Scuola Di Ingegneria

DIPARTIMENTO DI INGEGNERIA DELL'ENERGIA, DEI SISTEMI, DEL TERRITORIO E DELLE COSTRUZIONI

Ottimizzazione del processo di ossicombustione tramite studio cinetico in un impianto pilota

Tesi di Laurea Magistrale in Ingegneria Energetica

Relatori:

CANDIDATO:

Prof.Ing. Leonardo Tognotti GIANLUCA CAPOSCIUTTI

Dott. Ing. Chiara Galletti

Sessione in data 07/05/2015 Anno Accademico 2013/2014

Ringraziamenti

Per il sostegno e l'affetto che mi hanno dato nel percorso che mi ha portato a questo punto, in tutti i miei 25 anni, ringrazio mio fratello, i miei genitori, i miei nonni ed i miei zii. Per aver plasmato il mio carattere, rendendomi come sono oggi nel bene e nel male, ringrazio i miei Amici più cari e ringrazio Martina.

Per quanto riguarda il mio lavoro di tesi ringrazio Chiara Galletti e Leonardo Tognotti, per avermi dato fiducia, per avermi dato consigli preziosi e sostenuto quando necessario. Grazie al loro interessamento ho conosciuto uno spirito più umano nell'ingegneria.

Ringrazio anche Salvatore Iavarone ed Alessandro Parente, che mi hanno fornito un confronto critico e costruttivo nella formulazione di questa tesi.

Ringrazio Riccardo Bacci di Capaci per il suo breve ma fondamentale aiuto con il codice di analisi ed Enrico Biagini per il suo contributo sui modelli devo.

Infine ringrazio Giovanni Coraggio e Marco Faleni, che mi hanno fornito preziose indicazioni sull'IPFR.

E' grazie a tutti voi se posso presentare la mia Tesi di Laurea Magistrale.

Riassunto analitico

Per lo sviluppo di tecnologie che consentano un migliore impatto ambientale nell'utilizzo di carbone per l'approvvigionamento energetico, occorre studiare nuovi approcci per la progettazione dei sistemi di combustione. L'obiettivo di questa tesi consiste nello studio delle cinetiche chimiche di devolatilizzazione del carbone in condizioni di ossicombustione. A questo scopo si utilizzano dati sperimentali sulla conversione e sul tempo di residenza, estratti da un impianto pilota di tipo Entrained flow reactor (EFR). Per l'ottimizzazione delle cinetiche chimiche sono necessari dettagli delle storie termiche e delle traiettorie delle particelle, difficilmente estraibili tramite sperimentazione. Per questo è necessario un approccio integrato con la fluidodinamica computazionale (CFD) per completare i dati a disposizione e sviluppare una metodologia di calcolo iterativa, che combini dati da EFR e da CFD. Tramite questo approccio, si confrontano modelli di devolatilizzazione di tipo SFOR, meno onerosi dal punto di vista computazionale, proponendone alcune versioni modificate. I modelli studiati con tale metodo hanno buoni valori predittivi, soprattutto per quelli che considerano il campo di volatili finale funzione della temperatura. L'accoppiamento tra dati sperimentali e CFD risulta quindi efficace per la predizione della devolatilizzazione, rendendo possibile applicare l'approccio metodologico utilizzato per tutti i combustibili solidi, quali carboni e biomasse. Questo può essere di supporto per la progettazione e l'ottimizzazione di sistemi di combustione quali fornaci industriali o sistemi di gassificazione.

Indice

1	\mathbf{Oss}	icombu	istione del carbone	1
	1.1	Tecnol	ogie innovative per la combustione del carbone	1
	1.2	Reatto	ri EFR nello studio della combustione del carbone \ldots .	5
	1.3	CFD d	lello studio della combustione	8
	1.4	Caso d	lella ossicombustione	9
2	Mo	delli ci	netici di devolatilizzazione	11
		2.0.1	Modello SFOR	13
		2.0.2	Modello nSFOR	17
		2.0.3	Modello CPD	18
		2.0.4	SFOR B-T	20
3	Cas	o studi	io: Isothermal Plug Flow Reactor	23
	3.1	L'impi	anto pilota	23
		3.1.1	Precombustore	23
		3.1.2	Reattore verticale	23
		3.1.3	Preparazione dei campioni	28
		3.1.4	Combustibile solido utilizzato	28
	3.2	Model	lo CFD del reattore	30
		3.2.1	Modello fisico	32
		3.2.2	Condizioni al contorno	35
		3.2.3	Parametri del risolutore	38
	3.3	Analis	i dei risultati	39
4	Der	ivazion	ne cinetiche di devolatilizzazione	45
	4.1	Consid	lerazioni preliminari	45
	4.2	Proced	lura di lavoro	49
		4.2.1	SFOR con ipotesi di temperatura delle particelle costante .	50
		4.2.2	SFOR da ipotesi di riscaldamento costante delle particelle	53
		4.2.3	SFOR B-T da ipotesi campo dei volatili finali funzione della	
			temperatura	58
5	\mathbf{Ris}	ultati d	lelle simulazioni CFD	61
	5.1	Simula	zioni non reattive (iterazione 0)	61
	5.2	SFOR	semplice, iter 1	65
	5.3	SFOR	rampa,iter 1	68
	5.4	Second	la iterazione	71

	5.5	SFOR semplice, iter 2	72
	5.6	SFOR rampa, iter 2	75
	5.7	Modello CPD	78
	5.8	SFOR B-T	81
	5.9	Confronto qualitativo tra i modelli utilizzati	84
6	Disc	cussione e conclusioni	87
	6.1	Confronto tra i parametri cinetici dei vari modelli	87
	6.2	Capacità predittive dei vari modelli	90
	6.3	Stima dell'errore sui parametri cinetici	94
	6.4	Discussione finale	95
7	Con	clusioni	99
\mathbf{A}	\mathbf{Cod}	lice Matlab per il post processing	101
в	\mathbf{Cod}	lice per l'implementazione UDF del metodo SFOR B-T ne	1
	\mathbf{solv}	er	109
С	\mathbf{Cod}	lice per il calcolo dei parametri del modello SFOR semplice	111
D	\mathbf{Cod}	lice per il calcolo dei parametri del modello SFOR rampa	113

Elenco delle figure

1.1	Diagramma di Van Kravelen per la classificazione di carbone e	
	biomasse	1
1.2	Riserve di carbone estraibile da WEC	2
1.3	Possibile configurazione di un impianto di cattura pre-combustione	3
1.4	Scenari di efficientamento elaborati da WCA per le emissioni di CO_2	3
1.5	Schema generale degli impianti per CCS	4
1.6	Possibile configurazione di un impianto post-combustion capture .	5
1.7	Possibile configurazione di un impianto oxy-fuel	6
1.8	Risultato tipico di una prova TGA	6
1.9	Schema dei meccanismi superficiali di diffusione	7
1.10	Schema generale di un EFR	7
1.11	Differenze principali tra le molecole di azoto e anidride carbonica	10
2.1	Schema dei principali modelli devo	12
2.2	Approccio per ricavare i parametri modellistici principali	13
2.3	Calcolo delle costanti k per ogni temperatura e confronto con quella	
	globale	16
2.4	Arrhenius plot per il modello SFOR	16
2.5	Esempio di calcolo parametri SFOR con HR costante	17
2.6	Schema per il calcolo dei parametri SFOR	18
2.7	Schema del modello CPD	18
3.1	Schema dell'IPFR	24
3.2	Sonda di alimentazione	25
3.3	Sonda di campionamento	26
3.4	Esempio di estrazione dei parametri della Rosin Rammler dai dati	
	sperimentali	28
3.5	Caratteristiche granulometriche del SEBUKU coal	29
3.6	Immagine SEM del Sebuku coal	29
3.7	Distribuzione degli assi di riferimento nell'IPFR \ldots	31
3.8	Vista generale dell'IPFR, struttura modulare	31
3.9	Mesh sul piano di simmetria attorno alla sonda di campionamento	
	$(rotata di 90 gradi) \ldots \ldots$	31
3.10	Mesh sul piano di simmetria attorno alla sonda di iniezione $$	31
3.11	Schema riassuntivo delle superfici al contorno del modello	36
3.12	Modello di calcolo delle specie chimiche in uso	37
3.13	Organizzazione dati nel post processing	40

3.14	Diagramma di flusso nel post processing	41
3.15	Esempio di distribuzione delle particelle per le varie lunghezze di	40
		42
4.1	Vorticosità attorno alla sonda di iniezione, caso 1173 K \ldots	46
4.2	Tempi di residenza sulle traiettorie delle particelle per le tre tem-	
	perature	46
4.3	Esempio di differenza tra tempi ideali e campionati $\ldots \ldots \ldots$	47
4.4	Velocità assiale della fase gas ad Y=0.05 m e Y=0.5 m dall'iniezione	48
4.5	Esempio di storia termica con rampa	48
4.6	Frazione massica di CO_2 , O_2 e volatili nella zona di devolatilizzazione	49
4.7	Metodo di iterazione delle cinetiche chimiche con CFD: SFOR base	
4.0	(1) e SFOR modificato (metodo 2) $\ldots \ldots \ldots \ldots \ldots \ldots$	50
4.8	Differenze tra cinetiche SFOR calcolate con media semplice e con	50
1.0	Interpolazione non lineare	52
4.9	Schema metodologico per lo SFOR semplice	53 54
4.10	Scheme metodologico per lo SEOR rampa	56
4.11	Modia HR nolla rampa	57
4.12		57
5.1	Campo di temperatura fase gas a 1173K ,1373K e 1573K, simula-	
	zioni non reattive	61
5.2	Storia termica - SFOR semplice (1)	66
5.3	Spread del getto - SFOR semplice (1)	66
5.4	VM - SFOR semplice (1)	67
5.5	Conversione - SFOR semplice (1)	67
5.6	Storia termica - SFOR rampa (1)	69
5.7	Spread del getto - SFOR rampa (1)	69
5.8	VM - SFOR rampa	70
5.9	Conversione - SFOR rampa	70
5.10	Storia termica - SFOR rampa	73
5.11	Spread del getto - SFOR semplice (2)	73
5.12	VM - SFOR semplice (2)	74
5.13	Conversione - SFOR semplice (2)	74
5.14	Storia termica - SFOR rampa (2)	76
0.10	Spread del getto - SFOR rampa (2)	70 77
5.10 5.17	$VM - SFOR rampa (2) \dots \dots$	((
0.17 5 10	$Conversione - SFOR rampa (2) \dots \dots$	70
5.10	Sprend del gette CPD	79
5.20		79 80
5.20 5.21	$V_{M} = OID$	80
5.21	Storia termica - SFOR B-T	89
5.22	Spread del getto - SFOR B-T	82
5.20	VM - SFOR B-T	83
5.24 5.25	Conversione - SFOR B-T	83
5.26	Modello SFOR B-T. previsione analitica	86

5.27	Modello SFOR semplice, previsione analitica	86
5.28	Modello SFOR rampa, previsione analitica	86
6.1	Confronto tra i valori del parametro E	88
6.2	Confronto tra i valori del parametro A	88
6.3	Errori relativi tra le iterazioni sul tempo	89
6.4	Errori relativi tra le iterazioni sulla temperatura	89
6.5	Confronto tra la deviazione del modello dai dati sperimentali	91
6.6	Confronto con l'errore del modello dai dati sperimentali	92
6.7	Confronto tra i modelli a 1173 K	93
6.8	Confronto tra i modelli a 1373 K	93
6.9	Confronto tra i modelli a 1573 K	93

Elenco delle tabelle

$\begin{array}{c} 1.1 \\ 1.2 \end{array}$	Differenze tra proprietà fisiche di azoto e anidride carbonica (1) . Differenze tra proprietà fisiche di azoto e anidride carbonica (2) .	$\begin{array}{c} 10 \\ 10 \end{array}$
2.1 2.2	Correlazioni per i coefficienti calcolati da Genetti per i parametri strutturali del CPD	$\begin{array}{c} 20\\ 21 \end{array}$
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	Parametri campionati nel sistema di controllo dell'IPFR Matrice generale delle prove effettuate Densità delle particelle di carbone nel gas di trasporto Dati raccolti da proximate sui campioni del sample probe Proximate analisys sul campione scelto SEBUKU Ultimate analisys sul campione scelto SEBUKU Valori sperimentale dall'archivio prove IFRF Parametri per la superficie INLET _FUMI Specie per la superficie INLET _FUMI	25 27 27 29 30 37 37 37 38 38 38 38 38 38 39 39 40 42
 4.1 4.2 4.3 4.4 	Yield Factor per lo SFOR semplice	$51 \\ 52 \\ 52 \\ 54$
5.1 5.2 5.3 5.4 5.5 5.6	Risultati simulazioni non reattive	62 62 63 63 63 65

5.7	Heating rate calcolati da SFOR semplice, prima iterazione	65
5.8	Risultati simulazioni SFOR rampa, prima iterazione	68
5.9	Heating rate calcolati da SFOR rampa, prima iterazione	68
5.10	Parametri cinetici, step 1	71
5.11	Risultati simulazioni SFOR semplice, seconda iterazione	72
5.12	Heating rate calcolati da SFOR semplice, seconda iterazione	72
5.13	Risultati simulazioni SFOR rampa, seconda iterazione	75
5.14	Heating rate calcolati da SFOR rampa, seconda iterazione	75
5.15	Risultati simulazioni CPD	78
5.16	Heating rate calcolati da CPD	78
5.17	Risultati simulazioni SFOR B-T	81
5.18	Heating rate calcolati da SFOR B-T	81
6.1	Parametri per i modelli chimici	87
6.2	Differenze tra gli errori relativi tra le varie iterazioni, metodi SFOR e SFOR Rampa	90
6.3	Valori della deviazioni da VM sperimentale per i modelli utilizzati	92
6.4	Confronto con l'errore del modello dai dati sperimentali	92
6.5	Variazione dei tempi tramite spread delle particelle	94
6.6	Variazione dei valori di HR tramite spread delle particelle	94
6.7	Variazione dei parametri A ed E per il modello SFOR semplice	95
6.8	Variazione dei parametri A ed E per il modello SFOR rampa	95
6.9	Variazioni del parametro A ed E per i modelli iterativi	95
6.10	Errore medio per i parametri A ed E	96

Capitolo 1

Ossicombustione del carbone

1.1 Tecnologie innovative per la combustione del carbone

I combustibili solidi hanno ricoperto un posto in prima fila nello sviluppo industriale ed energetico. Sin dalla rivoluzione industriale fino alla fine della prima metà del 1900, questo è stato la risorsa più utilizzata per la produzione energetica. Durante la formazione del carbone, tramite processo di fossilizzazione di organismi vegetali della durata di milioni di anni (carbogenesi), il carbonio si organizza in una struttura che include differenti concentrazioni di idrogeno, ossigeno ed altri minerali. Al variare dell'età della carbogenesi si distinguono principalemente quattro tipologie di carbone: dall'antracite(più antico) alla litantrace, lignite e torba (più giovane). A seconda delle concentrazioni di ossigeno e idrogeno rispetto al carbonio, questo materiale possiede un differente calore specifico.

Figura 1.1: Diagramma di Van Kravelen per la classificazione di carbone e biomasse

Nel panorama mondiale, il carbone è una delle risorse primarie più largamente utilizzata e su cui si è investito maggiormente già dal decennio precedente; tale risorsa è infatti legata sia all'industria energetica che secondaria e secondo le politiche di molti paesi (in primo luogo USA e Cina) se ne prevede, negli anni successivi, un picco di utilizzo nei prossimi 10 anni [IEA, 2014a]. Ad oggi circa il 70% dell'energia necessaria all'industria siderurgica ed oltre il 30% dell'energia primaria mondiali sono derivanti dal carbone. Il crescente impiego di questa risorsa su scala mondiale è determinato principalmente da necessità geopolitiche: si stima che la risorsa estraibile sia sparsa in modo quasi uniforme tra Europa, Asia e Nord America [IEA, 2014b].

Coal recoverable reserves by region

Figura 1.2: Riserve stimate di carbone estraibile [IEA, 2014b]

Il principale problema è invece costituito dall'emissione di una notevole quantità di CO_2 nell'atmosfera, in quanto secondo la reazione di carattere generale:

$$C_nH_m + (n + \frac{m}{4})O_2 \rightarrow nCO_2 + \frac{m}{2}H_2O$$

La CO_2 è quindi liberata in volume pari alla quantità di carbonio presente nel carbone durante la combustione. Secondo le attenzioni che negli ultimi venti anni sono state date al problema della sostenibilità ambientale delle risorse primarie, sono in corso di sviluppo tecnologie per la riduzione dei gas serra (in particolar modo la CO_2) emessi durante il processo di combustione del carbone.

Si parla quindi di *clean coal technologies* (CCT) che seguono tre differenti metodologie di approccio [Franco & Diaz, 2008] :

- rimozione degli elementi inquinanti prima della combustione
- efficientamento degli impianti
- carbon capture and storage

I sistemi di rimozione pre-combustione (Figura 1.3), come i sistemi Integrated Gasification Combined Cycle (IGCC), prevedono la gassificazione del combustibile in letti fluidi, con la possibilità di rimuovere componenti come lo zolfo tramite aggiunta di $CaCO_3$ nel letto (da smaltire successivamente).

Figura 1.3: Possibile configurazione di un impianto di cattura pre-combustione [Toftegaard et al., 2010]

Il combustibile gassificato contiene principalmente CO, CO_2 e H_2 che si presta sia alla combustione del CO in atmosfera O_2/CO_2 , sia alla separazione dell'idrogeno. Questi impianti richiedono grandi investimenti ed assumono le caratteriestiche di un impianto chimico. Per quanto riguarda il secondo punto, si stima che il miglioramento del'efficienza dei processi di ossidazione e devolatilizzazione del carbone, tramite ad esempio raggiungimento dell'efficienza delle centrali elettriche a carbone del 40%, porterebbe un risparmio di 2000 miliardi di tonnellate solo di CO_2 emesse all'anno [IEA, 2014a] [WCA, 2014].

Policy / Action	Cumulative emissions	Period	Annual emissions*
Montreal protocol	135.0bn	1989-2013	5.6bn
Hydropower worldwide	2.8bn	2010	2.8bn
Nuclear power worldwide	2.2bn	2010	2.2bn
Increase average global efficiency of coal-fired power plants to 40%			2bn
China one-child policy	1.3bn	2005	1.3bn
Other renewables worldwide	600m	2010	600m
US vehicle emissions & fuel economy standards*	6.0bn	2012-2025	460m
Brazil forest preservation	3.2bn	2005-2013	400m
India land-use change	177m	2007	177m
Clean Development Mechanism	1.5bn	2004-2014	150m
US building & appliances codes	3.0bn	2008-2030	136m
China SOE efficiency targets	1.9bn	2005-2020	126m
Collapse of USSR	709m	1992-1998	118m
Global Environment Facility	2.3bn	1991-2014	100m
EU energy efficiency	230m	2008-2012	58m
US vehicle emissions & fuel economy standards*	270m	2014-2018	54m
EU renewables	117m	2008-2012	29m
US building codes (2013)	230m	2014-2030	10m
US appliances (2013)	158m	2014-2030	10m
Clean technology fund	1.7bn	project lifetime	na
EU vehicle emission standards	140m	2020	na

Emission reductions	bу	policies	actions, bn	tonnes	CO.	, ec	uivalent
---------------------	----	----------	-------------	--------	-----	------	----------

Annual emissions are cumulative emissions divided by the relevant period

The estimate for the current emissions avoided under the Montreal protocol is eight billion tonnes of CO₂e.

The annual figure for the collapse of the USSR refers to the years 1992-1998. *Cars and light trucks *Heavy tru

Figura 1.4: Tipologia di efficientamento e relativi scenari sulle emissioni di CO_2 [WCA, 2014]

Infine i sistemi Carbon Capture and Storage (CCS) prevedono la separazione della CO_2 dai gas in uscita del processo separandoli dal flusso primario. Questo avviene generalmente tramite rimozione del vapore acqueo e compressione dopo la cattura con l'utilizzo di particolari membrane separatrici. Si prevedono in generale tre modalità di operazione [Franco & Diaz, 2008][Toftegaard et al., 2010] (Figura 1.5):

- rimozione post-combustione
- combustione con ossigeno controllato (oxy-fuel) e ricircolo dei gas esausti (EGR)
- rimozione pre-combustione

Figura 1.5: Schema generale degli impianti per CCS [Toftegaard et al., 2010]

I sistemi di rimozione pre combustione della CO_2 dal flusso di gas in uscita è schematicamente molto simile a quello che avviene per gli altri inquinanti, ad esempio come nei sistemi IGCC, previa gassificazione si costituisce un gas finale ricco di CO_2 pronto per la separazione. Per quanto riguarda i sistemi postcombustione (Figura 1.6), la separazione del'anidride carbonica avviene mediante adsorbimento in composti organici (ad esempio MEA o KS-1) o in matrici solide, quindi successivamente compressa e stoccata.

Il vantaggio principale di questa tecnologia è la possibilità di applicazione ad impianti esistenti effettuandone un upgrade; tuttavia è necessario inserire tecnologie ausiliarie per il controllo della composizione dei fumi per ottimizzare il funzionamento delle membrane, ottenendo un elevata concentrazione di CO_2 nei fumi.

Figura 1.6: Possibile configurazione di un impianto post-combustion capture [Toftegaard et al., 2010]

Tra i sistemi in fase di studio, l'ossicombustione (Figura 1.7) appare molto promettente soprattutto per la possibilità di integrazione con gli altri sistemi precedentemente elencati. L'azoto dell'aria che entrerebbe a far parte del processo di combustione è rimosso tramite un'Air Separation Unit (ASU). In questo modo come comburente è utilizzato un flusso principalmente composto da ossigeno. Tipicamente questa tecnologia è accoppiata a sistemi di ricircolo dei gas esausti per controllare la temperatura di fiamma rispetto ai limiti tecnologici dei materiali ed assicurare i parametri di scambio termico della miscela. In questo modo si ottiene una minore concentrazione di NO_x finale ed un gas in uscita principalmente formato da anidride carbonica ed acqua, che si presta più facilmente alla cattura post combustione della CO_2 . Questo sistema può essere utilizzato per effettuare l'upgrade di impianti esistenti ed aumentarne il rendimento energetico in fase di combustione, tuttavia la necessità dell'ASU, fortemente energivora, limita i benefici di questo sistema. La combustione del carbone in atmosfera oxy, cioè una miscela O_2/CO_2 , si comporta sperimentalmente in modo differente che in O_2/N_2 (combustione in aria, convenzionale). Per sviluppare questa tecnologia sono quindi necessari studi approfonditi dei fenomeni che prendono parte al processo, quindi la costruzione di modelli differenti rispetto al caso di atmosfera *air*.

1.2 Reattori EFR nello studio della combustione del carbone

Nello studio della combustione è stata molto utilizzata la termogravimetria, o TGA, per ricavare i valori di conversione del carbone. Si utilizza in questo caso un forno elettrico con *Heat rate* dell'ordine di $100 - 200 \frac{K}{min}$ e una bilancia per misurare la massa dei campioni in tempo reale. Il tipico risultato per un campione di carbone è l'individuazione, nella curva massa – temperatura, di una

Figura 1.7: Possibile configurazione di un impianto oxy-fuel [Toftegaard et al., 2010]

zona di deumidificazione, una di devolatilizzazione ed infine una di combustione (Figura 1.8).

Figura 1.8: Risultato tipico di una prova TGA

I fenomeni di devolatilizzazione e ossidazione sono tuttavia dipendenti dal tasso di riscaldamento delle particelle di carbone e dalla loro temperatura: con il loro aumento si ottiene anche quello della conversione e quindi del campo di volatili finale [Strezov et al., 2004]. Una maggiore potenza termica ceduta all particella determina una maggiore plasticità della matrice interna e quindi le bolle di volatili al suo interno ne plasmano maggiormente la forma, creando più facilmente vie d'uscita [Jianglong et al., 2004]. Forma e dimensioni delle particelle di carbone sono altri fattori determinanti la fuoriuscita dei volatili; assieme alla struttura della matrice interna determinano l'entità dei processi fisici di diffusione internamente e all'interfaccia (Figura 1.10), quindi il ruolo della fisica o della cinetica chimica come protagonisti del processo.

Figura 1.9: Schema dei meccanismi superficiali di diffusione

Si intuisce quindi come tramite TGA sia possibile avere solo un'idea di come si comporti il combustibile. I reattori *Entrained Flow Reactor* (EFR) si prestano a riprodurre in scala pilota i fenomeni fisici dei sistemi di combustione industriale. Un bruciatore rilascia del polverino di carbone nella camera di combustione e, sotto l'azione di moti turbolenti, devolatilizza e si ossida con tassi di riscaldamento dell'ordine di $10^4 - 10^5 \frac{K}{s}$ e temperature tra 1200 - 1600K, non raggiungibili con sistemi di laboratorio. Tramite delle sonde di campionamento si modifica il tempo di residenza delle particelle per studiare il fenomeno desiderato. Un tipico impianto pilota è costituito da un sistema di alimentazione per i gas comburenti in grado di utilizzare azoto, anidride carbonica o ossigeno come se fossero derivanti da un'unità di separazione (ASU). E' presente poi un pre combustore per portare alla temperatura e composizione voluta il gas primario, un sistema di iniezione e prelievo di combustibile costituito da particolari sonde, un sistema di controllo che permette di assicurare temperatura e composizione desiderate

Figura 1.10: Schema generale di un EFR [Álvarez et al., 2013]

In questo modo si riescono ad ottenere quasi tutte le condizioni operative tipiche dei reattori industriali.

Tramite tali strutture è possibile acquisire dati sulla conversione abbinati al tempo di residenza, utilizzando ad esempio il metodo *ash tracher*. Questo prevede

la misura tramite TGA della quantità di ceneri presenti in campioni prelevati dopo un tempo definito dal reattore. Un confronto con la quantità di ceneri iniziali ci permette di ottenere i valori della conversione (con Y_i frazioni massiche di ceneri, char o volatile matter, VM), considerando per la devolatilizzazione la quantità in massa di char e di ceneri costanti:

$$def: X = 1 - \frac{m}{m_0}$$
(1.1)

$$\begin{cases}
Y_{ash} + Y_{char} + Y_{VM} = 1 \\
m_0 = (Y_{ash} + Y_{char} + Y_{VM_0})m_0 \\
m = (Y_{ash} + Y_{char} + Y_{VM})m
\end{cases}$$
(1.2)

$$m_0(Y_{ash,0} + Y_{char,0}) = m(Y_{ash} + Y_{char}) \to mY_{char} = m_0Y_{char,0} \to X = 1 - \frac{Y_{ash_0}}{Y_{ash}}$$

Questa definizione permette di calcolare la conversione tramite misura delle ceneri. La conversione è un indice della perdita di volatili in quanto si considera che la totalità della perdita di massa sia causata dalla devolatilizzazione. Nonostante che a livello pratico la misura delle ceneri permetta buone applicazioni, la loro deposizione e lo slugging nel reattore soprattutto ad alta temperatura possono peggiorare i dati raccolti, aumentandone l'errore di misura e causando una difficile ripetibilità delle prove.

