursive, requires low computational effort and give us a constant gain

K and therefore a control law u = −Kx that minimizes the objective function.

Anyway the problem 2.2, does not ensure a stable control law. If we want to ensure

stability of the system (it is always the case for continuous processes) we have to make

some further assumptions.

2.1.3 Controllability

Definition 2.1 (Completely controllable system). The system is completely controllable

(CC) if it is possible to go from any initial state to any final state in a finite time.

Let us translate the Definition 2.1 in algebraic formulae. If from state x0 we want to go

to x̃ in N steps, that means:

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A2x0 +ABu0 +Bu1

x3 = Ax2 +Bu2 = A3x0 +A2Bu0 +ABu1 +Bu2

...

x̃ = ANx0 +AN−1Bu0 + . . .+BuN−1

that is equivalent to look for the existence of solution to the following linear system for

an arbitrary right-hand side:

[
B AB · · · AN−1 B

]

uN−1

uN−2
...

u0

 = z −ANx (2.3)

Chapter 2. Optimal control and estimation 10

Remember that A ∈ Rn×n. It is possible to demonstrate that the matrix power Ah with

h > n can be written as linear combination of Ag where rank (A) = g. Therefore the

the rank of C with for a certain N > n is always, at maximum, n. This means that if

we cannot reach the x̃ in n steps, we cannot reach x̃ in any number of steps. We define

Γ =
[
B AB · · · An−1B

]
controllability matrix.

Theorem 2.2 (Complete controllability (CC)). A linear, time-invariant system of the

form

xk+1 = Axk +Buk (2.4)

yk = Cxk (2.5)

where A ∈ Rn×n is completely controllable if and only if

rank (Γ) = n. (2.6)

in this case we say that (A,B) is completely controllable.

Now if we let N go to infinity we obtain the problem:

J(x(0),u) =
1

2

∞∑
k=0

[
xTkQxk + uTkRuk

]
(2.7)

it is possible to demonstrate [5] that the solution to this problem is obtained using the

optimal control policy:

u0(x) = Kx

where

K = −(B′ΠB +R)−1B′ΠA (2.8)

Π = Q+A′ΠA−A′ΠB(B′ΠB +R)−1B′ΠA (2.9)

in which the Eq. 2.9 is the Riccati Algebraic Equation (RAE), that has solution if Q,R >

0 and (A,B) is controllable. This leads to an optimal constant gain K. We call this

type of regulator Linear Quadratic Regulator (LQR).

Lemma 2.3 (LQR convergence). Given a linear time-invariant system of the form 2.4,

with (A,B) controllable and Q,R > 0 the LQR gives a convergent closed-loop system.

Proof. With the assumption of (A,B)controllability, positive definiteness of Q and R

the function J(x0,u) is a Lyapunov function (see Appendix B).

The systems chosen in this work are all controllable and Q and R are positive definite.

Therefore the LQR controller provides a convergent closed-loop system.

Chapter 2. Optimal control and estimation 11

2.2 Estimation

In this section we go quickly over the most widespread estimation techniques, finishing

with a more complete dissertation on the MHE.

2.2.1 Luenberger Observer

This observer is formed by using a model in parallel to the real process [22]. In order to

take into account mismatch between real process and model the Luenberger Observer

adds a feedback of the value yk − ŷk where yk is the real output and ŷk is the model

output. The model is therefore extended with this feedback:

x̂k+1 = Ax̂k +Bu+ uB (2.10)

ŷ = Cx̂k (2.11)

where uB = L(y− ŷ). The error between real and model state at time k is ek = xk − x̄k
and at time k + 1 is ek+1 = xk+1 − x̂k+1. Subtracting these two terms we obtain:

ek+1 = (A− LC)ek

which means that the error goes to zero if the eigenvalues of (A−LC) are smaller than

one. The design phase consists of choosing the right poles of the closed loop observer.

2.2.2 Kalman Filter

Introduced by Kalman [1] has been used in several engineering contexts. It estimates

the system states by minimizing the average of the squared error. The system has the

form:

xk+1 = Axk +Buk + wk

yk = Cxk + vk−

The filter estimates two types of states: the a priori estimate xk|k−1 and the a posteriori

estimate xk|k, therefore the method can be summarized in two parts, one of time updating

where we predict the state and one of measurement updating for estimate the state. The

aim is to calculate an a posteriori estimate as a linear combination of the a priori estimate

and a weighted error between the measurements and the predicted measurements. This

difference between measurement and predicted measurement is called innovation or

residual.

xk|k = xk|k−1 +Kk(yk − Cxk|k−1)

Chapter 2. Optimal control and estimation 12

The a priori estimate can be calculated with the model equations. The weighting matrix

Kk regulates the influence of the error between the measurement and the predicted

measurement and minimizes the a posteriori error covariance.

time update

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

P−k = APk−1AT +Q

measurement update

Kk = P−k C

T (CPk−1CT +R)−1

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1)

Pk = (I −KkC)P−k

Q and R are symmetric positive semi-definite matrices representing the covariances of

the normally distributed random noises w and v. P−k is the covariance of the estimated

state x̂k|k−1 and Pk the covariance of the estimated state x̂k|k. The measurement update

equations will start at k = 0, while the time update equations are valid for k = 1, 2, 3,

The initial prediction values can be defined for example as

x̂0|−1 = x̄0

P0|−1 = Q0

with x̄0 being an independent normally distributed random with covariance Q0.

2.2.3 Full Information Estimation

The Full Information Estimation (FIE) permits to consider constraints in the estimation

problem. It carries out a constrained optimization in an horizon that increases with the

time. It has shown to have the best theoretical properties in terms of stability and

optimality[18], but it becomes computational intractable except some simple cases. The

full information objective function is:

J(x̂0, ŵ) = Γ0(x̂0 − x̄0) +
k−1∑

i=k−N
li(wk, vk) (2.12)

xk+1 = f(xk, wk)

yk = h(xk) + vk

where li and lx are generic stage costs. The FIE is solved by minimizing the problem

2.12.

Chapter 2. Optimal control and estimation 13

Figure 2.1: Graphical representation of the moving horizon.

2.2.4 Moving Horizon Estimation

Since the FIE is not practically usable due to its computational complexity, the MHE

considers only a few steps in the past. Moving Horizon Estimation is a quite new

technique [23] (a complete dissertation can be found in [18]). For the MHE we usually use

a convex function to penalize the mismatch between the real measurement and the model

prediction represented by vk , similarly for the disturbances wk, usually introduced to

account for plant-model mismatch. Furthermore we weight quadratically the difference

between the state at the beginning of the horizon x̂k−N and our best initial information

x̃k−N that we have of it. Notice that the control action is fixed and time-variant in

the MHE problem, thus we cannot change it. Therefore the standard objective function

looks like:

J(ŵ, x̂) =
1

2
‖x̃k−N − x̂k−N‖2P−1

k−N

+

k−1∑
i=k−N

1

2
‖ŵi‖2Q−1 +

k∑
i=k−N

1

2
‖vk‖2R−1 . (2.13)

The weighting matrices Q and R are chosen as close as possible to the noises covariance,

that is because if, say, w has a broader noise distribution (large covariance) than v, we

are going to trust more the difference y − Cx, forcing it to be smaller with a larger

weight. The covariance indeed matches this need: if Q or R are small Q−1 or R−1 are

large and vice versa.

The matrix P−1k−N represent the prior weighting matrix and, conversely to R−1 and Q−1,

it is time variant, thus is updated each time step with new information available in

Chapter 2. Optimal control and estimation 14

order to have a stable estimation. For linear systems, quadratic objective function and

convergence disturbances it is possible to demonstrate the we obtain a stable estimator

if we update the matrix P−1k−N with Riccati iteration.

The parameter modifiable by the engineers are the weighting matrices P−10 ,Q−1,R−1

(P−10 should be close to the covariance of the state distribution at the beginning of the

horizon) the first estimation x̃0 and the horizon length N .

We need to update x̃k−N in the prior weighting. There are mainly two method for it the

filtering update and the smoothing update. The filtering update uses the value x̃k−N |k−N
and therefore needs to store the solution of the last k−N MHE problems, the smoothing

update instead uses the x̃k−N |k. In our case we decided to use the smoothing update.

2.2.4.1 Observability

In general we cannot be sure that the estimator converges to the real system states. Let

us define the Robust Global Asymptotic Stability (RGAS) of the estimator:

Definition 2.4 (Robust Global Asymptotic Stability for MHE). The estimate based on

noisy measurement is RGAS if for all x̂0 and x̄0 and convergent w, v the following hold:

� The estimate converges to the state as k →∞

x̂k → xk

� For every ε > 0 there exists δ > 0 such that

1

2
‖x̃0 − x̂0‖2P−1

0
+
∞∑
i=0

1

2
‖ŵi‖2Q−1 +

∞∑
i=0

1

2
‖vk‖2R−1 ≤ δ

this implies |xk − x̂k| ≤ ε for all k.

The first question that one can ask is: are the measurement ”rich” enough in order to

be able to estimate some of the states that we cannot measure directly? Intuitively we

can understand that, in the linear case, it depends on two matrices: the matrix A of the

system that express how the states are connected between each other, and the matrix

C that express which states we are measuring. If we are measuring the a right number

and/or the right states, we can obtain indirectly information about the other states.

This property is called observability.

Chapter 2. Optimal control and estimation 15

Theorem 2.5 (Observability for linear systems). A linear time-invariant time-discrete

system

xk+1 = Axk +Buk

yk = Cxk

where xk ∈ Rn is observable if the rank of the observability matrix O

Ω =

C

CA

CA2

...

CAn−1

is equal to n, that is Ω is full rank. In this case we say also that (A,C) is observable.

For optimal estimators, like the Kalman filter, the conditions for a convergent estimation

to the states x̂k → xk are that the system (A,C) has to be observable, Q,R > 0 and

the errors have to be convergent to zero.

Notice that in some cases the observability requirement is too strict and it can be

weakened into the detectability.

Definition 2.6 (Detectability). A system is detectable if the unobservable states are

asymptotically stable.

With those definition we can now define when a constrained MHE for linear systems is

robust GAS:

Theorem 2.7 (Robust GAS of constrained MHE in linear systems). Consider a de-

tectable linear system, with convergent constrained disturbances. The constrained MHE

estimator using the prior weighting an optimal unconstrained estimator (like the Kalman

Filter) is robustly GAS.

2.3 Different MHE formulations

During this section we consider only linear systems:

x+ = Ax+Bu+ w

y = Cx+ v

x(0) = x0

Chapter 2. Optimal control and estimation 16

and we show how the choice of the optimization variable plays an important role in the

problem structure. A study on the effect of these structure has been carried out in the

thesis [24]. Remember that :

x,w ∈ Rn, u ∈ Rm , y, v ∈ Rp, A ∈ Rn×n, B ∈ Rm×m, C ∈ Rp×n,

If we choose a quadratic objective function like 5.5 we obtain in general a Quadratic

Programming (QP) problem, which has the following form:

min
ẑ

1

2
ẑTH ẑ + ẑT f such that:

Cẑ ≤ d

Aẑ = b

lb ≤ ẑ ≤ ub

(2.14)

where H ∈ RNn×Nn (called Hessian matrix), ẑ ∈ RNn, N is the horizon length.

2.3.1 Noises and states as optimization variables

The ”classic” way to express the problem is to leave as optimization variables the states

and the disturbances w, namely:

ẑ = (x̂Tk−N , ŵ
T
k−N , x̂

T
k−N+1, ŵ

T
k−N+1, ..., x̂

T
k−1, ŵ

T
k−1)

T .

In this case we have that the MHE problem is:

J(ŵ, x̂) =
1

2
‖x̃k−N − x̂k−N‖2P−1

k−N

+

k−1∑
i=k−N

1

2
‖ŵi‖2Q−1 +

k∑
i=k−N

1

2
‖yi − Cx̂i‖2R−1 (2.15)

with the constraints

xk+1 =Axk +Buk

xk ∈X, X = [xlb, xub];

wk ∈W, W = [wlb, wub];

yk − Cxk ∈V, V = [vlb, vub];

Chapter 2. Optimal control and estimation 17

After a little algebra we obtain the H matrix in the form:

H =

CTR−1C + P−1 0 0 0 0 . . .

0 Q−1 0 0 0 . . .

0 0 CTR−1C 0 0 . . .

0 0 0 Q−1 0 . . .

0 0 0 0 CTR−1C . . .
...

...
...

...
...

. . .

(2.16)

A =

−A −I I 0 0

0 0 −A −I I
. . .

−A −I I 0

C =

−C 0 0 0

C 0 0 0

0 0 −C 0

0 0 C 0
. . .

0 −C 0

0 C 0

b =

Buk−N

Buk−N+1

...

Buk−1

 d =

vub − yk−N
−vlb + yk−N

vub − yk−N+1

−vlb + yk−N+1

...

vub − yk−1
−vlb + yk−1

2.3.2 Only noises as optimization variables

Another way is to express the problem only as a function of the first state estimate x̂k−N

and the noises w:

ẑ = (x̂k−N , ŵk−N , ŵk−N+1, ..., ŵk−1).

The matrices construction in this case is more complex so we introduce some transfor-

mation matrices like in [24]. In order to use only the noises we take advantage of the

Chapter 2. Optimal control and estimation 18

system state space equation, therefore we do not have equality constraints:

min
ẑc

1

2
ẑTc H ẑc + ẑc

T f such that: Ccẑc ≤ bc (2.17)

in which z̃ = (ẑc; ẑrem) where ẑrem contains the ”discarded” states variables. We define

the transformation matrix Π:

z̃ = Πẑ =

[
Π1

Π2

]
ẑc = Πẑ, ẑrem = Πẑ.

Let H∗ be equal to 2.16, we can transform the problem:

min
ẑc

1

2

(
Π−1

[
ẑc

ẑrem

])T
H∗
(

Π−1
[

ẑc

ẑrem

])
+

(Π−1
[

ẑc

ẑrem

])T
f.

 (2.18)

Let us define:

(Π−1)TH∗Π−1 =

[
H11 H12

H21 H22

]
and

(Π−1)T f =

[
f1

f2

]
After a little algebra we obtain:

Hc = H11 +MT
1 H22M1 +H12M1 +MT

1 H
T
12 (2.19)

fc = MT
1 H12m1 +H12m1 + f1 +MT

1 f2. (2.20)

Let be C∗ like in the problem 2.16 so if we define C∗Π = [A1A2] we can transform the

inequality constraints like:

Cc = A1 +A2M1

bc = bin −A2m1

in which:

M1 =

A I 0 0 . . .

A2 A I 0 . . .

A3 A2 A I . . .
...

...
...

...
. . .

AN AN−1 . . .

Chapter 2. Optimal control and estimation 19

m1 =

B 0 . . .

AB B . . .

A2B AB . . .
...

...
. . .

AN−1B AN−2B

uk−N

uk−N+1

uk−N+2

...

uk−1

Π1 =

I 0 0 0 0 0 . . .

0 I 0 0 0 0 . . .

0 0 0 I 0 0 . . .

0 0 0 0 0 I . . .
...

...
...

...
...

...
. . .

Π2 =

0 0 I 0 0 0 0 . . .

0 0 0 0 I 0 0 . . .

0 0 0 0 0 0 I . . .
...

...
...

...
...

...
. . .

2.3.3 Only states as optimization variables

A different way to approach the problem is tu use the system state space equation in

order to hide the errors on the state so as to have only states as optimization variables:

J =
k−1∑

i=k−N

1

2
‖x̂i+1 −Ax̂i −Bui‖2Q−1 +

k∑
i=k−N

1

2
‖yi − Cx̂i‖2R−1 +

1

2
‖x̃k−N − x̂k−N‖2P−1

k−N

(2.21)

where we denoted

x̂ = (x̂Tk−N |k, ..., x̂
T
k|k)

T (2.22)

and the notation (̂·)k−N |k indicates the state estimation at the time step k−N computed

at the time step k.

Since we used this approach in our algorithm we now go into the details on how to

construct the matrix H.

First term

Let us have a closer look at how to construct the problem 5.7 working out the first term

of Eq.5.6 for the first time step (i = 1). For matter of simplicity x̂i = xi:

‖x̂1 −Ax̂0 −Bu0‖2Q−1 = xT1Q
−1x1 + (Ax0 +Bu0)

TQ−1(Ax0 +Bu0)+

− (Ax0 +Bu0)
TQ−1x1 − xT1Q−1(Ax0 +Bu0)

= xT1Q
−1x1 + xT0A

TQ−1Ax0 + uT0B
TQ−1Bu0+

+ uT0B
TQ−1Ax0 + xT0A

TQ−1Bu0 − xT0ATQ−1x1+
− uT0BTQ−1x1 − xT1Q−1Ax0 − xT1Q−1Bu0

(2.23)

Chapter 2. Optimal control and estimation 20

Now let us collect the all the quadratic parts in xi of this term in a matrix M1, we

obtain:

M
(1)
1 =

[
ATQ−1A −ATQ−1

−Q−1A Q−1

]
.

Where the (1) indicates the first horizon step. For the second horizon step, we proceed

like in 2.23 and update the matrix M1 as follows:

M
(2)
1 =

ATQ−1A −ATQ−1 0

−Q−1A Q−1 +ATQ−1A −ATQ−1

0 −Q−1A Q−1

Notice that the block in position (2, 2) has changed. Proceeding with the i− th horizon

step:

M
(i)
1 =

ATQ−1A −ATQ−1 0 . . . 0

−Q−1A Q−1 +ATQ−1A −ATQ−1 . . . 0

0 −Q−1A Q−1 +ATQ−1A . . . 0
...

...
...

. . . −ATQ−1

0 0 0 −Q−1A Q−1

Second term

Now we solve the second term of Eq.5.7 for the i− th

‖yi − Cx̂i‖2R−1 = yTi R
−1yi + xTi C

TR−1Cxi − yTi R−1Cxi − xTi CTR−1yi
= xTi C

TR−1Cxi − 2xTi C
TR−1yi

(2.24)

and we put the quadratic parts in xi in the matrix M
(i)
2

M
(i)
2 =

CTR−1C 0 . . . 0 0

0 CTR−1C . . . 0 0
...

...
. . . 0 0

0 0 0 CTR−1C 0

0 0 0 0 0

.

Third term

Finally

‖x̃i − x̂i‖2P−1
i

= x̃Ti P
−1
0 x̃i + xTi P

−1
i xi − 2x̃Ti P

−1
i xi (2.25)

Chapter 2. Optimal control and estimation 21

from which we form the M i
3 matrix collecting its quadratic parts on xi

M
(i)
3 =

P−10 0 . . . 0

0 0 . . . 0
...

