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Abstract

The purpose of this work is the design and development of a new band-

width reservation scheduling algorithm for managing time-critical tasks that

may temporarily suspend their execution, waiting for events (self-suspending

tasks). The resulting algorithm has been implemented in the Linux kernel.

The current scheduling algorithm used in Linux to manage CPU band-

width reservation (SCHED DEADLINE) is based on a server mechanism

called Hard Constant Bandwidth Server (H-CBS). However, this mecha-

nism was not designed to manage self-suspending tasks and may lead to

possible deadline misses. To solve this problem, a new server mechanism,

called the H-CBS-SO algorithm, has been studied. This thesis addresses the

design and implementation of a Linux scheduling algorithm based on the

H-CBS-SO reservation server.

The introduction illustrates the basic notions of real-time systems and

presents an overview the actual SCHED DEADLINE policy and its imple-

mentation. Then, the thesis focuses on the explanation of the H-CBS-SO

algorithm and how it is developed in the Linux kernel.

The full exploitation of the scheduling policy developed in the thesis

requires an infrastructure for handling “periodic tasks” that is currently

missing in Linux. Therefore, this thesis proposes a new mechanism for

managing periodic tasks inside the Linux kernel and a user-space library for

exploiting such a new feature.

Special attention is dedicated to the description of the techniques used

for checking the correctness of the kernel functions and the tools developed

for measuring the achieved performance.
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Introduction

Real-time systems are computing systems that must react to their environ-

ment events with precise timing constraints. As a consequence, the correct

behavior of these systems depends not only on the correctness of the compu-

tation results, but also on the time at which those results are produced [9].

Out of time results may be useless or even dangerous.

The popularity of real-time systems has increased in the last decades

because of their wide-spreading success, not only in the industry, like control

systems, but also for everyday use, like multimedia applications.

The system requirements may be strongly different from application to

application: shared resources, computational power, reactiveness, power

management and heterogeneous hardware architectures are the ordinary

characteristics that drive the application development, without jeopardiz-

ing the timing constraints.

Due to the heterogeneous requirements, real-time systems were usually

developed as dedicated, special purpose systems. Moreover, a large portion

of real-time systems is developed in the form of embedded systems, where

the commonly used hardware has limited capabilities in terms of computa-

tional power, memory and sometimes energy. This approach of developing

real-time systems resulted in very optimized applications, but showed some

disadvantages like tedious programming, difficult code understanding, diffi-

cult maintainability, difficult verification of timing constraints [3].

The success of real-time gave birth to a self-feeding phenomenon. Time

critical applications are more easily manageable with a proper real-time

operating systems and these new operating systems opened the doors also

to brand new applications. The increasing trend of real-time applications

requires continuous improvements of the real-time operating systems and

this generates a loop between supply and demand.
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INTRODUCTION

More precise and realistic models and algorithms are continuously de-

veloped to meet the demanding applications requirements.

To ensure the correct behavior of the system with respect to the timing

constraints, a real-time operating system must be able, if possible, to execute

the tasks in the proper order. The operation of choosing which task must be

executed at a given time is called scheduling and the entity that performs

these decisions is called scheduler.

The hardware improvements of the last years broke the embedded sys-

tems limitations, providing enough resources to make them able to run a

general purpose operating system. That allowed the Linux developers to

port their kernel to embedded devices. This revolution attracted a huge

number of professional and amateur developers to the real-time systems

world. The Linux kernel scheduler architecture, presented in chapter 2,

shows that the original purpose of the Linux kernel was completely different

from the management of time sensitive tasks, so, for accomplishing the new

goal, it requires several, non-trivial adjustments.

A new scheduling class, called SCHED DEADLINE, was implemented

into the Linux kernel to provide a Hard Constant Bandwidth Servers [1]

(H-CBS ) for bandwidth reservations on top of Earliest Deadline First [5]

(EDF ). SCHED DEADLINE ’s kernel implementation and management from

user side will be described in chapter 3, while EDF and H-CBS scheduling

algorithms will be explained in chapter 1.

The algorithm implemented by SCHED DEADLINE scheduling class

showed its limitations for managing certain tasks, causing mulfunctioning

to the timings of the tasks into the system. Those tasks are the so called

self-suspending tasks: tasks which may suspend their execution for an un-

determined amount of time.

Moreover, real-time tasks are ofter periodic, but in the Linux kernel the

concept of periodic task is still missing: currently, the only way to implement

periodic tasks is at user level. For this reason, the kernel is not aware if a

task is periodic or not. This results in a deep lack of the system, because

the kernel cannot be able to provide an optimal real-time scheduling of the

taskset.

In order to obtain a complete and reliable real-time architecture based

on the Linux kernel, the first step is to implement a new cutting edge band-

width reservation policy, able to properly handle self-suspending tasks. The

2



INTRODUCTION

chosen policy is H-CBS-SO, whose algorithm and implementation details for

adapting SCHED DEADLINE to it are described in chapter 4.

Secondly, it is required to introduce the concept of periodic tasks at

kernel level and to provide the interfaces for managing those mechanisms

from the user level. A solution to this, through kernel modifications and a

user-space library, is proposed in chapter 5.

Verifying the correctness of the behavior of a real-time system and eval-

uating its performances is a difficult task. It becomes even more difficult on

a complex systems like the Linux kernel.

For this purpose, as shown in chapter 6, several testing and tracing

mechanisms will be used to stimulate the kernel and extract statistical data.

In the end, chapter 7 will present the performance of the SCHED DEADLINE

functions, modified for implementing the H-CBS-SO algorithm, with respect

to the their original version.

3





Chapter 1

State of the Art

This chapter will describe the basic concepts of real-time systems and will

show a well-known algorithm for managing periodic tasks with resources

reservations and its limitations.

The first part describes what a Real-Time system is, which are its main

requirements and will introduce the reader to the scheduling theory.

Then, will be presented a more detailed description of the Hard Con-

stant Bandwidth Server, a scheduling algorithm for real-time systems with

resource reservations constraints.

In the end, will be explained the limitations of the described algorithm,

when applied to a real system.

5



1.1. INTRODUCTION TO REAL-TIME SCHEDULING
CHAPTER 1. STATE OF THE ART

1.1 Introduction to Real-Time Scheduling

In a multiprogrammed computing system, it is possible to distinguish three

main kind of tasks:

• processor-bound;

• I/O-bound;

• real-time.

Processor-bound tasks perform intensive computations, with few usage

of I/O resources. For this reason, the main target for handling those tasks

is to maximize the system computing power (throughput).

I/O-bound tasks are instead tasks performing a lot of I/O operations,

spending most of their time waiting for resources availability. Those tasks

are often associated to the management of hadware interfaces interacting

with the users, and then, must be fast to react to the actions peroformed

by the users (responsiveness).

Real-time tasks are different from processor-bound or I/O-bound tasks.

Their peculiarity is the relevance of the time at which computational results

are produced, time that cannot get over well-defined values (deadlines).

Those tasks may seem similar to I/O bound tasks, but while I/O tasks must

be executed in the shortest time, real-time tasks must just be executed before

their deadlines. The event of providing the computational results after the

deadline is called deadline miss.

What mostly affects the system performances is the order in which the

tasks are executed. The action of deciding to which task the CPU must be

associated at which time is called scheduling and the kernel subsystem that

performs this decision is the scheduler.

The operation performed by the CPU of switching from the execution

of a task to another is called context switching and requires some time.

Depending on which tasks are running on the system and the system

purpose, a scheduling algorithm can be more effective than another. For

example, a system with a high number of context switches results perform-

ing for I/O bound tasks, while a system with processor-bound tasks would

prefere to waste no time in context switches.

6
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1.1.1 Real-Time Computing Systems

In real-time computing systems, the scheduler must organize the tasks exe-

cutions in such a way to minimize the number of deadline misses.

There is a variety of scheduling algorithms. It is possible to distinguish

between fixed and dynamic priority scheduling algorithms:

• fixed priority scheduling: tasks priorities are computed off-line. Those

algorithms ensures the assignment of the CPU to the highest priority

ready task, but provides few flexibility. Moreover, may be difficult to

choose the right priorities in order to guarantee the timing constraints

of every real-time task.

• dynamic priority scheduling: tasks priorities are computed at runtime.

Those algorithms are able to dynamically adapt the tasks schedule to

the system changes.

In real-time systems is common to find periodic tasks, meaning that they

execute periodically the same bunch of code (job).

For the next sections, the following notation will be used for describing

the parameters associated to the i-th task:

• arrival time (aij): time at which the j-th job is ready to execute;

• computation time (Cij): total computation time necessary to the CPU

to execute the j-th job;

• absolute deadline (dij): j-th job’s deadline;

• relative deadline (Dij): difference between absolute deadline and ar-

rival time: Dij = dij − aij ;

• starting time (sij): time at which the j-th job obtains the CPU the

first time;

• finishing time (fij): time at which the j-th job finishes its execution;

• response time (Rij): time required by the j-th job to finish its execu-

tion: Rij = fijaij ;

• period (Pij): for periodic tasks, the task is activated periodically, every

Pij .

7
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CHAPTER 1. STATE OF THE ART

Another important parameter is the task utilization factor

Ui =
Ci
Pi

This is a fractional value representing how much CPU is used by a certain

task.

The sum of all the utilization factors of the running tasks represents the

CPU load.

1.1.2 Scheduling with EDF and H-CBS

For a deeper understanding of the ideas behind the SCHED DEADLINE

implementation, the next chapters will provide a brief presentation of the

theory behind the mechanisms used by this scheduling class.

Earliest Deadline First

The Earliest Deadline First (EDF) is a dynamic priority scheduling rule that

assigns tasks priorities depending on their absolute dedlines. Specifically, the

tasks priorities are inversely proportional to their absolute deadlines.

The EDF rule can be used for scheduling periodic and aperiodic tasks

without any additional effort. This is because the priority depends only on

absolute deadlines. For periodic tasks, the absolute deadline of each job of

each task can be calculated as

dij = Φi + (j − 1)Pi +Di

As dynamic priority scheduling, it is typically executed in preemptive

mode, so, the scheduler can preempt the current executing task with a newly

activated higher priority tasks.

As demonstrated by Dertouzos [4], EDF is optimal in the sense of feasi-

bility: if there exists a feasible schedule for a taskset, then EDF is able to

find it.

One more point in favor of EDF is the easiness of feasibility verification:

a taskset is schedulable by EDF if and only if the CPU utilization factor

U =
N∑
i=1

Ui =
N∑
i=1

Ci
Pi
≤ 1

8
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In theory, it should be possible to reach a CPU utilization factor of 1.

Hard Constant Bandwidth Server

As presented in the previous section, the schedulability verification of a

taskset requires the utilization factors of each tasks, depending on the com-

putation time value, which is not easy to compute.

