
University of Pisa

Master Degree Thesis

Shooter Localization in Wireless
Acoustic Sensor Networks: experiments,
design and algorithm implementation on

a centralized gateway

Author:

Andrea Simone Pinna

Supervisor:

Prof. Stefano Giordano

First Co-Supervisor:

Ing. Gregorio Procissi

Second Co-Supervisor:

CF AN Ing. Carlo Roatta

A thesis submitted in fulfilment of the requirements

for the degree of Telecommunication Engineering

in the

Networking Research Group

Department of Information Engineering

April 2015

http://www.unipi.it
Research Group Web Site URL Here (include http://)
http://www.iet.unipi.it

”If a man isn’t willing to take some risk for his opinions, either his opinions are no good

or he’s no good.”

”Se un uomo non si rivela disposto a lottare per le sue idee, o le sue idee non valgono

nulla, o non vale nulla lui.”

Ezra Pound

UNIVERSITY OF PISA

Abstract

Telecommunication Engineering

Department of Information Engineering

Telecommunication Engineering

Shooter Localization in Wireless Acoustic Sensor Networks: experiments,

design and algorithm implementation on a centralized gateway

by Andrea Simone Pinna

In modern warfare, from Stalingrad to Hue, from Sarajevo to Fallujah, sniper attacks

have become a more and more critical tactical issue. For this reason, in the last years

many studies have been focused on acoustic sensor networks for shooter localization.

Nowadays some western armies use mobile sensors equipped with three or four mi-

crophones with a FPGA programmed to detect the TOAs (Time of Arrivals) of the

two acoustic phenomena that characterize a supersonic bullet gunshot: Shockwave and

Muzzle Blast. This task is very challenging because of the very fast rise times of the

associated acoustic signals and because they can be easily masked by reverberations and

noise. Consequently, the sensors currently deployed adopt a time domain analysis based

detection, which is very precise but requires a huge sampling frequency, in the order

of MS/s. This thesis proposes the design of a distributed low cost network of single

channel static sensors. The signal analysis technique is a Joint Time Frequency (JTF)

technique. The choice of a JTF technique arises from the necessity of measuring TOAs

with low cost sensors and ADCs (Analog to Digital Converters) which cannot afford

very high sampling rates. Various JTF techniques for this application have been already

proposed in literature, the STFT is the less computationally expensive one. Hence it

was chosen, being the sensors cheapness and low computational load two of the most

important design specifications for the work of this thesis. In the idea of the network, the

sensors deliver TOA informations to a centralized gateway which performs the shooter

position estimation with proper algorithms. A ZedBoard was thought as the centralized

gateway, because it is provided with a Zynq SoC, which appears to be one of the most

promising architectures in the class of embedded systems. Real data acquisition and

signal analysis are provided with an Ultramic microphone, then a shooter-microphone

distance is computed with a single sensor approach. The good experimental results

encourage further investigations: the error is confined between 0.5 and 3.1 meters.

http://www.unipi.it
http://www.ingtlc.unipi.it
http://www.iet.unipi.it

Acknowledgements

Si ringraziano:

il Prof. Stefano Giordano per avermi permesso di svolgere la tesi su un argomento che

mi ha molto appassionato e per il supporto non solo tecnico.

Il Comandante Carlo Roatta, le cui gentilezza e competenza sono state eccezionali ed

utilissime, soprattutto per aver profuso grandi sforzi per permettermi di porre in essere

la campagna sperimentale e per avermi introdotto a Linux.

L’ Ing. Franchi e l’ Ing. Michele Di Cosmo per aver messo a disposizione la stru-

mentazione necessaria e per essersi impegnati in prima persona per fornire informazioni

necessarie ed apprezzatissimo supporto sul campo.

L’ Ing. Giuseppe Portaluri che sempre mostratosi interessato e contento di fornire fon-

damentali consigli tecnici.

Il mio carissimo collega d’oltreoceano Alferes Davd Alberto Lau Gastelo che ha generosa-

mente speso tempo per colmare tutte le lacune che avevo in informatica e per avermi

aiutato ad entrare nella filosofia Linux.

Tengo poi a ringraziare affettuosamente:

tutta la mia famiglia che da sempre mi supporta e soprattutto mi sopporta.

Ambra che ha saputo darmi un nuovo motivo per stringere i denti, andare avanti e su-

perare la crisi che mi aveva colpito prima di conoscerla e che rappresenta ora meglio

prima la ragione per cui dare sempre il massimo.

La famiglia di Ambra che mi ha trattato come un terzo figlio.

Tutti i miei camerati che dal primo giorno di accademia sopportano il mio caratteraccio

e la mia tirannide, che con me hanno superato innumerevoli avventure, non tutte posi-

tive, e che sono sempre stati il bastone su cui appoggiarmi quando iniziavo a zoppicare,

il libro da consultare quando mi mancavano le conoscenze necessarie, gli amici che mi

hanno fatto divertire anche con una semplice chiacchierata davanti ad una birra.

Tutti i miei carissimi amici di Vicenza, che ogni volta che torno a casa mi fanno sentire

come non fossi mai partito.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables x

1 Sensor Network Design 1

1.1 Introduction . 1

1.2 Target Application . 3

1.3 Network General Features . 5

1.3.1 Wireless Protocol Selection . 5

1.3.2 ZigBee Topologies . 8

1.3.2.1 Star Topology . 9

1.3.2.2 Peer-to-Peer (Mesh) Topology 10

1.3.2.3 Cluster-Tree Topology . 10

1.3.3 ZigBee Channel Access Policy . 11

1.3.4 The Topology chosen for this Network Design 12

1.4 Synchronization Issues . 13

1.4.1 GPS Clock Synchronization . 13

1.5 Hardware description . 14

1.5.1 Sensor Nodes . 14

1.5.2 The Centralized Gateway . 16

1.5.2.1 Why Zynq SoC . 17

1.5.2.2 Programming ZedBoard with System Generator for DSP:
a failed attempt . 19

2 Gunshot Acoustic Parameters Estimation 22

2.1 Overview on gunshot acoustic signals . 22

2.1.1 Muzzle Blast . 24

2.1.2 Bullet Shock Wave . 25

2.2 Environmental Effects on Gunshot Acoustical Features 28

iv

Contents v

2.2.1 Reverberant Environment: Sound Reflection and Multi-Path . . . 29

2.2.2 Effect of Wind . 30

2.2.3 Temperature and Humidity Effects on the Speed of Sound 30

2.2.3.1 Temperature Dependence 31

2.2.3.2 Effect of Variable Temperature 32

2.2.3.3 Humidity Effects . 33

2.2.3.4 Frequency Dependent Sound Absorption due to Humidity 33

2.3 Shock Wave and Muzzle Blast Discrimination 34

2.3.1 Discrimination Issues . 34

2.3.2 Approaches presented in Literature 34

2.3.2.1 A Time Domain Analysis: a State Machine fed by Zero
Crossing encoding . 35

2.3.2.2 Joint Time-Frequency and Wavelet Analysis 37

2.3.2.3 Final Considerations and Signal Analysis Technique Choice 40

3 Shooter Localization Problem 41

3.1 The Geometry of the problem and derivation of Shooter Equations 41

3.2 Introduction to different algorithm typologies 43

3.2.1 Multi-Channel Acoustic Sensor Networks 43

3.2.2 Single-Channel Acoustic Sensor Networks 44

3.2.3 Final Observations . 44

3.3 Synchronous sensors network shooter localization Algorithm 45

3.3.1 Direction of Arrival . 46

3.3.2 Worst Case shooter position estimation 47

3.4 Asynchronous sensors network shooter localization Algorithm 49

3.5 A special case: Single (Single-Channel) Sensor 50

4 Experimental Validation 53

4.1 Experimental Setup . 53

4.1.1 The Microphone . 54

4.1.1.1 Specifications and Hardware Description 54

4.1.1.2 Ultramic’s Software Description 56

4.1.2 Sensor Configuration . 57

4.1.3 The Weapons . 57

4.1.4 The Measurements . 59

4.2 Signals Analysis and Features Extraction 61

4.2.1 Considerations and TDOA calculation 64

4.3 Final Shooter Ranging . 66

4.3.1 Results Interpretation . 66

4.4 Error Sources . 67

4.4.1 TDOA estimation Error Sources 67

4.4.1.1 Microphone Performances 68

4.4.1.2 Sampling Rate . 68

4.4.1.3 Shockwave and Muzzle Blast discrimination Signal Anal-
ysis Technique . 68

4.4.2 Ranging Algorithm Error Sources 69

4.5 Conclusions . 70

Contents vi

A Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 72

A.1 Purpose of the Paper . 72

A.2 Boot Linaro Ubuntu on ZedBoard . 73

A.2.1 Formatting the SD Card . 73

A.2.1.1 Command Line Approach 75

A.2.1.2 GParted GUI Approach 75

A.2.2 Linux File System . 78

A.2.2.1 Copy the Linaro File System to the ext4 partition of the
SD Card . 82

A.2.2.2 Build the Linux Kernel 83

A.2.2.3 Configure the Kernel . 85

A.2.2.4 Build the Kernel . 85

A.2.2.5 Obtain the BOOT.BIN File 87

A.2.2.6 Compile the Device Tree 87

A.2.2.7 Boot the SD card onto the ZedBoard 88

A.2.3 Boot Linaro using Minicom . 90

A.2.4 Booting Linaro using GNU Screen 94

A.3 How to share a PC Internet Connection with ZedBoard 95

A.4 ZedBoard Remote Control . 95

A.4.1 Connecting to ZedBoard with SSH 97

A.4.1.1 SSH with X11: a GUI for applications 99

A.4.2 Controlling ZedBoard with (tight) VNC 99

A.5 Bug Fixed . 102

B Script in C for Single Channel Single Sensor shooter ranging 104

Bibliography 106

List of Figures

1.1 Dragunov soviet sniper rifle . 4

1.2 Data rate vs Range for different wireless protocols 6

1.3 Comparison of the normalized energy consumption for each protocol . . . 7

1.4 ZigBee star topology . 10

1.5 ZigBee peer to peer topology . 10

1.6 ZigBee cluster-tree topology . 11

1.7 SAM R21 photo . 15

1.8 SAM R21 peripherals . 15

1.9 UC530 Fastrax GPS Antenna Module . 17

1.10 ZedBoard block diagram . 18

1.11 Zynq-7000 AP SoC Overview . 19

1.12 System Generator Model for Single Sensor approach 20

1.13 Xilinx System Generator for DSP Blockset 20

2.1 gunshot . 22

2.2 91meters . 23

2.3 352meters . 23

2.4 549meters . 23

2.5 732meters . 23

2.6 muzzleblast . 25

2.7 shockwave . 27

2.8 Nshape . 28

2.9 soundreflection . 29

2.10 sth . 32

2.11 humidity . 33

2.12 shockwave detection state machine . 36

2.13 muzzle blast state machine . 37

3.1 geometry . 41

3.2 muzzle shock fusion . 48

3.3 geometry2 . 51

4.1 ultramic1 . 54

4.2 ultramic2 . 54

4.3 mems frequency response . 55

4.4 Ultramic internal electronics . 55

4.5 Ultramic gain configuration switches . 56

4.6 bat recording with SeaWave . 57

vii

List of Figures viii

4.7 Sensor Configuration . 58

4.8 SeaWave running on Windows 7 virtual machine on a Linux PC 58

4.9 5.56mm NATO bullet . 59

4.10 .308 Winchester bullet . 59

4.11 5.56mm NATO and .308 Winchester comparison 59

4.12 Geometry of the experimental campaign 60

4.13 1st Shot Spectrogram . 62

4.14 2nd Shot Spectrogram . 62

4.15 3rd Shot Spectrogram . 63

4.16 4th Shot Spectrogram . 63

4.17 5th Shot Spectrogram . 63

4.18 6th Shot Spectrogram . 64

4.19 7th Shot Spectrogram . 64

A.1 output of lsblk command. 73

A.2 output of lsblk command with sd device. 74

A.3 output of df command with sd device. 74

A.4 unmounting the partitions. 75

A.5 deleting the partitions. 76

A.6 creating new partitions (first part) . 77

A.7 creating new partitions (second part) . 78

A.8 checking new partitions with lsblk command 78

A.9 formatting the two partitions with mkfs utility 79

A.10 error reported after the first attempt to install GParted 79

A.11 starting GParted and selecting the SD card device node 80

A.12 No partition onto the SD card . 80

A.13 One existing partition onto the SD card 81

A.14 symbol to click for executing actions on GParted 81

A.15 editing the fat32 partition labeled BOOT 81

A.16 symbol to click for editing partitions on GParted 81

A.17 editing the ext4 partition labeled rootfs 82

A.18 Unzip the Linaro image in a temporary folder named ”linaro” 82

A.19 Mount the SD card to /tmp/sdext4 . 83

A.20 Umount the SD card . 83

A.21 Set ARM GNU Toolchain path . 84

A.22 Configure Linux Kernel for ZedBoard . 85

A.23 Kernel configuration Menu . 86

A.24 The zImage present in the folder linux-digilent/arch/arm/boot/zImage . . 86

A.25 This error occurs when the ARM GNU Toolchain is not in the path . . . 87

A.26 Line containing the ”bootargs” in the digilent-zed.dts file at the beginning 88

A.27 Line containing the ”bootargs” in the digilent-zed.dts file after the mod-
ifications in order to boot ZedBoard with a Linaro file system 88

A.28 . 89

A.29 Check ZedBoard device name with dmesg — grep tty, it will probably
be ttyACM0 . 90

A.30 Start minicom . 91

A.31 Minicom settings window . 91

List of Figures ix

A.32 Minicom serial port setup . 92

A.33 Window displayed when closing minicom after serial port set up 92

A.34 Stop ZedBoard auto boot process . 93

A.35 Linaro boot process finished . 93

A.36 Linaro Ubuntu desktop appears on the monitor 94

A.37 Edit a new connection . 95

A.38 Add a new connection . 96

A.39 Choose an ethernet connection . 96

A.40 Share the connection to other computers 96

A.41 First ssh ZedBoard configuration . 97

A.42 Second ssh ZedBoard configuration . 97

A.43 Finding ZedBoard IP address . 98

A.44 Creating the SSH connection with ZedBoard 99

A.45 Using x11 with SSH . 99

A.46 a x11 GUI for gedit . 100

A.47 Starting a VNC server session on the ZedBoard 100

A.48 Starting VNCviewer on the host PC . 101

A.49 VNCviewer GUI . 101

A.50 VNCviewer GUI authentication . 101

A.51 VNC lxde remote Linaro desktop . 101

A.52 Xterm running on a VNC lxde remote linaro desktop 102

A.53 warning message identifying the bug . 103

List of Tables

4.1 ultramic gain configuration . 56

4.2 ultramic os compatibilities . 56

4.3 Weapons Characteristics . 59

4.4 Shots Acquisition Settings . 61

4.5 computed TDOAs . 66

4.6 Estimated Shooter Distances . 67

x

Alla mia famiglia,

ad Ambra

e ai miei nuovi fratelli Alessandro, Alessio, Antonio, Cosimo

(Mimmo), David e Mattia, senza i quali non avrei mai avuto la

forza di raggiungere un tale obbiettivo.

xi

Chapter 1

Sensor Network Design

1.1 Introduction

In modern warfare, from Stalingrad to Hue, from Sarajevo to Fallujah, sniper attacks

have become a more and more critical tactical issue. The importance of countersniper

systems is underscored by the constant stream of news reports coming from the Middle

East. For example, in Afghanistan our soldiers are often target of well hidden and expert

snipers, who know the territory much better than us. In October 2006 CNN reported

on a new tac- tic employed by insurgents. A mobile sniper team moves around busy city

streets in a car, positions itself at a good standoff distance from dismounted US military

personnel, takes a single well-aimed shot and immediately melts in the city traffic. By

the time the soldiers can react, they are gone. For this reason, in the last years many

studies have been focused on acoustic sensor networks for shooter localization. When a

typical rifle is fired, there are two acoustic phenomena that can be observed. The first

is the muzzle blast that is created by the explosion inside the barrel as the bullet exits

the muzzle. This sound propagates from the muzzle spherically at the speed of sound.

The second is a miniature sonic boom, the ballistic shockwave, that is generated by the

supersonic projectile. This is a conical wavefront with its axis being the bullet trajectory

and it propagates at the speed of sound also. Both the muzzle blast and the shockwave

can be detected by regular microphones. A typical acoustic shooter localization system

relies on one or a couple of wired microphone arrays with precisely known microphone

separation. This makes it possible to estimate the Angle of Arrival (AOA) of both events

by measuring the Time of Arrival (TOA) at every microphone and using the known

geometry. Then a simple analytical formula containing the AOAs of the two acoustic

events and the Time Dif- ference of Arrival (TDOA) between the muzzle blast and the

shockwave provides the shooter location [1].The first sensor network-based countersniper

1

Chapter 1. Sensor Network Design 2

system was introduced in 2003 by [2], [3]. The system is based on potentially hundreds

of inexpensive sensor nodes deployed in the area of interest forming an ad hoc multihop

network. The acoustic sensors measure the Time of Arrival (ToA) of muzzle blasts and

ballistic shockwaves, pressure waves induced by the supersonic projectile, send the data

to a base station where a sensor fusion algorithm determines the origin of the shot. The

obvious disadvantage of such a system is its static nature. Nowadays some western armies

use mobile sensors equipped with three or four microphones with a FPGA programmed

to detect the TOAs (Time of Arrivals) of the two acoustic phenomena named above.

With these informations, each sensor is able to estimate the shooter position. The US

Army has recently deployed a large number of personal wearable shooter location systems

by QinetiQ [4]. The British military has been using these for a number of years now. The

shockwave and muzzle blast discrimination task is very challenging because of the very

fast rise times of the associated acoustic signals and because they can be easily masked

by reverberations and noise. Consequently, the sensors currently deployed adopt a time

domain analysis based detection, which is very precise but requires a huge sampling

frequency, in the order of MS/s [1]. This thesis proposes the design of a distributed

low cost static network of single channel static sensors. The signal analysis technique

is a Joint Time Frequency (JTF) technique. The choice of a JTF technique arises from

the necessity of measuring TOAs with low cost sensors and ADCs (Analog to Digital

Converters) which cannot afford a sampling frequency higher than 250kS/s. Various

JTF techniques for this application have been already proposed in literature, this kind

of approach is suggested by the fact that the energy produced by these two sources

have differing durations, rise times and arrival times, hence the separation can be done

by joint time-frequency analysis techniques. Typically the energy of the muzzle blast

signature is in the 300÷1000 Hz range, while the energy of the shockwave is mainly in

the 3÷7 kHz range.The three most studied JTF techniques for this application are: the

Smoothed Pseudo Wigner-Ville Distribution (SPWVD), the Discrete Wavelet Transform

(DWT) and the Short Time Fourier Transform (STFT). While the DWT appears to be

the best tradeoff between discrimination precision and computational complexity, the

STFT is the less computationally expensive one. Hence it was chosen, being the sensors

cheapness and low computational load two of the most important design specifications

for the work of this thesis. The wireless protocol choice was based on the following

observations: the network is distributed on a not large area (a few tens of meters),

the protocol should be as power saving as possible. The protocol that was found the

most satisfying for this network design is ZigBee (IEEE 802.15.4 standard), in particular

a star topology was considered. In the idea of the network, the sensors deliver TOA

informations to a centralized gateway which performs the shooter position estimation

with proper algorithms. A ZedBoard was thought as the centralized gateway, because it

is supplied by a Zynq SoC, which appears to be one of the most promising architectures

Chapter 1. Sensor Network Design 3

in the class of embedded systems. Real data acquisition and signal analysis are provided

with an Ultramic microphone, then a shooter-microphone distance is computed with

a single-channel single sensor approach, presented for the first time in[5]. The good

experimental results encourage further investigations: the error is confined between 0.5

and 3.1 meters.

1.2 Target Application

Before thinking on the specific design of the network, the target application must be un-

derstood, because it is the most important guideline that allows to determine precisely

the project specifications. Despite of some current trends in this research field [6], we

did not think on soldier-worn or vehicle mounted multichannel mobile sensors. This is

because the aim of the thesis was not to develop a system that supports a group of sol-

diers, a fire team or a patrol unit, during its movements on the battlefield. We thought,

instead, on a static and distributed sensor network for monitoring an area around a

base, for example a FOB (Forward Operating Base) in Afghanistan, and localizing an

enemy sniper after a shot detection. The idea was originated from the observation that

in current warfare, our soldiers are deployed in insidious and wide territories but deeply

known by the enemy, and they are often target of well hidden snipers who hit men also

inside the base sometimes. Not rarely these snipers are equipped with old but excellent

soviet rifles, as the illustrious Dragunov in figure 1.1. Modelling such a sensor network,

some issues characterizing the other kind of sensor network previously exposed were

avoided:

• the management of sensors mobility;

• changing multipath features of the environment.

