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The vast proliferation of Online Social Networks (OSN) is generating many
new ways to interact and create social relationships with others. In OSN, infor-
mation spreads among users following existing social relationships. This spread
is influenced by the local properties and structures of the social relationships at
individual level. Being able to understand these properties can be fundamental for
the design of new communication systems able to predict the creation and sharing
of content based on social properties of the users. While substantial results have
been obtained in anthropology literature describing the properties of human social
networks, a clear understanding of the properties of social networks built using
OSN is still to be achieved.

In this thesis, the structure of Ego networks formed online is compared with
the properties of offline social relationships showing interesting similarities. These
properties are exploited to provide a meaningful way to study the mechanisms
controlling the formation of information diffusion chains in social networks (typically
referred to as information cascades). Trough the analysis of synthetically gener-
ated diffusion cascades executed in a large Facebook communication datasets,
is showed that the knowledge of tie strength of the social links is fundamental to
infer which nodes will give rise to large information cascades and which links will
be more used in the information diffusion process. We analysed the trade off be-
tween information spread and trustworthiness of information. Specifically, we have
investigated the spread of information when only links of a certain trust value are
used. Assuming, based on results from sociology, that trust can be quantised, we
show that too strict limits on the minimum trust between users limit significantly
information spread. In the thesis we investigate the effect of different strategies
to significantly increase spread of information by minimally relaxing constraints on
the minimum allowed trust level.
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1

Introduction

In the past few years, Online Social Networks (OSNs) became a really popular
way to communicate and exchange informations. The services provided can be
really different from one OSN to another, but they usually offer easy ways to create
contents that can be shared with others. Some of the most popular, allow the users
to declare their social relationships (e.g. “friendships” in Facebook, “following” and
“follower” in Twitter), permitting to immediately recognise the social network of the
users. Since these services, record the activities of a enormous number of users,
their collected data is really valuable in the analysis of the human communication
behaviours and potentially can permit to obtain significant insights on how users
exploit these social communication platforms. Unfortunately, OSNs typically offer
limited access to these data making data collection and analysis quite difficult.

Social Networks have been extensively studied by sociologists in the “offline”
world (e.g. face to face communications) using manually collected datasets that
contain the interactions of relatively small amounts of individuals if compared with
datasets collected from OSNs. Nevertheless they extrapolated really interesting
properties on the structure of the human social networks. For example, they dis-
covered that social networks presents “small world” properties with small average
diameter [88]. The structure of social networks also shows a typical high cluster-
ing factor [92]. Moreover differentiating the social relationships in “friend” (close
relationship) or in “acquaintance” (loose relationships) they have discovered inter-
esting structural properties. In fact, the relationships that connect clusters other-
wise distant in the network are usually “weak ties” (i.e. relationships maintained
with an acquaintance), while the “strong ties” (i.e. relationship maintained with
good friends) are usually located inside the clusters [43]. Also the kind of infor-
mation that passes through these kinds of relationships are different, for example
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CHAPTER 1. INTRODUCTION

it is more likely to acquire information about a new job trough weak ties than a
strong ties. In fact, even if a friend is more motivated than an acquaintance to pass
an important information like an open job position, through the latter, a user can
have access to distant parts of the social network, and thus to a more diverse set
of information, with respect to what it can retrieve from close friends (which are
typically quite clustered) [42].

Another fundamental result obtained in the sociology literature is the analysis
of the structure of the social network formed by a single person (called ego) with
all his friends (called alters) in which the tie strength - a measure of the importance
of the relationship - is not just binary (i.e., weak or strong) but changes as a contin-
uous variable. The emerging structures in this social network, can be represented
by 4 concentric layers - “social circles” - in which from the innermost to the outer-
most layer the contained relationships changes from very strong relationships to
acquaintances. The interesting part is that these circles have a constant scaling
factorof 3 (i.e., the number of alters in a given layer are around three times the
number of alters in the layer immediately closer to the ego) and the members of a
single circle share similar relationships characteristic [85].

The structure of the social networks influences the social phenomena that oc-
curs in the network, for example an individual with many strong friendships with
influential persons can affect the social network easier than a person with few,
loosely connected friendships. Thus, it is interesting to analyse the impact of the
structure of the ego network in a network wide phenomena like information diffu-
sion.

In this thesis we analyse the word-of-mouth effect in Online Social Networks,
i.e. the way how information spreads across users of OSN platforms, as a function
of the structural properties of the social networks created by users on this plat-
forms. This is an important phenomenon, with strong implications in marketing,
which behaviour strongly depends on the structure of the social network since the
established social relationships are the only channels through which the informa-
tion is spread.

In the thesis we also consider information diffusion in another type of social net-
work platforms, i.e., Distributed Online Social Networks (DOSN) [74]. DOSN are
an emerging research area, mainly motivated by the fact that in conventional OSN
a central operator exists, that in principle controls all the information generated by
the users. DOSN aims, instead, to completely decentralise the mechanisms re-
quired to support Online Social interactions, avoiding centralised controllers. The
Distributed Online Social Networks (DOSNs) are systems that provide a similar
service to traditional OSNs, but without the presence of an operator that central-
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ize, and thus is able to control the service. In these systems, the infrastructure nec-
essary to deliver the services is obtained thanks to users sharing computational,
storage, network resources. Specifically, in DOSN the properties of information
spread are also dependent on the trust between users, because there is a lack of
centralised operator entrusted by the users. In the thesis we analyse the impact
of social structures on information spread also in this type of social networking
environment.

1.1 Contributions

The main focus of the thesis is studying the impact of social structures formed by
users in Online Social Networks on the properties of information diffusion. To this
end, we have first exploited and refined some previous results on the analysis of
OSN structures, and then used models of these structures to study the properties
of information diffusion. The analyses are based on two datasets from Twitter and
Facebook which were analysed to study the local-level properties of the structure
on the social networks in online environments. The emerged characteristics are
used to evaluate their impact on a network-level phenomena like the information
diffusion.

1.1.1 Structure of the Ego Network in OSNs

The first contribution of this thesis is a characterization of the structure of the
ego networks formed by considering separately the incoming messages and the
outgoing messages. This analysis is useful to assess any difference in their in
their contribution to the structural properties of the ego network. The results indi-
cate that the two networks presents different characteristics, indeed the incoming
messages network forms a bigger ego-network which only partially contains the
network formed by outgoing messages. Moreover, to better approximate the tie
strength, we propose an index which combine the two kind of messages and gives
an higher score to relationships with reciprocated interactions. This index produces
an ego network structure closer to that found in the anthropological literature. This
results are presented in Section 4.2.

1.1.2 Impact of Network Properties in Information Diffusion

The second contribution of the thesis is to analyse how the local properties of the
ego network of the users impact on a large scale phenomena, namely diffusion

3



CHAPTER 1. INTRODUCTION

of information (presented in Section 5). Two different analyses are presented. The
first one analyses how the various social circles affect the information diffusion
process, while the second analyses studies how key structural properties of nodes
in the social network graph (such as their centrality and degree) impact on the
diffusion of information originated by them.

Both analyses are carried out through simulations based on data crawled from
real online social networks. In particular, the network graph (i.e. the set of nodes
and the friendship relationships) are derived from a Facebook dataset, and the
information diffusion over links depends on the estimated tie strength between
users. The adopted model of information diffusion is the Independent Cascade
Model (ICM).This model requires that a probability of diffusion is assigned to each
link. We shows that calculating the probability of diffusion with a linear function
of the frequency of contacts leads to the flooding of the network. Thus we devel-
oped two different models that solves this problem. In the first model we included
the notion of information ageing with a coefficient that decrease the probability of
diffusion at each steps of diffusion. The second model uses a non linear transfor-
mation validated through the comparison of the fitting parameters of the resulting
distribution with the fitting parameters of real communication traces.

The first analysis studies the importance of different social circles in the infor-
mation diffusion process. The first step of this analysis was to calculate the usage
in the diffusion process of each social circle. The results shows that middle layers
are the most active. The analysis continued in the second step in which social
links were selectively cut out from the social network in order to remove single
circles or groups of circles in order to assess if any circle is essential in the infor-
mation diffusion process. The results shows that the removal of the social circles
greatly impact on information diffusion. Noteworthy, the impact of the innermost
circle, which contains only 0.3% of the links, reduced the number of exchanged
messages to 17%.

The second analysis studies the impact on the characteristics of the obtained
diffusion cascades of the centrality measures of the starting node. The centrality
measures considered takes into account both local properties, like the number of
friends or the clusterization of the ego network, and network wide properties like
pagerank or eigenvector centrality. We discovered that the highest correlations is
obtained with centrality measures which involve tie strength, like the eigenvector
centrality. The Burt’s constrain, has a medium negative correlation, which indi-
cates that strongly connected clusters entrap the information making harder the
further diffusion of the information. Interestingly, the same analysis executed in an
unweighted network shows really low correlations.
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1.1.3 Impact of Restrictive Privacy Settings in Information Diffusion

The third contribution of the thesis (presented in Section6) is to study the impact
of trust between users on information diffusion. Specifically, based on existing re-
sults in the sociology literature, we assume that trust between users is related to
the strength of the social tie between them. We analyse how information diffu-
sion changes when only links with a minimum level of trust are considered. This is
particularly relevant for Distributed Online Social Networks environments, where
information flows only because users devices collaborate among them in the in-
formation diffusion process. In this analysis we selected 4 thresholds of frequency
of contact, and defined 4 trust thresholds corresponding to these frequencies (that
can be mapped to corresponding tie strengths). These thresholds correspond to
minimum values of frequency of contact in each social circle. We analysed how
information spread is affected when only links above each of these thresholds are
used. As expected, this operation greatly reduced the number of nodes connected
to the largest component of the social network (the giant component) especially
for the more restrictive hypothesis, and also reduces the capability of the network
to spread information.

To improve the capability of the network to spread informations without the use
of a less restrictive threshold, we analysed the effect of the reintroduction of a
single previously removed relationship per each node. With this mechanism with
just a minimal reduction of the trust level between users (just one relationship does
not belongs to the original minimal threshold) we obtained great improvement in
both the characteristics analysed (size of the giant component, and capability to
spread information).

We proposed various strategies to select the removed relationship, both deter-
ministic and stochastic. The two deterministic strategies selects the relationship
with maximum or minimum frequency of contact, while the three stochastic strate-
gies select the links assigning a probability associated to each relationship. In two
strategies, the probability was assigned proportionally/inversely proportionally to
the frequency of contact, while in the third strategy the probability was uniformly
distributed. We presents and compare the results of each of these strategies.

Results show that a network composed of individual willingly to communicate
with highly trusted friends only has a really low capability to spread information.
However, if each user accept to communicate with just one less-trusted user, the
network restores much of the original capacity to spread information whatever
selection strategy is used. Nevertheless, the best performing strategy is the one
that selects the relationship with the maximum frequency of contact. With this
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strategies, the selected relationship will not have necessarily an high interaction
frequency value, because some ego network could miss some social circle.

1.2 Thesis Organisation

In Chapter 3 we present the Facebook and Twitter datasets used in this work. In
Chapter 4 the datasets are examined to extrapolate the properties of the structure
of the social network in these two OSNs and are compared with the findings in
sociological literature. Chapter 5 analyses the impact of the properties of the ego
networks in information diffusion, studying the role of the social circles and the
centrality of the ego in the network. Chapter 6 presents an analysis on the capacity
of a Distributed Online Social Network to diffuse information under the hypothesis
that only a subset of the social relationships can be used. Chapter 7 summarises
the main results of the thesis.
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2

Related Works

Human sociality has always been the centre of attention of many different research
fields. Indeed, in social sciences there exist a number of disciplines which aim to
understand social behaviour from all its different aspects. To analyse collective
social behaviour, sociologists started to use social networks as a handy model to
represent groups of socially connected people. The theoretical analysis of social
networks gave rise to a new research discipline called Social Network Analysis
(SNA). SNA views individuals in a social network and their social relationships
as vertices and edges (or arcs) of a graph, and then studies the properties of
the graph to describe social phenomena in our society, in terms of the structural
properties of the network. The extensive work done in SNA led to a deeper com-
prehension of plenty of social phenomena.

2.1 Social Network Analysis

Many important properties of social networks have been found in SNA literature.
Mark Granovetter realised that a fundamental aspect of social networks is repre-
sented by the relation between micro-level interactions of social actors and macro-
level patterns arising in the networks. He found that the strength of social ties,
informally defined as a linear combination of time, emotional intensity, intimacy,
and reciprocal services, impacts to a large extent on social networks’ phenotypical
properties [43]. Moreover, Social relationships can be roughly divided into strong
and weak ties, where the former denote more important relationships and the lat-
ter represents acquaintances. Besides their lower strength, weak ties are gener-
ally more in number than strong ties. For this reason, the cumulative strength of
weak ties could exceed that of strong ties and their impact on social phenomena

7
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could be substantial. Granovetter demonstrated that the analysis of tie strength is
fundamental to fully assess the properties of social networks. He also introduced
models of collective behaviours (e.g. the adoption of a new idea or the spread of
information among social groups) based on the concept of tie strength to emulate
social dynamics [44].

Another important contribution to the field has been made by Peter Marsden,
who used multiple indicator techniques to construct and validate measures of tie
strength [64]. Mardsen built an analytical model to explain the relation between a
set of tie strength predictors (i.e. aspects of relationships that are related to, but
not components of, tie strength) and tie strength indicators (emotional closeness,
duration, frequency of contact, breadth of discussion topics, and confiding). The
results of his analysis demonstrate that emotional closeness (or emotional inten-
sity) is the best indicator of the strength of a social relationship. Moreover, mea-
sures of the time spent in a relationship (e.g. frequency of contact and duration)
are related to the concept, even though they tend to systematically overstimate
tie strength in case the involved persons are co-workers or neighbours. These re-
sults indicate that tie strength can be effectively estimated using some measurable
indicators. This fact opened the door to further analyses on structural properties
of social networks. In particular, evolutionary psychologists largely studied micro-
level properties of social networks using measures of emotional closeness and
frequency of contact to analyse social aspects of humans.

2.1.1 Micro-Level Structural Properties of Social Networks

A standard approach to the study of micro-level structural properties of social net-
works is the analysis of ego networks. An ego network is a simple social network
model formed of an individual (called ego) and all the persons with whom the ego
has a social link (alters). Ego networks are useful to study the properties of human
social behaviour at a personal level, and to assess the extent to which individual
characteristics of the ego affect the size and the composition of their network. For
this reason they have been largely used in Sociology and Psychlogy. The most
important result found on ego networks is that the cognitive constraints of human
brain and the limited time that a person can use for socialising bound the num-
ber of social relationships that an ego can actively maintain in his/her network.
This limit lies, on average, around 150 and is known as the Dunbar’s number [33].
This result has been further confirmed by various experiments, and the Dunbar’s
number has been empirically estimated to a value equal to 132.5 [96]. The pres-
ence of the Dunbar’s number in humans is in accordance with the idea of bounded
rationality previously introduced by Herbert Simon [82].

8
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An individual ego can be envisaged as sitting at the centre of a series of con-
centric circles of alters ordered by the strength of their social ties [77]. Each of
these circles has typical size and frequency of contact between the ego and the
alters contained in it. The first circle, called support clique contains alters with very
strong social relationships with the ego, informally identified in literature as best
friends. These alters are people contacted by the ego in case of a strong emo-
tional distress or financial disasters. The size of this circle is limited, on average,
to 5 members, usually contacted by the ego at least once a week. The second cir-
cle, called sympathy group contains alters who can be identified as close friends.
This circle contains on average 15 members contacted by the ego at least once
a month. The next circle is the affinity group (or band in the ethnographic liter-
ature), which contains 50 alters usually representing causal friends or extended
family members [78]. Although some studies tried to identify the typical frequency
of contact of this circle, there are no accurate results in literature about their prop-
erties, due to the difficulties related to the manual collection of data about the
alters contained in it through interviews or surveys. Indeed, people hardly remem-
ber people besides their best and close friends. The last circle in the ego network
model is the active network, which contains all the other circles, for a total of 150
members. This circle is bounded by the limit of the Dunbar’s number and contains
people for whom the ego actively invests a non-negligible amount of resources to
maintain the related social relationships over time. People in the active network
are contacted, by definition, at least once a year. Alters beyond the active network
are considered inactive. One of the most stunning facts about ego network circu-
lar structure is that the ratio between the size of adjacent circles appears to be a
constant with a value around 3 [85].

2.1.2 Macro-Level Phenomena Observed in Social Networks

Seen from a macro-level perspective, social networks show some typical prop-
erties that have been observed in many different environments. Stanley Milgram,
through his famous experiment, demonstrated the presence of the so called small-
world effect in social networks [88]. According to this property, any two persons in
the network, indirectly connected by chains of social links, have a short average
distance. This is often identified as the six degrees of separation theory, for which
everyone in a social network is six steps away. This fact directly influences the abil-
ity of the network to quickly spread information, ideas, innovations and so forth. It
has been demonstrated that the diffusion of information in social networks takes
place through single social links, creating the word-of-mouth effect. This property
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has been largely used by a collection of marketing techniques whereby the pres-
ence of social links between consumers is exploited to increase sales [50].

Other distincive properties of social networks, that differentiate them from other
types of networks, including technological and biological networks, are repre-
sented by the presence of a non-trivial clustering or network transitivity, that is, in
other words, a high probability that two neighbours connected to a node will also
be connected to each other. Moreover, social networks show positive correlations
between the degrees of adjacent vertices, also called assortativity [69].

Based on the properties found in social networks many different models have
been proposed to replicate the dynamics of several social phenomena. Similarly
to what happens during a virus contagion, the diffusion of information produces a
series of cascades. Hence, the traces left by the spread of information are called
information cascades. Some models aim to reproduce information cascades rely-
ing upon the fact that nodes are “infected” by information with a probability pro-
portional to the number of their neighbours which are already infected (see for
example [37, 44]).

2.2 Online Social Networks

The power of SNA attracted plenty of disciplines, like anthropology, communication
studies, biology, physics, history, political science and many others. The use of
computationally intensive methods in SNA has recently originated a new category
of social disciplines under the name of Computational Social Science. The advent
of OSNs fostered analyses on social networks, since the abundance of online
communication traces generated by social media allowed to overcome the problem
of collecting large-scale social data sets that was posing strong limits to social
sciences hitherto.

2.2.1 Macro-Level Properties of Online Social Networks

The availability of OSNs communication data allowed to reveal the presence of
some distinctive social traits also in online environments. Specifically, the small
world effect has been found in social graphs representing instant-message inter-
actions between people [62, 31]. In [66] the authors present a detailed analysis
of the macro-level structural properties of a set of different OSNs, finding results
in accordance with the properties of social networks observed in offline environ-
ments.
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The different roles of weak and strong ties has been confirmed in [70], where
the authors analyse phone logs containing communication traces between a large
number of users, revealing a relation between the frequency of contact and the
presence of local structures in the network. Moreover, the authors found that social
networks are robust to the removal of strong ties, but fall apart after the removal of
a sufficient number of weak ties.

Although a large body of work has been done to characterise OSNs, most of
the analyses have been performed on unweighted social graphs (see for exam-
ple [89]), without considering the strength of social ties. This is due to the hard-
ness of collecting information about social interactions between people in very
large social networks. Nevertheless, in [93] the authors demonstrated that there is
a significant difference between the properties of weighted and unweighted graphs
representing the same social networks. In addition, in [40] the unweighted social
graph extracted from publicly available data on Google+ has been augmented with
four nodes’ attributes (i.e. school, major, employer and city). The results confirm
that in some cases the network of attributes shows properties significantly different
from the unweighted network.