Per determinare i modelli di cinetica chimica è necessario conoscere anche la storia termica delle particelle del reattore. Questo comporta notevoli difficoltà tecnologiche nel seguire gli andamenti di temperatura nel tempo del polverino, anche se allo stadio attuale sono incorso di sperimentazione soluzioni per l'acquisizione di dati tramite sonde ottiche [Tarquini, 2012] [Galletti et al., 2012]. Per queste difficoltà si utilizza comunemente l'approssimazione di isotermia tra le particelle di carbone ed il flusso di gas nel reattore. In questo modo è possibile ricavare cinetiche chimiche in modo semplificato ad esempio tramite modelli di primo ordine ad uno o più step di temperatura (2STEP - Kobayashy). Molto spesso i complessi fenomeni che avvengono nelle fornaci industriali, portano all'elaborazione di modelli poco accurati con l'ipotesi sopra. E' quindi necessario studiare ed introdurre degli strumenti capaci di ricavare i dati mancanti alla sperimentazione.

1.3 CFD dello studio della combustione

Nel corso degli anni è stato richiesto un livello di approfondimento sempre maggiore dei problemi dell'ingegneria e, in particolare, del processo di combustione. L'aumento di complessità modellistica, in cui l'accoppiamento tra le equazioni di moto, della termodinamica e della chimica risulta determinante nel raggiungere i risultati, ha portato allo sviluppo di metodi computazionali per risolvere tali sistemi matematici. Il ruolo della *Computational Fluid Dynamic* (CFD) è quello di produrre risultati prossimi a quelli che si sarebbero ottenuti sperimentalmente, tramite la risoluzione numerica di sistemi con equazioni rappresentanti i fenomeni in gioco. Si riproduce il dominio di calcolo geometrico tramite una mesh, il cui elemento base rappresenta l'intervallo infinitesimo di integrazione, successivamente si discretizza il set di equazioni utili e si svolge una integrazione locale che nel nostro caso avviene su volumi finiti. Utilizzare tutte le equazioni a disposizione equivarrebbe ad una simulazione diretta del fenomeno, ad oggi eccessivamente onerosa dal punto di vista computazionale. Si ricorre quindi ad una semplificazione del problema tramite discriminazione dei fenomeni trascurabili e non, oppure tramite individuazione delle cinetiche in gioco e applicazione di scatole nere che riproducono il fenomeno secondo leggi prestabilite e opportunamente tarate tramite un processo di validazione. Tramite CFD è quindi possibile produrre dati sperimentali che in buona confidenza saranno simili a quelli che sarebbero prodotti realmente, tramite modelli che possono funzionare a regimi variabili rispetto al caso validato con definite tolleranze, con costi di esercizio legati esclusivamente alle computazioni da svolgere.

Come descritto nella sezione 1.2 una delle difficoltà maggiori dello studio delle cinetiche chimiche è l'acquisizione dei dati sulla storia termica e chimica delle particelle analizzandone le traiettorie interne al reattore. La CFD si rivela uno strumento molto efficace per ricavare i dati non acquisibili sperimentalmente. Utilizzando un approccio integrato tra CFD e sperimentazione, combinando i dati da EFR con quelli ottenuti dal modello numerico, è possibile ottenere parametri cinetici più precisi che in precedenza. In particolare l'utilizzo che faremo in questa tesi della fluidodinamica computazionale sarà all'interno di una procedura iterativa, in cui utilizzeremo assieme i dati sperimentali e numerici. Questa metodologia ha lo scopo di produrre metodi predittivi più efficienti nel caso della devolatilizzazione del carbone.

Dal punto di vista software il programma di riferimento è il solver a volumi finiti ANSYS Fluent[®], tuttavia esistono alcune versioni open source come OpenFOAM in corso di sviluppo.

1.4 Caso della ossicombustione

L'ossicombustione di distingue dal caso di combustione convenzionale per alcuni motivi di seguito specificati. Il fattore determinante è la concentrazione di CO_2 ed N_2 nella zona interfaccia tra la particella di carbone e il gas circostante, che modifica sia la fisica di fuoriuscita dei volatili che del flusso di gas attorno [Liu et al., 2003] [Molina & C.R.Shaddix, 2007]. La presenza di una percentuale elevata di CO_2 rispetto all'azoto nei pressi della particella di carbone in fase di devolatilizzazione, modifica le proprietà fisiche locali della miscela comburente [Wall et al., 2009], che avrà sia una densità minore del fluido che una maggiore interazione radiativa (essendo una molecola triatomica), oltre che una capacità termica differente [Molina & C.R.Shaddix, 2007]. In Tabella 1.1, 1.2 e in Figura 1.11 si riportano le principali differenze fisiche tra le molecole in questione.

La limitazione del contatto con l'ossigeno dovuto ad una sua minore diffusività in CO_2 ne limita i processi ossidativi, spostando il processo verso un controllo fisico diffusivo. La presenza di un elevato tenore di CO_2 risulta inoltre promuovere il

Density Heat capacity O2 mass diffusivity kg/m3kJ/kqKm2/s CO_2 0.53621.2343 9.8 10-5 $\frac{N_2}{CO_2/N_2}$ 0.34131.16741.3 10-4 1.571.060.778

Tabella 1.1: Differenze tra proprietà fisiche di azoto e anidride carbonica (1)

Tabella 1.2: Differenze tra proprietà fisiche di azoto e anidride carbonica (2)

Figura 1.11: Differenze principali tra le molecole di azoto e anidride carbonica

processo di gassificazione del carbone [Toftegaard et al., 2010] [Liu et al., 2003] [Molina & C.R.Shaddix, 2007].

Avvenendo fenomeni differenti per i due tipi di atmosfera comburente, è necessaria una rivisitazione dei modelli precedentemente utilizzati nel caso *air*.

Ad esempio, nella devolatilizzazione, con i modelli di tipo SFOR o n-SFOR è sufficiente ricalcolare le costanti chimiche con i nuovi dati sperimentali per il caso *oxy* in quanto la fase di devolatilizzazione è comunque sostituita con una *black box* descritta dalle equazioni modellistiche, quindi è sufficiente un re-tuning dei suoi parametri per la corretta previsione.

Al contrario i modelli strutturali dipendono esclusivamente dalla composizione del combustibile solido, in quanto sono costruiti dall'analisi dei meccanismi chimici e fisici specifici con i quali avviene il processo devo. Questi modelli non sono dunque tarati con l'atmosfera utilizzata e la loro aderenza ai dati sperimentali è legata esclusivamente a quanto i meccanismi modellati influiscono nel sistema reale.

Capitolo 2

Modelli cinetici di devolatilizzazione

L'approccio che sarà seguito nel corso della trattazione considera la particella di combustibile solido come un composto di idrogeno, ossigeno, carbonio e azoto, in porzioni pari ai valori molari di composti ricavati dalla *ultimate anali*sys e normalizzati, che secondo due schemi prefissati va a comporre la materia volatile $(C_{\hat{n}_C}H_{\hat{n}_H}N_{\hat{n}_N}O_{\hat{n}_O})$. I coefficienti \hat{n}_i sono calcolati a partire dalle concentrazioni molari X_i tratte da quelle massiche (normalizzate) dell'*ultimate analisys* (equazione 3.6):

$$\hat{n}_i = \frac{X_i P M_p}{P M_i} \tag{2.1}$$

Il valore PM_p rappresenta il peso molecolare dei volatili, mentre PM_i quello della i-esima specie. La successiva reazione di ossidazione avviene con:

$$\begin{cases} C_{\hat{n}_C} H_{\hat{n}_H} N_{\hat{n}_N} O_{\hat{n}_O}(vol) + n_{O_2} O_2 \to n_{CO_2} CO_2 + n_{H_2O} H_2 O + n_{N_2} N_2 \\ CO + \frac{1}{2} O_2 \to CO_2 \end{cases}$$
(2.2)

Lo zolfo, essendo in percentuali trascurabili, non è conteggiato per semplicità di calcolo. I coefficienti stechiometrici dei prodotti e del combustibile sono calcolati con bilanci di massa dalle equazioni 2.3. Si considera che la frazione volatile della particella di carbone segua le reazioni:

$$\begin{cases} C[vol] + n_1 O_2 \rightarrow n_{CO} CO \\ H[vol] + n_2 O_2 \rightarrow n_{H_2O} H_2 O \\ N[vol] \rightarrow n_{N_2} N_2 \\ n_{CO} CO + n_3 O_2 \rightarrow n_{CO_2} CO_2 \end{cases}$$
(2.3)

Per cui:

$$\begin{cases} n_{CO} = \hat{n}_{C} \\ n_{H_{2}O} = 2\hat{n}_{H} \\ n_{N_{2}} = 2\hat{n}_{C} \\ n_{CO_{2}} = n_{CO} \\ n_{tot,O_{2}} = n_{1} + n_{2} + n_{3} = n_{CO} + \frac{1}{2}(n_{H_{2}O} + n_{CO_{2}}) \end{cases}$$

$$(2.4)$$

Nel caso di difetto di ossigeno, la reazione 2.2 non avviene o avviene in modo incompleto, lasciando in caso dei volatili incombusti nei fumi in uscita. Impostate le reazioni di carattere genereale, il dato da calcolare rimane la quantità di materia volatile rilasciata nel corso del tempo,quindi la frazione in massa di questa rimanente (VM_p) o rilasciata (VM) dalla particella. Questa definisce la perdita di peso della particela ed influisce sul rateo con cui avviene la reazione di ossidazione.

Per far questo si introducono dei modelli con differenti caratteristiche. In letteratura [Chen et al., 2012] [Tognotti et al., 2013] [Simone et al., 2009] sono state proposte diverse strutture per cinetiche chimiche (Figura 2.1, 2.2), riportate brevemente di seguito. Noi focalizzeremo l'attenzione su quelle meno onerose a livello computazionale, le quali potrebbero essere implementate successivamente in approcci LES (*Large Eddy Simulation*).

	Model	Parameters	Properties needed	Balances	Applicability	Characteristics
	<u>SFOR</u> : Single First Order Reaction	2 parameters (A, E)	V [∞] thermal history	Mass (kinetic)	All materials	Simple scheme Low comp. cost
Devolatilization sub-models	Isoconversional methods	Depend on the approach	Thermal history	Mass (kinetic)	All materials	Intrinsic kinetics
	lumped: (n SFOR models)	n*2 (A,E)	Chemical composition V [∞] for each component	Mass (kinetic)	Blends, composite materials and multi- stage devolatilization	Simple scheme Low comp. cost
	<u>DAEM</u> : Distribution Activation Energy Model	3 parameters (A, E_0 , σ)	V [∞] thermal history	Mass (kinetic)	All materials especially coals	Simple scheme Medium comp. cost
	ABCD: (Advanced Biomass and Coal Devolatilization)	Structural model	Structural composition; thermal history	Mass, elements and fragment population	Biomass, coals and their blends	Complex scheme High comp. cost
	<u>CHL</u> Cellulose, Hemicellulose and Lignin model	Structural model	Chemical composition; operating conditions	Mass and Energy	Biomass	Complex scheme High comp. cost
	<u>NN</u> Neural Network	Weight parameters	Dataset for training	Mass	Classes of fuels	Simple scheme Low comp. cost

Figura 2.1: Schema dei principali modelli devo [Bonvicini, 2012]

A causa delle differenze tra i vari tipi di carbone, non esiste un unico set di parametri che, per un modello, predica la devolatilizzazione di tutte le tipologie del materiale. Ci si affida quindi a modelli i cui parametri cinetici minimizzino la distanza dai dati sperimentali. Sono definiti come modelli black box (modelli cinetici) in quanto non si interessano della fisica o chimica del processo, ma si limitano a riprodurre sotto alcune ipotesi matematiche, il trend dei dati sperimentali. Altri modelli sono definiti strutturali in quanto in ingresso si hanno parametri tipici del carbone (ottenuti, ad esempio, tramite risonanza magnetica nucleare) e quindi mediante la formalizzazione matematica dei processi ritenuti chiave nella devolatilizzazione, attuano le loro predizioni. Per il primo tipo di modelli è possibile correlare i parametri cinetici con valori strutturali tramite correlazioni di

Figura 2.2: Approccio per ricavare i parametri modellistici principali [Bonvicini, 2012]

carattere generali costruite su un determinato set di dati sperimentali. Di seguito si riportano i modelli di interesse per questa tesi.

2.0.1 Modello SFOR

Il modello SFOR (*Single First Order Reaction*) utilizza il bilancio di massa per calcolare la quantità di volatili persa dalla particella nel tempo. La devolatilizzazione avviene con una cinetica a parametri costanti nel tempo, nonostante che il tasso di reazione sia funzione della temperatura. In particolare:

$$m_0 = m_{vol}(t) + m_{solid}(t) \tag{2.5}$$

dove m_0 è la massa iniziale della particella, m_{vol} è la massa di volatili liberata dalla particella e m_{solid} la massa di parte solida (char e ceneri) al tempo t. Successivamente si impone che la perdita di volatili (in frazione massica) sia proporzionale ai volatili rimanenti della particella secondo un coefficiente di reazione k dipendente dalla temperatura secondo Arrhenius, con parametri cinetici costanti A ed E:

$$\frac{\partial VM}{\partial t} = k(VM_{\infty} - VM) \tag{2.6}$$

Si ottiene quindi un'equazione differenziale del primo ordine, dove:

$$k = Ae^{-\frac{E}{RT}} \tag{2.7}$$

L'ipotesi chiave di questo modello è che si considera che la particella e il reattore si trovino in condizione isoterma e pari alla temperatura nominale del reattore, quindi per temperatura costante, la soluzione risulta:

$$\begin{cases} \frac{\frac{\partial VM}{\partial t}}{VM_{\infty} - VM} = k \\ \frac{\partial VM}{VM_{\infty} - VM} = k\partial t \\ kt + c_1 = ln(1 - \frac{VM}{VM_{\infty}})|t = 0 \iff VM = 0 \end{cases}$$
(2.8)

$$VM = VM_{\infty}(1 - e^{-kt}) \tag{2.9}$$

$$VM_p = VM_\infty e^{-kt} \tag{2.10}$$

- VM_{∞} : concentrazione massica di volatili liberata a tempo di permanenza infinito [%]
- VM : concentrazione massica di volatili liberati dalla particella al tempo t [%]
- VM_p : concentrazione massica di volatili presenti nella particella al tempo t [%]
- k : tasso di reazione $\left[\frac{1}{s}\right]$
- A : fattore pre-esponenziale $\left[\frac{1}{s}\right]$
- E : energia di attivazione $\left[\frac{J}{mol}\right]$
- $R: 8.31 \left[\frac{J}{molK}\right]$
- T : temperatura della particella, costante nel tempo [K]

Il modello risulta di semplice applicazione e considera la differenza della massa di volatili estratta da quella teorica massima e due parametri di tuning costanti A ed E con dipendenza (imposta esponenziale) della costante cinetica k dalla temperatura. Questo modello è spesso utilizzato nel ricavare le cinetiche dai reattori EFR.

Per quanto riguarda VM_{∞} si utilizza in letteratura il valore della massima percentuale estraibile dei volatili, solitamente corrisponde al valore della massima conversione sperimentale ottenuta e non si considera una sua dipendenza dalla temperatura. Si intende infatti che la parte solida della particella sia costituita da ceneri (inerti) e dai materiali componenti il char, il materiale che sarà soggetto al processo di devolatilizzazione sarà quindi descritto dal bilancio di massa:

$$m(t) = m_{VM_n}(t) + m_{char}(t) + m_{ash}(t); \ m_{char}(t) + m_{ash}(t) = cost$$
(2.11)

Volendo ottenere il valore di VM_{∞} dalle prove sperimentali, ovvero dalla conversione, utilizziamo la definizione con cui è generalmente calcolata negli EFR, ovvero tramite il metodo ash tracker: $X_{devo} = 1 - Y_{ash}/Y_{ash,0}$. Supponendo che la massa di ceneri e char contenuti nella particella siano costanti nel tempo, in quanto non si analizza la fase di combustione, si ha che:

$$\begin{cases} Y_{ash,0} = \frac{m_{ash}}{m_{ash} + m_{char} + m_{vol,0}} & t = 0 \to VM = VM_0 \\ Y_{ash,\infty} = \frac{m_{ash}}{m_{ash} + m_{char}} & t = \infty \to VM = 0 \end{cases}$$
(2.12)

$$X_{\infty} = X_{max} = 1 - \frac{Y_{ash_0}}{Y_{ash_{\infty}}} \to X_{max} = 1 - \frac{m_{ash} + m_{char}}{m_{ash} + m_{char} + m_{vol,0}} \to X_{max} = VM_0$$
(2.13)

Si suppone che a tempo infinito sia liberata tutta la quantità di volatili iniziale, per cui:

$$VM_{\infty} = VM_0 \tag{2.14}$$

Si utilizza quindi il valore di conversione massima dai dati sperimentali come indice del campo dei volatili a infinito.

Per quanto concerne il calcolo dei parametri cinetici A ed E, si esegue una procedura di fitting descritta in seguito, supponendo di avere le curve (VM_p,t) per diverse temperature (ad esempio tre temperature).

Essendo k una costante non dipendente dal tempo, si calcola per ogni temperatura:

$$k = \frac{\ln(1 - \frac{VM}{VM_{\infty}})}{t} \tag{2.15}$$

Otteniamo quindi un valore della costante k per ogni set di VM_p sperimentale, che dovrebbe restituire un valore pressoché costante se la forma matematica è rappresentativa del trend sperimentale. Si ottiene quindi una serie di dati (k,T), e tramite un fitting lineare del tipo:

$$lnk = lnA - \frac{E}{RT} \tag{2.16}$$

Si ottiene una relazione tra lnk ed $\frac{1}{T}$ (Arrhenius Plot), tale da poter facilmente calcolare A ed E come coefficienti della retta di best fitting tra i valori di k trovati e le temperature associate (Figura 2.3 e 2.4).

Da cui:

$$A = e^{intercept} \tag{2.17}$$

$$E = -R \cdot slope \tag{2.18}$$

Se la temperatura non è costante o tale approssimazione non risulta accettabile, occorre sviluppare un modello che consenta di ricavare le costanti A ed E.

Se la temperatura, approssimativamente lineare, varia con le fasi pre-devolatilizzazione (come avviene in una TGA, ad esempio in zona deumidificazione), è possibile

Figura 2.3: Calcolo delle costanti k per ogni temperatura e confronto con quella globale

Figura 2.4: Arrhenius plot per il modello SFOR

da una serie di prove sperimentali (VM,T(t)) ricavare ln k(T) tramite la 2.15. In questo modo abbiamo una curva (k,T(t)), ottenuta in modo simile al caso precedente.

In questa curva, si determinano gli estremi del tratto lineare checoncerne la devolatilizzazione e si ricade quindi nel caso dell'Arrhenius plot. Successivamente si estrae intercetta e pendenza della retta di best fit in tale zona, ovvvero a riscaldamento costante *Heating Rate*, HR, costante) come in Figura 2.5. In questo caso si calcola la costante k come se avessimo effettuato le prove a temperature differenti.

Gli schemi riassuntivi sono in Figura 2.6.

Figura 2.5: Esempio di calcolo parametri SFOR con HR costante

2.0.2 Modello nSFOR

E' possibile migliorare il modello SFOR imponendo diverse cinetiche di reazione per temperatura, quindi aumentando gli step di calcolo. Si impone quindi che A ed E siano differenti in base alla temperatura e si sceglie una coppia di parametri per ogni step in cui vogliamo suddividere la reazione, fino ad n.

In questo modo è possibile variare A ed E con la temperatura inseguendo una ipotetica funzione E(T) e A(T) in modo discreto (tramite scalini costanti in T), mantenendo quindi i vantaggi nel calcolo che si avevano con lo SFOR di semplicità applicativa e superando l'approssimazione del singolo step di temperatura.

In genere è sufficiente utilizzare il modello Kobayashi a 2 step; formalmente possiamo scrivere:

$$\frac{\partial VM}{\partial t} = \begin{cases} k_1(VM_\infty - VM) & T < T_l \\ k_2(VM_\infty - VM) & T \ge T_l \end{cases}$$
(2.19)

Dove le costanti (A_1, E_1) e (A_2, E_2) sono computate come per la 2.7. Per i

Figura 2.6: Schema per il calcolo dei parametri SFOR a T costante (sx) e HR costante (dx)

modelli n-step ovviamente sono scritte n equazioni e sono necessari 2n parametri, mentre per il loro calcolo si procede come per il modello SFOR.

2.0.3 Modello CPD

I modelli precedenti sono elaborati con parametri cinetici che sono strettamente collegati all'HR, alla storia termica ed alla temperatura finale. L'idea alla base del modello CPD (Chemical Percolation model for Devolatilization) [Fletcher et al., 1990a] [Fletcher et al., 1990b] è quello di legare la devolatilizzazione alla struttura chimica del combustibile solido, in particolare si estraggono i dati fisici dalle particelle di CS stramite NMR (Nuclear Magnetic Resonance), unici parametri strutturali da immettere nel modello. Le cinetiche di formazione dei volatili, del tar e il ritorno nel char degli idrocarburi pesanti sono descritte da fattori pre-computati dipendenti sia da T che da HR oltre che dai parametri immessi. La particella è vista come un insieme di gruppi (anelli aromatici) legati tra loro con legami L in numero e forza descritti da un modello matematico probabilistico. Il tar è formato come conseguenza della rottura di un legame L che con probabilità k_b è diventato labile L^* ai margini della catena aromatica. Questo è inizialmente instabile e segue due tipologie di reazioni: in un primo caso c'è probabilità k_c che si ricombini con il char c rilasciando gas leggeri q_2 , nel secondo caso si stabilizza con probabilità k_{δ} formando char. In questo ultimo caso il frammento di char appena formato può nuovamente scindersi e formare altri gas leggeri g_1 con probabilità k_q . Successive modifiche introducono restrizioni nella possibilità di formare catene di gas leggeri a causa della quantità di idrogeno h limitata presente nel CS.

Figura 2.7: Schema del modello CPD

La scelta tra le due reazioni è governata dalla probabilità ρ , espressa in forma di Arrhenius come 2.7.

Il numero di legami formati dall'anello aromatico del CS specifico è rappresentato dalla variabile $\sigma + 1$.

Si assume che i legami labili siano distrutti alla velocità con cui sono creati e otteniamo che:

$$\begin{cases} \frac{\partial L}{\partial t} = -k_b L\\ \frac{\partial L^*}{\partial t} = k_b L - (k_\delta + k_c) L^* = 0\\ \frac{\partial c}{\partial t} = -k_c L^*\\ \frac{\partial \sigma}{\partial t} = 2k_\delta L^* - k_g \delta\\ \frac{\partial g_1}{\partial t} = k_g \delta\\ \frac{\partial g_2}{\partial t} = 2\frac{\partial c}{\partial t} \end{cases}$$
(2.20)

Posta p=L+c (frazione di legami intatti) e f= 1-p (frazione di legami rotti), si ottiene la conservazione della massa con le relative condizioni iniziali:

$$\begin{cases} g = g_1 + g_2 \\ g_1 = 2f - \delta \\ g_2 = 2(c - c_0) \\ c(0) = c_0 \\ L(0) = L_0 \\ \delta(0) = 2(1 - c_0 - L_0) \\ g(0) = g_1(0) = g_2(0) = 0 \end{cases}$$
(2.21)

I parametri cinetici hanno forma: $k_i = A_i e^{-\frac{E_i \pm V_i}{RT}}$, dove V_i è la variabilità sull'energia di attivazione del processo.

Si calcolano quindi le frazioni di gas e char prodotte, mentre per quella di tar si utilizzano correlazioni legate alla teoria PCS (*Percolation Lattice Statistics*), non oggetto di questa trattazione.

Si riportano quindi le relazioni utilizzate nel modello:

$$\begin{cases} f_{gas}(t) = \frac{r(g_1 + g_2)(\sigma + 1)}{4 + 2r(1 - c_0)(\sigma + 1)} \\ f_{tar-non-stabile}(t) = \frac{2(\Phi F(p) + r\Omega K(p))}{2 + r(1 - c_0)(\sigma + 1)} \\ f_{char}(t) = 1 - f_{gas}(t) - f_{tar-non-stabile}(t) \end{cases}$$
(2.22)

con $\Phi, \Omega, F(p), K(p), r$ funzioni di L, p, σ, δ e delle masse molecolari delle catene compenenti la particella di CS $(M_{w,1})$ e delle catene di tar che si ricombinano con il char $(M_{w,\sigma})$.

E' possibile maneggiare le espressioni precedenti, tali che gli input strutturali risultino solamente $p_0, c_0, \sigma + 1, M_{w,1}eM_{w,\sigma}$.

Per ogni caso di combustibile solido, dovrebbero essere tabellati tali parametri pre-calcolati tramite NMR; si capisce come sia in effetti complicato fare tale ope-

c_i	$M_{w,\sigma}$	$M_{w,1}$	p_0	$\sigma + 1$
c_1	$4.22\mathrm{E}{+}02$	$1.30\mathrm{E}{+}03$	4.90E-01	-5.21E + 01
c_2	$-8.65 \text{E}{+00}$	$1.64\mathrm{E}{+}01$	-9.82E-03	$1.64\mathrm{E}{+00}$
c_3	$4.64 \text{E}{-}02$	-1.88E-01	1.33E-04	-1.08E-02
c_4	-8.47E + 00	$-4.55 \mathrm{E}{+02}$	1.56 E-01	-1.24E + 00
c_5	$1.18\mathrm{E}\!+\!00$	$5.17\mathrm{E}{+}01$	-2.44E-02	9.32E-02
c_6	$1.15\mathrm{E}\!+\!00$	$-1.01 \mathrm{E}{+01}$	7.05 E-03	-1.66E-01
c_7	-4.34E-02	$7.61 \text{E}{-}02$	2.19E-04	4.10E-03
c_8	$5.57 \text{E}{-}01$	$1.36\mathrm{E}{+00}$	-1.11E-02	9.26 E-03
c_9	-6.55 E-03	-3.14E-02	1.01E-04	-8.27E-05

Tabella 2.1: Correlazioni per i coefficienti calcolati da Genetti per i parametri strutturali del CPD

razione per tutti i tipi di particella e , dunque, quale sia la problematica principale del modello CPD.

