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CHAPTER1
Introduction

1.1 Objectives of thesis

1.2 Organization of thesis
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CHAPTER2
Generalities on distributed

system

When talk about control, we usually think to a centralized system that has to
do a task, and usually optimizing certain properties. In case we have to manage
large scale and dimension systems we require larger resources, computational
too. These kind of resources increase exponentially respect to system dimen-
sion. Trend of lasts years has been to interconnect each other large quantity of
independent subsystems to do the same task as the centralized system. This
take an advantage in resources consumption. This is only a linear increasing in
waste of resources respect to the number of subsystem.

Figure 2.1: Distributed systems example

2
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This new approach has been adopted for a wide variety of subsystems: from
small devices to big industrial plant. In microelectronics environment, a lower
cost of devices has lead to an integration and interaction among several sensors
and actuators. On the other hand, a decentralized design has been necessary to
control big processes such as petrol-chemical plants, electrical power grid, water
distribution network. The same approach can be done with smaller and more
general industrial plant too. Future studies could be concentrate on modelling
and decentralizing subsystem in physiological environment.

Figure 2.2: Electrical power grid example

From the controllers’ point of view, this kind of (decentralized) choice should
take care of several aspects. First, sensors and actuators limitations due to a
big amount of information on the network. Furthermore the large number of
agents suggests to use scalable algorithms. These algorithms should have a
O(n) complexity, in which n is the number of agents. They should take account
that available informations are local at single agent or limited.
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Figure 2.3: Information �ow

It’s necessary to �nd a unique formalism that can be model this class of
problems. We want to address a correct abstraction without loss of e�ciency.
For example, in the next �gure, we see several kind of sensors. They are inter-
acting as a network.

Figure 2.4: Sensors network example

It can be very complex to model sensor’s geometry and/or physic. However
we can model them through a graph starting from the rule "what has been seen
from"
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Figure 2.5: Sensors network modelling example

Graph is the most natural way to describe a network of inter agents’ sys-
tems. What single node represents depends on problem we are treating. So, it’s
important, �rst of all, to take a look to graph theory.
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2.1 Graph Types

A graph is a possible way to model a physic system. With reference to the Figure
2.5, single node represents a sensor and arc represents the mentioned rule. In
this way we have less information about what problem geometry concerns but
is simpler than before to de�ne a control law. These laws will be based on
topological properties of the network. However, decentralized control laws must
take account of single sensor available informations only. Eventually, we have
informations of closer systems. The closer concept depends on the problem we
have to solve. This is due to arcs represent subsystems information �ow. The
way we manage the �ow establishes the network topology and the graph type.
We should analyse their features to understand interactions among di�erent
and several subsystems models.

2.1.1 Undirected Graphs

De�nition 2.1. A graph G = (V, E) is composed by a �nite set of tops (or nodes)
V and a set of arcs E ⊂ V ×V that connect couples of nodes. Two interconnected
nodes are called adjacent.

Example 2.2. Consider G = (V, E) with V = {1, 2, 3, 4, 5} and
E = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4), (4, 5)}

Figure 2.6: Undirected Graphs example

De�nition 2.3. The set Ni = {vj |(vi, vj) ∈ E} ⊂ V is the adjacent node of i.
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2.1.2 Directed Graphs

In the prevoius section we have analysed a bidirectional information �ow. In
general this is not true and data go towards graph in a unique sense. The arcs
orientation establishes a node in�uences to an other one.

De�nition 2.4. A graph G = (V, E) is an oriented graph if E is composed by
oriented couples nodes. Arc (vi, vj) is an arc from vi to vj . We de�ne the head
of arc vj and the tail of arc vi.

Given a directed graph G = (V, E), input-star of node vi is the set

SINi = {vj ∈ V | (vj , vi) ∈ E}

while the output-star of node vi is the set

SOUTi = {vj ∈ V | (vi, vj) ∈ E}.

Example 2.5. We consider again the previous example but in directed mode.

Figure 2.7: Directed Graph example

Consider node 4. The input-star si SIN4 = {2, 3, 5}, while the output-star is
SOUT4 = {1}.

2.1.3 Directed and Weighted Graphs

De�nition 2.6. Given V and E, let w : E → R a function that associate a value
(or cost), for each arc. The graph G = (V, E, w) is called weighted graph.
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By de�nition, this type of graph seems to be an useful way to describe
interactions among subsystems. In�uence of an agent to an other is can be
modelled by scaled input, the weight of the arcs. See Figure (2.8) for better
understanding.
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2.2 Associated Graphs Matrix

How could graph node model a system? Simplify notation, indicating with i the
generic node vi and with

• j the generic node vj beloging to i
(
j ∈ SOUTi

)
output-star.

• k the generic nod vk belonging to i,
(
k ∈ SINi

)
input-star.

Thus, if we associated to i a state vector xi and an input vector ui. The state
evolution will be given by

x+
i = Ai xi +Bi ui

where Ai and Bi are transition state and input vector matrices. Note that
on i-th agent act exogenous input from arc (k, i) , ∀ k ∈ SINi . This input can
be the same as agent k but scaled from a weight. So, we will have a further
contribution in the dynamic equation that will become

x+
i = Ai xi +Bi ui +

∑
k∈SINi

Bik uk

where the single matrix Bki is the in�uence of the node k on the i one
through the input uk. Thus, Bk, i is the weight of the arc.

De�nition 2.7. The set Ni = {vj | (vi , vj) ∈ E} ⊂ V is the set of i adjacent
node.

De�nition 2.8. For a undirected graph the degree d(vi) of vi node is the number
of vi adjacent node.

De�nition 2.9. The graph’s matrix degrees is a diagonal matrix positive semi-
de�nite of n × n dimension and n is the number of node in the graph. The i-th
element of the diagonal is equal to the i-th node degree d(vi):

4 (G) =


d(v1) 0 · · · 0

0 d(v2) · · · 0
...

...
. . .

...
0 0 · · · d(vn)





2.2 − Associated Graphs Matrix 10

De�nition 2.10. The adjacent matrix of a graph G is a symmetric matrix A with n×
n dimension, in which we represent the adjacent relationship among the network.

[A(G)]ij = aij =

1 se (vi, vj) ∈ E

0 altrimenti

De�nition 2.11. The Laplacian of an undirected graph G is

L (G) = 4 (G)−A(G)

De�nition 2.12. Let G = (V, E, w) a weighted and directed graph with arc weight
(vi, vj) ∈ E equal to wij .

Let A the adjacent matrix where instead of element 1 corresponding to the
arc (vi, vj) ∈ E there is the wij value corresponding to weight of the arc.
The i input arcs’ degree is given by degin (vi) =

∑n
j=1 aji, while the output

arcs’ degree is given by degout (vi) =
∑n

j=1 aij . The degrees’ matrix 4 of a
weighted and directed graph is the diagonal matrix with degout (vi) elements
on the diagonal. The Laplacian is de�ned by L = 4 − A and the de�nition is
consistent (not equal to) the that one given by undirected graph considering all
weight equal to 1.

Example 2.13. Let the graph in �gure 2.6. The degrees’ matrix and the adjacent
one are respectively equal to

4 =


2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 4 0

0 0 0 0 1

 , A =


0 1 0 1 0

1 0 1 1 0

0 1 0 1 0

1 1 1 0 1

0 0 0 1 0


So, the Laplacian is

L = 4−A =


2 −1 0 −1 0

−1 3 −1 −1 0

0 −1 2 −1 0

−1 −1 −1 4 −1

0 0 0 −1 1


Consider the same graph as before but with random oriented arcs. Associate a
weight to each arc. Then we obtain the following new graph. Calculate the relative
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Figure 2.8: Weighted and Directed Graph example

degrees’ and adjacent matrices with the new de�nitions for weighted and directed
graphs,

4 =


3 0 0 0 0

0 4 0 0 0

0 0 1 0 0

0 0 0 4 0

0 0 0 0 3

 , A =


0 3 0 0 0

0 0 2 2 0

0 0 0 1 0

4 0 0 0 0

0 0 0 3 0


Thus, the Laplacian matrix is

L = 4−A =


3 −3 0 0 0

0 4 −2 −2 0

0 0 1 −1 0

−4 0 0 4 0

0 0 0 −3 3


These notions should be useful to better understanding how a system can

be really implemented by a graph. If every node has a proper state vector, the
entire graph evolves in time. Can I control it?



CHAPTER3
Model Predictive Control

If we want to control a system as a network (graph), formed by a group of
independent subsystems, we have to make some annotations. Each subsystem
has a proper input, output and state vector. Furthermore, if we want to model
a big plant, these are a lots of interactions and (coupled) constraints among
subsystems. Hence, if we want to manage the system through conventional
feedback control systems like PID, we have to consider some implicit problems.

• Interaction, from each manipulated variable to all controlled variables;

– Usually previous problem can be solved by decoupler structure but
it could be create problem about robustness.

• The only admissible constraints are those on maximum and minimum
input values or its variations;

• It’s not possible to obtain a direct optimization of a certain variable. Only
by tuning.

So, it’s necessary to have a type of control that is able to handling multi
variable system (not squared necessarily), or complicated dynamics with
(coupled) constraints on controlled and manipulated variables. Nevertheless

12
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it’s desirable to have a certain robustness or a direct (multi variable) opti-
mization.

The basic idea of model predictive control is to exploit the process model
(or an estimated measure of it) to compute an equilibrium point at each decision
time that satis�es constraints. At this point a dynamic optimization module
makes a �nite horizon prediction on state variables to �nd an optimal control
sequence that minimizes an objective cost function. We then apply the �rst
control action and the cycle restarts.

Figure 3.1: MPC architecture

Comparison of model predictive control can be made while driving your car.
The classic feedback controller is based on the measured variables and the
relative error. It’s like when you look at the rear-view mirror and you observe
if you act in the right way. You make corrections on the control actions (steer,
break, acceleration). The model predictive control predicts the next state and
�nds an optimal sequence of control action that minimizes a cost function and
satis�es certain constraints. It’s like when you drive (normally) watching in front
of you without going out the street and operating the best possible trajectory
to consume less fuel!
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Figure 3.2: MPC in real life

Figure 3.3: MPC Graphical Interpretation
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3.1 MPC Introduction

The main goal of this section is to provide the principal tools of predictive control.
We’ll introduce the optimal regulation problem. State estimation is an other
important properties we analyse later in Appendix B. We can say that these two
particular tools together create a special form of MPC. They will be useful to
understand the general form of MPC in the next section.

3.1.1 Linear Quadratic Problem

We de�ne a discrete time invariant linear system

x (k + 1) = Ax (k) +B u (k)

We consider N steps and the respective action vector sequence

u = {u (0) , u (1) , . . . , u (N − 1)}

We de�ne a cost function to measure trajectory deviation of x (k) , u (k) from
origin trough weight matrices.

V (x (0) ,u) =
1

2

N−1∑
k=0

(
x (k)

′
Qx (k) + u (k)

′
Ru (k)

)
+

1

2
x (N)

′
Pf x (N)

(3.1)
subject to x+ = Ax+B u

Remember that:

• setting large values of Q in comparison to R drive the state to the origin
faster at the expense of large control;

• vice-versa, large values of R respect to Q reduce control action penalizing
velocity at which the state approaches the origin;

• Pf is a terminal constraint.

We then formulate the linear quadratic optimal control problem

min
u

V (x (0) ,u) (3.2)

We assume that Q , Pf , R are real and symmetric; Q , Pf are positive semi-
de�nite; R is positive de�nite. Such assumptions guarantee that solution os
optimal control problem exists and is unique.



3.1 − MPC Introduction 16

Optimizing multistage functions

A method to solve the equation 3.2 is an iterative strategy called dynamic pro-
gramming that we brie�y exposed. Suppose we have to solve the following three
variables problem (x, y, z)

min
(x,y,z)

f (w, x) + g (x, y) + h (y, z), w fissato

It’s possible to rewrite problem in this way:

min
x

[
f (w, x) + min

y

[
g (x, y) + min

z
h (y, z)

]]
The iterative strategy compute �rst the solution of inner problem, proceeds with
the intermediate one, �nally explicit the outer problem.

Dynamic programming solution

To simplify notation we de�ne stage and �nal cost of the global function as

1

2

(
x (k)

′
Qx (k) + u (k)

′
Ru (k)

)
, l (x (k) , u (k))

1

2
x (N)

′
Pf x (N) , lN (x (N))

It’s possible to apply this technique on LQ problem. As x(0) is given it’s conve-
nient to solve it with backward dynamic programming. If we take the problem
(3.1) and optimize it on u(N − 1) and x(N) we obtain

min
u(0),x(1),...,u(N−2),x(N−1)

N−2∑
k=0

l (x (k) , u (k)) +

min
u(N−1),x(N)

[l (x (N − 1) , u (N − 1)) + lN (x (N))]︸ ︷︷ ︸
s.t. x(N)=Ax(N−1)+B u(N−1)

Solving �rst the second addendum we obtain the optimal control at step N-1,
de�ned as

u0(N − 1) = KN (N − 1)x(N − 1) with

KN (N − 1) = −
(
B
′
Pf B +R

)−1
B
′
Pf A

We repeat the process obtaining the backward Riccati iteration

u0(N) = KN (N)x(N), with

KN (N) = −
(
B
′
Π(k + 1)B +R

)−1
B
′
Π(k + 1)A,
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Π(k−1) = Q+A
′
Π(k)A−A′Π(k)B (B

′
Π(k)B+R)−1B

′
Π(k)A, Π(N) = Pf

Terminal condition substitute the initial one because it will treated the backward
iteration. The advantage of this technique is that optimal control is computed
in feedback way, thus in closed-loop.

