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Chapter 1 Introduction 
 

1.1 Problem 
 

Prompt-particle-events (PPEs) are high-energy particles, such as trapped protons or 

cosmic rays and may cause undesired noise in the signal read out from the Charge 

Coupled Device (CCD) in electro-optical instruments used for Earth Observation (EO). 

These radiation events may occur as noisy spikes during EO instrument testing on ground 

and during routine observation of the EO instrument in space. Noise spikes in instrument 

raw data resulting from PPE may therefore result in false signals and subsequently 

incorrect interpretation of EO data. 

PPEs are frequently seen in CCD images and sometimes called in literature “cosmic 

ray” events. However, energetic particles are ions consisting mostly in high-energy 

protons and atomic nuclei such as (mainly) hydrogen, some helium, diminishing amount of 

carbon, oxygen and even a few atoms of iron and of heavier elements [1]. Cosmic rays are 

mainly originating from outside the solar system and a significant fraction of primary 

cosmic rays originate from the sun or from the supernovae of massive stars. Further, 

active galactic nuclei are probably also producing cosmic rays [1].  

When referring to cosmic rays, it is important to notice that the term ”ray” is not 

appropriately describing the physical phenomenon, as cosmic rays were at first and 

wrongly thought to consist of mostly electromagnetic radiation. In scientific literature [1] 

high-energy particles with intrinsic mass are known as "cosmic rays”, and photons, which 

are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by 

their common names, such as "gamma rays" or "X-rays", depending on the location in the 

electromagnetic spectrum. Cosmic rays consist of ordinary matter, which had undergone 

some extraordinary process to gain significantly in energy, such as shock waves expanding 

from supernovas. Once these particles collide with the Earth’s stratosphere, so-called 

secondary particles are produced. Secondary rays are comprised of 74% muons, 25% 

electrons and just 1% protons. 

Another typical source of undesired noise events in CCDs are protons hitting similar 

as cosmic rays the CCD’s surface. In contrast, those protons are generated by the sun or 

trapped in the Van Allen belts. This kind of radiation is particularly strong over the south 

of the Atlantic sea, off the coast of Brazil. The area is known as the South Atlantic Anomaly 
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(SAA) and it is particularly rich in trapped energetic protons due to the Earth's inner Van 

Allen radiation belt coming closest to the Earth's surface.  

The number of cosmic rays hitting the surface of a CCD varies with altitude, as 

observed from astronomers working at different observatories and altitudes [1]. As an 

example, Figure 1.1.1 shows the dark signal generated by the OMI (Ozone Monitoring 

Instrument) [2] CCD over the SAA with an exposure time of 136 seconds and a gain factor 

of 40. OMI is on board the NASA Aura satellite in a 709 km sun-synchronous orbit. 

 

 

 

Figure 1.1.1. Dark signal measurements acquired by OMI CCD in the South Atlantic 

Anomaly [2]. 

 

 

Undesired effects of PPEs have also been observed for MERIS/OLCI type EO 

instruments. The Medium Resolution Imaging Spectrometer (MERIS) is a space-borne 

sensor primarily dedicated to observing oceanic biology and marine water quality through 

observations of water color, but also to atmospheric and land surface related processes 

[3]. MERIS flew from 2002 until 2012 on the ESA’s ENVISAT satellite (see Figure 1.1.2) in a 

sun-synchronous polar orbit of about 800 km altitude. The follow-up of MERIS is the 

Ocean and Land Color Imager (OLCI) to be flown on the ESA’s Sentinel-3 (S3) satellite and 

scheduled for launch in 2015.  
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Both imaging spectrometers are similar in design and making use of Charge-Coupled 

Devices (CCD) specifically developed for MERIS and re-manufactured for OLCI. 

 

 

 

 

Figure 1.1.2. Left: ENVISAT Flight Model in test configuration at ESA-ESTEC. MERIS is 

accommodated on the upper panel of the satellite; right: artist’s impression of Sentinel-3 

spacecraft with optical payloads SLSTR and OLCI (red) and the topography package (blue). 

 

 

During on-ground testing of MERIS and OLCI space instrumentation and during in-

orbit operations of MERIS the occurrence of PPEs was observed. In the following, two 

significant cases are briefly described and will serve as introduction to the thesis to 

demonstrate how PPEs are affecting product quality and test results: 

Example 1) One of the ENVISAT/MERIS algorithm serves to retrieve the MERIS 

maximum chlorophyll index (MCI). The algorithm makes use of the top-of-atmosphere 

(TOA) radiance peak at 709nm in water-leaving radiance and retrieves aquatic events such 

as ‘red tides’, i.e., spatial phenomena on the sea surface where large amount of aquatic 

vegetation is present forming an intense, visible, plankton bloom on the surface of the 
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Earth’s ocean surface. Global MCI composite images, at a spatial resolution of 5 km, are 

produced daily from MERIS (daylight) passes of reduced resolution (RR) data. When 

looking at global composites and plankton bloom events it was found by Gower et al. [4] 

that specifically the Ocean areas collocated with the South Atlantic anomaly (SAA) were 

experiencing larger amounts of blooms (see Figure 1.1.3). Since these phenomena could 

not be validated with in-situ data Gower et al came to the sound assumption that cosmic 

rays may generate noise in MERIS CCDs. 

 

 

Figure 1.1.3. Global occurrence of false alarms observed with MERIS data applying 

the MCI algorithm showing peak values over the South Atlantic Anomaly [4]. 

 

 

Example 2) During ground darkness tests [5] of Sentinel-3/OLCI (Ocean and Land 

Color Instrument) at Thales Alenia Space France (TAS-F) the occurrence of some noise 

spikes (see Figure 1.1.3) was found. It was observed that these occurrences were neither 

time nor band correlated. Any influence from the Electronic Ground Support Equipment 

(EGSE), the Video Acquisition Module (VAM) and the Focal Plane Assembly (FPA) was 

excluded, as spikes were present directly at the CCD output. Hence, these occurrences 

were assumed to be related to cosmic rays hitting certain areas of the 2-dimensional CCD 

chip.   
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Figure 1.1.3. Spikes appearing in the FPA + VAM EM output dark signal affecting  

different µbands under test [5].  

 

 

These two examples demonstrate very well, how prompt-particle-events (PPE) may 

generate noise in OLCI/MERIS type instruments. It is evident that the effect needs further 

assessment and in order to allow to quantify the risk of misinterpretation of end-user 

product.  

In the scope of the thesis detailed observations and analyses of the occurrence of 

specific PPE-induced noise are performed by assessing quantitatively and qualitatively 

effected ENVISAT/MERIS Earth observation data and/or S3/OLCI on-ground test data. The 

thesis will also provide recommendations on further assessments and potential removal 

of the noise via post-processing of acquired data.  

On the other side, it needs to be clarified that the thesis shall not be regarded as 

“astrophysical research”, e.g., to conclude of specific behavior or observations of cosmic 

rays with MERIS/OLCI. In the thesis, primary / secondary cosmic rays and trapped protons 

will be referred as ‘’prompt-particle events’’ (PPEs), “high energy particles” or simply 
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‘’cosmic rays’’. A distinction between those events is not foreseen, since the result of 

these event result in all cases in the occurrence of specific noise, which needed to by 

assessed quantitatively and qualitatively for the improved use of Earth observation data. 

 

 

1.2 Objectives 

 

PPE-induced noise cause undesired spikes in the signal read out from the ENIVISAT 

MERIS CCD. Sentinel-3 instruments are likely to experience a similar noise since the same 

kind of CCD (supplier: E2V, Chelmsford, UK) is used in the OLCI detection chain1.  

The thesis is motivated by the following general research questions:  

1) Would Sentinel-3 OLCI be more effected by PPE-induced noise because of its 

higher spatial resolution (Full Resolution also over ocean) and dynamic range (12 

to 14 bits)? 

2) What is a good method to detect the occurrences of PPE-induced noise in orbit? 

3) What are the mitigation possibilities to reduce the PPE-induced noise in the data?  

In order to find some answers to those research questions and, subsequently, 

studying the effect of PPE-induced noise, the following MERIS and OLCI data was made 

available by ESA: 

- ENVISAT/MERIS data from the years 2003-2009 at three different processing 

levels, i.e., raw Level 0 (L0 RR) data, calibrated Level 1B (RR L1B) data and higher-

level (Level 2, L2) data; 

- Sentinel-3/OLCI  Engineering and Flight Model test data from the year 2013 and 

2014. 

With the above research questions and the availability of specific data sets, it 

became necessary to first understand the working principle of the MERIS and OLCI 

instruments in a way to allow the development of dedicated routines for the data analysis. 

                                                           
1
 Whereas the E2V CCD25-20 was used for MERIS, OLCI instruments will make use of a slightly 

modified type of the 20er series, now called CCD55-20. For the analysis of PPE-induced noise the two CCD 
can be regarded as equal. 
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The overview about MERIS and OLCI working principle is provided in Chapter 2: “The 

space instrumentation”. 

In a first investigation, MERIS L0 RR data from Envisat commissioning phase 

(acquired when the shutter of the instrument was closed) were used to analyze the 

behavior of the dark signal and the impact that PPEs may have on it along one entire 

specific orbit. The occurrence probability of a PPE was investigated. This was carried out in 

two significant regions of the orbit: one located outside and the other inside the South 

Atlantic Anomaly (SAA).  

The analysis approach and the results are documented in Chapter 3: “PPE-induced 

noise in ENVISAT-MERIS L0 data”. 

L0 RR data collected by MERIS over the SAA were analyzed to understand the 

potential worst-case impact on the CCD of energetic particles. In the SAA the cosmic 

radiation is stronger due to the weaker Earth's magnetic field (Figure 1.2.1), the CCD is 

exposed to a higher degree of noise and the prompt-particle events (PPEs) increase 

significantly [6]. 