The first issue derives from the fact that, for a soldier-worn or vehicle mounted sensor

network, sensors continuously move in the battlefield. While the second is due to the

fact that sensors migration changes network configuration and also network geographic

location, thus the multipath characteristics of the environment are constantly modi-

fied. Dealing with a static network for FOB surveillance, instead, other issues must be

considered:

• sensors must be robust to weathering and their power consumption must be as low

as possible, in order to reduce battery changes;

• the sensors must be small and hideable.

Chapter 1. Sensor Network Design 4

The first item comes from the tactical requirement of limiting to the minimum the cir-

cumstances in which soldiers or technical operators exit from the base and work in open

field in the proximity of the hostile territory. This network concept can be somehow

contextualized in the so called Sensor Rocks area of interest. This topic concerns with

sensor networks that are made of motes camouflaged as rocks and disseminated in a

vast area for revealing anomalies. Probably the best example of sensor rocks network

is SPAN (Self Powered Ad hoc Networks) [7], now tested by US Army, precisely it uses

sensors for movement detection. In fact the aim of this thesis is to give the start to

the project of a Shooter Localization Sensor Rocks Network for Italian Armed Forces.

The target application was not the only guideline that influenced the network specifi-

cations. Being this thesis a sort of feasibility study for an hypothetical future Italian

Armed Forces project, the present european economic crisis could not be ignored, thus

another fundamental parameter for this work was the cheapness. Briefly resuming all

the specifications, we can say that the sensors must be:

• as robust as possible;

• small and hideable;

• as less power consuming as possible;

• low cost.

Figure 1.1: A Russian soldier taking aim with his Dragunov

Chapter 1. Sensor Network Design 5

1.3 Network General Features

In the imagined network there are at least three peripheral acoustic sensors and one

centralized gateway. The characteristics of the acoustic peripherals of the sensors are

described in chapters 2 and 4. The gateway is situated into the base or onboard a vehicle,

hence for it the requirements in terms of robustness to weathering, power efficiency and

small dimensions are extremely relaxed. The sensors should be deployed in a possibly

square area with sides about 20÷30m long. The size constraints are the result of a

tradeoff research between having a network widely distributed and making the Far Field

approximation likely assumable. This assumption is necessary for the processing that

will be presented in section 3.3. Obviously for FOB surveillance applications more than

one network would be necessary, deployed along the base perimeter. After the gunshot

acoustic signal detection, they perform a shockwave and muzzle blast discrimination

(see section 2.3) and transmit the extracted information to the gateway using a wireless

communication protocol: ZigBee (IEEE 802.15.4).

1.3.1 Wireless Protocol Selection

The protocol choice was based on the following two considerations:

1. the network is distributed on a not large area (a few tens of meters);

2. the protocol should be as power saving as possible.

A good comparison between the wireless protocols inspected for this choice is [8]. Blue-

tooth (over IEEE 802.15.1), ultra-wideband (UWB, over IEEE 802.15.3), ZigBee (over

IEEE 802.15.4), and Wi-Fi (over IEEE 802.11) are four protocol standards for short

range wireless communications with low power consumption. From an application point

of view, Bluetooth is intended for a cordless mouse, keyboard, and hands-free head-

set, UWB is oriented to high-bandwidth multimedia links, ZigBee is designed for reli-

able wirelessly networked monitoring and control networks, while Wi-Fi is directed at

computer- to computer connections as an extension or substitution of cabled networks.

UWB and Wi-Fi provide a higher data rate, while Bluetooth and ZigBee give a lower

one. In general, the Bluetooth, UWB, and ZigBee are intended for WPAN communi-

cation (about 10m), while Wi-Fi is oriented to WLAN (about 100m). However, ZigBee

can also reach 100m in some applications. In figure 1.2, a graph represents data rate vs

range for different protocols. FCC power spectral density emission limit for UWB emit-

ters operating in the UWB band is -41.3 dBm/MHz. The nominal transmission power

is 0 dBm for both Bluetooth and ZigBee, and 20 dBm for Wi-Fi. Bluetooth and ZigBee

Chapter 1. Sensor Network Design 6

Figure 1.2: Data rate vs Range for different wireless protocols

are intended for portable products, short ranges, and limited battery power. Conse-

quently, it offers very low power consumption and, in some cases, will not measurably

affect battery life. UWB is proposed for short range and high data rate applications.

On the other hand, Wi-Fi is designed for a longer connection and supports devices with

a substantial power supply. Obviously, the Bluetooth and ZigBee protocols consume

less power as compared with UWB and Wi-Fi. Based on the bit rate, a comparison

of normalized energy consumption is provided in 1.3. From the mJ/Mb unit point of

view, the UWB and Wi-Fi have better efficiency in energy consumption. In summary,

Bluetooth and ZigBee are suitable for low data rate applications with limited battery

power (such as mobile devices and battery-operated sensor networks), due to their low

power consumption leading to a long lifetime. On the other hand, for high data rate

implementations (such as audio/video surveillance systems), UWB and Wi-Fi would be

better solutions because of their low normalized energy consumption. From previous

dissertations, it is clear that the protocol that offers the best performance in terms

of power efficiency (nominal transmission power is 0 dBm) for a network with sensors

20÷30 meters distant is the ZigBee (IEEE 802.15.4). In addition to being well fitted

for networks of geographic dimensions comparable to the ones of this project and being

power efficient, this protocol takes other advantages in terms of:

• signal security;

• network size.

Chapter 1. Sensor Network Design 7

Figure 1.3: Comparison of the normalized energy consumption for each protocol

For what concerns the second item, we report here that a ZigBee star network can reach

a number of nodes equal to 6500, but this is not in the interest of this application. In

fact for shooter localization a number of nodes between 3 and 5 should be enough.

On the other hand, signal security is always a relevant item. In the following a brief com-

parison between ZigBee and the other wifi protocols previously recalled from the security

point of view is exposed. All the four protocols have the encryption and authentication

mechanisms. Bluetooth uses the E0 stream cipher and shared secret with 16-bit cyclic

redundancy check (CRC), while UWB and ZigBee adopt the advanced encryption stan-

dard (AES) block cipher with counter mode (CTR) and cipher block chaining message

authentication code (CBC-MAC), also known as CTR with CBC-MAC (CCM), with

32-bit and 16- bit CRC, respectively. In 802.11, Wi-Fi uses the RC4 stream cipher for

encryption and the CRC-32 checksum for integrity. However, several serious weaknesses

were identified by cryptanalysts, any wired equivalent privacy (WEP) key can be cracked

with readily available software in two minutes or less, and thus WEP was superseded by

Wi-Fi protected access 2 (WPA2), i.e. IEEE 802.11i standard, of which the AES block

cipher and CCM are also employed.

Anyhow choosing ZigBee comports also some drawbacks:

• low data rate;

• long transmission time.

As specified in [9], The standard IEEE 802.15.4 offers two PHY (physical layer) options

based on the frequency band. Both are based on direct sequence spread spectrum

(DSSS) with 16 channels and 0.3/0.6 MHz bandwidth in the first frequency band, 2

MHz bandwidth in the second. The data rate is 250 kb/s at 2.4 GHz, 40kbps at 915

Chapter 1. Sensor Network Design 8

MHz and 20 kb/s at 868 MHz. The higher data rate at 2.4GHz is attributed to a

higher-order modulation scheme. Lower frequency provides longer range due to lower

propagation losses. Low rate can be translated into better sensitivity and larger coverage

area. Higher rate means higher throughput, lower latency or lower duty cycle. So the

highest achievable data rate with ZigBee is 250 kb/s when working in the 2.4 GHz band,

which is the lowest if compared to 1 Mb/s of Bluetooth, 54 Mb/s of Wi-Fi and 110 Mb/s

of UWB (reachable only with the unapproved IEEE 802.15.3a standard).

The transmission time depends on the data rate, the message size, and the distance

between two nodes. Obviously, the required transmission time is proportional to the

data payload size and disproportional to the maximum data rate. Thus, the transmission

time for the ZigBee is longer than the others because of the lower data rate (250 Kbit/s).

1.3.2 ZigBee Topologies

ZigBee over IEEE 802.15.4, defines specifications for low rate WPAN (LR-WPAN) for

supporting simple devices that consume minimal power and typically operate in the

personal operating space (POS) of 10m. ZigBee provides self organized, multi-hop,

and reliable mesh networking with long battery lifetime. The IEEE 802.15.4 standard

supports multiple network topologies. In the standard, three general types are discussed:

1. star networks;

2. peer to peer networks;

3. cluster-tree networks.

For the network designed in this paper the star topology was preferred, but the reasons

will be detailed later in section 1.3.4.

Before exposing the characteristics of the two different topologies, it is better to give the

definitions of some key ZigBee terms:

• PAN coordinator: the PAN coordinator is the node (strictly speaking, the co-

ordinator node) that initiates the network and is the primary controller of the

network. The PAN coordinator may transmit beacons and can communicate di-

rectly with any device in range. Depending on the network design, it may have

memory sufficient to store information on all devices in the network, and must

have memory sufficient to store routing information as required by the algorithm

employed by the network.

Chapter 1. Sensor Network Design 9

• Coordinator: the coordinator may transmit beacons and can communicate di-

rectly with any device in range. A coordinator may become a PAN coordinator,

should it start a new network.

• Device: a network device does not beacon and can directly communicate only

with a coordinator or PAN coordinator.

• Full function device (FFD): an FFD can operate in any of the three network

roles (PAN coordinator, coordinator, or device). It must have memory sufficient to

store routing information as required by the algorithm employed by the network.

The complete protocol set is implemented in an FFD.

• Reduced function device (RFD): an RFD is a very low cost device, with

minimal memory requirements. It can only function as a network device. Its role

is limited to star topology or an end device in peer-to- peer network. It cannot

become a PAN coordinator. It does not have the need to send large amounts of

data and may only associate with a single FFD at a time. Consequently, the RFD

can be implemented using minimal resources and memory capacity.

In the star network, the master device is the PAN coordinator (an FFD), and the other

network nodes may either be FFDs or RFDs. In the peer-to- peer network, FFDs are

used, one of which is the PAN coordinator. RFDs may be used in a peer-to- peer

network, but they can only communicate with a single FFD belonging to the network,

and so do not save true ”peer-to-peer” communication. A ZigBee system consists of

several components. The most basic one is the device. A device can be a full-function

device (FFD) or reduced-function device (RFD). A network shall include at least one

FFD, operating as the PAN coordinator. The FFD can operate in three modes: a

personal area network (PAN) coordinator, a router, or a device. A RFD is intended for

simple applications that do not need to send large amounts of data. A FFD can talk to

RFDs or FFDs while a RFD can only talk to a FFD.

1.3.2.1 Star Topology

In the star topology, figure 1.4, the communication is established between devices and a

single central controller, called the PAN coordinator. The PAN coordinator may be AC

powered while other devices will most likely be battery powered. After a FFD is activated

for the first time, it may establish its own network and become the PAN coordinator.

Each star topology network chooses a PAN identifier, which is not currently used by any

other network within the communication range. This allows each star network to operate

independently. Beacon may be used to synchronize every node with PAN coordinator.

Chapter 1. Sensor Network Design 10

Figure 1.4: ZigBee star topology

1.3.2.2 Peer-to-Peer (Mesh) Topology

In peer-to-peer (mesh) topology, figure 1.5, there is also one PAN coordinator. In con-

trast to star topology, any device can communicate with any other device as long as

they are in range of one another. A peer-to-peer network can be ad hoc, self organizing

and self-healing. Applications such as industrial control and monitoring, wireless sensor

networks, asset and inventory tracking would benefit from such topology. It also allows

multiple hops to route messages from any device to any other device in the network. It

can provide reliability by multipath routing. Beacon is not used for peer-to-peer topol-

ogy. This reduces control and increases collisions as compared to the beacon enabled

network.

Figure 1.5: ZigBee peer to peer topology

1.3.2.3 Cluster-Tree Topology

Cluster-tree network, figure 1.6, is a special case of a peer-to-peer network in which most

devices are FFDs and a RFD may connect to a cluster-tree network as a leaf node at the

Chapter 1. Sensor Network Design 11

end of a branch. Any of the FFD can act as a router and provide synchronization services

to other devices and routers. Only one of these routers is the PAN coordinator. The PAN

coordinator forms the first cluster by establishing itself as the cluster head (CLH) with

a cluster identifier (CID) of zero, choosing an unused PAN identifier, and broadcasting

beacon frames to neighbouring devices. A candidate device receiving a beacon frame

may request the CLH to join the network. If the PAN coordinator permits the device

to join, it will add this new device as a child device in its neighbour list. The newly

joined device will add the CLH as its parent in its neighbour list and begins transmitting

periodic beacons such that other candidate devices may then join the network at that

device. Once application or network requirements are met, the PAN coordinator may

instruct a device to become the CLH of a new cluster adjacent to the first one. The

advantage of this multi-cluster, hierarchical structure is the increased coverage area at

the cost of increased message latency.

Figure 1.6: ZigBee cluster-tree topology

1.3.3 ZigBee Channel Access Policy

The network uses two types of channel access mechanism, one based on slotted CSMA-

CA (Carrier Sensing Multiple Access -Collision Avoidance) in which the slots are aligned

with the beacon frames sent periodically by the PAN coordinator, and another based

on unslotted CSMA-CA [8]. The star-shaped hierarchical topology and beacon-enabled

slotted CSMA-CA regime appear better suited for a sensor network implementation

than their peer-to-peer and unslotted CSMA-CA counterparts, respectively. In the for-

mer case, the PAN coordinator can also act as the network sink that collects the data

from individual sensor nodes; furthermore, the CSMA-CA mechanism simplifies syn-

chronization and forwarding of data for further processing. In beacon-enabled networks,

Chapter 1. Sensor Network Design 12

channel time is divided into super-frames that are bounded by beacon transmissions

from the coordinator. The basic time units of the MAC protocol are backoff periods to

which all transmissions must be synchronized; at the 250 kb/s data rate, the duration of

one backoff period is tboff = 0.32 ms. In the uplink direction individual nodes access the

channel using the CSMA-CA algorithm, and the channel must be idle for two successive

backoff periods before transmission can start. If the channel is found busy, the random

backoff countdown is repeated, possibly with a larger starting value.

1.3.4 The Topology chosen for this Network Design

As anticipated at the beginning of the chapter, in our idea, the network consists of

three or four acoustic sensors which implement gunshot signal analysis and muzzle blast

and shockwave TOAs estimation and then deliver the informations to a centralized

gateway, that performs the shooter position estimation with the proper algorithm. Each

acoustic sensor does not need to communicate with other sensors, but just with the

centralized controller. For this reason, the star topology is evidently the best ZigBee

topology for this network. Furthermore, it can be noticed that each sensor does not

transmit huge amount of data: just two TOA values and, at most, the two coordinates

of its position. This feature is also connected to the specification of low cost and power

saving sensor nodes (see section 1.2), thus all the motes can be simple RFDs while the

centralized gateway is an FFD acting as PAN coordinator, hence it can provide motes

synchronization services for channel access with a beacon as explained in section 1.3.3.

It is very important not to confuse ”synchronization” regarding channel multiple access

and synchronization regarding shockwave and muzzle blast TOAs estimation. These

are two different problems and while the first is solved by adopting a beacon enabled

ZigBee star network, the solution of the second problem, which resorts to GPS (Global

Positioning System) will be explained later in section 1.4.1.

As already specified in section 1.3, for an application like FOB surveillance, more than

one network should be deployed along the FOB perimeter in order to cover all the

possible directions of enemy attacks. The shooter position estimations, available at

the interested gateway (or gateways), must be delivered to a central command and

control station. This station could be distant many tens of meters to the gateways,

hence a ZigBee protocol could not be enough. Consequently, the gateway is linked via

ZigBee (in particular it is the PAN coordinator) to its network sensors, and via Wi-Fi

or WiMax to the command and control station. Notice that adding Wi-Fi or WiMax

capabilities to the centralized gateway means increasing its power consumption, but,

as formerly mentioned, this is not a problem since the gateway is positioned in the

Chapter 1. Sensor Network Design 13

proximity or inside the base, thus it can be AC powered (also a typical characteristic of

PAN coordinators) and it can be bigger than the sensor nodes.

1.4 Synchronization Issues

As just explained in previous section 1.3.4, it is necessary to a distinction between:

• synchronization for wireless channel multiple access;

• synchronization to make consistent the estimated TOA values between various

sensors.

The first item has been already discussed in section 1.3.4, and, for this network de-

signed, solved by adopting a beacon enabled ZigBee star topology (which uses CSMA-

CA method). The second item is going to be examined in this section and concerns with

the gunshot acoustic signal analysis and parameters extraction. It has been previously

anticipated that this analysis essentially consists in estimating the instants of arrival of

two different acoustic phenomena: bullet shockwave and muzzle blast. Instants of arrival

can be equivalently defined as the onset instants or the peak instants. If the sensors of a

network are not synchronized in terms of signal acquisition, i.e. the motes do not have

a common time reference, then they would extract TOA values not compatible within

different sensors. In this case, the only approach available is the asynchronous algorithm

presented in [10] and briefly resumed in section 3.4, which relies just on the difference

between shockwave and muzzle blast TOAs (TDOA) at each sensor. At the moment,

for this network design, a synchronous approach is favorite, thus sensor synchronization

must be furnished, trying to maintain the hardware cheapness, simplicity and low com-

putational load of the sensor nodes.

Several synchronization methods have been proposed in literature: from FTSP (Flood-

ing Time Synchronization Protocol) [11], to the post-facto approach [1], [2].

These methods are quite complex and can increase nodes computational load. We pre-

ferred a GPS based synchronization [12], adopted also by [13]. This choice adds a new

specification to the sensor nodes, i.e. the RFDs of the ZigBee star topology: the need

of a GPS antenna module.

1.4.1 GPS Clock Synchronization

Even fairly accurate computer clocks are likely to vary due to manufacturing defects,

changes in temperature, electric and magnetic interference, the age of the quartz crystal,

Chapter 1. Sensor Network Design 14

or even system load. Additionally, even the smallest errors in keeping time can signif-

icantly add up over a long period. Consider two clocks that are synchronized at the

beginning of the year, but one consistently takes an extra 0.04 milliseconds to increment

itself by a second. By the end of a year, the two clocks will differ in time by more than 20

minutes. If a clock is off by just 10 parts per million, it will gain or lose almost a second

a day. Clocks locked to atomic standards are much more stable timekeepers. Rubidium,

Cesium and Hydrogen Maser clocks can be much more accurate. Of the three, Rubidium

clocks often provide the best combination of cost, size and overall performance and are

often a requirement for high reliability master clock systems. However, atomic clocks

themselves do not guarantee traceability and synchronization with other clocks. That

where GPS comes in. GPS satellites (and now other global navigation systems) include

three or four atomic clocks that are monitored and controlled to be highly synchronized

and traceable to national and international standards (known as UTC). So for time

synchronization, the GPS signal is received, processed by a local master clock, time

server, or primary reference, and passed on to ”slaves” and other devices, systems, or

networks so their ”local clocks” are likewise synchronized to UTC. Typical accuracies

range from better than 500 nanoseconds to a few milliseconds depending on the synchro-

nization protocol. It is the process of synchronization to GPS that can provide atomic

clock accuracy without the need for a local atomic clock. Still, local atomic clocks are

sometimes desired as a long-term back-up solution to loss-of-GPS, either in the case

or a weather-related outage, GPS interference, or other scenarios. In any case, GPS

clock synchronization eliminates the need for manual clock setting (an error-prone pro-

cess) to establish traceability to national and international standards so various events

can be correlated even when they are time-stamped by different clocks. The benefits

are numerous and include: legally validated time stamps, regulatory compliance, secure

networking, and operational efficiency.

1.5 Hardware description

1.5.1 Sensor Nodes

Resuming here the specifications on the motes, i.e. the RFDs in the ZigBee star topology,

they must:

• have ZigBee connectivity;

• have a GPS module;

• be low power consuming;

Chapter 1. Sensor Network Design 15

Figure 1.7: SAM R21 photo

Figure 1.8: SAM R21 peripherals

• be small.

As sensor node board, the Atmel SAM R21 was chosen [14], it is represented in fig-

ures 1.7 and 1.8. The Atmel SAM R21 series of low power microcontrollers combines

the 32-bit ARM Cortex M0+ processor and an integrated ultra-low power 2.4 GHz ISM

band Zig-Bee certified transceiver. Operating with ZigBee in the 2.4 GHz band, a max-

imum data rate of 250 kb/s can be assured (see section 1.3.1). The most energy efficient

ARM processor yet, the Cortex-M0+ builds on the Cortex-M0 processor, while further

reducing energy consumption and increasing performance. The SAM R21 ARM Cortex-

M0+ based MCUs operate at 48MHz and feature a two-stage pipeline, single-cycle I/O

access, single-cycle 32x32 multiplier, event system, and a fast and flexible interrupt con-

troller. They are also highly efficient, reaching 2.14 CoreMark/MHz - 0.93 DMIPS/MHz.

For what concerns the requirement of small dimensions, the single-chip series is available

in extremely small 5x5mm 32-pin and 7x7mm 48-pin package.