...
. . . 0

0 0 0 0

Now we are ready to obtain the H matrix of Eq.5.7 for the i− th horizon step summing

M
(i)
1 ,M

(i)
2 and M

(i)
3 . Notice that H is symmetric definite positive.

H =

ATQ−1A+ CTRC + P−1
k−N −ATQ−1 0 . . . 0

−Q−1A Q−1 +ATQ−1A+ CTRC −ATQ−1 . . . 0

0 −Q−1A Q−1 +ATQ−1A+ CTRC . . . 0

...
...

...
. . . −ATQ−1

0 0 0 0 Q−1

(2.26)

Now we carry on solving only the linear terms in x so to get the f(x̃k−N ,y, u) of Eq. 5.7.

Conversely we do not need the constant term g(x̃k−N ,y, u) since we are interested only

on the optimal point.

First let us collect all the terms depending on the input and state, notice that all of them

come from Eq.2.23. For the first horizon step they are: uT0B
TQ−1Ax0, −xT1Q−1Bu0, as

well for the i− th: uTi B
TQ−1Axi, −xTi+1Q

−1Bui, therefore we obtain the matrix:

F (i) =

ATQ−1B . . . 0

−Q−1B . . . 0
...

. . . ATQ−1B

0 0 −Q−1B

Then we collect the terms coming from Eq.2.23 and Eq.2.25 that depend on the state

only and we obtain, for the i− thstep

f̃ (i) =

−CTR−1y0 − P−10 x̃k−N

−CTR−1y1
...

−CTR−1yi
0

where 0 is a vector of zero elements in Rn. We obtain f (i)(x̃k−N ,y, u) = f̃ (i) +

F (i)u(i), where u(i) is the vector obtained stacking along a column the input vectors

Chapter 2. Optimal control and estimation 22

{u1, u2, ..., ui}. The same results can be obtained with the same matrix transformation

as in Eq. 2.19 where:

M1 =

−A I 0 0 . . .

0 −A I 0 . . .
. . .

. . .

m1 =

−B 0 0 . . .

0 −B 0 . . .
. . .

 ·

uk−N

uk−N+1

...

uk−1

Π1 =

I 0 0 0 0

0 0 I 0 0

0 0 0 0 I
. . .

Π2 =

0 I 0 0 0 0

0 0 0 I 0 0

0 0 0 0 0 I
. . .

 .

Chapter 3

Theoretical background on

optimization problems

The main issue that obstructs the application of the MHE for closed loop controlled

systems is the time required for solving the optimization problem. In order to understand

the principles on which most of the standard optimization algorithms are grounded, we

want to discuss about the theory behind the concept of optimization.

3.1 Optimization problem

The concept of optimization has been revealed to be a tool of huge importance and great

impact in the engineering field, as well as in other discipline, but it was also demonstrated

to be an essential factor in nature. Several semi-heuristic algorithms inspired to some

nature systems have been recently developed, like the Ant colony optimization [25], or

Artificial bee colony algorithm [26].

Optimization founds significant applications on one of the most important topic of the

recent years: energy saving or more generally green engineering. We can optimize the

consumption of fuel in vehicles, the power supplied to the heating system of an apart-

ment, the usage of some dangerous reactants in a chemical reaction or the formation of

a toxic by-product. These are only few examples of the thousand other applications of

optimization strategies.

In the MHE problem, the optimization problem comes as a way to obtain the most

probable system states once we know the output of the system, a probable initial point

and an idea of noises magnitude that effect the system. In the next sections we are going

to have a closer look at the mathematics that is behind the optimization algorithms.

23

Chapter 2. Theoretical background on optimization problems 24

3.2 Optimization sets

The most general formulation of an optimization problem is the following:

min
x

f(x) s.t.

h(x) ≤ 0

g(x) = 0
(3.1)

in which f ∈ Rn → R is called objective function, x ∈ Rn represents the optimization

variable, h(x) ∈ Rd is the vector of inequality constrains and g(x) ∈ Rl is the vector of

equality constraints.

The first question that arises is: can we found a solution to this problem and, if yes, is

that solution unique? In the successive sections we are going to review the properties

that a well-posed problem must have, in order to be able to compute a solution, and in

which case the solution is unique.

3.2.1 Affine and convex set

Definition 3.1 (Affine Set). A set C ⊆ Rn is affine if the line through any two distinct

points in C lies in C. Namely, if for any x1, x2 ∈ C and θ ∈ R we have θx1+(1−θ)x2 ∈ C
in which θ ∈ [0, 1]. We can generalize this idea for more than two points and obtain the

affine combination, that is
∑
θixi where

∑
θi = 1.

Definition 3.2 (Convex Set). A set C ⊆ Rn is convex, if every convex combination of

points xi ∈ C, defined as
∑
θixi is contained in C, where θi ≥ 0 and

∑
θi = 0.

Notice that the only difference respect to an affine set, is that the convex set requires

that θi ≥ 0. We can easily see that an affine set is also a convex set, but in general the

converse is not true. For example:

� The empty set ∅, any single point, and the whole space Rn are affine, hence convex,

subsets of Rn.

� Any line is affine. if it passes through zero.

Definition 3.3 (Polyhedra). A polyhedron is defined as the solution of a finite number

of linear equalities and inequalities:

P = {x|aTj x ≤ bj , j = 1, ...,m, cTj = dj , j = 1, ...p} (3.2)

A polyhedron is the intersection of a finite number of halfspace and hyperplane. Affine

sets (e.g. subspaces, hyperplanes, lines) and convex sets (line segments, halfspace) are

all polyhedra. We can also use the more compact notation:

P = {x|Ax ≤ b, Cx = b} (3.3)

Chapter 2. Theoretical background on optimization problems 25

(a) Convex set. (b) Non-convex set.

Figure 3.1: Examples of convex and non-convex set.

3.2.2 Operation that preserve convexity

We are going to describe some operation that preserve convexity of sets, so as to allow

us to construct convex sets from others.

Intersection

Convexity is preserved under intersection. If S1 and S2 are two convex sets, then S1∩S2
is convex. This property extends to the intersection of an infinite number of sets, e.g.:

a polyhedron is the intersection of halfspaces and hyperplanes, (which are convex, and

therefore is convex).

Affine transformation

If f : Rn → Rm is affine (see Def. 3.4), and S ⊆ Rn is convex, then the image of S under

f , f(S) = {f(x)|x ∈ S} is convex. Similarly, if f : Rk → Rn is affine, the inverse image

of S under f , f−1(S) = {f(x)|x ∈ S} is convex.)

Some examples:

� Scaling and translation.If S ⊆ Rn is convex α ∈ Rn, and a ∈ R, the sets αS and

S + a are convex.

� Sum. The sum of two convex set is convex. S1 + S1 = {x+ y|x ∈ S1, y ∈ S2}.

� Cartesian product. The cartesian product of two convex sets is convex. S1× S2 =

{(x1, x2) | x1 ∈ S1, x2 ∈ S2}.

Chapter 2. Theoretical background on optimization problems 26

3.3 Optimization functions

3.3.1 Affine functions

Definition 3.4 (Affine function). A function f : Rn → Rm is affine if it is a sum of a

linear function and a constant, i.e., if it has the form f(x) = Ax + b, where A ∈ Rm×n

and b ∈ Rm .

3.3.2 Convex functions

Definition 3.5 (Convex function). A function f : Rn → R is convex in its domf is a

convex set and if for all x, y ∈ domf , and θ with 0 ≤ θ ≤ 1, we have:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (3.4)

Geometrically, this means that the line segment between (x, f(x)) and (y, f(y)) lies

above the graph of f (see Fig. 3.2). A function f is strictly convex if struct inequality

holds in Eq. 3.4. Furthermore, we say that f is concave in −f is convex, and strictly

concave if −f is strictly convex.

For an affine function we have always equality in Eq. 3.4, so every affine function (hence

also linear) are both convex and concave. Conversely, any function that is both concave

and convex is affine.

3.3.2.1 First order conditions

Suppose f is differentiable (i.e., its gradient ∇f exists at each point in domf), then f

is convex if and only if domf is convex and:

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ domf (3.5)

The affine function in y given by Eq. 3.5 is the first-order Taylor approximation of f

near x. This shows that from local information about a convex function (i.e, its value

and derivative at a point) we can derive global information.

Strict convexity can also be characterized by a first-order condition, just in Eq. 3.5 we

have > instead of ≥.

Chapter 2. Theoretical background on optimization problems 27

Figure 3.2: Graph of a convex function. Notice that the line between two points it is
always entirely above the function evaluated between those two points.

3.3.2.2 Second order condition

Definition 3.6. A function f is convex if and only if domf is convex and its Hessian

is positive semi-definite, that is for all x ∈ domf :

∇2f(x) ≥ 0 (3.6)

Strict convexity can be partially characterized saying that if ∇2f(x) > 0 for all x ∈
domf then f is strictly convex, but the converse is not true, for example the function

f(x) = x4 is strictly convex but has zero second derivative at x = 0.

Examples

An example of convex function are the quadratic functions.

Definition 3.7 (Quadratic functions). A quadratic function f : Rn → R with domf =

Rn is given by:

f(x) =
1

2
xTPx+ qTx+ r (3.7)

Chapter 2. Theoretical background on optimization problems 28

with P ∈ Rnxn,q ∈ Rn and r ∈ R. The second order condition states that this function

is convex if P ≥ 0, is strictly convex if P > 0, while is concave if P ≤ 0 and strictly

concave if P < 0.

Other examples of convex function on R:

� Exponential. eax is convex on R for any a ∈ R;

� Powers. xa is convex on R+ when a ≥ 1 or a ≤ 0, and concave for 0 ≥ a ≥ 1;

� Powers of absolute value. |x|p, for p ≥ 1, is convex in R;

� Logarithm. log x is concave on R+

Then some example of convex function in Rn:

� Norms. Every norm on Rn is convex;

� Max function. f(x) = max(x1, ..., xn) is convex in Rn;

3.3.3 Operation that preserve convexity

� Multiplication by scalars. If f is a convex function and α ≥ 0, αf is convex;

� Nonnegative weighted sum.If fi are a convex function, f = w1f1 + ... + wmfm is

convex;

In optimal control, as well as in estimation problem, the function of which we want find

the minimum is a sum of convex functions:

min
u,x

N−1∑
i=0

Li(xi, ui) + E(xN) s.t.

x0 − x̄0 = 0, i = 0, ..., N − 1

xi+1 − fi(xi, ui) = 0, i = 0, ..., N − 1

hi(xi, ui) ≤ 0, i = 0, ..., N − 1

gi(xi, ui) = 0, i = 0, ..., N − 1

r(xr) ≤ 0.

(3.8)

In our case Li is going to be a quadratic function (Def. 3.7) with P > 0 and a set of

convex constraints, in particular polyhedra (see Def. 3.3) formed by the intersection of

hyperplanes.

Chapter 2. Theoretical background on optimization problems 29

3.3.4 Optimality

Definition 3.8 (Optimal value.). p∗ is an optimal value of the problem 3.1 if:

p∗ = inf {f(x)|g(x) ≤ 0 for i = 1, ..., l and c(x) = 0 for i = 1, ..., p}

Definition 3.9 (Locally optimal point.). A feasible point x is locally optimal if there is

a R > 0 such that

f0(x) = inf {f(x)|h(x) ≤ 0 for i = 1, ..., l and g(x) = 0 for i = 1, ..., p, ‖z−x‖2 ≤ R}
(3.9)

in other words, x is optimal point of a neighbourhood of radius R.

Definition 3.10 (Optimal point.). We say that x∗ is an optimal point or equivalently

we say that solve the problem 3.1, if x∗ ∈ domf (it is feasible), and f(x∗) = p∗. The

set of optimal points is given by :

Xopt = {f(x)|h(x) ≤ 0 for i = 1, ..., l and g(x) = 0 for i = 1, ..., p, f(x∗) = p∗}

3.4 Convex optimization

A convex optimization problem is one of the form:

min
x

f(x) s.t.

g(x) ≤ 0

Ax = b
(3.10)

where f(x) is a convex function, g(x) is a vector convex functions and A ∈ Rn×n.

Comparing this form with the problem 3.1 the convex problem has three additional

requirements:

� the objective function must be convex;

� the inequality constraint functions must be convex;

� the equality constraint functions must be affine.

Notice that the feasible set of a convex optimization problem is convex since each gi(x)

is convex and aTi x = b is convex (it’s an hyperplane), and we have seen in § 3.2.2 that

the intersection of convex set is convex. Thus, in a convex optimization problem, we

minimize a convex objective function over a convex set.

Theorem 3.11 (Solution of a strictly convex optimization problem.). The problem

written in Eq. 3.10 has a unique solution if and only if the objective function is strictly

convex.

Chapter 2. Theoretical background on optimization problems 30

3.4.1 Local and global optima

Theorem 3.12. If the convex problem 3.1, has a locally optimal point, that point is also

globally optimal.

Proof. To see this, suppose that x is a locally optimal point for the convex problem, i.e.

x is feasible and:

f(x) = inf{f(z) | z feasible, ‖z − x‖2 ≤ R}

for some R > 0. Suppose that x is not globally optimal, thus there is a feasible y such

that f(y) < f(x). Evidently ‖y − x‖2 > R, since otherwise f(x) ≥ f(y). Now if we

consider a point

z = (1− θ)x+ θy, θ =
R

2‖y − x‖2
.

We have ‖z−x‖2 = R/2, where x is feasible by convexity of the feasible set. By convexity

of f we can say

f(z) ≤ (1− θ)f(x) + θf(y) ≤ f(x)

which contradicts 3.9, therefore there exists no feasible y with f0(y) < f0(x) i.e., x is

globally optimal.

3.4.2 Optimal criterion for differentiable f

The problem now is how to built a criterion that allows us to practically know if a point

x is optimal. Suppose that the objective function f of a convex optimization problem

is differentiable, so that:

f0(y) > f0(x) +∇f0(x)T (y − x) (3.11)

Let us denote as X the feasible set, namely:

X = {x|g(x) ≤ 0, i = 1, ...,m, h(x) = 0, i = 1, ..., p}

Then the x is optimal if and only if x ∈ X and

∇f0(x)T (y − x) ≤ 0 for all y ∈ X (3.12)

this can be seen graphically in Fig. 3.3, and it means that the vector −∇f(x) ,that

indicate the direction towards the function decreases, and the vector (y − x) form an

acute angle.

Chapter 2. Theoretical background on optimization problems 31

Figure 3.3: Depiction of Eq.3.12, notice that the angle between the vectors is acute.
Since the x is the optimal point, it can be easily seen that taking any y point in X, the

angle is always acute.

3.4.3 Unconstrained problem

For an unconstrained problem, the condition 3.12 reduces to:

∇f(x) = 0 (3.13)

If there are no solution to Eq.3.13 there are no optimal points. Here we can distinguish

two cases: the problem is unbounded below or the optimal value is finite but not reach-

able. In the other hand we can have more than one solution, in which case each solution

is a minimizer of f .

Example - Unconstrained quadratic optimization

Consider the quadratic problem:

f(x) =
1

2
xTPx+ qTx+ r

where P is symmetric semidefinite positive, the necessary sufficient condition for x to

be minimizer of f is:

∇f(x) = Px+ qT = 0

Now we can have several cases, depending on whether this linear equation has no solu-

tion, one solution or many solutions.

� If q /∈ R(P), then there is no solution, in this case f is unbounded below.

Chapter 2. Theoretical background on optimization problems 32

� If P > 0 namely is f is strictly convex, then there is a unique minimizer, x∗ =

−P−1q.

� If P is singular, but q ∈ R(P) then the (affine) set of optimal points is Xopt =

−P †q +NP where P † denotes the pseudo-inverse of P (see A.2).

3.4.4 Problem with only equality constraint

Consider the case when we have equality constraints but no inequality constrains:

min
x
f(x) s.t. Ax = b

The feasible set is affine (it is again an intersection between hyperplanes, (namely it is

a polyhedron) and we assume that it is no empty, otherwise the problem is infeasible.

The optimality condition is that:

∇f(x)T (y − x) ≥ 0

must hold for all y satisfying Ay = b. Since x is feasible, every feasible y has the form

y = x+ v where v ∈ N (A), therefore we can express the optimality condition as :

∇f(x)T v ≥ 0 for all v ∈ N (A)

But we know that if a linear function is nonnegative on a subspace, then must be zero

on all the subspace, so it follows that

∇f(x)T v = 0 → ∇f(x) ⊥ N (A).

We know also that N (A)⊥ = R(AT), that means ∇f(x) ∈ R(AT), i.e. there exist a

v ∈ Rp such that:

∇f(x) +AT v = 0

Together with the Ax = b (the x has to be feasible) this is the classical Lagrange

multiplier optimality condition, that we are going to cover later in this work.

3.5 Linear optimization problems

Definition 3.13 (Linear program). When the objects and constraint function are all

affine, the problem is called linear program (LP). Generally it has the form:

min
x

cT + d s.t.

Gx ≤ h

Ax = b
(3.14)

Chapter 2. Theoretical background on optimization problems 33

Figure 3.4: This is a geometric interpretation of a LP, similar to the generic one that
we gave previously. In this case notice that the optimal point is going to be always in

the boundary of the set X

where G ∈ Rm×n and A ∈ Rp×b. The problem, naturally, is convex.

It is common to omit the constant d, since it does not affect the optimal point. A figure

representative of the problem is Fig. 3.4.

Definition 3.14 (Standard LP formulation). We define standard LP formulation or

standard LP form the linear problem in the form:

min
x

cTx s.t.

Ax = b

x ≤ 0
(3.15)

Notice that the Eq. 3.14 can be always written in the standard form.

3.6 Quadratic optimization problem

Definition 3.15 (Quadratic problem). The convex optimization problem 3.10 is called

quadratic program (QP) if the objective function is (convex) quadratic and the constrain

functions are affine.

min
x

1

2
xTPx+ qTx+ r s.t.

Gx ≤ h

Ax = b
(3.16)

where P ≥ 0, G ∈ Rm×n, and A ∈ Rp×n.

Chapter 2. Theoretical background on optimization problems 34

Definition 3.16 (Quadratically constrained quadratic program). If not only the ob-

jective function, but also the inequality constraints are quadratic, we call this problem

quadratically constrained quadratic function

min
x

1

2
xTPx+ qTx+ r s.t.

1
2x

TGx+ hTx+ l ≤ 0

Ax = b
(3.17)

3.7 Duality

We consider a standard form of the optimization problem as in 3.1;

min
x

f(x) s.t.

g(x) ≤ 0

h(x) = 0
(3.18)

Let us assume the domain D = dom(g)∩dom(h) is nonempty, and let be p∗ the optimal

value.

We can reformulate the problem 3.18 in a dual representation, called dual problem.