The in�nite horizon LQ problem

"In the engineering literature it is often assumed (tacitly and incorrectly) that a
system with optimal control law is necessarily stable".1

Infact, if �nal time N tends to in�nity and one of the state it’s not controllable
and/or stabilizable, the corresponding performance index tends to in�nity. Let

K (0) = K x (0) = x

It can be shown that in special case, if we tends k to in�nity, we converge
directly to the in�nite horizon control law K∞. With this motivation , we are
lead to consider directly the in�nite horizon case

V (x (0) ,u) =
1

2

∞∑
k=0

(
x (k)

′
Qx (k) + u (k)

′
Ru (k)

)
In considering the in�nite horizon problem, we �rst restrict attention to sys-

tems for which there exist input sequences that give bounded cost If (A ,B) is
controllable the solution to optimal problem (3.2) exists and is unique for each
x. Thus, the general control law κ (·) computed in in�nite horizon case, κ∞ (·),
is de�ned as u = κ∞ (x). We apply only the �rst action of the optimal control
sequence so we de�ne κ∞ (x) = u0 (x) = u0 (0 ; x).

Theorem 3.1. For each couple (A, B) controllable and (Q, R) positive de�nite
exist a solution, positive de�nite of in�nite horizon algebraic Riccati e quation such
that closed-loop matrix (A+BK) be strictly Hurwitz and closed-loop system

x+ = Ax+B κ∞ (x)

converge in the origin.
1R. E. Kalman. Contributions to the theory of optimal control. Bull. Soc.Math.Mex., 5:102–119,

1960.
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From previous section the optimal solution is found through Riccati iteration,
and control law and relative cost are

u0(x) = K x, V 0(x) =
1

2
x
′
Πx

where
K = −

(
B
′
ΠB +R

)−1
B
′
ΠA,

is de�ned as Kalman gain and

Π = Q+A
′
ΠA−A′ΠB (B

′
ΠB +R)−1B

′
ΠA, Π(∞) = Π (3.3)

Proving Lemma 3.1, has shown that for (A, B) controllable and Q, R > 0, a
positive de�nite solution to the discrete algebraic Riccati equation (DARE), (3.3),
exists and the eigenvalues of (A+BK) are asymptotically stable for the K
corresponding to this solution.

Figure 3.4 shows us how is implemented a discrete time in�nite horizon LQR
architecture

Figure 3.4: LQR architecture

We remember that in linear systems asymptotic convergence coincide with
asymptotic stability. To ensure all the unstable states are present in V it’s
su�cient that (A,G) is detectable.
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3.2 Main theory

In general case, Model Predictive Control, have a more general form we now
consider. We will pointing out di�erence among standard controller and MPC.

• control action is obtained by solving online, at each sampling instant, a
�nite horizon optimal control problem in which the initial state is the current
state of the plant (usually we compute an o�ine control law);

• If the current state is x, MPC obtains, by solving an open-loop optimal
control problem for this initial state, a speci�c control action u to apply to
the plant;

– only the �rst control action is applied to the plant.

– open-loop optimization can be solved rapidly enough; so we can man-
age large dimension system or hard constraints’ ones;

– the only feedback block is state estimator

– MPC computes the value κ (x) of the optimal receding horizon con-
trol law for the current state x, while DP yields the control law κ (·)
that can be used for any state.

• di�erence between MPC and the others standard controller are optimiza-
tion constraints.

3.2.1 General Formulation

We consider systems of the form

dx

dt
= f (x, u)

For this class of systems, the control law with arguably the best closed-loop
properties is the solution to the following in�nite horizon, constrained optimal
control problem. The cost is de�ned to be

V∞ (x, u (·)) =

∫ ∞
0

l (x (t) , u (t)) dt

where x (t) and u (t) satisfy ẋ = f (x, u) and l (·) is the stage cost. The
optimal control problem P (x) is de�ned as

min
u(·)

V∞ (x, u (·))
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subject to

ẋ = f (x, u) x (0) = x0

u (t) ∈ U x (t) ∈ X, for each, t ∈ (0, ∞)

If l (·) is positive de�nite, the goal of the regulator is to steer the state of
the system to the origin. We denote the solution to this problem (when it exists)
and the optimal value function respectively as

u0
∞ (·; x) , and V 0

∞ (x)

(Superscripts 0 indicates optimal value). The closed-loop system under this
optimal control law evolves as

dx (t)

dt
= f

(
x (t) , u0

∞ (t ; x)
)

If l (·) and f (·) are di�erentiable and certain growth assumptions are sat-
is�ed and there are no state constraints, then a solution to V 0

∞ (·) exists for all
x; V 0

∞ (·) is di�erentiable and satis�es

V̇ 0
∞ (x) = −l

(
x, u0

∞ (0 ; x)
)

Using the formulation above with upper and lower bounds on V 0
∞ (·) enables

global asymptotic stability of the origin to be established. Although the con-
trol law u0

∞ (0; ·) provides excellent closed-loop properties, there are several
impediments to its use.

• A feedback, rather than an open-loop, control is usually necessary because
of uncertainty;

• Solution of the problem yields the optimal control for the state x but does
not provide a control law;

• Dynamic programming may, in principle, be employed, but is generally
impractical if the state dimension and the horizon are not small.

If we use MPC approach in which we generate the on-line optimal control
value for a speci�c state x, rather than for all x, the problem remains intractable.
In this section we restrict to discrete time invariant linear system with �nite
horizon control problem. Thus, let

x+ = f (x, u) (3.4)
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a discrete time non-linear di�erential equation system. Function f (·) is
assumed to be continuous and to satisfy f (0, 0) = 0, i.e. 0 is an equilibrium
point. If the initial state x (0) = x0 each solution of 3.4 satis�es

x (k + 1) = f (x (k) , u (k)) k = 0, 1, . . .

Solution of 3.4 at each instant k is denoted by φ (k ; x, u) that depends only
by control sequence u = {u (0) , u (1) , . . . , u (N − 1)} and the initial state x0.

Recalling Figure 3.1, Dynamic Optimization module has the main task to �nd
the optimal control sequence u. Let us zoom it.

Figure 3.5: Dynamic Optimization Module

For now, (xs (k) , us (k)) can be considered as the steady state and input
such that ys (k) = 0.

Proposition 3.2. Continuous system solution.
Suppose function f (·) continuous. Then for each k ∈ I, function (x, u) →

φ (k ; x, u) is continuous.

The system 3.4 is subject to hard constraints which may take the form

u (k) ∈ U x (k) ∈ X, ∀k ∈ I≥k (3.5)



3.2 − Main theory 22

The next ingredient of the optimal control problem is the cost function.
Practical considerations require that the cost be de�ned over a �nite horizon N
to ensure the resultant optimal control problem can be solved su�ciently rapidly
to permit e�ective control. We consider initially the regulation problem where
target state is the origin. Furthermore the initial instant decision is irrelevant,
hence we indicate simply u0 (x) and x0 (x) to indicate the best control action
for state x and the optimal state sequence. The optimal control problem PN (x)

may be expressed as minimization of

N−1∑
k=0

l (x (k) , u (k)) + Vf (x (N))

with respect to the decision variables (x, u). The optimal control and state
sequence are de�ned as

u0 (x) = {u (0) , u (1) , . . . , u (N − 1)}
x0 (x) = {x (0) , x (1) , . . . , x (N)}

For the purpose of analysis is preferable to constrain the state sequence x

a priori to be a solution of x+ = f (x, u) enabling us to express the problem
in the equivalent form of minimizing, with respect to the decision variable u, a
cost that is purely a function of the initial state x and the control sequence u.
This formulation is possible since the state sequence x may be expressed, via
the di�erence equation x+ = f (x, u), as a function of (x, u). The cost will
becomes

VN (x, u) =
N−1∑
k=0

l (x (k) , u (k)) + Vf (x (N)) (3.6)

where, now, x (k) := φ (k; x, u) for all k ∈ I0:N . Similarly the hard con-
straints on input and states, togheter with an additional terminal constraint

x (N) ∈ Xf

where Xf ⊆ X impose an implicit constraint on the control sequence of the
form

u ∈ UN (x)
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in which the control constraint set UN (x) is the set of control sequences
u := {u (0) , u () , . . . , u (N − 1)} satisfying the state and control constraints.
It is therefore de�ned by

UN (x) := {u| (x, u) ∈ ZN}

in which the set ZN ⊂ Rn × RNm is de�ned by

ZN := {(x, u) |u (k) ∈ U, φ (k ; xu) ∈ X, ∀ k ∈ I0:N−1, φ (N ; xu) ∈ Xf }

The optimal control problem PN (x) may be expressed as

PN (x) : V 0
N (x) := min

u
{VN (x , u) |u ∈ UN (x)} (3.7)

Problem PN (x) is a parametric optimization in which the decision variable
is u, and both the cost and the constraint set depend on the paramter x. The
set ZN is the set of admissible (x, u), i.e., the set of (x, u) for which x ∈ X
and the constraints of PN (x) are satis�ed. It can be shown that XN is the set
of states i X for which PN (x) has a solution

XN := {x ∈ X | UN (x) 6= Ø}

We assume, without further comment, that the following standing conditions
are satis�ed in the sequel.

Assumption 3.3. (Continuity of system and cost). The function f : X × U →
Rn, l : X × U → R≥0 and Vf : Xf → R≥0 are continuous and f (0, 0) = 0,
l (0, 0) = 0 and Vf (0) = 0.

Assumption 3.4. (Properties of constraint sets). The sets X and Xf are closed,
Xf ⊆ X and U are compact; each set contains the origin.

Proposition 3.5. (Existence of solution to optimal control problem). Suppose
assumptions 3.3 and 3.4 hold. Then

• The function VN (·) is continuous in ZN ;

• For each x ∈ XN , the control constraint set UN (x) is compact;

• For each x ∈ XN , a solution to PN (x) exists.
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XN is the set of admissible starting states that satisfy hard constraints and exists
a control sequence such that φ (N ; x, u) ∈ Xf

The solution is

u0 (x) = arg min
u
{VN (x, u) |u ∈ UN (x)} (3.8)

In MPC, the control applied to the plant is the �rst element of u0 (x), u0 (0; x).
Although MPC computes u0 (x) only for a speci�c value of x, may be used for
any x in which PN (x) is admissible, obtaining the implicit state feedback control
law κN (·) de�ned by

κN (x) := u0 (0; x) , x ∈ XN

Theorem 3.6. (Continuity of value function and control law). Suppose that
assumptions 3.3 and 3.4 hold.

• Suppose there is no state constraints such that X = Xf = Rn. Then the
objective function V 0

N : XN → R is continuous and XN = Rn;

• Suppose f (·) is linear as x+ = Ax + B u and that the state and control
constraints sets are polyhedral (represented as inequality systems). Then
function V 0

N : XN → R is continuous;

• If, in addiction, the optimal control problem solution u0 (x) is unique at each
x ∈ XN , then the implicit MPC control law κN (·) is continuous.

We take for granted, stability theory we have reported in Appendix A, to
apply them to Model Predictive Control.

3.2.2 Stability in MPC

Our task in this chapter is to �nd a function V (·) with properties (A.2) and (A.3)
of theorem (A.11). The origin is asymptotically stable with a region of attraction
X for the system x+ = f (x) if there exists a Lyapunov function V , a posi-
tive invariant set X , two K∞ functions α1 (·) , α2 (·), and a positive de�nite
function α3 (·) satisfying:

• V (x) ≥ α1 (|x|)

• V (x) ≤ α2 (|x|)
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• V (f (x)) ≤ V (x)− α3 (|x|)

for all x ∈ X . Our task is to �nd a function V (·) with these properties for MPC
system x+ = f (x, κN (x)). This suggests the use of V 0

N , the value function
for the �nite horizon optimal control problem whose solution yields the model
predictive controller, as a Lyapunov function. Since, as is often pointed out,
optimality does not imply stability, this property does not usually hold when
the horizon is �nite. One of the main task of this section is show that if l (·),
Vf (·) and Xf of the �nite horizon optimal control problem are chosen appropri-
ately, then A.11 conditions are satis�ed. In the sequel we shall denote as u0 (x)

any optimal control sequence and κN (x) the �rst element of this sequence,
u0 (0; x).