For critical systems, the verification is done by considering the Worst

Case Computation Time (WCET) of each job.

Using the WCET is a strongly pessimistic approach and, for this reason,

it is common to prefere more relaxed assumptions. This approach may result

in overload conditions that must be properly handled for limiting disastrous

phenomena like domino effects on missing other tasks deadlines. In other

words, the system must ensure temporal isolation among different tasks.

Resource reservation algorithms were developed for achieving this system

property.

A typical resource reservation implementation is obtained by assigning

a dedicated real-time server, called reservation server. Each server is char-

acterized by a budget Q and a period P, meaning that each server provides

Q units of execution time to its tasks every P time units. From those two

values it is possible to obtain the server bandwidth α = Q
P .

It is possible to abstract the server mechanisms by looking at each server

as a separate processor, whose speed is α times the speed of the real pro-

cessor.

Originally, Abeni and Buttazzo presented the Constant Bandwidth Server

(CBS) algorithm [6] for handling multimedia applications in real-time sys-

tems. This resource reservation mechanism was developed on top of an EDF

scheduling policy.

Hard-CBS (H-CBS), proposed by Marzario et al. [8] and whose presen-

tation was given by Biondi, Melani and Bertogna [1] is an evolution of the

CBS algorithm.

It is possible to demonstrate that, gien a set of N H-CBS servers, all the

servers are schedulable by EDF if and only if:

U =
N∑
i=1

Ui =
N∑
i=1

Qi
Pi
≤ 1

9
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In H-CBS, each server is characterized by three dynamic variables, up-

dated at runtime:

• deadline d;

• virtual time v;

• reactivation time z.

Each server is defined as backlogged if it has any active job, awaiting to

be executed or non-backlogged otherwise.

Figure 1.1: State transition diagram for the H-CBS algorithm.

At each time instant t, a server can be in one of the following possible

statuses, as illustrated in figure 1.1:

• inactive: when

– non-backlogged;

– v ≤ t;

• non-contending : when

– non-backlogged;

– v > t;

• contending : when

10
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– backlogged;

– eligible to execute;

• executing : when

– backlogged;

– currently running;

• suspended : when

– backlogged;

– v = d;

– t < z.

It is possible to notice that the comparisons between t and v are associ-

ated to the bandwidth violation checking.

The transitions between server statuses are:

1. the server is initially in the inactive state and, when it wishes to cond-

tend for execution, switches to contending state. At the same time,

the following updates are performed:

• d = t+ P ;

• v = t;

2. because of the EDF policy, the earliest deadline server is chosen for ex-

ecution and switches to executing state. While the server is executing,

its virtual time v is incremented;

3. the executing server is preempted by a higher priority server and

switches back to the contending state;

4. the executing server has no more pending jobs to execute, it switches

to non-contending state and remains there as long as v > t;

5. a non-contending server did not overcome its available bandwidth (v ≤
t), so it switches to inactive state;

6. if the virtual time v of an executing server reaches the deadline d, then,

the server switches to suspended state and the following updates are

performed:

11
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• z = v;

• d = v + P ;

7. a non-contending server wants to contend, but its bandwidth is over

v > t, so, it transits to the suspended state;

8. a suspended server switches back to the contending statewhen the re-

activation time z is reached.

By introducing the two variables:

• absolute deadline: d;

• remaining budget: q;

it is possible to formulate the H-CBS rules in terms of period and budget.

1. the server starts with q = 0 and d = 0;

2. when H-CBS is idle and a job arrives at time t, a replenishment time

is computed as tr = d− q
α :

(a) if t < tr, the server suspends until tr. At time tr, the server

returns active, replenishing the budget to Q and updating the

deadline as d = tr + P ;

(b) otherwise, the budget is immediately replenished;

3. when q = 0, the server is suspended until time d. At time d, the

budget is replenished and the deadline postponed: d = d+ P .

Thanks to those rules, a server cannot run for a time longer than what

is guaranteed by its budget.

12
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1.2 H-CBS Issues in Real Systems Implementa-

tion

The H-CBS server shows its limitation in the management of self-suspending

tasks.

Self-suspending tasks are tasks that for any reason stop their execution

before finishing their computation and before exhausting tieir budget. Com-

mon causes that may lead a task to self-suspend are:

• mutual exclusion mechanisms;

• explicit sleep;

• I/O operations.

As Biondi, Parri and Marinoni showed [2], a taskset where tasks are

allowed to self-suspend cannot be guaranteed to be schedulable with the

H-CBS algorithm. Then, they proposed an alternative algorithm, called

H-CBS-SO.

The reason is that, when a task self-suspends, the scheduler chooses

another task to be executed. Meanwhile, the self-suspended task’s budget

is not consumed.

The budget maintained during the self-suspension can still be used by the

task after the self-suspension. What may happen is that this posticipation

of execution may cause deadline misses of lower priority tasks.

13





Chapter 2

Linux Scheduler

This chapter describes the architecture of the Linux kernel scheduler, from

the hi-level structure to the implementation details.

The first part shows the modular organization of the scheduler and its

partitioning into scheduling classes for managing different kind of tasks.

The second part presents the implementation details of the Linux kernel

scheduler, describing which are the main used data structures and how those

data structure are managed.

15
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CHAPTER 2. LINUX SCHEDULER

2.1 Scheduling Classes

Being Linux a General Purpose Operating System (GPOS), there’s a variety

of different typologies of tasks that can be executed.

For this reason, the system should behave in different ways to improve

the performance of every task typology.

The Linux kernel approached this problem by introducing scheduling

classes.

Scheduling classes are organized in a hierarchical way, ordered by schedul-

ing class priority. Those classes are, in order of descending priority:

• stop;

• dl ;

• rt ;

• normal.

Stop

This is the scheduling class with the highest priority.

Tasks belonging to the SCHED STOP scheduling class preempt every-

thing and cannot be preempted by anything.

Deadline

This is the SCHED DEADLINE scheduling class, which provides a resource

reservation policy with a dynamic priority assignment.

All the details of this scheduling class will be described in detail in the

next chapters.

Real-Time

The Linux kernel provides also some basic mechanisms for scheduling tasks

requiring a priori awareness of their execution order.

This category includes two scheduling classes:

• SCHED FIFO ;

• SCHED RR;

16
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SCHED FIFO is a simple scheduling algorithm without time slicing.

The following rules apply for SCHED FIFO tasks:

• when a task becomes runnable, it is inserted in the tail of the SCHED FIFO

queue;

• the same happens when a task calls sched yield();

• a call to sched setscheduler(), sched setparam(), or sched setattr() will

put the task identified by the passed pid at the start of the list if it

was runnable;

• a task is preempted only if another higher priority task arrives or if

the task suspends.

With the SCHED FIFO scheduling class, a tasks that aims to run for-

ever, can do it, causing the starvation of all the other SCHED FIFO tasks

and the lower priority tasks.

SCHED RR class uses the same rules of SCHED FIFO, but adds the

concept of time quantum. A SCHED RR task is also preempted in favor of

another SCHED RR task after occupying the CPU for the time quantum.

Normal

Tasks having no real-time requirements are managed through those classes:

• SCHED OTHER;

• SCHED BATCH ;

• SCHED IDLE ;

SCHED OTHER is the default scheduling class used by Linux. It tries

to maximize the execution fairness among all SCHED OTHER threads. The

fairness is driven by a dynamic priority: the nice value. The nicer is a task,

the less time it will use the CPU, in favor of the other tasks.

SCHED BATCH policy is similar to SCHED OTHER, but in this case

the tasks are assumed to be CPU-bound. As a consequence, the number of

preemptions is limited.

The SCHED IDLE scheduling class is assigned the lower priority. This

class is intended for the scheduling of very low priority background tasks.
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2.2 Important Data Structures

The next paragraphs will describe how the Linux kernel implements this

modular framework for managing several scheduling classes.

2.2.1 sched class

The Linux kernel uses a single interface for all the scheduling classes. This

provides a generalization level for making the scheduling classes easy to be

handled by the system.

Scheduling classes are organized as a list, having the stop class as head.

Figure 2.1: Linux scheduling classes.

The Linux scheduler traverses this list and asks the scheduling classes if

there are available runnable tasks. The first scheduling class that has a task

a runnable process wins and that task is picked for execution.

sched class is the data structure that defines all the function hooks

needed for managing the scheduling class.

Some of the function pointers defined by sched class are the following:

• enqueue task : invoked when a task becomes runnable;
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• dequeue task : invoked when the task is no more runnable;

• yield task : the task deliberately leaves the processor in favor of another

task;

• check preempt curr : when the task that wakes up and the currently

executing task are in the same class, this function checks if a preemp-

tion is required;

• pick next task : returns the task that the scheduling class wants to be

executed, depending on its internal scheduling policy;

• put prev task : the currently running task is going to be replaced by

another one;

• task tick : invoked for updating task parameters;

• task fork : a new task was spawned;

• task dead : the task died;

• prio changed : the scheduling parameters were changed;

• switched from: the task is leaving this scheduling class;

• switched to: the task is chosen to be scheduled with this scheduling

class;

• update curr : updates the task’s parameters.

The sched class data structure defines also the pointer to the next schedul-

ing class: the next field.

2.2.2 task struct

The kernel uses the task struct data structure for storing all the data re-

quired for managing a task. Important fields are:

• pid : the task identifier;

• state: defines the task status:

– −1: not runnable;

– 0: runnable;

19



2.2. IMPORTANT DATA STRUCTURES
CHAPTER 2. LINUX SCHEDULER

– > 0: stopped;

• sched class: pointer to the scheduling class used for scheduling the

task;

• dl : scheduling entity for the “dl” scheduling;

• policy : scheduling policy.

2.2.3 rq

The processor has associated a runqueue data structure, containing the run-

queues of all the scheduling classes.

This modular approach allows the runqueue to be independent from the

scheduling classes implementations of their runqueues.

The processor’s runqueue is defined by the rq data structure. In multi-

processor systems, there is a runqueue for each processor.
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Chapter 3

SCHED DEADLINE

This chapter describes the Linux kernel’s SCHED DEADLINE scheduling

class, by showing how the services it provides are implemented and how the

user can interact with them.

The first part describes the main data structures and functions managed

by SCHED DEADLINE.

The second part shows how those functions and data structures are able

to implement the H-CBS scheduling policy.

The last part describes how the SCHED DEADLINE class can be used

by the user, so, which are the parameters that the user can set and the

system call used to notify the kernel the wish to switch scheduling class.
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3.1 Introduction

SCHED DEADLINE is a scheduling class provided by the Linux kernel that

implements a resource reservations policy which follows the H-CBS algo-

rithm.