The solution to the dual problem provides a lower bound to the solution of the primal

(minimization) problem, and under certain assumption, we are going to see how these

two results match. There exist many dual problems, however the most famous is the

Lagrangian duality, indeed we are going to refer only to this case.

The basic idea is to modify the objective function adding the sum of the constraints

function. We define the Lagrangian L : Rn × Rm × Rp → R:

L(x, λ, v) = f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

vihi(x) (3.19)

where dom(L) = D × Rm × Rp. We refer to λi as the Lagrange multiplier associated

with the ith inequality constraints, and vi as the Lagrange multiplier associated with

the equality constraints. The vectors λ and v are called Lagrange multiplier vectors.

Definition 3.17 (Lagrange dual function). The Lagrange dual function or dual function

g ∈ Rm × Rp → R as the minumum of the Lagrangian over x:

G(λ, v) = inf
x∈D

L(x, λ, v) = inf
x∈D

(
f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

vihi(x)

)

Notice that since the Langrangian is a family of affine functions of (λ, v), is is concave,

even when the problem 3.18 is not convex.

Chapter 2. Theoretical background on optimization problems 35

Theorem 3.18 (Lower bound of the dual function). The dual function gives a lower

bound of the optimal value p∗ of the problem 3.18 for any λ ≤ 0, namely

G(λ, v) ≤ p∗. (3.20)

Proof. Suppose x̃ is a feasible point in 3.18, i.e., g(x̃) ≤ 0, h(x̃) = 0 and λ ≥ 0. Then we

have :
m∑
i=1

λig(x̃)i +

p∑
i=1

vihi(x̃) ≤ 0,

since each element of the first sum is negative (remember λ ≥ 0) and each element of

the second sum zero, therefore:

L(x̃, λ, v) = f(x̃) +

m∑
i=1

λigi(x̃) +

p∑
i=1

vihi(x̃) ≤ f(x̃).

and finally

G(λ, v) = inf
x∈D

L(x, λ, v) ≤ L(x̃, λ, v) ≤ f(x̃).

The effect of these two terms in the cost function is of increase the cost when the

constraints are violated. For example, if for some x̃, hi(x̃) 6= 0 the value of the dual

function increases, the same happen when for some x̃, f(x̃) ≥ 0 (that is why λ has to

be always positive) therefore the optimization algorithm will try to avoid that looking

for some x that is in the feasible region.

Now we want to find the best lower bound of our that we can obtain from the Lagrange

function. This correspond to the problem

max
λ,v

G(λ, v) s.t. λ ≥ 0. (3.21)

We refer to (λ∗, v∗) as the dual optimal or optimal Lagrange multiplier. The Lagrange

dual problem is a convex optimization problem since the objective function is concave

and the constraints are convex. This happen whether or not the primal problem 3.1

is convex. The dual function gives a nontrivial lower bound only when λ ≤ 0 and

(λ, v) ∈ dom(g) i.e. g(λ, v) > −∞.

Chapter 2. Theoretical background on optimization problems 36

Example - Lagrangian function of a LP problem

Consider the LP in the standard form:

min
x

cTx s.t.

Ax = b

x ≥ 0
(3.22)

Let us form the Lagrangian as seen previously, we obtain:

L(x, λ, v) = cTx−
n∑
i=1

λixi + vT (Ax− b) = −bT v + (c+AT v − λ)Tx

the corresponding dual function is

G(λ, v) = inf
x
L(x, λ, v) = −bT v + inf

x
(c+AT v − λ)Tx

we notice that the function that we have to minimize is linear, therefore the limit is

not −∞ only if (c+AT v − λ)Tx = 0. In conclusion:

G(λ, v) =

−bT v when (AT v − λ+ c)Tx = 0

−∞ otherwise

3.8 Optimal condition

If we can find a dual feasible (λ, v) we obtain a lower bound on the optimal value of

the primal problem, namely p∗ ≥ g(λ, v). If x is feasible for the primal problem (primal

feasible):

f(x)− p∗ ≤ f(x)−G(λ, v)

in particular, we say that x is ε-suboptimal, with ε = f(x)− g(λ, v). ε is called duality

gap. It gives the gap between the solution of the primal problem and the best solution

of the dual problem.

It is possible to define a stopping criteria of an algorithm by choosing a tollerance on

the duality gap. Suppose an algorithm produces a sequence of primal feasible x(k) and

dual feasible (λ(k), v(k)) for k = 1, 2, We want an absolute accuracy of εtoll, then the

stopping criterion could be:

f(x(k))−G(λ(k), v(k)) ≤ εtoll

but in general, is not sure that we can find a solution for arbitrarily small tolerances,

because the dual problem could not approach the primal problem near enough. In this

case we need to make another assumption, that we explain in the next section.

Chapter 2. Theoretical background on optimization problems 37

3.8.1 Strong duality and Slater’s constraint qualification

If the duality gap is zero, we say that strong duality holds. Generally strong duality

does not hold, but if we have a convex problem (Eq. 3.10) and the Slater’s condition

holds, we have also strong duality.

Theorem 3.19 (Slater’s condition). Given a convex problem, if there exist an x ∈
relint(D) such that g(x) < 0 and Ax = b this point is called strictly feasible (because

the strict inequality holds) and strong duality holds.

If some of the inequality constraints are affine, e.g. g1, g2, ..., gk then we can have a

weaker condition for the strong duality. Indeed in this case the x has to be strictly

feasible only for the non-affine inequality constraints gi(x) < 0 i = k + 1, ...,m.

Now we make some important observations: suppose that the strong duality holds, that

means:

f(x∗) = G(λ∗, v∗)

= inf

(
f(x) +

m∑
i=1

λ∗i gi(x) +
m∑
i=1

v∗i hi(x)

)

≤ f(x∗) +
m∑
i=1

λ∗i gi(x
∗) +

m∑
i=1

v∗i hi(x
∗)

≤ f(x∗)

The first line is true when the strong duality holds, then in the second line we have insert

the definition of the dual function, in the third we use the fact that the point where the

minimum for the dual function exists is equal to the point where the minimum of the

primal function exists, while the last inequality is due to the fact that λ∗i ≥ 0, g(x∗) <

0, i = 1, ...,m and hi(x
∗) = 0, i = 1, ..., p. We can assert that:

1. Since the second and third lines are equal x∗ minimizes L(x, λ∗, v∗) over x (but it

could have other minimizers);

2.
∑m

i=1 λ
∗
i gi(x

∗) = 0, and since each term is nonpositive of course λ∗i gi(x
∗) = 0, i =

1, ...,m;

the second assertion is called complementary slackness. That means that, in all cases,

when strong duality holds, for any primal optimal and any dual optimal :

λ∗i > 0→ gi(x
∗) = 0

or

gi(x
∗) < 0→ λ∗i = 0

Chapter 2. Theoretical background on optimization problems 38

3.8.2 Karush-Kuhn-Tucher (KKT) optimality conditions

Let us assume that the functions f(x), g(x), h(x) are differentiable, if x∗, (λ∗, v∗) are the

primal and dual optimal points with zero duality gap. Since x∗ minimize the Lagrangian,

it follows that its gradient must be zero at x∗:

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

v∗i∇hi(x∗) = 0

therefore we obtain the KKT conditions for non-convex problems:

gi(x
∗) ≤ 0, i = 1, ...,m

hi(x
∗) = 0, i = 1, ..., p

λ∗i ≥ 0, i = 1, ...,m

λ∗i gi(x
∗) = 0, i = 1, ...,m

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

v∗i∇hi(x∗) = 0

(3.23)

Lemma 3.20 (KKT condition for non convex problem). This means that for any opti-

mization problem with differentiable objective and constraint function with strong duality,

any pair of primal and dual optimal points must satisfy the KKT condition. Notice that

vice versa is not always true.

Lemma 3.21 (KKT condition for convex problem). For a convex problem, the KKT

condition are necessary and sufficient to prove that x∗, (λ∗, v∗) are the primal and dual

optimal points with zero duality gap.

Proof. Indeed, the first two condition state that x∗ is feasible. Furthermore since λi ≥ 0,

L(x, λ∗, x∗) is convex in x and the last condition states that its gradient is zero at x∗ it

follows that it minimize L(x, λ∗, x), so:

G(λ∗, v∗) = L(x∗, λ∗, v∗) = f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

v∗i∇hi(x∗) = f(x∗)

Chapter 4

Review on optimization

algorithms

In Chapter 2 we have shown that the KKT condition must hold if the in a the optimal

point of a optimization problem. Along this line, we have shifted our problem :

min
x

f(x) s.t.

g(x) = 0

h(x) ≤ 0

where our unknown variable is x to the problem :

gi(x
∗) = 0, i = 1, ...,m

hi(x
∗) ≤ 0, i = 1, ..., p

λ∗i ≥ 0, i = 1, ...,m

λ∗i gi(x
∗) = 0, i = 1, ...,m

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

v∗i∇hi(x∗) = 0

(4.1)

where instead we have three unknown variable x∗, λ∗ and vi. Now we are going to see

how this approach can lead has to solve the original problem.

4.1 Unconstrained minimization

For understanding the hierarchy that an optimization algorithm usually implements, we

have to start from the simplest case of all, the unconstrained minimization. We have

min f(x) (4.2)

39

Chapter 4. Optimization algorithms 40

where f : Rn → R is convex and twice continuously differentiable (therefore dom(f) is

open). We assume that there exists an optimal x∗, and we denote p∗ = inf {f(x)} =

f(x∗). Since f is differentiable and convex, a necessary and sufficient condition for a

point x∗ to be optimal is:

∇ f(x∗) = 0

therefore solving this problem is the same as solving the problem 4.2, which is a set of

n equation in n variables. In some cases we can find analytically a solution but usually

we have to solve it with an iterative algorithm. This algorithm compute a sequence

of points x(0), x(1)... ∈ dom(f) with f(x(k)) → p∗ as k → ∞. We call this sequence

minimization sequence. The algorithm stops when f(x(k)) − p∗ ≤ ε, where ε > 0 is a

specified tolerance.

The method described require that the starting point x(0) must lie in dom(f), and the

sublevel set defined as follows:

S = {x ∈ dom f |f(x) ≥ f(x(0)} (4.3)

must be closed. This condition is satisfied for all x(0) ∈ dom(f) if the function is closed.

4.1.1 Strong convexity

Definition 4.1 (Strong convex function). A function is strongly convex on S if there

exist an m > 0 such that

∇2f(x) ≥ mI (4.4)

for all x ∈ S.

As a consequence we have that for x, y ∈ S

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x)

where z is some point in the line segment from x to y. So is f is strongly convex:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22 (4.5)

this gives us a better lower bound that we can use to bound f(x) − p∗. Indeed, let us

minimize the right side of 4.5 in respect to y, we obtain ỹ = x − (1/m)∇f(x). If we

substitute:

f(y) ≥ f(x)− 1

2m
‖∇f(x)‖22

Chapter 4. Optimization algorithms 41

therefore we obtain a lower bound for the optimal point:

p∗ ≥ f(x)− 1

2m
‖∇f(x)‖22. (4.6)

From this we can deduce that if the gradient is small in a point, that point is nearly

optimal. We can make other two observations, we can use this result as a condition for

suboptimality:

‖∇f(x)‖(2mε)1/2 → f(x)− p∗ ≤ ε

and we can derive a bound on the distance from the optimal point:

‖x− x∗‖2 ≤
2

m
‖∇f(x)‖2

As well as the lower bound we can derive a upper bound, since that the Eq. 4.5 requires

that S is bounded. Therefore the maximum eigenvalue of the hessian ∇2f(x) is bound

above, such that:

∇2f(x) ≤MI (4.7)

this implies

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖22 (4.8)

therefore

p∗ ≤ f(x)− 1

2M
‖∇f(x)‖22. (4.9)

4.1.2 Condition number

The condition number of a function y = f(x) is a parameter that gives us an idea on

how much a small variation on the x reflects on the y. If the condition number is high,

it means that small variations (usually errors) on the x, cause large variation on the y,

while if it is small, variations on the x do not cause a significant variations on the y.

It is possible to demonstrate that the condition number of the Hessian matrix is the

ratio between the largest and the smallest eigenvalue. Therefore the condition of strong

convexity:

mI ≤ ∇2f(x) ≤MI (4.10)

gives us a upper bound for the condition number, that is k = M/m.

We can define as well the condition number of a set. First let us define the width of a

convex set C ⊆ Rn in the direction q with ‖q‖ = 1 as:

W (C, q) = sup
z∈C

qT z − inf
z∈C

qT z

Chapter 4. Optimization algorithms 42

then define the minimum and maximum width:

Wmin = inf
‖q‖=1

W (C, q), Wmax = sup
‖q‖=1

W (C, q)

the condition number is defined as:

cond =
W 2
max

W 2
min

.

Geometrically it represents the eccentricity of the set, namely it is thin if the condition

number is high, instead uniform in all direction if the condition number is approximately

one.

Now we want to derive something that bounds the condition number of a set in a α-

sublevel Cα = {x|f(x) ≤ α} where p∗ < α < f(x0), since it is going to be a crucial factor

in some algorithms. From Eqs.4.5 and 4.8 we can say:

p∗ +
M

2
‖y − x∗‖22 ≥ f(y) ≥ p∗ +

m

2
‖y − x∗‖22

Since it is true for all y ∈ C we can see that the set C contains a set Binner and is

contained in Bouter where:

Binner = {y|‖y − x∗‖2 ≤ (2(α− p∗)/M)1/2}

Bouter = {y|‖y − x∗‖2 ≤ (2(α− p∗)/m)1/2}

Geometrically, Binner is the ball inscribed and Bouter the ball circumscribed in the set.

We can easily see that they give us an idea of the conditional number of the set, since

if the set is very thin the inner ball is going to be way smaller than the outher ball,

therefore

cond(Cα) ≤ M

m

is large.

It must be remembered that most of the time we do not know m and M so we cannot

impose a stopping criteria that depends on these values. Anyway important results on

the convergence analysis can be carried out thanks these bounds.

4.2 Descent methods

The first class of methods we are going to see, are the descend methods. These methods

generate a sequence x(k), k = 1, ... where

x(k+1) = x(k) + t(k)∆x(k)

Chapter 4. Optimization algorithms 43

in which t(k) > 0 (if the x(k) is not optimal) is called step size or step length (even

though in general it is not equal to ‖x(k+1) − x(k)‖, ∆x(k) ∈ Rn is called step or search

direction (notice that it does not have to have unit norm). Let us suppose that these

methods are descent, namely it always holds that f(x(k+1)) < f(x(k)) except when the

point is optimal 1. Since the function is convex ∇f(x(k))T (y − x(k)) ≥ 0 this implies

f(y) ≥ f(x(k)), so the search direction must satisfy

∇f(x(k))T∆x(k) < 0

geometrically, this means that the search direction has to pull our point towards the

direction where the gradient is negative, or at least with an acute angle with such

direction.

For the moment let us suppose that we have the search direction. How can we choose

the step size? Several method have been proposed, we are going to have a glance at two

of them. For a deeper dissertation please refer to [27, Chapter 9].

� Exact line search: this solves the problem t = argmin
s≥0

f(x+ s∆x). This can be

used if the cost of the minimization is lower than the research of the step direction;

� Backtracking line search: this found a know step in order to minimize the

function of a certain amount small enough. The algorithm works like that:

1. Given a descent direction ∆x for f at x ∈ dom f and α ∈ (0, 0.5), β ∈ (0, 1)

2. t := 1

3. While f(x+ t∆x) > f(x) + αt∇f(x)T∆x, t := βt

Let us now conduct a convergence analysis on those two method.

4.2.1 Convergence analysis

We assume that f is strongly convex on S and we have the two constants M and m.

Let us define also a function f̃(t) = f(x − t∇f(x)) namely the value of the function f

calculated in a point y that lies on the line depicted by the gradient of f in x. Substituting

y = x− t∇f(x) we obtain:

∇f(t) < f(x)− t‖∇f(x)‖22 +
Mt2

2
‖∇f(x)‖22. (4.11)

1Notice that most of the optimization algorithm are based on this assumption. In this case we say that
the algorithm gives a relaxational sequence. Conversely the FG method does not make this assumption.

Chapter 4. Optimization algorithms 44

Now the exact line search method tries to find an exact t = t∗, so if we derive on respect

to t the right hand side we obtain that is minimized by t = 1/M . Substituting :

f(x+) = f̃(t∗) ≥ f(x)− 1

2M
‖∇f(x)‖22.

where for matter of simplicity x+ = x(k+1) and x = x(k). Now let us subtract p∗ from

both sides:

f(x+)− p∗ = f̃(t∗) ≥ f(x)− p∗ − 1

2M
‖∇f(x)‖22

then from Eq. 4.6 we have:

f(x+)− p∗ ≤ (1−m/M)(f(x)− p∗) → f(x(k))− p∗ ≤ ck(f(x(k))− p∗) (4.12)

We can make these important conclusion:

� since c = 1−m/M < 1 if k →∞ the algorithm converges to p∗;

� we have that f(x(k))− p∗ ≤ ε after k iterations:

log((f(x(0))− p∗)/ε)
log(1/c)

;

� the number of iteration increase logaritmicaly with the distance between initial

point and optimal value;

� the number of iteration increase for large condition number, in particular if M/m is

large we have that log(1/c) = −log(1−m/M) ≈ m/M , so the number of iteration

increases almost linearly with the condition number bound;

� the error f(x(k))− p∗ converges to zero at least as fast as a geometric series. This

is called linear convergence, indeed if we plot a graph where on the y-axis there

is the log of the error and on the x-axis there is the number of iteration, we can

easily see that it is linear.

We can in the same way as before, prove that the converge of the backtracking algorithm

has the same form:

f(x(k))− p∗ ≤ ck(f(x(k))− p∗)

but this time

c = 1−min {2mα, 2βαm/M} < 1

we do not include the proof, but it can be found in [27, Chapter 9] . We can conclude

that the algorithm converges as fast as a geometric series with an exponent that depends

on the condition number bound. Therefore the convergence is linear. Now we have just

to find a good step direction. We are going to talk about that in the next section.

Chapter 4. Optimization algorithms 45

4.2.2 Gradient descend method

If we choose ∆x = −∇f(x) we have the gradient descent method. In Algorithm 1 we

report the idea behind the method.

Algorithm 1 Gradient Descend method

Require: x ∈ dom f .
while err > toll do

∆x← −∇f(x).
Line search: choose a step size t via exact or backtracking line search.
Update: x← x+ t∆x.

end while

4.2.3 Conclusions

Through convergence analysis we can summarize the following:

� The gradient method often has approximately linear convergence, i.e. the error

f(x(k))− p∗ converges to zero linearly;

� It can be shown that the choice of α, β in the backtracking parameters has an

important impact, but non dramatic effect on the convergence. An exact line

search sometime improves the convergence, but not in a significant way (see [27]);

� The convergence rate depends greatly on the condition number of the Hessian

or the sublevel set. Convergence can be very slow even for problem that are

moderately well conditioned.

