
University of Pisa

Master Degree Thesis

Design & Implementation of a Genetic
Algorithm for scalable Shortest Path

routing in SDN controllers

Author:

David Alberto Lau Gastelo

Supervisor:

Prof. Stefano Giordano

First Co-Supervisor:

Ing. Gregorio Procissi

Second Co-Supervisor:

CF AN Ing. Carlo Roatta

A thesis submitted in fulfilment of the requirements

for the degree of Master

in the

Networking Research Group

Department or Information Engineering

April 2015

http://www.unipi.it
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

”A journey of thousand miles starts with a single step and if that step is the right step,

it becomes the last step”

Lao Tzu

UNIVERSITY OF PISA

Abstract

Faculty of Telecommunication Engineering

Department or Information Engineering

Master

Design & Implementation of a Genetic Algorithm for scalable Shortest

Path routing in SDN controllers

by David Alberto Lau Gastelo

During the last decades, the Internet Network has been growing exponentially. And

this growth of the network means also a growth in terms of complexity. One of the

most important process that makes Internet happens is the Routing. Routing is the

process of selecting the best paths in a network. This thesis aims to develop a genetic

algorithm to solve a network routing protocol problem, and implement it on the new

Epiphany architecture. In the literature, the routing problem is solved using search

graph techniques to find the shortest path. Dijkstra’s algorithm is one of the most

popular techniques to solve this problem, and it is widely used on network routing

protocols, for example the OSPF (Open Shortest Path First). The developed genetic

algorithm performed on the Epiphany architecture is compared with Dijkstra’s algorithm

to solve routing problem. The results highlight the potentiality of the proposed genetic

algorithm and the possibility to use this Epiphany architecture as a cost-effective solution

for an embedded SDN (Software Defined Networking) controller.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

Es irónico que el eṕılogo se encuentre al inicio. Después de todos estos años y kilómetros,

llega a la conclusión esta etapa de mi vida. Lejos de casa, he encontrado otro lugar que

puedo llamar hogar. Y lo más importante, he conocido personas que han dejado un

tatuaje en mi ser.

Inicio agradeciendo a Valeria, mi alma gemela; que ha sabido ser amiga, madre y maes-

tra estos años. Has ya escrito un profundo e indeleble caṕıtulo de mi vida.

Quiero agradecer también a la Sesta Armi Navali, mis compañeros de armas:

a Mattia, amigo que siempre me ha hecho sonréır;

a Mimmo, óptimo compañero de aventuras;

a Andrea, sabio consejero que se ha demostrado un inquebrantable amigo;

a Antonio, para los amigos Pollo, por su infinita bondad;

a Alessio, quien en su silencio guarda una gran amistad.

Un agradecimiento especial a Alessandro, que no obstante todos los problemas que hemos

tenido, me has hecho parte de tu familia, convirtiéndote en un hermano.

Agradezco también a los padres de Valeria, quienes me han hecho entrar en su maravil-

losa familia, y agradezco también a todos y cada uno de los integrantes de ésta.

Mi gratitud va también al Profesor Giordano, al Comandante Roatta y a Giuseppe Por-

taluri, dado que ellos me han hecho el camino más simple en el desarrollo de esta tesis.

Finalmente, agradezco a mi familia en mi tierra, quienes no obstante la distancia, ha

estado siempre cerca de mı́.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables viii

Glossary ix

1 Introduction 1

2 Basic Concepts 3

2.1 Shortest Path problems . 3

2.1.1 Introduction . 3

2.1.2 Applications . 7

2.1.3 Tree of Shortest Paths . 7

2.1.4 Shortest Path Problems in Acyclic Networks 8

2.2 Dijkstra’s Algorithm . 9

2.2.1 Running Time Dijkstra’s Algorithm 10

2.2.2 Reverse Dijkstra’s Algorithm . 11

2.2.3 Bidirectional Dijkstra’s Algorithm 11

2.3 Genetic Algorithms . 12

2.3.1 Introduction . 12

2.3.2 Robustness of Traditional Optimization and Search Methods . . . 12

2.3.3 The Goals of Optimization . 15

2.3.4 Differences between Genetic Algorithms and Traditional Methods . 16

2.3.5 A Simple Genetic Algorithm . 18

3 The Parallella Board 22

3.1 Introduction . 22

3.1.1 Overview . 22

3.1.2 Technical Specifications . 22

3.2 Epiphany Architecture . 24

iv

Contents v

3.2.1 Introduction . 24

3.2.2 System Examples . 25

3.2.3 Memory Architecture . 26

3.3 eCore CPU . 27

3.3.1 Overview . 27

3.3.2 Data Types . 29

3.3.3 Local Memory Map . 32

3.3.4 General Purpose Register . 32

3.3.5 Epiphany Instruction Set . 33

3.3.6 Pipeline Description . 36

3.3.7 Interrupt Controller . 36

3.3.8 Hardware Loops (LABS) . 37

3.3.9 Direct Memory Access (DMA) . 38

3.3.10 Memory Protection Unit (LABS) 40

3.4 Software Development Enviroment . 40

3.5 Programming Model . 41

3.5.1 Programming Model Introduction 41

3.5.2 Parallel Programming Example . 41

4 Experimentation 43

4.1 Set Up . 43

4.2 Structure of the model Network and Table of Cost 43

4.3 Proposed Algorithm . 44

4.3.1 Global Variables . 45

4.3.2 main() function . 45

4.3.3 init org() function . 45

4.3.4 eval gen() function . 46

4.3.5 prod next gen() function . 46

4.3.6 select one() function . 47

4.4 Results . 48

5 Conclusions 50

A Parallella Board Configuration 51

A.1 Hardware Accessories . 51

A.1.1 Headless . 51

A.1.2 With Display . 51

A.2 Creating a bootable micro-SD card . 52

A.2.1 Downloading the Binaries . 52

A.2.2 Install . 52

A.3 Connect the board to the computer via Ethernet 53

A.3.1 Setting a static IP address . 53

A.3.2 Connecting the board to the computer 53

B C Codes 55

B.1 ”defs.h” file . 55

Contents vi

B.2 ”host.c” file . 56

B.3 ”dev.c” file . 60

Bibliography 98

List of Figures

3.1 Parallella (top view) . 23

3.2 Parallella (bottom view) . 23

3.3 Parallella (Architecture) . 24

3.4 eCore Architecture . 25

3.5 Epiphany System Architecture . 25

3.6 Epiphany Memory Architecture . 26

3.7 Epiphany Memory Map . 26

3.8 eCore CPU Overview . 27

3.9 IEEE Single-Precision Floating-Point Data Types 31

3.10 eCore Local Memory Map . 32

3.11 eCore Pipeline Stage Description . 37

3.12 eCore Pipeline Graphical View . 37

3.13 eCore Interrupt Service Routine Operation 38

3.14 eCore DMA Transfer Types . 39

3.15 Epiphany Software Development Stack . 40

3.16 Matrix Multiplication Data Flow . 42

4.3 Crossover operator . 47

4.4 Roulette wheel sampling . 47

4.5 A screenshot of the program results . 49

vii

List of Tables

2.1 Sample Problem Strings and Fitness Values 20

3.1 General-Purpose Registers[1] . 33

viii

Glossary

GA Genetic Algorithms. 16–18, 21

LSB Least Significant Bit. 30, 31

MSB Most Significant Bit. 30

NAN Not A Number. 30, 31

NP Non-deterministic Polynomial time. 5

OS Operating System. 43, 50–52

OSPF Open Shortest Path First. 2

SDN Software-defined Networking. 1

ix

A quien conoćı en un viaje lejano, y quedará para siempre en el
lugar más cercano a mı́

x

Chapter 1

Introduction

During the last decades, the Internet Network has been growing exponentially. And this

growth of the network means also a growth in terms of complexity.

One of the most important process that make Internet happens is the Routing. Routing

is the process of selecting the best paths in a network.

With the augmented complexity and the constantly demand of connection and resources,

the research aims to new challenging targets to keep functional the network and a effi-

cient way to manage it.

Thanks to the new technologies, there are possible solutions to this problem. One of the

is a new design of the network, but in a scalable and dynamic way. These is the concept

idea of the Software-defined Networking (SDN). SDN is an architecture purporting to

be dynamic, manageable, cost-effective, and adaptable, seeking to be suitable for the

high-bandwidth, dynamic nature of today’s applications. SDN architectures decouple

network control and forwarding functions, enabling network control to become directly

programmable and the underlying infrastructure to be abstracted from applications and

network services.

Another important part of the routing is the protocol of forwarding, that performs an

algorithm under certain rules defined by the type of protocol.

One of the algorithms used in routing is the Dijkstra’s algorithm[2]. An equivalent algo-

rithm was developed by Edward F. Moore in 1957[3]. For a given source vertex (node) in

the graph in Figure 1.1, the algorithm finds the path with lowest cost (i.e. the shortest

path) between that vertex and every other vertex. It can also be used for finding costs

of shortest paths from a single vertex to a single destination vertex by stopping the

algorithm once the shortest path to the destination vertex has been determined. For ex-

ample, if the vertices of the graph represent routing nodes and edge path costs represent

1

Chapter 1. Introduction 2

time spent to pass from a node to another directly linked node, Dijkstra’s algorithm can

be used to find the shortest route between one node and all other nodes. The shortest

path first is widely used in network routing protocols, most notably Open Shortest Path

First (OSPF). OSPF is a dynamic routing protocol. It is a link state routing protocol

and is part of the interior gateway protocols group. OSPF keeps track of the complete

network topology and all the nodes and connections within that network.

OSPF routing protocol is a very important protocol to consider when setting up routing

instructions on the network. As OSPF gives the routers the ability to learn the most

optimal (shortest) paths it can definitely speed up data transmission from source to

destination.

In the literature, Dijkstra’s algorithm is often described as a greedy algorithm. A greedy

algorithm is described as ”a heuristic algorithm that at every step selects the best choice

available at the step without regard to future consequence”[4] International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:10 No:02 37

I J E N S IJENS © April 2010 IJENS-IJECS 8686-302410

that node, followed by the neighbor node through which it can
be reached. Router decides which neighbor to choose from
routing table to reach specific destination. In the literature,
different approaches are applied to solve this problem as:
Dijkstra's algorithm[6], dynamic programming technique [4],
and emerged ants with genetic algorithm [5], [7].

This paper is organized as follows. The literature work and
the routing problem definition are presented in section I.
Section II describes the basics of Dijkstra’s algorithm. While
section III; gives a brief description of the genetic algorithms
as existed in the literature. The developed genetic algorithm to
find the shortest path is introduced in Section IV. Simulation
results are presented and discussed in Section V. Finally,
conclusion is drawn in Section VI.

II. DIJKSTRA’S ALGORITHM
The Dijkstra’s algorithm calculates the shortest path between
two points on a network using a graph made up of nodes and
edges. It assigns to every node a cost value. Set it to zero four
source node and infinity for all other nodes. The algorithm
divides the nodes into two sets: tentative and permanent. It
chooses nodes, makes them tentative, examines them, and if
they pass the criteria, makes them permanent. The algorithm
can be defined by the following steps [6]:

1. Start with the source node: the root of the tree.
2. Assign a cost of 0 to this node and make it the first

permanent node.
3. Examine each neighbor node of the node that was the last

permanent node.
4. Assign a cumulative cost to each node and make it

tentative.
5. Among the list of tentative nodes

a. Find the node with the smallest cumulative cost and
mark it as permanent. A permanent node will not be
checked ever again; its cost recorded now is final.

b. If a node can be reached from more than one
direction, select the direction with the shortest
cumulative cost.

6. Repeat steps 3 to 5 until every node becomes permanent.

If the algorithm is applied to the network in Fig. 1 to calculate
the shortest path between the source node a(1) and the
destination node b(5); the shortest path will be 1-3-6-5 with
cost 20.

Fig. 1. Network topology

III. GENETIC ALGORITHMS
Genetic algorithms (GAs) are global search and optimization
techniques modeled from natural selection, genetic and
evolution. The GA simulates this process through coding and
special operators. The underlying principles of GAs were first
published by [8]. Excellent reference on GAs and their
applications is found in [9]. A genetic algorithm maintains a
population of candidate solutions, where each candidate
solution is usually coded as binary string called a chromosome.
The best choice of coding has been shown to be a b inary
coding [8]. A set of chromosomes forms a population, which is
evaluated and ranked by fitness evaluation function. The
fitness evaluation function play a critical role in GAs because it
provides information how good each candidate. The initial
population is usually generated at random. The evolution from
one generation to the next one involves mainly three steps:
fitness evaluation, selection and reproduction [10].

First, the current population is evaluated using the fitness
evolution function and then ranked based on their fitness. A
new generation is created with the goal of improving the
fitness. Simple GA uses three operators with probabilistic rules:
reproduction, crossover and mutation. First selective
reproduction is applied to the current population so that the
string makes a number of copies proportional to their own
fitness. This results in an intermediate population.

Second, GA select "parents" from the current population
with a bias that better chromosome are likely to be selected.
This is accomplished by the fitness value or ranking of a
chromosome.

Third, GA reproduces "children" (new strings) from
selected parents using crossover and/or mutation operators.

Crossover is basically consists in a random exchange of bits
between two strings of the intermediate population. Finally, the
mutation operator alters randomly some bits of the new strings.
This algorithm terminates when an acceptable solution is

Figure 1.1: Network topology

The optimization of multicore systems now permits the execution on more complex algo-

rithms used in routing that can compete (and sometimes overcome) with the traditional

ones.

Chapter 2

Basic Concepts

2.1 Shortest Path problems

2.1.1 Introduction

Shortest path problems lie at the hearth of network flows. They are alluring to both

researchers and to practitioners for several reasons:

• They arise frequently in practice since in a wide variety of applications settings

where is required to send some material (e.g., a computer data packet, a telephone

call, a vehicle) between two specified points in a network as quickly, as cheaply, or

as reliably as possible.

• They are easy to solve efficiently.

• As the simplest network models, they capture many of the most salient core in-

gredients of network flows and so they provide both a benchmark and a point of

departure for studying more complex network models

• They arise frequently as subproblems when solving many combinatorial and net-

work optimization problems.

Even though shortest path problems are relatively easy to solve, the design and

analysis of most efficient algorithms for solving them requires considerable ingenu-

ity. Consequently, the study of shortest path problems is a natural starting point

for introducing many key ideas from network flows, including the use of clever

data structures and ideas such as data scaling to improve the worst-case algorithm

performance.

3

Chapter 2. Basic Concepts 4

Notation and Assumptions

Consider a directed network G = (N, A) with and arc length (or arc cost) cij associated

with each arc (i, j) ∈ A. The network has a distinguished node s, called emphsource.

Let A(i) represent the arc adjacency list of node i an let C = max{cij : (i,j) ∈ A}.
Define the length of a directed path as the sum of the lengths of arcs in the path.

The shortest path problem is to determine for every non-source node i ∈ N a shortest

length directed path from node s to node i.

Alternatively, the problem might be view as sending 1 unit of flow as cheaply as possible

(with arc flow costs as cij) form node s to each of the nodes in N−s in an uncapacitated

network. This viewpoint gives rise to the following linear programming formulation of

the shortest path problem.

Minimize ∑
(i,j∈A)

cijxij (2.1)

subject to ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =

n− 1 for i = s

−1 for all i ∈ N − {s}
(2.2)

xij ≥ 0, ∀(i, j) ∈ A

These assumptions will be done for the study of the shortest path problem:[5]

Assumption 1 All arc lengths are integers

The integrality assumption imposed on arc lengths is necessary for some algorithms and

unnecessary for others. That is, for some algorithms these condition can be relaxed and

still perform the same analysis.

Algorithms whose complexity bound depends on C assume integrality of the data. Note

that always can be transformed rational arc capacities to integer arc capacities by mul-

tiplying them by a suitably large number. Moreover, is necessarily needed convert

irrational numbers to rational numbers to represent them on a computer.

Therefore, the integrality assumption is really not a restrictive assumption in practice.

Assumption 2 The network contains a directed path from node s to every other

node in the network

This assumption can be always satisfied by adding a ”fictitious” arc (s, i) of suitably

large cost for each node i that is not connected to node s by a directed path.

Assumption 3 The network does not contain a negative cycle (i.e., a directed

cycle of negative length)

Chapter 2. Basic Concepts 5

For any network containing a negative cycle W, the linear programming formulation

(2.1 & 2.2) has an unbounded solution because can be send an infinite amount of flow

along W. The shortest path problem with a negative cycle is substantially harder to

solve than is the shortest part problem without a negative cycle. Indeed, because the

shortest path problem is an Non-deterministic Polynomial time (NP)-complete problem,

no polynomial-time algorithm for this problem is likely exist.

Negative cycles complicate matters, in part, for the following reason. All algorithms

that are capable of solving shortest path problems with negative length arc essentially

determine shortest length directed walks form the source to other nodes. If the network

contains no negative cycle, then some shortest length directed walk is a path (i.e.,

does not repeat nodes), since directed cycles from this walk can be eliminated without

increasing its length.

The situation for networks with negative cycles is quite different; in these situations,

the shortest length directed walk might traverse a negative cycle an infinite number of

times since each such repetition reduces the length of the walk.

In these cases in needed to avoid walks that revisit nodes; the addition of this apparently

mild stipulation has significant computational implications: with it, the shortest path

problem becomes substantially more difficult to solve.

Assumption 4 The network is directed

If the network were undirected and all arc lengths were nonnegative, the shortest path

problem could be transformed to one on a directed network[5].

Various Types of Shortest Path Problems

Researchers have studied several different types of (directed) shortest path problems:

1. Finding shortest paths form one node to all other nodes when arc lengths are

nonnegative

2. Finding shortest path form one node to all others nodes for networks with arbitrary

arc lengths

3. Finding shortest paths form every node to every node

4. Various generalizations of the shortest path problem

Analog Solution of the Shortest Path Problem

The shortest path problem has a particularly simple structure that has allowed re-

searchers to develop several intuitively appealing algorithms for solving it. The follow-

ing analog model for the shortest path problem (with nonnegative arc lengths) provides

valuable insight that helps in understanding some of the essential features for the short-

est path problem.

Chapter 2. Basic Concepts 6

Consider a shortest path problem between a specified pair of nodes s and t (this discus-

sion extends easily for the general shortest path model with multiple destination nodes

and with nonnegative arc lengths).

Construct a string model with nodes represented by knots, and for any arc (i, j) in A,

a string with length qual to cij joining the two knots i and j.

Assume that none of the strings can be stretched. After constructing the model, hold

the knot representing node s in one hand, the knot representing node t in the other

hand, and pull the hands apart.

One or more paths will be held tight; these are the shortest paths from node s to node

t.

Several insights about the shortest path can be extracted from this simple string model:

1. For any arc on shortest path, the string will be taut. Therefore, the shortest path

distance between any two successive nodes i and j on this path will equal the

length cij of the arc (i, j) between these nodes.

2. For any two nodes i and j on the shortest path (which need not be successive nodes

on the path) that are connected by an arc (i, j) in A, the shortest path distance

from the source to node i plus cij (a composite distance) is always as large as the

shortest path distance from the source to node j. The composite distance might

be larger because the string between nodes i and j might not be taut.

3. To solve the shortest path problem, a maximization problem have been solved (by

pulling the string apart). In general, all network flow problems modeled as min-

imization problems have an associated ”dual” maximization problem; by solving

one problem, generally solve the other as well.

Label-Setting and Label-Correcting Algorithms

The network flow literature typically classifies algorithm approaches for solving shortest

path problems into two groups: label setting and label correcting.

Both approaches are iterative. They assign tentative distance labels to nodes at each

step; the distance labels are estimates of (i.e.; upper bounds on) the shortest path dis-

tances. The approaches vary in how they update the distance labels from step to step

and how they ”converge” toward the shortest path distances.

Label-setting algorithms designate one label as permanent (optimal) at each iteration.

In contrast, label-correcting algorithms consider all label as temporary until the final

step, when they all become permanent. One distinguished feature of these approaches

is the class of problems that they solve.