 

 

Figure 1.2.1. Earth’s magnetic field measured in nano Tesla revealing its minimum in 

the south of the Atlantic Sea [7]. 
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It was demonstrated how the occurrence of spikes are affecting the dark value of the 

CCD’s pixels of all MERIS spectral bands and the probability of such occurrence was 

estimated inside and outside the SAA.  

Further, pixels located next to a corrupted pixel were investigated in order to 

understand if one strike on the CCD could affect also other consecutive pixels located 

around the impact location. 

The effect of cosmic rays impact was also studied to determine how sensitive MERIS 

was and OLCI will be in terms of digital units: the difference between the mean value of 

corrupted pixels and the mean value of the dark signal was computed for two different 

data sets, one outside and the other inside the SAA. A model of probability density 

function approximating the occurrence LSB amplitude was searched. 

Further, MERIS L0 data acquired when the instrument was set on operational mode 

were analyzed to determine an opportune algorithm through which detect noisy spikes 

due to cosmic rays in the smear band signal. In this way, it could be possible to study the 

trend of such perturbation over the duration of seven years.  

The analysis approach and the results are documented in Chapter 4: “Detection of 

PPEs in the smear band during MERIS operational phase.” 

Another objective was to investigate the effect of PPEs on one particular EO product. 

This was done by processing MERIS Top-Of-the-Atmosphere (TOA) radiance signal, i.e. L1B 

data, to obtain a Maximum Chlorophyll Index image of the selected swath. PPE noise may 

result in false alarms in retrieving chlorophyll (Figure 1.1.2) [8]. An opportune algorithm 

was tested to understand if some significantly anomalous pixels can be present and if 

there is a way to correct them. 

The analysis approach and the results are documented in Chapter 5: “PPEs detection 

in Maximum Chlorophyll Index images.” 

Finally, recent Sentinel-3/OLCI ground test data were inspected. The data were 

retrieved as dark signal for the five cameras and for three different gains used in the 

acquisition chain and to detect and quantify once more those pixels affected by spike 

noise on ground. Then, making use of a simplified performance model, the results from 

MERIS data in flight and OLCI on-ground test were used to predict the mean radiance 

error due to PPEs measured by Sentinel-3 OLCI. 
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The analysis approach and the results are documented in Chapter 6: “Assessment of 

PPEs during OLCI preflight testing and prediction of OLCI in-flight sensitivity”. 

All the results of the study and the recommendations for Sentinel-3/OLCI will be 

summarized in chapter 7: “Conclusions”. 

  



 
13 

 

Chapter 2 The space instrumentation 
 

 

2.1 MERIS and OLCI instrument concepts 

 

OLCI and MERIS are both imaging spectrometers operating in the Visibile and Near Infrared 

regions of the electromagnetic spectrum. MERIS was one of the key instruments on board of ESA’s 

Envisat satellite [9] while OLCI will be a key payload instrument of ESA’s Sentinel-3 mission [10], as 

part of the European Commission’s Copernicus programme [11]. Their goal is to provide a long-

term collection and delivery of high-quality measurements of ocean color, both in open ocean and 

in coastal zones for retrieving geophysical parameters such as chlorophyll, dissolved organic 

matter and suspended solid matter concentrations. Other parameters of interest are indices that 

characterize the vegetation over land and some atmospheric parameters such as top pressure, 

aerosol optical thickness and water vapor columns contents. 

Even though the physical structure and the functional block diagrams are very similar for 

both sensors, OLCI incorporates some important improvements to be mentioned. Thus, MERIS 

first and then OLCI will be separately described in the following. 

 

 

2.1.1 MERIS 

 

MERIS is the Medium spectral Resolution Imaging Spectrometer [12] operating in the solar 

reflective spectral range, from the Visible (VIS) up to the Near Infrared (NIR) spectrum. The 

instrument scanned the Earth’s surface by the “push-broom” method using five identical cameras 

arranged in a fan shape configuration allowing a Field Of View (FOV) of 68.5 degrees (with 0.4º 

overlap between adjacent cameras) covering a swath of 1150 km (across track).  

The linear frame-transfer CCDs provide spatial sampling in the across-track direction, while 

the satellite motion provides scanning in the along-track direction, see Figure 2.1.1. 
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Figure 2.1.1. Swath subtended by the five cameras. 

 

 

The scene is imaged simultaneously across the entire spectral range through a dispersion 

system, onto the CCD (Charged Coupled Device) array, as depicted in Figure 2.1.2. 

 

 

 

Figure 2.1.2. MERIS push-broom imaging spectrometer principle. 
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 Of particular interest is the ability to automatically programme the position, width and gain 

of the 15 spectral bands in flight (see Figure 2.1.3), in the range from 390 nm up to 1040 nm. 

 

 

 

Figure 2.1.3. The MERIS 15 nominal spectral bands overlaid on typical vegetation  

and ocean spectral TOA radiance. 

 

 

MERIS is designed to acquire data whenever illumination conditions are suitable. Instrument 

operation is restricted to the day zone of the orbit, where the Sun’s incidence angle is less than 80° 

at the sub-satellite point. Calibration is carried out, on average, once every two weeks, when the 

spacecraft flies over the south orbital pole and the Sun illuminates the instrument’s on board 

calibration device. For the rest of the orbit, MERIS is in non-observation mode. 

The Full Spatial Resolution (FR) is 300 m (at nadir), while this resolution is reduced to 1200 m 

(Reduced Resolution, RR). A RR pixel is generated by the combination of four adjacent samples 

across-track over four successive lines, as it was selected for all images taken over over open 

oceans, where a higher spatial resolution is not required.  

The instrument is 1 m^3 in size, weights a little more than 200 kg and draws on average 

around 200 W. Figure 2.1.4 gives a representation of the instrument mechanical layout. The 

cameras view the Earth through five depolarizing windows. The modular design ensures high 

optical image quality over the large field of view. The output of each camera is processed 

separately in an analogue and digital processing unit. 
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Figure 2.1.4.  MERIS instrument mechanical layout. 

 

 

The main instrument subsystems, see Figure 2.1.5, are:  

• Calibration Mechanism (CM);  

• Scrambling Window SubAssembly (SWSA);  

• Camera Optics Subassembly (COSA);  

• Focal Plane Assembly (FPA);  

• Video Electronic Unit (VEU);  

• Science Data Processing Subsystem (SDPSS);  

• Instrument Control Unit (ICU);  

• Power Distribution Unit (PDU);  

• Digital Bus Unit (DBU);  

• Thermal Control. 
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Figure 2.1.5. MERIS design configuration overview. 

 

 

The optical bench supports the five COSA, the FPA, the SWA, five VAM containing the whole 

analogue imaging chain down to the ADC (Analogue to Digital Converter), the VEU managing all 

the instrument functions, the calibration assembly and the FPA. 

The optical system assembly consists of five identical cameras mounted on a temperature 

controlled (20 ±1 C) optical bench. An off-axis catadioptric telescope images the Earth on the 

entrance slit of the spectrometer, which includes an off-axis concave holographic diffraction 

grating and a co-centric refractive corrector block. A second order absorption wedge filter is 

coated on the CCD window thickness across the device to match the wavelength diffracted by the 

spectrometer and to locally meet the condition of minimum reflection (thickness λ/4). This 

enabled to mitigate the optical ghosts generated by reflection between the CCD and its window 

over the entire spectral range (390 nm – 1040 nm).  

Signals read out from the CCD pass through several on-board processing steps (see Figure 

2.1.6) in order to achieve the required image quality. Analogue electronics perform pre-

amplification of the signal, correlated double sampling and gain adjustment before digitization of 

the video signal on 12 bits. The signal amplification is done by selecting one of the 12 fixed gains 

defined in the range 1 to 3.75. The amplification gain is selected separately for each spectral band 

to minimize the noise contribution of the processing chain. Thus, the saturation level of any band 

can be optimized for the purposes of that band. For instance, a spectral band used only for ocean 

applications can saturate over clouds, leaving the full 12-bit digitization for the useful dynamic 
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range of the oceanic signal. To ensure the stringent signal stability required along the orbit and 

between calibrations an offset control loop (OCL) has been implemented in the Video Electronic 

Unit (VEU). The OCL sets the output DN level for the first five dark pixel of every micro-band to the 

transition 9-10. This offset voltage is then clamped for all remaining pixels in this microband. It is 

possible to enable or to inhibit this offset. The VEU includes 6 video chains (5 nominal plus one in 

cold redundancy): 5 video chains are active at a given time, with one video chain associated to 

each CCD. These video chains are controlled by a sequencer (either nominal or redundant). 

The digital output of the VEU is subsequently processed by the Digital Processing Unit (DPU) 

in three major steps: completion of spectral relaxation up to the required bandwidth, subtraction 

of the offset and correction for gain non-uniformity and reduction of the spatial resolution of the 

data to 1200 m for the global mission summation of four adjacent pixels across-track over four 

consecutive frames. 

The DPU includes 6 digital processing chains, consisting of 5 nominal and one in cold 

redundancy, each being definitely connected to a VEU video chain. The offset and gain corrections 

are based on coefficients computed during the calibration sequences. These coefficients are 

stored on-board as well as being sent to the ground. The instrument design offers the flexibility to 

have these corrections applied either on board or on the ground. In the latter case, offset and gain 

correction are bypassed in the on board processing flow and performed on the ground. This latter 

solution has been selected for MERIS operations.  

 

 

Figure 2.1.6.  MERIS on-board signal processing flow block diagram. 

 

 



 
19 

 

2.1.2 OLCI 

 

Sentinel-3/OLCI is a visible-near-infrared imaging spectrometer [13] that will provide 

climatological and environmental data continuity with previous ESA’s Envisat/MERIS electro-optic 

sensor, after Envisat mission was formally declared ended by ESA on May 2012. The OLCI 

instrument is based on the opto-mechanical and imaging design of ENVISAT-MERIS. 