The SAM R21 implements a wide range of features to drive down power consumption,

including low-power oscillators, clock gating and pre-scaling, Atmel SleepWalkingTM

technology and a proprietary low-power process. All this enables 70µA/MHz in active

mode and less than 3.5µA with full RAM retention and RTC running in sleep mode.

For adding the acoustic sensor, a MEMS can be connected to the analog peripher-

als, the analog received signal can be quantized by a 12-bit 300kbps ADC.

Chapter 1. Sensor Network Design 16

To integrate a GPS antenna module, it was considered the UC530 Fastrax GPS

Antenna Module [15] in figure 1.11. This device more important characteristics are:

• it is extremely small: 9.6 x 14.0 x 1.95 mm;

• it has ultra-low power consumption: 45 mW;

• it is self-assistant for 3 days;

• it guarantees a position accuracy of 2.5 m;

• it has few anti-jamming capabilities, in particular active Continuous Wave detec-

tion and removal.

Notice that a position precision of 2.5 m could result in significant sensor localization

error. In [2] and [13] studies on the sensor positioning error on the final shooter localiza-

tion are presented. In both case, the shooter localization involves the implementation

of a sensor fusion algorithm which has been not considered for this network project yet.

Anyhow these studies indicate that a 2.5 m positioning error can result in a position-

ing error of 5÷6 m. Although the actual error for the network presented in this thesis

should be investigated with several experiments, before considering such GPS module

not enough precise, three important observation must be highlighted:

1. in this thesis we considered a network which motes are positioned not so far from

a FOB, thus their deployment is not random and their precise position can be

known a priori, without resorting to GPS;

2. the GPS module is mostly necessary for giving sensors a common time reference;

3. an hypothetical shooter localization error of 5÷6 m, may be more that sufficient

for some applications, if, for example, the shooter localization position estimation

is delivered to an attack helicopter or to a mortar battery.

These observations lead to consider UC530 Fastrax GPS Antenna Module possibly suit-

able for this network sensor nodes. Linked to the condition of motes low power consump-

tion, is the demand of long battery life. A possibility that should be deeply investigated

in this direction is using solar energy, with proper solar panels, as power supply for the

Atmel boards.

1.5.2 The Centralized Gateway

Recalling in few words the previous discussions about the centralized gateway:

Chapter 1. Sensor Network Design 17

Figure 1.9: UC530 Fastrax GPS Antenna Module

• it is an FFD and a PAN coordinator in the ZigBee star topology;

• it has ZigBee and WiFi connectivities;

• it is AC powered;

• it can be bigger than the sensor nodes;

• it has more computational capabilities than the other motes.

As centralized gateway ZedBoard (Zynq Evaluation Development Board) [16] was cho-

sen. ZedBoard is intended to be a community development platform evaluation and

development board based on the Xilinx Zynq-7000 All Programmable System on Chip.

Combining a dual Cortex-A9 Processing System with an 85000 7-Series Programmable

Logic cells, the board contains interfaces and supporting functions to enable a wide

range of applications. In figure 1.10 the ZedBoard block diagram is showed.

1.5.2.1 Why Zynq SoC

One of the most important issues that embedded designers have to take care is the over-

burden of the system. The system bottlenecks imply the increment of the data latency,

delay interrupt handling and lower data throughput among others. Parallel Processing

is efficient for critical system performance but a central controller and memory manage-

ment is needed; one possible solution for parallel processing can be achieved within a

FPGA. One traditional solution is building a discrete hybrid system, a microcontroller

put together with a FPGA, that unites the best of both worlds but with some exceptions

like: the bandwidth between the two ICs is limited; increased power consumption; in-

creased PCB size and layout complexity; performing limit of the interface that connects

the microprocessor and the FPGA among others. The demands of today’s technology

Chapter 1. Sensor Network Design 18

Figure 1.10: ZedBoard block diagram

results in the fusion of a processing system and a programmable logic in a single device,

that is where the Zynq-7000 All Programmable System on Chip appears. Zynq-7000

is not an FPGA with an embedded PowerPC2, it is a 28 nm programmable-logic fab-

ric 7 Series family FPGA coupled with a dual ARM Cortex-A9 MP Core processor in

a single chip with a wide range of hard-core interface functions like high performance

I/Os, Gigabit Transceivers, high throughput AXI (Advanced eXtensively Interface) up

to three thousand PS to PL connections. This two-chip combo All Programmable SoC

will reduce the cost, size, complexity and power consumption of the system; at the same

time increasing the system performance.

The Zynq-7000 family is based on the Xilinx All Programmable SoC (AP SoC) ar-

chitecture. These products integrate a feature-rich dual-core ARM Cortex-A9 MPCore

based processing system (PS) and Xilinx programmable logic (PL) in a single device.

The ARM Cortex-A9 MPCore CPUs are the heart of the PS which also includes on-chip

memory, external memory interfaces, and a rich set of I/O peripherals. The range of

devices in the Zynq-7000 AP SoC family enables designers to target cost-sensitive as

well as high-performance applications from a single platform using industry-standard

tools. While each device in the Zynq-7000 family contains the same PS, the PL and I/O

resources vary between the devices. Figure ?? illustrates the functional blocks of the

Zynq-7000 AP SoC. The PS and the PL are on separate power domains, enabling the

user of these devices to power down the PL for management if required. The processors

Chapter 1. Sensor Network Design 19

in the PS always boot first. The PL can be configured as part of the boot process or

configured at some point in the future. Additionally, the PL can be completely recon-

figured or used with partial, dynamic reconfiguration (PR). PR allows configuration of

a portion of the PL.

Figure 1.11: Zynq-7000 AP SoC Overview

1.5.2.2 Programming ZedBoard with System Generator for DSP: a failed

attempt

Shooter localization algorithms may be complex. Thus an implementation on ZedBoard

using Xilinx Vivado software, hence programming in C and Verilog or VHDL languages

can be tricky and complicated. Consequently the possibility of programming ZedBoard

with very high level synthesis is very attractive, because despite a worse hardware opti-

mization, such techniques could make the programming much simpler and help to save

time. In particular it was attempt to implement some localization algorithm program-

ming ZedBoard with System Generator for DSP, a software tool belonging to the

Mathworks Package for Xilinx FPGAs. As the title of this section suggests, after some

trouble, this approach was abandoned, hence only a few words are going to be spent

here. Anyhow we consider important to expose the method and the reasons of its failure

to avoid future developers of the thesis useless losses of time. The purpose of System

Generator is being a system level modelling tool that facilitates FPGA hardware design.

It extends Simulink in many ways to provide a modelling environment that is well suited

to hardware design. Its aim is providing high-level abstractions that are automatically

compiled into an FPGA at the push of a button and also access to underlying FPGA

Chapter 1. Sensor Network Design 20

resources through low-level abstractions, allowing the construction of highly efficient

FPGA designs. It was found that this compilation into FPGAs is so far from being

automatic, except for some typical application and the pre-prepared tutorials published

in the manuals. Above all, the System Generator blockset, in figure 1.13, is very limited

for our application: we succeeded only to create a system generator model for the single

sensor approach for shooter ranging (in figure 1.12). The blockset is not enough for

other localization algorithms that will be exposed in Chapter 3. Anyhow it was tried

Figure 1.12: System Generator Model for Single Sensor approach

Figure 1.13: Xilinx System Generator for DSP Blockset

to program ZedBoard with this model. The synthesis was correct but when trying to

implement the model on the specific hardware, various errors were discoverd. These

Chapter 1. Sensor Network Design 21

errors mainly concerned with I/O overutilization: it was then clear that many low level

clock settings had to be changed. At this point, it was established that there were no

advantages in adopting such approach to program ZedBoard.

Chapter 2

Gunshot Acoustic Parameters

Estimation

2.1 Overview on gunshot acoustic signals

A typical gun shot audio signal recording is the one represented in figure 2.1. This

image clearly puts in evidence the two main acoustic effects of a gunshot: the Bullet

Shockwave and the Muzzle Blast. From this image it can also be noticed that, for enough

large distances between the microphone recording the signal and the shooter (as in an

actual battlefield they can be), the amplitude dynamic of the Muzzle Blast is much lower

than the Shockwave one, this is one of the gunshot acoustic features that make Muzzle

Blast and Shockwave discrimination a difficult and challenging task. The temporal

Figure 2.1: A typical gunshot acoustic signal

distance between these two events is related with the distance from the shooter to the

22

Chapter 2. Gunshot Acoustic Parameters Estimation 23

Figure 2.2: Gunshot recording 91 meters
downrange

Figure 2.3: Gunshot recording 352 meters
downrange

Figure 2.4: Gunshot recording 549 meters
downrange

Figure 2.5: Gunshot recording 732 meters
downrange

microphone that is recording the signal: the higher the distance shooter-microphone,

the higher the separation in time between Shockwave and Muzzle Blast. The distance

shooter-microphone affects not only the temporal separation between Muzzle Blast and

Shock Wave, but also the amplitude dynamic of them. Such effect is underlined by

figures 2.2, 2.3, 2.4, 2.5, obtained from[17]. This is particularly evident on the Muzzle

Blast amplitude. The reason of this will be clearer in the paragraphs 2.1.1 and 2.1.2,

after a digression on the physical causes of these two acoustics phenomena.

But the acoustic signal features of a gunshot hardly depends also on a lot of other pa-

rameters: weapon characteristics, kind of environment, climatic conditions and so on.

As deeply investigated in this thesis, the identification of parameters such as the dif-

ference of the instants of arrival of Shockwave and Muzzle Blast, the duration of the

Shockwave and others can provide information about the gun location with respect to

Chapter 2. Gunshot Acoustic Parameters Estimation 24

the microphone (or the array of microphones) and the speed and trajectory of the bul-

let. The principal difficulty when interpreting such recordings arises from reverberation

(overlapping acoustic signal reflections) due to the gun shot sound reflecting off and

diffracting around nearby surfaces. Further details will be provided in paragraph 2.2.1.

This problem is particularly critical in environments strongly affected by multi path,

such as the urban one, where the tactical danger of snipers (and so their localisation)

is mainly present. Another problem is that if the microphone performs the recording at

distances very far from the bullet?s trajectory, the shock wave will have expanded suf-

ficiently by spatial spreading that it may no longer be detectable compared to ambient

noise.

2.1.1 Muzzle Blast

A conventional firearm uses a confined explosive charge to propel the bullet out of the

gun barrel. The hot, rapidly expanding gases cause an acoustic blast to emerge from

the barrel. The acoustic disturbance lasts few milliseconds (around 3 or 5 milliseconds)

and propagates through the air at the speed of sound (c). The sound level of the muzzle

blast is often highly directional: it is strongest in the direction the barrel is pointing and

decreases as the off-axis angle increases. The peak sound pressure level associated with

the muzzle blast can exceed 150 dB in the vicinity of the firearm. Once the gunpowder

combustion is complete, the firearm itself may produce much more subtle mechanical

sounds, such as post-shot motion of the trigger and cocking mechanism, ejection of the

spent cartridge, and positioning of new ammunition. These characteristic sounds may

be of interest for forensic study if the microphone is located sufficiently close to the

firearm to pick up the tell-tale sonic information. A microphone located in the vicinity

of the gunshot will detect the muzzle blast signal once the sound propagation travels

at the speed of sound from the gun to the microphone position. However, the muzzle

blast signal will also reflect off the ground and off other nearby surfaces, resulting in

a complicated received signal consisting of multiple overlapping reflections (see figure

2.6). Anyway, unfortunately, muzzle blast is not necessarily a reliable acoustic source of

analysis. In addition to begin quite highly directional, as just explained, it mat be also

be obscured by barriers and other obstacles blocking the direct path between the firearm

and the microphone location (see also paragraph 2.2.1). Furthermore, some firearms can

be equipped with an acoustical suppressor (”silencer”) to alter or reduce the muzzle blast

sound level. For all these reasons, even if this is not the case of this thesis, it is remarkable

that someone has already presented shooter localisation algorithms with the purpose of

relying only on the bullet’s shock wave information, not using the muzzle blast one [18],

[19]. It is important to underline that such algorithms require synchronization of the

Chapter 2. Gunshot Acoustic Parameters Estimation 25

Figure 2.6: A Muzzle Blast signal affected by multi path in a reverberant environment

sensor composing the network, and this situation could not be simulated in this work,

having only one microphone at disposal. At the end, another muzzle blast feature is now

exposed: the muzzle speed dependence on bullet speed and deceleration. This relation

can be relevant since, under the hypothesis of known (or estimated) bullet coefficient,

it leads to a possible weapon classification (as reported in [13]), being the combination

of muzzle speed and bullet coefficient often uniquely identifying the weapon used. An

approximated form for this equation is (2.1):

vmuzzle =
√
v2bullet − 2ar (2.1)

Where:

• vbullet is the average bullet speed;

• a is the bullet deceleration, a negative number which can be computed from the

ballistic coefficient of the bullet;

• r is the range to the shooter position.

2.1.2 Bullet Shock Wave

Depending on the size of the charge, the mass of the bullet, and other factors, the bullet

may be traveling at supersonic speed. A supersonic bullet causes a characteristic shock

wave pattern as it moves through the air. The shock wave expands as a cone behind

the bullet with a wave front propagating outward at the speed of sound. Its geometry

depends upon the ratio between the bullet’s speed vbullet and the sound speed c. The

Chapter 2. Gunshot Acoustic Parameters Estimation 26

ratio (2.2) is known as the Mach Number of the moving object.

M =
vbullet
c

(2.2)

Thus a projectile traveling faster than the speed of sound has M > 1, while a subsonic

projectile has a fractional Mach Number (0 < M < 1). Specifically for supersonic

projectiles, the angle between the bullet path and the resulting shock wave is given by:

θM = arcsin (
1

M
) (2.3)

where θM is referred to as a Mach Angle. The Mach Angle ranges from nearly 90◦

for barely supersonic bullets to 30◦ or less for high-velocity projectiles (see figure 2.7).

Notice that, utilizing definition (2.2), equation (2.1) can be expressed as a function of

Mach Number like this (2.4):

vmuzzle =
√

(Mc)2 − 2ar (2.4)

The speed of sound in dry air increases with the temperature and can be calculated as:

c = c0 ×
√

1 +
τ

273.15

m

s
(2.5)

where τ is the temperature in degrees Celsius and c0 (which is equal to 331.3 m/s)

is the speed of sound at 0 ◦C. Notice that (2.5) is true only under the assumption of

dry air, humidity changes may require corrections to this formula (see paragraph 2.2.3).

It is now clear that the Mach Number depends on the temperature, thus temperature

must be considered in order to compute the correct speed of sound, and consequently the

correct Mach Number. For example, a projectile traveling at 800 m/s has Mach Number

2.42 at 0 ◦C, or 2.33 (3.7% lower) at room temperature (20 ◦C). The bullet traveling

faster than the speed of sound outpaces the propagating shock wave and the muzzle

blast wave fronts which move at the speed of sound. This means that a microphone

located down range from the shooting position will typically receive the shock wave

arrival considerably before the arrival of the muzzle blast. For supersonic projectiles,

a set of microphones placed at known locations within the path of the shock wave can

provide an estimate the shock’s propagation direction. Note, however, that determining

the bullet’s trajectory from the shock propagation vector requires knowledge of the bullet

velocity, vbullet, or sufficient spatial information to deduce the Mach angle. Two bullets

following the same path but at different speeds may create substantially differing shock

wave propagation directions, as was shown in figure 2.7. In other words, if vbullet is not

known, then the shock wave cone angle is also not known, and the bullet’s trajectory

cannot be determined exactly without additional spatial information. This physical

Chapter 2. Gunshot Acoustic Parameters Estimation 27

Figure 2.7: The Shock Wave cone

reality is important to consider when examining gunshot acoustic evidence. The acoustic

shockwave from the bullet has a very rapid rise to a positive overpressure maximum (few

microseconds), followed by a corresponding under pressure minimum. As the shockwave

propagates, the nonlinear behaviour of the air causes the pressure disturbance to form

an ”N” shape with a rapid onset, a ramp to the minimum pressure, and then an abrupt

offset. This ”N” shape is the distinguishing feature of the bullet shock wave. The time

interval of the ”N” wave between the over- and under-pressure is proportional to the

size of the projectile, this relation is expressed by Whitham equation (2.6) (riferimento

al tuo articolo)

T =
1.82Mb

1
4

c(M2 − 1)
3
8

× d

l
1
4

≈ 1.82d

c
× (

Mb

l
)
1
4 (2.6)

where:

• M is the bullet’s Mach Number;

• b is the miss distance, and is defined as the distance between the bullet’s tra-

jectory and the microphone at the loin of closest approach, i.e. the perpendicular

distance between the bullet’s path and the microphone;

• c is the speed of sound;

• d is the maximum bullet’s diameter;

• l is the bullet length.

Chapter 2. Gunshot Acoustic Parameters Estimation 28

A typical bullet a few centimetres long has an inter shock interval of less than 200 µsec,

see figure 2.8. From equation (2.6), the dependence of the shockwave duration from the

Figure 2.8: A typical N shaped shock wave of a few centimetres long bullet, with a
period of about 200µsec

bullet dimension, d and l, is clear. These two parameters identify the weapon caliber,

or equivalently the so called Bullet Coefficient, defined as:

C =
d4

l
(2.7)

Thus, substituting definition (2.7) in equation (2.6), the relation between the shockwave

period T and the Bullet Coefficient C can be revealed:

C =
T 4c4

1.824Mb
(2.8)

So, if the shockwave period T can be estimated from the received signal, the bullet Mach

Number M and the miss distance b are known, then also the bullet coefficient, hence

the weapon caliber, can be computed.

2.2 Environmental Effects on Gunshot Acoustical Features

Because of several environmental causes, the received acoustic signal from a gunshot

may be affected by different disturbances which can provoke errors in muzzle blast and

shockwave parameters measurement [17]. Outdoor sound propagation may vary greatly

at distances of hundreds of meters from the source due to spatially varying atmospheric

Chapter 2. Gunshot Acoustic Parameters Estimation 29

conditions, diffraction around obstructing objects, and reflections from the ground and

other surfaces. Furthermore, acoustical propagation may be affected by wind, temper-

ature gradients, and frequency-dependent atmospheric absorption. As the specific envi-

ronmental conditions will vary greatly from one location to another, it is not possible

to generate a single, comprehensive mathematical model applicable in general. Thus,

empirical models are generally required to account for the environmental behaviour.

Ordinary audible sounds fall within a pressure range that is well modelled with linear

differential wave equations, but the shock waves caused by supersonic projectiles give

rise to nonlinear behaviour in the air. Although it is possible to predict the acoustical

properties of a particular environment using standard mathematical techniques, the ab-

sorption, attenuation, and reflection properties of objects encountered by the acoustical

disturbance must be known (or accurately estimated) for both the linear and nonlinear

propagation regimes.

2.2.1 Reverberant Environment: Sound Reflection and Multi-Path

Gunshot sounds propagating over ground will encounter attenuation by acoustic energy

losses due to scattering. Smooth and hard ground will generally produce less absorption

than rough surfaces such as vegetation. For what concerns the shock wave, if solid

surfaces are present nearby, the passing shock wave cone will be partially absorbed and

partially reflected by the surface. Thus, a microphone in the vicinity will pick up both the

original shock wave and the reflected shock wave with a delay corresponding to the path

length difference. Higher frequencies (shorter wavelengths) are almost always attenuated

Figure 2.9: Simplified geometry of shock wave ground reflection on solid surfaces

more than lower frequencies. Measurements in forested areas show that absorption and

scattering can achieve significant attenuation. There can also be significant attenuation

by acoustic shadowing when a solid obstacle obscures the ”Line of Sight” (LoS) between

the source and the acoustic sensor, this particularly affects the muzzle blast rather than

Chapter 2. Gunshot Acoustic Parameters Estimation 30

the shock wave, as already anticipated in 2.1. In other words, the very short duration

of the muzzle blast and the acoustic shock waves act like acoustic impulses, so gunshot

recordings obtained in complicated surroundings will consist of the convolution of the

gun?s report and the acoustic impulse response of the local reverberant environment,

resulting in substantial temporal smearing. In fact, reverberant recordings will typically

contain more information about the acoustical surroundings than about the gun or

the projectile. Deconvolution of the gunshot from the reverberant background can be

attempted, but no completely reliable means to accomplish this task for gunshots has

been published.

2.2.2 Effect of Wind

If the air itself is moving due to wind, the sound propagating through the air will be

carried in the moving air mass. If the gun is stationary, the muzzle blast sound waves

will emanate essentially spherically. The spatial motion of the muzzle blast wave front

will therefore consist of the vector sum of the spherically expanding sound vector and

the wind vector. Similarly, the shock wave cone formed by the supersonic projectile

will be altered by the wind. The wind effect can be viewed as a shift in the origin

of the sound propagation. In other words, the wave front launched at the source is

carried by the wind as it propagates toward the receiver. The propagating wave front

is systematically shifted due to the wind so that by the time it arrives at the receiver

position the apparent location of the sound source (or the bullet’s trajectory) has been

shifted as well. Wind motion is generally accompanied by a wind gradient, with the

wind speed typically faster at altitude and slower near the ground. The result is that

sound waves propagating upwind are ”bent” upwards and those propagating downwind

are ”bent” downwards. Although wind speeds are a small fraction of the speed of

sound, the wind alteration causes a direction-dependent change in sound speed, and a

corresponding Doppler-like frequency shift.