Label-setting algorithms are applicable only to: (1)shortest path problems defined on

acyclic network with arbitrary arc lengths and (2) shortest path problems with nonneg-

ative arc lengths.

Chapter 2. Basic Concepts 7

The label-correcting algorithms are more general apply to all classes of problems, in-

cluding those with negative arc lengths.

The label-setting algorithms are much more efficient, that is, have much better worst-case

complexity bounds; on the other hand, the label-correcting algorithms not only apply

to more general classes of problems, but they also offer more algorithmic flexibility. In

fact, the label-setting algorithms can be viewed as a special case of the label-correcting

algorithms.

2.1.2 Applications

Shortest path problems arise in a wide variety of practical problem settings, both as

stand-alone models and as subproblems in more complex problem settings.

For example, they arise in the telecommunications and transportation industries when-

ever is needed to send a message or a vehicle between two geographical locations as

quickly or as cheaply as possible.

Urban traffic planning provides another important example: The models that urban

planners use for computing traffic flow patterns are complex nonlinear optimization

problems or complex equilibrium models; they build, however, on the behavioral as-

sumption that user of the transportation system travel, with respect to prevailing traffic

congestion, along shortest paths form their origins to their destinations. Consequently,

most algorithmic approaches for finding urban traffic patterns solve a large number

of shortest path problems as subproblems (one for each origin-destination pair in the

network)[6]

They are used on applications that includes urban housing, project management, inven-

tory planning and DNA sequencing.

They are also used on generic mathematical applications - approximating functions, solv-

ing certain types of difference equations, and solving the so-called knapsack problem -

as well as direct applications in the domains of production planning, telephone operator

scheduling, vehicle fleet planning and Internet.

2.1.3 Tree of Shortest Paths

In the shortest path problem, the goal is determinate a shortest path from the source

node to all other (n - 1) nodes[2]. How much storage would be needed to store these

paths? One naive answer would be an upper bound of (n - 1)2 since each path could

contain at most (n - 1) arcs.

Fortunately, is not needed this much amount of storage: (n - 1) storage locations are

sufficient to represent all these paths. This result follows from the fact that is always

Chapter 2. Basic Concepts 8

possible find a directed out-tree rooted from the source with the property that the unique

path from the source to any node is a shortest path to that node. It is refer to such a

tree as a shortest path tree.

Each shortest path algorithm is capable of determining this tree as it computes the

shortest path distances. The existence of the shortest path tree relies on the following

property.

Property 1.3.1. If the path s = i1 - i2 - . . . - ih = k is a shortest path from node s

to node k, then for every q = 2, 3, . . ., h -1, the subpath s = i1 - i2 - . . . - iq is a

shortest path from the source node to node i1

Property 1.3.2. Let the vector d represent the shortest path distances. Then a directed

path P from the source node to node k is a shortest a shortest path if and only if d(j) =

d(i) + cij for every arc (i, j) ∈ P

2.1.4 Shortest Path Problems in Acyclic Networks

A network is said to be acyclic if it contains no directed cycle. In this subsection will

be shown how to solve the shortest path problem on an acyclic network in O(m) time

even though the arc length might be negative.

It always possible to number (on order) nodes in an acyclic network G = (N, A) in O(m)

time so that i ¡ j for every arc (i, j) ∈ A. This ordering of nodes is called a topological

ordering. Conceptually, once is determined the topological ordering, the shortest path

problem is quite easy to solve by a simple dynamic programming algorithm.

Suppose that are determined the shortest path distances d(i) from the source node to

nodes i = 1, 2, . . ., k - 1.

Consider node k. The topological ordering implies that all the arcs directed into this

node amanate from one of the nodes 1 trough k - 1.

By Property 1.3.1, the shortest path node k is composed of a shortest path to one of

the nodes i = 1, 2, . . ., k - 1 together with the arc (i, k). Therefore, to compute the

shortest path distance to node k, is needed only select the minimum of d(i) + cik for all

incoming arcs (i, k).

This algorithm is a pulling algorithm in that to find the shortest path distance to any

node, it ”pulls” shortest path distances forward from lower-numbered nodes. Notice

that to implement this algorithm, is needed to access conveniently all the arcs directed

into each node. Since is frequently store the adjacency list A(i) of each node i, which

gives the arcs emanating out of a node, is also likely to implement a reaching algorithm

that propagates information from each node to higher-indexed nodes, and so uses the

usual adjacency list. Such algorithm is described next.

First, set d(s) = 0 and the remaining distance labels to a very large number.

Chapter 2. Basic Concepts 9

Then, examine nodes in the topological order and for each node i being examined, scan

arcs in A(i). If for any arc (i, j) ∈ A(i), is found that d(j) ¿ d(i) + cij , then set d(j) =

d(i) + cij .

When the algorithm has examined all the nodes once in this order, the distance labels

are optimal.

Theorem 1.1 The reaching algorithm solves the shortest path problem on acyclic net-

works in O(m) time

In this subsection it’s shown how can solve the shortest path problem on acyclic networks

very efficiently using the simplest possible algorithm. Unfortunately, is not possible to

apply this one-pass algorithm, and examine each node and each arc exactly once, for

networks containing cycles; nevertheless, it’s possible utilize the same basic reaching

strategy used in this algorithm and solve any shortest path problem with nonnegative

arc lengths using a modest additional amount of work.

2.2 Dijkstra’s Algorithm

Dijkstra’s algorithm find shortest paths from the source node s to all other nodes in a

network with nonnegative arc lengths. Dijkstra’s algorithm maintains a distance label

d(i) with each node i, which is an upper bound on the shortest path length to node i.[2]

At any intermediate step, the algorithm divides the nodes into two groups: those whic it

designates as permanently labeled (or permanent) and those it designates as temporarily

labeled (or temporary).

The distance to any permanent node represents the shortest distance from the source

to that node. For any temporary node, the distance label is an upper bound on the

shortest path distance to that node.

The basic idea of the algorithm is to fan out from node s and permanently label nodes

in the order of their distance from node s.

Initially is given to node s a permanent label of zero, and each other other node j a

temporary label equal to ∞. At each iteration, the label of a node i is its shortest

distance from the source node along a path whose internal nodes (i.e., nodes other than

s or the node i itself) are all permanently labeled. The algorithm selects a node i

with the minimum temporary label (breaking ties arbitrarily), makes it permanent, and

reaches out from that node - that os, scans arcs in A(i) to update the distance labels of

adjacent nodes.

The algorithm terminates when it has designated all nodes as permanent.

The correctness of the algorithm relies on the key observation that is always possible

designate the node with the minimum temporary label as permanent.

Chapter 2. Basic Concepts 10

Dijkstra’s algorithm maintains a directed out-tree T rooted at the source that spans the

nodes with finite distance labels. The algorithm maintains this tree using predecessor

indices (i.e., if (i, j) ∈ T, then pred(j) = i). The algorithm maintains the invariant

property that every tree arc (i, j) satisfies the condition d(j) = d(i) + cij with respect

to the current distance labels. At termination, when distance labels represent shortest

path distances, T is a shortest path tree (From Property 1.3.2).

In Dijkstra’s algorithm, refer to the operation of selecting a minimum temporary distance

label as a node selection operation. To refer the operation of checking whether the

current labels for nodes i and j satisfy the condition d(j) ¿ d(i) + cij and, if so, then

setting d(j) = d(i) + cij as a distance update operation.

2.2.1 Running Time Dijkstra’s Algorithm

This subsection studies the worst-case complexity of Dijkstra’s algorithm. Might view

the computational time for Dijkstra’s algorithm as allocated to the following two basic

operations:

1. Node selections. The algorithm performs this operation n times and each such

operation reuqieres that it scans each temporarily labeled node. Therefore, the

total node selection time is n + (n - 1) + (n + 2) + . . . + 1 = O(n2).

2. Distance updates. The algorithm performs this operation |A(i)| times for node

i. Overall, the algorithm performs this operation
∑

i∈N |A(i)| = m times. Since

each distance update operation requires O(1) time, the algorithm requires O(m)

total time for updating all distance labels.

These operations established the following result.

Theorem 1.2 Dijkstra’s algorithm solves the shortest path problem in O(n2) time

The O(n2) time bound for Dijkstra’s algorithm is the best possible for completely dense

networks (i.e., m = Ω(n2)), but can be improved for sparse networks.

Notice that the times required by the node selections and distances updates are not

balanced. The node selection requires a total of O(n2) time, and the distance updates

require only O(m) time.

Researchers have attempted to reduce the node selection time without substantially

increasing the time for updating the distances. Consequently, they have, using clever

data structures, suggested several implementations of the algorithm. These implemen-

tations have either dramatically reduced the running time of the algorithm in practice

or imporved its worst-case complexity.

Chapter 2. Basic Concepts 11

2.2.2 Reverse Dijkstra’s Algorithm

In the (forward) Dijkstra’s algorithm, has been determined a shortest path from node s

to every other node in N - {s}.
Suppose that is required to determine a shortest path from every node in N - {t} to a

sink node t. To solve this problem, its used a slight modification of Dijkstra’s algorithm,

refer as the reverse Dijkstra’s algorithm.

The reverse Dijkstra’s algorithm maintains a distance d’(j) with each node j, which is

an upper bound on the shortest path length from node j to node t.

As before, the algorithm designates a set of nodes, say S’, as permanently labeled and the

remaining set of nodes, say S
′
, as temporarily labeled. At each iteration, the algorithm

designates a node with the minimum temporary distance label, say d’(j), as permanent.

It then examines each incoming arc (i, j) and modifies the distance label of node i

to min{d’(i), cij + d’(j)}. The algorithm terminates when all the nodes have become

permanently labeled.

2.2.3 Bidirectional Dijkstra’s Algorithm

In some applications of the shortest path problem, is needed not determine a shortest

path from node s to every other node in the network.

Suppose, instead, that is wanted to determine a shortest path from node s to a specified

node t. To solve this problem and eliminate some computations, is possible to terminate

Dijkstra’s algorithm as soon as it has selected t from S (even though some nodes are still

temporarily labeled). The bidirectional Dijkstra’s algorithm, which is described next,

allow to solve this problem even faster in practice (though not in the worse case)[7]

In the bidirectional Dijkstra’s algorithm, is applied simultaneously the forward Dijkstra’s

algorithm from node s and reverse Dijkstra’s algorithm from node t. The algorithm

alternatively designates a node in S and a node in S’ as permanent until both the

forward and reverse algorithms have permanently labeled the same node, say node k

(i.e., S ∩ S’ = {k}).
At this point, let P(i) denote the shortest path from node s to node i ∈ S found by the

forward Dijkstra’s algorithm, and let P’(j) denote the shortest path from node j ∈ S’

to node t found by the reverse Dijkstra’s algorithm.

A straightforward argument shows that the shortest path from node s to node t is either

the path P(k) ∪ P’(k) or a path P(i) ∪ {(i, j)} ∪ P’(j) for some arc (i, j), i ∈ S and

j ∈ S’. This algorithm is very efficient because it tends to permanently label few nodes

and hence examines the arcs incident to a large number of nodes.

Chapter 2. Basic Concepts 12

2.3 Genetic Algorithms

2.3.1 Introduction

Genetic algorithms are search algorithms based on the mechanics of natural selection

and natural genetics. They combine survival of the fittest among string structures with

a structured yet randomized information exchange to form a search algorithm with some

of the innovative flair of human search. In every generation, a new set of artificial crea-

tures (strings) is created using bits an pieces of the fittest of the old; an occasional new

part is tried for good measure.

While randomized, genetic algorithms are no simple random walk. They efficiently ex-

ploit historical information to speculate on new search point with expected improved

performance.

Genetic algorithms have been developed by John Holland, his colleagues, and his stu-

dents at the University of Michigan. The goal of their research have been twofold: (1)

to abstract and rigorously explain the adaptive processes of natural systems, and (2)

to design artificial systems software that retains the important mechanisms of natural

systems. This approach has led to important discoveries in both natural and artificial

system science.

The central theme of research on genetic algorithms has been robustness, the balance

between efficiency and efficacy necessary for survival in many different environments.

The implications of robustness for artificial for artificial systems are manifold. If artifi-

cial systems can be made more robust, costly redesigns can be reduced or eliminated. If

higher levels of adaptation can be achieved, existing systems can perform their functions

longer and better. Designers of artificial systems - both software and hardware, whether

engineering systems, computer systems, or business systems - can take advantage of

the robustness, the efficiency, and the flexibility of biological systems. Features for self-

repair, self-guidance, and reproduction are the rule in biological systems, whereas they

barely exist in the most sophisticated artificial systems.

2.3.2 Robustness of Traditional Optimization and Search Methods

The current literature identifies three main types of search methods: calculus-based,

enumerative, and random.

Calculus-based methods have been studied heavily. These subdivide into two main

classes: indirect and direct. Indirect methods seek local extrema by solving the usually

nonlinear set of equations resulting from setting the gradient of the objective function

Chapter 2. Basic Concepts 13

equal to zero. This is the multidimensional generalization of the elementary calculus

notion of extremal points, as illustrated in Figure 2.1

Figure 2.1: The single-peak function is easy for calculus-based methods.[8]

Given a smooth, unconstrained function, finding a possible peak starts by restricting

search to those points with slopes of zero in all directions. On the other hand, direct

(search) methods seek local optima by hopping in the function and moving in a direc-

tion related to the local gradient. This is simply the notion of hill-climbing : to find the

local best, climb the function in the steepest permissible direction. While both of these

calculus-based methods have been improves, extended, hashed, and rehashed, some sim-

ple reasoning shows their lack of robustness.

First, both methods are local in scope; the optima they seek are the best in a neigh-

borhood of the current point. For example, suppose that Figure 2.1 shows a portion of

complete domain of interest; a more complete picture is shown in Figure 2.2. Clearly,

starting the search or zero-finding procedures in the neighborhood of the lower peak will

cause to miss the main event (the higher peak). Furthermore, once the lower peak is

reached, further improvement must be sought through random restart or they trickery.

Second, calculus-based methods depend upon the existence of derivates, this is a severe

shortcoming. Many practical parameters spaces have little respect for the notion of a

derivate and the smoothness this implies.

The real world of search is fraught with discontinuities and vast multimodal. noisy search

spaces as depicted in a less calculus-friendly function like the one shown on Figure 2.3.

It comes as no surprise that methods depending upon the restrictive requirements of

continuity and derivative existence are unsuitable for all but a very limited problem

Chapter 2. Basic Concepts 14

Figure 2.2: The multiple-peak function[8]

domain. For this reason and because of their inherently local scope search, the calculus-

based methods are insufficient to solve these type of problems. They are insufficiently

robust in unintended domains.

Figure 2.3: A typical function found in real world[8]

Enumerative schemes have been considered in may shapes and sizes. The idea is fairly

straightforward; within a finite search space, or a discretized infinite search space, the

search algorithm starts looking at objective function values at every point in the space,

one at time. Although the simplicity of this type of algorithm is attractive, and enumer-

ation is a very kind of search (when the number of possibilities is small), such schemes

must ultimately be discounted in the robustness race for one simple reason: lack of

efficiency. Many practical spaces are simply too large to search one at a time and still

have a chance of using the information to some practical end. Even the highly touted

enumerative scheme dynamic programming breaks down on problems of moderate size

Chapter 2. Basic Concepts 15

and complexity, suffering from a malady melodramatically labeled ”the curse of dimen-

sionality” by its creator (Bellman, 1961). Concluding, less clever enumerative schemes

are similarly, and more abundantly, cursed for real problems.

Random search algorithms have achieved increasing popularity as researchers have recog-

nized the shortcomings of calculus-based and enumerative schemes. Yet, random walks

and random schemes that search and save the best must also be discounted because of

the efficiency requirement. Random searches, in the log run, can be expected to do no

better than enumerative schemes. But before discount strictly random search methods,

they must be separated from randomized techniques.

The genetic algorithm is an example of a search procedure that uses random choice

as a tool to guide a highly exploitative search through a coding of a parameter space.

Using random choice as a tool in a directed search process seems strange at first, but

nature contains many examples. Another currently popular search technique, simulated

annealing, uses random processes to help guide its form of search for minimal energy

states.

2.3.3 The Goals of Optimization

Optimization seeks to improve performance toward some optimal point or points. Note

that this definition has two parts: (1) seek improvement to approach some (2) optimal

point. There is a clear distinction between the process of imporvement and the desti-

nation or optimum itself. Yet, in judging optimization procedures, typically the target

focused is solely the convergence (does the method reach the optimum?) and forget en-

tirely about interim performance. This emphasis stems form the origins of optimization

in calculus. It is not, however, a natural emphasis.

Consider a human decision maker, for example, a businessman. How to judge his deci-

sions? What criteria is used to decide whether he has done a good or bad job? Usually

the criteria is make adequate selections within the times and resources allotted. Does

he produce a better widget? Does he get it to market more efficiently? With better

promotion? Thee businessman is never judged by an attainment of the best criteria;

perfection is all too stern a taskmaster.

As a result, the conclusion is that convergence to the best is not an issue in business or

in most work scenarios, the only concerned matter is doing better relative to others[9]

This, to reach more humanlike optimization tools, the priorities of optimization should

be reordered. The most important goal of optimization is improvement.

Attainment of the optimum is much less important for complex systems. It would be

nice to be perfect: meanwhile, we can only strive to improve.

Chapter 2. Basic Concepts 16

2.3.4 Differences between Genetic Algorithms and Traditional Meth-

ods

In order for genetic algorithms to surpass the more traditional methods in quest for

robustness, Genetic Algorithmss (GAs) must differ in some very fundamental ways.

GAs are different from more normal optimization and search procedure in four ways:

1. GAs work with a coding of the parameter set, not the parameters themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff (objective function) information, not derivatives or other auxiliary

knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

GAs require the natural parameter set of the optimization problem to be coded as a

finite-length string over some finite alphabet. As an example, consider the optimization

problem posed in Figure 2.4

The target is to maximize the function f(x) = x2 on the integer interval [0, 31]. With

more traditional methods, we would be tempted to twiddle with the parameter x, until

the highest objective function value is reached.

With glsplga, the first step of the optimization process is to code the parameter x as a

finite-length string. Let consider an optimization problem where the coding comes a bit

more naturally.

Figure 2.4: A simple function optimization example, the function f(x) = x2 on the
integer interval [0, 31][8]

Consider the black box switching problem illustrated in Figure 2.5. This problems

concerns a black box device with a bank of five input switches. For every setting of the

five switches, there is an output signal f, mathematically f = f(s), where s is a particular

Chapter 2. Basic Concepts 17

setting of the five switches.

The objective of the problem is to set the switches to obtain the maximum possible f

value. With other methods of optimization, we might work directly with the parameter

set (the switch settings) and toggle switches from one setting to another using the

transition rules of our particular method.

Figure 2.5: A black box optimization problem with five on-off switches illustrates
the idea of a coding and a payoff measure. Genetic algorithms only require these two

things: they don’t need to know the workings of the black box[8]

With genetic algorithms, we first code the switches as a finite-length string. A simple

code can be generated by considering a string of five 1’s and 0’s where each of the five

switches is represented by a 1 if the switch is on and a 0 is the switch is off. With this

coding, the string 11110 codes the setting where the first four switches are in and the

fifth switch is off. Some of the codings introduced later will not be obvious, but at this

juncture we acknowledge that genetic algorithms use codings.

In many optimization methods, we move gingerly from a single point in the decision

space to the next using some transitions rule to determine the next point. This point-

to-point method is dangerous because it is a perfect prescription for locating flase peaks

in multimodal (many-peaked) search spaces.

By contrast, GAs work from a rich database of points simultaneously (a population of

strings), climbing many peaks in parallel; thus, the probability of finding a false peak

is reduced over methods that go point to point. As an example, consider the black box

optimization problem (Figure 2.5) again.

Other techniques for solving this problem might start with one set of switch settings,

apply some transition rules, and generate a new trial switch setting.