In contrast to the MERIS instrument, OLCI employs an asymmetric swath with respect to the 

satellite ground-track in order to avoid direct solar reflection at sea surface (sun-glint). The 

amount of tilt is defined by the need to minimize the maximum Observation Zenith Angle (OZA) at 

the outer border of the swath and at the same time guaranteeing global coverage. Figure 6 shows 

the across-track tilt of the overall field of view of 12.6°, resulting in a maximum OZA slightly above 

55 deg, see Figure 2.1.7. 

 

 

Figure 2.1.7. OLCI’s 5 camera modules arranged in asymmetrical viewing geometry. 

 

 

OLCI will observe the Earth with a Field of View (FOV) of more than 1200 km and an 

Instantaneous Field of View (IFOV) of 300 m over all earth surfaces that are illuminated by the sun. 

The data will be delivered in 21 spectral bands with a high Signal-to-Noise Ratio (SNR) to provide 

continuity to data products generated by the 15 MERIS spectral bands (see Table 2.1.1). Six 

additional spectral bands in the spectral range between 390 and 1040 nm provide the means for 

improved water constituent retrieval (@ 400 and 673.75 nm), atmospheric correction (@ 1020 

nm) and improved parameter retrieval in the O2A-band (@ 760-775 nm). 
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Table 2.1.1. The 21 bands designed for OLCI. In blue, the bands 

shared by OLCI and MERIS. 

 

 

Sentinel-3/OLCI incorporates the following significant improvements in respect to MERIS: 

 more spectral bands (from 15 to 21); 

 improved SNR through a 14-bit ADC; 

 improved long-term radiometric stability with the extended diffuser calibration; 

 mitigation of the sun-glint effect by tilting the cameras in westerly direction; 

 Full Resolution for both land and ocean; 

 improved instrument characterization including stray-light, camera overlap and 

calibration diffusers; 

 improved coverage global ocean by 4 days, land by 3 days (15 days for MERIS); 

 improved data delivery timeliness: 3 hours for L1B and L2 products; 

 100% overlap with the Sea and Land Surface Temperature Radiometer (SLSTR) 

swath, allowing the use of OLCI and SLSTR in synergy. 

 

The basic configuration of the OLCI instrument includes an optical bench supporting 

the following components : 
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- five fan-arranged Camera Optical Sub Assemblies (COSA); 

- five Focal Plane Assemblies (FPA), a Scrambling Window Assembly (SWA); 

- five Video Acquisition Modules (VAM) containing the whole analogue imaging 

chain down to the digital conversion; 

- OLCI Electronic Unit (OEU) managing all the instrument functions; 

- calibration assembly allowing a radiometric and spectral calibration; 

- heat pipe networks insuring the thermal control of the VAM; 

- FPA and detector.  

The optical layout of OLCI is sketched in Figure 2.1.8. 

 

 

Figure 2.1.8. OLCI mechanical layout. 

 

 

The Ground imager (housed within the COSA box) collects the light through the calibration 

mechanism (either from the Earth or the sun-illuminated diffusers) and the scrambling window. 

The collected light is focused onto the spectrometer entrance slit. The calibration mechanism 

allows a view of the earth surface or one of several on-board calibration targets through a slit 

window by rotating each target mounted on a calibration wheel into the instrument FoV. Then the 
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spectrometer generates a dispersed image of the slit on a 2-dimensional Charged Coupled device 

(CCD) array: one dimension of the array is the spatial extension of the slit, and the other 

dimension the spectral dispersion of the slit image in the range between 390 and 1040 nm. The 

OLCI design configuration is shown in Figure 2.1.9. 

 

 

Figure 2.1.9. OLCI design configuration overview. 

 

 

The imaging and calibration principles of OLCI can be depicted by the instrument functional 

block diagram as shown in Figure 2.1.10. The light coming from the Earth or the Sun enters the 

instrument through the Calibration Assembly (CA). The CA has several functional positions, either 

for calibration purposes (calibration hardware), e.g., with the sun, or for earth imaging through the 

earth diaphragm. Behind the CA, the 5 cameras are located covering the FOV in a fan shape 

configuration. Each camera consists of a SWU (Scrambling window units), a COSA, a FPA, a CCD 

and a respective VAM. The acquired data are then collected in the OEU always in High Resolution 

(HR) mode. 
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Figure 2.1.10. OLCI functional block diagram. 

 

 

The OEU delivers 46 µbands (including a smear band collecting data during each frame 

transfer) in Raw Mode or 22 bands (including one smear band) in Imaging Mode (see Figure 

2.1.11). The Raw Mode (46 µbands incl. smear band) will be used primarily during calibration 

phases, i.e., for both, via earth imaging or solar calibration. Since this mode needs to be managed 

with the satellite data resources, the mode will be operated only during specific calibration 

campaigns. The Nominal Mode, where 22 bands (incl. smear band) are transmitted after the 

spectral relaxation is enabled through the OEU combining 46 bands to 22. 

 

 

Figure 2.1.11. OLCI data processing block diagram. 
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2.2 MERIS  and OLCI CCDs 

 

Sentinel-3/OLCI and Envisat/MERIS detectors are frame-transfer charge coupled devices. 

They are all produced by the same company (E2V, Chelmsford, UK). OLCI’s CCD (55-20) is a 

slightly updated version of MERIS CCD (25-20). Since both CCDs are of similar structure and 

operating principles and therefore equally effected by PPEs, the following paragraph will describe 

in detail just the MERIS CCDs. 

The selected E2V CCD 25-20 [14] is thinned and back illuminated to avoid the absorption and 

reflection (mainly in the blue part of the spectrum) by the electrode structure located at the front 

face of the device and offer the required high responsivity in the blue region of the spectral range 

(see Figure 2.2.1). The CCD is composed of 780 (H) x 576 (V) x 2 elements, but only 740 x 520 

elements are used as imaging area for the MERIS images. The detectors are thinned to 17 µm for 

improved detection efficiency at shorter wavelengths. An anti-reflective coating is applied along 

the spectral dimension to reduce the ghost images and improve the detection efficiency. The 

window, outside the Imaging Zone, is gold coated to optimize the thermal interfaces with the 

surrounding optics. The device is thermally controlled to better than 10 mC at a temperature of -

22.5 C using Peltier coolers.  

 

 

 

Figure 2.2.1. Quantum efficiency for the five MERIS CCDs. 
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 Each detector element has a size of 22.5 µm x 22.5 µm corresponding to one pixel in the 

image data. Each line composed of 740 pixels corresponds to the spatial image of the entrance 

pupil at a given wavelength. Each column of 520 detector elements corresponds to the spectral 

image of a pixel at all wavelengths in the 390 nm to 1040 nm range (Figure 2.2.2). Consequently, 

each pixel in the image represents 260 m (spatial image) x 1.25 nm (spectral image). 

 

 

 

Figure 2.2.2. MERIS CCD structure. 

 

 

The remaining detector elements of the CCD surrounding the image area are placed in the 

left and right sides and on top and bottom.  

Ten transition pixels are placed on both sides for considering the possible misalignment with 

the mask which limits the imaging zone. Five more (shielded) pixels are located also on both sides 

are used to protect the dark pixel against charge contamination. 
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Five elementary spectral not shielded lines are located on the top and on the bottom of the 

imaging zone as a margin for possible shift of the spectrum with respect to the CCD. Ten spectral 

lines on the bottom of the imaging zone for possible misalignment with the mask limiting the 

imaging zone. Five additional spectral lines used to protect the smear band against charge 

contamination. Just under the imaging zone, 31 elementary spectral lines are reserved for the 

smear band, which is used to correct the smear effect (see Chapter 4).  

The storage zone has a size of 576 x 780 pixels, to copy all previously described pixels. 

The next Figure 2.2.3 explains the relations between elementary spectral lines, microbands 

and spectral bands. The constitution of spectral bands combining microbands is called spectral 

relaxation or spectral binning. 

 

 

Figure 2.2.3. Example of spectral band formation. 

 

 

The default values for MERIS spectral bands (the number of the last line in the spectral band, 

between 0 and 520), number of microbands in the spectral band, and number of elementary 

spectral lines per microband and the associated VEU (Video Electronic Unit) gains are given in 

Table 2.2.1. The smear band (16th spectral band) is not identified by any wavelength because it is 

not an observation band. The spectral band position is given by the number of the last elementary 

line in the band.  

The CCD acquires data with an integration time of 42.7 ms during which each detector 

element collects a certain amount of electrical charge. Then the electrical charges are shifted 

within 1.3 ms to the storage zone, where they are protected from the incoming light by a shield. 

Then, depending on the choice of observation spectral band and alignment parameters, the shift 

register decides which elementary spectral lines have to be kept and which will be eliminated.  
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Every 44 ms, for each spectral band, an entire spatial line of the on ground swath is acquired 

and this process allows the formation of the image taking advantage of the motion of Envisat 

space craft over which the sensor is located. 

 

 

MERIS BAND 
NUMBER 

 

VEU 

GAIN 

 

NUMBER OF 
MICROBANDS 

 

NUMBER OF 
LINES PER 

MICROBAND 

TOTAL 
NUMBER OF 

SPECTRAL 
LINES 

NUMBER 
OF LAST 
LINE IN 

THE BAND 

1 1.25 2 4 8 22 

2 1 2 4 8 46 

3 1 2 4 8 84 

4 1 2 4 8 100 

5 1.75 4 2 8 140 

6 1.5 4 2 8 188 

7 1.5 4 2 8 224 

8 1 2 3 6 236 

9 1.75 4 2 8 256 

10 1.25 2 3 6 294 

11 1.25 1 3 3 297 

12 1 3 4 12 314 

13 1.75 4 4 16 384 

14 1.75 1 8 8 404 

15 1 1 8 8 412 

16 (Smear) 3.75 1 31 31 520 

 

Table 2.2.1. Spectral band default values (during Envisat commissioning phase). 