2.2.3 Temperature and Humidity Effects on the Speed of Sound

Even if in 2.1.2 a formula for the speed of sound depending on the temperature in degrees

Celsius has already been given, it has also been specified that equation (2.5) is valid only

if dry air is assumable. This paragraph will go through details about this clarification.

The theoretical expression for the speed of sound c in an ideal gas is

c =

√
Pγ

ρ
(2.9)

Chapter 2. Gunshot Acoustic Parameters Estimation 31

where:

• P is the ambient pressure;

• ρ is the gas density;

• γ is the ratio of the specific heat of gas at constant pressure to the one at constant

volume.

The term γ depends on the number of degrees of freedom of the gaseous molecule. The

number of degrees of freedom itself depends upon the complexity of the molecule:

• γ = 1.67 for monatomic molecules;

• γ = 1.40 for diatomic molecules;

• γ = 1.33 for triatomic molecules.

Since air is composed primarily of diatomic molecules, the speed of sound in air is

approximately:

c =

√
1.4P

ρ
(2.10)

The speed of sound c in dry air has the following experimentally verified constrained

values:

c = 331.45± 0.05
m

s
(2.11)

for audio frequencies, at 0◦C, at 1atm (760 mm Hg) with 0.03 mol-% of carbon dioxide.

2.2.3.1 Temperature Dependence

Notoriously the equation of state of air of an ideal gas is:

PV = RT (2.12)

where:

• R=8.314472 J
molK is the Universal Gas Constant;

• M is the mean molecular weight of the gas at sea level;

• T is the absolute temperature in degrees Kelvin.

Chapter 2. Gunshot Acoustic Parameters Estimation 32

Knowing then the definition of density ρ, i.e. mass per unit volume, equation (2.10) can

be written in an alternative way, in order to emphasise the dependence upon temperature

of the speed of sound:

c =

√
1.4RT

M

m

s
(2.13)

Equation (2.13) reveals the temperature dependence and pressure independence of the

speed of sound. An increase in pressure results in an equal increase in density. Therefore

there is no change in velocity due to a change in pressure. But this is true only if the

temperature remains constant. Temperature changes cause density changes which do

not affect pressure. Thus density is not a two-way street. Changes in pressure affect

density but not vice versa. Since R and M are constants, the speed of sound may be

shown to have a first-order dependence on temperature as follows:

c = c0

√
T

273.15
(2.14)

where T is the temperature in kelvins and c0 equals the reference speed of sound under

defined conditions, as anticipated in paragraph 2.1.2. The speed of sound is seen to

increase as the square root of the absolute temperature (see figure 2.10). Substituting

centigrade conversion factors and the reference speed of sound gives equation (2.5).

Figure 2.10: Speed of Sound variations with Temperature, Humidity and Frequency

2.2.3.2 Effect of Variable Temperature

The air temperature in the atmosphere is generally not uniform, and as indicated by

equation (2.5), there will be spatial variations in the sound speed (higher speed in warmer

air, lower speed in cooler air). In daytime, particularly in summer months, the ground

surface is often warmer than the upper air. In this situation sound propagation tends

to be bent upwards slightly due to the temperature gradient: the wave front in the

warm air near the surface propagates faster than the wave front in cooler air higher

above the ground. Conversely, in winter or at night, when the temperature near the

ground is likely to be lower than that of the upper air, sound waves tend to be bent

Chapter 2. Gunshot Acoustic Parameters Estimation 33

downwards. The combined effects of wind and temperature gradients can cause sound

levels measured at some distance from the source to be very different from predictions

based on geometrical spreading and atmospheric absorption considerations alone. These

differences may be 20 dB or more over distances of a few hundred meters.

2.2.3.3 Humidity Effects

All previous discussion assumed dry air. Attention turns now to the effects of moisture

on the speed of sound. Moisture affects the density of air and hence, from equation

(2.9), the speed of sound in air. Moist air is less dense than dry air (not particularly

obvious), so ρ in equation (2.9) gets smaller. This causes an increase in the speed of

sound. Moisture also causes the specific-heat ratio γ to decrease, which would cause the

speed of sound to decrease. However, the decrease in density dominates, so the speed of

sound increases with increasing moisture (see figure 2.10).

2.2.3.4 Frequency Dependent Sound Absorption due to Humidity

The relative humidity of the air causes frequency-dependent sound absorption due to

molecular thermal relaxation. The attenuation is found to increase monotonically with

increasing frequency (see figure 2.11), and is the greatest for relative humidity in the

10-30% range. Below 4 kHz, the worst-case humidity attenuation corresponds to 0.1

dB/m.

Figure 2.11: Frequency Dependent Sound Absorption versus Humidity variations

Chapter 2. Gunshot Acoustic Parameters Estimation 34

2.3 Shock Wave and Muzzle Blast Discrimination

2.3.1 Discrimination Issues

Determining the location of prospective snipers requires a precise estimation of the

trajectory of the bullet. This goal is achievable by measuring the arrival times of the

acoustic energy at several locations in space. It has been just discussed that for a

supersonic projectile fired from a gun, both the acoustic shock wave and the muzzle

blast may be observed. For acoustic sensor systems attempting to determine a bullet

trajectory, the challenge is to first correctly classify the transient signal as either a shock

wave or a muzzle blast and then calculate the direction of arrival via appropriate arrival

times across a sensor array. An incorrect classification will result in large estimation

errors of the projectile’s trajectory. Thus proper discrimination between the arrival

energies associated to shock wave and muzzle blast must be achieved, this stems from the

propagation pattern of the two different energies. Briefly resuming the most important

results of section 2.1, here it is only remembered that the muzzle blast energy will appear

as a far field plane wave originating from the gun, while the shock wave will propagate in

the form of a cone trailing the bullet with angle θM which is given by equation (2.3) and is

called Mach Angle. The worst case estimation is when an acoustic system incorrectly

classifies an arrival of a shock wave as a muzzle blast, consequently the estimate of

shot origin will be perpendicular to the shock cone, determining the trajectory of the

projectile with an error of 90◦. The discrimination process is generally trivial in the case

of ideal shock wave and muzzle blast arrival energies as the shock wave duration time

is in the microsecond range (paragraph 2.1.2) while the muzzle blast duration time is

on the order of few milliseconds (paragraph 2.1.1). This can be extremely challenging

when the shockwave has lost substantial high frequency content. The change in spectral

characteristics can stem from propagation over a long distance, propagation over snow

covered terrain or arriving from a non perfect reflector. Also, many practical systems

may have insufficient bandwidth to preserve rise time characteristics of the shock wave,

in fact at least 100 kHz of bandwidth are necessary and this particular requirement

was fundamental in the research of the microphone chosen for this thesis, which has a

bandwidth of about 125 kHz. Muzzle blast signatures can also be affected by multi-path

situations producing faster rise times than expected (paragraph 2.2.1).

2.3.2 Approaches presented in Literature

Because of the rapidly increasing interest on the shooter localization problem (due to

the already mentioned changes in modern warfare) and being the shockwave and muzzle

Chapter 2. Gunshot Acoustic Parameters Estimation 35

blast discrimination probably the most challenging task in such application, this is a

very explored topic in scientific literature. There are several characteristics of acoustic

shockwaves and muzzle blasts that distinguish their detection and signal processing

algorithms from regular audio applications. Both events are transient by their nature

and present very intense stimuli to the microphones. This is increasingly problematic

with low cost electret microphones, designed for picking up regular speech or music.

Although mechanical damping of the microphone membranes can mitigate the problem,

this approach is not without side effects. The detection algorithms have to be robust

enough to handle severe nonlinear distortion and transitory oscillations. The more robust

the detection algorithm is, the less performant (thus less expensive) the microphone can

be, but very robust algorithms require high computational capability on the sensor

boards. Otherwise, less robust detection algorithms allow to use less performant (thus

cheaper) sensor boards, but professional and expensive microphones become necessary,

with better characteristics in terms of bandwidth (100 kHz at least) and handleable

sound pressure peak (in excess of 160 dB re µP). In what follows, the most relevant

approaches are reported and examined, these can be grouped in two main classes:

• Time Domain analysis;

• Joint Time-Frequency and Wavelet analysis.

Essentially the first kind of discrimination approaches can guarantee much better per-

formance despite of very strict requirements in terms of sampling frequency, while the

second kind can reach lower performances but with more reasonable sampling frequen-

cies. The choice done for this work belongs to the second class, as it will be detailed

later 2.3.2.3, thus in this paragraph 2.3.2 only one algorithm belonging to the first class

is going to be exposed (the one that is thought to be the best), while for the second

class various approaches are going to be explained, including the one used in this thesis

(the Spectrogram approach).

2.3.2.1 A Time Domain Analysis: a State Machine fed by Zero Crossing

encoding

This detection algorithm is the one used by Vanderbilt University Research Group, in

particular it is mentioned in [6]. Here it has been decided to expose this algorithm as an

example for the time-domain ones, because it was applied in experiments using an actual

sensor network with real shots obtaining satisfying results. Going through details, with

this approach two different detectors are applied in order to find the most important

characteristics of the shock wave and the muzzle blast in the time-domain using simple

Chapter 2. Gunshot Acoustic Parameters Estimation 36

state machine logic. In the case of [6], the detectors are implemented as independent IP

cores within a FPGA. Recalling what is detailed in section 2.1.2, the most conspicuous

characteristics of an acoustic shock wave are the steep rising edges at the beginning and

end of the signal, particularly at the beginning the edge is very short, around 2-3 µs.

This feature requires an high sampling frequency to detect the shock wave rising edge

if working in the time-domain: to detect an edge that lasts about 2-3 µs, a sampling

period of 1 µs or smaller is needed, i.e. a sampling rate of at least 1 MS/s, which is a

very critical specific. Also, the length of the N-wave is fairly predictable and is relatively

short (200-300 µs). The shockwave detection core is continuously looking for two rising

edges within a given interval. The state machine of the algorithm is shown in figure 2.12.

The input parameters are the minimum steepness of the edges (D,E), and the bounds

on the length of the wave (Lmin,Lmax). The only feature calculated by the core is the

length of the observed shockwave signal. In contrast to shockwaves, the muzzle blast

Figure 2.12: Shockwave signal generated by a 5.56 x 45 mm NATO projectile (a) and
the state machine of the shockwave detection algorithm (b)

signatures are characterized by a long initial period (1-5 ms) where the first half period

is significantly shorter than the second half. The state machine (figure ??) does not

work on the raw samples directly, but is fed by a zero crossing (ZC) encoder. After the

initial triggering, the detector attempts to collect those ZC segments which belong to

the first period (positive amplitude) while discarding too short segments (called garbage

in image 2.13), effectively implementing a rudimentary low-pass filter in the ZC domain.

After it encounters a sufficiently long negative segment, it runs the same collection logic

for the second half period. The initial triggering mechanism is based on two amplitude

thresholds: one static amplitude level and a dynamically computed one. The latter

one is essential to adapt the sensor to different ambient noise environments and to

temporarily suspend the muzzle blast detector after a shock wave event (oscillations

Chapter 2. Gunshot Acoustic Parameters Estimation 37

in the analog section or reverberations in the sensor enclosure might otherwise trigger

false muzzle blast detections). As demonstrated in [6], this time-domain shock wave and

Figure 2.13: Muzzle blast signature produced by an M16 assault rifle (a) and the
corresponding state machine algorithm detection logic (b)

muzzle blast discrimination approach results in very high shooter localization accuracy

when deployed in a synchronized microphone array, on the other hand such application

imposes to have ADCs which perform a huge sample frequency, in the order of MS/s.

2.3.2.2 Joint Time-Frequency and Wavelet Analysis

As anticipated before, less computationally heavy and less requiring, in terms of sampling

rate, techniques to classify signals as either shockwaves or muzzle blasts use joint time-

frequency spectrograms to analyze the typical separation of the shockwave and muzzle

boast transients both in time and frequency. Such approach is justified by the fact that

the energy produced by these two sources have differing durations, rise times and arrival

times, hence the separation can be done by joint time-frequency analysis techniques.

Typically the energy of the muzzle blast signature is in the 300÷ 1000 Hz range, while

the energy of the shockwave is mainly in the 3÷ 7 kHz range. The JTF techniques for

this application mostly proposed in literature are:

1. Short Time Fourier Transform (STFT);

2. Smoothed Pseudo Wigner-Ville Distribution (SPWVD);

3. Discrete Wavelet Transformation (DWT).

1. The STFT is perhaps the simplest and most commonly used JTF technique em-

ployed in general signal processing. The STFT results are easy to interpret, and

Chapter 2. Gunshot Acoustic Parameters Estimation 38

generally characterize a signal frequency content over time. The largest drawback

to this approach is that resolution obtainable in both the frequency and time do-

main are related and drive in opposite directions, i.e. better time resolution will

produce poorer frequency resolution and vice-versa. The results of the STFT are

generally squared to produce a Spectrogram which represents the signals power

distribution over time and frequency. The equation defining the spectrogram for

a given signal is:

Spectrogram(t, w) = (STFT (t, w))2 =

(∫
s(β)w(β − t)e−jωt dβ

)2

(2.15)

Further the experimental results reported in [20] prove that while this technique

can easily separate shockwave and muzzle blast signals, it greatly distorts shock-

wave features in time. The same observation was done after the experiments

carried out for this thesis, as it will be exposed in next chapter 4. For this rea-

son, a STFT analysis for muzzle blast and shockwave discrimination and times of

arrival extraction, cannot perform:

• an accurate shockwave duration estimation;

• a detailed shockwave signal shape characterization.

These considerations carry to other two conclusions:

• because of the first item, a system using the spectrogram cannot implement

a caliber estimation using equation (2.8);

• because of the second item, a system using the spectrogram cannot actuate

a precise bullet speed (Mach Number) extraction from the shockwave shape,

as proposed in [21].

2. The DWT technique is attractive for two main reasons:

• The DWT can be implemented as a successive bank of digital filters, which

is a highly efficient process to implement.

• A key feature of the DWT is that the time and frequency resolutions vary over

the JTF space. AT higher frequencies it guarantees better time resolution

with reduced frequency resolution while at low frequencies a better frequency

resolution with reduced time resolution.

This varying time resolution is important for the shockwave and muzzle blast data

which both have sharp initial rise times but radically different durations.The DWT

preserves the time location of the initial singularity allowing correct measurements

of events onsets for both classes of signals [22].

Chapter 2. Gunshot Acoustic Parameters Estimation 39

3. The final JTF technique applied is the SWVD. A key reason for using the SWVD is

that it clearly shows a signals frequency changes over time as compared with STFT.

The application of this technique to muzzle blast and shockwave was investigated

also by (ESTIMATION OF SHOCKWAVE PARAMETERS OF PROJECTILES

VIA WIGNER-TYPE TIME-FREQUENCY SIGNAL ANALYSIS). The SWVD

is however very compute intensive for long duration signals. While the SWVD

offers better frequency resolution performance than the STFT, it does suffer from

cross-term interference patterns which can make the spectrum difficult to interpret.

Even if the smoothing function reduces cross-term effect, excessive smoothing re-

duces the SWVD to a STFT under specific conditions, negating any benefits. The

equation defining the SWVD is (2.16):

W̃f (x, t) = 2

∫ +∞

−∞
f(τ + τ

′
)f(τ − τ ′

)wf (τ
′
)w∗f (−τ ′

)e−2ixτ
′
dτ

′
(2.16)

Where:

• w(t) represents the smoothing function;

• the star symbol * is the conjugation operator.

An interesting work of comparison between these three techniques has already been done

by Brian t. Mays in [20], validated by both simulated and experimental data. The most

important result of this comparison is that no single method appears to be optimum:

• The STFT method is the most classic and well understood technique and is the

less computationally expensive algorithm but has very poor ability to accurately

resolve transient event onset times while simultaneously resolving frequency. The

DFT performs well with respect to resolving onset times and isolating frequency

content but still suffers when similar signals are interference sources.

• The SWVD technique shows promises but is costly to implement in terms of re-

quired processing power. This may limit its application to many realisable sys-

tems. Beyond the calculation complexity, the cross-term interference patterns

which plague the SWVD must be fully investigated for known interference sources.

• For systems which must balance performance with implementation complexity,

the DWT appears to be the best of the three candidate JTF technique described

above.

These final conclusions were decisive for the shockwave-muzzle blast discrimination tech-

nique choice done for this thesis.

Chapter 2. Gunshot Acoustic Parameters Estimation 40

2.3.2.3 Final Considerations and Signal Analysis Technique Choice

At first, the research was limited to the class of JTF approaches because the hardware

at disposal could not afford a sampling frequency high enough to deploy a time-domain

signal analysis. As explained in chapter 1, some of the most important design specifi-

cations were cheapness, low power consumption and low compute expensiveness of the

motes. Thus it is clear that the best choice in order to satisfy these specifications is the

STFT, i.e. the Spectrogram approach. Recalling the considerations previously exposed

about the STFT, in particular the fact that STFT greatly distorts shockwave time char-

acteristics, choosing such technique means automatically renouncing to perform weapon

caliber, bullet mach number and miss distance estimation.

Chapter 3

Shooter Localization Problem

3.1 The Geometry of the problem and derivation of Shooter

Equations

In this section general notions about the geometry of the bullet trajectory and shock-

wave cone will be given, and a set of three parameters, which are necessary for next

mathematical calculations, will be computed, particularly:

• Shockwave Time of Arrival, denoted as tk, where k indicates the k-th sensor;

• Muzzle Blast Time of Arrival, denoted as Tk

• Time Difference of Arrivals between shockwave and muzzle blast (TDOA)

The notation and also figure 3.1 have been imported from [10]. In figure 3.1:

Figure 3.1: Geometry of the bullet’s trajectory and shockwave cone

41

Chapter 3. Shooter Localization Problem 42

• Z denotes the position of the shooter;

• Sk denotes the position of the shooter;

• U is the unit vector in the direction of the bullet trajectory;

• γk is the miss angle, i.e. the angle between the trajectory of the bullet and the

line joining the sniper location and the sensor location;

• θ is the Mach Angle as already specified in equation (2.3).

The shock wave propagates perpendicular to the cone surface and reaches the sensor,

Sk. The point where the shock wave radiates towards the sensor is denoted by Ak. By

the time the shock wave reaches the sensor Sk, the bullet has traveled from Ak to Ck

and the miss distance is given by hk = ‖Sk − Bk‖, where ‖B‖ denotes the norm of the

vector B. Consequently, the expressions for Tk and tk are respectively relations (3.1) and

(3.2):

Tk =
‖Sk − Z‖

c
(3.1)

tk =
‖Ak − Z‖

cM
+
‖k−Ak‖

c
(3.2)

Where:

• M is the Mach Number;

• c is the Speed of Sound.

The first part of expression (3.2) for tk corresponds to the time it takes the bullet to

travel the distance ‖Ak −Z‖, and the second part corresponds to the time taken by the

shock wave to propagate from Ak to the sensor Sk. In the time the shockwave propagates

from Ak to Sk, the bullet travels from Ak to Ck, thus the bullet travels from Z to Ck.

Then, tk can be rewritten as equation (3.3):

tk =
‖Ck − Z‖

cM
=
‖Bk − Z‖

cM
+
‖Ck −Bk‖

cM
=

1

cM

[
(Sk − Z)TU + hk cot θ

]
(3.3)

where ”.T ” represents the transpose operator. The derivation in equation (3.3) uses the

fact that ‖Bk−Z‖ is the projection of the vector Sk−Z onto the trajectory of the bullet

U. Since the following relation (3.4) is true

cos γk =
(Sk − Z)TU

‖Sk − Z‖
(3.4)

Chapter 3. Shooter Localization Problem 43

and also the following system (3.5)
sin θ = 1

M

‖Bk − Z‖ = ‖Sk − Z‖ cos γk

hk = ‖Sk − Z‖ sin γk

(3.5)

then the shockwave time of arrival tk can be written as (3.6):

tk =
‖Sk − Z‖

c
(sin θ cos γk + cos θ sin γk) =

‖Sk − Z‖
c

sin(θ + γk) (3.6)

Therefore the TDOA τk is given by (3.7):

τk , Tk − tk =
‖Sk − Z‖

c

[
1− sin(θ + γk)

]
(3.7)

TDOA information τk is very important for this thesis, not only because it is fundamental

for dissertation about asynchronous sensors network in section 3.4, but especially because

this thesis experimental validation is based on a single sensor approach (see section 4.3)

and such an approach, under certain hypothesis, uses just this single input data.