A genetic algorithm starts with a population of strings and thereafter generates suc-

cessive populations of strings. For example, in the five-switch problem, a random start

using successive coin flips (head = 1, tail = 0) might generate the initial population of

size n = 4 (small by genetic algorithm standards):

01101

Chapter 2. Basic Concepts 18

11000

01000

10011

After this start, successive populations are generated using the genetic algorithm. By

working form a population of well-adapted diversity instead of a single point, the genetic

algorithm adheres to the old adage that there is safety in numbers; this parallel flavor

contributes to a genetic algorithm’s robustness[10].

Many search techniques require much auxiliary information in order to work properly.

For example, gradient techniques need derivates (calculated analytically or numerically)

in order to be able to climb the current peak, and other local search procedures like

the techniques of combinatorial optimization requires access to most if not all tabular

parameters.

By contrast, genetic algorithms have no need for all this auxiliary information: GAs are

blind. To perform an effective search for better and better structures, they only require

payoff value (objective function values) associated with individual strings. This char-

acteristic makes a GA a more canonical method than many search schemes. After all,

every search problem has a metric (or metrics) relevant to the search; however, different

search problems have vastly different forms of auxiliary information.

On the other hand, the refusal to use specific knowledge when it does exist can place

an upper bound on the performance of an algorithm when it goes head to head with

methods designed for that problem.

Unlike many methods, GAs use probabilistic transition rules to guide their search. To

persons familiar with deterministic methods this seems odd, but the use of probability

does not suggest that the method is some simple random search; this is not decision

making at the toss of a coin. Genetic algorithms use random choice as a tool to guide a

search toward regions of the search space with likely improvement.

Taken together, these four differences - direct use of a coding, search from a popula-

tion, blindness to auxiliary information, and randomized operators - contribute to a

genetic algorithm’s robustness and resulting advantage over other more commonly used

techniques.

2.3.5 A Simple Genetic Algorithm

The mechanics of a simple genetic algorithm are surprisingly simple, involving nothing

more complex than copying strings and swapping partial strings. The explanation of

why this simple process works is much more subtle and powerful. Simplicity of operation

and power of effect are two of the main attractions of the genetic algorithm approach.

The previous subsection pointed out how genetic algorithm process populations of strings.

Chapter 2. Basic Concepts 19

Recalling the black box switching problem, remember that the initial population had

four strings:

01101

11000

01000

10011

Also recall that this population was chosen at random through 20 successive flips of

an unbiased coin. We now must define a set of simple operations that take this initial

population and generate successive population that (hopefully) improve over time.

A simple genetic algorithm that yields good results un many practical problems is com-

posed of three operators:

1. Reproduction

2. Crossover

3. Mutation

Reproduction is a process in which individual strings are copied according to their ob-

jective function values, f (biologist call this function the fitness function). Intuitively,

we can think of the function f as some measure of profit, utility, or goodness that we

want to maximize. Copying strings according to their fitness values means that strings

with higher value have a higher probability of contributing one or more offspring in the

next generation. This operator, of course, is an artificial version of natural selection, a

Darwinian survival of the fittest among string creatures. In natural populations fitness

is determined by a creature’s ability to survives predators, pestilence, and the other ob-

stacles to adulthood and subsequent reproduction. In our unabashedly artificial setting,

the objective functions is the final arbiter of the string-creature’s life or death.

The reproduction operator may be implemented in algorithmic form in a number of

ways. Perhaps the easiest is to create a biased roulette wheel where each current string

in the population has a roulette wheel slot sized in proportion to its fitness. Suppose the

sample population has a roulette wheel slot sized in proportion to its fitness. Suppose

the sample population of four strings in the black box problem has objective or fitness

function values f as shown in Table 2.1.

Summing the fitness over all four strings, we obtain a total of 1170. The percentage of

population total fitness is also shown in the table. The corresponding weighted roulette

wheel for this generation’s reproduction is shown in Figure 2.6. To reproduce, we simply

spin the weighted roulette wheel thus defines four times. For the example problem, string

Chapter 2. Basic Concepts 20

Figure 2.6: Simple reproduction allocates offspring strings using a roulette wheel with
slots sized according to fitness[8]

No. String Fitness % of Total

1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 30.9

Total 1170 100.0

Table 2.1: Sample Problem Strings and Fitness Values

number 1 has a fitness value of 169, which represents 14.4 percent of the total fitness. As

a result, string 1 is given 14.4 percent of the biased roulette wheel, and each spin turns

up string 1 with probability 0.144. Each time we require another offspring, a simple

spin of the weighted roulette wheel yields the reproduction candidate. In this way, more

highly fit strings have a higher number of offspring in the succeeding generation. Once

a string has been selected for reproduction, an exact replica of the string is made. This

string is then entered into a mating pool, a tentative new population, for further genetic

operator action.

After reproduction, simple crossover (Figure 2.7) may proceed in two steps. First,

members of the newly reproduces strings in the mating pool are mated at random.

Second, each pair of strings undergoes crossing over as follows: an integer position k

along the string is selected uniformly at random and the string length less one [1, l -

1]. Two new strings are created by swapping all characters between positions k + 1

and l inclusively. For example, consider strings A1 and A2 from our example initial

population:

A1 = 0 1 1 0 | 1

A2 = 1 1 0 0 | 0

Suppose in choosing a random number between 1 and 4, we obtain a k = 4 (as indicated

by the separator symbol |). The resulting crossover yields two new strings where the

prime (’) means the strings are part of the new generation:

Chapter 2. Basic Concepts 21

A′1 = 0 1 1 0 0

A′2 = 1 1 0 0 1

Figure 2.7: A schematic of simple crossover shows the alignment of two strings and
the partial exchange of information, using a cross site chosen at random[8]

The mechanics of reproduction and crossover are surprisingly simple, involving random

number generation, string copies, and some partial string exchanges. Nonetheless, the

combined emphasis of reproduction and the structured, though randomized, information

exchange of crossover give genetic algorithms much of their power.

If reproduction according to fitness combined with crossover gives genetic algorithms

the bulk of their processing power, what then is the purpose of the mutation operator?

Mutation is needed because, even though reproduction and crossover effectively search

and recombine extant notions, occasionally they may become overzealous and lose some

potentially useful genetic material (1’s or 0’s at particular locations)[10]. In artificial

genetic systems, the mutation operator protects against such an irrecoverable loss. In

the simple GA, mutation is the occasional (with small probability) random alteration

of the value of a string position. In the binary coding of the black box problem, this

simply means changing a 1 to a 0 and vice versa. By itself, mutation is a random walk

through the string space. When used sparingly with reproduction and crossover, it is

an insurance policy against premature loss of important notions.

That the mutation operator plays a secondary role in the simple GA, we simply note

that the frequency of mutation to obtain per thousand bit (position) transfers. Mutation

rates are similarly small (or smaller) in natural populations, leading us to conclude that

mutation is appropriately considered as a secondary mechanism of genetic algorithm

adaptation.

Chapter 3

The Parallella Board

3.1 Introduction

3.1.1 Overview

The Parallella computer is a high performance, credit card sized computer based on the

Epiphany multi-core chips from Adapteva. The Parallella can be used as a standalone

computer, an embedded device or as a component in a scaled out parallel server cluster.

The Parallella includes a low power dual core ARM A9 processor and runs several of

the popular Linux distributions, including Ubuntu. For the development of the the-

sis, I’ve used the Linaro distribution, a lightweight open source OS designed to work

on ARM architectures. The unique Epiphany co-processor chips consists of a scalable

array of simple RISC processors programmable in bare metal C/C++ or in a parallel

programming frameworks like OpenCL, MPI, and OpenMP. The mesh of independent

cores are connected together with a fast on-chip-network within a distributed shared

memory architecture.

3.1.2 Technical Specifications

The Parallella Board has the below configuration:

• Zynq Z7020 Dual-core ARM A9 CPU

• 16-core Epiphany Coprocessor

• 1GB RAM

• MicroSD Card reader

• USB 2.0

22

Chapter 3. The Parallella Board 23

• Up to 48 GPIO signal

• Gigabit Ethernet

• HDMI port

• 54mm x 87mm form factor

Figure 1: The Parallella Board (top view)

Figure 2: The Parallella Board (bottom view)

 REV 14.09.09 10

Figure 3.1: Parallella Board (top view)[11]

Figure 1: The Parallella Board (top view)

Figure 2: The Parallella Board (bottom view)

 REV 14.09.09 10

Figure 3.2: Parallella Board (bottom view)[11]

Chapter 3. The Parallella Board 24

Figure 4: Parallella High Level Architecture

 REV 14.09.09 12

Figure 3.3: Parallella High Level Architecture[12]

3.2 Epiphany Architecture

3.2.1 Introduction

The Epiphany architecture defines a multicore, scalable, shared-memory, parallel com-

puting fabric. It consists of a 2D array of compute nodes connected by a low-latency

mesh network-on-chip. These are the key components of the architecture:

• Processor: 16 superscalar floating point RISC CPUs (eCore), each one capable

of two floating point operations per clock cycle and one integer calculation per

clock cycle. The CPU has a general-purpose instruction set and is programmable

with C/C++.

• Memory System: The Epiphany memory architecture is based on a flat shared

memory map in which each compute node has up to 1MB of local memory as a

unique addressable slice of the total 32-bit address space. A processor can access

its own local memory and other processor’s memory through regular load/store

instructions. The local memory system is comprised of 4 separate sub-banks,

allowing for simultaneous memory accesses by the instruction fetch engine, local

load-store instructions, and by memory transactions initiated by the DMA engine

other processors within system.

• Network-On-Chip: The Epiphany Network-on-Chip (eMesh) is a 2D mesh net-

work that handles all on-chip and off- chip communication. The eMesh network

uses atomic 32-bit memory transactions and operates without the need for any spe-

cial programming. The network consists of three separate and orthogonal mesh

structures, each serving different types of transaction traffic: one network for on-

chip write traffic, one network for off chip write traffic, and one network for all

read traffic.

Chapter 3. The Parallella Board 25

• Off-Chip IO: The eMesh network and memory architecture extends off-chip us-

ing source synchronous dual data rate LVDS links (”elinks”). Each eCore has 4

independent off-chip elinks, one in each physical direction (north, east, west and

south). The off chip links allows for glueless connection of multiple eCore chips on

a board and for interfacing to an FPGA.

Figure 3.4: eCore Architecture[12]

3.2.2 System Examples

The Epiphany co-processor can be used in different configurations, some of which are

shown in the next figure:

7 PRELIMINARY DATASHEET (SUBJECT TO CHANGE) REV 14.03.11

direction (north, east, west and south). The off chip links allows for glueless connection of multiple

E16G301chips on a board and for interfacing to an FPGA.

For more detailed information about the Epiphany architecture, please refer to the Epiphany

Architecture Reference Manual.

1.2 System Examples
The E16G301 product can be used in a number of different system configurations, some of which
are shown in this section.

Figure 1: Epiphany System Architecture

SDRAM

ETH
PCIe

FPGA
WITH
ARM

Epiphany

SDRAM

USB
ETH

SDIO

Etc..

FLASH

eLink

LARGE
FPGAUSB

SDIO

FLASH

4 * eLink

SMALL
FPGA

ARM
SOC

Epiphany

SDRAM

USB
ETH

SDIO

Etc..

FLASH

GPIO

Epiphany

Epiphany Epiphany

eLink(s)
Epiphany

Epiphany Epiphany

Epiphany Epiphany

 ADC JESD204 DMA eLinkeLink

 ADC JESD204 DMA eLinkeLink

 ADC JESD204 DMA eLinkeLink

 ADC JESD204 DMA eLinkeLink

 DAC JESD204DMAeLinkeLink

 DAC JESD204DMAeLinkeLink

 DACJESD204DMAeLinkeLink

 DACJESD204DMAeLinkeLink

FPGA FPGA

4*eLink 4*eLink

Figure 3.5: Epiphany System Architecture[12]

Chapter 3. The Parallella Board 26

3.2.3 Memory Architecture

To start programming the eCores, is important to know the Memory Architecture. The

most restrictives limitation to program the Epiphany co-processor is the lack of a high

amount of memory. Nowadays, the maximum capacity of each eCore is 32KB.

9 PRELIMINARY DATASHEET (SUBJECT TO CHANGE) REV 14.03.11

2 Memory Architecture
2.1 Global Memory Map
The memory map configuration of the E16G301 within the 32 bit memory map is controlled with

the ROWID[3:0] and COLID[3:0] chip input pins. The ROWID and COLID chip pins are sampled

on the rising edge of RESET_N and are used to set the offset of the core’s memory map. Figure 2

shows the distributed memory scheme of the Epiphany architecture. Table 1 shows the distribution

of the SRAM within a specific E16G301 chip without the specific chip-ID offset. The complete

core memory map of the local cores can be found in the Epiphany Architecture Reference Manual.

Figure 2: Epiphany Memory Architecture

RESERVED

INTERNAL MEMORY BANK 1

INTERNAL MEMORY BANK 0

INTERNAL MEMORY BANK 2

INTERNAL MEMORY BANK 30x00006000

0x00004000

0x00002000

0x00000000

MEMORY-MAPPED REGISTERS0x000F0000

LOCAL MEMORY 0x00000000

CORE_0_1
CORE_0_2
CORE_0_3

...
CORE_0_63

CORE_1_1
CORE_1_2
CORE_1_3

...

CORE_1_63

CORE_1_0

CORE_63_1
CORE_63_2
CORE_63_3

...
CORE_63_63

CORE_63_0
...

0x00100000
0x00200000
0x00300000

0x03F00000
0x04000000
0x04100000
0x04200000
0x04300000

0x07F00000

0xFC100000
0xFC200000
0xFC300000

0xFFF00000

0xFC000000LOCAL SPACE

GLOBAL SPACE

Figure 3.6: Epiphany Memory Architecture[12]

10 PRELIMINARY DATASHEET (SUBJECT TO CHANGE) REV 14.03.11

Chip Core Number Start Address End Address Size

(0,0) 00000000 00007FFF 32KB

(0,1) 00100000 00107FFF 32KB

(0,2) 00200000 00207FFF 32KB

(0,3) 00300000 00307FFF 32KB

(1,0) 04000000 04007FFF 32KB

(1,1) 04100000 04107FFF 32KB

(1,2) 04200000 04207FFF 32KB

(1,3) 04300000 04307FFF 32KB

(2,0) 08000000 08007FFF 32KB

(2,1) 08100000 08107FFF 32KB

(2,2) 08200000 08207FFF 32KB

(2,3) 08300000 08307FFF 32KB

(3,0) 0C000000 0C007FFF 32KB

(3,1) 0C100000 0C107FFF 32KB

(3,2) 0C200000 0C207FFF 32KB

(3,3) 0C300000 0C307FFF 32KB

Table 1: Relative Chip Memory Map

Figure 3.7: Epiphany Memory Map[12]

Chapter 3. The Parallella Board 27

3.3 eCore CPU

3.3.1 Overview

The different sub components of the eCore CPU are illustrated in Figure 3.8. The

processor includes a general purpose program sequencer, large general purpose register

file, integer ALU (IALU), floating point unit (FPU), debug unit, and interrupt controller.

34 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7 eCore CPU
7.1 Overview
The different sub components of the eCore CPU are illustrated in Figure 13. The processor

includes a general purpose program sequencer, large general purpose register file, integer ALU

(IALU), floating point unit (FPU), debug unit, and interrupt controller.

Figure 13: eCore CPU Overview

Program Sequencer

The program sequencer supports all standard program flows for a general-purpose CPU,

including:

x Loops: One sequence of instructions is executed several times. Loops are implemented using

general-purpose branching instructions, in which case the branching can be done by label or

by register.

x Functions: The processor temporarily interrupts the sequential flow to execute instructions

from another part of the program. The CPU supports all C-function calls, including recursive

functions.

64-Word
Register File

Floating-Point Unit
(FPU)

Integer ALU
(IALU)

Program
Sequencer

Interrupt
Controller

Debug
Unit

Figure 3.8: eCore CPU Overview[12]

Program Sequencer

The program sequencer supports all standard program flows for a general-purpose CPU,

including:

• Loops: One sequence of instructions is executed several times. Loops are imple-

mented using general-purpose branching instructions, in which case the branching

can be done by label or by register.

• Functions: The processor temporarily interrupts the sequential flow to execute

instructions from another part of the program. The CPU supports all C-function

calls, including recursive functions.

Chapter 3. The Parallella Board 28

• Jumps: Program flow is permanently transferred to another part of the program. A

jump by register instruction allows program flow to be transferred to any memory

location in the 32-bit address space that contains valid program code.

• Interrupts: Interrupt servicing is handled by the interrupt controller, which redi-

rects the program sequencer to an interrupt handler at a fixed address associated

with the specific interrupt event. Before entering the interrupt service routine, the

old value of the program counter is stored so that it can be retrieved later when

the interrupt service routine finishes.

• Idle: A special instruction that puts the CPU into a low-power state waiting for an

interrupt event to return the CPU to normal execution. This idle mode is useful,

for example, in signal processing applications that are real-time and data-driven.

• Linear: In linear program flows, the program sequencer continuously fetches in-

structions from memory to ensure that the processor pipeline is fed with a stream

of instructions without stalling.

Register File

The 9-port 64-word register file provides operands for the IALU and FPU and serves as

a temporary power efficient storage place instead of memory. Arithmetic instructions

have direct access to the register file but not to memory. Movement of data between

memory and the register file is done through load and store instructions. Having a large

number of registers allows more temporary variables to be kept in local storage, thus

reducing the number of memory read and write operations. The flat register file allows

user to balance resources between floating-point and integer ALU instructions as any

one of the 64 registers be used by the floating-point unit or IALU, without restrictions.

In every cycle, the register file can simultaneously perform the following operations:

• Three 32-bit floating-point operands can be read and one 32-bit result written by

FPU.

• Two 32-bit integer operands can be read and one 32-bit result written by IALU.

• A 64-bit double-word can be written or read using a load/store instruction.

Integer ALU

The Integer ALU (IALU) performs a single 32-bit integer operation per clock cycle.

The operations that can be performed are: data load/store, addition, subtraction, log-

ical shift, arithmetic shift, and bitwise operations such as XOR and OR. The IALU’s

single-cycle execution means the compiler or programmer can schedule integer code with-

out worrying about data-dependency stalls. All IALU operations can be performed in

Chapter 3. The Parallella Board 29

parallel with floating-point operations as long as there are no register-use conflicts be-

tween the two instructions. Pre and post modify addressing and double-word load/store

capability enables efficient loading and storing of large data arrays.

Floating Point Unit

The floating-point unit (FPU) complies with the single precision floating point IEEE754

standard, executes one floating-point instruction per clock cycle, supports round-to-

nearest even and round-to-zero rounding modes, and supports floating-point exception

handling. The operations performed are: addition, subtraction, fused multiply-add,

fused multiply-subtract, fixed-to-float conversion, absolute, float-to-fixed conversion.

Operands are read from the 64-entry register file and are written back to the register

file at the end of the operation. No restrictions are placed on register usage. Regu-

lar floating-point operations such as floating-point multiply/add read two 32-bit regis-

ters and produce a 32-bit result. A fused multiply-add instruction takes three input

operands and produces a single accumulated result. A large number of floating-point

signal-processing algorithms use the multiply-accumulate operations, and for these ap-

plications the fused operations has the potential of reducing the number clock cycles

significantly.

Interrupt Controller

The interrupt controller supports up to 10 interrupts and exceptions, with full support

for nested interrupts and interrupt masking.

Hardware Loops

Efficient zero overhead loops are supported through built in hardware support.

Debug Unit

The debug unit provide multicore debug capabilities such as: single stepping, break-

points, halt, and resume.

3.3.2 Data Types

The CPU architecture supports the following integer data types:

• Byte: 8 bits

• Half-Word: 16 bits (must be aligned on 2 byte boundary in memory)

• Double: 64 bits (must be aligned on 8 byte boundary in memory)

Chapter 3. The Parallella Board 30

The data types can be of signed or unsigned format, as shown below. All register-register

operations operate on word types only, but data can be stored in memory as any size.