 

 

The VEU converts the analogue signal into a 12 bit digital signal (in normal operations MERIS 

transmits the data to ground on 16 bits) using a sample-and-hold circuit with 12 gain levels 

selectable per microband. Each camera has a dedicated image processing board and the gain 

settings may not be the same across all boards. At each frame, bands are computed by the on-

board summation of the appropriate number of microbands (spectral relaxation). The data can be 

averaged by binning four adjacent spatial pixels (across track) from four consecutive frames (along 

track) creating a Reduced Resolution (RR) pixel, as it happens when Envisat flies over oceans.  
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 Chapter 3 PPE-induced noise in ENVISAT-MERIS 

L0 data.  

 

3.1 Data analysis 
 

A direct way to investigate noisy spikes due to cosmic rays is analyzing MERIS Level 0 

Reduced Resolution data taken during the Envisat commissioning phase [15].  

After the launch of Envisat, a six months commissioning phase was carried out. This first 

period was dedicated to functional and characterization tests, in-flight calibration of the 

instruments and to the first validation of Envisat products before releasing the data to the user 

community. 

For one test, the MERIS was programmed in the following way: The see Figure 3.1.1, The 

rotation disk within the Calibration Mechanism (CM) is rotated so that the shutter is closing the 

instrument and no light is getting in the instrument. Therefore, the signal red out at the CCD 

output and after the processing chain should theoretically just be related to the dark current 

flowing through photosensitive devices even when no photons are hitting the detector. Physically, 

dark current is due to the random generation of electrons and holes within the junction region of 

the device that are then swept by the electric field. 

The spikes will appear because the dark signal level is very low compared to the noisy peaks 

and when a cosmic ray hits the photodetectors, this results in a peak in the measured signal.  

 

 

Figure 3.1.1. MERIS Calibration Mechanism with its rotation wheel occupying three 

calibration targets, the shutter and Earth-view diaphragm. 
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The phenomenon of noisy spikes (later referred as occurrences) in the signal acquired by the 

five camera modules was characterized from the statistical point of view along the entire absolute 

Envisat descendent orbit number 292. The choice of this orbit was done because the satellite flies 

over the South Atlantic Anomaly (SAA) and MERIS is exposed to a significantly higher degree of 

cosmic radiation.  

The mean LSB value of the dark signal and its standard deviation computed in the first 

portion of the orbit (outside the SAA) and in the SAA will clearly point out the different impact of 

cosmic rays on the CCDs in the two considered regions.  

The number of occurrences along the orbit will be measured selecting an opportune 

threshold.  

The detected noisy spikes will also indicate the sensitivity of the CCD pixels in terms of LSBs 

in respect to the radiation. 

Afterwards, the effect of the impact on one CCD element was investigated in order to 

understand if the dark value of adjacent pixels (located along the same CCD line) and/or pixels 

located in the neighboring bands is also affected.  

The data file inspected is the following: 

 
- MER_RR__0PNPDK20020321_113429_000026211002_02698_00292_0044.N1.  

 
The file refers to Envisat descendent absolute orbit number 292 (see Figure 3.1.2); sensing 

start: 21st March 2002, 11:34:29.538938; sensing stop: 21st March 2002, 12:18:10.679412; start 

latitude: +79.635303 deg; start longitude: +31.304158 deg; stop latitude: -70.433999 deg; stop 

longitude: -59.464911 deg. 

The L0 data file contains Reduced Resolution Level 0 data for all the 5 cameras and 16 bands 

(15 observation bands plus the smear one). One pixel corresponds to a  ground surface of 1.040 

km (H) × 1.160 km (V). Each line is made of 185 RR pixels per camera. Camera number 1 images 

the eastern part of the on-ground swath  and pixel number 1 is on the western side of the on-

ground track. The total number of lines over the entire descendent orbit is 14809.  
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Figure 3.1.2. Descending absolute orbit number 292 reproduced using Esov software 

showing MERIS swath. 

 

 

The boundaries of the SAA vary with altitude above the Earth. At an altitude of 500 km, the 

SAA ranges between -90 and +40 degrees in  longitude and -50 to 0 degrees in latitude [10], see 

Figure 3.1.3. In this region, the extent of the SAA increases with increasing altitude (Envisat and 

Sentinel-3 altitude is around 800 km).  The central latitude of the SAA is approximately at -25 

degrees of latitude corresponding roughly to line number 10000 of the selected orbit. 

 

 

 

Figure 3.1.3. Map of the SAA at an altitude of ~ 560 km. The map was produced by ROSAT by 

monitoring the presence of charged particles. The dark red area shows the extent of the SAA. The 

green to yellow to orange areas show Earth's particle belts [7]. 
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3.2 Dark signal first order statistics 
 

The behavior of the dark signal for two different MERIS bands (band number 2 and smear 

band) is shown, as an example , in Figures 3.2.1 and 3.2.2 for the first spatial pixel of camera 5 (the 

one imaging the western part of the swath) for two different parts of the orbit (the first part goes 

from line 1 to line 4000 and the second one from 8000 to 12000, over the SAA). 

 

 

Figure 3.2.1. RR dark signal acquired along absolute orbit 292 by the first spatial pixel of camera 5, 

spectral band 2, lines 1-4000 (on the left) and over the SAA, lines 8000-12000.  

 

 

Figure 3.2.2. RR dark signal acquired along absolute orbit 292 by the first spatial pixel of camera 5, 

smear band, lines 1-4000 (on the left) and over the SAA, lines 8000-12000. 
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In the following pictures 3.2.5-3.2.20, MERIS dark signal is plotted for camera 5 (185 RR 

across-track pixels) along all the descendent orbit (14809 lines), for the 16 bands, to illustrate how 

the spike noise occurs mainly and strongly when Envisat flies over the SAA. 

 

  

Figure 3.2.3. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 1. 

 

 

 

Figure 3.2.4. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 2. 
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Figure 3.2.5. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 3. 

 

 

 

Figure 3.2.6. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 4. 
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 Figure 3.2.7. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 5. 

 

 

 

Figure 3.2.8. MERIS dark signal depicted along all the descendent orbit (14809 lines) for camera 5 

(185 RR pixels), band 6. 
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Figure 3.2.9. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 7. 

 

 

 

Figure 3.2.10. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 8. 
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Figure 3.2.11. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 9. 

 

 

 

Figure 3.2.12. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 10. 
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Figure 3.2.13. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 11. 

 

 

 

Figure 3.2.14. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 12. 
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Figure 3.2.15. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 13. 

 

 

 

Figure 3.2.16. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 14. 
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Figure 3.2.17. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), band 15. 

 

 

 

Figure 3.2.18. MERIS dark signal depicted along all the descendent orbit (14809 lines)  

for camera 5 (185 RR pixels), smear band.  
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From a first rough inspection it is evident that the smear band  is the most affected by the 

noisy radiation and the spikes appear concentrated around line number 1.0 x 104 (i.e., the center 

of the SAA), as expected. 

Before computing the statistics for the dark signal, some dedicated features of the CCD pixel 

must not be taken into account: For example the occurrences of “hot pixels” which are CCD pixels 

characterized by anomalous higher dark current  values. This kind of dark signal non uniformity 

(DSNU) reveals a “fixed pattern noise” (FPN) which may arise from electronic sources (other than 

thermal generation of dark current) such as clock breakthrough or offset variations in the 

amplifiers [16]. The pattern appears along spatial lines (along-track, being MERIS a pushbroom 

sensor).  

In order to verify if a pixel was affected by this defect, for all bands and for all cameras, the 

mean values and the standard deviations were computed for all the 185 pixels over their 

respective lines. Pixels with a mean value along the all line greater than 155 (the average of 15 

mean values of the observation bands is approximately 152 outside the SAA, as later illustrated) 

and with a standard deviation smaller than 2 (the average of the 15 standard deviations is approx. 

2.7, outside the SAA) were considered pixels with defects due to FPN. The choice of a smaller 

standard deviation can be explained thinking about an almost constant defective value that the 

pixel shows all along the lines. 

In the case of MERIS, only one hot pixel was detected. This is the 93rd pixel of camera 

number 3, band 8.  

A comparison with the pre-launch characterization data validated this observation . The 

document [17] refers to on ground MERIS tests and regards Full Resolution pixels. Six FR pixels 

were considered defective. After the FR-to-RR on board processing, the three pixels with defect 

(pix. 757 @ 927.5 nm, pix. 965 @ 592.5 nm and pix. 3199 @ 537.5 nm) are not detectable any 

more, while the other three pixels (pix. 1850 @ 677.5 nm, pix. 1850 @ 682.5 nm and pix. 1851 @ 

682.5 nm) together combined (in pix. 93, camera 3, band 8) are still detectable. 

The behavior of the pixel in question is illustrated in the next  Figures 3.2.19 and 3.2.20 (the 

first figure displays the dark signal image over the entire orbit and the second displays a surface 

plot to get the feeling of the values assumed by all the 185 pixels of camera 3 over the first 1000 

lines of the orbit) .  
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Figure 3.2.19. Dark signal grey-scale image of the entire descendent orbit # 292 (14809 lines) 

showing the Fixed Pattern Noise detected for pixel 93, camera 3, band 8. 

 

 

 

Figure 3.2.20. Dark signal related to the first 1000 lines of absolute orbit 292, revealing the defect 

(in yellow) affecting pixel 93, Camera 3, Band 8. In the forefront on the left side a cosmic ray is 

clearly distinguishable. 
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In order to define what an occurrence is, the first order statistical parameters were 

calculated per each band, excluding the hot pixel previously detected.  making use of the  pixel 

values from the first 7000 lines of the descending orbit. In this way, the data are not strongly 

affected by the noisy radiation belonging to cosmic rays 

The following Tables 3.2.1-3.2.2 present the mean values and the standard deviations 

computed for the 16 MERIS bands, taking into account those pixel values from the first 7000 

across-track lines of the descendent orbit, all located in the northern hemisphere to avoid the 

influence of the SAA. The pixel digital samples analyzed for this region are 6475000 per band (185 

pixels X 5 cameras X 7000 lines).  

