
i
i

i
i

i
i

i
i

Angelo Mario Del Grosso

Designing a Library

of Components

for Textual Scholarship

Anno 2015

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in

Ingegneria dell'Informazione

Tesi di Dottorato di Ricerca

i
i

i
i

i
i

i
i

Università di Pisa

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Ph.D. Thesis

Designing a Library of Components for
Textual Scholarship

Candidate:

Angelo Mario Del Grosso

Supervisors :

Prof. Francesco Marcelloni

Dr. Andrea Bozzi

Dr. Federico Boschetti

Dr. Emiliano Giovannetti

2015

SSD ING-INF/05

i
i

i
i

i
i

i
i

Sommario

Il presente lavoro affronta e descrive temi legati all’applicazione di nuove tecnologie,

di metodologie informatiche e di progettazione software volti allo sviluppo di stru-

menti innovativi per le Digital Humanities (DH), un’area di studio caratterizzata

da una forte interdisciplinarità e da una continua evoluzione. In particolare, questo

contributo definisce alcuni specifici requisiti relativi al dominio del Literary Com-

puting e al settore del Digital Textual Scholarship. Conseguentemente, il contesto

principale di elaborazione tratta documenti scritti in latino, greco e arabo, nonché

testi in lingue moderne contenenti temi storici e filologici. L’attività di ricerca si

concentra sulla progettazione di una libreria modulare (TSLib) in grado di operare

su fonti ad elevato valore culturale, al fine di editarle, elaborarle, confrontarle, anal-

izzarle, visualizzarle e ricercarle. La tesi si articola in cinque capitoli. Il capitolo

1 riassume il contesto del dominio applicativo e fornisce un quadro generale degli

obiettivi e dei benefici della ricerca. Il capitolo 2 illustra alcuni importanti lavori

e iniziative analoghe, insieme a una breve panoramica dei risultati più significativi

ottenuti nel settore delle DH. Il capitolo 3 ripercorre accuratamente e motiva il

processo di progettazione messo a punto. Esso inizia con la descrizione dei prin-

cipi tecnici adottati e mostra come essi vengono applicati al dominio d’interesse. Il

capitolo continua definendo i requisiti, l’architettura e il modello del metodo pro-

posto. Sono cos̀ı evidenziati e discussi gli aspetti concernenti i design patterns e la

progettazione delle Application Programming Interfaces (APIs). La parte finale

del lavoro (capitolo 4) illustra i risultati ottenuti da concreti progetti di ricerca che,

da un lato, hanno contribuito alla progettazione della libreria e, dall’altro, hanno

avuto modo di sfruttarne gli sviluppi. Sono stati quindi discussi diversi temi: (a)

l’acquisizione e la codifica del testo, (b) l’allineamento e la gestione delle varianti

testuali, (c) le annotazioni multilivello. La tesi si conclude con alcune riflessioni e

considerazioni indicando anche possibili percorsi d’indagine futuri (capitolo 5).

v

vi

i
i

i
i

i
i

i
i

Abstract

The present work is the result of the research activity carried out during my PhD

studies. This thesis addresses the application of new technologies, computer sci-

ence methodologies, and software design principles in the interdisciplinary and

evolving field of DH - in other contexts known as Humanities Computing. In

particular, this contribution highlights the specific needs entailed in collaborative

literary computing and in digital textual scholarship. The source context especially

concentrates on documents written in Latin, Greek and Arabic, or on documents in

modern languages concerning historical and philological topics. In the specific, the

research activity focuses on the design of a modular library (TSLib) dealing with

scholarly sources for what regards their editing, processing, comparison, analysis,

visualization and searching. The thesis explores the aforementioned topics across

five chapters. Chapter 1 tracks the context of the digital textual scholarship and

gives a summary of the objectives and the benefits of this research. Chapter 2 illus-

trates related works and similar initiatives, along with worth mentioning projects

and outcomes in the area of Digital Humanities. Chapter 3 thoroughly describes

and motivates the design process implemented. The process starts by describing

well-known engineering principles and shows how they are applied for the digital

textual domain and for the computational scholarly needs. Then, it continues in-

troducing requirements, architecture and models of the proposed method. Design

issues with regards to patterns and APIs are highlighted. The final part of this

work (chapter 4) illustrates concrete results deriving from a number of research

projects that, on the one hand, have contributed to the design of the library and,

on the other hand, have based their work on it. Several topics have been discussed:

(a) acquisition and text encoding, (b) alignment and variant annotation, and (c)

multi-level annotation. In the conclusion, a few reflections and considerations are

presented, together for suggestions and for further studies (chapter 5).

vii

i
i

i
i

i
i

i
i

<dedication> → <people>

<people> → <those I love>

<those I love> → <name> <surname>

(after Thomas A. Sudkamp)

i
i

i
i

i
i

i
i

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation, goals, and challenges 5

1.3 The benefits of a library of components 14

2 Background 17

2.1 Preliminary remarks . 17

2.2 Initiatives for textual scholarship 19

2.2.1 Community environments 19

2.2.2 Research infrastructures . 22

2.2.3 Philological projects . 23

2.3 Textual scholarship tools . 26

2.3.1 TUSTEP - Tübingen System of Text Processing 27

2.3.2 LaTeX / Mauro-TeX . 27

2.3.3 JuxtaCommons . 28

2.3.4 CollateX . 28

2.3.5 Text::TEI::Collate . 29

2.3.6 eXist-db . 30

2.4 Data and metadata encodings . 30

2.4.1 Data . 31

2.4.2 Metadata . 37

2.5 Related open source software libraries 43

2.5.1 Text processing . 44

2.5.2 Language processing . 46

2.5.3 Text architecture . 47

vii

viii CONTENTS

2.6 Suitable information technologies 49

2.6.1 Document, text and character encodings 49

2.6.2 String manipulation, text alignment, and vector space model 50

2.6.3 Image processing . 52

2.6.4 Linked Open Data methods and technologies 53

2.6.5 Machine learning approaches 55

2.6.6 Software engineering principles and processes 57

3 Methods 59

3.1 Introduction . 59

3.2 Requirements and use cases . 66

3.3 System architecture . 72

3.4 Designing the data model . 78

3.5 API design and Design Patterns 85

3.5.1 API design . 86

3.5.2 Design Patterns . 95

3.5.3 Reusability and extensibility 106

3.6 Developing technologies . 108

4 Case Studies 109

4.1 Source acquisition and text encoding 110

4.1.1 Text acquisition . 112

4.1.2 Character and text encoding 119

4.2 Indexing . 125

4.3 Alignment . 130

4.4 Variant reading and multi-level analysis 133

4.4.1 Variant reading annotations 134

4.4.2 Multi-level analysis . 136

5 Conclusion and Perspectives 145

6 Acronyms 149

7 Acknowledgements 157

Bibliography 161

i
i

i
i

i
i

i
i

List of Figures

3.1 Component services example . 60

3.2 Example of UML Use case diagram within the TSLib 64

3.3 Mockup example within the TSLib analysis process 65

3.4 Example of UML conceptual class diagram within the TSLib . . . 65

3.5 Modern manuscript example . 68

3.6 TSLib core Use Cases . 71

3.7 Textual Scholarship environment within a component schema . . . 73

3.8 Layers view of the TSLib . 74

3.9 The core components of the Textual Scholarship Library 75

3.10 Open Philology architecture - Courtesy of Bridget Almas 79

3.11 Class model defining the tradition of the textual documents 81

3.12 Conceptual Class Model representing textual source materials . . . 82

3.13 Parallel bilingual texts with comments and selection 82

3.14 Lemmatization example for API Component design 89

3.15 Convenience layered API for TSLib 94

3.16 API/SPI Delegation pattern . 96

3.17 Factory Pattern . 97

3.18 Singleton Pattern . 98

3.19 Proxy Pattern . 99

3.20 Adapter Pattern . 99

3.21 Facade Pattern . 100

3.22 Composite Pattern . 101

3.23 Observer Pattern . 102

3.24 Visitor Pattern . 103

3.25 Strategy Pattern . 104

ix

x LIST OF FIGURES

3.26 Parser Handler Pattern . 104

3.27 Request Response Pattern . 105

3.28 TSLib Extension Capability . 107

4.1 Example of a manuscript written in Greek language 111

4.2 Example of a word processing electronic file 112

4.3 Example of Greek glyphs - Courtesy of prof. Bruce Robertson . . . 113

4.4 OCR experiments conducted on the HLRS Environment 114

4.5 Parallel OCR experiments evaluation 116

4.6 Image processing parameters - Courtesy of F. Boschetti 118

4.7 Greekness score evaluation . 119

4.8 Data Model versus External Data Format 120

4.9 The GUI the text-image framework 123

4.10 XML schema implementing the TSLib data model 127

4.11 Output of the aligner on Odyssey French translations 131

4.12 Greek against Arabic alignment with transpositions 131

4.13 The alignment component. UML class diagram 132

4.14 The variant readings annotation example 135

4.15 TSLib module for text analysis and segmentation 138

4.16 The multi-layer annotation component 139

4.17 The TSLIB lemmatization module 141

4.18 Example of linguistic annotation to a sentence 142

4.19 The TSLib Human correction module 143

i
i

i
i

i
i

i
i

Chapter 1

Introduction

This chapter is divided in two main parts. The first part aims at providing a brief

historical overview of the phases which textual scholarship has gone through. The

second part presents the relevance, motivations, objectives and challenges that

have characterized this research work. The main focus is placed on the advantages

of designing a library of components for textual scholarship.

1.1 Overview

The digital revolution and the widespread availability of documents through the

World Wide Web have increasingly changed the ways of studying and knowing

textual resources and cultural heritage documents [1, 2]. New technologies of-

fer a mean to encode, process, and link relevant textual-phenomena. This offers

the opportunity to deal with an amount of data and automation that would be

impossible with traditional methodologies. Moreover, this process has played an

important role in expanding the access to textual resources for studies and for

digital scholarly editing1 [6, 7]. As a consequence, computer science has extended

the scope of its research to matters related to the field of humanities [8, 9]. Fol-

lowing this, computer science and computer engineering have also started to deal

with interdisciplinary issues trying to solve literary problems in an effective and

efficient way [10, 11].

As claimed by I. Lancashire [12]:

1Digital scholarly editing covers the whole editorial, scientific and critical process that leads
to the publication of an electronic resource [3, 4, 5].

1

2 CHAPTER 1. INTRODUCTION

Literary and linguistic computing in the humanities analyzes texts

to give insight into their meaning, their authorship, and their tex-

tual tradition. These insights are derived from computational text

analysis, which employs concordancers to find verbal patterns. These

can sometimes help uniquely identify the author’s idiolect, illuminate

the chronology, narrative structure, semantics, and sources of a text,

and create a hypothetical stemma representing the descent of the text

from earlier versions. Norbert Wiener’s cybernetics, a theory of mes-

sages that applies equally to communications by human beings and

machines, underpins the computational study of author, text, readers,

and the history of textual transmission.

At the time of writing, the field of DH2 is going through a crucial methodolog-

ical debate. The discussion addresses both its definition and its main objectives

[13, 14, 15, 16, 17, 18].

For the purpose of this thesis, a brief overview of the historical milestones

that have characterized it might be necessary. In particular, a clarification is

needed regarding digital textual scholarship3 and computational philology4. This

improves the understanding of the context in which this study has been carried

out.

The first project commonly acknowledged to belong to the field of Digital

Humanities dates back to 1946. With the help of IBM, Roberto Busa began to

create a digital corpus composed of eleven million words, based on the works of

Thomas Aquinas (Index Thomisticus) [20, 21].

For a long time, the principal subject of investigation had been the process of

data acquisition and the long-term preservation of documents in trusted reposi-

tories [22]. Consequently, digital and computational humanists highly depended

upon the digitization of primary sources. Digitizing source images was the first

2The Manifesto for the Digital Humanities is avaiable at the following URL:
http://tcp.hypotheses.org/411

3 As pointed out in [7, 19], digital textual scholarship deals with studying by means of a
digital environment all and each aspect of texts in order to understand their sources and history.
It encompasses any form of investigation of original documents, whether manuscript or print, to
establish a work’s composition, revision, editing, printing, production, or distribution.

4Computational philology refers to a set of activities related to the development of programs
which are devoted to encourage interaction between the publisher and the machine [3]. The
expression computational philology has been used for the first time in 1968 inside a computer
science document about computational linguistic, see S. Kuno - A.G. Oettinger, ”Computational
Linguistics in a Ph.D. Computer Science Program”, Comm. ACM 11, 12 (1968), in part. p. 835.

i
i

i
i

i
i

i
i

1.1. OVERVIEW 3

step for any initiative of this kind. Conversely, few studies were conducted on

digital editions and almost none on their publication [23].

In the beginning, digitization was typewritten and individually corrected by

hand. At that time, scholars in the field of humanities had limited technological

experience in word processors. In addition the workflow of the digitization mixed

automatic process and human adjustment with consequent issues related to scal-

ability. Scholars’ habits directly derived from paper libraries and they extensively

imitated printed forms [24].

In order to increase the amount of textual collections, in the early 70s,

community-driven projects were started, for instance the Gutenberg Project. Their

main aim was to create large digital archives containing the works of a number

of authors. However, the quality of these early digitization initiatives was not

adequate to scholars’ needs.

Two main issues are worth mentioning: 1) the impossibility to compare the

image of the original printed edition with the digital text derived from it; 2)

the absence of any para-textual data, such as the preface, the introduction or

the footnotes, as well as data for editorial purposes (i.e. availability of critical

apparatus information stored in a database [25]). Later on, digitization campaigns

were also extended to historical documents and particularly to literary corpora of

Greek and Latin texts. At that time, digital resources used CD-ROM storage

technology to preserve and disseminate the content of the archives. However,

communication between humanists and computer scientists was uncommon, except

for a few pioneers5 with a wider vision who mediated among the members of these

communities. For instance, some best-known works explored computer programs

for the creation of machine-readable representation of literary resources [26, 27].

The statistical methods applied helped identifying the genealogical relationship

among several codes [28, 29], and analyzing the results of the collation phase [30].

Afterwards, standards for encoding were designed that allowed interoperabil-

ity between different textual representations. At character level, one of the first

achievements was the reduction of encodings for glyphs not directly mapped in the

ASCII table. Related to that, the creation of the BetaCode scheme [31] was one of

the most adopted solutions, especially for ancient languages. At document level,

public Document Type Definitions (DTDs) achieved easier and long-term preser-

vation of individual documents and collections. From that moment on, scholars

5Richard Goulet, Peter Robinson, Andrea Bozzi, and Gian Piero Zarri, among others, are
researchers who first investigated the use of the computer in philology.

4 CHAPTER 1. INTRODUCTION

started using digital methods for the textual editing. Nevertheless, they continued

printing documents, due to the impossibility of publishing them in a digital form.

In the same period editorial programs emerged, like TUSTEP [32], or many others

based on the TeX family [33, 34] .

In the 90s, other initiatives came forward which aimed at storing document

images alongside full texts. Applications met at least two requirements. Firstly,

they linked textual chunks to relative Region of Interest (ROI), automatically or

semi-automatically; secondly, they provided users with the page image up front,

with a full text search capability and with annotation tools. This way, users were

facilitated in solving problems of interpretation caused to difficult reading due to

damages to the physical support [35].

Contextually, digital libraries and philological environments began to include

links to the primary sources of each information. In such a way, readers were able

to compare editorial choices across multiple sources enabling editorial discussions

[22].

In this framework, digital scholars worked for marking up documents which

were made up of two fundamental parts: a) the textual content, and b) the

metadata. However, computer authoring systems supported only the encoding

phase, not allowing any data processing. Although this approach replaced printed

books with new digital editions, it did not foster a real change in the scholar

paradigm [24]. Moreover, software applications aimed at solving the needs of spe-

cific projects, often disregarding reusability and extensibility [36, 10, 37]. In light

of this, scholars have been working together with ITC companies in order to exper-

iment and develop new computer-aided methods. Among others, tools were able

to manage quotations and variant readings, to link to pre-existing bibliographic

documents, to activate services such as linguistic analysis, or to mark locations on

a map [4, 25, 38].

The possibility of disseminate electronic editions exploited infrastructures and

applications like Cocoon [39] and Anastasia [40]. As a consequence, companies

with technological know-how, often used to make business by selling the imple-

mented platforms.

More recently, digital repositories have been managing massively cultural her-

itage materials both by using multiple OCR engines and by processing linguistic

data. This takes place through NLP tools and text alignment procedures. In

addition this technological improvement is mainly due to three aspects: (a) the

i
i

i
i

i
i

i
i

1.2. MOTIVATION, GOALS, AND CHALLENGES 5

wide diffusion of Internet (particularly the Word Wide Web service), (b) the de-

velopment and adoption of machine learning algorithms, and (c) the successful

outcomes achieved in automatic detection of genetic variations. At this stage,

digital platforms offer a new space where scholars can sign up in order to proof-

read the content of the archive and to open collaborative intellectual comments

[41]. Collaborative philology has begun to take hold: users, by means of a suitable

cyber-infrastructure, evaluate automated processed data which has been statisti-

cally classified.

This new approach has led to a paradigm shift in a threefold way:

1. Systems based on stochastic models and statistical algorithms started being

employed by crowd-sourcing communities. Up to that time, automatic sys-

tems had made use of procedures based on a set of rules which could handle,

in an asymptotic manner, all possible cases of input data.

2. Experiments of collaborative textual criticism has fostered theoretical con-

siderations on the digital representation of the text (decentralized, real-time

community contributions, dynamic and fluid representation)[3, 42].

3. Digital libraries have become capable of scanning their contents and search-

ing for new data such as secondary sources and new editions of primary

materials.

Finally, since 2000s, researchers have increasingly gained expertise in both

computational and textual domains. They have put forward new issues, mainly

seeking methods to be as open and share as possible. For instance, scholars claim

open data access and source code availability. On the one hand, they can develop

tools and implement experiments based on reusable components. On the other,

they can collaborate directly with the community for bug fixing and for extending

the functionality. In fact, experts have an important part to play both for the

scholarly editing and for the software development.

1.2 Motivation, goals, and challenges

The objective of this work is to discuss modeling issues and prototype applica-

tions in designing a modular software library for the textual scholarly domain. It

6 CHAPTER 1. INTRODUCTION

tries to highlight and address the technological gap existing between digital schol-

ars approaches and those approaches used by software engineers and computer

scientists.

Up to now, new technologies and digital methodologies are common in many ar-

eas of research such as natural sciences, computational linguistics or bio-informatics.

Unfortunately, they are not yet mature for the literary computing field and par-

ticularly for computational philology. Nevertheless, researches in such a domain

are constantly shifting classical practices towards various forms of digital repre-

sentations and processing of textual resources and their transmission as historical

process. As a matter of fact, the digital environment allows textual researchers to

implement methods, approaches and tools in order to:

• browsing in large archives of electronic texts and digital images;

• promoting the discovery of textual, para-textual, extra-textual, and inter-

textual phenomena (i.e. parallel passages, citations, annotations, etc.);

• detecting errors and variant readings where texts are transmitted by multiple

witnesses;

• supporting the editing of a critical apparatus and consequently the editing

of a critical edition;

• producing indexes and concordances both from texts and from scholars com-

ments;

• improving the ability to make correct editorial choices;

• working on a text collaboratively, with multiple users, even those com-

ing from different areas of specialization (philologists, linguists, historians,

philosophers, etc.).

Generally, this kind of studies deals with the following complementary points:

a) producing accurate and detailed digital resources (digital philology); b) devel-

oping sound, efficient and flexible software to process resources (computational

philology); and c) integrating data and services in a virtual research infrastructure

(ePhilology).

a) Digital philology focuses on the acquisition and the creation of digital resources.

For instance, improving OCR accuracy applied to classical and less-served lan-

guages, or establishing standards for shared annotations.

i
i

i
i

i
i

i
i

1.2. MOTIVATION, GOALS, AND CHALLENGES 7

b) Computational philology, instead, concerns data analysis and data manipula-

tion. For example, the development of procedures for word frequencies compu-

tation, as well as the comparison of two or more texts, the automated lemma-

tization or the linguistic analysis of texts.

c) Finally, e-philology aims at building research infrastructures in order to han-

dle collaboration among scholars (e.g. social annotations or social editions),

human-machine interaction (e.g. by using search engines and visualization

techniques), and machine to machine cooperation (e.g. by software agents,

which use chains of web services or linked open data).

The above points actually provide the environment for the development of tools

that aid literary studies in the digital age. In turn, literary studies involve four

fundamental aspects as regards the digital representation of textual sources:

• multiple devices convey the textual content of the source (e.g. the text of a

manuscript and the image of a page);

• the tradition of the text manifests multiple variant readings (e.g. the word

disagreements found in the same textual context within different document-

witnesses);

• the textual content encompasses multiple layers of analysis at different levels

of granularity (e.g. the syntactic analysis of a sentence or a metrical analysis

of a poetic verse);

• the levels of analysis provide multiple interpretations (e.g. the disagreements

concerning morphological interpretations based on the same word).

The aforementioned accounts show that the challenge of this research concerns

the modeling of data in order to serve as evidence for literary studies in digital

ecosystems. In fact, in the last few decades, much work for textual scholarship has

leveraged the idea that the design and the development of digital tools could be

carried out by reusing and customizing the outcomes obtained in other computa-

tional sciences (e.g. natural language processing, bioinformatics, and others).

However, the tradition of scholarly studies needs digital models and compu-

tational approaches which rely on appropriate data structures, algorithms and

functionalities. For example, computational linguistics analyzes a single text flow

associated to single linguistic analyses (e.g. syntactic and semantic analyses),

8 CHAPTER 1. INTRODUCTION

whereas, for example, computational philology must deal with multiple versions of

the same text (due to variants in the manuscripts or conjectural emendations pro-

vided by the scholars) and multiple interpretations at each level of analysis (due to

the disagreement of authoritative scholars recorded in several commentaries across

the centuries).

Consequently, textual scholarship models extend those models commonly adopted

for the linguistic software design. In particular, the basic model takes into account

four core properties:

1. the version of the textual data;

2. the analysis and interpretation of the information;

3. the granularity of the analysis;

4. the location of the textual data.

In this background, a suitable textual scholarship application, which deeply

exploits the possibilities of digital technology, allows, in a fully integrated vir-

tual environment, the interconnection among primary sources (such as images or

diplomatic/interpretative transcriptions of a manuscript), the shared access to sec-

ondary materials (such as commentaries, monographs, etc.), and the availability

of scholarly tools (such as collection modules, concordances, etc.). In such a way,

a digital edition provides scholars with a powerful tool which allows an effective

and efficient document dissemination among literary communities.

This work, therefore, is an insight into the design of software components fo-

cusing on literary activities. These activities cover, for example, the alignment of

complex textual objects (e.g. the alignment of variant readings according to the

edit distance of the inflected forms and to their semantic similarity), the manage-

ment of levels of analysis (e.g. morphological or lexical analysis by using different

methods such as statistical algorithms or rule-based approaches), the editing and

retrieval of multiple, concurrent annotations. Furthermore, another important

functionality is the linkage of textual resources to multimedia sources, for example

the image of the manuscript page with its textual content. Three main building

blocks are involved for developing a framework able to deal with such wide needs:

1. Acquisition of resources by Optical Character Recognition (OCR) or infor-

mation extraction and document transformation from semi-structured re-

sources to structured ones (ETL).

i
i

i
i

i
i

i
i

1.2. MOTIVATION, GOALS, AND CHALLENGES 9

2. Document and text processing, content analysis, data indexing and informa-

tion retrieval.

3. Development of collaborative environments based on well-defined compo-

nents which provide interfaces for developers (API), for service provides

(SPI), and for users (GUI).

Eventually, the research outcomes relate to the design of components, of mod-

ules and of plug-ins for a collaborative object-oriented library. The system es-

tablishes a suitable tool, on the one hand, for analyzing manuscripts and printed

documents and, on the other hand, for producing new critical editions. For this

purpose this research work has investigated how to design a worthwhile API for

large-scale and long-term scholarly projects.

The method adopted for analyzing, designing and implementing the artifacts

uses the following approaches: a custom agile use-case driven process, the object-

oriented paradigm, relevant design principles, and the unified modeling language

diagrams (UML). Doing so, research studies can draw up different views of the

domain under study focusing on both static and dynamic aspects of the system.

The UML graphical notation is important as it helps in designing a model at high

level of abstraction. In this way, the model is platform and technology independent.

Due to the abstract modeling and the modular design, the concepts within this

research have already been used in a number of national and international projects

devoted to manage parallel multimedia resources, both text and image.

At present, DH engages a large and heterogeneous community. A rich set

of methodologies, approaches, procedures, tools, and applications have been de-

veloped within it. Unfortunately, the outcomes are frequently isolated and kept

in unshared black-boxes. Furthermore, design features such as interoperability,

reusability and extensibility, have hardly been taken into account. This is mainly

due to the fact that a great number of DH researchers use private policies in devel-

oping new models for their computational studies [43]. Indeed, current software

systems for academic studies generally depend on single initiatives and language

requirements; thereby, each language requires a different system for language anal-

ysis. Contrarily, computational projects involving cultural heritage materials can-

not be addressed through specific needs or languages. Even less they cannot rely

on rigid and monolithic applications [44, 45, 7, 46]. As a result, one of the great

objectives of DH is to design shared methods, efficient algorithms and reusable li-

10 CHAPTER 1. INTRODUCTION

braries which can effectively meet and solve a wide variety of textual requirements

[47].

Hence, a crucial and expected accomplishment is to empower the community

of textual studies through an integrated service-driven framework tailored to their

specific needs. Therefore it is necessary that software engineers, computer sci-

entists and computational humanists combine their efforts in order to develop

flexible, reusable and reliable technologies for the domain of social sciences and

humanities (SSH). In other words, the main objective lies in designing and imple-

menting a framework able to assemble software packages (components) to be ex-

ploited by computational inquiries in the field of humanities. Afterwards, software

artifacts have to be integrated into a comprehensive technology platform which

enables computational scholars to build new tools or to refactor existing ones.

This ongoing process provides scholars the necessary knowledge for the creation

of complex and reliable software, thus supporting the DH field. Consequently,

a modular library with well-designed Application Programming Interfaces is now

deemed strategic for conducting research in the area of computational philology.

Several large-scale researches have recently been released to the community with

regards to these issues (see chapter 2).

This kind of infrastructure, on the one hand, provides classical scholars with a

digital environment for studying textual documents. On the other hand, it serves

as a platform for computational scholars for developing and sharing their own

software applications.

Nowadays, applications for textual scholarship are becoming increasingly com-

plex. Therefore, it is necessary to apply the best engineering practices in order

to build them properly and make them reliable. According to the aforementioned

framework, the aim of this research is to model and implement flexible and reusable

software components tailored on the requirements of the computational and collab-

orative textual scholarship. For example, such components must allow their users

to detect the resource language, choose a suitable morphological engine, perform

analyses at different granularities, manage text repository, and construct training

sets for further statistical analysis.

In order to fulfill these goals, three points need to be particularly stressed:

1. Software engineering principles;

2. Literary computing applications;

i
i

i
i

i
i

i
i

1.2. MOTIVATION, GOALS, AND CHALLENGES 11

3. Linguistic technology methods.

The first point involves: (a) adopting a process which considers Agile prin-

ciples, user requirements and domain modeling; (b) fostering the object-oriented

paradigm; (c) following the component-based model; (d) considering well-known

design patterns; (e) putting into effect practical API design techniques; (f) refac-

toring existing software; (g) establishing integration policies; (h) favoring the open-

source community-based development; (i) producing a test case and unit test for

the artifacts.

The second point involves: (a) implementing efficient methods for content ac-

quisition such as optical character recognition, (b) developing reliable document

processing algorithms and scholarly editing systems such as software that han-

dles variant readings and quotations, (c) formalizing shared data-format schemes

and common ontologies such as mark-up XML vocabularies and formal domain

conceptualizations.

Finally, the third pillar encompasses, among others, (a) implementing Natural

Language Processing (NLP) tasks such as lemmatization, parsing, classification,

fuzzy matching, searching, etc.; (b) enhancing accuracy for current algorithms

such as improving recall and precision in classification or clustering processes; (c)

improving scalability of the current approaches such as parallelizing tasks for mas-

sive digitization, or developing language-independent strategies; (d) researching

new strategies, algorithms and data structures focusing on complex matters; (e)

providing useful visualization like an immediate view of the content of a document

alongside the linguistic analysis or a suitable view of the textual phenomena with

the related image area.

Generally, design principles help to use the full power of object-oriented pro-

gramming. Additionally, where applied, they enable to write efficient, effective,

flexible, extensible, scalable and maintainable software. This deals with more

focused and manageable software modules and source code. As a consequence,

developers can concentrate on the actual logical needs of the application or on ex-

tending the software already available. It is worth noting that without an effective

engineering approach within the DH applications, the cost of software develop-

ment would be higher than necessary, and the cost of maintaining and using the

tools would be unfeasible.

Sharing computational tools and technologies throughout common frameworks

is rather a new theme for literary scientists. Indeed, up to now collaborations

12 CHAPTER 1. INTRODUCTION

and data exchanges have been defined in terms of data format or data encod-

ing, or at most exposing web services. However, at moment digital scholars are

ready for developing software in distributed teams and classical philologists are

further studying in virtual environments. It is therefore necessary to create a new

generation of Citizen Scientists [45].

In conclusion, scholars, working together with computational researchers, could

make textual heritage sources more accessible and intelligible. Moreover, research

in Digital Humanities demands new technologies in order to face the following

challenges:

Firtly, researchers should try to establish a process for creating and sharing

data and tools for the target field. Consequently, research can address the design

and the development of the desired applications applying scalable methods with

which managing the digital sources available for analysis. Afterwards, applications

can focus on providing better Optical Character Recognition (OCR) for improve

digital document processing. Moreover, it is fundamental to provide alignment

and collation mechanisms of textual readings by exploiting parallel and distributed

environment.

Secondly, researches should manage the growing collection of encoded data

such as morpho-syntactic annotations, named entity data, and information about

interrelated corpora. Therefore, scholarly tools have to support a diverse range

of annotations, such as translations, studies of textual transmission, quotations,

prosopography, and linguistic information (semantic and lexical analyses), thereby

managing the circulation of ideas across time, space, language and culture. In par-

ticular digital scholarly applications need to support facilities for scholarly editing

and for reconstructing texts [48]. Specifically, such a feature not only involves the

management of variant readings but also the document processing pertaining to

stemmatology matters (i.e. by phylogenetic methods) [49]. Obviously, scholars

require tools to enhance the ability of researchers to work with historical sources.

Thirdly, an other important area of study involves the implementation of search

engines which consider textual variations. This presumes that repositories dispose

of multiple editions as well as tools that manage different versions of the same text.

These search engines need to collate multiple editions against each other, identi-

fying quotations of primary sources and providing differences. Moreover, they

should give access to repositories of conjectures, to bibliographical documents, to

high resolution images, to commentaries and to all other information that scholars

i
i

i
i

i
i

i
i

1.2. MOTIVATION, GOALS, AND CHALLENGES 13

may need.

Finally, one of the objectives of the common work among textual scholars,

software engineers and computer scientists is the setting up of a virtual textual

research environment able to:

• implement methods for crowd-sourcing and citizen science support;

• provide integrated access to digital research resources, to tools and services

across disciplines and user communities;

• process structured and qualitative data in virtual workspaces;

• handle textual contents in several languages and localize the environment

into multiple languages by translating the core vocabularies;

• promote digital practices for research, education and innovation, sharing

material for further computational processing;

• allow young scholars to interact primary sources and to browse the vocabu-

lary, morphology and syntax of the texts they are reading;

• preserve continuity for textual information and textual tradition;

• define, semantics and ontologies concerning metadata, as well as, guarantee

the best levels of abstraction to process data in order to ensure interoper-

ability;

• promote effective collaboration among researchers and simplify access to data

discovery and its use.

To sum up, the textual scholarship field has been moving towards compu-

tational research, despite the considerable delay if compared to other scientific

disciplines. Indeed, in the digital era it is necessary to implement tools that al-

low scholars to handle fluid digital editions dynamically [42]. This follows that

each text tradition generates multiple variant readings, levels of annotations and

interpretations. Consequently, computational applications are fundamental in-

struments that support editorial process. It is worth noting that, although new

technologies improve the work of scholars, only philologists have the authority to

establish the text (e.g. making the editorial choices). In view of what is now possi-

ble, this thesis argues that the primary tools of textual scholarship should become

software components able to process digital editions in a collaborative way.

14 CHAPTER 1. INTRODUCTION

1.3 The benefits of a library of components

As pointed out by [11, 19, 13, 50, 7], in the domain of literary computing, many

existing software models and their implementations are not modular, customizable

and do not scale. Consequently, they do not encourage reusability and flexibility

of the artifacts. Nowadays, software applications, which need distributed and

interrelated functionalities, integrate outcomes and capabilities by means of data

exchange and web services. Although effective and well tested, this approach does

not encourage a full model sharing, a community-based development, and service

reliability.

For this reason there is a claimed need [51] of shared tools for digital scholarly

editing as well as for literary material processing. This research attempts to offer

a solution to fill this gap. This study starts from the assumption that a software

library provides opportunities for (a) designing suitable use cases, (b) defining

domain entities and abstract data types, (c) modeling functionalities and behavior,

(d) organizing data, (e) exporting services. Therefore, computing applications hold

the potential to reuse components and access or manipulate data in an efficient

and shared way. This process is paramount to address requirements in the field of

DH and it provides scholars with the appropriate services to create complex and

trustable software.

A well-designed library should bear the following general features:

• flexibility and modular application architecture;

• platform independence;

• customizability to the end user needs;

• ability to work online as well as offline;

• simplified distribution to the end user;

• simplified updating for the clients;

• consistency that avoids unexpected outcomes for users;

• ability to evolve while maintaining backward compatibility;

• collaboration among members of the community;

• cooperation among services;

i
i

i
i

i
i

i
i

1.3. THE BENEFITS OF A LIBRARY OF COMPONENTS 15

• stable contract that can be used for communication purposes.

Specifically, a software library offers entry points on top of which the user can

assemble related parts of the application.

Furthermore, component-based libraries provide strategies for customizing ap-

plications by means of extensible modules and plug-ins. As an outcome, the sys-

tems seem to have been created as a whole. In addition, a modular library is

composed of smaller, separate units, which are well isolated and uniquely identi-

fied. These units export simplified interfaces and describe the environment they

need in order to work properly. This allows the core components of the library and

the final applications to assemble the module as required. Suitable Application

Programming Interfaces identify services and data types of long-term value and

make them accessible to the target community with more stability. Finally, com-

ponents can be integrated into existing projects and adapted without further mod-

ifications to their source code. This also allows avoiding low-level programming

interventions. In such a way, a fully functional software package can be created

addressing the needs of the domain community. This work begins by defining a

proof-of-concept library for literary studies and several API principles that pro-

vide stable access to the library functionality. API guarantees a set of component

services able to handle textual resources for historical documents in the domain of

literary computing. Through this process, the library provides functions that sup-

port scholarly works, such as aligning complex textual objects, expanding levels

of analysis, editing and retrieving multiple and concurrent annotations, processing

manuscript page images.

Each component is interoperable with other components and, at the same

time, it abstracts itself from the underlying technology and implementation. The

component abstraction is made possible by designing standard building blocks,

shared workflows and well documented interfaces with coherent APIs. Application

Programming Interfaces provide abstractions for problems and they specify how

clients should interact with software components that implement a solution to

that problem. In essence, APIs define reusable building blocks that allow modular

pieces of functionality to be incorporated into end-user applications as loosely

coupled components. Designing proper APIs is strategic mainly for two reasons: 1)

the long-term availability of the library functionality and 2) the community-driven

development of the tools. Moreover, the proper design results in reusable software

artifacts that reflect the target domain. Although the aforementioned approach is

16 CHAPTER 1. INTRODUCTION

well-known by researchers in science and technology, it is not a common practice

in humanities computing.

Users benefit from a library as it has to clearly distinguish between the spec-

ification and implementation of Abstract Data Types (ADTs) [52]. Moreover,

scholars can benefit from the Textual Scholarship Library (TSLib) because it is

being designed and tested adopting use-case scenarios gathered from concrete re-

search projects. By adopting API principles, libraries export services through a

logical interface and hide the details underpinning the internal implementation.

Therefore, textual scholarship API can offer a high-level of abstraction for scholar

needs and promotes code reuse by sharing the same functionality thus allowing,

at the same time, multiple service providers.

To conclude, a modular and abstract library would have a twofold result. In

the first place, it would allow developers to reuse the general model and its core

components; secondly, develpers would be able to add functionalities and solve new

requirements by plugging extensions into the system [46]. Therefore, Application

Programming Interfaces offer a means of access to ad-hoc implementations tailored

on specific services -such as linguistic morphological analysis-, through a specified

engine.

i
i

i
i

i
i

i
i

Chapter 2

Background

Due to the wide range of themes covered by Digital Humanities and its inter-

disciplinary nature, this field is in constant evolution. Nevertheless, this chapter

seeks to take a snapshot of the state of the art in the application of computa-

tional studies to textual scholarship. Moreover, it tries to give an overview of the

context in which this research is placed and the theories and technologies sup-

porting them. Furthermore, the chapter introduces the most outstanding software

libraries, nearly all implemented in Java, and used for research purposes.

2.1 Preliminary remarks

Engineers, computer scientists, philologists and linguists have given impulse to

a wide research activities and to many initiatives in the area of Digital Humani-

ties (DH). They have worked together for more than thirty years to implement au-

tomatic systems applied to human sciences. Hence, experiments, new approaches,

theories, techniques and applications have evolved in relation to the handling and

automatic management of texts and languages. Collaborations, conventions, in-

ternational and interdisciplinary associations have arisen with the aim of guiding

the development of researches.

Text editing is one of the activities that has benefited most from the spread

of computers. For example, typos can be kept under control thanks to spell-

checkers, documents can be saved in multiple copies and easily sent via e-mail or,

more recently, stored and shared in the cloud [53].

17

18 CHAPTER 2. BACKGROUND

Particularly in the case of scholarly editing, the availability of digital docu-

ments, either in form of digital texts or scanned manuscripts, can considerably

simplify philologists’ work. An evidence is given by the possibility of accessing

resources through searching a particular word of interest. The importance of this

area of research is also confirmed by the many initiatives and tools in the fields of

literary and linguistic computing and of natural language processing for cultural

heritage [54, 55].

Moreover, the possibility for a document to be edited by a variety of people

has gained increasing interest. A related practice, the so-called Collaborative Edit-

ing, allows scholarly communities produce social works giving to the members the

possibility of contributing to establish the texts [1]. One of the key features of

collaborative editing is its asynchronicity, which allows a dramatic reduction of

work time. Collaborative editing constitutes a particularly useful instrument in

scholarly editing, as it envisions the Web as a common workspace. The rapid in-

crease of wiki projects and the wide use of Google Documents (GDocs) are a result

of this vision. Wiki is a website characterized by (mostly textual) contents that

multiple users can edit in a collaborative way, by using a simple browser. It also

disposes of a system that ensures tracking of the changes brought to documents.

However, this platform presents some limitations. Firstly, it does not support ei-

ther advanced search engines, nor versioning of dependencies. Consequently, the

references reported in each document version are always linked to the most up to

date documents. GDocs environment, on the other hand, is the most used collab-

orative textual editing tool of general-purpose documents. Differently from wikis,

GDocs is a real-time collaborative editing framework, allowing users to edit and

to comment documents simultaneously. Both technologies represent a model for

developing systems for digital scholarly editing. As witnessed by the aforemen-

tioned tools, current trends in digital and computational philology are oriented

towards developing collaborative environments [56, 44, 41]. Research centers are

developing technologies and methods in order to provide the international commu-

nity with suitable tools to make, share and to reuse textual scholarship products.

This would also widen the access of scholars to gather and edit material [1, 36].

Several international congresses recently argued about this topic [57, 58, 59, 60].

Issues related to licenses play a crucial role in this context1.