3.2 Introduction to different algorithm typologies

Different kinds of sensor networks imply different localization algorithms. These sensor

networks can be roughly grouped in two main typologies:

1. Multi-Channel Acoustic Sensor Networks

2. Single-Channel Acoustic Sensor Networks

3.2.1 Multi-Channel Acoustic Sensor Networks

Nowadays scientific research on this topic is principally focused on sensor fusion algo-

rithms in networks with multichannel acoustic sensor nodes, which means that each

mote is capable of computing its own estimation of shooter position, or, at least, his

bearing, using the informations of different Time of Arrivals (ToAs) of shockwave and

muzzle blast at each microphone , [1][18], [23]. Hence the sensor fusion algorithm, that

runs on a centralized controller, performs a statistical optimisation of the shooter po-

sition calculation: collecting all the estimations computed by the peripheral motes and

assigning a reliability value to each of them, knowing also the sensors positions, the

Chapter 3. Shooter Localization Problem 44

central algorithm returns a probabilistic optimised shooter position estimation. Statis-

tical optimum criteria commonly applied for this application are the typical Maximum

Likelihood Ratio (ML) or Minimum Mean Square Error (MMSE). But recently, with

research progresses, these approaches are becoming more and more sophisticated and

the algorithms are no more similar to simple ML or MMSE estimators, even if these

two criteria continue to be the below estimation philosophy. The increasing interest in

the direction of this kind of acoustic sensor networks is probably due to the fact that in

actual shooter detection systems currently deployed in the battlefield by some armies, as

far as it is known by US, British and Canadian Armies (for example, SWATS by QinteQ

North America, Boomerang Warrior-X by BBN Technologies, PinPoint by BioMimetic

Systems), each sensor operates separately to the others and these systems are not design

to exploit the sensor network layout of all the soldier to help increasing accuracy. This

lack of networking is likely deriving from the difficulty in such sensor networks to manage

multi path, which is often very considerable in urban warfare, and mobility (obviously

soldiers continuously and rapidly move during a firefight).

3.2.2 Single-Channel Acoustic Sensor Networks

The other typology, instead, is referred to sensor networks which employ motes with a

single microphone [24] , [13], consequently at each node only a pair of ToA information

(one for shockwave and one for muzzle blast) is available, hence the ToAs from all the

sensors are needed for computing the estimation of the shooter position. This calculation

is performed by a central controller. An implied hypothesis for the correct working of

this sensor networks is clearly the possibility of correct communication between the

sensors, or better, between each sensor and the controller. So a reliable network setup

is necessary and, anyhow, the environment in which the sensors will be deployed must

be deeply studied, in order to avoid impossibility of sensor-controller communications

because of, for instance, an obstacle in the Line of Sight (LoS) or too strong multi path

affection eccetera.

3.2.3 Final Observations

Two important observations that can be easily done when looking for advantages, dis-

advantages and differences between the two kinds of networks illustrated above, are:

• Multi-Channel Acoustic Sensor Networks are more robust to network configuration

changes, environmental obstacles on the LoS or, in the worst case, if the network is

down every sensor should be able to continue computing its own shooter position

estimation

Chapter 3. Shooter Localization Problem 45

• Using microphones situated very close to each other, Multi-Channel Acoustic Sen-

sor Networks require the utilization of high performance microphones (in order to

be able to detect very small differences in the ToAs) and motes with a quite good

computational capability hardware embedded

From these observations, and considering the network design specification of this thesis

(detailed in chapter 1), it is immediate to conclude that for this work the typology of

interest was the second one: Single-Channel Acoustic Sensor Networks, in order to have

low cost sensors with not much performant hardware onboard. Thus in what follows the

multi-channel acoustic sensor networks will not be considered any more, but not for a

lack of importance, just because they lie outside of the main topic of the thesis. Another

relevant differentiation that must be underlined when dealing with sensor networks for

shooter localization is the one between:

• Synchronous Sensor Networks

• Asynchronous Sensor Networks

There is no need of further exposing what are the difference between these two cate-

gories, since their names are quite self-explaining. Both of them presents advantages and

disadvantages, essentially synchronous sensor networks guarantee better performances

despite hard issues with synchronization implementation, while asynchronous sensor

networks are easier to deploy but result in worse performances (performances highly

dependent on the reliability of the statistical model of signal and noise). For the sensor

network project presented here, both of this approaches were examined because it was

not found a reason to consider one of them depreciable at all ore one definitely optimum

with resect to the other. Hence in next sections, synchronous and asynchronous shooter

localization algorithms for single-channel sensor network are going to be investigated.

3.3 Synchronous sensors network shooter localization Al-

gorithm

Even if the article [1] deals with a multi-channel sensor network, some of the algorithms

there proposed can be extended to the single-channel sensor case, with the appropriate

observations. The fundamental difference that must be understood before proceeding is

the following:

• in [1] the microphones detecting shockwaves and muzzle blasts are very close to

each other (being located on the same sensor board), thus their spacing is order of

Chapter 3. Shooter Localization Problem 46

magnitude smaller than the distance to the sound source, this allows to approxi-

mate the approaching sound wave front with a plane (Far Field Assumption);

• on the contrary, in the case of single-channel sensor networks, depending on the

particular motes distribution within the sensor field related to the specific network,

the Far Field Approximation could not be so thoughtlessly assumable, being the

microphones spacing, in general larger than in the case described above.

For the purpose of this paper, thinking to a sensor field not much large with respect to the

hypothetical distance of the shooter, the Far Field condition will be considered assumable

anyway, but it is important that the proposed processing returns estimations that will

be more precise with increasing shooter distance at constant microphone spacing. Now

that this clarifications are defined, algorithm details can be analyzed.

3.3.1 Direction of Arrival

The first step of the sensor fusion is to calculate the muzzle blast and shockwave Direction

of Arrival (DoA) also called Angle of Arrival (AoA). Since in this thesis purpose the

designed network needs to be as simple and as cheap as possible, the minimum sensors

number is going to be always considered. Consequently now the problem is formalized

for 3 microphones, which is the minimum number in order to compute shockwave and/or

muzzle blast DoA. To compute shooter position may be necessary two groups of three

microphones instead, hence 6 microphones, in the case each group is not able to detect

both shockwave and muzzle blast but only one of them (it will be clear in section 3.3.2).

Let P1, P2 and P3 be the positions of the microphones ordered by time of arrival t1 ≤ t2
≤ t3. First a simple geometry validation step is applied. The measured time difference

between two microphones cannot be larger than the sound propagation time between

the two microphones:

|ti − tj | ≤
∣∣∣∣Pi − Pjc

∣∣∣∣+ ε (3.8)

Where:

• c is again the speed of sound;

• ε is the maximum measurement error.

If this condition does not hold, the corresponding detections are discarded. Now let us

define some new variables:

• v(x, y, z) is the normal vector of the unknown direction of arrival;

Chapter 3. Shooter Localization Problem 47

• r1(x1, y1, z1) is the vector from P1 to P2 ;

• r2(x2, y2, z2) is the vector from P1 to P3

Now consider the projection of the direction of the motion of the wave front (v) to r1

divided by the speed of sound (c). Thus equation (3.9) returns how long it takes the

wave front to propagate form P1 to P2 :

vr1 = c(t2 − t1) (3.9)

The same relationship (equation (3.10)) holds for r2 and v :

vr2 = c(t3 − t1) (3.10)

Further, v is a normal vector, hence (3.11):

vv = 1 (3.11)

Moving from vectors to coordinates using the dot product definition leads to a quadratic

system (3.12): 
xx1 + yy1 + zz1 = c(t2 − t1)

xx2 + yy2 + zz2 = c(t3 − t1)

x2 + y2 + z2 = 1

(3.12)

The solution steps are here omitted since they are straightforward, but long.

3.3.2 Worst Case shooter position estimation

Here a special case is considered, a kind of worst case. The sensor field consists of 2

groups composed my 3 microphones each one. The worst case assumption consists in

the fact that each group succeeds in detecting either the shockwave ToA and AoA (with

the method explained in the previous section 3.3.1) or the muzzle blast ToA and AoA.

Otherwise, if the acoustic sensors are capable of detecting both shockwave and muzzle

blast, a network of three microphones is sufficient. Let us define:

• P1 and P2 are the centroids of the two different groups of microphones;

• P is the shooter position;

• t is the instant when the shot was fired.

Chapter 3. Shooter Localization Problem 48

Please notice that P1 and P2 have a different meaning with respect to the same symbols

when adopted in previous section 3.3.1, in order to avoid confusion. Obviously both

P and t are unknown. The muzzle blast detection is at position P1 with time t1 and

AoA u. The shockwave detection is at P2 with time t2 and AoA v. Both u and v are

normal vectors. It is shown below that these measurements are sufficient to compute the

position of the shooter (P). A possible geometrical representation is shown in figure 3.2:

Let P
′
2 be the point on the extended shockwave cone surface where PP

′
2 is perpendicular

Figure 3.2: Section plane of a shot (at P) and two groups of three microphones each
one at P1 and P2

to the surface. Note that PP
′
2 is parallel with v. Since P

′
2 is on the cone surface which

hits P2, a sensor at P
′
2 would detect the same shockwave time of arrival (t2). The cone

surface travels at the speed of sound (c), so we can express P using P
′
2 in equation

(3.13):

P = P
′
2 + cv(t2 − t) (3.13)

P can also be expressed from P1 with equation (3.14):

P = P1 + cu(t1 − t) (3.14)

yielding relation (3.15):

P1 + cu(t1 − t) = P
′
2 + cv(t2 − t) (3.15)

P2P
′
2 is perpendicular to v, this implies equation (3.16)

0 = (P
′
2 − P2)v (3.16)

Chapter 3. Shooter Localization Problem 49

yielding relation (3.17), which contains only one unknown t :

0 =
[
P1 + cu(t1 − t)− cv(t2 − t)− P2

]
v (3.17)

Expliciting t, relation (3.18) is easily obtained:

t =
(P1−P2)v

c + vut1 − t2
uv − 1

(3.18)

Substituting the value of t obtained by equation (3.18) in relation (3.14), P is immediate

to compute.

Now it is very simple to consider the case in which 3 microphones are enough, i.e. when

they succeed in detecting both shockwave and muzzle blast. This situation can be seen

as a particular case of the one that has been just described but with P1 = P2. In this

case t is given by equation (3.19)

t =
vut1 − t2
uv − 1

(3.19)

Again, substituting the value of t obtained by equation (3.19) in (3.14), P is returned.

Here it was assumed that the shockwave is a cone which is only true for constant projec-

tile speeds, which is an approximation assumed for the whole thesis. In reality, the angle

of the cone slowly grows. The decelerating bullet results in a smaller time difference be-

tween the shockwave and the muzzle blast detections because the shockwave generation

slows down with the bullet. A smaller time difference results in a smaller range, so the

above formula underestimates the true range. Anyhow, it can still be used with a proper

deceleration correction function. A list of all approximations assumed for this work and

a summary of their effects on measurements and estimation will be presented in chapter

4.

3.4 Asynchronous sensors network shooter localization Al-

gorithm

As showed in the previous section, algorithms for sniper localization in synchronous

sensors network use TDOA of either muzzle blast or shockwave signals at various sensors.

In a network in which sensors are not able to get synchronized together, such algorithms

are clearly not available. In [10] the sensors used are single microphone sensors capable

of recording both muzzle blast and the shock wave. The algorithm for sniper localization

uses the TDOAs between muzzle blast and shock wave at each sensor. This requires

that the events, namely, muzzle blast and shock wave, are detected at each sensor.

Chapter 3. Shooter Localization Problem 50

From these detections, the time of arrival (TOA) of muzzle blast and shock wave are

estimated. The difference in TOAs of muzzle blast and the shock wave provides the

TDOA between them (see also section 3.1 and relation (3.7)). Also in this case, bullet

speed is assumed to be constant. The algorithm description is long and quite tricky and,

being this a design for a synchronous network, beyond the interest of this paper. The

interested reader is redirected to [10], here it is just remarked that this algorithm relies

on the assumption of gaussian TDOA measurement errors.

3.5 A special case: Single (Single-Channel) Sensor

As highlighted in some papers [13], [5], the main disadvantages of a networked approach

is its reliance on the network itself: it would be interesting to investigate if a single-

channel single sensor node is able to somehow localize the shooter. It was found in [5]

that under certain conditions, a sensor capable of detecting both shockwave and muzzle

blast can compute the range to the shooter, even with a single shot. These conditions

are:

• known weapon caliber;

• known bullet average speed, or, equivalently, its mach number.

This section is very important, being this approach the only one validated with experi-

ments in this work. Anyhow there is a little difference between what is described in[5]

and [13] and what was implemented with this thesis: in [5] and [13] it is assumed that

the sensor is able to perform a shockwave period measurement, thus a miss-distance

estimation is possible too inverting Whitham equation (2.6). Here such processing is

not possible, in fact it has already been explained in sections 2.3.2.2 and 2.3.2.3, that

the technique used for shockwave and muzzle blast discrimination and estimation is

the Spectrogram and this precludes the possibility of an accurate shockwave duration

estimation. Thus here another assumption must be added:

• miss distance is given

Now that all the hypothesis have been disclosed, details of the ranging algorithm are

going to be declared. Considering figure 3.3, points S and M represent the locations

of the shooter and the microphone detecting the acoustic events, respectively. Let us

denote the range, i.e. the Euclidean distance between points S and M, with dM,S .

Chapter 3. Shooter Localization Problem 51

Figure 3.3: Geometry of a shot from S and the acoustic events observed at M

Assuming line of sight (LOS) conditions, the detection time of the muzzle blast can be

written as (3.20):

tmb = tshot +
dM,S

c
(3.20)

where tshot is the time of shot. That is, the muzzle blast travels at the speed of sound

from S to M, and is, therefore, detected
dM,S

c seconds after the weapon is fired. Since

the shockwave does not originate from the muzzle but from the bullet traveling along

its trajectory, we need to consider the time traveled by the bullet from the muzzle to a

point P on the trajectory, as well as the time traveled by the wavefront of the shockwave

from point P to the microphone. P is defined such that the vector is a normal vector

of the shockwave front. For simplicity, let us assume for now that the bullet travels at

a known constant speed vbullet. Notice that if the mach number is given, vbullet can be

derived by equation (2.2). The shockwave detection time can be written as:

tsw = tshot +
dP,M
c

+
dS,P
vbullet

(3.21)

The measured shockwave-muzzle blast TDOA can be expressed as (3.22):

tmb − tsw =
dM,S

c
−

dS,P
vbullet

−
dP,M
c

(3.22)

Since we assume a constant bullet speed vbullet, the shockwave front has a conical shape,

such that the angle between the trajectory and the conical surface is (3.23)

α = arcsin
(c

vbullet

)
(3.23)

Knowing α and the miss distance dQ,M , dS,P and dP,M can be expressed with relations

respectively (3.24) and (3.25):

dS,P = dS,Q − dP,Q (3.24)

Chapter 3. Shooter Localization Problem 52

dP,M =
dQ,M
cos(α)

(3.25)

where, using the Pythagorean Theorem, dS,Q is (3.26):

dS,Q =
√
d2S,M − d2Q,M (3.26)

and dP,Q is equal to (3.27):

dP,Q = dQ,M tan(α) (3.27)

Therefore in equation (3.22) the only unknown variable is the range to the shooter dM,S .

Its solution results in a closed-form formula (3.28) that is extremely fast to evaluate on

the target hardware (in our case using a Zynq 7020, in particular on a ZedBoard):

dM,S =
1

2(c4 − v4bullet)
(P − 2

√
Q) (3.28)

where P and Q are given respectively by relations (3.29) and (3.30):

P = −2v3bulletdQ,M

√
v2bullet + c2 − 2(tmb − tsw)c3v2bullet

+2c2dQ,Mvbullet

√
v2bullet + c2 − 2(tmb − tsw)cv4bullet (3.29)

Q = −2c4v4bullletd
2
Q,M + 2(tmb − tsw)2c6v4bullet +

(tmb − tsw)2c4v6bullet − 2c7dQ,M (tmb − tsw)vbullet

√
v2bullet + c2

+c8(tmb − tsw)2v2bullet + 2c8d2Q,M + 2v5bulletdQ,M√
v2bullet + c2(tmb − tsw)c3 (3.30)

While relaxing the assumption of constant bullet speed and incorporating a weapon-

specific deceleration constant in the equations would result in more precise results, find-

ing the solution for dM,S would require numerical methods, making the algorithm more

computationally expensive.

Chapter 4

Experimental Validation

4.1 Experimental Setup

As previously anticipated, for this work an experimental campaign was conducted. Only

one microphone was at disposal, thus a single-channel single sensor case was simulated,

in particular the microphone used was an Ultramic250K by Dodotronic [25], developed

with the support of CIBRA (Centro Interdisciplinare di Bioacustica e Ricerche Ambi-

entali) of University of Pavia (cibra@unipv.it). The chosen signal analysis technique is

a JTF one, specifically the STFT, i.e. the Spectrogram, detailed in section 2.3.2.2.

The purposes of the experiments were:

1. investigate the suitability of the specific microphone for such application;

2. obtain a real signal in a known geographic and climatic situation for studying the

environmental effects on the signal’s distortion;

3. execute a shooter ranging with single sensor algorithm exposed in section 3.5 in

order to validate not the algorithm itself (which reliability and resolution have

already been proven in [5], but the specific shockwave and muzzle blast detection

technique adopted, i.e. the STFT.

Referring to the third purpose, that represents probably the most important, we can

say that as far as we know, the Spectrogram for gunshot acoustic signal analysis has

always been studied comparing its results, in terms of shockwave and muzzle blasts time

of arrivals, with the ones obtained using more performant techniques or looking at the

time domain signal. Until now no one appeared to have already verified which are the

effects of applying the STFT for gunshot signal analysis on the final result of a shooter

localization: the shooter position estimation, or, in this case, the shooter distance. The

53

Chapter 6. Experimental Validation 54

Figure 4.1: Ultramic microphone
Figure 4.2: Ultramic microphone with the

mini-USB port visible

conclusions of this novel investigation (section 4.3) encourage further studies in this

direction.

4.1.1 The Microphone

4.1.1.1 Specifications and Hardware Description

The specifications for the microphone that were considered before its choice were:

• a Bandwidth of at least 100kHz;

• a sampling frequency possibly around 150÷ 200kS/s;

• capability of handling sound pressure peaks that can be in excess of 160dB re µPa.

Ultramic250K by Dodotronic (see fgures 4.1, 4.2) was chosen, it satisfies the required

specifications having the following characteristics:

• a Bandwidth of 125kHz;

• a sampling frequency of 250kS/s;

• it is able to handle sound pressure peaks that can be in excess of 160dB re µPa.

Ultramic is a MEMS (Micro Electro-Mechanical Systems) microphone, thus it is very

sensitive with a good signal/noise ratio and small form factor. An integrated low pass

8th order filter is provided in order to reduce aliasing artifacts. A typical frequency

response of MEMS sensor is showed in figure 4.3 It is an ultrasound microphone with

integrated digital to analog converter with the sampling rate given above (250 kHz for

the version we used). The samples are quantized with a 16 bit resolution. A 32 bit

80 Mhz microcontroller is integrated (see figure 4.4). It is provided of a USB device

Chapter 6. Experimental Validation 55

Figure 4.3: A typical frequency response of MEMS sensors.

Figure 4.4: Ultramic internal electronics

full speed port 2.0 with a mini B USB connector (see figure 4.2). The USB port allows

an easy connection to any PC or Mac computer, the device is recognized as an HID

(human interface device) microphone so no driver installation is required. It appears as

a single channel audio input device, however if recording in stereo the two channels will

appear identical. Ultramic can be easily opened, via a screw on the back. There are two

switches, near the front of the microphone (see figure 4.5), that can be turned on and

off with a fingernail, in order to change amplification between the three hardware levels

(table 4.1). In details, the amplification is provided by two different amplifiers: the first

has a fixed gain of 32 dB, while the second has a variable gain which can be set using

the two switches as described above.

Even if Ultramic and its software (see section 4.1.1.2) were developed thinking on a

Windows host PC, the Ultramic series was tested also with other operating systems

running on PCs but also on some tablets. In the table below (table 4.2) a resume of

compatibilities for Ultramic 250K is reported:

Chapter 6. Experimental Validation 56

Figure 4.5: Ultramic gain configuration switches

Level Configuration Total Gain

High both up 72 dB

Medium left down, right up 58 dB

Low both down 35.5 dB

Table 4.1: Ultramic gain configuration settings

OS Compatibility

Windows Vista YES

Windows XP NO

Windows 7 YES

Windows 8 and 8.1 NO

Linux Ubuntu YES

Linux Debian YES

Linux Android Not all tablet tested

Mac Os YES

Table 4.2: Ultramic os compatibilities

4.1.1.2 Ultramic’s Software Description

The proper software to work with Ultramic microphones series is SEA. It was devel-

oped to have real-time sound analysis capabilities on a Windows PC and it’s well suited

to be used in conjunction with Ultramic200k and Ultramic250K. Mainly developed for

bioacoustic studies, this software can be used for a wide range of applications requiring

real-time display of sounds and vibrations. It allows to display in real-time the spec-

trographic features of sounds acquired by any sound device compatible with Windows,

including Windows 7 64bit. It also allows to record, play and analyze standard 16 bit

.wav files, either stereo or mono. SEA is available in two versions: SeaPro, commercial

version for professional use, and SeaWave, free. For this thesis, SeaWave was used. Sea-

Wave is a light version of the SeaPro package. This free version has some limitations,

however it can satisfy most user needs. Recording functions are limited to single file

Chapter 6. Experimental Validation 57

recording with 680MB max file size. Other limitations are about the advanced settings

panel for fine tuning the aspect and behaviour of the program and for saving/restoring

the user configuration. For Linux and Mac users: SeaWave and the UltraMics work

well in virtual windows under both Linux and Mac OSX (VMWARE and PARALLELS

have been positively tested). Another simpler option is to use the CrossOver utility to

”encapsulate” SeaWave and make it appearing as a Mac App. SeaWave can display

and record real time spectrogram and sampled signal in the time domain. It is very

deeply configurable by the user who can set: the kind of windowing (Hamming, Han-

ning etcetera), the number of points of the FFT, the file format in which the record

must be saved and many other parameters. In figure 4.6 is represented a bat recording

with SeaWave, the image is obtained from [26].