2.2.2 Measures of Tie Strength in Online Environments

In literature, several techniques to measure tie strength from OSN data have been
proposed. In [36], the authors built a model to predict tie strength from OSN
observable data, fitting a linear regression model with manual evaluations of tie
strength collected from a small sample of users. The results indicate that the model
is able to predict tie strength with sufficient accuracy. The same model has been
tested on a different social medium, with consistent results across different social
networks [35]. In [10] the authors found consistency between the definition of tie
strength given by Granovetter in [43] and a set of factors extracted from OSN com-
munication data used to predict reference values of tie strength manually assigned
by a sample of users to their social relationships in Facebook. In [52], the authors
confirmed that the frequency of contact in online interactions is a good predictor
of tie strength, using explicit tie strength evaluations given by a large set of partic-
ipats. However, the work is limited to the analysis of the set of “best friends” of a
sample of Facebook users and does not consider other ego network circles. A sim-
ilar analysis with compatible results has been conducted in [53], where data from
the “Top Friends” Facebook application is used to build a model to predict binary
tie strength (i.e. strong or weak ties) using other measurable Facebook interaction
variables (i.e. number of messages and pictures exchanged through Facebook
posts).
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2.2.3 Preliminary results on Micro-Level properties of OSNs

In [10] the authors found a first evidence of the presence of the Dunbar’s number in
Facebook, indicating that, even though Facebook allows people to have thousands
of online social contacts, people only maintain a limited set of active relationships.
This number is compatible with the results found in offline environments. As a
further confirmation of this fact, authors of [39] analysed a large-scale data set of
Twitter communication data, finding that the average intensity of communication of
each user towards all his/her friends, as a function of the number of social contacts
of the user, shows an asymptotic behaviour, ascribable to the limits imposed by the
Dunbar’s number. In [54], the authors demonstrated that inter-individual variability
in the number of social relationships in online social networks is correlated with
brain size. The authors used magnetic resonance imaging techniques to measure
grey matter density of a small sample of participants, comparing the brain volume
of the participants the number of their Facebook contacts.

In [79], the authors analysed online social network data of a sample of thirty
participants discovering that each ego shows a typical tie strength distribution
within his/her ego network. This distribution is in accordance with the ego net-
work model. In [65], mobile-phone data extracted from the logs of a single mobile
phone operator has been analysed. The results indicate that the limited capacity
people have for communication limits the amount of social ties they can actively
maintain.

Although these results give a first insight on the constrained nature of online
social networks, revealing a similarity between online and offline human social
behaviour, there is still a lack of knowledge about all the other micro-level struc-
tural properties of OSNs. Specifically, it is not clear if structures similar to those
described by the ego network model could be found also in OSNs.

2.2.4 Analyses on Information Diffusion in OSNs

Several models have been proposed in literature to explain the dynamics of infor-
mation diffusion process in OSNs. In [2], the spread of URL links between web
logs is tracked and analysed. The resulting information cascades are used to build
a set of classifiers (using Support Vector Machines) able to predict the existence
of links between pairs of weblogs and detect likely routes of infection. In [15], Sec-
ond Life data are used to study the role of social influence (i.e. the influence that
we have on our social contacts) and the diffusion of user-created content. To this
aim, the authors analyse the exchange of objects in Second Life between users
and they track the spread of these objects to create information cascades. The
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results indicate that the spread of information is driven by social influence, and
sharing among friends occurs more rapidly than sharing among strangers. This is
an evidence of the word-of-mouth effect in OSNs. A similar analysis has been con-
dicted on Facebook, where the spread of information (URLs posted on Facebook
Walls) is analysed against the strength of the social ties of theusers, measured
using the intensity of communication [17]. The results showed that strong ties are
associated with a higher probability of diffusion compared to weak ties. Neverthe-
less, the total influence of weak ties in the diffusion of contents is higher due to
their larger number. This confirms the ideas of Mark Granovetter [43]. Although
this, the work considers strong ties all the relationships with at least an interaction
since their appearance, and weak ties the social links without interactions. This
assumption appears to be too simplistic to fully understand the relation between
the local structural properties of OSNs and the formation of high-level social phe-
nomena.

In [22], the author tested the ability of social networks to spread information
against random networks, generating two types of artificially structured online
communities and assessing the spread of adoption of health behaviour between
two groups of participants who periodically received status updates about their
neighbours (according to the predefined network structure). The results of this
study revealed that health behaviour spread faster in networks with typical social
properties (i.e. high clustering coefficient) than in random graph networks. Some of
the models proposed in literature are aimed at synthetically reproducing informa-
tion cascades extracted frm OSNs, like those presented in [38, 45, 61, 63]. On the
other hand, some models aim to understand how variations in nodes’ properties
in social networks influence the spread of information [5, 76]. Other models try to
discover the set of seed nodes (i.e. nodes from which the diffusion process starts)
which maximises the probability of diffusion in the network [55]. This approach is
of particular interest for marketing, since these models could help reducing the
costs of advertisement in social networks. A different approach is to start from an
unweighted social graph without knowing the probability of diffusion on the social
links and, by fitting a parametrised information diffusion model with real traces of
information cascades, learning these probabilities [41]. This approach could be
then used to characterise the structural properties of the resulting social network
graph. Although this technique is promising, we prefer to use a different approach.
In fact, in our analysis we directly derive the probabilities of information diffusion
on social links from the frequency of contact between pairs of users in Facebook
and we study the properties of the information cascades obtained by applying
a standard information diffusion model. Then, we analyse the relation between
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micro-level patterns of the ego networks in the social graph and the properties of
the information cascades. This allowed us to better characterise the dynamics of
the information diffusion process in OSNs.
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3

Datasets

To study the structural properties of OSNs and to assess their role in the diffusion
of information in the network we have analysed two data sets containing traces of
communication between people in Facebook and Twitter, two amongst the most
important social media nowadays. With the information in the data sets we have
obtained the frequency of contact between online users, that has been used to
estimate the strength of the social links.

3.1 Retrieving Datasets

3.1.1 Facebook

Although Facebook generates a huge amount of data regarding social communi-
cations between people, obtaining these data is not easy. In fact, publicly available
data have been strongly limited by the introduction of strict privacy policies and de-
fault settings for the users after 2009. Nevertheless, before that date most of the
user profiles were public and the presence of the network feature, that have been
removed in 2009, allowed researchers to collect large-scale data sets containing
social activity between users. A network was a membership-based group of users
with some properties in common (e.g. workmates, classmates or people living in
the same geographical region). Each user profile was associated to a regional
network based on her geographical location. By default, each user of a regional
network allowed other users in the same network to access her personal informa-
tion, as well as her status updates and the posts and the comments she received
from her friends. Exploiting this characteristics of regional networks, some data
sets have been downloaded, such as those described in [93]. The same authors
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made some data sets crawled from Facebook regional networks on April 2008
publicly available for research1. In this paper we have used the data set referred
as “Regional Network A” that has been used by other researchers for purposes
different than ours [51].

The use of the regional networks feature allowed researchers to download
large data sets from Facebook, however it entails some limitations that must be
taken into account for our analysis. In fact, the considered data set contains infor-
mation regarding the users within a regional network and the interactions between
them only, excluding all the interactions and the social links that involve users ex-
ternal to this area. Therefore, assuming that for each user a part of her social rela-
tionships involve people who do not belong to the same network, this could lead to
a reduction of the ego networks’ size. Moreover, we do not have specific informa-
tion about the completeness of the crawling process that should have downloaded
only a sample of the original regional network. For example, in [93] the same crawl-
ing agent was used for downloading several other regional networks (not publicly
available) collecting, on average, 56.3% of the nodes and 43.3% of the links.

3.1.2 Twitter

As far as Twitter is concerned, we have implemented a crawling agent which is
able to download user profiles and their communication data from Twitter. The
agent visited the Twitter graph considering the users as nodes and following the
links between them. In our study, a link between two nodes exists if at least one
of the users follows the other or an interaction between them has occurred. We
use as indication of an interaction the presence of a mention in a tweet (i.e. the
fact that a user explicitly mentions the other in a tweet) and a reply (i.e. a direct
response to a tweet).

The crawling agent starts from a given user profile (seed) and visits the Twitter
graph following the links. For each visited node, we took advantage of the Twitter
REST API to extract the user timeline (i.e. the list of posted tweets that can include
mentions and replies), the friends list (i.e. the people followed by the user) and the
followers list (i.e. the people who follow the user). Twitter REST API limits the
amount of tweets that can be downloaded per user up to 3, 200 tweets. This does
not represent a constraint to our analysis since, as we show in the following, it is
sufficient for our purposes.

The crawling agent uses 250 threads that concurrently access a single queue
containing the ids of the user profiles to download. Each thread extracts a certain

1 http://current.cs.ucsb.edu/facebook/
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Table 3.1: Statistics of the Facebook social graph

# Nodes 3, 097, 165

# Edges 23, 667, 394

Average degree 15.283

Average shortest path 6.181

Clustering coefficient 0.209

Assortativity 0.048

number of user ids from the queue, then it gets the related profiles and communi-
cation data from Twitter using the REST API. Finally, after extracting new user ids
from the communication data and from the friends/follower lists, the threads add
them to the queue. The use of multiple threads allowed both to speed-up the data
collection and to avoid the crawler to remain trapped in visiting the neighbourhood
of a node with a large number of links. The seed we used to start the data col-
lection is the profile of a widely know user (user id: 813286), so that her followers
represent an almost random sample of the network.

3.2 Data Sets Properties

3.2.1 Facebook

The Facebook data set we have used in this work consists of a social graph and
four interaction graphs. These graphs are defined by lists of edges connecting
pairs of anonymised Facebook user ids.

The social graph describes the overall structure of the downloaded network.
It consists of more than 3 million nodes (Facebook users) and more than 23 mil-
lion edges (social links). An edge represents the mere existence of a Facebook
friendship, regardless of the quality and the quantity of the interactions between
the involved users. Basic statistics2 of the social graph are reported in Table 3.1.

The social graph can be used to study the global properties of the network,
but alone it is not enough to make a detailed analysis of the structure of social
ego networks in Facebook. Indeed, this analysis requires an estimation of the
strength of the social relationships. To this aim, in Section 3.3, we leverage the
data contained in the interaction graphs to extract the frequency of contact of the
social links that can be used to estimate the tie strength.
2 The clustering coefficient is calculated as the average local clustering coefficient (Equa-

tion 6 in [68]).
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Table 3.2: Statistics of the Facebook interaction graphs (preprocessed).

Last mo. Last 6 mo. Last year All
# Nodes 414, 872 916, 162 1, 133, 151 1, 171, 208

# Edges 671, 613 2, 572, 520 4, 275, 219 4, 357, 660

Avg. degree 3.238 5.616 7.546 7.441

Avg. weight 1.897 2.711 3.700 3.794

Interaction graphs describe the structure of the network during specific tem-
poral windows, providing also the number of interactions occurred for each social
link. The four temporal windows in the data set, with reference to the time of the
download, are: last month, last six months, last year and all. The latter temporal
window (“all”) refers to the whole period elapsed since the establishment of each
social link, thus considering all the interactions occurred between the users. In an
interaction graph, an edge connects two nodes only if an interaction between two
users occurred at least once in the considered temporal window. The data set that
we have used for the analysis contains interactions that are either Facebook Wall
posts or photo comments.

In Facebook, an interaction can occur exclusively between two users who are
friends. In other words, if a link between two nodes exists in an interaction graph,
an edge between the same nodes should be present in the social graph. Actually,
the data set contains a few interactions between users which are not connected
in the social graph. These interactions probably refer to expired relationships or to
interactions made by accounts that are no longer active. To maintain consistency
in the data set we have excluded these interactions from the analysis. The amount
of discarded links is, on average, 6.5% of the total number of links in the data set.

In Table 3.2 we report some statistics regarding the different interaction graphs.
Each column of the table refers to an interaction graph related to a specific tempo-
ral window. The average degree of the nodes is the average number of social links
per ego, which have at least one interaction in the considered temporal window.
Similarly, the average edge weight represents the average number of interactions
for each social link.

3.2.2 Twitter

We have collected a data set from 2, 463, 692 Twitter users, whose data were
downloaded between November 2012 and March 2013. In contrast to Facebook,
whose users are generally people who want to socialise with others, communicat-
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ing and maintaining social relationships, Twitter users are more heterogeneous. In
fact, the downloaded accounts can also be related to companies, public figures,
news broadcasters, bloggers and many others. We can thus classify the users in
two different categories: (i) socially relevant users, that represent the people who
use Twitter for socialising, and (ii) other users, that use Twitter for all the other pur-
poses. This classification is fundamental for our study since, in order to analyse
the human social behaviour, we have to consider the social relevant users only. To
this aim we have built a classifier based on Support Vector Machines (SVM) that,
relying on the activity logs and on the meta-data of the accounts in the data sets,
distinguishes socially relevant users from other users. The details of the classifier
are described in Appendix A. Note that also in Facebook some accounts represent
users which are not socially relevant (e.g. companies and public figures). Never-
theless, Facebook is more naturally used as a private communication mean, and
public communications (e.g. status updates) are not consedered in the data set.
For this reason and for the lack of sufficiently detailed information about the nature
of Facebook users in the data set we analyse all the Facebook accounts without
splitting them into separate classes.

In the column “all users” of Table 3.3 we present some statistics of all the
users in the data set, while in the next two columns we present the statistics of
the socially relevant users and of the other users respectively. For each category,
we present the number of users N and the average number of tweets, friends and
followers. Each average value is reported with 95% confidence interval between
square brackets.

We can notice that socially relevant users are the majority and their statistics
indicate that they are less active than the other users. This could be explained by

Table 3.3: Twitter data set (all users) and classes statistics.

All users Soc. rel. users Other users
N 2.463.692 1, 653, 436 810, 256

N3,200 510, 119 260, 632 249, 487

(% N3,200) (20.7%) (15.8%) (30.8%)

# Tweets 1, 207 979 1, 696

# Following 3, 157 2, 553 4, 448

# Followers 7, 353 2, 744 17, 201

% TweetsREPL 17.4% 18.4% 15.4%

% TweetsMENT 22.7% 21.6% 24.7%
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Figure 3.1: Downloaded tweets per user distribution.

the fact that users in the “other users” class could be companies or other kinds
of accounts managed by more than one person at the same time and aimed at
advertising goods or services.

In the table we also report, for each class of users, the average ratio of replies
(tweetsREPL) and mentions (tweetsMENT), calculated over the total number of
tweets. These values indicate that around 40% of the tweets downloaded by our
crawler contain mentions or replies between people. These tweets are important
for our study since they represent direct interactions, rather than broadcast com-
munications. Moreover, socially relevant users show a slightly higher percentage
of replies than other types of users (18.4% vs. 15.4%), indicating that they use
more directional communications, a typical human social behaviour.

In Figure 3.1 we show the distribution of the number of tweets downloaded
per user. We can notice the presence of a peak corresponding to the value 3, 200

that is the maximum amount of tweets downloadable using the Twitter REST API.
Cases where the number of tweets is lower than 3, 200 correspond to users that
have generated less than 3, 200 tweets since their account has been created. The
number of users that posted a number of tweets above this threshold is indicated
in the table by N3,200. Note that for socially relevant users this is a relatively small
fraction of the total number of users (15.8%), which means that our crawler was
able to download the entire twitting activity for the majority of the users relevant for
our study and for those users for whom we have not obtained the entire history of
outgoing communications, we still have a significant number of tweets.

In order to further investigate the behavioural differences between socially rel-
evant users and the other users, we have studied the number of replies the users
send to their friends on average. In [39], a similar analysis has been used to con-
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Figure 3.2: Points represent the average number of replies made by accounts with
different number of friends; thick lines are their running averages.

clude that a concept similar to the Dunbar’s number (the maximum number of
active social relationships an individual can actively maintain) holds also in Twitter.

Figure 3.2 depicts the trend of the average number of replies per friend as a
function of the number of friends of the user. Differently from [39], we have di-
vide the analysis for the two classes identified: “socially relevant users” and “other
users”. The results, supported by the figure, highlight a clear distinction between
the properties of the two classes.

Socially relevant users show a higher mean value of replies per friend and a
maximum around 80 friends. This is an indication of the effect of the cognitive limits
of human brain on the ability to maintain social relationships in OSNs. The peak of
the curve identifies the threshold beyond which the effort dedicated to each social
relationship decreases. This is due to the exhaustion of the available cognitive/time
resources that, therefore, have to be split over an increasing number of friends. As
discussed in [39], this can be seen as an evidence of the presence of the so called
Dunbar’s number in Twitter.

Other users show a more random pattern, with lower average value of replies
per friend without any significant discontinuities. This indicates that the accounts
belonging to the class “other users” are not influenced by cognitive capabilities. In
fact they are often managed by more than one person or by non-human agents.

3.3 Obtaining the Frequencies of Contact

3.3.1 Facebook

In order to characterise tie strength in Facebook, we need to estimate the link du-
ration, that is the time elapsed since the establishment of the social link. The link
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duration is needed to find the frequency of contact between the users involved in a
social link that is used to estimate the tie strength. In the literature, the duration of a
social link is commonly estimated using the time elapsed since the first interaction
between the involved users [36]. Unfortunately, the data set does not provide any
indication regarding the time at which the interactions occurred. To overcome this
limitation, we have approximated the links duration leveraging the difference be-
tween the number of interactions made in the different temporal windows. Details
on how we have estimated the link duration and the frequency of contact between
users in the Facebook data set are given in Appendix B. The frequency of contact
between pairs of users has been calculated as the total number of interactions
occurred (obtained from the “all” interaction graph) divided by the estimated dura-
tion of their social link. In case the users have never interacted their frequency of
contact is set to zero.

3.3.2 Twitter

The Twitter data set contains all the tweets sent by the users (with the limit of
3, 200 tweets per user). Hence, obtaining the frequency of contact between users
in Twitter is more straightforward than in Facebook. Considering the socially rel-
evant users only, we have calculated the duration of each social link as the time
elapsed between the first mention or reply exchanged between the involved users
and the time of the download. Given a social link, we have thus calculated the
frequency of contact for each of the two users as the number of replies sent to the
other divided by the duration of the social link. In the calculation, we have used the
number of replies since it is the strongest indicator of the strength of a social link
in Twitter and since it has been already used in previous work [39].
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Analysis of structural properties in Online Social
Networks

Social networks are structures composed of a set of social actors (e.g. individu-
als, organisations) and a set of ties (i.e. social relationships) connecting pairs of
these actors. They are usually expressed in the form of graphs consisting of nodes
representing social actors connected by edges, or arcs, representing social rela-
tionships. We define as online social networks all the social networks in which so-
cial relationships are maintained by the use of the Internet (e.g. Facebook, Twitter,
e-mails). On the other hand, offline social networks are social networks formed
outside the Internet, using, for example, face-to-face communications or phone
calls.

Both offline and online social networks show several distinctive properties that
differentiate them from other kinds of networks, such as biological and technologi-
cal networks. For example, they show the small-world property [88], for which any
two actors in the network, indirectly connected by chains of social links, have a
short average distance. As witnessed in [92], besides the short average distance,
a small world network shows a high level of clusterisation (or network transitivity)
compared to a random network, that is the probability that two neighbours con-
nected to a node will also be connected to each other. The small world property
directly impacts on the ability of the network to spread information quickly.

The main goal of this chapter is two fold. On the one hand, we extend exist-
ing results that have analysed structural properties of Facebook and Twitter ego
networks, by presenting a comparative analysis (submitted to [6]). Moreover, we
also analyse the appropriateness of different types of communications (ongoing or
outgoing) to extract these structural properties. In doing so, we also compare the
structural properties observed for the same users in an online environment (Face-
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book) and offline, highlighting correlations, similarities and differences (presented
in [59]).

To make these results better understandable, we also provide at the beginning
of the chapter a description of the methodology used to extract the structural prop-
erties from the Facebook and Twitter datasets, and the main results on which our
original contribution is built.

4.1 Social Networks Structure

Most of the studies in the analysis of social networks focus on the presence of
the small world property or other structural features, i.e. the associativity and the
emergence of communities [69]. These studies are normally carried out consider-
ing the unweighted network graph in which each edge (or arc) represents the mere
existence of a social relationship without including any information about it. This is
due to the fact that information about social relationships is not trivial to infer since
it normally refers to qualitative aspects. Nevertheless, there are several studies in
sociology and anthropology that provide insights about the characterisation of the
social relationships and, in particular, on the measurement of their strength.