Therefore the main advantage of these methods is their simplicity, but the main disad-

vantage is that the convergence rate depend strongly on the condition number of the

Hessian or the sublevel sets.

4.2.4 Steepest descend direction

As in the above methods, let us approximate the function in a point x with a linear

function:

f(x+ v) ≈ f̂(x+ v) = f(x) +∇f(x)T v

where ∇f(x)T v is the directional derivative of the function in the direction v. Now

we can wonder which direction v the directional derivative is as negative as possible.

Geometrically this means that we are going down the function along the steepest path,

that intuitively will lead us to a faster convergence (usually).

Chapter 4. Optimization algorithms 46

Since the directional derivative is sensible to the magnitude of v let us normalize it, so as

to make our choice only based on the direction. We define normalized steepest descend

direction with respect to a generic norm ‖ · ‖ as

∆xnsd = argmin{∇f(x)T v|‖v‖ = 1}. (4.13)

Notice that there can be more than one solution.

Algorithm 2 Steepest descend method

Require: a starting point x ∈ dom f
while err > toll do

Compute steepest descend direction
Line search. Choose t via backtracking or exact line search
Update. x← x+ t∆x

end while

Of course if we choose the euclidean norm, the steepest descend direction (not nor-

malized) is ∆xsd = −∇f(x), therefore the steepest descent method coincides with the

gradient descent method. Instead with other norms we obtain different directions.

We report the rate of convergence (see [27] for the complete derivation). We know that

the euclidean norm is a lower bound for all the other norms, is follows that:

‖x‖ ≥ γ‖x‖2 ‖x‖ ≥ γ̃‖x‖2

as well as for the previous methods we obtain:

f(x+)− p∗ ≤ c(f(x)− p∗) (4.14)

where

c = 1− 2mαγ̃2min{1, βγ2/M} < 1.

In this case to we have linear convergence like in the gradient method.

Now we can make an interesting observation. Let us suppose that we want to use the

quadratic norm:

‖z‖P = (zTPz)1/2 = ‖P 1/2‖2

the last term shows that the quadratic norm correspond to the euclidean norm after a

change of coordinates, namely is as like we are minimizing:

f̄(ū) = f(P−1/2ū) = f(u).

Now we said that the gradient methods do not work well when the condition number

of the sublevel set is large, that is when the Hessian is ill conditioned. But suppose we

Chapter 4. Optimization algorithms 47

know at least an approximate Hessian Ĥ in a certain point, a very smart choice would

be P = Ĥ, so as the new Hessian :

Ĥ−1/2∇2f(x∗)Ĥ1/2 ≈ I

that has a low condition number.

Of course not always we have an approximate Hessian, but when we have it, the steepest

descent method with quadratic norm could bring very good results.

4.2.5 Newton’s method

Suppose that f : Rn → R is twice differentiable, working out a second order Taylor

expansion we obtain:

f̂(x+ v) = f(x) +∇f(x)T v +
1

2
vT∇2f(x)v, (4.15)

that is a paraboloid that approximate the function in x. We can easily find the step v

that minimize this paraboloid deriving the Eq. 4.15 that is :

v = ∆xnt = −∇2f(x)−1∇f(x)

this is called Newton step. Since ∇2f(x) is positive definite we can say

∇f(x)T∆xnt = −∇f(x)T∇2f(x)−1∆f(x) < 0

An other interesting interpretation of the Newton’s step is that we can see it as the

steepest descend direction at x for the Hessian quadratic norm:

‖u‖∇2f(x) = (uT∇2f(x)u)1/2.

As we said above the steepest descend direction with matrix P converges rapidly if P is

equal (or at most similar) to the Hessian, and as we can see, in the Newton’s method this

matrix is the Hessian indeed. This gives us an insight of the efficiency of the Newton’s

method.

We now define a quantity that is useful in for the stop criterion and for the analysis of

Newton’s method. We call Newton decrement the quantity:

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
.

Chapter 4. Optimization algorithms 48

that we can see as:

f(x)−min
y

f̂(y) = f(x)− f̂(x+ ∆xnt) = −1

2
λ(x)2

where we have used the expression ∆xnt = −∇2f(x)−1∇f(x). Therefore λ2/2 is an

estimate of f(x)− p∗ based on on the quadratic approximation of f at x. Or we can see

the Newton decrement also as:

λ(x) =
(
∆xTnt∇2f(x)−1

)
.

Here we present the algorithm. This is usually called damped or guarded Newton method,

because it does not use a fixed step size t = 1 like the pure Newton method.

Algorithm 3 Newton method

Require: a starting point x ∈ dom f and a tolerance toll > 0
while err > toll do

Compute the Newton step and decrement.
Stopping criterion. Terminate if λ2/2 < ε.
Line search. Choose step site t by backtracking line search.
Update. x← x+ t∆xnt

end while

Convergence analysis

We report the rate of convergence. For the complete derivation see [27] (Chapter 9,

page: 488).

Firs of all, we assume that f is twice continuously differentiable and strongly convex,

namely ∇2f(x) ≥ mI for x ∈ S. This implies that there exist M > 0 such that

∇2f(x) ≤MI for x ∈ S. In addition we assume that:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2 (4.16)

that means the Hessian of f is Lipschitz continuous on S with constant L. Notice that

the more similar the function f is to a quadratic function, the smaller is L. Thus a small

L means that the function is approximated very well by a quadratic function.

For some 0 < η ≤ m2/L and γ > 0 it is possible to demonstrate that:

� If ‖∇f(x(k)‖2 ≥ η :

f(x(k+1))− f(x(k)) ≤ −γ (4.17)

Chapter 4. Optimization algorithms 49

� If ‖∇f(x(k)‖2 < η, then the backtracking line search selects t(k) = 1

L

2m2
‖∇f(x(k+1)‖2 ≤

(
L

2m2
‖∇f(x(k)‖

)2

. (4.18)

When the second condition ‖∇f(x(k)‖2 < η is verified we can demonstrate that the

algorithm converges quadratically, indeed this phase is called quadratically convergent

phase, instead the first phase, when ‖∇f(x(k)‖2 ≥ η is called damped phase because the

backtracking chooses a t < 1 and converges linearly.

Conclusions

The Newton’s method has numerous advantages over gradient and steepest descent

methods:

1. Convergence is rapid especially near the optimal point where becomes quadratic.

Usually in this phase only 6-7 iterations are needed to reach the optimum with

extreme accuracy;

2. Is affine invariant. That means it is insensitive to the choice of coordinates or the

condition number of the sublevel sets of the objective.

3. The problem size does not affect dramatically the performance. A problem in

R1000 requires only a few steps more than a problem in R10

4. The performance does not depend on the choice of the algorithm parameters, while

in the steepest descend are a very critical choice.

The pitfall is mainly the computational effort in storing the Hessian and computing the

Newton step. We can solve this problem exploiting the structure of the problem avoiding

in this way part of the computational cost, or using a quasi-Newton method that uses

approximation of the Hessian so as to reduce computational and memory demand.

4.3 Equality constrained minimization

Even though MHE problems have inequality constraints, we are going to see that we can

reduce a problem with inequality constrains in a problem with only equality constraints,

for this reason let us have a look at the following problem:

min
x

f(x) s.t. Ax = b (4.19)

Chapter 4. Optimization algorithms 50

where f : Rn → R is convex and twice continuously differentiable, A ∈ Rp×n with

rank(A) = p < n. We assume that there exists an optimal x∗, and we denote p∗ =

inf {f(x)|Ax = b} = f(x∗).

The KKT conditions tell us that a point x ∈ dom(f) is optimal for the problem if and

only if there exist a v∗ ∈ Rp such that

Ax∗ = b, ∇f(x∗) +AT v∗ = 0 (4.20)

therefore the problem 4.19 is equivalent to solve the problem 4.20, which is a set of n+p

equation in n+ p variables. We call primal feasibility equations Ax∗ = b and secondary

feasibility equations ∇f(x∗) +AT v∗ = 0 and in general they are non linear.

Now we can solve the problem in two ways:

� Any equality constrained minimization problem can be reduced to an equivalent

unconstrained problem by eliminating the constraints, simply working out the

equality constraints in order to obtain an expression of our unknown vector and

substituting it in the function.

� If the dual function is twice differentiable we can solve the dual unconstrained

problem and recover the solution of the equality constrained problem.

Both methods sometimes can destroy a useful sparsity that the problem has that can

be useful for solving effectively the problem. For this reason we are going to have a look

at a Newton method that can directly handle constraints.

Let us see first how to solve a quadratic convex minimization problem because we need

it for a complete understanding of the Newton method.

If we have the following problem:

min
x

f(x) =
1

2
xTPx+ qTx+ r s.t. Ax = b (4.21)

where P ∈ Rn×n, P ≥ 0 and A ∈ Rp×n. The following optimality condition hold:

Ax∗ = b Px∗ + q +AT v∗ = 0

which we can write as [
P AT

A 0

][
x∗

v∗

]
=

[
−q
b

]
. (4.22)

The square matrix of this problem is called KKT matrix. The result of this linear system

has to be interpreted as follows:

Chapter 4. Optimization algorithms 51

� If the KKT matrix is nonsingular there is a unique optimal dual pair (x∗, v∗);

� If the KKT matrix is singular, but is solvable, any solution leads to an optimal

pair;

� If the KKT matrix is singular and not solvable, it means that the problem is not

bounded below or the point is infeasible.

4.3.1 Newton’s method with equality constraints

This method similar to the Newton’s method without constraints but has two differences:

the starting point must be feasible (x ∈ dom f and Ax = b) and the Newton step is

modified in order to make sure that the direction is feasible(A∆xnt = 0, this means that

the direction is perpendicular to the plane that describes the constraints).

We have the problem 4.19, and through a second-order Taylor approximation we obtain:

min
x

f̂(x+ v) = f(x) +∇f(x)T v +
1

2
vT∇2f(x)v s.t. A(x+ v) = b (4.23)

This is a convex quadratic minimization problem and can be solved analytically. Indeed

at the optimal point is true that:

Ax∗ = b, ∇f(x∗) +AT v∗ = 0

Substituting x∗ = x+ ∆xnt and w = v and linearising the gradient we obtain:

A(x+ ∆xnt) = b, ∇f(x+ ∆xnt) +ATw ≈ ∇f(x) +∇2f(x)∆xnt +ATw = 0

and since Ax = b

A∆xnt = 0, ∇2f(x)∆xnt +ATw = −∇f(x)

therefore Newton step is going to be the solution to the quadratic problem:[
∇2f(x) AT

A 0

][
∆xnt

w

]
=

[
−∆f(x)

0

]

that we have construct following the same procedure that we used in Eq. 4.22. We can

notice that the Newton step is always a feasible direction because we imposedA∆xnt = 0,

so every point x+ t∆xnt is feasible (unless x(k) is optimal), indeed A(x+ tv) = b. ∆xnt

is also a descend direction.

Chapter 4. Optimization algorithms 52

4.4 Interior point method

We want to solve a convex optimization problem like the following:

min
x

f(x) s.t.

h(x) ≤ 0

Ax = 0
(4.24)

where f, g : Rn → R are convex and twice continuously differentiable, and A ∈ Rp×n

with rank(A) = p < n. Let us assume that the problem is solvable, namely that x∗

exist, and let us denote f(x∗) = p∗, we assume also that the problem is strictly feasible,

that is there exist x ∈ D that satisfies Ax = b and g(x) ≤ 0, this means that Slater’s

constraint qualification holds, and there exist a dual optimal λ∗ ∈ Rm, v∗ ∈ Rp which

satisfy the KKT conditions.

Ax∗ = b, h(x∗) ≤ 0

λ∗ ≥ 0

∇f(x∗) +

m∑
i=1

λ∗iλg(x∗) +AT v∗ = 0

λ∗i = 0

(4.25)

Notice that we can look at the optimization problem as as divided in steps (or hierarchy

[27]): the interior point methods solve an optimization problem with linear equality

constraints and nonlinear inequality constraints by reducing it to a sequence of linear

equality constrained problems. Once we have them we can apply the Newton’s method

to solve these equality constrained problems by reducing them to a sequence of quadratic

linearly constrained problem. These are reduced into a unconstrained problem through

the KKT condition, that can be solved with a method for unconstrained minimization,

like Newton, Steepest descendent etc.

We are going to see the barrier method since we are going to use this method for the

MHE problem.

4.4.1 Logarithmic barrier

The idea is to eliminate the inequality constraints by modifying the objective function

with a term that increases the cost if these constraints are violated. This barrier can be

a logarithmic barrier :

min
x

f(x) +
m∑
i=1

−(1/t) log(−gi(x)) s.t. Ax = b (4.26)

Chapter 4. Optimization algorithms 53

Notice that the objective is still convex if f is convex, since the added term is convex,

increasing with u and differentiable. The problem now is an approximation of the original

problem, we can intuitively understand that the more the parameter t grows the more

the approximation improves. Let us denote:

Φ(x) =
m∑
i=1

log(−hi(x))

∇Φ(x) =
m∑
i=1

1

−hi(x)
∇hi(x)

∇2Φ(x) =
m∑
i=1

1

hi(x)2
∇hi(x)∇hi(x)T +

m∑
i=1

1

hi(x)
∇2hi(x).

We need first the definition of central path.

Definition 4.2 (Central path). Let us assume that the Eq. 4.26 has a unique solution

for all t > 0. We define x∗(t) the solution and central path as the set of points x∗(t) for

t > 0, and let us call these points central points. The latter must respect the following

necessary and sufficient condition:

Ax∗(t) = b hi(x
∗(t)) < 0 i = 1; ...,m,

and there exist a v∗ such that:

t∇f(x∗(t)) +∇Φ(x∗(t)) +AT v̂ = t∇f(x∗(t)) +
m∑
i=1

1

−hi(x∗(t))
∇hi(x∗(t)) +AT v̂ = 0

From the last formula,dividing by t, we can see that the feasible points λ∗i (t), v
∗(t) are:

λ∗i (t) =
1

−hi(x∗(t))
, i = 1; ...,m, v∗(t) = v̂/t (4.27)

therefore

G(λ∗i (t), v
∗(t)) = f(x∗(t)) +

m∑
i=1

λ∗i (t)hi(x
∗(t)) + v∗(t)T (Ax∗(t)− b) = f(x∗(t))−m/t.

The duality gap associated with x∗(t) and the dual feasible pair λi(t), v
∗(t) is m/t.

And since g(λ∗i (t), v
∗(t)) it is an underestimation of the optimal point and f(x∗(t)) a

upperestimation of the optimal point, we obtain:

f(x∗(t))− p∗ ≤ m/t

namely x∗(t) is maximum an m/t-suboptimal, and x∗(t) converges to an optimal point

as t → ∞. So it would be enough to choose t = m/ε and solve the problem 4.26 to

Chapter 4. Optimization algorithms 54

Figure 4.1: Example interior point method. We can see that when t grows the barriers
are closer to the constraints. Is important to remember that these barriers are not
actually constraints but zones where the cost function starts to increase logarithmically.

have the required accuracy, but it has been seen that for high dimensional problems

and for high accuracy it does not work well. For this reason the barrier method or path

following method has been proposed, where the factor t is augmented throughout we

get close to the optimal point, starting at each iteration from the point calculated the

previous iteration.

In Algorithm 4 we show the method. At each iteration is computed a central point

Algorithm 4 Barrier method

Require: a strictly feasible x, t← t(0) > 0, µ > 1 e tolerance toll > 0 Repeat
while m/t < toll do

Centering step. Compute x∗(t) by minimizing tf + φ s.t.Ax = b starting at x;
Update. x← x∗(t);
Increase t. t← µt.

end while

x∗(t) that is the minimizer of the problem 4.26 with a certain t (outer iteration phase)

also called centering problem. This point is computed through, for example, a Newton

method that handles equality constraints (inner iteration phase). After that the t factor

is increased and the problem is solved again but starting from the previous x∗(t).

We wonder now: how much do we have to be accurate with during the centering phase?

Of course by definition the central path will bring us to the solution of the original

problem anyway, but it has been seen that the difference in number of iterations in

calculating a good centering and a excellent is not so large, therefore usually is we

consider to calculate an exact centering.

A another important parameter is µ. If µ is big, there will be large outer steps, therefore a

few number of outer iteration, but we pay the price of an large number of inner iteration,

since the new starting point is not probably good, namely its far from the next starting

Chapter 4. Optimization algorithms 55

point. Conversely if µ is small, we made a higher number of outer steps (but more

precise) and a lower number of inner steps. The optimal µ changes from problem to

problem but it has been seen that a values between 10 to 20 seem to work well.

4.4.2 Inner iterations - Newton method

We are going to see how the Newton method faces up with this equality constrained

problem that we have obtained:

min
x

f(x) +
1

t
Φ(x) s.t. Ax = b. (4.28)

Let us write the KKT conditions:

∇f(x) +
1

t
∇Φ(x) +AT ν = 0

Ax = 0

we said that ∇Φ(x) =
∑

i=1m(−1/gi(x))∇gi(x) therefore:

∇f(x) +
1

t

m∑
i=1

1

−gi(x)
∇gi(x) +AT v = 0, Ax = 0

The Newton method find the step that minimize the second order approximation of the

objective:

∇f(x+ v) +
m∑
i=1

1

−tgi(x+ v)
∇gi(x+ v) =

≈ ∇f(x) +
m∑
i=1

1

−tgi(x)
∇gi(x) +∇2f(x)v +

m∑
i=1

1

−tgi(x)
∇2gi(x)v+

+
m∑
i=1

1

tgi(x)2
∇gi(x)∇gi(x)T v

this leads to the linear equations:

Hv +Atν = −g, Av = 0,

where

H = ∇2f(x)v +
m∑
i=1

1

−tgi(x)
∇2gi(x)v +

m∑
i=1

1

tgi(x)2
∇gi(x)∇gi(x)T v

g = ∇f(x) +
m∑
i=1

1

−tgi(x)
∇gi(x)

Chapter 4. Optimization algorithms 56

where, since

H = ∇2f(x) +
1

t
∇2Φ(x), g = ∇f(x) +

1

t
∇Φ(x)

finally

tH∆xnt +AT vnt = −tg, A∆xnt = 0, v = ∆x, ν = (1/t)ν

4.5 Nesterov’s Fast gradient method

This method was developed by Yurii Nesterov in 1983. The basic ideas are: dropping the

condition of a relaxation sequence (namely we do not ask to our method that fk ≥ fk+1

where k is the iteration) and using an estimated sequence. Let us star with this definition:

Definition 4.3 (Estimate sequence). A pair of sequences {φk(x)}∞k=0 and {λk}∞k=0, λ ≥ 0

is called estimate sequence of a function f(x) if:λk → 0 and for any x ∈ Rn and k > 0

we have:

φk(x) ≤ (1− λk)f(x) + λkφ0(x)) (4.29)

Lemma 4.4. notice that if for some sequence {xk} we have:

f(xk) ≤ φ∗k ≡ min
x∈Rn

φk(x) (4.30)

then f(xk)− f∗ ≤ λk[φ0(x∗)− f∗]→ 0

Proof. Indeed:

f(xk) ≤ φ∗k = min
x∈Rn

φk(x) ≤ min
x∈Rn

[(1− λk)f(x) + λkφ0(x)]

≤ (1− λk)f(x∗) + λkφ0(x
∗).