As already shown, the H-CBS lies on top of an EDF scheduling, so,

this scheduling class was originally named SCHED EDF. The name was

later modified to SCHED DEADLINE for keeping the class implementation-

independant.

All the next sections will take as reference the SCHED DEADLINE code

included in the Linux kernel versions that goes from 3.14 to 3.19.

3.2 Data Structures and Functions

The next sections describe which are the data structures that are involved

in the SCHED DEADLINE algorithm and the functions from which those

are managed.

3.2.1 sched dl entity

The sched dl entity data structure contains all the data required by SCHED DEADLINE

for managing the tasks.

This structure contains the fixed SCHED DEADLINE parameters, cho-

sen by the user side when performing the sched setattr() system call:

• dl runtime: maximum runtime for each instance;

• dl deadline: relative deadline of each instance;

• dl period : separation of two instances;

• dl bw : the result of the division of dl runtime by dl deadline.

It also defines some dynamic data, which is continuously updated during

task execution.

Those data are:

• runtime: remaining runtime;

• deadline: next absolute deadline;
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• flags: specify the scheduler behavior;

• dl throttled : is set when the budget has been exhausted, so, the task

is waiting to get again in a ready queue;

• dl new : tells that this is a new instance, so it must be correctly ini-

tialized with full runtime and the correct absolute deadline;

• dl boosted : tells if the task priority has been boosted due to deadline

inheritance. If so, under the critical section, the task overcomes the

bandwidth enforcement mechanism;

• dl yielded : the task left the CPU before finishing its budget during its

last job. This flag can be used in future implementations for budget

reclaiming;

• dl timer : each task has its own timer for implementing the bandwidth

enforcement mechanism.

3.2.2 dl rq

This runqueue contains the runnable SCHED DEADLINE tasks.

Those tasks are managed in this data structure depending on their ab-

solute deadline: the priority depends on the absolute deadline, so, the run-

queue must be organized in such a way that the element with smallest ab-

solute deadline should be easily accessible.

Then, the operations that will be performed on this data structure are:

• insertion of a new element;

• removal (usually) of the task with smallest absolute deadline;

Implementing this data structure as a list requires an insertion complex-

ity of O (n) and a removal complexity of O (1)

A well-performing implementation for managing this data structure is

through a red-black tree.

Red-black trees have a complexity of O (log (n)) for any operation per-

formed on the data structure. Moreover, by considering that the red-black

tree’s lower value element is the the leftmost leaf, it is possible to develop

some mechanism to reduce the operation for managing the leftmost element

to O (1) complexity.
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3.2.3 dl sched class

All the function pointers for the SCHED DEADLINE sched class structure,

introduced in subsection 2.2.1, are statically allocated by the dl sched class

declaration.

Those hooks are:

• enqueue task (enqueue task dl),

• dequeue task (dequeue task dl),

• yield task (yield task dl),

• check preempt curr (check preempt curr dl),

• pick next task (pick next task dl),

• put prev task (put prev task dl),

• set curr task (set curr task dl),

• task tick (task tick dl),

• task fork (task fork dl),

• task dead (task dead dl),

• prio changed (prio changed dl),

• switched from (switched from dl),

• switched to (switched to dl),

• update curr (update curr dl),

The sched class data structure also contains the pointer to the next

scheduling class: rt sched class.

In the next pages will be described the dl sched class structure elements

with a peculiar behavior.

yield task dl()

This function suspends the running task by consuming all its budget. The

next activation will happen at next deadline.

This function may be useful in budget reclaiming algorithms, currently

not yet implemented by SCHED DEADLINE.
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check preempt curr dl()

This function is called when the task that wakes up and the currently exe-

cuting task are both SCHED DEADLINE tasks.

It checks if the absolute deadline of the incoming task is smaller than

the executing task and, if so, performs the preemption.

For SMP systems, the problem arises when the new task has a deadline

equal to the deadline of the executing task in that ready queue. In that case,

depending on the CPU affinity, it is chosen if the task has to be scheduled

and which is the best CPU to use.

pick next task dl()

This function returns the highest priority task from the SCHED DEADLINE

scheduling class.

If no runnable task is available, then NULL is returned.

task tick dl()

This function is periodically invoked to update SCHED DEADLINE param-

eters.

It calls the update curr dl() function.

task fork dl()

This function is not directly implemented, because SCHED DEADLINE

tasks are not allowed to fork.

The fork operation can be achieved through the sched fork() function.

task dead dl()

The task timer is deleted and the total available bandwidth is freed from

the bandwidth occupied by the task.

switched from dl()

This function is similar to task dead dl().
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switched to dl()

A new SCHED DEADLINE task arrived, so, it overload the runqueue.

For this reason, it tries to push some task off from it, if possible.

update curr dl()

This function calculates the execution time of the task and updates its bud-

get. If the task exhausted its budget, then is preempted in favor of the next

highest priority task, by performing a reschedule operation.

If the task is preempted for budget exhaust (suspended state), the task’s

dl timer is started to fire at the task deadline. When the dl timer fires, then

the dl task timer() function is executed.

3.3 H-CBS in SCHED DEADLINE

The next paragraphs will explain how SCHED DEADLINE implements the

concepts introduced in chapter 1.1.2.

In SCHED DEADLINE exists a strong relationship between tasks and

servers: each SCHED DEADLINE server must have one and only one asso-

ciated task. For this reason, in SCHED DEADLINE, the terms “task” and

“server” can be used with the same meaning.

When a task is getting scheduled with SCHED DEADLINE, the ker-

nel initializes all the required data structures and decides if the currently

running task must be preempted.

The preemption depends on:

• the comparison between the deadlines: if the newly arrived task has a

deadline smaller the the running task, then it wins the CPU;

• the scheduling class of the running task: SCHED DEADLINE is the

highest priority class, after the stop class.

While the tasks are executed, the kernel prioriodically updates server

budgets, by calling the update curr dl() function. This function subtracts

the execution time of the task from the server budget. After that, it is

checked if the task exhausted its budget. If the budget is less than or

equal to zero, this condition is verified, then the task becomes throttled and

is removed from the runqueue associated to SCHED DEADLINE. At this
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point, the task’s timer is set with the start dl timer() function to fire at the

task’s deadline.

When the timer fires, it runs the dl task timer(). This function runs

only when the task was throttled and needs a budget replenishment, so,

the task is enqueued into the SCHED DEADLINE runqueue with the EN-

QUEUE REPLENISH flag. Thanks to this flag, the server budget is re-

plenished and the task is again able to run. The replenishment not only

refills the budget, but also updates the absolute deadline of the task. In

particular, the kernel should increment the value of the deadline with the

value of its period.

It may happen, in case of a low frequency of task parameters update, that

the budget is still negative, also after the replenishment. The replenishment

is then implemented as a loop that:

• increments the deadline d with the period value P ;

• increments the actual budget q with the maximum task budget Q.

until the budget switches back to a positive value.

Then, it is checked if the replenished task is the highest priority task,

and, if it is, a preemption will occur.

3.3.1 Admission Control

The necessary and sufficient condition for the schedulability of EDF tasks

is to have a CPU utilization factor less than or equal to 1.

The current utilization factor is updated by SCHED DEADLINE every-

time a task enters or leaves this scheduling class. Before allowing a task to

be scheduled by SCHED DEADLINE, the kernel checks if the new task’s

utilization factor, added to the sum of the utilization factors of the other

scheduled tasks, is below a certain threshold. This threshold is chosen as

0.95, slightly lower than the theoretical maximum value of 1.

3.3.2 Parameters Constraints

As will be described later in section 3.4, the user performs a system call

for switching its tasks’ scheduling class. This system call requires also the

SCHED DEADLINE parameters required by the H-CBS server.
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When the chosen scheduling class is SCHED DEADLINE, the server

parameters are checked to be correct.

This parameters validation is performed by the function checkparam dl(),

defined in kernel/sched/core.c.

The basic rules are the following:

• deadline > 0;

• runtime > 2DL SCALE = 210 = 1024

• if period > 0, then runtime ≤ deadline ≤ period.

If at least one of the rules is not followed, the system call returns an

error.

3.4 Userspace Perspective

This section describes the steps that the programmer follows to define the

scheduling class of a task to SCHED DEADLINE.

3.4.1 Switching Scheduling Class

A task cannot directly be scheduled with SCHED DEADLINE: it has to

explicitly switch scheduling class by using the proper system call.

This is performed by the sched setattr() function, that will be provided

by a future release of sched.h library.

Listing 3.1 : sched setattr

#include <sched.h>

int sched_setattr(pid_t pid ,

const struct sched_attr *attr ,

unsigned int flags );

In the current implementation, this function updates the scheduling at-

tributes defined by attr to the task identified by pid. The name pid is

fraintendible, because recalls the Process ID, while the scheduling class can

be set to any kind of task: processes or threads. Then the correct name

should be tid, recalling the Thread ID, which identifies the entity that is

going to be scheduled. The just mentioned tid has no relationship with the

POSIX Thread ID.
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The flags field has been left for the future: currently it has no meaning

and is left to 0.

The attr field is a sched attr structure defined as follows.

Listing 3.2 : sched attr

struct sched_attr {

u32 size; /* Size of this structure */

u32 sched_policy; /* Policy (SCHED_ *) */

u64 sched_flags; /* Flags */

s32 sched_nice; /* Nice value (SCHED_OTHER ,

SCHED_BATCH) */

u32 sched_priority; /* Static priority (SCHED_FIFO ,

SCHED_RR) */

/* Remaining fields are for SCHED\_DEADLINE */

u64 sched_runtime;

u64 sched_deadline;

u64 sched_period;

};

The relevant fields of this data structure are

• size: the size of this data structure;

• sched policy : the desired scheduling class, so, it is possible to use the

value defined by SCHED DEADLINE or directly use its value: 6;

• sched runtime: the server budget Q;

• sched deadline: the server relative deadline D;

• sched period : the server period P .

In case of success, the function returns 0, otherwise returns −1 and sets

the errno value as follows:

• EBUSY : the admission control failed;

• EINVAL: the parameters chosen by the user are invalid.
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Chapter 4

H CBS SO

This chapter describes a more detailed picture of the limitations demon-

strated by the H-CBS algorithm. It also presents the new H-CBS-SO algo-

rithm and the adaptations of SCHED DEADLINE required for its imple-

mentation.

The first part recalls the issues that are present in the H-CBS schedul-

ing policy and introduces the considerations that drove the development of

H-CBS-SO algorithm. This is done by showing the scheduling difficulties

that arise in the mamagement of self-suspending tasks.

The second part provides a full description of the H-CBS-SO algorithm.

The last part shows how SCHED DEADLINE scheduling class has been

modified to implement the H-CBS-SO policy.
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4.1 Problem and Solution

As briefly introduced in section 1.2, the H-CBS algorithm has strong limi-

tations in managing real systems.