In order to extract the ego networks from our data sets, we have grouped the
relationships of each user into different sets1. Then, to avoid including possible
outliers in the analysis, we have selected only the ego networks that meet the
following criteria:

1. The account of the ego must have been created at least six months before
the time of the download. In case of the Facebook data set, the lifetime of the
accounts is estimated as the time since the user made the first interaction. In
case of the Twitter data set, we know the time of the account creation as it is
included in the meta-data we downloaded.

2. Ego must have made, on average, 10 or more interactions per month. For
both data sets, we can calculate the average activity as the total number of
registered interactions divided by the lifetime of the account.

This selection is also motivated by the findings in other OSNs analyses (see
for example [95]), in which ego networks are found to be highly instable and with
a high growing rate soon after ego joins the network, but tend to be stable after

1 Since social links in the Facebook interaction graphs represent undirected edges, we
have duplicated each social link in the data set in order to consider it in both the ego
networks of the users connected by it.
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Figure 4.1: Aggregated CCDF of the normalised frequency of contact for all the
ego networks in the data sets.

the first few months of activity. This selection allowed us to consider only users
who regularly use OSNs, and filter out typical initial bursts of activities of new
users. This resulted in the selection of 91, 347 ego networks from the Facebook
data set and 394, 238 ego networks from the Twitter data set. These numbers, as
we will see later, are sufficient to draw significant results about the ego network
properties of OSNs. Note that the selected socially relevant users can have both
socially relevant users and other users in their ego networks. In our analysis we
consider all the possible kinds of alters of socially relevant users. This is important
to have a complete view of the structure of their social networks, since each ego
spends cognitive efforts for communicating with all her alters, and the properties
of her ego network are impacted by her cognitive and time constraints, no matter
whether she spends all her time communicating with robots or with other humans.

4.1.1 Analysis of the Aggregated Frequency Distribution

The possible presence of social structures in Facebook and Twitter may be re-
vealed by steps in the distribution of the frequency of contact since it is the key
aspect to quantify the tie strength. If the frequency of contact of an ego network
gracefully degrades and does not present steps in the distribution, this suggests
the absence of any structure. On the contrary, if the frequency of contact appears
clustered in different intervals, each of them may reveal the presence of a ego
network layer.

A simple initial analysis to check the presence of such steps in the distribution
is considering the CCDF of the aggregate normalised frequency of interaction. In
particular, we have considered the distribution obtained by taking together all the
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frequencies of contact of all ego networks in each data set. A normalisation of the
frequencies of contact for each ego network is necessary in order to level out the
differences between users in the use of the platforms. Analysing the aggregate dis-
tribution permits to focus on a single distribution, instead of analysing all individual
ego networks’ distributions. The obtained CCDFs, depicted in Figure 4.1, show a
smooth trend. Clearly, this does not allow us to conclude that ego networks are
clustered, but is not a sufficient condition to rule out this hypothesis. In fact, even if
the individual ego network’s distribution had a social structure, and therefore steps
in their distributions, such steps may appear at different positions from one net-
work to another, thus resulting in a smooth aggregate CCDF (remember that also
in the Dunbar’s model the sizes of the layers are average value, but variations are
possible at an individual ego network level).

The CCDFs show a long tail, which can be ascribed to a power law shape.
This may indicate a similarity between ego networks in offline and online social
networks, as studies in socio anthropology revealed that ego networks are charac-
terised by a small set of links with very high frequencies of contact (corresponding
to the links in the support clique). A power law shape in the CCDF is a neces-
sary condition to have power law distributions in at least one ego network [72].
However, this is not a sufficient condition to have power law distributions in each
single CCDF [71]. The presence of a long tail in the CCDF is not a conclusive
proof of the existence of small numbers of very active social links in the individual
ego networks.

4.1.2 Revealing Ego Network Structure through Clustering

To further investigate the online ego network structures, we have applied cluster
analysis on the normalised frequencies of contact of each ego network, looking
for the emergence of layered structures. As shown in Figure 4.2, the CCDF dis-
tributions of individual ego networks present a series of steps that were hidden in
the aggregate distribution analysed in the previous section. As previously said, the
presence of these steps reveals the underlying ego network structure.

For each ego network, the frequencies of contact between ego and alters rep-
resent a set of values in a mono-dimensional space. Applying cluster analysis to
mono-dimensional values does not require advanced clustering techniques, there-
fore we can consider standard widely-used methods such as k-means clustering
and density-based clustering (e.g. DBSCAN algorithm). Using k-means cluster-
ing, given a fixed number of clusters k, the data space is partitioned so that the
sum of squared euclidean distance between the centre of each cluster (centroid)
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Figure 4.2: CCDF of the normalised frequency of contact of an individual Twitter
ego network.

and the objects inside that cluster is minimised. In density-based clustering, clus-
ters are defined as areas of higher density than the remainder of the data set, that
is usually considered to be noise [57]. In [8] both clustering techniques have been
applied on the same Facebook data set used in the present analysis. Nonetheless,
results showed that the clusters identified by the two methods considered are sub-
stantially equivalent and that both can be used for the study of social structures in
ego networks leading to the same conclusions [8].

In this work we report the analysis using the k-means clustering since it is
the simplest and the most computationally affordable method. This method is de-
fined as an optimisation problem that is known to be NP-hard. Because of this,
the common approach for k-means clustering is to search only for approximate
solutions. Fortunately, in the special case of mono-dimensional space, we can use
an algorithm, called Ckmeans.1d.dp, able to always find the optimal solution effi-
ciently [91].

In Figure 4.2 we show the result of the Ckmeans.1d.dp algorithm (with k =

4) applied to the frequencies of contact of an individual Twitter ego network. As
expected, the limits between adjacent clusters (red bars in the figure) are placed
by the algorithm in correspondence of the steps in the CCDF distribution.

Typical Number of Clusters

In the first step of our cluster analysis we have sought, for each ego network, the
typical number of clusters (i.e. the number k∗) in which the frequencies of contact
can be naturally partitioned. In order to do this, we have evaluated the goodness
of the result of different clustering configurations. For k-means methods, this is
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usually expressed in terms of explained variance, that is the proportion to which
the clustering accounts for the variance of the data. In fact, a small variance in the
individual clusters means that data are well described by the current configuration,
and this is evidenced by a high value of the explained variance (up to the maximum
value 1.0). Specifically, the explained variance is defined by the following formula:

V ARexp =
SStot −

∑k
j=1 SSj

SStot
, (4.1)

where j is the jth cluster, SSj is the sum of squared distances within cluster
j and SStot is the sum of squared distances of the all the values in the data
space. Given a vector X, the sum of squared distances SSX is defined as SSX =∑
i (xi − µX)2, where µX denotes the mean value of X.
Given the number of clusters k, k-means clustering algorithms partition the

space minimising the sum of squared distance within the clusters
∑k
j=1 SSj . Ac-

cording to Equation 4.1, the optimal solution of the clustering, also provides the
maximum value of the explained variance V ARexp, since the sum of squared dis-
tances SStot is constant given the data space. In order to find the typical number of
clusters k∗, we may calculate the optimal clustering for each k and then select the
value that maximises V ARexp. However, the value of V ARexp increases mono-
tonically with k, reaching its maximum when k is equal to the number of objects
in the data space. Thus, there is a inherent overfitting problem. To overcome this
problem and determine the typical number of clusters we used the Akaike Infor-
mation Criterion (AIC), an information-theoretic measure that trades off distortion
against model complexity, defined by the following equation:

K = argmin
K

[−2L(K) + 2q(K)] (4.2)

We have calculated the AIC for all the ego networks in Facebook and Twitter,
by applying k-means with k from 1 to 20. For each ego network we define as k∗

the k that maximise equation 4.2. In Figure 4.3 we report the density function of
k∗ for the ego networks in our data sets.

We have found that the distribution of k∗ has a peak around 4 for Facebook
and between 4 and 5 for Twitter. The presence of a typical number of clusters close
to 4 is the first indication of similarity between the findings in offline and online ego
networks.

In Tables 4.1 and 4.2 we report the properties of the ego networks found
with different numbers of k∗. The average network size (“net size” in the table) is
reported with 95% confidence interval between square brackets.
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Figure 4.3: Desdity function of k∗ in Facebook and Twitter ego networks.

Ego networks with only one circle tend to have similar values of contact fre-
quency for all their links, and in many case the contact frequencies are exactly
the same. This could be ascribed to automated forwarding of messages on all the
links, associated to bots or spammers, and indicates the presence of a small set
of biased ego networks in the data set. Remember that although the classifier we
used to select socially relevant users has a high accuracy, some accounts could
be false positives, as probably in this case. This is further confirmed by the higher
activity of these ego networks compared to the immediatly next one (ego networks
showing two circles). A high level of activity is another distinguishing feature of bots
and spammers. Whilst the size of the ego networks with one circle in Facebook
is relatively small, in Twitter we notice very large ego networks (i.e. with average
size of 192.77 alters). This could be explained by the fact that is more difficult for
bots or spammers to create a large network of social relationships in Facebook,
whereas in Twitter is easier to have a large number of followers. This is due to
the differrences in the nature of the two platform. In fact, in Facebook users tend

Table 4.1: Optimal number of clusters (k∗) of ego networks in Facebook.

Facebook
kopt # of nets Net size Use rate
1 844 (0.9%) 29.68 [±1.95] 15.30
2 10, 465 (11.47%) 41.82 [±0.39] 14.90
3 28, 918 (31.66%) 39.00 [±0.27] 18.25
4 26, 124 (28.60%) 41.99 [±0.38] 25.55
5 13, 584 (14.87%) 53.89 [±0.66] 40.92
> 5 11, 412 (12.50%) 82.02 [±1.00] 93.35
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Table 4.2: Optimal number of clusters (k∗) of ego networks in Twitter.

Twitter
kopt # of nets Net size Use rate
1 2, 500 (0.6%) 192.77 [±12.44] 15.27
2 14, 683 (3.7%) 104.93 [±2.35] 11.70
3 40, 099 (10.2%) 91.42 [±0.98] 13.90
4 57, 227 (14.5%) 89.09 [±0.73] 18.36
5 58, 410 (14.82%) 92.56 [±0.70] 25.34
> 5 221, 319 (56.1%) 100.42 [±0.31] 81.32

to accept friendships requests only if they know the requester in person, or they
recognise a real human behind her profile, whilst in Twitter the heterogeneity of
profiles makes this kind of selection more difficult.

For ego networks showing more than one circle the activity of ego increases
with the number of circles. Moreover, the size of the ego networks seems to be
almost constant between two and five circles, and it increases for networks with
more than five circles.

Ego Network Circles

According to the previous analysis, the typical number of clusters in online ego
networks appears to be equal to 3 − 4 in Facebook and 4 − 5 in Twitter. Yet, to
be able to compare the structure of online ego networks with that fount in offline
networks we have applied the algorithm Ckmeans.1d.dp with k = 4 for Facebook
and k = 5 for Twitter. This choice will be more clear in the following, but we mo-
tivate it anticipating that in Twitter a new internal circles appear, that is not visible
in Facebook. For each ego network we have obtained a set of clusters that we
refer as S1, S2, S3, S4, and S5 (where needed), sorted by decreasing value of the
centroid (i.e. the average frequency of contact of the cluster) so that S1 represents
the cluster of the social links with the highest frequency of contact. The obtained
clusters are not directly comparable with the circles of offline ego networks. In fact,
while clusters are disjoint groups, social circles, as depicted in Figure 6.2, are hier-
archically inclusive (i.e. the support clique is included in the sympathy group which
is included in the affinity group which is included in the active network ). For this
reason, in order to compare social structures in online and offline ego networks,
we have aggregated the clusters to form hierarchically inclusive circles. Specifi-
cally, we have defined the circles C1, C2, C3, C4, and C5 as Ck =

⋃k
i=1 Si so that

C1 ⊆ C2 ⊆ C3 ⊆ C4 ⊆ C5.
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Table 4.3: Ego network circles’ properties.

C1 C2 C3 C4 C5

Facebook
min freq. 5.09 1.95 0.67 0.11 −
sizea (1.79) (5.83) (17.05) (50.46) −
scal. fact. 3.26 2.93 2.96 −

Twitter
min freq. 20.55 8.91 3.98 1.36 0.18

size 1.66 5.06 12.87 32.66 97.47

scal. fact. 3.04 2.55 2.54 2.98

Offline
min freq. 4.29 1.00 − 0.08 −
size 4.6 14.3 42.6 132.5 −
scal. fact. 3.10 2.98 3.11 −

In Table 4.3 we compare the properties of the circles in Facebook and Twitter
ego networks with those found in offline ego networks. One of the main features we
have considered for the analysis is the minimum frequency of contact. It defines,
for the alters included in each circle, the lower bound of the frequencies of contacts
of their social links. In other words, this value indicates the minimum frequency of
contact for an alter to be included in a given circle. In the table, we report the
average value of this measure as “min freq.”, calculated for all the ego networks
in terms of number of contacts per month. The minimum frequencies of contact of
offline ego networks have been taken as follow: once a week for the support clique,
once a month for the sympathy group and once a year for the active network while,
for the affinity group, the minimum frequency of contact has not been defined yet.

In the table we also show the average size of the obtained circles for online ego
networks while, for offline networks, we report the values presented in [96], that
summarise the properties of a large number of offline social networks obtained in
diverse social environments. Despite the size of the circles in Facebook and Twitter
ego networks appear to be very close to each other, it is worth to remind that they
should not be compared directly. In fact, as already explained in Section 3.1, the
ego networks in the Facebook data set contain just a sample of the social relation-
ships of the egos. This is because the crawling process may have not downloaded
the considered regional network completely and that all the contacts external to
this area have been excluded. In absence of precise information, we assume that
the crawled data represent a uniform random sample of both nodes and links. On
the contrary, the sizes of the circles of Twitter ego networks are more reliable, since
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we have at our disposal the entire outgoing communication log of each ego (given
the limit of 3, 200 tweets).

Rather than the size, a better feature to consider to compare the properties of
online and offline ego networks is the scaling factor between the circles (“scal. fact.”
in the table), defined as the ratio between the size of two hierarchically adjacent
circles. This measure can provide insights about how the circles in ego network
are hierarchically arranged and is not affected by a random sampling of the links.
In fact, with random sampling, the size of all the circles changes proportionally
without affecting the scaling factors. Another feature that can be used to compare
the ego network circles in online and offline ego networks is the average minimum
frequency of contact of the circles, since, as the scaling factor, it is not affected by
possible bias derived from the sampling method.

4.1.3 Comparing Online and Offline Ego Networks

Looking at the scaling factors in Table 4.3, we can see that their values are very
similar to each other and close to 3, for both Facebook and Twitter ego networks,
and they are compatible with the results found offline. A scaling factor of three has
been found in several offline social networks and it appears to be a fundamental
property of human ego networks [96]. This result is a first indication that Facebook
and Twitter ego networks show a hierarchical structure remarkably similar to that
found in offline environments.

Considering the average minimum frequency of contact of the circles, we can
notice that there is a match between the circles of the two OSNs and those of
offline social networks. Specifically, as we report in Table 4.4, we find the same
magnitude in the “min freq.” values of C1 in Facebook, C2 in Twitter and C1 in
offline social networks, that therefore we map to the concept of support clique. In
the same way, C2 in Facebook can be matched to C3 in Twitter and C2 in offline
environments (the sympathy group),C3 in Facebook matchesC4 in Twitter, and we
hypothesise that the two match C3 offline (affinity group). C4 in Facebook matches
C5 in Twitter andC4 offline (the active network). It is worth noting that Twitter shows
higher values of min. freq (nearly double) for all the circles compared to Facebook
and offline ego networks. This could be ascribed to the nature of the platform, and
to the measure of interaction we used, that could be slightly different than the one
used in the other environments.

Last, we have compared the ego networks according to the sizes of their layers,
which is another important signature of offline ego networks. The match between
C2-C5 in Twitter and C1-C4 offline is further confirmed by a strong similarity in
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Table 4.4: Offline/online ego networks mapping. The Facebook’s size was scaled
to match offline active network dimension.

Super
support
clique

Support
clique

Sympathy
group

Affinity
group

Active
network

Facebook
circle − C1 C2 C3 C4

min freq. − 5.09 1.95 0.67 0.11

sizea − (4.70) (15.31) (44.77) (132.50)

Twitter
circle C1 C2 C3 C4 C5

min freq. 20.55 8.91 3.98 1.36 0.18

size 1.66 5.06 12.87 32.66 97.47

Offline
circle − C1 C2 C3 C4

min freq. − 4.29 1.00 − 0.08

size − 4.6 14.3 42.6 132.5

their size, as reported in Table 4.4. In the case of Facebook, a direct compari-
son is not possible, because of the unknowns in the sampling process previously
discussed. Nevertheless, we can obtain strong hints about a significant match by
rescaling the Facebook sizes, as follows. Assuming that C4 in Facebook matches
C4 offline (which is suggested considering the minimum frequency and the scal-
ing factors), we have rescaled the size of C4 in Facebook to match the size of C4

offline (132.50). The resulting ratio has a value of 2.63 that we have applied to the
other Facebook layers. Note that the value of 2.63 is compatible with the reported
subsampling of other networks obtained using the same crawling agent [93]. It is
interesting to note that, scaling the size of other Facebook circles (C1, C2 and
C3) according to this ratio, they match very well the respective sizes of the offline
layers.

Interestingly, in Twitter we have found that there is an additional circle (C1)
with a very high minimum frequency of contact that represents a subcircle of the
support clique. Since the size of C2-C5 in Twitter show a good match with those
found offline, we can say that C1 in Twitter, that we call “super support clique”, has
a typical size of 1 or 2 people. This additional circle has been already hypothesised
in offline social networks, but its existence remained unconfirmed hitherto, due
to absence of dataset of a large enough scale to reliably highlight this type of
relationships [32].
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4.2 Incoming and Outgoing Communication

In Face-to-face communication is difficult to differentiate the impact on social rela-
tionships of incoming (e.g what we hear) and outgoing communication (e.g. what
we say), while it is much easier in electronic communication (e.g. email, com-
ments or likes in Facebook) where is clear who send the message. To execute
characterise the structure of ego networks formed by incoming and outgoing com-
munication, we analysed a small dataset crawled using a dedicated application
(described in AppendixC). The obtained dataset is composed of social data re-
garding 27 people from our research center. For each participant, we downloaded
all the social data related to the communication between them and all their friends
(making sure to take care of Facebook privacy policies, and anonymising the data).
Moreover, the users assigned an evaluation of the tightness of the relationship to
each one of their Facebook’s contacts. The evaluation consists in assigning two
values in the interval [0, 100], the first value evaluate the social tightness in online
environments, while the second value evaluate the relationship according to offline
interaction.

The following analysis, presented in [59], aims to characterize the ego net-
work constituted by one of the two kind of communications, thus we differentiate
between outgoing and incoming communication exchanged by the ego with the al-
ters modelling each social relationship as two different directional links. Therefore
we assign a weight to each link (with a similar procedure described in Section 3.3)
equal to the frequency of outgoing contact as regards the links directed from ego
to alters and equal to the frequency of incoming communication for the opposite
direction.

From the datasets we removed the messages that Facebook implicitly strongly
encourages to send (e.g., wishes for the birthday), and we consider as active the
alters contacted at least yearly by ego. We find that in the outgoing communication
the average active network size - the number of people contacted at least once in
the previous year - is equal to 77.8, while the average number of relationships
is 341.64. Executing the same analysis to the incoming communication we find
that the average active network size is equal to 142.04. This two active network
does not differs only by the size, since just 51 individual are present in both net-
work and the 63.55% of the social links in the active network built on the incoming
communication turn out to be inactive in the other active network. Considering the
precedent results presented in Section 4.1.2, the active network built on the out-
going communication can better describe the properties of an ego network. This
result can be explained considering that to not all the incoming message does not
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correspond a expense of cognitive resources by the receiving user (e.g. it is not
read by the user).