Figure 4.6: bat recording with SeaWave

4.1.2 Sensor Configuration

For the experiments, the microphone was positioned over a tripod about 1m high (in

figure 4.7). It was then connected to a PC running Linux Ubuntu 14.04 LTS and

SeaWave ran on a Windows 7 VMWare virtual machine, as showed in figure 4.8. In

order to minimize microphone saturation problems, the amplification level was set as

”Low” (gain of 35.5 dB), so with both the switches down (see section 4.1.1.1 and table

4.1).

4.1.3 The Weapons

Two kinds of weapons were used, with two different calibers:

Chapter 6. Experimental Validation 58

Figure 4.7: Sensor Configuration: the microphone is positioned on a tripod and
connected to a PC via USB

Figure 4.8: SeaWave running on Windows 7 virtual machine on a Linux PC

• 5.56mm NATO, in figure 4.9;

• .308 Winchester, in figure 4.10.

In figure 4.11 a comparison between the two complete rounds with bullet in case can be

found. In table 4.3 some of the most relevant ballistic specifications of the weapons

used are reported. Notice that:

• l is the bullet’s length;

• d is the bullet’s diameter;

• C stands for Bullet Coefficient : a parameter already described in section 2.1.2 and

specified by equation (2.7);

• vbullet is the bullet’s initial speed (also referred to as muzzle velocity), for the next

calculations the bullet’s average speed is considered equal to vbullet, doing a strong

approximation.

Chapter 6. Experimental Validation 59

Figure 4.9: 5.565mm NATO Cartridge di-
mensions.

Figure 4.10: .308 Winchester Cartridge di-
mensions.

Figure 4.11: A comparison between a 5.56mm NATO bullet (left) and a .308 Winch-
ester bullet (right)

Caliber d l vbullet C

5.56mm NATO 5.56 mm 45 mm 850 m/s 21.2367

.308 Winchester 7.8 mm 51 mm ' 810 m/s 72,5785

Table 4.3: Weapons Characteristics

The precise models of the weapons cannot be disclosed here because they represents

confidential informations. For the same reason, informations about the location where

the experimental campaign took place will not be conveyed.

4.1.4 The Measurements

The experimental campaign consisted of 7 shots made with the two weapons described

above at different distances from the target and locating the sensor at different positions.

Chapter 6. Experimental Validation 60

In figure 4.12, a simple representation of the geometry of the experiments has been

drawn, where:

• the blue points are the sensor positions;

• the red points are the positions of the shooter;

• the yellow square is the target;

• the green background represents vegetation (particularly a forest);

• the light grey background represents tarmac;

• the dark grey background is a building;

• the brown arrow is the trajectory of the bullets;

• the light blue arrows indicate the miss distances.

Figure 4.12: Geometry of the experimental campaign

In table 4.4 are summarized all the parameters concerning with the experiments, which

are needed to perform the consecutive processing and to interpret the results. Where:

• under the voice Weapon is reported just the caliber, but the muzzle speed is

intended to be the one reported in table 4.3 for each caliber;

Chapter 6. Experimental Validation 61

Shot Weapon d b

1st 5.56 mm NATO 49 m 7.5 m

2nd 5.56mm NATO 49 m 7.5 m

3rd .308 Winchester 49 m 7.5 m

4th .308 Winchester 49 m 7.5 m

5th 5.56mm NATO 49 m 7.5 m

6th .308 Winchester 107 m 4 m

7th .308 Winchester 107 m 4 m

Table 4.4: Shots Acquisition Settings

• d is the distance shooter - sensor;

• b stands for miss distance.

4.2 Signals Analysis and Features Extraction

As previously anticipated (in section 4.1.2), the signals acquired by Ultramic micro-

phone were then analyzed using SeaWave software running on a Windows 7 VMWare

virtual machine on a PC with Linux Ubuntu 14.04 LTS operating system. SeaWave

reports both a coloured spectrogram and a time-domain amplitude representation of the

sampled signal. Further details on the Digital Signal Processing implemented for these

experiments with SeaWave are:

• FFT size: 512 samples;

• window type: Hanning ;

• window size: 512 samples;

• scan step: 512 samples;

Notice that being the window size and the scan step equal to each other, means that

there is no window overlapping. In figures 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19:

• the upper graph is the spectrogram and the lower one is the sampled signal in the

time domain;

• the x-axis is the time (in samples) for both the graphs, while the y-axis is the

spectrum (in kHz) for the spectrogram, and the amplitude for the time-domain

signal;

Chapter 6. Experimental Validation 62

• in the time-domain signals are somewhere present red stripes, these indicate that,

at the corresponding samples, the microphone was in saturation;

• the spectrogram amplitude (in dB) is suggested by the different colours: briefly,

the amplitude is increasing if going from dark blue to red, passing through green

and yellow;

• the red circles added in almost all the spectrograms highlight shockwave and muz-

zle blast detections;

• the blue circles added in almost al the time-domain signals highlight the part of

the signal between the last repetition of the shockwave (due to reverberations) and

the muzzle blast.

Figure 4.13: 1st Shot Spectrogram

Figure 4.14: 2nd Shot Spectrogram

Chapter 6. Experimental Validation 63

Figure 4.15: 3rd Shot Spectrogram

Figure 4.16: 4th Shot Spectrogram

Figure 4.17: 5th Shot Spectrogram

Chapter 6. Experimental Validation 64

Figure 4.18: 6th Shot Spectrogram

Figure 4.19: 7th Shot Spectrogram

4.2.1 Considerations and TDOA calculation

• Looking at the graphs, a very important consideration can be immediately made:

on seven measurements, only one resulted in no shockwave and muzzle blast de-

tection, in particular the measurement of the fourth shot (figure 4.16). Another

remarkable characteristic of these graphs is the conspicuous affection by multi

path. The reader can have a feeling of it by observing that: the shockwave dura-

tion is known to last about 200÷300 µs, depending on various factors (see section

2.1.2), thus on the graphs reported here it should appear almost as a single stripe,

hence every wide stripe (often red because of the saturation) before the low signal

period (blue circle) is a shockwave reflection. Because of this strong reverberation

contribution to the received signal, in the case of fourth an fifth shots, in figures

4.16 and 4.17 respectively, shockwave and muzzle blast peaks both in time and

frequency domains are very hard to find. For the fourth shot, no detection was

performed at all. Trying to correlate these results with the relative measurement

Chapter 6. Experimental Validation 65

situations, the first information which can be extracted is that, while the weapons

relative to these two measurements are different, the sensor location is exactly the

same (refer to image 4.12 and look for 4th, 5th sensor position). So the reason

of the problem is probably linked to the environment, not to the kind of weapon.

The main noticeable difference between this position and the one of first,second

and third measurements (for which the signal analysis did not present too many

problems) is that in the fourth and fifth case the forest is situated not only in

the front of the microphone, but also on one side. This consideration does not

demonstrate anything, but can be a good start point for a deeper acoustic fading

characterization of the experiments zone (which is not the aim of this work).

• A further investigation on multi path requires to make a difference between the

measurements effectuated with the sensor on tarmac (1st,2nd,3rd,4th,5th), which

graphs are showed in figures 4.13, 4.14, 4.15, 4.16, 4.17, and the ones effectuated

with the sensor on the topsoil (6th,7th), which graphs are showed in figures 4.18

and 4.19. The reason of this classification is the evident different signal distortion

because of reverberations in the two cases. In the case of tarmac, multi path is

clearly stronger than in the case of topsoil. Someone can think this was obvious,

but it was not, since in this case the vegetation was not simple short grass, but

a forest, thus a lot of big trees (potential sources of reflections) were present and

very close both to the shooter and the sensor. Even if a large number of vegeta-

tion reverberation sources was situated within the sensor field, the shapes of the

received signals lead us to conclude that tarmac is an extremely more problematic

terrain with respect to topsoil in terms of acoustic multi path.

• Maintaining this classifications between the first five measurements and the last

two, a last observation can be exposed, but no concerning with multi path any

more, dealing instead with shooter-microphone distance. In the first five experi-

ments, when the shooter was about 50 meters downrange, the muzzle blast peak

is closer to the shockwave one, while in the last two, when the shooter was about

107 meters downrange, the two peaks time separation is bigger. This feature was

expected from conclusions of chapter 2. But the remarkable consideration that

can be made from these experiments is that this feature can compromise a correct

muzzle blast and shockwave discrimination, especially in a reverberant environ-

ment, as it happened for the fourth shot and, in some measure, also for the fifth,

which feature extraction is very hard (and will result in bad ranging resolution,

see section 4.3).

In table 4.5 all the TDOAs computed after the experiments are reported. TDOA math-

ematical expression is given by equation (3.7).

Chapter 6. Experimental Validation 66

Number of Shot TDOA

1 71.68 ms

2 73.728 ms

3 63.48 ms

4 NO DETECTION

5 63.488 ms

6 169.9840 ms

7 172.032 ms

Table 4.5: computed TDOAs

4.3 Final Shooter Ranging

The last part of the experimental validation consisted of using the computed TDOAs

in order to perform a ranging of the shooter. As already declared, having only one

microphone at disposal, this operation was carried out by adopting the single channel

single sensor approach described in section 3.5 and implementing the relative algorithm

with a simple C script which was made running on a ZedBoard using Linaro OS (see

Appendix A for details on how to boot Linaro on ZedBoard). The C script is reported

in Appendix B. The input data of the script, and of the algorithm in general, are:

1. temperature;

2. miss distance;

3. bullet speed;

4. TDOA.

The temperature information is used for estimating the speed of sound from relation

(2.5). Then, the calculated speed of sound along with all the other input data are

elaborated to determine the shooter distance estimation. In table 4.6 the results are

summarized .

4.3.1 Results Interpretation

Even if the number of shots is not enough to obtain any statistics, these results are

anyhow worthy of consideration and encourage further investigations in the direction

followed by this thesis.

Apart of the fourth shot case, in which no detection was possible, the error is confined

between 0.05742 meters and 3.1083 meters. The mean absolute range estimation error

Chapter 6. Experimental Validation 67

Shot Weapon b TDOA d estimated range error

1st 5.56 mm NATO 7.5 m 71.68 ms 49 m 50.6472 m 1.6472 m

2st 5.56 mm NATO 7.5 m 73.728 ms 49 m 51.8349 m 2.8349 m

3rd .308 Winchester 7.5 m 63.48 ms 49 m 49.6015 m 0.6015 m

4th .308 Winchester 7.5 m X 49 m X X

5th 5.56mm NATO 7.5 m 63.488 ms 49 m 45.8917 m 3.1083 m

6th .308 Winchester 4 m 169.9840 ms 107 m 106.4258 m 0.5742 m

7th .308 Winchester 4 m 172.032 ms 107 m 107.6462 m 0.6462m m

Table 4.6: Estimated Shooter Distances

is then 1,568717 m, but we recall the fact that this is not a much reliable data from a

statistical point of view. Anyway, this is better than what was expected. In fact the

resolution appears to be smaller than, or, at least, comparable with the one reached in

[13], where is reported a mean absolute range estimation error of 3.5 m. The important

outcome that must be put in evidence is that the resolution of our experiment is better

than the one of [13], even though for this thesis a less complex TDOA estimation ap-

proach was adopted (the STFT) and, above all, a significantly lower sampling rate: 250

kS/s instead of 1MS/s. But it is remarkable that in [13] several shots were measured,

so the error there declared is a statistically more accurate value than the one obtained

from our experiments.

Notice also that the previously observed TDOA extraction complexity decreasing with

increasing shooter distance, appears to put into effect a better ranging resolution. This

is just an hypothesis not having sufficient informations, but the results suggest to deeper

examine the possible resolution dependence on the shooter distance.

4.4 Error Sources

Errors in the estimated range to the shooter can be grouped in two main categories:

• errors that affects the TDOA estimation;

• errors that affects the ranging algorithm. The sources of these errors are various and

contribute in different measures to the final performance. The error sources are going

to be listed in what follows divided in two classes, depending on what of the two classes

of errors described above they are related to.

4.4.1 TDOA estimation Error Sources

Fundamentally three factors belong to this kind of error sources:

Chapter 6. Experimental Validation 68

• microphone performances;

• sampling rate;

• shockwave and muzzle blast discrimination signal analysis technique.

4.4.1.1 Microphone Performances

In our case, microphone performances and sampling rate are somehow related to each

other, being Ultramic a MEMS, thus the ADC is integrated in the microphone itself.

Anyhow, microphone performances that can deal with this application are Sensitivity,

Signal to Noise Ratio and Factor Form. For Ultramic these are recognized to be very

good, hence it is unlikely that they can have significantly affected TDOA estimations.

4.4.1.2 Sampling Rate

On the contrary the sampling rate is a very determinant factor, its importance is due to

the gunshot acoustical signal features, in particular, the very fast rise times of shockwave

and muzzle blast. As already explained, the sampling rate must be very high (in the

MS/s order) if time domain signal analysis are adopted. Other signal analysis techniques

allow lower sample rates, despite lower resolution and, above all, the impossibility (or at

least difficulty) of correctly measuring some useful parameters, like the shockwave du-

ration. In our case the sampling rate was 250 kHz and the signal was analyzed through

a STFT. For systems using JTF techniques such sampling rate is quite satisfying. Any-

how, a growth of its value certainly assures better performances in terms of shockwave

and muzzle blast peaks instants revelation, but it’s not sure that, if continuing using a

JTF technique, the ranging resolution improvement due to a sampling rate increase will

counterbalance the hardware cost increase.

4.4.1.3 Shockwave and Muzzle Blast discrimination Signal Analysis Tech-

nique

For what concerns the signal analysis technique, i.e. the STFT (or spectrogram) for

this thesis, it is necessary to remind that this technique is the less computationally

expensive but also the less performing of the JTF techniques proposed in literature

until now (see section 2.3.2.2). In details, the STFT appears to be the most vulnerable

to multi path and noise (shockwave reflections and noise may sometimes be detected

as muzzle blast or completely mask it). Further, with respect to DWT and SWVD,

the STFT shows poorer ability to accurately resolve transient event onset times while

Chapter 6. Experimental Validation 69

simultaneously resolving frequency content. Regardless of all these disadvantages, the

ranging results obtained during this experiments are surprisingly encouraging. Anyway,

the main drawback of this technique is the shockwave time features degradation and

the consequent impossibility of estimating the shockwave period, thus the miss distance

knowing the caliber or vice versa, and of accurately determining the bullet Mach Number

(or the bullet’s speed) from the shockwave as described in [21].

4.4.2 Ranging Algorithm Error Sources

The ranging algorithm error sources are essentially all the assumption made on various

environmental and ballistic factors. Summarising them:

• air was assumed to be dry, thus humidity effects were not considered;

• temperature was assumed to be constant at 20◦;

• wind was not contemplated;

• the bullet speed was assumed to be constant over the sensor field and equal to its

initial speed.

The first three items affect the computation of the speed of sound c, as already deeply

disclosed in sections 2.2.3, and 2.2.2, the interested reader is redirected to those sections

for details. The speed of sound, then, is used to compute the microphone-shooter dis-

tance, so temperature, humidity and wind approximations indirectly influence ranging

precision.

On the other hand, ranging algorithm precision is directly affected by the approxima-

tion of constant bullet velocity. This approximation actually consists of two different

approximations:

1. the bullet speed is considered constant over the sensor field;

2. the average bullet speed is considered equal to the muzzle velocity, i.e. bullet’s

initial speed.

A way to avoid both of this approximation is estimating the instantaneous bullet speed

at the CPA (Closest Point of Approach), i.e. when its distance to the microphone is

equal to the miss distance, from the shape of the shockwave, as described in [21]. It has

been already declared that this technique cannot be applied if the signal analysis method

distorts the shockwave time features. This is the case of the spectrogram method and,

in general, of almost all JTF techniques used in systems that cannot afford sampling

frequencies in the MS/s order. Thus in our case this approach cannot be followed.

Anyhow a manner to reduce (not to delete) the effects of these assumptions exists

Chapter 6. Experimental Validation 70

and can be applied also when the shockwave shape cannot be examined. Knowing the

caliber of the weapon, hence the projectile, its deceleration a can be determined from

the Ballistic Coefficient (BC), typically specified by the manufacturer. Thus, once the

range to the shooter has been computed the first time, knowing the deceleration a and

the muzzle velocity vmuzzle, equation (2.1) can be inverted in order to find vbullet, the

average bullet speed over the sensor field. Then, the singe sensor algorithm can be

performed again with this new value for the bullet speed, in order to refine the range

estimation. This process can be executed more and more times. This iterative approach

to relax the constant bullet speed assumption leads to more precise results, but may

require numerical methods to perform the single sensor ranging algorithm, making the

algorithm more computationally expensive.

4.5 Conclusions

In this paper the idea for the design of a not expensive, static and distributed sensor

network for shooter localization directed to Italian Armed Forces was illustrated and

validated with experiments. This design was implemented taking in consideration: the

target application (i.e. FOB surveillance) and cheapness. At first, a study on the most

appropriate wireless protocol for this network led us to prefer ZigBee (IEEE 802.15.4

standard), being it very power efficient and suitable for sensor networks with a not wide

geographic distribution. Details on the desired star topology were then exposed: the

sensor nodes are simple RFDs that perform shockwave and muzzle blast TOAs esti-

mation and then deliver these informations to a centralized gateway, which is a FFD,

in particular a PAN coordinator. Sensors synchronization can be achieved with GPS.

Also particulars on the hardware were specified. It is remarkable that the centralized

gateway in our idea is a ZedBoard, the development board for the Zynq SoC, which is

furnished of a dual core ARM Cortex A9 processor (the Processing System) and an Artix

7 FPGA (the Programmable Logic). This architecture was chosen, because currently it

is probably the most powerful in the class of embedded systems. After a dissertation

on gunshot acoustic signal features, the most common in literature shockwave and muz-

zle blast discrimination techniques were presented. Our attention focused on the JTF

(Joint Time-Frequency) signal analysis methods, because several studies show that, with

respect to Time Domain signal analysis methods, they can allow to significantly reduce

the sampling rate, and the low is the sampling rate, the cheaper and more power saving

are the sensor boards. It was decided to try a STFT (Short Time Fourier Transform),

i.e. a spectrogram, approach, being this the least computational expensive despite a cer-

tain performance degradation. The novel contribution of this paper is the experimental

validation of the STFT for this application, using it in a complete shooter localization

Chapter 6. Experimental Validation 71

problem with real data acquisition. In fact, until now the STFT reliability had been

tested just looking at the signal analyzed in different ways and comparing the results

in terms of TOAs, while here the STFT effect is checked directly on the final shooter

localization. More in details, the STFT effect is tested in a shooter ranging problem

with experimental data: just one microphone was at disposal, thus a single-channel

single sensor approach was implemented. The ranging algorithm is performed by Zed-

Board with a simple C script running on it. The microphone used for the experimental

measurements was an Ultramic 250K with an ADC providing a 250KS/s sampling rate

and the spectrograms were furnished by the SeaWave software. Ranging experimental

results are strongly encouraging: even though the number of analyzed shots is too small

to make any statistical consideration, the obtained errors (confined between 0.5 m and

3.1 m) are comparable or smaller than the ones reported in other works for which a

Time Domain analysis and a much higher sampling rate (in the order of 1 MS/s) were

employed. Experiments with more microphones to try a shooter position estimation

(not only the range) and algorithms implementation on the boards proposed here are

left to future works.

Appendix A

Getting Started Guide to

ZedBoard and Linaro Ubuntu OS

for Linux users

A.1 Purpose of the Paper

The aim of this appendix is to be a quick start guide to zedboard and embedded linux

for completely newbies. For this paper a Mac Book Pro running Ubuntu 14.04 LTS

was used, so what follows works properly for this combination of hardware and software

but it is supposed to be valid for any pc running a linux distribution (with the proper

adaptation). Once zedboard is purchased from [16], it can be noticed that a 4 GB SD

card is present in the box. This SD card contains only a demo linux image: if linux

is booted on zedboard from this sd card only a default image will be displayed on the

output monitor (two linux penguins in the upper left side). Even if this action can

appear useless, it may be a good way to check if everything is ok in the hardware setup

(see [27]) and if the pc from which linux is booted is able to communicate correctly with

zedboard via serial port. Linux on zynq can be booted in two different ways:

1. from a pc connected to ZedBoard through the JTAG port;

2. from an SD card.