Tuttavia il calcolo di questi valori può essere effettuato in modo più rapido tramite le correlazioni messe a punto da Genetti [Genetti, 1999] tra i parametri sopra e i valori della Ultimate Analisys, eseguibile più facilmente. In particolare si utilizzano equazioni del tipo:

$$y = c_1 + c_2 Y_C + c_3 Y_C^2 + c_4 Y_H + c_5 Y_H^2 + c_6 Y_O + c_7 Y_O^2 + c_8 Y_{VM} + c_9 Y_{VM}^2$$
(2.23)

dove y è il parametro correlato e i valori Y_i le concentrazioni massiche di elementi nel CS da *proximate* ed *ultimate analisys*. I coefficienti c_i sono calcolati tramite minimizzazione del chi quadro su dati sperimentali di *proximate* ed *ultimate analisys* di 30 tipi di carbone differenti (catalogati e studiati da ACERC-Advanced Combustion Engeneering Resarch Center, Sandia National Laboatories, Advanced Fuel Resarch, Penn State Coal Bank). Sono ottenute quindi le correlazioni in Tabella 2.1 [Genetti, 1999].

Per il valore di c_0 si utilizza l'equazione 2.24.

$$c_0 = min[0.36, max[(0.118Y_C - 10.1), 0]] + min[0.15, max[(0.014Y_O - 0.175), 0]]$$
(2.24)

2.0.4 SFOR B-T

I modelli SFOR precedentemente discussi risultano semplificare il problema della devolatilizzazione, ponendo in funzione della temperatura (costante nel tempo) il coefficiente cinetico k. Con il modello CPD si supera tale concezione rifacendosi esclusivamente alla struttura chimica del carbone, rendendo tuttavia il problema più oneroso da risolvere. In questo caso Biagini e Tognotti [Biagini & Tognotti, 2014] hanno proposto una rivisitazione dello SFOR, che chiameremo SFOR B-T, mettendo in luce la forte dipendenza della massima materia volatile estraibile dalla temperatura. Mentre per lo SFOR base si era fissata VM_{∞} al valore della massima quantità di volatili estraibile dal combustibile solido, pari quindi alla conversione calcolata al massimo HR sperimentale disponibile (equazioni 2.12), adesso si impone in aggiunta alle equazioni 2.6 e 2.7, che:

$$VM_{\infty} = 1 - e^{-DI\frac{T}{T_{st}}}$$
 (2.25)

ovvero che la massima materia volatile estraibile sia dipendente dalla temperatura del reattore.

Il Devolatilization Index, DI, risulta il nuovo parametro da calcolare tramite fitting dei dati, T_{st} è la temperatura standard di riferimento per la proximate analisys e T è la temperatura delle particelle.

In questo modo, nota la storia termica della particella $T_p(t)$, siamo in grado di valutare la perdita di volatili a partire da un valore di VM_{inf} variabile nel tempo. L'equazione differenziale 2.6 è risolta con ipotesi di temperatura costante nel tempo, mentre nel risultato finale è imposta VM_{∞} modificata.

$$\begin{cases} VM = VM_{\infty}(1 - e^{-kt}); \ VM_p = VM_{\infty}e^{-kt} \\ k = Ae^{-\frac{-E}{RT}}; \ VM_{\infty} = 1 - e^{-DI\frac{T}{T_{st}}} \end{cases}$$
(2.26)

Il calcolo dei parametri cinetici avviene tramite caratteristiche di 20 tipi di carbone raccolti dal *Solid Fuel Data Base dell'IFRF* (International Flame Resarch Foundation). Per calcolare A e B, sono distinti due modi di procedere: nel primo caso si procede con una ottimizzazione particolare per ogni combustibile; noti i valori $[VM_{exp}, T_{exp}, t_{exp}]$ si impone che:

$$[A, E, DI] \Leftrightarrow \min \sum_{i=1}^{n_{dati}} \frac{VM_{exp} - (1 - e^{-DI \cdot \frac{T_{exp}}{T_{st}}})e^{Ae^{-\frac{E}{R \cdot T_{exp}}} \cdot t_{exp}}}{n_{dati}}$$
(2.27)

In questo modo si calcola per ogni combustibile una tripletta [DI,A,E] in funzione della VM ricavata dalla proximate analysis e del parametro strutturale O/C, entrambi noti dal database.

Si osserva inoltre che i valori T_{exp} non sarebbero facilmente disponibili dalla sperimentazione, per cui si preferisce usare l'approssimazione di riscaldamento costante (*Heating Rate, HR* costante) e correlare $T_{exp}(t_{exp}, HR_{exp})$, più facilmente ricavabile.

La seconda fase psi basa sull'ottenere correlazioni di carattere generale legate a parametri strutturali dei combustibili del database. Si correlano quindi A,E e Di tramite delle leggi lineari, i cui coefficienti sono riportati in Tabella 2.2.

P	x	m	q
E [kJ/mol]	O/C (mass ratio)	30.4	24.6
$\ln A \left[\ln \left(1/\mathrm{s} ight) ight]$	${ m E}~[{ m kJ/mol}]$	0.105	3.42
DI	VM [%wt dry]	0.0219	-0.208

Tabella 2.2: Correlazioni di Biagini e Tognotti

con:

$$P = m \cdot x + q \tag{2.28}$$

In questo modo è ad esempio possibile ottenere uno SFOR in cui il valore della VM_{inf} è corretto con una funzione della temperatura.

Il vantaggio di tale modello rispetto a modelli come il CPD è il basso costo computazionale. In ogni caso rispetto allo SFOR semplice, è necessario il calcolo di un ulteriore parametro, il DI o *Devolatilization index*. Questo problema è comunque marginale in quanto sono state precedentemente illustrate le correlazioni di carattere generale sui parametri chimici A,E e DI.
Capitolo 3

Caso studio: Isothermal Plug Flow Reactor

3.1 L'impianto pilota

L'Isothermal Plug Flow Reactor (IPFR) di Livorno è un reattore sperimentale nato per la caratterizzazione dei combustibili solidi. Costruito nel 1985 in Olanda (Ijmuiden) è stato trasferito nel centro di ricerca dell'Enel a Livorno nel 1994, dove tuttora risiede. I tempi di residenza possibili all'interno del reattore variano da 5 a 1500 ms ed il tasso di riscaldamento ottenibile varia tra 10^4-10^5 K/s, le temperature raggiungibili dal sistema sono circa 1673 K. L'uniformità termica all'interno del reattore è assicurata da un rivestimento esterno coibentato e riscaldante tramite resistenze elettriche, che permettono di mantenere l'interno del reattore e le pareti alla stessa temperatura voluta. Uno schema dell'impianto è riportato in Figura 3.1. Altri dettagli dell'impianto si trovano in [IFRF Report, doc No G 26/y/01, 2013] e [IFRF Report, doc No F112/y/01, 2013].

3.1.1 Precombustore

Il sistema di precombustione ha il fine di alimentare il reattore con una corrente di composizione e temperatura desiderata. I prodotti di combustione (gereati attraverso un bruciatore da 30 kW AASB) costituiranno il fluido in cui i combustibili solidi verranno processati. Una serie di flussometri regola la quantità di CO_2 , N_2 e aria utilizzate nel processo, in questo modo è possibile controllare anche la concentrazione di ossigeno nei gas. Oltre alla coibentazione ed un sistema di refrigerazione ad acqua per le sonde di campionamento, è possibile immettere in post-combustione portate ausiliarie di azoto o anidride carbonica per controllare la temperatura o la concentrazione dei gas combusti.

3.1.2 Reattore verticale

Il reattore è costituito da 8 unità modulari per una lunghezza utile complessiva di 4 m e diametro 0.15 m. Ogni modulo è coibentato e munito di resistenze da 2.2 Ω , in questo modo è possibile mantenere un ambiente isotermo con un margine di

Injection port for particle collection probe

Figura 3.1: Schema dell'IPFR

10-20 K. La parte del modulo a contatto con le resistenze è attraversata da azoto per mantenere queste ultime funzionali nel tempo, evitandone il deterioramento. Sul reattore in tutto sono installate 18 porte di accesso per la strumentazione di controllo ed i moduli della sonda di ingresso e di prelievo. Si riportano quindi le grandezze misurate in fase di controllo del reattore in Tabella 3.1.

Sonda di immissione Tramite un sistema di controllo di massa k-tron il carbone polverizzato viene trasportato con un gas di trasporto (CO_2) alla sonda di immissione. La portata di carbone è regolata da un sistema a vite a velocità di rotazione variabile. La sonda di immissione, inserita radialmente nel reattore, è raffreddata ad acqua per evitare danni strutturali dovuti al campo termico a quest'ultima. Il combustibile è immesso parallelamente all'asse del reattore tramite un foro nella testa della sonda (Figura 3.2).

Il posizionamento di questo apparato viene effettuato nelle porte disponibili allo scopo, regolando in modo grossolano il tempo di residenza desiderato con il suo stesso posizionamento dalla base (la distanza tra le porte dello stesso modulo

Parametro	Misura	
Concentrazioni	-O2,CO2,CO (inlet)	[%vol]
Concentrazioni	-O2 (outlet)	[ppm per CO]
	-NG	
	-ARIA (o $CO2/O2$ mix)	
Fluces di rec	-N2 e CO2 addizionali	[Nm2/b]
Flusso di gas	-Carrier gas	
	-N2 alle resistenze	
	-N2 quench	
Flusso di carbone	-solid fuel flow rate	[g/h]
	-pre-combustore	
Tompore ture	-moduli	$[\circ C]$
Temperatura	-gas di quench	
	-filtri a valle	
	-pre-combustore	
Pressione differenziale	ione differenziale -ingresso del reattore	
	l -linee di campionamento	

Tabella 3.1: Parametri campionati nel sistema di controllo dell'IPFR

Figura 3.2: Sonda di alimentazione

è di circa 0.5 m). Durante le fasi di campionamento la posizione di questa sonda non varierà.

Sonda di prelievo La sonda di prelievo è immessa in modo coassiale al reattore ed è costituita da un imbocco (sempre assiale al reattore) non raffreddato e da un corpo raffreddato ad acqua. Uno schema di questa si trova in Figura 3.3. Alla base dell'imbocco si trovano gli ingressi del gas di quench, in genere azoto a temperatura ambiente, che arresta quasi istantaneamente i processi in svolgimento portando i gas campionati ad una temperatura inferiore a 200 °C e proteggendo gli strumenti di analisi successivi.

I restanti gas non campionati subiscono un quench in aria e vengono scartati dopo aver attraversato una sezione di trattamento. La posizione della sonda di campionamento all'interno del reattore è regolata tramite metro (precisione dell'ordine dei millimetri). La variazione della distanza relativa rea le sonde mo-

Figura 3.3: Sonda di campionamento

dificano i tempi di residenza delle particelle. In genere, una volta stabiliti i tempi necessari per l'osservazione del fenomeno, si stabiliscono delle distanze relative tra le sonde per raggiungerli (Lunghezze di campionamento).

Metodologia di base per la sperimentazione Risulta di fondamentale importanza stabilire il criterio di settaggio e misura utilizzato in questo impianto per la raccolta di dati sperimentali. Una prima analisi avviene sul campione grezzo, cioè non processato, tramite una proximate ed ultimate analisys che caratterizza il combustibile allo stato iniziale. Tali analisi sono riproposte una volta che il campione è stato processato nell'IPFR: analizzando lo stato finale si ricavano le grandezze di interesse, in particolare le conversioni con il metodo *ash tracer*:

$$X_{devo}(\tau) = 1 - \frac{Y_{ash_0}}{Y_{ash(\tau)}}; \qquad X_{char}(\tau) = 1 - \frac{Y_{ash,0}}{Y_{ash}(\tau)} (\frac{1 - Y_{ash}(\tau)}{1 - Y_{ash,0}})$$
(3.1)

La formulazione è differente a seconda che si osservi solo la devolatilizzazione o anche la combustione del char, in quanto la frazione di ceneri nella particella aumenta con la trasformazione anche del char e quindi la conversione è più alta considerando quest'ultimo fenomeno. In genere per escludere la combustione del char è sufficiente ridurre i tempi di residenza delle particelle nel reattore a pochi decimi di secondo (intervallo 5-250 ms), così da non lasciare tempo al fenomeno di innescarsi. Data la difficoltà di ripetere la prova sia per motivi economici che fisica di ripetibilità, l'errore non è stabilito su base statistica, ma strumentale. Questo dato non è noto dai dati a disposizione. Le prove TGA vengono effettuate con campioni dell'ordine del decimo o centesimo di grammo. Per il caso in questione la matrice delle condizioni in cui sono effettuate le prove sperimentali è in Tabella 3.2.

Una volta imposti temperatura e portate di flusso in ingresso desiderate, posizionata la sonda di ingresso, la sonda di campionamento è posta per permettere alle particelle di raggiungere il tempo di residenza desiderato. In particolare, si assume che l'iniezione di carbone sia isocinetica con il gas combusto. Il carbone è trasportato da CO_2 per raggiungere le condizioni di atrosfera *oxy* e si suppone

Volumetric flow rate [Nm3/h]	1173 K	1373 K	1573 K
CH4	-	-	-
AIR	-	-	-
O2	-	-	-
CO2] –	-	-

Tabella 3.2: Matrice generale delle prove effettuate

che le particelle siano trasportate in modo ideale senza iterazioni tra di loro data la bassa densità di queste nel flusso di trasporto. La densità delle particelle solide nella fase di trasporto è riassunta in Tabella 3.3.

Tabella 3.3: Densità delle particelle di carbone nel gas di trasporto

	$ ho[kg_{coal}/m_{gas}^3]$
in trasporto	0.3640
in reattore	0.0045

Per ogni tempo di residenza e configurazione del reattore si individua una lunghezza di campionamento che teoricamente rispetta il tempo di residenza voluto, imponendo che tutte le componenti viaggino alla stessa velocità media dei fumi, si ottiene che:

$$L_{camp}(\tau_{res}) = \hat{v}_{media} \cdot \tau_{res} \tag{3.2}$$

Dirante le prove speriemntali, la velocità media è ottenuta dalle portate volumetriche in gioco \dot{Q}_i (per l'i-esima specie), correggendo la densità (temperatura di riferimento $T_0 = 293K$) con la temperatura del reattore T_r :

$$\hat{v}_{media} = \sum_{i} \frac{\dot{Q}_i \cdot \frac{T_r}{T_0}}{A_{reattore}}$$
(3.3)

Risulta evidente che questo paramentro fornisca solamente una stima delle lunghezze di campionamento, in quanto i fenomeni turbolenti nel reattore faranno deviare il tempo d i residenza delle particelle dal valore ideale.

In questo modo viene compilata una Tabella in cui sono riportate le principali variabili misurate dai campioni processati tramite TGA (Tabella 3.4).

Tabella 3.4: Dati raccolti da proximate sui campioni del sample probe

test n T [C]
$$\tau$$
 [ms] HUM [%] VM [%] FC [%] ASH [%] X [%]

I tempi di residenza scelti per misurare la devolat
lizzazione sono $\left[25,50,100,150,250\right]$ ms .

3.1.3 Preparazione dei campioni

La macinatura e il setaccio dei grani di combustibile risultano necessari in quanto ad una diversa granulometria corrispondono diverse interazioni delle particelle con i gas circostanti. Generalmente le particelle sono assunte sferiche di diametro calcolato come quello della sfera con superficie equivalente (*sieve diameter*) e si considera un fattore di forma (*shape factor*, SF) come indice di sfericità:

$$d_{eq} = (L_{max} \cdot L_{min}^2)^{\frac{1}{3}}; \qquad SF = \frac{S_{sferica}}{S_{reale}}$$
(3.4)

Tali parametri sono acquisiti in laboratorio tramite microscopio SEM. Un sistema a diffrazione laser in acqua misura la distribuzione di diametro di campioni di massa compresa tra 20 mg e 50 mg. Il risultato utile è una distribuzione Y_d diametrale cumulata massica di tipo Rosin-Rammler, caratterizzata da un diametro medio e da un fattore di spread n (Figura 3.4):

$$Y_d = e^{-\left(\frac{a}{d}\right)^n} \tag{3.5}$$

Figura 3.4: Esempio di fitting dei parametri con una distribuzione Rosin Rammler

3.1.4 Combustibile solido utilizzato

La scelta del combustibile da studiare è stata effettuata in base alla disponibilità di dati sperimentali dall'archivio prove dell'IFRF, è stato dunque utilizzato quello con le migliori informazioni disponibili. Inoltre, l'utilizzo del combustibile di seguito permetterà successivi confronti con prove sperimentali eseguite in altri reattori EFR.

La scelta è quindi versata su un carbone originario del sud est asiatico, il Sebuku indonesiano, di cui si riportano le caratteristiche da proximate e ultimate analysis (Tabella 3.5 e 3.6).

Il materiale, macinato e setacciato, ha una granulometria compresa tra i 63 ed i 90 micrometri. A partire da immagini SEM (Figura 3.6) e ricostruendo la

Fraction	HUM	VM	FC	ASH
$[\mu m]$	[% ar]	[% dry]	[% dry]	[% dry]
63-90	8.84	40.30	47.95	11.75

Tabella 3.5: Proximate analisys sul campione scelto SEBUKU

Tabella 3.6: Ultimate analisys sul campione scelto SEBUKU

С	Н	Ν	S	0
[% dry]				
62.75	4.56	1.27	0.48	19.09

distribuzione massica di diametri, si ricavano i parametri che contraddistinguono la distribuzione granulometrica, rappresentata in Figura 3.5.

$$\begin{cases} \hat{d} = 99.46[\mu m] \\ n = 5.46 \end{cases}$$
(3.6)

Figura 3.5: Caratteristiche granulometriche del SEBUKU coal [Bonvicini, 2012]

Figura 3.6: Immagine SEM del Sebuku coal [Bonvicini, 2012]

Dall'Agosto al Novembre 2012 sono state effettuate campagne sperimentali atte a estrarre dati sulla devolatilizzazione del carbone in condizioni di ossicombustione. I risultati compongono parte dell'archivio prove dell'IPFR [Bonvicini, 2012] [IFRF Report, doc No F112/y/01, 2013] di cui si riportano i valori salienti per il combustibile SEBUKU Coal in Tabella 3.7.

Su questi dati non è presente incertezza nota. Inoltre si osserva che la prova di devolatilizzazione a 1300 ° C presenta una ripetizione, con valori molto differenti tra le due prove. Questo testimonia la difficoltà pratica nella raccolta dei dati sperimentali, quale ad esempio il fenomeno della deposizione delle ceneri all'interno del reattore che incide sul calcolo della conversione tramite metodo *ash tracer*. La distanza tra le due è indicativa delle incertezze che si hanno su questi dati. Per questo caso, le prove dalla 272-12 alla 276-12 sono ritenute più attendibili, sia per una maggiore rispondenza con i dati da letteratura, che per una minore oscillazione dei dati rispetto al trend atteso.

IPFR	T_n	RT ideale	HUM	VM	FC	ASH	Х
test N.	[°C]	[ms]	[%ar]	[%dry]	[%dry]	[%dry]	[-]
224-12	900	25	2.08	42.64	44.27	13.09	11.63
225-12	900	50	2.01	42.25	44.58	13.17	12.24
226-12	900	100	3.30	34.55	51.24	14.21	19.64
227-12	900	150	3.66	30.72	53.95	15.33	26.46
228-12	900	250	3.87	20.95	62.06	17.00	34.99
181-12	1100	25	2.81	41.77	46.03	12.20	4.21
182-12	1100	50	3.06	35.12	51.70	13.18	12.33
183-12	1100	100	3.26	21.45	62.98	15.58	27.85
184-12	1100	150	3.40	18.02	63.66	18.32	40.62
185-12	1100	250	5.26	19.84	59.59	20.57	48.59
136-12	1300	25	3.27	40.07	44.54	15.39	26.78
137-12	1300	50	3.47	25.60	55.92	18.49	41.30
138-12	1300	100	3.13	21.98	57.04	20.98	49.87
139-12	1300	150	6.89	25.06	55.94	19.00	43.23
140-12	1300	250	5.19	22.34	54.30	23.36	56.31
272-12	1300	25	2.75	37.44	47.93	14.63	22.30
273-12	1300	50	3.45	16.65	62.43	20.92	49.68
274-12	1300	100	3.71	14.54	66.37	19.10	43.60
275-12	1300	150	5.05	13.77	63.28	22.94	55.29
276-12	1300	250	4.39	9.03	68.05	22.93	55.24

Tabella 3.7: Valori sperimentale dall'archivio prove IFRF, SEBUKU indonesiano, DEVO test, 0% O_2 nominale

3.2 Modello CFD del reattore

Un modello numerico preliminare CFD è stato sviluppato da Tarantino [Tarantino, 2010] e leggermente modificato nel presente lavoro. Dalla stessa autrice è inoltre stato validato il modello numerico dell'IPFR. Lo scopo è poter utilizzare un unico modello numerico per tutte le simulazioni, variando le condizioni al contorno. La posizione del sistema di riferimento per il modello numerico è in Figura 3.7.

Ad essere modellizzato è il reattore verticale (Figura 3.8) e le sonde di ingresso e di prelievo in posizione fissa.

Dall'alto entrano i gas combusti in temperatura, dalla sonda di ingresso il gas di trasporto ed il polverino di carbone, mentre in basso si hanno le uscite di campionamento e dei gas esausti non utili.

Il modello è 3D, con una griglia non strutturata di circa un milione di elementi ed è provvista di infittimenti in prossimità delle bocche di ingresso e uscita delle sonde rispettivamente della sonda campionamento (Figura 3.9) e di di ingresso (Figura 3.10).

Figura 3.7: Distribuzione degli assi di Figura 3.8: Vista generale dell'IPFR, riferimento nell'IPFR struttura modulare

Figura 3.9: Mesh sul piano di simmetria attorno alla sonda di campionamento (rotata di 90 gradi)

Figura 3.10: Mesh sul piano di simmetria attorno alla sonda di iniezione

3.2.1 Modello fisico

Il modello fisico prevede un approccio Lagrangiano-Euleriano (DPM Lagrangian tracking) con accoppiamento tra le fasi solida e gas (two way coupling). Sono necessari modelli di chiusura sia per la fase continua (gas) che per la fase discreta (particelle solide) che saranno descritti in seguito. Il sistema prevede quindi l'iniezione di particelle ed il calcolo delle loro traiettorie allo stazionario, supponendo queste costanti nel tempo. Ogni particella attraversa la propria traiettoria nel corso della simulazione, associando ad ogni posizione un tempo fittizio calcolato tramite interazione con la fase gas (particella trasportata dal gas circostante): prima è calcolato il campo di moto di quest'ultima, successivamente tramite le equazioni di bilancio di quantità di moto ed energia si ricava il campo di moto per la fase discreta. Questo procedimento viene effettuato fino a convergenza ed è contenuto all'interno del ciclo DPM iteration, effettuato dopo un numero n prefissato (50 e 10) di iterazioni per la fase continua. Per quanto riguarda la turbolenza, sono stati confrontati i modelli $k - \epsilon e \ k - \epsilon RNG$, scegliendo il primo sulla base di un processo validante [Tarantino, 2010]. Una volta effettuata la configurazione del

solver, a variare saranno le condizioni al contorno sui flussi e sulle temperature. In questo modo sarà possibile utilizzare un'unica griglia per le varie prove. L'unica equazione modellistica ad essere variata sarà la legge di devolatilizzazione, al fine di indagare l'effetto delle sue diverse formulazioni.

Modello fisico per la fase gas

Modello di turbolenza Il modello di turbolenza utilizza le equazioni di Navier-Stokes mediate secondo Reynolds (RANS). Le variabili quali densità e velocità sono mediate in un intervallo temporale che permette di carpire i fenomeni principali in gioco. Il settaggio delle grandezze riguardanti queste equazioni è stato verificato previo una validazione effettuata da [Tarantino, 2010]. Oltre le equazioni RANS, è necessario un modello di chiusura per completare il problema matematico. Sempre tramite lo stesso processo di validazione sono state scelte le equazioni di bilancio dell'energia cinetica turbolenta k e il suo rateo di dissipazione ϵ . Le equazioni di trasporto per queste due sono:

$$\begin{cases} \frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j}[(\mu + \frac{\mu_t}{\sigma_k})\frac{\partial k}{\partial x_j}] + G_k + G_b - \rho \epsilon - Y_M + S_k\\ \frac{\partial}{\partial t}(\rho \epsilon) + \frac{\partial}{\partial x_i}(\rho \epsilon u_i) = \frac{\partial}{\partial x_j}[(\mu + \frac{\mu_t}{\sigma_\epsilon})\frac{\partial \epsilon}{\partial x_j}] + C_1\frac{\epsilon}{k}(G_k + C_{3\epsilon}G_b) - C_2\rho\frac{\epsilon^2}{k} + S_\epsilon\\ \mu_t = \rho C_\mu\frac{k^2}{\epsilon} \end{cases}$$
(3.7)

Le costanti in gioco sono ricavate sperimentalmente dagli sviluppatori dal solver e verificate con simulazioni preliminari.

Combustione turbolenta Per modellizzare l'evoluzione della combustione dei volatili è utilizzato il modello *Eddy dissipation model, EDM*, in cui sono posti competere due principali meccanismi: il miscelamento turbolento tra combustibile

e comburente e la cinetica chimica di combustione. Il risolutore considera che il tasso di reazione sia dominato da questi due fattori e l'ignizione della fiamma si ha in presenza di un fattore di turbolenza $\frac{k}{\epsilon} > 0$. Questi due effetti non compartecipano ma sono alternativamente vigenti, il discriminante è rappresentato dall'effetto collo di bottiglia, in cui il processo limitante è l'unico che agisce. Nei nostri casi il miscelamento turbolento è molto elevato, dopo una prima fase di controllo turbolento, le reazioni sono completamente controllate da fattori cinetici relativi alla fase discreta. Il tasso di reazione nel modello risulta essere:

$$R_{i,react} = v_{r,react} m_i A \rho_{gas} \frac{k}{\epsilon} \cdot min[\frac{Y_r}{v_{r,react}m_i}, B \frac{\sum_p Y_p}{\sum_p v_{p,react}m_p}]$$
(3.8)

Dove:

- v è il coefficiente di reazione per i reagenti r
 o per i prodotti p
 per la reazione react
- $\bullet\,$ m è la loro massa molecolare
- Y la loro frazione in massa
- A e B due coefficienti sperimentali

Tale modello è implementato nel solver in uso e prevede il calcolo automatico dei coefficienti da immettere.