To better estimate the tie strength, we introducing an index based on the out-
going communication, with a reinforcement to all the relationships that shows reci-
procity in the communication having both frequencies of contact (incoming and
outgoing) greater than zero. In this way we want to capture the resources ego
spends to read the messages received from alters she actively contacts. The in-
dex is defined as:

AdjFreqjk = fjk +
fjk ∗ fkj
fjk + fkj

(4.3)

Where fjk is the frequency of outgoing communication from ego j to alter k
and fkj is the frequency of incoming communication from alter k to ego j. The
increment given by the additional term is maximised when the incoming and the
outgoing interactions are balanced. The CCDF of the frequency of outgoing com-
munication, of the frequency of incoming communication and of theAdjFreq index
are depicted in Figure 4.4.

We applied the clustering methodology described in Section 4.1.2 to both out-
going frequencies and the results of the AdjFreq index. We verified that the Face-
book ego networks of our sample show a typical number of circles similar to that
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found in humans (i.e., equal to 4). We find that the average optimal number of
clusters for outgoing communication is equal to 3.76 with a 95% confidence in-
terval of (3.46,4.06) and a median equal to 4. As far as the AdjFreq index, we
obtain an optimal number of clusters equal to 3.88 with a 95% confidence inter-
val of (3.58,4.18) and median 4. Hence, we re-apply the k −means algorithm on
all the ego networks fixing k to be equal to 4, using both the frequency of outgo-
ing communication and the AdjFreq index. We study the dimensions, the scaling
factors and the typical contact frequency of each social circle represented by the
union of each cluster found by k-means with all the other previous clusters with
higher frequency of contact, comparing them with the results found in human ego
networks.

Table 4.5 reports the results of the k-means analysis with k fixed to 4, indicating
with “size” the dimension of the circles and “sc. f.” the scaling factors between adja-
cent circles. The results are divided in the table into three different parts: (i) results
concerning the k-means analysis applied to the frequency of outgoing communi-
cation; (ii) results of k-means applied to the AdjFreq index and (iii) results in the
anthropological literature. The mean value of the scaling factors is equal to 3.14

for the frequency of outgoing communication and 3.12 as regards the AdjFreq

index. These results are really close to the mean scaling factor found in human
ego networks. The size of the circles in Facebook (for both the frequency of outgo-
ing communication and the AdjFreq index) is lower than that found in human ego
networks. This could be ascribed to the fact that online ego networks represent
only a partial subset of the ego networks of a person in real life and on-line ego
networks are currently still in the infancy and in a growing phase (the size of an
ego network also depends on how long the ego has been active in OSN). Despite
this, the structure of Facebook ego networks presents the same hierarchical pat-
tern of the structure of human ego networks. The last two rows of Table 4.5 report
the projection of the results in Facebook calculated in order to make the size of the
larger circle fit with its counterpart in real life, for both the frequency of outgoing
communication and the AdjFreq index. The results confirm the structure similar-
ity between the social circles of the ego networks obtained by ego-net digger and
those found in human real ego networks. Moreover, the AdjFreq index, built as a
combination of the frequency of outgoing and incoming communication, produces
an ego network structure closer to that found in the anthropological literature.

The typical frequency of contact for each circle is reported in Table 4.5 as
“min freq”, expressed by the minimum number of posts sent from ego to alters
per month within the considered circle. The resulting typical frequency of contact
allows us to define the social circles in our sample data, considering the frequency
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Table 4.5: Results of k-means with k = 4. 95% confidence intervals are reported
in square brackets.

support
clique

sympathy
group

affinity
group

active
network

Frequency of Outgoing Communication
size 2.52 [.57] 7.84 [1.88] 23.04 [7.41] 77.8 [33.49]
sc. f. - 3.11 2.94 3.38

min freq 10.49 3.94 1.15 .19

AdjFreq Index
size 2.56 [.63] 8.24 [2.18] 24.6 [8.28] 77.8 [33.24]
sc. f. - 3.22 2.99 3.16

min
AdjFreq 12.3 5.03 1.56 .28

Results in Human ego networks
size 4.6 14.3 42.6 132.5

sc. f. - 3.10 2.98 3.11

Projections
outFreq (4.29) (13.35) (39.24) (132.5)
AdjFreq (4.34) (14.03) (41.9) (132.5)

of outgoing communication, the group of people contacted at least∼ three times a
week (support clique),∼ weekly (sympathy group),∼monthly (affinity group) and
∼ twice a year (active network). The structure we find in Facebook ego networks
is thus compatible with the one found in human ego networks.

4.3 Discussion

Summarising, our results show that there is a remarkable similarity between ego
networks in OSNs (both Facebook and Twitter) and offline networks, in terms of
scaling factors, minimum interaction frequency and size of the layers. This sug-
gests that the use of OSNs does not affect the structural properties of ego net-
works, that are instead controlled by the constrained nature of human brain. In
addition our results also highlight additional structural elements, i.e. the “super
support clique” in Twitter. This is a very interesting result per se, and also shows
that OSNs can be used as an extremely useful tool to collect large-scale data to
characterize human social network properties. The scale at which data can be col-
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lected with OSNs permits to draw statistically relevant conclusions, which is often
much harder or cumbersome with more conventional data collection campaigns
(such as standard questionnaires). From a more technological standpoint, our re-
sults could be useful for the creation of advanced social platforms and efficient
networking solutions for the Future Internet. For example, differences in the prop-
erties of social contacts of the user, arranged into the ego network circles, could
be exploited to automatically set privacy policies (e.g. giving more trust to close
friends) or to facilitate the management of social relationships giving specific tools
for each circle. Furthermore we analyzed the different characteristics of outgoing
and incoming messages in a small dataset retrieved with a dedicated application.
For both kind of communication the ego network still applies but the incoming ac-
tive network is bigger than the outgoing one.
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The Role of the Ego Network Properties in
Information Diffusion

Nowadays, Online Social Networks are one of the most effective channels to
spread information among people. They became widely used in the last few years,
due to their ability to transform users in active producers of contents, going sharply
in opposition to more conventional communication means. The mechanisms un-
derpinning information diffusion in social networks has recently gained attention
in research community. In fact, understanding how information spreads between
people could provide important insights into the dynamics of our society, reveal-
ing how the spread of ideas, innovation, influence and many other aspects take
place. The advent of OSNs made available a huge amount of data regarding com-
munications between people. The availability of these data represents a unique
opportunity for the study of information diffusion.

Although some work has been done to characterise the properties of OSNs
and their role in the diffusion of information, there is still a lack of understand-
ing of some fundamental aspects controlling the process. Tie strength (i.e. the
importance of social relationships) is recognised as the most important factor in-
fluencing the spread of information between pairs of individuals [43, 17]. Moreover,
the concept of tie strength is strongly related to the degree of interaction between
people [49, 10] and social interactions are found to be the main driver of informa-
tion diffusion in social networks. This leads to the formation of the word-of-mouth
effect [3], for which information travels thanks to local communications between
people.

Understanding how social interactions influence information diffusion at global
scale is not an easy task, since it is difficult to obtain large-scale datasets contain-
ing meaningful sample of both communication traces between people (to estimate
tie strength) and information cascades. In fact, OSNs usually give limited access
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to their data, especially when personal information is concerned. Moreover, tie
strength is a really dynamic property and its estimation requires the collection of
a large portion of the history of communication between people [7]. Obtaining in-
formation cascades is clearly not easier, since it requires the collection of a large
amount of data to obtain complete trees of information paths in the network.

As discussed in Section 5.1, only a few works on information diffusion con-
sider social networks with weighted relationships. Therefore, the relation between
tie strength and the properties of information cascades is still not completely un-
derstood. The main objective of this analysis is the study of the influence of two
main characteristics of the ego network on the information diffusion. The first one
is the role assumed by the various social circles and the second is how the the
relationships established by the ego (and thus the position of the node in the net-
work) influences its capability to generate large information cascades.

5.1 Related Work

In literature, different approaches have been explored to characterise information
diffusion in OSNs. However, none of the proposed models used to describe the
generation of information cascades in social networks consider that the probabil-
ity to forward information depends on tie strength and on the level of interaction
between the involved users. For this reason, there is still a lack of understanding
about the role of tie strength in the information diffusion process.

Research in the field started with a series of experiments aimed at collect-
ing and studying traces of information diffusion among the population. One of the
first pioneers in the field was Stanley Milgram, who showed the presence of a
short average distance between randomly selected senders and a fixed target in
the network, with value close to 6, confirming the the so called “small world” ef-
fect, or “six degrees of separation”. Milgram also identified the convergence of
communication chains through a small set of common individuals, with a cen-
tral role in the diffusion. Additional analyses on OSNs validated Milgram’s results
in [31, 63, 14], showed that OSNs presents a distinctive property called “small
world effect”, whereby the average distance between randomly selected nodes
grows proportionally to the logarithm of the size of the network. Other analyses
about the topology of OSNs found that OSNs play an important role in the informa-
tion diffusion process [61]. Specifically, the clustered structure of OSNs positively
impacts on the diffusion of information [22].

In [43], Mark Granovetter hypothesises that the difference in tie strength (i.e.
the importance of social relationships) between different links in a social network
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plays a fundamental role in the diffusion of information. Whilst strong ties are gen-
erally associated to higher level of trust and transport more information, weak ties
can represent bridges connecting different communities in the network, making
information travel long distances. This fact has been empirically confirmed by dif-
ferent studies on OSNs [70, 15]. The idea behind the role of tie strength led to the
conclusion that information in social networks is moved through local links, repre-
senting personal acquaintances. For this reason social networks are said to show
the so called word-of-mouth effect [3, 24].

Based on the properties described hitherto, a series of models for information
diffusion have been created (see for example [37, 44] - the simplest and widely
used models in literature). These models assume, similarly to what happens in a
virus contagion, that a node is infected by information with a probability propor-
tional to the number of its neighbours which are already infected. The produced
effect is known in literature as cascading effect, thus the paths followed by infor-
mation during the contagion are called information cascades.

The advent of OSNs fostered the availability of large amount of information
cascades data. An interesting body of work analyses these traces to under-
stand the mechanisms that control the spread information in the network at global
level [38, 83, 67]. The relation between the exposure to information (i.e. the proba-
bility to see a message received through an OSN) and the diffusion of information
have been recently explored. Results indicate that the probability to forward infor-
mation is directly related to the duration of the exposure [76].

Other analyses start from information cascade data to estimate the proba-
bility of diffusion of each social link, by using different information diffusion mod-
els [41, 38, 45, 55]. Although these studies found some important properties about
information diffusion in OSNs, only a few of them combine analyses about both the
topology of the network and the role of tie strength in the diffusion of information
(as we do here). Specifically, in [94], the authors define tie strength as the per-
centage of neighbours that a pair of nodes have in common. Hence, they apply
a series of information diffusion models to characterise the role of tie strength in
the spread of information. Results showed that “pushing” information from node to
node is the best strategy to obtain higher coverage in the network. Moreover, for-
warding information using the links with higher tie strength increases the success
of the diffusion. Even though these results highlight some interesting properties of
information diffusion, the definition of tie strength used is derived from the topol-
ogy of the network and does not consider the interaction level of the nodes. Yet,
tie strength is found to be strongly related to the degree of interaction between
people [49, 10] and this fact must be taken into account to fully understand so-
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cial dynamics of the network [43]. Only a few works analyse the influence of tie
strength in the diffusion of information in OSNs [17], but they are neither exhaus-
tive for the characterisation of information diffusion properties in OSNs nor useful
for the creation of simulated environments. In fact, they are not reproducible, since
the data they analyse is not publicly accessible.

5.2 The Role of Social Circles

In this section we assess how the ego networks structural properties in OSNs
influence macro-level social phenomena involving the whole network and the so-
cial interactions between people. In particular, we have studied the diffusion of
information in OSNs analysing the role of tie strength and social structures on the
generation of information cascades. To this aim, we have used a simple model of
information diffusion that allows us to study “in vitro” the generation of information
cascades considering the Facebook network described in Section 3.2. Specifi-
cally, we have used the Facebook social graph (i.e. the graph describing the over-
all structure of the downloaded network) combined with the frequency of contact
estimated from all the interactions between the users. We have used this network
since it represents a significant portion (a regional network) of the entire Facebook
graph. In fact, sampling a social network with geographical selection of the nodes
provides a better representation of the original network than sampling nodes with
a walk in the network. This work was submitted to [6].

5.2.1 Information Diffusion Model

To simulate the generation of information cascades in Facebook, we have utilised
the Independent Cascade Model (ICM) [37] in which information spreads in the
network according to a probability of diffusion defined for each link. The diffusion
starts from an initial set of infected nodes which have a single chance to spread
the information to each of its neighbours. Then, the process is repeated iteratively
step by step until no new nodes are infected.

More formally, the diffusion process propagates the information synchronously
in N discrete steps, in which each node in the network is either in one of three
possible states: not-infected, infected, contagious. A node in the contagious state
is a node that is infected and can spread information. The ICM starts with a set
A0 of contagious nodes, and all other nodes 6∈ A0 in the state not-infected. At the
ith time step, with 0 < i ≤ N , all the nodes in a ∈ Ai−1 (contagious nodes at
time step i − 1) propagate the information to their not-infected neighbours w ∈
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Wa, with a probability pa,w. Each not-infected node that receives the information
changes its status to contagious and it is included in Ai. At the end of the step i
all nodes in Ai−1 change their status from contagious to infected (this guarantees
that nodes spread the infection at most during one time step, but not continuously).
The diffusion process ends at the start of the step i = N when the set Ai is empty.

The ICM requires all the links in the network to be marked with their probability
of information diffusion, but does not provide any constraints on how to calculate
this value, so we defined a different function to obtain the probability of diffusion.
Since in OSNs the spread of information occurs when two users interact, we de-
fined the probability of diffusion of each social link as a function of its normalised
frequency of contact ϕs,t between a pair of users 〈s, t〉. To this aim, we have used
the following transformation function to calculate the probability of diffusion:

ps,t = max(ϕs,t, ε)
γ (5.1)

The constant ε is a value used to give a ps,t > 0 to all the relationships with
null normalised frequency of contact. We have introduced this constant because,
even though a relationship shows no activity, its presence represents an implicit
interaction between the involved users and therefore a possible (although rarely
used) channel of communication, and thus we cannot assign a probability equal to
zero, that indicates the total absence of communication. The value of this constant
should be lower than the frequency of any other links with a non-zero frequency of
contact.

The parameter γ permits to control the difference in terms of probability of
diffusion between strong and weak ties, introducing a nonlinear transformation.
In fact, when γ = 1.0, the probability is proportional to the frequency of contact
between users. On the other hand, when it is greater than 1, the probability of
the ties is penalised according to their frequency of contact. This emphasises the
diffusion over strong ties.

5.2.2 Simulation Settings

We have generated a set of information cascades through simulation using the
ICM model on Facebook network. We have used the frequency of contact (esti-
mated using the methodology explained in Appendix C and normalised between 0
and 1) and we have transformed it by applying Equation 2 to obtain the probability
of diffusion for the simulations. The value of ε has been chosen to be the highest
possible value lower than all the normalised frequencies of contact in the data set.
Namely, since the lowest normalised frequency of contact is equal to 0.0012 we
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Figure 5.1: CCDF of the activity rate of the nodes.

fixed ε to 0.0010. This allowed us to to obtain an upper bound of usage of the social
links with null frequency of contact.

As described in the previous section, the ICM model requires a set of start-
ing nodes A0 from which information cascades are generated. For the sake of
simplicity we decided to start the simulations from a single node. Since we want
to infer the average properties of information cascades in the network, we have
sampled a set of 1, 000 starting points (seeds). For each seed, we performed 100

simulations, then computing its average node coverage, defined as the number of
nodes infected. Hence, we have averaged the results obtaining the average node
coverage in the network.

Anticipating the results of the simulations, we have found a positive correlation
of r = 0.73 with a p-value of p < 0.01 between the activity rate rs of a node s,
defined as the sum of the frequencies of contact of all the relationships of the node,
and the node coverage of the cascades generated by s, in simulations with γ =

1.0. This indicates that nodes with high rs proportionally generate a much larger
number of messages that are spread in the network than nodes with low rs. Thus,
to obtain significant results, we have sampled the seeds according to a uniform
distribution over the activity rate of the nodes, whose distribution is depicted in
Figure 5.1. In the figure we can notice that the activity rate shows a long tailed
shape. This means that in our data set nodes with low activity rate are way more
numerous that nodes with high activity rate. The sampling choice we have utilised
avoids to select only nodes with low activity rate (that generate small cascades),
as could happen with a uniform random sampling on the nodes.

With the used sampling technique, to average the results of the simulations we
needed to weight the node coverage obtained from each seed by the number of
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Table 5.1: Definition and statistic of rings considering our Facebook graph.

Ring Social circles correspondencea % of links Avg ϕ
R1 support clique 0.3% 0.137

R2 sympathy group, excluded the support clique 1.0% 0.062

R3 affinity group, excluded the sympathy group 6.2% 0.020

R4 active network, excluded the affinity group 10.9% 0.009

R5 mega-band, excluded the active network 80.6% 0

nodes in the network with similar activity rate. This is based on the assumption
that nodes with similar activity rate generate cascades with compatible properties.
Therefore, given the seeds gk (k = 1, ..., 1000) ordered by increasing values of
activity rate rgk , the weight wgk to be applied to the coverage obtained with seed
gk is the number of nodes in our data set whose activity rate is within the interval
around rgk defined by the intermediate points between rgk−1

and rgk , and rgk and
rgk+1

, respectively.

5.2.3 Social Rings and their Role in Information Diffusion

To assess the impact of the structure of ego networks in the diffusion of information
we counted the number of messages that pass through specific ego network cir-
cles during the simulations. Each social link in the network has been assigned to a
position in the ego network model, according to the frequency of contact between
the users it connects. Remember that, by definition, the ego network model de-
fines a hierarchical structure, and therefore outer layers include inner ones. Thus,
to avoid ambiguity, as reported in Table 5.1, we have assigned each link to a social
ring, defined as the part of a social circle that is not included in any nested one.
To do so, we have used the same clustering technique described in Section 4.1.2,
considering that the clusters coincide with social rings. We have assigned all the
inactive relationships (i.e. with null frequency of contact) to a fifth (and external)
ring, that coincide with the external part of the mega-band in the ego network
taxonomy.

In Table 5.1 we report the percentage of links of the network belonging to the
different rings and their average values of the normalised frequency of contact
ϕ. As we can see, most of the social links in our network are included in the
external ring R5. This is compliant with typical models of human social networks,
that clearly state that weak ties are way more numerous than strong(er) ties.
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In Table 5.2 we show the usage of the rings, in percentage, for the simulations
with different values of γ. Most information passes through the first four social rings
(from R1 to R4), which correspond to the active network in the ego network model.
The most used ring in diffusion process is R3, for values of γ up to 1.25, even
though it contains only 6.2% of the relationships, as reported in Table 5.1. This
result is coherent with the literature, that considers the medium strength ties as
the most used in the information diffusion process [31, 70]. Note that, for γ = 1.5,
the diffusion takes place mostly through strong ties, thus channelling most of the
messages (i.e. 85.76%) through the first three rings, that contain only 7.5% of the
social links. It is also worth noting that the 5th ring, the most external, is used up to
only 4.55% of communications. Even though this result is strongly dependent on ε,
for the choice we have made in the selection of the value of ε the results reported
here can be considered an upper bound of the expected amount of communication
that spreads through the 5th ring.

With the results of the simulations we have also studied how the different val-
ues of the γ parameter (in the range 1 ≤ γ ≤ 2) impact on the properties of the
information cascades generated by our model.

Figure 5.2 depicts the distribution of the node coverage for different values
of γ, weighted as previously described. As can be seen in the figure, the node
coverage shows a long-tailed behaviour for all the values of γ and decreases as
γ increases. In the figure we also show the power-law functions with α that best
matches the data. The values of α are compatible with the results of other analyses
of information diffusion on cascades collected from real communication traces [34,
58]. This indicates that the cascades generated by our model are consistent with
the real information diffusion process in OSNs. Note that in Figure 5.2 we omitted
γ = 2 since it produces too small cascades.