The next sections will go deeper in detail of what are the issues of this

algorithm by providing a scheduling example.

In the end, will be shown a possible solution for solving this problem.

4.1.1 Unverified Schedulability Condition

Consider an H-CBS based system, scheduling two tasks:

• τ1:

– C = 2;

– P = 5;

– D = 5;

– managed by server S1:

∗ Q = 2;

∗ P = 5;

• τ2:

– C = 4;

– P = 10;

– D = 10;

– managed by server S2:

∗ Q = 4;

∗ P = 10;

This taskset should result schedulable under EDF:

2∑
i=1

Ci
Pi

=
2

5
+

4

10
= 0.8 ≤ 1

The scheduling of this taskset is shown in figure 4.1. In particular, at

time:
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Figure 4.1: Deadline miss with H-CBS algorithm.

• t = 0: tasks τ1 and τ2 are activated and τ1 starts executing because of

its earlier deadline;

• t = 2: tasks τ2 completes its job and τ2 starts, but its first operation

self-suspends the task. Then, the task leaves the CPU and the server

keeps the budget unchanged;

• t = 5: τ2 turns back to a runnable state just before the arrival of τ1.

For this reason, there’s no reason for preemption and τ2 continues its

execution;

• t = 9: τ2 completes its execution and leaves the CPU to τ1;

• t = 10: τ1 misses its deadline.

This example shows how a self-suspending task may cause the deadline

miss of another task. In particular, even though the guilty task is τ2, the

task which misses its deadline is τ1.

It is then demonstrated that the necessary and sufficient condition for

the schedulability of a taskset under EDF cannot be applied to the H-CBS

policy.
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4.1.2 Suspension Oblivious Analysis for H-CBS

A possible approach for verifying the schedulability of the system could be

to consider also the WCET of the self-suspension (by now, identified with

Si) in the server budgets.

The new checking will result as:

U =
N∑
i=1

Ui =
N∑
i=1

Qi
Pi

=

N∑
i=1

Ci + Si
Pi

≤ 1

This approach is able to recognize that the taskset shown in section 4.1.1

is not schedulable:

N∑
i=1

Ci + Si
Pi

=
2

5
+

7

10
= 1.1 > 1

This is equivalent of considering the self-suspension as a busy wait.

The example seen in section 4.1.1 can be modified by transforming the

self-suspension into a busy wait and the resulting schedule is shown in fig-

ure 4.2

Figure 4.2: H-CBS algorithm schedule with busy wait.

In this case, τ2 misses its deadline instead of τ1. This is because of the

resource reservation policy: τ2 tried to use more budget than expected, so

its server suspends, providing temporal isolation among tasks.
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Considering self-suspensions as busy waits is a strongly pessimistic as-

sumption, because the CPU remains inactive also if there are other runnable

tasks.

Moreover, the final result of using busy waits instead of self-suspensions

is a degradation of the performances in terms of response times. Another

problem of this approach is that the system resources, in particular the CPU

utilization factor, are wasted in vain.

4.1.3 Managing Self-Suspending Tasks Budget

Merging the considerations made in section 4.1.1 and section 4.1.2, a new

scheduling policy which is able to manage self-suspending tasks without the

need of migrating to busy execution is required.

The idea is to create a mechanism that allows the preemption of self-

suspended tasks in favor of other runnable tasks to obtain good response

time performances. At the same time, for providing temporal isolation,

self-suspended tasks’ budgets must be consumed also if those tasks are not

executing.

It is possible to notice that the problem of interference between self-

suspended tasks arises only when the suspended task allows other tasks,

with lower or equal priority, to run.

In other words, the budget of the self-suspended task should be consumed

when, in case of implementing the self-suspension with a busy wait, that task

would be executed.

4.2 The H-CBS-SO Algorithm

The H-CBS-SO algorithm uses the considerations made in section 4.1.3 for

managing the server budgets in a more strict manner with respect to H-CBS,

but avoiding the use of busy waits instead of self-suspensions.

The figure 4.3 shows the new transitions introduced by the H-CBS-SO

algorithm.

• A-transition: a running task self-suspends;

• B-transition: a self-suspended task becomes ready;

• C-transition: a self-suspended task becomes suspended;
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Figure 4.3: State transition diagram for the H-CBS-SO algorithm. [2]

• D-transition: a suspended task returns self-suspended.

The following chapters will describe the states that an H-CBS-SO server

can reach and the transitions that may happen, following the rules presented

in [2].

4.2.1 Idle

Initially the server is idle and its budget and period are null.

The transitions from the idle state happen when a job arrives, but be-

cause of the strong relationship between tasks and servers in SCHED DEADLINE

(each task has its own assciated server), this state is never reached.

4.2.2 Ready

The server is ready and can be executed.

Whenever a task reaches this state, its descriptor is inserted in the ready

queue, awaiting for the CPU.

A-transition

A task suspends itself, waiting some event.
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E-transition

When a task exhausts its budget, it becomes suspended.

4.2.3 Self-Suspended

Whenever a task self-suspends, it is inserted into the SS QUEUE.

When a task executes, its budget is consumed accordingly. If the task

in the head of the SS QUEUE has equivalent or higher priority than the

executing task, its budget is decreased of the same amount.

B-transition

When a task resumes its execution, it must be removed from the SS QUEUE.

The associated server becomes ready and the task is inserted into the ready

queue.

C-transition

If a self-suspended server exhaust its budget, it switches to the suspended

state and is removed from the SS QUEUE.

A flag that keeps trace of this transition must be set. This flag will be

used for choosing the exit transition from the suspended state.

4.2.4 Suspended

A server is in suspended state when it exhausted its budget and is waiting

for a replenishment.

When the server’s budget is replenished, the flag described in C-transition

is checked for choosing the next transition.

D-transition

The server was suspended from a self-suspension and is still suspended.

So, it returns back to the self-suspended state and is inserted in the

SS QUEUE.

F-transition

This transition happens if the server budget is replenished and the server is

not (or no more) suspended.
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4.3 Implementation

This section describes how the code of the Linux kernel has been adapted

to the H-CBS-SO resource reservation policy.

4.3.1 SS QUEUE

Allocation

For allocating the SS QUEUE, it is possible to use the

DEFINE PER CPU SHARED ALIGNED macro provided by the kernel.

This is a good choice for future implementations, because it creates an

SS QUEUE for every processor in the system. The current H-CBS-SO al-

gorithm is developed for single core machines, but this macro makes it easy

to be extended to multiprocessor systems.

This macro is used to allocate the ss queue data structure, shown in

subsection A.5.1, which contains a pointer to the root of the Red-Black tree

and the pointer to the leftmost element, better described later.

sched dl entity

This data structure, already described in subsection 3.2.1, requires three

more fields:

• rb ss queue node: used for implementing the SS QUEUE red-black

tree;

• in ss queue: a pointer to the SS QUEUE to which the task is associ-

ated;

• dl blocked : a flag required for keeping trace of if the task is self-

suspended or not.

The code of the final version of the data structure is shown in subsec-

tion A.1.1.

The C language guarantees a well-defined memory allocation of the data

structures. Thanks to this property, it is possible to implement complex

data structures, like lists, queues, trees not by creating a data structure

which contains all the elements, but by modifying the elements themselves

to contain the data structure properties.

And this is exactly what the rb ss queue node is used for.
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Red-Black Tree Management

The SS QUEUE must be ordered by increasing absolute deadline, in such a

way that the highest priority task is easily accessible. So, it is possible to

use the red-black tree, previously introduced in subsection 3.2.2.

Red-black trees are self-balancing binary search trees, that are ensured

to be kept approximately balanced.

The elements are disposed in the tree in such a way that, with an in-

order traversal, the elements are returned in an ascending order. It means

that all the left-children nodes must have a value lower than their parent

and all the right-children nodes a higher value.

The elements required to create a red-black tree with the libraries pro-

vided by the Linux kernel are:

• the root of the tree: defined by rb tree in ss queue;

• the element of the tree: defined by rb ss queue node in sched dl entity.

When inserting a new element, the tree must be traversed through the

path which meets the just described rule.

The new element becomes finally a new leaf of the tree.

After any insertion, the tree is no more guaranteed to be balanced, so,

a rebalancing operation must be performed. This is fortunately already

implemented by the library.

The operations performed on the SS QUEUE are:

• insertion: performed by dl ss queue insert();

• removal: performed by dl ss queue remove();

whose code is shown in subsection A.3.1.

The most important element for the SS QUEUE is the value with the

smallest absolute deadline, which, for the red-black tree ordering property,

is always the leftmost leaf. For providing a quick access to this value, the

SS QUEUE is implemented with an additional field which points to its left-

most leaf.

When a new element is inserted in the tree, it becomes the new leftmost

leaf if the traversal for the insertion never passed through a right-child node.

When removing an element from the tree, if the removed element was the

lefmost leaf, the pointer to the leftmost leaf is updated with the next element

of an in-order traversal.
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4.3.2 Detecting Self-Suspension

For implementing the A-transition, the crucial step is to identify the self-

suspension of a task.

There are several possible approaches that can be followed for achieving

this:

• modifying all the system calls that may suspend a process;

• checking at the common return point of the system calls;

• checking into the dequeue task dl() function of SCHED DEADLINE.

Exhaustive System Calls Modification

The first option requires a high number of modifications to the kernel source

for making all the system calls that may suspend a process compatible with

this new scheduling algorithm.

There is also no guarantee that system calls that will be developed in

the future will be correctly implemented for this purpose.

This solution provides a low code maintainability.

Common System Calls Return Point Improvement

The number of modifications can be reduced and code maintainability im-

proved with the solution described by the second option.

This requires additional checkings into the piece of code that returns

from the system calls, which is shared among all of them.

The problem of this solution is that, for every system call return, the

kernel should also check if it caused the suspension of the task and if that

task is scheduled with SCHED DEADLINE.

All these operations are executef for every system call of the system, and

so, will cause a big loss in terms of system performance.

SCHED DEADLINE Runqueue Management Checking

The last option, which uses the event of removing tasks from the SCHED DEADLINE

ready queue, is chosen for tracing the self-suspension.

It has the following advantages:
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• dequeue task() is surely associated to SCHED DEADLINE tasks, and

then, no additional scheduling class checking is required;

• it is easy to understand if what caused the removal from the ready

queue is due to a self suspension or not.

The dequeue dl entity() is the function that will be used as bottleneck

for checking if a SCHED DEADLINE task self-suspends.

This function is called in the following cases:

• the task runs out of budget;

• the task terminates;

• the task changes scheduling class;

• the task self-suspends.

So, additional checkings are required to confirm that the task was remove

from the runqueue because of a self-suspension or not.

The final code developed for implementing the A-transition is shown in

subsection A.3.8.