1This work does not take in consideration licenses. However, as regards data, Creative Com-
mons is the mean to deal with these topics. As far as software, Open Source Initiative (OSI) and
Free Software Foundation (FSF) are the organizations which manage such a matter.

i
i

i
i

i
i

i
i

2.2. INITIATIVES FOR TEXTUAL SCHOLARSHIP 19

2.2 Initiatives for textual scholarship

In recent years, relevant projects have been conducted on textual scholarship,

which reflect the objectives and trends discussed so far. The majority of these

researches suggest solutions to implement digital libraries for general purposes,

or mono-thematic archives. Normally, they focus on Web access to repositories,

both of texts and images available through interconnected frameworks [44]. This

section outlines the initiatives that are most representative in the context of this

thesis, since they address the field of computational and digital philology. The

projects are grouped into three classes, namely: (1) Community environments, (2)

Research infrastructures, and (3) Philological projects. Within the first group In-

teredition, Bamboo, TextGrid, and Open Philology are discussed; the second group

encompasses DARIAH, CLARIN, and Europeana; finally, the third group briefly

introduces projects with a marked philological perspective, id est, the Perseus

project, the Van Gogh digital edition, Muruca/Pundit, SAWS, DINAH, NINES,

and the Textual Communities platform.

2.2.1 Community environments

Interedition

The Interedition initiative2, funded by the European Cooperation in the field of

Scientific and Technical Research (COST action), aims at establishing a research

community for scholarly editing. The project is also supported by the European

Society for Textual Scholarship (ESTS) and it is devoted to promote both the inter-

operability of digital editing tools and a shared methodology in the field of textual

scholarship. Interedition fosters the development and availability of web services

to make the interoperability among various tools and scholarly resources possible.

The solution proposed by Interedition for textual heritage management is twofold:

(a) the creation of a sustainable digital edition model, and (b) the development

of a sustainable technical framework and infrastructure. To reach these objectives

the initiative encourages projects dealing with textual scholarship to develop tools

as open as possible and it promotes communication amongst scholars by using

innovative and shared frameworks. The Interedition architecture provides a num-

ber of cloud web services (called microservices), which support specific tasks in

scholarly editing. The microservices are designed as a reusable building blocks of

2http://www.interedition.eu/

20 CHAPTER 2. BACKGROUND

digital scholarly tools. The well-known CollateX (see section 2.3.4), which inherits

the Peter Robinson’s Collate tool [61], has been developed within this framework.

Apart from providing and encouraging the development of tools, several projects

involving the creation of digital editions, archives and corpora are under the In-

teredition umbrella. The majority of them regards individual authors and works,

as well as specific historical periods.

Bamboo

Bamboo3, funded by the Andrew W. Mellon Foundation, is a cyber-infrastructure

initiative. The project aims to enhance the research in arts and humanities, thank

to shared infrastructures and services. As for Interedition, Bamboo’s objective is

to assist each step of the scholar workflow, from acquisition and accessing texts, to

analyzing and editing them by implementing web services, within a collaborative

environment. The challenge of this initiative has been to advance arts and hu-

manities research through the development of shared technology services. Among

the technical requirements, flexibility and scalability are the fundamental architec-

ture features to be addressed. Unfortunately, as outlined in [62] the infrastructure

development has experienced various challenges: “changing scholars’ traditional

practices is not effortless”. Nevertheless, even if the project was not able to realize

the main objectives, it established an important channel of communication among

scholars, librarians, computer scientists, and information engineers [63].

TextGrid

TextGrid4 is a Java-based Web environment, funded by the German Federal Min-

istry of Education and Research. TextGrid, as suggested by its name, is based on a

grid of computers and represents a virtual research infrastructure for philologists,

linguists, musicologists and art specialists. It promotes access to, and exchange

of, data in the field of DH. This German Framework provides integrated tools for

analyzing texts, and gives computer support for digital editing purposes [64].

The system architecture encompasses several interoperable layers. Addition-

ally, it leverages a long-term repository embedded in a full meshed infrastructure

connected to Internet. Services and access tools compose the Middleware layer,

which, in turn, is used by other modules and software components positioned at a

3http://www.projectbamboo.org/
4https://www.textgrid.de/

i
i

i
i

i
i

i
i

2.2. INITIATIVES FOR TEXTUAL SCHOLARSHIP 21

higher level of the system architecture. These latter exploit the Middleware layer

to communicate both with the Grid and with the user interface (GUI). The system

provides many tools and services. Among others: Editor XML, Text-Image-Link

Editor, Dictionary Search Tool, Lemmatizer, Tokenizer, Semantic Search Tool,

Metadata Editor, Upload Tool, Streaming Editor, Sort Tool, Classical Philology

Gloss Editor, LEXUS and COSMAS, Collationer and Dictionary Link Editor. The

development technology platform uses Java programming language, engineering

principles for software development, as well as text processing tools, text mining

and natural language processing.

Open Philology Project

The Open Philology Project5 is an initiative within the Humboldt Chair of Digital

Humanities at the University of Leipzig. The objective of this project is to enable

Greco-Roman culture “to realize the fullest possible role in intellectual life” by

means of the rise of digital technology opportunities. The initiative covers three

complementary functions: 1. produce open philological data, 2. educate a wide

audience about historical languages, and 3. integrate open philological data from

many sources. The project focuses on the philological and linguistic perspectives

of sources. In this sense, the Open Philology attempts to convert manuscripts and

printed works into digital resources as much as possible. Furthermore, it provides

tools for annotating, comparing, connecting, interpreting, proving or rejecting hy-

potheses, finding evidence, studying critical apparatuses and commentaries. Open

Philology Project builds upon and supports Perseus Digital Library. Indeed, it

contributes to expand open collections and services, while reaching an increas-

ingly global audience. The production of data includes four modules: 1. Workflow

module, enabling a digital representation of a written source enriched by linguis-

tic and named entities annotation; 2. Distributed review module, assessing and

representing the reliability of data; 3. Repository module, preserving data based

on Collections, Indexes, Texts, Extensions architecture (CITE)/Canonical Text

Services (CTS) architecture (see section2.4.2); 4. e-Portfolio Module, aggregating

and distributing users’ contributions.

5http://www.dh.uni-leipzig.de/wo/open-philology-project/

22 CHAPTER 2. BACKGROUND

2.2.2 Research infrastructures

Digital Research Infrastructure for the Arts and Humanities

The Digital Research Infrastructure for the Arts and Humanities (DARIAH) project6

aims to develop a European infrastructure and a data platform able to provide and

to integrate services for digital arts and humanities [65]. The DARIAH data back-

bone attempts to be as open and decentralized as possible. This configuration is

functional to the creation of federation mechanisms that are efficiently applicable

in research-oriented applications across diverse data sources. The principal efforts

focus on data analysis, data visualization, and task management. In addition, the

infrastructure allows to add any suitable source while granting the possibility to

select resources for specific application environment. It results that different sets

of data sources can coexist. As far as new application development is concerned, it

requires more effort than simply querying an existing database, as these applica-

tions operate on the federated DARIAH backbone. Thanks to this infrastructure,

scholars have a digital mean to enhance data quality and to obtain long-term

preservation and interoperability, as well as to foster data sharing. In order to

manage the aforementioned capabilities, DARIAH has established four programs:

(1) e-infrastructure; (2) research and education; (3) scholarly management; (4)

advocacy, impact, and outreach.

Common Language Resources and Technology Infrastructure

Common Language Resources and Technology Infrastructure (CLARIN) is an in-

ternational project7 which aims at creating a stable and extensible research in-

frastructure for language resources and technologies. In particular, the tools and

resources address the humanities and the social sciences research communities [66].

CLARIN defines important technical aspects such as integration, interoperability,

stability, persistency, accessibility, and extendibility. Besides, it also specifies a set

of procedures that need to be adopted in order to make the above aspects available.

CLARIN attempts to implement an infrastructure able to assist researchers in digi-

talizing resources, collecting and annotating large corpora, dictionaries or language

descriptions. This project endeavors to provide a wide, safe and easy access to lan-

guage resources. The CLARIN backbone leverages secure grid technologies which

6https://www.dariah.eu/
7http://clarin.eu/

i
i

i
i

i
i

i
i

2.2. INITIATIVES FOR TEXTUAL SCHOLARSHIP 23

allow the federation of institutions. In this context, the access policy uses Single

Sign On (SSO) to log once in the federation [67]. In addition, CLARIN manages a

multitude of International Organization for Standardization (ISO) standards de-

scribing Language Resources and tools for the sake of interoperability (an overview

of the data model is illustrated in section 2.4.2).

Europeana

Europeana8, co-funded by the European Union, is a platform that enables in-

formation and knowledge exchange in the domain of Digital Humanities. The

framework serves as a point of access to the digitized cultural heritage objects.

These resources belong to different cultural fields and are provided by various

institutions in Europe [68]. Therefore Europeana is the result of many funded

European digitization projects which can be accessed through it. This project

aims to make rich data and functionality available to textual scholars by means of

both Application Programming Interfaces and Linked Open Data paradigm (see

section 2.6.4 and 2.4.2). Thus, the Europeana portal can be seen as one of the

outcomes implemented thanks to the programmatic access to its resources. Eu-

ropeana attempts to achieve two main objectives: 1. facilitate connection among

related data and make them easily accessible through common Web technologies

and 2. enable everyone to access, reuse, enrich and share data [69, 70].

2.2.3 Philological projects

Perseus project

The Perseus project9, hosted at Tufts University, is one of the leading initiative

in providing scholars with a suitable cyber-infrastructure. In oder to build this

environment, the infrastructure includes two tools: Philologist/Perseids - powered

by Son of Suda (SoSol) - and Alpheios. These Web applications allow scholars

to perform the version-controlled editing of texts and their linguistic analyses.

The Perseus project is the largest archive concerning the Graeco-Roman world

and the classical Greek and Latin texts. It provides data and tools for linguistic

analysis, such as Treebanks, and annotated entities in Open Annotation Collabora-

tion (OAC) compliant with Resource Description Framework (RDF) format. The

8http://www.europeana.eu/
9http://www.perseus.tufts.edu/

24 CHAPTER 2. BACKGROUND

digital archive provides, among other, also lexical databases. The Perseus archive

aims to provide a systematic repository access to every authoritative Greek and

Latin author, encoded in The eXtensible Markup Language (XML), in particular

following the guideline of the Text Encoding Initiative (TEI) (see section 2.4.1).

To do so, this digital library uses the CTS/FRBR data model (see section 2.4.2)

to represent different primary sources, scholarly editions and translations of par-

ticular works.

Sharing Ancient Wisdom

Sharing Ancient Wisdom (SAWS) is a project10 funded by the European Research

Area (HERA). It aims at establishing a research workflow of editing and publish-

ing TEI/XML-based digital editions of ancient manuscripts [71]. As an initiative,

SAWS project is similar to the works illustrated in chapter 4. It includes a link-

ing software module and a semantic enhancement analysis of its target resources.

Moreover, the SAWS methodology encompasses TEI markup, CTS Uniform Re-

source Name (URN) identifier, Semantic relationships among named entities and

parallel analysis for Greek and Arabic literary texts.

Muruca/Pundit

Muruca/Pundit11 is one of the most used and famous integrated platform for

studying, annotating, searching, and browsing digital literary materials. Sev-

eral worthy projects leverage this framework, among others NietzscheSource[38]12,

WittgensteinSource13, and the recent BurckhardtSource14, Daphnet15, and the

Digitised Manuscripts to Europeana (DM2E)16. This environment is extremely

customizable while assisting scholars with knowledge creation and knowledge reuse

[72]. Muruca/Pundit leverages Open Annotation Data Model (OA) specification

and Europeana Data Model (EDM) definition (see section 2.4.2). The system

exploits the Semantic Web (SW)technologies like RDF and the HyperText Trans-

fer Protocol (HTTP) Application Programming Interfaces (APIs) for linking and

10http://www.ancientwisdoms.ac.uk/
11http://www.muruca.org/ - http://thepund.it/
12http://www.nietzschesource.org/
13http://www.wittgensteinsource.org/
14http://www.burckhardtsource.org/
15http://www.daphnet.org/
16http://dm2e.eu/

i
i

i
i

i
i

i
i

2.2. INITIATIVES FOR TEXTUAL SCHOLARSHIP 25

consuming data. The critical module in the platform is an annotation server that

manages the persistence and the users.

Van Gogh Letters

Van Gogh letters17 is a collaborative project between the Van Gogh Museum and

the Hugens Institute of the Royal Netherlands Academy of Arts and Sciences [73].

The initiative consists of a web platform which supports an advanced browsing

process. Scholars are able to interact with a dynamic edition which involves diplo-

matic, facsimile, notes and artworks. The sources are marked up by using the TEI

scheme (see section 2.4.1).

DINAH

DINAH is a Web-based philological platform, aimed at the construction of multi-

structured documents [4]. The system provides scholars with a suitable multi-

perspective annotation system. The platform provides a mechanism for managing

overlapping hierarchies. This tool allows scholars to annotate multi-structured

textual phenomena in a dynamic way. Indeed, this strategy fosters an efficient

management of complex documents. Within DINAH platform scholars are free to

create new structured vocabulary. This means that the available markup elements

are not fixed and static.

NINES

Networked Infrastructure for Nineteenth-century Electronic Scholarship (Nines)18

is a scholarly project whose objective is to create a coordinated network of peer-

reviewed content in order to obtain a comprehensive framework for scholars. The

project is developing a number of valuable tools aimed at processing electronic

resources and at promoting digital initiatives for textual scholarship [74]. Among

these the Collex tool and the JuxtaCommons (see section 2.3.3) are worth mention-

ing as they assist scholars in working on the interpretive studies of texts. Finally

the platform allow users to teach and research in a online environment.

17http://www.vangoghletters.org/
18http://www.nines.org/

26 CHAPTER 2. BACKGROUND

Textual Communites

Textual Communities 19 is a collaborative editing environment based on a social

media software. It has been designed to handle different cultural perspectives of

the studied materials namely the text, the document and the work perspective.

This project was born within the Interedition initiative (see section 2.2.1). One

of the critical aspects that the Textual Communities system handles is the double

representation of digital sources as text marked upon a document and as text

structured into communicative acts. In this way, the formal scheme, called DET,

developed for describing documents, texts and works identifies every part of each

textual entity, in every document, text and work. It also defines how textual

elements relate to each other. It is worth noting that both the document and

the text are completely hierarchical for the system model. this means that each

successive object within a sequence of textual objects must be contained within

the preceding object. For example a line is part of a page, which is part of a

document. The Textual Communities environment leverages for the persistence

the document-oriented MongoDB system and JSON objects for data exchange and

serialization purposes. The system provides functionality for comparing different

transcription revisions and the collation of the text in all the documents.

2.3 Textual scholarship tools

Word processors have been introduced as the first computer programs for textual

editing: they can be easily used to produce complex formatted documents. How-

ever, they are not suitable to deal with specific and complex activities such as the

construction of critical editions. Several applications and tools have been devel-

oped over the years to handle digital documents within a philological perspective

or for publishing and delivering purposes [75]. The outcomes have achieved great

results and benefits for both classical and computational scholars. It follows a

list of the most renowned tools and applications. It concerns excellent products

and admirable experimentations on editorial critical problems and sophisticated

solutions envisaged to obtain electronic editions. Nevertheless, the relationship

between the effort that is needed during the encoding operations and the conse-

quent results has not been considered so beneficial by all communities of scholars,

at the time of writing [3].

19http://www.textualcommunities.usask.ca/

i
i

i
i

i
i

i
i

2.3. TEXTUAL SCHOLARSHIP TOOLS 27

2.3.1 TUSTEP - Tübingen System of Text Processing

The Tübingen System of Text Processing (TUSTEP) is one of the most used and

discussed environments for textual scholarship20. It has a long history, which dates

back to the late ’60s, when Wilhelm Ott at the University of Tübingen conceived

this tool [32]. TUSTEP exploits Fortran and C programming languages and it is

characterized by a complex framework21. It operates on a modular basis and can

assist different phases of textual scholarship workflows. This tool supports schol-

ars in making critical editions, starting from a semi-automatic collation phase. In

the end, TUSTEP transforms the collation outcomes into a critical apparatus and

publishes the edition both in printed and electronic versions. As mentioned, the

collection algorithm does not provide a complete automatic procedure. In fact,

users need to run a separate application in order to fix the more problematic read-

ings. Recently, a new tool, Tübingen XML-based scripting language for scholarly

text data processing (TXSTEP), has been launched. It is an XML-based front-end

built on top of the TUSTEP architecture. The main objective of TXSTEP is to

provide an “up-to-date established syntax using a more friendly interface in terms

of XML editing” [76]. TXSTEP is a sort of XML-based API towards the classical

functionality provided by the TUSTEP framework. To conclude, the TUSTEP

/TXSTEP environment offers useful services, like indexing features and pattern

matching functionality. Nevertheless, the system presents several restraints, such

as the heavy learning curve and the difficult to use.

2.3.2 LaTeX / Mauro-TeX

Maurotex22 is a textual scholarship tool developed from the well-known latex

typesetting system. It can be described as a markup environment devoted to cope

with the whole philological process [77] (i.e. starting from the transcription of

the witnesses and ending with the publishing of the critical edition). The project

aims at publishing the critical edition of Maurolico’s works both in a traditional

printed and in an electronic version. Maurotex allows scholars to obtain the elec-

tronic version of the work through an HyperText Markup Language (HTML) or

a Portable Document Format (PDF) output. In addition to providing the Latex

style mark-up, Maurotex also disposes of a more suitable XML encoding style

20http://www.tustep.uni-tuebingen.de/tustep eng.html/
21TUSTEP requires training in order to be used, and relies on outdated standards.
22http://www.maurolico.unipi.it/mtex/mtex.htm/

28 CHAPTER 2. BACKGROUND

[78]. Concerning the Latex Style, the basic idea of MauroTex is to identify variant

readings thanks to a specific macro function (\VV{}). This macro can convey an

indefinite number of fields nested into the main brackets. Each field represents

a variant reading and can be used to build the stemma codicum. In addition,

further shorthands are available in order to handle the critical apparatus with the

philological standard arguments, such as interlinear additions (\INTERL). Finally,

language provides a set of macros that include basic textual-phenomena, such as

omissions, conjectures, integration, expunctions, trivial variant readings, pages,

titles, and so on. The macros functions rely on other latex packages specifically

developed for critical edition such as ledmac/edmac, ednotes or bigfoot23.

2.3.3 JuxtaCommons

JUXTACommons24 is an open-source and web-based tool aimed at handling col-

lation and producing critical apparatus. At the time of writing, it is actively

developed by using Java programming language and it seems the most advanced

framework among similar initiatives. JUXTA environment, developed within the

NINES initiative (see section 2.2.3) by the University of Virginia, allows users to

upload different types of inputs. It provides capabilities for collating and visual-

izing digital sources by means of browsers. In addition, the tool provides several

user-friendly interactions and functionalities. The collation phase relies on an

adaptation of Heckelâs algorithm [79] as well as on additional tools which have

been developed within the Interedition project (see section 2.2.1). The system

produces XML-TEI collation within the parallel segmentation modality. Several

visualization diagrams such as histograms and maps are provided. It is worth not-

ing that the framework exposes Web services API to exchange data and to share

functionality.

2.3.4 CollateX

CollateX25 is a philological tool developed in Java programming language [80]

which aims to effectively work with textual variant readings. In addition, Colla-

teX is an ongoing environment which actively collaborates with the Juxtacommons

23For further detail please visit https://ctan.org/pkg/
24http://juxtacommons.org/
25http://collatex.net/

i
i

i
i

i
i

i
i

2.3. TEXTUAL SCHOLARSHIP TOOLS 29

project (see section 2.3.3) within the Interedition initiative (see section 2.2.1). Con-

sequently, it offers a valuable framework to perform collation work. The tool allows

users to change collation algorithms implementing at least three interchangeable

collation solutions that use progressive alignment techniques (see section2.6.2):

• Dekker algorithm [80], which aligns an arbitrary number of texts detecting

transposition and local alignment;

• Needleman-Wunsh [81], which represents an optimal algorithm for global

alignment;

• MEDITE, which is an experimental implementation of the Bourdalliet and

Ganascia algorithm [82].

The tool outcomes can be obtained in various data formats, such as JavaScript

Object Notation (JSON), XML-TEI, GraphML, GraphViz, and Scalable Vector

Graphics (SVG). In addition, multiple web services have been developed under

the umbrella of Interedition (see section 2.2.1). A noteworthy aspect is that the

data structure used by the application is the “variant graph” (see section 2.4.1).

The design of CollateX has envisaged a core library, which gives the opportunity

to embed the package into external applications.

2.3.5 Text::TEI::Collate

Text::TEI::Collate26 is a promising, open-source tool, which the University of Ox-

ford is developing for scholarly text collation. The program, implemented by using

the Perl programming language, is highly modular and has a well-designed inter-

nal structure. The outcomes of the process can be provided in several formats as

strings, JSON, or XML-TEI in parallel segmentation format. The design of this

tool promotes the implementation of useful APIs. Indeed, the Text::TEI::Collate

seems to be conceived as a coherent library for textual collation. Since it has

been developed at the moment of writing, the algorithm is still basic and does not

handle transposition.

26http://search.cpan.org/ aurum/Text-TEI-Collate-2.1/lib/Text/TEI/Collate.pm/

30 CHAPTER 2. BACKGROUND

2.3.6 eXist-db

eXist-db27 is a native XML Data Base (DB) system implemented in Java and freely

available in open source [83]. The system is modular and largely used within the

community of digital humanities since its fundamental unit of storage are XML

documents. As a matter of fact, it increases performance for expensive eXtensible

Stylesheet Language Transformations (XSLT) transformations and XPath queries,

which are typically applied to documents encoded by digital scholars (see section

2.4.1). eXist creates a Document Object Model (DOM) tree from the XML docu-

ment and provides index mechanisms with regards to the structure of elements and

attributes, string search and full text search (see section 2.5.1). In addition, the

indexing scheme identifies relationships among nodes in the document (elements,

attributes, text, and comments). The framework provides a RESTful end-point,

through which developers and researchers can easily access and modify remote

documents.

2.4 Data and metadata encodings

Many technologies exist for representing and processing digital documents and

texts. In order to develop a computational environment for textual scholarship, it

is fundamental to evaluate at least three essential points:

• standardization of data and metadata formats for literary and philological

studies;

• modelling of domain ontologies for semantic description of the cultural ob-

jects;

• services for the data exchange among working groups using common proto-

cols and identification of textual units.

These three elements collaborate to the interpretation and description of dif-

ferent features contained in textual materials. Digital texts and documents are

the result of different levels of encodings, ranging from characters up to semantics

and pragmatic.

27http://exist-db.org/

i
i

i
i

i
i

i
i

2.4. DATA AND METADATA ENCODINGS 31

In the first place, this section will touch upon Unique, Universal, and Uniform

character enCoding (UNICODE) standard. It will then discuss the hierarchical

model theorized by Renear, Mylonas and Durand [84].

While several markup languages for digital documents exist (PDF and HTML

are examples of general-purpose formats for encoding texts), the most common lan-

guage adopted for encoding cultural heritage documents is the XML. Generally,

the XML vocabulary suitable for literary computing makes use of the guidelines

drawn up by the Text Encoding Initiative (see section 2.4.1). However, the hierar-

chical structure of cultural heritage documents is faced with issues, as for instance

overlapping and multi-version [85]. The variant graph attempts to solve similar

matters [86, 87]. On the one hand, the identification of textual units is formal-

ized by the CITE/CTS architecture. This architecture associates a URN to every

textual entity of any specific edition. On the other hand, the conceptual model

developed by the Functional Requirements for Bibliographic Records (FRBR) al-

lows modelers to move beyond printed book versions, by tracking the logical units

within and across the traditional works. Various institutions have proposed models

and solutions, concerning ontology and domain conceptualization. For example,

Europeana and CLARIN have formalized their data model, as witnessed by the

EDM and the CLARIN Metadata Infrastructure (CMDI), respectively. In con-

clusion, Web-services facilitate data exchange among working groups distributed

world-wide, using common protocols such as OAI-PMH, OAI-ORE. With this

rationale, a survey of data and metadata approaches is proposed below. This cov-

ers standards of description which are directly influenced by the nature of textual

objects.

2.4.1 Data

UNICODE

Text refers to a stream of characters [88] which are represented according to some

numeric mapping. Consequently, single binary code represents a specific character.

This latter, in turn, can be identified with a related symbol.

Characters, within written resources, are symbols pertaining letters, punctua-

tion, or diacritic marks. In this framework, two levels of information have to be

considered: a) abstract symbol b) specific shapes (glyph). As a result, this policy

is mainly designed for information exchange, rather than for appearance purposes.

32 CHAPTER 2. BACKGROUND

Nowadays, since classical and historical texts cannot be well-encoded by the

ASCII standards, cultural texts have to use UNICODE character set as it covers

nearly all writing systems [89]. The most adopted UNICODE encoding versions

are the fixed-width two-byte encoding (UCS-2) and the variable-length one (UTF-

8).

UNICODE, which joined the Universal Character Set (UCS) standard (ISO/IEC

10646) [90], guarantees an easy adding of new scripts as well as language indepen-

dence. It defines a code-space of 1.114.112 potential code points divided into 17

planes, each plane consists of 65.536 code points. For example, the Basic Multi-

lingual Plane (BMP) is the Plane 0 ranging from U + 0000 to U + FFFF (Code

points in the BMP use just four hexadecimal digits U + nnnn). The BMP is an

important Plane as it supports the inclusion of old standard character sets (for ex-

ample basic American Standard Code for Information Interchange (ASCII) codes

corresponds to UNICODE code points).

It also provides characters for most of the literary texts. It derives that ranges

of code points have been reserved for ancient writing systems, “already known

or still to be discovered” [91]. UNICODE code points are handled by using ad

hoc encoding maps (Unicode Transformation Format (UTF)). Different kinds of

UTF exist, some of them use bit configurations of fixed length and others use

variable-length. For instance, UTF-8 consists of sequences ranging from one byte

to six bytes; instead, UTF-32 or UTF-4 consists of fixed-length 4-byte sequences.

It is worth noting that while UTF-8 is platform-independent, UTF-16 and UTF-

32 are platform-dependent format as regards the byte ordering. These are also

incompatible with ASCII table. For these reasons, 8-bit encodings are should be

preferred for representing text, even if the platform is based on different formats.

Moreover, UTF-8 adopts the segment-based management. This means that the

binary code for frequent character representation uses few bits, while dedicated bits

denote that the character representation is longer. Noteworthy, UTF-8 encodings

allow performing string matching in a text file using a byte-wise comparison (which

is a valuable help and it allows faster algorithms). UTF-8 represents ASCII values

(0-127) using a single byte with the leftmost bit at 0, which entirely corresponds

to its counterpart representation. To conclude, typical software for UNICODE

text processing, especially in Java, first calls a function to translate a UTF-8 byte

stream into a buffer of 16-bit characters, upon which all remaining text processing

is done.

i
i

i
i

i
i

i
i

2.4. DATA AND METADATA ENCODINGS 33

Ordered Hierarchy of Content Objects

As stated by [84], the text is an Ordered Hierarchy of Content Objects (OHCO).

The text is ordered because it encompasses linear sequences. At the same time,

objects within a text are hierarchical because entities like paragraphs, sentences,

and words exist inside one another. This textual model structures the documents

in a hierarchical form and it allows a fast processing by computer due to the in-

herent tree representation. However such a representation manifests some limits

concerning single hierarchy perspective. Consequently, the authors of OHCO ex-

tended the basic model by introducing two enhancements: OHCO-2, and OHCO-3.

According to the latter texts present several separate perspectives (analytical per-

spectives), each of which is organized hierarchically. In this case, perspectives can

contain overlapping structures (for example, page divisions can overlap sentence

divisions). OHCO is a controversial model, which generates theoretical discussions

on the interpretation and the digital representation of a document [92, 50].

For instance, in [42] it is argued that an OHCO structure “is not a model

of the text, but a possible model for its expression”. So, the same document

conforms to several overlapping structures, each of which is strictly hierarchical.

Nevertheless, textual structures are usually more complex than a single hierarchy.

In fact, hierarchies are suitable only for certain kinds of texts and documents,

for example in printed works, but they do not fit well in texts like notes (see

chapter 3 and 4). Moreover, forcing to identify hierarchy structures while encoding

historical texts can lead to erroneous outcomes. For example, the representation

of variant readings and transpositions is a textual phenomena that overlaps all

fixed hierarchies. The variant graph [87] (see section 2.4.1) is an attempt to solve

this problem.

Text Encoding Initiative

The digital representation of documents concerns the encoding of various textual

phenomena. For instance, the text encompasses sentence divisions or lines num-

berings. However, common markup techniques that handle information and visual

appeal of data do not meet all scholars’ needs. In particular, these requirements

consist of disposing tools that highlight and analyze textual-phenomena useful to

scholar work [93].

34 CHAPTER 2. BACKGROUND

Against this background, the TEI28 pursues the standardization of markup

schemes for literary and philological studies. The TEI provides XML schemes

and guidelines for text, extra-text, and para-text encoding with bibliographical,

linguistic and philological meta-information. More than other XML vocabularies,

TEI markup schemes meet scholars’ need to encode texts that can be reused as a

starting point for further inquiries.

The main benefit of XML, and especially of the TEI guidelines [94] , is on its

simplicity, flexibility, readability and customizability. Moreover this tool guaran-

tees a formal approach for validating the data that has been marked up. Con-

sequently, XML provides a standard way to define a set of tags (vocabulary)

for specific purposes. Moreover, the multiplicity of technologies that gravitate

around XML allows to transform (XSLT), publish (XSL-FO), query and address

(XQuery, XPath, XPointer), formalize (DTD, XSD, etc), render (eXtensible Hy-

perText Markup Language (XHTML), SVG) and process (Xinclude, XForms,

XML Events) structured documents.

It is worth noting that digital texts along with complex annotated data have

strongly increased in number and quality also thanks to the role of the XML

technologies and services. The TEI guidelines have become the standard encoding

system for applications within literary computing projects. Moreover, a large

community uses these schemes to encode texts and to develop software that allows

to operate on the raw and annotated documents.

Texts marked up in XML-TEI look like HTML documents. In fact, the two

languages have similar tags, as they are both based on another markup language

known as Standard Generalized Markup Language (SGML). The most important

difference is that HTML is conceived to annotate Web documents while XML

describes structured or semi-structured data [95].

In fact, XML provides mechanisms to define the markup elements and how to

use them in a flexible and formal way. These mechanisms are the Document Type

Definition (DTD) and the XML Schema Definition (XSD). Especially, they define

the elements for encoding the document and the typed data to be present in those

elements.

The TEI also provides elements for encoding both data and metadata by means

of two blocks: header and text. The TEI header contains four major sections: (1)

file description, (2) encoding description, (3) text profile and (4) revision history

28http://www.tei-c.org/

i
i

i
i

i
i

i
i

2.4. DATA AND METADATA ENCODINGS 35

[95].

• The file description contains information about bibliography and the title of

the electronic resource. Moreover it records data about the authors of the

work, the place and the time of the publication. It also contains the source

description which stores the data as regards the sources of the electronic

document.

• The encoding description indicates the relationship of the electronic docu-

ment to its sources such as selection of texts, text normalization, and levels

of encoding.

• The text profile contains information about the languages used, the citation

scheme (e.g. chapter instead of pages, or sentences instead of line numbers).

It also reports information about the text production.

• Finally, the revision history enlists every change made to the electronic text

in order to help future editing works.

Furthermore, TEI organizes the text into separate parts: front matter, text

body, and back matter. The scheme consist of about four hundred tags. The core

features are available for all types of texts while extended tags are available for

specific types of works, such as prose, poetry, critical editions, and others. An im-

portant advantage of adopting TEI is that it fosters projects to preserve, share and

reuse the encoded resources. Thus it ensures interoperability, regards to both texts

and software. However, the use of TEI is not sufficient to solve all issues related

to coding complex documents, as in multilingual and multi-witnesses materials,

non-standard typography or embedded figures. Moreover, overlapping hierarchies

present encoding difficulties in being translated into a hierarchical design without

breaking the model itself. However, the advantages of XML stand in scholarly

analysis, in long-term preservation and in data exchanging to different computing

environments.

Variant Graph

Section 2.4.1 has underlined the challenges experienced when handling elements

which denote different views of a document, i.e. sentences against lines in a well-

formed XML structure. The reason for these issues is that XML represents tree

36 CHAPTER 2. BACKGROUND

structures, whereas textual phenomena often require graph structures [86]. This

matter is better known as the overlapping hierarchies problem [96]. Indeed, XML-

based vocabularies cannot easily represent overlapping structures by means of tags.

In fact, tags can contain only text or other markup elements in a nested and well-

formed way [97]. Overlapping hierarchies are common in cultural heritage text

structures. Two types of overlapping can be distinguished: 1. overlapping struc-

tures due to text/logical or document/material representation such as sentences or

lines in a paragraph, and 2. textual differences in multi-version and multi-witness

documents (these deal with insertions, deletions, alternatives and transpositions).

These limits have generally been ignored by textual scholarship tools. In a fa-

mous paper [87], Schmidt and Colomb propose a solution to this problem that has

been widely accepted. They argue that direct-graphs may represent both over-

lap and variation, by replacing the conventional structure of documents (linear

or hierarchical). Additionally, they claim that graphs can be represented by two

isomorphic forms: 1. as a variant-graph or 2. as a list of key-value pairs. A way to

achieve that is through Multi-Version Document (MVD) system [98]. The MVD

model handles all the versions of a work, either when they result from a process

of correction, or when they are copied from the original text into several variant

versions, or when the latter practices are combined. Overall, interventions on a

text can be summarized in four atomic operations: insertion, deletion, substitu-

tion, and transposition. When reading the list form of the graph, fragments which

do not belong to the desired version are automatically ignored. The structure and

contents of this graph is automatically generated by means of nmerge program

[36]. This is able to detected transpositions and to merge the text that is shared

throughout its existing versions. The variant-graph provides a valuable solution to

the overlapping problem cultural heritage texts. This solution attempts to create

a new model of text, which is based on a more general structure of these tangled

documents. An MVD can be represented as a directed graph, with one start node

and one end-node. It can also be serialized as a list of key-values, each describ-

ing a fragment of text and the relative set of versions. This multi-version texts

approach scales well, because while the number of versions increases, the number

of fragments increases, but their size decreases, and the size of their version-sets

increases.

i
i

i
i

i
i

i
i

2.4. DATA AND METADATA ENCODINGS 37

2.4.2 Metadata

Dublin Core

The Dublin Core Metadata Initiative (DCMI)29 is a standard metadata scheme

aimed at mapping catalogue information from repositories to systems that aggre-

gate digital objects. For instance, Europeana (see section 2.2.2) has adopted this

scheme.

The objective of the Dublin Core (DC) is to define a small set of elements and

rules that can be used for describing digital resources. The DC scheme is simple

and concise oriented to describe Web-based documents. Nowadays, the set of DC

core elements consists of fifteen items. They are Title, Creator, Subject, Descrip-

tion, Publisher, Contributor, Date, Type, Format, Identifier, Source, Language,

Relation, Coverage, and Rights. However, DC has been used with other types of

schemes and in applications demanding more complexity. Tensions have arisen

between the minimalist view, which emphasizes the need to keep the environment

elements as simple as possible, and the structuralist view, which argues for finer

semantic distinctions.

These discussions result in defining qualified and unqualified DC elements.

Qualifiers can be used to enhance the detail of an element. For example, Date

element can use a qualifier to identify the date format following the ISO 8601

standard for representing date and time. All DC elements are optional and re-

peatable, as well as they may be presented in any order. The DC description

recommends the use of vocabularies for fields (e.g. for the Subject field), but this

is not mandatory.

However, special working groups are discussing a number of authoritative lists

for certain elements such as the resource Type field. Moreover the DCMI encour-

ages the adoption of domain-specific rules for special domains such as education

and government. Because of its simplicity, the DC elements are largely used in

DH. Indeed, there are many scholar projects that adopt the DC scheme either

for cataloging or for collecting data. Nowadays, the DCMI has gone beyond the

maintenance of the DC metadata set, indeed it promotes the widespread adop-

tion of interoperable standards and develops valuable metadata vocabularies for

discovery systems.

29http://dublincore.org/

38 CHAPTER 2. BACKGROUND

Europeana Data Model

EDMs, which has replaced the old Europeana Semantic Elements (ESE) model,

is a popular conceptual data model (aka an ontology [99]). It has been developed

within the Europeana project (see section 2.2.2) for the interoperability among

cultural heritage repositories. The integration and refinement of heterogeneous

knowledge-bases leverage the EDM model since it is designed as a model for col-

lecting, connecting and enriching the descriptions provided by Europeana data

providers. In addition, EDM integrates all the well-known standards and well-

established ontologies such as the RDF, the OAI Object Reuse and Exchange (see

section 2.4.2), the Dublin Core (see section 2.4.2), and others. Consequently, the

model is fully compatible with the SW paradigm (see section 2.6.4), and it is able

to interoperate among objects and their digital representations, as well as among

objects and their metadata. Furthermore, EDM allows to build a semantic layer

on top of the aggregated objects.

EDM aims at gathering data for services like Europeana and provides a top-

level ontology which is devoted to abstract the underlying models. In this way the

expressiveness and flexibility of the various standards is kept, getting consistency

among different formats. As described in [100] EDM provides five fundamental

semantic relationships: 1) classification, 2) part decomposition of anything, 3)

similarity, 4) aboutness, and 5) history of an item. In this perspective the EDM

data model is a worth initiative for a metadata properties generalization.

In conclusion, the value of this model is that it fosters cultural heritage commu-

nities towards an open, linked, and semantically structured environment compliant

with the SW paradigm. This approach largely impacts new projects and new data

models, specifically in the DH community.

Functional Requirements for Bibliographic Records

FRBR30 is an entity-relationship conceptual model developed by the International

Federation of Library Associations (IFLA)31. It allows scholars to define the min-

imum requirements of a source bibliographical description. FRBR also defines the

purposes of the registration and how it is independently structured from cataloging

rules.

30http://www.ifla.org/frbr-rg/
31http://www.ifla.org/

i
i

i
i

i
i

i
i

2.4. DATA AND METADATA ENCODINGS 39

The model is largely adopted because of the potential it holds to analyze and

document numerous aspect of a work hierarchy at different levels of granularity

[101]. As a matter of fact, it defines four high-level classes:

• the work as a distinct intellectual or artistic creation,

• the expression as the intellectual or artistic realization of a work,

• the manifestation as the physical embodiment of an expression of a work,

• the item as a single exemplar of a manifestation.

Other classes are grouped in two other sets:

• the group which contains the person and entity classes;

• the group which contains the concept, the object, the event, the place classes.

In addition, FRBR fosters the connections among typed data as well as the

connection between the intellectual responsibility and the resource concepts. It

is suitable for the management of multiple-version documents, and therefore it

supports the registration of critical editions. Finally, the model provides a fair

management of transactions, which generally requires:

• precise identification of the digital objects;

• the parties involved and their role;

• the action to be carried out on the requested objects such as read, listen,

see, save, transfer;

• the parameters which limit it, such as place, time, amount, repeatability;

• the action of whoever uses the service in exchange for acquired rights.

However, FRBR represents the type of metadata required by scholars as it

handles intellectual work of the text together with the physical object.

CLARIN Meta Data Infrastructure

The CMDI32, implemented within the CLARIN research infrastructure (see section

2.2.2), aims to provide a shared access to language resources and tools. This

32http://www.clarin.eu/content/component-metadata/

40 CHAPTER 2. BACKGROUND

makes CMDI a flexible means for describing, searching and locating relevant data

across repositories with different metadata policies. Therefore, this model allows

scholars to describe language resources by various shared components. In this

sense, the metadata profile can be adapted and reused for other similar objects.