Stabilizing Condition

In case there are no state constraint (X = Xf = Rn) we can be shown that
Vf (·) satisfy

Vf (f (x, u))− Vf (x) + l (x, u) ≤ 0

so, if function l (·) is positive de�nite, is a global control Lyapunov function. Thus
V 0
N has the desired descent property and global asymptotic stability of the origin

for the system x+ = f (x, κN (x)) under MPC may be established. We consider
the case when state and control constraints are present. MPC is stabilizing if
a global Control Lyapunov Function (CLF) is employed as the terminal cost. A
global CLF is seldom available, however, either because the system is non-linear
or because constraints are present. Hence, we must set our sights lower and
employ as our terminal cost function Vf a local CLF, one that is de�ned only on
a neighbourhood Xf of the origin where Xf ⊆ X. A consequent requirement is
that the terminal state must be constrained, explicitly or implicitly, to lie in Xf .
Our stabilizing condition now takes the form:

Assumption 3.7. (Basic stability assumption).

min
u∈U
{Vf (f (x, u)) + l (x, u) | f (x, u) ∈ Xf } ≤ Vf (x) , ∀x ∈ Xf

This assumption implies the following other one.

Assumption 3.8. (Implied invariance assumption). The set Xf is control in-
variant for the system x+ = f (x, u), i.e., there exists u ∈ U such that x+ =

Ax+B u ∈ Xf
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Assumptions (3.7) and (3.8), specify properties which, if possessed by the
terminal cost function and terminal constraint set, enable us to employ the
value function V 0

N (x) = VN
(
x, u0 (x)

)
for the optimal control problem PN

as a Lyapunov function. therefore if (3.3), (3.4), (3.7) and (3.8) are veri�ed the
important descent and monotonicity properties of V 0

N are established:

Lemma 3.9. (Optimal cost decrease).

V 0
N ( f (x, κN (x))) ≤ V 0

N (x)− l (x, κN (x)) ∀x ∈ XN (3.9)

Lemma 3.10. (Monotonicity of the value function).

V 0
j+1 (x) ≤ V 0

j (x) ∀x ∈ XN , ∀ j ∈ I0:N−1

V 0
N (x) ≤ Vf (x) ∀x ∈ Xf

(3.10)

We report here a route of stability to simplify

Theory Step Description

3.3 Continuity of system and cost
3.4 Properties of constraint sets
3.5 Existence of a solution
3.7 Basic stability assumption
3.8 Implied invariance assumption
3.9 Optimal cost decrease
3.10 Monotonicity of the value function

Table 3.1: Route of Stability

Lemma 3.9 shows that the value function V 0
N (·) has a descent property

that makes it a suitable candidate for a Lyapunov function that may be used to
establish stability of the origin for a wide variety of MPC systems. To proceed,
we postulate two alternative conditions on the stage cost l (·) and terminal cost
Vf (·) required to show that V 0

N (·) has the properties given in Appendix A, which
are su�cient to establish stability of the origin. Our additional assumption is:

Assumption 3.11. (Bounds on stage and terminal costs). The stage cost l (·)
and terminal cost Vf (·) satisfy

l (x, u) ≥ α1 (|x|) ∀x ∈ XN , ∀u ∈ U
Vf (x) ≤ α2 (|x|) ∀x ∈ Xf
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in which α1 (·) e α2 (·) are functions K∞ or

l (x, u) ≥ c1 |x|a ∀x ∈ XN , ∀u ∈ U
Vf (x) ≤ c2 |x|a ∀x ∈ Xf

for some c1, c2, a,> 0

In the situations in which Xf has no origin in its interior, we don’t establish
an upper bound for V 0

N (·). From the assumption 3.7 and 3.8 and resort to the
following assumption.

Assumption 3.12. (Weak controllability). There exists a K∞ function, α (·) such
that V 0

N (x) ≤ α (|x|) ∀x ∈ XN .

3.2.3 Summary, MPC Stability Theorems

In the sequel we apply the previous results to establish asymptotic or exponential
stability of a wide range of MPC systems. To facilitate application, we summarize
these results and some of their consequences in the following theorem.

Theorem 3.13.

Suppose that Assumptions 3.3, 3.4,3.7, 3.8, and 3.11(a), are satis�ed and that XN =

Xf = Rn so that Vf (·) is a global CLF. Then the origin is globally asymptotically
stable for x+ = f (x, κN (x)). If, in addition, Assumption 3.11(b) is satis�ed, then
the origin is globally exponentially stable.

Suppose that Assumptions 3.3, 3.4,3.7, 3.8, and 3.11(a), are satis�ed and that Xf
contains the origin in its interior. Then the origin is asymptotically stable with a region
of attraction XN for the system x+ = f (x, κN (x)). If, in addition, Assumption
3.11(b) is satis�ed, and XN is bounded, then the origin is exponentially stable with a
region of attraction XN for the system x+ = f (x, κN (x)); if XN is unbounded,
the the origin is exponentially stable with a region of attraction that is any sublevel
set of V 0

N (·).

Suppose that Assumptions 3.3, 3.4,3.7, 3.8, and 3.12 are satis�ed and that l (·)
satis�es l (x, u) ≥ α1 (|x|) for all x ∈ XN , all u ∈ U, where α1 is a K∞ function.
Then the origin is asymptotically stable with a region of attraction XN for the system
x+ = f (x, κN (x)). If l (·) satis�es l (x, u) ≥ c1 |x|a for all for all x ∈ XN , all
u ∈ U and Assumption 3.12 is satis�ed with α (r) = c2r

a for some c1 > 0, c2 > 0

and a > 0, then the origin is exponentially stable with a region of attraction XN
for the system x+ = f (x, κN (x)).
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Suppose that Assumptions 3.3, 3.4,3.7 and 3.8 are satis�ed, that l (·) satis�es
l (x, u) ≥ c1 |x|a + c1 |u|a and Assumption 3.12 is satis�ed with α (r) = c2r

a for
some c1 > 0, c2 > 0 and a > 0. Then κN (x) ≤ c |x| for all x ∈ XN where

c =
(
c2
c1

) 1
a .

We have not yet made any assumptions on controllability (stabilizability) or
observability (detectability) of the system 3.4. being controlled, which may be
puzzling since such assumptions are commonly required in optimal control to, for
example, establish existence of a solution to the optimal control problem. The
reasons for this omission are that such assumptions are implicitly required, at
least locally, for the basic stability Assumption 3.7 and that we restrict attention
to XN , the set of states that can be steered to Xf in N steps satisfying all
constraints. For example, one version of MPC uses a target set Xf = {0} so
that the optimal control problem requires determination of an optimal trajectory
terminating at the origin; clearly some assumption on controllability to the origin
such as Assumption 3.12 is required. Similarly, f the system being controlled is
linear, and the constraints polytopic or polyhedral, a common choice for Xf is
the maximal invariant constraint admissible set for a controlled system where
the controller is linear and stabilizing. The terminal constraints set Xf is then
the set {x |x (i) ∈ X, Kx (i) ∈ U} where x (i) is the solution at time i of x+ =

(A+BK)x and u = κf (x) = Kx is a stabilizing control law. Stabilizability of
the system being controlled is then required. Detectability assumptions also are
required, mainly in proofs of asymptotic or exponential stability.

We report a simple table with stability Assumptions path for better under-
standing

Assumption Description

3.3 Continuity of system and cost
3.4 Properties of constraint sets
3.7 Basic stability assumption
3.8 Implied invariance assumption
3.11 Bounds on stage and terminal costs
3.12 Weak controllability

Table 3.2: Stability Assumptions
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3.2.4 Example of MPC: LTI systems

We want to formulate an MPC example system to show the basic route to prove
stability. We describe a simple MPC prototype. Consider a Linear Quadratic
system with Control and State Constraints. Given the current state x (0) =

x, solve for input sequence u = {u (0; x) , u (1; x) , . . . , u (N − 1; x)} the
following optimal control problem

PN (x) : min
u
VN (x , u)

subject to

x+ = Ax+B u

x ( k ) ∈ X k = 0, . . . , N − 1

u ( k ) ∈ U k = 0, . . . , N − 1

x (N) ∈ Xf
Cost function is

VN (x, u) =

N−1∑
k=0

l (x (k) , u (k)) + Vf (x (N)) l (x, u) = x
′
Qx+ u

′
Ru

and chose as terminal cost function, rather than terminal constraint set Xf

Vf (x) = x
′
P x

as the solution of DARE. Given the optimal solution sequence u0 (x), func-
tion of current state, denote as the implicit MPC control law

κN (x) = u0 (0; x)

So the closed-loop system is

x+ = Ax+B κN (x)

Notice that κN : XN → U is not linear. The basic route to prove stability is:

• Show that V 0
N (·) is a Lyapunov function for x+ = f (x) = Ax+ κN (x)

• Show that the feasibility set, XN , is positively invariant

• Control invariance of Xf . For every x ∈ Xf , there exists u ∈ U : x+ =

Ax+B u ∈ Xf . From here Vf (x+)− Vf (x) ≤ −l (x, u).
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So stability proof derive from optimal cost decrease lemma.

Lemma 3.14. For all x ∈ XN , there holds:

V 0
N (Ax+BκN (x))− V 0

N (x) ≤ −l (x, κN (x))
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3.3 Tracking for MPC

Recalling node state vector, can we move measured outputs of an entire graph
or of a single agent to a target? Can we have di�erent target for each agent? It is
a standard objective in applications to move the measured outputs of a system
to a speci�ed setpoints (ytarget). We consider here a linear invariant discrete
time system

x+ = Ax+B u

y = C x+Du

where matrix A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m, while vector
u ∈ Rm, y ∈ Rp, x ∈ Rn. From here forward a generic 0n,m represents a matrix
of zeros ∈ Rn×m and In represents a matrix ∈ Rn×n. The system is subject to
hard constraints on state and control

x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

Denote a steady state and input of the system as (xs, us). We also impose
the requirements that the steady state satis�es

C xs +Dus = ys

The following equations are satis�ed:

[
A− In B 0p,1

C D −Ip

]
︸ ︷︷ ︸

M

 xs

us

ys

 =

[
0n,1

0p,1

]
(3.11)

Assumption 3.15. The pair (A, B) is stabilizable and the state is measured at
each sampling time.

Assumption 3.15 is necessary and su�cient to ensure that the set of equa-
tions has a no-trivial solution. This one belongs to the kernel of M ,

[
xs us ys

]T
∈ ker (M )
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It can be parametrized as 
[
xs us

]T
= Mθ θ

ys = Nθ θ

(3.12)

where Mθ ∈ R(n+m)×nθ , Nθ ∈ Rp×nθ and θ ∈ Rnθ where θ is a parameter
vector which characterizes any solution of (3.12). We observe that[

Mθ

Nθ

]

is a matrix in which columns are a kernel base of M . This parametrization
allows us to characterize the subspace of steady states and inputs by a minimal
number of variables (θ), which simpli�es further calculations necessary for the
derivation of the proposed controller. If we have a solution (xs, us), we can
de�ne the deviation variables as

x̃ = x− xs
ũ = u− us

(3.13)

The zero regulation problem applied to the system in deviation variables
�nds control sequence ũ that takes x̃ to zero, or, equivalently, which takes x to
xs. In that case, we will have

C xs = ys

which is the goal of set-point tracking problem. After solving the regulation
problem in deviation variables, we �nd an optimum input value, u∗ . Thus, the
input applied to the system is

u = u∗ + us

For tracking problem has a solution, we require at least as many inputs as out-
puts with set points.
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In operational situation we have to solve the following steady-state optimal
target problem

min
xs,us

Vss (·) = ‖ys − ytarget‖2T

s.t.



xs = Axs +B us

ys = C xs +Dus

xs ∈ X

us ∈ U

(3.14)

This formulation can be modelled as the Steady-State Optimization Module
of Figure 3.1

Figure 3.6: Steady State Optimization Module

This optimization compute, for all feasible couples (xs, us) the best choice
of a set point ys as close as possible to the target, ytarget . Given the steady-state
solution, we de�ne the following optimal control problem in deviation variables

PN (x̃) : V 0
N (x̃) := min

ũ
{VN (x̃ (0) , ũ) | ũ ∈ UN (x̃)} (3.15)
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The moving horizon control law uses the �rst move of this optimal sequence,
ũ0 (x̃ (0)) = ũ0 (0 ; x̃ (0)) , so the system input will be

u = ũ0 (x̃ (0)) + us

There are several approaches in literature to implement this formulation.
Results and convergence are tied to:

• who is state vector x

• closed-loop stability that is in�uenced by which type of control approach
is used

• the fact if optimization are implemented in two steps or in a single layer
structure

– in two steps formulation the controller are composed by the steady-
state-target-optimizer (3.14) and the MPC controller (3.15)

– in one step formulation, the controller integrates the two previous
layer all in one

We expose all these formulations in the next chapter.



CHAPTER4
Distributed MPC: theory and

formulation

In many large-scale control applications, it becomes convenient to break the
large plant-wide problem into a set of smaller and simpler sub-problems in which
the local inputs are used to regulate the local outputs. The overall plant-wide
control is then accomplished by the composite behaviour of the interacting, local
controllers. There are many ways to design the local controllers, some of which
produce guaranteed properties of the overall plant-wide system. We consider
four control approaches in this chapter: decentralized, non-cooperative, coop-
erative, and centralized predictive control. For ensuring closed-loop stability of a
wide class of plant-wide models and decomposition choices, cooperative control
emerges as the most attractive option for distributed MPC. Before analyse these
four methods we need some basic results. Remember that for us, distributed
system is modelled by a graph and the plant-wide behaviour is represented by
the overall state vector of the graph, composed by all agent’s state vector.