Modello fisico per la fase discreta

Per la fase discreta si utilizza il Discrete Phase Model(DPM) in cui ogni n iterazioni (prima 50 poi 10) di calcolo per la fase gas, sono calcolate le traiettorie e le proprietà fisiche e termodinamiche appartenenti alle particelle per ogni punto sulle traiettorie. L'immissione di queste consta 1600 traiettorie di cui iterare il processo DPM fino a convergenza, tale che rispetti le equazioni di seguito. Ogni traiettoria è attraversata da gruppi rappresentativi di particelle con caratteristiche imposte (granulometria e caratteristiche fisiche).

Quantità di moto per la fase discreta Le traiettorie della fase discreta necessitano del calcolo della soluzione in fase gas per aggiornare le posizioni delle particelle. Per fare questo sono calcolate le azioni delle forze agenti sulle particelle nelle tre dimensioni spaziali, secondo il bilancio della quantità di moto:

$$\frac{\partial \overrightarrow{u_p}}{\partial t} = F_D(\overrightarrow{u_{gas}} - \overrightarrow{u_p}) + \overrightarrow{g}(1 - \frac{\rho_{gas}}{\rho_p}) + \overrightarrow{F}$$
(3.9)

 F_D rappresenta il fattore di drag (coefficiente di drag C_D calcolato automaticamente dal solver per particelle sferiche) mentre \overrightarrow{F} è la risultante delle ulteriori forze esterne applicate alla particella, che nel nostro caso equivale alla sola forza di gravità:

$$\begin{cases} F_D = \frac{18\mu C_D Re}{24\rho_p d_p^2} \\ \overrightarrow{F} = \rho_p \overrightarrow{g} \end{cases}$$
(3.10)

Devolatilizzazione Le leggi di devolatilizzazione costituiscono parte fondamentale di questa tesi e sono implementate tramite interfaccia grafica o UDF nel solver. Della loro modifica e utilizzo si discuterà più ampiamente nel capitolo 4. Il linea generale il solver computa che la massa della particella, una volta attivata la legge di devolatilizzazione, risulta del tipo:

$$m_p = [DEVO_MODEL]$$

Combustione superficiale Il modello di combustione superficiale è pre implementato nel solver, tuttavia il suo peso nei problemi trattati è ridotto in quanto i tempi di residenza delle particelle legati ai dati sperimentali di interesse sono sufficientemente piccoli da non sviluppare la combustione delle particelle. A favore di questo la ridotta presenza di ossigeno limita tale processo, mentre la presenza di CO_2 tenderebbe a limitare ulteriormente l'afflusso di O_2 . L'IFRF ha sviluppato un modello da implementare tramite UDF per tenere conto della gassificazione indotta dalla CO_2 che tuttavia non sarà utilizzato, in quanto non rilevante in questo studio. Tuttavia è importante sottolineare come, per la combustione del char della particella, il processo sia controllato dal regime diffusivo dell'ossigeno attraverso il gas di trasporto (CO_2), in quanto la sua diffusione avviene in modo molto limitato rispetto alla sua ossidazione con il carbonio delle particelle. L'equazione in atto è la seguente, considerando un rateo di diffusione e uno cinetico (R):

$$D_0 = C_1 \frac{[(T_p + T_f)/2]^0.75}{d_p}; \ R = C_2 e^{-\frac{E}{RT_p}}$$
(3.11)

Il coefficiente di diffusione agisce da peso con la cinetica, di modo che:

$$\frac{\partial m_p}{\partial t}|_{combustione} = -A_p p_{O_2} \frac{D_0 R}{D_0 + R} \tag{3.12}$$

Dove p_{O_2} è la pressione parziale dell'agente ossidante e $A_p = (\pi d_p)^2$, con particella ipotizzata sferica.

Scambio termico Per la fase discreta, si considera il bilancio sulla particella p, considerando anche la reazione di ossidazione (in realtà trascurabile):

$$m_p C_{p_p} \frac{dT_p}{dt} = h_p S_p (T_{ext} - T_p) - f_h \frac{dm_p}{dt} \Delta h_{comb} + S_p \epsilon_p \sigma_{BZ} (T_{ave}^4 - T_p^4) \qquad (3.13)$$

in ordine si hanno:

• contributo di scambio convettivo, con h coefficiente di scambio (equazione 3.14).

- contributo di combustione, dove Δh_{comb} è il calore latente trattenuto dalla particella per una frazione f_h
- contributo di irraggiamento sulla superficie della particella, di emissività ϵ isotropa e T_{ave} è una temperatura media di radiazione delle superfici esterne

Il coefficiente di scambio h_p è ricavato tramite la relazione [Baum & Street, 1971] [Ranz & Marshall, 1952] :

$$\begin{cases} h_p = \frac{k_p N u}{d_p} \\ N u = 2 + 0.6 R e_p^{\frac{1}{2}} P r^{\frac{1}{3}} \end{cases}$$
(3.14)

Il calore di combustione è calcolato con la formula di Dulong [Perry's chemical engineers' handbook, 1999]:

$$\Delta h_{comb}[Kj/Kg] = 333Y_C + 1442(Y_H - \frac{Y_O}{8}) + 93Y_S \tag{3.15}$$

3.2.2 Condizioni al contorno

Date le impostazioni preliminari descritte nei capitoli precedenti, si impostano le condizioni al contorno nel solver seguendo quelle impostate nel sistema sperimentale IPFR, come riportato in modo riassuntivo in Figura 3.11.

Per quanto riguarda le pareti, uno studio preliminare [Tarantino, 2010] ha ricavato il coefficiente di riflessione agli urti sulle pareti, pari a 0.3 sia in direzione normale che tangenziale. Le pareti raffreddate sono considerate isoterme, questa semplificazione è necessaria dato che non sono disponibili dati per un calcolo più accurato di questa. Basandosi su osservazioni dirette sui componenti e sullo studio preliminare, si imposta la temperatura di parete ritenuta ottimale [Tarantino, 2010]. Il flusso di gas è diretto dagli inlet verso gli outlet, sono esclusi fenomeni di backflow da outlet. Per questo motivo le condizioni di backflow non sono importanti a livello di correttezza della soluzione ma esclusivamente per velocizzarne la ricerca da parte del solver.

Le temperature nominali delle prove sono: 1173K, 1373K, 1573K. La temperatura ambiente, cioè del gas di trasporto, è 293 K.

Per il calcolo delle velocità di ingresso e per confrontare le velocità dei fumi e di trasporto, si utilizzano le seguenti formule:

$$v_{coal} = \frac{\dot{m}_{CO_2}}{A_{inl.coal}\rho_{CO_2,293K}}; \qquad v_{fumi} = \frac{(\dot{Q}_{CO_2} + \dot{Q}_{CH_4} + \dot{Q}_{ARIA} + \dot{Q}_{aux})\frac{T_r}{293}}{A_{reattore}}.$$

Le specie chimiche in ingresso sono calcolate ipotizzando la combustione tra metano ed aria. Nell'impianto sperimentale viene utilizzato gas naturale, che oltre metano contiene altri idrocarburi leggeri, tuttavia l'errore compiuto con questa approssimazione è trascurabile.

Secondo la relazione:

$$C_n H_m + (n + \frac{m}{4})O_2 \to nCO_2 + \frac{m}{2}H_2O$$
 (3.16)

Figura 3.11: Schema riassuntivo delle superfici al contorno del modello

Si calcolano le specie in entrata alla simulazione. Per avere una stima delle specie in uscita si ricorre ad alcune ipotesi: in primo luogo vengono emessi in totale $(VM_{proximate} * YF)$ volatili e tutti questi vengono ossidati tramite la relazione 2.2, seguendone la stechiometria; in secondo luogo la distribuzione tra l'uscita dei fumi (OUTLET_FUMI) e quella campionata (CAMP) segue la fluidodinamica delle reazioni non reattive. YF è il valore dello *Yield Factor*, calcolato come:

$$YF = \frac{X_{max,exp}}{VM_{\infty,proximate}}$$
(3.17)

Il valore ottenuto delle specie in uscita ha carattere qualitativo, dato che dipende dai complessi fenomeni fluidodinamici interni e può variare molto, nella realtà, a seconda della ripetizione della prova. In ogni caso una buona stima di questi riduce sensibilmente il tempo computazionale. Uno schema riassuntivo per il calcolo delle specie chimiche, ottenuto dal bilancio di massa e dalle equazioni di reazione precedentemente illustrate, è in Figura 3.12. La superficie INLET_N2 è l'ingresso dell'azoto di quench, con portata costante di 22.5 Nm^3/h .

Figura 3.12: Modello di calcolo delle specie chimiche in uso

Note le portate in ingresso da [IFRF Report, doc No F112/y/01, 2013] per il caso studio, si riportano tramite le Tabelle 3.8, 3.9, 3.10, 3.11 3.12 e 3.13 i parametri principali immessi nel solver per inlet ed outlet.

INLET_FUMI	CH_4	ARIA	additional
mass flow inlet	Nm3/h	Nm3/h	Nm3/h
1173K	2.1	22	11
1373K	2.5	26.3	0
1573K	3	28	0

Tabella 3.8: Parametri per la superficie INLET_FUMI

Tabella 3.9: Specie per la superficie INLET_FUMI

INLET_FUMI - specie	CO_2	O_2	N_2	H_2O
	[-]	[-]	[-]	[-]
1173K	0.094	0.028	0.799	0.077
1373K	0.158	0.010	0.701	0.129
$1573\mathrm{K}$	0.153	0.017	0.0702	0.1258

Tabella 3.10: Parametri per la superficie INLET COAL

		injection proprieties			
INLET_COAL	CO_2	v_{fumi}	v_{coal}	portata carbone	
mass flow inlet	Nm^3/h	m/s	m/s	g/h	
1173K	0.6	2.2	4.33	130	
1373K	0.5	2.15	3.61	120	
1573K	0.5	2.61	3.61	120	

Nella simulazione numerica si utilizza la simmetria sul piano (x,y) passante per l'asse della sonda in ingresso, dunque le portate simulate sono la metà di quelle descritte. Per ogni prova a differente temperatura, è stato impostato un fattore *Yield Factor*, YF pari al rapporto tra la massima quantità di volatili estraibile a quella temperatura e la VM estratta con la proximate analisys (Tabella 3.14):

OUTLET_FUMI	CO_2	O_2	N_2	H_2O	$\frac{\dot{m}_{fumi}}{\dot{m}_{camp} - \dot{m}_{quench}}$
pressure outlet	[-]	[-]	[-]	[-]	[-]
1173K	0.1208	0.025	0.777	0.07648	13.96
1373K	0.1834	0.007	0.681	0.127	11.35
1573K	0.1783	0.013	0.683	0.1241	12.12

Tabella 3.11: Specie per la superficie OUTLET_FUMI

Tabella 3.12: Specie per la superficie CAMP

CAMP	CO_2	O_2	N_2	H_2O
pressure outlet	[-]	[-]	[-]	[-]
1173K	0.0115	0.0024	0.978	0.0073
1373K	0.017	0.0007	0.969	0.012
1573K	0.017	0.0013	0.965	0.011

Tabella 3.13: Caratteristiche per le wall

	temperatura
WALL	1173 - 1373 - 1573 [K]
WALL - cooled	400 [K]

$$YF = \frac{X_{max}}{VM_{prox}} \tag{3.18}$$

In questo modo si corregge la stima dei volatili iniziali ottenendo una simulazione più vicina al caso reale.

Tabella 3.14: Valori di YF utilizzati nel modello

	X_{max}	YF
1173 K	0.3499	1.00
$1373 \mathrm{~K}$	0.4859	1.20
$1573~\mathrm{K}$	0.5524	1.38

Nel caso a 1173 K una conversione inferiore al valore della VM_{prox} indica sicuramente una non completa devolatilizzazione, per cui si è fissato il valore YF=1, in quanto lo *yield factor* è un fattore che stimola la fuoriuscita di volatili.

3.2.3 Parametri del risolutore

Le equazioni selezionate sono implementate tramite una discretizzazione con ordine selezionabile da interfaccia grafica (Tabella 3.15).

I fattori di sotto-rilassamento sono impostati cercando la configurazione che riducesse il tempo di calcolo. In generale, si mantengono impostati valori in Tabella 3.16.

Per quanto riguarda il solver, la condizione di arresto è impostata con il raggiungimento del valore del modulo di ciascun residuo al di sotto di 10^{-7} . Questo

Scheme	SIMPLE
Gradient	Green-Gauss Cell Based
Pressure	Second Order
Momentum	Second Order Upwind
Turbolent Kinetic Energy	Second Order Upwind
Turbolent dissipation rate	Second Order Upwind
Energy	Second Order Upwind
Species transport	Second Order Upwind

Tabella 3.15: Discretizzazione spaziale per le equazioni implementate nel solver

Tabella 3.16: Parametri di sottorilassamento utilizzati

0.3		
1		
1		
0.5		
0.8		
0.8		
0.5		D
0.5		
	$ \begin{array}{c} 0.3 \\ \hline 1 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.5 \\ 0.5 \\ 0.5 \\ \end{array} $	$ \begin{array}{c c} 0.3 \\ \hline 1 \\ 0.5 \\ \hline 0.8 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.5 \end{array} $

O2	0.8
CO2	0.8
H2O	0.8
CO	0.8
Energy	0.8
P1	0.8
DPM sources	0.3

valore non è raggiungibile in quanto a causa del calcolo delle traiettorie ogni 10 iterazioni della fase gas, la computazione procede assestando il residuo attorno ad un valore medio più elevato del limite imposto. In genere sopra le 5000 iterazioni si giunge a stabilità dei residui, cioè alla loro oscillazione attorno ad un valore medio che ha ordine di grandezza tra $10^{-5} - 10^{-6}$ e che riteniamo produrre dati in modo sufficientemente accurato. Di fatto nessuna soluzione è stata arrestata con meno di 10000 iterazioni per garantire il minor errore possibile.

3.3 Analisi dei risultati

Nel modello numerico la posizione degli elementi di iniezione e campionamento è fissata. Nella realtà abbiamo descritto come il tempo di residenza venga controllato variando la posizione relativa delle sonde di ingresso e di campionamento, per cui è necessario un programma che analizzi i dati generati e simuli il sistema di campionamento mobile. La distanza geometrica nel modello tra le sonde è di circa 3 metri, mentre le lunghezze che dobbiamo campionare sono dell'ordine dei centimetri dalla sonda di iniezione. Lo spazio a disposizione è sufficiente per analizzare i tempi di residenza voluti.

Un'altra condizione importante per avvicinarci al campionamento reale è che le particelle campionate siano esclusivamente quelle che riescono ad entrare nella bocca del campionamento (diametro di 16 mm), di conseguenza il numero di particelle totali campionato tenderà a decrescere aumentando la distanza dall'iniezione e con esso la significatività del campione, a causa dell'espansione del getto durante la caduta. Le traiettorie seguite sono in totale 1600, un numero maggiore avrebbe portato un campione più numeroso ma uno sforzo di elaborazione troppo elevato sia in fase di simulazione che di post processing. Di queste in genere l'1-2% compie traiettorie incomplete, ovvero non raggiunge l'uscita perchè degenera in ricircoli all'interno del reattore. Ad ogni traiettoria sono associati alcune migliaia di valori per ogni parametro descritto (il cui range e denominazione sono descritti in Tabella 3.17), uno per ogni posizione X,Y,Z su queste. In particolare ad ogni variabile sono associati circa 3 milioni di dati riguardanti tutte le particelle.

х V x dall'origine [m] distanza assiale [m] z dall'origine [m] -0.75 < x < 0.75-4.5 < y < -1.356-0.75 < z < 0.75Т PVMF D tmp T[K]t s VM [-] Diametro [m] 293 < T < 1600 0 < t < 10 0 < VM < 1 $63 \cdot 10^{-6} < D < 90 \cdot 10^{-6}$

Tabella 3.17: Variabili utilizzate

L'elaborazione non può quindi avvenire tramite foglio di calcolo e si decide di elaborare un programma Matlab[®] atto allo scopo. In particolare, si vuole costruire un sistema automatico che, dai in pasto i dati grezzi pre formattati, sia in grado di restituire i dati, grafici e tabelle desiderati note le informazioni sulle lunghezze di campionamento e sulla geometria. Teoricamente, con poche modifiche, tale programma è in grado di analizzare tutte le strutture simili di dati. Come primo passo sono estratti i parametri relativi alle traiettorie direttamente tramite ANSYS Fleunt[®] in formato xml, successivamente tramite ANSYS CFD-Post[®] si carica il pacchetto dati e le informazioni sulle traiettorie. Si procede quindi all'estrazione manuale dei file di testo in formato csv ognuno con le informazioni incolonnate relative a un parametro estratto sulle traiettorie di una particella; lo stesso file contiene informazioni di tutte le traiettorie assieme nella stessa colonna. In Figura 3.13 è riportato uno schema generale del post-processing.

Figura 3.13: Organizzazione dati nel post processing

La necessità è quella di organizzare i dati in modo che per ogni variabile siano facilmente consultabili le informazioni su tutte le particelle. Si sceglie quindi la struttura a celle di array. Per la variabile generica *Data* si vuole che ogni cella sia occupata del vettore di dati di una particella in tutte le posizioni occupate lungo la traiettoria. Nel file csv ad ogni variabile *Data* è invece associato un valore per ogni posizione della particella di tutte le traiettorie. Occorre quindi per prima operazione separare le traiettorie di ogni particella, successivamente ordinarle in array. Il discriminante unico possibile è il raggiungimento della quota minima nel reattore nella variabile y, tramite questo è possibile separare le differenti traiettorie. Una volta separate e ordinate in celle di array, sarà possibile estrarre i dati per ogni lunghezza di campioanmento. Oltre questo si campionano solo le particelle che enrano nella sonda, ovvero che per la lunghezza di campionamento desiderata hanno una posizione la cui distanza dall'asse del reattore è minore del raggio della sonda di campionamento (Figura 3.14).

Figura 3.14: Diagramma di flusso nel post processing Questo processo di ordinamento ha fini di poter estrarre gli stessi dati spe-

Figura 3.15: Esempio di distribuzione delle particelle per le varie lunghezze di campionamento

rimentali estraibili da EFR, ovvero tempi di residenza e VM_p . Vengono letti soltanto i dati che:

- $L = L_{camp}$
- $\sqrt{X_p^2 + Z_p^2} \le R_{sonda}$

Il procedimento è riprodotto ogni L_{camp} desiderata. Si forniscono per ogni caso di temperatura nominale un gruppo di 5 lunghezze di campionamento, stimate tramite velocità media dei fumi con i tempi ideali di residenza. Queste, con buona approssimazione, sono le lunghezze utilizzate nelle prove sperimentali (Tabella 3.18).

t_{ideale}	$1173~\mathrm{K}$	$1373~{ m K}$	$1573~\mathrm{K}$
[ms]		L [mm]	
25	55	53	65
50	110	107	130
100	220	215	261
150	331	322	392
250	552	537	654

Tabella 3.18: Lunghezze di campionamento

in queste condizioni sono campionate traiettorie molto eterogenee. A causa della fluidodinamica interna i tempi di residenza delle particelle varieranno molto rispetto al caso ideale, calcolato con l'equazione 3.16. In particolare il gruppo di particelle campionato sarà caratterizzato da un valore medio della variabile temporale ed una sua deviazione standard (Figura 3.15). Questo fatto si ripercuote di conseguenza su tutte le variabili estratte.

La frazione di codice utilizzato per il calcolo è la seguente:

```
t_camp_Bonv_=[0.025,0.05,0.1,0.15,0.25]; %%Lunghezze ideali
L_camp_Bonv=[%%lunghezze selezionate%%];
PVMF_camp_Bonv=[%%VM exp selezioante%%];
Conv_camp_Bonv=[%% conversioni exp selezionate %%];
Conv_s_max=%%conversione massima scelta%%
for b=1:length(L_camp_Bonv);
    count_part(b)=1;
    for a=1:length(L_f)
        if length(L_f{a})==0
        else
        indice_L = find(-L_f{a}-1.35976 \leq L_camp_Bonv(b));
        indice_L=indice_L(end);
        if 2*Raggio_f{a}(indice_L) <= 0.0275
            count_part(b) = count_part(b)+1;
            t_camp_conzeri(a)=t_f{a}(indice_L);
            L_camp_conzeri(a) = -L_f\{a\}(indice_L) - 1.35976;
            T_camp_conzeri(a) = T_f\{a\}(indice_L);
            D_camp_conzeri(a)=D_f{a}(indice_L);
            PVMF_camp_conzeri(a)=PVMF_f{a}(indice_L);
            Conv_camp_conzeri(a)=(Conv_s_max-PVMF_f{a
            }(indice_L))/(1-PVMF_f{a}(indice_L));
        else
        end
        end
    end
    indice_nonzeri=find(L_camp_conzeri~=0);
    for c=1:length(indice_nonzeri)
        t_camp(c)=t_camp_conzeri(indice_nonzeri(c));
        L_camp(c)=L_camp_conzeri(indice_nonzeri(c));
        T_camp(c)=T_camp_conzeri(indice_nonzeri(c));
        PVMF_camp(c)=PVMF_camp_conzeri(indice_nonzeri(c));
        D_camp(c)=D_camp_conzeri(indice_nonzeri(c));
       Conv_camp(c)=Conv_camp_conzeri(indice_nonzeri(c));
    end
    t_medio(b)=mean(t_camp);
    t_std(b)=std(t_camp);
    T_media(b)=mean(T_camp);
    T_std(b)=std(T_camp);
    L_media(b)=mean(L_camp);
    Conv_media(b)=mean(Conv_camp);
    Conv_std(b)=std(Conv_camp);
```

```
PVMF_media(b)=mean(PVMF_camp);
PVMF_std(b)=std(PVMF_camp);
clearvars L_camp t_camp L_camp_conzeri t_camp_conzeri
end
```

Il procedimento per selezionare la temperatura di post processing e i dati relativi è manuale.

Per quanto riguarda la conversione nel post processing non si ricorre a simulare il metodo ash tracer, ma utilizziamo una formulazione diretta in cui, per definizione, si ha:

$$X_{devo} = 1 - \frac{m}{m_0} \tag{3.19}$$

Ovvero la conversione è la variazione relativa di massa durante la devolatilizzazione, con le ipotesi che la quantità di ceneri e char totali resti costante. Per le ceneri questa ipotesi è generalmente valida, mentre per il char consideriamo trascurabile la sua ossidazione dati i ridotti tempi di residenza delle particelle nel tratto di campionamento. Si pone quindi $(Y_{VM} = VM)$:

$$\begin{cases} Y_{ash} + Y_{char} + Y_{VM} = 1\\ m_0 = (Y_{ash,0} + Y_{char,0} + Y_{VM_0})m_0\\ m = (Y_{ash} + Y_{char} + Y_{VM})m \end{cases}$$
(3.20)

$$m(Y_{ash}+Y_{char}) = m_0(Y_{ash,0}+Y_{char,0}) \to (1-Y_{VM_0})m_0 = (1-Y_{VM})m \to \frac{m}{m_0} = \frac{1-Y_{VM_0}}{1-Y_{VM}}$$

Per cui in definitiva abbiamo che:

$$X_{devo} = \frac{VM_{\infty} - VM}{1 - VM} \tag{3.21}$$

Questo ci permette di risparmiare tempo di lavoro, in quanto non occorre estrarre anche la frazione di ceneri per calcolare la conversione ma è sufficiente la frazione di volatili (PVMF o VM) già estratta per altre necessità.

Un importante valore da calcolare è l'Heating Ratio, definito come:

$$HR = \frac{\partial T}{\partial t} \tag{3.22}$$

Per avere un valore significativo nella nuvola di particelle esaminata, si calcola per ogni traiettoria l'HR locale ad ogni timestep, con risoluzione pari a quella impostata in DPM model e dell'ordine di 10^{-5} m. Lo stimatore che risulta approssimare meglio la rampa di riscaldamento è la media degli HR medi per ogni particella. A causa della fluidodinamica infatti le particelle vengono riscaldate in modo non uniforme con dei picchi molto elevati di potenza che portano ad avere heat rate massimi molto distanti dal valore medio, che invece ha una componente comune per tutte le particelle. L'ordine di grandezza registrato è $10^4 K/s$ per tutte le prove. In appendice A è riportato il programma utilizzato con ulteriori commenti.

Capitolo 4

Derivazione cinetiche di devolatilizzazione

4.1 Considerazioni preliminari

Per comprendere le scelte del metodo proposto in questo testo per l'elaborazione dei risultati cinetici, sono necessarie alcune osservazioni preliminari. Le lunghezze di campionamento sono calcolate dai tempi di residenza desiderati mediante l'equazione:

$$L_{camp} = v_{media,fumi} \cdot \tau_{res,id} \tag{4.1}$$

Ovvero, con ipotesi di isocineticità del gas di trasporto del carbone e dei fumi, viene stimata la distanza dalla sonda di iniezione percorsa assialmente per avere i tempi di residenza desiderati. Nella realtà il gas di trasporto ha velocità minime da rispettare per assicurare il trascinamento del polverino, mentre la quantità di gas combusti è fissata dal sistema bruciatore e dalle specie e temperature configurate. Il risultato di questo accoppiamento è che l'iniezione ha in genere velocità diversa rispetto ai fumi (circa doppia). Le particelle dunque arriveranno alla distanza stabilita in un tempo minore. Un altro fenomeno importante è che la turbolenza influenza le traiettorie delle particelle modificando il loro tempo di permanenza tramite ricircoli e deviazioni vorticose (ad esempio attorno alla sonda di ingresso, si veda Figura 4.1).

Raggiungere l'esatto tempo di residenza voluto da condizione isocinetica, campionandole particelle a parità di posizione assiale, risulta dunque improbabile a causa di questi fattori. Tuttavia i dati sperimentali possono essere confrontati con i dati da CFD effettuando un prelievo di dati nelle stesse condizioni, assegnando ai dati sperimentali il tempo di residenza medio ottenuto da CFD (Figura 4.3 e 4.2).