The infrastructure is articulated on three levels of abstraction: 1) Data format, 2)

Data, 3) Service. Furthermore, CMDI organizes its structure exploiting standards

for several aspects such as concepts and relations category (ISOcat and RELcat),

which are described by means of Data Category Interchange Format (DCIF) [102].

The registry for components and profiles is formally defined by using the CMDI

CMDI Component Specification Language (CCSL) and exported through REST-

based API. Finally, such profiles are available also in XML schemes and can be

used for validating the metadata instances. These latter are distributed to CMDI

service providers by means of shared protocols such as OAI-PMH (see section

2.4.2).

Open Archives protocols

This paragraph briefly illustrates the data interchange management through the

standard protocols within the Open Archival Information System (OAIS)33. Tex-

tual scholarship tools have to take into account the interoperability issue among

repositories. This effort includes the implementation of mechanisms and stan-

dards for content description and transmission. OAIS is an ISO reference model

aimed at providing a framework for digital repository. It supports metadata inges-

tion, curation, preservation, transformation and harvesting services. Beside OAIS,

OAI-PMH and OAI-ORE are protocols that aim to establish standard-based inter-

faces to download data. Specifically, Open Archive Initiative (OAI)-Protocol for

Metadata Harvesting (PMH) deems metadata harvesting while OAI-Object Reuse

and Exchange (ORE) concerns exchanging information about digital objects. In

particular, a process based on the OAI-PMH protocol can search by using several

criteria and filters. In this way, it allows engines to retrieve only contents related

to a specific data or metadata format. Whereas OAI-ORE is a specification which

defines a model for the identification, the description and the transmission of dig-

ital objects (called Aggregated resources) [103]. One of the most useful aspects

of OAI-ORE is that a digital object is identified by an HTTP Uniform Resource

Identifier (URI) and that digital object can be anything. The Aggregation, which

33http://www.openarchives.org/

i
i

i
i

i
i

i
i

2.4. DATA AND METADATA ENCODINGS 41

describes aggregated resources, has a hierarchical and abstract structure, so that

the protocol needs a mapping mechanisms and serialization formats in order to

get concrete object representation.

Canonical Text Services

The CITE Architecture34 is a specification envisioned to cite “any word in any

version of any text” [104]. The architecture was developed by the Center for

the Hellenic Studies, within the Homer Multitext project, but has been applied

to other projects dealing with digital editions. It refers to Collections, Indexes

and Texts and provides a protocol of citing and linking digital texts and digital

objects. The core of the architecture is represented by two kinds of URNs: (1)

the Canonical Text Service URN and (2) the Collection URN. Digital resources

at different granularities are identified thanks to these two URNs. In addition

resources can be associated with each other by means of the CITE Index. The

latter component organizes data in a RDF manner (i.e. triples) shaping a graph

which consists of a subject entity, an object entity and a verb [105] . Moreover,

the texts are linked to related Region of Interests (ROIs) upon which they appear.

Thus, the CITE Architecture links together the segments of a digital edition and

the documents to their facsimiles. [106].

Actually, the CTS are a data model and a specification which defines remote

services for identifying sources and for retrieving fragments of texts by canonical

reference [107]. Compared to FRBR data model [56], CTS-URNs allows scholars

to cite each word in any version of a text. This policy derives from the tradi-

tional citation schemes (e.g. the chapter/verse identification). Scholars, thus, can

explicitly cite every version and every word in every version of a work.

The CTS protocol defines the structure for the URNs which is used by the

following pattern of informative fragments:

"urn":"cts":[namespace]:

[textgroup].[work].[edition/translation/version]:

[passage]:[subreference]

While the string “urn:cts” defines the protocol, the other fields have the fol-

lowing meanings:

34http://www.homermultitext.org/hmt-docs/specifications/cts/specification.html/

42 CHAPTER 2. BACKGROUND

• the namespace is the identifier for the higher-level domain for collection

types;

• the textgoup is the “traditional, convenient groupings of texts such as authors

or collections”;

• work means “a distinct intellectual or artistic creation”, i.e. a work that is

represented in the text;

• edition/translation/version is the identifier of a specific edition of the work;

• passage represents the hierarchical reference in the selected work;

• subreference points to a string of characters. It uniquely identifies the in-

stance of any character in the selected passage.

This example from CTS documentation provides an evidence:

• The text group Homer has the URN urn:cts:greekLit:tlg0012;

• the work Iliad has the URN urn:cts:greekLit:tlg0012.tlg001;

• the edition of an English translation of the Iliad,

has the URN urn:cts:greekLit:tlg0012.tlg001.mth-01;

• the passage in line 10 of book 1 of the selected edition of the Iliad would be

urn:cts:greekLit:tlg0012.tlg001.mth-01:1.10;

• the subreference to the first instance of the sequence of characters Achilles

is urn:cts:greekLit:tlg0012.tlg001.mth-01@Achilles[1];

Open Annotation Data Model

OA35 is now a W3C specification which provides scholars to annotate distributed

resources. It includes two existing initiatives, namely the OAC model and the

Annotation Ontology.

Annotation activities are a cornerstone process within textual scholarship [108,

44, 5, 109] for the fundamental role they play in the scholar works. Indeed, com-

ments and annotations encompass different levels of information at different gran-

ularity (see chapter 3). This activity includes orthographical issues, pragmat-

35http://www.openannotation.org/spec/core/

i
i

i
i

i
i

i
i

2.5. RELATED OPEN SOURCE SOFTWARE LIBRARIES 43

ical analysis, exegetical and hermeneutical comments, sub-character and meta-

collection granularity, and it ranges from text-based to multimedia-based docu-

ments.

The OAC provides an ontology allowing scholars to yield annotation by using

standard Linked Open Data (LOD) technologies, such as the RDF triples. On-

tology enables to define three core nodes: a target resource (oac:Target) a body

content (oac:Body) and the annotation itself (oac:Annotation). The Annota-

tion node is identified by a URI and describes all the annotation properties, as

the creation date of the annotation. Body nodes can be composed of any type

of data which relates to another resource. The Target node, also identified by

a URI, is the resource related to the annotation Body node. The Body node

can contain natural language comments by defining two properties: “cnt:chars”

and “cnt:characterEncoding”. In conclusion, the model also provides date-time

properties (oac:when).

2.5 Related open source software libraries

Modern applications for textual scholarship make use of effective, open source

libraries provided by various institutions. Open source projects are usually pre-

ferred, as they dispose of a wide range of artifacts that are appropriate to support

scholars’ work. Since well-designed libraries export suitable APIs, computational

scholars make also use of them, more or less consciously, for writing software.

Consequently, the section below introduces some libraries dealing with text and

language processing. These initiatives share some important design-related fea-

tures with the textual scholarship library described in this thesis. For this reason,

they are frequently used in digital scholar projects (see chapter 4). However, as

already stated, the philological domain presents a wider class of problems that can

only partially faced by means of methods, resources, and tools developed within

the computational linguistics field. Therefore, it is necessary to keep in mind that

the libraries outlined in this section meet the needs of textual scholars restricted

to some processing aspects.

A universe of digital documents convey textual content through different, and

often non-standard, file formats. As it is explained in this section, Tika library

attempts to face such a “digital babel fish” [110]. After a first phase in which

digital content is gathered, indexing is to be handled. With regards to that Lucene

44 CHAPTER 2. BACKGROUND

functionality support scholars with a suitable search engine [111]. Annotation

can be created automatically by means of GATE and UIMA, two of the most

widely acknowledged architecture for text analysis and annotations [112]. It is

also noteworthy to mention StanfordNLP, OpenNLP and LingPipe. These latter

are Natural Language Processing libraries developed in Java and able to process

data from large document collections [112].

Despite their contribution to the field of textual scholarship, these libraries

are not exhaustive. In addition to the aforementioned tools, there are other open

source Java projects that are very useful when building textual scholarship appli-

cations. These include, among others, Weka [113], Mahaout [114], and Carrot2

[115], which provide machine learning and data mining capabilities.

2.5.1 Text processing

Tika

Tika36 is an open-source library developed in Java falling under the Apache Soft-

ware Foundation Umbrella. It deals with extracting text and digital objects from

a variety of digital documents and file formats, as for instance PDF or docu-

ment (DOC) files. In addition, Tika provides the necessary services for managing

digital information content. As illustrated in chapter 4, Tika positively contributes

to textual scholarship applications, due to the wide use of various file formats in

the DH field. This library provides a special component, the parser module, that

allows to manage documents in specific file formats. As discussed in the chapter 3,

Textual scholarship needs an abstraction of the document format by means of an

API, through which scholars can manage the low-level data representation. Tika

provides this kind of abstraction by means of suitable parsers after recognizing the

document media type. Hence, this library is able to extract textual content and

metadata from the supplied files. The system architecture has influenced to a large

extent the design of the Textual Scholarship Library (TSLib). In fact, Tika relies

on a Facade component as a single access point to all of its components. These are

1) the parser framework, 2) the MIME detection mechanism, and 3) the language

detection. Moreover, this tool leverages extensibility by adopting repositories. In

this way new parsers can be added to the system, as well as new MIME types and

processing mechanisms. Finally, both graphical and application interfaces allow

36http://tika.apache.org/

i
i

i
i

i
i

i
i

2.5. RELATED OPEN SOURCE SOFTWARE LIBRARIES 45

users to interact with this library allowing its inclusion into other applications.

Lucene

Lucene37 is an open-source library widely used by the community of DH developers

for document indexing purposes. It is recognized as one of the most efficient and

flexible solutions for full-text searching. Lucene is able to index textual resources

regardless of their nature (i.e. database, non-structured file, formatted file, etc).

The available services allow scholars to create catalogs, to build archives, and to

conduct advanced search operations on digitized texts. This software library is

composed of three basic elements:

• the “index” , represented by a structure referring to all the documents;

• the “document”, which is an internal structured representation of the textual

source;

• the “field”, such as an element of the aforementioned document, consisting

of a name-content pair. The field manages the token stream to be indexed.

Users have the possibility to perform complex search operations through a com-

plete binary/boolean syntax. This includes wild-cards, searches in range, and fuzzy

operations. In addition, Lucene offers efficient storage and ranking functionalities.

The content of a text can be decomposed into fields and stored in a term-document

matrix by means of the library APIs. Columns in the term-document matrix rep-

resent all the fields of a content instance, while rows represent all content instances

in the index. The internal index structure is defined by the developer who declares

the fields in a scheme and identifies those to be indexed. In addition, the developer

can set up a ranking function for each indexed field. The library provides services

for various statistical measures such as frequency or tf-idf.

Once the index is built, Lucene offers functionalities for retrieving content.

Users can issue many query types such as phrase queries, wildcard queries, prox-

imity queries, range queries (e.g. date range queries), and field-restricted queries.

The index can be updated during the searching and can be directly loaded into a

Java container, providing APIs for programmers. Lucene works under the aegis

of Solr platform, another Apache Software Foundation project. This library has

37http://lucene.apache.org/

46 CHAPTER 2. BACKGROUND

been ported to several other programming languages including Ruby, Perl, and

Python.

2.5.2 Language processing

OpenNLP

The OpenNLP38 library encompasses several statistical NLP tools including a

sentence boundary detector, a tokenizer, a Part of Speech (POS) tagger, a phrase

chunker, a sentence parser, a name finder and a coreference resolver. The tools are

based on maximum entropy Machine Learning (ML) models (see section 2.6.5) and

are written in Java. The OpenNLP tools can be used individually, or as plugins

with other Java frameworks. OpenNLP maintains a suite of tools for doing many

common Natural Language Processing (NLP) tasks such as part of speech tagging,

parsing, and, named-entity recognition. Two of the most used components of

this library are the Chunker and the Named Entity Recognition (NER), both of

which use a maximum entropy model to recognize patterns. The basic approach

in chunking is to exploit the POS tagger annotations in order to identify simple

word sequences. OpenNLP NER recognizes names of different types of entities

such as people, locations, organizations, dates, and others. In addition to the

default types, which have models available for major languages, it is also possible

to create models from scratch. This is a valuable functionality as regards historical

and poorly served languages (see chapter 4). The OpenNLP is designed to work

in pipe among its analysis tools, supplying the output of one tool into the next.

StanfordNLP

The Stanford NLP Group39 has also developed a set of statistical NLP tools in-

cluding a POS tagger, a syntactic parser and a named entity recognizer [116]. Like

the OpenNLP library, StanfordNLP leverages Java programming language and it

is mainly based on statistical algorithms. StanfordNLP and OpenNLP can be

distinguished for their approaches: the OpenNLP tools are designed in order to

be used as plugins in other frameworks; whereas the Stanford library is designed

primarily to be used as autonomous tool. One of the aims pursued by the Stan-

ford NLP Group is to identify areas of specific language processing phenomena

38https://opennlp.apache.org/
39http://nlp.stanford.edu/

i
i

i
i

i
i

i
i

2.5. RELATED OPEN SOURCE SOFTWARE LIBRARIES 47

where accuracy of maximum entropy models can be improved. Two of the most

used components of StanfordNLP library are the POS tagger and the Syntactical

Parser, but also the NER is largely used. Stanford POS tagger produces output in

a simple plain text format through the use of Penn Treebank tagset [117]. In ad-

dition, the Stanford POS tagger is based on a work carried by [118]. The Stanford

parser is a set of alternative parsing algorithms and statistical models, developed

with the purpose of comparing and evaluating different techniques. Syntactic pars-

ing also exploits rule-based grammars and grammar-based linguistic theories. Its

goal is to capture the complexity of a sentence concerning its linguistic features

(heads and dependents, subjects and complements, modifiers, agreement, etc.).

Parsing task can be performed with un-lexicalized, probabilistic and context-free

grammars or with lexicalized grammars too. Finally, the Stanford named entity

recognizer is based on conditional random field models [119].

LingPipe

LingPipe40 is one of the most used linguistic toolkits aimed at building natural

language processing applications. Despite the library is a commercial tool, it is free

licensed for research use. The LingPipe API is tailored to abstract over low-level

implementation details to enable components such as tokenizers, feature extrac-

tors, or classifiers to be used in a plug-and-play manner. The API that it exports

includes functions to build classifiers, extractors, and other search applications.

2.5.3 Text architecture

GATE

General Architecture for Text Engineering (GATE)41 is a Java open-source and

modular framework for text mining, named entity recognition, information extrac-

tion, parsing, ontologies handling, semantic annotation, sentiment analysis, and

evaluation task [120].

GATE provides cutting-edge functionality, which include processing multiple

languages and large collections of unstructured text. One of the aims of this toolkit

is to provide services that support the user in organizing tasks related to annota-

tion. Additionally, GATE provides ML systems and supports the integration of

40http://www.alias-i.com/
41https://gate.ac.uk/

48 CHAPTER 2. BACKGROUND

various NLP as well as ontologies tools. This library exposes effective APIs for

extracting and processing sentences, entities, and tokens from text. The system

architecture includes two basic sets of resources: 1) Language resources and 2) pro-

cessing resources. At first, a Language Resource can be a single text (Document)

or a collection of texts (Corpus). GATE separates structured document from its

markup using standoff annotations. Secondly, a Processing resource is a specific

processing component, such as a tokenizer or a NERs. As a result a GATE ap-

plication is a collection of processing resources organized into a suitable pipeline.

Each application can be named and saved separately. Annotations can also be

created with user-defined pattern-matching rules (with a Perl regular expressions

syntax), called JAPE rules. This allows rapid development of new components

without the need of programming skills. The system also provides a wide range of

name lists (gazetteers) for named entity lookup. In addition, it includes a built-in

information extraction system called ANNIE. GATE is a general-purpose system,

thus it is not specifically designed for any genres of texts and languages. Pro-

cessing components, such as NER or POS tagger can be added to the processing

workflow thanks to the software plugin mechanism.

UIMA

Unstructured Information Management (UIMA)42 is an open-source platform for

creating, integrating and deploying solutions to manage unstructured textual in-

formation. It provides multi-modal analysis and search components. The Apache

Software Foundation is in charge of developing the software in Java; whereas the

Organization for the Advancement of Structured Information Standards (OASIS)

is responsible for defining its standards and strategy. UIMA architecture is de-

signed to be modular and flexible. Each specific component implements interfaces

defined by the framework and provides metadata by means of XML descriptor

files. Standards, interoperability and scalability are the main priorities of the

UIMA architecture. The overall annotation structure is called Common Analysis

Structure (CAS) [121], whereas the text to be annotated is called the Subject

of Analysis (SofA). XML Metadata Interchange (XMI) is the standard format

adopted by UIMA for interoperability. Annotations in the CAS structure have a

standard namespace prefixes (<opennlp:Token>) and a dedicates attribute of the

SofA element. This attribure conveys the principal text of the analysis. Compo-

42https://uima.apache.org/

i
i

i
i

i
i

i
i

2.6. SUITABLE INFORMATION TECHNOLOGIES 49

nents in the platform can be extended and customized in order to perform textual

annotations.

Another important part of the UIMA architecture is the type system, which

keeps track of the content and type of annotations, still for the sake of interoper-

ability. In fact, by checking the types of annotations, it is possible to verify that

the type of component output is appropriate to input in the next component. A

sequence of annotators, put together to accomplish a complex task, is managed by

creating an aggregate structure. Finally, annotation tools are available as plugins

and they include a tokenizer, a part-of-speech tagger, a regular-expression anno-

tator, and a dictionary annotator. As previously mentioned, these tools can be

combined to build complex applications.

2.6 Suitable information technologies

Technologies have informed researches in the area of DH in general, and researches

in the field of textual scholarship in particular. They can be summarized as follows:

• Document, text and character encodings;

• Algorithms for string manipulation and for text alignment, and vector space

models;

• Image processing;

• Machine Learning approaches for text processing;

• Methods and technologies developed in the Linked Open Data (LOD) and

SW fields;

• Software engineering principles and processes;

2.6.1 Document, text and character encodings

Methods and technologies concerning the non trivial and debated issues of encod-

ings has been discussed in section 2.4.1.

Cultural heritage documents need at least three levels of encodings: 1) char-

acter, 2) document, 3) text. Firstly, the character level deals with the electronic

representation of characters, such as the codes and the binary digits which map the

symbols of a script. Depending on the adopted encoding policies, characters have

50 CHAPTER 2. BACKGROUND

different binary representations and different rendering glyphs. Unicode standard

(see section 2.4.1) is the leading specification for such an encoding. Secondly, the

structure and the information which a document conveys need to be made explicit,

formalized and marked up. This means that both physical and logical document

data have to be encoded. On the one hand text is composed of chapters, pages,

sentences, etc. and, on the other hand, text conveys information about its mate-

rial support, different variant readings, etc. In this scenario, XML, in general, and

the Text Encoding Initiative guidelines, in particular (see section 2.4.1), provide

a valuable solution for document and text encodings [122].

2.6.2 String manipulation, text alignment, and vector space

model

A text can be represented as a sequence of characters which, in computer sci-

ence, is called “string” [123, 124]. Hence, functionalities as comparing, aligning,

sorting, matching, storing, retrieving, searching, sub-stringing, linking, getting

patterns, and computing frequencies are all activities concerning algorithms op-

erating on strings. Computer science, computational linguistics, computational

biology (bioinformatics) and textual scholarship largely benefit from strings ma-

nipulation techniques [125, 126, 98]. Textual scholarship, in particular, makes use

of string algorithms for processing its primary sources as it deals with unstructured

data in the form of text. One of the most typical need in textual scholarship is to

find strings inside other strings, namely finding all positions of a pattern in a text

(substring).

Efficient algorithms available to perform this procedure [127, 128, 129] include

pattern preprocessing, like the Boyer-Moore algorithm; finite automata methods;

and approaches like the knuth-morris-Pratt algorithm.

Matching algorithms use suffix trees representation as the main data struc-

tures. This was introduced by Manber and Myers [130] and it defines an efficient

representation of all suffixes of a text. In addition, suffix trees are used in the

longest common substring problem and in the identification of all the overlaps

which occur in a given set of strings [88]. The so called suffix arrays are adopted

to represent all suffixes of a given string ordered on a lexicographical basis. Suffix

arrays can be constructed in linear time.

Matching problems constitute only one of the computational issues that may

arise from scholarly text processing. Another challenging aspect is, for instance,

i
i

i
i

i
i

i
i

2.6. SUITABLE INFORMATION TECHNOLOGIES 51

the traceability of the mutation events that make an original text evolve into

different versions (multiple sequence alignment problem [131, 132]). As pointed

out by Desmond Schmidt and Peter Robinson in various papers [98, 87, 86, 61, 6],

the comparison among multiple sequences to figure out which parts are related

and how the sequences evolved from one another is remarkably similar to the text-

critical problem of collation (i.e. multiple sequence alignment problem). As an

evidence, the bio-genetic problem is really analogous to the comparison of witnesses

of a work to bright to light their mutual relationships [133].

One of the most effective algorithms adopted for the alignment of sequences

is the Needlman-Wunsch algorithm [81]. It is a dynamic programming solution

for global alignment that has been used to align similar sequences of character

at different granularities. In this sense, this algorithm is suitable for character-

by-character alignment as well as word-by-word alignment. Two other alignment

types are worth mentioning: 1) the local alignment, such as the Smith-Waterman

algorithm [134]. It tries to identify similar blocks in strings that could be widely

different; and 2) the progressive alignment [135]. It is used to construct phylo-

genetic tree as it can record the stemmatic relationship among sequences. The

alignment algorithms may be used for collation purposes: comparing a number

of witnesses of the same text and discovering their relationship; finally, yielding

the differences as a critical apparatus [75, 136, 44, 126, 5]. Thus, the outcomes of

the collation process can be used to construct a stemma codicum or to visualize

a phylogenetic tree [133, 137, 138]. The representation of multiple versions of a

same text is an active area of research. The use of dynamic programming and

data structures such as direct graphs, suffix trees, n-grams and tries are still under

investigation by main researches [80].

Character sequences alignment is often based on the notion of fuzzy matching

[139]. This means that similarity measures between textual chunks are a fun-

damental tool in the textual scholarship environment. The Vector Space Model

(VSM) [140] is one of the most effective mean for studying similarity among texts

[141]. The model can be applied to term-document or word-context approach,

thus resulting in different classes of applications. Based on what has been dis-

cussed, it is possible to consider VSM as an algebraic model that maps the terms

of a document into an n-dimensional linear space. VSM have several applications

such as search/indexing or some aspects of natural language semantics [142, 143]

(along with the distributional hypothesis which states that words occurring in sim-

52 CHAPTER 2. BACKGROUND

ilar contexts tend to have similar meanings). Another famous application which

makes use of VSM is text clustering. This is an unsupervised technique able to

group texts according to their similarity. As a result, similar texts remain in the

same group (cluster) while dissimilar texts are placed in different groups [144].

In conclusion, some popular geometric measures of vector distance and similar-

ity coefficients, useful in designing the textual scholarship library, are listed below

[145, 146].

• Edit distance (Levenshtein distance),

• Euclidean distance,

• Manhattan distance,

• Hellinger,

• Bhattacharya,

• Kullback-Leibler,

• Dice coefficient,

• Jaccard coefficient,

• Jensen-Shannon.

Determining the most appropriate similarity measure dependents on the spe-

cific task. Options can range from the sparsity of the statistics, to the frequency

distribution of the elements, as well as the smoothing method applied to the ma-

trix. For further details on these measures please refer to the wide literature.

2.6.3 Image processing

Image processing heralds significant applications in DH studies, due to the pri-

mary role facsimile reproductions and image enhancement play in the production

of modern electronic editions. Indeed, the digital image of documents, concern-

ing mainly valuable manuscripts (see chapter 3), give scholars a mean to gather

primary information conveyed by the sources. Actually, the transcription of a

document is just a part of the textual scholarship process. Consequently, tools

for image processing, for instance related to brightness adjustment, magnification,

deskewing, dewarping, despeckle, layout analysis, segmentation, content detection,

i
i

i
i

i
i

i
i

2.6. SUITABLE INFORMATION TECHNOLOGIES 53

etc. are effective in clarifying difficult readings. Thus, image processing allows to

enhance the legibility of texts even on strong damaged documents [91, 147, 148].

Dated initiative, such as the Beowulf project [149, 150], as well as more recent ones,

such as the Cultural Heritage Imaging Organization (CHI) [151], have achieved

valuable outcomes in image enhancement. One of them, for instance, involves the

ability of scholars to detect how many copyists wrote a manuscript, thanks to

pattern-recognition techniques [152]. In this manner, digital images help scholars

to improve the readability of the textual passages and reconstruct the controversial

readings by showing clearer words.

Image processing for documents encompasses mathematical functions which

implement suitable convolution filters. However, this topic has been given limited

attention in the context of this study (see chapter 4). Further information with

regards to image processing can be found in the supplied literature.

2.6.4 Linked Open Data methods and technologies

Cultural Heritage documents are objects carrying meaningful concepts. These

concepts can be used to search and browse as well as to foster further inquiries in

the field of DH. As a consequence, LOD principles are largely adopted within tex-

tual scholarship applications. Linked Open Data, especially when they are open

and semantically characterized, have gained importance for literary computing.

Indeed, recent technologies offer a new level of flexibility, interoperability, and

relationships for digital repositories [153]. Generally, relational database systems

prove too rigid for integrating data sets in the field of humanities, which is often

heterogeneous and redundant. Consequently, the collection of documents with an-

notations, comments and metadata have to leverage data formats able to easily

be integrated in other frameworks.. For instance, RDF is the standard technology

for implementing shared and linked data on the top of the open web platform.

By doing this, it is possible to better integrate heterogeneous collections, cross-

linguistic repositories, and multi-cultural archives [45]. In addition, LOD methods

enable shared vocabularies and annotation mechanisms, overcoming interoperabil-

ity issues. The starting step concerns the publishing of metadata as linked data.

This consists of encoding information by using RDF format together with resource

URIs. Further, linked data sets need one triple store to be freely exposed.

LOD applications come together with two other elements with regards to ini-

tiatives in theDH: a) Ontology definition and b)NER / Term Extraction (TE).

54 CHAPTER 2. BACKGROUND

The first one is in charge of formally structuring the knowledge present in a spe-

cific domain of interest. The second one is in charge of automatically extracting

and recognizing, on the one hand, the named entity, such as places, dates, people,

organizations, etc., on the other hand, the terminology of the domain. The NER is

a NLP task which provides textual scholars with useful applications. For example,

a recent Italian research project about the first world war [154] well illustrates such

technology. In addition, by combining NER with the SW methodologies, DH re-

searchers find great advantages and enhancements in this field [58, 155]. Basically,

entities within the LOD framework have to follow four principles [156]:

• Using URIs as names for things;

• Using HTTP URIs for the sake of accessibility;

• Using standard technologies such as RDF or SPARQL for encoding informa-

tion;

• providing URIs along with others URIs.

Several initiatives provide entity repositories and APIs available within the

LOD cloud, which export semantically characterized descriptions. Among the

others, it is worth mentioning DBpedia and VIAF. These APIs take a text frag-

ment as input and then link the extracted entities to the LOD cloud [157]. For

instance, DBpedia Spotlight tool is able to annotate entries of DBpedia and to link

unstructured information sources to the LOD cloud by means of DBpedia URIs.

The LOD framework is actually an open research topic in the context of cul-

tural textual studies. Indeed, there are several conceptual discussions concerning

it. For example, the matter addressing whether a URI identifies an entity or it

identifies a document that talks about that entity is still misunderstood. This

discussion is critical for DH applications, as it is briefly discussed for CTS no-

tation in the section 2.4.2. Actually, different descriptions of the same reality

can lead to ambiguous outcomes, though mechanisms for entity refining and rec-

onciliation have been already developed. For instance, it is possible to handle

cross-referencing URIs with the OWL property like OWL:sameAs. Despite justi-

fied skepticism, LOD technology gives actual benefits to the textual scholarship

framework in the SW perspective. In fact, it provides semantically enriched digital

object with well-known vocabularies and thesaurus [72].

i
i

i
i

i
i

i
i

2.6. SUITABLE INFORMATION TECHNOLOGIES 55

2.6.5 Machine learning approaches

ML techniques are widely used and studied in computer science in order to solve

classification tasks. Several areas of study, which are close to literary computing,

such as computational linguistics, text mining and document processing, take ad-

vantage of these kind of statistical algorithms. To this regard, in the last decade,

experiments and researches adopting ML algorithms have extended rapidly across

applications for textual scholarship. The applications range from Optical Charac-

ter Recognition (OCR) (see section 4.1.1), to lemmatization (see section 4.4) [158]

[159], or indexing [160, 161, 162]. As illustrated in section 2.5, several libraries

provide API towards efficient solutions for the use of learning strategies.

ML techniques are grouped into two main categories: 1. Supervised ap-

proaches, and 2. Unsupervised approaches. The unsupervised ML approaches

deal with unlabeled data, such as clustering applications. These kinds of tech-

niques have been briefly introduced in section 2.6.2. The supervised ML systems

encompass, in turn, two components: 1. the learner, and 2. the classifier. The

learner builds the classifier (such as the statistical model) from a training set of

examples, which establishes both the input of the classifier and the corresponding

output. The resulting classifier is then used to assign classes to the input instances,

where the values of features are known, but the value of the class is unknown. For

example, sentence detection task generally classifies punctuation as two different

classes: (a) sentence boundaries, (b) other. Hence, appropriete training sets strive

to contain a sufficient quantity of features which can model the domain data, in

order to give actual discriminative properties [163]. Therefore, the learning step

generally involves a systematic and manual annotation which aims to produce a

training set as close to the properties of the input raw data as possible.

Many different methods have been developed as classification algorithms. These

include Naive Bayes, Bayesian networks, Decision Tree, K Nearest Neighbour,

Maximum Entropy, Support Vector Machines (SVMs), Hidden Markov Mod-

els (HMMs), Artificial Neural Networks (ANNs), just to cite the more famous43

These allow to model several applications in literary computing as a classi-

fication problem. For instance, ANNs are the most commonly used models to

develop Optical Character Recognition engines [91, 152], while Natural Language

Processing tasks exploit nearly all the ML techniques.

43For further details about Machine Learning techniques suitable for textual scholarship issues
please refer to the wide literature

56 CHAPTER 2. BACKGROUND

These kinds of techniques presents several advantages, among which the pos-

sibility to recognize unknown words. However they also present disadvantages,

as in the case of false positives found when words are too similar to the supplied

training set.

Among the methods introduced above, HMMs have been investigated (see

chapter chap:experiments:annotations) in order to develop a POS tagger for the

Latin lemmatizer [164] by using the HunPoS [165] tool. In this case, the learning

phase has exploited the Latin treebanks [166], which provide manually annotated

linguistic data for syntax, morphology and lemmatization.

Essentially, HMMs are probabilistic and discrete dynamic models which derive

from the n-order Markov chains [167]. They include two layers of states: (1) a

hidden layer and (2) a visible layer. The stochastic process concerns a sequential

transition between states evaluated by a set of conditional probabilities. This

process describes the sequential shifting called “transition probabilities”. The

innovation of the HMM model resides in the random output provided by the

“emission probabilities” (observable state). In this way the sequence of outputs

exhibit information about the sequence of unobservable states. Furthermore, the

Viterbi algorithm [168] is used to approximate the most likely states sequence

(likelihood) that produce the observed input data sequences.

In conclusion, textual scholarship uses machine learning techniques in order to

discover new information by detecting patterns and trends. This allows textual

scholarship to benefit also from research in text mining, which aims to generate

new information holding predictive value [169].

Among the applications for text analysis and text mining that textual schol-

arship tool can use, there are:

• term disambiguation;

• text classification and clustering;

• event extraction;

• relationship extraction;

• term extraction;

• term normalization;

• text reuse.

i
i

i
i

i
i

i
i

2.6. SUITABLE INFORMATION TECHNOLOGIES 57

2.6.6 Software engineering principles and processes

Software engineering is a discipline of engineering science that studies the nature of

software, approaches and methodologies of large-scale software development [170].

Moreover, it addresses theories and laws behind software behavior and software

engineering practices [171]. The design of the textual scholarship library is based

on practices and principles of software engineering. Computer science and philol-

ogy, on the one hand, provide textual scholarship with the theoretical foundations,

software engineering, on the other hand, focuses on analyzing, designing and devel-

oping the software for the TSLib in a controlled and scientific way [172]. Chapter

3 discusses the choices and the results carried out, by taking into account software

principles, design techniques and processes.

58 CHAPTER 2. BACKGROUND

i
i

i
i

i
i

i
i

Chapter 3

Methods

This chapter illustrates the design process and the technological methodologies

that underpin this research.

3.1 Introduction

The object-oriented paradigm has been the mainstream approach in software de-

velopment for the last decade, but its use among the community of textual schol-

arship has been rather modest [41]. Indeed, few initiatives have been devoted to

the requirement analysis of scholarly work as well as to the creation of domain

models [173]. As a matter of fact, the object-oriented paradigm facilitates the

process of conceptual modeling in two ways: (a) obtaining a better understanding

of the specific problems, and (b) keeping the design independent from technologies

implementation. Furthermore, conceptual modeling makes use of abstraction, and

the object-oriented paradigm provides direct support for promoting modularity

and component-based approaches.

Against this scenario, this research presents a number of software engineer-

ing techniques and principles that enable the development of textual scholar-

ship tools. The long-term objective is to implement the Textual Scholarship

Library (TSLib) by means of well-designed components, open and distributed

throughout the community. This significantly improves the reusability of software

applications and, consequently, the general outcomes of the researches for textual

scholarship [174, 175]. In other words, TSLib components constitute the funda-

59

60 CHAPTER 3. METHODS

mental building blocks of the general architecture. Unfortunately, the definition

of component seems not to be universally accepted. In the context of this work, a

component meets the Object Management Group definition:

A component is a modular, deployable, and replaceable part of a

system that encapsulates implementation and exposes a set of inter-

faces [176, 177]

Figure 3.1: Component services example

Each TSLib component is a piece of software devoted to a clear functionality. In

turn, each component can be assembled with other pieces of code providing a more

complex functionality (Fig. 3.1). Hence, components have the same fundamental

principle of the object-oriented paradigm. Encapsulation, modularity, and unique

identities are all basic object-oriented principles that are also common to TSLib

components. Nonetheless, components in the library are deeply characterized by

the possibility to be reused in a number of different contexts in a flexible1 way

[178].

The above mentioned definitions let emerge several important properties [179]

for the design of the textual scholarship library. Noticeably, the first property

1Two measures characterize flexibility: coupling and cohesion. The first measures the strength
of interconnection among software components, that is the degree to which each component de-
pends on the others. The second measures the functions congruity of a single software component.
Software should tend to be loosely coupled with high cohesion. This allows components to be
used, understood, and maintained independently form each other.

i
i

i
i

i
i

i
i

3.1. INTRODUCTION 61

is composability. Indeed, TSLib is constituted by several components which, in

turn, can be recurrently divided into sub-components (see chapter 3.3). The second

property is reusability. It concerns how components are developed by a component

provider. Reusability defines how existing components may be integrated in new

applications. Thirdly, modularity and encapsulation properties refer to the com-

ponent as a collection of services that are related by means of common behavior

and data. Finally, the interaction property entails information hiding and access

mechanisms to the internal procedures of the modules. In this context, interfaces

are the contract for activating the exposed services and for receiving the correct

type of outcomes.

Designing software for textual scholarship, which strives to be based on interre-

lated components, requires a suitable method of modeling as well as a development

process [180]. Nowadays, Agile approaches [181, 182] seem to be more effective

than the traditional ones (such as waterfall, V-model, Spiral, etc.). Therefore,

communities and developers of Digital Humanities (DH) applications, substan-

tially choose Extreme Programming [172] to prototype their algorithms and to

release their applications. The method adopted for designing the TSLib, on the

contrary, has relied on Agile principles, but also on more classical engineering

techniques. This strategy provides a better framework for designing an abstract

model and, although simplified and partial, for obtaining a clear view of the target

domain.

Theories and processes borrowed from computer science, e.g. Natural Lan-

guage Processing (NLP) and bio-informatics, have been successfully employed in

computational philology (a few examples are morphological, syntactic and seman-

tic tools, parsing algorithms, alignment strategies). On the contrary shared models

and conceptualizations, based on a formalization of the philological domain, have

not been sufficiently developed [37]. These matters have required a compromise

between a top-down and a bottom-up design approach [183].

• The top-down approach implies that the main use-cases with related user

scenarios are drawn up; afterwards, it implies that the high-level object be-

havior is formalized. The designed library appears as a single component at

the first step of analysis. Moreover, its architecture defines a high-level or-

ganization as a collection of interacting components where their APIs define

the expected behavior (deductive process, divide and conquer).

• The bottom-up approach, instead, implies that requirements for specific

62 CHAPTER 3. METHODS

projects and pre-existing pieces of software lead the design process. In

these circumstances, existing software is generalized and refactored itera-

tively. This means that the whole system is put together from modules that

have been developed for similar contexts, through an activity of composition

(inductive process, composition).

TSLib design exploits graphical notation provided by the Unified Modeling

Language (UML)2. Thanks to the UML, software engineers can graphically de-

velop software modules that both humanists and computer scientists can under-

stand. Thus, the software process of the textual scholarship library encompasses

all the development phases i.e. requirements, design, and implementation.

The library design process involves a number of key concepts, which can be

summarized as follows:

• the open-source as a collaborative and community-driven strategy;

• modular and component-based architecture for the sake of extensibility and

reusability;

• the use-case driven approach for the definition of the scholar needs;

• the object-oriented UML modeling of the domain entities for maintaining

technology independence;

• suitable design patterns for solving recurring problems;

• the Application Programming Interfaces as a means of (a) communication,

(b) functional entry points, and (c) implementation hiding;

• effective and efficient algorithms for document, text and language processing;

• standard schemes and shared resources for data-integration, data-exchange,

data-interchange, and long-term preservation;

• Java technology along with the JavaServer Faces Technology (JSF) frame-

work as the main technologies for implementing the library prototype3.

2The UML is a language under the umbrella of the acOMG which is one of the largest
consortium of partners from industry and research organizations in computer engineering fields.
Since it is a graphical notation and it is not related to a specific method of development, the UML
can be used for specifying and visualizing any software artifact throughout the entire software
development process.

3The library should also be implemented adopting Python programming language

i
i

i
i

i
i

i
i

3.1. INTRODUCTION 63

As previously mentioned, the design of the TSLib follows a use-case driven

process. Therefore, the Iconix object model [184] and the Agile approaches [185]

have been customized and adopted for the aim of this work. The design of TSLib

addresses two relevant principles:

• The TSLib must respond to the actual scholar requirements.

• The Agile environment simplifies interdisciplinary teams in terms of commu-

nication and consequently, in terms of implementation efficiency.

The outlined process fosters verification and validation throughout the de-

velopment (testing and refactoring). In addition, this approach provides all the

necessary software documents that characterize the TSLib design and evolution.

For instance, the UML notation encourages collaborative activities pertaining to

the analysis and to the design of the artifacts [174]. In this way, diagrams and doc-

umentation foster community interaction, producing improvements and gathering

new requirements. The structure and behavior of the library is kept as abstract

as possible, so that it can be better refined, extended and implemented during

further works. Indeed, platform independent models allow the TSLib to leverage

the most appropriate implementation technology available and enable the system

to keep up to date with technology evolution [186, 187].

The Agile-ICONIX method applies only a limited number of concepts, as it

strictly follows the principle of separation of concerns throughout an entire project.

Additionally, it promotes component refactoring and reuse, and follows typical

object technology principles. These are the principles of (1) modularity, (2) en-

capsulation, (3) information hiding, (4) unified functions and data, (5) unique

identities, and (6) incremental development. Once started, the software process

is responsible for ensuring that the behavior of TSLib is coherent, and that the

components provide the desired functionality concerning architectural design and

specification.