   

 

Dark signal mean values 
Outside the SAA 

MERIS 
Band 

Cam 
1 

Came 
2 

Cam 
3 

Cam 
4 

Cam 
5 

1 150.7 156.6 151.9 151.8 151.2 

2 150.6 156.9 152.0 152.0 151.2 

3 150.7 157.0 152.0 152.1 151.3 

4 151.0 157.1 152.4 152.5 151.5 

5 150.8 156.1 151.9 151.4 151.1 

6 150.6 156.2 152.0 151.4 151.1 

7 150.5 156.1 151.8 151.3 150.9 

8 150.9 157.0 152.2 152.3 151.5 

9 150.6 155.9 151.6 151.2 151.0 

10 150.6 156.5 151.9 151.8 151.3 

11 150.3 156.4 151.6 151.5 151.1 

12 150.4 156.5 151.7 151.7 150.9 

13 151.0 156.1 151.8 151.7 151.5 

14 150.5 155.8 151.3 151.2 151.1 

15 151.3 157.5 152.7 152.4 151.3 

Smear 148.1 146.1 147.5 153.1 147.6 

 

Table 3.2.1. Dark signal mean values for all bands,  

outside the SAA. 
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Dark Standard Deviations 
Outside the SAA 

MERIS 
Band  

Cam 
1 

Came 
2 

Cam 
3 

Cam 
4 

Cam 
5 

1 1.8 1.5 1.9 1.8 1.8 

2 1.8 1.4 1.8 1.8 1.8 

3 1.8 1.4 1.8 1.8 1.8 

4 1.8 1.3 1.8 1.8 1.8 

5 1.4 1.3 1.4 1.4 1.4 

6 1.3 1.2 1.4 1.3 1.3 

7 1.3 1.2 1.4 1.4 1.3 

8 1.8 1.4 2.0 1.8 1.8 

9 1.4 1.3 1.4 1.4 1.4 

10 1.8 1.5 1.9 1.8 1.8 

11 2.5 2.1 2.6 2.5 2.5 

12 1.5 1.1 1.5 1.5 1.5 

13 1.4 1.3 1.4 1.4 1.5 

14 1.9 1.8 2.0 2.0 1.9 

15 2.5 1.8 2.5 2.5 2.5 

Smear 4.4 4.5 4.4 4.2 4.3 

      

Table 3.2.2. Dark signal standard deviations for all bands,  

outside the SAA. 

 

 

Tables 3.2.3-3.2.4 illustrate the same statistics computed using 2000 lines collected by MERIS 

over the SAA, from line 9001 to line 11000, forming a data set of 1.85 x 10^6 samples per band. 
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Dark Signal Mean Values 
inside the SAA 

MERIS 
Band 

Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 

1 150.9 156.6 152.1 152.1 151.6 
2 150.8 156.9 152.3 152.2 151.4 

3 150.8 156.9 152.4 152.3 151.5 

4 151.2 157.1 152.7 152.6 151.8 

5 150.9 156.0 152.0 151.6 151.4 

6 150.8 156.2 152.0 151.7 151.2 

7 150.7 156.1 151.9 151.5 151.1 

8 151.1 156.9 152.5 152.5 151.7 

9 150.8 155.9 151.7 151.4 151.2 

10 150.6 156.3 151.9 152.0 151.5 

11 150.5 156.3 151.6 151.7 151.2 

12 150.5 156.4 152.0 151.9 151.3 

13 151.3 156.1 152.0 152.0 151.7 

14 150.8 155.8 151.6 151.6 151.4 

15 151.6 157.5 153.0 152.8 151.7 

Smear 151.3 148.9 149.9 155.2 150.3 

 

Table 3.2.3. Dark signal mean values for all bands,  

inside the SAA. 

 

 

 

 

 

 

 

 

 

 



 
45 

 

 
Dark Signal Standard Deviation 

inside the SAA 
 

MERIS 
Band  

Cam 1 Cam 2 Cam3 Cam 4 Cam 5 

1 4.7 3.6 4.3 4.2 3.4 

2 2.9 3.7 2.9 3.0 3.7 

3 3.3 2.9 3.2 2.92 3.0 

4 3.5 2.5 3.4 2.7 3.1 

5 2.6 2.3 2.3 2.3 2.4 

6 2.0 2.0 2.0 2.0 2.2 

7 2.2 4.6 2.0 2.2 2.2 

8 2.6 2.2 2.6 3.7 2.3 

9 3.0 2.1 2.3 2.2 2.1 

10 3.0 2.5 4.8 3.0 3.1 

11 3.8 3.5 3.4 3.9 3.4 

12 2.2 2.4 2.2 2.2 2.2 

13 2.8 3.0 2.4 3.9 3.0 

14 3.5 3.3 3.8 4.0 5.2 

15 4.4 4.4 4.0 4.3 4.6 

sm 35.3 28.9 28.5 29.5 28.8 

 

Table 3.2.4. Dark signal standard deviations for all bands,  

inside the SAA. 

 

 

From this first analysis it comes out that the mean values and the standard deviations are 

very similar for the 15 observation bands outside the SAA, while the same parameters (principally 

the standard deviation) are substantially different for the smear band over the same region.  
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3.3 Occurrence probability 
 

To detect the occurrences, a threshold Thb
(c) was chosen (subscript  b=1, 2,…,16  indicates 

the band and c = 1, …,5  the camera) for each band and camera depending on the respective mean 

value and standard deviation computed outside the SAA for the first 7000 lines of the orbit. The 

threshold was defined as follows: 

 

Thb
(c) = µb

(c)  + 5 σb
(c)  , 

 

where µb
(c)   and σb

(c)   respectively stand for the mean value and the standard deviation of 

band b and camera c.  

The factor 5 multiplying σb
(c) in the previous equation was chosen to build up a threshold 

value exceeding the mean (outside the SAA) by a quantity around the 10 percent.  

Every dark level sample which exceeds the threshold was considered as occurrence. Not 

every occurrence may be related to a cosmic ray impact on the related CCD element, because one 

hit can cause more than one occurrence in the adjacent pixels, as will be later demonstrated. 

The next Figures 3.3.1-3.3.8  show the relative frequency of occurrences (i.e. the number of 

samples exceeding the threshold computed summing the number of noisy spikes occurred over 

the 925 RR (Reduced Resolution) pixels located in the same line (same frame time), 185 per each 

camera) along all the 14809 total RR frames forming the descendent orbit from the start latitude 

and longitude until the stop latitude and longitude. 

Considering that every line is acquired and transferred to the storage zone and then to the 

shift register every 44ms (all the elementary spectral lines constituting a single band are 

transferred together to the storage zone and then binned), the abscissa axis is equivalently 

described in terms of ‘Time’ instead than ‘Lines or frames’. The image of the entire orbit is 

acquired in 14809 RR frames of 0.04*4 s each (approx. 592*4 seconds, where factor 4 is used to 

take into account the Reduced Resolution). Associating the starting time with ’Time’=0,  Envisat 

flies over the center of the South Atlantic Anomaly (around -25 to -30 degrees of latitude) after 

approx. 1600 seconds, which correspond to line number 10000. 

 

 



 
47 

 

 

Figure 3.3.1. Number of occurrences in band number 1 and 2, over the entire descending orbit 

#292. 

 

 

 

Figure 3.3.2. Number of occurrences in band number 3 and 4, over the entire descending orbit 

#292. 
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Figure 3.3.3. Number of occurrences in band number 5 and 6, over the entire descending orbit 

#292. 

 

 

 

Figure 3.3.4. Number of occurrences in band number 7 and 8, over the entire descending orbit 

#292. 
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Figure 3.3.5. Number of occurrences in band number 9 and 10, over the entire  

descending orbit #292. 

 

 

 

Figure 3.3.6. Number of occurrences in band number 11 and 12, over the entire  

descending orbit #292. 
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Figure 3.3.7. Number of occurrences in band number 13 and 14, over the entire  

descending orbit #292. 

 

 

Figure 3.3.8. Number of occurrences in band number 15 and in the smear band, over the entire 

descending orbit #292. 

 

 

The average standard deviation value for the smear band is higher than the other bands 

because the smear band signal is obtained binning 31 elementary spectral lines. Thus, the total 

surface of MERIS smear band detectors exposed to the noisy radiation is wider compared to other 

bands (see Table 3.3.1 ): the surface occupied on the CCD by one smear band RR pixel is equal to 

31 x (22.5 µm)2  x 16 corresponding to 251100 µm2, where 31 is the number of binned spectral 

lines, (22.5 µm)2 is the surface of the single detector on the CCD and 16 are the number of pixels 
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used for spatial relaxation. In the other bands, the RR pixel surface varies from a minimum of 

24300 µm2 (band 11) to a maximum of 129600 µm2 (band 13).  

 

 

 
MERIS BAND 

NUMBER 

 
VEU  
GAIN 

 
NUMBER OF 

MICROBANDS 

 
NUMBER OF 

LINES PER 
MICROBAND 

TOTAL 
NUMBER OF 

SPECTRAL 
LINES 

NUMBER 
OF LAST 
LINE IN 

THE BAND 

1 1.25 2 4 8 22 

2 1 2 4 8 46 

3 1 2 4 8 84 

4 1 2 4 8 100 

5 1.75 4 2 8 140 

6 1.5 4 2 8 188 

7 1.5 4 2 8 224 

8 1 2 3 6 236 

9 1.75 4 2 8 256 

10 1.25 2 3 6 294 

11 1.25 1 3 3 297 

12 1 3 4 12 314 

13 1.75 4 4 16 384 

14 1.75 1 8 8 404 

15 1 1 8 8 412 

16 (Smear) 3.75 1 31 31 520 
 

Table 3.3.1. Band default values (during Envisat commissioning phase). 