Table 5.2: Diffusion share through links: normalized weighted share of messages
through various rings.

γ
Ring share

R1 R2 R3 R4 R5

1.0 16.96% 22.60% 28.21% 27.69% 4.54%

1.125 16.97% 22.58% 28.20% 27.69% 4.55%

1.25 21.07% 25.83% 28.28% 22.74% 2.08%

1.5 29.51% 30.39% 25.86% 13.81% 0.42%
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Figure 5.2: Node Coverage Density for different values of parameter γ and related
power-law fit.

5.2.4 Impact of Ring’s Removal on Information Diffusion

We have continued our analysis studying the effects induced by the removal of
the different social rings on the diffusion of information. To this aim, we ran a set
of simulations by eliminating one ring at a time from the network (and various
combinations of rings) to assess to which extent they impact on the diffusion of
information and to study if the diffusion can take place also without specific groups
of social links. In this simulations, we have chosen the value γ = 1.125 since it pro-
duces cascades with node coverage that best matches real traces of information
diffusion (see for example [34, 58]).

The results of the analysis of information diffusion with the removal of the social
links, reported in in Table 5.3, show that almost all the rings are important for the
diffusion of information. In fact, apart from R5, the removal of any of the rings
causes a significant drop in terms of node coverage. The low importance of R5

could be explained by the fact that the links in this ring can be either connected

47



CHAPTER 5. THE ROLE OF THE EGO NETWORK PROPERTIES IN
INFORMATION DIFFUSION

Table 5.3: Diffusion share through links in sub-network.

Removed Removed Coverage Rings share
ring(s) links (%) # nodes (%) R1 R2 R3 R4 R5

none − 236.34 (100 ) 16.97 22.58 28.20 27.69 4.55

R1 0.3 40.26 (17.0) − 28.56 34.27 32.23 4.94

R2 1.0 42.61 (18.0) 23.42 − 36.93 34.76 4.89

R3 6.2 57.79 (24.5) 23.75 33.02 − 38.17 5.06

R4 10.9 85.96 (36.4) 23.31 32.10 39.62 − 4.97

R5 81.6 209.83 (88.8) 17.74 23.70 29.55 29.01 −
R1, R2 1.3 0.23 (0.1) − − 46.18 41.05 12.76

R1, R2, R3 7.5 0.05 (0.0) − − − 69.04 30.96

R1, R2, R3, R4 18.4 0.01 (0.0) − − − − 100

R2, R3, R4, R5 99.7 0.03 (0.0) 100 − − − −
R3, R4, R5 98.7 4.26 (1.8) 40.37 59.63 − − −
R4, R5 92.5 61.41 (26.0) 24.41 33.79 41.80 − −

to peripheral nodes with very low probability of diffusion, or to already infected
regions. This result does not necessarily imply that weak ties are not important. In
fact, the 4th ring, which contains links with very low interaction frequency, has a
high relevance in the diffusion of information, even though it is used only 16.7% of
the times. Moreover, its removal makes the coverage drop to 36.4% only.

It is also noteworthy that the removal of R1, which contains only the 0.3% of
the network links, reduces the node coverage to just 17.0%. According to the lit-
erature, strong ties are usually associated to the formation of clustered groups of
nodes, trapping information in their cliques [43]. This fact has been also empiri-
cally confirmed in [28] on the same Facebook data set used in the present paper.
Despite this, our results indicate that the role of strong ties is essential in the infor-
mation diffusion process, because their removal from the network causes a drastic
reduction of node coverage. This kind of relationships is essential to distribute the
information within clustered regions of the network, and thus to eventually reach
bridges that allow information to reach other socially distant regions.

The great impact of R1 is influenced by the high probability of diffusion asso-
ciated to its links. This high probability is supported by other work in the literature,
such as [17], in which the authors empirically demonstrated that strong ties are
more frequently used than other ties to diffuse information. Noticeably, simulations
with only the three most internal rings (R1, R2, and R3) generate cascades with
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node coverage equal to 26.0% of the ones generated using all the rings, even
though the links remaining after the removal of R4 and R5 are only 7.5% of all
the links in the network. Even if we do not present it, a simulation with only the
strong ties of R1 and the weak ties of R4 would have produced small information
cascades, in fact they would be smaller than the one produced by the simulation
with the removal of ring R2.

We have not simulated the information diffusion removing rings in the middle
of the ego network structure (e.g. R2 and R3), but we expect that the results would
lead to lower node coverage than the simulations with the removal of only one of
them.

The results of the simulations with the removal of social rings show that we can
consider two kinds of equally important factors in the information diffusion process:
(i) the intra-clique diffusion, in which the information is delivered using strong and
medium ties inside closed groups of nodes and (ii) the inter-clique diffusion which
uses medium and weak ties to diffuse information between different parts of the
network. Both of them are essential in the information diffusion process, since the
absence of either of them drastically reduces the diffusion of information in the
network.

5.3 The Role of the Node Centrality

In this section we assess how the relationships established by the ego influences
its capability generate large information cascades. In fact the connection with other
egos and the intensity of their relation determine the position of the ego in the
network, allowing him to assume a central or peripheral position in the network. In
this section we characterise the position of the ego according to several centrality
measurement that we use to analyse the information cascades generated by the
ego trough simulations. This work was presented in [4].

5.3.1 Dataset Description

In this analysis we used the facebook dataset described in Section 3.2. Based on
the frequencies of contact, we estimate, for each edge, the strength of the social
tie as a numeric value in the interval between 0 (the weakest ties, non active rela-
tionships) and 1 (the strongest ties). More formally, we define the tie strength sa,w
between two directly connected nodes a and w as the result of the linear transfor-
mation of the monthly average frequency of contact to obtain a value in the interval
[0, 1]. Since the distribution of interaction frequencies has a characteristic long tail
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Figure 5.3: Complementary cumulative distribution function (CCDF) of the nodes’
activity.

(the highest monthly average frequency of contact in the dataset is equal to 868.24

interactions per month), we assign the value of 1 to the top 500 interactions in the
dataset. In other words, in our graph all edges with a number of interactions per
month higher than 33 have a tie strength equal to 1. In addition, we assign to each
node a a weight calculated as

∑
w∈Wa

sa,w where Wa is the set of neighbours
of a. We call this weight activity, which can be considered as a sort of weighted
degree. The activity distribution in Figure 5.3 shows that it is characterised by a
long tail shape.

Hereafter we use the term weighted social graph to identify the described so-
cial graph whose edges are labelled with the strength of the social ties. Moreover,
we define the active graph as the sub-graph of the weighted social graph in which
each node and each edge have an activity value and a tie strength greater than
zero respectively. Properties of the weighted social and the active graphs are re-
ported in Table 5.4. As we can see in the table, the active graph is considerably
smaller than the social graph. In fact, both many non-active nodes and many non-
active edges where removed in the active graph. The removed nodes represent
both inactive users or users that have communicated with friends that do not be-
long to the examined regional network. It is worth noting that removed edges are
not weak ties (relationship with a low activity) but completely inactive relationships.

Both social and active networks present the typical properties exhibited by all
the social networks studied in literature [68, 69]: high level of clustering coefficient1

and small average shortest path length (with respect to what one would expect

1 Calculated as the average local clustering coefficient of all the nodes in the network (Eq.
6 in [68]).
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on the basis of pure chance, given the observed degree distribution), thus the
operation of removing inactive nodes and edges from the social network do not
affect the capability of the active graph to describe a typical real life social network.

5.3.2 Experimental Environment

Using the described weighted social graph we want to generate a set of informa-
tion cascades to study the relation between the properties of the network and the
diffusion of information. We aim to study how information spreads in the network
therefore we need a model able to create information cascades with properties
similar to those find in real environments.

Information Diffusion Model

We want to simulate the word-of-mouth effect in social networks, in which a node
becomes infected when reached by the information. To do so, we based the model
on the Independent Cascade Model described in Section 5.2.1.

As we show in Section 5.3.3, the Independent Cascade Model is unable to
generate realistic information cascades if we assign to each link a probability of
diffusion as a linear function of interaction frequency. Thus, we modelled the decay
of interest which indicated that the interest in information (and in propagating it)
decays over time in real environments. In the model we introduce an ageing factor
α, included between 0 and 1, that penalises the probability of diffusion at each
step with the exception of the first one. Thus, the probability that, at step t > 0, a
node a ∈ At−1 infects a neighbour w ∈Wa is equal to:

pa,w(t) = sa,w ∗ (1− α)t−1 (5.2)

where sa,w is a constant value (the tie strength in our case) in the interval
[0, 1] for each edge of the network that shows the probability of diffuse information

Table 5.4: Statistics of the graphs

Weighted Social Active
# Nodes 3, 097, 165 1, 171, 208
# Edges 23, 667, 394 4, 357, 660
Avg Degree 15.283 7.441
Avg Clust. Coef. 0.209 0.114
Avg Sh. Path 6.181 6.870
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through the link during the first step of the diffusion. In fact, it is worth noting that
if t = 1 (the first step) then pa,w(1) = sa,w. Moreover, if α = 0 then the lack of the
ageing factor makes the model equivalent to the Independent Cascade Model.

As we will see later, the diffusion model defined by Equation 5.2, is able to
create information cascades comparable to those found in real environments.

Simulation Testbed

We tested the information diffusion model described in the previous section apply-
ing it to the weighted social graph described in Section 3.2 using the tie strength
values as the parameters sa,w.

To do so, we implemented a modular network simulator written in Java and
based on fastutil data structure libraries2. We selected 1, 000 seeds from the
nodes in the active graph and we ran 100 different simulations for each seed.
Since the distribution of nodes’ activity has a long tailed shape (as showed in
Figure 5.3), we decided to adopt a sampling technique able to select the seeds
in the entire spectrum of activity with the same probability. We randomly selected
1, 000 values in the range (0,MaxActivityV alue] and then we included in the
sample the nodes with the closest value of activity. In this way, we have been
able to study the correlation between the statistics of the sampled nodes and the
properties of the information cascades avoiding to sample only nodes with low
level of activity, that would have been selected by a random sampling of the nodes
since they are the majority in the network.

In order to study the influence of the parameter α in the information diffusion
model, we ran different simulations setting its value between 0.1 and 0.5, with steps
of 0.1. We also executed a set of simulations with a α = 0.0 to produce information
cascades without considering the ageing factor, simulating the behaviour of the
Independent Cascade Model.

Seed Nodes and Information Cascades Measures

In order to analyse how the characteristics of a seed impact on the related informa-
tion cascades, we have selected a set of measures that describe some important
properties of both seed nodes and information cascades.

We have considered two characteristics of the information cascades, the node
coverage, defined as the fraction of the active nodes infected during the diffusion
process, and the cascade depth, defined as the depth of the diffusion tree or,

2 Available at http://fastutil.di.unimi.it/.
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equivalently, as the number of the steps of the process. Since for each seed we
ran 100 independent simulations, the node coverage and the cascade depth of the
information cascades have been averaged over the different seeds.

For each seed we considered a set measures that describe properties of the
node ranging from a local to a network perspective. We calculated each index
using two different versions of the same network: the first is the original weighted
network with the edges labelled with the strength of the social ties and the second
is the network without the tie strength information and thus made unweighted.

The first group of measures concerns the connectivity of the nodes, taking
into account the adjacent edges only. In the case of the unweighted network, we
calculated the node degree, while for the weighted network we consider the activ-
ity of the node that, as introduced in Section 3.2, is the sum of the tie strengths
of adjacent links. The second group of measures, the local network properties,
describes how well the neighbours of the node are connected among them. For
both weighted and unweighted network we calculate the clustering coefficient, that
measures the probability of the existence of a directed connection between two
neighbours. Moreover, for the weighted network only, we considered the Burt’s
constraint index [21], a structural index that shows how strongly connected be-
tween them the neighbours of the node are: a high value of this index indicates
that many neighbours are connected directly among them with strong ties. The last
group of measures, the network centrality properties, describes the importance of
the node within the whole network. We have calculated two centrality measure-
ment, the eigenvector centrality and the PageRank.

5.3.3 Results

In Figure 5.4(a) we show the distribution of the node coverage of the generated
information cascades produced by our information diffusion model setting α = 0.0,
thus not considering any decay of the diffusion probability. The strongly-bimodal
histogram suggests that each information cascade can be either very small or very
large. This is due to the lack of a mechanism that simulates the ageing of the in-
formation. In fact, in this case, each node that receives the information acts as the
seed of a new independent cascade process. If, during the diffusion process, the
number of reached nodes becomes sufficiently large, then there is a high probabil-
ity that the process speeds up increasing the number of contagious nodes at each
step until all the nodes with a sufficient level of activity are reached. For example,
in our testbed we found that, if the diffusion process reaches 20 nodes, there is
a probability equal to 0.974 that the number of reached nodes at the end of the
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process is greater than 20, 000. On the contrary, just a small number of nodes
are reached in case the seed and its neighbours do not succeed in spreading the
information enough during the first steps of the process.

In Figure 5.4(b) we show the node coverage histogram of the information cas-
cades generated setting the ageing factor α = 0.1. It’s worth noting that, compared
with the previous figure, the number of reached nodes is considerably reduced and
that the distribution is unimodal with the peak on the head. This kind of distribu-
tion is compatible with those reported in literature for real information cascades
traces [16]. On the contrary, we can reasonably consider the node coverage ob-
tained without considering the ageing factor α as unrealistic.
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Figure 5.4: Node coverage histograms for information cascades generated using
(a) α = 0.0 and (b) α = 0.1.

To study how the properties of the seed impact on information diffusion pro-
cess considering the ageing factor α > 0, we analysed the correlation between
the measures of the seeds and of the information cascades introduced in Sec-
tion 5.3.2. One of the key aspects of our analysis is to compare the correlation
values obtained using weighted and unweighted social networks in order to high-
light the benefits given by considering the strength of the ties. Correlation analysis
results are reported in Table 5.5.

First of all we analyse the case of the unweighted social network whose cor-
relation values are listed at the top of the table. As we can note the correlation
values are low. Specifically, clustering coefficient and PageRank appear to be al-
most uncorrelated with both node coverage and cascade depth. On the other hand
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the degree and the eigenvector centrality show medium correlation with the infor-
mation cascade measures. This means that we can use these variables to predict
which nodes will produce larger information cascades. It’s worth noting that, de-
spite the correlation values of the eigenvector centrality are slightly higher, the
computation of the degree is significantly less expensive.

In the second part of the table we show the correlation values of the weighted
social network. In general, the correlation significantly increases for all measures,
showing the importance of considering the tie strength. Notice that the activity (i.e.
the sum of the tie strengths of the adjacent links) is the variable with the highest
values of correlation for both node coverage and cascade depth for any value of
α. In order to study more in detail the role of nodes’ activity in the information
cascades, we report in Figure 5.5 the running average of node coverage (a) and
average depth (b) of the information cascades for seeds with different activity. We
notice that the nodes with higher activity produce larger information cascades both
in terms of node coverage and depth. This means that if we are able to select the
nodes with the highest activity in a social network and we give the information to
them, the size of the generated cascades is higher than starting from nodes with
lower activity. This result is intuitive and expected, since the nodes with higher
activity have higher probability to infect their neighbours, thus spreading the infor-
mation in a wider range. The figure also shows the effect of the parameter α of
the information diffusion model. We can notice that increasing the values of α the
model produces smaller information cascades. This is because the probabilities of
diffusion decrease during the process more rapidly as the values of α increases.
For this reason, in case of high values of α, the connectivity of the seed is fun-
damental to generate large information cascade. In fact, a high connectivity of the
seed permits to reach a large number of nodes during the first step of the infec-
tion, when the ageing factor α has no effect. This is demonstrated by the fact that
the correlation values in Table 5.5 of the connectivity measures increase with the
values of α.

Interestingly, all the variants of the clustering coefficient show low values of
correlation with the size of the information cascades. Considering PageRank and
eigenvector centrality in case of weighted network, both measures exhibit good
correlation with the information cascade size. Specifically, the node coverage
has higher correlation values with the eigenvector variables, while the cascade
depth better correlates with the PageRank. Moreover, the Burt’s constraint index
presents a medium negative correlations, which indicate that an ego network with
many structural holes is more capable of diffusing the information than a node in
a strongly connected ego network.
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Table 5.5: Correlation analysis between nodes and cascades’ properties

Cascade Depth
α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Unweighted Social Graph
Degree 0.26 0.25 0.27 0.28 0.29
Clust. Coef. −0.05 −0.05 −0.07 −0.08 −0.11
PageRank −0.13 −0.11 −0.10 −0.08 −0.07
Eigenv. Cent. 0.35 0.34 0.34 0.34 0.33

Weighted Social Graph
Activity 0.72 0.75 0.77 0.78 0.79
Clust. Coef. 0.09 0.10 0.08 0.06 0.04
PageRank 0.32 0.34 0.36 0.39 0.41
Eigenv. Cent. 0.20 0.28 0.29 0.30 0.30
Burt Constr. −0.35 −0.34 −0.36 −0.37 −0.38

5.4 Discussion

In this chapter, the role of the properties of ego network is analysed in the process
of diffusion on information in OSN. In particular, we inspected the role of the so-
cial circles and the role of the ego centrality in the network. These analysis were
conducted through the generation of a set of information cascades using the In-
dependent cascade Model. We have assigned to each social link a probability of
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Figure 5.5: Node coverage (a) and Cascade depth (b) of the information cascades
generated by seeds with different activity, considering different values for the α
parameter of the model, plotted using the running average with subset size of 50
elements.
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diffusion calculated as a function of the interaction frequency of respective pair of
ego.

In the first analysis, we have performed an information diffusion analysis as-
sessing the impact of the different ego network rings. We have estimate the prob-
ability of diffusion using an exponential function of the frequency of contact ex-
tracted from the dataset. The results shows that the most used social circles are
the middle circles. We continued the analysis, generating another set of simula-
tions, in which we selectively removed from the network all the links belonging to a
selected social circle or a group of social circles. In the literature, social networks
have been found to be more resilient to the removal of strong ties than weak ties
since weak ties are often bridges representing the only connection between other-
wise disconnected parts of the network. Nevertheless, our results indicate that, if
we remove all the strongest ties from all the ego networks, the diffusion would be
very limited. This means that strong ties are fundamental to transport information
within cohesive groups of individuals because of their intrinsic high level of trust.

In the second analysis, we studied how the centrality of the node influences its
capability to generate large information cascades. In the model used to calculate
the probability of diffusion starting from the frequency of contact, we included the
ageing of the information which decrease the probability of diffusion at each step
of the simulation. The generated information cascades were analysed calculating
the correlation between their properties (i.e. node coverage and cascade depth)
and the characteristics of the starting node. These results indicate that the highest
correlation are related to statistics of the seeds which involve tie strength, namely
the activity of the seeds and the eigenvector centrality. Interestingly, the clustering
coefficient shows a low correlation with the properties of the cascades. The Burt’s
constraint - a measure of the the number of structural holes in an ego network -
has medium (and negative) correlation with the cascade depth and node coverage,
indicating that more constrained ego networks limit the diffusion of information.
Interestingly, having access to the unweighted graph only (without tie strength) is
not sufficient to identify which seeds will be able to generate large cascades.
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6

The Impact of Trust on Information Diffusion

Thanks to Online Social Networks we are witnessing a rapid shift from the physical
world of face-to-face communications to the world of virtual contacts and ubiqui-
tous services. This, and the presence of increasingly smart devices (e.g. smart-
phones, tablets, and smart objects) are significantly contributing to the so called
Cyber-Physical World (CPW) convergence [27], for which actions in the physical
world modify the state of entities in the virtual world and vice-versa. The paradigm
on which OSN are built allows people to create and share content amongst them-
selves in the virtual world, empowering individuals and allowing them to create
communities and services, which are more and more impacting on the life in our
physical world. In this new scenario, the data users generate, which, for their com-
plexity, heterogeneity and quantity, are called “big data”, represent a treasure of
inestimable value for the service providers and for the final users. Big data are
indeed aggregated and analysed to create novel services, such as predictions
of events happening in the physical world through the analysis of communication
data in OSN (e.g. car crashes detection [80], prediction of spread of diseases [81]).
Although these services are important to the people, OSN service provider often
centralise and limit the access to the big data their users generate. Consequently,
and due to the high intrinsic value of the data, wealth is centralised as well, possi-
bly leading to power law economies [60].