Therefore, the development of the textual scholarship library begins with the

process of gathering information from the target domain. This phase aims at un-

derstanding the scholar context and the functionality that the TSLib has to export,

along with the input and interaction mechanisms from and to the artifact. In ad-

dition, the resources and the constraints of the target domain state the operations

to perform for pre-processing and post-processing activities. The UML use-case

diagrams suit this initial survey. As an evidence, the use-case diagram outlines

64 CHAPTER 3. METHODS

important information that represents scholar perspective during the user-system

interaction [188, 189]. Fig. 3.2 illustrates an example of how to draw up a use-case

diagram. As evident, it specifies high-level interactions between the system and

the users (actors). The actor browses a work, compares the text with the related

scanned image, and studies relevant comments and secondary sources. Besides use-

case diagrams, computer engineers and scholars can communicate better if they

draw mock-up pictures. Actually, mock-ups seem to be more friendly for those

users with little technical skills. Fig. 3.3 shows the mock-up image derived from

the previous use-case examples. Finally, appropriate objects and their constitutive

relations (mainly the “depends”, “has a”, and “is a” relations) model important

aspects of the scholar domain. For instance, Fig. 3.4 illustrates a segment of the

design related to comments and their properties (versioning, text-selection, etc).

Figure 3.2: Example of UML Use case diagram within the TSLib

i
i

i
i

i
i

i
i

3.2. REQUIREMENTS AND USE CASES 65

Figure 3.3: Mockup example within the TSLib analysis process

Figure 3.4: Example of UML conceptual class diagram within the TSLib

66 CHAPTER 3. METHODS

3.2 Requirements and use cases

The library has the aim of providing all necessary functionalities for the textual

scholars, while safeguarding simplicity [190, 191].

As claimed in [51], domain analysis is not a widespread practice within human-

ities computing. Conversely, in order to understand the services that a textual

scholarship library has to provide, it is necessary to perform requirements gather-

ing and use-case definitions. As a main principle, the model should offer a coherent

solution to real problems. Therefore, it should be adequately formulated consid-

ering the actual needs of the domain. Accordingly, the domain analysis that the

library aims to model is the starting point of the TSLib design. This emerges from

scholars’ requirements and illustrated through a collection of use-cases diagrams.

The definition of the architecture of a complex system for Textual Scholarship

should firstly take into consideration the specific features of a textual object, be it

ancient, modern or contemporary. Differently from what is commonly maintained,

a text is a multilevel, multi-perspective and dynamic entity [136, 44, 50, 37, 42].

Even when appearing in a paper form, for instance, it cannot be considered the

final outcome of a stable and finished process. Particularly, as far as ancient works

that can be read now in printed editions, the following factors must be taken into

consideration:

• variety of copies created at different times, related to the same text (for

example, medieval copies executed on handwritten documents);

• presence of variants and/or errors that these copies record, causes often

attributed to copyists (ignorance, distraction, randomness, etc.);

• chemical-physical features of the material on which the text is written (paper,

parchment, cloth, stone, ceramic, etc.);

• characteristics of the language in which the text was written;

• presence of illustrations and/or pictures that enrich the information present

in the text, as in the case of technical or scientific works;

• presence of translations necessary for the comprehension and interpretation

of the text;

i
i

i
i

i
i

i
i

3.2. REQUIREMENTS AND USE CASES 67

• possibility of recording annotations, commentaries, or parallel passages needed

to correlate the content of a text with similar content in contemporary or

previous texts;

• possibility of entering bibliographical information related to the text or to

any of its parts.

Although, these features pertain especially to ancient works, they also apply

to more recent if not, contemporary works. The latter case is studied specifically

by the so called “genetic criticism”, which analyzes the formation process that a

text, often of cultural value, undergoes before being sent to the press.

Every preliminary version (called “avantesto” by the scholars of this field of lit-

erary studies) shows the exceptional mobility and instability of works which have

become classics. A demonstration of this phenomenon is present in the archives

that keep manuscripts of modern and contemporary authors: many, if not all of

these, present many authorial interventions. The corrections, the additions, the

erasures are important elements of study for analyzing the stylistical, psycholog-

ical, and sociological aspects that have influenced the poetics of the author and

therefore of his works. These aspects of mobility and variability, which can be

called “textual drift“ [138] are also attributable to digital texts (following the ex-

ample taken from molecular biology that has defined “genetic drift” the “random

fluctuations in the numbers of gene variants in a population” [133]). These also

vary, evolve, change in time thanks to the massive input of the social component

of the web. As example of what has been said above, it is appropriate to show a

passage taken from F. Nietzsche’s notebook containing some personal notes (Fig.

3.5). The features above listed have a direct impact on the system architecture

design and on the components to be developed for a model suitable for Textual

Scholarship. It is evident that a computational environment, possibly collabora-

tive, capable of assisting a philologist in studying a document of this type must

possess at least:

• a browsing module of the digital document;

• a module for transcribing the text contained in the original or facsimile

source;

• a module for visualizing notes according to the sequence of the author’s in-

terventions, and the cuts that he has performed on this part of his notebook;

68 CHAPTER 3. METHODS

• a module for the linguistic analysis of the text (morphological analysis,

lemmatization) and the creation of an alphabetical index of the single oc-

currences, and/or lemmas;

• a module for the bibliographical information, for instance the information

concerning the studies made on Nietzsche’s text;

• a module that permits the entry of annotations by the scholars that want to

intervene on this text;

• a module for the reproduction of the modern edition of the text in printed

format, reporting possible notes, translations and indexes.

Figure 3.5: Modern manuscript example

This list does not claim to be complete but it is useful for understanding the

diverse range of challenges that need to be faced when developing a scientific

application for textual scholarship. To date, many research centers have dealt

with these issues separately, not considering that the results obtained, although

valid, were actually partial. This partial outcome has probably restrained the

technological innovation in the field of philological studies. Little application of

innovative methods and tools is registered among experts in the field of humanities,

mainly due to the computational methods that do not respond exhaustively to the

requirements of their studies. As highlighted in chapters 1 and 2 of this study,

limited projects for the production of single results (a system for the production of

indexes, one for the display of digital images as well as transcriptions and mark-up

systems, etc.) have been carried out at present.

i
i

i
i

i
i

i
i

3.2. REQUIREMENTS AND USE CASES 69

On the contrary, this study adopts a holistic point of view of the activities

accomplished regarding the scientific (philological) study of a text. Despite the

difficulty in reaching comprehensiveness, the TSLib can be incremented according

to individual user needs, to the type of philological discipline (epigraphy, papy-

rology, philology of printed text, etc.) and to the technological components it

employs.

The analysis phase tries to clarify the functionalities that the library has to

expose. Frequently, in the field of digital scholarship, users require for web appli-

cations that simplify document access and offer a collaborative work environment.

This scholar environment helps to compare sources, create relations among ob-

jects, add notes and comments, edit critical apparatus and share textual materials

with the community.

The requirements and the needs of the users for the TSLib derive from the user-

stories [192] collected within the Open Philology Project (see chapter 2). Tab. 3.1

shows a fragment of this notable work.

Afterwards, use-cases have been described by means of proper UML diagrams.

As a result, use case modeling has identified the core functionalities, relevant actors

and roles with regards to the fundamental aspects of the tool. Fig. 3.6 illustrates

the principal use-case diagram of the library. It shows four types of actors and the

ways in which they interact with the TSLib. Two actors, the general user and

the domain expert, exploit the capabilities of the components, either generally

or specifically. On their part, the other users, namely the developer and the do-

main developer, can configure and extend the library. In particular the general

user visualizes and interacts with data, and also performs basic and advanced

searches for scholarship inquiries. Correspondingly, the domain expert special-

izes the general user (i.e. he has the same functionalities as the general user) and

can also manage the primary sources. For instance, he is entitled to upload the

digitization of the text or perform data acquisition, to process the resources as re-

gards linguistic annotation, proofreading, etc. Furthermore, the domain expert

can establish both internal and external relations among entities -such as connect-

ing named entities with the Linked Open Data (LOD) cloud (see chapter 2 and

4)- and perform data Create, Read, Update, Delete (CRUD) operations. Finally,

the expert user handles the information and meta-data regarding the document

facsimiles and forms of the document such as stones, rolls, papyri, etc. Fig. 3.6

also shows that the developer specializes the general user. He configures the

70 CHAPTER 3. METHODS

1 Manage Content

1.1 As a content manager, I want to add a primary source text to the reposi-
tory so that it is accessible by users for reading, curation, annotation and
research.

1.2 As a content manager, I want to add a derivative work to a repository so
that it is accessible by users for reading, curation, annotation and research.

1.3 ...

2 Research, Learn, Produce

2.1 As a user I want to view a text and related named entity annotations to
explore real word people, places and objects associated with the text.

2.2 ...

3 Search

3.1 As a user I would like to find scholia on a work to aid my understanding
of the work

3.2 As a user I would like to find references to a place entity within or across
works to aid in my study of that place

3.3 ...

4 Consume

4.1 As a user I would like to read a primary source text
4.2 As a user I would like to read a translation of a primary source text
4.3 ...

5 Curate

5.1 As a user I would like to create a new transcription of a primary source
text

5.2 ...

6 Analyze

6.1 As a user I would like to get a list of all vocabulary used in a text or set
of text and sort it by various criteria (frequency, sequence of occurrence,
ngrams, etc)

6.2 ...

.. ...

... ...

Table 3.1: Example of user-stories extracted from Open Philology analysis work

i
i

i
i

i
i

i
i

3.2. REQUIREMENTS AND USE CASES 71

library by editing the property files, by choosing the engines and adding the ex-

tensions. In conclusion, the domain expert developer specializes both the domain

expert and the developer user. Therefore, he is in charge of developing extensions

to the TSLib offering his contribution as service provider.

Figure 3.6: TSLib core Use Cases

72 CHAPTER 3. METHODS

Consequently, fundamental services emerge from the requirement gathering

phase. They can be summarized as follows:

• Providing a textual scholarship workflow which starts with raw textual ma-

terial. This can be an scan of a book or a picture of a manuscript. The

workflow involves a collection of services available by means of Application

Programming Interfaces (APIs) (local services by importing components or

remote ones by calling Web services) [193]. The functionalities range from

optical character recognition to text encodings, from named entity recogni-

tion to linguistic annotation;

• Providing tools for documenting (a) the textual choices adopted by the schol-

ars, (b) the textual alternatives such as variant readings and collection of

authoritative conjectures (c) the motivation for the text choice (d) the list

of references on which the scholars work is based (e) the bibliography of

editions and secondary literature (f) the commentaries of the works under

investigation;

• Providing a publication system that supports the reading of the text in a

multi-version manner [87, 6, 44];

• Providing facilities for scholars contribution. On the one hand, digital schol-

ars can extend or reuse the software components, on the other hand thay

can add or review textual data [175];

• Providing graphical interface for (1) web based applications, (2) mobile de-

vices, and (3) desktop environment.

3.3 System architecture

In the digital era, the transmission and scholarly study of cultural heritage re-

sources require technologies able to respond to literary and philological issues.

Research activities where these kinds of systems need to be developed can be

grouped into three blocks, which directly derive from the analysis phase (Fig.

3.7):

Acquisition and digitization of resources. This module provides func-

tionalities as Optical Character Recognition (OCR) of printed editions and

i
i

i
i

i
i

i
i

3.3. SYSTEM ARCHITECTURE 73

Figure 3.7: Textual Scholarship environment within a component schema

tools for document transformation from semi-structured resources to struc-

tured ones. This at least must take into account the systematic import of

manuscript images and the XML-TEI encoding of non-standard rather than

proprietary formats (e.g. RTF, DOC, etc) [194].

Content analysis and processing. This module is in charge of textual

processing and document analysis, as well as Term indexing, information

retrieval, information extraction and knowledge representation using ontolo-

74 CHAPTER 3. METHODS

gies. This corresponds to the multilayered indexing of the texts (linguistic,

lexical, semantic and philological) combined with data processing and with

the study of intertextuality; this in order to link different editions and entities

to internal and external datasets.

Editing. This component deals with the design of Graphical User Inter-

face (GUI). It handles resources in a distributed and collaborative envi-

ronment (mostly Web-based). This allows scholars to collaborate in editing

new editions or in proofreading automatic textual analysis. This means that

the environment allows scholars to explore all the indexed texts and their

different levels of analysis. Furthermore, it should provide access to a cen-

tralized repository containing: i) the translated editions and critical studies,

ii) all the entities of interest belonging to different semantic classes cited in-

side the texts (people, places, events, etc.), and iii) comparative multilingual

dictionaries. This module should also consider versioning issues.

Figure 3.8: Layers view of the TSLib

In other words, the architectural design of the library for textual scholarship is

i
i

i
i

i
i

i
i

3.3. SYSTEM ARCHITECTURE 75

designed to be modular and extensible and it is organized in different components

upon different architectural levels (Fig. 3.8).

UML diagrams describe the component model and architecture. Each compo-

nent emphasizes abstract interfaces which are both provided and required. In such

a way, the provided interface defines the services that a component of the TSLib

exports to its clients. Actually, interfaces may be seen as the entry points for

controlling the component. Conversely, the required interfaces are functionalities

that components expect to find from the external context in order to complete

their own implementation.

TSLib is a collection of a number of subparts (rather than a monolithic entity)

specifically designed to be embedded in a number of different contexts. Fig. 3.9

is a graphical representation of the library core components.

Figure 3.9: The core components of the Textual Scholarship Library

76 CHAPTER 3. METHODS

It shows the entry point and the subsystems composing the library. It repre-

sents a high-level view of the library and it is useful for understanding the general

principles and aims the artifact deals with [195]. As the architectural image shows,

the library focuses on provided and required interfaces. The components that pro-

vide interfaces act as servers, while the components that require interface act as

clients. Thus, the TSLib interfaces define the library contracts and services. The

required and provided library interfaces are public and they can be visualized as

exported Application Programming Interfaces. These interfaces show the capabil-

ities of the components and provide the methods needed to access the library by

the client applications.

The core of the ongoing library is structured into several components which

describe the top-level structure and the general organization of the library:

• Textual content management;

• Support/Facsimile management;

• Editing management;

• Layers management (analysis);

• Relations management (linked data);

• Indexing and search management;

• Presentation management (GUI).

The Textual content component handles the digital representation of the pri-

mary sources in an object-oriented framework. Section 3.4 widely illustrates the

conceptual design of the textual entities, which efficiently meet the scholars needs.

The model focuses on efficient access to different textual-phenomena at different

levels granularities (e.g. page, line, word). The inherent complexity of the text

structure is hidden from the conceptual data model and it can be implemented by

modules that realize and extend the abstract classes.

The Support/Facsimile component deals with information related to the physi-

cal device [196]. These components manage the multidimensional models (e.g. 3D

models, or a set of images of manuscript scans) of any relevant information related

to a specific communication process of written text. It gives a complementary

view of the digital representation of the textual document, by focusing on writing

i
i

i
i

i
i

i
i

3.3. SYSTEM ARCHITECTURE 77

and context information that is not covered by computational linguistic processes.

This is necessary for scientific interpretation and for understanding any text [197].

The Editing component manages the creation, the reading, the updating and

the deletion of the data handled by the library. Moreover, the component has to

preserve the integrity of the interconnected information, tracking multiple versions

of the document, etc. Several types of textual objects are affected by editing, such

as texts with variant readings, automated analyses, manual annotations and data

entries for scholarly comments (annotation and linguistic enrichment are discussed

in section 4.4).

Modules related to document and text analyses fall under the Layer compo-

nent. These modules involve, for example, algorithms for lemmatization, pos-

tagging, metrical analysis, named entities recognition, etc. These kinds of textual

processes are pluggable extensions and can be customized both by service providers

and clients by means of a specialized library module (see section 3.5.3). In general,

the layer component concerns resources for their processing and annotation. The

nature of these annotations leads to call the component “layer component”. This

means that documents convey data as different informative levels starting from the

text itself (level zero) [198]. Other layers, built upon the text, can be phonetic,

morphological, syntactical, etc. It is worth noting that the textual process has to

be independent from the language as much as possible. This can be obtained by

using factories and delegation patterns as illustrated in section 3.5.2.

The Relation component has been developed in order to handle the overall

relationships among the entities. The relationships involve the digital entities

through an identification schema (e.g. Resource Description Framework (RDF)

within the LOD paradigm, see chapter 2 section 2.6.4 and 2.4.2). The linking

is done at different levels of granularity and among different types of objects by

means of a suitable hierarchical data model (see section 3.4). For instance, textual

entities can be linked to other textual entities and a character can be linked to the

related image box in its multimedia model.

The Search component creates and manages the data structures necessary to

efficiently access stored resources (a practical case study is illustrated in Fig. 4.2).

Search components, devoted to the information retrieval, combine the data indexed

in the persistence unit and exploit a large number of query techniques for accessing

databases (xquery, sql, sparql, etc.).

The Presentation component takes into account the data structures that rep-

78 CHAPTER 3. METHODS

resent content combined with multiple levels of analysis. Graphical interfaces,

necessary for the interaction between the user and the system, must satisfy the

scholars specific needs (user experience). In such a way, scholars avoid frustrations

in using Graphical Interfaces designed for other domains.

The above introduced core components can also also adopted by international

study groups for the development of an advanced textual environment (illustrated

in Fig. 3.10), which aims at implementing a virtual framework for digital scholarly

editing and for educational purposes [199].

The component interaction is guaranteed via ad-hoc mechanisms provided by

specific manager modules [200, 201]. These mechanisms follow the service-provider

framework [202] and allow multiple service providers to implement the same ser-

vice. This method makes the implementation available to clients, while hiding

the information related to the implementation itself. This gives great flexibility in

choosing the actual module of the selected service. In such a way, the library can

return object instances without making their class public. Hiding implementa-

tion classes leads to a very compact API and to interface-based frameworks where

interfaces provide ADT thanks to static factory methods (see paragraph 3.5.2).

3.4 Designing the data model

The complexity, characterizing the textual scholarship domain, becomes more chal-

lenging due to the insufficient formal representation of sources from a philological

perspective [50, 7, 11, 203]. As evidence, at present several researches are studying

cultural data models (see chapter 2), but almost none of these embeds the vision

that texts are transmitted by multiple supports, with multiple variant readings,

and with multiple interpretations [204]. The object model here discussed shows

hypothetical Abstract Data Types for the domain under investigation. Abstract

Data Type (ADT) have been conceived as easy to reuse and as extensible for

future improvements. Indeed, a data model that represents the conceptual object-

oriented design of the artifact is an essential mean for the development of a suitable

application.

The model relies on several object-oriented features such as encapsulation and

composition. Moreover, the design tries to offer systematic solutions to recurring

scholar activities. This configuration should serve as a guideline for the implemen-

tation an elegant and stable library for textual scholarship in an object-oriented

i
i

i
i

i
i

i
i

3.4. DESIGNING THE DATA MODEL 79

Figure 3.10: Open Philology architecture - Courtesy of Bridget Almas

80 CHAPTER 3. METHODS

programming style. One of the benefits of this approach is the ability to model

the domain in terms of interconnected Abstract Data Types. In fact ADTs are

domain entities representing the knowledge of the problem and they convey val-

ues and behavior that scholarly experts can understand and manipulate. This

observation provides both conceptual and technical advantages [205].

Concerning conceptual advantages, documents and textual entities can be de-

signed in terms of abstract objects through a platform-independent model. For

example, a linguistic annotation or a comment are potential objects in the problem

space of the library. As pointed out by [186], identifying core objects as data types

in a given problem space and determining the object responsibilities and how they

relate to each other is a preferable paradigm as compared to designing in terms of

actions [206].

Concerning technical advantages, object-oriented approaches provide solutions

as discussed in section 3.5.1. However, it is worth remembering that object mod-

eling can lead up to deep inheritance hierarchies which can break the Liskov’s sub-

stitution principle [207, 208]. Consequently, the design of the TSLib data model

attempts to use inheritance only when appropriate, giving prominence to compo-

sition, which is often a more suitable solution [202, 209].

In the light of this, the key concept in modeling the literary domain involves

how to design the information conveyed by each textual phenomena in a flexible

way. As mentioned above, such a textual data encompasses (a) a multiplicity of

variant readings, (b) different layers of analysis, (c) different interpretations, and

(d) different levels of granularity. The model needs to reflect the conceptual re-

quirement of the domain, rather than the actual software details. Following the

emergence of new requirements, of functionalities and feedbacks, the model can

change over time. For this reason, the software development process has adopted

the Iconix-Agile process [185]. As discussed throughout the chapter 2, cultural

heritage documents have complex content with multiple views and overlapping

structures. This puts the accent on the need to further explore methods for their

digital representation. Moreover, scholars need to identify the variants and manip-

ulations to which manuscripts have been subjected. This allows them to discern

trustworthy readings and accept or reject the hypotheses of previous editors. In

addition, scholars need to examine the commentaries, articles and monographs

concerning specific parts of the studied text. Therefore, the extension in breadth

of the digital collections needs to be integrated by the extension in depth, according

i
i

i
i

i
i

i
i

3.4. DESIGNING THE DATA MODEL 81

to the paradigms of the new generation of digital libraries [24, 210].

For these reasons, the design of the model should be based on four distinct

concepts: 1) the textual structure; 2) the semantics of the structure; c) the style

of the document; and d) the behavior of the entities. The points listed above

ensure modularity, scalability and flexibility. The conceptual model of the library

is shown through two class diagrams in Fig. 3.11 and Fig. 3.12.

Figure 3.11: Class model defining the tradition of the textual documents

The entities define values and operations with respect to the requirements

provided by the scholars. This means that the ongoing formalization of the domain

tracks the model constraints and guarantees the consistency of the data properties.

By doing so, the specification also determines the pre- and post-conditions of

component behavior and their inter-module interactions.

The cornerstone of the model is the primary source representation. Documents

which represent related sources have been managed in parallel through an abstract

generalization (Fig. 3.13).

Annotating, commenting, and analyzing sources are some of the main activities

dealt with by scholars. The two diagrams in Fig. 3.11 and Fig. 3.12 represent

the central entities that the library handles in order to aid textual scholars in the

comprehension of ancient, modern or contemporary documents.

The diagram in Fig. 3.11 describes the part of the data model which takes

into account the tradition of the text, which is the collection of witnesses of the

work under the study. The diagram also considers the reconstruction of the text

82 CHAPTER 3. METHODS

Figure 3.12: Conceptual Class Model representing textual source materials

Figure 3.13: Parallel bilingual texts with comments and selection

according to the editor, such as the established text in the critical edition.

The UML diagram formalizes the textual tradition, taking into account poten-

i
i

i
i

i
i

i
i

3.4. DESIGNING THE DATA MODEL 83

tial witnesses (text transcription and/or facsimile images) and variant readings.

Variant readings (“Reading” in the diagram) have specific properties (“Property”)

which describe the nature of the variants themselves. Due to the multi-faceted na-

ture of texts in the philological domain, the action of choosing a word acquires

particular relevance. In fact, even in the case of documents (witnesses) showing the

same text that they transmit, the possibility that errors have occurred throughout

the history of the text is not excluded.

The diagram in Fig. 3.12 describes how the model represents the source docu-

ments. Sources are designed as a complex and hierarchical objects (“SourceCom-

ponent”, “SourceComposite”, “SourceLeaf”) that can evolve in space and time

(“SourceType”), creating variant readings (“Content”) on top of which various

kinds of annotations are set (“Annotation” and “AnnotationType”). Documents

and textual entities are interconnected and structured objects, either of the same

or of a different nature. These data structures and their interconnection might be

expressed by linked data and made available for further analysis (see section 2.4

and section 4.4.2).

Fig. 3.12 shows the source class diagram. It describes the abstract entities

that embody the multiple views and the hierarchy characterizing the structure of

a resource from a philological perspective. Therefore, the abstract model has to

consider the modalities and multiplicity of the resources. These can be realized

through the introduction of a four-dimensional vector of properties <v, g, p, l>:

• the component “v” represents the version. It yields the information accessed

by a version of the resource;

• the component “g” represents the granularity of the object. It conveys the

hierarchical, structural representation of the resource (see Ordered Hierar-

chy of Content Objects (OHCO), Functional Requirements for Bibliographic

Records (FRBR), Canonical Text Services (CTS));

• the component “p” describes the position of the textual object. This means

for example whether it is a first edition, or the second page, or the third

paragraph, or the fourth sentence, or the fifth word, or the sixth character;

• the component “l” introduces the layer of analysis. It is responsible for

representing different levels of interpretations, such as morphological tagging,

syntactic parsing, semantic annotations, metrical analysis, etc.

84 CHAPTER 3. METHODS

The above diagrams shape the principal concepts that the library has to man-

age. These are: a) the hierarchical structure of the sources, expressed in the

diagram by the composite pattern (see section 3.5.2); b) the multiplicity views

of the content, expressed by different roles and different typologies (relationship

typed pattern); c) the external annotations upon the sources.

The aforementioned framework models the basic relationships among the ob-

jects by following the nature of the target domain. This is outlined as:

The source data type is specified by two sub-type entities. The composite

relationship allows to design a hierarchy between the various levels of the document

and the textual elements. This solution is suitable to express levels of granularity

and non-linear structures. For example, the textual content of a document can be

organized in pages, lines, words, characters, etc. This representation is hierarchical

and each element can be seen either as a new composite element or as a leaf

element.

The source entity comprises various nested data types generalized by a com-

mon abstract class. This relationship shapes the multiplicity of views of the textual

content. For example, a textual block can have a correspondent digital represen-

tation (usually an image). The type of data content defines the aspects in a

document for what relates to metatext, paratext, and extratext, by means of a

typed relationship pattern (ContentType and ContentRole)4.

The annotation concept draws up a stand-off mechanism. It combines multi-

ple levels of analyses and comments in order to enrich the information correspond-

ing to the target source. Generally, annotations can be seen as metadata, that is

to say, information that provides contextual data about an object in the collection

(see chapter 2). Metadata can also be viewed as primary data sources that are

related to or derived from other primary data. Each annotation is endowed with a

specific type. This technique provides extension purposes and flexibility. For ex-

ample, automatic linguistic analysis could add lemmata to each word, but scholars

could add exegetic comments to some textual paragraphs. References to annotated

entities (as CTS Uniform Resource Names (URNs) do) allow the handling of re-

lated sources for human and for software agents. Consequently, this facilitates the

4Further information on text, paratext, extratext and intertext can be found in literature, for
instance [211, 25, 3]

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 85

alignment of different texts versions with the relative annotations. As discussed

in section 3.5.2, the observer pattern implements change-listener mechanisms that

track the various updates brought to the content. These mechanisms manage the

notification of annotations related to source objects even when a version is re-

moved or modified at any level of granularity. Finally, the Open Annotation Data

Model (OA) and CTS URNs help managing and encoding annotations that point

to the source textual content. The digital representation of textual content with

the addition of annotations fosters a hierarchical graph representation [87], instead

of a tree representation.

In summary, the data model described above provides the core entities regard-

ing the digital representation of textual documents within a scholar perspective.

It allows to manage hierarchical views of the content as a flexible relationship

among texts, images and other textual types such as “paratext” and “extratext”.

In addition, it also automatically handles all annotated contexts.

As discussed in section 3.5, design patterns [212, 213] are the means to organize

modeling efforts into classes, methods, and objects. These objects store data and

provide methods for accessing and modifying their own internal state.

3.5 API design and Design Patterns

The TSLib sets its design both on API techniques and Patterns. As already

pointed out, the novelty of this research lies on the application of these techniques

to the domain of literary computing.

Hereafter, examples regarding the design principles and techniques that cover

diverse computational themes are introduced. The diagrams illustrate design

choices for performing textual services. These latter can include the identification

of a word as a noun, verb, as well as metrical analysis services, identifying rhyth-

mic structures in a text. They also can include lemmatization capability, which

identifies the basic word-form in the text representing the entire word paradigm.

This choice is justified by the fact that the library combines experience, meth-

ods and tools developed by the Institute for Computational Linguistics (ILC)

which invests in computational solutions both for the fields of linguistics and

philology [214].

86 CHAPTER 3. METHODS

3.5.1 API design

This research has investigated well-known and fundamental strategies and princi-

ples to achieve abstract designs and effective API development. As already stated,

the relevance of this topic stands in its potential to design and release a reusable

library. As it is commonly acknowledged, the purpose of an API is to separate

client applications from the providers that implement the services. It derives that

API users do not know the details of the artifact, as they only have access to public

information. Furthermore, as providers work does not take clients into account,

the former can change implementations without breaking the interfaces. Thereby,

APIs enable TSLib to define and develop components separately for the various

features that make up the library. Based on this, it is possible to reuse and extend

the artifacts to a range of applications and in different moments. In addition,

this approach allows to solve problems in classes, rather than individual problems,

keeping clients and providers separated. Indeed, if the client is only acquainted

with a clear specification (contract) between the API and the implementation (e.g.

the behavior), providers have to comply to the general contract, but they are also

entitled to change the underlined algorithms [209]. Eventually, the objective is to

allow the components to evolve without forcing clients to change their code.

Against this scenario, designing a modular library for literary computing im-

plies, among other things, a deep understanding of general API features, such as

abstraction, inversion of control, code reuse, open-close principle, and loosely cou-

pled components. These factors contribute to the implementation an appropriate

and efficient tool, tailored on computational scholars needs. It derives that ap-

plication Application Programming Interfaces design can affect the behavior, the

soundness, and difficulty of using software components [195]. As a matter of fact,

when an API changes, all clients and implementations have to change. Therefore,

the discussion about the Application Programming Interface cannot be limited to

the naming of basic object classes, or public methods exported to the users (in

other words, an API does not end at the signature of a class or method [202]). Such

a design, instead, is much more challenging since APIs encompass more complex

issues:

• specifying information that scholars need to know in order to use the library;

• fostering scholars to reuse modules having restricted knowledge of the API;

• avoid making all implementation information explicit to users, in order for

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 87

making; an intuitive exploration of the library (Shallow Understanding);

• assembling individual building blocks in order to generate the whole appli-

cation;

• evolving compatibility for anyone writing applications based on the library;

• being as small as possible but not any smaller;

• helping providers to change the code and therefore implementing different;

algorithms for more efficient and more accuracy problem solving;

• specifying the set of protocols, files, environmental variables and their for-

mats, that each component of the library must read or write;

• ensuring that the behavior of a component remains unchanged.

At this stage, the computational scholars’ attention turns towards the pro-

gramming code that they need to write in order to accomplish their tasks. In fact,

APIs are user interfaces for computational scholars just as GUIs are user inter-

faces for classic scholars. In such a way, APIs allow programmers to ignore what

is the actual data representation and what are the details of the implementation

algorithms. In this way, API establishes an abstraction over the functionalities of

each component and hides the unnecessary internal complexity. According to this

view, an Application Programming Interface is a contract [215] between the pro-

grammer and the implementation providers, as well as between the API designer

and the developers of the specific functionalities. In accordance with this, the

challenge resides in designing clear and unambiguous contracts and functionalities

for the library. In order to clarify this concept, hereby an example of a Java code

snippet is given. The client of the library instantiates the object, which represents

a manuscript, and associates the facsimile images for each folio. Afterwards, he

asks for the textual content of the document specifying the data format. In the

end, the client writes the data into a stream either for storing the outcomes or

for communication purposes through a socket. The client is unaware of the imple-

mentation mechanism and consequently, the procedure appears for him as natural

and intuitive as possible. In fact, the objective of a well-defined API is to provide

a logical interface to the exported functionality of a component while hiding any

implementation details [216, 217]. In the program code lines below, error checking

and exception handling have been omitted in order to make the example clearer.

88 CHAPTER 3. METHODS

Source codexM = Source.newInstance();

codexM.setMetaData(properties.get(‘‘nfolia’’));

codexM.setFacsimile(properties.get(‘‘inputSource’’));

String jsonText = codexM.getText(Granularity.FOLIO, Format.JSON);

write(jsonText);

In the light of what has just been argued, firstly, any tool for scholarly studies

should provide an abstraction for the needs of historical and cultural documents.

Secondly, it should specify the guidelines according to which scholars should inter-

act with the components of the library. In turn, each component should provide

solutions to the basic issues of the domain, such as annotations of textual phenom-

ena, correlations between text and images, highlights of formulae and linguistic

patterns in different languages, alignment of different versions of the same text,

semantic searches based on shared ontologies, scholarly editing, textual criticism,

and variant reading management. Essentially, APIs define reusable bricks that al-

low modular pieces of functionality to be imported into the end-user applications.

For example, Fig. 3.14 describes a typical text analysis use-case where a client

application handles lemmatization and concordances. The application depends

directly on several modules by means of exported APIs.

As mentioned before, a primary goal of this research is to examine the funda-

mental characteristics that compose a sound tool in the field of literary computing.

This implies that the library meets some design qualities [190, 195], which are often

disregarded by the software within the Digital Humanities, but that are desirable,

when implementing a software that is to be reused. The most outstanding qualities

adopted for the TSLib can be listed as follows:

• Information Hiding [205, 218],

• Comprehensibility [191, 219],

• Consistency [202],

• Discoverability [219, 220],

• Difficulty to misuse [221, 222, 187],

• Performance [223, 224],

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 89

Figure 3.14: Lemmatization example for API Component design

• Stability (Backward Compatibility) [202, 225, 226].

Information Hiding produces reasonable advantages in terms of (a) perfor-

mance (i.e. it enables caching techniques, lazy evaluation, etc.), (b) resilience (i.e.

it forecasts validation, notification, synchronization mechanisms and allows the

environment to maintain invariant relationships and verify pre- and post- condi-

tions), (c) evolvability (i.e. improving implementations by adding new function-

90 CHAPTER 3. METHODS

alities through plug-ins). Design patterns contextualized to the target domain

(see section 3.5.2) guarantee a less-coupling modular system and a separation of

concerns.

Comprehensibility means that computational scholars must understand the

core model of the library, its key objects and functionalities. The principle to

be followed is called least astonishment (aka least surprise). Hence, API is to be

understood as a meta-language that involves three actors: (1) the designer of the

library, (2) the providers which write implementations against the API, and finally

(3) the clients that write custom applications. These actors communicate thanks

to the availability of the API.

Consistency deals with mechanisms that handle similar features through sim-

ilar ways. It is important that these kinds of mechanisms follow the same poli-

cies across the components. For instance, if the policy of passing arguments to

methods were performed via special Data Transfer Objects (DTO) together with

String-typed values instead of enum-typed values, these policies should be coherent

throughout the entire procedure. The following is an example of code involving

text analysis:

basic method:

ResourceAnalyzed analyze(SourceDTO source, String action)

alternative method:

ResourceAnalyzed analyze(SourceDTO source, AnalysisAction action)

calls:

SourceDTO source = FactoryDTO.instanceSourceDTO();

source.setContent(content);

source.setParameters(parameters);

basic call:

ResourceAnalyzed object = analyze(source, ‘‘morpho’’);

alternative call:

resourceAnalyzed object =

analyze(source, AnalysisAction.morphological);

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 91

Discoverability deals with organizing entry point classes as intuitively as pos-

sible. It is in charge of creating a single place that can serve as a starting point

for discovering the component services. For instance, the well-known NetBeans in-

tegrated development environment (IDE) platform5 organizes lookup mechanisms

to manage services and discover registered functionalities [52, 227]. In this context

it is important to provide examples of API employment, aimed at accomplishing

specific tasks.

Difficulty to misuse involves some other library design features such as min-

imal complete, clear, simple, intuitive, easy to memorize, and other. The rule,

which guides the design, is that the API ought to be for computational scholars

like the GUI is for classical scholars. It follows that one of the most decisive points

at issue is naming. Few valuable guidelines are: (1) avoiding abbreviations, (2)

guiding user for methods parameters, (3) avoiding long list of parameters with the

same type (4) adhering to naming conventions. The example below shows these

rules applied for the design of the class that represents the morphological code in

the library.

poor signature:

Public MorphoCode produceMorpho(

String pos, String per, String num, String tense, String mood,

String voice, String gen, String case, String deg);

difficult call:

MorphoCode mc =

MorphoCode.produceMorpho(‘‘a’’ ,‘‘-’’,‘‘s’’,‘‘-’’,‘‘-’’,

‘‘-’’,‘‘m’’,‘‘a’’,‘‘-’’);

better signature:

Public MorphologicalCode

newInstance(

PartOfSpeech pos, Person p, Number n, Tense t,

Mood m, Voice v, Gender g, Case c, Degree d);

easy call:

5ttp://www.platform.netbeans.org

92 CHAPTER 3. METHODS

MorphologicalCode mc =

MorphologicalCode.newInstance(

PartOfSpeech.ADJECTIVE,

Person.NAN,

Number.SINGULAR,

Tense.NAN,

Mood.NAN,

Voice.NAN,

Gender.MASCULINE,

Case.ACCUSATIVE,

degree.NAN);

Performance A well-designed library usually results in a good performance.

Generally loosely coupled components enable effective performance tuning. In-

deed, once a system is complete and profiling has tracked which modules suffers

in performance, those part of the system, can be improved without affecting other

modules.

Stability mainly concerns backward compatibility. The library has to achieve

evolution and enhance features without breaking old applications. This means that

the library has to improve without affecting client code stability. The APIs, as

pointed out in [202], manifest multiple levels of backward compatibility: (a) Source

Compatibility, (b) Binary Compatibility, and (c) Functional Compatibility:

• Source Compatibility deals with the ability to compile client applications

against new library releases. The challenge involves adding both methods

and classes.

• Binary Compatibility deals with the ability to link new releases of the library

against client applications without recompiling them. The binary compati-

bility fosters the use of public methods instead of static or public fields, in

order to manage compatibility by dynamic bindings.

• Functional Compatibility deals with component-based development. This

means making the modules behave the right way across library releases.

This kind of compatibility relates to specifications: the more complete and

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 93

comprehensible the specifications are, the more functional compatibility is

expected. The risk is that users rely on an unexpected functionality.

It is evident that the aim of the library APIs is to hide any implementation

detail and foster modular programming. By doing so, the evolution of the library

does not affect existing application clients. This means that any internal detail

and changing element must be kept hidden from the client of the API.

In addition, the library benefits from generic feature capabilities [228, 229]. In

this regard, Fig. 3.15 shows the aligner component which puts into effect this

aptitude.

Actually, generics allow clients to write custom applications in terms of generic

types. In the above mentioned example, scholars specialize the generic definition

of the aligner entity by instantiating it with specific types. This is instrumental

for the aligner to use generics to handle sequences of objects of any type.

APIs, which follow the aforementioned principles, require clients of the library

to write few lines of code to perform basic tasks. Meanwhile, the software pack-

age allows clients to control the processes they want to accomplish. High-level

convenience components [205] provide a well-known solution to wrap core APIs

and, consequently, give functionality on top of the basic one. This solution, at the

same time, guarantees great flexibility of usage for complex tasks and the least

possible efforts for simple activities. These convenience wrappers do not depend

on internal methods or symbols of the library. In fact, they are fully isolated from

the core API and rely only on the public interfaces of the core components.

The textual scholarship library should prevent its clients from breaking encap-

sulation. Generally, to face this behavior the exported objects are to be declared

final and immutable [209, 202]. When appropriately designed, a core API yields

applications less prone to errors and they are more secure. For example, the ac-

cess to any mutable components has to be exclusive. At the same time, as claimed

in [209], no objects which have fields referring to mutable data should provide

references to the latter mutable fields, either in the initialization phase or when

returning the objects.

Hence, it is important that internal classes, interfaces, and members are not

part of the API. This practice is largely used in API design and it is known as

functional approach because a service does not modify any operands but it returns

data only by manipulating new structures. In this way, immutable objects can be

shared freely. Furthermore, it is easier to maintain the invariants of a complex

94 CHAPTER 3. METHODS

Figure 3.15: Convenience layered API for TSLib

component if the entities it handles do not change. However, in order to keep the

quality of performance high, some immutable classes have one or more non final

fields in which they can cache the results of expensive processes.

In conclusion, the API approach entails three main objectives. First, it enables

the production of a clear and correct client code. Second, it fosters the development

of prototypical implementation against the core functionality. Third, it promotes

to implement end-user applications to validate the design decisions.

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 95

3.5.2 Design Patterns

The design of the TSLib makes use of common design patterns [212, 213, 206, 230].

Hence, the work has investigated software design and experimented various types

of patterns, techniques and principles popular in software engineering. Indeed,

one of the aims of this work is to apply design patterns that represent general

reusable solutions to recurring problems within the domain of literary studies.