For example, an array of bytes can be stored in memory by an external host, read into

the register file using the byte load instruction, operated on as 32-bit integers, and then

can stored back into memory using the byte store instruction.

Signed Integer Representation (from Most Significant Bit (MSB) to Least Signifi-

cant Bit (LSB))

-aN−1 · 2N−1aN−2 · 2N−2aN−3 · 2N−3aN−4 · 2N−4aN−5 · 2N−5 · · · a0 · 20

Unsigned Integer Representation (from MSB to LSB)

aN−1 · 2N−1aN−2 · 2N−2aN−3 · 2N−3aN−4 · 2N−4aN−5 · 2N−5 · · · a0 · 20

Floating-Point Data Types

The FPU supports the IEEE754 32-bit single-precision floating-point data format, shown

below:

37 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.2 Data Types
The CPU architecture supports the following integer data types:

x Byte: 8 bits

x Half-Word: 16 bits (must be aligned on 2 byte boundary in memory)

x Word: 32 bits (must be aligned on 4 byte boundary in memory)

x Double: 64 bits (must be aligned on 8 byte boundary in memory)

The data types can be of signed or unsigned format, as shown below. All register-register

operations operate on word types only, but data can be stored in memory as any size. For

example, an array of bytes can be stored in memory by an external host, read into the register file

using the byte load instruction, operated on as 32-bit integers, and then can stored back into

memory using the byte store instruction.

Signed Integer Representation

msb lsb

-aN-1∙2N-1 aN-2∙2N-2 aN-3∙2N-3 aN-4∙2N-4 aN-5∙2N-5 a0∙20

Unsigned Integer Representation

msb lsb

aN-1∙2N-1 aN-2∙2N-2 aN-3∙2N-3 aN-4∙2N-4 aN-5∙2N-5 a0∙20

Floating-Point Data Types

The FPU supports the IEEE754 32-bit single-precision floating-point data format, shown below:

SIGN EXP[7:0] MANTISSA[22:0]

A number in this floating-point format consists of a sign bit, s, a 24-bit mantissa, and an 8-bit

unsigned-magnitude exponent, e. For normalized numbers, the mantissa consists of a 23-bit

fraction, f, and a hidden bit of 1 that is implicitly presumed to precede f22 in the mantissa. The

binary point is presumed to lie between this hidden bit and f22. The least-significant bit (LSB) of

the fraction is f0;; the LSB of the exponent is e0. The hidden bit effectively increases the

A number in this floating-point format consists of a sign bit, s, a 24-bit mantissa, and an

8-bit unsigned-magnitude exponent, e. For normalized numbers, the mantissa consists

of a 23-bit fraction, f, and a hidden bit of 1 that is implicitly presumed to precede f22 in

the mantissa. The binary point is presumed to lie between this hidden bit and f22. The

least-significant bit (LSB) of the fraction is f0; the LSB of the exponent is e0. The hidden

bit effectively increases the precision of the floating-point mantissa to 24 bits from the

23 bits actually stored in the data format. This bit also ensures that the mantissa of any

number in the IEEE normalized number format is always greater than or equal to 1 and

less than 2. The exponent, e, can range between 1 ≤ e ≤ 254 for normal numbers in the

single-precision format. This exponent is biased by +127 (254/2). To calculate the true

unbiased exponent, 127 must be subtracted from e. The IEEE standard also provides

for several special data types in the single-precision floating- point format, including:

• An exponent value of 255 (all ones) with a nonzero fraction is a not-a-number (Not

A Number (NAN)). NANs are usually used as flags for data flow control, for the

values of uninitialized variables, and for the results of invalid operations such as 0

∗ ∞.

• Infinity is represented as an exponent of 255 and a zero fraction. Because the

number is signed, both positive and negative infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with infinity, both

positive zero and negative zero can be represented. The IEEE single-precision

Chapter 3. The Parallella Board 31

floating-point data types supported by the processor and their interpretations are

summarized in Figure 3.9.

38 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

precision of the floating-point mantissa to 24 bits from the 23 bits actually stored in the data

format. This bit also ensures that the mantissa of any number in the IEEE normalized number

format is always greater than or equal to 1 and less than 2. The exponent, e, can range between 1

≤ e ≤ 254 for normal numbers in the single-precision format. This exponent is biased by +127

(254/2). To calculate the true unbiased exponent, 127 must be subtracted from e.

The IEEE standard also provides for several special data types in the single-precision floating-

point format, including:

x An exponent value of 255 (all ones) with a nonzero fraction is a not-a-number (NAN). NANs

are usually used as flags for data flow control, for the values of uninitialized variables, and

for the results of invalid operations such as 0 ∗ ∞.
x Infinity is represented as an exponent of 255 and a zero fraction. Because the number is

signed, both positive and negative infinity can be represented.

x Zero is represented by a zero exponent and a zero fraction. As with infinity, both positive

zero and negative zero can be represented. The IEEE single-precision floating-point data

types supported by the processor and their interpretations are summarized in Table 5.

Table 5: IEEE Single-Precision Floating-Point Data Types

Type Sign Exponent Mantissa Value

NAN X 255 Nonzero Undefined

Infinity S 255 Zero (-1)S * Infinity

Normal S 1 <= e <=254 Any (-1)S * (1.M22-0) 2e-127

Denormal S 0 Any (-1)S * Zero

Zero S 0 0 (-1)S * Zero

 Figure 3.9: IEEE Single-Precision Floating-Point Data Types[1]

The CPU is compatible with the IEEE-754 single-precision format, with the following

exceptions:

• No support for inexact flags.

• INAN inputs generate an invalid exception and return a quiet NAN. When one or

both of the inputs are NANs, the sign bit of the operation is set as an XOR of the

signs of the input sign bits.

• Denormal operands are flushed to zero when input to a computation unit and do

not generate an underflow exception. Any denormal or underflow result from an

arithmetic operation is flushed to zero and an underflow exception is generated.

• Round to ±∞ is not supported.

By default, the FPU performs round-to-nearest even IEEE754 floating-point rounding.

In this rounding mode, the intermediate result is rounded to the nearest complete number

that fits within the final 32-bit floating-point data format. If the result before rounding

is exactly halfway between two numbers in the destination format (differing by an LSB),

the rounded result is that number which has an LSB equal to zero. Statistically, rounding

up occurs as often as rounding down, so there is no large sample bias.

The FPU supports truncation rounding when the rounding mode bit is set in the Core

Configuration Register. In truncate rounding mode, the intermediate mantissa result

bits that are not within the first 23 bits are ignored. Over a large number of accumula-

tions, there can be a large sample bias in the computation, so truncation rounding mode

should be avoided for most applications.

Chapter 3. The Parallella Board 32

The FPU detects overflow, underflow, and invalid conditions during computations. If

one of these conditions is detected, a software exception signal is sent to the inter-

rupt controller to start an exception handling routine. Double-precision floating-point

arithmetic is emulated using software libraries and should be avoided if performance

considerations outweigh the need for additional precision.

3.3.3 Local Memory Map

Figure 3.10 summarizes the memory map of the eCore CPU local memory. All registers

40 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.3 Local Memory Map
Table 6 summarizes the memory map of the eCore CPU local memory.

Table 6: eCore Local Memory Map Summary

Name Start Address End Address Size

(Bytes)

Comment

Interrupt Vector
Table

0x00 0x3F 64 Local Memory

Bank 0 0x40 0x1FFF 8KB-64 Local Memory Bank

Bank 1 0x2000 0x3FFF 8KB Local Memory Bank

Bank 2 0x4000 0x5FFF 8KB Local Memory Bank

Bank 3 0x6000 0x7FFF 8KB Local Memory Bank

Reserved 0x8000 0xEFFFF n/a Reserved for future
memory expansion

Memory Mapped
Registers

0xF0000 0xF07FF 2048 Memory mapped
register access

Reserved 0xF0800 0xFFFFF n/a N/A

All registers are memory-mapped and can be accessed by external agents through a read or write

of the memory address mapped to that register or through a program executing MOVTS/MOVFS

instructions. A complete listing of all registers and their corresponding addresses can be found in

Appendix B. The eCore complete local memory space is accessible by any master within an

Epiphany system by adding 12-bit processor node ID offset to the local address locations.

Reading directly from the general-purpose registers by an external agent is not supported while

the CPU is active. Unmapped bits and reserved bits within defined memory-mapped registers

should be written with zeros if not otherwise specified.

7.4 General Purpose Registers
The CPU has a general-purpose register file containing 64 registers shown in Table 7. General-

purpose registers have no restrictions on usage and can be used by all instructions in the

Epiphany instruction-set architecture. The only general purpose register written implicitly by an

Figure 3.10: eCore Local Memory Map Summary[1]

are memory-mapped and can be accessed by external agents through a read or write of

the memory address mapped to that register or through a program executing MOVT-

S/MOVFS instructions. The eCore complete local memory space is accessible by any

master within an Epiphany system by adding 12-bit processor node ID offset to the local

address locations. Reading directly from the general-purpose registers by an external

agent is not supported while the CPU is active. Unmapped bits and reserved bits within

defined memory-mapped registers should be written with zeros if not otherwise specified.

3.3.4 General Purpose Register

The CPU has a general-purpose register file containing 64 registers shown in Table

3.1. General-Purpose registers have no restrictions on usage and can be used by all

instructions in the Epiphany instruction-set architecture. The only general purpose

Chapter 3. The Parallella Board 33

register written implicitly by an instruction is register R14, used to save a PC on a

functional call. The register convention shown in Table 3.1 shows the register usage

assumed by the compiler to ensure safe design and interoperability between different

libraries written in C and or assembly. The registers do not have default values.

Name Synonym Role in the Procedure Call Standard Saved By

R0 A1 Argument/result/scratch register #1 Caller saved

R1 A2 Argument/result/scratch register #2 Caller saved

R2 A3 Argument/result/scratch register #3 Caller saved

R3 A4 Argument/result/scratch register #4 Caller saved

R4 V1 Register variable #1 Caller saved

R5 V2 Register variable #2 Caller saved

R6 V3 Register variable #3 Caller saved

R7 V4 Register variable #4 Caller saved

R8 V5 Register variable #5 Caller saved

R9 V6/SB Register variable #6/Static base Caller saved

R10 V7/SL Register variable #7/Static base Caller saved

R11 V8/FP Variable Register #8/Frame Pointer Caller saved

R12 - Intra-procedure call scratch register Caller saved

R13 SP Stack Pointer Caller saved

R14 LR Link Register Caller saved

R15 - General Use Caller saved

R16-R27 - General use Caller saved

R28-R31 - Reserved for constants N/A

R32-R43 - General use Caller saved

R44-R63 - General use Caller saved

Table 3.1: General-Purpose Registers[1]

The first four registers, R0-R3 (or A1-A4), are used to pass arguments into a subroutine

and to return a result from a function. They can also be used to hold intermediate

values within a function. The registers R4-R8, R10, R11 (or V1-V5, V7-V8) are used to

hold the values of a routine’s local variables. The following registers are set implicitly

by certain instructions and architecture convention dictates that they have fixed use.

• Stack Pointer: Register R13 is a dedicated as a stack pointer (SP).

• Link Register: The link register, LR (or R14), is automatically written by the

CPU when the BL or JALR instruction is used. The register is automatically read

by the CPU when the RTS instruction is used. After the linked register has been

saved onto the stack, the register can be used as a temporary storage register.

3.3.5 Epiphany Instruction Set

The Epiphany instruction-set architecture (ISA) is optimized for real-time signal pro-

cessing application, but it has all the features needed to also perform well in standard

Chapter 3. The Parallella Board 34

control code. Instruction set highlights include:

• Orthogonal instruction set, with no restrictions on register usage.

• Instruction set optimized for floating point computation and efficient data move-

ment.

• Post-modify load/store instructions for efficient handling of large array structures.

• Rich set of branch conditions, with 3-cycle branch penalty on all taken branches

and zero penalty on untaken branches.

• Conditional move instructions to reduce branch penalty for simple control-code

structures.

• Instructions with immediate modifies for high code density and low power con-

sumption.

• Compact and efficient floating-point instruction set.

The ISA uses a split width instruction encoding method, which improves code density

compared with standard 32-bit width encoding. All instructions are available as both

16 and 32-bit instructions, with the instruction width depending on the registers used in

the operation. Any command that uses registers 0 through 7 only and does not have a

large immediate constant is encoded as a 16-bit instruction. Commands that use higher

numbered registers are encoded as 32-bit instructions. This encoding is transparent to

the user, but is carefully integrated with the compiler to minimize C-based code size

and power consumption.

Branch Instructions

Unrestricted branching is supported throughout the 32-bit memory map using branch

instructions and register jump instructions. Branching can occur conditionally, based

on the arithmetic flags set by the integer or floating-point execution unit. The following

table illustrates the condition codes supported by the ISA. The architecture supports

two sets of flags to allow independent conditional execution and branching of instructions

based on results from two separate arithmetic units. The full set of branching conditions

allows the synthesis of any high-level control comparison, including: <,<=,=,==, ! =

, >=, and >. Both signed and unsigned arithmetic is supported.

Load/Store Instructions

Load and store instructions move data between the general-purpose register file and

any legal memory location within the architecture, including external memory and any

other eCore CPU in the system. All other instructions, such as floating-point and

integer arithmetic instructions, are restricted to using registers as source and destination

operands.

Chapter 3. The Parallella Board 35

• Displacement Addressing: The memory address is calculated by adding an

immediate offset to a base register value. The immediate offset is limited to 3

bits for 16-bit load/store instructions or 11 bits for 32-bit load/store instructions.

The base register value is not modified by the load/store operation. This mode is

useful for accessing local variables.

• Indexed Addresing: The memory address is calculated by adding a register

value offset to a base register value. The base register value is not modified by the

load/store operation. This mode is useful in array addressing.

• Post-Modify Auto-increment Addressing: The memory address is taken di-

rectly from the base register value. After the memory operation has completed,

a register offset is added to the base register value and written back to the base

register. This mode is useful for processing large data arrays and for implementing

an efficient stack-pop operation.

Byte, short, word, and double data types are supported by all load/store instruction

formats. All loads and stores must be aligned with respect to the data size being used.

Short (16-bit) data types must be aligned on 16-bit boundaries in memory, word (32-bit)

data types must be aligned on 32-bit boundaries, and double (64-bit) data types must be

aligned on 64-bit boundaries. Unaligned memory accesses returns unexpected data and

generates a software exception. Double data type load/store instructions must specify

an even register in the general-purpose register file. The corresponding odd register is

written implicitly. Attempts to use odd registers with double data format is flagged as

an error by the assembler.

Integer Instructions

General-purpose integer instructions, such as ADD, SUB, ORR, AND, are useful for

control code and integer math. These instructions work with immediate as well as

register-based operands. The instructions update the integer status bits of the STATUS

register.

Floating-Point Instructions

An orthogonal set of IEEE754-compliant floating-point instructions for signal processing

applications. These instructions update the floating-point status bits of the STATUS

register.

Secondary Signed Integer Instructions

The basic floating point instruction set can be substituted with a set of signed integer

instructions by setting the appropriate mode bits in the CONFIG register [19:16]. These

Chapter 3. The Parallella Board 36

instructions use the same opcodes as the floating-point instructions and include: IADD,

ISUB, IMUL, IMADD, IMSUB.

Register Move Instructions

All register moves are done as complete word (32-bit) entities. Conditional move in-

structions support the same set of condition codes as the branch instructions

Program Flow Instructions

A number of special instructions used by the run time environment to enable efficient

interrupt handling, multicore programming, and program debug.

3.3.6 Pipeline Description

The Epiphany CPU has a variable length instruction pipeline that depends on the type

of instruction being executed. All instructions share the same instruction pipeline until

the E1 pipeline stage, and instructions are guaranteed to complete once they reach that

stage. Load instructions complete at stage E2, and floating-point instructions complete

at stage E4. All other instructions complete at E1. Instructions are dispatched in-order

but can finish out-of-order. The pipeline controller makes sure that the integrity of the

program is maintained by stalling the pipeline appropriately if there is a read-after-write

(RAW) or write-after-write (WAW) pipeline hazard.

In the execution of instructions, the CPU implements an interlocked pipeline. When an

instruction executes, the target register of the read operation is marked as busy until

the write has been completed. If a subsequent instruction tries to access this register

before the new value is present, the pipeline will stall until the previous instruction

completes. This stall guarantees that instructions that require the use of data resulting

from a previous instruction do not use the previous or invalid data in the register.

3.3.7 Interrupt Controller

The eCore interrupt controller provides full support for prioritized nested interrupt ser-

vice routines. Figure 3.13 shows the behavior of the hardware mechanisms within the

interrupt controller and how the user can control the behavior of the system through

code.

Chapter 3. The Parallella Board 37

57 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.7 Pipeline Description

The Epiphany CPU has a variable-length instruction pipeline that depends on the type of

instruction being executed. All instructions share the same instruction pipeline until the E1

pipeline stage, and instructions are guaranteed to complete once they reach that stage. Load

instructions complete at stage E2, and floating-point instructions complete at stage E4. All other

instructions complete at E1.

Instructions are dispatched in-order but can finish out-of-order. The pipeline controller makes

sure that the integrity of the program is maintained by stalling the pipeline appropriately if there

is a read-after-write (RAW) or write-after-write (WAW) pipeline hazard.

Table 17: Pipeline Stage Description

Stage Name Mnemonic Action

1 Fetch Address FE Fetch address sent to instruction memory

2 Instruction
Memory Access

IM Instruction returns from core memory

3 Decode DE Instructions are decoded

4 Register Access RA Operands are read from register file for all instructions

5 Execution E1 Load/store address calculation
Register read from register file for memory store
operation
Most instructions completed
Integer status flags written
Branching and jumps change program flow

6 Execution E2 Data from load instruction written to register file

7 Execution E3 Floating-point result written to register file in case of
truncation rounding mode

8 Execution E4 Floating-point result written to register file in case of
round-to-nearest-even rounding mode.

Figure 3.11: Pipeline Stage Description[11]

58 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 14: Pipeline Graphical View

In the execution of instructions, the CPU implements an interlocked pipeline. When an

instruction executes, the target register of the read operation is marked as busy until the write has

been completed. If a subsequent instruction tries to access this register before the new value is

present, the pipeline will stall until the previous instruction completes. This stall guarantees that

instructions that require the use of data resulting from a previous instruction do not use the

previous or invalid data in the register.

Dual-Issue Scheduling Rules
The CPU has a static dual-issue architecture that allows two instructions to be executed in

parallel on every clock cycle, if certain parallel-issue rules are followed. The basic requirement

for dual issue is that the instruction dispatch is done in-order. This means that for two

instructions to be issued in parallel (on the same clock cycle), there can be no read-after-write

(RAW) or write-after-write (WAW) register dependencies between the two instructions.

For the purpose of the following data-dependency tables, the instruction set can be divided into

the following instruction groups.

x IALU: ADD, SUB, ASR, LSR, LSL, EOR, AND, ORR, BITR, MOVT, MOV

x IALU2: IADD, ISUB, IMUL, IMADD, IMSUB

x FPU: FADD, FSUB, FMUL, FMADD, FMSUB, FIX, FLOAT, FABS

x LOAD/STORE: LDR, STR

x CONTROL: JR, JALR, B<COND>, BL, MOVTS, MOVFS, NOP

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4IM DE RA E1 E2 E3 E4

instr

time

Figure 3.12: Pipeline Graphical View[11]

3.3.8 Hardware Loops (LABS)

The Epiphany core supports zero overhead loops with the LC (loop counter), LS (loop

start address), and LE (loop end address) registers. The three hardware loop registers

must be correctly programmed before executing the critical code section. When the

program counter (PC) matches the value in LE and the LC is greater than zero, the PC

gets set to the address in LS. The LC register decrements automatically every time the

program scheduler completes one iteration of the code loop defined by LS and LE.