 

 

The probabilities of an occurrence were computed for each band dividing the total number 

of occurrences for the total number of samples under test and are resumed in Table 3.3.2 for two 

different regions, one outside and the other inside the SAA. The first, located outside the SAA,  

includes 6475000 RR pixels per band (7000 lines, 185 RR pixels and 5 camera modules) 

corresponding to a start sensing latitude of +79.64 deg and a stop sensing latitude of +9.64 deg. 

The second region under test is located inside the SAA and includes 3700000 RR pixels per band 

(4000 lines, 185 RR pixels and 5 camera modules) corresponding to a start sensing latitude of -0.26 

deg and a stop sensing latitude of -80.26 deg. Here, the occurrence probability is in the order of 
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10^-3 for all the 15 observation bands. In the case of the smear, an occurrence probability of 

3*10^-2 was measured.  

Outside the SAA, for all MERIS bands (except the 13th, the 15th and the smear) the 

occurrence probability is in the order of 10^-6. For the 13th, the 15th and the smear the probability 

of an occurrence reaches the order of  10^-5. The reason why the 13th band is slightly more 

affected by cosmic rays may be justified with the wider surface of this band, as it is composed 

binning 16 elementary spectral lines. The smear band is in general the most affected due to its 

wider surface and to the effect that the aluminum shield may have on the energetic particles. The 

proximity to the shield covering the smear band may explain why also the 15th band has a higher 

occurrence probability. For each band, no significant difference in terms of occurrences was 

noticed varying the latitude (selecting a different across-track line) and the longitude (selecting a 

different camera).           

Outside the SAA, in the worst (highest) case, the detected occurrences are in number less or 

equal than 5 over 925 RR pixels (i.e. one across-track line: 185 RR pixels times 5 cameras), 

depending on the selected band. Inside the SAA, in the worst case, the occurrences may vary from 

a number of 14 (band 6) up to 42 (smear band). These results are shown in Figure 3.3.9. 
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OCCURRENCE PROBABILITY Pr(OCC) 
( Envisat MERIS RR L0 data, abs. orbit 292, commissioning phase) 

BAND NUMBER 

 
Pr(OCC OUTSIDE THE SAA)  

 
(AL-track lines 1-7000, 
AC-track RR pix 1-925) 

 
Pr(OCC INSIDE THE SAA)  

 
(AL-track lines 8001-12000, 

AC-track RR pix 1-925) 

1 8,80 E-06 6.6 E-03 

2 7,57 E-06 5.3 E-03 

3 6,02 E-06 5.1 E-03 

4 5,87 E-06 5.3 E-03 

5 8,49 E-06 5.8 E-03 

6 4,32 E-06 4.8 E-03 

7 5,25 E-06 4.5 E-03 

8 3,87 E-06 3.2 E-03 

9 4,63 E-06 4.7 E-03 

10 5,87 E-06 3.7 E-03 

11 4,32 E-06 2.5 E-03 

12 4,17 E-06 4.1 E-03 

13 1,24 E-05 8.0 E-03 

14 6,18 E-06 5.5 E-03 

15 1,10 E-05 4.9 E-03 

Smear 8,39 E-05 3.0 E-02 

 

Table 3.3.2. Occurrence probabilities inside and outside the SAA  

depending on the MERIS band. 
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Figure 3.3.9. Worst case number of occurrences over one line (925 MERIS AC-track RR pixels) along 

Envisat descendent orbit 292. 

 

 

3.4 MERIS sensitivity to cosmic rays 

 

The LSB value of the pixels affected by energetic particles was taken into account for two 

different data sets: one, outside the SAA, from line 1 to line 7000 and the other, inside the SAA, 

from line 8001 to line 12000. For first, the mean value of those corrupted pixels (as “spike mean”) 

was computed for each MERIS band and compared to the mean dark signal value at the VAM 

output (the latter was computed averaging the mean values of the five cameras over lines 1 to 

7000, for each band, in order to have a data set less corrupted by the noisy radiation), see Figure 

3.4.1. 
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Figure 3.4.1. MERIS RR dark signal and spike mean levels for Envisat absolute descendent orbit 292. 

 

 

Afterwards, the impact of high-energy particles in the SAA on the dark signal red out at the 

VAM output was quantified for two different cases. In the first case, the difference between the 

mean spike level and the dark signal mean value (obtained as described before) was computed for 

all the 16 bands. In the second case (the worst case), depending on the band, the dark signal mean 

value was subtracted from the maximum spike value detected along the entire descendent orbit. 

The results are reported in Figures 3.4.2-3.4.3. 
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Figure 3.4.2. Difference between mean spike level and dark mean level for all the 16 MERIS bands 

(Envisat descendent orbit 292). 

 

 

 

Figure 3.4.3. Difference between maximum spike value and dark mean level for all the 16 MERIS 

bands (Envisat descendent orbit 292). 
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For MERIS observation bands, on average, pixels affected by cosmic rays show similar LSB 

values both inside and outside the SAA. The noisy radiation in the South of the Atlantic, even if 

more persistent, doesn’t seem stronger than in the rest of the orbit. Most of the detected spikes 

are in the range of 165-175 LSBs. In the case of the smear band, affected pixel values usually 

exceed 200 LSBs and show higher values in the SAA than outside (approx. 20 LSBs more on 

average).  

The difference between mean spike level and dark mean level in the SAA (except for the 

smear band, these results are substantially valid for all the observation bands along the entire 

orbit) is included on average in the range of 24-40 LSBs for the observation bands, while it is 

higher for the smear (87 LSBs).  

 

Next, the amplitude distribution of the affected pixels was analyzed. For this, the normalized 

histogram of the corrupted LSB values (see Figures 3.4.4-3.4.6) was retrieved for MERIS band 

number 1 (10 nm), 8 (7.5 nm), 11 (3.75 nm), 12 (15 nm) and 13 (20 nm), thus covering all the cases 

of bandwidth for the observation bands. The normalization was done by dividing each value of the 

histogram for the total number of detected occurrences in all cameras along the entire 

descendent orbit for that specific band. 

 Then, a model of probability density function better fitting with the histogram was 

searched.  

 

 

Figure 3.4.4. Occurrence amplitude histogram and probability density function (band 1). 
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Figure 3.4.5. Occurrence amplitude histogram and probability density function (band 8). 

 

 

 

Figure 3.4.6. Occurrence amplitude histogram and probability density function (band 11). 
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Figure 3.4.7. Occurrence amplitude histogram and probability density function (band 12). 

 

 

 

Figure 3.4.8. Occurrence amplitude histogram and probability density function (band 13). 
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In order to approximate the occurrence amplitude probability density  a shifted exponential 

function was proposed: 

 

                                            , 

 

where   is the inverse of the difference between the spike mean and the spike minimum 

value     for that precise band and   is the step function. 

 The previous Figures 3.4.4-3.4.6 and the represented function (red line) show that the 

chosen function is an acceptable approximation. 

 

 

3.5 Adjacent affected pixels 

 

The effects of the impact of a cosmic ray on the CCD surface was studied also with the 

purpose of understanding the influence that the hit may have on the adjacent pixels of the CCD. In 

fact, the high-energy particle could not affect just one RR pixel. The impact may affect also 

adjacent pixels located in the same spatial line and even in other adjacent spectral lines, 

corrupting also adjacent bands.  

To find those adjacent RR pixel values corrupted by a cosmic ray, two or more consecutive 

pixels located in the same across-track line and exceeding the aforementioned threshold Thb
(c) 

were detected. This was done for all the 16 MERIS bands and for two different data sets, one 

outside the SAA (from line 1 to line 7000, including all the five camera modules) and the other 

inside the SAA (from line 7001 to line 12000, including all the five camera modules). As an 

example, the next Figure 3.5.1-3.5.3 show some significant cases of corrupted consecutive dark 

pixel values (the first four appearing inside the SAA and the last two outside). 
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Figure 3.5.1. Adjacent occurrences detected outside the SAA in camera 4, line 745, band 1 (left) and 

in camera 5, line 2193, band 2 (right). 

 

 

 

Figure 3.5.2. Adjacent occurrences detected outside the SAA in camera 4, line 1419, band 5 (left) 

and in camera 3, line 273, smear band (right). 
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Figure 3.5.3. Adjacent occurrences detected inside the SAA in camera 2, line 10551, band 14 (left) 

and in camera 3, line 9752, band 11 (right). 

 

 

The analyze dealt with two main issues. The event “two or more consecutive pixels are 

affected along the same AC-track line and band” was defined. For first, the number of times the 

event occurred in the data set was counted (for each band). For second, the maximum number of 

consecutive affected pixels was determined (for each band). The results for each data set and 

band are shown in Table 3.5.1.      
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Number of times two or more consecutive 
affected pixels occur in the AC-track line and band 

MERIS 
BAND 

 
OUTSIDE SAA 
(AL-track lines 

1-7000, 
AC-track RR pix 

1-925) 
 

INSIDE SAA 

(AL-track lines 
8001-12000, 

AC-track RR pix 
1-925) 

1 4 1734 

2 9 1448 

3 5 1467 

4 0 1490 

5 4 1614 

6 1 1303 

7 0 1196 

8 0 845 

9 1 1326 

10 0 972 

11 2 549 

12 0 1222 

13 4 2544 

14 1 1617 

15 6 1458 

Smear 49 15563 
 

Table 3.5.1.  Number of times two or more consecutive 

affected pixels occur in the AC-track lines, outside and inside the SAA. 
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Maximum number of consecutive affected pixels 
in the AC-track lines 

MERIS 
BAND 

 
OUTSIDE SAA 
(AL-track lines 

1-7000, 
925 AC-track 

RR pix) 
 

 

INSIDE SAA 

(AL-track lines 
8001-12000, 
925 AC-track 

RR pix) 
 

1 1 7 

2 2 7 

3 1 9 

4 0 5 

5 3 6 

6 1 5 

7 0 15 

8 0 12 

9 1 7 

10 0 9 

11 1 4 

12 0 6 

13 1 8 

14 1 23 

15 4 6 

Smear 4 21 
 

Table 3.5.2.  Maximum number of consecutive affected pixels 

in the AC-track lines, outside and inside the SAA. 