Il getto di carbone risulta inoltre deviato dall'asse centrale nel corso dell'iniezione, a causa degli urti con le pareti della sonda di ingresso. Nel corso della sperimentazione questo risulta un problema parziale: la sonda di prelievo è di tipo assiale, per raccogliere un campione sufficientemente grande con un getto di carbone disassato è sufficiente aumentare il tempo di campionamento (circa 5 minuti con iniezione di circa 110 g/h di polverino). Nelle prove CFD questo fatto cau-

Figura 4.1: Vorticosità attorno alla sonda di iniezione, caso 1173 K, non reattivo. Vettori modulo di velocità in [m/s]

Figura 4.2: Tempi di residenze sulle traiettorie delle particelle per le tre temperature, da sx: 1173K ; 1373K ; 1573 K. Tempo in secondi.

sa un problema rilevante in quanto il numero di traiettorie computate è limitato dalle capacità computazionali a disposizione a 1600 unità, oltre all'allargamento del getto dovuto alle forze fluidodinamiche (Figura 4.4), una sua deviazione dall'asse riduce ulteriormente il campione prelevato allontanandosi dalla sezione di iniezione, diminuendo il campione statistico.

Un'ulteriore osservazione è dovuta alle capacità di riscaldamento del reattore IPFR. La progettazione dell'apparato era studiata per poter ricavare le cinetiche in

Figura 4.3: Esempio di differenza tra tempi ideali e campionati

regime isotermo, l'isotermicità del reattore è assicurata da un sistema a feedback con pirometri, in modo tale che si registrassero differenze di temperatura di qualche decina di grado al massimo ,nel flusso di gas primario, rispetto alla temperatura nominale. Nella zona della devolatilizzazione, che inizia già a temperature di poco superiori a quella ambiente, si ha invece una rampa di temperatura (Figura 4.5) in cui le particelle arrivano a perdere una percentuale importante della materia volatile (dati sperimentali per 0.005 < t < 0.25 s) in una zona non isoterma con i fumi combusti del reattore.

L'ultima considerazione si basa sul fatto che i dati sperimentali elaborati si riferiscono a condizioni *air-oxy*, ovvero la combustione dei fumi avviene utilizzando aria come comburente, mentre la denominazione *oxy* è legata all'anidride carbonica che compone il gas di trasporto. Una prova *oxy-oxy* è invece costituita da condizioni controllate anche nel comburente a monte del bruciatore, con percentuali di ossigeno ben definite ($O_2 \ 0\%$, 3%, 5%, $CO_2 > 20\%$) per raggiungere condizioni più simili a quelle di un sistema in cui i gas esausti vengono ricircolati. Nel nostro caso le due condizioni risultano molto vicine, dato che il gas di trasporto è CO_2 e il breve tempo in cui avviene la devolatilizzzazione (<0.25 s) impedisce a quantità di ossigeno importanti di raggiungere il polverino, verificando di fatto le condizioni *oxy-oxy*, oggetto di questa tesi. Dalla Figura 4.6 si nota infatti che nella zona di formazione dei volatili di hanno concentrazioni di CO_2 e O_2 simili a quelle sopra descritte.

Si concentra quindi l'attenzione su questi fenomeni per elaborare una strategia di calcolo delle cinetiche chimiche, corrette tramite queste osservazioni; l'obiettivo è comunque quello di ottenere una previsione più possibile accurata dei dati sperimentali riproducendo le condizioni al contorno della sperimentazione.

Figura 4.4: Velocità assiale della fase gas ad Y=0.05 m (immagine sotto) e Y=0.5 m (immagine sopra) dall'iniezione [m/s]

Figura 4.5: Esempio di storia termica con rampa, scala cromatica basata sui diametri iniziali delle particelle $[\mu m]$

Figura 4.6: Frazione massica di CO_2 (sx), O_2 (centro) e volatili (dx) nella zona di devolatilizzazione

4.2 Procedura di lavoro

L'obiettivo di questa tesi è sviluppare una metodologia per il calcolo di parametri di modelli cinetici quali lo SFOR e i suoi derivati, tali che una volta implementati permettano di riprodurre tramite simulazione i valori sperimentali in oggetto. I dati disponibili sono costituiti da valori di VM_p in funzione del tempo di residenza. Dopo aver discusso l'effetto della fluidodinamica sulle traiettorie campionate, possiamo affermare che non è possibile conoscere sperimentalmente a priori l'esatto tempo di residenza delle particelle campionate. La stessa considerazione vale per le storie termiche, che di fatto influenzano la materia volatile rilasciata. Questo fattore influenza notevolmente il calcolo delle cinetiche chimiche. Risulta quindi necessario completare i dati sperimentali con quelli ottenuti dalla simulazione numerica al fine di ottenere una migliore stima dei tempi di residenza e delle storie termiche (o tasso di riscaldamento, HR). I modelli che andremo ad indagare saranno quindi costituiti da basso costo computazionale (modelli del primo ordine), al fine di ottenere costi computazionali accettabili. L'influenza mutua tra campo di moto, storia termica e cinetica chimica suggerisce una procedura di tipo iterativo.

Come stadio iniziale utilizziamo una simulazione non reattiva, estraendo da lì i primi tempi di residenza medi ed HR medi per le particelle campionate. Procediamo quindi a calcolare la cinetica ottimizzata per il determinato modello devo utilizzando i valori di VM_p sperimentale con i tempi ed HR da CFD, calcolati da un sistema non reattivo (iterazione 0). I nuovi valori di t_{CFD} ed HR_{CFD} estratti dalla nuova simulazione saranno diversi a causa della interazione con le reazioni di devolatilizzazione, quindi si continua ad iterare ricalcolando i parametri cinetici A ed E per il nuovo caso. Questo processo porta alla convergenza di una soluzione

che lega tempi e costanti cinetiche relative ad un particolare modello chimico, deve quindi essere ripetuto per ogni caso esaminato per n iterazioni (Figura 4.7).

Figura 4.7: Metodo di iterazione delle cinetiche chimiche con CFD: SFOR base (1) e SFOR modificato (metodo 2)

Per i modelli compatibili con la metodologia iterativa, si distinguono lo SFOR base (metodo 1) ed una sua modifica (metodo 2), di seguito discussa. Ai fini di confronto, è stato implementato anche il metodo SFOR B-T.

4.2.1 SFOR con ipotesi di temperatura delle particelle costante

Un primo approccio generalmente seguito in letteratura per ricavare dati cinetici da EFR è quello di considerare la particelle a temperatura costante pari a quella nominale del reattore. Si utilizza un fitting tramite Arrhenius plot per ricavare le costanti cinetiche, come riportato precedentemente (sottosezione 2.0.1). A partire dai dati sperimentali, si suppone quindi che i volatili fuoriescano seguendo una legge esponenziale del tipo 2.6. Tramite post processing si estraggono quindi i tempi da CFD. Il campo di volatili finale è ricavato a partire dallo Yield Factor, YF, ovvero il rapporto tra la massima quantità di volatili estraibili sperimentalmente in scala sperimentale e in scala da laboratorio. Tra queste due scale di processo, le differenze principali sono dettate dal tasso di riscaldamento e temperatura raggiunta nel reattore. Nel caso della proximate analisys infatti l'heating rate è dell'ordine di $10^3 K/s$ con una temperatura massima raggiunta inferiore ai 1100 K, nel campo sperimentale (IPFR) invece si hanno HR dell'ordine di 10^4 con temperature finali sempre idealmente superiori a 1100 K. Come conseguenza , in scala pilota, avremo una quantità di volatili estraibile maggiorata del fattore moltiplicativo YF. Nel nostro caso il campo di volatili a $t = \infty$ è la conversione massima. Si riportano in Tabella 4.1 i parametri utilizzati per il modello SFOR.

Tabella 4.1: Yield Factor per lo SFOR semplice

VM proximate	Temperatura massima	Conversione massima	YF
[-]	[K]	[-]	[-]
0.403	1573	0.5524	1.38

Durante l'analisi dei dati disponibili è stato notato che non si otteneva un valore costante del logaritmo della costante cinetica, da cui poter ricavare un valore medio che sia un corretto stimatore. Dai risultati ottenuti durante le fasi di controllo è stato osservato che con tale procedimento si ottiene un valore poco accurato della costante k, in quanto i dati disponibili non aderiscono bene alla forma esponenziale. Si ripete quindi il procedimento utilizzando un fitting non lineare direttamente sui dati, migliorando la precisione di calcolo, tramite il seguente codice Matlab:

```
t_1173 = [\% \% CFD DATA\%\%];
t_1373=[%%CFD DATA%%];
t_1573=[%%CFD DATA%%];
PVMF_1173=[%%EXP DATA%%];
PVMF_1373=[%%EXP DATA%%];
PVMF_1573=[%%EXP DATA%%];
g1173 = fittype('(0.403*1.38)*exp(
-k*t_1173)', 'independent', 't_1173', 'dependent', 'PVMF_1173');
arrh1173 = fit(t_1173', PVMF_1173', g1173);
g1373 = fittype('(0.403*1.38)*exp(
-k*t_1373)', 'independent', 't_1373', 'dependent', 'PVMF_1373');
arrh1373 = fit(t_1373', PVMF_1373', g1373);
g1573 = fittype('(0.403*1.38)*exp(
-k*t_1573)', 'independent', 't_1573', 'dependent', 'PVMF_1573');
arrh1573 = fit(t_1573', PVMF_1573', g1573);
  k(1) = coeffvalues(arrh1173);
  k(2) = coeffvalues(arrh1373);
  k(3) = coeffvalues(arrh1573);
  for i=1:length(T)
     unT(i)=1/T(i);
     lnk(i)=log(k(i));
  end
g = fittype('m*unT+q','independent','unT','dependent','lnk');
linfit = fit(unT', lnk', g);
mq=coeffvalues(linfit);
A = \exp(mq(2));
E=-mq(1)*8.314472; %[kJ/mol]
```


Figura 4.8: Differenze tra cinetiche SFOR calcolate con media semplice e con interpolazione non lineare

Le differenze tra i due tipi di fitting sono comuquue minime, riportate in Tabella 4.2, 4.3 e in Figura 4.8.

	1173 K	1373 K	$1573~\mathrm{K}$
k1	7.51	5.12	9.19
k2	5.39	6.16	19.61
k3	5.80	9.06	14.00
k4	5.19	8.90	10.73
k5	5.42	5.36	9.14
kmedio	5.86	6.92	12.53

Tabella 4.2: Costanti k nel caso calcolo con media semplice

Tabella 4.3: Costanti k nel caso calcolo con interpolazione non lineare dai dati sperimentali

	1173 K	1373 K	$1573~\mathrm{K}$
k	2.98	5.58	12.83

Si sceglie di utilizzare il metodo con fitting non lineare per comodità.

Una volta ottenuta la coppia A,E necessaria al modello, tramite simulazione reattiva si procede ad iterare il calcolo secondo lo schema in Figura 4.9.

La richiesta in input al modello è la storia temporale (ossia il di tempo di residenza in funzione della posizione) delle particelle da CFD corrispettiva ai punti di campionamento, in uscita si ha la coppia A,E che approssima meglio i dati sperimentali tramite SFOR base.

L'implementazione nel solver è automatica e disponibile dall'interfaccia grafica. Il calcolo avviene eseguendo il modello utilizzando le variabili locali e istantanee della cella e della particella nel codice a volumi finiti:

Figura 4.9: Schema metodologico per lo SFOR semplice

$$\begin{cases} m_p(t) = m_{p,0} \cdot (Y_{CHAR} + Y_{ASH} + Y_{VM}) \\ Y_{VM} = V M_{\infty} exp(-Ae^{-\frac{E}{RT_p}}t) \end{cases}$$
(4.2)

- m_p è la massa della particella [kg]
- T_p è la temperatura della particella [K]
- t è il tempo corrispondente alla posizione della particella nella cella di calcolo [s]
- Y_i sono le i esime specie massiche [-]

Mentre il fitting dei dati sperimentali viene effettuato considerando $T = T_p$ costante alla temperatura del reattore, nell'implementazione del modello su CFD la T_p è aggiornata per ogni posizione della traiettoria, per cui utilizza E,A calcolati con storia isoterma seguendo particelle che possono avere temperatura variabile.

4.2.2 SFOR da ipotesi di riscaldamento costante delle particelle

Il modello SFOR semplice risolve l'equazione differenziale con temperatura costante, ottenendo tramite fitting della stessa sui dati sperimentali i parametri cinetici. Nel caso specifico si è tuttavia osservato che, nella zona della sperimentazione, la temperatura è ancora lontana da quella nominale (Figura 4.10).

L'idea a questo punto è quella di migliorare il fitting dei parametri dello SFOR base utilizzando un profilo di temperatura lineare con il tempo (riscaldamento costante), risolvendo con questa l'equazione differenziale e con la soluzione si calcolano i parametri A ed E allo stesso modo del caso precedente. Prendendo spunto dalla modifica di [Biagini & Tognotti, 2014] si utilizzano nel fitting tre valori diversi per il campo volatile a infinito dipendenti dalle tre temperature, utilizzando per ogni caso il valore della massima conversione ottenuta sperimentalmente (Tabella 4.4).

Per il caso a 1173 K, data la conversione in IPFR minore di quella da proximate, si pone YF=1. Il vantaggio di questo metodo dovrebbe essere la semplicità dello SFOR a livello di implementazione su CFD unito ad una precisione maggiorata, calcolando i parametri tramite rampa di temperatura ed utilizzando per

Figura 4.10: Storia termica a 1173K ,1373K e 1573K, simulazioni non reattive

Tabella 4.4: Valori di YF utilizzati nel modello

	X_{max}	YF
1173 K	0.3499	1.00
1373 K	0.4859	1.20
1573 K	0.5524	1.38

questo non l'equazione 2.6 ma una sua forma più particolare. Essendo la devolatilizzazione in zona rampa, si prende in considerazione solo questo andamento nella soluzione dell'equazione differenziale, andando a trascurare il rallentamento del riscaldamento finale (raggiungimento della temperatura nominale del reattore).Questo fatto inciderà poco sulla soluzione in quanto la VM liberata arriva al suo valore limite prima della fine della rampa reale. Si pone quindi:

$$\begin{cases} T_p = HR \cdot t + T_0 \\ \frac{\partial VM}{\partial t} = Ae^{\frac{-E}{RT_p}} (VM_{\infty} - VM) \end{cases}$$
(4.3)

Si fa qui riferimento alla volatile matter in uscita dalla particella al tempo t. Si procede quindi a risolvere analiticamente l'equazione tramite integrazione:

$$\begin{cases} \frac{dVM}{VM_{\infty} - VM} = Ae^{\frac{-E}{RT_{p}}}dt\\ VM_{\infty} - VM = \tilde{VM}\\ -\frac{-d\tilde{VM}}{\tilde{VM}} = Ae^{\frac{-E}{RT_{p}}}dt \end{cases}$$
(4.4)

Si procede quindi a integrare il termine destro e sinistro:

$$-\ln(VM_{\infty} - VM) = A \int exp(\frac{-E}{R \cdot (HR \cdot t + T_0)})dt$$
$$x = \frac{-E}{R \cdot (HR \cdot t + T_0)} \quad \frac{\partial t}{\partial x}dx = dt \quad dt = \frac{E}{R \cdot HR}\frac{1}{x^2}dx$$
$$-\ln(VM_{\infty} - VM) = \frac{A \cdot E}{R \cdot HR}\int \frac{e^x}{x^2}dx \tag{4.5}$$

Si risolve il termine a destra per parti secondo lo schema:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx \qquad f(x) = e^x \qquad g'(x) = \frac{1}{x^2}$$

Il risultato è il seguente:

$$-\ln(VM_{\infty} - VM) = \frac{A \cdot E}{R \cdot HR} \left(\int \frac{e^x}{x} dx - \frac{e^x}{x}\right)$$
(4.6)

L'integrale sopra è risolto numericamente tramite una funzione nota, l'Esponenziale Integrale (EI), definito come:

$$EI(x) = \int_{-\infty}^{x} \frac{e^{a}}{a} da$$

Gli estremi di integrazione sono:

$$\begin{cases} t \to 0 & x \to \frac{-E}{RT_0} (<0) \\ t \to \infty & x \to 0 \end{cases}$$
(4.7)

La forma integrata, con le dovute sostituzioni, risulta dunque:

$$-\ln(VM_{\infty} - VM) = \frac{A \cdot E}{R \cdot HR} (EI(\frac{-E}{R \cdot (HR \cdot t + T_0)}) - \frac{e^{\frac{-E}{R \cdot (HR \cdot t + T_0)}}}{\frac{-E}{R \cdot (HR \cdot t + T_0)}}) + c_1$$

La condizione iniziale per il calcolo della costante C_1 è:

$$\begin{cases} t = 0 \to VM(0) = 0\\ -ln(VM_{\infty}) - \frac{A \cdot E}{R \cdot HR} (EI(\frac{-E}{R \cdot T_0}) - \frac{e^{\frac{-E}{R \cdot T_0}}}{\frac{-E}{R \cdot T_0}}) = c_1 \end{cases}$$

La forma finale per lo SFOR modificato (SFOR rampa) è, per la VM liberata dalla particella:

$$VM(t) = VM_{\infty}(1 - exp[-\frac{AE}{R \cdot HR}(EI(-\frac{E}{R(T_{0} + HR \cdot t)}) + \frac{R(T_{0} + HR \cdot t)}{E}exp(-\frac{E}{R(T_{0} + HR \cdot t)}) - EI(-\frac{E}{RT_{0}}) - \frac{RT_{0}}{E}exp(-\frac{E}{RT_{0}}))])$$
(4.8)

Mentre per la VM rimanente nella particella:

$$VM_p(t) = VM_{\infty}exp\left[-\frac{AE}{R \cdot HR}\left(EI\left(-\frac{E}{R(T_0 + HR \cdot t)}\right) + \frac{R(T_0 + HR \cdot t)}{E}exp\left(-\frac{E}{R(T_0 + HR \cdot t)}\right) - EI\left(-\frac{E}{RT_0}\right) - \frac{RT_0}{E}exp\left(-\frac{E}{RT_0}\right)\right)\right]$$

$$(4.9)$$

Per il fitting con i dati sperimentali, i parametri di input da CFD risultano la storia termica, riassunta tramite HR_{CFD} , e i tempi di residenza delle particelle t_{CFD} . In uscita avremo i parametri A ed E. Si procede quindi con lo schema iterativo di Figura 4.11.

Figura 4.11: Schema metodologico per lo SFOR rampa

La scelta dell'heating ratio avviene tramite post-processing con Matlab. In primo luogo la rampa di riscaldamento avviene in tutti i casi per un tempo compreso tra 0 e 0.2 s. In tutti i casi inoltre si raggiunge un valore pari all'80% della temperatura nominale dopo 0.05 s, mentre prima di 0.01 si hanno forti interazioni fluidodinamiche con variazioni molto rapide di temperatura dovute alla vorticosità nelle zone di iniezione. In questo intervallo risulta inoltre pressoché costante HR, quindi siamo effettivamente in zona di riscaldamento costante. Per ogni particella si procede ad effettuare una media tra [0.01 - 0.06] s del valore di HR. Successivamente si estrae la media dei valori medi come stima per l'HR globale, per ogni caso questo risulta approssimare sufficientemente bene la rampa di temperatura (Figura 4.12).

La sorgente Matlab che esegue questo compito è la seguente:

```
for a=1:length(T_f)
for f=1:length(t_f{a})
if t_f{a}(f)<0.06 & t_f{a}(f)>0.01
HR_test=(T_f{a}(f+1)-T_f{a}(f))/(t_f{a}(f+1)-t_f{a}(f));
if HR_test==inf | HR_test<=0
else
HR_(f)=HR_test;
end
else</pre>
```

```
end
end
indice_nanzeri=find(isnan(HR_)==0 & HR_~=0);
HR=HR_(indice_nanzeri);
HRmean(a)=mean(HR);
HRmax(a)=max(HR);
end
HR_meanofmean=mean(HRmean);
HR_std=std(HRmean);
```


Figura 4.12: Rappresentazione della media degli HR vs rampa

In seguito occorre eseguire il fitting su tutti i dati sperimentali a disposizione, per trovare una coppia A,E che riassuma la cinetica per le tre temperature contemporaneamente. L'obiettivo è calcolare i parametri cinetici che minimizzino la deviazione standard dai dati, tale che (per l'i-esimo set di dati e il j-esimo dato del set):

$$\begin{cases} [A, E] \iff \min \sqrt{\sum_{i=1}^{3} \sum_{j=1}^{set} [VM_{CFD}(VM_{\infty,i}, HR_i, t_{i,j}) - VM_{exp,i,j}]^2} \\ E_{min} \le E \le E_{max} \qquad E > 0 \\ A_{min} \le A \le A_{max} \qquad A > 0 \end{cases}$$

$$(4.10)$$

I vincoli per A ed E sono stati posti osservando i parametri cinetici dello SFOR, cercando risultati attorno a quell'ordine di grandezza, mentre il limite inferiore è stato posto a zero. In ogni caso si è lasciata all'algoritmo la più ampia libertà di ricerca possibile, variando i limiti di conseguenza. Dopo aver scritto il file *func-tion* contenente la funzione obiettivo, si utilizzano le seguenti righe di codice per la minimizzazione:

C = [0 1; 0 -1; 1 0; -1 0];

```
b=[100000;-0000;10000;-000]; %Emax,-Emin, Amax,-Amin
lb = [];
ub = [];
Aeq = [];
beq = [];
nonlcon =[]; %non necessaria
x0=[500 10000]; %A,E
%E=J/mol Emin<E<Emax A=1/s Amin<A<Amax
options = optimoptions(@fmincon,'MaxIter',10000,'TolX',
,1e-30,'TolFun',1e-30,'Display','iter','Algorithm'
,'interior-point','hessian','lbfgs','MaxFunEvals',100000);
[valAE,fval,exitflag]=fmincon(@functionMIN_rampa,x0,C,b,Aeq,beq,lb,ub,nonlcon,options);</pre>
```

Si utilizza per semplicità l'algoritmo Interior point, dato che arriva alle tolleranze specificate con un basso numero di iterazioni (<150), tuttavia il risultato non cambia né al variare di questo né al variare dello starting point x0. Utilizzando una diversa funzione obiettivo non si hanno significative variazioni dei parametri calcolati.

In alcuni casi, per migliorare il fitting, si è scelto di eliminare l'ultimo dato in ordine temporale per ognuno dei tre set di dati.

L'implementazione nel solver CFD avviene semplicemente tramite la sostituzione dei parametri A ed E nel modello SFOR a disposizione, in quanto la modifica riguarda esclusivamente il metodo con cui sono interpolati i dati.

4.2.3 SFOR B-T da ipotesi campo dei volatili finali funzione della temperatura

Un diverso approccio rispetto i precedenti è quello di supporre il campo dei volatili a tempo infinito come una funzione nota della temperatura. Questo rappresenta il fatto che con l'aumentare della temperatura e di HR nominale del reattore, crescono i valori di conversione e volatili liberati. Rispetto allo SFOR base si pone:

$$\begin{cases} \frac{\partial VM}{\partial t} = k(VM_{\infty} - VM) \\ VM_{\infty} = 1 - e^{-DI\frac{T_r}{T_{st}}} \end{cases}$$
(4.11)

La risoluzione dell'equazione differenziale è effettuata considerando ancora la T constante pari a quella nominale del reattore, in tal modo l'equazione differenziale è facilmente risolvibile. A posteriori è inserita la funzione $VM_{\infty}(T)$.

$$VM(t) = (1 - e^{-DI\frac{T_r}{T_{st}}}) \cdot exp(-Ae^{-\frac{E}{RT_r}}t)$$
(4.12)

I valori A,E ed ID sono precalcolati da [Biagini & Tognotti, 2014], come già espresso in 2.2.

Questo approccio è legato al fatto che una soluzione analitica per la 4.11 non è possibile con una variazione lineare con il tempo della temperatura:
$$\begin{cases} ln(VM_{\infty} - VM) = \int (1 - e^{-DI\frac{T(t)}{T_{st}}}) \cdot exp(-Ae^{-\frac{E}{RT(t)}}t)dt \\ T(t) = HR \cdot t + T_0 \end{cases}$$
(4.13)

Per quanto riguarda l'implementazione e l'uso nel solver, occorre costruire una specifica *User Defined Function* (UDF) da agganciare alla custom law nel DPM model all'interno del solver:

```
#include "udf.h"
DEFINE_DPM_LAW(devo_BT, p, coupled)
{
        real temp_st=1223; /*proximate analysis standard
         temperature*/
        real di=0.6745; /*devolatilization index*/
        real a=430; /*pre-exponencial factor*/
        real e=39439*1000; /*activation energy*/
        real k=a*exp(-e/(UNIVERSAL_GAS_CONSTANT*P_T(p)));
         /*arrehnius law*/
        real ash_fraction=1.-DPM_CHAR_FRACTION(p)
        -DPM_VOLATILE_FRACTION(p);
    real char_fraction=DPM_CHAR_FRACTION(p);
        real VMinf=(1-exp(-di*P_T(p)/temp_st)); /*legge BT*/
        DevolatilizationLaw(p);
        P_MASS(p) = P_INIT_MASS(p) * VMinf * (exp(-k*P_DT(p)))
        + P_INIT_MASS(p)*(char_fraction+ash_fraction);
}
```

Il seguente programma in c permette di implementare:

$$\begin{cases} m_p(t) = m_{p,0} \cdot (Y_{CHAR} + Y_{ASH} + Y_{VM}) \\ Y_{VM} = (1 - e^{-DI \frac{T_p}{T_{st}}}) exp(-Ae^{-\frac{E}{RT_p}}t) \end{cases}$$
(4.14)

Dentro il risolutore la storia termica è aggiornata secondo le temperature delle particelle variabile nel tempo.

Per procedere ad una seconda iterazione è necessario rieseguire il fitting sui dati sperimentali di Biagini e Tognotti con i nuovi tempi ed HR da CFD, tuttavia in assenza del codice per eseguirlo non è stato possibile. Questo modello non è soggetto ad iterazione e le correlazioni fornite per il calcolo di A,E ed ID dal parametro O/C strutturale sono ritenute accettabili.

Capitolo 5

Risultati delle simulazioni CFD

5.1 Simulationi non reattive (iteratione 0)

Come primo step si utilizzano le simulazioni non reattive per calcolare tempi ed HR da CFD, quindi i parametri cinetici che costituiranno l'iterazione 0 del processo.