Chapter 3. The Parallella Board 38

63 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.8 Interrupt Controller

7.8.1 Overview
The eCore interrupt controller provides full support for prioritized nested interrupt service

routines. Figure 14 shows the behavior of the hardware mechanisms within the interrupt

controller and how the user can control the behavior of the system through code.

Figure 15: Interrupt Service Routine Operation

ILAT[N]
SET

NO

~HALT &
~GID &

~IMASK[N] &
~|IPEND[N:0]

NO

Fetch IVT Addr &
IRET=PC

If nesting,
Save Context &
Execute “GIE”

Execute ISR

Execute “GID” &
Restore Context &

Execute “RTI”

IPEND[N] cleared &
PC=IRET

USER

HARDWARE

Figure 3.13: Interrupt Service Routine Operation[1]

The Epiphany hardware loop does place certain restrictions on the program:

• All interrupts must be disabled while inside a hardware loop.

• The start of the loop must be aligned on a double word boundary.

• The next-to-last instruction must be aligned on a double word boundary.

• All instructions in the loop set as 32 bit instructions using ”.l” assembly suffix

• The minimum loop length is 8 instructions.

3.3.9 Direct Memory Access (DMA)

Each Epiphany processor node contains a DMA engine to facilitate data movement

across the eMesh network. The DMA engine works at the same clock frequency as the

CPU and can transfer one 64-bit double word per clock cycle, enabling a sustained data

transfer rate of 8GB/sec. The DMA engine has two general-purpose channels, with

separate configuration for source and destination.

The main features of the DMA engine are:

• Two independent DMA channels per processor node.

Chapter 3. The Parallella Board 39

• Separate specification of source/destination address configuration per descriptor

and channel.

• 2D DMA operation.

• Flexible stride sizes

• DMA descriptor chaining.

• Hardware interrupts flagging to local CPU subsystem.

The Figure 3.14 shows the kind of transfers supported by the processor node’s DMA

engine.

69 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

8 Direct Memory Access (DMA)
8.1 Overview
Each Epiphany processor node contains a DMA engine to facilitate data movement across the

eMesh network. The DMA engine works at the same clock frequency as the CPU and can

transfer one 64-bit double word per clock cycle, enabling a sustained data transfer rate of

8GB/sec. The DMA engine has two general-purpose channels, with separate configuration for

source and destination.

The main features of the DMA engine are:

x Two independent DMA channels per processor node.

x Separate specification of source/destination address configuration per descriptor and channel.

x 2D DMA operation.

x Flexible stride sizes

x DMA descriptor chaining.

x Hardware interrupts flagging to local CPU subsystem.

The following table shows the kind of transfers supported by the processor node’s DMA engine.

Table 25: DMA Transfer Types

Source Destination Function
Local
Memory

External
Memory

Data read from one of the four local memory banks, and send data to
the eMesh network as a write through the network interface.

External
Memory

Local
Memory

Read request sent to the eMesh network. You can decide if you want
an interrupt indication when the last data read transaction returns
(blocking DMA) or if the DMA should complete as soon as the last
read request goes out on the eMesh network (non-blocking DMA).

Autodma
Register

Local
Memory

Write from external master. This is used when the DMA is configured
in slave mode.

External
Memory

External
Memory

Read transaction sent to the eMesh network, destination could be
anything because read transactions are split transactions. For read
destinations residing outside of the Epiphany chip, care must be taken
to make sure that the memory supports the split transaction routing
mode needed to route the data read to the final write destination.

Figure 3.14: DMA Transfer Types[12]

The DMA engine has two complete data transfer channels and supports data movement

as a master as well as a slave device. In a slave configuration, the pace of the data

transfers is controlled by an external master. In a master configuration, the DMA

pushes a transaction every clock cycle if the necessary memory and interface resources

are available.

• In the MASTER mode, the DMA generates a complete transfer transaction with

a source and a destination address.

• In the SLAVE mode, the source address of a DMA configuration is ignored. The

data is always taken from the DMAxAUTO register and transferred to the des-

tination address. The pace of the transaction is driven by another master in the

system, which could be an I/O device, a programmable core, or another DMA

channel.

Chapter 3. The Parallella Board 40

3.3.10 Memory Protection Unit (LABS)

The Memory Protection Unit allows the user to specify parts or all of the local memory

as read only memory. The 32KB local memory is split into 8 4KB page that can be

independently set to read-only. If a write is attempted to a page that has been set

to read only, and the memory fault exception bit in the ILAT register is set. The

MEMPROTECT register can be used to help debug program faults related to stack

overflow and multicore memory clobbering.

3.4 Software Development Enviroment

The Epiphany multicore architecture supports open-source ANSI C/C++ software de-

velopment flows, using GNU GCC and GDB. The highly optimized GCC compiler en-

ables acceptable real-time performance from pure ANSI-C/C++ applications without

having to write assembly code for the vast majority of applications.

The Epiphany Software Development Kit (eSDK) is a state-of-the-art software develop-

ment environment targeting the Epiphany multicore architecture. The eSDK is based

on standard development tools including an optimized C-compiler, debugger, and multi-

core integrated development environment. The eSDK enables out-of-the-box execution

of applications written in regular ANSI-C and does not require any C-subset, language

extensions, or SIMD style programming. The Epiphany SDK includes:

• ANSI-C/C++ GCC compiler

• OpenCL SDK

• Multicore GDB debugger

• Runtime library

16 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

3 Software Development Environment
The Epiphany multicore architecture supports popular open-source ANSI C/C++ software

development flows, using GNU GCC and GDB. The highly optimized GCC compiler enables

acceptable real-time performance from pure ANSI-C/C++ applications without having to write

assembly code for the vast majority of applications. The Epiphany SDK includes:

x ANSI-C/C++ GCC compiler

x OpenCL SDK

x Multicore GDB debugger

x Eclipse based multicore IDE

x Runtime library

x Fast functional single core simulator

Figure 4 shows the complete software stack of the Epiphany software development environment.

Figure 4: Epiphany Software Development Stack

Figure 3.15: Epiphany Software Development Stack[1]

Basically, to create a program that runs on the Epiphany cores, is required two scripts.

One will contain the ”Host” part of the program and the other will contain the ”Device”

Chapter 3. The Parallella Board 41

part of the program. The ”Host” script runs on the ARM processor of the Parallella

Board, and it must initialize the eCores to receive data. The ”Device” script runs on

the eCores, and it must be compiled with an special chain-tool provided by Adapteva.

3.5 Programming Model

3.5.1 Programming Model Introduction

The Epiphany architecture is programming-model neutral and compatible with differ-

ent parallel-programming methods, including Single Instruction Multiple Data (SIMD),

Single Program Multiple Data (SPMD), Host-Slave programming, Multiple Instruction

Multiple Data (MIMD), static and dynamic dataflow, systolic array, shared-memory

multithreading, message- passing, and communicating sequential processes (CSP).

3.5.2 Parallel Programming Example

The following example shows how multiple Epiphany mesh nodes can be combined to

improve the overall throughput of a computation. For simplicity, we have chosen matrix

multiplication, but the concepts also apply to more complicated programs. Matrix

multiplication can be represented by the following formula:

Cij =

N−1∑
k=0

(AikBkj) (3.1)

Where A and B are the input matrices, C is the result, and i and j represent the row-

column coordinate of the matrix elements. A naive (but correct) implementation of the

matrix multiplication running on a single core is given below:

for (i = 0; i < M; i++){

for(j = 0; j < N; j++){

for(k = 0; k < K; k++){

C[i][j] += A[i][k] * B[k][j];

}

}

}

The code above can be written in standard C/C++ and compiled to run on a single core,

with matrices A, B, and C placed in the core’s local memory. In this simple programming

example, there is no difference between the Epiphany architecture and any other single

threaded processor platform. To speed up this calculation using several mesh nodes

Chapter 3. The Parallella Board 42

simultaneously, we first need to distribute the A, B, C matrices over P tasks. Due to

the matrix nature of the architecture, the natural way to distribute large matrices is by

cutting them into smaller blocks, sometimes referred to as ”blocked by row and column”.

We then construct a SPMD program that runs on each of the mesh nodes.

Figure 3.16 shows how the matrix multiplication can be divided into 16 sub-tasks and

mapped onto 16 mesh nodes. Data sharing between the sub tasks can be done by passing

data between the cores using a message passing API provided in the Epiphany SDK or

by explicitly writing to global shared memory.

15 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 3: Matrix Multiplication Data Flow

The parallel matrix multiplication completes in √P steps, (where P is the number of processors)

with each matrix multiplication task operating on data sets that are of size √P x √P. At each step

of the process, contributions to the local C matrix accumulate in each task, after which the local

A matrix moves down and the local B matrix moves to the right. The entire example can be

completed using standard ANSI programming constructs. Epiphany run-time functions are

provided to simplify multicore programming, but their use is not mandatory. The architecture

allows programmers to innovate at all levels. For more information on the inter-processor

communication API, please refer to the Epiphany SDK Reference Manual.

Given the algorithm above, a 16-core Epiphany implementation operating at 1GHz can complete

a 128x128 matrix multiply in 2ms while achieving 90% of the theoretical peak performance. The

matrix multiplication algorithm in this example scales to thousands of cores and demonstrates

how the Epiphany architecture’s performance scales linearly with the number of cores in the

system when proper data distribution and programming models are used.

A 03 , B 30 A 12 , B 20 A 21 , B 10 A 30 , B 00

A 02 , B 21 A 11 , B 11 A 20 , B 01 A 33 , B 31

A 01 , B 12 A 10 , B 02 A 23 , B 32 A 32 , B 22

A 13 , B 33 A 22 , B 23 A 31 , B 13 A 00 , B 03

A

B

Figure 3.16: Matrix Multiplication Data Flow[11]

The parallel matrix multiplication completes in
√
P steps, (where P is the number of

processors) with each matrix multiplication task operating on data sets that are of size
√
P x
√
P . At each step of the process, contributions to the local C matrix accumulate

in each task, after which the local A matrix moves down and the local B matrix moves

to the right. The entire example can be completed using standard ANSI programming

constructs. Given the algorithm above, a 16-core Epiphany implementation operating

at 1GHz can complete a 128x128 matrix multiply in 2ms while achieving 90% of the the-

oretical peak performance. The matrix multiplication algorithm in this example scales

to thousands of cores and demonstrates how the Epiphany architecture’s performance

scales linearly with the number of cores in the system when proper data distribution

and programming models are used.

Chapter 4

Experimentation

4.1 Set Up

To prepare the board and install the Operating System (OS), read the Appendix A.

In this section will be explained how to write the algorithm and make it run on the

Epiphany cores.

A file containing some global constants and defined structs will be required. All this in-

formation will be writed on a file called ”defs.h”, and it will be included in both scripts,

host and device. The file ”defs.h” is shown in B.1 on the Appendix B. Is possible to

change the parameters for the execution of the algorithm.

In the Appendix B is also shown the host program (B.3)

This file must include the Epiphany Hardware Abstraction library (#include<e-hal.h>),

that provides functionality for communicating with the Epiphany chip when the appli-

cation runs on a host. The communication is performed using memory writes to and

reads from shared buffers that the applications on both sides should define.

The host application will communicate with the Epiphany device by either accessing the

eCore’s private memory space (to write from the host the seed for the rand() function),

or by using shared buffers in the device external memory (for read the data given by the

eCores).

4.2 Structure of the model Network and Table of Cost

The topology of the network that will be considered for the development of the algorithm

is shown in Figure 4.1, and the rules and costs of the links are defined by the table in

Figure 4.2.

43

Chapter 4. Experimentation 44

4.1 Choose Initial Population
When initializing the population, my algorithm starts from

the SOURCE. SOURCE is a constant in the program, so the
user may want to pick another node as the starting point. The
algorithm selects one of the neighbors provided that it has
not been picked before. It keeps doing this operation until it
reaches to DESTINATION. Like SOURCE, DESTINATION
is also a constant that user may change as they wish.

4.2 Evaluate the fitness of each individual in
the population
The evaluation function takes a path in the population.

It gets the distance between each node pair in the path, by
calling a function to read from the distance array. Adds them
together and returns the sum as the cost of the path.

4.3 Select best-ranking individuals to repro-
duce
My algorithm selects two individuals from the population

with the lowest costs.

4.4 Crossover and Mutation
With some probability, the program mates the two indi-

viduals. The crossover function takes two parents to mate.
It looks for the common points in the parents. The common
nodes are where these two paths intersect. Among the com-
mon points, the program selects one of them randomly. It
makes the crossover from that point. The crossover operation
is illustrated in Figure 1.

4.5 Evaluate the individual fitnesses of the
offspring
I send these offspring to the evaluation function to get

their fitnesses. If the offsprings’ fitnesses are less than the
nodes with maximum fitnesses in the population, I replace
them with the nodes with the maximum fitnesses.

4.6 Terminating Condition
My terminating condition is a predefined number of

iterations. Because, in the network topology, the goal is
not to find the global optimum, but to find a path with a
reasonable cost in a limited time.

5. Experiment Results
I generated a network topology with 20 nodes and 62 links

to test my Genetic Algorithm. Each link has a cost associated
with them. I set two nodes as source and destination. The
goal of my GA application is to find a path between source
and destination with the lowest cost.
In Figure 3, the cells with 10,000 in them represent that

there is no direct link between those nodes. Because, 10,000
is too big compared to other small costs, therefore my
implementation ignore those big numbers, and pick the links

Fig. 1: Crossover Operator [7]

0

5

8

13

16

1

2

3

4

6

7

19

18

17

9

10

11

12

14

15

Fig. 2: Network topology used

with small costs, instead. Figure 4 shows a sample of initial
population, and their fitnesses.
I set several parameters for the experiment. They are as

follows; Population size=50, Number of runs=30, Number
of generations=50, Crossover probability = 0.99, Mutation
probability=0.1 I run the steps selection, crossover, and
replace part 50 times (number of generations). Figure 5 and
Figure 6 shows the average of maximum numbers of 30
runs, the average of minimum numbers of 30 runs, and the
average of average numbers of 30 runs.

6. Analysis of Results
The results show that GA gets close to optimum very

quickly. This is a promising result for my research. When
using this GA algorithm besides other search algorithms in
the USF [8], such as, multi-start hill-climbing, simulated
annealing, Controlled Random Search and RRS (Recursive
Random Search), I can start searching the space with GA

Figure 4.1: Network topology used

Fig. 3: The costs on the links

Fig. 4: A sample of initial population, and their fitnesses

Figure 4.2: Cost of the links

With the value of 10000 is indicated a non permitted link between two nodes.

4.3 Proposed Algorithm

The steps of the algorithm are exposed in this section.The whole code of the algorithm

implemented is shown on the Appendix B, in the section B.3. The functions that com-

pose the algorithm are:

• int main(void)

• void init org(void)

• eval gen(void)

• prod next gen(int organism)

• int select one(void)

• Auxiliary functions

Chapter 4. Experimentation 45

4.3.1 Global Variables

There are variables that are common for all the functions. They are declared before the

main function. These variables are:

• curr gen[N org][N gen]: This matrix will store the current generation of or-

ganism (paths). The first index indicates the number of organism, and the second

index indicates the number of gene inside the organism.

• next gen[N org][N gene]: This matrix will store the offsprings of the current

generation.

• org cost[N org]:This array will store the cost of the organism that compose the

current generation.

• sort cost[N org]: Array that stores the same cost of the precedent variable, but

sorted in ascending order.

• tot cost: Variable that stores the sum of all the path cost of the organisms

included in the current generation.

• min cost: Stores the minimum cost value found in the current generation.

• clon: Stores the organism index of the path with the lower cost.

4.3.2 main() function

The function reads from the private memory of the eCore the seed to initialize the rand()

function, otherwise the entire process will be almost deterministic, because the function

rand() gives values according the seed that receives as input. The only way to obtain a

random number that can be used as seed is including the <time.h> library. Unfortu-

nately, the Epipahny SDK (Software Development Kit) doesn’t permit the use of this

library, so it have to be given by the host, writing inside the private memory of each

eCore.

The main function contains also the table of the cost for the links, recalls the function

that creates the first generation of organisms, recalls the function that makes the evalu-

ation of the generation, manages the flags and writes the results on the external memory

buffer.

4.3.3 init org() function

It’s a function of type void, that created the first generation of organisms and writes

it on the curr gen matrix. A chromosome corresponds to a possible solution of the

Chapter 4. Experimentation 46

optimization problem. Thus, each chromosome represents a path which consists of a set

of nodes to complete the feasible solution, as the sequence of nodes with the source node

followed by intermediate nodes (via nodes), and the last node indicating the destination,

which is the goal.

The default maximum number of chromosome length is equal to the number of nodes.

The first gene represents the source, and it’s written directly because is specified by the

”defs.h” file. The function selects one the neighbors provided that it has not been picked

before. It keeps doing this operation until reaches the destination node which is, like

the source, specified in the mentioned file.

4.3.4 eval gen() function

The evaluation stage has two purposes. Primarily, I have to determine the fitness of all

the organisms so that later on, in the prod next gen() function, I’ll know which were

the better organisms and therefore which should reproduce more often. The function

applies the rules to weight the path’s cost of each organism, from the source to the

destination node. After this cost’s calculation, writes it on the org cost vector, and

saves the position (that will identify the fittest organism in the current generation) on

the clon variable.

4.3.5 prod next gen() function

Once all the current generation was evaluated, it’s possible to select the best organism

to reproduce them. The function implements the Crossover and Mutation process.

Crossover

The function takes to organism recalling the select one() function. Then, analyzes

both of the organism to found the common points in the parents. The common nodes

are where these two parents intersect. Among the common points, the function selects

one of them randomly. The genes to the right of the crossover point are copied over

from parent one to parent two, while the genes right of the crossover point from parent

two are copied to the parent one. The new organism produced are the offsprings of the

parents. The crossover operation is illustrated in Figure 4.3

Mutation

With some probability, the function performs the mutation of one gene of the offspring

organism. The gene mutated and the one chosen to replace it are randomly selected.

After these two operations, the function calculates the fitness of the two organism newly

created, and if they fitness are less than the nodes with maximum fitnesses in the

Chapter 4. Experimentation 47

4.1 Choose Initial Population
When initializing the population, my algorithm starts from

the SOURCE. SOURCE is a constant in the program, so the
user may want to pick another node as the starting point. The
algorithm selects one of the neighbors provided that it has
not been picked before. It keeps doing this operation until it
reaches to DESTINATION. Like SOURCE, DESTINATION
is also a constant that user may change as they wish.

4.2 Evaluate the fitness of each individual in
the population
The evaluation function takes a path in the population.

It gets the distance between each node pair in the path, by
calling a function to read from the distance array. Adds them
together and returns the sum as the cost of the path.

4.3 Select best-ranking individuals to repro-
duce
My algorithm selects two individuals from the population

with the lowest costs.

4.4 Crossover and Mutation
With some probability, the program mates the two indi-

viduals. The crossover function takes two parents to mate.
It looks for the common points in the parents. The common
nodes are where these two paths intersect. Among the com-
mon points, the program selects one of them randomly. It
makes the crossover from that point. The crossover operation
is illustrated in Figure 1.

4.5 Evaluate the individual fitnesses of the
offspring
I send these offspring to the evaluation function to get

their fitnesses. If the offsprings’ fitnesses are less than the
nodes with maximum fitnesses in the population, I replace
them with the nodes with the maximum fitnesses.

4.6 Terminating Condition
My terminating condition is a predefined number of

iterations. Because, in the network topology, the goal is
not to find the global optimum, but to find a path with a
reasonable cost in a limited time.