35
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4.1 Introduction and Preliminary Results

In our development of distributed MPC, we require some basic results on two
topics: how to organize and solve the linear algebra of linear MPC, and how to
ensure stability when using suboptimal MPC.

4.1.1 Least Squares Solution

It proves convenient to see MPC quadratic programming in order to organize
the sequence of states and input as a single large linear algebra problem. We
consider �rst the unconstrained LQ problem in 3.1 subject to x+ = Ax + B u

which we solved with dynamic programming. In this case we take the brute-force
approach to �nd the explicit optimal control law directly. So we write the model
solution as


x (1)

x (2)
...

x (N)

 =


A

A2

...
AN


︸ ︷︷ ︸

A

x (0)+


B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B


︸ ︷︷ ︸

B


u (0)

u (1)
...

u (N − 1)



or in compact form

x = Ax (0) + Bu

The objective function can be expressed as

V (x (0) , u) =
1

2

(
xT (0)Qx (0) + xTQx + uTRu

)
where

Q = diag
([

Q Q · · · Pf

])
∈ RNn×Nm

R = diag
([

R R · · · R
])
∈ RNm×Nm

Now, we retain the state sequence and adjoin the model equations as equal-
ity constraints. Including state and input in the sequence of unknowns, we de�ne
the enlarged vector z to be
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z =



u(0)

x(1)

u(1)

x(2)
...

u(N − 1)

x(N)


The objective function is

min
u

1

2

(
xT (0)Qx (0) + zTH z

)
in which

H = diag
([

R Q R Q · · · R Pf

])
The constraints can be rewritten as

Dz = d

in which

D = −


B −I

A B −I
. . . . . .

A B −I

 d =


A

0
...
0

x (0) (4.1)

We should implement an alternative form of 4.1 as we will see later.

4.1.2 Suboptimal MPC and its Stability

There is a practical problem. If the optimal control problem PN (x) solved online,
is not convex, global minimum cannot be determined in UN (x). It is possible to
achieve stability without requiring globally optimal solutions of PN (x). All that
is required is at state x, a feasible solution u ∈ UN (x) is found giving a cost
VN (x, u) lower than the cost VN (w,v) at the previous state w due to the early
control sequence v ∈ UN (w). Consider then the usual optimal control problem
with the terminal cost Vf (·) and terminal constraint set Xf satisfying 3.7 and
3.8; X is assumed to be closed and U to be compact. In addition we assume
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that Vf (·) satis�es γf (|x|) ≤ Vf (x) ≤ αf (|x|), ∀x ∈ Xf where γf (|x|) and
αf (|x|) are K∞ functions. These conditions are satis�ed if, for example, Vf (·)
is a positive de�nite quadratic function and Xf is a sublevel set of Vf (·) (it’s
assumed satis�ed, Xf = {x|Vf (x) ≤ r}). Assume the �rst equation of 3.11
satis�ed and let XN denote, as before, the set of x for which a control sequence
u exists that satis�es the state, control and terminal constraints. The basic
idea behind the suboptimal model predictive controller is simple. Consider the
current state is x and that u = {u (0) , u (1) , . . . , u (N − 1)} is a feasible
control sequence. The �rst element u (0) is applied to the system. Consider
now the predicted control sequence u+ de�ned by

u = {u (1) , u (2) , . . . , u (N − 1) , κf (x (N))} (4.2)

which satis�es 3.7 for all x ∈ Xf . κf (x (N)) is usually of the form κf (x (N)) =

K x. Then u+ ∈ UN satis�es

VN
(
x+,u+

)
+ l (x, u (0)) ≤ VN (x, u)

and, hence

VN
(
x+,u+

)
≤ VN (x, u)− α1 (|x|) (4.3)

Inequality 4.3 is a reminiscent of 3.9 that provides the basis for establishing
asymptotic stability of the origin for the controlled system. The obstacle to
applying standard Lyapunov theory, is that there is no obvious Lyapunov function
because at each x+ there exists many control sequence u+ satisfying (4.3).
However, global attractivity of the origin in XN , may be established. The only
modi�cation required is when x ∈ Xf

VN (x, u) ≤ Vf (x) f (x, u (0)) ∈ Xf (4.4)

Stability of the origin can be established using (4.3), (4.4) and the properties
of Vf (·) as shown subsequently. Inequality (4.4) is achieved quite simply by using
the control law u = κf (x) to generate the control u when x ∈ Xf . Also, it follows
from Assumption (3.7) and the de�nition κf (·) that x+ = f (x, u (0)) ∈ Xf if
x ∈ Xf . Thus the two conditions in (4.4) are satis�ed by u (x; κf ). If desidered,
u (x; κf ); may be used for the current control sequence u or as a "warm start"
for an optimization algorithm yielding an improved control sequence. In any
case, if (4.4) is satis�ed, stability of the origin may be established. When using
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distributed MPC it’s convenient to implement the control without solving the
complete optimization. We consider a speci�c variation of suboptimal MPC in
which a string guess is available from the control trajectory at the previous time.
Optimization method is not important, but we restrict the method so that each
iteration is feasible and decreases the value of the cost function.

4.1.3 Suboptimal MPC algorithm

De�neNiter as number of iteration and XN the set of states for which the initial
control sequence h (x0) is well de�ned.

Initialize: set current state x = x0, current control sequence, u = h (x0).
Step 1 (State evolution): Apply control u = u (0) to the system. Obtain

state at next sample, x+. For the nominal system x+ = f (x, u (0)).
Step 2 (Warm start): Denote the warm start for the next sample time as

ũ+. We use
ũ+ = {u (1) , u (2) , . . . , u (N − 1) , 0}

in which x (N) = φ (N ; x, u). The warm start ũ+ therefore is a function of
(x, u). This warm start is simpli�ed version of 4.2. In MPC is simpler to use
zero for the �nal control move in the warm start.

Step 3 (Iteration of an optimization method): The controllers performs
Niter iterations of a feasible path optimization algorithm to obtain an improved
control sequence using initial state x+. The �nal input sequence u+ is a function
of the state initial condition and the warm start. But these are both function of
(x, u), so it can be expressed as

u+ = g (x, u)

Step 4 (Next time step): Update state and input sequence: x ← x+ and
u← u+.

It’s possible to show that system cost function, in this case, satis�es the propri-
eties for the cost decrease but in this case it depends only from x and the �rst
element of u, u (0). Given a system x+ = f (x), with equilibrium point at the
origin, f (0) = 0, denote φ (k; x (0)) as the solution x (k) given the initial state
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x (0). We consider exponential stability of the origin (as in De�nitions A.7) on a
set X (Theorem A.11).

Lemma 4.1. Consider a system(
x+

u+

)
=

(
f (x, u)

g (x, u)

)
(x (0) , u (0)) given

with a steady-state solution (0, 0) = (f (0, 0) , g (0, 0)). Assume that the function
V (·) : Rn × RNm → R+ and input trajectory u satis�es

a |(x, u)|2 ≤ V (x, u) ≤ b |(x, u)|2

V (x+, u+)− V (x, u) ≤ −c |(x, u (0))|2

|u| ≤ d |x| x ∈ Br

in which a, b, c, d, r, > 0. If XN is forward invariant for the system x+ =

f (x, u), the origin is exponentially stable for all x (0) ∈ XN . Br represent a
ball of radius r arbitrarily small.

For lemma 4.1 we use the fact that U is compact. For unbounded U expo-
nential stability may instead be established by compactness of XN .



4.2 − De�nitions and Architectures for Constrained Linear Systems 41

4.2 De�nitions and Architectures for Constrained Lin-
ear Systems

A common property of the four control approaches is system architecture. We
describe it here schematically with no detail on implementation. We explicit
them in next Chapter. We start description of distributed MPC algorithms by
considering an overall discrete-time linear time-invariant system of the form:

x+ = Ax+B u

y = C x
(4.5)

in which x ∈ Rn and x+ ∈ Rn are, respectively, the system state at a given
time and the system state at a successor time, u ∈ Rm is the input and y ∈ Rp

is the output.
We consider that overall system (4.5) is divided into M subsystems, Si,

de�ned by (disjoint) sets of inputs and outputs (states), and each Si is regulated
by a local MPC. For each Si, we denote by yi ∈ Rpi its output, by xi ∈ Rni

its state, and by ui ∈ Rmi the control input computed by i-th MPC. Due to
interactions among subsystems, the local output yi (and state xi) is a�ected by
control inputs computed by (some) other MPCs. Hence, the dynamics of Si can
be written as:

x+
i = Ai xi +Bi ui +

∑
j∈Ni

Bij uj

yi = Ci xi

(4.6)

in which Ni denotes the indices of neighbors (like adjacent node) of Si, i.e.
the subsystems whose inputs have in�uence on the states of Si1.

Assumption 4.2. The pair (Ai, Bi) is stabilizable and the state is measured at
each sampling time.

Consider a quadratic stage function like in Section 3.2.4 but for only a sub-
system li (x, u) = 1

2

(
x
′
Qi x+ u

′
Ri u

)
and a terminal cost function Vf i (x) ,

1
2x
′
Pi x withQi ∈ Rni×ni , Ri ∈ Rmi×mi and Pi ∈ Rni×ni positive de�nite. Note

that P can be written as the solution of the discrete time algebraic Riccati equa-
tion. Let xi (0) be the state of Si at the current decision time. Consequently,

1We will de�ne explicitly Si and Ni in next Chapter
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the �nite-horizon cost function associated with Si is given by:

Vi

(
xi (0) , ui, {uj}j∈Ni

)
,

N−1∑
k=0

li (xi (k) , ui (k)) + Vf i (xi (N)) (4.7)

in which ui = (ui (0) , ui (1) , . . . , ui (N − 1)) is a �nite-horizon sequence
of control inputs of Si and uj is similarly de�ned as a sequence of control
inputs of each neighbour j ∈ Ni. Note that (4.7) is a function of neighbours’
input sequence {uj}j∈Ni due to the dynamic (4.6).

Next Figure 4.1 shows a graphical representation of the description above

Figure 4.1: Interconnected systems and neighbours de�nition
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4.3 Distributed Control Approaches

Large scale systems (e.g. industrial processing plants, power generation network,
etc.) usually comprise several interconnected units may exchange material, en-
ergy and information streams. The overall e�ectiveness and pro�tability of such
large-scale systems depend strongly on the level of local e�ectiveness and prof-
itability of each unit but also on the level of interactions among units.

An overall optimization goal can be achieved by adopting a single centralized
model predictive control system in which all control input trajectories are op-
timized simultaneously to minimize a common objective. This choice is often
avoided for several reasons. When the overall number of inputs and states is
very large, a single optimization problem may require computational resources
(CPU time, memory, etc.) that are no available and/or compatible with system’s
dynamics. Even if this limitation do no hold, it is often the case that organi-
zational reasons require the use of smaller, local controller, which are easier to
coordinate and maintain.

Figure 4.2: Centralized System

Thus, industrial control system are often decentralized, i.e. the overall sys-
tem is divided into subsystems and a local controller is designed for each unit
disregarding interaction from/to other subsystems. Due to dynamic coupling is
well known that performance of such decentralized systems may be poor and
stability properties may be even lost.
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Figure 4.3: Decentralized System, no communication, local objective

Between centralized and decentralized strategies, distributed control pre-
serves topology and �exibility of decentralized control and o�ers a nominal
closed-loop stability. This is achieved by two features: the network interactions
between subsystems are explicitly modelled and open-loop information, usually
input trajectories, is exchanged between subsystem controllers.

Thus, in distributed control there are two main strategies for utilization of the
open-loop information. In non-cooperative distributed control, each subsystem
controller anticipates the e�ect of network interactions only locally. However if
these interactions are strong, non-cooperative control can be destabilize plant
and performance can be poorer than decentralized control.

Figure 4.4: Non-Cooperative, communication, local objective

Alternatively, cooperative distributed control improves performance by re-
quiring each subsystem to consider the e�ect of local control actions on all
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subsystem in the network. So, each local controller optimize a plant-wide ob-
jective function, e.g., the centralized one. However, even if objective function
is global, information is transmitted (and received) from any local regulator to
a given subset of the others (partially connected) algorithms. Distributed opti-
mization algorithms are used to ensure a decrease in the plant-wide objective at
each intermediate iterate. Under cooperative control plant-wide performances
converge to the Pareto optimum, providing centralized-like performance. Be-
cause the optimization may be terminated before convergence, however, co-
operative control is a form os suboptimal control for the plant-wide control
problem. Hence, stability is deduced from suboptimal control theory.