4.3.3 Exhausting Budget While Self-Suspended

A self-suspended task may exhaust its budget, switching from the self-

suspended state to a suspended state through the C-transition.

A new field for keeping trace of this transition is required, because, when

the budget is replenished, the kernel must bring the task back to the self-

suspended state.

The field responsible for this transition is dl blocked, defined in sched dl entity

data structure and set during the C-transition.

Those operations are performed when the budget is being updated, when

the function update curr dl(), shown in subsection A.3.6. is executed.

4.3.4 Replenishing Budget

When a task is self-suspended and its timer causes a budget replenishment,

the kernel must decide which transition will be chosen, depending on the

dl blocked value:
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• if dl blocked is set, then the task is still suspended and a D-transition

occurs, bringing back the task to the self-suspended state;

• otherwise, the task is no more self-suspended and returns back to the

ready state, by following the F-transition.

Those operations are performed by the dl task timer() function, shown

in subsection A.3.4.

4.3.5 Leaving Self-Suspension

Another problem is to detect when a task is no more self-suspended.

This happens when a task which was suspended returns to the SCHED DEADLINE

ready queue, through the enqueue task dl() function.

This function has been modified for checking if the task was in the

SS QUEUE and, if so:

• if was suspended, then resets the dl blocked flag, which will be used

by the dl task timer() function. If dl task timer() finds the dl blocked

flag off will perform a F-transition;

• otherwise, brings the task back to the ready state through a B-transition.

The final code developed for implementing the B-transition or F-transition

is shown in subsection A.3.7.

4.3.6 Dying Tasks

When a task dies, it is first dequeued with no particular flag, so this behavior

is incorrectly interpreted as a self-suspension.

To solve this problem and keeping the SS QUEUE consistent, when the

function task dead dl() is invoked, the associated task must be removed from

SS QUEUE, if present.

This behavior is handled in the task dead dl() function, described in

subsection A.3.9.

4.3.7 Updating budget of Self-Suspended Tasks

When a tasks executes, its budget is consumed, as happens for any resource

reservation policy.
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In H-CBS-SO, at the same time, it is consumed also the budget from

the self suspended task with highest priority. It is equivalent to say that the

budget is consumed also from the head of the SS QUEUE.

This operation is performed by the update ss queue() function, called by

update curr dl().

Their codes are shown in subsection A.3.5. and subsection A.3.6.
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Chapter 5

Periodic Tasks in Linux

This chapter describes the need of introducing the concept of periodic task

in the Linux kernel and the design of a userspace library for its management.

The first part introduces the problems that arise in H-CBS-SO algorithm

without the kernel awareness of the tasks’ periodicity.

The second part shows which is the classical Linux programmers ap-

proach for developing periodic tasks.

In the last part will be presented a simple library exemple for managing

periodic tasks.
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5.1 Intro

The current Linux kernel does not provide any functionality for managing

periodic tasks. The programmer is forced to implement periodic tasks com-

pletely from user level.

For this reason, the kernel is not able to distinguish if a running task is

periodic or not. This is a problem for scheduling algorithms because there

is no way to retrieve the next activation times of the jobs.

Moreover, as discussed in the next chapter, the waiting for next activa-

tion is obtained by the tasks with standard sleep operations. Those opera-

tions may be misinterpreted by the H-CBS-SO algorithm as self-suspensions.

This self-suspension misunderstanding does not cause any problem to the

H-CBS-SO algorithm, but introduces some overhead in the management

of the SS QUEUE, where the number of elements becomes usually greater

than necessary. In other words, this results in a not so clean usage of the

H-CBS-SO algorithm itself.

5.2 Classical Periodic Real-Time Tasks

The common implementation of a periodic real-time task in Linux is the

following:

• initialization;

• compute next activation time;

• infinite loop, which:

– performs some elaboration;

– waits for next activation;

– computes next activation time.

In the initialization phase, the task prepares the environment.

In the infinite loop phase, the task launches its jobs. Each job performs

some operation.

In a control system, common operations are:

• reading data from sensors;

• elaborating data through a control algorithm;
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• sending commands to actuators.

When the job finishes, the task must wait for the next activation time

before launching the next job.

The operation of waiting for next activation is performed by using a

sleep operation, for exemple through the standard clock nanosleep(). This

function is a good candidate, because preempts the task and removes it from

the ready queue, allowing other tasks to execute.

5.3 Kernel-Aware Periodic Real-Time Tasks

For solving the problems described in subsection 5.1, the Linux kernel should

implement proper system calls and mechanisms for managing periodic tasks.

At the same time, a userspace library would be useful to the programmer

for easily implementing periodic real-time tasks.

5.3.1 Userspace Library

For creating a library that the programmer can use for implementing peri-

odic tasks, it is possible to use an interface similar to the one provided by

the POSIX Threads.

The functionalities required for the periodic tasks management are:

• data structures for defining periodicity and scheduling class parame-

ters;

• periodic task section: this function must periodically execute the jobs

of the task;

• periodic section exit: when for some reason the periodic part of the

task needs to terminate, it must return a value to its parent.

Data Structures

The element necessary for creating a periodic task is its period.

There should be no limitation on the period that a task can choose, so,

it is possible to use the timespec structure defined by time.h library:

Listing 5.1 : timespec
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struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds [0 .. 999999999] */

};

Moreover, it can be useful to directly change the task’s scheduling class

for its periodic section. As introduced in subsection 3.4, the sched attr

data structure contains all the parameters required for choosing the new

scheduling class and for setting its parameters.

It is then possible to create the periodic attr t data structure as follows.

Listing 5.2 : periodic attr t

struct periodic_attr_t {

timespec period;

timespec deadline;

sched_attr s_attr;

};

This data structure will be easily

Creating Periodic Sections

The idea is to follow a Pthread-style library function for simplifying the

programmer migration to this coding style.

The function that creates the periodic section will result similar to the

pthread create() function.

Listing 5.3 : pthread create()

int pthread_create(pthread_t *thread ,

const pthread_attr_t *attr ,

void *(* start_routine )(void*),

void *arg);

So, the periodic create() function is required.

Listing 5.4 : periodic create()

int periodic_create(const periodic_attr_t *p_attr ,

int (* routine )(void*),
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void *arg);

int periodic_create(const periodic_attr_t *p_attr ,

int (* routine )(void*),

void *arg)

{

int ret;

sched_attr *s_attr = p_attr ->s_attr;

sched_attr attr_old;

int flags = 0;

get_sched_attr (& attr_old );

set_sched_attr(s_attr );

set_periodic_attr(p_attr , flags );

while (ret = routine(arg))

periodic_wait ();

periodic_clear ();

set_sched_attr (& attr_old );

return ret;

}

This function’s first step is to change the scheduling parameters for the

current tread. The user has the freedom of choosing its desired scheduling

class, without the restriction of using SCHED DEADLINE.

Then, it invokes the system call set periodic attr(), required for notifying

the kernel that the current thread is going to run a periodic section.

After that, it runs periodically the specified routine, whose parameters

are passed through the arg field, until the routine returns the 0 value.

Every cycle is automatically terminated with the periodic wait() system

call, which suspends the task until the activation of the next job.

When the periodic section terminates, the kernel must be advertised,

so, the periodic clear() system call is called for cleaning all the kernel data

structures associated with it.
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Usage

The following piece of code shows how to create a periodic section inside a

task.

The periodic section terminates when the task receives an external signal.

Listing 5.5 : periodic create() usage

#include <periodic.h>

#include <signal.h>

int go_on;

void periodic_sig_handler(int signo)

{

if (signo == SIGPERSTOP)

go_on = 0;

}

int periodic_body(void *arg)

{

// Read data from sensors

// Apply control algorithm

// Send commands to actuators

return go_on;

}

int main()

{

periodic_attr_t attr;

int arg = 0;

if (signal(SIGPERSTOP , sig_handler) == SIG_ERR) {

printf("\ncan’t catch SIGPERSTOP\n");

return -1;

}

go_on = 1;

attr.period.tv_sec = 1;

attr.period.tv_nsec = 0;

attr.deadline.tv_sec = 1;
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attr.deadline.tv_nsec = 0;

attr.s_attr.size = sizeof(attr.s_attr );

attr.s_attr.sched_policy = SCHED_DEADLINE;

attr.s_attr.period = 1 * 1000 * 1000;

attr.s_attr.deadline = 1 * 1000 * 1000;

attr.s_attr.runtime = 1000 * 1000;

// Set periodic task parameters

// Set periodic function argument

periodic_create (&attr , periodic_body , &arg);

return 0;

}

By using this library, the user will be also able to create periodic sections

inside multiple threads, so, a single process will be able to spawn several

periodic sections running at the same time.
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Chapter 6

Tools

This chapter describes important tools that can help the Linux kernel pro-

gramming.

The first part presents the Ftrace tool, useful for getting kernel events

and kernel functions execution times.

The second part shows trace-cmd, a tool that interacts Ftrace for storing

the kernel traces. This provides also a graphical user interface called Ker-

nelshark for visualizing those events.

In the end, will be described an utility that executes a set of self-

suspending tasks that are scheduled by SCHED DEADLINE for verifying

the correctness of the H-CBS-SO implementation.
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6.1 Ftrace

Ftrace is a tracer provided by the Linux kernel that helps developers and

designers to retrieve important data from the kernel, for understanding its

behavior.

This tool integrates several tracing utilities, including the kernel events

tracing and kernel function profiling.

6.1.1 Kernel Events Tracing

For retrieving events from the Linux kernel, especially for statistical or de-

bugging purposes, the Ftrace system will be used.

Ftrace uses the debugfs file system for holding:

• the control files for the tracing system management;

• the buffer files from which the traces can be retrieved.

In particular, all these files can be accessed from the /sys/kernel/debug/-

tracing directory.

Inside this folder there are two important files: trace and trace pipe.

The trace file holds the output of the trace in a human readable for-

mat, while the trace pipe file is a sequential file, where each read operation

consumes the data. This last file purpose is to provide traces to tools that

perform live tracing operations.

An example of the content of the trace file is the following.

Listing 6.1 : /sys/kernel/debug/tracing/trace file output

# tracer: nop

#

# entries -in -buffer/entries -written: 154/154 #P:8

#

# _-----=> irqs -off

# / _----=> need -resched

# | / _---=> hardirq/softirq

# || / _--=> preempt -depth

# ||| / delay

# TASK -PID CPU# |||| TIMESTAMP FUNCTION

# | | | |||| | |

<idle >-0 [002] d... 3092.423854: sched_switch: pre ...

trace -cmd -6624 [002] d.s. 3092.423862: sched_wakeup: com ...
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trace -cmd -6624 [002] d... 3092.423866: sched_switch: pre ...