5. Experiment Results
I generated a network topology with 20 nodes and 62 links

to test my Genetic Algorithm. Each link has a cost associated
with them. I set two nodes as source and destination. The
goal of my GA application is to find a path between source
and destination with the lowest cost.
In Figure 3, the cells with 10,000 in them represent that

there is no direct link between those nodes. Because, 10,000
is too big compared to other small costs, therefore my
implementation ignore those big numbers, and pick the links

Fig. 1: Crossover Operator [7]

0

5

8

13

16

1

2

3

4

6

7

19

18

17

9

10

11

12

14

15

Fig. 2: Network topology used

with small costs, instead. Figure 4 shows a sample of initial
population, and their fitnesses.
I set several parameters for the experiment. They are as

follows; Population size=50, Number of runs=30, Number
of generations=50, Crossover probability = 0.99, Mutation
probability=0.1 I run the steps selection, crossover, and
replace part 50 times (number of generations). Figure 5 and
Figure 6 shows the average of maximum numbers of 30
runs, the average of minimum numbers of 30 runs, and the
average of average numbers of 30 runs.

6. Analysis of Results
The results show that GA gets close to optimum very

quickly. This is a promising result for my research. When
using this GA algorithm besides other search algorithms in
the USF [8], such as, multi-start hill-climbing, simulated
annealing, Controlled Random Search and RRS (Recursive
Random Search), I can start searching the space with GA

Figure 4.3: Crossover operator

population, replaces them with the nodes with the maximum fitnesses. All the organism

will be temporarily stored in the next gen matrix. After all the organism have been

created, the function copies them into the curr gen matrix.

4.3.6 select one() function

How to select the organism to reproduce will determine how effective is the algorithm.

The method used in this experiment is the Roulette Wheel Sampling, which is illustrated

in Figure 4.4. Metaphorically, each organism is ”assigned” a slice of the roulette wheel.

The size of the slice each organism gets is proportional to its fitness. Then, the wheel is

spun and and whichever slice it lands on, that organism gets selected.

Figure 4.4: Roulette wheel sampling

Chapter 4. Experimentation 48

4.4 Results

This experiment have been performed changing some settings (number of iterations,

organism per generation). The tables below show the results obtained. For all the

experiments, I have choose to make 10 iterations.

Cost Time (s) Path
122 0.195 0 1 7 12 16 18 19
166 0.197 0 3 8 12 16 18 19
233 0.201 0 4 6 11 16 18 19
195 0.202 0 2 7 12 15 18 19
276 0.226 0 4 7 10 5 9 15 17 19
240 0.200 0 2 7 12 14 17 19
168 0.193 0 4 5 11 15 18 19
223 0.199 0 4 7 10 16 17 19
223 0.201 0 4 6 9 8 12 16 18 19
255 0.219 0 1 6 11 16 18 19

Table 4.1: 2 organism per generation

Cost Time (s) Path
188 0.328 0 3 5 9 15 17 19
181 0.301 0 4 6 10 16 17 19
124 0.287 0 4 7 12 16 18 19
168 0.299 0 3 5 11 15 18 19
190 0.299 0 2 6 9 16 18 19
179 0.283 0 4 7 9 16 18 19
168 0.282 0 3 5 11 15 18 19
159 0.297 0 1 6 9 16 18 19
135 0.283 0 3 5 9 16 18 19
152 0.268 0 3 6 9 15 18 19

Table 4.2: 5 organism per generation

Cost Time (s) Path
122 0.448 0 1 7 12 16 18 19
159 0.442 0 4 7 12 16 18 15 17 19
135 0.433 0 4 5 9 16 18 19
160 0.416 0 3 5 9 16 17 19
155 0.470 0 3 6 11 15 18 19
122 0.412 0 3 6 9 16 18 19
191 0.421 0 3 5 11 15 17 19
178 0.421 0 3 6 11 15 17 19
167 0.385 0 4 6 9 15 18 19
122 0.469 0 3 6 9 16 18 19

Table 4.3: 10 organism per generation

Chapter 4. Experimentation 49

As shown in the tables, an increase of the of the number of organism per generation

make the process slower, but the costs reduce significantly.

The confront was made with a Dijkstra’s algorithm performed on the ARM processor.

The result is shown in the next table:

Cost Time (s) Path

122 0.281 0 1 7 12 16 18 19

Table 4.4: Dijkstra’s algorithm result

Figure 4.5: A screenshot of the program results

Chapter 5

Conclusions

A Genetic Algorithm is developed to find the shortest path routing in a network. It is a

flexible algorithm and is possible to change some parameters. The developed algorithm

runs on the new multicore Epiphany structure. The length of each organism (chromo-

some) depends on the number of nodes in the network. The algorithm is simulated to

solve a network of 20 nodes, using the firs one (0) as source and the last node (19)

as destination. The obtained results affirmed the potential of the proposed algorithm

that gave similar results as Dijkstra’s algorithm, and the possibility to use the Epiphany

structure as a cost-efficient component inside SDN controllers. Knowing that the time

of performing of both algorithms increases with the increment of the number of nodes,

future works can implement the genetic algorithm using a network with a large number

of nodes and compare it with the Dijkstra’s algorithm, since the time of performing of

the last one increases faster than the one of the genetic algorithm.

There is another consideration that must be observed: the centralized model of control-

ling performed by the SDN paradigma. Since the genetic algorithm generates possible

paths to reach a destination node given a source node, while the Dijkstra’s algorithm

must wait for the responses of all the neighbors nodes to calculate the best path; even

if the genetic algorithm doesn’t reach the shortest path, it generates a path that can

reach the destination. This can be an advantage in terms of time to solution, that can

be exploited using this new type of networking.

50

Appendix A

Parallella Board Configuration

A.1 Hardware Accessories

The accessories needed depend on the type of OS installed on the Parallella Board.

There’re two types of OS: Headless and With Display.

A.1.1 Headless

The Headless mode requires only three components:

• A 2000mA rated 5V DC power supply with 5.5mm OD / 2.1mm ID center

positive polarity plug.

• A micro-SD card (minimun 4 GB).

• An Ethernet cable.

A.1.2 With Display

The Display mode will use a display with HDMI connection, and a keyboard connected

directly to the board to input the commands. The advantage of this mode is that a

computer is not necessary to access to the board. There’re several accessories that will

be required:

• A 2000mA rated 5V DC power supply with 5.5mm OD / 2.1mm ID center

positive polarity plug.

51

Appendix A. Configuring the Board 52

• A micro-SD card (minimun 4 GB).

• A micro HDMI to HDMI cable.

• A USB male Micro-B to female Standard-A cable.

• A display with a HDMI port.

• A keyboard.

A.2 Creating a bootable micro-SD card

To create a bootable image of the OS Linaro for the Parallella board, a computer is

required. The instructions written below are indicated for a PC running a Linux OS.

A.2.1 Downloading the Binaries

The Binaries can be downloaded from the site:

http://www.parallella.org/create-sdcard/

Choose the distribution (Headless or With Display) that fit the ARM type of the Zynq

core of the board.

A.2.2 Install

1. Insert the micro-SD card in the computer.

2. Open a bash window.

3. Unzip the Ubuntu image

$ gunzip -d <release_name>.img.gz

4. Verify the device path of the SD card

$ sudo fdisk -l | grep Disk

5. Unmount the SD card

$ umount <SD_device_path>

6. Burn the Ubuntu disk image on the micro-SD card

http://www.parallella.org/create-sdcard/

Appendix A. Configuring the Board 53

$ sudo dd bs=4M if=<release_name>.img of=<SD_device_path>

This procedure will take 10 minutes approx. At the end of the process:

$ sync

7. Check the files uImage, devicetree.dtb and parallella.bit.bin inside the partition

/boot

A.3 Connect the board to the computer via Ethernet

These instructions are used to connect the Parallella board (with a headless Ubuntu

image) to a computer running a Linux OS. The last distributions released by Adapteva

have as default an IP address assigned via DHCP. There is also a way to set an static

IP, but the advantage between using a dynamic and a static IP is that the first one

allows to share the internet connection from the computer to the board.

A.3.1 Setting a static IP address

1. Mount the SD card in the computer.

2. Edit the file eth0, located at etc/network/interfaces.d

auto eth0

iface eth0 inet static

address 192.168.xxx.yyy

netmask 255.255.255.000

gateway 192.168.xxx.zzz

xxx, yyy and zzz are the subnet, the Parallella’s address and the gateway address

respectively, arbitrary chosen.

A.3.2 Connecting the board to the computer

1. Connect the board to the computer with a regular Ethernet cable.

2. Open a bash window and connect via ssh

ssh -X parallella@parallella.local

Appendix A. Configuring the Board 54

If is set a static IP

ssh -X parallella@192.168.xxx.yyy

Note: the command includes -X for a graphic display of the applications. Is

required a previously installation of X11 on the computer.

Appendix B

C Codes

B.1 ”defs.h” file

#define N_org 5 // numer of organism for each generation

#define N_gen 20 // number of nodes

#define Mut_rate 0.01 // probability of mutation

#define iter 30 // number of iterations

#define source 0 // source node

#define destination 19 // destination node

#define max_cost 1000 //when there is no link between a node to

another

#define SEED 0x7000 // physical address where will be stored

the seed given by the host

// struct created to transport the info from the eCore to the host

typedef struct{

int flag;

int core_id;

int seed;

int mini;

int array[N_gen];

}Mailbox;

55

Appendix B. C Codes 56

B.2 ”host.c” file

/*

This is the HOST side of the code. Reads static info from "defs.h" header

.

Prepares the epiphany architecture to load the program descripted on "dev

.c"

Prints the data and close the Epiphany device.

*/

#include <stdlib.h>

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <time.h>

#include <e-hal.h>

//in the file defs.h are defined constants and structs that will be used

by Host and Device

#include "defs.h"

#define _Buffsize (2048)

#define _BuffOffset (0 x01000000)

int main(int argc , char *argv []){

unsigned row_loop , col_loop;

int i;

int temp[N_gen];

// epiphany variables

e_platform_t epiphany;

e_epiphany_t dev;

e_mem_t memory;

// variables for the communication with the epiphany

Mailbox mail;

e_return_stat_t result;

// initialization of the epiphany cores

e_init(NULL);

e_reset_system ();

e_get_platform_info (& epiphany);

// define the buffer where will be stored the information

processed by the eCores

Appendix B. C Codes 57

e_alloc (&memory , _BuffOffset , _Buffsize);

//seed the rand() function

srand(time(NULL));

int num = 0;

int c, d;

int org_reg [16][N_gen] = {{0}};

int org_cost [16];

c = 0;

for(row_loop = 0; row_loop < 4; row_loop ++){

for(col_loop = 0; col_loop < 4; col_loop ++){

e_open (&dev , row_loop , col_loop , 1, 1);

// e_reset_group (&dev);

num = rand() %1000;

// hardwrite on the eCore a random seed

e_write (&dev , 0, 0, SEED , &num , sizeof(num));

//load on the eCore the program that will be

executed

result = e_load("pga.srec", &dev , 0, 0, E_TRUE);

if(result != E_OK){

fprintf(stderr ,"Error Loading the Epiphany

Application %i\n", result);

}

unsigned int addr = offsetof(Mailbox , flag);

//put the flag to 0

mail.flag = 0;

//read on the eCore until the flag is raised from

0 to 1

while(mail.flag != 1){

e_read (&memory , 0, 0, addr , &mail.flag , sizeof(

mail.flag));

}

//read the information written by the eCore on

the external buffer

e_read (&memory , 0, 0, 0x0, &mail , sizeof(mail));

//copy the path given by the eCore

for(i = 0; i < N_gen; i++){

temp[i] = mail.array[i];

}

Appendix B. C Codes 58

fprintf(stderr , "xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx -

xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx \n");

fprintf(stderr , "Minimum cost: %i from core: 0x

%03x Seed: %i \n", mail.mini , mail.core_id , mail.seed);

fprintf(stderr , "Path: ");

for(i = 0; i < N_gen; i++){

if(temp[i] != N_gen){

fprintf(stderr , "%i ", temp[i]);

}else{break ;}

}

fprintf(stderr , "\n");

//store the cost of the paths

org_cost[c] = mail.mini;

//store the paths

for(d = 0; d < N_gen; d++){

org_reg[c][d] = temp[d];

}

c++;

}

}

fprintf(stderr , "xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx -xxx -

xxx -xxx -xxx -xxx \n \n");

// search for the organism that contain the shortest path between

all the organism given by the eCores

int clon;

int min_cost = org_cost [0];

for(c = 1; c < 16; c++){

if(org_cost[c] < min_cost){

min_cost = org_cost[c];

clon = c;

}

}

// print the shortest path

fprintf(stderr , "The shortest is: ");

for(d = 0; d < N_gen; d++){

if(org_reg[clon][d] != N_gen){

fprintf(stderr , "%i ", org_reg[clon][d]);

}else{break;}

}

fprintf(stderr , "\n");

// print the cost path

fprintf(stderr , "Cost: %i \n", min_cost);

Appendix B. C Codes 59

// interrupt the communication with the eCores

e_close (&dev);

e_free (& memory);

e_finalize ();

return 0;

}

Appendix B. C Codes 60

B.3 ”dev.c” file

#include <stdio.h>

#include <stdlib.h>

#include "e_lib.h"

#include "defs.h"

// Global variables

int curr_gen[N_org][N_gen];

int next_gen[N_org][N_gen] ;

int org_cost[N_org];

int sort_cost[N_org];

int tot_cost;

int min_cost;

int clon;

int table[N_gen][N_gen];

// Functions Declarations

void init_org(void);

void eval_gen(void);

void eval_org(int organism);

int bound_rand(int max , int min);

int num_rand(int num , int min , int max);

int rand_rand(int min1 , int max1 , int min2 , int max2);

int select_one(void);

int select_best(void);

void prod_next_gen(void);

Mailbox mail SECTION("shared_dram");

//MAIN

int main(void){

mail.flag = 0;

int i, j;

//get the e_core info

e_coreid_t id;

id = e_get_coreid ();

// pointer to the data writed by the ARM

int *p_seed = (void*)SEED;

//read the random number from the ARM and seed the srand

unsigned seed = *p_seed;

srand(seed);

Appendix B. C Codes 61

//wipe the curr_gen

for(i = 0; i < N_org; i++){

for(j = 0; j < N_gen; j++){

curr_gen[i][j] = N_gen;

}

}

//set the table of cost

table [0][1] = 52; table [0][2] = 61; table [0][3] = 8; table [0][4]

= 16;

table [1][0] = 52; table [1][5] = 78; table [1][6] = 41; table [1][7]

= 6; table [1][8] = 92;

table [2][0] = 61; table [2][5] = 84; table [2][6] = 63; table [2][7]

= 2; table [2][8] = 99;

table [3][0] = 8; table [3][5] = 71; table [3][6] = 48; table [3][7]

= 223; table [3][8] = 73;

table [4][0] = 16; table [4][5] = 63; table [4][6] = 55; table [4][7]

= 44; table [4][8] = 88;

table [5][1] = 78; table [5][2] = 84; table [5][3] = 71; table [5][4]

= 63; table [5][9] = 11; table [5][10] = 22; table [5][11] = 33; table

[5][12] = 44;

table [6][1] = 41; table [6][2] = 63; table [6][3] = 48; table [6][4]

= 55; table [6][9] = 21; table [6][10] = 32; table [6][11] = 43; table

[6][12] = 54;

table [7][1] = 6; table [7][2] = 2; table [7][3] = 223; table [7][4]

= 44; table [7][9] = 74; table [7][10] = 85; table [7][11] = 96; table

[7][12] = 14;

table [8][1] = 92; table [8][2] = 99; table [8][3] = 73; table [8][4]

= 88; table [8][9] = 46; table [8][10] = 64; table [8][11] = 75; table

[8][12] = 35;

table [9][5] = 11; table [9][6] = 21; table [9][7] = 74; table [9][8]

= 46; table [9][13] = 66; table [9][14] = 55; table [9][15] = 44; table

[9][16] = 11;

table [10][5] = 22; table [10][6] = 32; table [10][7] = 85; table

[10][8] = 64; table [10][13] = 91; table [10][14] = 97; table [10][15] =

73; table [10][16] = 19;

Appendix B. C Codes 62

table [11][5] = 33; table [11][6] = 43; table [11][7] = 96; table

[11][8] = 75; table [11][13] = 45; table [11][14] = 65; table [11][15] =

25; table [11][16] = 85;

table [12][5] = 44; table [12][6] = 54; table [12][7] = 14; table

[12][8] = 35; table [12][13] = 73; table [12][14] = 37; table [12][15] =

87; table [12][16] = 16;

table [13][9] = 66; table [13][10] = 91; table [13][11] = 45; table

[13][12] = 73; table [13][17] = 86; table [13][18] = 84;

table [14][9] = 55; table [14][10] = 97; table [14][11] = 65; table

[14][12] = 37; table [14][17] = 74; table [14][18] = 76;

table [15][9] = 44; table [15][10] = 73; table [15][11] = 25; table

[15][12] = 87; table [15][17] = 2; table [15][18] = 6;

table [16][9] = 11; table [16][10] = 19; table [16][11] = 85; table

[16][12] = 16; table [16][17] = 7; table [16][18] = 9;

table [17][13] = 86; table [17][14] = 74; table [17][15] = 2; table

[17][16] = 7; table [17][19] = 52;

table [18][13] = 84; table [18][14] = 76; table [18][15] = 6; table

[18][16] = 9; table [18][19] = 25;

table [19][17] = 52; table [19][18] = 25;

// initialize and do the first evaluation of the generation

init_org ();

eval_gen ();

// iterations

for(i = 0; i < iter; i++){

prod_next_gen ();

eval_gen ();

}

mail.core_id = id;

mail.seed = seed;

mail.mini = min_cost;

for(i = 0; i < N_gen; i++){

mail.array[i] = curr_gen[clon][i];

}

mail.flag = 1;

Appendix B. C Codes 63

return EXIT_SUCCESS;

}

/*

*/

void init_org(void){

int organism;

int gene;

int i;

int temp;

int v[N_gen];

int flag;

// initialize the organism

for(organism = 0; organism < N_org; ++ organism){

// initialize the register of used nodes

for(i = 0; i < N_gen; i++){

v[i] = 0;

}

//hard write the source in the first bin of each organism

curr_gen[organism][0] = source;

v[source] = 1;

// intialises the organism and stop if the destination is

reached

for(gene = 0; gene < N_gen && curr_gen[organism][gene] !=

destination; ++gene){

if(curr_gen[organism][gene] == 0){

//set a flag to 0. Write a random

neighbor and verify if is not previously

// included in the organism. If all the

possibles neighbors are included in

//the organism , raise the flag to 1 and

break the for cycle (error)

flag = 0;

do{

temp = bound_rand (1,4);

if((v[1]+v[2]+v[3]+v[4]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

Appendix B. C Codes 64

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 1){

flag = 0;

do{

temp = num_rand (0,5,8);

if((v[0]+v[5]+v[6]+v[7]+v[8]) ==

5){flag = 1; break ;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 2){

flag = 0;

do{

temp = num_rand (0,5,8);

if((v[0]+v[5]+v[6]+v[7]+v[8]) ==

5){flag = 1; break ;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 3){

flag = 0;

do{

temp = num_rand (0,5,8);

if((v[0]+v[5]+v[6]+v[7]+v[8]) ==

5){flag = 1; break ;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 4){

flag = 0;

Appendix B. C Codes 65

do{

temp = num_rand (0,5,8);

if((v[0]+v[5]+v[6]+v[7]+v[8]) ==

5){flag = 1; break ;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 5){

flag = 0;

do{

temp = rand_rand (1,4,9,12);

if((v[1]+v[4]+v[9]+v[12]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 6){

flag = 0;

do{

temp = rand_rand (1,4,9,12);

if((v[1]+v[4]+v[9]+v[12]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 7){

flag = 0;

do{

temp = rand_rand (1,4,9,12);

if((v[1]+v[4]+v[9]+v[12]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

Appendix B. C Codes 66

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;;