Il modello nel solver è impostato come per i casi reattivi eccetto per la presenza di sole particelle inerti. Il diametro di queste rimane costante e non sviluppano calore a causa della combustione dei volatili e devolatilizzazione. Il campo di moto non è quindi influenzato dalle reazioni chimiche. Si riportano le immagini relative al riscaldamento, per confrontare le tre diverse temperature nominali (Figura 5.1).

Figura 5.1: Campo di temperatura fase gas a 1173K ,1373K e 1573K, simulazioni non reattive,piano di simmetria, temperatura in Kelvin

Ci aspettiamo quindi che durante la devolatilizzazione il caso con temperatura nominale maggiore sia molto vicino all'isotermia tra particelle e reattore. Al crescere della temperatura nominale del reattore cresce anche la temperatura delle particelle all'interno della sonda di iniezione. La devolatilizzazione risulta quindi avere valori plausibilmente non trascurabili in un tratto non campionato sperimentalmente. Data l'assenza di dati sperimentali sulla temperatura delle pareti interne della sonda, si introduce un problema modellistico di entità difficilmente stimabile. Le simulazioni CFD restituiscono i seguenti risultati (Tabella 5.1):

			1	173 K]		
t_id	L_id	t	t_std	L_CFD	Т	T_std	n Part		HR	HRstd
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]		K/s]	[K/s]
0.025	0.055	0.0340	0.1144	0.054	686.2	112.9	1205		.3164	2648
0.05	0.110	0.0496	0.1501	0.109	755.4	135.1	696			
0.1	0.221	0.0667	0.1282	0.219	826.8	183.7	478	1		
0.15	0.331	0.0885	0.0839	0.329	852.1	209.1	379	1		
0.25	0.552	0.1495	0.0184	0.550	863.0	221.6	317	1		
			1	373 K						
t_id	L_id	t	t_std	L_CFD	Т	T_std	n Part		HR	HRstd
s	[m]	s	s	[m]	[K]	[K]	[-]		K/s]	[K/s]
0.025	0.054	0.0439	0.0324	0.053	914.3	94.0	1540	1	2408	2422
0.05	0.108	0.0589	0.0337	0.106	1100.4	95.4	1410			
0.1	0.215	0.0903	0.0385	0.213	1203.8	116.5	1031			
0.15	0.323	0.1205	0.0095	0.321	1225.1	127.1	820]		
0.25	0.538	0.1866	0.0168	0.536	1234.2	132.9	552			
			1	$573 { m K}$						
t_id	L_id	t	t_std	L_CFD	Т	T_std	n Part		HR	HRstd
[s]	[m]	\mathbf{s}	[s]	[m]	[K]	[K]	[-]		K/s]	[K/s]
0.025	0.065	0.0416	0.0190	0.064	1076.6	91.5	1525	1	9421	2488
0.05	0.131	0.0554	0.0118	0.129	1267.1	117.7	1223			
0.1	0.262	0.0844	0.0136	0.260	1344.8	158.0	735			
0.15	0.392	0.1128	0.0137	0.391	1357.3	167.8	533]		
0.25	0.654	0.1714	0.0298	0.652	1362.3	172.3	351			

Tabella 5.1: Risultati simulazioni non reattive

La prima osservazione è che l'HR del caso a 1373K è minore che nel caso a 1173K. Questo fatto è dovuto sia alla diversa interazione del campo di moto sulle traiettorie, che ad un maggior numero di particelle campionate per il secondo caso: disperdendosi di meno, le particlelle vengono meno in contatto con i fumi a temperatura nominale, quindi subiscono un minore riscaldamento. Utilizzando questi tempi estratti da CFD, calcoliamo i parametri cinetici per i modelli iterativi (Tabella 5.2):

Tabella 5.2: Parametri cinetici, step 0

	SFOR semplice		SFOR Rampa
E [J/kmol]	$5.23 \cdot 10^{7}$	E [J/kmol]	$8.59\cdot 10^6$
A [1/s]	724.35	A [1/s]	31.44

Lo SFOR B-T, d'altro canto, non ha necessità di dati da simulazioni CFD. Tramite le correlazioni precedentemente descritte, si calcola quindi (Tabella 5.3):

Come ulteriore modello di confronto è utilizzato il CPD, modello strutturale. Tramite le correlazioni di Genetti si ricavano i parametri per il settaggio del solver

O/C	VMprox	DI	Ε	А
[-]	[-]	[-]	[J/kmol]	[1/s]
0.304	0.403	0.674	$3.38 \cdot 10^{7}$	1068.57

Tabella 5.3: Parametri cinetici per il modello B-T

. Il modello è già implementato e prevede l'immissione di alcuni parametri, che nel nostro caso hanno il seguente valore numerico (Tabelle 5.4 e 5.5):

Tabella 5.4: Valori delle frazioni massiche in entrata alle correlazioni di Genetti

Y_O	Y_C	Y_H	Y_{VM}
[%dry]	[%dry]	[% dry]	[%dry]
19.09	62.75	4.56	40.3

E' importante osservare che l'implementazione del codice CPD nel solver presenta alcune problematiche. In primo luogo la iterazione per il calcolo delle traiettorie tramite *DPM iteration* restituisce il messaggio:

CPDLast	two	gue	sses	for	v/f	wer	re: -Na	N -NaN	
CPD Conve	ergen	сe	not	achie	eved	in	Flash	distill	ation

Questo non causa l'arresto del programma, che prosegue successivamente le iterazioni. Risultati preliminari hanno mostrato che la soluzione CPD, nonostante questo, risulta fornire una soluzione plausibile al problema. In ogni caso, questo rallenta le simulazioni in parallelo a tal punto che una in modalità seriale itera più velocemente. Oltre che un maggior costo computazionale dovuto alla complicatezza del modello, si aggiunge la necessità di far elaborare il codice su un singolo core, che aumenta ulteriormente il tempo impiegato per la simulazione CFD. Si riportano nei paragrafi seguenti i risultati ottenuti con le simulazioni per i modelli in questione.

Un confronto ottimale tra le misure sperimentali e CFD sarebbe ottenuto utilizzando come valore delle ascisse per i grafici della conversione e della volatile matter la distanza di campionamento y, in questo modo tuttavia si perde la cognizione sulla coordinata temporale, più influente nei processi di fitting. Si calcolano le lunghezze di campionamento per ogni temperatura nominale ed a queste associamo il tempo derivante da CFD..

 $L_{camp} = t_{id} \cdot v_{fumi, isokin} \qquad ; \qquad t_{graph} = t_{CFD}$

Le deviazioni standard sui dati da simulazione sono relativi alla differenza nel parametro misurato dovuta alla diversa storia termica che, alla lunghezza di campionamento stabilita, subiscono le particelle. A traiettorie differenti corrispondono

Tabella 5.5: Valore numerico dei coefficienti per il modello CPD

c_0	$M_{w,\sigma}$	$M_{w,1}$	p_0	$\sigma + 1$
0.09226	65.9664	449.7332	0.532297	3.222737

differenti perdite di volatili e quindi conversioni. La rappresentazione ottimale per questo risulta essere un valore medio su tutte le particelle campionate ed una loro deviazione dalla media.

5.2 SFOR semplice, iter 1

Si riportano di seguito i risultati delle simulazioni per lo sfor semplice, itearazione 1, in Tabella 5.6, 5.7 ed in Figura 5.2, 5.3, 5.4 e 5.5.

				11	73 K					
t_id	L_id	t	t_{std}	L_CFD	Т	T_std	VM	VM_std	n Part	
[s]	[m]	[s]	$[\mathbf{s}]$	[m]	[K]	[K]	[-]	[-]	[-]	
0.025	0.055	0.0363	0.0236	0.054	771.0	84.9	0.4307	0.0057	1502	
0.05	0.110	0.0522	0.0262	0.109	910.7 110.0 0.4288 0.0061		0.0061	1181		
0.1	0.221	0.0832	0.0124	0.219	979.3	140.3	0.4219	0.0092	741	
0.15	0.331	0.1155	0.0100	0.329	996.2	152.4	0.4135	0.0182	593	
0.25	0.552	0.1812	0.0096	0.550	1004.2	159.2	0.4000	0.0363	438	
1373 К										
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part	
\mathbf{s}	[m]	\mathbf{s}	$[\mathbf{s}]$	[m]	[K]	[K]	[-]	[-]	[-]	
0.025	0.054	0.0573	0.2552	0.053	895.7	120.9	0.4804	0.0220	1457	
0.05	0.108	0.0756	0.2731	0.106	1100.7	125.6	0.4737	0.0224	1271	
0.1	0.215	0.1059	0.2789	0.213	1221.5	142.8	0.4475	0.0272	1055	
0.15	0.323	0.1273	0.0162	0.321	1251.3	155.6	0.4180	0.0450	849	
0.25	0.538	0.1933	0.0176	0.536	1263.0	162.6	0.3742	0.0879	601	
				15	573 K					
t_id	L_id	t	t_{std}	L_CFD	Т	T_std	VM	VM_std	n Part	
\mathbf{s}	[m]	\mathbf{s}	$[\mathbf{s}]$	[m]	[K]	[K]	[-]	[-]	[-]	
0.025	0.065	0.0438	0.0109	0.064	1113.4	132.1	0.5553	0.0065	1525	
0.05	0.131	0.0618	0.0111	0.129	1352.8	115.2	0.5346	0.0168	1284	
0.1	0.262	0.0963	0.0078	0.260	1451.4	139.1	0.4756	0.0548	953	
0.15	0.392	0.1307	0.0070	0.391	1468.7	148.9	0.4198	0.0992	778	
0.25	0.654	0.1995	0.0084	0.652	1471.2	150.6	0.3624	0.1609	527	

Tabella 5.6: Risultati simulazioni SFOR semplice, prima iterazione

Tabella 5.7: Heating rate calcolati da SFOR semplice, prima iterazione

117	'3 K	137	'3 K	1573 K				
HR	HRstd	HR	HRstd	HR	HRstd			
[K/s]								
12548	3063.4	15687	2570.7	18277	4331.6			

Figura 5.2: Storia termica a (dall'alto) Figura 5.3: Spread del getto a (dall'alto) 1173K ,1373K e 1573K - SFOR semplice 1173K ,1373K e 1573K - SFOR semplice (1) (1)

Figura 5.4: VM a (dall'alto)Figura 5.5: Conversione a (dall'alto)1173K ,1373K e 1573K - SFOR semplice1173K ,1373K e 1573K - SFOR semplice(1)(1)

5.3 SFOR rampa, iter 1

Si riportano di seguito i risultati delle simulazioni per lo sfor rampa, itearazione 1, in Tabella 5.8, 5.9 ed in Figura 5.6, 5.7, 5.8 e 5.9.

				11	73 K						
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part		
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]		
0.025	0.055	0.0366	0.0045	0.054	835.3	110.8	0.3956	0.0097	1331		
0.05	0.110	0.0525	0.0048	0.109	981.7	138.1	0.3673	0.0226	981		
0.1	0.221	0.0857	0.0057	0.219	1066.0	165.3	0.3114	0.0608	828		
0.15	0.331	0.1199	0.0062	0.329	1080.4	172.9	0.2658	0.0959	754		
0.25	0.552	0.1884	0.0073	0.550	1081.4	173.3	0.2198	0.1374	595		
1373 K											
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part		
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]		
0.025	0.054	0.0433	0.0099	0.053	949.8	131.5	0.4323	0.0236	1387		
0.05	0.108	0.0599	0.0101	0.106	1182.9	123.8	0.3885	0.0271	1243		
0.1	0.215	0.0933	0.0096	0.213	1287.8	127.7	0.3065	0.0555	1083		
0.15	0.323	0.1270	0.0083	0.321	1305.8	133.6	0.2481	0.0876	890		
0.25	0.538	0.1947	0.0090	0.536	1314.0	137.4	0.1948	0.1294	658		
				15	573 K						
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part		
[s]	[m]	\mathbf{s}	s	[m]	[K]	[K]	[-]	[-]	[-]		
0.025	0.065	0.0452	0.0090	0.064	1197.4	147.3	0.4902	0.0264	1325		
0.05	0.131	0.0636	0.0089	0.129	1450.1	103.4	0.4288	0.0308	1214		
0.1	0.262	0.0995	0.0083	0.260	1520.3	102.1	0.3318	0.0689	963		
0.15	0.392	0.1341	0.0081	0.390	1530.4	105.8	0.2695	0.1088	783		
0.25	0.654	0.2035	0.0079	0.652	1530.1	105.7	0.2243	0.1494	502		

Tabella 5.8: Risultati simulazioni SFOR rampa, prima iterazione

Tabella 5.9: Heating rate calcolati da SFOR rampa, prima iterazione

117	'3 K	137	'3 K	1573 K				
	[K/s]							
13013	2880.2	14357	4788.2	19141.5	5743.4			
12548	3063.4	15687	2570.7	18277	4331.6			

Figura 5.6: Storia termica a (dall'alto) Figura 5.7: Spread del getto a (dall'alto) 1173K ,1373K e 1573K - SFOR rampa 1173K ,1373K e 1573K - SFOR rampa (1) (1)

Figura 5.8: VM a (dall'alto) 1173K, 1373K e 1573K - SFOR rampa 1173K, 1373K e 1573K - SFOR rampa (1) (1)

5.4 Seconda iterazione

Tramite i dati della prima iterazione, ricalcoliamo i parametri cinetici per i modelli SFOR semplice e SFOR rampa.

Per lo SFOR semplice si estraggono i nuovi tempi di residenza dalla simulazione relativa a iter 1, in seguito si utilizzano le VM_{exp} per calcolare i parametri. Per lo SFOR rampa si estraggono sia i tempi di residenza che i valori di HR, rappresentanti la storia termica, in seguito si utilizzano le VM_{exp} per calcolare i parametri. Ii risultati sono riportati in Tabella 5.10.

	SFOR semplice		SFOR Rampa
E [J/kmol]	55215202	E [J/kmol]	6226476
A [1/s]	808.5	A [1/s]	18.46

Tabella 5.10: Parametri cinetici, step 1

5.5 SFOR semplice, iter 2

Si riportano di seguito i risultati delle simulazioni per lo sfor semplice, itearazione 2, in Tabella 5.11, 5.12 ed in Figura 5.10, 5.11, 5.12 e 5.13.

				11	73 K					
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part	
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]	
0.025	0.055	0.0397	0.0060	0.054	785.8	104.4	0.4309	0.0004	1396	
0.05	0.110	0.0557	0.0061	0.109	927.1	121.0	0.4290	0.0023	1082	
0.1	0.221	0.0885	0.0070	0.219	1007.6	141.9	0.4209	0.0089	905	
0.15	0.331	0.1223	0.0075	0.330	1027.3	151.6	0.4107	0.0168	796	
0.25	0.552	0.1888	0.0080	0.550	1038.3	158.6	0.3928	0.0339	635	
1373 K										
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part	
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]	
0.025	0.054	0.0444	0.0134	0.053	907.5	119.7	0.4824	0.0021	1370	
0.05	0.108	0.0614	0.0141	0.106	1117.0	122.2	0.4762	0.0061	1210	
0.1	0.215	0.0945	0.0126	0.213	1233.5	133.0	0.4519	0.0204	993	
0.15	0.323	0.1274	0.0103	0.321	1260.7	143.2	0.4238	0.0387	850	
0.25	0.538	0.1941	0.0121	0.536	1272.8	149.6	0.3802	0.0771	639	
				15	573 K					
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part	
\mathbf{s}	[m]	\mathbf{s}	\mathbf{s}	[m]	[K]	[K]	[-]	[-]	[-]	
0.025	0.065	0.0472	0.0147	0.064	1129.6	136.4	0.5550	0.0071	1340	
0.05	0.131	0.0660	0.0150	0.129	1365.9	120.3	0.5345	0.0155	1202	
0.1	0.262	0.1013	0.0121	0.260	1468.8	130.0	0.4738	0.0475	955	
0.15	0.392	0.1351	0.0089	0.390	1485.4	137.1	0.4191	0.0862	751	
0.25	0.654	0.2048	0.0114	0.652	1488.4	138.7	0.3611	0.1453	496	

Tabella 5.11: Risultati simulazioni SFOR semplice, seconda iterazione

Tabella 5.12: Heating rate calcolati da SFOR semplice, seconda iterazione

1173 K 13		137	73 K	1573 K	
HR	HRstd	HR HRstd		HR HRstd	
		[K/s]			
11502	3254.1	13439	4135.4	16303	5184.1

Figura 5.10: Storia termica a (dall'alto) Figura 5.11: Spread del getto a (dal-1173K ,1373K e 1573K - SFOR semplice l'alto) 1173K ,1373K e 1573K - SFOR (2) semplice (2)

Figura 5.12: VM a (dall'alto)Figura 5.13: Conversione a (dall'alto)1173K ,1373K e 1573K - SFOR semplice1173K ,1373K e 1573K - SFOR semplice(2)(2)

5.6 SFOR rampa, iter 2

Si riportano di seguito i risultati delle simulazioni per lo sfor rampa, itearazione 2, in Tabella 5.13, 5.14 ed in Figura 5.14, 5.15, 5.16 e 5.17.

				11	73 K				
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.055	0.0366	0.0047	0.054	838.9	108.4	0.3958	0.0081	1359
0.05	0.110	0.0523	0.0048	0.109	974.1	135.8	0.3744	0.0175	970
0.1	0.221	0.0855	0.0056	0.219	1052.0	163.1	0.3315	0.0481	836
0.15	0.331	0.1193	0.0062	0.329	1066.5	171.3	0.2946	0.0772	775
0.25	0.552	0.1873	0.0068	0.550	1069.8	173.3	0.2523	0.1168	585
				13	73 K			•	
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
$[\mathbf{s}]$	[m]	\mathbf{s}	\mathbf{s}	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.054	0.0435	0.0108	0.053	951.0	129.2	0.4346	0.0209	1382
0.05	0.108	0.0601	0.0112	0.106	1177.7	121.5	0.4014	0.0232	1221
0.1	0.215	0.0934	0.0103	0.213	1283.9	129.9	0.3408	0.0440	1056
0.15	0.323	0.1268	0.0093	0.321	1301.9	136.2	0.2939	0.0707	877
0.25	0.538	0.1936	0.0088	0.536	1309.1	139.6	0.2454	0.1115	613
				15	573 K				
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
$[\mathbf{s}]$	[m]	\mathbf{s}	$[\mathbf{s}]$	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.065	0.0505	0.0613	0.064	1192.4	142.7	0.4944	0.0486	1334
0.05	0.131	0.0696	0.0640	0.129	1439.9	108.6	0.4499	0.0474	1214
0.1	0.262	0.1038	0.0553	0.260	1512.9	112.1	0.3808	0.0580	972
0.15	0.392	0.1377	0.0499	0.390	1522.3	115.8	0.3295	0.0875	802
0.25	0.654	0.2060	0.0436	0.652	1521.4	115.4	0.2795	0.1328	532

Tabella 5.13: Risultati simulazioni SFOR rampa, seconda iterazione

Tabella 5.14: Heating rate calcolati da SFOR rampa, seconda iterazione

117	73 K	137	'3 K	157	'3 K
HR	HRstd	HR HRstd		HR	HRstd
		[K	[K/s]		
12870	3309	16559	5045.5	17701	5373.6

Figura 5.14: Storia termica a (dall'alto) Figura 5.15: Spread del getto a (dall'al-1173K ,1373K e 1573K - SFOR rampa to) 1173K ,1373K e 1573K - SFOR rampa (2) (2)

 Figura 5.16: VM a (dall'alto)
 Figura 5.17: Conversione a (dall'alto)

 1173K ,1373K e 1573K - SFOR rampa 1173K ,1373K e 1573K - SFOR rampa (2)
 (2)

5.7 Modello CPD

Si riportano di seguito i risultati delle simulazioni per il modello CPD, in Tabella 5.15, 5.16 ed in Figura 5.18, 5.19, 5.20 e 5.21.

				11	73 K				
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.055	0.0362	0.0133	0.054	836.5	61.8	0.4015	0.0556	1256
0.05	0.110	0.0501	0.0115	0.109	1044.6	120.8	0.1701	0.1396	1037
0.1	0.221	0.0810	0.0126	0.219	1141.4	170.5	0.1072	0.1561	654
0.15	0.331	0.1143	0.0136	0.330	1134.7	165.3	0.1072	0.1561	467
0.25	0.552	0.1834	0.0160	0.550	1126.3	159.4	0.1072	0.1561	319
	•			13	73 K	•			•
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.054	0.0481	0.0327	0.053	908.5	95.1	nd	nd	1540
0.05	0.108	0.0623	0.0298	0.106	1103.1	99.0	nd	nd	1436
0.1	0.215	0.0907	0.0274	0.213	1207.0	118.3	nd	nd	1020
0.15	0.323	0.1205	0.0322	0.321	1227.6	128.5	nd	nd	798
0.25	0.538	0.1768	0.0311	0.536	1235.8	133.7	nd	nd	553
				15	573 K				
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
$[\mathbf{s}]$	[m]	\mathbf{s}	\mathbf{s}	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.065	0.0485	0.0328	0.064	1177.4	159.0	0.2607	0.1288	1557
0.05	0.131	0.0660	0.0333	0.129	1391.9	82.3	0.1058	0.0479	1402
0.1	0.262	0.0998	0.0239	0.260	1441.9	89.5	0.0993	0.0487	959
0.15	0.392	0.1369	0.0247	0.390	1452.8	95.3	0.0994	0.0487	730
0.25	0.654	0.2102	0.0239	0.652	1452.3	95.0	0.0994	0.0487	433

Tabella 5.15: Risultati simulazioni CPD

Tabella 5.16: Heating rate calcolati da CPD

1173 K		137	73 K	1573 K		
HR	HRstd	HR HRstd		HR HRst		
	•	[K	[/s]			
12441.0	1611.8	11459	1985	19161.0	2850.6	

Figura 5.18: Storia termica a (dall'alto) Figura 5.19: 1173K ,1373K e 1573K - CPD (dall'alto) 117

Figura 5.19: Spread del getto a (dall'alto) 1173K ,1373K e 1573K - CPD

Figura 5.20: VM a (dall'alto) 1173K e 1573K - CPD

Figura 5.21: Conversione a (dall'alto) 1173K e 1573K - CPD

5.8 SFOR B-T

Si riportano di seguito i risultati delle simulazioni per il modello SFOR B-T, in Tabella 5.17, 5.18 ed in Figura 5.22, 5.23, 5.24 e 5.25.

				1	173 K				
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.055	0.0383	0.0210	0.054	811.1	73.0	0.4143	0.0261	1533
0.05	0.110	0.0519	0.0183	0.109	979.3	88.1	0.3749	0.0349	1344
0.1	0.221	0.0841	0.0303	0.219	1097.0	135.7	0.2648	0.1020	945
0.15	0.331	0.1174	0.0313	0.330	1116.8	149.5	0.2020	0.1512	720
0.25	0.552	0.1858	0.0361	0.550	1116.8	149.4	0.1824	0.1704	484
	•	•		1	373 K			•	
t_id	L_id	t	t_std	L_CFD	Т	T_std	VM	VM_std	n Part
[s]	[m]	[s]	[s]	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.054	0.0464	0.0348	0.053	920.9	121.7	0.4508	0.0534	1558
0.05	0.108	0.0625	0.0361	0.106	1162.3	123.2	0.3658	0.0757	1384
0.1	0.215	0.0946	0.0297	0.213	1272.1	133.9	0.1953	0.1388	1062
0.15	0.323	0.1280	0.0295	0.321	1289.5	141.5	0.1376	0.1719	877
0.25	0.538	0.1958	0.0318	0.536	1298.4	146.5	0.1320	0.1756	594
		•		1	573 K			•	
t_id	L_id	t	t_std	L_CFD	Т	T_{std}	VM	VM_std	n Part
$[\mathbf{s}]$	[m]	s	s	[m]	[K]	[K]	[-]	[-]	[-]
0.025	0.065	0.0465	0.0125	0.064	1150.2	136.5	0.5436	0.0175	1341
0.050	0.1308	0.0651	0.013	0.129	1399.4	123.2600	0.4951	0.033048	1180
0.100	0.2616	0.1010	0.011	0.260	1494.9	136.0700	0.3765	0.093266	938
0.150	0.3924	0.1355	0.009	0.390	1504.9	140.6100	0.2964	0.14783	767
0.250	0.6540	0.2060	0.013	0.652	1504.5	140.3600	0.2478	0.19238	488

Tabella 5.17: Risultati simulazioni SFOR B-T

Tabella 5.18: Heating rate calcolati da SFOR B-T

117	'3 K	137	'3 K	157	'3 K
HR	HRstd	HR HRstd		HR HRst	
		[K	[K/s]		
14170	1985.8	13434	4118.7	16640	5157.8

Figura 5.22: Storia termica a (dall'alto) 1173K ,1373K e 1573K - SFOR semplice ${\rm Figura~5.23:}$ Spread del getto a (dall'alto) 1173K ,1373K e 1573K - SFOR semplice ${\rm B-T}$

Figura 5.24: VM a (dall'alto) 1173K ,1373K e 1573K - SFOR B-T

Figura 5.25: Conversione a (dall'alto) 1173K ,1373K e 1573K - SFOR B-T

5.9 Confronto qualitativo tra i modelli utilizzati

Si costruiscono le soluzioni analitiche dei tre modelli, per verificare la differenza tra gli andamenti delle funzioni utilizzate per ricavare i parametri sperimentali. Tale costruzione è a titolo di esempio.

SFOR B-T Si impongono tempi e profili di temperatura provenienti da CFD, quindi si pone:

$$VM = (1 - e^{-DI\frac{T}{T_{st}}})exp(-Ae^{-\frac{E}{RT}}t)$$
(5.1)

Si utilizza il seguente codice per generare le curve di fitting:

```
t1173 = [%% tempi CFD 1173 K%%];
t1373 = [%% tempi CFD 1373 K%%];
t1573 = [ % % tempi CFD 1573 K % % ];
T1173 = [%%storia termica CFD 1173 K%%];
T1373 =[%%storia termica CFD 1373 K%%];
T1573 = [%%storia termica CFD 1573 K%%];
VM1173=[%%VM exp 1173 K%%];
VM1373=[%%VM exp 1373 K%%];
VM1573=[%%VM exp 1573 K%%];
A = % %;
E = % %;
f= (1-exp(-0.67457.*T1173./1223)).*exp(-(A*exp(-E.
/(R.*T1173))).*t1173);
g= (1-exp(-0.67457.*T1373./1223)).*exp(-(A*exp(-E.
/(R.*T1373))).*t1373);
h= (1-exp(-0.67457.*T1573./1223)).*exp(-(A*exp(-E./
(R.*T1573))).*t1573);
```

SFOR semplice Per lo SFOR semplice, è sufficiente costrire la curva a differente temperatura nominale che risolva:

$$VM = VM_{\infty}exp(-Ae^{-\frac{E}{RT}}t)$$
(5.2)

SFOR Rampa Per ottenere la soluzione analitica, si impongono tre rampe di temperatura con gli HR calcolati da CFD, successivamente si risolve l'integrale con soluzione 4.10.