The main patterns and techniques effectively adopted in the design of the library

are explained below.

API/SPI delegation The technique that allows the library modules to clearly

decouple client modules from provider modules is the API/Service Provider In-

terface (SPI) delegation technique. SPI stands for Service Programming Interface

and should be completely separated from client calls [52]. Fig. 3.16 shows how

this technique is able to hide internal details from public exported methods.

That is, moving data representation and current algorithms to a customizable

and private class with implementation purposes. This solution allows to decouple

APIs from their provider modules (SPI). This pattern has many useful advan-

tages. The separation of public interfaces from implementation details also means

that the client API can evolve, differently from internal interfaces which are only

suitable for those who implement the services. As a matter of fact, users interact

with objects that are stable and final (in the example, the Lemmatizer class).

Anyway, the providers’ perspective keeps flexibility for the implementation of the

required interfaces (in the example, the Impl interface). In such a way, the li-

brary has a reliable mechanism for extending its functionality by improving the

implementation and by adding new interfaces in further releases. When new fea-

tures are added, the exported objects remain unchanged thanks to a particular

delegation technique (i.e., via factory methods, see paragraph 3.5.2). Delegation is

a powerful strategy that allows service modules to cooperate with the clients. The

API/SPI pattern fosters binary compatibility: the reference to the implementation

interface does not change in the subsequent versions of the module. Furthermore,

the introduced mechanism guarantees performance tuning about system proper-

ties and resources availability, as it is possible to lazily allocate the internal class

or to decide which type of object to allocate.

96 CHAPTER 3. METHODS

Figure 3.16: API/SPI Delegation pattern

Factory methods Fig. 3.16 also shows the factory method pattern. This is a

wide used and a well-known creational pattern which provides a flexible way to

instantiate an object. Factory methods are frequent in basic abstract data types

across the design of the TSLib.

The main advantage of factories is to allow clients of the library to create

objects without having to specify the actual type. For example, in Fig. 3.17

which shows the class diagram describing the sequence alignment module of the

library, factory objects (AlignerFactory and SimEvaluatorFactory) create the

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 97

actual entities to perform the aligned task.

Figure 3.17: Factory Pattern

The client of the module uses the factories having no awareness of what the

actual instance objects are. The client, in fact, just invokes interface operations

implemented in all sub-typed classes. As the design of the aligner module demon-

strates, it is possible to achieve more flexibility during construction procedures by

adopting factory strategies. This moves object binding at run time, rather than at

compile time, as required by conventional constructors. This behavior is largely

adopted in designing the library since public classes can create different objects

based on user input (the getAligner method in the example supplies a map of

features). Furthermore, actual objects can be created based on configuration files

or context properties available at run time. In this way, scholars can ignore the

internals and the specific types of the different aligners.

Data driven Fig. 3.14 shows another technique known as the Data-driven ap-

proach. Throughout this solution the Lemmatizer class can perform different

operations by supplying the delegated object with different parameter data. By

doing so, the public methods guide the external client with methods which should

be as clear as possible. instead, internal mechanisms can provide more generic

routines that accept method parameters with a named-command idiom. It de-

rives that, the implementing modules can perform different operations without

requiring the software to be recompiled. Moreover, the modules benefit from an

improved backward compatibility because the operations, the commands and the

arguments are encapsulated in the data-driven model.

Singleton Fig. 3.18 illustrates the Singleton pattern. The component that man-

ages the TSLib modules is designed to manage the load/unload functionality for

98 CHAPTER 3. METHODS

the set of active components of the library. In particular, the component exploits

the Singleton pattern as well as the Lookup techniques following the principles ex-

pressed in [205, 202]. This pattern supports the creation of a singular and global

instance of the Manager object. Consequently, concerning the execution context,

the library counts on one module which is in charge of managing the remaining

modules.

Figure 3.18: Singleton Pattern

Proxy, Adapter and Facade The TSLib takes advantage of existing pieces of

software following the principle of code reuse. The structural patterns like Proxy,

Adapter, and Facade allow to design mechanisms for wrapping components on top

of other APIs.

Fig. 3.19 shows the TSLibPosTagger on top of the OpenNLP PoSTagger.

Linguistic analysis of the library benefits from robust and efficient third party

libraries. However, this pattern keeps the consistency of the textual scholarship

library allowing its providers to export their own method signatures. Fig. 3.20

shows the Adapter pattern.

Similar to the proxy pattern, it provides a one-to-one mapping of new functions

to pre-existing operations, but the interface and the APIs are different. This

pattern is useful for exposing suitable APIs from existing legacy modules. The

figure illustrates how the TSLib API is able to maintain its consistency from the

client perspective, while internal procedures reuse pre-existent software modules.

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 99

Figure 3.19: Proxy Pattern

Figure 3.20: Adapter Pattern

As argued in the Introduction, this kind of pattern is especially useful when the

design adopts a trade-off between a top-down and a bottom-up approach. Fig.

3.20 shows the metrical analysis Adapter6. Nevertheless, the textual library takes

advantage of the metrical module as one of the layers of textual analysis without

exposing the original interface and the data types.

6The original software has been developed within the Musisque Deoque and the Memorata
Poetis projects [231], but APIs and Abstract Data Types are not compatible with the design of
the library

100 CHAPTER 3. METHODS

Figure 3.21: Facade Pattern

High-level components and library functionality exploit abstract access points

for managing large collection of sub-modules. In order to achieve this ability,

the Facade pattern has been adopted within the core component design. This

pattern allows to split the artifacts into easier parts (top-down approach) and

consequently it fosters stable APIs on top of a variety of entities. Fig. 3.21

illustrates these concepts with respect to tokenization, lemmatization, metrical

analysis and indexing.

The facade pattern is often adopted in synergy with other patterns: the figure

shows the Factory, the API/SPI, the Proxy and the Adapter working together.

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 101

To sum up, the TSLib makes full use of structural patterns as they present many

benefits, ranging from performance to extension capability.

Composite pattern As highlighted from OHCO model (see chapter 2), tex-

tual documents have hierarchical structures. In the context of the object oriented

paradigm, the Composite pattern shapes part-whole hierarchies in a tree manner.

Fig. 3.22 shows the solution adopted for representing the structure of the docu-

ment. Any primary resource in the TSLib model is a Source Component object

which can be a final node (SourceLeaf entity) or an aggregation node (Source

Composite entity). The figure also shows the typed relationship pattern, which

provides flexibility to the SourceComponent: The SourceType indicates the

nature of the node. This pattern allows to manage any kind of sources.

Figure 3.22: Composite Pattern

Observer, Strategy, and Visitor Classical design patterns include behavioral

techniques such as Observer, Strategy, and Visitor : the TSLib has adopted these

patterns to reduce strong dependencies among the modules of the library. For

instance, the Observer pattern allows entities to communicate by means of a single

point of anchoring, which provides the exchange and the delivery notifications.

In particular, as illustrated in section 3.1 and 3.4, the digital representation of

cultural heritage documents needs synchronization and updated mechanisms [232].

Indeed, document components encompass an interdependent collection of formal

annotations and interpretations that have to be kept updated and synchronized

[233, 234].

For example, Fig. 3.23 shows how annotations concerning textual data can be

notified and updated if the underlying text changes. In this case the subject of

the pattern is the text of the document and the observers of the pattern are the

102 CHAPTER 3. METHODS

annotations. The entities representing the text provide subscription and notifica-

tion mechanisms. Furthermore, the observers, namely the annotations, comments,

and external data, implement an update method in order to re-synchronize their

state. In this way, whenever the representation of the document changes or any

internal data of the document is modified, a notification of the change is sent to

the affected entities.

Figure 3.23: Observer Pattern

The hierarchical nature of the representation of the document, as described

in Fig. 3.22, encourages the use of a pattern for traversing the data model in a

flexible and customizable way. The Visitor pattern provides a mechanism for

extending the functionality of the library. Fig. 3.24 shows how a client of the

data model can traverse the document tree in order to write its textual content.

The mechanism supplies the actual visitor by means of the client operation. The

custom object is then used by the entities of the hierarchy without knowing the

behavior of the visitor. In conclusion, the Visitor pattern provides a procedure for

operating flexibly on the library data model.

The Strategy pattern, instead, allows the definition of a family of algorithms.

These algorithms can freely vary independently from clients that use them, accord-

ing to customizable policies.

Fig. 3.25 shows how this pattern has been applied in the design of the library.

The figure illustrates the objects that implement a portion of the text analysis

component. The TSLib provides mechanisms for substituting engines and for

adapting analysis strategies. Indeed, TSLib exposes functionalities for linguistic

analysis by means of language independent entities that dynamically instantiate

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 103

Figure 3.24: Visitor Pattern

the appropriate tools. The analysis objects provide methods that require the

content as input and return its analysis as output. The external entities can

interact only with the TSLib public component, which creates and uses a special

object called AnalysisContext. The latter object makes the right association

among the language, the linguistic analysis and the engine to be used. For this

reason, this pattern represents an important aspect in the design of loosely coupled

104 CHAPTER 3. METHODS

APIs.

Figure 3.25: Strategy Pattern

Parser Handler and Response Replay patterns Fig. 3.26 and Fig. 3.27

show two further techniques employed in the design of the library. These are the

Parser/Handler pattern and the Response/Replay pattern.

Figure 3.26: Parser Handler Pattern

The first follows the design of the Simple API for XML (SAX) technology. It

allows the building of a library able to parse several formats of input files and

then process them with the most suitable handler. Therefore, the data format

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 105

Figure 3.27: Request Response Pattern

adopted to serialize or persist the textual information does not affect the repre-

sentation of the textual entities within the library. Input objects, among others,

can be in Text Encoding Initiative (TEI), JavaScript Object Notation (JSON),

Comma Separated Values (CSV), or even in document (DOC) or Portable Docu-

ment Format (PDF) (see chapter 4). The parser reads data from an input source

in order to produce an object representation of a specified type. By attaching

106 CHAPTER 3. METHODS

a handler to a parser, the handler will receive a stream of objects produced by

the parser. In other words, a parser is created for the format in which the input

file is supplied and then a suitable processing tool is created and attached to the

parser. The second pattern (Fig. 3.27), instead, is a technique which allows the

library to extend its capabilities and to evolve easier without breaking backward

compatibility. The pattern solves the issue of how to enhance data exchange with

additional parameters.

MVC and DAO patterns Data has to be stored somewhere for persistence

purposes, but the library must be agnostic with regards to persistence technologies

and persistence data formats. Consequently, an ad hoc module deals with storing

data in some kind of database. It is important to note that whereas the entities

of the library model represent the actual information stored, the model objects

interact with an abstract persistence layer instead of the real database system.

This can be achieved by including a Data Access Object (DAO) in charge of han-

dling communication from and to the database. Consequently, the communication

between the database and the library is transparent to the core components of the

library. Moreover, the DAO component will create all the necessary functionalities

to read, store, and modify data in the database. This functionality is known as

CRUD (Create, Read, Update, and Delete).

In conclusion, The Textual Scholarship Library also benefits from the advan-

tages of the Model View Controller (MVC) pattern, which provides important

features, such as full control between the presentation, the model, and the stor-

age of the library itself. This separation among appearance (view), data (model)

and action (controller) is used widely in Object Oriented applications. Hence, the

overall architecture of the library (graphical user interface combined with the core

library API) ensures separation and decoupling among: (a) the representation of

internal data status, (b) rendering, (c) system interaction, (d) user scenarios, and

(e) content management. The MVC design pattern, therefore, plays a central role

in designing the library components.

3.5.3 Reusability and extensibility

the TSLib capability may need to evolve over time as scholars can meet new

requirements. Therefore, it is crucial to design and implement mechanisms that

guarantee component reusability and extensibility. This can be done with the use

i
i

i
i

i
i

i
i

3.5. API DESIGN AND DESIGN PATTERNS 107

of plug-and-play mechanisms [235]. Indeed, plug-ins are nowadays a common way

to achieve flexibility in complex systems. Fig. 3.28 shows the mechanism used to

implement new components.

Figure 3.28: TSLib Extension Capability

The extension mechanism is based on a factory component which is in charge

of handling and organizing the different implementations of a specific service. In

particular, the figure shows an example taken from the stemmaEvaluator com-

108 CHAPTER 3. METHODS

ponent, where, under the effect of an input, a set of related sources returns the

hypothetical phylogenetic tree of the text. As argued in chapter 2, the algorithms

for this kind of operation are still in the process of being defined by literary com-

puting researchers. Therefore, it is important for the TSLib to have the flexibility

to add and to change the implementation for this functionality. In conclusion,

the mechanism handles the object-binding at run-time, choosing the actual type

of interface. For instance, the actual object of the StemmaEvaluator Interface

can be known only at run time, when the factory class can instantiate the object

by using a dynamic repository and advanced programming mechanisms like the

reflection. As a matter of fact, the factory object has a registration mechanism to

plug and play new implementation components.

3.6 Developing technologies

The prototype of the library makes use of Java programming language. The fun-

damental artifacts are organized in several Java packages which map the core mod-

ules. These packages form a coherent library of data structures and algorithms

specifically designed for literary purposes. The prototype has been adopted in

a few real applications in the context of funded research projects. Besides this

library, other technologies for the development of complex textual processing sys-

tems have been taken into account. Such technologies mainly involve the Java En-

teprise Edition, the NLP technologies, and the XML related library such as jDOM.

The overall system, which is a web-based application, has been developed follow-

ing the Server Faces Framework (JSF2) and the Model View Controller (MVC)

architectural pattern (see section 3.5.2). TEI-Compliant encoding documents are

stored in an eXist-db (XML oriented database) and the platform is synchronized

with it for the data management. Therefore, the view tier is the Web, the busi-

ness logic tier is made up of object defined by library entities, and finally, the

data/integration tier is achieved by the XML native database. The integrated

system is a collaborative multi-layered application and it handles the presenta-

tion logic by making use of two complementary Java enterprise technologies: a)

Facelets and b) Primefaces. The first one is a component-oriented technology for

Web templating; its benefits are represented by an efficient writing code and an

effective software reusing. The second one is a rich and friendly Ajax taglib that

allows the development of a flexible user interface (GUI).

i
i

i
i

i
i

i
i

Chapter 4

Case Studies

This chapter provides an insight into some issues concerning textual scholarship.

A range of effective and practical fieldworks guide the design and the methodolog-

ical work that has been explained in the previous chapters (see chapter 3) [214].

Consequently, as argued in other sections, the development of Textual Scholarship

Library (TSLib) offers a double approach based on bottom-up and top-down meth-

ods. Modeling scholar tools by means of these two converging directions allows

designers to generalize, extend and refactor the overall architecture as new require-

ments and common issues emerge. Additionally, when necessary, Agile methods

and Application Programming Interface (API) design track the way for arranging

new needs. The general architecture, introduced in chapter 3 which encompasses

content acquisition, text processing, and data exploitation, has been tested on a

number of case studies:

• Source acquisition and text encoding;

• Textual indexing;

• Text alignment;

• Variant reading annotations and multi-level analysis.

It is worth noting that text processing has been performed by integrating open

source tools such as Lucene, Tika, Tesseract, eXist-db in to the TSLib experiments

(some of them have been introduced in chapter 2). Well-known procedures and

measures like Euclidean cosine or algorithms such as the Needleman-Wunsch was

adopted throughout the case studies.

109

110 CHAPTER 4. CASE STUDIES

4.1 Source acquisition and text encoding

The fundamental objective for scholars who study textual materials with compu-

tational methods is to create digital representations of these resources in a formal

and suitable format (i.e. machine-readable and machine-actionable). The digi-

tal representation of documents offers the possibility to use computing in order

to manage and analyze textual data. For example, scholars can perform queries

against a corpus as well as extract statistical information from it. Thus, literary

computing applications start with the availability of (a) digital images of primary

sources, such as a collection of manuscript scans or (b) the electronic transcrip-

tions of original documents. Sources can also be 3D models of the object, a midi

or a wave digital document, a music sheet, etc.

With regard to the scope of this work, a few examples of such sources could be

• the image scan of a critical edition;

• the image of a manuscript of a modern author;

• the image scan of a manuscript or codex (Fig. 4.1);

• an unstructured (or bad formatted) electronic document (Fig. 4.2).

The sources, which the software deals with, are complex textual objects. Gen-

erally, these objects have non-Latin alphabet with a large amount of phenomena

to be annotated at different levels of analysis. Examples of this complexity are:

• multiple author’s interventions;

• state of the sources;

• glyphs, typesetting and graphics recognition;

• unusual document structure and layout analysis;

• handwritten character recognition;

• big data for meta-data extraction;

• non-optimal scans of document images.

From the above mentioned issues it derives that digital acquisition of the orig-

inal sources and effective encoding of digital texts are often the main issues to be

overcome in textual scholarship.

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 111

Figure 4.1: Example of a manuscript written in Greek language

112 CHAPTER 4. CASE STUDIES

Figure 4.2: Example of a word processing electronic file

4.1.1 Text acquisition

As explained in the previous chapters, the automatic reading of printed text can

be done by Optical Character Recognition (OCR), which converts digital images

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 113

in machine-readable text. On the contrary, the extraction of information can be

performed through document manipulation tools. These can be run from unstruc-

tured data in order to obtain well-formed and structured resources (see section

2.6).

Standard procedures, developed to perform OCR on general purpose collections

of books, yields poor outcomes for critical editions [236, 237, 238]. In fact, this

kind of resources contains critical aspects as polytonic Greek and multi-lingual

critical apparatuses.

Thus, specific OCR procedures need to be developed and then applied to the

scanned books. Thereafter, the corrected digital text must be remapped on the

original page images. OCR systems applied to printed editions that contains texts

in Greek, Latin or Arabic, require sophisticated algorithms and methodologies,

both in pre-processing and post-processing phases, such as the alignment of mul-

tiple OCR outputs for improving the accuracy [22, 239]. As discussed above, text

recognition and information extraction from critical editions is not a trivial op-

eration. Besides having glyphs with complex patterns (Fig. 4.3), page layout is

usually divided into several text flows with different graphical conventions (text,

apparatus, notes). Due to the large amount of computation on a lot of data, the

production and manipulation of resources, require high performance computing

environments and process parallelization on a grid of supercomputers [240].

Figure 4.3: Example of Greek glyphs - Courtesy of prof. Bruce Robertson

The challenge of the case study that has been introduced here consists in the

114 CHAPTER 4. CASE STUDIES

acquisition of printed critical editions in historical languages such as Greek and

Latin, but also Arabic. The OCR engines used during the textual scholarship

experiments were open source packages, namely Gamera, Tesseract and Ocropus.

As pointed out by [239, 238] during their experiments the recognition of a

page could require about two minutes of processing per CPU core. Hence, it is

natural to parallelize the process of digitization. Other experiments, moreover,

have shown it is possible to significantly improve the accuracy of the results by

applying alignment techniques on recognized texts [22]. In this framework, paral-

lelization has a double benefit. Indeed it allows to: (a) decrease the time required

for massive acquisition of texts (from the order of years to the order of months);

(b) implement strategies to increase the accuracy. In turn, this can be done by:

• choosing the optimal parameters for image enhancement in pre-processing,

• choosing different training-sets (classifiers) for OCR-engines in processing,

• aligning and correcting results in post-processing through linguistic tools

such as spell-checkers.

This case study has exploited the HLRS Environment (Fig. 4.4).

Figure 4.4: OCR experiments conducted on the HLRS Environment

Each page, assigned to a single core, requires on average 2minutes for optical

character recognition. Each page will be processed by three OCR engines with

different classifiers: Gamera, Tesseract and Ocropus (=15minutes). 10 additional

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 115

minutes for page preprocessing must be taken into account, in order to tune the im-

age parameters and select the best training sets. 5minutes for each post-processing

and text analysis require 5minutes for each page. Thus, 30 minutes per page are

required for the entire process. The historical corpus is constituted by 5000 books

counting 500 pages on average. The experiments have been performed on the Her-

mit installation based on CRAY XE6 technology consisting of 3552 nodes. Hermit

provides 1.045 Pflops as peak performance and has two sockets per node with 16

cores.

The processor in each node is a Dual Socket AMD Interlagos at 2.3Ghz. The

interconnection between the nodes is made by High Speed Network Cray Gemini

with HyperTransport HT3 and it can achieve a rate of 102.4 GB/s. The compute

nodes for running parallel jobs are only available through the Portable Batch Sys-

tem (PBS) and by means of the Application Level Placement Scheduler (ALPS).

The workspace file system has a capacity of 2.7 PB and a IO bandwidth of

150GB/s (Lustre parallel system). The operative system is the Cray Linux Envi-

ronment (CLE), which is based on SUSE Linux Enterprise Server (SLES). Finally,

Message Passing Interface (MPI) has been used for the parallelization. Cray Com-

piler has been used to make the binary files executable. Thanks to PBS and ALPS,

jobs are submitted to run on the grid.

Leptonica has been used in pre-processing, in order to perform orientation fix-

ing, line segmentation, content selection, resolution adjustment, dewarping and

despeckling. These operations improve the image readability for character recog-

nition. Whereas Tesseract has been used to perform OCR. Evaluation of the text

after OCR has been performed and the number of recognized words (scored high-

est), pseudo-words (i.e. well formed syllabic sequences), or sequences of random

symbols have been weighted following the formula 4.1.

Gscore =

totchar∑
j=1

kjncharj
totchar

(4.1)

The developed software module performs dispatching with a Master-Slave topol-

ogy of the super computer grid. The right hand part of Fig. 4.5 shows the time

implied to apply OCR on 511 different images with best parameters. The parallel

process involved 2 nodes (7073 sec) and 8 nodes (1005 sec). Time lapses have been

tested also with 32 (231 sec), 128 (61 sec), 256 (38 sec) and 512 (21 sec) nodes.

Since Slaves communicate only with the Master, the time required increases by

116 CHAPTER 4. CASE STUDIES

Figure 4.5: Parallel OCR experiments evaluation

an inverted-proportion law law related to the nodes used. Recognitions are avail-

able both in plain text and in HTML-based Markup for OCR (hOCR) formats.

The latter includes elements and properties about the word box coordinates of the

recognized words in HyperText Markup Language (HTML) tags.

Two experiments have been performed. The first experiment concerns param-

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 117

eters tuning upon the nodes of the grid. This has been done in order to identify

the best combination to improve the accuracy of the recognition. The second

experiment concerns the application of OCR with the best parameters on sam-

ple pages by a divide et impera strategy. In turn, the experiments concern two

tasks: (a) improvement of the OCR accuracy; (b) reduction of the time needed

to perform the recognition. As announced, the accuracy of OCR engines applied

to polytonic Greek can be improved in three phases: in pre-processing, by image

adjustment, during the recognition, by a suitable selection of training sets and in

post-processing, by the alignment of the output of different OCR engines. Finally,

parallelization can speed up all the aforementioned phases. Indeed, the paral-

lelization of the OCR processes on a grid of supercomputers reduces the time for

computation and promotes improvement of accuracy by pursuing multiple strate-

gies.

The work has the focus on improving accuracy by handling and manipulat-

ing two parameters on image binarization process. Two piped functions on a

selected page perform contrast normalization of the background and binarization

using Sauvola algorithms [241]. The corpus contains text both in Latin and

polytonic Greek character sets. Accordingly, the OCR experiment on the corpus

encompasses two different tasks, in order to measure the time saved thanks to the

parallelization: (a) the first task ran on a number of nodes less than the total

number of pages; (b) the second task ran on a number of nodes that corresponds

to the total number of pages.

Fig. 4.6 illustrates how the pre-processing of a page with different parameters

is reflected in the expected accuracy.

64 nodes in parallel perform OCR on the same selected page, in order to tune

parameters, according to the following rules:

IDnorm =
ranki

8
(4.2)

IDbin = ranki mod 8 (4.3)

In this way, a vector of different parameters has been created and each node,

based on its process identification ranki, determines a combination of parameters:

< IDnorm, IDbin > (4.4)

118 CHAPTER 4. CASE STUDIES

Figure 4.6: Image processing parameters - Courtesy of F. Boschetti

Fig. 4.7 illustrates how to assess the accuracy of large-scale OCR applied to

Ancient Greek texts by estimating whether the Greek words are correctly recog-

nized.

The diagram shows a weighted way to evaluate the Greek text recognition.

The score is important to compare different OCR outputs obtained with different

approaches on the same page images. In the current work, the score is relevant

only to order the OCR performances; its absolute value is largely underestimated,

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 119

Figure 4.7: Greekness score evaluation

due to the presence of Latin words, which are wrongly considered as errors.

4.1.2 Character and text encoding

Designing applications for literary computing and writing software to process his-

torical text pose challenges on the point of view of character and text encodings

[242]. As introduced in section 2.4.1 this encompasses at least two types of prob-

lems:

• Character encoding;

• Document encoding.

This section presents a case study within a PRIN project, in which specific

principles have been applied in order to handle both legacy and Text Encoding

Initiative (TEI)-The eXtensible Markup Language (XML) documents (Fig. 4.8),

as described in chapter 3.

The TSLib component for content management aims to make the documents to

be processed within a collaborative environment. This component is in charge of

analyzing texts represented by formal schemes, through shared and standardized

markup languages (see chapter 2).

120 CHAPTER 4. CASE STUDIES

Figure 4.8: Data Model versus External Data Format

Fig. 4.2 shows a page from one of the electronic documents processed by the

library, in particular, page 29 of the Theorie de Sonante book edited by Marchese.

From the picture that reports f. 40r of the manuscript BGE Ms. fr. 3955/1 it is

possible to note the transcription work done by this scholar. The data recovery

component must handle the following aspects: a) erroneous interpretation of cer-

tain text characters; b) the publisher’s notes in the text; c) use of titles to indicate

the number and the beginning of the folio; d) use of stylistic conventions such as

italic, bold, underline, type of font, etc.; e) footnotes with publisher contributions

for the reconstruction of the history of the manuscript;

The component in Fig. 4.8 is functional in order to process the resource and

extract the information contained in the document.

The latter needs be processed through the assignment of the binary code as

indicated by the Unicode standard coding system.

Problems occur when non-standardized systems are used with an aim to simu-

late graphically these symbols. In these cases, a systematic correction is necessary

in order to retrieve the original intention of the editor (Marchese) and, conse-

quently, of the author (Saussure). In general, all the characters that do not have

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 121

any correspondence in this coding table display problems.

The data acquisition module recognizes such problems and uses techniques

that base their procedures on regular expressions, on statistical functions and on

heuristic processes.

In the pre-processing phase the transcode operation is performed and the docu-

ment is encoded in a well-formed manner. The reading of the text is done initially

character by character; this procedure tries to figure out if the associated binary

code is valid or if it needs to be verified. At the moment this operation follows

rule-based procedures. Nevertheless, the component can be extended by means

of statistical mechanisms (see chapter 2). The transcoding module of the Library

enlists all the codepoints considered invalid and associates a correct substitute

codepoint thanks to heuristics and semi-automatic procedures. The characters

associated to an invalid coding are compared to appropriate conversion tables in

order to produce the correct substitutions [243]. The character substitution mod-

ule can be extended through more complex systems based on spellcheckers or on

statistics of n-grams co-occurrences. Subsequently, the original file in legacy format

triggers a second software component that aims to isolate stylistic and structural

information. As an example, in Fig. 4.2, it is possible to identify: (1) the number

of the folio (f. 40r); (2) the content of the sheet (all the text extracted between

two successive sheets); (3) the footnotes (the text of the footnote and the position

of the relative associated word); (4) all the document styles. Two software libraries

have been employed in the development of the above described component, the

first one is able to facilitate the access and the reading of a document (TIKA,

see section 2.5.1) and the other is adequate methods for the software programmer

APIs to generate and manipulate data in XML (jDOM).

At the end of this process each textual entity of the collection (Source Class

see chapter 3) is mapped in the library data model (see section 3.4). The library

provides a series of methods in order to serialize the digital representation of texts

documents in a file which is XML TEI compliant [194] (Fig. 4.8).

Objects that represent the whole document or interrelated documents are ini-

tialized through the parsing of the original document and the creation of a new data

structure. The latter decouples the orthogonal information conveyed by the XML

elements: a) textual structure, b) semantics, c) style, and d) behavior. Notice-

ably the new data structure can result from the transformations (by eXtensible

Stylesheet Language Transformations (XSLT) Document Object Model (DOM)

122 CHAPTER 4. CASE STUDIES

transformations or Simple API for XML (SAX) event driven transformations)

managed during the parsing process. In turn, as explained in chapter 3, each tex-

tual entity is composed of a version, a granularity, an interpretation and a

position in the document. Therefore, the parsing process concerns the following

aspects:

1. Textual structure. A document originally structured paragraph by para-

graph for literary analysis can easily be restructured page by page to pass

through layout analysis or to be compared with the original page image.

2. Semantics. At semantic level, both attributes (such as @type) and tag

names (such as <p/>) are processed in the same way and linked to the

related DOM node.

3. Style. The style is managed by separated components, which point at tex-

tual positions affected by stylistic features. For instance, the information

extracted from the @style attribute is used to instantiate the Java objects

devoted to manage the rendering information.

4. Behavior. Behaviors are handled by object that process textual resources

according to the current state of the data structure and the rules to manage

such a state. For example a hyphenator performs its tasks according to

the language of the textual data (e.g. the hyphenation rules for the Italian

language).

The textual scholarship library, unlike most of current initiatives which focus

on the transformation from an XML document structure into another by XSLT,

instances a collection of objects which map the representation of the supplied doc-

uments (see chapter 3). The aforementioned case study considers only a small

subset of TEI elements as basic taglib (see section 4.4). Fig. 4.9 illustrates the

composite of widgets rendered on the client through rich standard web technolo-

gies (HTML5, CSS3, JQuery, D3.js). The Graphical User Interface (GUI) allows

scholars to browse both texts and images. The links in Fig. 4.9 are referred to

annotations taken by the author of the manuscripts and to which the editor refers

in the critical apparatus.

The acquisition component reads the input document and dynamically gener-

ates the XML schema (see section 3.5.2). Factories (see section 3.5.2) instantiate

the actual object implementing or extending the interfaces (or abstract classes)

i
i

i
i

i
i

i
i

4.1. SOURCE ACQUISITION AND TEXT ENCODING 123

Figure 4.9: The GUI the text-image framework

that handle the correct textual-phenomena. For instance, the application client

that uses the library invokes the building method of a builder class. The resulting

document object is a concretization of an abstract class representing the current

structure of the input resource, as illustrated in the Java statement:

124 CHAPTER 4. CASE STUDIES

Source teiDocument = BuilderFactory.buildDocument(

new File(‘‘features.properties’’),

new File(prop.get(‘‘sourceDocument’’));

The builder object needs two input files: a) a property file containing the suit-

able configuration for the instantiations of the concrete objects; b) the XML-TEI

file to parse. The state of the internal representation of the document is composite-

component based and complies with the data model introduced in chapter 3, sec-

tion 3.4. This way, each single element is handled by the Source Class, which is

the component entity of the pattern. It represents each node of the hierarchical

structure. Moreover, the information conveyed from the TEI file is distributed

among the appropriate Java objects that handle the four levels described above.

The leaves of the hierarchical structure are instances of the Text class. The meth-

ods in such a structure offer the possibility to manipulate the content and the

structure of the resources. As a result, the actual implementation of the of the

library content exposes methods that parse the XML file and creates Java objects.

The resources are stored and maintained in a native XML database management

system (i.e. eXist-db). The APIs and services provided by Lucene have been used

for indexing the textual data.

As mentioned in chapter 3, different collections of texts can provide or ignore

some extratextual information (such as line or page number), or they can dispose

texts in different ways (e.g. lines can be grouped or not inside <lg>...</lg>

elements of the schema, etc.). For this reason, the XSD schema is generated a

posteriori from the actual representation of texts. Studying the schemes, XSLT

transformations are created, in order to deal only with relevant information and

canonical formats processed by the suitable Components.

Finally, in spite of the data structure being an object-oriented representation

of the entities in the real domain of the digital document, the storage paradigm

is customizable through the adoption of integration mechanisms and data access

solutions [200].

This case study shows that standard file formats to encode and exchange tex-

tual data have to be handled and abstracted by Application Programming Inter-

faces. In this way TSLib components allow scholars to read, write, and transform

file formats. In addition, API makes it possible to change the format of a file

safely.

i
i

i
i

i
i

i
i

4.2. INDEXING 125

4.2 Indexing

Once acquired, the correctly codified and stored textual resources are available for

further analysis and processing.

The library for textual scholarship deals with several important matters (see

chapter 3 section 3.2). Among them, indexing is one of the fundamental function-

ality for literary computing needs [244]. Textual scholarship applications require

indexing features for different kinds of textual phenomena such as domain termi-

nology or lemmatization. It derives that the search component of the library must

handle indexes (and concordances) for each of the information that scholars deem

significant to study. To this purpose, for instance, multi-languages component

indexes have been developed [243].

Index is generally an auxiliary structure able to ensure efficient access to infor-

mation, following to an external request [245]. Therefore, the philological library

must handle automatic and dynamic indexing of the textual data. In order to

do so,, the library includes a component that deals with organizing and retriev-

ing relevant textual-phenomena from document collections. At the same time,

textual scholar applications must provide accurate results in a short time, as pur-

sued by information retrieval specialists through the study of new methods and

techniques. In order to achieve that, literary computing needs software modules

able to create indexes for storing and manipulating data, in order to effectively

support scholar activities [246]. Through this process indexes allow scholars to

identify and retrieve textual context containing the terms they are searching for.

Moreover, index components allow to group the content of a text in lists which

are usually ordered alphabetically by word-forms, word-lemmas, word-frequencies,

and so on. This method is one of the cornerstone tools in the textual inquiries and

it is known as “index and concordances” [246]. Noticeably, the textual scholarship

library has two distinct entities for indexing as the following list points out:

• back-end index: it represents the internal “data structure” of the stored

information (it means how raw data are organized inside the computer per-

sistence unit);

• front-end index: it indicates a uniform and ordered list of key-terms (which

may be the chapter headings, paragraphs, word-forms of text or the lemmas,

extracted through text processing or linguistic analysis, etc).

126 CHAPTER 4. CASE STUDIES

Currently, the component adapts the Lucene library (see chapter 2 section 2.5)

thanks to specific Adapter classes (see chapter 3 section 3.5.2). The indexing com-

ponent, developed in the context of the aforementioned case study, allows scholars

to identify and locate relevant parallel contexts having custom granularity and

inter-linking features (see chapter 3 section 3.4). This means that the data model

manages different objects at different levels of granularity which, often resulting

in overlapping structures (see chapter 2 section 2.6.1). In general, the component

deals with four kinds of typed-sources (see chapter 3 section 3.4: token, lines,

sentence, and textual fragment. Fig. 4.10 shows the XML schema implemented

for marshalling process. The latter follows the TSLib data model according to the

composite pattern introduced in the chapter 3 section 3.4 and 3.5.2. The model

allows data to be both represented at different levels of granularity and also, to be

linked together.

The indexing process developed within the case study aims at building a sys-

tematic index which allows to perform search operations. Currently, the process

implements several piped activities: 1. tokenization, 2. filtering/normalization,

and 3. segmentation. It is possible to see these tasks as a workflow where data

input derives from the previous job and data output is formatted and structured

so that it can be used by further processes [247].

Tokenization A token is a sequence of alphanumeric codes detected from the

electronic text. It is an independent and uniform elaboration unit. Tokenization,

therefore, is an activity devoted to the identification of tokens from a text stream.

In most Western languages a token corresponds to a graphic form preceded and

followed by a blank space or a punctuation character. Tokenization is a source

of problems for many textual scholarship phenomena such as the correct handling

of punctuation (e.g. in presence of abbreviations and acronyms), as well as when

multi-words need to be taken into account. In languages such as Suhaili or Ger-

man and Arabic, which present agglutinating features, a whole sentence can be

expressed by a single sequence of characters. In these cases a tokenization algo-

rithm has to include a segmentation phase in order to recognize the basic units.

Filtering/normalization Information is cleaned up and enhanced through the

filtering/normalization phase: each token is analyzed and submitted for further

processing. The actions usually performed to accomplish this task are (i) man-

agement of stop words, (ii) identification of stem, (iii) use of thesauri and spell-

i
i

i
i

i
i

i
i

4.2. INDEXING 127

Figure 4.10: XML schema implementing the TSLib data model

checking, and (iv) association of a score to the words (weighting). Scholars often

know what to look for, but they ignore how to describe it formally [236]. Hence,

index components provide several techniques as stemming and thesauri in order

to face the aforementioned issue. Both the stemming techniques, which reduce

textual units to common sequences of characters and the use of thesauri, which

allow search engines to replace similar terms with canonical ones [248], tend to

increase, the amount of the information conveyed by the original token. Doing so,

textual resources grow in relevance and can also be retrieved by queries containing

similar key-words. In addition, a token derived from a word spelled incorrectly

may undergo correction before being stored in the index (under certain conditions

128 CHAPTER 4. CASE STUDIES

as in the case of errors, they are also significant information for the philologists).

However, the last action is justified by the user’s unawareness of a possible ortho-

graphic mistake inside the text (errors from the original text or errors resulting

from digital acquisition).

All that considered, it may be necessary to assign a score to evaluate the rele-

vance of textual resources. The textual scholarship library, as introduced in chap-

ter 2 section 2.6 provides a ”weight/score” words assignment for partial matching

functionalities as well as boolean retrieval features. Partial matching functional-

ity concerns methodologies based on statistical and similarity operations, while

boolean functionality refers to exact matching algorithms and it deals with tech-

niques and methodologies where a search result is expressed by boolean operations

(i.e. OR, AND, NOT).

The words in a text have different importance and the library component for

indexing identifies the differences among words. That means that the term fre-

quency inside a document or within an entire collection can be evaluated and

attained as a first weight criteria. Along with full text indexing, the library has

developed functionality in order to upgrade raw textual data with extra informa-

tion (see section 4.4). Typical evaluation parameters used for indexing are search

speed, exhaustiveness, specificity, precision and recall. For further details about

these topics, please refer to the wide literature (e.g. [146, 249]).

Segmentation Text resources have been segmented into uniform fragments in

order to create parallel textual units ruled by consistency [44]. In particular,

segmentation and successive connection among parallel textual segments are based

on multiple aspects, such as semantic or/and linguistic observations, on which

scholars operate thanks to the annotations recorded in the system (see section

4.4). The granularity of the division is such to obtain benefits for the automatic

analysis of resources as well as for individual scholarly analysis. Each chunk has

a universal identification number, furthermore, related textual chunks also have a

universal identifier as the formula 4.5 shows and as illustrated in chapter 3 section

3.4The latter identifier determines the relation between textual chunks.

Idpairn = f(< idchunki, idchunkj >) (4.5)

Unique identifiers assigned to each textual entity along with the division of a

text into homogeneous segments facilitates indexing process. This because textual

i
i

i
i

i
i

i
i

4.2. INDEXING 129

elements have a well-defined indexing unit and significant contexts are available

in the retrieved result sets.

The list below shows the definition of the back-end index attributes, which

are populated by the index component of the designed library component. The

ConLL1 data format, which is a common representation of data largely adopted

in the natural language processing field, has inspired the schema of the afore-

mentioned index. The index has a number of attributes that reflect the following

points:

• the Token field represents the processing unit extracted from the text, where

all the subsequent steps of the analysis are grounded;

• the Fragment field consists of the identification number (ID) of the fragment

whose the token belongs to;

• the Offset field expresses the position of the token within the fragment.

Thanks to this data it is possible to take into account the proximity relations;

• the Lang field refers to the language or alphabet of the token;

• the Status field defines additional information: for example, the token could

be part of a polyrematic term or express agglutinative phenomena. Terms

with graphic variants or tokens belonging to a hyphenation term can be

managed through the status field;

• the Normalization field provides the possibility of transforming and/or

harmonizing the tokens, e.g., yielding the word in uppercase form (as in

Greek) or eliminating the sign

• The Extension field is left free for any future customization, such as the

management of the variant readings;

• The fields POS, Lemma, and Root specify the morpho-syntactic informa-

tion derived from of linguistic analysis.