For this work, the SD boot mode was chosen because it is the most appropriate for

stand-alone applications. So a topic to debate is formatting the SD card and boot linux

on zedboard in the SD mode. A useful, complete and official guide to such a work is

[28], but following this some problems were encountered and some points seemed to be

72

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 73

too tricky. The solutions were found at [29]. Anyhow here a complete guide, from the

beginning to the end of the process, will be given. Different file system can run on

zynq, for this case Linaro was chosen for its user-friendly and Ubuntu-like GUI. The SD

card was a 8GB Kingston (micro SD plus SD adapter). Four items needs to be placed

onto the SD card: a Linux file system (Linaro in this case), a Linux kernel image, a

BOOT.BIN file, a compiled device tree.

A.2 Boot Linaro Ubuntu on ZedBoard

A.2.1 Formatting the SD Card

The first thing to do is formatting the SD card with the correct two partitions: a FAT

file system (at least 1GB) and an ext4 file system (at least 3 GB). This second partition

is only necessary when using Linaro. Here is the first trouble a linux user (or at least an

ubuntu user) could face with, at it was experienced for this work. Ubuntu (and maybe

other linux distributions) have serious problem to read SD card readers. When inserting

SD card in our Mac SD card reader, nothing happened and the device was not detect.

Thinking on a hardware problem (SD card reader not working), the same thing was tried

on Mac OS X, i.e. the SD card was insert in the SD reader of the pc while using the

partition running Mac OS X and the device was immediately and correctly recognized.

This carried us to the conclusion that probably Ubuntu has some problems in recognizing

SD card readers. This hypothesis found heavy confirms on Ubuntu forums. The problem

was overrun using a SD-USB adapter (Ubuntu has no problems with USB ports) and

it worked. The reader is strongly recommended to adopt a similar solution if using an

Ubuntu distribution. The first step is identifying the SD card device node running lsblk

command on a bash terminal. Before inserting the storage device, this command should

return back something like this on the shell A.1. After inserting the SD card you should

Figure A.1: output of lsblk command.

instead see something like the following image. Notice A.2 that a new line containing

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 74

Figure A.2: output of lsblk command with sd device.

the SD card device node appears, in the example above it is /dev/sdb and there is only

one partition called sdb1. Some linux distributions may not automatically display any

eventual SD card partition so, to be sure to see any existent partition, the command df

should be run from the terminal A.3. The next steps are the following:

Figure A.3: output of df command with sd device.

• unmount any existing partition on the SD card

• delete any existing partition

• create 2 primary partitions

• format partition 1 to FAT and partition 2 to EXT4

This procedure for properly formatting the SD card can be done with two different ap-

proaches: with bash commands from a terminal or with a GUI using GParted Anyhow

both of them are going to be illustrated here.

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 75

A.2.1.1 Command Line Approach

Call umount for all of the partitions mounted on the SD card to remove them A.4.

Once all of the partitions are unmounted, use fdisk tool for repartitioning. Type fdisk

Figure A.4: unmounting the partitions.

on the terminal to open the device and issue command p to print the current SD card

partition table. Then d command will delete any existing partitions A.5. After deleting

the previous partitions, create the new partitions with n command. The 2 primary

partitions must have the following features:

• Partition 1: primary partition starting from the first cylinder with a size of 1 GB;

• Partition 2: primary partition starting from the next available cylinder that ideally

takes up the remainder of the available space on the SD card.

The command sequence needed to do this process is displayed in the next image A.6.

Once these changes are made, command w will write them to the SD card and exit

fdisk A.7. Run lsblk once again to check if the partition is active. A prompt like A.8

should be seen. The final step is creating the file systems. Format partition 1 to FAT

with label ZED BOOT and partition 2 to EXT4 with label ROOT FS. Utility mkfs can

be used to format the partitions A.9.

A.2.1.2 GParted GUI Approach

GParted is a free partition editor for graphically managing our disk partitions. It is

used for creating, deleting, resizing, moving, checking and copying partitions, and the

file systems on them. This is useful for creating space for new operating systems, re-

organizing disk usage, copying data residing on hard disks and mirroring one partition

with another (disk imaging). To install gparted open a terminal and run:

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 76

Figure A.5: deleting the partitions.

$ sudo apt-get install gparted

If installation aborts returning a warning such as the one in A.10, try to run

$ sudo apt-get update

In the case of this paper this action was enough. Once installation has finished, start

GParted running:

$ sudo gparted

When GParted partitioning window is displayed, select GParted Devices - /dev/sdb

(obviously /dev/sdb is valid in this case and it must be substituted with the current

device node) A.11. Depending on the presence of any existing partition, one of the

following windows should be seen A.12,A.13. If any existing partition is detected (as

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 77

Figure A.6: creating new partitions (first part)

A.13 highlights), it must be unmounted and deleted before doing any further partition:

select the partition, right click and choose Unmount. Then select the partition again,

right click and choose Delete. Be aware of the fact that to make any action executive

on GParted, after the declaration of the action, the green ”v” on the upper side of the

window must be clicked (see figure A.14) Now the SD card is completely unallocated

(as in the first figure) and two new partitions can be added. The first partition will be

made of about 52MB and formatted in FAT32, it is recommendable to leave 4 MB of

free space preceding the partition. To start partitioning, click the button on the upper

left side of the window, showed in figure A.16, then follow the example in figure A.15.

The second partition will be 8 GB and formatted in ext4 (figure A.17).

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 78

Figure A.7: creating new partitions (second part)

Figure A.8: checking new partitions with lsblk command

A.2.2 Linux File System

ZedBoard supports different Linux file systems, for this paper the Linaro Ubuntu

distribution was used. It is a complete Linux distribution based on Ubuntu. It includes

a graphical desktop that displays via the onboard HDMI port. Linaro executes from a

separate partition on the SD card and all changes made are written to memory. The

utility of Linaro is that, unlike other Linux distributions for ZedBoard as BusyBox,

it will save files even after the device is power down and rebooted. Linaro provides

several types of build that can be roughly classified in two families: distributions with

no desktop (very lightweight) and distributions with desktop. Linaro file systems are

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 79

Figure A.9: formatting the two partitions with mkfs utility

Figure A.10: error reported after the first attempt to install GParted

available at [30], it is suggested to select the 12.09 release, because it has been tested

with ZedBoard. Then ”precise images” must be selected and then the choice is between

various distribution of the 12.09 release. For this work, at first, a distribution with

a graphical desktop was tested on ZedBoard ([31], suggested in [28]). Anyhow this

distribution is quite heavy and working with a separate monitor, keyboard and mouse

may be not much comfortable. The lightest version of Linaro is the one called ”nano”,

but it can have some problems with the ZedBoard ethernet device. In our opinion,

the best tradeoff between lightweight and high performances is the Linaro alip version,

which works well with openssh server, x11, tight vnc server and lxde, allowing the

users to remotely control ZedBoard from their pc (without attaching monitor, keyboard,

mouse etc) in a more comfortable way (see next chapters for details). Once th tarball

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 80

Figure A.11: starting GParted and selecting the SD card device node

Figure A.12: No partition onto the SD card

is downloaded, to be ready to boot Linaro Ubuntu on Zedboard, these steps have to be

accomplished:

• Copy the Linaro File System to the ext4 partition of the SD Card

• Build the Linux Kernel

• Fix the BOOT.BIN File

• Compile the Device Tree

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 81

Figure A.13: One existing partition onto the SD card

Figure A.14: symbol to click for executing actions on GParted

Figure A.15: editing the fat32 partition labeled BOOT

Figure A.16: symbol to click for editing partitions on GParted

• Boot the SD Card on the ZedBoard

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 82

Figure A.17: editing the ext4 partition labeled rootfs

A.2.2.1 Copy the Linaro File System to the ext4 partition of the SD Card

A temporary folder named Linaro must be created and the zipped Linaro image must

be copied there and successively unpacked, type:

$ mkdir -p /tmp/linaro

Then cd into the directory where the zipped Linaro image is and type (see figure A.18):

$ sudo cp image-name /tmp/linaro/fs.tar.gz

Figure A.18: Unzip the Linaro image in a temporary folder named ”linaro”

Now insert the SDcard and mount it to /tmp/sdext4, obviously the device node of the

ext4 partition of your SD card could be different from that one displayed below and

you have to replace it (fugure A.19). Now, for copying the root file system onto the SD

card, it is strongly recommended to use the command rsync in order to preserve those

attributes of the special files contained in the root file system that should be unchanged.

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 83

Figure A.19: Mount the SD card to /tmp/sdext4

Once this process has completed, unmount before removing the SD card to make sure

all the files have been synchronized to it.

Figure A.20: Umount the SD card

A.2.2.2 Build the Linux Kernel

Install ARM GNU Toolchain Before building the kernel, the first thing a user should do

is making sure of having installed the ARM GNU tools from xilinx ([32]). With the latest

versions of Xilinx ISE and Xilinx Vivado, this tools are already include. In our case so it

was, in particular Xilinx ISE 14.7 and Xilinx Vivado 2014.4 were installed. As far as we

know, these versions are probably not the first versions with ARM GNU tools included,

anyhow we can assert that if a user install these versions (or also only one of them, either

ISE or Vivado) he can be sure that the tools are included. Once the correct installation

of these tools is assured, it is necessary to set the tool chain environment variables.

For the oldest version of ISE and Vivado, the toolchain is contained in a folder named

”CodeSourcery”. For users who are in this situation (enough old version of Xilinx

software), the instruction given by [28] are correct and reported here for completeness.

open the bashrc file in your home folder (with a text editor like gedit or emacs) and

add the lines below:

PATH=~/CodeSourcery/Sourcery_CodeBench_Lite_for_Xilinx_GNU_Linux/bin:$PATH

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 84

export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

You could need to add something to the path highlighted in red, depending on where

your CodeSourcery folder is located. For users who installed later versions of Xilinx

software (as we were) this instruction is no more valid. It was discovered that the file

to be included in the path for the newest versions is the settings64.sh or settings32.sh,

depending on the kind of hardware platform (64 or 32 bit CPU), this file is present

both in the ISE DS folder and in the Vivado folder. To avoid modifying the bashrc,

we preferred to use the following bash commands, suggested at [33] and it worked well

(figure A.2.2.2):

$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

$ source /opt/Xilinx/14.7/ISE_DS/settings64.sh

Or it should be equivalent to run:

$ export CROSS_COMPILE=arm-xilinx-linux-gnueabi-

$ source /opt/Xilinx_Vivado/Vivado/2014.4/settings64.sh

Figure A.21: Set ARM GNU Toolchain path

Remember that you could need to adapt the paths to your particular installation folders.

In [33] it can be also read that Ubuntu 12.04 LTS x86 64 users may run into issues related

to missing dependencies when installing the Xilinx tools. This release of Ubuntu lacks

some needed 32-bit libraries which need to be installed. Even if we used Ubuntu 14.04

LTS we faced the same problem, which is simply fixable by installing the 32 bit libraries

with the bash command reported below:

$ sudo apt-get install ia32-libs

Obtain git repository Install git with

$ sudo apt-get install git

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 85

Once git is installed, open a terminal and change to the directory where you would like

to place the Linux Kernel source code, then run:

$ git clone https://github.com/Digilent/linux-digilent.git

A.2.2.3 Configure the Kernel

After the download has completed, change to the linux digilent directory and run the

command below to configure the kernel for the ZedBoard (figure A.2.2.3):

$ make ARCH=arm digilent_zed_defconfig

Figure A.22: Configure Linux Kernel for ZedBoard

To view or alter the default configuration of the Linux Kernel for the ZedBoard, run the

command below.

$ make ARCH=arm menuconfig

A window like the one displayed in figure A.2.2.3 will pop up. From this configuration

interface a user can select drivers built into the Kernel and those built as loadable

modules. It is important to modify the default kernel configuration only if it is necessary

and not to add useless driver: the adding of not needed drivers may cause an incorrect

working of Linaro on ZedBoard or a performance degradation.

A.2.2.4 Build the Kernel

After properly configuring the kernel, proceed to build it by running.

$ make ARCH=arm

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 86

Figure A.23: Kernel configuration Menu

If the build completes without errors, you will find the built kernel image (a single binary

file named zImage) at linux-digilent/arch/arm/boot/zImage see figure A.24. Copy the

file to the FAT partition of the SD card (which is labeled BOOT). If an error like the one

Figure A.24: The zImage present in the folder linux-digilent/arch/arm/boot/zImage

showed below occurs (figure ??), this signify that the ARM GNU toolchain environment

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 87

variables are not set (the tools are not in your path). In this case check the correct

executions of the steps exposed in A.2.2.2.

Figure A.25: This error occurs when the ARM GNU Toolchain is not in the path

A.2.2.5 Obtain the BOOT.BIN File

The BOOT.BIN file is a container for the various Xilinx specific files that initially

configure the two sections of the Zynq AP SoC, i.e. the programmable logic (the FPGA)

and the processing system (the two ARM Cortex A9). This container also holds uboot,

which is a second-stage bootloader responsible for loading Linux. A prebuilt BOOT.BIN

file is present in the sd image folder contained in the 4GB SD card provided with

ZedBoard. The BOOT.BIN must be copied to the FAT partition of your SD card. If

a user is interested in building his own BOOT.BIN file, we suggest to see ZedBoard

Linux Hardware Design available at [34]. Here is a source code for a Xilinx Embedded

Design Kit (EDK) project, distributed by Digilent, that will configure the Zynq part on

the Zedboard in a manner that allows Linux to communicate properly with the onboard

hardware. Further useful and very good explanation on what BOOT.BIN contains and

how to create your own BOOT.BIN can be found at [35],[36],[37].

A.2.2.6 Compile the Device Tree

The device tree is a data structure that describes the hardware present in your system

to the Linux Kernel. The Digilent Linux repository contains a default device tree for

the ZedBoard that corresponds with the Linux Hardware Design. It may be found at

linux-digilent/arch/arm/boot/digilent-zed.dts. The device tree is also where the kernel

is told what file system to load. This means that it is necessary to modify the digilent-

zed.dts file to indicate which file system is in use, consequently two different actions

must be done depending on how you are going to boot the ZedBoard, i.e. if you are

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 88

using a Linaro file system or a ramdisk image(as the one provided with the 4GB SD card

in the ZedBoard box). Open digilent-zed.dts in a text editor. The lines containing

the ”bootargs” definitions will probably look like figure A.26: If you are using a Linaro

Figure A.26: Line containing the ”bootargs” in the digilent-zed.dts file at the
beginning

file system (as it probably is if you are reading this paper), substitute the 1 at the end of

the first line with a 0, obtaining what is showed in figure A.27: Now the compiled device

Figure A.27: Line containing the ”bootargs” in the digilent-zed.dts file after the
modifications in order to boot ZedBoard with a Linaro file system

tree should be at linux-digilent/devicetree.dtb, copy this file to the FAT partition of the

SD card and it should be finally ready to be plugged into the ZedBoard for beginning the

boot process. Now onto the SD card you should have: in the fat partition the compiled

device tree, the zImage you obtained building the kernel and the BOOT.BIN copied

from the 4GB SD card provided with zedboard, while in the ext4 partition you should

have the Linaro file system. As it can be noticed, compiling the device tree appears to

be quite tricky and it may lead to do errors. All this steps can be skipped by directly

downloading a pre-compiled devicetree from [38] in the form of a devicetree-linaro.dtb

file (in figure A.28 the link for download is showed). Anyhow this was the procedure

followed for this work and it worked well, so we copied the BOOT.BIN provided with

ZedBoard, we downloaded the pre-compiled device tree from [38] and we booted the

ZedBoard.

A.2.2.7 Boot the SD card onto the ZedBoard

1. Insert the SD card into the ZedBoard

2. Set the jumpers of the ZedBoard in the SD-boot mode as follows (see also [39] and

[40]):

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 89

Figure A.28

• MIO 6: set to GND

• MIO 5: set to 3V3

• MIO 4: set to 3V3

• MIO 3: set to GND

• MIO 2: set to GND

• VADJ Select: set to 1V8

• JP6: shorted

• JP2: shorted

• All other jumpers should be left unshorted

3. Attach a computer running a terminal emulator (see next chapters for details) to

the UART port with a Micro-USB cable. Configure the terminal emulator with the

following settings:

• Baud Rate: 115200

• 8 data bits

• 1 stop bit

• no parity

• no flow control

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 90

4. connect any peripherals you want to use in Linux. If you use a Linaro file system,

it would be useful to connect a monitor to the HDMI port and a USB hub to the

USBOTG port, in order to attach a mouse and a keyboard to the USB hub.

5. Attach a 12V power supply to the ZedBoard and power it on.

6. Use the terminal emulator to boot the ZedBoard following the instruction given in

next chapters.

A.2.3 Boot Linaro using Minicom

In Linux, a terminal emulator which can be used to boot up the Zedboard is minicom,

it can be obtained by running:

$ sudo apt-get install minicom

Once minicom is installed and ZedBoard is connected via UART port to your pc and

powered on, check the serial device name of ZedBoard from a bash shell with:

$ dmesg | grep tty

the name will probably be ttyACM0 as in the case showed in the figure A.29 Now run

Figure A.29: Check ZedBoard device name with dmesg — grep tty, it will probably
be ttyACM0

the following command as Super User (this is very important), see figure A.30:

$ minicom -s

This action will result in the opening of the prompt reported in figure A.31. Go to Serial

Port Setup and press Enter. The window in figure A.32 will pop up. Pressing the letters

displayed on the left side, you can change the corresponding serial port settings. In the

case of ZedBoard, you should change the serial port settings as:

• A: /dev/ttyACM0 (probably)

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 91

Figure A.30: Start minicom

Figure A.31: Minicom settings window

• B: leave as default

• C: leave as default

• D: leave as default

• E: 115200 8N1

• F: NO

• G: NO

Once all these features are set, exit from minicom and you should see something like

figure A.33: If such a window is displayed, power off and power on the ZedBoard again,

then you should see feedback arriving to minicom, until another window with a count-

down to autoboot is displayed (figure A.34), at that time press any key to stop the

autoboot process. Now you are on the board, run the following command to start to

boot Linaro:

$ run sdboot_linaro

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 92

Figure A.32: Minicom serial port setup

Figure A.33: Window displayed when closing minicom after serial port set up

The boot process will start, it may be not so fast. At the end you should see the Linaro

Ubuntu desktop on your HDMI monitor (if you attached one) and the following on your

terminal (figure A.35): This signifies that you are on the root of Linaro and you can

either operate from this UART terminal, or disconnect your pc from the UART port

and use the keyboard and the mouse attached to the USB OTG port to control the

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 93

Figure A.34: Stop ZedBoard auto boot process

Figure A.35: Linaro boot process finished

complete linux system running on the ZedBoard (using obviously the desktop displayed

on the monitor).

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 94

A.2.4 Booting Linaro using GNU Screen

Exactly the same passages can be done using GNU screen, which is a faster way to

connect to serial port. If you don’t have this program installed, you can obtain with:

$ sudo apt-get install screen

Once it is installed and ZedBoard is connected via UART to your pc, power on the

board and, always as super user, run:

$ screen /dev/ttyACM0 115200

You should see figure A.34 after a few seconds. It is important not to wait too much

time, after powering on the ZedBoard, to run the command above(you should run it at

least before the blue led on the board starts blinking). From the prompt in figure A.35,

run also in this case:

$ run sdboot_linaro

and the boot process will begin. Once the boot process ends, whatever method you

used (minicom or gnu screen), yo should see a (Linaro) Ubuntu desktop on the monitor

ZedBoard has been previously connected to , as in figure A.36.

Figure A.36: Linaro Ubuntu desktop appears on the monitor

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 95

A.3 How to share a PC Internet Connection with Zed-

Board

Giving internet connection to ZedBoard with Linaro running is fundamental, in order

to be able to make updates, upgrades and install new software. A simple way to give

internet connection to ZedBoard is sharing the one of your PC, using it as a DHCP

server. Supposing a user has already booted ZedBoard from a pc as explained above, to

share its internet connection the following steps have to be followed:

1. click on the wireless symbol in the upper right corner of your ubuntu desktop and

then click on Edit connections (figure A.37)

Figure A.37: Edit a new connection

2. In the window that will pop up, click on Add (figure A.38)

3. Choose an ethernet connection type (figure A.39)

4. In the editing connection window, the only option that must be set is: IPv4Settings

/ Shared to other computers, as in figure A.40

5. Save and close, connect your ZedBoard to the pc with an ethernet cable and you

should see an advice appearing in the upper right corner of the desktop indicating

that the shared connection is available, thus ZedBoard is connected to the internet.

A.4 ZedBoard Remote Control

In what follows, it is supposed that a Linaro-ALIP version is installed, because, as

already written, it is the best version in order to control ZedBoard with Ssh and VNC.