Il codice che genera i grafici è il seguente:

```
t=linspace(0,0.3,1000);
HR=[%HR PER 1173 K 1373 K 1573 K%%];
VM_inf=[%VM INF PER 1173 K 1373 K 1573 K%%];
A=%%;
E=%%;
f= VM_inf(1) * (exp( - (A.*E./(HR(1).*R) ) .* (ei(-E.
/(R.*(T0+HR(1).*t))) + (exp(-E./(R.*(T0+HR(1).*t)))) .*
((R.*(T0+HR(1).*t)) ./E) - ei(-E./(R.*T0)) - (exp (-E.
```

/(R.*TO))).*((R.*TO)./E)))); g= VM_inf(2) * (exp(- (A.*E./(HR(2).*R)) .* (ei(-E. /(R.*(TO+HR(2).*t))) + (exp(-E./(R.*(TO+HR(2).*t)))) .* ((R.*(TO+HR(2).*t)) ./E) - ei(-E./(R.*TO)) - (exp (-E. /(R.*TO))).*((R.*TO)./E)))); h= VM_inf(3) * (exp(- (A.*E./(HR(3).*R)) .* (ei(-E. /(R.*(TO+HR(3).*t))) + (exp(-E./(R.*(TO+HR(3).*t)))) .* ((R.*(TO+HR(3).*t)) ./E) - ei(-E./(R.*TO)) - (exp (-E. /(R.*TO))).*((R.*TO)./E))));

Risultati dei modelli analitici Si riportano quindi i grafici relativi alle previsioni dei modelli analitici (Figure 5.26, 5.27 e 5.28) per le VM sperimentali. Ad essere rappresentate sono le stesse equazioni usate per il fitting dei dati. I valori delle costanti cinetiche per i modelli SFOR e SFOR rampa sono quelle ottimizzate per l'iterazione 2.

A livello qualitativo, osserviamo una grande discrepanza tra i dati previsti e quelli sperimentali, nonostante che il trend globale sia rispettato. Per lo SFOR B-T un valore troppo basso di temperatura tende ad annullare il termine VM_{∞} nell'equazione, quindi a sottostimare VM_p per basse temperature. Nel caso SFOR rampa invece un andamento lineare, che causa la crescita della temperatura oltre il valore nominale del reattore, aumenta la conversione in modo eccessivo.

Tramite implementazione CFD i risultati migliorano notevolmente, in quanto la storia termica è seguita puntualmente nelle equazioni del solver.

Figura 5.27: Modello SFOR semplice, previsione analitica

Figura 5.28: Modello SFOR rampa, previsione analitica

Capitolo 6

Discussione e conclusioni

6.1 Confronto tra i parametri cinetici dei vari modelli

Sono stati precedentemente confrontati quattro modelli di devolatilizzazione diversi. Tra questi tuttavia il modello CPD presenta numerosi problemi di implementazione e per il caso 1373 K non ci sono risultati fisicamente coerenti dalle simulazioni. Lo SFOR B-T ha carattere strutturale, mentre gli altri due sono calcolati tramite fitting dei dati sperimentali da ottenere, tramite metodo iterativo, con dati sperimentali e storie termiche e temporali da CFD. Per i metodi iterativi, aggiornando ogni volta i tempi di residenza, la storia termica e le cinetiche chimiche subiscono sostanziali differenze nei parametri calcolati. Si confrontano quindi i parametri A ed E (Tabella 6.1 e Figure 6.1 e 6.2).

		iter 0	iter 1	iter 2
SEOR complice	E [J/kmol]	$5.24\mathrm{E}{+07}$	$5.52\mathrm{E}{+07}$	$3.16\mathrm{E}{+07}$
	A $[1/s]$	724.35	808.50	131.22
SFOR rampa	E [J/kmol]	$8.59\mathrm{E}{+06}$	$6.23\mathrm{E}{+}06$	$6.23\mathrm{E}{+}06$
Sr On Tampa	A $[1/s]$	31.44	18.46	18.47

Tabella 6.1: Parametri per i modelli chimici

	E [J/kmol]	$3.38 \cdot 10^{7}$
SFOR B-T	A $[1/s]$	1068.57
	DI [-]	0.6745

La variazione dei parametri indica il livello di convergenza del metodo iterativo, mentre per lo SFOR rampa questi rimangono pressoché stabili, per il metodo base questo non avviene. E' quindi necessaria un'analisi di sensibilità dei parametri cinetici alle variazioni dei tempi CFD. Questo aspetto sarà trattato in seguito.

Successivaente si confrontano tra loro anche storie termiche e temporali ad ogni lunghezza di campionamento. Si stima quindi un errore relativo tra le storie termiche T_{CFD} ed i tempi t_{CFD} durante le iterazioni ogni L_{camp} m-esima, calcolato come:

Figura 6.2: Confronto tra i valori del parametro A

$$\begin{cases} e_{iter(n)-iter(n-1),m,T_n} = 1 - \frac{G_{iter(n),m}}{G_{iter(n-1),m}}\\ \hat{e}_{rn,T_n} = \frac{1}{m} \sqrt{\sum_{1}^{m} e_{iter(n)-iter(n-1),m,T_n}^2} \end{cases}$$
(6.1)

Dove
n sono le iterazioni, T_n è la temperatura nominale del reattore ed m
 è la prova a lunghezza L_m esima. G
 rappresenta la grandezza (t,tempo CFD

o T,temperatura CFD, entrambe ad ogni lunghezza nominale) di cui si stima l'errore. Si sommano quindi le differenze percentuali tra temperature e tempi alle lunghezze campionate, stimandone un errore \hat{e}_T sulla temperatura ed uno \hat{e}_t sul tempo; ovvero una media della deviazione. I risultati sono riassunti in Tabella 6.2 e nelle Figure 6.3 e 6.4.

Figura 6.3: Errori relativi tra le iterazioni sul tempo per ogni lunghezza di campionamento

Figura 6.4: Errori relativi tra le iterazioni sulla temperatura per ogni lunghezza di campionamento

Si osserva quindi come già alla seconda iterazione le oscillazioni sulla storia termica e sul tempo di residenza si smorzino notevolmente, in particolare quelli del modello rampa arrivano attorno al punto percentuale, mostrando di fatto una convergenza dei parametri.

		$\hat{e_t}$						
	iter	$\cdot 1 \text{ vs iter } 0$	iter 2 vs iter 1					
	SFOR	SFOR Rampa	SFOR	SFOR Rampa				
$1173~{ m K}$	7.25%	8.21%	2.79%	0.17%				
$1373~{ m K}$	7.18%	1.54%	7.80%	0.17%				
$1573~{\rm K}$	5.19%	6.20%	2.32%	2.92%				

Tabella 6.2: Differenze tra gli errori relativi tra le varie iterazioni, metodi SFOR e SFOR Rampa

		,	`		
		e	Т		
	iter	1 vs iter 0	iter 2 vs iter 1		
	SFOR	SFOR Rampa	SFOR	SFOR Rampa	
1173 K	6.51%	9.40%	1.18%	0.66%	
1373 K	0.80%	2.68%	0.49%	0.79%	
1573 K	2.95%	5.07%	0.53%	3.21%	

Per i modelli SFOR e SFOR B-T i parametri di E ed A hanno ordini di grandezza simili. Con la seconda iterazione i valori dei metodi iterativi si assestano smorzando l'oscillazione: per lo SFOR semplice ci si avvicina al valore di energia di attivazione del modello B-T, mentre per il modello SFOR rampa si ottengono soluzioni pressochè invariate tra la prima e seconda iterazione. Per quanto rigurda l'energia di attivazione del modello SFOR semplice, occorre osservare che una piccola variazione di E porta una grande variazione di A nel processo di fitting. Questo è legato alla dipendenza esponenziale tra la variazione di A con E, data la costante k in forma di Arrhenius e fissati i dati sperimentali. Per cui è sufficiente avere un piccolo scostamento di E rispetto ad esempio al modello B-T (>6%), per ottenere un valore del fattore pre esponenziale 5 volte inferiore.

Il differente ordine di grandezza per i parametri A ed E nel modello rampa è dovuto alla formulazione matematica del modello profondamente differente dai casi precedenti, calcolato con l'ipotesi di temperatura costante.

6.2 Capacità predittive dei vari modelli

Ogni modello utilizzato approssima in modo diverso i dati sperimentali. In tutti i casi tuttavia osserviamo che una temperatura maggiore porta una maggiore fuoriuscita dei volatili e quindi una maggiore conversione del carbone. I modelli che considerano tale fenomeno, come lo SFOR B-T e lo SFOR rampa, ottengono valori simulati più vicini a quelli sperimentali.

Il caso delle simulazioni a 1573 K risulta produrre dati più distanti da quelli sperimentali. Questo è anche il set di dati con maggiori problematiche: nell'acquisizione nell'impianto pilota, a causa di fenomeni di deposizione delle ceneri per le alte temperature, si sono ottenute analisi TGA imprecise, poco rispondenti al trend atteso. Ad esempio, è stato necessario ripetere la prova sperimentale per verificare i dati, osservando di fatto una cattiva ripetibilità rispetto i dati precedenti. L'estrazione dei parametri cinetici ha quindi risentito di una maggiore indipendenza dal set di dati a 1573 K, avvicinando i dati simulati ai valori delle prove a 1173 K e 1373 K. Infine, per il modello SFOR rampa, il raggiungimento di una situazione prossima a quella isoterma ha portato ad ottenere valori di A ed E potenzialmente non adatti per tale condizione.

Si misura quindi la deviazione dai dati sperimentali per ogni prova a temperatura diversa utilizzando (per ogni lunghezza di campionamento n-esima) la VM cumulata emessa in più o in meno rispetto ai dati sperimentali:

$$dev_{CFD-exp}(T_{nom}, MODELLO) = \sqrt{\sum_{n=L_1}^{n=L_5} (VM_{exp,n} - VM_{CFD,n})^2}$$
 (6.2)

Questo restituisce una misura cautelativa della massima materia volatile liberata, in più o in meno, rispetto al caso sperientale (Figura 6.5 e Tabella 6.3).

Figura 6.5: Confronto tra la deviazione del modello dai dati sperimentali

Si calcola inoltre l'errore relativo medio tramite:

$$\sigma_{CFD-exp}(T_{nom}, MODELLO) = \frac{1}{n} \sqrt{\sum_{n=L_1}^{n=L_5} (1 - \frac{VM_{CFD,n}}{VM_{exp,n}})^2}$$
(6.3)

I risultati per quest'ultimo sono riportati in Tabella 6.4 e Figura 6.6.

Per ulteriore confronto, si riportano i trend predittivi per i vari modelli nelle Figure 6.7, 6.8 e 6.9.

	SFOR semplice	SFOR rampa
iter	1	1
1173 K	19.96%	8.36%
1373 K	18.61%	12.12%
$1573 { m K}$	19.70%	39.03%

	Tabella 6.3:	Valori della	deviazioni	da VM	${\it sperimentale}$	per i	$\operatorname{modelli}$	utilizzati
--	--------------	--------------	------------	-------	----------------------	-------	--------------------------	------------

	SFOR semplice	SFOR rampa	SFOR Biagini	CPD
iter	2	2	-	-
$1173~\mathrm{K}$	22.38%	7.38%	14.40%	41.42%
$1373~\mathrm{K}$	41.05%	18.41%	8.89%	-
$1573~\mathrm{K}$	65.45%	47.19%	48.99%	14.24%

Figura 6.6: Confronto con l'errore del modello dai dati sperimentali

Tabella 6.4: Confronto con l'errore del modello dai dati sperimentali

	SFOR semplice	SFOR rampa
iter	1	1
1173 K	19.96%	4.59%
1373 K	39.24%	11.64%
1573 K	97.06%	54.19%

	SFOR semplice	SFOR rampa	SFOR B-T	CPD
iter	2	2	-	-
1173 K	19.26%	5.03%	8.99%	24.48%
1373 K	40.21%	18.41%	8.58%	-
1573 K	96.73%	69.14%	66.32%	12.86%

Figura 6.7: Confronto tra i modelli a 1173 K

Figura 6.9: Confronto tra i modelli a 1573 K

6.3 Stima dell'errore sui parametri cinetici

Per stimare un range di errore per i parametri cinetici A ed E dei metodi iterativi, si utilizza la deviazione standard sul tempo e sull'Heat Rate (solo per il modello rampa) restituito dalle prove CFD. Sono quindi ricalcolate le cinetiche utilizzando:

$$t_{new} = t_{CFD,mean} \pm \sigma_t; \ HR_{new} = HR_{CFD,mean} \pm \sigma_{HR} \tag{6.4}$$

La deviazione σ_i è calcolata ad ogni lunghezza di campionamento L_i attraverso la differenza tra il valore medio di tempo o HR rispetto quello delle altre particelle del getto. Per entrambi i modelli, si utilizzano i valori inerenti all'ultima iterazione.

In questo modo avremo un range tra cui porre il valore del parametro cinetico calcolato con l'iterazione 2.

SFOR semplice			SFOR Rampa			
t_{medio}	$t + \sigma_t$	$t - \sigma_t$		t_{medio}	$t + \sigma_t$	$t - \sigma_t$
	$[\mathbf{s}]$			[s]		
	$1173~{ m K}$			1173 K		
0.0366	0.0457	0.0336		0.0397	0.0413	0.0319
0.0523	0.0618	0.0495		0.0557	0.0570	0.0475
0.0855	0.0955	0.0816		0.0885	0.0911	0.0799
0.1193	0.1298	0.1148		0.1223	0.1255	0.1132
0.1873	0.1967	0.1808		0.1888	0.1941	0.1806
1373 K			1373 K			
0.0435	0.0577	0.0310		0.0444	0.0543	0.0327
0.0601	0.0755	0.0473		0.0614	0.0714	0.0489
0.0934	0.1071	0.0819		0.0945	0.1036	0.0831
0.1268	0.1377	0.1172		0.1274	0.1360	0.1175
0.1936	0.2062	0.1820		0.1941	0.2023	0.1848
1573 K			1573 K			
0.0505	0.0620	0.0325		0.0472	0.1118	0
0.0696	0.0810	0.0510		0.0660	0.1336	0.0056
0.1038	0.1134	0.0892		0.1013	0.1591	0.0484
0.1377	0.1441	0.1262		0.1351	0.1876	0.0878
0.2060	0.2162	0.1935		0.2048	0.2496	0.1624

Tabella 6.5: Variazione dei tempi tramite spread delle particelle

Tabella 6.6: Variazione dei valori di HR tramite spread delle particelle

SFOR Rampa						
Т	HR_{medio}	$HR - \sigma_{HR}$				
[K]	[K/s]					
1173	12870	16179	9561			
1373	16559	21604.5	11513.5			
1573	17701	23074.6	12327.4			
Facendo variare alternativamente prima i tempi e poi gli HR (solo per lo SFOR rampa), si costruiscono dei range per i parametri cinetici ripetendo le procedure di fitting con i nuovi dati (Tabella 6.8, 6.9 e 6.10).

Tabella 6.7: Variazione dei parametri A ed E per il modello SFOR semplice

A[1/s]	$t + \sigma_t \leftarrow$	84.2	131.22_{mean}	246.89	$\rightarrow t - \sigma_t$
E [J/kmol]	$t + \sigma_t \leftarrow$	31613714	27980332_{mean}	37066384	$\rightarrow t - \sigma_t$

			$\uparrow HR - \sigma_{HR}$ 18.27		
A $[1/s]$	$t + \sigma_t \leftarrow$	18.99	18.46_{mean}	13.26	$] \rightarrow t - \sigma_t$
			17.96		
		,	$\downarrow HR + \sigma_{HR}$		
			$\uparrow HR - \sigma_{HR}$		
			7646861		
${ m E}[{ m J/kmol}]$	$t + \sigma_t \leftarrow$	10880208	6226477_{mean}	2422933	$] \rightarrow t - \sigma_t$
			5123119		
			$\downarrow HR + \sigma_{HR}$		

Tabella 6.8: Variazione dei parametri A ed E per il modello SFOR rampa

Utilizzando il valore medio del range della deviazione, si calcola l'errore stimato per A ed E, assumendo la media variazione dal valore centrale come stima del campo di validità del parametro:

Tabella 6.9: Variazioni del parametro A ed E per i modelli iterativi

		Variabile modificata	$+\sigma$	$-\sigma$
SFOR	А	t	56%	47%
	Е	t	13%	15%
SFOR rampa	А	HR	1%	2%
		t	3%	39%
	Е	hr	19%	22%
		t	43%	61%

Il modello SFOR rampa risulta meno influenzato dalle variazioni di tempo e storia termica rispetto al modello SFOR. In ogni caso, per lo SFOR rampa, l' Heat Rate risulta molto meno incisivo rispetto alla storia fluidodinamica (t_{CFD}) .

6.4 Discussione finale

Il modello che registra la maggiore deviazione dai dati sperimentali è lo SFOR semplice, che risulta dunque il meno accurato. I parametri con cui è implementato sono calcolati con l'approssimazione che la temperatura delle particelle di carbone sia isoterma a quella del reattore, mentre nel solver questa è variabile nel tempo

	SFOR rampa	j	SFOR semplice		
	deviazione media	%	deviazione media	%	
A [1/s]	1.60	8.7	81.345	61.9	
E [J/kmol]	2745254	44.0	4543026	14.3	

secondo un determinato profilo non lineare. Diminuendo quindi la temperatura,

Tabella 6.10: Errore medio per i parametri A ed E

che nel modello numerico parte da 293 K, la devolatilizzazione, nel CFD, risulta più lenta. Sia il modello SFOR rampa che il modello SFOR B-T risultano avere una deviazione dai dati stimata essere inferiore al 20% nei casi con temperatura nominale del reattore pari a 1173 K e 1373 K. Per lo SFOR rampa significa che nella zona di campionamento l'ipotesi rampa è accettabile. Con l'avanzare del tempo di residenza invece le particelle si avvicinano alla temperatura nominale, per cui avviene una sottostima dei dati sperimentali per ragioni simili a quelle del modello SFOR base. L'implementazione per i metodi rampa e B-T è differente: nel primo caso si utilizza il metodo SFOR rampa, in cui le costanti A ed E sono calcolate da un fitting in cui l'equazione differenziale dello SFOR è risolta con un profilo di temperatura che trova riscontro fisico nelle simulazioni CFD, nel secondo caso si corregge a posteriori tale equazione e si utilizza una UDF per l'implementazione. Mentre il primo richiede un maggiore sforzo computazionale nell'elaborazione dei dati fuori dal software CFD, il secondo prevede l'utilizzo di correlazioni di carattere generale e l'utilizzo di una subroutine da richiamare nel solver. Tuttavia entrambi i metodi hanno mostrato un tempo di esecuzione confrontabile con lo SFOR semplice. Il modello CPD, come confronto, dimostra raggiungere livelli paragonabili di precisione sui dati a disposizione, tuttavia a causa delle problematiche sia di implementazione nel solver sia di complicatezza del codice, il costo computazionale è maggiorato in modo notevole. Ad esempio a parità di processore, i modelli SFOR richiedono circa 24h di calcolo (parallelo con 4 core) per lo svolgimento ad un'accuratezza accettabile contro dai 4 ai 7 giorni per il modello CPD (che per le problematiche di implementazione descritte necessita il calcolo con core singolo). Una considerazione a parte è necessaria per i due gruppi di dati a 1573 K: le difficoltà riscontrate nella ripetizione delle prove ed i problemi riguardanti il calcolo delle ceneri per il metodo ash tracer, hanno portato ad ottenere dei dati da TGA poco accurati. La scelta del gruppo di dati migliore è stata fatta osservando le oscillazioni di questi rispetto ad un trend atteso, dunque solo ulteriori prove sperimentali sono in grado di discernere una corretta stima della devolatilizazione a tale temperatura. Il calcolo di A ed E per il modello SFOR rampa e SFOR semplice può essere notevolmente migliorato con valori più precisi delle sperimentazioni. Per i modelli del primo ordine si forniscono i dettagli delle cinetiche calcolate e verificate in questo testo per il combustibile SEBUKU coal, Indonesiano.

Per i metodi studiati, risulta determinante ai fini dell'accuratezza del modello porre il campo dei volatili finale come funzione della temperatura, come mostrato con i modelle B-T e rampa. L'utilizzo della CFD per completare i dati sperimentali con le storie termiche risulta una tecnica capace di migliorare l'approccio alla modellazione del fenomeno dell'ossicombustione, mostrando la forte interazione tra cinetiche chimiche, campo di moto e campo termico.

SFOR semplice Modello di partenza:

$$\begin{cases} \frac{\partial VM_p}{\partial t} = exp(Ae^{-\frac{E}{RT}})(VM_{\infty} - VM_p)\\ T = cost \end{cases}$$

Equazione esplicita:

$$VM_n = VM_{\infty}e^{-exp(Ae^{-\frac{E}{RT}})t}$$

E

Equazione nel solver:

$$m_p(t) = m_{p,0} \cdot \left(Y_{CHAR} + Y_{ASH} + V M_{\infty} exp(-Ae^{-\frac{E}{RT_p}}t) \right)$$

Parametri di E ed A per il solver:

$$A[1/s] = 131.22 \pm 81.34; \ E[J/kmol] = 27980332 \pm 4543026$$

SFOR rampa

$$\begin{cases} \frac{\partial VM_p}{\partial t} = k(VM_{\infty} - VM_p) \\ T = HR \cdot t + T_0 \end{cases}$$

Equazione esplicita:

$$VM_p(t) = VM_{\infty}exp\left[-\frac{AE}{R \cdot HR}\left(EI\left(-\frac{E}{R(T_0 + HR \cdot t)}\right) + \frac{R(T_0 + HR \cdot t)}{E}exp\left(-\frac{E}{R(T_0 + HR \cdot t)}\right) - EI\left(-\frac{E}{RT_0}\right) - \frac{RT_0}{E}exp\left(-\frac{E}{RT_0}\right)\right)\right]$$

Equazione nel solver:

$$m_p(t) = m_{p,0} \cdot \left(Y_{CHAR} + Y_{ASH} + V M_{\infty} exp(-Ae^{-\frac{E}{RT_p}}t) \right)$$

Parametri di E ed A per il solver:

$$A[1/s] = 18.46 \pm 1.60; \ E[J/kmol] = 6226477 \pm 2745254$$

SFOR B-T

$$\begin{cases} \frac{\partial VM_p}{\partial t} = exp(Ae^{-\frac{E}{RT}})(VM_{\infty} - VM_p)\\ T = cost \end{cases}$$

Equazione esplicita:

$$VM_p = (1 - e^{-DI\frac{T}{T_{st}}})e^{-exp(Ae^{-\frac{E}{RT}})t}$$

Equazione nel solver:

UDF, si veda l'appendice B.

Parametri di E ed A per il solver:

 $DI[-] = 2.19Y_{VM} - 0.208; \ A[1/s] = exp(0.105E[kJ/mol] + 3.42); \ E[kJ/mol] = 30.4\frac{Y_O}{Y_C} + 24.6$

Capitolo 7

Conclusioni

In questa tesi è stata proposta una metodologia di calcolo per ottenere modelli cinetici del primo ordine sufficientemente accurati per la predizione del fenomeno della devolatilizzazione in condizioni di ossicombustione. A partire da un'analisi delle problematiche legate al ricavo delle cinetiche chimiche dai reattori EFR, è stata utilizzata la CFD come strumento di completamento dei dati. L'interazione tra stora chimica, fluidodinamica e termica delle particelle ha portato allo sviluppo di un metodo iterativo per il calcolo dei parametri di cinetica di modelli dal basso costo computazionale (SFOR). Oltre al metodo SFOR base, si propone una modifica basata sull'osservazione della modalità di riscaldamento delle particelle nell'IPFR, ovvero inserendo nel modello base un profilo lineare di temperatura ed un campo di volatili finale VM_{∞} funzione della temperatura nominale del reattore per il fitting dei dati. Il confronto tra metodi iterativi (SFOR base e rampa) e non (SFOR B-T e modello CPD) porta a concludere che la metodologia proposta garantisce modelli i cui parametri cinetici riproducono con buona approssimazione (<20%) i dati sperimentali, con sforzo computazionale confrontabile (CPD escluso). Tale sistema può essere utilizzato nella progettazione di fornaci industriali o gassificatori per i processi di ossicombustione, come suggerisce il caso studiato, ma anche per casi di combustione convenzionale o gassificazione. Per il carbone Sebuku indonesiano sono stati infine proposti valori di A ed E per i modelli iterativi SFOR eSFOR rampa, comprensivi di errore assoluto da un'analisi di sensitività dei parametri di fitting. E' stato inoltre costruito un programma Matlab[®] di analisi dei dati per i reattori EFR: modificando le caratteristiche geometriche nel programma è possibile eseguire un post-processing anche su altri sistemi similari.