A rich index makes it possible to carry out techniques for better document

retrieval as an accurate result of the query. Consequently, the index process in-

stances data structures as inverted index [249], this consists of a set of records

1for further detail please visit http://ilk.uvt.nl/conll/

130 CHAPTER 4. CASE STUDIES

containing the word wanted and a sequence of pointers directed towards infor-

mation related to it, for each significant phenomenon. These kinds of structures

are constituted by a list of two-dimensional vectors <k,d> where k stands for the

key-term and d stands for a list of references to the text. The index can store

statistical parameters, such as the term frequency of a single document or of the

whole collection/corpus. One of the relevant outcomes of this case study is the

possibility of performing combined advanced searches, i.e. to find text contexts

within the scope of a language while applying restrictions on the parallel one. This

special approach provides a method for studying complementarity or links among

the texts.

In conclusion, scholars are able to perform queries based on a rich index which

includes several data such as: a) linguistic difference between a term and another;

b) the position in which textual chunks appear; c) the frequency with which a

term appears in the document; d) the status of the search term.

4.3 Alignment

As mentioned in chapter 2, Computational philology requires procedures able to

align different kind of textual entities at different levels of granularity. For instance,

comparing the witnesses of a text for discovering their differences and supporting

the editing of a critical apparatus [6, 35, 250]. Moreover, this kind of entities can

differ both for their digital structure and for their inherent nature. For example,

as explained in [239], scholars often need to align texts at character granularity in

order to evaluate the accuracy of the OCR tools (i.e. the alignment of automatic

outcomes with the ground-truth), furthermore, applications like CollateX [80] (see

section 2.3.4) need to align different texts at word granularity in order to compare

variant readings (Fig. 4.11), as well as cross-lingual studies align texts in different

languages in order to investigate different aspects of a literary tradition (Fig. 4.12).

From a computer science point of view, the alignment process uses data struc-

tures as n-grams, tries, and suffix trees to speed-up the computation and to reduce

space usage (see chapter 3). In addition, fuzzy matching techniques, as well as

machine translation methods have common tools adopted in textual alignment

applications [45, 251].

The present case study aims at aligning different documents in different lan-

guages. The module attempts to segment related texts by means of textual pro-

i
i

i
i

i
i

i
i

4.3. ALIGNMENT 131

Figure 4.11: Output of the aligner on Odyssey French translations

Figure 4.12: Greek against Arabic alignment with transpositions

cessing, such as pattern-matching by regular expressions and Natural Language

Processing methods such as information extraction like proper names recogni-

tion. The process tries to discover hapax words or terms with a low-frequency

in order to use them as inter-textual anchors for parallelization purposes. There-

after, aligned textual chunks can be linked and manually reviewed. Furthermore,

fine-grain comparisons can be performed by global alignment algorithms. Indeed,

the aligner module implements the Needleman-Wunsch algorithm [81]. This is a

dynamic programming solution which aligns every character in the compared se-

quences. In other words, the algorithm is a dynamic programming process which

uses two 2-d matrix. One matrix to perform the alignment and the other for

similarity evaluation.

132 CHAPTER 4. CASE STUDIES

Due to its wide applicability, the design of a software component dealing with

the process of alignment emphasizes the general principles underpinning the devel-

opment of a general library of components, for the textual scholarship. Two aspects

characterize the process of such a design: 1) considering and putting into effect

general and proven solutions to recurring design problems in a specific application

context [212, 206], and 2) taking into account Application Programming Interfaces

as the mean to separate services from the implementation details. In this way the

aligner component, firstly developed as a specific module forOCR alignment and

further generalized [252], strives to be flexible and reusable and fosters its inter-

nal structures to be as loosely coupled as possible. Consequently, the design of

the aligner component exploits not only basic object-oriented mechanisms as ab-

straction or polymorphism, but also advanced principles and techniques as object

cooperation, interface programming, separation of responsibilities and resilience

to changes.

Fig. 4.13 shows the Unified Modeling Language (UML) class diagram of the

aligner component.

Figure 4.13: The alignment component. UML class diagram

The component design attempts to achieve a high degree of extendibility with a

low degree of modification (Open-Close principle [208]). In particular, the aligner

adopts two kind of design patterns: a) the Factory pattern and b) the Strat-

egy pattern. The Factory pattern is implemented by the AlignerFacory class and

by the SimEvaluatorFacory class, provides components to separate behavior from

concrete implementations. Indeed, clients of the library have to work only with the

i
i

i
i

i
i

i
i

4.4. VARIANT READING AND MULTI-LEVEL ANALYSIS 133

Abstract Data Types which fall outside the implementation mechanisms. There-

fore, clients rely only on well-defined API which are provided and exported by the

component services. In this circumstances the user of the aligner only knows the

interfaces of the three external classes, namely the Aligner, the input data type,

and the output data type (ObjectList and Alignment class, respectively). The

second design pattern adopted for designing the aligner is the Strategy pattern.

It allows to define a family of algorithms free to vary according to customizable

policies. Actually, the alignment process (ObjectListAligner) can use a number

of algorithms beyond the Needleman-Wunsh and a number of mechanisms to eval-

uate the similarity between the sequences of general entities (TreeSimEvaluator

or UpperCaseSimEvaluator). For this reason, the Strategy pattern represents

an important aspect in the design of the aligner APIs.

4.4 Variant reading and multi-level analysis

Once data have been coded, proofread and indexed, content enrichment is a further

task. As mentioned in chapter 3 TSLib, data model handles content enrichment of

the textual phenomena by annotations. This technique separates structure of the

text from its content and analyses, based on a document layered view (philological,

linguistic, metric, stylistic, etc). The Stand-off markup approach and Canonical

Text Services (CTS) notation have been used to manage the data yielded from the

document analysis (see chapter 2 section 2.4.2).

The annotation component is useful to perform collaborative annotations and

arrange canonical linkage among selected text, such as named entity and author-

itative resources on the web infrastructure. Annotations can be associated with

chunks of text (e.g. a sentence and its translation, Fig. 3.12 in chapter 3) or with

single, independent chunks of text (e.g. a single word of the original text). The

Annotation framework has also been adapted and extended for specific scientific

purposes [44] as illustrated in the section 4.4.1.

Finally, GUIs, Infographics concepts, and Multi-dimensional scaling techniques

allow scholars to compare, to understand and to choose different variant read-

ings (source versions) of a text through of computational methods [253, 254].

The multi-level annotation component has been developed within different re-

search projects hosted at Institute for Computational Linguistics (ILC)-Consiglio

Nazionale delle Ricerche (CNR).

134 CHAPTER 4. CASE STUDIES

4.4.1 Variant reading annotations

Chapter 3 section 3.4 highlights the core entities of the library. In particular, the

object model takes into account the collection of the manuscripts (witnesses / tra-

dition) in order to reconstruct the text (critical edition). However, the present case

study, dealing with variant readings annotations, does not solely imply the use of

some kind of diff-like algorithms across the source transcriptions [87]. On the con-

trary, the module designed is an interactive, computer-assisted system developed

in order to address scholars’ needs within the editorial activity. This means that

scholars have to study every word, one by one, and they have mechanisms to an-

notate the differences found. Fig. 4.14 shows the variant readings annotation GUI

dealing with a) gathering images of each page b) transcribing the best acknowl-

edged manuscript, c) comparing all the different versions word-by-word, to create

a complete and accurate record of the differences among the versions. The anno-

tated variant readings can be consumed by processing systems for further analysis.

The computational tool can significantly facilitate the management, usability, pro-

duction, and research within textual scholarship. Indeed, the method described in

this work stems from a work carried out by the philological workstation project

placed at ILC [35].

The user-scenario requires that scholars select what they consider to be the

best witness. Afterwards, the library handles links between each word of the image

and the related transcription word. These connections provide great benefit for

checking the correct transcription of words which are difficult to read [25].

This approach supports scholars in recording textual-phenomena in order to

compare the text conveyed by the different witnesses of the tradition. Therefore,

the component can implement any algorithms (see chapter 2 section 2.3.4) to

formulate outcomes according to the types established by the scholars.

The context introduced above prefers machine versus scholar interaction to

artificial textual processing. On their part, the target community believes that

only scholars are familiar with manuscripts and therefore that they are the sole

to be entitled to identify features of different readings on the basis of which it is

possible to classify variants. Later on, the variant reading module of the library

leverages the features that scholars have recorded to compute similarity indexing

among all the variant readings (see chapter 2 for similarity measures). As con-

sequences, classes of variants, describing the textual tradition, provide relations

of similarity weights among documents by processing the annotated text frag-

i
i

i
i

i
i

i
i

4.4. VARIANT READING AND MULTI-LEVEL ANALYSIS 135

Figure 4.14: The variant readings annotation example

ments [255]. Moreover, the supplied data to the system can be processed and

represented in some graphical form [125, 254]. For instance, this case study has

investigated multi-dimensional scaling techniques for performing data processing

as regards graphical visualization. This method allows text reconstruction of each

manuscript, based on the recorded variant readings. In addition, all other sources

in the sources collection can be automatically and dynamically obtained thanks

to the apparatus (positive) which store all possible text variation.

The aforementioned process can also be used in the case of a unique document

as shown in Fig. 4.9. Textual variation concerns the changes that the author of

the handwritten made. For this reason both the software component and scholars

need to consider these changes as variant readings [256]. This means that the

changes can be managed as readings referred by different sources (see chapter 3,

in particular section 3.2).

Thanks to the facsimile, it is sufficient to perform basic image processing,

like zooming, to obtain high quality readings. Furthermore, adding functionality

136 CHAPTER 4. CASE STUDIES

for optical filters sensitive to infrared and ultraviolet bands makes it possible to

achieve better results [151, 147, 152].

4.4.2 Multi-level analysis

Digital textual scholarship starts by processing machine-actionable raw text or

image of primary sources. The annotation phase, then, can begin in order to

structure the logical blocks of the document as chapters, paragraphs and so on.

Another important tool useful to scholars’ needs is linguistic processing [257].

Computational fields like Natural Language Processing (NLP) are the best means

to perform recognition, extraction and formal annotations of these kinds of infor-

mation [258]. Accordingly texts have distinct levels of analysis at different units

of granularity.

For instance, documents involve orthographic level (e.g. character encodings,

tokenization, sentence detection), a phonological level such as sound and met-

rics, morphology level (word inflection and Part of Speech (POS) tagging); the

words ordering encompasses syntactical levels (parsers), whereas the meaning of

individual words includes the semantic level (Named Entity Recognition (NER),

word meaning disambiguation). Finally, the use of words in a particular context

involves the pragmatic level, while dialogues among people refer to the discourse

level (co-reference resolution).

Against this background, as illustrated in the earlier chapters, the different

levels of analysis can be seen as distinct layers [259, 204], ranging from orthography

- taking into account the smallest units - to pragmatic and discourse, on the highest

layer. It derives that linguistic information added to the content of a document

simplifies its understanding and, consequently, gives the possibility for a better

text reading.

In addition, document analysis allows, not only a human-agent, but also ma-

chines to be capable of processing textual content on different informative levels

and at various granularity in order to manage the knowledge contained in doc-

uments. Common document analyses involve automatic linguistic metadata la-

beling, for instance, enriching transcriptions with part of speech or morphological

information. NLP technologies include parsers and annotated corpora, automatic

term extraction, information retrieval tools, and methods for automatically gen-

erating relationships to related entities (Linked Open Data (LOD)).

For example, a lemmatized and morphologically annotated document points

i
i

i
i

i
i

i
i

4.4. VARIANT READING AND MULTI-LEVEL ANALYSIS 137

out the lemma and the morphological features of all its words; this allows scholars

to search not only the single forms in the text, but also all occurrences of a given

lemma.

The analysis process has two main objectives aiming to increase the digital

significance of the sources in order to: (1) build a systematic index enabling to

quickly perform search operations (see section 4.2); (2) associate to each linguistic

unit a morpho-syntactic and semantic information and other remarks. We can

send specific requests to the system (query) by improving the information related

to the text, and get the relevant results in a reasonable time. Below an example

of advanced query that users might submit:

term Aj NEAR 3 lem Ak AND term Bj NEAR 1 verb Bk

This procedure means that users can search for all pairs of inter-textual excerpt

containing a given term attested in a text A, next to a given lemma distant three

words (NEAR 3) from the first term (the textual chunks which scholars are looking

for), a precise term in text B (term Bj) followed by a specific verb (verb Bk).

This case study requires the definition of a workflow which includes two pre-

liminary steps: transcribing the documents written in historical languages and

translating them into Italian and English. Transcriptions and translations are en-

coded by using consistent markup TEI-XML. Hence, as Fig. 4.15 illustrates the

Multi-level analysis process, encompasses several phases: 1) sentence detection 2)

tokenization 3) linguistic annotation, i.e. morphological analysis as well lemmati-

zation 4) lexical annotation 5) semantic annotation. Starting from the assumption

that a text has to be linguistically enriched, the TSLib module starts by dividing it

into sentences. The point where the sentence starts and where it ends can be pre-

viously marked-up in the structured document or can be automatically detected

by means of suitable automatic techniques such as Machine Learning or regular

pattern recognition. After that, each sentence is divided into words (tokens). The

task of identifying the tokens is called “tokenization”. Sentences and tokens are

the input units for further analysis, like part-of-speech tagging.

Sentence detection, tokenization, linguistic annotation and named entity recog-

nition are all well-known NLP tasks. The lexical and semantic annotation ex-

ploit ontology schemes inspired by already existing ontologies or conceptualization

schemes as explained in chapter 2. It ensues that such tools need to support both

document markup and information extraction.

The textual scholarship library attempts to meet the aforementioned require-

138 CHAPTER 4. CASE STUDIES

Figure 4.15: TSLib module for text analysis and segmentation

ments. Indeed, the library encompasses a sentence splitter and a tokenizer both

assigning an identifier to each source element (see chapter 3, specifically section

3.4) in the digitized texts. In particular CTS compliant structure (see chapter 2)

guarantees a global protocol and a citational schema by adopting unique Uniform

Resource Name (URN) identifiers. It is worth noting that CTS specifies a protocol

for citation purposes, consequently the policies for data persistence are decoupled

from the serialization schema adopted. This allows the module to build unique

identifiers for each word in the documents, together with the citation scheme. Fig.

4.16 shows the multi-layer annotation component with CTS-URN notation. The

TEI-XML encoded texts are broken into structural sections with divisions into

blocks, paragraphs, sentences, lines in order to construct the levels of the URN.

The module implements the canonical citation scheme by using the hierarchical

structure of the document. Indeed, the structure of the digital sources exploits the

TEI XML basic elements to provide CTS compliant notation (see chapter 2). This

means that the markup encodes chapters, sections, sentences and abbreviations in

well-defined elements in order to construct the URN identifier. Two well-known

tools for producing a lemmatization and morphological analysis of ancient texts

i
i

i
i

i
i

i
i

4.4. VARIANT READING AND MULTI-LEVEL ANALYSIS 139

Figure 4.16: The multi-layer annotation component

are: Morpheus [260] and CHLT-LEMLAT [158] software systems.

On the one hand, the Morpheus analyzer has been implemented within the

Perseus project and it supports Greek and Latin. On the other hand, CHLT-

LEMLAT has been developed at the ILC-CNR and it supports Latin texts. The

140 CHAPTER 4. CASE STUDIES

ongoing multi-level analysis component applies machine learning to estimate the

correct morphological analyses for a given word in a given sentence. In case schol-

ars disagree with the machine outcomes, they can review the analysis for proof-

reading. This software provides both the most probable (following the three-gram

Hidden Markov Model (HMM) implemented in the HUNPOS tool) and all the pos-

sible morphological analyses of an input word. The main advantage of automatic

annotation is its time-saving feature and scalability. Indeed, automatic methods

produce systematic annotations on a statistical bases, which are, moreover, easier

to detect and correct than manual mistakes.

The multi-level analysis case study aims at developing a component for the

TSLib, according to the data model illustrated in chapter 3. It deals with in-

formation extraction and textual data organization, which is implicitly present

in the text. In particular, the component allows both scholars and machines to

process the content of primary sources thoroughly, in order to better understand

their textual data. This means that the component is able to systematically man-

age textual entities and to establish relationships among them. In addition, the

component exposes textual concepts by consulting domain ontologies and semanti-

cally structured lexicons. Finally significant entities are linked to a Named Entity

Repository and exported to the cloud following the LOD principles [164].

As Fig. 4.17 shows, the components of the linguistic module provide function-

ality to automatically divide the content of the document in sentences and tokens,

both of which have their own CTS unique identifier. Especially, The TSLib lemma-

tization module involves several components: the source parser of electronic texts

adapting Tika API; the sentence splitter through the XML processing and CTS

notation; the word tokenization by means of rule-based process with CTS Uniform

Resource Identifier (URI); the HMM POS tagger by exploiting HunPos tool; the

Lemmatizer by accessing large lexicons of word forms; the TreeBanks handler to

learn the statistical classifiers; and the Proofreader component allowing scholars

to correct the erroneous outcomes.

The tokenization process and its outcomes follow the same rules introduced

in the indexing section (see section 4.2). Thereafter, the actual component in

TSLib for linguistic analysis includes an HMM POS tagging and a look-up pro-

cess for lemmatization. This means that TSLib is able to process content and

annotate each token based on the abstract data model illustrated in chapter 3. It

derives that the document includes: a) CTS URN (version), b) token detection

i
i

i
i

i
i

i
i

4.4. VARIANT READING AND MULTI-LEVEL ANALYSIS 141

Figure 4.17: The TSLIB lemmatization module

(granularity) c) character sequence start and end (position), d) Grammatical Cat-

egory (morphological layer), e) morphological features (morpho-syntactic layer),

d) lemma (lemmatization layer).

The lemmatization component of the TSLib has been implemented as a super-

vised statistical classification problem with a lexicon for monitoring the word-form

and the annotated lemma. For this reason, the training set adopted is a human

annotation resource. Indeed, the basic idea behind automatic classification is that

it can produce annotations similar to human annotators if the text to be annotated

is sufficiently similar to the texts used for training the component (see chapter 2).

The nature of the language is ambiguous, therefore a token which is processed

without contextual information has different possible interpretations. Thus, Ma-

chine Learning techniques for NLP always provide contextual information, in the

case of the prototype here exposed, the HMM came with n-grams of context to

better tune the probability of the tag sequence related to the supplied tokenized-

sentence.

arg max
t1tT

P (tT+1|tT)

T∏
i

P (ti|ti−1, ti−2)P (wi|ti−1, ti)

Hence, the morphological step aims at tagging the part-of-speech for each to-

ken through a statistical algorithm using HMM Machine Learning technique. At

142 CHAPTER 4. CASE STUDIES

the end of this phase, each token has a morphological label which determines its

most likely morphological interpretation. Fig. 4.18 shows the format of the mor-

phological code. It is derived from the morphological label used in the TreeBank

of the Perseus project.

Figure 4.18: Example of linguistic annotation to a sentence

Additional elements of linguistic nature are combined to each processing unit

(token) and made available for scholars to use this new information. The data

enrichment process produces a structured information stored in a look-up table

where each token has a list of associated values. The system also manages the links

to the document in the collection. This linguistic annotation module exploits the

HunPos tool. It is one of the most efficient and used POS tagger for language with

complex morphology [165, 261].

The training set of TSLib for this case study uses the Latin TreeBank, which

has been manually annotated from the Perseus Project [262, 166]. The Treebank,

which is a collection of sentences with morphological and syntactic level annota-

tion, consists of 53.143 tokens and represents the syntactic trees of the sentences

therein. Moreover, The training phase involves 3.474 sentences and 438 different

tags. Consequently, Treebanks are worthy resources adopted by computational

tasks as a basis for developing automatic methods for annotations.

Thereafter, lemmatization can benefit from POS tagging. In fact, the gram-

matical category of speech, featuring nouns, verbs or adjectives, is used to disam-

biguate the annotation.

Token streams do not always have a single correct analysis, but different labels

can be possible. Indeed, the system allows scholars to provide feedback on tagged

i
i

i
i

i
i

i
i

4.4. VARIANT READING AND MULTI-LEVEL ANALYSIS 143

and lemmatized words. For example, scholars or students can annotate whether a

grammatical category in a selected context is correct, whether a token is a correct

word with the correct lemma and with the right features label; whether a certain

lemma is a lexical definition in the domain ontology, rather than a false positive.

Figure 4.19: The TSLib Human correction module

Fig. 4.19 shows the GUI for the review process. TSLib performs statistical

annotation. Consequently, mistakes can occur and they have to be corrected

by hand (using a suitable proofreading GUI). The combination of high-speed

automatic annotation and high-quality human corrections is the current solution

for textual scholarship multi-layer annotations.

The process is divided in four steps. 1) The module detects the sentence from

the object representation of the document which is the context for the HMM

morphological analyzer module. 2) the analyzer component generates its analysis

for each word-form of the sentence. (Accuracy of the automated disambiguation

stands at 60% at the time of writing). 3) the lemmatizer evaluates the dictionary

entries (and the most frequent in the collection is kept if the word is lexically

ambiguous), 4) Scholars or students evaluate the lemma matched to each word-

form and the morphological analysis. Indeed, each word sense is appropriate to a

given word in a given sentence (context).

144 CHAPTER 4. CASE STUDIES

i
i

i
i

i
i

i
i

Chapter 5

Conclusion and Perspectives

The research here offered has outlined a number of design aspects and concrete case

studies concerning the Digital Humanities field. This thesis has mainly highlighted

the computational issues and methodological principles involved in the design of

a modular library for digital textual scholarship (called throughout TSLib). Such

a work embraces different primary issues, including source acquisition, text en-

coding, multi-level text analysis, annotations, collaborative commenting, and the

production of critical editions. Therefore, the aim of TSLib is to support scholars

by handling primary and secondary sources as well as guaranteeing its long-term

maintenance.

As illustrated in the previous chapters, the attention on the fast-moving Digital

Humanities field has been increasing from different research fields. In particular:

a) computer scientists focus on developing or improving algorithms for document

and text processing such as phylogenetic problems, multi-version issues, OCR ac-

curacy, indexing, etc.; b) computer engineers work on designing and implementing

effective and reusable tools and virtual environments dealing with scholar require-

ments such as APIs design, standardization of communication protocols, integra-

tion mechanisms; and finally c) traditional and digital scholars leverage computa-

tion outcomes and electronic documents in order to improve their understanding

of the work under investigation.

The research has shown that, at the time of writing, shared methodological

frameworks and flexible tools are still an open issue for this particular field. Ac-

tually, this thesis has highlighted that the current textual scholarship applications

145

146 CHAPTER 5. CONCLUSION AND PERSPECTIVES

are too often project-oriented, therefore they lack in generalization and abstrac-

tion. This means that many initiatives do not adequately consider reusability and

evolutionary perspectives both in terms of software artifacts and data sets. Con-

sequently, actual textual scholarship outcomes mainly solve limited problems or

meet restricted domain requirements such as markup practices, publishing pro-

cesses, or collation issues. In addition, computational methods and tools exploited

in literary computing generally follow other disciplines such as computational lin-

guistics or computational biology. Indeed, in those scientific areas, theoretic mod-

els, computational methods, and community best practices are now consolidated

and well-established.

This work has also argued that, contrary to usual approaches, the textual

scholarship community has to consider well-known engineering strategies in its

computational researches for effectively enhancing the area of literary studies in

the digital age. As a matter of fact, new Digital Humanities initiatives have

begun to discuss on how to set up effective processes for the suitable design and

development tools for literary studies.

In other words, one of the aims of this thesis has been to encourage a community-

driven research activity for the specification and the implementation of reusable

textual scholarship components.

The design of such an artifact has to encompass several points including a

community oriented perspective, a use-case process, UML modeling, and API

standardization. Furthermore, the work has discussed basic requirements of the

target domain which the TSLib deals with. These requirements describe texts that

can be written on multiple supports, conveying multiple versions of the same work

which can have multiple hierarchies and interpretations at multiple levels of gran-

ularity. The results of this analysis have led to the representation of textual units

as composite entities defined by an array of four properties: <version, granularity,

position, layer>.

Since application programming interfaces handle data and behavior of the dig-

ital representation of the sources, software artifacts in literary computing have

to be designed in terms of components. In this way, each component provides

specialized services by means of standard and common interfaces (API). In turn,

inter-components communication has to be designed on community-based APIs,

so that they can totally decouple the interface from internal details (information

hiding). Doing so, actual implementation of the components is totally managed

i
i

i
i

i
i

i
i

147

by the service providers. Afterwards, only the API specification has to remain

open and community driven.

Practical case studies, derived from the work conducted in the context of funded

national and international projects (mainly ERC and PRIN projects), have pointed

out that the combination of a bottom-up (starting from specific needs) and a top-

down approach (starting from abstract models) promotes the enhancement of the

design solutions. Moreover, refactory strategies, as defined in the Agile processes,

help in obtaining improvements and in meeting new requirements. Thus, this

research is an attempt towards a methodological approach for designing and de-

veloping literary tools led by an active and dynamic international community. This

can be done by adhering to and improving the framework described throughout

the work.

The component devoted to manage the services of the library allows providers

and clients to plug-in new modules, keeping the TSLib open for extension but

closed for modification. Hence, the fundamental artifacts, which are conceived as

components, have been organized (at present) in Java packages mapping the core

modules. Up to now, seven components constitute the core of the library. These

encompass the requirements gathered from the textual scholarship community and

involve the management of 1) the textual sources, 2) the facsimile representation,

3) the editing phase, 4) the analysis at different levels of processing, 5) the re-

lationship and linkage mechanisms, 6) the indexing features, and finally 7) the

visualization and rendering of the data.

Therefore, the goal of this research is to implement all these components by

means of coherent APIs which will be released in the form of a software library. In

fact, the effort is devoted to achieve an evolvable specification of the application

programming interfaces along with the description of a convenient data structure.

The data model serves as the basis for concrete objects which instantiate abstract

data types that meet the API specification. Indeed, differently from current habits

in Digital Humanities, the TSLib tries to abstract its data model from file formats

by designing suitable ADTs and APIs. By doing so, clients can use the TSLib and

exploit all functions of the core API.

However, at the time of writing, the domain specification that concerns the

digital humanities scholars is only partially accomplished. This is mainly due to

the incomplete formalization of the discipline and consequently to the fragmentary

gathering of its requirements.

148 CHAPTER 5. CONCLUSION AND PERSPECTIVES

Acknowledging the importance of the open-source policy in modern research,

the ongoing work is publicly available for the community. Moreover, the TSLib

promotes the publishing of the scholars works as linked open data (LOD), promot-

ing the circulation of knowledge regarding cultural heritage documents and texts.

Accordingly, the model of the data in the TSLib is LOD compliant, this means that

the URIs are stable and properly dereferenceable by standard citational protocols.

Summing up, the library of components described so far attempts to fill a gap in

the field of research works concerning new technologies applied to literary studies.

Nowadays, although the implementation of the library is just a prototype, several

projects have exploited its model. As the case studies chapter has discussed, the

TSLib model already guarantees a large and simultaneous access to the information

pertaining to manuscripts and other forms of textual and linguistic sources.

Nevertheless, the work is still far from being mature and completed, conse-

quently, it has to be improved in many ways. For instance, any further work

should involve the production of the necessary documentation. Indeed, the docu-

mentation provides a deeper insight into how a component may be used in typical

contexts and for typical usage. In terms of future research and development, it is

worth emphasizing that an editing component for scholars could be plugged into

the system. This would support the creation of a different edition of the same text

and improve the comprehension of its history. In addition, the TSLib fosters digi-

tal humanists to think in term of services and abstractions. Actually, two levels of

accessibility have to be pursued: 1) textual scholarship tools need to be accessible

for scholars, 2) the design process and the implementation methodologies of those

tools need to be shared.

In conclusion, despite a number of pioneering researches, digital scholar appli-

cations are relatively undeveloped if compared to other textual software like those

in natural language processing, text mining, and bioinformatics. However, digital

textual scholarship is a computational field in rapid evolution. Hence, textual tools

devoted to solve scholar needs (with or without technological skills) must provide

ad hoc capabilities developed within a modular library for textual scholarship.

Unfortunately, time constraint has limited a deeper analysis of the target do-

main and the proper implementation of the design methodologies illustrated in

the previous chapters. The wish is to have the opportunity to continue the work

which has been presented in this thesis.

i
i

i
i

i
i

i
i

Chapter 6

Acronyms

ASCII American Standard Code for Information Interchange 32

API Application Programming Interface . 109

ADT Abstract Data Type . 78

ANN Artificial Neural Network. .55

ALPS Application Level Placement Scheduler . 115

BMP Basic Multilingual Plane . 32

CLARIN Common Language Resources and Technology Infrastructure 22

CTS Canonical Text Services . 133

CMDI CLARIN Metadata Infrastructure . 31

149

150 CHAPTER 6. ACRONYMS

CRUD Create, Read, Update, Delete . 69

CITE Collections, Indexes, Texts, Extensions architecture 21

CAS Common Analysis Structure . 48

CNR Consiglio Nazionale delle Ricerche . 133

CLE Cray Linux Environment . 115

CSV Comma Separated Values . 105

CCSL CMDI Component Specification Language . 40

CHI Cultural Heritage Imaging Organization . 53

DARIAH Digital Research Infrastructure for the Arts and Humanities 22

DH Digital Humanities . 61

DTD Document Type Definition . 34

DCMI Dublin Core Metadata Initiative . 37

DC Dublin Core . 37

DAO Data Access Object . 106

i
i

i
i

i
i

i
i

151

DOM Document Object Model . 121

DM2E Digitised Manuscripts to Europeana . 24

DB Data Base . 30

DOC document . 105

DCIF Data Category Interchange Format . 40

EDM Europeana Data Model . 24

ESE Europeana Semantic Elements . 38

XSLT eXtensible Stylesheet Language Transformations . 121

ESTS European Society for Textual Scholarship . 19

FRBR Functional Requirements for Bibliographic Records.83

FSF Free Software Foundation . 18

GDocs Google Documents. .18

GUI Graphical User Interface . 122

GATE General Architecture for Text Engineering . 47

152 CHAPTER 6. ACRONYMS

HMM Hidden Markov Model . 140

hOCR HTML-based Markup for OCR . 116

HTML HyperText Markup Language . 116

HTTP HyperText Transfer Protocol .24

HERA European Research Area. .24

IEC International Electrotechnical Committee

ISO International Organization for Standardization . 23

ILC Institute for Computational Linguistics . 133

IFLA International Federation of Library Associations . 38

IDE integrated development environment . 91

JSF JavaServer Faces Technology . 62

JSON JavaScript Object Notation. .105

LOD Linked Open Data . 136

ML Machine Learning . 46

i
i

i
i

i
i

i
i

153

MPI Message Passing Interface . 115

MVC Model View Controller . 106

MVD Multi-Version Document . 36

NLP Natural Language Processing . 136

NER Named Entity Recognition . 136

OHCO Ordered Hierarchy of Content Objects . 83

OCR Optical Character Recognition. .112

OAI Open Archive Initiative. .40

OA Open Annotation Data Model . 85

ORE Object Reuse and Exchange . 40

OAIS Open Archival Information System . 40

OAC Open Annotation Collaboration . 23

OASIS Organization for the Advancement of Structured Information Standards

48

OWL Web Ontology Language

154 CHAPTER 6. ACRONYMS

OSI Open Source Initiative . 18

PMH Protocol for Metadata Harvesting . 40

POS Part of Speech . 136

PBS Portable Batch System . 115

PDF Portable Document Format . 105

RDF Resource Description Framework. .77

ROI Region of Interest . 41

SAWS Sharing Ancient Wisdom. 24

SPI Service Provider Interface . 95

SVM Support Vector Machine . 55

SofA Subject of Analysis . 48

SLES SUSE Linux Enterprise Server . 115

SAX Simple API for XML . 122

SSO Single Sign On . 23

i
i

i
i

i
i

i
i

155

SVG Scalable Vector Graphics. .29

SGML Standard Generalized Markup Language . 34

SPARQL Simple Protocol and RDF Query Language

SW Semantic Web. .24

TUSTEP Tübingen System of Text Processing . 27

TXSTEP Tübingen XML-based scripting language for scholarly text data pro-

cessing. .27

TSLib Textual Scholarship Library . 109

TEI Text Encoding Initiative . 119

TE Term Extraction . 53

UCS Universal Character Set . 32

UTF Unicode Transformation Format . 32

UNICODE Unique, Universal, and Uniform character enCoding 31

UML Unified Modeling Language . 132

URN Uniform Resource Name . 138

156 CHAPTER 6. ACRONYMS

URI Uniform Resource Identifier . 140

UIMA Unstructured Information Management . 48

VSM Vector Space Model . 51

XML The eXtensible Markup Language . 119

XMI XML Metadata Interchange .48

XSL-FO Extensible Stylesheet Language Formatting Objects

XSD XML Schema Definition . 34

XHTML eXtensible HyperText Markup Language . 34

i
i

i
i

i
i

i
i

Chapter 7

Acknowledgements

This work is the result of a close collaboration among many people coming from

different backgrounds and institutions. First of all I am thankful to the Institute

for Computational Linguistics, in particular to Dr. Andrea Bozzi for his continu-

ous encouragements and for supporting me. I am also grateful to Dr. Simonetta

Montemagni, current director of the Institute, for her kindness. Moreover I ex-

press my sincere gratitude to my supervisor, Prof. Francesco Marcelloni, for the

insightful comments and help.

My biggest thanks go to my supervisors, Dr. Emiliano Giovannetti and Dr.

Federico Boschetti. I am touched by the way they have supported me and taken

care of my work.

Furthermore, I am grateful to Mariarosaria Finelli for her extraordinary close-

ness, spiritual and material support. I am thankful to my whole family: parents,

sister, nephew, uncles, cousins and grandparents (to those here and to who can

not be here).

My work would not have been possible without the support of many, many

friends and co-workers. Thanks a lot to Ouafae Nahli (second mum, she has

been extraordinary), Simone Marchi (first brother), Riccardo Del Gratta (LATEX

guru), Marion Lamé (bibliographic superhero), Davide Albanesi (13 room chief),

Andrea Bellandi (13 room mind), Giulia Benotto (13 room patience), Marianne

Reboul (great supporter), Rosanna Martucci (English ghost writer), Genoveffa

Maselli (first English reviewer), Francesca Rispoli (second English reviewer), Felice

Dell’Orletta (NLP Italian boss and supreme football player), Francesca Murano

157

158 CHAPTER 7. ACKNOWLEDGEMENTS

(Saussure expert and a dear friend), Achille Felicetti (expert and great guy), Luca

Pesini (XML guru! and a real Indo-Europeanist), Anas Fahad Khan (shrewd

logician and friend). Paolo Pegoraro, Daniela and Louay, and don Angelo Colacrai

for their help and encouragement.

The results yielded in this thesis have also been possible thanks to the financial

support of several European and Italian projects that have funded it. Among these:

1) The ERC project Ideas, Advanced Grant 249431 “Greek into Arabic”, sup-

ported by the European Research Council and led by Cristina D’Ancona. 2) The

PRIN2008 project “Per un’edizione digitale dei manoscritti di Ferdinand de Saus-

sure” led by Daniele Gambarara and Maria Pia Marchese. 3) The PRIN2010/11

“Memoria poetica e poesia della memoria” led by Paolo Mastandrea. 4) the PRIN

“Sistema di Filologia Computazionale per la gestione di immagini e testi digitali,

l’indicizzazione e la produzione di apparati critici” led by Andrea Bozzi.

Last but not the least, a great thought to Maria, mother of God and our

mother. She always accompanies me!

Finally, I would like to thank the people who have been close to me during this

research, and whom I forgot to mention. My apologies for that, but my head has

not been working well, lately!!

Afterword

The following text written in Italian comes directly from the pen of Father Busa.

One of my best friends inadvertently sent me this valuable piece of evidence. It

seems that Computer engineers and philologists have a long tradition in common..

Dall’Introduzione a Fondamenti di informatica linguistica -

Art. 2: caratteristiche del corso

0006. A proposito del dialogo tra filologi e informatici, ecco alcune osser-

vazioni dettate dall’esperienza. Già tra linguisti e filologi il discorrere è reso talora

difficoltoso dalle stesse terminologie linguistiche, troppe volte diverse e fluide, ma

il dialogo tra filologi e informatici risulta ancor più problematico. La formazione

mentale del matematico, dell’ingegnere, dell’economista è radicalmente diversa

da quella del filologo, e di conseguenza altrettanto diverse sono le terminologie e

le concentrazioni di interessi mentali. Nei cultori delle scienze esatte il metodo

i
i

i
i

i
i

i
i

159

è prevalentemente deduttivo, la logica è cartesiana e geometrica: “tanto mi dà

tanto”. Un informatico ingegnere inclinerà a estendere alle parole la univoca

omogeneità dei numeri: in un discorso, per esempio, misurerà, tutte assieme le

frequenze di parole come se queste parole avessero tutte lo stesso peso, quasi un

sacchetto di fagioli: metafora cui mi porta la loro distinzione in due cotiledoni,

significante e significato... Non gli passa per la mente che i tipi di semanticità,

quelli cioè che intaccano proprio questo rapporto tra segno e concetto, sono tanti

e talmente diversi da far riscontro alle diversità esistenti nella scala periodica degli

elementi di Mendelejeff... per esempio preposizioni, pronomi personali o deittici,

verbi e nomi comuni di oggetti sono parole più diverse tra loro di quanto non lo

siano metalli e gas e terre rare... Inoltre un informatico, in altre sedi, solitamente

prepara programmi dei quali molte e ripetute esecuzioni ammortizzeranno il costo

della programmazione. In linea di principio, in ricerche di linguistica informatica,

avviene il contrario: ogni programma viene usato una volta sola per un’operazione

il cui output dovrà subito essere input di altro e diverso programma. Quando in-

vece il filologo chiedesse di far girare lo stesso programma, spesso sarà perché vuole

farvi cambiare qualche istruzione: cosa che può risultare irritante all’informatico.

Uno stesso programma entro uno stesso lavoro verrà probabilmente fatto rigirare

identico solo dopo avvenute doverose correzioni al suo input. Altri lavori, pur

identici di procedura, il più delle volte richiederanno variazioni di formato dei dati

di ingresso, al che recalcitreranno quei programmatori che non abbiano a mano

programmi “generalizzati” o “tabelle esterne” per veloci e facili adattamenti. E

ancora, molte delle nostre operazioni sono a batch, cioè a “infornate di pani”, tante

e consecutive: decine di migliaia e centinaia di migliaia di voci da elaborare una

dopo l’altra. Nei computer che devono servire interattivamente contemporanea-

mente a molti terminali, i nostri batch creano impazienze... Altrettanto quando

con migliaia e migliaia di righe teniamo occupata la high speed printer... Nei cal-

coli matematici e contabili, l’input e output sono piuttosto di piccole dimensioni,

mentre le elaborazioni possono essere complesse e lunghissime. In informatica lin-

guistica è vero l’opposto: poche e semplici operazioni su enormi input e con enormi

output. A Venezia nel 1975-1976 ho dovuto far sostare su 4 campi a cascata un

file di 6 milioni di records di 350 bytes, uno di 2,5 milioni di records di 450 bytes

e altri due rispettivamente di 600.000 e 1.200.000 records lunghi altrettanto... Ve

lo immaginate? E la linguistica informatica si augurerebbe di ritrovarsi spesso in

tali congiunture...