Figure 4.5: Cooperative, communication, global objective
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4.4 Cooperative Distributed MPC

Several levels of communications and cooperation can exist among local con-
trollers. We consider now only the cooperative MPC architectures. It can be
shown that it’s a form of suboptimal MPC and establish stability. We recall the
�nite-horizon cost function for distributed system (4.7)

Vi

(
xi (0) , ui, {uj}j∈Ni

)
,

N−1∑
k=0

li (xi (k) , ui (k)) + Vf i (xi (N))

associated with Si in Section 4.2. In Cooperative MPC architectures each
controller optimizes a common plant-wide objective function

V (x (0) , u) ,
M∑
i

ρiVi

(
xi (0) , ui, {uj}j∈Ni

)
(4.8)

in which ρi > 0 ∀ i, are given scalar weights, and u , (u1, . . . , uM ) is the
overall control sequence. In particular, given the known value of neighbours sub-
systems’ control input sequences {uj}j 6=i each local MPC solves the following
�nite-horizon optimal control problem

PCDii : min
ui

V (x (0) , u)

s.t. ui ∈ UNi
(4.9)

Where super-script N de�nes that input control sequence of agent i, with set
Si, belongs to U for all horizon length; in order to substitute sub-script N in
PCDiN .

In cooperative scheme the obtained solution can be exchange between sub-
systems to further iterate an optimization algorithm as in Subsection 4.1.3. No-
tice that in PCDii , the possible implication of the local controller to other sub-
systems’ objective is taken into account, as well as the e�ect of the neighbors’
sequence {uj}j 6=i on the local state evolution (4.6). All controllers compute
local controllers to minimize global objective. Convergence of cooperative iter-
ations is guaranteed, and under suitable assumption the converged solution is
the centralized Pareto-optimal solution as we’ll show later.

4.4.1 Stability of Cooperative DMPC

Given the following �rst group of Assumption:
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Assumption 4.3.

• Each pair (Ai, Bi) is stabilizable;

• The state of each subsystem xi is assumed known at each decision time;

• ui ∈ Ui, i = 1, . . . ,M in which Ui are polyhedrons containing the origin
in its interior.

• The systems (Ai, Qi) are detectable;

• N ≥ maxi∈I1:M (nui ), in which nui is the number of unstable modes of Ai,
i.e., the number of λ ∈ eig (Ai) such that |λ| ≥ 1;

• Ri � 0

• Qi � 0

For an unstable plant, we constrain the unstable modes to be zero at the
end of the horizon to maintain closed-loop stability. It is reached with Schur
decomposition2.

Consider that at each iterate p ≥ 0 the optimization problem (4.9) is solved
for each subsystem. Consider u∗i as the solution of this problem in which we
have considered together with hard input constraints, the stabilizing condition
on unstable modes, global state evolution and the Lyapunov stability constraint
mentioned in Lemma 4.1 rewritten for a single agent as

|ui| ≤ di
∑
j∈I1:M

|xj i (0)| if xj i (0) ∈ Br ∀ j ∈ I1:M (4.10)

Given the prior, feasible iterate (upi ) the next iterate is de�ned to be a convex
combination between the optimal solution of 4.9 and the one at previous time
instant with a convex step weight wi such that

∑M
i=1wi = 1. The following

proprieties follow immediately.

Lemma 4.4. (Feasibility) Given a feasible initial guess, the iterates satisfy(
up1, . . . , u

p
M

)
∈ UN1 × . . .× UNM for all p ≥ 1.

Lemma 4.5. (Convergence) The cost V (x (0) ,up) is non-increasing for each iter-
ate p and converges as p→∞.

2Stewart T. B., Venkat N. A., Rawlings B. J., Wright J. S., Pannocchia G., "Cooperative distributed
model predictive control", Systems & Control Letters, Vol. 59, 2010, pp. 460-469.
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Lemma 4.6. (Optimality) As p→∞ the cost V (x (0) ,up) converges to the opti-
mal value V 0 (x (0)), and the iterates

(
up1, . . . , u

p
M

)
converges to

(
u0

1, . . . , u
0
M

)
that is the Pareto (centralized) optimal soluition.

We de�ne the steerable set Xn as before, as the set of all the states x
such that there exists a u ∈ UN satisfying the stabilizing condition on unstable
modes.

Assumption 4.7. Given r > 0, for all i ∈ I1:M , di is chosen large enough such
that there exists a ui ∈ UN satisfying |ui| ≤ di

∑
j∈I1:M |xij | and the stabilizing

condition on unstable modes ∀xij ∈ Br∀ j ∈ I1:M .

Given Assumption 4.7, it can be shown that XN is forward invariant.
After these considerations we can now establish stability of the closed-loop

system by treating cooperative MPC as a form of suboptimal MPC. We de�ne
the warm start

ũ+
i = {ui (1) , ui (2) , . . . , ui (N − 1) , 0}

The warm start ũ+
i is used as the initial condition for the cooperative MPC

problem in each subsystems i. We de�ne the functions gpi as the outcome
of applying the cooperative control iteration algorithm p times. The system
evolution is then given by(

x+

u+

)
=

(
Ax+Bu

gp (x, u)

)
Theorem 4.8. (Exponential Stability) Given Assumptions 4.3 and 4.7, the origin of
the closed-loop system x+ = Ax+Bu is exponentially stable on the set XN



CHAPTER5
DMPC: Implementation

Because we concentrate on distributed implementation, we will restrict attention
on single agent problem. Hence we’ll omit subscript N and we change it with i.
For example, when we talk about optimal control problem PCDiN we substitute
it with Pi. The reference to horizon length N doesn’t disappear. It is implicit in
the admissible input set de�nition (UNi ) as in (4.9).

We have now all tools’ theory. We can control our plant-wide system mod-
elled by a graph. We can follow a desired target by a cooperative distributed
model predictive control applied on a single agent by modelling interactions
among subsystem through arcs.

Let a generic system modelled by a graph. We have a plant-wide cost func-
tion. The objective is to �nd a local control action for each subsystem, in which
the general system is divided, to minimize the plant-wide cost function. Each
subsystem has a proper state vector and local input represented by

x+
i = Ai xi +Bi ui

As we have exposed in linear MPC example (Sections 3.2.4), we can associate a
quadratic stage cost to a single agent

li(x , u) =
1

2

[
‖x‖2Qi + ‖u‖2Ri

]
49
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where subscripts Qi and Ri indicate the state and input weight matrices of
subsystem i. We associate the terminal cost function

Vf i (x) =
1

2
‖x‖2Pi

Let a �nite horizon N . We know xi (k) be the state xi at k-th decision time.
The cost function on this horizon is (4.7) and we can explicit it with

Vi

(
xi (0) , ui, {uj}j∈Ni

)
,

1

2

N−1∑
k=0

[
‖x‖2Qi + ‖u‖2Ri

]
+

1

2
‖x‖2Pi

with ui = [ui (0) , ui (1) , . . . , ui (N − 1)] and uj is similarly de�ned as a
sequence of control inputs of each neighbour j ∈ Ni. Optimal control problem
for agent i-th is thus consistency again with Pi of (4.9) and its solution is

Pi : V 0 (x) := min
ui
{V (x (0) , u)}

Problem Pi is a parametric optimization problem in which the decision vari-
able is ui, and both the cost and the constraint set depend on the parameter x
associated with agent i.
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5.1 Node Interaction

At this point we need to explicit Ni and Si. The �rst one, in our case, de�nes,
�rst of all, the agents de�ned by input-star of i-th agent due to dynamic of x+

i ,
as described in (4.6). Nevertheless agent i in�uences output-star’s agents. This
in�uence have to be accounted on cost function: it’s important for a cooperative
game. Agents of input-star cannot be accounted on cost function because their
actions are chosen by themselves. The extended dynamic can be written as



x+
i = Ai xi +Bi ui +

∑
k∈SINi

Bik uk

x+
j = Aj xj +Bji ui +

 ∑
k∈SINj \{i}

Bjk uk +Bjuj

 , j ∈ SOUTi

(5.1)

Interactions are represented by the constant matrices (Bik, Bji, Bjk) depen-
dent from from time variant input (uk, ui). More precisely the product, for
example, Bik · uik is the weight of the arc from a node k to another i. These
are the adjacent matrix values1. So, from here forward, Ni can be neglected. It’s
integrated in the above extended dynamic.

If we consider these interaction in stage cost function for all j ∈ SOUTi it
becomes

li(x , u) =
1

2

‖x‖2Qi + ‖u‖2Ri +
∑

j ∈SOUTi

‖x‖2Qj


and �nal cost function becomes

Vf i (x) =
1

2

‖x‖2Pi +
∑

j ∈SOUTi

‖x‖2Pj


As before, this is only the de�nition of stage e �nal cost functions without
specifying the state value. These considerations lead to a new implementation
of Vi where {uj}j∈Ni is neglected. A new parameter xj is now considered as we

1Remember that adjacent matrix element (i, j) represent the in�uence from i to j. Instead
in this notation, Bik · uk → (i, k) represent the in�uence from k to i.
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have already analysed before. So the �nite horizon cost function is implemented
as

Vi(xi(0), ui, xj (0)) =
N−1∑
k=0

[
li

([
xi (k) xj (k)

]
, ui (t)

)]
+ Vf i

([
xi (N) xj (N)

])
=

‖x‖2Qi + ‖u‖2Ri +
∑

j ∈SOUTi

‖x‖2Qj


+

1

2

‖x‖2Pi +
∑

j ∈SOUTi

‖x‖2Pj


Plant-wide objective function each local controller must solve remains con-

sistence with previous de�nition in equation (4.8)

V (x (0) , u) ,
M∑
i

ρiVi (xi(0), ui, xj (0))

Solution of �nite horizon optimal control problem remains as in (4.9)

Pi : V 0(x) := min
ui
{V (x(0), u)}

subject to ui ∈ UNi as before.
We can reformulate this extended formulation in a more compact form by

using graph theory by de�ning what Si is exactly. We have seen in equation (5.1)
the dynamic interaction of agent i with j ∈ SOUTi and k ∈ SINi . We de�ne
now the cooperative distributed model predictive control extended state vector
and matrices associated with the extended dynamic interaction. We de�ne the
extended state vector integrating

xi ←

[
xi

[xj ]j∈SOUTi

]
relative to state matrix

Ai ← diag

{[
Ai

[Aj ]j∈SOUTi

]}
, the input matrix

Bi ←

[
Bi

[Bji]j∈SOUTi

]
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and output matrix

Ci ← diag

{[
Ci

[Cj ]j∈SOUTi

]}
Note that at the extended state vector, correspond an extended output vector

yi ←

[
yi

[yj ]j∈SOUTi

]

Let us de�ne the new input matrix on the new set SINi relative to agent i.

SINi ← SINi ∪ SOUTi ∪

 ⋃
j∈SOUTi

SINj \ {i}


Note that by de�nition, i /∈ SINi . Then, for a given k ∈ SINi we have

Bik ←

[
Bik

[Bjk]j∈SOUTi

]

Note that Bjj = Bj . Thus, considering all the other interactions de�ned by
subset SINi we obtain, for all k ∈ SINi ,

B̄i ← [Bik]
T
k∈SINi

and
ūi ← [uk]k∈SINi

where [·]T indicates an horizontal concatenation. We can expose the extended
dynamic interaction in equation (5.1) in a new compact form

x+
i = Ai xi +Bi ui + B̄i ūi (5.2)

It’s all based on the agent i and factor B̄i ūi is a constant parameters that
changes at each decision instant. We can reformulate the weight matrices in
this new form as

Pi ← diag

{[
Pi

[Pj ]j∈SOUTi

]}

Qi ← diag

{[
Qi

[Qj ]j∈SOUTi

]}
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Ti ← diag

{[
Ti

[Tj ]j∈SOUTi

]}
By de�nition of cooperative model predictive control ui doesn’t change. So

due to cost function Ri remains the same.
As an example take a graph with six node. Each node has a numeric iden-

ti�er. Each node communicates with that ones with next and earlier numeric
identi�er. By de�nition of augmented system, we can model, for example, for
agents 1 and 2, respectively

S1 = {2, 3, 5, 6} S2 = {1, 3, 6, 4}

This can be graphically represented by

Figure 5.1: Node Interaction Example S1 set

Figure 5.2: Node Interaction Example S2 set
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5.2 Cooperative MPC algorithm

It’s time to understand how we can actually control the already de�ned compact
form (5.2)

x+
i = Ai xi +Bi ui + B̄i ūi

where B̄i ūi can be de�ned trough adjacent matrix.
We present a streamlined description of a cooperative distributed MPC al-

gorithm, in which each local controller solves PCDii for (5.2), given a previously
computed value of all other subsystems’ input sequence. For each local con-
troller, the new iterate is de�ned as a convex combination of the newly computed
solution with the previous iteration. A relative tolerance is de�ned, so that co-
operative iterations stop when all local controllers have computed a new iterate
su�ciently close to the previous one. A maximum number of cooperative iter-
ations can also be de�ned, so that a �nite bound on the execution time can be
established. The convergence to the optimum of the plant-wide cost function
can be obtained by a suboptimal MPC algorithm applied to this new form of
cooperative MPC described before.