Recently, new decentralised solutions based on the paradigm of OSN, known
as Distributed Online Social Networks [73] (hereinafter DOSN), have appeared on
the market (like diaspora* and PeerSon [20]), accompanied by a growing research
interest in the field. DOSN replicate OSN features in a decentralised way, avoiding
data centralisation. Each user maintains her personal data locally or on interme-
diate servers, and interactions between users occur through peer-to-peer (P2P)
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communications. Compared to OSN, DOSN may guarantee more transparency in
data management.

This chapter presents an analysis,presented in [11] and in [12], of the capacity
of a social network to spread information under the hypothesis that individuals are
willingly to share contents only with trusted friends. This hypothesis is is relevant in
DOSN systems, where the absence of a trusted centralised operator could induce
the users to adopt more restrictive privacy policy.

6.1 Related Work

In this section we present the most relevant work in the literature concerning the
context of our analysis, which includes DOSN and the analysis of information dif-
fusion in OSN.

6.1.1 Distributed Online Social Networks

DOSN were born in recent years to address privacy concerns over OSN. Diaspora
is probably the most famous DOSN nowadays. Diaspora* supports the possibility
of either creating a server (called pod) where the user can host her personal data
or using an already existing one. Social interactions are carried out through a P2P
system that makes users communicate directly with each other, without passing
through a single centralised server. Buchegger at al. [20] propose a similar so-
lution, which has been also extended to be used in case of absence of stable
Internet connectivity [19], a scenario particularly suited for mobile devices. Guidi
et al. [46] propose a DOSN based on the automatic identification, for each user,
of her ego network layers, using the contact frequency between the user and her
social contacts. The differences in terms of trust between the different layers are
used to automatically adjust the privacy policies towards the people in the layers.
Moreover, the personal social network of each user is limited to her “active net-
work”, and people beyond it are excluded from the main features of the system.
The solutions proposed by Han and colleagues [48] and Cutillo et al. [30] further
exploit trust relationships arranged in concentric layers around the users to repli-
cate the data of the user on her friend’s devices, guaranteeing the access to her
data even though her device were inaccessible due to a temporary disconnection
or turnoffs.
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6.1.2 Information Diffusion Analysis in OSN

In the last few years OSN has attracted a lot of interest from the Research com-
munity. One of the distinctive properties of OSN, which differentiate them from
other kinds of networks, including technological and biological networks, is the
presence of a non-trivial clustering coefficient (or transitivity) [69]. This indicates a
high probability that two neighbours connected to a node will also be connected to
each other. Moreover, social networks (including OSN) show the so called small-
world property [88]. According to this property, any two persons in the network,
indirectly connected by chains of social links, have a short average distance. This
fact directly influences the ability of the network to quickly spread information,
ideas, innovations and so forth. It has been demonstrated that the diffusion of in-
formation in social networks takes place through single social links, creating the
word-of-mouth effect [37]. This property has been largely used by a collection of
marketing techniques whereby the presence of social links between consumers
is exploited to increase sales [50]. Recent studies on OSN quantified the capac-
ity of the network to diffuse information and the role of different types of users in
the process [16, 23]. Content locality plays an important role in OSN [24]. This
means that information diffusion is often limited to the immediate neighbours (or
n-hops neighbours, with small values of n) of the user who generated the content.
Thus, identifying influential nodes covering the role of opinion leaders that are able
to generate large diffusions, and detecting popular topics are the most important
tasks for the analysis and prediction of information diffusion [47]. Several mod-
els have been proposed to simulate information diffusion in OSN [34, 25, 75, 83].
These models are generally derived from static observations of diffusion patterns
in OSN. To be able to analyse the dynamic evolution of information spread, Taxi-
dou and Fisher presented a set of methods for the analysis of real-time diffusion
of information, through the online analysis of data generated by Twitter [87, 86].

6.2 Information Diffusion in DOSN

As in more traditional OSN, DOSN allow users to create and manage their digital
personal space, where they can post and receive asynchronous messages, and
insert their personal information. Moreover, DOSN support the creation of social
links between users, giving different access policies to digital personal spaces for
friends compared to strangers. DOSN also provide instant messaging functionality
in the form of private communications.
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Research in the field of DOSN is mainly focused on providing networking func-
tionality even in highly dynamic scenarios with mobility of nodes and possible ab-
sence of access to network infrastructure [19]. From a technological perspective,
DOSN are already based on rather solid solutions. Yet, from a higher level per-
spective, little is known about the capacity of DOSN to diffuse information. The
ability to spread information quickly amongst people is one of the key properties
of OSN, and assessing this capacity in DOSN is fundamental to understand pos-
sible limitations of the system and to design new services for distributed environ-
ments. In DOSN, the main limitation for the analysis of information diffusion is the
lack of large-scale communication data sets. This is because data in DOSN are
completely decentralised and content is exchanged directly between the personal
devices of users. For this reason, the circulation of information cannot be traced
easily. Nevertheless, DOSN clearly share similarities with OSN, for which data
sets of communication data are easier to be obtained and analysed. The main
difference between OSN and DOSN is that in the latter content is disseminated
within the network only through chains of direct communications between users.
This encourages users to have a more strict control over the data passing through
their social links. In fact, too many accesses to the web page of a profile could
represent a bandwidth wastage for the related user. In addition, since no central
control exists over the exchanged content, accounts generating spam and other
kinds of undesired content must be detected and blocked directly by the users.
Therefore, it is reasonable to assume that DOSN users will be willing to help repli-
cating and disseminating content coming primarily from a set of users they trust
most. This means that, for certain applications, the effective social graph in DOSN
may be limited to the links between users with a strong enough social relationship.
Starting from this assumption, we can estimate structural properties of the social
graph in DOSN by analysing OSN data, after eliminating links under a certain level
of trust.

Based on these general remarks, we analyse information diffusion capacity in
DOSN. To do this, we study various properties of a network graph representing a
large portion of Facebook, restricting social links to trusted relationships only (we
discuss how we estimate trust later on). In particular, we look at the connectivity
and the spreadability properties of large components containing connected nodes
in the graph after the deletion of untrusted links. These two metrics represent
the size of the component and its intrinsic capacity to spread information. Each
component represents an isolated portion of the original network through which
information can reach all the connected nodes. Clearly, different network compo-
nents (and thus different information dissemination patterns) emerge depending
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on whether more or less strict trust restrictions are considered. Our analysis is
aimed at discovering if these components are large enough to cover a significant
portion of the users and if their structure is suitable for diffusing information. This
could help to identify the impact of DOSN on the market and whether they could
be considered a valid alternative to OSN or not in terms of their capacity to spread
information, and, for example, for advertisement.

To perform the analysis, we firstly estimate the trust level between users in
Facebook through the frequency of interactions between them. The use of the
contact frequency to estimate trust between people is well backed-up by results in
sociology [49, 10]. Hence, we simulate content diffusion in the Facebook network
graph considering different thresholds for selecting trusted links. We assume that
no central control exists on this network and we select the set of trusted contacts
for its users according to their contact frequency, then studying the properties of
the resulting graph. Specifically, if a social relationship is not trusted (i.e. it does
not have a sufficiently high contact frequency), the respective social link is not
included in the graph we use in the analysis. To assess the impact of the selection
of trusted links, we define the minimum level of trust by setting a threshold on the
contact frequency of the links to be included in the graph. We take values of this
threshold equal to the frequencies of contact that have been used in the literature
for defining different levels of social relationships [49]. In particular, we consider
the well known ego network model [85], whereby social relationships of a user
(ego) can be divided in concentric layers of increasing size and decreasing social
intimacy (i.e. corresponding to decreasing tie strength and fewer interactions). In
this way we obtain different social graphs with different minimum levels of trust, that
coincide with a natural categorisation of social relationships in humans. Note that
this way of estimating trust lends itself to automatic systems to decide on which
social links to accept content, just by monitoring the frequency of interactions on
them.

We compare the results obtained for the different thresholds to identify the val-
ues that lead to a large enough connected component, with a sufficient ability to
spread information. The results of the analysis indicate that limiting content spread
to social contacts that coincide with the definition of “active social contacts” of the
users, which corresponds to the most external layer in the ego network model,
leads to a network graph with a sufficiently large component of connected nodes,
which covers more than 96% of the original Facebook network. Restricting con-
tent spread to the next layer of the ego networks, or further, makes the relative
size of the biggest connected component (and therefore coverage) drop below
30%. Since the remaining components are very small compared to the largest
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Figure 6.1: CCDF of the contact frequency for the links.

one for all the used thresholds, diffusing information in the network could be prob-
lematic when the largest component does not cover a sufficiently high number
of nodes. As a possible solution to increase node coverage in case of very re-
strictive thresholds we investigate the effect of adding to the graph only one so-
cial contact for each user, selected with different possible strategies (e.g. select
the link with highest/lowest contact frequency with the user, select a random ac-
quaintance, etc.). The results indicate that this solution considerably increases the
number of covered nodes, even in case of very strong trust. Noticeably, all the
strategies, included the selection of the contact with highest contact frequency
(below the minimum contact frequency imposed by the restriction), leads to very
high improvement in terms of node coverage. Clearly, adding a contact to the list
of trusted nodes represents a cost for the users in terms of additional unwanted
content, but limiting the choice to a single node should be a reasonable solution
for them since they would receive a global return in terms of quality and quantity
of information circulating in the network.

6.2.1 Data Set Description

To perform our analysis, we use the same large-scale Facebook data set contain-
ing information about social interactions between users introduced in Chapter 3
in wich we applied a slightly different preprocessing. Since in our analysis we are
interested in users who actively communicate with others, we select from the Face-
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Figure 6.2: Ego network model.

book graph only the users with at least one active link (i.e. with contact frequency
> 0) and we discard all the other users, that indeed are inactive. Moreover, we
further restrict the analysis to the set of users that have communicated with other
users at least 6 months before the time the data set was downloaded. This en-
sures that our analysis is restricted to sufficiently stable users. In fact, the contact
frequency of new users in OSN is generally higher that that of older (and more
stable) users [7] and could bias the analysis. The resulting graph, after this pre-
process, consists of 1, 083, 209 nodes and 7, 709, 309 links.

More formally, we obtain a graph G = (V,E) formed of a set of vertices (or
nodes) V , and a set of edges (or links) E connecting pairs of nodes, each of which
represents a 2-element subset of V. For convenience, we identify an edge by the
nodes it connects. For example, {i, j} represents the link between node i and j.
The contact frequency of the link is defined as fi,j . The graph in our data set is
undirected. This means that {i, j} is equal to {j, i} and their contact frequency is
also the same.

In this analysis we use the contact frequency between users in Facebook as
a proxy for the level of trust between them. This is supported by results in the lit-
erature that identified a strong relation between the contact frequency and the tie
strength or emotional closeness between people, both in offline and online envi-
ronments [10, 49, 64]. The complementary cumulative distribution function (CCDF)
of the contact frequency for the links in the graph obtained from the data set is de-
picted in Fig. 6.1. The figure indicates that the distribution has a power law trend,
thus implying that most of the links in the network have a very low level of trust,
whereas only few links have very high trust. For this reason, we expect that restrict-
ing the network to trusted links only could have a strong impact upon the structural
properties of the resulting graph.

To simulate the restriction of communication to a list of trusted contacts for each
user in DOSN we apply a series of filters to the Facebook social graph previously
described, eliminating the links with contact frequency below the chosen threshold,
that defines the boundary of the trusted contact list.

6.3 Social Networks for Content Diffusion

Since in our analysis we are interested in users who actively communicate with
others, we select from the Facebook graph only the users with at least one active
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link (i.e., with contact frequency > 0) and we discard all the other users, that
indeed are inactive. Moreover, we further restrict the analysis to the set of users
that have communicated with other users at least 6 months before the time the
data set was downloaded. This ensures that our analysis is restricted to sufficiently
stable users. In fact, the contact frequency of new users in OSN is generally higher
than that of older (and more stable) users [93] and could bias the analysis. The
resulting graph, after this pre-process, consists of 1, 083, 209 nodes and 7, 709, 309

links.

6.3.1 Trusted Contact List Based on the Ego Network Model

The ensemble of social relationships of a person can be modelled as an ego net-
work, that is a simple social network model which considers only an individual
(called “ego”) and the set of people with whom she has a social relationship (called
“alters”). The main property of human ego networks is the presence of a hierarchi-
cal structure formed of layers of alters around the ego [85]. The typical structure of
ego networks in human social environments shows four concentric layers contain-
ing alters at different levels of emotional closeness and with different size. Since
the emotional closeness depend upon several psychological aspects of the rela-
tionship it is generally difficult to be directly measured. Nevertheless, it is strongly
correlated with the contact frequency [49], and thus it is generally estimated using
the latter.

In the ego network hierarchical structure, depicted in Figure 6.2, the first and
innermost layer is the support clique, containing on average five people very close
to the ego and contacted by her at least once a week. The sympathy group (that
includes the support clique) contains fifteen members contacted at least once a
month. The affinity group contains fifty members contacted at least ∼ eight times
a year [8]. Lastly, the active network contains 150 people contacted at least once
a year. The members of this last layer are people for whom the ego invests a
non negligible amount of cognitive resources for the maintenance of their social
relationships. Beyond the active network, alters are mere acquaintances or friends
no longer contacted, and their social relationships are not actively maintained by
the ego.

Alters in the same layer share similar properties in their relationships with the
ego. Specifically, people in the support clique, broadly identified as “very intimate
friends”, are those contacted by the ego also in case of need of financial or emo-
tional support, and thus are typically the ones the ego trusts the most. The sympa-
thy group is composed of “close friends” to the ego, contacted less frequently than
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alters in the previous layer, and generally representing the group of reliable friends
on whom one can depend for a variety of exchange relationships (e.g., friendships
in the social sense, protection against harassment, minimising social stress, dis-
tributed childcare) [85]. The affinity group is formed of “friends”, contacted by the
ego when she cannot find enough available friends in the affinity group with spe-
cific skills she needs to solve a task or in situations requiring a group of several
people. Lastly, The active network contains “casual friends”, usually contacted by
the ego for a particular event or in case of need to access resources outside her
social network. In fact, members of this layer are usually loosely connected with
the ego and share a small number of mutual relationships, and represent bridges
to reach other social groups. From this characterisation, it is clear that the trust
level between the ego and her alters decays from the inner to the outer layers
of the ego network. In support of this, the contact frequency between people has
been found to be correlated with trust, both in anthropology [84] and social network
analysis [1].

Based on the definition of the ego network layers, we can identify possible
trusted contacts lists definitions that could be adopted in DOSN. This can be done
by selecting social relationships belonging to a specific ego network layer, which
can be identified by using the typical threshold of contact frequency of the layer.
Note that the values of these thresholds have been found in several studies in
offline and online social networks, indicating that they are invariant to the use of
specific communication means, and they are instead determined by human cog-
nitive and social processes [85]. Of course, contact frequency could slightly dif-
fer from the typical values we presented before since different social platforms
(e.g., Facebook, Twitter, Google+) could have differences in their social interaction
mechanisms, but the order of magnitude of the contact frequency for the different
layers remains consistent amongst different communication media. In the case of
the dataset we analysed, the thresholds which characterise the layers are very
close to the typical values found in the literature [8]. Thus, we use these values
to create four possible trusted contact lists for each user, and thus four different
network graphs. For example, to simulate the presence of lists containing “friends”
we can fix the minimum contact frequency to be considered in the analysis to eight
messages a year (the affinity group). In the rest of the paper we indicate the val-
ues of the thresholds in number of messages per month, so “1/12” represents one
message a year, “8/12” eight messages a year, “1” one message per month, and
“4” four messages per month.
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6.3.2 Network Connectivity

The network connectivity is the property of a social network indicating the extent
to which its nodes are interconnected to each other. Usually, social networks are
formed of a giant component of connected nodes covering the vast majority of the
nodes, and the remaining nodes divided into a large number of small and isolated
components [18]. Clearly, disconnected components do not contribute to the dif-
fusion of information since they are not reachable from the largest part of the net-
work, and information generated by them remains isolated. Thus, the largest the
giant component the higher the potential capacity of the network to diffuse infor-
mation to a large number of nodes. To quantify network connectivity, we measure
the fraction of nodes in the largest component of connected nodes with respect to
the total number of nodes in the network.

To further characterise the structure of the network, we define the percentage
of nodes in the largest connected component of the network graph with respect
to the total number of nodes in the network as “node coverage”. The higher this
percentage, the higher the potential of the network to make information circulating
among all the nodes. Moreover, we consider the minimum number of components
needed to cover a certain percentage of nodes of the network. Regarding infor-
mation diffusion, the number of components needed to reach a certain node cov-
erage represents the minimum number of message replicas to be generated. In
fact, since the involved components are disconnected from each other, information
cannot spread amongst them, and a replica of the message to be spread must be
created and injected in each component.

Having defined the network graphs at different levels of trust using the identified
thresholds on the contact frequency, we assess their potential capacity to diffuse
information. Specifically, for each graph we studied its network connectivity, and
the impact of the number and the size of their components considering several
levels of node coverage.

6.3.3 Network Spreadability

We informally define network spreadability as the property of a network graph in-
dicating its capability to diffuse information. This depends on two main factors: (i)
the structure of the network, and in particular the distance in number of edges
between nodes, and (ii) the contact frequency between pairs of nodes. In fact, the
smaller the average number of links between nodes to be traversed by information
to reach the other nodes, the higher the probability of obtaining large infections,
as the propagation through each link is not guaranteed. Specifically, information
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diffusion on a link depends upon the importance and the trust level of the un-
derlying social relationship [84, 1], and, in particular, upon the contact frequency
between the users [17]. For these reasons, network spreadability can be quan-
tified by analysing the properties of the weighted shortest paths between nodes
in the network graph. The shortest paths between random pairs of nodes in the
graphs represent the shortest way for information to reach a destination from a
random source. The analysis of the properties of these shortest paths, calculated
considering the weight on each link, permits to better characterise the intrinsic
ability of the graph to diffuse information. In addition, we assume that any piece
of information that is exchanged over a link undergoes a loss of associated trust-
worthiness which is proportional to the trust between the two users. Quantitatively,
we estimate the decay of trustworthiness over a link with a number between 0
and 1 (where 0 means total distrust, and 1 complete trust), and estimate the total
loss of trustworthiness over a path as the product of trust decays over path links.
The analysis of trustworthiness decay over shortest paths allows us to quantify the
level of trustworthiness of information circulating in the graph.

Note that, whilst network connectivity indicates the maximum number of nodes
which could be potentially infected by information with a certain number of mes-
sage replicas, network spreadability indicates the capability of the nodes in a sin-
gle component to spread information to each other. These properties describe
different aspects of the network, and allows us to analyse the relation between the
structure of the network weighted by the importance of the relationships between
users (thus including their trust) and information diffusion.

A weighted shortest path is the sequence of links connecting a pair of nodes
in a network with the lowest sum of link weights. The weight represents the cost to
travel to a certain link (e.g., the distance or the cost of sending a message through
the link). In our case we use the inverse of the contact frequency of the links as
weight. For convenience, we also normalise the weights to be in [0,1]. The weight
of social links between any pair of vertices {i, j} in the set of vertices V (g) of the
network graph g is calculated as follows:

wi,j =

min
i,j∈V (g)

fi,j

fi,j
(6.1)

where fi,j is the contact frequency between i and j, and thus 1/fi,j is the
weight before normalisation, while min

i,j∈V (g)
fi,j is the normalisation factor.