}

if(curr_gen[organism][gene] == 8){

flag = 0;

do{

temp = rand_rand (1,4,9,12);

if((v[1]+v[4]+v[9]+v[12]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 9){

flag = 0;

do{

temp = rand_rand (5,8,13,16);

if((v[5]+v[8]+v[13]+v[16]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 10){

flag = 0;

do{

temp = rand_rand (5,8,13,16);

if((v[5]+v[8]+v[13]+v[16]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

Appendix B. C Codes 67

if(curr_gen[organism][gene] == 11){

flag = 0;

do{

temp = rand_rand (5,8,13,16);

if((v[5]+v[8]+v[13]+v[16]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 12){

flag = 0;

do{

temp = rand_rand (5,8,13,16);

if((v[5]+v[8]+v[13]+v[16]) == 4){

flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 13){

flag = 0;

do{

temp = rand_rand (9 ,12 ,17 ,18);

if((v[9]+v[12]+v[17]+v[18]) == 4)

{flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 14){

flag = 0;

do{

temp = rand_rand (9 ,12 ,17 ,18);

if((v[9]+v[12]+v[17]+v[18]) == 4)

{flag = 1; break;}

Appendix B. C Codes 68

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 15){

flag = 0;

do{

temp = rand_rand (9 ,12 ,17 ,18);

if((v[9]+v[12]+v[17]+v[18]) == 4)

{flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 16){

flag = 0;

do{

temp = rand_rand (9 ,12 ,17 ,18);

if((v[9]+v[12]+v[17]+v[18]) == 4)

{flag = 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 17){

flag = 0;

do{

temp = num_rand (19 ,13 ,16);

if((v[19]+v[13]+v[16]) == 3){flag

= 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

Appendix B. C Codes 69

}

if(curr_gen[organism][gene] == 18){

flag = 0;

do{

temp = num_rand (19 ,13 ,16);

if((v[19]+v[13]+v[16]) == 3){flag

= 1; break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

if(curr_gen[organism][gene] == 19){

flag = 0;

do{

temp = bound_rand (17 ,18);

if((v[17]+v[18]) == 2){flag = 1;

break;}

}while(v[temp] == 1);

if(flag == 1){break ;}

curr_gen[organism][gene +1] = temp;

v[temp] = 1;

}

}

//scan the organism , searching if is included the

destination. If included , raise a flag to 1

flag = 0;

for(gene = 0; gene < N_gen; gene ++){

if(curr_gen[organism][gene] == destination){flag

= 1; break;}

}

//if the flag is not raised , initializes the current

organism to N_gen and decrease an organism index

//in the case of error , this procedure will reinitialize

the organism.

if(flag == 0){

for(gene = 0; gene < N_gen; gene ++){

curr_gen[organism][gene] = N_gen;

}

--organism;

Appendix B. C Codes 70

}

}

}

/*

*/

void eval_gen(void){

int organism;

int gene;

int i, temp;

int currentCost;

tot_cost = 0;

for(organism = 0; organism < N_org; ++ organism){

// initializes the cost of each organism

currentCost = 0;

// analize only the bins between <0,N_gen > edges excluded

for(gene = 0; gene < N_gen; ++gene){

// verificates if the bin is not 20 or the

destination node (end of the info), else break the analysis

if(curr_gen[organism][gene] != 20 && curr_gen[

organism][gene] != destination){

//if the bin is equal to 0

if(curr_gen[organism][gene] == 0){

if(curr_gen[organism][gene +1] ==

1 || curr_gen[organism][gene +1] == 2 || curr_gen[organism][gene +1] ==

3 || curr_gen[organism][gene +1] == 4){

if(curr_gen[organism][

gene +1] == 1){currentCost = currentCost + table [0][1];}

if(curr_gen[organism][

gene +1] == 2){currentCost = currentCost + table [0][2];}

if(curr_gen[organism][

gene +1] == 3){currentCost = currentCost + table [0][3];}

if(curr_gen[organism][

gene +1] == 4){currentCost = currentCost + table [0][4];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

Appendix B. C Codes 71

//if the bin is equal to 1

if(curr_gen[organism][gene] == 1){

if(curr_gen[organism][gene +1] ==

0 || curr_gen[organism][gene +1] == 5 || curr_gen[organism][gene +1] ==

6 || curr_gen[organism][gene +1] == 7 || curr_gen[organism][gene +1] ==

8){

if(curr_gen[organism][

gene +1] == 0){currentCost = currentCost + table [1][0];}

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [1][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [1][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [1][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [1][8];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 2

if(curr_gen[organism][gene] == 2){

if(curr_gen[organism][gene +1] ==

0 || curr_gen[organism][gene +1] == 5 || curr_gen[organism][gene +1] ==

6 || curr_gen[organism][gene +1] == 7 || curr_gen[organism][gene +1] ==

8){

if(curr_gen[organism][

gene +1] == 0){currentCost = currentCost + table [2][0];}

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [2][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [2][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [2][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [2][8];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 3

if(curr_gen[organism][gene] == 3){

Appendix B. C Codes 72

if(curr_gen[organism][gene +1] ==

0 || curr_gen[organism][gene +1] == 5 || curr_gen[organism][gene +1] ==

6 || curr_gen[organism][gene +1] == 7 || curr_gen[organism][gene +1] ==

8){

if(curr_gen[organism][

gene +1] == 0){currentCost = currentCost + table [3][0];}

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [3][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [3][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [3][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [3][8];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 4

if(curr_gen[organism][gene] == 4){

if(curr_gen[organism][gene +1] ==

0 || curr_gen[organism][gene +1] == 5 || curr_gen[organism][gene +1] ==

6 || curr_gen[organism][gene +1] == 7 || curr_gen[organism][gene +1] ==

8){

if(curr_gen[organism][

gene +1] == 0){currentCost = currentCost + table [4][0];}

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [4][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [4][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [4][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [4][8];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 5

if(curr_gen[organism][gene] == 5){

Appendix B. C Codes 73

if(curr_gen[organism][gene +1] ==

1 || curr_gen[organism][gene +1] == 2 || curr_gen[organism][gene +1] ==

3 || curr_gen[organism][gene +1] == 4 || curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1]

== 11 || curr_gen[organism][gene +1] == 12){

if(curr_gen[organism][

gene +1] == 1){currentCost = currentCost + table [5][1];}

if(curr_gen[organism][

gene +1] == 2){currentCost = currentCost + table [5][2];}

if(curr_gen[organism][

gene +1] == 3){currentCost = currentCost + table [5][3];}

if(curr_gen[organism][

gene +1] == 4){currentCost = currentCost + table [5][4];}

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [5][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [5][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [5][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [5][12];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 6

if(curr_gen[organism][gene] == 6){

if(curr_gen[organism][gene +1] ==

1 || curr_gen[organism][gene +1] == 2 || curr_gen[organism][gene +1] ==

3 || curr_gen[organism][gene +1] == 4 || curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1]

== 11 || curr_gen[organism][gene +1] == 12){

if(curr_gen[organism][

gene +1] == 1){currentCost = currentCost + table [6][1];}

if(curr_gen[organism][

gene +1] == 2){currentCost = currentCost + table [6][2];}

if(curr_gen[organism][

gene +1] == 3){currentCost = currentCost + table [6][3];}

if(curr_gen[organism][

gene +1] == 4){currentCost = currentCost + table [6][4];}

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [6][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [6][10];}

Appendix B. C Codes 74

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [6][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [6][12];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 7

if(curr_gen[organism][gene] == 7){

if(curr_gen[organism][gene +1] ==

1 || curr_gen[organism][gene +1] == 2 || curr_gen[organism][gene +1] ==

3 || curr_gen[organism][gene +1] == 4 || curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1]

== 11 || curr_gen[organism][gene +1] == 12){

if(curr_gen[organism][

gene +1] == 1){currentCost = currentCost + table [7][1];}

if(curr_gen[organism][

gene +1] == 2){currentCost = currentCost + table [7][2];}

if(curr_gen[organism][

gene +1] == 3){currentCost = currentCost + table [7][3];}

if(curr_gen[organism][

gene +1] == 4){currentCost = currentCost + table [7][4];}

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [7][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [7][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [7][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [7][12];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 8

if(curr_gen[organism][gene] == 8){

if(curr_gen[organism][gene +1] ==

1 || curr_gen[organism][gene +1] == 2 || curr_gen[organism][gene +1] ==

3 || curr_gen[organism][gene +1] == 4 || curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1]

== 11 || curr_gen[organism][gene +1] == 12){

Appendix B. C Codes 75

if(curr_gen[organism][

gene +1] == 1){currentCost = currentCost + table [8][1];}

if(curr_gen[organism][

gene +1] == 2){currentCost = currentCost + table [8][2];}

if(curr_gen[organism][

gene +1] == 3){currentCost = currentCost + table [8][3];}

if(curr_gen[organism][

gene +1] == 4){currentCost = currentCost + table [8][4];}

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [8][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [8][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [8][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [8][12];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 9

if(curr_gen[organism][gene] == 9){

if(curr_gen[organism][gene +1] ==

5 || curr_gen[organism][gene +1] == 6 || curr_gen[organism][gene +1] ==

7 || curr_gen[organism][gene +1] == 8 || curr_gen[organism][gene +1] ==

13 || curr_gen[organism][gene +1] == 14 || curr_gen[organism][gene +1]

== 15 || curr_gen[organism][gene +1] == 16){

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [9][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [9][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [9][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [9][8];}

if(curr_gen[organism][

gene +1] == 13){currentCost = currentCost + table [9][13];}

if(curr_gen[organism][

gene +1] == 14){currentCost = currentCost + table [9][14];}

if(curr_gen[organism][

gene +1] == 15){currentCost = currentCost + table [9][15];}

if(curr_gen[organism][

gene +1] == 16){currentCost = currentCost + table [9][16];}

}

else{

Appendix B. C Codes 76

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 10

if(curr_gen[organism][gene] == 10){

if(curr_gen[organism][gene +1] ==

5 || curr_gen[organism][gene +1] == 6 || curr_gen[organism][gene +1] ==

7 || curr_gen[organism][gene +1] == 8 || curr_gen[organism][gene +1] ==

13 || curr_gen[organism][gene +1] == 14 || curr_gen[organism][gene +1]

== 15 || curr_gen[organism][gene +1] == 16){

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [10][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [10][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [10][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [10][8];}

if(curr_gen[organism][

gene +1] == 13){currentCost = currentCost + table [10][13];}

if(curr_gen[organism][

gene +1] == 14){currentCost = currentCost + table [10][14];}

if(curr_gen[organism][

gene +1] == 15){currentCost = currentCost + table [10][15];}

if(curr_gen[organism][

gene +1] == 16){currentCost = currentCost + table [10][16];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 11

if(curr_gen[organism][gene] == 11){

if(curr_gen[organism][gene +1] ==

5 || curr_gen[organism][gene +1] == 6 || curr_gen[organism][gene +1] ==

7 || curr_gen[organism][gene +1] == 8 || curr_gen[organism][gene +1] ==

13 || curr_gen[organism][gene +1] == 14 || curr_gen[organism][gene +1]

== 15 || curr_gen[organism][gene +1] == 16){

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [11][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [11][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [11][7];}

Appendix B. C Codes 77

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [11][8];}

if(curr_gen[organism][

gene +1] == 13){currentCost = currentCost + table [11][13];}

if(curr_gen[organism][

gene +1] == 14){currentCost = currentCost + table [11][14];}

if(curr_gen[organism][

gene +1] == 15){currentCost = currentCost + table [11][15];}

if(curr_gen[organism][

gene +1] == 16){currentCost = currentCost + table [11][16];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 12

if(curr_gen[organism][gene] == 12){

if(curr_gen[organism][gene +1] ==

5 || curr_gen[organism][gene +1] == 6 || curr_gen[organism][gene +1] ==

7 || curr_gen[organism][gene +1] == 8 || curr_gen[organism][gene +1] ==

13 || curr_gen[organism][gene +1] == 14 || curr_gen[organism][gene +1]

== 15 || curr_gen[organism][gene +1] == 16){

if(curr_gen[organism][

gene +1] == 5){currentCost = currentCost + table [12][5];}

if(curr_gen[organism][

gene +1] == 6){currentCost = currentCost + table [12][6];}

if(curr_gen[organism][

gene +1] == 7){currentCost = currentCost + table [12][7];}

if(curr_gen[organism][

gene +1] == 8){currentCost = currentCost + table [12][8];}

if(curr_gen[organism][

gene +1] == 13){currentCost = currentCost + table [12][13];}

if(curr_gen[organism][

gene +1] == 14){currentCost = currentCost + table [12][14];}

if(curr_gen[organism][

gene +1] == 15){currentCost = currentCost + table [12][15];}

if(curr_gen[organism][

gene +1] == 16){currentCost = currentCost + table [12][16];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 13

Appendix B. C Codes 78

if(curr_gen[organism][gene] == 13){

if(curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1] ==

11 || curr_gen[organism][gene +1] == 12 || curr_gen[organism][gene +1]

== 17 || curr_gen[organism][gene +1] == 18){

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [13][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [13][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [13][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [13][12];}

if(curr_gen[organism][

gene +1] == 17){currentCost = currentCost + table [13][17];}

if(curr_gen[organism][

gene +1] == 18){currentCost = currentCost + table [13][18];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 14

if(curr_gen[organism][gene] == 14){

if(curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1] ==

11 || curr_gen[organism][gene +1] == 12 || curr_gen[organism][gene +1]

== 17 || curr_gen[organism][gene +1] == 18){

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [14][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [14][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [14][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [14][12];}

if(curr_gen[organism][

gene +1] == 17){currentCost = currentCost + table [14][17];}

if(curr_gen[organism][

gene +1] == 18){currentCost = currentCost + table [14][18];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

Appendix B. C Codes 79

//if the bin is equal to 15

if(curr_gen[organism][gene] == 15){

if(curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1] ==

11 || curr_gen[organism][gene +1] == 12 || curr_gen[organism][gene +1]

== 17 || curr_gen[organism][gene +1] == 18){

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [15][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [15][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [15][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [15][12];}

if(curr_gen[organism][

gene +1] == 17){currentCost = currentCost + table [15][17];}

if(curr_gen[organism][

gene +1] == 18){currentCost = currentCost + table [15][18];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 16

if(curr_gen[organism][gene] == 16){

if(curr_gen[organism][gene +1] ==

9 || curr_gen[organism][gene +1] == 10 || curr_gen[organism][gene +1] ==

11 || curr_gen[organism][gene +1] == 12 || curr_gen[organism][gene +1]

== 17 || curr_gen[organism][gene +1] == 18){

if(curr_gen[organism][

gene +1] == 9){currentCost = currentCost + table [16][9];}

if(curr_gen[organism][

gene +1] == 10){currentCost = currentCost + table [16][10];}

if(curr_gen[organism][

gene +1] == 11){currentCost = currentCost + table [16][11];}

if(curr_gen[organism][

gene +1] == 12){currentCost = currentCost + table [16][12];}

if(curr_gen[organism][

gene +1] == 17){currentCost = currentCost + table [16][17];}

if(curr_gen[organism][

gene +1] == 18){currentCost = currentCost + table [16][18];}

}

else{

currentCost = currentCost

+ max_cost;

Appendix B. C Codes 80

}

}

//if the bin is equal to 17

if(curr_gen[organism][gene] == 17){

if(curr_gen[organism][gene +1] ==

13 || curr_gen[organism][gene +1] == 14 || curr_gen[organism][gene +1]

== 15 || curr_gen[organism][gene +1] == 16 || curr_gen[organism][gene

+1] == 19){

if(curr_gen[organism][

gene +1] == 13){currentCost = currentCost + table [17][13];}

if(curr_gen[organism][

gene +1] == 14){currentCost = currentCost + table [17][14];}

if(curr_gen[organism][

gene +1] == 15){currentCost = currentCost + table [17][15];}

if(curr_gen[organism][

gene +1] == 16){currentCost = currentCost + table [17][16];}

if(curr_gen[organism][

gene +1] == 19){currentCost = currentCost + table [17][19];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

//if the bin is equal to 18

if(curr_gen[organism][gene] == 18){

if(curr_gen[organism][gene +1] ==

13 || curr_gen[organism][gene +1] == 14 || curr_gen[organism][gene +1]

== 15 || curr_gen[organism][gene +1] == 16 || curr_gen[organism][gene

+1] == 19){

if(curr_gen[organism][

gene +1] == 13){currentCost = currentCost + table [18][13];}

if(curr_gen[organism][

gene +1] == 14){currentCost = currentCost + table [18][14];}

if(curr_gen[organism][

gene +1] == 15){currentCost = currentCost + table [18][15];}

if(curr_gen[organism][

gene +1] == 16){currentCost = currentCost + table [18][16];}

if(curr_gen[organism][

gene +1] == 19){currentCost = currentCost + table [18][19];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

Appendix B. C Codes 81

//if the bin is equal to 19

if(curr_gen[organism][gene] == 19){

if(curr_gen[organism][gene +1] ==

17 || curr_gen[organism][gene +1] == 18){

if(curr_gen[organism][

gene +1] == 17){currentCost = currentCost + table [19][17];}

if(curr_gen[organism][

gene +1] == 18){currentCost = currentCost + table [19][18];}

}

else{

currentCost = currentCost

+ max_cost;

}

}

}

else{

break;

}

}

org_cost[organism] = currentCost;

sort_cost[organism] = currentCost;

tot_cost = tot_cost + currentCost;

}

//sort the sort_cost array

for(organism = 0; organism < N_org -1; organism ++){

for(i = organism +1; i < N_org; i++){

if(sort_cost[organism] > sort_cost[i]){

temp = sort_cost[organism];

sort_cost[organism] = sort_cost[i];

sort_cost[i] = temp;

}

}

}

//save the min cost and the position of the fittest organism

min_cost = org_cost [0];

for(organism = 1; organism < N_org; organism ++){

if(org_cost[organism] < min_cost){

min_cost = org_cost[organism];

clon = organism;

}

}

}

Appendix B. C Codes 82

/*

*/

void prod_next_gen(void){

int organism;

int gene , i, count;

int ParentOne;

int ParentTwo;

int intersection[N_gen];

int crossoverPoint , point;

int mutate;

for(organism = 0; organism < N_org; organism ++){

for(gene = 0; gene < N_gen; gene ++){

next_gen[organism][gene] = N_gen;

}

}

for(organism = 0; organism < N_org; organism = organism +2){

// select the two parents

ParentOne = select_one ();

ParentTwo = select_one ();

// initialize the arrays that will contain the

intersections points between the parents

for(gene = 0; gene < N_gen; gene ++){

intersection[gene] = N_gen;

}

// search for the intersection points and saves it on the

intersection array

i = 0;

for(gene = 1; gene < N_gen; gene ++){

if(curr_gen[ParentOne][gene] != N_gen && curr_gen

[ParentTwo][gene] != N_gen && curr_gen[ParentOne][gene] != destination

&& curr_gen[ParentTwo][gene] != destination){

if(curr_gen[ParentOne][gene] == curr_gen[

ParentTwo][gene]){

intersection[i] = gene;

i++;

}

}

}

Appendix B. C Codes 83

//scan the intersection array and save in count the

number of the intersection points

// initialize count

count = 0;

for(gene = 0; gene < N_gen; ++gene){

if(intersection[gene] != N_gen){count ++;}

}

//if count = 0; there is no intersection point. Copy in

next_gen the ParentOne and ParentTwo

if(count == 0){

for(gene = 0; gene < N_gen; ++gene){

next_gen[organism][gene] = curr_gen[

ParentOne][gene];

next_gen[organism +1][gene] = curr_gen[

ParentTwo][gene];

}

}

//if count != 0

else{

//if count = 1, use the singular intersection

point as crossover point

if(count == 1){

crossoverPoint = intersection [0];

}

//if count != [0,1], choose a random crossover

point between the intersections

else if(count != 0 && count != 1){

point = rand() % count;

crossoverPoint = intersection[point];

}

//once obtained the crossover point , start the

mating between the parents

for(gene = 0; gene < N_gen; ++gene){

// apply the mutation

mutate = rand() % (int)(1.0/ Mut_rate);

if(mutate == 0){

next_gen[organism][gene] = rand()

% N_gen;

}

//if not mutated , make the crossover of

genes between the parents

else{

if(gene < crossoverPoint){

next_gen[organism][gene]