Thus, for any sequence {xk} satisfying Eq. 4.30 we can derive its rate of convergence

{f(xk)− f∗} directly from the rate of convergence of sequence {λk}.

In the next sections we are going to see how to find an estimate sequence and how to

ensure Eq. 4.30.

Chapter 4. Optimization algorithms 57

4.5.1 Estimate sequence

Lemma 4.5 (Estimated sequence). � If f is strictly convex;

� φ0(x) is an arbitrary function on Rn;

� yk
∞
k=0 is an arbitrary sequence in Rn;

� {αk}∞k=0 : αk ∈ (0, 1),
∑∞

k=0 =∞

� λ0 = 1

then we can choose this estimate sequence:

λk+1 = (1− αk)λk (4.31)

φk+1(x) = (1− λk)φk(x) + αk[f(yk) +∇T f(yk)(x− yk) +
µ

2
‖x− yk‖2]

Proof. Indeed, φ0(x) ≤ (1− λ0)f(x) + λ0φ0(x) ≡ φ0(x). Then for some k ≥ 0:

φk+1(x) ≤ (1− αk)φk(x) + αkf(x)

= (1− (1− αk)λk)f(x) + (1− αk)(φk(x)− (1− λk)f(x))

≤ (1− (1− αk)λk)f(x) + (1− αk)λkφ0(x)

= (1− λk+1)f(x) + λk+1φ0(x)

Now let us decide the form of the function φ0(x) if we choose the form φ0(x) = φ∗0(x) +
γ0
2 ‖x− v0‖2 then the process 4.31 preserves the canonical form of function:

φk(x) = φ∗k(x) +
γ0
2
‖x− v0‖2 (4.32)

where the sequences {γk+1}, {vk} and {φ∗k(x)} are defined as follows:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

yk+1
[(1− αk)γkvk + αkµyk − αkf ′(yk)]

φ∗0(x) = (1− αk)φk + αkf(yk)−
α2

2γk + 1
‖f ′(yk)‖2+

+
αk(1− αk)γk

γk+1

(µ
2
‖yk − vk‖2 +∇T f(yk)(vk − yk)

)

Chapter 4. Optimization algorithms 58

We are close to an algorithm scheme. Assume that we have Φ∗k ≥ f(xk), then in view

of the previous lemma,

Φ∗k+1 ≤ (1− αk)f(xk) + αkf(yk)−
α2
k

2γk+1
‖f ′(yk)‖2 +

αk(1− αk)γk
γk+1

f ′T (yk)(vk − yk).

Since f(xk) ≥ f(yk) + fT (yk)(xk − yk) we get the following estimate:

Φ∗k+1 = f(yk)−
α2
k

2γk+1
‖f ′(yk)‖2 + (1− αk)(f ′T (yk)

αkγk
yk+1

(vk − yk) + xk − yk).

We want to have Φ∗k+1 ≥ f(xk+1). The simplest way to ensure the inequality:

f(yk)
1

2L
‖f ′(yk)‖2 ≥ f(xk+1)

is to take the gradient step xk+1 = yk − 1/Lf ′(xk). Let us define αk as follows:

Lα2
k = (1− αk)γk + αkµ.

then we have α2
k/2γk+1 = 1/2L and we can replace the previous inequality by the

following:

Φ∗k+1 ≥ f(xk+1) + (1− αk)f ′T (yk)

(
αkγk
γk+1

(vk − yk) + xk − yk
)
.

Now we can use choice of yk, that we can find from the equation (αkγk)/(γk+1)(vk −
yk) + xk − yk = 0, that is:

yk =
αkγkvk + γk+1xk

γk + αkµ

from this we can obtained a constant step scheme in Algorithm 5. Algorithm 5 can be

Algorithm 5 Constant Step Scheme

Require: x0 ∈ Rn and γ0 > 0.
v0 ← x0.
while err > toll do

Compute αk ∈ (0, 1) from Lα2
k = (1− αk)γk + αkµ

γk+1 ← (1− αk)γ + αkµ
yk =

αkγkvk+γk+1xk
γk+αkµ

.

Compute f(yk) and f ′(yk).
xk+1 ← yk − 1/Lf ′(yk).
vk+1 ← 1

γk+1
[(1− αk)γkvk + αkµyk − αkf ′(yk)].

end while

written in simpler terms as in Algorithm 6 where βk = αk(1− α)/(α2
k + αk+1).

Chapter 4. Optimization algorithms 59

Algorithm 6 Constant Step Scheme II

Require: x0 ∈ Rn and α0 ∈ (0, 1).
v0 ← x0 and q ← µ/L.
while err > toll do

Compute f(yk) and f ′(yk).
xk+1 ← yk − 1/Lf ′(yk).
Compute αk ∈ (0, 1) from Lα2

k = (1− αk)γk + αkµ
βk ← αk(1− αk)/(α2

k + αk+1)
yk+1 = xk+1 + βk(xk+1 − xk)

end while

it is possible to demonstrate that if we chose α0 =
√
µ/L we obtain:

αk =

√
µ

L
βk =

√
L−√µ√
L+
√
µ
.

For the constrained case we cannot use the gradient step because could lead to an infea-

sible point (or the initial point could be infeasible) therefore we introduce the concept

of Gradient mapping that inherits the most important properties of the gradient.

Definition 4.6 (Gradient mapping). Let γ ∈ R+ we define gradient mapping of f on

the set Q
gQ(x̄; γ) = γ(x̄− xQ(x̄, γ)) (4.33)

where

xQ(x̄; γ) = arg min
[
f(x̄) +∇fT (x̄)(x− x̄) +

γ

2
‖x− x̄‖2

]
(4.34)

we can calculate the next step xk+1 = xQ(yk;L). In this work we use the constant

step scheme [28, Scheme 2.2.9] choosing αk =
√
µ/L and consequently obtaining the

Algorithm 7 in § 5.3.

Chapter 5

MHE algorithm and validation

We can consider our problem consisting of four parts:

I System;

II Estimation;

III Optimization;

IV Control;

we deal with these parts in the following sections.

5.1 System

Our system is linear time-invariant constrained and discrete:

xk+1 = Axk +Buk + wk (5.1)

yk = Cxk + vk (5.2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp. The constraints are box constraints, that is:

X = {x ∈ Rn|xl ≤ xk ≤ xr} (5.3)

Vk = {x ∈ Rn|vl ≤ yk − Cxk ≤ vr} (5.4)

where l and u represent the lower and upper bound respectively. We call X and Vk the

sets of constraints. Notice that the set Vk needs to be updated each time step with new

measurement.

60

Chapter 5. MHE algorithm and validation 61

An important note on the box constraints: The box constrained problem is not

as over-restrictive as one can think. Indeed is not rare to have a system where we

have constraints only on the the state’s maximum and minimum (we can think of a

upper bound as a maximum capacity of a tank, or a maximum speed of a vehicle),

and also the sensors accuracy, which can give us valid bounds on the measurement,

represents a box set of constraints. Nevertheless this assumption must be kept in mind

along all this dissertation, since it represents the mainstay on which the fast gradient

method grounds because, as we have already said, it permits to compute effectively the

projection. Anyway, other type simple constraints, like polytopic constraints, could be

applied in principle, maintaining a simple projection formulation.

5.2 Estimation

The MHE problem can be written in a similar way of the MPC:

J(v̂, ŵ, x̂k−N) =
k−1∑

i=k−N

1

2
‖ŵi‖2Q−1 +

k∑
i=k−N

1

2
‖v̂i‖2R−1 +

1

2
‖x̃k−N − x̂k−N‖2P−1

k−N

(5.5)

where the (̂·) represents the optimization variable, N is the horizon length, x̃k−N is our

best priori state information and ‖z‖2X is the short-hand notation for zTXz. Q−1 ∈ Rn×n

and R−1 ∈ Rp×p are the weightings matrices of the cost function and should be wisely

chosen. The matrix P−1k−N ∈ Rn×n is prior weighting matrix. Let us formulate the

optimization problem in a condensed way, namely we are going to use only the state

sequence {x̂i} as optimization variables following the idea of [29] we hide the errors wi

and vi using Eq. 5.1 so the cost function looks like:

J =
k−1∑

i=k−N

1

2
‖x̂i+1 −Ax̂i −Bui‖2Q−1 +

k∑
i=k−N

1

2
‖yi − Cx̂i‖2R−1 +

1

2
‖x̃k−N − x̂k−N‖2P−1

k−N

(5.6)

we can also write, after a little algebra:

J =
1

2
x̂THx̂ + x̂T f(x̃k−N ,y, u) + g(x̃k−N ,y, u) (5.7)

where we denoted

x̂ = (x̂Tk−N |k, ..., x̂
T
k|k)

T (5.8)

and the notation (̂·)k−N |k indicates the state estimation at the time step k−N computed

at the time step k.

Chapter 5. MHE algorithm and validation 62

We want to find the solution of the following problem:

x̂ = arg min
x

J(x,y, u) (5.9)

xi|k−1 ∈ Ui

where Ui = X ∩ Vi is the box constrained set.

5.2.1 Arrival cost matrix update

Since the MHE problem neglects the informations that are not in the horizon arises the

problem of estimation stability. We update the prior weighting matrix P−1k−N using the

Kalman Filter theory, namely using an unconstrained full information estimation. It is

possible to demonstrate that for a linear detectable systems with convergent disturbances

to zero and an quadratic objective function like 5.5the constrained MHE is Globally

Asymptotically Stable 2.7. In our the noises are not convergent, but are limited, therefore

the estimation will be stable, but not asymptotically, to the real state.

5.3 Optimization - Fast Gradient method

Once we have obtained the problem 5.7, we have to solve it through our Fast Gradient

(FG) method drafted in Algorithm 7. L and µ are maximum and minimum eigenvalue

Algorithm 7 Fast gradient algorithm

Require: L,µ,x0,ε
z ← x0, xold ← x0

∇J ← Hz + f . Calculate gradient
while err > ε do

x← z − 1/L∇J
x← proj(x,Ui) . Projection over W
z ← x+

√
L−√µ√
L+
√
µ

(x− xold) . Step
xold ← x
Find err . Error evaluation
∇J ← Hz + f

end while
return x∗ . Optimization result

of H, x0 is the starting point of the iterative algorithm that is chosen to be:

x0 = (x̂∗Tk−N |k−1, ..., x̂
∗T
k−1|k−1,0

T)T

where (·)∗ represents the solution of the optimization problem and 0 ∈ Rn is a all-zero

vector. This is called warm starting because we take advantage of the solution of the

Chapter 5. MHE algorithm and validation 63

optimization problem in the previous time-step in order to be closer (hopefully) to the

solution a time-step further.

As we are going to see the eigenvalues evaluation and the error evaluation are the most

critical parts of the algorithm, and they can be approached in several way.

5.4 Stopping criteria selection

We have studied several stopping criteria in order for our optimization algorithm:

Tolerance on the solution: namely we impose a tolerance on the difference |x(k) −
x(k+1)| ≤ tollx. However, we can discard immediately this method because is could

be ill-defined for some important problem classes, e.g. for a smooth convex objective

function that lacks in strong convexity [28, §2.1.2], therefore we can immediately discard

this approach.

Tolerance on complementary slackness: Let us have a look at an approach that

uses the KKT condition. As we said in § 3.8.2 at the optimal point the solution must

respect the KKT conditions:

gi(x
∗) = 0, i = 1, ...,m

hi(x
∗) ≤ 0, i = 1, ..., p

λ∗i ≥ 0, i = 1, ...,m

λ∗ihi(x
∗) = 0, i = 1, ...,m

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

v∗i∇hi(x∗) = 0

(5.10)

that in our case can be simplified:

Hx+ fT + λ1 − λ2 = 0 (5.11a)

(x− xu) ≤ 0, (xl − x) ≤ 0 (5.11b)

λ1 ≥ 0, λ2 ≥ 0 (5.11c)

λ1(x− xu) = 0, λ2(xl − x) = 0. (5.11d)

The idea is to use the Eq. 5.11a in order to find λ1 − λ2 since we can always calculate

the gradient Hx+fT . Furthermore from the 5.11c equation we know that the Lagrange

multipliers λ1, λ2 have to be positive and since we have box constraints they are going

to be perpendicular, therefore we can calculate λ1 and λ2. The 5.11b condition instead

Chapter 5. MHE algorithm and validation 64

is automatically respected if after the projection step. So the only condition that we

have to check is the 5.11d the complementary slackness. We check that max(λ1(x −
xu), λ2(xl − x)) ≥ tollcs. Notice that in order to have the 5.11b respected we have to

compute the gradient in 5.11a after projection. Since calculating again the gradient

could be computational expensive, we have decided to check the conditions every 10

steps.

Off-line number of iterations computation: we can apply the concept in [30,

Preposition 2] to the MHE case. We can have the condition f(x(k))− f(x∗) ≤ ε after at

most:

kmax = min

 ln 2ε− lnLd2

ln
(

1−
√

µ
L

)
 ,
⌈√

2Ld2

ε
− 2

⌉ (5.12)

where

d2 = max
x∈UN

i

‖x− x0‖2.

where x0 is the starting point of the algorithm and it is the same at each time-step and

Ui is the box constrained set. This means that the approach is cold starting, thus we

do not take advantage of the solution in the previous step but we start the optimization

every time from the same point. Since our bound are simple, if we choose x0 as the

center of the box constraints d2 is nothing else that the squared radius of the set X and

can be easily computed.

Stopping criteria tailored for Fast Gradient method [15] A corollary of gradient

mapping theorem [28, Theorem 2.2.7] is that:

f(x(k))− f∗ ≤ 1

2

(
1

µ
− 1

L

)
‖g(z(k−1), 1/L)‖2 (5.13)

where g(z(k−1), 1/L) = L(z(k−1) − x(k)) is the gradient mapping (Def. 4.6). From this

follow that
1

2

(
1

µ
− 1

L

)
‖L(z(k−1) − x(k))‖2 ≤ ε (5.14)

where x and w are defined in Algorithm 7. Notice that the FLOPs go linearly with the

matrix dimension. The Eq. 5.14 has been used in our algorithm.

In Figs.5.1 & 5.2 we present the comparison between these methods, for a random sparse

symmetric positive-definite matrix 100 × 100. As a reference we have plotted the ideal

stopping criteria |f(x(k))−f(x∗)| ≤ tollf where f(x∗) as been calculated with active-set.

The tolerance is 10−8 in all cases. The blue line represents the FG convergence rate and

the crosses and circle represent where the respective algorithm has stopped.

Chapter 5. MHE algorithm and validation 65

Tailored

Ideal

Cold starting

KKT

Fast gradient

Rate of convergence of Fast Gradient

Iterations

|f
(x

(k
))
−
f
(x

∗)
|

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Figure 5.1: Comparison between stopping criteria methods - Linear scale.

Tailored

Ideal

Cold starting

KKT

Fast gradient

Rate of convergence of Fast Gradient

Iterations

|f
(x

(k
))
−
f
(x

∗)
|

0 10 20 30 40 50 60 70 80
10−15

10−10

10−5

100

105

Figure 5.2: Comparison between stopping criteria methods - Logarithmic scale. The
”holes” are due to the fact that the value in those points is under the machine precision

and is approximated to zero, that cannot clearly plotted in a logarithmic scale.

Remark: a comparison with the KKT is not possible since in that case we use a

tolerance on the complementary slackness and not on the function, therefore the KKT

criteria is likely to have stopped when |f(x(k))−f(x∗)| ≤ tollf 6= 10−8. Anyway we have

decided to report where the KKT criteria stops with a tolerance on the complementary

slackness of 10−8. As we can see the stopping criteria tailored stops near the ideal

case while the cold starting criteria stops after more than two times the same number

iterations. The same simulation has been repeated for several random matrices and the

pattern has been always the same.

Chapter 5. MHE algorithm and validation 66

N
u
m
b
er

of
si
m
u
la
ti
on

s

Difference in iterations
0 5 10 15 20 25 30

0

10

20

30

40

50

60

Figure 5.3: Difference in FG iteration between ideal and tailored stopping criteria.

In Fig. 5.3 we report the the difference between the number of iteration needed with

the ideal stopping criteria and tailored stopping criteria. We run 100 simulations with

random matrices. We notice that most of the time the tailored method estimates less

than 4 iterations more than necessary.

5.5 Algorithm bottleneck

Let us have a look at the time-bottleneck of the algorithm using the approaches discussed

in the § 5.4 when we use the function eig in order to calculate the eigenvalues. The

horizon length is 100 steps large, the system has 10 states, therefore the matrix H that

goes into the optimizer is 1000 × 1000. The total time spent for solving the entire

MHE problem is 186.217s and of this time the 96.8% (180.267s) is spent for in the FG

algorithm. If we exploit the time spent in each part of the FG algorithm we notice that

the eigenvalues computation step is the most time demanding, followed by the gradient

computation step (see Fig. 5.4). Notice that the eigenvalues are calculated ones in each

time step, whereas the gradient ∇J = Hw + f is calculated several times in the same

step because is inside the FG iteration loop (see 7).

Now if we look at how the time spent in the different parts varies if we increase the

horizon from 10 to 100 steps with the same system (Fig. 5.5), we see that the eigenvalue

computation becomes the bottleneck for large scale matrices (notice that the matrix

dimension varies accordingly from 100× 100 to 1000× 1000). Since the MHE problems

usually very large, it is clear that the eigenvalue calculation represents the algorithm

bottleneck, therefore we have put our effort into it in order to speed the solution up.

Chapter 5. MHE algorithm and validation 67

OtherGradientEigenvalues

16%

21%

63%

Figure 5.4: Most time-demanding steps in the FG algorithm. Total time required:
180.267s

Gradient
Eigenvalues
Total

T
im

e
(s
ec
on

d
s)

Horizon length
0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

Figure 5.5: Time spent for gradient and eigenvalue computation with the matrix
dimension.

5.6 Comparison of various eigenvalues algorithms

We are going to see and compare various methods of eigenvalue evaluation in order solve

the bottleneck encountered in the previous section. Remember that we are interested

only to the maximum and minimum eigenvalue, the eig function instead computes all

of them, so we wonder if there are other approximated methods that give us only the

largest and smallest hopefully in less time time.