To calculate the weighted shortest paths in the four graphs obtained by apply-
ing the thresholds, we use the Dijkstra’s algorithm on the portion of the graphs
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representing their giant components. Since the algorithm has a time complexity of
O(V 2), and since some of our graphs are very large, we sample a fixed number
of 10, 000 pairs of vertices for each graph. To better compare the results obtained
with and without re-insertion, we sample the starting vertices of the paths within
the components obtained without re-insertion, one at each value of the thresh-
old. Then, we sample the ending vertices of the paths within the set of nodes that
becomes connected to the component after re-insertion (not included in the com-
ponent without re-insertion). In case of no re-insertion, both the starting and the
ending vertices are chosen within the set of nodes in the components.

For each largest connected component, obtained with the different thresh-
olds and re-insertion strategies, we calculate the set of shortest paths between
the sampled pairs of starting-ending nodes. Then, we calculate four measures to
quantify the content spreadability of the paths and we average them for all the ob-
tained paths at each configuration. The measures we calculate are the following:
(i) the length, in number of nodes, of the path. This represents the effective aver-
age distance in number of hops between the nodes in the component (note that
we include also the starting and the ending nodes in the count); (ii) The sum of the
weights of the path, which represents the cost for information to travel through a
specific path. In fact, the sum of the weights on the paths indicates the total cost
to pass through the path; (iii) The average contact frequency of the links of the
path; and (iv) the product of the contact frequencies on the path, which can be in-
terpreted as the effective loss in terms of trustworthiness of information travelling
on the path.

6.3.4 Strategies for Link Reinsertion

As will be clear from the results in Section 6.4, for some threshold on the trust
level we obtain quite small largest connected components, and a big number of
extremely small additional disconnected components. To improve network connec-
tivity we tried, as a possible alternative to lowering the trust value of the system,
the re-insertion of one social contact for each user in the graph obtained at each
level of trust, testing several possible re-insertion strategies. Considering that high
contact frequency indicates strong relationships between users, strategies which
privilege links with higher contact frequency are clearly the most appealing. For
this reason, we considered the strategy “highest frequency” (indicated as “high
freq” in the tables) which deterministically re-inserts the link with the highest fre-
quency below the threshold. Note that, the reinserted link could show a contact
frequency sensibly lower than the threshold value, not necessarily belonging to
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the first excluded layer, since for some ego networks some of the layers could
not be present. We also considered a “probabilistic” strategy (“Prob” in the tables)
assigning to each excluded link a probability to be reinserted proportional to its
contact frequency. Thus, compared to the previous strategy, the probabilistic one
gives more chances of re-insertion to weaker links. These links are usually bridges
connecting parts of the network socially far from each other, and they are short-
cuts which could positively impact on network connectivity and spreadability. Note
that this is compatible with the idea behind the Kleinberg’s small-world model, for
which nodes are densely connected to neighbour nodes, with which they share
several social contacts, but they also have long-range links with other nodes so-
cially far from them [56]. The combination of these two properties in the model
leads to short average path length in the network. To assess the goodness of the
strategies we introduced also a baseline “Random” strategy (“Rand” in the tables),
which assigns to each link the same probability to be reinserted. For complete-
ness, we also introduced two additional strategies which privileges the link with
lowest interaction frequencies, which are the worst choices considering the trust
of the relationship, but could introduce more bridges. Specifically, we considered
the following strategies: “lowest frequency” (“low freq in the tables”) which deter-
ministically selects the link with the lowest contact frequency, and the “inverse
probabilistic” (“Inv prob” in the tables) which assigns to each link a probability in-
versely proportional to the interaction frequency of the link. Obviously, many more
strategies can be defined and analysed, but we though that with this five strategies
we can asses whether the reinsertion of a single link leads to an improvement in
terms of network connectivity and spreadability.

6.4 Results

6.4.1 Network Connectivity

The network connectivity of the graphs obtained after the pre-processing phase
described in Section 6.3 is reported in Table 6.1 in the column “No insert”, indi-
cating that we have not applied any re-insertion strategy on these results. The
first largest component obtained with the threshold coinciding with the contact fre-
quency of “active social contacts” (as defined in Section 6.3.1) guarantees node
coverage close to 1. This means that with this minimum level of trust the network
could potentially support the diffusion of information to almost all the nodes. On
the other hand, the most strict threshold (“very intimate friends”) leads to a node
coverage of ∼ 0.03. This means that the resulting network is highly disconnected,
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Table 6.1: Percentage of nodes of the original graph covered by the largest com-
ponent for the different thresholds representing the minimum contact frequency on
the links. Thresholds are expressed in msg/month

Threshold Node coverage
min. cont. freq.

No insert High freq Low freq Prob Inv. prob Rand
1/12 (act. cont.) 0.966 0.994 0.994 0.994 0.994 0.994
8/12 (friends) 0.297 0.714 0.705 0.726 0.722 0.725
1 (close fr.) 0.191 0.642 0.634 0.661 0.657 0.661

4 (v. intimate fr.) 0.028 0.386 0.385 0.453 0.444 0.456

Figure 6.3: CCDF of the size of the components for each threshold and strategy,
excluded the largest component.

and can hardly support information diffusion. The remaining thresholds represent
intermediate results, with node coverage ∼ 0.3 for “friends” and ∼ 0.2 for “close
friends”. Whilst these results are clearly suboptimal with respect to the “active so-
cial contacts” threshold, they could still be exploited in circumstances not needing
a complete coverage of the nodes, but requiring more trust between them.

Figure 6.3 depicts the distribution of the size of the components of connected
nodes in the network excluded the largest one, in which, for all the thresholds, and
especially in case of no re-insertion, these components are always very small with
respect to the giant component. In fact, the distributions show power-law trends
with a maximum component size of 95 nodes. This indicates that if we wanted to
reach a high number of nodes in the network and the largest component was not
sufficient to do so, it would be necessary to place information on a large number
of additional components, without relying on automatic spread of information over
trusted social links. This is further confirmed by the results in Table 6.2, 6.3, 6.4,
and 6.5 under the row “No insert”. The tables report the number of components
which must be infected by information to reach the desired level of node coverage.
Thus, only the threshold of one message per year (Table 6.2) generates a graph
that requires a small amount of message replicas (just one message for 90% node
coverage), whereas for the other thresholds the number of replicas needed to
reach a coverage of at least 50% of the network is very high and would result in a
very expensive process. Moreover, whilst it could be relatively easy to identify the
largest component in the network, it is not easy to identify all the remaining com-
ponents, especially in decentralised systems like DOSN. This fact could further
limit the diffusion process.

72



6.4. RESULTS

To improve the network coverage, thus permitting larger information spreads
expecially for disconnected graphs resulting from restrictive thresholds, we evalu-
ate the re-insertion strategies as possible alternatives to the generalised decrease
of the trust level. We apply the re-insertions on the Facebook graph at each thresh-
old. In Table 6.1, from the third to the last column, we report the size of the largest
component of connected nodes for each combination of threshold and re-insertion
strategy. As can be noted, the impact of the re-insertion is substantial for thresh-
olds > 1/12. The impact of link re-insertion for the threshold of 1/12 is negligible,
since most of the nodes of the original network are already present in the result-
ing graph. On the other hand, for the most restrictive threshold (4 messages per
month) the gain due to the re-insertion is effective, bringing the node coverage to
∼ 40% which indicates a giant component of about 15 times larger than the one
without re-insertion.

The results of the different strategies vary significantly, with the probabilistic
and the random strategies (“Prob” and “Rand” in the tables) giving the highest
improvement in terms of number of nodes covered, as reported in Table 6.1. In
addition, as reported in Table 6.2, 6.3, 6.4 and 6.5, these two strategies seem the
most convenient (at least from the point of view of the number of connected nodes)
also when all the other components, in addition to the largest one, are considered.
Considering the cost for the users, the probabilistic strategy is intuitively better
than the random one since guarantees that, on average, the re-inserted nodes
have higher trust level than randomly selected nodes.

We also look at how the different re-insertion strategies impact on the distri-
butions of the sizes of network components other than the largest one (see Fig-
ure 6.3). All strategies, for each threshold, produce a similar distribution of the size
of the components (the largest one is not present). Nevertheless, the distributions

Table 6.2: Number of components needed to cover the specified percentage of
nodes in the original network using a min. contact frequency of 1/12 msg/month
(active contacts).

Coverage
Strategy 40% 50% 60% 70% 80% 90% 100%
No insert 1 1 1 1 1 1 31, 987
High freq 1 1 1 1 1 1 1, 784
Low freq 1 1 1 1 1 1 1, 784

Prob 1 1 1 1 1 1 1, 784
Inv prob 1 1 1 1 1 1 1, 784

Rand 1 1 1 1 1 1 1, 784
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Table 6.3: Number of components needed to cover the specified percentage of
nodes in the original network using a min. contact frequency of 8/12 msg/month
(friends).

Coverage
Strategy 40% 50% 60% 70% 80% 90% 100%
No insert 94, 218 202, 539 310, 860 419, 181 527, 502 635, 823 744, 143
High freq 1 1 1 1 43, 045 151.366 259, 686
Low freq 1 1 1 1 61, 369 169, 690 278, 010

Prob 1 1 1 1 37, 623 145, 944 254, 264
Inv prob 1 1 1 1 45, 197 153, 518 261, 838

Rand 1 1 1 1 40, 343 148, 664 256, 984

vary from the case in which no re-insertion is applied, especially for restrictive
thresholds (1 message per month and 4 messages per month). This can be ex-
plained by the fact that for these thresholds the largest component is sensibly
smaller than for the other thresholds, and the probability of re-inserting a node
connected to this component is lower. Thus, there is the presence of a higher
number of larger components disconnected from the largest one.

6.4.2 Network Spreadability

Hitherto, we analysed the ability of the network limited to a certain level of trust
to maintain nodes connected to each other, as a first requirement for information
diffusion. However, the mere presence of a path connecting all the nodes in one or
more components of the network indicates only the possibility to reach the nodes
with information, but it does not consider the effective ability of the graph to spread

Table 6.4: Number of components needed to cover the specified percentage of
nodes in the original network using a min. contact frequency of 1 msg/month (close
friends).

Coverage
Strategy 40% 50% 60% 70% 80% 90% 100%
No insert 208, 769 317, 090 425, 411 533, 732 642, 053 750, 374 858, 694
High freq 1 1 1 8, 801 87, 540 195, 861 304, 181
Low freq 1 1 1 13, 147 106, 719 215, 040 323, 360

Prob 1 1 1 4, 271 79, 561 187, 882 296, 202
Inv prob 1 1 1 5, 470 87, 379 195, 700 304, 020

Rand 1 1 1 4, 343 81, 852 190, 173 298, 493
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Table 6.5: Number of components needed to cover the specified percentage of
nodes in the original network using a min. contact frequency of 4 msg/month (very
intimate friends).

Coverage
Strategy 40% 50% 60% 70% 80% 90% 100%
No insert 391, 174 499, 495 607, 816 716, 137 824, 458 932, 779 1, 041, 099
High freq 45 2, 332 12, 660 47, 708 144, 729 253, 050 361, 370
Low freq 68 3, 022 15, 938 59, 169 167, 490 275, 811 384, 131

Prob 1 431 6, 717 36, 881 132, 106 240, 426 348, 746
Inv prob 1 608 7, 708 40, 266 140, 250 248, 571 356, 891

Rand 1 396 6, 538 36, 785 133, 350 241, 672 349, 992

content. To delve deeper into the analysis of spreadability of the networks, we cal-
culate the set of measures introduced in Section 6.3.3, calculating the properties
of weighted shortest paths in the graphs. For this analysis we consider only the
giant component of connected nodes since it is the most important part of the net-
work for the diffusion of information. In Table 6.6 we report the average length of
the shortest paths sampled in the components.

From the table we can note that comparing the basic case without re-insertion
and the different re-insertion policies, there is no sensible difference in terms of
average shortest path length for the first threshold (i.e., 1/12). This is in line with
the results found in terms of connectivity since the largest component found at this
threshold is large enough to contain most of the nodes in the original graph. For the
threshold of 8/12 msg/month, the results are consistent amongst the different re-

Table 6.6: Average length (# of nodes) of the weighted shortest paths in the
largest component for the different thresholds representing the minimum contact
frequency (msg/month) in the network.

Threshold - min. contact frequency
Strategy 1/12 8/12 1 4

(active cont.) (friends) (close fr.) (v. intimate fr.)
No insert 11.67 10.81 10.51 11.07
High freq 11.72 11.75 11.95 13.74
Low freq 11.68 11.93 12.19 16.11

Prob 11.71 11.95 12.21 16.16
Inv prob 11.71 11.97 12.30 17.42

Rand 11.74 11.95 12.28 17.15
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Table 6.7: Average sum of weights of the shortest paths in the largest component
for the different thresholds representing the minimum contact frequency (msg/-
month) in the network.

| Threshold - min. contact frequency
Strategy 1/12 8/12 1 4

(active cont.) (friends) (close fr.) (v. intimate fr.)
No insert 0.41 0.16 0.12 0.07
High freq 0.46 0.44 0.45 0.40
Low freq 0.46 0.60 0.73 1.74

Prob 0.46 0.50 0.53 0.73
Inv prob 0.46 0.55 0.64 1.42

Rand 0.46 0.53 0.58 1.08

insertion policies, and the average length sees an additional node compared to the
case without re-insertion. This difference increases for the remaining thresholds,
with a maximum difference of ∼ 4 nodes between the best and the worst results
(“high frequency” and “inverse probabilistic” respectively) for the threshold of 4
msg/month. In case of this threshold, the difference between the path length in the
largest component without re-insertion and the components with re-insertion is of
at least ∼ 2.5 nodes.

From the data in Table 6.6 it is worth noting that the average length of weighted
shortest paths is considerably higher than the same measure in unweighted social
graphs, that is known to be around six [88] in social networks. This is due to the
fact that the shortest weighted paths we obtained include links with very high trust
belonging to the most internal ego network layers, and which, for their low travers-

Table 6.8: Average contact frequency on the weighted shortest paths in the largest
component for the different thresholds representing the minimum contact fre-
quency (msg/month) in the network.

Threshold - min. contact frequency
Strategy 1/12 8/12 1 4

(active cont.) (friends) (close fr.) (v. intimate fr.)
No insert 0.49 0.55 0.58 0.77
High freq 0.50 0.50 0.50 0.58
Low freq 0.49 0.50 0.49 0.55

Prob 0.49 0.49 0.49 0.55
Inv prob 0.49 0.49 0.49 0.53

Rand 0.49 0.49 0.49 0.54
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Table 6.9: Average product of normalised contact frequencies on the weighted
shortest paths in the largest component for the different thresholds representing
the minimum contact frequency (msg/month) in the network.

Threshold - min. contact frequency
Strategy 1/12 8/12 1 4

(active cont.) (friends) (close fr.) (v. intimate fr.)
No insert 2.721e− 4 2.179e− 3 4.711e− 3 7.458e− 2
High freq 2.317e− 4 4.943e− 4 5.471e− 4 1.055e− 3
Low freq 2.082e− 4 4.398e− 4 4.111e− 4 4.607e− 4

Prob 2.336e− 4 4.278e− 4 4.722e− 4 5.753e− 4
Inv prob 2.511e− 4 4.368e− 4 4.781e− 4 4.174e− 4

Rand 2.466e− 4 4.261e− 4 4.618e− 4 4.472e− 4

ing cost, are frequently used in the paths. In unweighted networks, each link has
the same cost and this effect is not present.

A similar trend can be derived from the figures in Table 6.7 and 6.8, which
show the total cost of the paths and the average contact frequency of the paths,
that is proportional to the average trust level of the links. For these measures
the best and the worst re-insertion policies for the different thresholds appear to
be the “highest frequency”, and the “lowest frequency” and “inverse probabilistic”
respectively. This is an intuitive result, since the weight we used to calculate the
shortest paths is directly related to the contact frequency. Note that the “highest
frequency” and the “lowest frequency” policies are associated to sensibly smaller
network graphs than the other policies, as reported in Table 6.1. This means that,
even though the “highest frequency” policy seems to be the best choice from the
point of view of network spreadability, it leads to poor node coverage.

Table 6.9 reports the product of the normalised contact frequencies on the
shortest paths, that estimates the frequency at which information traverses the
whole path. The measure is influenced both by the contact frequency of the links
on the shortest paths and their length. As it can be noted from the results in the
table, these measure is consistent with the previous results.

It is worth noting that there is a trade-off between node coverage of the com-
ponent and the spreadability of its network graph. The average trust level decays
when re-insertion is applied since more hops are added to the paths in the com-
ponent, and the trust level of the re-inserted links is lower than the threshold of the
component. The decay varies with the value of the threshold, and it could be too
high in some cases. Nevertheless, the “probabilistic” strategy is the one giving a
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the best node coverage, and maintaining good spreadability at the same time, and
seems the most reasonable choice.

6.5 Discussion

The restriction of communications in DOSN to trusted social relationships only is
essential in DOSN, since the users are willing to distribute information coming
only from trusted peers to limit the resources they dedicate to communications,
that are generally limited. To perform the analysis of the impact on information
diffusion we analyse the topological properties of the social graph generated by
DOSN with such restrictions, looking for the presence of a large component of
connected nodes (at a certain threshold of trust), within which information can
spread and possibly reach all its nodes. On the other hand, disconnected small
components and isolated nodes represent portions of the network that are difficult
to reach and that will limit the diffusion of information.

The analysis was performed on a OSN dataset, because the collection of a
dataset of a DOSN is not easy for its distributed nature. This social graph was
limited by selecting only links above a certain level of trust, estimated through the
contact frequency between users. Hence, by applying four different thresholds cor-
responding to the thresholds of the social circles which are a natural classification
for human social relationships, we study the connectivity of the resulting graph.
The results indicate that for the threshold representing “active social contacts” for
the users, the resulting graph is highly connected and contains a large compo-
nent covering more than 96% of the original network. On the other hand, for more
restrictive thresholds, the node coverage drops significantly.

The selected threshold on trust could be problematic due to an excessive re-
duction of the effective social graph. To overcome this situation, we propose a
reintroduction mechanisms of one discarded social contact for each user. We in-
vestigate different strategies for selection of this social contact, which includes
random methods (i.e. uniform random, proportional random, inverse proportional
random) and deterministic methods (i.e. highest frequency, lowest frequency). The
performed analysis allowed us to discover a series of properties of DOSN which
can be useful to design new peer-to-peer services on top of DOSN communica-
tion mechanisms. Specifically, the results of our analysis highlight the following
properties:
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• The number of nodes connected by a DOSN could be highly influenced by
the required minimum level of trust. If only very intimate friends are willing to
communicate with each other, information diffusion is severely limited.

• By re-inserting in the network of trusted peers even a single social link with the
highest possible trust (under the threshold) for each user is sufficient to reach
a higher node coverage. Choosing the link with the highest possible trust is
clearly preferable for the user than choosing a link with lower trust.

• Considering that information travels more easily through links with high trust
levels, the length of average weighted shortest paths between pairs of nodes
in the network is significantly higher than the length of shortest paths in un-
weighted “small-world” networks. In particular, the assumption that the dis-
tance between an two nodes in the network is proportional to the logarithm of
the number of nodes in the network is not necessarily true when weighted links
are considered. Our results indicate the presence of a backbone of links at a
very high level of trust through which information can move to different parts of
the network following several links at a very low cost.

• In accordance with the previous result, the best re-insertion policy is the one
which selects the link with the highest contact frequency (i.e. trust) since it
leads to a good increase in terms of node coverage, comparable to the other
policies, with the lowest impact on the cost of the paths.

• It is noteworthy that re-insertion policies cause a limited decrease in terms
of trust, and they represent a valid alternative to choosing a lower threshold
in terms of trust. The re-insertion policy selecting the links to re-insert with
highest contact frequency is always leading to the best performances.
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Conclusions

The vast adoption of Online Social Networks as communication media allows the
collection of vast datasets of users interactions which can be analysed to obtain
useful insights about the structure of our the social relationships and the relative
social phenomena. In this thesis, the properties of the structure of ego network in
online environment is analysed to study the effects in network-scale phenomena
like information diffusion.