 

 

Several cases of consecutive AC-track pixels exceeding the threshold were detected. This 

may depend on different factors: the intensity of the cosmic ray that hits the semiconductor and 

its direction which is not always perpendicular to the surface of the CCDs or (in the case of the 

smear band) on some multiple reflections due to the aluminum shield which covers the 31 smear 

microbands.   
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Not all the adjacent pixels over the threshold may be related to a unique hit, especially in the 

SAA where the radiation is more persistent. Here the probability of two (spatial) consecutive hits 

at the same time is a lot greater than outside the SAA. This could be the case of Figure 3.5.3 (left 

plot) where over the corrupted pixels there is more than one relative maximum LSB value. 

Afterwards, the analysis focused on those RR pixels exceeding the threshold located in the 

same position over the across-track line and in consecutive bands. Also in this case, this was done 

for each band and for two different data sets: one containing dark measurements from outside 

the SAA (lines 1 to 7000, pix 1 to 925) and the other from inside the SAA (lines 8001 to 12000, pix 1 

to 925). 

The results are reported in Table 2.5.3 for both data sets. Figures 3.5.4-3.5.5 depict two 

cases detected in the northern hemisphere. 

 

Number of times of affected consecutive pixels 
occurring in the same across-track line position and 

in adjacent bands 

MERIS 
BANDS 

OUTSIDE SAA 
(lines 1 to 7000, 

pix 1 to 925) 

INSIDE SAA 
(lines 1 to 7000, 

pix 1 to 925) 

1-2 0 92 

2-3 0 62 

3-4 0 73 

4-5 0 81 

5-6 0 67 

6-7 0 51 

7-8 0 48 

8-9 0 52 

9-10 0 38 

10-11 1 143 

11-12 0 30 

12-13 0 87 

13-14 1 124 

14-15 0 83 

15-Smear 0 360 
 

Table 3.5.3. Number of times of affected consecutive pixels 

occurring in the same across-track line position and in adjacent bands. 
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Figure 3.5.4 . Adjacent occurrences, camera 2, Line 4276, MERIS bands 10 and 11. 

 

 

 

Figure 3.5.5. Adjacent occurrences, camera 2, Line 6930, MERIS bands 13 and 14. 

 

Two cases of corrupted pixels in the same AC-track position and adjacent bands were 

detected outside the SAA over 97125000 samples under test, corresponding to a probability of 
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2*10^-8. It can be assumed that these two cases are both related to a single cosmic ray impacting 

on that CCD area. 

Inside the SAA, for all the bands, such event was detected numerous times. Even here, it is 

hard to say if those adjacent occurrences are related to a single strike or not. If so, it is possible to 

assert that in the case of the observation bands, the maximum CCD surface interested by one hit 

of the energetic particle is at least equal to 337.5 µm2, obtained multiplying (2.5 µm)2 by a factor 

54, where the latter represents the number of CCD elements separating the last elementary 

spectral line of band 12 from the first of band 13.  
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Chapter 4  Detection of PPEs in the smear band                                                    

during MERIS operational phase  
 

4.1 The smear signal in the radiometric model 
 

The principles of radiometric calibration and its model are essential to understand how the 

LSB level (i.e. digital numbers, DN) are generated while MERIS is performing measurements in the 

nominal Earth observation mode. It will also be necessary to understand the relation between the 

signal generated related to the incoming top-of-the-atmosphere radiance and the generated 

smear signal. This will help to develop a strategy to detect pixels affected by cosmic radiation in 

the smear band and to monitor their occurrence over seven years. 

All MERIS data taken into account were acquired using the nominal EO mode. The same 

mode will be available for OLCI, hence the findings and methodology are directly applicable to 

OLCI. The design of OLCI and MERIS were already described in the previous chapter 2 and will not 

be repeated.  

The MERIS radiometric model [18], as for OLCI, is expressed as follows : 

 

                      
                                       

     

where: 

- DN is the MERIS raw sample expressed in digital numbers, i.e. LSBs; 

- b,k,m,t subscripts respectively stand for the spectral band, the spatial pixel, the camera 

(module) and the acquisition time;  

- NL is a non-linear function representing the transformation which takes place in the CCD, 

amplifier and ADC (Analogue to Digital Converter) and it is tabulated from pre-flight 

characterized camera data scaled to the specific setting of each band; 

- L is the spectral radiance distribution in front of the sensor (TOA radiance); 

- A0 is the instrument absolute radiometric gain in counts/radiance unit; 

- SL is the stray-light contribution to the signal; it depends on L; 

- Sm is the smear signal, due to the continuous sensing of light by the instrument during the 

transfer of the information to the storage zone of the CCD; it depends on L and SL; 

- C0 is the dark signal; 

-   is a random process related to noise and measurements errors. 
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The MERIS instrument itself provides a characterization measurement supporting the 

radiometric processing, that is the smear band. In fact, as MERIS works with frame transfer CCDs, 

image smear is inevitably caused by the basic operating principle of the device [19] and needs to 

be corrected.  

Right after the integration time (exposure time), the charged packets at row n are 

transferred at a clock rate from the image zone to the storage zone. During the transfer, the 

imager is not shielded from the incoming light and the generation of charged packets continues; 

the row is exposed to all wavelengths higher than its nominal one (transfer toward the NIR 

spectrum) up to 1040 nm. In the same way, before the exposure, the virtual empty row is scrolled 

down from the top of the CCD toward its nominal position, thus being exposed to all wavelengths 

shorter than its nominal one, starting from 390 nm. The smear signal is the sum of these two 

terms, see Figure 4.1.1. The transfer time (1.3 ms) is very short compared to the exposure time 

(42.7 ms): it is about the 3% of it and the integration of the smear signal could be considered 

instantaneous.  

The smear band is a fully virtual band built to estimate and correct the smear signal 

contribution. The band integrates 31 rows covered by an aluminum shield (as it happens also in 

OLCI CCDs) located outside the exposed CCD area, thus integrating only the incoming radiance 

field during the transfer (Figure 4.1.1 and 4.1.2). The signal is acquired in the same way as for the 

observation bands and it is transmitted to ground in a separate band (the 16th) to allow correction 

of the observation bands.  

 

 

 

Figure 4.1.1. Smear signal generation for an actual band. 
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Figure 4.1.2. The virtual smear band generation (quantities expressed in ms). 

 

Every observation band is corrected by a weighted average of smear band values at t1 and t2, 

according to the band wavelength, as follows (the equation is used for the smear correction in L1B 

processing): 

     
     

 
  

                                    

        
  

 

 

 

4.2 PPE detection algorithm in MERIS smear L0 RR data over ocean 
 

 The objective of this section is to develop a robust procedure allowing the detection of noise 

spikes due to PPEs in the smear L0 reduced resolution data over ocean.  

The idea makes use of the data from the 15 MERIS observation bands in order to make an 

estimation of the smear signal (  ). Once the estimated value is retrieved, it was subtracted from 

the smear counts (Sm) as recorded by the sensor summing the signal from 31 shielded spectral 

lines located outside the exposed CCD area and red out from the inspected file. The problem was 

analyzed in steps 1), 2), 3) and 4) below. Out of this an algorithm is concluded, which is described 

below in points a), b), c) and d). In general, those pixels exhibiting a value higher than a certain 

threshold were classified as corrupted by a cosmic ray hitting on the corresponding RR pixel on the 

CCD surface or on one of the adjacent pixels (over the same elementary spectral line or over other 

different close lines spectrally binned into another spectral band).   
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An accurate estimation of the smear signal    may be retrieved for all the cloud-free water 

pixels of those specific swaths of the orbit not too wide (i.e. maximum 1000 lines, 185 pixels). In 

this way, it may be possible to guarantee a sufficient uniformity of the Sun zenith and azimuth 

angles and to reduce or avoid the problem of Sun glint to which MERIS is particularly sensitive 

[20]. The Table 1.2.1 indicates, for each band, the Center Wavelength (CW), the bandwidth (Δλ), 

the gain  (applied after the charges are converted into voltage before the ADC) and the number of 

elementary spectral lines which are summed together to obtain the full band radiance signal 

during spectral relaxation. 

1) In order to retrieve an estimation of the radiance counts (i.e. Digital Numbers, DN) for 

each elementary spectral line, the values related to each band’s read out from the file were 

divided for the corresponding number of spectral lines and band gain (applied after the charges 

are converted into voltage before the ADC), according to the values illustrated in Table 4.2.1. This 

operation was done for all the pixels of the selected swath.  

2) These values were used to build up the interpolation curve in order to calculate the digital 

counts for all the 520 lines (from 390 nm up to 1040 nm, with a sampling interval of 1.25 nm). It 

was decided to apply a simple linear interpolation. Keeping in mind that MERIS observation bands 

go from 412 nm up to 900 nm and because of the impossibility of obtaining an accurate behavior 

of the curve after 900 nm, the interpolation was stopped before 901.25 nm. The value measured 

at band 15 (900 nm) was assigned for the lines from 901.25 nm up to 1040 nm. 

3) The estimated smear signal    was approximated summing the 520 digital numbers DN, 

one per each elementary spectral line (before and after the considered one) and weighting the 

sum by a factor obtained dividing the transfer time        per spectral line (2.5 µs) by the 

integration time      (42.7 ms), as expressed below:  

 

       
      

    
     

   

   
   

  

 

where k stands for the k-th spectral line before and after the considered spectral line i (i = 1, 

2, …, 520). 