Remember from here forward in this Section due to extended dynamic
above, sub-script i represent:

• for vector x, the augmented version of the state, when no di�erently
indicated;

• for vector u, the input sequence of single agent i.

This notation derives from analysed node interaction in Section 5.1 and it is
expressed by compact form (5.2).

Algorithm Suboptimal Cooperative MPC
Consider M subsystems with a random state, input and output vector di-

mensions. Let N horizon length. Consider the cooperative MPC Assumption
4.3. Pi for the single agent, can be computed as the unique stabilizing solu-
tion of discrete time algebraic Riccati equation (here, sub-script i is omitted for
simplicity)

ATPA− P −ATPB(BTPB +R)−1BTPA+Q = 0

Given for each single agent xi (0) and ui = h (xi (0)) for i = 1 . . . M
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Step 1 Cooperative optimization First step is the iteration to obtain a local
action vector as a convex combination of the newly computed solution and the
previous one to optimize the global cost function.

uci , wiu
∗
i + (1− wi)uc−1

i

where c is the number of iteration. A relative tolerance is de�ned as

ei ,
||uci − uc−1

i ||
1 + ||uci ||

Implementation is based on quadratic programming, instruction quadprog in Mat-
lab environment. This instruction require a quadratic linear cost function as
mentioned in subsection 4.1.1. In this case we assume also a general augmented
initial state xi (0) into augmented state vector z

z =



xi(0)

ui(0)

xi(1)

ui(1)

xi(2)
...

ui(N − 1)

xi(N)


(5.3)

Thus, the objective function is de�ned as

min
ui

1

2
z′H z

where
H = diag

([
Qi Ri Qi Ri Qi · · · Ri Pf i

])
The constraints can be written again as

D z = d

In this case we have to considerate interactions, as described in extended dy-
namic system equation (5.1) or its compact form in equation (5.2). So

D = −



I

Ai Bi −I
Ai Bi −I

. . . . . .

Ai Bi −I


d =



xi(0)

B̄i ūi(0)

B̄i ūi(1)
...

B̄i ūi(N − 1)


where Ai is the augmented one.
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Step 2 Next time step We update each local input action vector. We re-
member that during cooperative optimization clock is stopped.

Step 3 State evolution We apply every �rst control action for each sub-
system

u = u(0) =


u1(0)

u2(0)
...

uM (0)


We obtain the next time global state system as

x+ =f (x,u(0))

Step 4 Warm Start Denote the warm start for the next sample time as ũ+
i

for single agent. We use

ũ+
i = {ui (1) , ui (2) , . . . , ui (N − 1) , 0}

Algorithm 1 Cooperative MPC

1: Initialize c← 0 and ei ← 2ε

2: while (c < cmax) and (∃ i |ei > ε) do
3: c← c+ 1

4: for i = 1 to M do
5: Solve PCDii in (4.9) for (5.2) obtaining u∗i
6: end for
7: for i = 1 to M do
8: De�ne new iterate: uci , wiu

∗
i + (1− wi)uc−1

i

9: Compute convergence error: ei ,
||uci−u

c−1
i ||

1+||uci ||

10: end for
11: end while
12: return Overall solution uc , (uc1, u

c
2, . . . , u

c
M )

Table 5.1: Cooperative MPC Algorithm
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Results Cooperative MPC algorithm of Step 1 verify several nice theoretical
and practical properties:

• Feasibility of each iteration: uc−1
i ∈ UNi ⇒ uci ∈ UNi ∀ i = 1, ...,M e

c ∈ I>0

• Cost decrease at each iteration: V (x(0),uc) ≤ V (x(0),uc−1), ∀ c ∈ I>0

• Cost convergence to the centralized optimum
limc→∞ V (x(0),uc) = minu∈UN V (x(0),u), where U , U1×U2× . . .×
UM

Resorting to suboptimal MPC theory, the �rst two above properties can be ex-
ploited to show that the origin of closed-loop system:

x+ = Ax+B κc (x) , κc (x) , uc (0)

is exponentially stable for any �nite c ∈ I>0.
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5.3 Cooperative MPC for Tracking: a novel approach

We focus on this kind of algorithm for tracking. As we have seen before, in
tracking MPC, Section 3.3, we have to compute a steady state, input and output
of the plant that satis�es (3.11). Steady State Target Optimizer is a function
that computes this arti�cial equilibrium point. However, it can be a stand-alone
function as in a two step optimization algorithm or it can be an embedded
function in a one step optimization one. In order to study tracking, we de�ne
as zold, the old vector z in equation (5.3) but in deviation variable as de�ned in
(3.13) for a modi�ed dynamic optimization as de�ned in (3.15)

zold =
[
x̃i (0)T ũi (0)T . . . x̃i (N − 1)T ũi (N − 1)T x̃i (N)T

]T
5.3.1 Two Steps Algorithms

In two steps algorithms, the equilibrium point (xs, us, ys) is computed in de-
coupled way respect to dynamic optimization. There are two possibilities. One
is to compute steady state, input and output once for each time iteration, that
is in the outer loop. The other possibility is to compute the equilibrium point
once for each cooperative loop. In both cases we solve the following quadratic
programming problem

min
z

1
2 z

T H z + fT z

s.t.

 Dz = d

lb ≤ z ≤ ub

(5.4)

Where, in general,

z =
[
xs us ys

]
What matrices and vectors represent, depends on what kind of optimization

is used: centralized or cooperative. That is the value of state vector z . So we
compute steady state, input and output through the steady state optimal target
problem (3.14) and �nd the steady variables. Then we solve the dynamic opti-
mization problem (3.15)
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SSTO, once for each TIME iteration, Centralized case

In this case Steady State Target Optimizer (SSTO) can be modelled as Step 0 in
MPC algorithm in Section 5.2. The arti�cial equilibrium point can be computed
in centralized mode or in decentralized one. In �rst case, the equations (3.14)
applied to centralized model, becomes

min
xscen ,uscen

Vss (·) = ‖yscen − ytargetcen‖
2
Tcen

s.t.



xscen = Acenxscen +Bcenuscen

yscen = Ccenxscen

xmincen ≤ xscen ≤ xmaxcen

umincen ≤ uscen ≤ umaxcen

where
xscen =

[
xs1 . . . xsM

]T
∈Rn

uscen =
[
us1 . . . usM

]T
∈Rm

yscen =
[
ys1 . . . ysM

]T
∈Rp

ytargetcen =
[
ytarget1 . . . ytargetM

]T
∈Rp

n =
M∑
i=1

ni xsi ∈ Rni

m =

M∑
i=1

mi usi ∈ Rmi

p =
M∑
i=1

pi ysi ∈ Rpi

∀ i = 1, . . . , M

The sub-subscript cen stands for the centralized version of the variable.
They are the plant-wide variables. This problem was solved by quadratic pro-
gramming instruction quadprog as we have seen above in (5.4) where

z =
[
xscen uscen yscen

]T
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and

H =

 In · 10−6

Im · 10−6

Tcen

 f =

 0n, 1

0m, 1

−Tcen ytargetcen


while

D =

[
Acen − In Bcen 0n, p

Ccen 0p,m −Ip

]
d =

[
0n, 1

0p, 1

]
Lower and upper bound are de�ned by

lb =
[
xmincen umincen ymincen

]

ub =
[
xmaxcen umaxcen ymaxcen

]
The dimensions of various vectors are described below:

Acen ∈ Rn×n xmincen ∈ Rn×1

Bcen ∈ Rn×m umincen ∈ Rm×1

Ccen ∈ Rp×n xmaxcen ∈ Rn×1

Tcen ∈ Rp×p umaxcen ∈ Rm×1

At the end of optimization we will have the optimum global values for steady
state, input and output

z∗ =
[
x∗scen u∗scen y∗scen

]T
In this way we compute the plant-wide optimal steady vector in one shoot. Finally
we compute dynamic optimization in deviation variables

x̃cen = xcen − x∗scen
ũcen = ucen − u∗scen

and with modi�ed upper and lower bound

xmincen − xscen ≤ x̃cen ≤ xmaxcen − xscen
umincen − uscen ≤ ũcen ≤ umaxcen − uscen

through function (3.15) using zold vector as optimization vector.
Note that we change the variables outside from this optimization function.

This is the easiest way to compute these steady state, input and output in one
shot. But it is computational expensive as the plant dimension increase.
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SSTO, once for each TIME iteration, Cooperative case

In second case we have to solve for SSTO problem for single agent. The equa-
tions (3.14) becomes

min
xsi ,usi

Vss (·) = ‖ysi − ytargeti‖
2
Ti

s.t.



xsi = Aixsi +Biusi + B̄iū
−
si

ysi = Cixsi

xmini ≤ xsi ≤ xmaxi

umini ≤ usi ≤ umaxi

where B̄iū−si account the dynamic interaction at previous cooperative instant
and xsi refers to single agent only. So the optimization vector

z =
[
xsi usi ysi

]T
Matrices become

H =

 Ini · 10−6

Imi · 10−6

Ti

 f =

 0ni, 1

0mi, 1

−Ti ytargeti



D =

[
Ai − Ini Bi 0ni, pi
Ci 0pi,mi −Ipi

]
d =

[
−B̄iū−si
0pi, 1

]
While upper and lower bound

lb =
[
xmini umini ymini

]
ub =

[
xmaxi umaxi ymaxi

]
We obtain the optimal vector

z∗ =
[
x∗si u∗si y∗si

]T
It refers to a decentralized case so it doesn’t take into account dynamic interac-
tion and other agents’ input, so these values cannot be take in input for dynamic
optimization directly. To �nd real set-points values we have to �nd, �rst of all,
an input convex combination

u psi = u∗si · wi + u p−1
si · (1− wi)
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Given the steady equations of state and output at the beginning of this para-
graph,

xsi = Aixsi +Biusi + B̄iū
−
si

ysi = Cixsi

we need to solve to �nd an admissible values for xsi . At time p we have

x psi = Aix
p
si +Biu

p
si + B̄iū

p−1
si

If we solve for xsi we obtain

x psi = (Ini −Ai)
−1 (Biu psi + B̄iū

p−1
si

)
that we have to compute explicitly.

SSTO, once for each COOPERATIVE iteration

Instead of solve Steady State Target Optimizer once for each time iteration we
can do that once for each cooperative loop. Implementation is the same as in
decentralized case but it’s located in the inner loop. As result we will obtain a
faster convergence respect to SSTO, once for each TIME iteration, to desidered
output value. We expect to converge to SSTO, once for each TIME iteration, at
the end of all cooperative ones inside the same time instant.
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5.3.2 One Step Algorithms

In one step algorithms, static and dynamic optimization are integrates in a single
layer structure. This may be represented by

min
ũi

V (x̃ (0) , ũ) + ‖ys − ytarget‖2T

The main di�erence with Two Step Algorithms is that steady state, input and
output are decisions variables too. By de�nition of zold we model all the matrices
and vectors de�ned in Section 5.2 with sub-script old. So we can focus on the
new formulation only. In this subsection we compare two version of the same
algorithm. In �rst case we analyse the dynamic optimization quadratic function
with a centralized steady vector. In second case we analyse a new formulation
with an augmented steady vector. In both cases the main feature is to integrates
steady state optimal target problem matrices in the dynamic and constraint
ones. We recall here, the general formulation of dynamic optimization using
quadratic programming

min
z

1

2
zT H z + fT z

s.t.


G z ≤ g

Dz = d

lb ≤ z ≤ ub

It’s obvious vector z doesn’t represent the same as the one that has been
used in Two Step Algorithms subsection.

In this case, due to fact that steady state, input and output are decision
variables, we have to build selection matrices for the equality and inequality
constraints de�ned above. More precisely we de�ne a state H(x)

i , input H(u)
i

and input-bar H(ū)
i selection matrices. How these matrices are implemented

depends by the added decision variables. It will be clear from context what they
are representing.
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Centralized steady vector

This �rst version follow from the SSTO, once for each TIME iteration, Centralized
case. The optimization vector z becomes

z =


xscen
uscen
yscen
zold


and the �rsts three diagonals blocks of matrix H , are the same as the matrix
H in Centralized case, in Subsection 5.3.1

H =


In · 10−6 |

Im · 10−6 |
Tcen |

− − −−− −−−−− −−− −− −−−
| Hold


In this case, for �rst time in dynamic optimization, vector f is not empty

f =


0n, 1

0m, 1

−Tcen ytargetcen
−−−−−−−

fold


Note that fold is an empty vector. Thus for a right implementation, set it to

a zero-vector. Steady state constraints

xscen = Acenxscen +Bcenuscen

yscen = Ccenxscen

might be encapsulated inside Dold matrix and dold vector. We recall them
here

Dold = −



I

Ai Bi −I
Ai Bi −I

. . . . . .

Ai Bi −I


dold =



xi(0)

B̄i ūi(0)

B̄i ūi(1)
...