The first question that one might ask is: how much is the FG sensible to an error on

the eigenvalues? If the method is robust enough we could opt for a fast, but imprecise

algorithm. We now exploit this problem looking at how much the number of iterations

increases when the FG uses wrong eigenvalues.

Chapter 5. MHE algorithm and validation 68

Robustness FG - Min eigenvalue

D
iff
er
en
ce

on
it
er
at
io
n
s

k

Robustness FG - Max eigenvalue

D
iff
er
en
ce

on
it
er
at
io
n
s

k

0 2 4 60 2 4 6
−50%

0%

50%

100%

150%

200%

250%

−100%

0%

100%

200%

300%

400%

500%

Figure 5.6: Difference on iteration of the FG when we have errors on the eigenvalue.
The left image refer to the maximum eigenvalue while the minimum is taken as the
exact value, the right vice versa. 100 simulation with random system with dimension
n = 10, the error bar represent the standard deviation. The MHE matrix has been
constructed taking the prior weighting matrix P constant and equal to the steady-state

value, the vectors of constraints and the f are random.

5.6.1 Robustness of FG to error on the eigenvalues

Note: For this study we need to choose some reference algorithms that are known for

their reliability and precision. In particular we need to calculate reference eigenvalues

and a reference solution of the problem f∗ ≈ f(x∗) that have to be good enough in order

to use it for the ideal stopping criteria |f(x∗)− f(x(k))|. Indeed we have decided not to

use any stopping criteria of Par. 5.4 since they depend on the eigenvalues, therefore they

would have brought another level of error that we are not interested to take into account,

since our goal is to study the intrinsic robustness of the FG to errors on eigenvalues.

Those algorithm are eig for the eigenvalues and active-set of Matlab.

eig: this function uses subroutines of LAPACK library [31]. for real symmetric sparse

problem it uses the subroutine DSBTRD that operate on band symmetric matrices

computing a tridiagonal reduction A = QTQT . Since this implement a direct method

we assume that it gives a more precise result than our iterative methods.

active-set: we can claim that the active-set algorithm of quadprog function of Matlab

gives a good solution whether during the solving process no problem have occurred.

The Fig. 5.6 has been constructed calculating mean value and standard deviation of:(
numb. iterations− reference numb. iterations

reference numb. iterations

)
i

and

λi = kλrif,i

Chapter 5. MHE algorithm and validation 69

Where i is the simulation number. As we can see in Fig. 5.6, we have the minimum

number of iterations when k is slightly less than 1. In both cases if the eigenvalues are

larger than the true ones the number of iteration increases but not dramatically, instead

if the eigenvalue are taken less than approximately 75% of the real eigenvalues, the

number of iteration increases significantly. (Note: for the error on the largest eigenvalue

the algorithm has stopped after 5000 iterations without reaching convergence, therefore

it may be that in average the iterations required in order to get the same solution are

more than 200% respect to exact eigenvalue.)

In conclusion we are surely motivated on finding an eigenvalues approximation with a

tolerance of about 10%.

In the following sections we show the result obtained with several eigenvalue computation

strategies:

� Tridiagonal reduction (implemented in eig Matlab function);

� Power iteration method with Cholesky decomposition (code written by the author);

� Arnoldi method (implemented in eigs Matlab function);

� Implicit Restarted Block Lanczos method (implemented in irbleigs written by

J.Baglama, D.Calvetti, L.Reichel, [32]) ;

� Inverse power iteration method with Cholesky decomposition (code written by the

author).

5.6.2 eig,eigs and irbleigs

In Fig. 5.7 is depicted the distribution over 100 different random matrices (notice: not

systems) of the time spent for calculating the eigenvalues with the different algorithms.

The matrices are 1000×1000 block tridiagonal with the same pattern of the matrix in the

MHE problem. As we can see the eig function performs better than the other method.

We noticed also (but we do not report the results) that if the matrix is symmetric,

definite-positive, sparse but not block tridiagonal the irbleigs gives the best results (the

comparison has been made with a matrix with same dimensions and same percentage

of sparsity, but block-tridiagonal).

5.6.3 eig, Inverse Iteration and Power Iteration methods.

The Inverse Iteration Method that we implemented is actually made of other two ingre-

dients:

� Rayleigh quotient;

� Cholesky decomposition.

Chapter 5. MHE algorithm and validation 70

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0

2

4

6

8

10

12

14

16

18

Time (sec)

N
u
m
b
e
r
o
f
s
im

u
la
ti
o
n
s

EIG algorithm

(a)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

Time (sec)

N
u
m
b
e
r
o
f
s
im

u
la
ti
o
n
s

EIGS algorithm

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

14

16

18

Time (sec)

N
u
m
b
e
r
o
f
s
im

u
la
ti
o
n
s

IRBL algorithm

(c)

Figure 5.7: Statistical time distribution of eigenvalue calculation for eig,eigs and
irbleigs. We can see that the eig function is the fastest in all cases.

Rayleigh quotient

In our case we have a symmetric definite-positive H ∈ RNn×Nn, where N is the number

of steps, and n the number of states of the system. We assume ‖ · ‖ = ‖ · ‖2. Let

λ1, ...;λNm be the (real) eigenvalue of H and q1, ..., qNm the associated orthonormal

eigenvectors. Let us introduce first the Rayleigh Quotient :

r(x) =
xTHx

xTx
. (5.15)

Notice that if x is the eigenvector, r(x) = λ is the corresponding eigenvalue. This

formula comes simply from trying to find what scalar α, given an eigenvector x, act

more like an eigenvalue in minimizing the value ‖Ax− αx‖. It turns out that α = r(x).

Now let us derive r(x) to see what happen when x is near an eigenvector:

∇r(x) =
2

xTx
(Ax− r(x)x)

from this we can see that ∇r(x) = 0, with x 6= 0 if x is an eigenvector and r(x) is the

corresponding eigenvalue.

Chapter 5. MHE algorithm and validation 71

Let qJ be one of the eigenvalue of H, since ∇r(qJ) = 0 and the function is smooth except

in the origin, we can say that:

r(x)− r(qJ) = O(‖x− qJ‖2)

thus the Raylegh quotient converges quadratically to the eigenvalue. For this reason its

implementation in iterative algorithms is very effective.

Inverse Iteration method

The concept of inverse iteration comes from the Power Iteration [17], but it computes

an eigenvector, once we have the associated eigenvalue, faster than the power iteration.

Let us take a a scalar µ that is not a eigenvalue of H, we notice that the eigenvectors

of (H − µI)−1 are the same as the eigenvectors of H and the corresponding eigenvalue

are {λj − µ} there {λj} are the eigenvalues of H. Suppose µ is close to the eigenvalue

λJ of H, in this case (λJ − µ)−1 may be much bigger than (λj − µ)−1 with j 6= J .

Furthermore, since the power iteration method works better if the difference between

the largest eigenvalue and the second largest eigenvalue is large [17, Pag.205], the idea

is to apply the power iteration method to (H − µI) in order to amplify this difference

and consequently have a faster convergence.

Generally the Inverse iteration method works as follows: The algorithm, like Power

Algorithm 8 Inverse iteration method

Require: v(0),with ‖v(0)‖ = 1 and µ . Random vector
while err > toll do

w ← (H − µI)−1v(k−1)

v(k) ← w/‖w‖
λ(k) ← (v(k))TAv(k) . Rayleigh quotient
Compute err

end while
return λ, v . Eigenvalue and eigenvector

Iteration, has a linear rate of convergence, but we have the advantage that we can

choose to which eigenvector the algorithm is going to converge by choosing a value of

µ close enough to the associated eigenvalue, furthermore the more µ is close to the

eigenvalue the faster is the convergence. In our case we are interested in the maximum

eigenvalue and minimum eigenvalue, hence a good choice is µ = ‖H‖ for the maximum

and µ = ‖H−1‖ for the minimum.

Chapter 5. MHE algorithm and validation 72

We could demonstrate that if λJ is the closest eigenvalue to µ and λK is the second

closest, thus |µ − λJ | < |µ − λK | ≤ |µ − λj | for each j 6= J and qTJ v
(0) 6= 0, then the

iterates of Algorithm 9 satisfy:

‖v(k) − qJ‖ = o

(∣∣∣∣ µ− λJµ− λK

∣∣∣∣k
)
, |λ(k) − λJ | = o

(∣∣∣∣ µ− λJµ− λK

∣∣∣∣2k
)

as k →∞. So the method converges quadratically to the eigenvalue.

Cholesky decomposition

The Cholesky decomposition (or factorization) is a decomposition of a symmetric (more

generally Hermitian) positive-definite matrix H into a product of a lower triangular

matrix and its transpose (more generally conjugate transpose) H = LLT .

This decomposition is used for solving systems of linear equations in the form Ax = b.

Indeed after the decomposition we can use backward and forward substitution, but

twice faster than the LU decomposition. For dense matrices the cost of factorization is

1/3o(n3). The cost for solving the linear problem is also 1/3o(n3) while the LU needs

2/3o(n3). But if the matrix is sparse like in our case, the number of flops can be much

less than 1/3o(n3) depending on the degree of sparsity.

The idea is to use this decomposition in order to calculate w in the Algorithm 9, since

we can see w = (H − µI)−1v(k−1) as (H − µI)w = v(k−1)

Why not Rayleigh Quotient Iteration method? The reader might ask why we

have not used the Rayleigh Quotient Iteration method(RQI) [17]. This method consists in

updating µ at each iteration with the Rayleigh quotient λ instead of keeping it constant

and it would have led us to have a cubic convergence to the eigenvalue, instead of

quadratic. The reason is that Cholesky factorization is applicable only for positive semi-

definite matrices and in general the matrix (H−µI) could be not positive semi-definite,

but when µ = ‖H| or ‖H−1‖ it is negative definite and becomes positive definite if we

take −H+µI. Notice that the sign does not represent a problem. We have opted for the

Cholesky decomposition renouncing the advantage of RQI because, while the number

of iterations needed in order to calculate the eigenvalues is modest even with Inverse

Iteration (about 100 for the maximum and 10 for the minimum in the cases we studied)

the advantage on computing (H − µI)w = v(k−1) with practically o(n) flop, as we are

going to see in practice in the next chapter, is much more significant.

We report in Algorithm 9 the pseudocode implemented in the m file invit that we used.

Chapter 5. MHE algorithm and validation 73

Algorithm 9 invit - Inverse iteration method with Cholesky factorization

Require: toll . Tolerance
v(0) ← rand (h, 1) . Random vector
c← ‖H‖
cH ← chol(−H + cI) . Cholesky decomposition
while err > toll do

w(k) ← v(k−1)/|v(k−1)|
v(k) ← −cH�cHT�w(k)

L(k) ← (v(k))THv(k)/|q| . Rayleigh quotient
err ← |(Hv − L(k)v)| . Eigenvalue definition

end while
return L . Maximum eigenvalue
v(0) ← rand (h, 1) . Random vector
cH ← chol(H) . Cholesky decomposition
while err > toll do

w(k) ← v(k−1)/|v(k−1)|
v(k) ← cH�cHT�w(k)

µ(k) ← |q|/(vT q) . Rayleigh quotient
err ← |(Hv − µ(k)v)| . Eigenvalue definition

end while
return µ . Minimum eigenvalue

In Fig 5.8 compare the results obtained with the three methods on a random system with

10 states while increasing the horizon length. Since the difference in computational time

is remarkable we have not proceeded with statistical study on other random systems.

Notice that the x-axis of 5.8a reaches a matrix dimension of 200×200, conversely in the

other case is 1000× 1000.

We could have expected that the Power Iteration takes more time for the reasons outlined

previously in the chapter.

5.7 Performance of Fast Gradient with Inverse Iteration

and Cholesky factorization (FGIIC).

The Inverse Iteration method with Cholesky factorization has shown the best perfor-

mance in terms of computational time. To make sure that the problem solved via this

method gives the same result as with the eig method, we report in Fig. 5.9 the differ-

ences on the solutions. As we can see the solution are sufficiently close to each other.

We want to test our algorithm with 100 random system. The FG algorithm has been

set up as in Tab.5.1. The first important thing that we notice is that not all the sim-

ulations have converged within the 5000 iterations. In Fig. 5.10 we report with red

crosses the non-converged simulations and in green crosses the converged ones. Notice

that for non-converged we mean the simulations that have not converged at least in one

Chapter 5. MHE algorithm and validation 74

Gradient
Eigenvalues
Total

T
im

e
(s
ec
on

d
s)

Horizon length
5 10 15 20

0

0.1

0.2

0.3

0.4

(a) Power iteration with Cholesky factorization.

Gradient
Eigenvalues
Total

T
im

e
(s
ec
on

d
s)

Horizon length
0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

(b) eig.

Gradient
Eigenvalues
Total

T
im

e
(s
ec
on

d
s)

Horizon length
0 20 40 60 80 100

0

0.02

0.04

0.06

0.08

0.1

(c) Inverse iteration with Cholesky factorization.

Figure 5.8: Time spent for a MHE problem varying horizon length with different
algorithm for the eigenvalue calculation. The time refers to a time step, thus for solving

a a complete optimization.

Chapter 5. MHE algorithm and validation 75

0 200 400 600 800 1000 1200
−2

0

2

4

6

8

10

12

14
x 10

−7

E
rr

or

Error on the solution − Horizon length 20 steps

(a) Horizon length 20 steps.

0 200 400 600 800 1000 1200
−5

0

5

10

15
x 10

−7

Step

E
rr

or

Error on the solution − Horizon length 50 steps

(b) Horizon length 50 steps.

0 200 400 600 800 1000 1200
−5

0

5

10

15
x 10

−7

Step

E
rr

or

Error on the solution − Horizon length 100 steps

(c) Horizon length 100 steps.

Figure 5.9: Error on the 10 states with different horizon length when we use Inverse
Iteration method respect to the same problem solved with eig, namely (x̂i,j −xi,j)/x̂i,j
where x̂ is the solution with eig and x the solution with Inverse iteration, i in the state
and j is the simulation step. We can see how the solutions are sufficiently close to each

other along all the simulation.

Table 5.1: Problem set up. Refer to Alg.7 and 9

.

Fast Gradient

Max iterations 5000
Tolerance 10−8

Stopping criteria Tailored
Starting point Warm start

Inverse iteration

Max iteration Till converg.
Tolerance on eigenvalues 10−3

Characteristics Cholesky decomp.

Chapter 5. MHE algorithm and validation 76

Not converged simulations

Converged simulations

Convergence study of FG method

C
on

d
it
io
n
n
u
m
b
er

Number symulations

0 10 20 30 40 50 60 70 80 90 100
100

102

104

106

108

1010

1012

1014

Figure 5.10: The green crosses represent the converged simulations. 77 simulations
over 100 have converged. The maximum condition number of the converged ones is
1.0456×105 while the minimum condition number of the non-converged one is 1.4883×

105.

time step. In the y-axis we report the mean condition number of the problem along the

simulation time (however it reaches a constant value after a few steps). We notice that

the algorithm does not converge when the condition number is greater than ≈ 105.

In the case of the system in Fig. 5.8c the bottleneck is the gradient computation, we can

see if it is always the case through measuring the time spent in the different step for the

converged simulation. In Fig. 5.11 are depicted the results of these simulations and in

Tab. 5.2 some characteristic data of the time distributions. As we can see in some cases

the eigenvalues computation still reveals to be the bottleneck.

Table 5.2: Time distribution for the MHE problem solved through FG with Inverse
iteration

Statistical data (in seconds)

Gradient Eigenvalue Total
Mean 62.29 39.72 167.59
Min 0.21 9.14 42.065
Max 305.77 88.64 655.19

Median 38.87 38.37 116.6764

Chapter 5. MHE algorithm and validation 77

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

18

Time (sec)

N
u
m
b
e
r
o
f
s
im

u
la
ti
o
n
s

(a) Gradient time distribution.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Time (sec)

N
u
m
b
e
r
o
f
s
im

u
la
ti
o
n
s

(b) Eigenvalue time distribution.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

16

18

Time (sec)

N
u
m
b
e
r
o
f
s
im

u
la
ti
o
n
s

(c) Total time distribution.

Figure 5.11: Time distribution. MHE problem of 77 random systems solved with an
horizon length of 100 steps, using Fast Gradient method and Inverse iteration method.

We know want to explore in which cases the Gradient step is more time demanding than

the eigenvalue step. As we notice in Fig. 5.12 when the condition number is smaller

than 102 the gradient computation is faster than the eigenvalue computation. .

5.7.1 Conclusions

Since the majority of matrices of our interest have an high condition number, the bot-

tleneck in our cases remains the gradient computation. We tried to decrease the time

spent during the matrix-vector multiplication Hx using, instead of a H matrix sparse

block-tridiagonal, a full ”skinny” matrix (where we stored the blocks in the diagonals

as columns) end multiplying this matrix blockwise with the vector x. It turned out that

it takes longer, probably because the algorithm used by Matlab of sparse-matrix vector

multiplication uses C-language.

5.7.2 Final algorithm set-up

The best, and therefore final, version of the algorithm uses:

� Inverse Iteration method with Cholesky decomposition and Rayleigh quotient for

calculating the eigenvalue;

� Stopping criteria tailored for Fast Gradient.

Chapter 5. MHE algorithm and validation 78

Gradient faster

Eigenvalue faster

Number of convergeted simulations

C
on

d
it
io
n
n
u
m
b
er

0 10 20 30 40 50 60 70 80
101

102

103

104

105

106

Figure 5.12: Bottleneck of the algorithm in function of the condition number. The
blue crosses represent where the gradient is slowest step, therefore it is the bottleneck

while the red crosses are where the eigenvalue computation is the slowest step.

Chapter 6

Examples of application

6.1 Upflow Anaerobic Sludge Blanket reactor (UASB)

The same example has been used in [33] for estimating the states with an Unscendend

Kalman Filter (UKF). The UKF works directly on nonlinear systems but cannot take

into account constraints on the variable, which in this case are important since we have

some limit values that, if exceed, can lead to unsafe conditions [34]. We here resume

the main information about the system and lately apply the MHE and MPC algorithm.

Anaerobic digestion (AD) of organic substrate can be used to produce biogas consisting

mainly of methane and carbon dioxide. If the AD reactor works well, the produced

gas can be used for biogas combustible and, if in the digestate are not present toxic

compounds it can be used as a fertilizer. The UASB type reactors allow for a relatively

Figure 6.1: Upflow Anaerobic Sludge Blanket reactor (UASB) - Image taken from
[33] (partially modified).

79

Chapter 6. Examples of application 80

high load rates and/or small reactor volumes [35]. This reactors have a large retention

time and this confers them high effectiveness.