Appendice A

Codice Matlab per il post processing

Algoritmo per l'estrazione dei dati, compatibile con il programma di post processing:

CFD simulation IPFR model \rightarrow export...particle history data...(set coarsen=1, add 'Particle Diameter', 'Particle Temperature', 'Particle Volatile Mass Fraction')

CFD-Post \rightarrow Load simulation data \rightarrow Import Particle history data (set 1600 max particle) \rightarrow Export data (set no geometry informations or headers) \rightarrow x.csv y.csv (...)

```
clear all
clc
close all
%%IMPORTAZIONE DEI DATI%%
dataX=importdata('x.csv', ';');
dataZ=importdata('z.csv', ';');
dataY=importdata('y.csv', ';');
dataT=importdata('T.csv', ';');
datat=importdata('tmp.csv', ';');
dataD=importdata('D.csv', ';');
dataPVMF=importdata('PVMF.csv', ';');
\label{eq:constraint} \ensuremath{\texttt{X}}\ensuremath{\texttt{ORDINAMENTO}}\ensuremath{\texttt{DATI}}\ensuremath{\texttt{X}}\ensuremath{\texttt{(}data1-Particle1particlen)}\ensuremath{->}\ensuremath{(Particle1-Data1Datan)}
indice_fondo=find(dataY == -4.5);
z=1;
for w=1:length(indice_fondo);
     if w = = 1
           numrighepart(w)=indice_fondo(w)-1;
     for r=1:numrighepart(w);
           tempifinali(z)=datat(1+r);
```

```
Tempfinali(z)=dataT(1+r);
        LunghReattore(z)=dataY(1+r);
        Raggio(z) = sqrt((((dataX(1+r)))^2)+((dataZ(1+r)))^2);
        PVMF(z) = dataPVMF(1+r);
        D(z) = dataD(1+r);
        z = z + 1;
        if r==numrighepart(w);
            r = 1;
        end;
    end;
    else
    numrighepart(w)=indice_fondo(w)-(indice_fondo(w-1)+1);
    for r=1:numrighepart(w);
        tempifinali(z)=datat((indice_fondo(w-1)+1+r));
        Tempfinali(z)=dataT((indice_fondo(w-1)+1+r));
        LunghReattore(z)=dataY((indice_fondo(w-1)+1+r));
        Raggio(z) = sqrt(((dataX((indice_fondo(w-1)+1+r)))^2)
        +((dataZ((indice_fondo(w-1)+1+r)))^2));
        PVMF(z)=dataPVMF((indice_fondo(w-1)+1+r));
        D(z) = dataD((indice_fondo(w-1)+1+r));
        z = z + 1;
        if r==numrighepart(w);
            r=1;
        end;
    end;
    end
end;
tempifinali=tempifinali(:);
Tempfinali = Tempfinali(:);
LunghReattore=LunghReattore(:);
D = D(:);
PVMF = PVMF(:);
for i = 1:length(numrighepart);
    if i = = 1
        t_f{i,:} = tempifinali(1:numrighepart(i));
        T_f{i,:} = Tempfinali(1:numrighepart(i));
        L_f{i,:} = LunghReattore(1:numrighepart(i));
        Raggio_f{i,:} = Raggio(1:numrighepart(i));
        PVMF_f{i,:} = PVMF(1:numrighepart(i));
        D_f{i,:} = D(1:numrighepart(i));
    else
        t_f{i,:} = tempifinali(sum(numrighepart(1:i-1))
        )+1:sum(numrighepart(1:i)));
        T_f{i,:} = Tempfinali(sum(numrighepart(1:i-1))
        )+1:sum(numrighepart(1:i)));
        L_f{i,:} = LunghReattore(sum(numrighepart(1:i-1))
        )+1:sum(numrighepart(1:i)));
        Raggio_f{i,:} = Raggio(sum(numrighepart(1:i-1))
        )+1:sum(numrighepart(1:i)));
```

```
PVMF_f{i,:} = PVMF(sum(numrighepart(1:i-1))
        +1: sum(numrighepart(1:i)));
        D_f{i,:} = D(sum(numrighepart(1:i-1)))
        +1: sum(numrighepart(1:i)));
    end
end
%%selezione manuale dei dati per temperatura nominale reattore%%
t_camp_Bonv_=[0.025,0.05,0.1,0.15,0.25]; %% tempi ideali
t_camp_Bonv=[%%CFD DATA%%];
L_camp_Bonv=[%%CALCULATED DATA FROM t_id%%];%%LUNGHEZZE DI CAMPIONAMENTO
PVMF_camp_Bonv = [%%EXP DATA%%];
Conv_camp_Bonv=[%%EXP DATA%%];
Conv_s_max=%%VMinf*YF%%
X%CAMPIONAMENTO DATI ALLE LUNGHEZZE SPECIFICATE%%
figure(1)
for b=1:length(L_camp_Bonv);
    count_part(b)=1;
    for a=1:length(L_f)
        if length(L_f{a})==0
        else
        indice_L = find(-L_f{a}-1.35976 \le L_camp_Bonv(b));
        indice_L=indice_L(end);
        if 2*Raggio_f{a}(indice_L) <= 0.0275
            count_part(b) = count_part(b)+1;
            t_camp_conzeri(a)=t_f{a}(indice_L);
            L_camp_conzeri(a) = -L_f\{a\}(indice_L) - 1.35976;
            T_camp_conzeri(a)=T_f{a}(indice_L);
            D_camp_conzeri(a)=D_f{a}(indice_L);
            PVMF_camp_conzeri(a)=PVMF_f{a}(indice_L);
            Conv_camp_conzeri(a)=(Conv_s_max - PVMF_f{a}(indice_L))
            /(1-PVMF_f{a}(indice_L));
            p0=plot(L_camp_conzeri,t_camp_conzeri,'xb');
            hold all
            else
        end
        end
     end
    indice_nonzeri=find(L_camp_conzeri~=0);
    for c=1:length(indice_nonzeri)
        t_camp(c)=t_camp_conzeri(indice_nonzeri(c));
        L_camp(c)=L_camp_conzeri(indice_nonzeri(c));
        T_camp(c)=T_camp_conzeri(indice_nonzeri(c));
```

```
PVMF_camp(c)=PVMF_camp_conzeri(indice_nonzeri(c));
        D_camp(c)=D_camp_conzeri(indice_nonzeri(c));
        Conv_camp(c)=Conv_camp_conzeri(indice_nonzeri(c));
    end
    t_medio(b)=mean(t_camp);
    t_std(b)=std(t_camp);
    T_media(b)=mean(T_camp);
    T_std(b)=std(T_camp);
    L_media(b)=mean(L_camp);
    Conv_media(b)=mean(Conv_camp);
    Conv_std(b) = std(Conv_camp);
    PVMF_media(b)=mean(PVMF_camp);
    PVMF_std(b) = std(PVMF_camp);
clearvars L_camp t_camp L_camp_conzeri t_camp_conzeri Conv_camp
end
p1=plot(L_camp_Bonv,t_camp_Bonv_,'--ko','Linewidth',2);
hold all
p2=plot(L_media,t_medio,'--ro','Linewidth',2);
hold all
% axis([0 ceil(10*max(L_media))/10 0 ceil(10*max(t_camp_Bonv_))/10])
axis([0 1.1*max(L_media) 0 1.1*max(t_camp_Bonv_)])
ztick = get(gca,'ZTickLabel');
set(gca,'ZTickLabel',ztick,'FontSize',21);
xlabel('_uyu[m]_','FontSize',20,'FontWeight','bold');
ylabel('utu[s]u', 'FontSize', 20, 'FontWeight', 'bold');
legend([p0 p1 p2],{'CFD', 'ideal','CFD_mean'},'FontSize'
,18, 'Location', 'southeast');
grid on;
print('Lvst_','-depsc')
print('Lvst_','-dpng')
savefig('Lvst_.fig')
figure(2)
e1=errorbar(t_medio,Conv_media,Conv_std,'--ro','Linewidth',2);
hold all
```

```
p3=plot(t_medio,Conv_camp_Bonv,'ok','Linewidth',2);
hold all
axis([0 1.1*max(t_medio) 0 1.1*max(max(Conv_camp_Bonv,Conv_media))])
ztick = get(gca,'ZTickLabel');
set(gca,'ZTickLabel',ztick,'FontSize',21);
xlabel('t<sub>u</sub>[s]', 'FontSize', 20, 'FontWeight', 'bold');
ylabel('X<sub>u</sub>[-]','FontSize',20,'FontWeight','bold');
legend([e1 p3],{'CFD', 'exp'}, 'FontSize',18,'Location', 'northwest');
grid on;
print('tvsX_','-depsc')
print('tvsX_','-dpng')
savefig('t_X.fig')
figure(3)
e2=errorbar(t_medio,PVMF_media,PVMF_std,'--ro','Linewidth',2);
hold all
p4=plot(t_medio,PVMF_camp_Bonv,'ok','Linewidth',2);
hold all
axis([0 1.1*max(t_medio) 0 1.1*max(max(PVMF_media,PVMF_camp_Bonv))])
ztick = get(gca,'ZTickLabel');
set(gca,'ZTickLabel',ztick,'FontSize',21);
xlabel('t<sub>u</sub>[s]','FontSize',20,'FontWeight','bold');
ylabel('VM<sub>u</sub>[-]','FontSize',20,'FontWeight','bold');
legend([e2 p4],{'CFD', 'exp'}, 'FontSize',18, 'Location', 'southwest');
grid on;
print('tvsVM_','-depsc')
print('tvsVM_','-dpng')
savefig('t_VM.fig')
%%CALCOLO HR%%
for a=1:length(T_f)
    for f=1:length(t_f{a})
        if t_f{a}(f) < 0.06 \& t_f{a}(f) > 0.01
             HR_test = (T_f{a}(f+1) - T_f{a}(f)) / (t_f{a}(f+1) - t_f{a}(f));
             if HR_test==inf | HR_test<=0
             else
                 HR_(f)=HR_test;
             end
        else
        end
    end
    indice_nanzeri=find(isnan(HR_)==0 & HR_~=0);
    HR=HR_(indice_nanzeri);
    HRmean(a)=mean(HR);
```

```
HRmax(a) = max(HR);
end
    HR_meanofmax=mean(HRmax);
    HR_meanofmean=mean(HRmean);
    HR_std=std(HRmean);
%%CREAZIONE TABELLE%%
tabella1=table(t_camp_Bonv_',L_camp_Bonv',t_medio',t_std',L_media'
 ,T_media',T_std',PVMF_media',PVMF_std',count_part');
tabella1.Properties.VariableNames{1} = 't_bonv';
tabella1.Properties.VariableNames{2} = 'L_bonv';
tabella1.Properties.VariableNames{3} = 't_medio';
tabella1.Properties.VariableNames{4} = 't_std';
tabella1.Properties.VariableNames{5} = 'L_reale';
tabella1.Properties.VariableNames{6} = 'T_media';
tabella1.Properties.VariableNames{7} = 'T_std';
tabella1.Properties.VariableNames{8} = 'PVMF_media';
tabella1.Properties.VariableNames{9} = 'PVMF_std';
tabella1.Properties.VariableNames{10} = 'Part_campionate';
tabella1
tabella2=table(HR_meanofmean', HR_std');
tabella2.Properties.VariableNames{1} = 'HRmofm';
tabella2.Properties.VariableNames{2} = 'HRstd';
tabella2
%%FIGURA tvsT%%
    t=linspace(0,0.1,100);
    figure(4)
col_{1=1};
col_2 = 0.15;
for i = 1: length(t_f)
    if length (D_f{i}) == 0
    else
        if D f{i}(1) <= 6.6e-05
            col=1;
        else
            if D_f{i}(1) <= 7.3e-05 & D_f{i}(1) >= 6.8e-05
            col=2;
            else
                 if D_f{i}(1) <= 7.7e-05 & D_f{i}(1) >= 7.6e-05
            col=3;
                  else
                  if D_f{i}(1) <= 8.5e-05 & D_f{i}(1) >= 8e-05
            col = 4;
                  else
                  if D_f{i}(1) <= 9.1e-05 & D_f{i}(1) >= 8.9e-05
```

```
col = 5;
                   else
                       col=5;
                   end
                   end
                   end
             end
         plot(t_f{i},T_f{i},'color',[col_1 col_1 col_1]-col_2*col)
         hold on
         end
    end
end
axis([0 \ 0.08 \ 273 \ max(T_f{1})+0.1*max(T_f{1})])
xlabel('t<sub>u</sub>[s]','FontSize',20,'FontWeight','bold');
ylabel('T<sub>u</sub>[K]', 'FontSize', 20, 'FontWeight', 'bold');
xtick = get(gca,'XTickLabel');
set(gca,'XTickLabel',xtick,'FontSize',21);
colormap([col_1-5*col_2 col_1-5*col_2 col_1-5*col_2;
 col_1 - 4 * col_2 col_1 - 4 * col_2 col_1 - 4 * col_2;
 col_1 - 3* col_2 col_1 - 3* col_2 col_1 - 3* col_2;
  col_1 - 2* col_2 col_1 - 2* col_2 col_1 - 2* col_2;
   col_1 -1*col_2 col_1 -1*col_2 col_1 -1*col_2]);
labels ={'90', '83.25', '75.5', '69.7', '63'};
lcolorbar(labels,'Title','D_pu[\mu_m]','fontsize',12);
grid on;
print('tvsT_','-depsc')
print('tvsT_','-dpng')
savefig('t_T.fig');
```

Appendice B

Codice per l'implementazione UDF del metodo SFOR B-T nel solver

```
#include "udf.h"
DEFINE_DPM_LAW(devo_BT, p, coupled)
{
        real temp_st=1223;
         /*proximate analysis standard temperature*/
        real di=%%[-]%%;
        /*devolatilization index*
        real a=%%[1/s]%%;
         /*pre-exponencial factor*/
        real e= % % [ J / kmol ] % %;
         /*activation energy*/
        real k=a*exp(-e/(UNIVERSAL_GAS_CONSTANT*P_T(p)));
        /*arrehnius law*/
        real ash_fraction=1.-DPM_CHAR_FRACTION(p)
        -DPM_VOLATILE_FRACTION(p);
    real char_fraction=DPM_CHAR_FRACTION(p);
        real VMinf=(1-exp(-di*P_T(p)/temp_st));
        /*legge BT*/
        DevolatilizationLaw(p);
        P_MASS(p) = P_INIT_MASS(p) * VMinf*(exp(-k*P_DT(p))) +
         P_INIT_MASS(p)*(char_fraction+ash_fraction);
}
```

Appendice C

Codice per il calcolo dei parametri del modello SFOR semplice

```
clear all
clc
close all
%%DATI SPERIMENTALI%%
t_Bonv=[0.025,0.05,0.1,0.15,0.25];
PVMF_Bonv{1} = [\% KEXP VM 1173K\%];
PVMF_Bonv{2}=[%%EXP VM 1373K%%];
PVMF_Bonv{3}=[%%EXP VM 15173K%,];
T = [1173, 1373, 1573];
%%DATI DA CFD%%
t_reale{1}=[%%CFD t 1173K%%];
t_reale{2}=[\%\% CFD \ t \ 1373K\%\%];
t_reale{3}=[%%CFD \ t \ 1573K\%\%];
%%FITTING%%
t_1173=t_reale{1};
t_1373=t_reale{2};
t_1573=t_reale{3};
PVMF_{1173} = PVMF_{Bonv \{1\}};
PVMF_1373 = PVMF_Bonv{2};
PVMF_1573 = PVMF_Bonv \{3\};
g1173 = fittype('(%%VM*YF_max%%)*exp(
-k*t_1173)', 'independent', 't_1173', 'dependent', 'PVMF_1173');
arrh1173 = fit(t_1173', PVMF_1173', g1173);
g1373 = fittype('(%%VM*YF_max%%)*exp(
-k*t_1373)', 'independent', 't_1373', 'dependent', 'PVMF_1373');
arrh1373 = fit(t_1373', PVMF_1373', g1373);
g1573 = fittype('(%%VM*YF_max%%)*exp(
-k*t_1573)', 'independent', 't_1573', 'dependent', 'PVMF_1573');
```

```
arrh1573 = fit(t_1573', PVMF_1573', g1573);
k(1) = coeffvalues(arrh1173);
k(2) = coeffvalues(arrh1373);
k(3) = coeffvalues(arrh1573);
for i=1:length(T)
unT(i)=1/T(i);
lnk(i) = log(k(i));
end
g = fittype('m*unT+q','independent','unT','dependent','lnk');
linfit = fit(unT',lnk',g);
figure(1)
plot(unT,lnk,'.b')
hold all
plot(linfit)
hold all
mq=coeffvalues(linfit);
A = \exp(mq(2));
E = -mq(1) * 8.314472 * 1000;
fprintf('fattore_pre_esponeniale__{\rm u}%f_[1/s]_\n',A);
fprintf('energiaudiuattivazioneu=u%fu[J/kmol]u\n',E);
```

Appendice D

Codice per il calcolo dei parametri del modello SFOR rampa

```
clear all
clc
close all
fid = fopen('functionMIN_rampa.m','wb');
% nonlincon = fopen('nonlincon_rampa.m', 'wb');
% sigma_max=0.01;
R=8.314472; %[J/K mol]
T0 = 293; \[K]
%%IMMISSIONE DATI storia termica e t_CFD
             HR_=[%%HR da CFD per 1173K, 1373K, 1573K%%];
             t1173 = [\% t \ da \ CFD \ per \ 1173K\%];
             t1373 = [%%t da CFD per 1373K%%];
             t1573 = [%%t da CFD per 1573K%%];
             VM1173=[%%VM da EXP per 1173K%%];
             VM1373=[%%VM da EXP per 1173K%%];
             VM1573=[%%VM da EXP per 1173K%%];
             VM_inf = [%% VMinf per 1173K, 1373K, 1573K%%];
%%SCRITTURA FUNZIONE 'functionMIN_rampa' OBIETTIVO
fprintf(fid, 'function_{\sqcup}f_{\sqcup}=_{\sqcup}functionMIN_rampa(x)_{\sqcup} \ (n_{\sqcup}f=');
% fprintf(nonlincon, 'function [c, ceq]=nonlincon(x) \ n');
for i=1:15 %15=tot dati sperimentali
    if i<5
```

```
HR = HR_{(1)};
        t=t1173(i);
        VM = VM 1 173(i);
        VMinf = VM_inf(1);
    else
        if i>5 & i<10
        HR = HR_{(2)};
        t=t1373(i-5);
        VM = VM1373(i-5);
        VMinf=VM_inf(2);
        else
            if i>10 & i<15
        HR = HR_{(3)};
        t=t1573(i-10);
        VM = VM1573(i - 10);
        VMinf=VM_inf(3);
        else
        end
        end
    end
    T=R*(TO+HR*t);
    h = HR * R;
    tO = R * TO;
fprintf(fid,'(((\%f*(exp(-(x(1)*x(2)/\%f)*(ei(-x(2)/\%f)+
(\exp(-x(2)/\%f))*(\%f/x(2))-ei(-x(2)/\%f)-(\exp(-x(2)/\%f))*(\%f))
/x(2))))-%f)^2)+',VMinf,h,T,T,T,t0,t0,t0,VM);
%fprintf(nonlincon,'c( %1.0f) = abs((%f*(exp(-(x(1)*x(2)/%f)
(ei(-x(2)/f)+(exp(-x(2)/f))*(f/x(2))-ei(-x(2)/f))
 ,T,t0,t0,t0,VM,VM,sigma_max);
else
if i==15
fprintf (fid, '((\%f*(exp(-(x(1)*x(2)/\%f)*(ei(-x(2)/\%f)+
(exp(-x(2)/%f))*(%f/x(2))-ei(-x(2)/%f)-(exp(-x(2)/%f))*(%f)
/x(2))))-%f)^2))^0.5;', VMinf,h,T,T,t0,t0,t0,VM);
% fprintf(nonlincon,'c(%1.0f)=abs((%f*(exp(-(x(1)*x(2)/%f)
*(ei(-x(2)/\%f)+(exp(-x(2)/\%f))*(\%f/x(2))-ei(-x(2)/\%f)
 -(\exp(-x(2)/(f))*((f/x(2)))) - (f)/(f) - (f)(n \setminus n', i, VMinf, h, T, T))
,T,t0,t0,t0,VM,VM,sigma_max);
```

else

114

fprintf (fid, '((%f*(exp(-(x(1)*x(2)/%f_{\sqcup})*(ei(-x(2)/%f)+ (exp(-x(2)/%f))*(%f/x(2))-ei(-x(2)/%f)-(exp(-x(2)/%f))*(%f)

```
/x(2)))))-%f)^2)+',VMinf,h,T,T,T,t0,t0,t0,VM);
% fprintf(nonlincon,'c( %1.0f )= abs((%f*(exp(-(x(1)*x(2)/%f)
* (ei(-x(2)//f) + (exp(-x(2)//f)) * (//f/x(2)) - ei(-x(2)///f))
- (\exp(-x(2)//f)) * (//f/x(2))) - //f) / //f - //f + (n', i, VMinf, h, T, T)
,T,t0,t0,t0,VM,VM,sigma_max);
end
end
end
fprintf(fid, '\nuend');
% fprintf(nonlincon,'ceq=[]; \n end');
 fclose('all');
XXINIZIO MINIMIZZAZIONE DELLA FUNZIONE APPENA SCRITTA
 clc
C = [0 1; 0 -1; 1 0; -1 0];
b=[100000;-0000;10000;-000]; %Emax,-Emin,Amax,-Amin
lb = [];
ub = [];
Aeq = [];
beq = [];
nonlcon =[]; % @nonlincon_rampa;
x0 = [500 \ 10000];
options = optimoptions(@fmincon,'MaxIter',10000,'TolX',1e-30,
'TolFun', 1e-30, 'Display', 'iter', 'Algorithm', 'interior-point',
'hessian', 'lbfgs', 'MaxFunEvals', 100000);
[valAE,fval,exitflag]=fmincon(@functionMIN_rampa,x0,C,b,Aeq,beq,
lb,ub,nonlcon,options);
if exitflag==1 | 2 | 5
fprintf('_LA=_U\%f_U[1/s]_U\n_E=_U\%f_U[J/mol]_U\n_E=_U\%f_U[J/kmol]
\verb|n_devianza_residua_%f_u|n_exitflag_%1.0f|
\n', valAE(1), valAE(2), valAE(2)*1000, fval, exitflag);
else
    fprintf('non_converge!!!!u[u%1.0fu]', exitflag);
end
```

Bibliografia

- [IEA, 2014a] International Energy Agency, "Medium-term coal market report 2014", ISBN 978-92-64-22188-8
- [IEA, 2014b] International Energy Agency, "World Energy outlook, 2014"
- [WCA, 2014] World Coal Association, "Coal Matters", November 2014
- [Strezov et al., 2004] V.Strezov, J.A. Lucas, T.J. Evans, L. Strezov, "Effect of heating rate on the thermal proprieties and devolatilisation of coal", 2004
- [Jianglong et al., 2004] Jianglong Yu,J.A. Lucas, Terry F. Wall, "Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review", 2004
- [Fletcher et al., 1990a] Thomas H. Fletcher, Alan R. Kerstein, Ronald J. Pugmire, David M. Grant, "A Chemical Percolation Model for Devolatilization: Temperature and Heating Rate Effects", 1990
- [Fletcher et al., 1990b] Thomas H. Fletcher, Alan R. Kerstein, Ronald J. Pugmire, David M. Grant, "A Chemical Percolation Model for Devolatilization: Summary", 1990
- [Genetti, 1999] Dominic B. Genetti, "An Advanced Model of Coal Devolatilization Based on Chemical Structure", 1999
- [Biagini & Tognotti, 2014] E.Biagini, L.Tognotti, "A generalized correlation for coal devolatilization kinetics at high temperature", 2014
- [Fluent, 2014], "ANSYS FLUENT Theory Guide, 2014", 2014
- [Franco & Diaz, 2008] A.Franco, A.R.Diaz, "The future challenges for "clean coal technologies": Joining efficiency increase and pollutant emission control", 2008
- [Toftegaard et al., 2010] M.B.Toftegaard , Jacob Brixa, Peter A. Jensena, Peter Glarborga, Anker D. Jensen ,"Oxy-fuel combustion of solid fuels", 2010
- [Jianglong et al., 2003] Jianglong Yu, Vladimir Strezov, John Lucas, Terry Wall ,"Swelling behaviour of individual coal particles in the single particle reactor", 2003
- [Baum & Street, 1971] M. M. Baum , P. J. Street, "Predicting the Combustion Behavior of Coal Particles", 1971

- [Ranz & Marshall, 1952] W. E. Ranz , W. R. Marshall, "Vaporation from Drops, Part I", 1952
- [Tarantino, 2010] R. Tarantino, "Qualifica di un impianto pilota per la valutazione di combustibili solidi", 2010
- [Bonvicini, 2012] G. Bonvicini, "Combustion kinetics of coal in oxy-firing conditions", 2012
- [Perry's chemical engineers' handbook, 1999] R. Perry, D.Green ,"Perry's chemical engineers' handbook", McGrawHill, 1999
- [Molina & C.R.Shaddix, 2007] A.Molina, C.R.Shaddix, "Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion", Proceedings of the Combustion Institute, 2007
- [Liu et al., 2003] F.Liu, K.Guo, G.Smallwood, "The chemical effect of CO2 replacement of N2 in air in the burning velocity of CH4 and H2 premixed flames", Combustion and Flame, 2003
- [Tognotti et al., 2013] L.Tognotti,C.Galletti, G.Coraggio, G.Smallwood, "Numerical investigation of oxy-natural-gas combustion in a semi-industrial furnace: Validation of CFD sub-models", Fuel, 2013
- [Chen et al., 2012] Lei Chen, Sze Zheng Yong, Ahmed F. Ghoniem, "Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling", Progress in Energy and Combustion Science, 2012
- [Simone et al., 2009] M. Simone, E. Biagini, C. Galletti, L. Tognotti, "Evaluation of global biomass devolatilization kinetics in a drop tube reactor with CFD aided experiments, stabilization and CFD modeling", Progress in Energy and Combustion Science, 2009
- [Wall et al., 2009] Terry Wall, Yinghui Liu, Chris Spero, Liza Elliott, Sameer Khare, Renu Rathnam, Farida Zeenathal, Behdad Moghtaderi, Bart Buhre, Changdong Sheng, Raj Gupta, Toshihiko Yamada, Keiji Makino, Jianglong Yua, "An overview on oxyfuel coal combustion—State of the art research and technology development", Chemical Engineering Research and Design, 2009
- [IFRF Report, doc No G 26/y/01, 2013] G. Bonvicini, G. Coraggio, M. Faleni, L. Tognotti, "Coal characterization in oxy-firing conditions using the Isothermal Plug Flow Reactor. Part 1 Methodology", doc No G 26/y/01, 2013
- [IFRF Report, doc No F112/y/01, 2013] G. Bonvicini, G. Coraggio, M. Faleni, L. Tognotti, "Coal characterization in oxy-firing conditions using the Isothermal Plug Flow Reactor. Part 2 – Experimental results", doc No F112/y/01, 2013
- [Ålvarez et al., 2013] L. Ålvarez, C. Yin, J. Riaza, C. Pevida, J.J. Pis, F. Rubiera, "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxyfiring conditions", Energy, 2013

- [Tarquini, 2012] S.Tarquini "Analisi della combustione di polverino di carbone e biomassa in reattore a flusso trascinato mediante sonde ottiche", 2012
- [Galletti et al., 2012] C. Galletti, E. Giacomazzi, S. Giammartini, G. Coraggio, L. Tognotti "Analysis of Coal Combustion in Oxy-fuel Conditions through Pulsed Feeding Experiments in an Entrained Flow Reactor", 2013