<idle >-0 [002] d... 3092.438571: sched_switch: pre ...

kworker/u16 :6-196 [002] d... 3092.438584: sched_switch: pre ...

<idle >-0 [000] d... 3092.443778: sched_switch: pre ...

trace -cmd -6622 [000] d.s. 3092.443785: sched_wakeup: com ...

trace -cmd -6622 [000] d... 3092.443788: sched_switch: pre ...

<idle >-0 [002] d... 3092.443830: sched_switch: pre ...

kworker/u16 :6-196 [002] d... 3092.443837: sched_switch: pre ...

<idle >-0 [000] d... 3092.445849: sched_switch: pre ...

chromium -browse -5817 [000] d... 3092.445889: sched_wakeup: com ...

chromium -browse -5817 [000] d... 3092.445944: sched_switch: pre ...

Creting New Traces

For verifying the correctness of the SCHED DEADLINE with H-CBS-SO

implementation, it is necessary to have a set of traces that are triggered for

every transition of the server state, as shown in chapter 4.2.

Those traces are the following:

• H-CBS-SO transitions:

– A-transition: trace sched dl to ss();

– B-transition: trace sched dl from ss();

– C-transition: trace sched dl ss to susp();

– D-transition: trace sched dl ss from susp();

– E-transition: trace sched dl to susp();

– F-transition: trace sched dl from susp().

• H-CBS-SO events:

– a task is inserted in the SS QUEUE: trace sched dl ss queue new();

– a task is removed from the SS QUEUE: trace sched dl ss queue delete();

• original SCHED DEADLINE:

– the task ran out of budget: trace sched dl to ss();

– the server budget has been replenished: trace sched dl fillbudget();

– a new task is being scheduled with SCHED DEADLINE: trace sched dl new();

All those traces are implemented by adding new entries to include/-

trace/events/sched.h, using the macros provided by the Linux kernel as

shown in subsection A.4.1.
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6.1.2 Kernel Functions Profiling

Another important feature provided by Ftrace is the function profiling.

Ftrace allows to get statistics on functions execution times and on the

number of times the functions were called.

This functionality is important to verify kernel function performance and

to check which are the most called functions.

The following is an example of the output generated by the function

profiler provided by Ftrace.

Listing 6.2 : /sys/kernel/debug/tracing/trace stat/function0 file output

Function Hit Time Avg s^2

-------- --- ---- --- ---

update_curr_dl 1147913 144970.1 us 0.126 us 26459.15 us

dequeue_task_dl 76113 35443.80 us 0.465 us 466.768 us

dl_task_timer 46304 29558.98 us 0.638 us 660.723 us

enqueue_task_dl 122420 20011.60 us 0.163 us 394.298 us

The Ftrace code has been improved as shown in subsection A.6 for pro-

viding also the minimum and maximum function execution times.

6.2 trace-cmd and Kernelshark

Kernelshark is a graphical tool that comes together with trace-cmd software.

These are useful for recording kernel traces and visualizing them through

an interactive interface, as shown in figure 6.1.

The interface shows not only the events that are generated by the ker-

nel, but also the status of the task. For this reason, this tool should be

improved for managing the new statuses introduced by H-CBS-SO. More-

over, for SCHED DEADLINE tasks, it is really important to also plot the

budget of the servers.

6.3 Task Spawner

Experimental tests must be performed for testing or debugging purposes.

Those tests require a tool for launching the correct taskset.

For this purpose, a specific tool called spawner has been developed.
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Figure 6.1: Kernelshark Graphical User Interface.

This tool launches a certain taskset composed by periodic tasks sched-

uled by SCHED DEADLINE, whose parameters are passed to through JavaScript

Object Notation (JSON) configuration files.

The parameters that must be defined for each task are the following:

• jobs: the number of jobs that the task executes;

• ss every : the self-suspension happens every ss every jobs;

• ss: the relative duration of the self-suspension;

• c0 : the absolute busy wait before the self-suspension;

• c1 : the absolute busy wait after the self-suspension;

• period : temporal distance between the activation of two consecutive

jobs;

• deadline: relative deadline;
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• s period : server period;

• s deadline: server deadline;

• s runtime: server budget.

The following is an example of a JSON configuration file that can be

parsed by the spawner.

Listing 6.3 : spawnerConfigurationExample.json

{

"tasks" : {

"thread0" : {

"jobs": 10000.0 ,

"ss_every": 0.0,

"ss": 79514.0 ,

"c0": 15902.0 ,

"c1": 15902.0 ,

"period": 447270.0 ,

"deadline": 447270.0 ,

"s_period": 447270.0 ,

"s_deadline": 447270.0 ,

"s_runtime": 119272.0

},

"thread1" : {

"jobs": 10000.0 ,

"ss_every": 0.0,

"ss": 1440163.0 ,

"c0": 288032.0 ,

"c1": 288032.0 ,

"period": 4050460.0 ,

"deadline": 4050460.0 ,

"s_period": 4050460.0 ,

"s_deadline": 4050460.0 ,

"s_runtime": 2160245.0

}

}

}

The spawner receives the configuration files from the stdin stream, parses

the data and fills the data structures associated to each task. At that point,

it can generate the tasks.

Each task is composed by two main parts:
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• initialization: the task initializes its parameters and switches its schedul-

ing class to SCHED DEADLINE;

• body : the task performs periodically some operations as a common

periodic task does.

The body is a loop of jobs cycles, which performs periodically, with period

equal to period, the following actions:

• busy waits for c0 nanoseconds;

• self-suspends for ss nanoseconds.

• busy waits for c1 nanoseconds

The busy wait operations are implemented by cyclically checking the

CLOCK THREAD CPUTIME ID, until the desired time is reached. This

clock is the CPU-time clock of the calling thread, representing the amount

of execution time of the thread associated with the clock. This is a simple

approach for ensuring the task to work for a fixed time.

For implementing the self-suspension, the thread must perform some

action that causes a preemption. In such a way, the scheduler is able to

put in execution tasks with lower priority. The function that is going to

be used is clock nanosleep(), using CLOCK MONOTONIC clock. This is a

good candidate for simulating the locking on mutexes or hardware resource,

whose release time depends on external phenomena.

6.4 Generator

The taskset parameters are randomly generated by a tool called generator.

This takes as input:

• the total desired CPU utilization factor Utot;

• the minimum job utilization factor Ulb;

• the period range [Tmin, Tmax];

• the number of tasks;

• the number of jobs for each task;

The results are sent to the stdout stream in a JSON format, containing

all the tasks parameters manageable by the spawner.
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6.4.1 Generating Utilization Factors

To generate the set of Ui values for n tasks, the first step is to generate

random ui values in the range [0, 1]. Let’s suppose that those values are

ascending ordered, so, the minimum value will be u1.

There are two constraints for generating the correct ui values. The lower

bound constraint

min
i
{ui} ≥ Ulb

and the total utilization factor constraint

n∑
i=1

ui = Utot

For meeting the constraints, a possible way is to increase all the Ui of a

certain constant value q and normalize all the set for a certain scale factor

m.

The utilization factor constraint becomes

n∑
i=1

(ui + q)m = Utot

and the lower bound constraint

(u1 + q)m ≥ Ulb

In order to ensure the minimum value to u1, this inequality becomes

equality and, by manipulating this constraint, it is possible to obtain the q

value.

This value still depends on m

q =
Ulb
m
− u1

Now, substituting this result to the utilization factor constraint, the

result is the following

n∑
i=1

(
ui +

Ulb
m
− u1

)
m = Utot
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With simple manipulation, it is possible to obtain the m value

m
n∑
i=1

ui +m
n∑
i=1

Ulb
m
−m

n∑
i=1

u1 = Utot

m
n∑
i=1

ui + nUlb −mnu1 = Utot

m

(
n∑
i=1

ui − nu1

)
+ nUlb = Utot

m =
Utot − nUlb∑n
i=1 ui − nu1

Now that m is a known value, it can be used to compute q.

The final step is to use q and m for generating the Ui values.

Ui = (ui + q)m ∀i = 1..n
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Experimental Results

This chapter shows the experiments that were performed to evaluate the

extended version of the SCHED DEADLINE scheduling class implementing

the H-CBS-SO features.

Initially, the parameters used to generate the taskset are described.

Then, the results of the experiments are presented.
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7.1 Experiment Setup

The experiment aims at verifying the overhead introduced by the new fea-

tures of SCHED DEADLINE implementing the H-CBS-SO policy.

The performance tests are obtained by launching a script which sequen-

tially executes the spawner tool with different tasksets.

Each taskset has a number N of tasks and the JSON configuration files

are generated by the generator in such a way that:

• number of tasks: N = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024};

• number of jobs: J = 10′000;

• CPU total utilization factor: U = 0.8;

• minimum job utilization factor: Ulb = U
N+1 ;

• minimum job period: Pmin = 100000 ns;

• maximum job period: Pmax = 10000000 ns.

Before and after launching the spawner, the script enables the Ftrace

function profiling through the debugfs filesystem.

The SCHED DEADLINE functions that were modified are:

• update curr dl();

• enqeueue task dl();

• dequeue task dl();

• dl task timer().

The profiling function can be activated like shown in listing 7.1.

Listing 7.1 : Activation of Ftrace Function Profiling

echo nop > /sys/kernel/debug/tracing/current_tracer

echo 0 > /sys/kernel/debug/tracing/options/sleep -time

echo dl_task_timer > /sys/kernel/debug/tracing/set_ftrace_filter

echo update_curr_dl >> /sys/kernel/debug/tracing/set_ftrace_filter

echo enqueue_task_dl >> /sys/kernel/debug/tracing/set_ftrace_filter

echo dequeue_task_dl >> /sys/kernel/debug/tracing/set_ftrace_filter
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echo 0 > /sys/kernel/debug/tracing/function_profile_enabled

echo 1 > /sys/kernel/debug/tracing/function_profile_enabled

At the end of every spawner execution, the obtained results are stored

in a separate folder. Those results can be later manipulated and analyzed

by other tools to obtain more precise statistical information.

7.2 Overhead Results

The new features introduced for managing the H-CBS-SO policy depend on

the SS QUEUE that stores the suspended tasks and has been implemented

through a red-black tree. Thus, the tests to evaluate the overhead introduced

with the new feature are performed using the number of tasks as reference

parameter.

For each function described in the first part of this chapter has been

measured the execution time, which varies as a function of the number of

tasks.

The computational cost of the new functions is comparable to the original

SCHED DEADLINE implementation, as shown in the following figures.