We can apply several control policy to the plant, one aims to reach a constant set-point

of methane flow given a requested power production. Another control policy is to keep

the reactor in a safe operating point, namely the concentration of volatile fatty acids

(VFA) is not above a certain concentration.

We use a modified Hill model [36] to simulate the system and we linearise analytically

around the steady state value.

Ṡbvs = (B0Svsin − Sbvs)
Ffeed
V
− µk1Xacid (6.1)

Ṡvfa = (AfB0Svsin − Svfa)
Ffeed
V

+ µk2Xacid − µck3Xmeth (6.2)

Ẋacid =

(
µ−Kd −

F

bV

)
Xacid (6.3)

Ẋmeth =

(
µc −Kdc −

F

bV

)
Xmeth (6.4)

µ = µm
Sbvs

Ks + Sbvs

µc = µmu
Svfa

Ksc + Svfa
(6.5)

µm = µmc = 0.013Treac − 0.129 for 20◦C < Treac < 60◦C.

in which Sbvs is the concentration of biodegradable volatile solids (BVS) (g BV S/L),

Svfa is the concentration of VFA (g V FA/L) in the reactor and the only measured

variable since there exist sensors for on-line measurement [37], [38], Ffeed is the feed

flow (L/d) and the only manipulated variable, Xacid is the concentration of acidogens (g

acidogens /L), Xmeth is the concentration of methanogens (g methanogens /L), µ and

µc are reaction rates expressed in Eq. 6.5, V is the reactor volume (L), b is a parameter

(d/d), Af is an acidity constant ((g V FA/L)/(g BV S/L)), B0 a biodegradability con-

stant ((g V FA/L)/(g V S/L)), k1, k2, k3, k4 are yield constant (g BVS/(g acidogens/L)),

g VFA/(g acidogens/L)), g VFA/(g methanogens/L)) respectively), Kd is the specific

death rate of acidogens (d−1), Kdc is the specific death rate of methanogens (d−1), Ks

is the Monod half-velocity constant for acidogens (g BV S/L) and Ksc is the Monod

half-velocity constant for methanogens. Notice that the reaction temperature Treac is

kept constant at 35◦C with a separate temperature controller, therefore we assume it is

constant [39].

The state vector is chosen as x̂ = [Sbvs, Svfa, Xacid, Xmeth], while the control input is

u = Ffeed. Linearising and discretising the system with sampling time of 0.01 day we

Chapter 6. Examples of application 81

Table 6.1: Parameters and steady state variable values. For units see below.

Parameter Value Variable Steady state value

Af 0.69 Svfa 0.8
b 2.90 Ffeed 35.3
B0 0.25 Fmeth 174.2
k1 3.89 Sbvs 1.14
k2 1.76 Xacid 1.8
k3 31.7 Xmeth 0.39
Kd 0.02 Svsin 30.2
Kdc 0.02 Treac 35
Ks 15.5
Ksc 3
V 250

obtain the following A,B and C matrix:

A =

0, 9769 0 −0, 0264 0

0, 0040 0, 9068 0, 0115 −0, 2075

0, 0072 0 0, 9999 0

1, 6125 · 10−5 0, 0076 4, 6772 · 10−5 0, 9991

 B =

0, 0014

0, 0017

−0, 0002

−4, 6379 · 10−5

C =

[
0 1 0 0

]

In [40] is reported that a concentration of Svfa that exceeds a value of 0.8g V FA/L

can lead to a reaction failure for this reason we impose an upper limit on the Svfa of

0.8. Furthermore we assume that we can have a maximum flow rate Ffeed that we can

supply of 200 L/d. There are no significant upper limits on other variables. Moreover

we straightforwardly choose a lower limit 0 for all the states.

Target Calculation and MPC

Since we want to lead the Svfa to a safety set point we are dealing with a control problem.

For matter of simplicity in this section we consider a perfect model, namely there is no

error between the mathematical model and the real system. The set point calculation

in presence of constraints can be formulated as follows:

min ‖Cxs − ysp‖2T
xs = Axs +Bus

xmin ≤ xs ≤ xmax
umin ≤ us ≤ umax

Chapter 6. Examples of application 82

in which (·)s indicates the (new) steady-state value and ysp = Svfa = 0.70, T ∈ Rp×p

positive definite matrix. Notice that in this case it is a scalar positive value since p = 1.

After computing the steady-state values we can proceed with the MPC problem, defining

x̃ = x̂− xs and ũ = û− us we solve the QP problem:

min
1

2

NMPC−1∑
j=0

(
‖x̃j‖2QMPC

+ ‖ũj‖2RMPC

)
+ ‖x̃NMPC

‖Pf

x̃0 = x̂∗
x̃j+1 = Ax̃j +Bũj

xmin − xs ≤ x̃j ≤ xmax − xs
umin − us ≤ ũj ≤ umax − us

in which x̂∗ is the estimate of xk+1 of the MHE problem at time k, QMPC , RMPC and

Pf are positive definite matrices, in particular Pf has been found solving the Discrete

Algebraic Riccati Equation (DARE) on the matrices A,B,QMPC and RMPC :

ATPfA− Pf −ATPfB(BTPfB +RMPC)−1BTPfA+QMPC = 0.

As we said in § 2.1.1 we apply to the plant only the first control input u0 resulting from

the MPC problem then the MHE and MPC problem will be repeated at time step k+1.

The closed loop control system is shown in Fig. 6.2

Note: the standard way to implement a model-based controller with an estimator is

to use the estimation of the variable xk to calculate the control action at time uk. As the

reader may have noticed, we do not use this approach: our MPC uses the estimate of

xk+1 state to compute the uk+1 control input. This can be useful when we have to take

into account delays between the estimation and the application of the control action,

indeed in this case it is possible to anticipate the state and to apply the input right when

that input is needed, namely at time k + 1.

6.1.1 Results

In Fig. 6.3 are reported the simulation results. The green line represent the solution of

the problem xk+1 = Axk + Buk, the blue xk+1 = Axk + Buk + wk and the red crosses

are the state estimated by MHE.

Chapter 6. Examples of application 83

Figure 6.2: Closed loop control system. Moving Horizon Estimation with Model
Predictive Control.

0 20 40 60
3

3.5

4

4.5

Time (d)

S
bvs

0 20 40 60
0.5

0.6

0.7

0.8

0.9

Time (d)

S
vfa

0 20 40 60
2.1

2.2

2.3

2.4

2.5

Time (d)

X
acid

0 20 40 60
0.7

0.75

0.8

Time (d)

X
meth

Figure 6.3: UASB estimated states. Red crosses: estimated states, green lines: real
states, blue lines: disturbed states.

Chapter 6. Examples of application 84

Table 6.2: Performance comparison in term of IAE index: Kalman Filter and Moving
Horizon Estimation.

IAE Index

State KF MHE

Sbvs 1.0587 0.8148
Ssvfa 0.0273 0.0264
Xacid 0.3543 0.3831
Xmeth 0.1103 0.0309

Comparison with Kalman Filter We applied at the same problem the KF. As a

tool of comparison we use the IAE index for time-discrete cases:

IAE =

steps∑
j=0

|ej |.

in which ek = x∗k − xk where x∗k is the estimate of one of the methods and xk is the real

state, namely the state obtained from the model without noises. In Tab. 6.2 are reported

the results. In absence of constraints, the two methods should give the same results since

we used a quadratic cost function and we update the prior weighting matrix with KF

[18], but since we used the information given by the constraints on the measured variable

we obtained better results.

6.2 Two reactor chain with flash separator

For the practical application we are going to consider two CSTR followed by a nonadi-

abatic flash. The same problem has been consider by Venkat, Rawlings and Wright in

[41] for a MPC problem. The scheme of the plant is shown in Fig. 6.4. The reaction

consists of:

A
k1→ B

k2→ C

where B is our product and C is a unwanted side product. These reaction take place

in both reactors. The product of the CSTR-2 is sent to the flash to separate the excess

A which has the highest relative volatility from B and C. The vapour phase rich in

A is partially purged and the remain part is condensed back to the CSTR-1. States

and measured output are disturbed with a bounded white noise with zero mean. Let us

assume that we cannot measure the temperature of the flash Tb and the mass fraction

of A in the CSTR-1 xAr and we want to estimate them. Applying the first principle to

the parts of the plant we obtain the Eqs. 6.6, 6.7, 6.8.

Chapter 6. Examples of application 85

Figure 6.4: Scheme of the plant. Image taken from [41].

CSTR-1

dHr

dt
=

1

ρAr
[F0 +D − Fr], (6.6a)

dxAr

dt
=

1

ρArHr
[F0(xA0 − xAr)] +D(xAd

− xAr)]− k1rxAr (6.6b)

dxBr

dt
=

1

ρArHr
[F0(xB0 − xBr)] +D(xBd

− xBr)]− k1rxAr − k2rxBr (6.6c)

dTr
dt

=
1

ρArHr
[F0(T0 − Tr) +D(Td − Tr)]−

1

Cp
[k1rxAr∆H1 + k2rxBr∆H2] +

Qr
ρArCpHr

(6.6d)

CSTR-2

dHm

dt
=

1

ρAm
[Fr + F1 − Fm], (6.7a)

dxAm

dt
=

1

ρAmHm
[Fr(xAr − xAm)] +D(xA1 − xAm)]− k1mxAm (6.7b)

dxBm

dt
=

1

ρAmHm
[Fr(xBr − xBm)] +D(xB1 − xBm)]− k1mxAm − k2mxBm (6.7c)

dTm
dt

=
1

ρAmHm
[Fr(Tr − Tm) + F1(T0 − Tm)]− 1

Cp
[k1mxAm∆H1 + k2mxBm∆H2] +

Qm
ρAmCpHm

(6.7d)

Nonadiabatic flash

Chapter 6. Examples of application 86

dHb

dt
=

1

ρbAb
[Fm − Fb −D − Fp], (6.8a)

dxAb

dt
=

1

ρpApHp
[Fm(xAm − xAb

)] + (D + Fp)(xAd
− xAb

] (6.8b)

dxBb

dt
=

1

ρpApHp
[Fm(xBm − xBb

)] + (D + Fp)(xBd
− xBb

] (6.8c)

dTb
dt

=
1

ρbAbHB
[Fm(Tm − Tb)] +

Qb
ρbAbCpbHb

(6.8d)

Fr = kr
√
Hr Fm = km

√
Hm k1r = k∗1 exp

(−E1

RTr

)
Fb = kb

√
Hb xCr = 1− xAr − xBr k1r = k∗2 exp

(−E2

RTr

)
xCm = 1− xAm − xBm xCb

= 1− xAb
− xBb

k1m = k∗1 exp

(−E1

RTm

)
xAd

=
αAxAb

σ
xBd

=
αBxBb

σ
k2r = k∗2 exp

(−E2

RTm

)
xCd

=
αCxCb

σ
σ = αAxAb

+ αBxBb
+ αCxCb

Linearisation

The system is nonlinear, therefore we linearise it around the steady state values reported

in Tab. 6.3 with numerical differentiation. This technique is an approximation of the

derivate. Namely if we have a system:

ẋ(t) = f(xk, uk) + w(t)

with x(t) ∈ R12, u(t) ∈ R6 and f ∈ R12×R6 → R12. We want to linearise it in the form:

ẋ(t) = Ax(t) +Bu(t) + w(t)

Let xs ∈ R12 be the steady state vector and us the steady state control input, we can

find the A matrix:

x∗(j) = (0, ...,

j-position︷︸︸︷
ε , ..., 0)

A(j) =
f(xs + x∗(j), us)

ε

Chapter 6. Examples of application 87

Table 6.3: Steady state values that correspond to the maximum yield of B

Steady state values

ρ = ρb = 0.15kgm−3 αA = 3.5 αB = 1.1
αC = 0.5 k∗1 = 0.02sec−1 k∗2 = 0.018sec−1

Ar = 0.3m2 Am = 3m2 Ab = 5m2

F0 = 2.667kgsec−1 F1 = 1.067kgsec−1 D = 30.74kgsec−1

Fp = 0.01D T0 = 313K Td = 313K
Cp = Cpb = 25kJ(kgK)−1 Qr = Qm = Qb = −2.5kJsec−1 xA0 = 1

xB0 = xC0 = 0 xA1 = 1 xB1 = xC1 = 0

∆H1 = −40kJkg−1 ∆H2 = −50kJkg−1 E1
R = E2

R = 150K

kr = 2.5kgsec−1m−1/2 km = 2.5kgsec−1m−1/2 kb = 1.5kgsec−1m−1/2

where A(j) is the j−th column of A. We do the same thing for B:

u∗(j) = (0, ...,

j-position︷︸︸︷
ε , ..., 0)

B(j) =
f(xs, us + u∗(j))

ε

The linearisation quality has been tested looking at the differences in the output between

linearised model end the solution of the ODE (computed with Implicit Euler). Then the

system is discretized with sampling time of 0.1s. The system is open loop stable so we

do not apply any control action and it is also observable.

Measured variables

The measured variables are the level of liquid in the reactors Hr and Hm, the exit mass

fractions xAr , xBr and xAm , xBm , the temperatures Tm and Tr and the same thing for

the flash where we measure Hb,Tb and xAb
, xBb

. We assume that these variables are

disturbed with a white noise.

Controlled variables(CVs)

For the CSTR-1 are Hr and Tr, for CSTR-2 are Hm and Tm. For the flash are the level

in the flash Hb and the temperature Tb.

Manipulated variables (MVs)

For the CSTR-1 are the feed flowrate F0 and the cooling duty Qr, the same for CSTR-2

Fm and Qm. For the flash are the recycle flowrate D and the cooling duty Qb.

Chapter 6. Examples of application 88

0 2 4 6 8 10
300

310

320

330

340

350

Time (s)

T
em

pe
ra

tu
re

 (
K

)

MHE estimate

Disturbed state

Real state

(a) Flash out temperature Tb.

0 2 4 6 8 10
0.75

0.8

0.85

0.9

0.95

1

Time (s)

M
as

s
fr

ac
tio

n

MHE estimate

Disturbed state

Real state

(b) Mass fraction xAr.

Figure 6.5: Results of the estimation in the chemical plant section considered.

Figure 6.6: Computational times. Blue: fast gradient only, Red: overall algorithm.

6.2.1 Results

We report the graphs that show the dynamics of the variables that we have assumed

not measurable. The horizon length is of 10 steps. The MHE estimate is a quite good

approximation of the real state, which is the solution of the ODE. In Fig.6.6 is shown

the computational time of the whole algorithm and only the FG obtained with different

horizon lengths (called here Estimation window) on a simulation of 500 time-steps.

Notice that the time requested grows linearly with the horizon length (the dimension of

the H matrix grows proportionally). For comparison we carried out the same simulation

with the quadprog solver of Matlab 1 on an Intel Core i7 - 4770 CPU 3.4 GHz of clock

frequency. We obtained the following results: for a horizon length of 5 the Active set (the

1Since the build-in solvers of Matlab work in C++ code, for having a fair comparison the FG algorithm
was rewritten in C++. Thanks to Markus Kögel who helped me with this.

Chapter 6. Examples of application 89

fastest among the method implemented in quadprog in this case) takes about 1.95s for

solving the entire problem while the FG takes 0.75s, this means that the FG is 2.6 time

faster. For an horizon of 50 the interior point method (the fastest among the method

implemented in quadprog in this case) takes about 18.4s while the FG about 5s, thus

3.7 time faster.

Chapter 7

Summary and Conclusions

We have implemented a simple and fast algorithm for solving MHE optimization problem

for linear, time-invariant systems using the Fast Gradient method (§ 4.5) and taking

advantage of other secondary algorithms for solving the eigenvalues problem (§ 5.6.3).

We have validated the algorithm on random systems (chapter 5) and applied it on

two practical examples (chapter 6). Under the assumption of simple set of constraints

and using only the states as optimization variable, we showed as the algorithm has

better performance in terms of computational time compared with the quadprog solver

of Matlab (§ 6.2.1).

7.1 Other possible research directions

The algorithm does not show convergence when the condition Hessian’s condition num-

ber is large, future works could exploit the structure of the problem and try to find

a matrix configuration that reduce the condition number. Nevertheless, this structure

allows us to use tailored algorithm in a larger extent respect that we did in this work.

For example it would be possible to implement a block-wise matrix-vector multiplication

and a block-tridiagonal Cholesky factorization that can further improve the algorithm

performance. In terms of storage memory, there is no need to store the entire Hessian

matrix as we showed in § 5.2, indeed storing only the single matrices could save space.

Another possible research direction could be adapting the FG to nonlinear systems.

Note

The results of the work presented in this thesis have been reported (of course briefly) in

an article called “Simple and efficient moving horizon estimation using the fast gradient

90

Chapter 7. Summary and Conclusions 91

methods”. The authors are Bruno Morabito, Markus Kögel, Eric Bullinger, Gabriele

Pannocchia and Rolf Findeisen. At the moment in which this thesis was completed the

paper had been submitted for the NMPC’15 conference. Hopefully it will be available

to the public starting from November 2015.

Appendix A

Linear algebra

A.1 Closed set and closed function

A closed set is a set which contains its limit points. Some example of closed set are:

� intervals [a, b] with finite a, b ∈ R;

� intervals [a,∞), (−∞, b] with with finite a, b ∈ R;

� the sphere or circle S = {x ∈ X |d(x,O) ≤ R} where O ∈ Rn and R ∈ R.

A function f : Rn → R is closed if for each α ∈ R in the sublevel set {x ∈ domf |f(x) ≤ α}
is a closed set.

A.2 Pseudo-inverse

Let A = UΣV T be the singular value decomposition of A ∈ Rm×n with rankA = n. We

define the pseudo-inverse or Moore-Penrose inverse of A as:

A† = V Σ−1UT ∈ Rn×m

or equivalently:

A† = lim
ε→0

(ATA+ εI)−1AT = lim
ε→0

AT (ATA+ εI)−1

where ε > 0 to ensure that the inverses exist. If rankA = n then A† = (ATA)−1AT ,

if rankA = m then A† = AT (AAT)−1, if instead A is square and nonsingular then

A† = A−1.

The pseudo-inverse comes up in problems of least-square, minimum norm, quadratic

minimization and Euclidean projection. Indeed, for example A†b is in general a solution

of the leas-square problemmin‖Ax−b‖22, and A†A = UUT gives the Euclidean projection

on R(A) instead AA† = V V T gives the Euclidean projection on R(AT).

92

Appendix A. Linear algebra 93

A.3 Positive semi-definite and positive definite functions

A function f ∈ Rn → R is positive definite on a neighbourhood of the origin, D, if

f(0) = 0 and f(x) > 0 for every nonzero x ∈ D. Is semidefinite if f(0) = 0 and f(x) ≥ 0

for every nonzero x ∈ D.