160 CHAPTER 7. ACKNOWLEDGEMENTS

0007. Fa parte del “tono pratico” del mio corso l’addestramento a quella paziente

e indefessa perseveranza che richiede l’impiego dei computer: è necessario che

l’allievo si tempri al frequente imprevisto del computer che si inceppa, dell’operatore

che resta a casa, del bug, cioè errore di input o di programma - parlo di quello

raro - che non “salta fuori” se non dopo aver elaborato senza intoppi migliaia di

righe innocenti. L’informatica linguistica va affrontata come una corsa a ostacoli:

essa consegna il suo premio alla fine; una volta terminato tutto e bene, ci si rende

conto che si è reso un grosso servizio: testo e lessici elettronici restano validi e

disponibili per tutti e sempre e la fatica impiegatavi resta utile a tutti e per sem-

pre. Il grosso del corso è dunque pratico, su una sola linea di sviluppo, che è però

quella fondamentale e necessaria e iniziale, per forza di natura di cose. Di fronte

ai miti giornalistici del cervello elettronico, di fronte ai luccichii psichedelici dei

paroloni, di fronte al fascino esotico degli acronimi tecnici quali ad esempio RAM,

ROM, LAN (random access memory, read only memory, local area network) da

una parte, e dall’altra di fronte all’accelerato evolversi delle tecnologie, per il quale

quelle di ier l’altro sono già obsolete, mentre la “migliore” e la più “attuale”, se

pur si afferrano, sgusciano e scappano subito via di mano, dico: “Comincia a fare

di fatto tu, personalmente, un po’ di informatica oggi; comunque comincia con

poco, perché ogni vita nasce piccola. Continua con la semplicità tranquilla di chi

sa che passo dopo passo si arriva. Quando avrai raggiunto come primo obiettivo

la cartografia del lessicologico d’un testo, potrai parlare con cognizione di causa e

decollare alzandoti verso ogni altro e nuovo spazio informatico”.

i
i

i
i

i
i

i
i

Bibliography

[1] R. Siemens, M. Timney, C. Leitch, C. Koolen, A. Garnett et al., “Toward

modeling the social edition: An approach to understanding the electronic

scholarly edition in the context of new and emerging social media,” Literary

and Linguistic Computing, vol. 27, no. 4, pp. 445–461, 2012.

[2] J. McGann, “From text to work: Digital tools and the emergence of the

social text,” Variants: The Journal of the European Society for Textual

Scholarship, vol. 4, pp. 225–240, 2005.

[3] A. Bozzi, “Edizione elettronica e filologia computazionale,” in Fondamenti

di critica testuale, ser. Manuali, A. Stussi, Ed. Bologna: Il Mulino, 2006,

ch. 9, pp. 207–232.

[4] P.-E. Portier and S. Calabretto, “DINAH, a Philological Platform for

the Construction of Multi-structured Documents,” in Proceedings of

the 14th European Conference on Research and Advanced Technology

for Digital Libraries (ECDL), Glasgow, UK. Berlin, Heidelberg:

Springer-Verlag, September 2010, pp. 364–375. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1887759.1887808

[5] A. Bozzi, “Computer-assisted scholarly editing of manuscript sources,” in

New publication cultures in the humanities: exploring the paradigm shift,

P. Davidhazi, Ed. Amsterdam: Amsterdam University Press, 2014, pp.

99–115. [Online]. Available: http://www.oapen.org/record/515678

[6] P. Robinson, “Towards a scholarly editing system for the next

decades,” in Sanskrit Computational Linguistics, ser. Lecture Notes in

Computer Science, G. Huet, A. Kulkarni, and P. Scharf, Eds. Springer

161

http://dl.acm.org/citation.cfm?id=1887759.1887808
http://www.oapen.org/record/515678

162 BIBLIOGRAPHY

Berlin Heidelberg, 2009, vol. 5402, pp. 346–357. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-00155-0 18

[7] ——, “Towards a theory of digital editions,” Variants, no. 10, pp. 105–131,

2013.

[8] F. Tomasi and F. Vitali, “Collaborative Annotations in Shared

Environments: Metadata, Vocabularies and Techniques in the Digital

Humanities (DH-CASE 2013),” in Proceedings of the 2013 ACM

Symposium on Document Engineering (DocEng), Florence, Italy. New

York, NY, USA: ACM, September 2013, pp. 283–284. [Online]. Available:

http://doi.acm.org/10.1145/2494266.2494323

[9] P. Schmitz, L. Pearce, and Q. Dombrowski, “DH-CASE II: Collaborative

Annotations in Shared Environments: Metadata, Tools and Techniques

in the Digital Humanities,” in Proceedings of the 2014 ACM Symposium

on Document Engineering (DocEng), Fort Collins, Colorado, USA. New

York, NY, USA: ACM, September 2014, pp. 211–212. [Online]. Available:

http://doi.acm.org/10.1145/2644866.2644898

[10] M. Terras and G. Crane, Eds., Changing the Center of Gravity: Transform-

ing Classical Studies through Cyberinfrastructure, ser. Digital Technologies

and the Ancient World. Piscataway: Gorgias Press, March 2010, vol. 4.

[11] W. McCarty, Humanities Computing. Palgrave Macmillan, 2005.

[12] I. Lancashire, “Computers in the linguistic humanities: Overview,”

in Encyclopedia of Language and Linguistics, 2nd ed., K. Brown,

Ed. Oxford: Elsevier, 2006, pp. 793–809. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/B0080448542009809

[13] M. Terras, J. Nyhan, and E. Vanhoutte, Defining Digital Humanities: A

Reader. Farnham Surrey: Ashgate, 2013.

[14] M. K. Gold, Ed., Debates in the digital humanities. Minneapolis, MN:

University of Minnesota Press, 2012.

[15] D. M. Berry, Ed., Understanding Digital Humanities. New York: Palgrave

Macmillan, 2012.

http://dx.doi.org/10.1007/978-3-642-00155-0_18
http://doi.acm.org/10.1145/2494266.2494323
http://doi.acm.org/10.1145/2644866.2644898
http://www.sciencedirect.com/science/article/pii/B0080448542009809
http://www.sciencedirect.com/science/article/pii/B0080448542009809

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 163

[16] P. Arthur and K. Bode, Eds., Advancing Digital Humanities: Research,

Methods, Theories. Basingstoke, Hampshire: Palgrave Macmillan, 2014.

[17] A. Burdick, J. Drucker, P. Lunenfeld, T. Presner, and J. Schnapp, Eds.,

Digital Humanities. Cambridge, MA, USA: MIT press, 2012.

[18] T. Bartscherer and R. Coover, Switching Codes: Thinking Through Digital

Technology in the Humanities and the Arts. Chicago: University of Chicago

Press, 2011.

[19] P. L. Shillingsburg, From Gutenberg to Google: Electronic Representations

of Literary Texts. New York, NY, USA: Cambridge University Press, 2006.

[20] R. Busa and I. B. M. Corporation, Sancti Thomae Aquinatis hymnorum

ritualium varia specimina concordantiarum ...: a first example of word in-

dex automatically compiled and printed by IBM punched card machines, ser.

Archivum Philosophicum Aloisianum. Milano: Fratelli Bocca, Editori, 1951.

[21] R. Busa, “The annals of humanities computing: The index Thomisticus,”

Computers and the Humanities, vol. 14, no. 2, pp. 83–90, 1980. [Online].

Available: http://dx.doi.org/10.1007/BF02403798

[22] G. Stewart, G. Crane, and A. Babeu, “A new generation of textual corpora:

Mining corpora from very large collections,” in Proceedings of the 7th

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), Vancouver,

BC, Canada. New York, NY, USA: ACM, June 2007, pp. 356–365.

[Online]. Available: http://doi.acm.org/10.1145/1255175.1255247

[23] P. Robinson, “The history of scholarly digital editions, plc,” Papers of the

Bibliographical Society of Canada / Cahiers de la Société bibliographique du

Canada, vol. 51, no. 1, pp. 83–104, March 2013.

[24] G. Crane, D. Bamman, L. Cerrato, A. Jones, D. Mimno, A. Packel,

D. Sculley, and G. Weaver, “Beyond Digital Incunabula: Modeling

the next generation of Digital Libraries,” in Proceedings of the

10th European Conference on Research and Advanced Technology

for Digital Libraries (ECDL), Alicante, Spain. Berlin, Heidelberg:

Springer-Verlag, September 2006, pp. 353–366. [Online]. Available:

http://dx.doi.org/10.1007/11863878 30

http://dx.doi.org/10.1007/BF02403798
http://doi.acm.org/10.1145/1255175.1255247
http://dx.doi.org/10.1007/11863878_30

164 BIBLIOGRAPHY

[25] A. Bozzi, “Electronicpublishing and computational philology,” Linguistica

Computazionale, vol. 24-25, no. A, pp. 63–86, 2006.

[26] V. A. Dearing, “Machine-assisted textual criticism,” Computers and the Hu-

manities, vol. 4, no. 2, pp. 149–154, November 1969.

[27] G. R. Petty and W. M. Gibson, Project Occult: the ordered computer colla-

tion of unprepared literary text. New York, NY, USA: New York University

Press, 1970.

[28] G. P. Zarri, “Some experiments on automated textual criticism,” Bulletin

Association for Literary and Linguistic Computing Stockport, vol. 5, no. 3,

pp. 266–290, 1977.

[29] G. Zarri, “Algorithms, Stemmata Codicum, and the Theories of Dom H.

Quentin,” The Computer and Literary Studies, pp. 225–237, 1973.

[30] J. Froger, La critique des textes et son automatisation. Paris: Dunod, 1968,

vol. 7.

[31] G. P. Verbrugghe, “Transliteration or transcription of Greek,” The Classical

World, vol. 92, no. 6, pp. 499–511, July - August 1999.

[32] W. Ott, “Strategies and tools for textual scholarship: the Tübingen

system of text processing programs (TUSTEP),” Literary and Linguistic

Computing, vol. 15, no. 1, pp. 93–108, 2000. [Online]. Available:

http://llc.oxfordjournals.org/content/15/1/93.abstract

[33] C. Thiele, “Tex and the Humanities,” TUGboat, vol. 17, no. 4, pp. 388 –

393, 1996.

[34] C. Beccari, “The teubner LATEX package: Typesetting classical Greek

philology,” TUGboat, vol. 23, no. 3-4, pp. 276–282, 2002.

[35] A. Bozzi, “Digital documents and computational philology: the Digital

Philology System (DiPhiloS),” Informatica e Scienze Umane. Mezzo Sec-

olo di Studi e Ricerche, pp. 175–201, 2003.

[36] D. Schmidt, “Towards an interoperable digital scholarly edition,” Journal

of the Text Encoding Initiative, no. 7, November 2014. [Online]. Available:

http://jtei.revues.org/979

http://llc.oxfordjournals.org/content/15/1/93.abstract
http://jtei.revues.org/979

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 165

[37] F. Boschetti, A. M. Del Grosso, A. F. Khan, M. Lamé, and O. Nahli, “A top-

down approach to the design of components for the philological domain,” in

Book of abstract of Digital Humanities Conference (DH), Lausanne, Switzer-

land. Alliance of Digital Humanities Organisations, July 2014, pp. 109–111.

[38] P. D’Iorio, “Nietzsche on new paths: The hypernietzsche project and open

scholarship on the web,” in Friedrich Nietzsche, Edizioni e interpretazioni,

M. C. Fornari, Ed. Pisa: ETS, 2007, pp. 475–496.

[39] M. Langham and C. Ziegeler, Cocoon: Building XML Applications. Indi-

anapolis: Pearson Education, 2002.

[40] (2003) Analytical System Tools and SGML/XML Integration Applications.

Scholarly Digital Editions: Nottingham. [Online]. Available: http:

//sd-editions.com/anastasia/index.html

[41] G. Crane, B. Seales, and M. Terras, “Cyberinfrastructure for classical

philology,” Digital Humanities Quarterly, vol. 3, no. 1, 2009. [Online].

Available: http://www.digitalhumanities.org/dhq/vol/3/1/000023/000023.

html

[42] D. Buzzetti, “Digital representation and the text model,” New

Literary History, vol. 33, no. 1, pp. 61–88, 2002. [Online]. Available:

http://muse.jhu.edu/journals/new literary history/v033/33.1buzzetti.html

[43] F. Gibbs and T. Owens, “Building Better Digital Humanities Tools: Toward

broader audiences and user-centered designs,” Digital Humanities Quarterly,

vol. 6, no. 2, 2012. [Online]. Available: http://www.digitalhumanities.org/

dhq/vol/6/2/000136/000136.html

[44] A. Bozzi, “G2A: A Web application to study, annotate and scholarly edit

ancient texts and their aligned translations,” Studia graeco-arabica, vol. 3,

pp. 159–171, 2013.

[45] G. Crane, B. Almas, A. Babeu, L. Cerrato, M. Harrington, D. Bamman,

and H. Diakoff, “Student researchers, citizen scholars and the trillion

word library,” in Proceedings of the 12th ACM/IEEE-CS Joint Conference

on Digital Libraries (JCDL), Washington, DC, USA. New York,

NY, USA: ACM, June 2012, pp. 213–222. [Online]. Available: http:

//doi.acm.org/10.1145/2232817.2232857

http://sd-editions.com/anastasia/index.html
http://sd-editions.com/anastasia/index.html
http://www.digitalhumanities.org/dhq/vol/3/1/000023/000023.html
http://www.digitalhumanities.org/dhq/vol/3/1/000023/000023.html
http://muse.jhu.edu/journals/new_literary_history/v033/33.1buzzetti.html
http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html
http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html
http://doi.acm.org/10.1145/2232817.2232857
http://doi.acm.org/10.1145/2232817.2232857

166 BIBLIOGRAPHY

[46] A. M. Del Grosso and O. Nahli, “Towards a flexible open-source software

library for multi-layered scholarly textual studies: An Arabic case study

dealing with semi-automatic language processing,” in Proceedings of

3rd IEEE International Colloquium, Information Science and Technology

(CIST), Tetouan, Marocco. Washington, DC, USA: IEEE, October 2014,

pp. 285–290. [Online]. Available: http://dx.doi.org/10.1109/CIST.2014.

7016633

[47] L. Burnard, “The Evolution of the Text Encoding Initiative: From

Research Project to Research Infrastructure,” Journal of the Text Encoding

Initiative, no. 5, 2013. [Online]. Available: http://jtei.revues.org/811

[48] B. Bordalejo, “The texts we see and the works we imagine: The shift of

focus of textual scholarship in the digitale age,” in Ecdotica, G. M. Anselmi,

E. Pasquini, and F. Rico, Eds. Roma: Carocci, 2013, vol. 10, pp. 64–75.

[49] G. Barabucci, A. Di Iorio, and F. Vitali, “Stemma codicum: analisi e gen-

erazione semi-automatica,” Quaderni DigiLab, vol. 3, no. 1, pp. 129–145,

2014.

[50] E. Pierazzo, Digital Scholarly Editing : Theories, Models and Methods.

Farnham Surrey: Ashgate, 2015.

[51] A. Teehan and J. G. Keating, “Appropriate use case modeling for

humanities documents,” Literary and Linguistic Computing, vol. 25,

no. 4, pp. 381–391, 2010. [Online]. Available: http://llc.oxfordjournals.org/

content/25/4/381.abstract

[52] T. Boudreau, J. Tulach, and R. Unger, “Decoupled Design: Building

Applications on the NetBeansTM Platform,” in Companion to the 21st

ACM SIGPLAN Symposium on Object-oriented Programming Systems,

Languages, and Applications (OOPSLA), Portland, Oregon, USA. New

York, NY, USA: ACM, October 2006, pp. 631–631. [Online]. Available:

http://doi.acm.org/10.1145/1176617.1176644

[53] P. M. Mell and T. Grance, “Sp 800-145. The NIST Definition of Cloud

Computing,” National Institute of Standards & Technology, Gaithersburg,

MD, United States, Tech. Rep., 2011.

http://dx.doi.org/10.1109/CIST.2014.7016633
http://dx.doi.org/10.1109/CIST.2014.7016633
http://jtei.revues.org/811
http://llc.oxfordjournals.org/content/25/4/381.abstract
http://llc.oxfordjournals.org/content/25/4/381.abstract
http://doi.acm.org/10.1145/1176617.1176644

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 167

[54] R. Siemens and S. Schreibman, Eds., A Companion to Digital Literary Stud-

ies, ser. Blackwell Companions to Literature and Culture. Wiley Publishing,

2008.

[55] C. D. Manning, “Natural language processing for the Digital Humanities,”

in Workshop of Digital Humanities, Stanford, June 2011. [Online]. Available:

http://nlp.stanford.edu/∼manning/courses/DigitalHumanities/

[56] A. Babeu, “Rome wasn’t digitized in a day: Building a cyberinfrastructure

for digital classicists,” Council on Library and Information Resources,

Tech. Rep., August 2011. [Online]. Available: http://www.clir.org/pubs/

abstract/pub150abst.html

[57] M. Agosti and F. Tomasi, Eds., Collaborative Research Practices and Shared

Infrastructures for Humanities Computing, Proceedings of revised papers of

the 2nd Annual Conference of the Associazione per l’Informatica Umanistica

e la Cultura Digitale (AIUCD), Padova, 11-12 December 2013. Padova:

CLEUP, 2014.

[58] M. Terras, Ed., Book of Abstracts of Digital Humanities Conference. Joint

International Conference of the Alliance of Digital Humanities Organiza-

tions, Lausanne, 7-21 July, 2014.

[59] S. Simske and S. Rönnau, Eds., Proceedings of the ACM Symposium on Doc-

ument Engineering (DocEng), Fort Collins, Colorado, USA, 16-19 Septem-

ber. New York, NY, USA: ACM, 2014.

[60] A. Antonacopoulos and K. U. Schulz, Eds., Proceedings of the 1st Interna-

tional Conference on Digital Access to Textual Cultural Heritage (DATeCH),

Madrid, 19-20 May. New York, NY, USA: ACM, 2014.

[61] P. M. Robinson, “Collate: A program for interactive collation of large textual

traditions,” Research in humanities computing, vol. 3, pp. 32–45, 1994.

[62] D. Ribes and K. Baker, “Modes of social science engagement in

community infrastructure design,” in Communities and Technologies

2007, C. Steinfield, B. Pentland, M. Ackerman, and N. Contractor,

Eds. Springer London, 2007, pp. 107–130. [Online]. Available: http:

//dx.doi.org/10.1007/978-1-84628-905-7 6

http://nlp.stanford.edu/~manning/courses/DigitalHumanities/
http://www.clir.org/pubs/abstract/pub150abst.html
http://www.clir.org/pubs/abstract/pub150abst.html
http://dx.doi.org/10.1007/978-1-84628-905-7_6
http://dx.doi.org/10.1007/978-1-84628-905-7_6

168 BIBLIOGRAPHY

[63] Q. Dombrowski, “What ever happened to project bamboo?” Literary and

Linguistic Computing, vol. 29, no. 3, pp. 326–339, 2014. [Online]. Available:

http://llc.oxfordjournals.org/content/29/3/326.abstract

[64] M. Hedges, H. Neuroth, K. M. Smith, T. Blanke, L. Romary, M. Küster,

and M. Illingworth, “TextGrid, TEXTvre, and DARIAH: Sustainability

of Infrastructures for Textual Scholarship,” Journal of the Text Encoding

Initiative, no. 5, June 2013. [Online]. Available: http://jtei.revues.org/774

[65] T. Blanke, M. Bryant, M. Hedges, A. Aschenbrenner, and M. Priddy,

“Preparing DARIAH,” in Proceedings of 7th International Conference on

E-Science (IEEE), Stockholm, Sweden, December 2011, pp. 158–165.

[66] T. Váradi, S. Krauwer, P. Wittenburg, M. Wynne, and K. Koskenniemi,

“Clarin: Common language resources and technology infrastructure,” in

Proceedings of Language Resources and Evaluation Conference (LREC),

Marrakech, Morocco, N. Calzolari, K. Choukri, B. Maegaard, J. Mariani,

J. Odijk, S. Piperidis, and D. Tapias, Eds. European Language Resources

Association (ELRA), May 2008, pp. 1244–1248.

[67] R. Del Gratta, “Language resource infrastructure(s),” Ph.D. dissertation,

Scuola di Dottorato in Ingegneria Leonardo da Vinci, Università di Pisa,

2011.

[68] C. Concordia, S. Gradmann, and S. Siebinga, “Not just another portal,

not just another digital library: A portrait of Europeana as an application

program interface,” IFLA Journal, vol. 36, no. 1, pp. 61–69, 2010. [Online].

Available: http://ifl.sagepub.com/content/36/1/61.abstract

[69] V. Casarosa, C. Meghini, and S. Gardasevic, “Improving online access to

archival data,” in Digital Libraries and Archives, ser. Communications in

Computer and Information Science, M. Agosti, F. Esposito, S. Ferilli, and

N. Ferro, Eds. Springer Berlin Heidelberg, 2013, vol. 354, pp. 153–162.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-35834-0 16

[70] C. Meghini, N. Aloia, and C. Concordia, “Designing and implementing

a user-generated content service for Europeana,” in Proceedings of

Information Technologies for Performing Arts, Media Access and

http://llc.oxfordjournals.org/content/29/3/326.abstract
http://jtei.revues.org/774
http://ifl.sagepub.com/content/36/1/61.abstract
http://dx.doi.org/10.1007/978-3-642-35834-0_16

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 169

Entertainment (ECHAP), Firenze. Firenze University Press, May 2012.

[Online]. Available: http://dx.doi.org/10.1400/187218

[71] A. Jordanous, K. F. Lawrence, M. Hedges, and C. Tupman, “Exploring

manuscripts: Sharing ancient wisdoms across the semantic web,” in

Proceedings of the 2nd International Conference on Web Intelligence,

Mining and Semantics (WIMS), Craiova, Romania. New York, NY,

USA: ACM, June 2012, pp. 44:1–44:12. [Online]. Available: http:

//doi.acm.org/10.1145/2254129.2254184

[72] M. Grassi, C. Morbidoni, M. Nucci, S. Fonda, and F. Piazza, “Pundit: aug-

menting web contents with semantics,” Literary and linguistic computing,

vol. 28, no. 4, pp. 640–659, 2013.

[73] A. Ciula, “The New Edition of the Letters of Vincent Van Gogh on the

Web,” DHQ: Digital Humanities Quarterly, vol. 4, no. 2, 2010. [Online].

Available: http://digitalhumanities.org/dhq/vol/4/2/000088/000088.html

[74] B. Nowviskie and J. McGann, “NINES: a federated model for integrating

digital scholarship,” Networked Infrastructure for Nineteenth-Century

Electronic Scholarship, White paper, 2005. [Online]. Available: http:

//www.nines.org/about/wp-content/uploads/2011/12/9swhitepaper.pdf

[75] W. Ott, “Digital publishing: tools and products,” Poiesis and

Praxis, vol. 5, no. 2, pp. 81–112, 2008. [Online]. Available: http:

//dx.doi.org/10.1007/s10202-007-0039-6

[76] W. Ott and T. Ott, “Critical editing with TXSTEP,” in Book of Abstracts

of the Digital Humanities conference, Lausanne, Switzerland, M. Terras, Ed.

Alliance of Digital Humanities Organisations, July 2014, pp. 509–513.

[77] P. Mascellani and P. D. Napoletani, “MauroTeX - A language for electronic

critical editions,” in Proceedings of International Cultural Heritage Infor-

matics Meeting (ICHIM), Milan, Italy, D. Bearman and F. Garzotto, Eds.,

vol. 2. Pittsburgh, PA, USA: Archives and Museum Informatics, September

2001, pp. 223–241.

[78] M. Dominici and P. D. Napolitani, “Edizione con LaTeX delle opere di

Francesco Maurolico,” ArsTEXnica, pp. 75–82, October 2006.

http://dx.doi.org/10.1400/187218
http://doi.acm.org/10.1145/2254129.2254184
http://doi.acm.org/10.1145/2254129.2254184
http://digitalhumanities.org/dhq/vol/4/2/000088/000088.html
http://www.nines.org/about/wp-content/uploads/2011/12/9swhitepaper.pdf
http://www.nines.org/about/wp-content/uploads/2011/12/9swhitepaper.pdf
http://dx.doi.org/10.1007/s10202-007-0039-6
http://dx.doi.org/10.1007/s10202-007-0039-6

170 BIBLIOGRAPHY

[79] P. Heckel, “A technique for isolating differences between files,” Commu-

nications of the ACM, vol. 21, no. 4, pp. 264–268, April 1978. [Online].

Available: http://doi.acm.org/10.1145/359460.359467

[80] R. Haentjens Dekker, D. van Hulle, G. Middell, V. Neyt, and J. van

Zundert, “Computer-supported collation of modern manuscripts: CollateX

and the Beckett digital manuscript project,” Literary and Linguistic

Computing, 2014. [Online]. Available: http://dx.doi.org/10.1093/llc/fqu007

[81] S. B. Needleman and C. D. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins,” Journal

of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0022283670900574

[82] J. Bourdaillet and J.-G. Ganascia, “Practical block sequence alignment with

moves,” in Proceedings of 1st International on Language and Automata The-

ory and Applications (LATA), Tarragona, Spain, March-April 2007, pp. 199–

210.

[83] W. Meier, “eXist: An open source native XML database,” in Web,

Web-Services, and Database Systems, ser. Lecture Notes in Computer

Science, A. Chaudhri, M. Jeckle, E. Rahm, and R. Unland, Eds. Springer

Berlin Heidelberg, 2003, vol. 2593, pp. 169–183. [Online]. Available:

http://dx.doi.org/10.1007/3540365605 13

[84] A. H. Renear, E. Mylonas, and D. Durand, “Refining our notion of what text

really is: The problem of overlapping hierarchies,” Research in Humanities

Computing, vol. 4, pp. 263–280, 1996.

[85] A. Di Iorio, S. Peroni, and F. Vitali, “Towards markup support for full

GODDAGs and beyond: the EARMARK approach,” in Proceedings of

balisage: The markup conference, Montréal, Canada, ser. Balisage Series on

Markup Technologies, vol. 3, August 2009. [Online]. Available: http://www.

balisage.net/Proceedings/vol3/html/Peroni01/BalisageVol3-Peroni01.html

[86] D. Schmidt, “The inadequacy of embedded markup for cultural heritage

texts,” Literary and Linguistic Computing, vol. 25, no. 3, pp. 337–356,

2010. [Online]. Available: http://llc.oxfordjournals.org/content/25/3/337.

abstract

http://doi.acm.org/10.1145/359460.359467
http://dx.doi.org/10.1093/llc/fqu007
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://dx.doi.org/10.1007/3540365605_13
http://www.balisage.net/Proceedings/vol3/html/Peroni01/BalisageVol3-Peroni01.html
http://www.balisage.net/Proceedings/vol3/html/Peroni01/BalisageVol3-Peroni01.html
http://llc.oxfordjournals.org/content/25/3/337.abstract
http://llc.oxfordjournals.org/content/25/3/337.abstract

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 171

[87] D. Schmidt and R. Colomb, “A data structure for representing

multi-version texts online,” International Journal of Human-Computer

Studies, vol. 67, no. 6, pp. 497–514, June 2009. [Online]. Available:

http://dx.doi.org/10.1016/j.ijhcs.2009.02.001

[88] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings. New

York, NY, USA: Cambridge University Press, 2007.

[89] J. D. Allen, D. Anderson, J. Becker, R. Cook, M. Davis, P. Edberg, M. Ev-

erson, A. Freytag, L. Iancu, R. Ishida, J. H. Jenkins, K. Lunde, R. Mc-

Gowan, L. Moore, E. Muller, A. Phillips, R. Pournader, M. Suignard, and

K. Whistler, Eds., The Unicode Standard, Version 7.0. Boston MA, USA:

Addison Wesley Longman Publishing Co., Inc., October 2014, vol. 7.0.

[90] J. M. Aliprand, “Unicode and ISO/IEC 10646: An overview,” McCallum

and Ertel [ME94], pp. 87–102, 1993.

[91] S. Ferilli, Automatic Digital Document Processing and Management: Prob-

lems, Algorithms and Techniques. Berlin Heidelberg: Springer, 2011.

[92] L. Burnard, K. O’Brien O’Keeffe, and J. Unsworth, “Editors’ introduc-

tion,” in Electronic textual editing, L. Burnard, K. O’Brien O’Keeffe, and

J. Unsworth, Eds. New York, NY, USA: Modern Language Association of

America, 2006, pp. 11–12.

[93] F. Tomasi, “L’edizione digitale e la rappresentazione della conoscenza. Un

esempio: Vespasiano da Bisticci e le sue lettere,” Ecdotica, vol. 9, pp. 264–

286, 2012.

[94] L. Burnard. (2014) TEI P5: Guidelines for Electronic Text Encoding

and Interchange. Version 2.7.0. [Online]. Available: http://www.tei-c.org/

Vault/P5/2.7.0/doc/tei-p5-doc/en/html/index.html

[95] J. A. Rydberg-Cox, Digital Libraries and the Challenges of Digital Human-

ities, R. Rikowski, Ed. Oxford: Chandos Publishing, 2006.

[96] S. Peroni, F. Poggi, and F. Vitali, “Overlapproaches in documents: a

definitive classification (in OWL, 2!),” in Proceedings of Balisage: The

Markup Conference, Washington, DC, ser. Balisage Series on Markup Tech-

nologies, vol. 13, August 2014. [Online]. Available: http://www.balisage.

net/Proceedings/vol13/html/Peroni01/BalisageVol13-Peroni01.html

http://dx.doi.org/10.1016/j.ijhcs.2009.02.001
http://www.tei-c.org/Vault/P5/2.7.0/doc/tei-p5-doc/en/html/index.html
http://www.tei-c.org/Vault/P5/2.7.0/doc/tei-p5-doc/en/html/index.html
http://www.balisage.net/Proceedings/vol13/html/Peroni01/BalisageVol13-Peroni01.html
http://www.balisage.net/Proceedings/vol13/html/Peroni01/BalisageVol13-Peroni01.html

172 BIBLIOGRAPHY

[97] A. Vohra and D. Vohra, Pro XML Development with Java Technology (Pro).

Berkely, CA, USA: Apress, 2006.

[98] D. Schmidt, “Merging multi-version texts: a general solution to the overlap

problem,” in Proceeding of Balisage: The Markup Conference, Montréal,

Canada, ser. Belisage Series on Markup Technologies, vol. 3, August 2009,

pp. 497–514. [Online]. Available: http://www.balisage.net/Proceedings/

vol3/html/Schmidt01/BalisageVol3-Schmidt01.html

[99] N. Guarino, D. Oberle, and S. Staab, “What is an ontology?” in Handbook

on Ontologies, ser. International Handbooks on Information Systems,

S. Staab and R. Studer, Eds. Springer Berlin Heidelberg, 2009, pp. 1–17.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-92673-3 0

[100] M. Doerr, S. Gradmann, S. Hennicke, A. Isaac, C. Meghini, and H. van de

Sompel, “The Europeana Data Model (EDM),” in World Library and In-

formation Congress: 76th IFLA General Conference and Assembly, Gothen-

burg, Sweden, August 2010, pp. 10–12.

[101] A. Gerber and J. Hunter, “A compound object authoring and publishing

tool for literary scholars based on the IFLA-FRBR,” International Journal

of Digital Curation, vol. 4, no. 2, pp. 28–42, 2009.

[102] D. Broeder, M. Kemps-Snijders, D. van Uytvanck, M. Windhouwer, P. With-

ers, P. Wittenburg, and C. Zinn, “A data category registry- and component-

based metadata framework,” in Proceedings of the 7th conference on Inter-

national Language Resources and Evaluation (LREC), Malta, N. Calzolari,

B. Maegaard, J. Mariani, J. Odjik, K. Choukri, S. Piperidis et al., Eds.

European Language Resources Association (ELRA), May 2010, pp. 43–47.

[103] A. Maslov, J. Creel, A. Mikeal, S. Phillips, J. Leggett, and

M. McFarland, “Adding OAI–ORE support to repository platforms,”

Journal of Digital Information, vol. 11, no. 1, 2010. [Online]. Available:

https://journals.tdl.org/jodi/index.php/jodi/article/view/749

[104] N. Smith, “Citation in classical studies,” Digital Humanities Quarterly,

vol. 3, no. 1, pp. 1–10, 2009.

[105] J. Tiepmar, C. Teichmann, G. Heyer, M. Berti, and G. Crane, “A new imple-

mentation for Canonical Text Services,” in Proceedings of the 8th Workshop

http://www.balisage.net/Proceedings/vol3/html/Schmidt01/BalisageVol3-Schmidt01.html
http://www.balisage.net/Proceedings/vol3/html/Schmidt01/BalisageVol3-Schmidt01.html
http://dx.doi.org/10.1007/978-3-540-92673-3_0
https://journals.tdl.org/jodi/index.php/jodi/article/view/749

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 173

on Language Technology for Cultural Heritage, Social Sciences, and Human-

ities (LaTeCH), Gothenburg, Sweden, K. Zervanou and C. Vertan, Eds., Eu-

ropean Chapter Association for Computational Linguistics (EACL). New

York, NY, USA: ACL, April 2014, pp. 1–8.

[106] D. N. Smith and C. W. Blackwell, “Four URLs, Limitless Apps: separation

of concerns in the Homer Multitext architecture,” in Donum natalicium

digitaliter confectum Gregorio Nagy septuagenario a discipulis collegis

familiaribus oblatum (A Virtual Birthday Gift Presented to Gregory Nagy

on Turning Seventy by his Students, Colleagues, and Friends) édition,

L. Muellner, Ed. The Center of Hellenic Studies of Harvard University,

2012. [Online]. Available: http://chs.harvard.edu/CHS/article/display/4846

[107] G. Crane, B. Almas, A. Babeu, L. Cerrato, A. Krohn, F. Baumgart,

M. Berti, G. Franzini, and S. Stoyanova, “Cataloging for a Billion Word

Library of Greek and Latin,” in Proceedings of the 1st International

Conference on Digital Access to Textual Cultural Heritage (DATeCH),

Madrid, Spain. New York, NY, USA: ACM, May 2014, pp. 83–88. [Online].

Available: http://doi.acm.org/10.1145/2595188.2595190

[108] J. Bradley and P. Vetch, “Supporting annotation as a scholarly tool

– Experiences from the online Chopin Variorum Edition,” Literary and

Linguistic Computing, vol. 22, no. 2, pp. 225–241, 2007. [Online]. Available:

http://llc.oxfordjournals.org/content/22/2/225.abstract

[109] M. Agosti and N. Ferro, “A formal model of annotations of digital content,”

ACM Transactions on Information Systems (TOIS), vol. 26, no. 1, November

2007. [Online]. Available: http://doi.acm.org/10.1145/1292591.1292594

[110] C. Mattmann and J. Zitting, Tika in Action. Greenwich, CT, USA: Man-

ning Publications Co., 2011.

[111] M. McCandless, E. Hatcher, and O. Gospodnetić, Lucene in action; 2nd ed.

Stamford Conn: Manning Pub, 2010.

[112] G. Wilcock, Introduction to Linguistic Annotation and Text Analytics,

1st ed. Morgan & Claypool Publishers, 2009.

[113] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The WEKA data mining software: An update,” SIGKDD

http://chs.harvard.edu/CHS/article/display/4846
http://doi.acm.org/10.1145/2595188.2595190
http://llc.oxfordjournals.org/content/22/2/225.abstract
http://doi.acm.org/10.1145/1292591.1292594

174 BIBLIOGRAPHY

Explorations Newsletter, vol. 11, no. 1, pp. 10–18, November 2009. [Online].

Available: http://doi.acm.org/10.1145/1656274.1656278

[114] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in Action. Green-

wich, CT, USA: Manning Publications Co., 2011.

[115] C. Carpineto, S. Osiński, G. Romano, and D. Weiss, “A survey of

web clustering engines,” ACM Computing Surveys, vol. 41, no. 3, pp.

17:1–17:38, July 2009. [Online]. Available: http://doi.acm.org/10.1145/

1541880.1541884

[116] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. Mc-

Closky, “The Stanford CoreNLP natural language processing toolkit,” in

Proceedings of 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, Baltimore, Maryland USA. Strouds-

burg, PA, USA: Association for Computational Linguistics, June 2014, pp.

55–60.

[117] A. Taylor, M. Marcus, and B. Santorini, “The Penn Treebank: An

overview,” in Treebanks, ser. Text, Speech and Language Technology,

A. Abeillé, Ed. Springer Netherlands, 2003, vol. 20, pp. 5–22. [Online].

Available: http://dx.doi.org/10.1007/978-94-010-0201-1 1

[118] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-

rich part-of-speech tagging with a cyclic dependency network,” in

Proceedings of the 2003 Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language

Technology (NAACL), Edmonton, Canada, vol. 1. Stroudsburg, PA,

USA: ACL, May-June 2003, pp. 173–180. [Online]. Available: http:

//dx.doi.org/10.3115/1073445.1073478

[119] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local

information into information extraction systems by Gibbs sampling,” in

Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics (ACL), Ann Arbor, Michigan. Stroudsburg, PA, USA:

Association for Computational Linguistics, June 2005, pp. 363–370.

[Online]. Available: http://dx.doi.org/10.3115/1219840.1219885

http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1541880.1541884
http://doi.acm.org/10.1145/1541880.1541884
http://dx.doi.org/10.1007/978-94-010-0201-1_1
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/1219840.1219885

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 175

[120] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani,

I. Roberts, G. Gorrell, A. Funk, A. Roberts, D. Damljanovic et al., “Devel-

oping language processing components with GATE version 7 (a user guide),”

The University of Sheffield, Department of Computer Science, Sheffield,

Tech. Rep., November 2012.

[121] T. Götz and O. Suhre, “Design and implementation of the UIMA common

analysis system,” IBM System Journal, vol. 43, no. 3, pp. 476–489, July

2004. [Online]. Available: http://dx.doi.org/10.1147/sj.433.0476

[122] E. Pierazzo, “A rationale of digital documentary editions,” Literary and

Linguistic Computing, vol. 26, no. 4, pp. 463–477, 2011. [Online]. Available:

http://llc.oxfordjournals.org/content/26/4/463.abstract

[123] M. Crochemore and W. Rytter, Jewels of stringology. Singapore, River

Edge, NJ: World Scientific, 2003.

[124] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology. New York, NY, USA: Cambridge University

Press, 1997.

[125] J.-B. Camps and F. Cafiero, “Genealogical variant locations and simpli-

fied stemma: a test case,” in Analysis of Ancient and Medieval Texts and

Manuscripts: Digital Approaches, C. M. T. L Andrews, Ed. Leuven: Bre-

pols Publishers, 2012, ch. 3, pp. 71–97.

[126] F. Boschetti, “Alignment of variant readings for linkage of multiple annota-

tions,” in In Proceedings of Electronic Corpora of Ancient Languages 2007,

Prague, Czech Republic, P. Zemanek, Ed., July 2008, pp. 11–24.

[127] D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and Macro-

molecules: The Theory and Practice of Sequence Comparison. Center for

the Study of Language and Information, December 1999.

[128] J. Holub, “Editorial: Stringology algorithms,” Discrete Applied Mathe-

matics, vol. 163, no. 3, pp. 237–238, January 2014. [Online]. Available:

http://dx.doi.org/10.1016/j.dam.2013.11.009

[129] H.-J. Boeckenhauer and D. Bongartz, Algorithmic Aspects of Bioinformatics,

ser. Natural Computing. Springer Berlin Heidelberg, 2007. [Online].

Available: http://dx.doi.org/10.1007/978-3-540-71913-7 1

http://dx.doi.org/10.1147/sj.433.0476
http://llc.oxfordjournals.org/content/26/4/463.abstract
http://dx.doi.org/10.1016/j.dam.2013.11.009
http://dx.doi.org/10.1007/978-3-540-71913-7_1

176 BIBLIOGRAPHY

[130] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string

searches,” SIAM Journal Computing, vol. 22, no. 5, pp. 935–948, October

1993. [Online]. Available: http://dx.doi.org/10.1137/0222058

[131] P. Husemann and J. Stoye, “Phylogenetic comparative assembly,”

in Proceedings of the 9th International Conference on Algorithms in

Bioinformatics (WABI), Philadelphia, PA, USA. Berlin, Heidelberg:

Springer-Verlag, September 2009, pp. 145–156. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1812906.1812919

[132] R. C. Edgar and S. Batzoglou, “Multiple sequence alignment,”

Current Opinion in Structural Biology, vol. 16, no. 3, pp. 368–373,

2006. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0959440X06000704

[133] M. Spencer and C. Howe, “Collating texts using progressive multiple

alignment,” Computers and the Humanities, vol. 38, no. 3, pp. 253–270,

2004. [Online]. Available: http://dx.doi.org/10.1007/s10579-004-8682-1

[134] T. F. Smith and M. S. Waterman, “Identification of common molecular

subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197,

1981. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/0022283681900875

[135] D.-F. Feng and R. F. Doolittle, “Progressive sequence alignment as

a prerequisite to correct phylogenetic trees,” Journal of Molecular

Evolution, vol. 25, no. 4, pp. 351–360, 1987. [Online]. Available:

http://dx.doi.org/10.1007/BF02603120

[136] P. Robinson, “The concept of the work in the digital age,” in Ecdotica, G. M.