Through the analysis of two large datasets, one from Facebook and one from
Twitter, a comparison of the properties of the structure of the ego network in on-
line environment was presented. The results shows that the ego network in OSNs
are remarkably similar among themselves and to those found in offline social net-
works since the structure of offline and online ego networks are compatible. This
suggests that the properties of the ego network are independent from the used
media of communication, and are relative to human brain constraints.

We also analysed the differences in the ego-networks considering separately
the incoming and the outgoing messages. The results shows that the two networks
are fairly different, in fact just 66.52% of the nodes in the “outgoing” ego network
are also present in the “incoming” one. Moreover, the later ego-network is signifi-
cantly bigger than the former. This is explained considering that an incoming mes-
sage does not necessarily requires the consumption of any cognitive resources
of the receiver, and thus less significant than outgoing messages. Moreover we
present an index to better evaluate the tie strength, which combine the incoming
and the outgoing messages, to give an higher score to relationship which recip-
rocate the interaction. The ego network produced using this index shows better
similarity to offline social network.
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Building on the results about ego network structures in OSNs, we have per-
formed an information diffusion analysis assessing the impact of the different ego
network rings (i.e. portion of each circle not containing the other nested circles) on
the process. We have applied a standard information diffusion model, namely the
independent cascade model, on the network graph obtained from Facebook, that
is the most representative amongst the two data set we used in terms of network
completeness. We assigned a probability of diffusion to each social link, estimat-
ing it from the frequency of contact extracted from the Facebook interaction graph.
We also assigned labels indicating the ego network rings to which the links be-
long, according to a clustering analysis we performed to divide each ego network
in different rings. The analysis of the information cascades produced by simulation
indicates that all the ego network rings, except the most external one (containing
inactive relationships), are important for the diffusion of information, since remov-
ing any of them causes a significant drop in terms of node coverage. This result,
allowed us to individuate a relatively small number of relationships, the one belong-
ing to the innermost circle, which are just the 0.3% of all the relationships of the
network which the removal causes a drastic reduction in the information diffusion.
In the literature, social networks have been found to be more resilient to the re-
moval of strong ties than weak ties since weak ties are often bridges representing
the only connection between otherwise disconnected parts of the network. Never-
theless, our results indicate that, if we remove all the strongest ties from all the ego
networks, the diffusion would be very limited. This means that strong ties are fun-
damental to transport information within cohesive groups of individuals because
of their intrinsic high level of trust. Without them information is not able to circulate
in intra-group diffusion process. The third ring (i.e. the affinity group without the
elements in the sympathy group), which contains medium strength ties, resulted
to be the most used ring during the diffusion. This result confirms previous work in
the field [70, 31].

Using a similar model of information diffusion, we have analysed the impact of
the characteristic of a node in the information diffusion process. We have analysed
the correlation between various centrality measures of the starting node of the
information with the properties of the resulting information cascade. Our results
indicate that the highest correlations are obtained with statistics that involve the tie
strength, namely the activity of the seeds and the eigenvector centrality. The local
structure of the social network influence the resulting cascades, if fact the Burt’s
constraint, a measure of the the number of structural holes in an ego network, has
a medium negative correlation indicating that an high clustered ego networks limit
the spread of information. Interestingly, executing this correlation analysis using
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an unweighted graph, in which each social relationships is not differentiated by the
tie strength, it is not possible to predict which nodes are more inclined to produce
wider information cascades.

We have analysed the impact of trust amongst users to the information dif-
fusion in an DOSN environment. We have considered four different scenarios in
which all the users in the network limit the diffusion of content according to a
threshold value. Applying these four thresholds, which were selected as the low-
est interaction frequency value of each social circle, the capability of the network
to spread informations was greatly reduced. To overcome this problem without
lowering the threshold value, we analysed the reintroduction of a single removed
social link according different strategies. All the selected strategies produces a
significant improvement in both giant component size, and capability to spread
information inside the connected network, but the “highest freq” strategy, which
selects the relationship with the highest frequency of contact, showed the best
performances.

In conclusion, in this thesis, we presented a characterisation of the properties
of the ego network in online environments, which we validated with the known
properties in offline social networks. Hence, using these local-level results, we
analysed various aspects of the information diffusion obtaining interesting insights
in this network-scale phenomenon. Our results provide significant insights on the
key social reasons behind widely observed phenomena governing information dif-
fusion in OSN. Through this, they can be exploited to predict how information
spreads based on structural properties of social networks, and, conversely, how
to tune social network properties (if possible) to achieve a given coverage of in-
formation spread. Finally, our results also characterise the trade off between trust-
worthiness of links and information spread.

All in all, therefore, our results shed light on the key social properties governing
information diffusion in OSN, and our models can be used to design novel infor-
mation centric services for OSN, for example by helping finding good points in the
network where to inject content that needs to be spread at a certain level, or tuning
trust-related parameters based on the sought level of information spread.
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A

Classifier for the selection of socially relevant users
in Twitter

To build the supervised learning classifier used to select socially relevant users
from Twitter data set (see Chapter 3 for more details), we manually classified a
sample of 500 accounts, randomly drawn from the data set, and we used this
classifications to train a Support Vector Machine [29]. This SVM uses a set of 115
variables: 15 of them related to the user’s profile (e.g., number of tweets, number of
following and followers, account lifespan) and 100 obtained from her timeline (e.g.,
percentage of mentions, replies and retweets, average tweets length, number of
tweets made using external applications).

To test the generality of the SVM (i.e., the ability to categorise correctly new ex-
amples that differ from those used for training) we take 10 random sub-samples of
the training set, each of which contains 80% of the entries, keeping the remaining
20% for testing. Then, we apply the same methodology used to create the SVM
generated from the entire training set on the 10 sub-samples. Doing so, we ob-
tain different SVMs, trained using different sub-samples of the training set, and of
which we are able to assess the accuracy. The average accuracy of these SVMs
can be seen as an estimate of the accuracy of the SVM derived from the complete
training set. Specifically, we calculate the accuracy index, defined as the rate of
correct classifications, and the false positives rate, where false positives are ac-
counts wrongly assigned to the “socially relevant user” class. In our analysis we
consider only users falling in the “socially relevant users” class, thus it is particu-
larly important to minimise the false positive rate1. Minimising the false negative

1 False negatives are “socially relevant users” with behaviour similar to the subjects in the
“other users” class. For this reason we consider them as outliers, since our analysis is
focused on Twitter average users.
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rate is also important but less critical, as false negatives result in a reduction of the
number of users on which we base our analysis.

The average accuracy of our classification system is equal to 0.813 [±0.024]
and the average false positives rate is 0.083 [±0.012] (values between brackets are
95% confidence interval). These results indicate that we are able to identify socially
relevant people in Twitter with sufficient accuracy, even if people have different
behaviours and characteristics (e.g., different culture, religion, age). Moreover, the
false positive rate is quite low (below 10%). The results are of the same magnitude
as those found in a similar classification performed in Twitter [26].
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B

Facebook Dataset

In this section we provide details about the procedure we used to estimate the
frequency of contact between users in the Facebook data set described in Sec-
tion 3. As described in the text the data set is divided into snapshots representing
four temporal windows containing the number of interactions occurred between
the users during the considered time period.

B.1 Definitions

We define the temporal window “last month” as the interval of time (w1, w0), where
w1 = 1 month (before the crawl) and w0 = 0 is the time of the crawl. Simi-
larly we define the temporal windows “last six months”, “last year” and “all” as
the intervals (w2, w0), (w3, w0) and (w4, w0) respectively, where w2 = 6 months,
w3 = 12 months and w4 = 43 months. w4 is the maximum possible duration of
a social link in the data set, obtained by the difference between the time of the
crawl (April 2008) and the time Facebook started (September 2004). The different
temporal windows are depicted in Fig. B.1.

For a social relationship r, let nk(r) with k ∈ {1, 2, 3, 4} be the number of inter-
actions occurred in the temporal window (wk, w0). Since all the temporal windows
in the data set are nested, n1 ≤ n2 ≤ n3 ≤ n4. If no interactions occurred during
a temporal window (wk, w0), then nk(r) = 0. As a consequence of our definition
of active relationship, since n4(r) refers to the temporal window “all”, n4(r) > 0

only if r is an active relationship, otherwise, if r is inactive, n4(r) = 0.
The first broad estimation we can do to discover the duration of social ties in

the data set is to divide the relationships into different classesCk, each of which in-
dicates in which interval of time (wk, wk−1) the relationships contained in it started
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last year
all

Figure B.1: Temporal windows.

(i.e. the first interaction has occurred). We can perform this classification analysing
for each relationship the number of interactions in the different temporal windows.
If all the temporal windows contain the same number of interactions, the relation-
ship must be born less than one month before the time of the crawl, that is to say
in the time interval (w1, w0). These relationships belong to the class C1. Similarly,
considering the smallest temporal window (in terms of temporal size) that con-
tains the total number of interactions (equal to n4), we are able to identify social
links with duration between one month and six months (class C2), six months and
one year (class C3), and greater than one year (class C4). The classes of social
relationships are summarised in Table B.1.

B.2 Estimation of the Duration of the Social Links

Although the classification given in the previous subsection is extremely useful
for our analysis, the uncertainty regarding the estimation of the exact moment of
the establishment of social relationships is still too high to obtain significant re-
sults from the data set. For example, the duration of a social relationship r3 ∈ C3

can be either a few days more than six months or a few days less than one year.
To overcome this limitation, for each relationship r in the classes Ck∈{2,3,4} we
estimate the time of the first interaction comparing the number of interactions

Table B.1: Facebook classes of relationships.

Class Time interval (in months) Condition
C1 (w1 = 1, w0 = 0) n1 = n2 = n3 = n4

C2 (w2 = 6, w1 = 1) n1 < n2 = n3 = n4

C3 (w3 = 12, w2 = 6) n1 ≤ n2 < n3 = n4

C4 (w4 = 43, w3 = 12) n1 ≤ n2 ≤ n3 < n4
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 0 2 4 6 8 10 12 14
Months before the crawl

w0w1w2w3

r1

r2

n2(r1)=6; n3(r1)=7
n2(r2)=6; n3(r2)=12

Figure B.2: Graphical representation of two social relationships with different du-
ration.

nk, made within the smallest temporal window in which the first interaction oc-
curred (wk, w0), with the number of interactions (nk−1), made in the previous
temporal window in terms of temporal size (wk−1, w0). If nk(r) is much greater
than nk−1(r), a large number of interactions occurred within the time interval
(wk, wk−1). Assuming that these interactions are distributed in time with a fre-
quency similar to that in the window (wk−1, w0), the first occurred interaction must
be near the beginning of the considered time interval. On the other hand, a little dif-
ference between nk(r) and nk−1(r) indicates that only few interactions occurred
in the considered time interval (wk, wk−1). Thus, assuming an almost constant fre-
quency of interactions, the first contact between the involved users must be at the
end of the time interval. The example in Figure B.2 is a graphical representation
of this concept.

In the figure we consider two different social relationships r1, r2 ∈ C3. The
difference between the respective values of n2 and n3 is small for r1 and much
larger for r2. For this reason, fixing the frequency of contact, the estimate of the
time of the first interaction of r1 is near to w2, while the estimate for r2 results
closer to w3.

In order to represent the percentage change between the number of interac-
tions nk and nk−1, we calculate for each relationship r ∈ Ck what we call social
interaction ratio h(r), defined as:

h(r) =

{
nk(r)/nk−1(r)− 1 if r ∈ Ck∈{2,3,4}
1 if r ∈ C1

. (B.1)

If r ∈ C1 we set h(r) = 1 in order to be able to perform the remaining part
of the processing also for these relationships. The value assigned to h(r) with
r ∈ C1 is arbitrary and can be substituted by any value other than zero without
affecting the final result of the data processing. Considering that nk(r) is greater
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than nk−1(r) by definition with r ∈ Ck∈2,3,4, the value of h(r) is always in the
interval (0,∞)1.

Employing the social interaction ratio h(r), we define the function d̂(r) that,
given a social relationship r ∈ Ck, estimates the point in time at which the first
interaction of r occurred, within the time interval (wk, wk−1):

d̂(r) = wk−1 + (wk − wk−1) ·
h(r)

h(r) + ak
r ∈ Ck, (B.2)

where ak is a constant, different for each class of relationship Ck.
Note that the value of d̂(r) is always in the interval (wk−1, wk). The greater

h(r) - which denotes a lot of interactions in the time window (wk, wk−1) - the more
d̂(r) is close to wk. The smaller h(r), the more d̂(r) is close to wk−1. Moreover,
the shape of the d̂(r) function and the value of ak are chosen relying on the results
about the Facebook growth rate, available in [93]. Specifically, the distribution of
the estimated links duration, given by the function d̂(r), should be as much simi-
lar as possible to the distribution of the real links duration, which can be obtained
analysing the growth trend of Facebook over time. For this reason, we set the con-
stants ak in order to force the average link duration of each class of relationships
to the value that can be obtained by observing the Facebook growth rate. In [9] we
provide a detailed description of this step of our analysis.

B.3 Estimation of the Frequency of Contact

After the estimation of social links duration, we are able to calculate the frequency
of contact f(r) between the pair of individuals involved in each social relationship
r:

f(r) = nk(r)/d̂(r) r ∈ Ck. (B.3)

Previous research work demonstrated that the pairwise user interaction de-
cays over time and it has its maximum right after link establishment [90]. There-
fore, if we assessed the intimacy level of the social relationships with their contact
frequencies, this would cause an overestimation of the intimacy of the youngest
relationships. In order to overcome this problem, we multiply the contact frequen-
cies of the relationships in the classes C1 and C2 by the scaling factors m1 and
m2 respectively, which correct the bias introduced by the spike of frequency close

1 In case nk−1(r) = 0, we set nk−1(r) = 0.3. This constant is the expected number of
interactions when the number of interactions, within a temporal window, is lower than 1.
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to the establishment of the link. Assuming that the relationships established more
than six months before the time of the crawl are stable, we set m1 and m2 com-
paring the average contact frequency of each of the classes C1 and C2, with that
for the classes C3 and C4. Obtained values of the scaling factors are: m1 = 0.18,
m2 = 0.82. Setting m3 = 1 and m4 = 1, scaled frequencies of contact are defined
as:

f̂(r) = f(r) ·mk r ∈ Ck. (B.4)
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C

Ego-Net Digger Application

Ego-Net Digger is a web-based Facebook application able to retrieve and analyse
social interaction data between the user and her friends, giving as output the ego
network of the user partitioned into its social circles. Ego-net digger is the result of
the extensive work we performed on the basis of the know-how acquired during the
creation of the prototype application described in [13]. However, ego net-digger is
a much more advanced application, built to overcome some limitations of the cited
prototype, summarised by the following points:

• The download of social data was only applicable to one user at a time
• The prototype did not support background data download, thus requiring the

user to remain connected for the entire download process, otherwise the pro-
cess would have ended before its completion

• The number of Facebook posts downloaded by the prototype (per each ego)
was limited to 400/500, far less than the complete history accessible from Face-
book communication records

• The manual evaluation of Facebook tie strength was long and tedious, not
giving an easy method to rank friends and to visually compare them

• People were not incentivised to use the application because of the lack of a
reward for their time spent

Ego-net digger is designed to overcome these limitations, allowing a much
more refined analysis of the structure of ego networks. Specifically, ego-net digger
is able to retrieve the entire communication history between the user and her alters
in Facebook, includings posts, comments, likes, tags, events in common, private
messages, notes, photos, status updates, video, family relationship and other infor-
mation related to the profile of the user and her friends. This data clearly contains
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more than just the indication of contact between people, and can be leveraged
to obtain a model for the estimation of tie strength much more refined than those
based only on the frequency of contact between users.

We also provide a new method to collect explicit evaluations of tie strength from
the users. This method is based on a simple but effective graphical interface that
allows users to evaluate her friends dragging their pictures on a graphical ruler.
All the pictures related to previously evaluated friends remain stick on the ruler,
so that the user is able to easily compare her friends, producing a much more
accurate evaluation compared to [13].

Ego-net digger introduces also the ability to obtain explicit evaluations of tie
strength in the real life, in addition to those related to the Facebook world. These
evaluations could be extremely useful for further characterisation of the differences
between the physical and the real worlds.

In addition to the need to overcome the limitations of the prototype applica-
tion [13], we developed ego-net digger with the following goals:

• support a wide range of different data analysis techniques, acting as a testbed
for OSN analysis algorithms

• minimise the effort needed to update the application to cope with the OSN
platform updates

• support an high number of users, without the detriment of user experience
• make the manual evaluation of tie strength as fast and simple as possible to

require a limited amount of time even for users with an high number of friends

Ego-Net Digger is composed of two main modules: (i) a data fetcher compo-
nent and (ii) a web based user interface for tie strength evaluation

Data fetcher module is the server side component of the application. It re-
trieves all the interaction data related to the user and her friends, according to her
privacy settings. This data can be then elaborated using one or more data analysis
algorithms. Ego-net digger is designed to be easily extended and modified to be
used with other OSN different than Facebook (e.g., Twitter).

The data fetcher module performs the data retrieval and elaboration phases
in background, to allow the user to disconnect from the application without block-
ing the data retrieval procedure. The presence of this background data download
procedure also ensures a better distribution of the application workload, since the
concurrent downloads can be limited or delayed to avoid network congestion.

The actual implementation of ego-net digger data fetcher module uses Face-
book Query Language (FQL) to access the social data of the users. We have spent
a lot of effort to make the data fetcher module easily updatable and extendible to
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Figure C.1: Screenshot of ego-net digger tie strength evaluation module

cope with Facebook API changes, building a tool for the automatic generation of
FQL queries and table relying on the database structure, described on Facebook
documentation1.

Web interface for tie strength evaluation is a module used to collect manual
evaluations of tie strength from the user connected to the application. We intend to
use this data only during a preliminary phase of our work, to build and tune models
for automatic emotional closeness estimation. With these models we would like to
study the properties of ego networks and their relation with tie strength without
requiring user interaction.

As experienced in [13], for the users is not easy to assign a numeric score to
their friends without a graphical comparison between them. Moreover, the duration
of the ranking process highly affects the accuracy of the evaluation. Therefore is
important to give an easy to use user interface for the evaluations. Using ego-net
digger, a user can rank a friend clicking on a graphical “ruler”, graduated from
0 to 100. After doing so, the Facebook picture of the evaluated friend appears
on the ruler at the position indicating the given score. In this way the user can

1 https://developers.facebook.com/docs/reference/fql/
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easily compare her friends and change previously assigned scores in case she
wants to refine the evaluation. To facilitate the visualisation of previously evaluated
friends in case they are too many to be displayed on the ruler, ego-net digger
shows the pictures of five people with higher/lower tie strength considering the
current position of the mouse cursor (on the ruler) in two separated panels placed
beneath the ruler. Figure C.1 depicts a screenshot of the web interface for tie
strength evaluation.

For each friend, the user is asked to express two different evaluations: the first
one concerning the tie strength she feels with her friends in the “real life” and the
second one for the tie strength in Facebook. We collect these different evaluations
to analyse the differences between the users’ active networks in real and virtual
environments.

From previous work [13] we know that the amount of inactive relationships
which receive a tie strength evaluation equal to zero is rather substantial. To speed
up the evaluation process without introduce bias in the results, we introduce a
button by which the user can declare a friend as a mere acquaintance for both the
physical and the cyber worlds.

Since we want to be able to check the goodness of the evaluations, collected by
ego-net digger, we introduce some additional information to track the behaviour of
the user. Specifically, we collect data regarding the duration of the entire evaluation
process of a user and the timestamp related to each single score given. In this way
we are able to study the distribution of the speed of the evaluation, performed by
the user. This analysis allows us to identify if and how the evaluation changes over
time and to detect not enough accurate evaluations in order to remove outliers
from the collected data.
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