Appendix B

Systems theory

B.1 Lyapunov function

We consider a nonlinear, continuous, time-invariant system

ẋ = f(x)

where f : Rn → Rn. Without loss of generality, we say that the null vector 0 is an

equilibrium point of f , that means f(0) = 0 (indeed we can always change the coordinate

in the form of x = x̃−xe, where xe is the equilibrium point of the old coordinate system,

and obtain that 0 is a equilibrium point).

Definition B.1 (Generalized energy function). Now let us consider a positive definite

function V : Rn → R and calculate its time derivative when it takes as input the

state x:

V̇ (x) =
d

dt
V (x(t)) =

δV

δx

dx

dt
= ∇V T f(x)

we now are going to demonstrate that if certain assumptions on V and V̇ are satisfied,

the trajectory x(t) has some stable proprieties.

We can immediately notice that since V is positive definite, it will always return a

strictly positive scalar when applied to the system state x, unless x is the stationary

point x = 0. Intuitively we can think of this function as a generalized potential energy

function, that describes the state’s displeasure in staying far from its stationary point.

Theorem B.2 (Lyapunov boundedness theorem). If the function of Def.B.1 exists and

V̇ (x) ≤ 0,∀x then all trajectories are bounded. Namely for each x(t) there is a R such

that ‖x(t)‖ ≤ R for all t ≥ 0.

94

Appendix B. System theory 95

Proof. We note that for any trajectory x

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(τ))dτ ≤ V (x(0)) (B.1)

this means that the whole trajectory lies in the set {x|V (x) ≤ V (x(0))} which is bounded

since V is positive definite.

An intuitive explanation could be the following: we said that V (x) increases when x

increases, therefore ∇V (x) points in the direction where x increases more rapidly. If

V̇ (x) = ∇V (x)T f(x) ≤ 0 means that the vector ∇V (x) forms an angle greater than

π/2 with the vector f(x), namely the system dynamic f(x) is pushing in the opposite

direction of ∇V (x), that is where the state is decreasing.

Theorem B.3 (Lyapunov globally asymptotically stability theorem). If the function of

Def.B.1 exists, V̇ (x) < 0,∀x 6= 0 and V̇ (0) = 0, then every trajectory x(t) converges to

zero as t→∞. We call this system globally asymptotically stable.

In the potential energy point of view, we can say that V̇ (x) is the dissipation of potential

energy that is bringing the V (x) (the potential energy function) to its minimum at 0.

Appendix C

Matlab codes

C.1 Fast Gradient method

1 function [x,it,L,mu,flag] = fastgradient n(H,f,xl,xr,varargin)

2

3 % This algorithm implements the Nesterov's fast gradient method

4 %

5 %

6 % I. The eigenvalue are calcualted with inverse iteration + Cholesky

7 % factorization

8 %

9 % [x,it,grad time] = fastgradient(H, f, xl, xr,mu ,L, x0, itmax, tollx)

10 %

11 % INPUT:

12 % H ---> Matrix of the opt. problem 1/2 x'H x + v'f

13 % f ---> Vector of the opt. problem

14 % xl ---> Lower constraints vector

15 % xr ---> Upper constraints vector

16 %

17 % OPTIONAL INPUT:

18 % x0 ---> Starting point

19 % itmax ---> Maximum number of iteration (by default 1000);

20 % tollx ---> Tollerance over the vector of estimate (by defauld 1e-6)

21 %

22 % OUTPUT

23 % x ---> Results

24 % it ---> number of FG iteration

25 % grad time ---> Time spent in gradient calculation

26 % eig time ---> Time spend in eigenvalues calculation

27 % L ---> Largest eigenvalue

28 % mu ---> Smallest eigenvalue

96

Appendix 3. Matlab codes 97

29

30 numvarargs = length(varargin);

31

32 if numvarargs > 3

33 error('myfuns:somefun2Alt:TooManyInputs', ...

34 'requires at most 2 optional inputs');

35 end

36 h = size(H,1) ;

37 % Set the default variables

38 optargs = {zeros(h,1) 10000 1e-8};
39

40 % now put these defaults into the valuesToUse cell array,

41 % and overwrite the ones specified in varargin.

42 optargs(1:numvarargs) = varargin;

43

44 % Give names to the variables

45 [x0,itmax, tollf] = optargs{:} ;

46

47 %--

48 % EIGENVALUE EV. INVERSE ITERATION + CHOLESKY

49 %--

50

51 [mu,L] = invit sparse(H);

52

53 %---

54 % END EIGENVALUE SECTION

55 %---

56 errf = tollf+1 ;

57 w = x0 ;

58 x old = x0 ;

59 flag = -1 ;

60 it = 0 ;

61

62 grad = H*w +f;

63

64 while errf > tollf

65 x = w - 1/L * grad;

66 x = max(min(x,xr),xl);

67 errf = 0.5*(1/mu - 1/L) * norm(L* (w - x))ˆ2;

68 w = x + (sqrt(L) - sqrt(mu)) / ((sqrt(L) + sqrt(mu))) *...

69 (x - x old) ;

70 x old = x ;

71 grad = H*w +f ;

72 it = it + 1 ;

73 if it > itmax

74 % Define a variable flag to know why the algorithm has stopped

75 flag = 0;

76 break

Appendix 3. Matlab codes 98

77 end

78 flag = 1;

79 end

80

81 if flag == 0

82 warning(['The algorithm has reached the maximum'...

83 ' number of iteration ',num2str(itmax)...

84 ' without matching the tollerance'])

85 elseif flag ==1

86 disp('Found a minimum that matches the required tollx'...

87 num2str(tollx))

88 end

89 end

C.2 Inverse Iteration with Cholesky factorization

1 function [mu,L,it L,it mu] = invit sparse(H)

2 % Inverse iteration method with cholesky factorization

3 % [mu,L,it L,it mu] = invit(H)

4 % This method founds the mimimum and maximum eigenvalue of the matrix H

5 % using Cholesky factorization to compute the inverse Hˆ-1 needed for the

6 % minimum eigenvalue.

7 %

8 % OUTPUT:

9 % mu minimum eigenvalue;

10 % L maximum eigenvalue;

11 % it L iteration for L;

12 % it mu iteration for mu;

13 %

14 % INPUT:

15 % H Matrix

16 h = size(H,1);

17 eigv = rand(h,1); % Inizialization of random vector

18 v = eigv;

19 it L = 1;

20 err L = 100;

21 err mu = 100;

22 tol L = 1e-2;

23 c = norm(H,1);

24 cH = chol(-H+c*speye(h));

25 while err L > tol L

26 q = v/norm(v); % step 1

27 v = -cH\(cH'\q); % step 2

28 L = q'*H*q; % Rayleigh Quotient

Appendix 3. Matlab codes 99

29 err L = norm(H*v - L * v,inf);

30 it L = it L+1;

31 end

32

33 v = eigv;% inverse iteration method for mu

34 it mu = 1;

35 cH = chol(H);

36 while err mu > tol L

37 q = v/norm(v);%step 1

38 v = cH\(cH'\q); %step 2

39 mu = 1/((v'*q)); % Rayleigh Quotient

40 err mu = norm(H*v - mu*v,inf);

41 it mu = it mu+1;

42 end

43

44 end

Bibliography

[1] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[2] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation, volume 1.

Prentice Hall Upper Saddle River, NJ, 2000.

[3] Arthur Earl Bryson. Applied optimal control: optimization, estimation and control.

CRC Press, 1975.

[4] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to

nonlinear systems. In AeroSense’97, pages 182–193. International Society for Optics

and Photonics, 1997.

[5] C.V. Rao, J.B. Rawlings, and D.Q. Mayne. Constrained state estimation for non-

linear discrete-time systems: stability and moving horizon approximations. Auto-

matic Control, IEEE Transactions on, 48(2):246–258, Feb 2003. ISSN 0018-9286.

doi: 10.1109/TAC.2002.808470.

[6] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical

methods for nonlinear mpc and moving horizon estimation. In Nonlinear Model

Predictive Control, pages 391–417. Springer, 2009.

[7] Yurii Nesterov. A method of solving a convex programming problem with conver-

gence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[8] Sidharth Abrol and Thomas F Edgar. A fast and versatile technique for constrained

state estimation. Journal of Process Control, 21(3):343–350, 2011.

[9] SB Pope. Computationally efficient implementation of combustion chemistry using

in situ adaptive tabulation. 1997.

[10] Mark L. Darby and Michael Nikolaou. A parametric programming approach to

moving-horizon state estimation. Automatica, 43(5):885 – 891, 2007. ISSN 0005-

1098. doi: http://dx.doi.org/10.1016/j.automatica.2006.11.021. URL http://www.

sciencedirect.com/science/article/pii/S0005109807000283.

100

http://www.sciencedirect.com/science/article/pii/S0005109807000283
http://www.sciencedirect.com/science/article/pii/S0005109807000283

Bibliography 101

[11] Niels Haverbeke, Moritz Diehl, and Bart De Moor. A structure exploiting interior-

point method for moving horizon estimation. In Decision and Control, 2009 held

jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceed-

ings of the 48th IEEE Conference on, pages 1273–1278. IEEE, 2009.

[12] Markus Kögel and Rolf Findeisen. A fast gradient method for embedded linear

predictive control. In Proceedings of the 18th IFAC world congress, pages 1362–

1367, 2011.

[13] Pablo Zometa, M Kögel, Timm Faulwasser, and Rolf Findeisen. Implementation

aspects of model predictive control for embedded systems. In American Control

Conference (ACC), 2012, pages 1205–1210. IEEE, 2012.

[14] T. Faulwasser, D. Lens, and C.M. Kellett. Predictive control for longitudinal beam

dynamics in heavy ion synchrotrons. In Control Applications (CCA), 2014 IEEE

Conference on, pages 1988–1995, Oct 2014. doi: 10.1109/CCA.2014.6981595.

[15] S. Richter and M. Morari. Stopping Criteria for First-Order Methods. Tech-

nical report, May 2012. URL http://control.ee.ethz.ch/index.cgi?page=

publications;action=details;id=4065.

[16] J.L. Jerez, P.J. Goulart, S. Richter, G.A. Constantinides, E.C. Kerrigan, and

M. Morari. Embedded online optimization for model predictive control at mega-

hertz rates. Automatic Control, IEEE Transactions on, 59(12):3238–3251, Dec

2014. ISSN 0018-9286. doi: 10.1109/TAC.2014.2351991.

[17] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997. ISBN

0898713617.

[18] J.B. Rawlings and D.Q. Mayne. Model Predictive Control: Theory and Design.

ISBN 0975937707, 9780975937709.

[19] J.M.Maciejowski. Predictive control with constraints. Prentice Hall, 2001.

[20] Dimitri P Bertsekas. Nonlinear programming. 1999.

[21] Richard Bellman. The theory of dynamic programming. Technical report, DTIC

Document, 1954.

[22] David G Luenberger. Observers for multivariable systems. Automatic Control,

IEEE Transactions on, 11(2):190–197, 1966.

[23] Douglas G Robertson, Jay H Lee, and James B Rawlings. A moving horizon-based

approach for least-squares estimation. AIChE Journal, 42(8):2209–2224, 1996.

http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=4065
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=4065

Bibliography 102

[24] Svenya K. Fahlbusch. Bachelor’s thesis: Comparison of different formulation of

moving horizon estimation. Technical report, Otto von Guericke University of

Magdeburg, 2014.

[25] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Company,

Scituate, MA, USA, 2004. ISBN 0262042193.

[26] D. Karaboga and B. Basturk. On the performance of artificial bee colony (abc)

algorithm. Applied Soft Computing, 8(1):687 – 697, 2008. ISSN 1568-4946. doi:

http://dx.doi.org/10.1016/j.asoc.2007.05.007. URL http://www.sciencedirect.

com/science/article/pii/S1568494607000531.

[27] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, New York, NY, USA, 2004. ISBN 0521833787.

[28] Yurii Nesterov. Introductory lectures on convex optimization : a basic course.

Applied optimization. Kluwer Academic Publ., Boston, Dordrecht, London, 2004.

ISBN 1-4020-7553-7. URL http://opac.inria.fr/record=b1104789.

[29] Giulio M Mancuso and Eric C Kerrigan. Solving constrained lqr problems by elim-

inating the inputs from the qp. In 50th IEEE Conference on Decision and Control

and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-

15, 2011, pages 507–512, 2011.

[30] S. Richter, C.N. Jones, and M. Morari. Real-Time Input-Constrained MPC Using

Fast Gradient Methods. In Conference on Decision and Control (CDC), pages

7387 – 7393, Shanghai, China, December 2009. URL http://control.ee.ethz.

ch/index.cgi?page=publications;action=details;id=3384.

[31] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra,

J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LA-

PACK Users’ Guide (Third Ed.). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1999. ISBN 0-89871-447-8. URL http://www.netlib.

org/lapack/.

[32] J Baglama, D Calvetti, and L Reichel. Irbl: An implicitly restarted block-lanczos

method for large-scale hermitian eigenproblems. SIAM Journal on Scientific Com-

puting, 24(5):1650–1677, 2003.

[33] Finn Haugen, Rune Bakke, and Bernt Lie. State estimation and model-based control

of a pilot anaerobic digestion reactor. Journal of Control Science and Engineering,

2014:3, 2014.

http://www.sciencedirect.com/science/article/pii/S1568494607000531
http://www.sciencedirect.com/science/article/pii/S1568494607000531
http://opac.inria.fr/record=b1104789
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3384
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3384
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

Bibliography 103

[34] DT Hill, SA Cobb, and JP Bolte. Using volatile fatty acid relationships to predict

anaerobic digester failure. Trans. ASAE;(United States), 30(2), 1987.

[35] G. Lettinga, A. F. M. van Velsen, S. W. Hobma, W. de Zeeuw, and A. Klapwijk.

Use of the upflow sludge blanket (usb) reactor concept for biological wastewater

treatment, especially for anaerobic treatment. Biotechnology and Bioengineering,

22(4):699–734, 1980. ISSN 1097-0290. doi: 10.1002/bit.260220402. URL http:

//dx.doi.org/10.1002/bit.260220402.

[36] Finn Haugen, Rune Bakke, and Bernt Lie. Adapting dynamic mathematical models

to a pilot anaerobic digestion reactor. 2013.

[37] Dale E Seborg, Duncan A Mellichamp, Thomas F Edgar, and Francis J Doyle III.

Process dynamics and control. John Wiley & Sons, 2010.

[38] Michael Madsen, Jens Bo Holm-Nielsen, and Kim H Esbensen. Monitoring of anaer-

obic digestion processes: A review perspective. Renewable and Sustainable Energy

Reviews, 15(6):3141–3155, 2011.

[39] Finn Haugen, Rune Bakke, and Bernt Lie. Temperature control of a pilot anaerobic

digestion reactor. 2013.

[40] DT Hill, SA Cobb, and JP Bolte. Using volatile fatty acid relationships to predict

anaerobic digester failure. Trans. ASAE;(United States), 30(2), 1987.

[41] Aswin N Venkat, James B Rawlings, and Stephen J Wright. Stability and optimal-

ity of distributed, linear model predictive control. part i: State feedback. Texas-

Wisconsin Modeling and Control Consortium, 2006.

http://dx.doi.org/10.1002/bit.260220402
http://dx.doi.org/10.1002/bit.260220402

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Thesis overview
	1.3 Literature review
	1.3.1 Contribution of this work

	1.4 Notation
	1.4.1 System notation
	1.4.2 Optimization notation

	2 Optimal control and estimation
	2.1 Optimal control
	2.1.1 Model Predictive Control
	2.1.2 Linear Quadratic Regulator
	2.1.3 Controllability

	2.2 Estimation
	2.2.1 Luenberger Observer
	2.2.2 Kalman Filter
	2.2.3 Full Information Estimation
	2.2.4 Moving Horizon Estimation
	2.2.4.1 Observability

	2.3 Different MHE formulations
	2.3.1 Noises and states as optimization variables
	2.3.2 Only noises as optimization variables
	2.3.3 Only states as optimization variables

	3 Theoretical background on optimization problems
	3.1 Optimization problem
	3.2 Optimization sets
	3.2.1 Affine and convex set
	3.2.2 Operation that preserve convexity

	3.3 Optimization functions
	3.3.1 Affine functions
	3.3.2 Convex functions
	3.3.2.1 First order conditions
	3.3.2.2 Second order condition

	3.3.3 Operation that preserve convexity
	3.3.4 Optimality

	3.4 Convex optimization
	3.4.1 Local and global optima
	3.4.2 Optimal criterion for differentiable f
	3.4.3 Unconstrained problem
	3.4.4 Problem with only equality constraint

	3.5 Linear optimization problems
	3.6 Quadratic optimization problem
	3.7 Duality
	3.8 Optimal condition
	3.8.1 Strong duality and Slater's constraint qualification
	3.8.2 Karush-Kuhn-Tucher (KKT) optimality conditions

	4 Review on optimization algorithms
	4.1 Unconstrained minimization
	4.1.1 Strong convexity
	4.1.2 Condition number

	4.2 Descent methods
	4.2.1 Convergence analysis
	4.2.2 Gradient descend method
	4.2.3 Conclusions
	4.2.4 Steepest descend direction
	4.2.5 Newton's method

	4.3 Equality constrained minimization
	4.3.1 Newton's method with equality constraints

	4.4 Interior point method
	4.4.1 Logarithmic barrier
	4.4.2 Inner iterations - Newton method

	4.5 Nesterov's Fast gradient method
	4.5.1 Estimate sequence

	5 MHE algorithm and validation
	5.1 System
	5.2 Estimation
	5.2.1 Arrival cost matrix update

	5.3 Optimization - Fast Gradient method
	5.4 Stopping criteria selection
	5.5 Algorithm bottleneck
	5.6 Comparison of various eigenvalues algorithms
	5.6.1 Robustness of FG to error on the eigenvalues
	5.6.2 eig,eigs and irbleigs
	5.6.3 eig, Inverse Iteration and Power Iteration methods.

	5.7 Performance of Fast Gradient with Inverse Iteration and Cholesky factorization (FGIIC).
	5.7.1 Conclusions
	5.7.2 Final algorithm set-up

	6 Examples of application
	6.1 Upflow Anaerobic Sludge Blanket reactor (UASB)
	6.1.1 Results

	6.2 Two reactor chain with flash separator
	6.2.1 Results

	7 Summary and Conclusions
	7.1 Other possible research directions

	A Linear algebra
	A.1 Closed set and closed function
	A.2 Pseudo-inverse
	A.3 Positive semi-definite and positive definite functions

	B Systems theory
	B.1 Lyapunov function

	C Matlab codes
	C.1 Fast Gradient method
	C.2 Inverse Iteration with Cholesky factorization

	Bibliography