As a result, the additional SCHED DEADLINE features for implement-

ing the H-CBS-SO algorithm do not cause an worsening of the system load.
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Figure 7.1: update curr dl() average execution times.
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Figure 7.2: enqueue task dl() average execution times.
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Figure 7.3: dequeue task dl() average execution times.
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Figure 7.4: dl task timer() average execution times.
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Appendix A

Code

This chapter shows the code modifications made on the Linux kernel in order

to:

• impelment the H-CBS-SO features described in chapter 4;

• add the new tracing events shown in subsection 6.1.1;

• get more detailed information of the function performance with the

Ftrace functionalities presented in subsection 6.1.2.

69



A.1. INCLUDE/LINUX/SCHED.H
APPENDIX A. CODE

A.1 include/linux/sched.h

A.1.1 sched dl entity

Listing A.1 : sched dl entity

struct sched_dl_entity {

struct rb_node rb_node;

struct rb_node rb_ss_queue_node;

struct ss_queue *in_ss_queue;

/*

* Original scheduling parameters. Copied here from sched_attr

* during sched_setattr (), they will remain the same until

* the next sched_setattr ().

*/

u64 dl_runtime; /* maximum runtime for each instance */

u64 dl_deadline; /* relative deadline of each instance */

u64 dl_period; /* separation of two instances (period) */

u64 dl_bw; /* dl_runtime / dl_deadline */

/*

* Actual scheduling parameters. Initialized with the values above ,

* they are continously updated during task execution. Note that

* the remaining runtime could be < 0 in case we are in overrun.

*/

s64 runtime; /* remaining runtime for this instance */

u64 deadline; /* absolute deadline for this instance */

unsigned int flags; /* specifying the scheduler behaviour */

/*

* Some bool flags:

*

* @dl_throttled tells if we exhausted the runtime. If so , the

* task has to wait for a replenishment to be performed at the

* next firing of dl_timer.

*

* @dl_new tells if a new instance arrived. If so we must

* start executing it with full runtime and reset its absolute

* deadline;

*

* @dl_boosted tells if we are boosted due to DI. If so we are
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* outside bandwidth enforcement mechanism (but only until we

* exit the critical section );

*

* @dl_yielded tells if task gave up the cpu before consuming

* all its available runtime during the last job.

*/

int dl_throttled , dl_new , dl_boosted , dl_yielded , dl_blocked;

/*

* Bandwidth enforcement timer. Each -deadline task has its

* own bandwidth to be enforced , thus we need one timer per task.

*/

struct hrtimer dl_timer;

};

A.2 kernel/sched/core.c

A.2.1 SS QUEUE Allocation Macro

Listing A.2 : Macro for Allocating SS QUEUE

DEFINE_PER_CPU_SHARED_ALIGNED(struct ss_queue , ssqueues );

A.2.2 Setting Default Values to sched dl entity

Listing A.3 : dl clear params()

/*

* This function clears the sched_dl_entity static params.

*/

void __dl_clear_params(struct task_struct *p)

{

struct sched_dl_entity *dl_se = &p->dl;

dl_se ->dl_runtime = 0;

dl_se ->dl_deadline = 0;

dl_se ->dl_period = 0;

dl_se ->flags = 0;

dl_se ->dl_bw = 0;

dl_se ->in_ss_queue = 0;

dl_se ->dl_blocked = 0;

dl_se ->dl_throttled = 0;

71



A.3. KERNEL/SCHED/DEADLINE.C
APPENDIX A. CODE

dl_se ->dl_new = 1;

dl_se ->dl_yielded = 0;

}

A.2.3 SS QUEUE Initialization

Listing A.4 : sched init()

void __init sched_init(void)

{

...

for_each_possible_cpu(i) {

struct rq *rq;

struct ss_queue *ss_queue;

ss_queue = cpu_ss_queue(i);

rq = cpu_rq(i);

raw_spin_lock_init (&rq ->lock);

rq ->nr_running = 0;

rq ->calc_load_active = 0;

rq ->calc_load_update = jiffies + LOAD_FREQ;

init_cfs_rq (&rq->cfs);

init_rt_rq (&rq ->rt , rq);

init_dl_rq (&rq ->dl , rq);

init_dl_ss_queue(ss_queue );

...

}

A.3 kernel/sched/deadline.c

A.3.1 Insertion and Removal of SS QUEUE Elements

Listing A.5 : SS QUEUE Elements Insertion and Removal

/*

* Inserts a new element in the SS_QUEUE

*/

static int dl_ss_queue_insert(struct ss_queue *ss_queue ,

struct sched_dl_entity *data)

{

struct rb_node **new = &(ss_queue ->rb_tree.rb_node), *parent = NULL;

72



APPENDIX A. CODE
A.3. KERNEL/SCHED/DEADLINE.C

struct sched_dl_entity *this;

int leftmost = 1;

while (*new) {

parent = *new;

this = container_of(parent , struct sched_dl_entity ,

rb_ss_queue_node );

if (data == this) {

// The process is already in the list , so

// no insertion is required

return -1;

}

if (data ->deadline < this ->deadline) {

new = &((* new)->rb_left );

} else {

new = &((* new)->rb_right );

leftmost = 0;

}

}

trace_sched_dl_ss_queue_new(data);

if (leftmost)

ss_queue ->rb_leftmost = &data ->rb_ss_queue_node;

// Add new node and rebalance tree.

rb_link_node (&data ->rb_ss_queue_node , parent , new);

rb_insert_color (&data ->rb_ss_queue_node , &ss_queue ->rb_tree );

return 0;

}

/*

* Removes the selected element from the SS_QUEUE

*/

static void dl_ss_queue_remove(struct ss_queue *ss_queue ,

struct sched_dl_entity *data)

{

if (RB_EMPTY_NODE (&data ->rb_ss_queue_node ))

return;

trace_sched_dl_ss_queue_delete(data);
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if (data ->in_ss_queue ->rb_leftmost == &data ->rb_ss_queue_node)

data ->in_ss_queue ->rb_leftmost = rb_next (&data ->rb_ss_queue_node );

rb_erase (&data ->rb_ss_queue_node , &data ->in_ss_queue ->rb_tree );

RB_CLEAR_NODE (&data ->rb_ss_queue_node );

}

A.3.2 Getting SS QUEUE Associated to a sched dl entity

Listing A.6 : ss queue of se()

static inline struct ss_queue *ss_queue_of_se(struct sched_dl_entity *dl_se)

{

return task_ss_queue(dl_task_of(dl_se ));

}

A.3.3 SS QUEUE Red-Black Tree Initialization

Listing A.7 : init dl ss queue()

void init_dl_ss_queue(struct ss_queue *ss_queue)

{

ss_queue ->rb_tree = RB_ROOT;

}

A.3.4 Budget Replenishment

Listing A.8 : dl task timer()

static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)

{

struct sched_dl_entity *dl_se = container_of(timer ,

struct sched_dl_entity ,

dl_timer );

struct task_struct *p = dl_task_of(dl_se );

struct rq *rq;

// D-transition

if (dl_se ->in_ss_queue) {

if (dl_se ->dl_blocked) {

trace_sched_dl_ss_from_susp(dl_se );
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dl_ss_queue_insert(dl_se ->in_ss_queue , dl_se);

return HRTIMER_NORESTART;

}

dl_se ->in_ss_queue = 0;

}

...

}

A.3.5 Managing Budget from SS QUEUE Head

Listing A.9 : update ss queue()

static void update_ss_queue(struct rq *rq, struct sched_dl_entity *dl_se , u64 delta_exec)

{

struct sched_dl_entity *ss_queue_head;

if (this_ss_queue ()->rb_leftmost) {

ss_queue_head = container_of(this_ss_queue()->rb_leftmost ,

struct sched_dl_entity ,

rb_ss_queue_node );

// The budget is consumed only if the running task has lower priority

// than the head of the SS_QUEUE

if (dl_se ->deadline >= ss_queue_head ->deadline) {

ss_queue_head ->runtime -= delta_exec;

if (dl_runtime_exceeded(rq, ss_queue_head )) {

trace_sched_dl_ss_to_susp(ss_queue_head );

dl_ss_queue_remove(ss_queue_head ->in_ss_queue , ss_queue_head );

if (unlikely (! start_dl_timer(ss_queue_head , ss_queue_head ->dl_boosted )))

dl_ss_queue_insert(ss_queue_head ->in_ss_queue , ss_queue_head );

}

}

}

}

A.3.6 Decrementing Budget
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Listing A.10 : update curr dl()

/*

* Update the current task’s runtime statistics (provided it is still

* a -deadline task and has not been removed from the dl_rq).

*/

static void update_curr_dl(struct rq *rq)

{

struct task_struct *curr = rq->curr;

struct sched_dl_entity *dl_se = &curr ->dl;

u64 delta_exec;

if (! dl_task(curr) || !on_dl_rq(dl_se ))

return;

/*

* Consumed budget is computed considering the time as

* observed by schedulable tasks (excluding time spent

* in hardirq context , etc.). Deadlines are instead

* computed using hard walltime. This seems to be the more

* natural solution , but the full ramifications of this

* approach need further study.

*/

delta_exec = rq_clock_task(rq) - curr ->se.exec_start;

if (unlikely ((s64)delta_exec <= 0))

return;

schedstat_set(curr ->se.statistics.exec_max ,

max(curr ->se.statistics.exec_max , delta_exec ));

curr ->se.sum_exec_runtime += delta_exec;

account_group_exec_runtime(curr , delta_exec );

curr ->se.exec_start = rq_clock_task(rq);

cpuacct_charge(curr , delta_exec );

sched_rt_avg_update(rq , delta_exec );

// Consume budget also from the head of SS_QUEUE

update_ss_queue(rq, dl_se , delta_exec );

...

}
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A.3.7 Enqueuing SCHED DEADLINE Tasks

Listing A.11 : enqueue task dl()

static void enqueue_task_dl(struct rq *rq,

struct task_struct *p,

int flags)

{

struct task_struct *pi_task = rt_mutex_get_top_task(p);

struct sched_dl_entity *pi_se = &p->dl;

/*

* Use the scheduling parameters of the top pi -waiter

* task if we have one and its (relative) deadline is

* smaller than our one... OTW we keep our runtime and

* deadline.

*/

if (pi_task && p->dl.dl_boosted &&

dl_prio(pi_task ->normal_prio )) {

pi_se = &pi_task ->dl;

} else if (! dl_prio(p->normal_prio )) {

/*

* Special case in which we have a !SCHED_DEADLINE task

* that is going to be deboosted , but exceedes its

* runtime while doing so. No point in replenishing

* it , as it’s going to return back to its original

* scheduling class after this.

*/

BUG_ON (!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH );

return;

}

/*

* If p is throttled , we do nothing. In fact , if it exhausted

* its budget it needs a replenishment and , since it now is on

* its rq, the bandwidth timer callback (which clearly has not

* run yet) will take care of this.