Anselmi, E. Pasquini, and F. Rico, Eds. Roma: Carocci, 2013, vol. 10, pp.

13–41.

[137] P. V. Baret, P. Robinson, and C. Macé, “Testing methods on an

artificially created textual tradition,” in The evolution of texts: confronting

stemmatological and genetical methods, C. Macé, P. Baret, A. Bozzi, and

L. Cignoni, Eds., vol. 24-25, Proceedings of the international workshop

held in Louvain-la-Neuve on September 1-2, 2004. Pisa, Roma: Istituti

http://dx.doi.org/10.1137/0222058
http://dl.acm.org/citation.cfm?id=1812906.1812919
http://www.sciencedirect.com/science/article/pii/S0959440X06000704
http://www.sciencedirect.com/science/article/pii/S0959440X06000704
http://dx.doi.org/10.1007/s10579-004-8682-1
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://dx.doi.org/10.1007/BF02603120

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 177

editoriali e poligrafici internazionali, 2006, pp. 255–283. [Online]. Available:

http://digital.casalini.it/an/2212910

[138] M. C. Passarotti, “Towards textual drift modelling in computational philol-

ogy,” in Linguistica Computazionale, C. Macé, P. Baret, A. Bozzi, and

L. Cignoni, Eds., vol. 24-25, Proceedings of the international workshop held

in Louvain-la-Neuve on September 1-2, 2004. Pisa-Rome: Istituti Editoriali

e Poligrafici Internazionali, 2006, pp. 63–86.

[139] H. Bast and M. Celikik, “Efficient fuzzy search in large text collections,”

ACM Transactions on Information Systems, vol. 31, no. 2, pp. 10:1–

10:59, May 2013. [Online]. Available: http://doi.acm.org/10.1145/2457465.

2457470

[140] G. Salton, A. Wong, and C. S. Yang, “A vector space model

for automatic indexing,” Communications of the ACM, vol. 18,

no. 11, pp. 613–620, November 1975. [Online]. Available: http:

//doi.acm.org/10.1145/361219.361220

[141] F. P. Miller, A. F. Vandome, and J. McBrewster, Levenshtein Distance.

Alpha Press, 2009.

[142] Z. S. Harris, “Distributional structure,” Word, 1954.

[143] A. Lenci and G. Benotto, “Identifying Hypernyms in Distributional

Semantic Spaces,” in Proceedings of the 1st Joint Conference on Lexical

and Computational Semantics: Proceedings of the Main Conference and the

Shared Task: Proceedings of the 6th International Workshop on Semantic

Evaluation (SemEval), Montréal, Canada, vol. 1,2. Stroudsburg, PA, USA:

Association for Computational Linguistics, June 2012, pp. 75–79. [Online].

Available: http://dl.acm.org/citation.cfm?id=2387636.2387650

[144] R. Greenlaw and S. Kantabutra, “Survey of clustering: Algorithms and

applications,” International Journal of Information Retrieval Research,

vol. 3, no. 2, pp. 1–29, April 2013. [Online]. Available: http:

//dx.doi.org/10.4018/ijirr.2013040101

[145] D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009.

http://digital.casalini.it/an/2212910
http://doi.acm.org/10.1145/2457465.2457470
http://doi.acm.org/10.1145/2457465.2457470
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://dl.acm.org/citation.cfm?id=2387636.2387650
http://dx.doi.org/10.4018/ijirr.2013040101
http://dx.doi.org/10.4018/ijirr.2013040101

178 BIBLIOGRAPHY

[146] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language

Processing, 1st ed. Cambridge, MA, USA: The MIT Press, June 1999.

[147] A. Tonazzini, E. Salerno, V. Palleschi, G. Bianco, and F. De Filippo, “Ex-

tracting information from multimodal images of documents and artworks,” in

Proceedings of 6th International Congress on Science and Technology for the

Safeguard of Cultural Heritage in the Mediterranean Basin, Athens, Greece,

vol. 3. Rome: Valmar, October 2013, pp. 196–204.

[148] A. Bozzi, M. M. Morales, and M. Rufino, “Imago et umbra programma di

digitalizzazione per l’archivio storico della Pontificia Università Gregoriana:

criteri, metodi e strumenti,” Digitalia, vol. 5, no. 2, pp. 79–99, 2010.

[149] A. Prescot, “The electronic Beowulf and digital restoration,” Literary and

linguistic computing, vol. 12, no. 3, pp. 186–195, 1997.

[150] K. S. Kiernan, “Digital image processing and the Beowulf manuscript,”

Literary and Linguistic Computing, vol. 6, no. 1, pp. 20–27, 1991. [Online].

Available: http://llc.oxfordjournals.org/content/6/1/20.abstract

[151] R. Scopigno, “Visual media for cultural heritage: an opportunity for as-

sessing, finding limitations and enhancing technologies,” in Proceedings of

18th Central European Seminar on Computer Graphics, Smolenice, Slovakia,

M. I. Michael Wimmer, Jiri Hladuvka, Ed., vol. 1. Vienna University of

Technology, May 2014, pp. 5–6.

[152] S. Marinai and H. Fujisawa, Machine Learning in Document Analysis and

Recognition, 1st ed. Berlin: Springer Publishing Company, Incorporated,

2010.

[153] F. Ciotti, M. Daquino, and F. Tomasi, “Text encoding initiative semantic

modeling. A conceptual workflow proposal,” in Proceedings of 11th Italian

Research Conference on Digital Libraries (IRCDL), Bolzano, Italy, January

2015. [Online]. Available: http://ircdl2015.unibz.it/papers/paper-10.pdf

[154] F. Boschetti, A. Cimino, F. Dell’Orletta, G. E. Lebani, L. Passaro, P. Pic-

chi, G. Venturi, S. Montemagni, and A. Lenci, “Computational analysis of

historical documents: An application to italian war bulletins in world war I

and II,” in Proceedings of the LREC Workshop on Language Resources and

http://llc.oxfordjournals.org/content/6/1/20.abstract
http://ircdl2015.unibz.it/papers/paper-10.pdf

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 179

Technologies for Processing and Linking Historical Documents and Archives.

Deploying Linked Open Data in Cultural Heritage, (LRT4HDA), Reykjavik,

May 2014, pp. 70–79.

[155] F. Ciotti and A. Ciula, Eds., The Linked TEI: Text Encoding in the Web.

TEI Conference, DIGILAB, Rome, Italy 2-5 October, 2013.

[156] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global

Data Space, ser. Synthesis Lectures on the Semantic Web: Theory

and Technology. San Rafael, California, USA: Morgan & Claypool,

2011, vol. 1, no. 1. [Online]. Available: http://dx.doi.org/10.2200/

S00334ED1V01Y201102WBE001

[157] A. E. C. Basave, G. Rizzo, A. Varga, M. Rowe, M. Stankovic, and A. S.

Dadzie, “Making sense of Microposts (#Microposts2014) named entity ex-

traction and linking challenge,” in Proceedings of the 4th Workshop on Mak-

ing Sense of Microposts co-located with the 23rd International World Wide

Web Conference, Seoul, Korea, April 2014, pp. 54–60.

[158] M. Passarotti, “LEMLAT. Uno strumento per la lemmatizzazione morfolog-

ica automatica del latino,” Journal of Latin Linguistics, vol. 9, no. 3, pp.

107–128, 2007.

[159] B. McGillivray, Methods in Latin Computational Linguistics. Leiden: Brill,

2013.

[160] F. Sebastiani, “Text categorization,” in Text Mining and its Applications,

A. Zanasi, Ed. WIT Press, 2005. [Online]. Available: http://www.isti.cnr.

it/People/F.Sebastiani/Publications/TM05.pdf

[161] P. Ferragina, R. González, G. Navarro, and R. Venturini, “Compressed text

indexes: From theory to practice,” Journal of Experimental Algorithmics

(JEA), vol. 13, pp. 12:1.12–12:1.31, February 2009. [Online]. Available:

http://doi.acm.org/10.1145/1412228.1455268

[162] M. Ciaramita, G. Attardi, F. Dell’Orletta, and M. Surdeanu, “DeSRL:

A linear-time semantic role labeling system,” in Proceedings of the

12th Conference on Computational Natural Language Learning (CoNLL),

Manchester, United Kingdom. Stroudsburg, PA, USA: Association for

http://dx.doi.org/10.2200/S00334ED1V01Y201102WBE001
http://dx.doi.org/10.2200/S00334ED1V01Y201102WBE001
http://www.isti.cnr.it/People/F.Sebastiani/Publications/TM05.pdf
http://www.isti.cnr.it/People/F.Sebastiani/Publications/TM05.pdf
http://doi.acm.org/10.1145/1412228.1455268

180 BIBLIOGRAPHY

Computational Linguistics, August 2008, pp. 258–262. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1596324.1596371

[163] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2011.

[164] M. Abrate, A. M. Del Grosso, E. Giovannetti, A. L. Duca, D. Luzzi,

L. Mancini, A. Marchetti, I. Pedretti, and S. Piccini, “Sharing cultural her-

itage: the Clavius on the Web project,” in Proceedings of the 9th interna-

tional conference on Language Resources and Evaluation (LREC), Reykjavik,

N. Calzolari, K. Choukri, T. Declerck, H. Loftsson, B. Maegaard, J. Mariani,

A. Moreno, J. Odijk, and S. Piperidis, Eds. European Language Resources

Association (ELRA), May 2014, pp. 627–634.

[165] P. Halácsy, A. Kornai, and C. Oravecz, “HunPos: An open source

trigram tagger,” in Proceedings of the 45th Annual Meeting of the

Association for Computational Linguistics on Interactive Poster and

Demonstration Sessions (ACL), Prague, Czech Republic. Stroudsburg,

PA, USA: ACL, June 2007, pp. 209–212. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1557769.1557830

[166] D. Bamman and G. Crane, “The ancient Greek and Latin dependency

Treebanks,” in Language Technology for Cultural Heritage, ser. Theory and

Applications of Natural Language Processing, C. Sporleder, A. van den

Bosch, and K. Zervanou, Eds. Springer Berlin Heidelberg, 2011, pp. 79–98.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-20227-8 5

[167] H. Beigi, “Hidden Markov Modeling (HMM),” in Fundamentals of

Speaker Recognition. Springer US, 2011, pp. 411–463. [Online]. Available:

http://dx.doi.org/10.1007/978-0-387-77592-0 13

[168] S. Benedetto and E. Biglieri, Viterbi algorithm, ser. Information Technology:

Transmission, Processing, and Storage. Springer US, 2002, ch. F, pp.

807–815. [Online]. Available: http://dx.doi.org/10.1007/0-306-46961-8 20

[169] F. de Jong, “NLP and the humanities: The revival of an old liaison,”

in Proceedings of the 12th Conference of the European Chapter of

the Association for Computational Linguistics (EACL), Athens, Greece.

http://dl.acm.org/citation.cfm?id=1596324.1596371
http://dl.acm.org/citation.cfm?id=1557769.1557830
http://dl.acm.org/citation.cfm?id=1557769.1557830
http://dx.doi.org/10.1007/978-3-642-20227-8_5
http://dx.doi.org/10.1007/978-0-387-77592-0_13
http://dx.doi.org/10.1007/0-306-46961-8_20

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 181

Stroudsburg, PA, USA: ACL, March-April 2009, pp. 10–15. [Online].

Available: http://dl.acm.org/citation.cfm?id=1609067.1609168

[170] E. Foster, “Introduction to software engineering,” in Software Engineering.

Apress, 2014, pp. 3–20. [Online]. Available: http://dx.doi.org/10.1007/

978-1-4842-0847-2 1

[171] M. Fowler, “The state of design,” IEEE Software, vol. 22, no. 6, pp.

12–13, 16, November 2005. [Online]. Available: http://dx.doi.org/10.1109/

MS.2005.166

[172] R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave

Macmillan, 2005.

[173] W. McCarty, “Signs of times present and future,” Human Discussion Group,

vol. 22, no. 218, 2008.

[174] A. M. Del Grosso and F. Boschetti, “Collaborative multimedia platform

for computational philology, CoPhi architecture,” in Proceedings of the 5th

International Conferences on Advances in Multimedia (MMEDIA), Venice,

Italy, P. Davis, Ed., International Academy, Research, and Industry Associ-

ation. IARIA, April 2013, pp. 46–51.

[175] F. Boschetti, A. M. Del Grosso, and M. Lamé, “Data sets and software

components: Adjustment and reuse,” in Proceedings of the Papyrus and the

Hypertext. Athenaeus in the Scholarly Kitchen, Paris, France. Université

Paris-Ouest and ANHIMA, May 2012, selected paper.

[176] Object Management Group, Unified Modeling Language Specification, 2000.

[177] G. Booch, Software Component with ADA: Structures, Tools, and Subsys-

tems, 1st ed., ser. The Benjamin/Cummings in Ada and Software Engineer-

ing. Redwood City, CA, USA: Benjamin-Cummings Publishing Co., Inc.,

April 1987.

[178] G. T. Heineman and W. T. Councill, Eds., Component-based Software Engi-

neering: Putting the Pieces Together. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2001.

http://dl.acm.org/citation.cfm?id=1609067.1609168
http://dx.doi.org/10.1007/978-1-4842-0847-2_1
http://dx.doi.org/10.1007/978-1-4842-0847-2_1
http://dx.doi.org/10.1109/MS.2005.166
http://dx.doi.org/10.1109/MS.2005.166

182 BIBLIOGRAPHY

[179] C. Szyperski, Component Software: Beyond Object-Oriented Programming,

2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

2002.

[180] A. Bozzi and A. M. Del Grosso, “Progettazione, sviluppo e gestione di una

infrastruttura filologico-computazionale per la produzione, interrogazione e

pubblicazione sul web di documenti digitali,” in Percorsi migranti: uomini,

diritti, lavoro, linguaggi, G. C. Bruno, I. Caruso, M. Sanna, and I. Vellecco,

Eds. Milano: Mc Graw Hill, 2011, pp. 339–369.

[181] S. Ashmore and K. Runyan, Introduction to Agile Methods. Upper Saddle

River, NJ: Addison-Wesley Professional, Pearson Education, 2014.

[182] H. Beyer, User-centered Agile Methods, ser. Synthesis lectures on human-

centered informatics. San Rafael, California: Morgan & Claypool, 2010.

[183] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination

of software engineering work practices,” in Proceedings of the 1st

Decade High Impact Papers of Centers for Advanced Studies Conference

(CASCON), Toronto, Ontario, Canada. Riverton, NJ, USA: IBM

Corporation, November 2010, pp. 174–188. [Online]. Available: http:

//dx.doi.org/10.1145/1925805.1925815

[184] D. Rosenberg and M. Stephens, Use Case Driven Object Modeling with UML.

Theory and Practice, 2nd ed. Berkely, CA, USA: Apress, 2013.

[185] M. Collins-Cope, D. Rosenberg, and M. Stephens, Agile Development with

ICONIX Process: People, Process, and Pragmatism. Berkely, CA, USA:

Apress, 2005.

[186] G. Booch, J. Conallen, B. J. Young, K. A. Houston, R. A. Maksimchuk,

and M. W. Engle, Object-Oriented Analysis and Design with Applications,

3rd ed. Addison-Wesley, April 2007.

[187] S. Meyers, “The most important design guideline? [user interface],”

IEEE Software, vol. 21, no. 4, pp. 14–16, July 2004. [Online]. Available:

http://dx.doi.org/10.1109/MS.2004.29

[188] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 2003.

http://dx.doi.org/10.1145/1925805.1925815
http://dx.doi.org/10.1145/1925805.1925815
http://dx.doi.org/10.1109/MS.2004.29

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 183

[189] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Ref-

erence Manual, 2nd ed. Addison-Wesley Professional, 2010.

[190] J. Bloch, “How to design a good API and why it matters,” in Companion

to the 21st ACM SIGPLAN Symposium on Object-oriented Programming

Systems, Languages, and Applications (OOPSLA), Portland, Oregon, USA.

New York, NY, USA: ACM, October 2006, pp. 506–507. [Online]. Available:

http://doi.acm.org/10.1145/1176617.1176622

[191] J. Blanchette, The Little Manual of API Design, Trolltech a Nokia company,

June 2008.

[192] M. Cohn, User Stories Applied: For Agile Software Development. Redwood

City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[193] F. Boschetti, R. Del Gratta, A. M. Del Grosso, M. Monachini, and O. Nahli,

“Collaborative philology on the way to Web services: the case of CoPhi-

Wordnet,” in Proceedings of the 2nd International Workshop on Worldwide

Language Service Infrastructure (WLSI), Kyoto, Japan, Y. Murakami and

D. Lin, Eds., January 2015, selected paper.

[194] F. Boschetti, A. Bozzi, and A. M. Del Grosso, “Library of components for

the computational philological domain dealing with TEI markup guidelines:

CoPhiLib,” in Book of Abstracts of the TEI Conference and Members Meet-

ing. The Linked TEI: Text Encoding in the Web, Rome, Italy, F. Ciotti and

A. Ciula, Eds. Rome: Universitalia, October 2013, pp. 160–162.

[195] M. Henning, “API design matters,” Communications of the ACM,

vol. 52, no. 5, pp. 46–56, May 2009. [Online]. Available: http:

//doi.acm.org/10.1145/1506409.1506424

[196] M. Lamé, V. Valchera, and F. Boschetti, “Epigrafia digitale. Paradigmi di

rappresentazione per il trattamento digitale delle epigrafi,” Epigraphica: pe-

riodico internazionale di epigrafia, vol. 1-2, no. 74, pp. 331–338, 2012.

[197] L. Benedetti, F. Boschetti, A. M. Del Grosso, and M. Lamé, “La

matière épigraphique dans un espace numérique: l’importance du support

archéologique,” in Proceedings of Journées d’Informatique et Archéologie de

Paris (JIAP), Paris, France. Université de Paris 1 Panthéon Sorbonne

(UFR 03), CNRS UMR 7041 Arscan, June 2012, selected paper.

http://doi.acm.org/10.1145/1176617.1176622
http://doi.acm.org/10.1145/1506409.1506424
http://doi.acm.org/10.1145/1506409.1506424

184 BIBLIOGRAPHY

[198] F. Soler, J. C. Torres, A. J. León, and M. V. Luzón, “Design of cultural

heritage information systems based on information layers,” Journal on

Computing and Cultural Heritage (JOCCH), vol. 6, no. 4, pp. 15:1–15:17,

December 2013. [Online]. Available: http://doi.acm.org/10.1145/2532630.

2532631

[199] B. Almas and M.-C. Beaulieu, “Developing a new integrated editing

platform for source documents in classics,” Literary and Linguistic

Computing, vol. 28, no. 4, pp. 493–503, 2013. [Online]. Available:

http://llc.oxfordjournals.org/content/28/4/493.abstract

[200] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Build-

ing, and Deploying Messaging Solutions. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2003.

[201] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and RESTful Web Services, 1st ed. Upper Saddle River,

NJ: Addison-Wesley Professional, 2011.

[202] J. Tulach, Practical API Design: Confessions of a Java Framework Archi-

tect, 1st ed. Berkely, CA, USA: Apress, 2008.

[203] D. Buzzetti, “Digital editions and text processing,” in Text editing, print

and the digital world, ser. Digital Research in the Arts and Humanities,

K. S. Marilyn Deegan, Ed. Farnham Surrey: Ashgate, 2009, pp. 45–62.

[204] F. Boschetti, “A corpus-based approach to philological issues,” Ph.D. dis-

sertation, University of Trento, Trento, March 2010.

[205] M. Reddy, API Design for C++, 1st ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2011.

[206] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Software

Architecture, On Patterns and Pattern Languages, ser. Pattern-Oriented

Software Architecture. Hoboken: John Wiley & Sons, 2007.

[207] B. Liskov, “Keynote address - data abstraction and hierarchy,” SIGPLAN

Notices, Special issue: OOPSLA, vol. 23, no. 5, pp. 17–34, January 1987.

[Online]. Available: http://doi.acm.org/10.1145/62139.62141

http://doi.acm.org/10.1145/2532630.2532631
http://doi.acm.org/10.1145/2532630.2532631
http://llc.oxfordjournals.org/content/28/4/493.abstract
http://doi.acm.org/10.1145/62139.62141

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 185

[208] R. C. Martin, “Design principles and design patterns,” Object Mentor, no. 1,

pp. 1–34, 2000.

[209] J. Bloch, Effective Java, 2nd ed., ser. Java Series. Upper Saddle River, NJ,

USA: Prentice Hall PTR, 2008.

[210] F. Boschetti, “Methods to extend Greek and Latin corpora with variants

and conjectures: Mapping critical apparatuses onto reference text,” in

Proceedings of the Corpus Linguistics Conference (CL), Birmingham, UK,

M. Davies, P. Rayson, S. Hunston, and P. Danielsson, Eds. University of

Birmingham, July 2007, pp. 150:1–150:11.

[211] G. Genette, Paratexts: Thresholds of Interpretation, ser. Literature, Culture,

Theory. Cambridge: Cambridge University Press, 1997.

[212] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-

ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1995.

[213] S. Fraser, E. Gamma, R. Helm, and R. Johnson, “Design patterns:

Beginnings and futures,” in Companion to the 21st ACM SIGPLAN

Symposium on Object-oriented Programming Systems, Languages, and

Applications (OOPSLA), Portland, Oregon, USA. New York, NY,

USA: ACM, October 2006, pp. 934–934. [Online]. Available: http:

//doi.acm.org/10.1145/1176617.1176748

[214] S. Montemagni, “DH@ILC,” in Collaborative Research Practices and Shared

Infrastructures for Humanities Computing. Proceedings of revised papers of

the 2nd Annual Conference of the Associazione per l’Informatica Umanistica

e la Cultura Digitale (AIUCD), Padova, M. Agosti and F. Tomasi, Eds.

CLEUP, December 2013, pp. 101–114.

[215] K. Arnold, “Programmers are people, too,” Queue, vol. 3, no. 5, pp.

54–59, June 2005. [Online]. Available: http://doi.acm.org/10.1145/1071713.

1071731

[216] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The modular

structure of complex systems,” IEEE Transaction on Software Engineering,

vol. 11, no. 3, pp. 259–266, March 1985. [Online]. Available: http:

//dx.doi.org/10.1109/TSE.1985.232209

http://doi.acm.org/10.1145/1176617.1176748
http://doi.acm.org/10.1145/1176617.1176748
http://doi.acm.org/10.1145/1071713.1071731
http://doi.acm.org/10.1145/1071713.1071731
http://dx.doi.org/10.1109/TSE.1985.232209
http://dx.doi.org/10.1109/TSE.1985.232209

186 BIBLIOGRAPHY

[217] K. Leino, M. Rustan, and G. Nelson, “Data abstraction and information

hiding,” ACM Transactions on Programming Languages and Systems,

vol. 24, no. 5, pp. 491–553, September 2002. [Online]. Available:

http://doi.acm.org/10.1145/570886.570888

[218] D. L. Parnas, “On the criteria to be used in decomposing systems into

modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,

December 1972. [Online]. Available: http://doi.acm.org/10.1145/361598.

361623

[219] M. P. Robillard, “What makes APIs hard to learn? Answers from

developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, November 2009.

[Online]. Available: http://dx.doi.org/10.1109/MS.2009.193

[220] J. Stylos, A. Faulring, Z. Yang, and B. Myers, “Improving API documen-

tation using API usage information,” in Visual Languages and Human-

Centric Computing (VL/HCC), Corcallis, Oregon, ser. IEEE Symposium

on, September 2009, pp. 119–126.

[221] T. Grill, O. Polacek, and M. Tscheligi, “Methods towards API

usability: A structural analysis of usability problem categories,” in

Proceedings of the 4th International Conference on Human-Centered

Software Engineering, Toulouse, France. Berlin, Heidelberg: Springer-

Verlag, October 2012, pp. 164–180. [Online]. Available: http://dx.doi.org/

10.1007/978-3-642-34347-6 10

[222] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret,

J. Karstens, A. Efeoglu, and D. K. Busse, “Studying the documentation of

an API for enterprise service-oriented architecture,” J. Organ. End User

Comput., vol. 22, no. 1, pp. 23–51, January 2010. [Online]. Available:

http://dx.doi.org/10.4018/joeuc.2010101903

[223] M. A. Khan, S. Muhammad, and T. Muhammad, “Identifying performance

issues based on method invocation patterns of an API,” in Proceedings

of the 18th International Conference on Evaluation and Assessment in

Software Engineering (EASE), London, England, United Kingdom. New

York, NY, USA: ACM, May 2014, pp. 51:1–51:6. [Online]. Available:

http://doi.acm.org/10.1145/2601248.2601277

http://doi.acm.org/10.1145/570886.570888
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://dx.doi.org/10.1109/MS.2009.193
http://dx.doi.org/10.1007/978-3-642-34347-6_10
http://dx.doi.org/10.1007/978-3-642-34347-6_10
http://dx.doi.org/10.4018/joeuc.2010101903
http://doi.acm.org/10.1145/2601248.2601277

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 187

[224] C. De Roover, R. Lammel, and E. Pek, “Multi-dimensional exploration of

API usage,” in Proceedings of the 21st IEEE International Conference on

Program Comprehension (ICPC), San Francisco, CA, USA. Washington,

DC, USA: IEEE, May 2013, pp. 152–161.

[225] D. Dig and R. Johnson, “The role of refactorings in API evolution,” in Pro-

ceedings of the 21st IEEE International Conference on Software Maintenance

(ICSM), Budapest, Hungary. Washington, DC, USA: IEEE, September

2005, pp. 389–398.

[226] G. Rooney, “Preserving backward compatibility,” FactSet Research

Systems, Open Paper on O’Reilly OnLamp.com, 2005. [On-

line]. Available: http://www.onlamp.com/pub/a/onlamp/2005/02/17/

backwardscompatibility.html

[227] H. Boeck, The Definitive Guide to NetBeansTM Platform, 1st ed. Apress,

May 2009.

[228] M. Naftalin and P. Wadler, Java Generics and Collections. O’Reilly Media,

Inc., 2006.

[229] C. Parnin, C. Bird, and E. Murphy-Hill, “Adoption and use of Java

generics,” Empirical Software Engineering, vol. 18, no. 6, pp. 1047–1089,

2013. [Online]. Available: http://dx.doi.org/10.1007/s10664-012-9236-6

[230] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-oriented software architecture: A System of Patterns, ser. Pattern-

oriented software architecture. Wiley India Pvt. Limited, 2008, vol. 1.

[231] P. Mastandrea and L. Tessarolo, “Da Musisque Deoque a Memorata Po-

etis. Le vie della ricerca intertestuale,” in Collaborative Research Prac-

tices and Shared Infrastructures for Humanities Computing. Proceedings

of revised papers of the 2nd Annual Conference of the Associazione per

l’Informatica Umanistica e la Cultura Digitale (AIUCD), Padova, M. Agosti

and F. Tomasi, Eds. CLEUP, December 2013, pp. 69–80.

[232] A. Di Iorio, M. Schirinzi, F. Vitali, and C. Marchetti, “A natural

and multi-layered approach to detect changes in tree-based textual

documents,” in Enterprise Information Systems, ser. Lecture Notes

http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
http://dx.doi.org/10.1007/s10664-012-9236-6

188 BIBLIOGRAPHY

in Business Information Processing, J. Filipe and J. Cordeiro, Eds.

Springer Berlin Heidelberg, 2009, vol. 24, pp. 90–101. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-01347-8 8

[233] G. Barabucci, A. Di Iorio, S. Peroni, F. Poggi, and F. Vitali,

“Annotations with EARMARK in practice: a fairy tale,” in Proceedings

of the 1st International Workshop on Collaborative Annotations in Shared

Environment: metadata, vocabularies and techniques in the Digital

Humanities (DH-CASE), Florence, Italy. ACM, September 2013, pp.

11:1–11:8. [Online]. Available: http://doi.acm.org/10.1145/2517978.2517990

[234] S. Peroni, F. Poggi, and F. Vitali, “Tracking changes through EARMARK: a

theoretical perspective and an implementation,” in Proceedings of the 1st In-

ternational Workshop on: Document Changes: Modeling, Detection, Storage

and Visualization (DChanges), Florence, Italy. ACM DocEng, September

2013.

[235] F. Meyerer and O. Hummel, “Towards plug-and-play for component-based

software systems,” in Proceedings of the 19th International Doctoral

Symposium on Components and Architecture (WCOP), Marcq-en-Bareul,

France. New York, NY, USA: ACM, June-July 2014, pp. 25–30. [Online].

Available: http://doi.acm.org/10.1145/2601328.2601334

[236] M. Piotrowski, Natural language processing for historical texts, ser. Synthesis

Lectures on Human Language Technologies. Morgan & Claypool Publishers,

2012, vol. 5, no. 2.

[237] N. White, “Training tesseract for ancient Greek OCR,” Eutypon, vol. 28–29,

pp. 1–12, October 2012.

[238] B. Robertson, C. Dalitz, and F. Schmitt, “Automated page layout

simplification of Patrologia graeca,” in Proceedings of the 1st International

Conference on Digital Access to Textual Cultural Heritage (DATeCH ’14),

Madrid, Spain. New York, NY, USA: ACM, May 2014, pp. 167–172.

[Online]. Available: http://doi.acm.org/10.1145/2595188.2595213

[239] F. Boschetti, M. Romanello, A. Babeu, D. Bamman, and G. Crane,

“Improving OCR accuracy for classical critical editions,” in Research and

Advanced Technology for Digital Libraries, ser. Lecture Notes in Computer

http://dx.doi.org/10.1007/978-3-642-01347-8_8
http://doi.acm.org/10.1145/2517978.2517990
http://doi.acm.org/10.1145/2601328.2601334
http://doi.acm.org/10.1145/2595188.2595213

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 189

Science, M. Agosti, J. Borbinha, S. Kapidakis, C. Papatheodorou, and

G. Tsakonas, Eds. Springer Berlin Heidelberg, 2009, vol. 5714, pp. 156–167.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04346-8 17

[240] A. M. Del Grosso and F. Boschetti, “Parallel OCR for ancient Greek critical

editions,” in Science and Supercomputing in Europe, Research Highlights.

HPC-Europa2, 2012.

[241] J. He, Q. D. M. Do, A. C. Downton, and J. H. Kim, “A comparison

of binarization methods for historical archive documents,” in Proceedings

of 8th International Conference on Document Analysis and Recognition

(ICDAR), Seoul, South Korea, vol. 1. Washington, DC, USA: IEEE

Computer Society, August-September 2005, pp. 538–542. [Online]. Available:

http://dx.doi.org/10.1109/ICDAR.2005.3

[242] A. M. Del Grosso, S. Marchi, F. Murano, and L. Pesini, “A collabora-

tive tool for philological research: experiments on Ferdinand de Saussure’s

manuscripts,” in Proceedings of revised papers of the 2nd Annual Confer-

ence of the Associazione per l’Informatica Umanistica e la Cultura Digitale.

Collaborative Research Practices and Shared Infrastructures for Humanities

Computing, (AIUCD) Padova, M. Agosti and F. Tomasi, Eds. Padova:

CLEUP, December 2013, pp. 163–175.

[243] A. M. Del Grosso and S. Marchi, “Una applicazione web per la filologia

computazionale: un esperimento su alcuni scritti autografi di Ferdinand de

Saussure,” in Guida per una edizione digitale dei manoscritti di Ferdinand

de Saussure, D. Gambarara and M. P. Marchese, Eds. Edizioni dell’Orso,

2013, pp. 131–157.

[244] A. M. Del Grosso, “Indexing techniques and variant readings management,”

Studia graeco-arabica, vol. 3, pp. 209–230, 2013.

[245] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[246] M. Manca, L. Spinazzè, P. Mastandrea, L. Tessarolo, and F. Boschetti, “Mu-

sisque deoque: Text retrieval on critical editions,” in Proceedings of workshop

on Annotation of Corpora for Research in the Humanities, Heidelberg, Ger-

http://dx.doi.org/10.1007/978-3-642-04346-8_17
http://dx.doi.org/10.1109/ICDAR.2005.3

190 BIBLIOGRAPHY

many, F. Mambrini, M. Passarotti, and C. Sporleder, Eds., vol. 26, no. 2.

JLCL, 2012, pp. 127–138.

[247] L. Pesini, A. M. Del Grosso, and A. Bozzi, “F. de Saussure e la lin-

guistica romanza. Un’applicazione web per l’edizione elettronica dei mano-

scritti,” in Proceedings of 27th Congrès international de linguistique et de

philologie romanes. Section 16: Projets en cours ; ressources et outils nou-

veaux,(CILPR), Nancy, France, A. Lemaréchal, P. Koch, and P. Swiggers,

Eds., Laboratoire ATILF (CNRS and Université de Lorraine) et la Société

de linguistique romane. ATILF, July 2013.

[248] Y. Bizzoni, F. Boschetti, R. Del Gratta, H. Diakoff, M. Monachini, and

G. Crane, “The making of ancient Greek WordNet,” in Proceedings of the 9th

Language Resources and Evaluation Conference (LREC), Reykjavik, Iceland,

N. Calzolari, K. Choukri, T. Declerck, H. Loftsson, B. Maegaard, J. Mariani,

A. Moreno, J. Odijk, and S. Piperidis, Eds. European Language Resources

Association (ELRA), May 2014, pp. 1140–1147.

[249] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The

Concepts and Technology behind Search, 2nd ed. Harlow: Addison-Wesley

Professional, 2011.

[250] E. Pierazzo, “Digital documentary editions and the others’,” Scholarly

Editing, vol. 35, 2014. [Online]. Available: http:www.scholarlyediting.org/

2014/essays/essay.pierazzo.html

[251] F. Boschetti, “La localizzazione del Perseus Project in lingua italiana,”

Quaderni DigiLab, vol. 3, no. 1, pp. 221–234, 2014.

[252] ——, “Acquisizione e creazione di risorse plurilingui per gli studi di filolo-

gia classica in ambienti collaborativi,” in Collaborative Research Prac-

tices and Shared Infrastructures for Humanities Computing. Proceedings

of revised papers of the 2nd Annual Conference of the Associazione per

l’Informatica Umanistica e la Cultura Digitale (AIUCD), Padova, M. Agosti

and F. Tomasi, Eds. CLEUP, December 2013, pp. 55–68.

[253] A. Bellandi, A. Bellusci, A. Cappelli, and E. Giovannetti, “Graphic visu-

alization in literary text interpretation,” in Proceedings of 18th Interna-

http:www.scholarlyediting.org/2014/essays/essay.pierazzo.html
http:www.scholarlyediting.org/2014/essays/essay.pierazzo.html

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 191

tional Conference on Information Visualisation (IV), University of Paris

Descartes, Paris, France, July 2014, pp. 392–397.

[254] D. Fabbri, “Sistema knowledge based interattivo per la gestione visuale

dell’apparato critico di un testo,” Master’s thesis, Universitá degli studi di

Siena, facoltá di ingegneria, Siena, 1998-1999.

[255] A. Bozzi, M. S. Corradini, and B. Tellez, “The EUMME project: towards a

new philological workstation,” in Proceedings of the 9th International Con-

ference on Electronic Publishing (ICCC), Leuven, Belgium, June 2005, pp.

139–144.

[256] P. Canettieri, G. Santini, M. Rovetta, and V. Loreto, “Philology and

information theory : Towards an integrated approach,” in The evolution

of texts: confronting stemmatological and genetical methods, C. Macé,

P. Baret, A. Bozzi, and L. Cignoni, Eds., vol. 24–25, Proceedings of the

international workshop held in Louvain-la-Neuve on September 1-2, 2004.

Pisa-Roma: Istituti editoriali e poligrafici internazionali, June 2006, pp.

109–126. [Online]. Available: http://digital.casalini.it/an/2212902

[257] M. Abrate, A. M. Del Grosso, E. Giovannetti, A. Lo Duca, A. Marchetti,

L. Mancini, I. Pedretti, and S. Piccini, “Il progetto Clavius on the Web:

tecnologie linguistico - semantiche al servizio del patrimonio documentale e

degli archivi storici,” in Book of Abstracts del 3 ◦ convegno dell’Associazione

Italiana Informatica Umanistica e Cultura Digitale. La metodologia della

ricerca umanistica nell?ecosistema digitale, (AIUCD), Bologna, F. Rossi and

F. Tomasi, Eds., September 2014.

[258] A. Bellandi, A. Bellusci, E. Carniani, and E. Giovannetti, “Content elicita-

tion: Towards a new paradigm for the analysis and interpretation of texts,”

in Proceedings of the 13th IASTED International Conference on Software

Engineering, Innsbruck, Austria, Innsbruck, February 2014.

[259] F. Mambrini, M. Passarotti, and C. Sporleder, Eds., Annotation of Corpora

for Research in the Humanities, Proceedings of the ACRH Workshop, Jour-

nal for Language Technology and Computational Linguistics, Heidelberg, 5

January. Heidelberg: JLCL, 2011.

http://digital.casalini.it/an/2212902

192 BIBLIOGRAPHY

[260] G. Crane, “Generating and parsing classical Greek,” Literary and

Linguistic Computing, vol. 6, no. 4, pp. 243–245, 1991. [Online]. Available:

http://llc.oxfordjournals.org/content/6/4/243.abstract

[261] C. Oravecz and P. Dienes, “Efficient stochastic part-of-speech tagging for

hungarian.” in Proceedings of the 3th international conference on Language

Resources and Evaluation (LREC), Las Palmas, Canary Islands, Spain. Eu-

ropean Language Resources Association (ELRA), May 2002, pp. 710–717.

[262] D. Bamman, M. Passarotti, R. Busa, and G. Crane, “The annotation guide-

lines of the Latin dependency Treebank and Index Thomisticus Treebank:

the treatment of some specific syntactic constructions in Latin.” in Proceed-

ings of the 6th international conference on Language Resources and Evalua-

tion (LREC), Marrakech, Morocco, N. Calzolari, K. Choukri, B. Maegaard,

J. Mariani, J. Odijk, S. Piperidis, and D. Tapias, Eds. European Language

Resources Association (ELRA), May 2008, pp. 71–76.

http://llc.oxfordjournals.org/content/6/4/243.abstract

	Introduction
	Overview
	Motivation, goals, and challenges
	The benefits of a library of components

	Background
	Preliminary remarks
	Initiatives for textual scholarship
	Community environments
	Research infrastructures
	Philological projects

	Textual scholarship tools
	TUSTEP - Tübingen System of Text Processing
	LaTeX / Mauro-TeX
	JuxtaCommons
	CollateX
	Text::TEI::Collate
	eXist-db

	Data and metadata encodings
	Data
	Metadata

	Related open source software libraries
	Text processing
	Language processing
	Text architecture

	Suitable information technologies
	Document, text and character encodings
	String manipulation, text alignment, and vector space model
	Image processing
	Linked Open Data methods and technologies
	Machine learning approaches
	Software engineering principles and processes

	Methods
	Introduction
	Requirements and use cases
	System architecture
	Designing the data model
	API design and Design Patterns
	API design
	Design Patterns
	Reusability and extensibility

	Developing technologies

	Case Studies
	Source acquisition and text encoding
	Text acquisition
	Character and text encoding

	Indexing
	Alignment
	Variant reading and multi-level analysis
	Variant reading annotations
	Multi-level analysis

	Conclusion and Perspectives
	Acronyms
	Acknowledgements
	Bibliography