B̄i ūi(N − 1)


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Due to fact that added decisions variables are on the top of the optimization
vector z (See Section 5.2), we have to add three additional columns to Dold

matrix. Constraint on initial state was

xi (0) = x̃i (0)

where xsi was been already computed, thus included in x̃i (0). So, due to
steady state xsi , it will becomes

xi (0) + xsi = x̃i (0)

and we have to take into account. Remember that dynamic optimization
is referred to augmented system. So the old constraints have to be modi�ed
on the same principles for initial state. To understand, we analyse the state
evolution at �rst time instant. We have, for augmented system

xi (1) = Ai xi (0) +Bi ui (0) + B̄i ūi (0)

In case of steady state and input we have

xsi = Ai xsi +Bi usi + B̄i ūsi

We �nd deviation equations as the di�erence between those ones

x̃i (1) = Ai x̃i (0) +Bi ũi (0) + B̄i (ūi (0)− ūsi)

The last component −B̄i (ūsi) is not included in the previous formulation of
dynamic optimization. So we have to do two things:

• Include this element in dynamic constraints

• Remember we have, uscen

– we select this sub-vector input relative to i-th agent through selec-
tion matrix H(ū)

i

After this analysis we conclude that matrix Dold has to be modi�ed in this way
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D =



Acen − In Bcen 0n, p | 0 · · · 0

Ccen 0p,m −Ip | 0 · · · 0

−−−−− −−−− −−−− −−−− −−− −−− −−−
H

(x)
i 0p,m 0n, p |

0n, n B̄iH
(ū)
i 0n, p |

...
...

... | Dold

0n, n B̄iH
(ū)
i 0n, p |



d =


0n, 1

0m, 1

−−−−
dold


In this case lower and upper bound cannot be expressed by the simple

equations

lb ≤ z ≤ ub

due to fact that steady state and input are decision variables too. So the
previous

xmini ≤ x̃i ≤ xmaxi

umini ≤ ũi ≤ umaxi

where steady variables are already included, become

xmini ≤ x̃i + xsi ≤ xmaxi

umini ≤ ũi + usi ≤ umaxi

It possible to represent these constraints by the system of inequalities

Gz ≤ g

In our case it will be the vertical concatenation of two inequalities: one for
lower and one for upper bound
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[
Gupper

Glower

]
z ≤

[
gupper

glower

]
where

gupper =

 xmaxcen umaxcen . . . xmaxcen︸ ︷︷ ︸
N×2+1


glower =

[
−xmincen −umincen . . . −xmincen

]
Remember that ee have N × 2 + 1 elements due to horizon length N .

Recalling procedure for matrix D we build sub-matrix Gupper as

Gupper =


H

(x)
i 0n,m 0n, p | In

0n, n H
(u)
i 0n, p | Im

...
...

... | . . .

H
(x)
i 0n,m 0n, p | In


while Glower = −Gupper. Matrices H(x)

i and H(u)
i select the part of xscen

and uscen respectively, composing the inequalities constraints. Consequently lb
and lu will become empty vectors.

Augmented steady vector

This part is based on Graph Theory and, in particular, on Node Interaction pre-
sented in Section 5.1. For continuity of that part and this one, we de�ne as

• ni the length of the extended state vector

xi ←

[
xi

[xj ]j∈SOUTi

]

• mi the number of columns of

Bi ←

[
Bi

[Bji]j∈SOUTi

]

that is equal to mi used before for single agent
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• m̄i the number of columns of

B̄i ← [Bik]
T
k∈SINi

• pi the length of the extended output vector

yi ←

[
yi

[yj ]j∈SOUTi

]

From here and for all this sub-subsection we de�ne with the simple sub-
script i matrices and vectors relatives to the augmented model. However, the
substantial di�erence between this version and the previous one, is the �rst
part of the optimization vector.

z =



xsi[
usi
ūsi

]
ysi

−−−−−
zold


It’s possible to note that we refer to an augmented vector for both state and

output. Moreover it’s necessary to take into account the neighbour dynamic
through matrix [Bji] and B̄i. All the formulation above for the centralized steady
vector is still consistence, not equal, with this new one. The matrix H becomes

H =



Ini · 10−6 |[
Imi Im̄i

]
· 10−6 |

Ti |
− − −−− −−−−−−−−− −−− −− −−−

| Hold


For vector f we have

f =



0ni,1[
0mi,1

0m̄i,1

]
−Ti ytargeti

−−−−−−−−
fold


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Steady state constraints are in this case

xsi = Aixsi +Biusi + B̄iū
−
si

ysi = Cixsi

so the old sub-matrix Bcen of matrix D becomes the horizontal concatena-
tion of

[
Bi B̄i

]
. The principle for dynamic constraints in matrix D are the

same as before. Moreover selection matrices are simpler to build due to fact
that optimization vector contains only the augmented-model-variables. They
will be modelled by 

H
(x)
i = Ini

H
(u)
i =

[
Imi 0mi, m̄i

]
H

(ū)
i =

[
0m̄i,mi Im̄i

]
So we encapsulate this new formulation in matrix D and we obtain

D =



Ai − Ini
[
Bi B̄i

]
0ni, pi | 0 · · · 0

Ci 0pi,mi+m̄i −Ipi | 0 · · · 0

−−−−− −−−− −−−− −−−− −−− −−− −−−
H

(x)
i 0pi,mi+m̄i 0ni, pi |

0ni, ni B̄iH
(ū)
i 0ni, pi |

...
...

... | Dold

0ni, ni B̄iH
(ū)
i 0ni, pi |



d =


0ni, 1

0mi+m̄i, 1

−−−−
dold


As before in Centralized steady vector, it’s not possible to model lower and

upper bound simply with

lb ≤ z ≤ ub

If we take in to account the new augmented steady vector with selection
matrices, it’s possible to formulate them with
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[
Gupper

Glower

]
z ≤

[
gupper

glower

]
where

gupper =

 xmaxi umaxi . . . xmaxi︸ ︷︷ ︸
N∗2+1


glower =

[
−xmini −umini . . . −xmini

]
Recalling procedure for matrix D we build sub-matrix Gupper as

Gupper =


H

(x)
i

[
0ni,mi 0ni, m̄i

]
0ni, pi | Ini

0ni, ni H
(u)
i 0ni, pi | Imi

...
...

... | . . .

H
(x)
i

[
0ni,mi 0ni, m̄i

]
0ni, pi | Ini


while Glower = −Gupper. Consequently lb and lu are empty vectors.
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Centralized

Time Iteration

Single agent

Time Iteration

Single agent

Cooperative Iter.

SSTO

 xscen
uscen
yscen


 xsi
usi
ysi


 xsi
usi
ysi


DYN-OPT z = zold z = zold z = zold

Table 5.2: Two Step Algorithms variables

Centralized

One Step

Augmented

One Step

SSTO � �

DYN-OPT


xscen
uscen
yscen
zold




xsi
usi
ūsi
ysi
zold


Table 5.3: One Step Algorithms variables



CHAPTER6
Application Examples

Prova

6.1 Application 1

Prova 1

6.2 Application 2

Prova 2
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APPENDIXA
Stability Theory

We introduce now basic stability theory and we’ll focus on discrete time systems.
We’ll take basic notes on stability analysis and Lyapunov functions. We’ll proceed
analysing such proprieties relative to closed-loop systems. Finally we’ll talk about
stability results on MPC.

A.1 Some preliminary de�nitions

We consider systems of the form 3.4 with f : Rn × Rm continuous. Let
φ (k; x, u) the solution of 3.4 at instant k considering initial state x (0) = x0 =

x and control sequence u = {u (0) , u (1) , . . . }; solution exists and is unique. If
we have a state feedback control law u = κ (x), we obtain a closed-loop system
as x+ = f (x, κ (x)) and solution is φ (k; x, κ (x)).

We would like to be sure that the controlled system is stable, i.e., small per-
turbations of the initial state do not cause large variations in the subsequent
behaviour of the system, and the state converges to a desired state or, if this is
impossible due to disturbances, to a desired set of states. These objectives are
made precise in Lyapunov stability theory; in this theory, the system is assumed
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given and conditions ensuring the stability, or asymptotic stability of a speci�ed
state or set are sought; the terms stability and asymptotic stability are de�ned
below. If convergence to a speci�ed state, x∗ say, is sought, it is desirable for
this state to be an equilibrium point:

De�nition A.1. (Equilibrium Point). A point x∗ is an equilibrium point of x+ =

f (x, κ (x)) if x (0) = x∗ implies x (k) = φ (k; x∗) = x∗ for each k ≥ 0. If x∗ is
an equilibrium point it satis�es x∗ = f (x∗)

A point x∗ is isolated if there are no other equilibrium points in a su�ciently
small neighbourhood of x∗. A linear system x+ = Ax+b has a single equilibrium
point computed by x∗ = (I −A)−1 b if I − A is invertible. If convergence to a
set A is sought, it is desirable for the set A to be positive invariant:

De�nition A.2. (Positive Invariant Set). A set A is positive invariant for the
system x+ = f (x), if x ∈ A implies f (x) ∈ A.

Before introducing the concepts of stability and asymptotic stability and
their characterization by Lyapunov functions, it is convenient to make a few
de�nitions.

De�nition A.3. K functions.

• A function σ : R≥0 → R≥0 is of class K if it is continuous, zero at zero,
strictly increasing;

• A function σ : R≥0 → R≥0 is of class K∞ if it is of class K and not limited;

• A function β : R≥0× I≥0 → R≥0 is of class KL if it is continuous, for each
t ≥ 0, β (·, t) is of class K and for each s ≥ 0, β (s, ·) is not increasing and
satis�es limt→∞β (s, t) = 0;

• A function γ : R→ R≥0 is of class KP (positive de�nite) if it is continuous
and positive everywhere except at the origin.

A.2 Stability and Asymptotic Stability

Let x+ = f (x) with origin as equilibrium point.

De�nition A.4. (Local stability). The origin is locally stable if for every ε > 0

there exists δ > 0 such that |x| < δ implies |φ (k; x)| < ε. In Figure A.1 we note a
simple example.
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Figure A.1: Stability of the origin

De�nition A.5. (Global Attraction). The origin is globally attractive for the system
x+ = f (x) if limk→∞ |φ (k; x)| = 0∀x ∈ Rn

De�nition A.6. Global Asymptotic Stability (GAS). The origin is globally asymp-
totically stable for x+ = f (x) if it is locally stable and globally attractive

De�nition A.7. Global Exponential Stability (GES) The origin is globally expo-
nentially stable if there exists c > 0 and γ ∈ (0, 1) such that: |φ (k; x)| ≤ c |x| γk

for each k ≥ 0.

Let X be positively invariant set for x+ = f (x), such that we have a con-
strained system in X. The origin is:
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• locally stable in X if for each ε > 0 ∃ δ > 0 such that for each x ∈ X ∩ δB
we obtain |φ (k; x)| < ε∀ k ≥ 0;

• attractive if for each x ∈ X we have limk→∞ |φ (k; x)| = 0;

• asymptotically stable in X if it is attractive and locally stable;

• Global Asymptotic Stability is equivalent to |φ (k; x)| ≤ β (|x| , k) for each
k ≥ 0, β (·) ∈ KL.

X is de�ned as region (or domain) of attraction for the origin.

A.3 Lyapunov Stability Theory

De�nition A.8. Lyapunov function. A function V : Rn → R≥0 is a Lyapunov
function for x+ = f (x) if there exist αi ∈ K∞, i = 1, 2 and α3 ∈ P, D such
that for all x ∈ Rn:

V (x) ≥ α1 (|x|)
V (x) ≥ α2 (|x|)

V (f (x))− V (x) ≤ −α3 (|x|)
(A.1)

V decreases during the evolution of the system.

Theorem A.9. Lyapunov function and GAS. If V (·) is a Lyapunov function for
x+ = f (x)the origin is globally asymptotically stable.

Theorem (A.9) provides a su�cient condition for global asymptotic stability
that might be thought to be conservative.

The appropriate generalization of Theorem (A.9) for the constrained case is
described below.

Theorem A.10. Lyapunov and GAS for Constrained systems. The origin is
asymptotically stable in X if:

• X is positively invariant for x+ = f (x);

• V (·) is a Lyapunov function for x+ = f (x).

Theorem A.11. Lyapunov and GES for Constrained systems. The origin of x+ =

f (x) is exponentially stable in X if:

• X is positively invariant for x+ = f (x);
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• there exist V : Rn → R≥0 and positive constants σ, a1, a2, a3 > 0:

a1 |x|σ ≤ V (x) ≤ a2 |x|σ (A.2)

V (f (x))− V (x) ≤ −a3 |x|σ (A.3)

We review some facts involving the discrete matrix Lyapunov equation and
stability of the linear system x+ = Ax. The discrete time system is asymptoti-
cally stable if and only if the magnitudes of the eigenvalues of A are strictly less
than unity. In this case a matrix A is called stable, convergent, or discrete time
Hurwitz. The following matrix equation is known as a discrete matrix Lyapunov
equation,

A
′
SA− S = −Q (A.4)

Lemma A.12. The properties of solutions to this equation allow one to draw con-
clusions about the stability of A without computing its eigenvalues.