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 96

Figure A.38: Add a new connection

Figure A.39: Choose an ethernet connection

Figure A.40: Share the connection to other computers

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 97

A.4.1 Connecting to ZedBoard with SSH

For connecting a host pc to ZedBoard with Ssh, two different hardware configurations

are possible:

1. Zedboard is connected to a network through the host pc, being connected to it with

an ethernet cable (figure A.41);

2. Zedboard is connected directly to a network (for example to a modem with an

ethernet cable) and the host PC is connected to the same network (figure A.42).

Figure A.41: First ssh ZedBoard configuration

Figure A.42: Second ssh ZedBoard configuration

Obviously in these two configuration descriptions it has been omitted that (at least at

the beginning), for booting the ZedBoard, the host pc must be connected to the UART

port of the ZedBoard with an USB-miniUSB cable. Once one of these configurations is

set up, boot Linaro on the ZedBoard, and then look for the device IP address running

on the UART terminal (figure A.43):

$ ifconfig

Notice that in image A.43 the IP address of the ZedBoard is quite unusual (10.42.0.35),

this happens in the case of configuration 1 (probably because the host pc is acting as

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 98

Figure A.43: Finding ZedBoard IP address

a DHCP server). Otherwise the IP address will be similar to the one of the host pc ().

Supposing that at the first time you boot linaro-alip on the ZedBoard open ssh is not

installed, run this sequence of bash commands in order to install open ssh server on

Linaro:

$ apt-get update

$ apt-get upgrade

$ apt-get install openssh-server

$ sync

Now that the IP address is known, two other informations are needed in order to set up

a SSH connection with ZedBoard: the device name and the password. Usually the host

name can be found with the command:

$ hostname

Depending on the specific Linaro distribution installed on the SD card, this command

will return different names, for what was experienced for this work they are:

• for the desktop distribution: linaro-ubuntu-desktop;

• for the nano distribution: linaro-nano;

• for the alip distribution: linaro-alip;

But when trying to create an SSH connection using these device names, no one of them

worked. Finally it was discovered that, even though hostname command returns these

names, the default name, independently on which Linaro distribution is installed, is

always linaro and the same is the default password. So now that all the necessary

informations are at disposal, run:

$ ssh linaro@device ip address

Remember that linaro is the password too (figure A.44). Now the host pc is controlling

zedboard via SSH.

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 99

Figure A.44: Creating the SSH connection with ZedBoard

A.4.1.1 SSH with X11: a GUI for applications

It could be desirable to have a GUI access to the applications in Linaro, hence it would

necessary to create a Ssh connection using also x11. To do so, it is necessary, obviously,

to have x11 installed on Linaro. With linaro-alip it should be installed as default, for

this work it was. If it is not, in a linaro terminal try to run:

$ apt-get install x11-xserver-utils xserver-xorg xserver-xorg-video-fbdev xserver-xorg-video-modesetting

When x11 is installed on Linaro, open a terminal on the host pc and run (see figure

A.45):

$ssh -X linaro@device ip address

Figure A.45: Using x11 with SSH

Now you can open applications with a GUI support; for example you can run (see figure

A.46):

$ gedit

A.4.2 Controlling ZedBoard with (tight) VNC

The first thing to know is that the only configuration that allows to control zedboard with

VNC is configuration 2. The second thing to know is that a normal VNC server version

would run quite slowly on the ZedBoard (because it is too heavy), so it is suggested

to download the tight version: open a terminal on linaro (for example from the UART

terminal used for the boot process) and run:

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 100

Figure A.46: a x11 GUI for gedit

$ sudo apt-get install lxde

Now on the host computer a VNCviewer or Remmina must be installed. In our case,

VNCviewer was downloaded from [41]. The downloaded file is a compressed one, after

it is unpacked in the desired folder it must be made executable, to do so cd into the

location folder and use the command:

$ sudo sudo chmod +x VNC-Viewer-5.2.3-Linux-x64

Now start a vnc server session on the ZedBoard, from a Linaro terminal (see figure

A.47):

$ vncserver

Choosing a password will be required. Before ending the process, the terminal will

return a desktop name for the vncserver session, in the case of the figure below it is

linaro-alip:1 (see figure A.47). Now in a terminal on the host pc start VNCviewer (cd

Figure A.47: Starting a VNC server session on the ZedBoard

into the directory where the executable is located and ./vncviewer as in figure A.48).

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 101

Figure A.48: Starting VNCviewer on the host PC

Figure A.49: VNCviewer GUI

The window in figure A.49 will pop up. Insert the vnc server desktop name and click on

connect. At the window in figure A.50 insert the password previously chosen and click

ok, then the zedboard linaro desktop will be displayed (figure A.51). Clicking on the

Figure A.50: VNCviewer GUI authentication

Figure A.51: VNC lxde remote Linaro desktop

button n the lower left corner, look for Xterm and open it: it is a complete terminal for

Linaro on ZedBoard (figure A.52). If you want to close a vnc server session, but you

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 102

Figure A.52: Xterm running on a VNC lxde remote linaro desktop

do not want to poweroff the Zedboard, on the UART terminal (hoping it has not been

disconnected) run:

$ vncserver -kill :1

If you want to poweroff the ZedBoard, on the Xterm terminal running on the VNC lxde

desktop simply type:

$ sudo poweroff

This is a very important advice: independently on which way you are controlling the

ZedBoard (with a linaro desktop on a monitor, with a UART terminal, with SSH or with

VNC) when you want to power it off always run the previous command before switching

off the board, this will assure that the correct shutting down sequence is followed. If

this advice is not respected, some data can be lost or the operating system onto the SD

card may get damaged.

A.5 Bug Fixed

During the production of this paper, a bug affecting the correct shut down was dis-

covered. Informations given by Ubuntu forums made us know that this bug has been

already quite well experienced by ubuntu users. Consequently it is probably related to

Ubuntu distributions in general, not especially to the Linaro one or to ZedBoard. Any-

how it is reported here. The problem consists in a anomalous slow shut down, also, after

the command poweroff has been made running, the terminal returns the message in

figure A.53. This seems to be caused by network manager still running during the power

Appendix A. Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux
users 103

Figure A.53: warning message identifying the bug

off process. The solution is manually stopping network manager before shut down. To

do so, it is sufficient to run:

$ sudo service network-manager stop

Or, equivalently:

$ sudo stop network-manager

Appendix B

Script in C for Single Channel

Single Sensor shooter ranging

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

float sound speed(double tau);

float single sensor(float c, double b, double dtoa, double v);

int main(){
double b = // input data ;

double tau = // input data;

double dtoa = // input data;

double v = // input data;

float c = sound speed(tau);

float a = sqrt((pow(v,2))+(pow(c,2)));

float A = 2*((b*v*a*pow(c,2))-(b*a*pow(v,3))-(dtoa*pow(c,3)*pow(v,2))-(dtoa*c*pow(v,4)));

float B = -2*(pow(b,2)*pow(v,4)*pow(c,4))+2*(pow(dtoa,2)*pow(c,6)*pow(v,4))-2*(pow(c,7)*b*dtoa*v*a)+2*(pow(c,8)*pow(b,2))+2*(b*a*dtoa*pow(v,5)*pow(c,3))

+ pow(dtoa,2)*pow(c,4)*pow(v,6) + pow(c,8)*pow(dtoa,2)*pow(v,2);

float distance = (A - 2*sqrt(B))/(2*(pow(c,4)-pow(v,4)));

printf(”%f ”,distance);

return 0; }

float sound speed(double tau){

float c; float temp; float result;

c = 1 + (tau/273.15); temp = sqrt(c); result = 331.3*temp;

return result;

104

Appendix B. Script in C for Single Channel Single Sensor shooter ranging 105

}

Bibliography

[1] Peter Volgyesi, Gyorgy Balogh, Andras Nadas, Christopher B Nash, and Akos

Ledeczi. Shooter localization and weapon classification with soldier-wearable net-

worked sensors. In Proceedings of the 5th international conference on Mobile sys-

tems, applications and services, pages 113–126. ACM, 2007.

[2] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy, András

Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sensor network-based coun-

tersniper system. In Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 1–12. ACM, 2004.

[3] Ákos Lédeczi, András Nádas, Péter Völgyesi, György Balogh, Branislav Kusy, János

Sallai, Gábor Pap, Sebestyén Dóra, Károly Molnár, Miklós Maróti, et al. Counter-

sniper system for urban warfare. ACM Transactions on Sensor Networks (TOSN),

1(2):153–177, 2005.

[4] Qinetiq ears gunshot localization system website. URL http://www.qinetiq-na.

com/products-security-ears.htm.

[5] Janos Sallai, Peter Volgyesi, Ken Pence, and Akos Ledeczi. Fusing distributed

muzzle blast and shockwave detections. In Information Fusion (FUSION), 2011

Proceedings of the 14th International Conference on, pages 1–8. IEEE, 2011.

[6] Jemin George and Lance M Kaplan. Shooter localization using soldier-worn gunfire

detection systems. In Information Fusion (FUSION), 2011 Proceedings of the 14th

International Conference on, pages 1–8. IEEE, 2011.

[7] URL http://www.lockheedmartin.com/us/products/span.html.

[8] Karunakar Pothuganti and Anusha Chitneni. A comparative study of wireless pro-

tocols: Bluetooth, uwb, zigbee, and wi-fi.

[9] Manoj Kumar. Zigbee: The low data rate wireless technolgy for ad-hoc and sensor

networks. In NCCI 2010-National Conference on Computational Instrumentation

CSIO, 2010.

106

http:// www.qinetiq-na.com/products-security-ears.htm.
http:// www.qinetiq-na.com/products-security-ears.htm.
http://www.lockheedmartin.com/us/products/span.html

Bibliography 107

[10] Thyagaraju Damarla, Lance M Kaplan, and Gene T Whipps. Sniper localization us-

ing acoustic asynchronous sensors. Sensors Journal, IEEE, 10(9):1469–1478, 2010.

[11] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding time

synchronization protocol. In Proceedings of the 2nd international conference on

Embedded networked sensor systems, pages 39–49. ACM, 2004.

[12] . URL http://www.spectracomcorp.com/ProductsServices/ByApplication/

GPSClockSynchronization/tabid/100/Default.aspx.

[13] János Sallai, Ákos Lédeczi, and Péter Völgyesi. Acoustic shooter localization with

a minimal number of single-channel wireless sensor nodes. In Proceedings of the 9th

ACM Conference on Embedded Networked Sensor Systems, pages 96–107. ACM,

2011.

[14] Atmel sam r21 brochure. URL http://www.atmel.com/Images/45067A-SAM-R21_

Brochure_E_A4_021214_Web.pdf.

[15] Uc530 fastrax gps antenna module - product summary, . URL http:

//u-blox.com/images/downloads/Product_Docs/UC530_ProductSummary_

%28FTX-HW-12004%29.pdf.

[16] . URL http://zedboard.org.

[17] Rob Maher. Acoustical characterization of gunshots. In Signal Processing Applica-

tions for Public Security and Forensics, 2007. SAFE’07. IEEE Workshop on, pages

1–5. IET, 2007.

[18] János Sallai, Péter Völgyesi, Ákos Lédeczi, Ken Pence, Ted Bapty, Sandeep Neema,

and James R Davis. Acoustic shockwave-based bearing estimation. In Proceedings

of the 12th international conference on Information processing in sensor networks,

pages 217–228. ACM, 2013.

[19] T Makinen, P Pertila, and Pasi Auranen. Supersonic bullet state estimation using

particle filtering. In Signal and Image Processing Applications (ICSIPA), 2009

IEEE International Conference on, pages 150–155. IEEE, 2009.

[20] Brian T Mays. Shockwave and muzzle blast classification via joint time frequency

and wavelet analysis. Technical report, DTIC Document, 2001.

[21] Gregory L Duckworth, Douglas C Gilbert, and James E Barger. Acoustic counter-

sniper system. In Enabling Technologies for Law Enforcement and Security, pages

262–275. International Society for Optics and Photonics, 1997.

http://www.spectracomcorp.com/ProductsServices/ByApplication/GPSClockSynchronization/tabid/100/Default.aspx
http://www.spectracomcorp.com/ProductsServices/ByApplication/GPSClockSynchronization/tabid/100/Default.aspx
http://www.atmel.com/Images/45067A-SAM-R21_Brochure_E_A4_021214_Web.pdf
http://www.atmel.com/Images/45067A-SAM-R21_Brochure_E_A4_021214_Web.pdf
http://u-blox.com/images/downloads/Product_Docs/UC530_ProductSummary_%28FTX-HW-12004%29.pdf
http://u-blox.com/images/downloads/Product_Docs/UC530_ProductSummary_%28FTX-HW-12004%29.pdf
http://u-blox.com/images/downloads/Product_Docs/UC530_ProductSummary_%28FTX-HW-12004%29.pdf
http://zedboard.org

Bibliography 108

[22] Shie Qian and Dapang Chen. Joint time-frequency analysis. Signal Processing

Magazine, IEEE, 16(2):52–67, 1999.

[23] Jemin George, Lance M Kaplan, Socrates Deligeorges, and George Cakiades. Multi-

shooter localization using finite point process. In Information Fusion (FUSION),

2014 17th International Conference on, pages 1–7. IEEE, 2014.

[24] Lindgren David, Wilsson Olof, Gustafsson Fredrik, and Habberstad Hans. Shooter

localization in wireless microphone networks. Eurasip journal on advances in signal

processing, 2010, 2010.

[25] . URL http://www.dodotronic.com/acoustic-devices/ultramics.

[26] Ultramic user guide, . URL http://www.dodotronic.com/zoologia/files/

Ultramic_User_Guide.pdf.

[27] . URL http://zedboard.org/content/zedboard-bring.

[28] Getting started with embedded linux – zedboard, . URL https:

//www.digilentinc.com/Data/Products/EMBEDDED-LINUX/ZedBoard_GSwEL_

Guide.pdf.

[29] URL http://svenand.blogdrive.com/archive/199.html#.VPR6N8v8uk0.

[30] . URL http://releases.linaro.org.

[31] . URL http://releases.linaro.org/12.09/ubuntu/precise-images/

ubuntu-desktop/linaro-precise-ubuntu-desktop-20120923.

[32] URL http://wiki.xilinx.com/zynq-tools.

[33] URL http://www.wiki.xilinx.com/Install+Xilinx+Tools.

[34] . URL http://www.digilent.com/zedboard.

[35] . URL http://www.wiki.xilinx.com/Prepare+boot+image.

[36] . URL http://www.xilinx.com/training/zynq/

how-to-create-zynq-boot-image-using-xilinx-sdk.html.

[37] Zynq-7000 all programmable soc software developers guide, . URL http://www.

xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.

pdf.

[38] URL http://svenand.blogdrive.com/archive/199.html#.VPR6N8v8uk0.

[39] Zedboard - getting started guide, . URL http://zedboard.org/sites/default/

files/documentations/GS-AES-Z7EV-7Z020-G-V7.pdf.

http://www.dodotronic.com/acoustic-devices/ultramics
http://www.dodotronic.com/zoologia/files/Ultramic_User_Guide.pdf
http://www.dodotronic.com/zoologia/files/Ultramic_User_Guide.pdf
http://zedboard.org/content/zedboard-bring
https://www.digilentinc.com/Data/Products/EMBEDDED-LINUX/ZedBoard_GSwEL_Guide.pdf
https://www.digilentinc.com/Data/Products/EMBEDDED-LINUX/ZedBoard_GSwEL_Guide.pdf
https://www.digilentinc.com/Data/Products/EMBEDDED-LINUX/ZedBoard_GSwEL_Guide.pdf
http://svenand.blogdrive.com/archive/199.html#.VPR6N8v8uk0
http://releases.linaro.org
http://releases.linaro.org/12.09/ubuntu/precise-images/ubuntu-desktop/linaro-precise-ubuntu-desktop-20120923
http://releases.linaro.org/12.09/ubuntu/precise-images/ubuntu-desktop/linaro-precise-ubuntu-desktop-20120923
http://wiki.xilinx.com/zynq-tools
http://www.wiki.xilinx.com/Install+Xilinx+Tools
http://www.digilent.com/zedboard
http://www.wiki.xilinx.com/Prepare+boot+image
http://www.xilinx.com/training/zynq/how-to-create-zynq-boot-image-using-xilinx-sdk.html
http://www.xilinx.com/training/zynq/how-to-create-zynq-boot-image-using-xilinx-sdk.html
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
http://svenand.blogdrive.com/archive/199.html#.VPR6N8v8uk0
http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7.pdf
http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-G-V7.pdf

Bibliography 109

[40] Zedboard - hardware user’s guide, . URL http://zedboard.org/sites/default/

files/ZedBoard_HW_UG_v1_1.pdf.

[41] URL http://www.realvnc.com/download/viewer/.

http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf
http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf
http://www.realvnc.com/download/viewer/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Sensor Network Design
	1.1 Introduction
	1.2 Target Application
	1.3 Network General Features
	1.3.1 Wireless Protocol Selection
	1.3.2 ZigBee Topologies
	1.3.2.1 Star Topology
	1.3.2.2 Peer-to-Peer (Mesh) Topology
	1.3.2.3 Cluster-Tree Topology

	1.3.3 ZigBee Channel Access Policy
	1.3.4 The Topology chosen for this Network Design

	1.4 Synchronization Issues
	1.4.1 GPS Clock Synchronization

	1.5 Hardware description
	1.5.1 Sensor Nodes
	1.5.2 The Centralized Gateway
	1.5.2.1 Why Zynq SoC
	1.5.2.2 Programming ZedBoard with System Generator for DSP: a failed attempt

	2 Gunshot Acoustic Parameters Estimation
	2.1 Overview on gunshot acoustic signals
	2.1.1 Muzzle Blast
	2.1.2 Bullet Shock Wave

	2.2 Environmental Effects on Gunshot Acoustical Features
	2.2.1 Reverberant Environment: Sound Reflection and Multi-Path
	2.2.2 Effect of Wind
	2.2.3 Temperature and Humidity Effects on the Speed of Sound
	2.2.3.1 Temperature Dependence
	2.2.3.2 Effect of Variable Temperature
	2.2.3.3 Humidity Effects
	2.2.3.4 Frequency Dependent Sound Absorption due to Humidity

	2.3 Shock Wave and Muzzle Blast Discrimination
	2.3.1 Discrimination Issues
	2.3.2 Approaches presented in Literature
	2.3.2.1 A Time Domain Analysis: a State Machine fed by Zero Crossing encoding
	2.3.2.2 Joint Time-Frequency and Wavelet Analysis
	2.3.2.3 Final Considerations and Signal Analysis Technique Choice

	3 Shooter Localization Problem
	3.1 The Geometry of the problem and derivation of Shooter Equations
	3.2 Introduction to different algorithm typologies
	3.2.1 Multi-Channel Acoustic Sensor Networks
	3.2.2 Single-Channel Acoustic Sensor Networks
	3.2.3 Final Observations

	3.3 Synchronous sensors network shooter localization Algorithm
	3.3.1 Direction of Arrival
	3.3.2 Worst Case shooter position estimation

	3.4 Asynchronous sensors network shooter localization Algorithm
	3.5 A special case: Single (Single-Channel) Sensor

	4 Experimental Validation
	4.1 Experimental Setup
	4.1.1 The Microphone
	4.1.1.1 Specifications and Hardware Description
	4.1.1.2 Ultramic's Software Description

	4.1.2 Sensor Configuration
	4.1.3 The Weapons
	4.1.4 The Measurements

	4.2 Signals Analysis and Features Extraction
	4.2.1 Considerations and TDOA calculation

	4.3 Final Shooter Ranging
	4.3.1 Results Interpretation

	4.4 Error Sources
	4.4.1 TDOA estimation Error Sources
	4.4.1.1 Microphone Performances
	4.4.1.2 Sampling Rate
	4.4.1.3 Shockwave and Muzzle Blast discrimination Signal Analysis Technique

	4.4.2 Ranging Algorithm Error Sources

	4.5 Conclusions

	A Getting Started Guide to ZedBoard and Linaro Ubuntu OS for Linux users
	A.1 Purpose of the Paper
	A.2 Boot Linaro Ubuntu on ZedBoard
	A.2.1 Formatting the SD Card
	A.2.1.1 Command Line Approach
	A.2.1.2 GParted GUI Approach

	A.2.2 Linux File System
	A.2.2.1 Copy the Linaro File System to the ext4 partition of the SD Card
	A.2.2.2 Build the Linux Kernel
	A.2.2.3 Configure the Kernel
	A.2.2.4 Build the Kernel
	A.2.2.5 Obtain the BOOT.BIN File
	A.2.2.6 Compile the Device Tree
	A.2.2.7 Boot the SD card onto the ZedBoard

	A.2.3 Boot Linaro using Minicom
	A.2.4 Booting Linaro using GNU Screen

	A.3 How to share a PC Internet Connection with ZedBoard
	A.4 ZedBoard Remote Control
	A.4.1 Connecting to ZedBoard with SSH
	A.4.1.1 SSH with X11: a GUI for applications

	A.4.2 Controlling ZedBoard with (tight) VNC

	A.5 Bug Fixed

	B Script in C for Single Channel Single Sensor shooter ranging
	Bibliography