*/

if (p->dl.dl_throttled) {

if (p->dl.in_ss_queue)

p->dl.dl_blocked = 0;

return;

}
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if (p->dl.in_ss_queue) {

trace_sched_dl_from_ss(p);

// Remove task from SS_QUEUE

// The task is self suspended , so,

// place it into the SS_QUEUE

dl_ss_queue_remove(p->dl.in_ss_queue , &p->dl);

p->dl.in_ss_queue = 0;

}

enqueue_dl_entity (&p->dl, pi_se , flags );

if (! task_current(rq, p) && p->nr_cpus_allowed > 1)

enqueue_pushable_dl_task(rq , p);

}

A.3.8 Dequeuing SCHED DEADLINE Tasks

Listing A.12 : dequeue task dl()

static void dequeue_task_dl(struct rq *rq,

struct task_struct *p,

int flags)

{

update_curr_dl(rq);

__dequeue_task_dl(rq, p, flags );

if (! dl_runtime_exceeded(rq, &p->dl)) {

if (flags & 1) {

if (!p->dl.in_ss_queue) {

trace_sched_dl_to_ss (&p->dl);

// The task is self suspended , so,

// place it into the SS_QUEUE

p->dl.in_ss_queue = this_ss_queue ();

dl_ss_queue_insert(p->dl.in_ss_queue ,

&p->dl);

p->dl.dl_blocked = 1;

}

}
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}

}

A.3.9 Cleaning SS QUEUE When Tasks Die

Listing A.13 : task dead dl()

static void task_dead_dl(struct task_struct *p)

{

struct hrtimer *timer = &p->dl.dl_timer;

struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

struct ss_queue * ss_q = p->dl.in_ss_queue;

if (ss_q) {

dl_ss_queue_remove(ss_q , &p->dl);

p->dl.in_ss_queue = 0;

}

// dl_ss_queue_print_ordered(ss_q);

/*

* Since we are TASK_DEAD we won’t slip out of the domain!

*/

raw_spin_lock_irq (&dl_b ->lock);

/* XXX we should retain the bw until 0-lag */

dl_b ->total_bw -= p->dl.dl_bw;

raw_spin_unlock_irq (&dl_b ->lock);

hrtimer_cancel(timer );

}

A.4 trace/events/sched.h

A.4.1 Macros for Generating new Ftrace Events

Listing A.14 : Event Macros for Ftrace

/*

* Tracepoint for newborn SCHED_DEADLINE task.

*/

TRACE_EVENT(sched_dl_new ,
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TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->dl_deadline ,

__entry ->dl_period ,

__entry ->dl_runtime)

);

/*

* Tracepoint for server budget replenishment in SCHED_DEADLINE.

*/

TRACE_EVENT(sched_dl_fillbudget ,

TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)
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__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->deadline ,

__entry ->dl_period ,

__entry ->runtime)

);

TRACE_EVENT(sched_dl_ss_queue_new ,

TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->dl_deadline ,
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__entry ->dl_period ,

__entry ->dl_runtime)

);

TRACE_EVENT(sched_dl_ss_queue_delete ,

TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->dl_deadline ,

__entry ->dl_period ,

__entry ->dl_runtime)

);

/*

* Tracepoint for server transition from Ready to Suspended.

*/

TRACE_EVENT(sched_dl_to_susp ,

TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(
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__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->deadline ,

__entry ->dl_period ,

__entry ->runtime)

);

/*

* Tracepoint for server transition from Suspended to Ready.

*/

TRACE_EVENT(sched_dl_from_susp ,

TP_PROTO(struct task_struct *p),

TP_ARGS(p),

TP_STRUCT__entry(

__field( pid_t , pid)

__field( u64 , deadline)

__field( s64 , runtime)

),

TP_fast_assign(

__entry ->pid = p->pid;

__entry ->deadline = p->dl.deadline;

__entry ->runtime = p->dl.runtime;

),
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TP_printk("pid=%d deadline =%lld runtime =%lld",

__entry ->pid ,

__entry ->deadline ,

__entry ->runtime)

);

/*

* Tracepoint for server transition from Self -Suspended to Suspended.

*/

TRACE_EVENT(sched_dl_ss_to_susp ,

TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->dl_deadline ,

__entry ->dl_period ,

__entry ->dl_runtime)

);

/*

* Tracepoint for server transition from Suspended to Self -Suspended.

*/

TRACE_EVENT(sched_dl_ss_from_susp ,
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TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->dl_deadline ,

__entry ->dl_period ,

__entry ->dl_runtime)

);

/*

* Tracepoint for server transition from Self -Suspended to Ready.

*/

TRACE_EVENT(sched_dl_from_ss ,

TP_PROTO(struct task_struct *p),

TP_ARGS(p),

TP_STRUCT__entry(

__field( pid_t , pid)

__field( u64 , deadline)

__field( s64 , runtime)

),

TP_fast_assign(
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__entry ->pid = p->pid;

__entry ->deadline = p->dl.deadline;

__entry ->runtime = p->dl.runtime;

),

TP_printk("pid=%d deadline =%lld runtime =%lld",

__entry ->pid ,

__entry ->deadline ,

__entry ->runtime)

);

/*

* Tracepoint for server transition from Ready to Self -Suspended.

*/

TRACE_EVENT(sched_dl_to_ss ,

TP_PROTO(struct sched_dl_entity *dl_se),

TP_ARGS(dl_se),

TP_STRUCT__entry(

__field( u64 , dl_runtime)

__field( u64 , dl_deadline)

__field( u64 , dl_period)

__field( u64 , dl_bw)

__field( u64 , runtime)

__field( u64 , deadline)

),

TP_fast_assign(

__entry ->dl_runtime = dl_se ->dl_runtime;

__entry ->dl_deadline = dl_se ->dl_deadline;

__entry ->dl_period = dl_se ->dl_period;

__entry ->dl_bw = dl_se ->dl_bw;

__entry ->runtime = dl_se ->runtime;

__entry ->deadline = dl_se ->deadline;

),

TP_printk("deadline =%llu period =%llu runtime =%llu",

__entry ->dl_deadline ,

__entry ->dl_period ,

__entry ->dl_runtime)

);

86



APPENDIX A. CODE
A.5. KERNEL/SCHED/SCHED.H

A.4.2 Macros for Accessing SS QUEUE

Listing A.15 : Macros that Allows to Easily get SS QUEUEs pointers

DECLARE_PER_CPU_SHARED_ALIGNED(struct ss_queue , ssqueues );

#define cpu_ss_queue(cpu) (& per_cpu(ssqueues , (cpu)))

#define this_ss_queue () this_cpu_ptr (& ssqueues)

#define task_ss_queue(p) cpu_ss_queue(task_cpu(p))

#define raw_ss_queue () raw_cpu_ptr (& ssqueues)

A.5 kernel/sched/sched.h

A.5.1 ss queue

Listing A.16 : ss queue

struct ss_queue {

struct rb_root rb_tree;

struct rb_node *rb_leftmost;

};

A.6 kernel/trace/ftrace.c

A.6.1 ftrace profile

Listing A.17 : ftrace profile

struct ftrace_profile {

struct hlist_node node;

unsigned long ip;

unsigned long counter;

#ifdef CONFIG_FUNCTION_GRAPH_TRACER

char not_first_time;

unsigned long long time;

unsigned long long time_min;

unsigned long long time_max;

unsigned long long time_squared;

#endif

};

A.6.2 Showing Ftrace Statistics
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Listing A.18 : function stat show()

static int function_stat_show(struct seq_file *m, void *v)

{

struct ftrace_profile *rec = v;

char str[KSYM_SYMBOL_LEN ];

int ret = 0;

#ifdef CONFIG_FUNCTION_GRAPH_TRACER

static struct trace_seq s;

unsigned long long avg;

unsigned long long stddev;

#endif

mutex_lock (& ftrace_profile_lock );

/* we raced with function_profile_reset () */

if (unlikely(rec ->counter == 0)) {

ret = -EBUSY;

goto out;

}

kallsyms_lookup(rec ->ip, NULL , NULL , NULL , str);

seq_printf(m, "  % -30.30s  %10lu", str , rec ->counter );

#ifdef CONFIG_FUNCTION_GRAPH_TRACER

seq_puts(m, "    ");

avg = rec ->time;

do_div(avg , rec ->counter );

/* Sample standard deviation (s^2) */

if (rec ->counter <= 1)

stddev = 0;

else {

/*

* Apply Welford ’s method:

* s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i )^2)

*/

stddev = rec ->counter * rec ->time_squared -

rec ->time * rec ->time;

/*

* Divide only 1000 for ns^2 -> us^2 conversion.

* trace_print_graph_duration will divide 1000 again.

*/

do_div(stddev , rec ->counter * (rec ->counter - 1) * 1000);
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}

trace_seq_init (&s);

trace_print_graph_duration(rec ->time , &s);

trace_seq_puts (&s, "    ");

trace_print_graph_duration(avg , &s);

trace_seq_puts (&s, "    ");

trace_print_graph_duration(stddev , &s);

trace_seq_puts (&s, "    ");

trace_print_graph_duration(rec ->time_min , &s);

trace_seq_puts (&s, "    ");

trace_print_graph_duration(rec ->time_max , &s);

trace_print_seq(m, &s);

#endif

seq_putc(m, ’\n’);

out:

mutex_unlock (& ftrace_profile_lock );

return ret;

}

A.6.3 Updating Ftrace Statistics

Listing A.19 : profile graph return()

static void profile_graph_return(struct ftrace_graph_ret *trace)

{

struct ftrace_profile_stat *stat;

unsigned long long calltime;

struct ftrace_profile *rec;

unsigned long flags;

local_irq_save(flags );

stat = this_cpu_ptr (& ftrace_profile_stats );

if (!stat ->hash || !ftrace_profile_enabled)

goto out;

/* If the calltime was zero’d ignore it */

if (!trace ->calltime)

goto out;

calltime = trace ->rettime - trace ->calltime;

if (!( trace_flags & TRACE_ITER_GRAPH_TIME )) {
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int index;

index = trace ->depth;

/* Append this call time to the parent time to subtract */

if (index)

current ->ret_stack[index - 1]. subtime += calltime;

if (current ->ret_stack[index ]. subtime < calltime)

calltime -= current ->ret_stack[index ]. subtime;

else

calltime = 0;

}

rec = ftrace_find_profiled_func(stat , trace ->func);

if (rec) {

rec ->time += calltime;

rec ->time_squared += calltime * calltime;

if (unlikely (!rec ->not_first_time )) {

rec ->not_first_time = 1;

rec ->time_max = calltime;

rec ->time_min = calltime;

}

if (rec ->time_min > calltime)

rec ->time_min = calltime;

if (rec ->time_max < calltime)

rec ->time_max = calltime;

}

out:

local_irq_restore(flags );

}
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