= curr_gen[ParentOne][gene];

Appendix B. C Codes 84

next_gen[organism +1][gene

] = curr_gen[ParentTwo][gene];

}

else{

next_gen[organism][gene]

= curr_gen[ParentTwo][gene];

next_gen[organism +1][gene

] = curr_gen[ParentOne][gene];

}

}

}

// valutate the fitness of the new organisms

eval_org(organism);

eval_org(organism +1);

}

}

//copy the offsprings in the curr_gen

for(organism = 0; organism < N_org; organism ++){

for(gene = 0; gene < N_gen; gene ++){

curr_gen[organism][gene] = next_gen[organism][

gene];

}

}

}

/*

*/

void eval_org(int organism){

int gene;

int currentCost = 0;

for(gene = 0; gene < N_gen; ++gene){

// verificates if the bin is not 20 or the destination

node (end of the info), else break the analysis

if(next_gen[organism][gene] != 20 && next_gen[organism][

gene] != destination){

//if the bin is equal to 0

if(next_gen[organism][gene] == 0){

Appendix B. C Codes 85

if(next_gen[organism][gene +1] == 1 ||

next_gen[organism][gene +1] == 2 || next_gen[organism][gene +1] == 3 ||

next_gen[organism][gene +1] == 4){

if(next_gen[organism][gene +1] ==

1){currentCost = currentCost + table [0][1];}

if(next_gen[organism][gene +1] ==

2){currentCost = currentCost + table [0][2];}

if(next_gen[organism][gene +1] ==

3){currentCost = currentCost + table [0][3];}

if(next_gen[organism][gene +1] ==

4){currentCost = currentCost + table [0][4];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 1

if(next_gen[organism][gene] == 1){

if(next_gen[organism][gene +1] == 0 ||

next_gen[organism][gene +1] == 5 || next_gen[organism][gene +1] == 6 ||

next_gen[organism][gene +1] == 7 || next_gen[organism][gene +1] == 8){

if(next_gen[organism][gene +1] ==

0){currentCost = currentCost + table [1][0];}

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [1][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [1][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [1][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [1][8];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 2

if(next_gen[organism][gene] == 2){

if(next_gen[organism][gene +1] == 0 ||

next_gen[organism][gene +1] == 5 || next_gen[organism][gene +1] == 6 ||

next_gen[organism][gene +1] == 7 || next_gen[organism][gene +1] == 8){

if(next_gen[organism][gene +1] ==

0){currentCost = currentCost + table [2][0];}

Appendix B. C Codes 86

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [2][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [2][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [2][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [2][8];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 3

if(next_gen[organism][gene] == 3){

if(next_gen[organism][gene +1] == 0 ||

next_gen[organism][gene +1] == 5 || next_gen[organism][gene +1] == 6 ||

next_gen[organism][gene +1] == 7 || next_gen[organism][gene +1] == 8){

if(next_gen[organism][gene +1] ==

0){currentCost = currentCost + table [3][0];}

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [3][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [3][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [3][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [3][8];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 4

if(next_gen[organism][gene] == 4){

if(next_gen[organism][gene +1] == 0 ||

next_gen[organism][gene +1] == 5 || next_gen[organism][gene +1] == 6 ||

next_gen[organism][gene +1] == 7 || next_gen[organism][gene +1] == 8){

if(next_gen[organism][gene +1] ==

0){currentCost = currentCost + table [4][0];}

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [4][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [4][6];}

Appendix B. C Codes 87

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [4][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [4][8];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 5

if(next_gen[organism][gene] == 5){

if(next_gen[organism][gene +1] == 1 ||

next_gen[organism][gene +1] == 2 || next_gen[organism][gene +1] == 3 ||

next_gen[organism][gene +1] == 4 || next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12){

if(next_gen[organism][gene +1] ==

1){currentCost = currentCost + table [5][1];}

if(next_gen[organism][gene +1] ==

2){currentCost = currentCost + table [5][2];}

if(next_gen[organism][gene +1] ==

3){currentCost = currentCost + table [5][3];}

if(next_gen[organism][gene +1] ==

4){currentCost = currentCost + table [5][4];}

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [5][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [5][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [5][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [5][12];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 6

if(next_gen[organism][gene] == 6){

if(next_gen[organism][gene +1] == 1 ||

next_gen[organism][gene +1] == 2 || next_gen[organism][gene +1] == 3 ||

next_gen[organism][gene +1] == 4 || next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12){

Appendix B. C Codes 88

if(next_gen[organism][gene +1] ==

1){currentCost = currentCost + table [6][1];}

if(next_gen[organism][gene +1] ==

2){currentCost = currentCost + table [6][2];}

if(next_gen[organism][gene +1] ==

3){currentCost = currentCost + table [6][3];}

if(next_gen[organism][gene +1] ==

4){currentCost = currentCost + table [6][4];}

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [6][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [6][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [6][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [6][12];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 7

if(next_gen[organism][gene] == 7){

if(next_gen[organism][gene +1] == 1 ||

next_gen[organism][gene +1] == 2 || next_gen[organism][gene +1] == 3 ||

next_gen[organism][gene +1] == 4 || next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12){

if(next_gen[organism][gene +1] ==

1){currentCost = currentCost + table [7][1];}

if(next_gen[organism][gene +1] ==

2){currentCost = currentCost + table [7][2];}

if(next_gen[organism][gene +1] ==

3){currentCost = currentCost + table [7][3];}

if(next_gen[organism][gene +1] ==

4){currentCost = currentCost + table [7][4];}

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [7][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [7][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [7][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [7][12];}

}

else{

Appendix B. C Codes 89

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 8

if(next_gen[organism][gene] == 8){

if(next_gen[organism][gene +1] == 1 ||

next_gen[organism][gene +1] == 2 || next_gen[organism][gene +1] == 3 ||

next_gen[organism][gene +1] == 4 || next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12){

if(next_gen[organism][gene +1] ==

1){currentCost = currentCost + table [8][1];}

if(next_gen[organism][gene +1] ==

2){currentCost = currentCost + table [8][2];}

if(next_gen[organism][gene +1] ==

3){currentCost = currentCost + table [8][3];}

if(next_gen[organism][gene +1] ==

4){currentCost = currentCost + table [8][4];}

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [8][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [8][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [8][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [8][12];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 9

if(next_gen[organism][gene] == 9){

if(next_gen[organism][gene +1] == 5 ||

next_gen[organism][gene +1] == 6 || next_gen[organism][gene +1] == 7 ||

next_gen[organism][gene +1] == 8 || next_gen[organism][gene +1] == 13

|| next_gen[organism][gene +1] == 14 || next_gen[organism][gene +1] ==

15 || next_gen[organism][gene +1] == 16){

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [9][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [9][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [9][7];}

Appendix B. C Codes 90

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [9][8];}

if(next_gen[organism][gene +1] ==

13){currentCost = currentCost + table [9][13];}

if(next_gen[organism][gene +1] ==

14){currentCost = currentCost + table [9][14];}

if(next_gen[organism][gene +1] ==

15){currentCost = currentCost + table [9][15];}

if(next_gen[organism][gene +1] ==

16){currentCost = currentCost + table [9][16];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 10

if(next_gen[organism][gene] == 10){

if(next_gen[organism][gene +1] == 5 ||

next_gen[organism][gene +1] == 6 || next_gen[organism][gene +1] == 7 ||

next_gen[organism][gene +1] == 8 || next_gen[organism][gene +1] == 13

|| next_gen[organism][gene +1] == 14 || next_gen[organism][gene +1] ==

15 || next_gen[organism][gene +1] == 16){

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [10][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [10][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [10][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [10][8];}

if(next_gen[organism][gene +1] ==

13){currentCost = currentCost + table [10][13];}

if(next_gen[organism][gene +1] ==

14){currentCost = currentCost + table [10][14];}

if(next_gen[organism][gene +1] ==

15){currentCost = currentCost + table [10][15];}

if(next_gen[organism][gene +1] ==

16){currentCost = currentCost + table [10][16];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 11

Appendix B. C Codes 91

if(next_gen[organism][gene] == 11){

if(next_gen[organism][gene +1] == 5 ||

next_gen[organism][gene +1] == 6 || next_gen[organism][gene +1] == 7 ||

next_gen[organism][gene +1] == 8 || next_gen[organism][gene +1] == 13

|| next_gen[organism][gene +1] == 14 || next_gen[organism][gene +1] ==

15 || next_gen[organism][gene +1] == 16){

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [11][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [11][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [11][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [11][8];}

if(next_gen[organism][gene +1] ==

13){currentCost = currentCost + table [11][13];}

if(next_gen[organism][gene +1] ==

14){currentCost = currentCost + table [11][14];}

if(next_gen[organism][gene +1] ==

15){currentCost = currentCost + table [11][15];}

if(next_gen[organism][gene +1] ==

16){currentCost = currentCost + table [11][16];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 12

if(next_gen[organism][gene] == 12){

if(next_gen[organism][gene +1] == 5 ||

next_gen[organism][gene +1] == 6 || next_gen[organism][gene +1] == 7 ||

next_gen[organism][gene +1] == 8 || next_gen[organism][gene +1] == 13

|| next_gen[organism][gene +1] == 14 || next_gen[organism][gene +1] ==

15 || next_gen[organism][gene +1] == 16){

if(next_gen[organism][gene +1] ==

5){currentCost = currentCost + table [12][5];}

if(next_gen[organism][gene +1] ==

6){currentCost = currentCost + table [12][6];}

if(next_gen[organism][gene +1] ==

7){currentCost = currentCost + table [12][7];}

if(next_gen[organism][gene +1] ==

8){currentCost = currentCost + table [12][8];}

if(next_gen[organism][gene +1] ==

13){currentCost = currentCost + table [12][13];}

if(next_gen[organism][gene +1] ==

14){currentCost = currentCost + table [12][14];}

Appendix B. C Codes 92

if(next_gen[organism][gene +1] ==

15){currentCost = currentCost + table [12][15];}

if(next_gen[organism][gene +1] ==

16){currentCost = currentCost + table [12][16];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 13

if(next_gen[organism][gene] == 13){

if(next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12 || next_gen[organism][gene +1] ==

17 || next_gen[organism][gene +1] == 18){

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [13][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [13][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [13][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [13][12];}

if(next_gen[organism][gene +1] ==

17){currentCost = currentCost + table [13][17];}

if(next_gen[organism][gene +1] ==

18){currentCost = currentCost + table [13][18];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 14

if(next_gen[organism][gene] == 14){

if(next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12 || next_gen[organism][gene +1] ==

17 || next_gen[organism][gene +1] == 18){

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [14][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [14][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [14][11];}

Appendix B. C Codes 93

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [14][12];}

if(next_gen[organism][gene +1] ==

17){currentCost = currentCost + table [14][17];}

if(next_gen[organism][gene +1] ==

18){currentCost = currentCost + table [14][18];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 15

if(next_gen[organism][gene] == 15){

if(next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12 || next_gen[organism][gene +1] ==

17 || next_gen[organism][gene +1] == 18){

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [15][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [15][10];}

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [15][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [15][12];}

if(next_gen[organism][gene +1] ==

17){currentCost = currentCost + table [15][17];}

if(next_gen[organism][gene +1] ==

18){currentCost = currentCost + table [15][18];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 16

if(next_gen[organism][gene] == 16){

if(next_gen[organism][gene +1] == 9 ||

next_gen[organism][gene +1] == 10 || next_gen[organism][gene +1] == 11

|| next_gen[organism][gene +1] == 12 || next_gen[organism][gene +1] ==

17 || next_gen[organism][gene +1] == 18){

if(next_gen[organism][gene +1] ==

9){currentCost = currentCost + table [16][9];}

if(next_gen[organism][gene +1] ==

10){currentCost = currentCost + table [16][10];}

Appendix B. C Codes 94

if(next_gen[organism][gene +1] ==

11){currentCost = currentCost + table [16][11];}

if(next_gen[organism][gene +1] ==

12){currentCost = currentCost + table [16][12];}

if(next_gen[organism][gene +1] ==

17){currentCost = currentCost + table [16][17];}

if(next_gen[organism][gene +1] ==

18){currentCost = currentCost + table [16][18];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 17

if(next_gen[organism][gene] == 17){

if(next_gen[organism][gene +1] == 13 ||

next_gen[organism][gene +1] == 14 || next_gen[organism][gene +1] == 15

|| next_gen[organism][gene +1] == 16 || next_gen[organism][gene +1] ==

19){

if(next_gen[organism][gene +1] ==

13){currentCost = currentCost + table [17][13];}

if(next_gen[organism][gene +1] ==

14){currentCost = currentCost + table [17][14];}

if(next_gen[organism][gene +1] ==

15){currentCost = currentCost + table [17][15];}

if(next_gen[organism][gene +1] ==

16){currentCost = currentCost + table [17][16];}

if(next_gen[organism][gene +1] ==

19){currentCost = currentCost + table [17][19];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 18

if(next_gen[organism][gene] == 18){

if(next_gen[organism][gene +1] == 13 ||

next_gen[organism][gene +1] == 14 || next_gen[organism][gene +1] == 15

|| next_gen[organism][gene +1] == 16 || next_gen[organism][gene +1] ==

19){

if(next_gen[organism][gene +1] ==

13){currentCost = currentCost + table [18][13];}

if(next_gen[organism][gene +1] ==

14){currentCost = currentCost + table [18][14];}

Appendix B. C Codes 95

if(next_gen[organism][gene +1] ==

15){currentCost = currentCost + table [18][15];}

if(next_gen[organism][gene +1] ==

16){currentCost = currentCost + table [18][16];}

if(next_gen[organism][gene +1] ==

19){currentCost = currentCost + table [18][19];}

}

else{

currentCost = currentCost +

max_cost;

}

}

//if the bin is equal to 19

if(next_gen[organism][gene] == 19){

if(next_gen[organism][gene +1] == 17 ||

next_gen[organism][gene +1] == 18){

if(next_gen[organism][gene +1] ==

17){currentCost = currentCost + table [19][17];}

if(next_gen[organism][gene +1] ==

18){currentCost = currentCost + table [19][18];}

}

else{

currentCost = currentCost +

max_cost;

}

}

}

else{

break;

}

}

int a, b, c;

a = bound_rand ((int)(N_org /2), (N_org -1));

b = sort_cost[a];

//if the offspring is less fitter than the selected , select

another one

if(currentCost > b){

c = select_best ();

for(gene = 0; gene < N_gen; gene ++){

next_gen[organism][gene] = curr_gen[c][gene];

}

}

}

Appendix B. C Codes 96

/*

*/

int select_one(void){

int organism;

int randomSelectPoint;

int runningTotal;

runningTotal = tot_cost;

randomSelectPoint = rand() % (tot_cost +1);

for(organism = 0; organism < N_org; ++ organism){

runningTotal = runningTotal - org_cost[organism];

if(runningTotal <= randomSelectPoint){

return organism;

}

}

}

int select_best(void){

int organism;

int mean_value;

int runningTotal;

int randomSelectPoint;

//the select point is the mean value of the organism ’s cost

mean_value = (int)(tot_cost/N_org);

//

randomSelectPoint = bound_rand(min_cost , mean_value);

for(organism = 0; organism < N_org; ++ organism){

if(org_cost[organism] <= randomSelectPoint){

return organism;

}

}

}

/*

Auxiliar functions to choose between the neighbors during the creation of

the first generation

*/

Appendix B. C Codes 97

int bound_rand(int min , int max){

int ans;

ans = (rand() % ((max +1)-min)) + min;

return ans;

}

int num_rand(int num , int min , int max){

int aux;

int ans;

aux = rand() % 2;

if(aux == 0){ans = num;}

else{ans = bound_rand(min ,max);}

return ans;

}

int rand_rand(int min1 , int max1 , int min2 , int max2){

int aux;

int ans;

aux = rand() % 2;

if(aux == 0){ans = bound_rand(min1 ,max1);}

else{ans = bound_rand(min2 ,max2);}

return ans;

}

Bibliography

[1] A. Inc., Epiphany SDK Reference. Adapteva Inc., 2013.

[2] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[3] E. F. Moore, The shortest path through a maze. Bell Telephone System., 1959.

[4] M. Sniedovich, “Dijkstra’s algorithm revisited: the dynamic programming

connexion,” Control and cybernetics, vol. 35, no. 3, p. 599, 2006.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to

algorithms. MIT press Cambridge, 2001, vol. 2.

[6] J. Inagaki, M. Haseyama, and H. Kitajima, “A genetic algorithm for determining

multiple routes and its applications,” in Circuits and Systems, 1999. ISCAS’99.

Proceedings of the 1999 IEEE International Symposium on, vol. 6. IEEE, 1999,

pp. 137–140.

[7] M. Noto and H. Sato, “A method for the shortest path search by extended

dijkstra algorithm,” in Systems, Man, and Cybernetics, 2000 IEEE International

Conference on, vol. 3. IEEE, 2000, pp. 2316–2320.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, 1st ed. Addison-Wesley Professional, 1989.

[9] F. B. Zhan, “Three fastest shortest path algorithms on real road networks: Data

structures and procedures,” Journal of geographic information and decision

analysis, vol. 1, no. 1, pp. 69–82, 1997.

[10] A. Chaudhary and N. K. Pandey, “Genetic algorithm for shortest path in packet

switching networks,” Journal of Theoretical and Applied Information Technology,

vol. 29, no. 2, 2011.

[11] A. Inc., Epiphany 16 core Microprocessor datasheet. Adapteva Inc., 2013.

[12] ——, Epiphany Architecture Reference. Adapteva Inc., 2013.

98

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	2 Basic Concepts
	2.1 Shortest Path problems
	2.1.1 Introduction
	2.1.2 Applications
	2.1.3 Tree of Shortest Paths
	2.1.4 Shortest Path Problems in Acyclic Networks

	2.2 Dijkstra's Algorithm
	2.2.1 Running Time Dijkstra's Algorithm
	2.2.2 Reverse Dijkstra's Algorithm
	2.2.3 Bidirectional Dijkstra's Algorithm

	2.3 Genetic Algorithms
	2.3.1 Introduction
	2.3.2 Robustness of Traditional Optimization and Search Methods
	2.3.3 The Goals of Optimization
	2.3.4 Differences between Genetic Algorithms and Traditional Methods
	2.3.5 A Simple Genetic Algorithm

	3 The Parallella Board
	3.1 Introduction
	3.1.1 Overview
	3.1.2 Technical Specifications

	3.2 Epiphany Architecture
	3.2.1 Introduction
	3.2.2 System Examples
	3.2.3 Memory Architecture

	3.3 eCore CPU
	3.3.1 Overview
	3.3.2 Data Types
	3.3.3 Local Memory Map
	3.3.4 General Purpose Register
	3.3.5 Epiphany Instruction Set
	3.3.6 Pipeline Description
	3.3.7 Interrupt Controller
	3.3.8 Hardware Loops (LABS)
	3.3.9 Direct Memory Access (DMA)
	3.3.10 Memory Protection Unit (LABS)

	3.4 Software Development Enviroment
	3.5 Programming Model
	3.5.1 Programming Model Introduction
	3.5.2 Parallel Programming Example

	4 Experimentation
	4.1 Set Up
	4.2 Structure of the model Network and Table of Cost
	4.3 Proposed Algorithm
	4.3.1 Global Variables
	4.3.2 main() function
	4.3.3 init_org() function
	4.3.4 eval_gen() function
	4.3.5 prod_next_gen() function
	4.3.6 select_one() function

	4.4 Results

	5 Conclusions
	A Parallella Board Configuration
	A.1 Hardware Accessories
	A.1.1 Headless
	A.1.2 With Display

	A.2 Creating a bootable micro-SD card
	A.2.1 Downloading the Binaries
	A.2.2 Install

	A.3 Connect the board to the computer via Ethernet
	A.3.1 Setting a static IP address
	A.3.2 Connecting the board to the computer

	B C Codes
	B.1 "defs.h" file
	B.2 "host.c" file
	B.3 "dev.c" file

	Bibliography