• A is stable;

• For each Q ∈ Rn×m, there is a unique solution S of (A.4) and if Q > 0, then
S > 0;

• There is some S > 0 such that A′SA− S < 0;

• There is some S > 0 such that V (x) = x
′
Sx is a Lyapunov function for the

system x+ = Ax.



APPENDIXB
Theory of State Estimation

In most application, the measured variables y are usually, a subset of those
used to modelling the system, x. Such measures are corrupted by sensors
noise. Even the state evolution is corrupted by process noise. We sould have a
good state estimation. In this section will be exposed probability fundamental. It
is necessary to have a good estimator: a discrete time model subject to process
and sensors noise that is normally distributed is presented (Kalman Filter).

B.1 Linear Systems and Normal Distribution

We denote

x ∼ N (m, P )

px (x) = n (x, m, P )
(B.1)

a normally distributed random variable x with mean m and covariance, or
simply variance, P . Let it be

n (x, m, P ) =
1

(2π)n/2 (detP )1/2
exp

[
−1

2
(x−m)

′
P−1 (x−m)

]
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the distribution of random variable x. From this formulation derive some fol-
lowing useful results. Let x and y two random variables (statistically) independent
as follows

x ∼ N (mx , Px) y ∼ N (my , Py)

then, their joint density probability is

px,y (x, y) = n (x, mx, Px)n (y, my, Py)

[
x

y

]
∼ N

([
mx

my

]
,

[
Px 0

0 Py

])
(B.2)

Let x a random variable like in equation B.1. Let y a linear transformation of
x, as y = Ax, then y is distributed as

y ∼ N
(
Am, APA

′
)

(B.3)

Let x and y two random variables jointly normally distributed, (x, y) (not
independents) [

x

y

]
∼ N

([
mx

my

]
,

[
Px Pxy

Pyx Py

])
then the conditional density of x given y is also normal

px|y (x | y) = n (x, m, P ) (B.4)

in which mean and variance are

m = mx + PxyP
−1
y (y −my)

P = Px − PxyP−1
y Pyx

These are the three main results. To derive the optimal estimator, we require
the conditional on other additional random variables. Results, similarly to those
above are here brie�y exposed.

Let px|z (x | z) normal, and let y statistically independent from x and z and
normally distributed, as

px|z (x | z) = n (x, m, P ) y ∼ N (my , Py)
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then the conditional probability density function of (x, y) given z is

px,y|z (x, y | z) = n (x, mx, Px)n (y, my, Py)

px,y|z

([
x

y

]∣∣∣∣∣ z
)

= n

([
x

y

]
,

[
mx

my

]
,

[
Px 0

0 Py

]) (B.5)

If we have a linear transformation, we obtain, similarly to B.3

px|z (x | z) = n (x, m, P ) y = Ax

py|z (y | z) = n
(
y, Am, APA

′
)

(B.6)

If x and y are jointly and normally distributed (not independents) as

px,y|z

([
x

y

]∣∣∣∣∣ z
)

= n

([
x

y

]
,

[
mx

my

]
,

[
Px Pxy

P yx Py

])
then the conditional density of x given y, z is also normal

px,y|z = (x|y, z) = n (x, m, P ) (B.7)

in which

m = mx + PxyP
−1
y (y −my)

P = Px − PxyP−1
y Pyx

B.2 Linear Optimal State Estimation

We assume x (0) be normally distributed

x (0) ∼ N (x̄ (0) , Q (0))

In operational environment we don’t know x̄ (0) or Q (0) and we often set
initial values of x̄ (0) = 0 and large value of Q (0); it means our lack of prior
knowledge little starting information. Measurement y (0) satisfy

y (0) = C x (0) + v (0)

where v (0) ∼ N (0, R) is system noise. If measurement is quite noisy, then
R is large. Given y (0) we want to obtain the conditional density px(0)|y(0) (x (0) | y (0)).



B.2 − Linear Optimal State Estimation 82

Such, describe our knowledge about the state x (0) after we have measured
y (0). These couple of variables satisfy[

x

y

]
=

[
I 0

C I

][
x (0)

v (0)

]
Let x (0)and v (0) statistically independent; using B.2 we have[

x (0)

v (0)

]
∼ N

([
x̄ (0)

0

]
,

[
Q (0) 0

0 R

])
We know y (0) is a linear transformation of x (0), thus they are not inde-

pendents; using (B.3) we have

[
x (0)

y (0)

]
∼ N

([
x̄ (0)

Cx̄ (0)

]
,

[
Q (0) Q (0)C

′

CQ (0) CQ (0)C
′
+R

])

Given the jointly density probability of it and using B.4 we obtain

px(0)|y(0) (x (0) | y (0)) = n (x (0) , m, P )

in which

m = x̄ (0) + L (0) (y (0)− Cx̄ (0))

L (0) = Q (0)C
′
(
CQ (0)C

′
+R

)−1

P = Q (0)−Q (0)C
′
(
CQ (0)C

′
+R

)−1
CQ (0)

The optimal state estimation is the value of x (0) that maximizes condi-
tional density px(0)|y(0). For a normal distribution that is the mean, x̂ (0) = m.
For continuity we denote P (0) = P . The change from P (0) to Q (0) is the
increasing of information given by measure y (0).

Now we forecast the state evolution and we observe if there is a change in the
information gain. State evolution satis�es

x (1) =
[
A I

] [ x (0)

w (0)

]
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where w (0) ∼ N (0 , Q) is the process noise. We want to compute the
conditional density px(1)|y(0). We have to analyse the conditional version of
jointly probability density function (x (0) , w (0)) given y (0). Observing B.5[

x (0)

w (0)

]
∼ N

([
x̂ (0)

0

]
,

[
P (0) 0

0 Q

])
We use then the conditional form of linear transformation such as B.6 to

obtain

px(1)|y(0) (x (1) | y (0)) = n
(
x (1) , x̂− (1) , P− (1)

)
in which mean and variance are

x̂− (1) = A x̂ (0) P− (1) = AP (0)A
′
+Q

(Superscripts minus indicates these are statistics before measurements y (1)).
Once we have obtained measure y (1) at the next instant and being px(1)|y(0)

also normal we can iterate the procedure for all avaialable measurements. If the
eigenvalues of A are within the unit circle AP (0)A

′ will be smaller than P (0)

(Q has a positive contribution). This means if system is stable, step by step,
variance decreasing, i.e., there is less uncertain on state estimation.

Summarizing, we denote with

y (k) := {y (0) , y (1) , . . . , y (k)}

At step k let the conditional probability density function to y (k − 1) normally
distributed as

px(k)|y(k−1) (x (k) |y (k − 1)) = n
(
x (k) , x̂− (k) , P− (k)

)
Let the initial condition as x̂− (0) = x̄ (0) and P− (0) = Q (0), we have a

random variable distributed as

x ∼ N
(
x̂− (k) , P− (k)

)
We obtain y (k) that satis�es
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[
x (k)

y (k)

]
=

[
I 0

C I

][
x (k)

v (k)

]
As x (k) and v (k) are independent

[
x (k)

y (k)

]
∼ N

([
x̂− (k)

Cx̂− (k)

]
,

[
P− (k) P−C

′

CP− (k) CP− (k)C
′
+R

])

Denote {y (k − 1) , y (k)} = y (k). Using conditional density (B.7) (x (k) | y (k)) ∼
N (x̂ (k) , P (k)) with

x̂ (k) = x̂− (k) + L (k) (y (k)− C x̂− (k))

L (k) = P− (k)C
′
(
CP− (k)C

′
+R

)′
P (k) = P− (k)− P− (k)C

′
(
CP− (k)C

′
+R

)−1
CP− (k)

Iterating this calculus to next step and following the system dynamic we
obtain the density function given by linear transformation similarly B.6

px(k+1)|y(k) (x (k + 1) |y (k)) = n
(
x (k + 1) , x̂− (k + 1) , P− (k + 1)

)
where

x̂− (k + 1) = A x̂ (k)

P− (k + 1) = AP (k)A
′
+Q

B.3 Moving Horizon Estimation

When using non-linear system or estimation constraints, we cannot compute
the conditional density in closed form as in Kalman Filter. Moving horizon
estimation remove these di�culties only considering the lasts N measures
and �nd only the lasts N trajectory values. We have to estimate xN (T ) =

{x (T −N) , . . . , x (T )} states given yN (T ) = {y (T −N) , . . . , y (T )} mea-
sures. We assume temporal window always full. The simplest form of MHE is
the following least squares problem,

min
xN (T )

V̂T (xN (T )) (B.8)
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where

V̂T (xN (T )) =
1

2

(
T−1∑

k=T−N
|x (k + 1)−Ax (k)|2Q−1 +

T−1∑
k=T−N

|y (k)− C x (k)|2R−1

)
(B.9)

We denote circum�ex hat to indicate the objective function value considering
data from T −N to T rather than the entire vector.

In order to establish convergence, following results on optimal estimator cost
function proves useful

Lemma B.1. Convergence of state estimator. Given the noise-free measures
y (T ) =

{
C x (0) , CAx (0) , . . . , CATx (0)

}
, the optimal estimator cost V 0

T (y (T ))

converge as T →∞.

Optimal estimator cost converge without accounting of system observability.
But if we want that state estimation converge to the real state we have to restrict
the system further.

Lemma B.2. Convergence of estimation. For (A, C) observable, Q, R > 0 and
noise-free measures y (T ) =

{
C x (0) , CAx (0) , . . . , CATx (0)

}
the obtained

optimal estimation converge to the state x̂ (T )→ x (T ) as T →∞.

The system restriction can be weakened from observability to detectability.
The restriction on the process disturbance weight (variance)Q can be weakened
from Q > 0 to Q ≥ 0 and (A, Q) stabilizable. The restriction R > 0 remains
to ensure uniqueness of the estimator.



APPENDIXC
Source Code

Listing C.1: SCRIPT Principale

1 %

2 % This file set the number of nodes and the horizon

3 % length and optimize under hard input and output

4 % constraints through a model that implements a graph.

5 % Each subsystem is composed by an augmented model

6 % defined by an adjacent matrix. Then a cooperative

7 % optimization is performed several times untill a

8 % certain cost has reached.

9 %

10

11 %%

12 clear all

13 clc

14

15 %%%%%%%%%%%%%%%%%%%%%% DEFINITIONS %%%%%%%%%%%%%%%%%%%%%

16 %% Main Parameters

17 % Nodes number

18 M = 3;

19 % Horizon length
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20 N = 10;

21 % Number of state variable , input and output for a single

22 % agent , are generated from the uniform distribution on

23 % the interval [a, b]through the equation

24 % floor(a + (b-a).* rand).

25 a = 2;

26 b = 4;

27 % The others parameters depend from these two

28 init_graph_and_optimization_parameters;

29 % change interaction: here re-define E

30 time_iter_max = 60;

31

32 %% Implements graph

33 % Implements all subsystem in a state space model

34 implements_graph_nodes;

35

36 % Augmented Adjacent Matrix: arc (i,j) si constraint

37 [AdjacentMatrix] = create_adjacent_matrix(V,E,M);

38

39 % keyboard

40 %% Create augmented model

41 % For each subsystem i, we create the augmented model and

42 % the modified star that includes the old input -star , the

43 % old output -star and all input -star of j, i exluded. We

44 % also create Bi_bar. Only ui_bar changes at every time

45 % instant.

46 for i = 1:M

47 [model{i} S{i} Bi_bar{i}] = create_augmented_model ...

48 (i,AdjacentMatrix ,V,E,M,N);

49 end

50

51 %%%%%%%%%%%%%%% SUBOPTIMAL MPC algorithm %%%%%%%%%%%%%%

52

53 % Cooperative distributed model predictive control can be

54 % viewed as a form of suboptimal mpc. So we can iterate a

55 % suboptimal algorithm.

56

57 % Define time iteration variable 'time_iter ' and

58 % cooperative iteration variable 'coop_iter '. First

59 % variable is used in the outer loop. Second one is

60 % used in cooperative (suboptimal) algorithm
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61 % 'cooperative_optimization '

62 time_iter = 1

63 for i=1:M

64 xs{i} = 0*V{i,1}.x0;

65 us{i} = 0*V{i,1}.u(:,1);

66 ys{i} = 0* ytarget{i};

67 end

68

69 while time_iter <= time_iter_max ,

70

71 % Input vector has to converge to centralized one

72 % We store at each TIME instant the norm of

73 % centralized optimum input vector and that

74 % obtained from the single cooperative algorithm

75 store_for_stats;

76 redefine_targets;

77

78 % Step1: Iteration of an optimization method

79 % Using initial state x+ the final input

80 % sequence u+ is a function of these state

81 % initial condition and the warm start

82 % unext = g(xpre ,upre)

83 cooperative_optimization;

84

85 % Step2: Next time step , unext ---> upre

86 return_overall_solution;

87

88 % Step3: State evolution , xnext = f(xpre ,upre),

89 % xnext ---> xpre

90 state_evolution;

91

92 % Step4: Warm start unext = {u(1),u(2),...,u(N-1) ,0}

93 warm_start;

94

95 time_iter = time_iter + 1

96 end

97

98 %% Graph

99 plot_simple_graph;
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