4) The reconstructed smear signal    is subtracted from the smear L0 counts (Sm) measured 

by MERIS and read out from the MERIS RR L0 data file in order to retrieve a difference signal (D) 

proportional to the dark signal: 
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Note  that the above outlined procedure represents an approximation: in step 1) and 2), the 

eventual change of the scene observed by MERIS (from k<i to k>i) was not taken into account: 

after the integration time, while the charge is being transferred towards the storage zone, the 

scene and the related TOA radiance spectrum may change (from a cloud pixel to the adjacent 

water pixel or vice versa). Thus, the reason why the algorithm works better over water pixels is 

due to the more homogeneous scene observed by MERIS over ocean compared to a cloudy scene, 

as it may be observed later from the histogram.  

 

 

MERIS 
band 

CW 
[nm] 

Bandwidth 

[nm] 

Number 
of 

spectral 
lines 

Gain 

1 412.5 10 8 1.5 

2 442.5 10 8 1.25 

3 490 10 8 1 

4 510 10 8 1 

5 560 10 8 1 

6 620 10 8 1 

7 665 10 8 1 

8 681.25 7.5 6 1.25 

9 708.75 10 8 1 

10 753.75 7.5 6 1 

11 761.75 3.75 3 1 

12 778.75 15 12 1.25 

13 865 20 16 1.5 

14 885 10 8 1 

15 900 10 8 1.25 

Smear - - 31 3.75 

 

Table 4.2.1. Central wavelength, bandwidth, number of lines and gains for the 16 MERIS bands. 
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The procedure was then transferred to an algorithm to detect pixels which are affected by a 

cosmic ray impact on the photodetector surface. This is explained in the following steps: 

a) Camera module (m) and the swath DN(k to k+N, t to t+NT) are selected, where N is a 

positive integer and T is equal to 44 ms. 

b) For that swath, a histogram is computed using the DNs for the red band (b=13) and a 

threshold is selected to create the water mask DN(k to k+N, t to t+NT) in order to classify a pixel as 

water or else (cloud or land).  

c) The reconstructed smear dark signal values of pixels classified as water are taken into 

account. For those pixels the mean value   and the standard deviation   are computed. 

d) Pixels affected by high energy particles are considered those whose value exceeds the 

following threshold th: 

th =  + 5 . 

 

The first step of the algorithm suggests the selection of the data related just to one camera 

module (limiting the longitude to a maximum of 1000 AL-track lines). The reason, as already 

underlined, is principally due for the necessity of choosing an almost uniform swath in longitude in 

respect to the Sun illumination conditions and the presence of Sun glint may be not relevant.  

If the first step is not respected and the selected data set refers to more than one camera 

module, the classification of water pixels will not be correct due to a misinterpret of the histogram 

which may bring to a wrong choice of the threshold.  

The selection of the threshold may depend on the latitude of the selected swath and on the 

acquisition month, as the Sun illumination angle may vary significantly. 

 

 

4.3 Data analysis and results 
 

The investigation concerned MERIS L0 data acquired when Envisat was over the South 

Atlantic Anomaly to understand which is the trend of the worst-case impact of this noisy radiation 

on the photodetectors over the period of seven years.  

Among the four MERIS level 0 products (the Full Resolution L0, the Reduced Resolution L0 

(RR L0), the Reduced Field of View L0 and the Calibration Level) [21], the RR L0 Measurement Data 
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Set (MDS) were analyzed. These consist of time ordered AISPs (acquisition instrument source 

packets) collected while the instrument is operating in reduced resolution mode. The Instrument 

Source Packets are data received from the instrument, with a small header attached by the Front 

End Processor EP [22]. The Level 0 RR Measurement Data Set (MDS) contains values expressed in 

digital numbers on 12 bits of digitization for all the 15 observation bands plus the additional so-

called smear. 

 

The analysis took the following 7 different data sets into account (one per year, from 2003 

until 2009): 

- MER_RR__0PPLRA20090124_115150_000026062075_00467_36092_7541.N1 

- MER_RR__0PPLRA20041009_112743_000026322031_00066_13647_1890.N1 

- MER_RR__0PPLRA20050103_113006_000026162033_00295_14878_3547.N1; 

- MER_RR__0PPLRA20060425_112704_000026342047_00109_21706_0924.N1; 

- MER_RR__0PPLRA20070115_110909_000026302054_00395_25499_7768.N1; 

- MER_RR__0PPLRA20080416_113629_000026302067_00424_32041_3036.N1; 

- MER_RR__0PPLRA20090124_115150_000026062075_00467_36092_7541.N1. 

 

To demonstrate how the analysis is performed it is demonstrated step by step making use of 

the following file of the previous list:  

-  MER_RR__0PPLRA20090124_115150_000026062075_00467_36092_7541.N1. 

The file refers to Envisat descendent absolute orbit number 36092 as shown in Figure 4.3.1. 

The total lines acquired along track are 14809. The number of spatial reduced resolution pixel 

across-track are 925 (185 RR pixels per camera). Camera number 5 images the western part of the 

orbit. Each line corresponds to 1.2 Km (AL-track) on ground. The space craft flies over the South 

Atlantic Anomaly approximately after line 8000 until line 12000.   
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Figure 4.3.1. Envisat descendent absolute orbit 36092 reproduced with ESOV software and showing 

MERIS swath. 

 

 

The signal acquired by the 31 spectral lines constituting the smear band is shown as an 

example in Figures 4.3.2-4.3.4, for the first spatial pixel of each camera (the one imaging the 

western part of the relative swath), from line 4000 up to line 1200.  

 

 

Figure 4.3.2. Smear band signal level for the first spatial pixel,  

camera 1 (left) and 2 (right),  lines 8500-9500, orbit 36096.  
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Figure 4.3.3. Smear band signal level for the first spatial pixel,  

camera 3 (left) and 4 (right), lines 8500-9500, orbit 36096.  

 

 

 

Figure 4.3.4. Smear band signal level for the first spatial pixel, camera 5,  

lines 8500-9500, orbit 36096.  

 

The analysis of the data reveals that the behaviour of the smear signal changes along the 

orbit. The smear dynamic range for Envisat absolute orbit number 36092 goes from a minimum of 

533 up to a maximum of 36080 counts over 12 bits of digitization (considering all cameras). 

The smear signal level is strongly influenced by the scene observed by MERIS even though 

the 31 elementary spectral lines are shielded by an aluminum layer. This is clear after imaging the 

smear signal: the scene represented matches with the same scene imaged with the RGB color 

model using MERIS bands number 13 (Red), 4 (Green) and 2 (Blue), see Figure 4.3.5 and Figure 

4.3.6.  
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Figure 4.3.5. 925 x 501 RR pixels Smear greyscale image  

(Lines 8500-9000, Abs. Orbit 36092).  

 

 

 

Figure 4.3.6. 925 x 501 RR pixels RGB image  

(Lines 8500-9000, Abs. Orbit 36092).  
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Steps 1), 2) and 3) previously described were executed for all the pixels of the entire 

descendent orbit 36092 and in this way it was possible to retrieve an estimation of the smear band 

normalized signal. This is shown in Figure 4.3.7, where the upper curve (in blue) represents the 

smear signal acquired by the 31 shielded spectral lines located in between the image zone and the 

storage zone as red out from the level 0 RR data file and the lower one (in red) represents the 

reconstructed smear signal according to steps 1) – 3). 

 

 

 

Figure 4.3.7. Real and estimated smear signal for the first spatial pixel of camera 5, absolute orbit 

number 36092, acquired from line 8500 to line 9000. 

 

 

The previous plot demonstrates how the behavior of the reconstructed smear signal is 

proportional to the real smear signal read out from the file. The most evident difference between 

them is an amplitude offset. This happens because the reconstructed estimated smear signal 

doesn’t include the influence of the dark signal and the straylight.  

The difference between the real signal Sm and the estimated one   , was computed for the 

entire orbit, see Figure 4.3.8.It is directly related to the dark signal and to the straylight occurring 

in the cameras, as described by the radiometric model previously discussed.  
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Figure 4.3.8.  Difference between the reconstructed smear signal and the signal red out from 

MERIS Lo data 

 

 

The correction seems to better work on homogeneous scenes. In fact the behavior of the 

curve representing the difference is flat for water pixels and it shows peaks over transition or 

cloud pixels (these peaks shouldn’t be confused with the effect of a cosmic ray impact), as the 

spectrum may vary substantially before and after the integration time. This is not taken into 

account in the algorithm for reconstructing the dark signal as the spectrum considered for the 

reconstruction is supposed not to vary during the 44 ms. 

At this point, two swaths observed by camera 5 were chosen: the first from line 9001 up to 

10000 and the second from line 10001 up to 11000. In both cases, all the 185 RR across-track 

pixels were taken into account. 

The histograms for those two regions (in Figure 4.3.9-4.3.10) were computed for band 13 in 

order to classify the water pixels (the ones not covered by clouds, as both swaths are acquired 

over ocean). The threshold value selected is 2000. 
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Figure 4.3.9. Histogram of MERIS band 13,  

lines 9000-10000, Envisat orbit 36092, camera 5. 

 

 

Figure 4.3.10. Histogram of MERIS band 13,  

lines 10001-11000, Envisat orbit 36092, camera 5. 
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Assuming that all the pixels classified as cloud free, it the mean value and the standard 

deviation was retrieved for the difference signal D obtained at step 4).     

Finally, those samples of signal D exceeding the mean value by more than 5 times the 

standard deviation were detected and it was possible to derive the percentage of occurrences of 

those anomalous values, as reported in Table 4.3.1.  

 

 

ENVISAT 

ABSOLUTE 

ORBIT 

 

CONSIDERED 

LINES 

(CAMERA 5, 

Smear Band) 

THRESHOLD 

VALUE FOR 

WATER 

MASKING 

IN BAND 13 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER 

PIXELS 

PERCENTAGE 

OF 

OCCURRENCES 

36092 

(15th Jan 

2009) 

LINES 

9001-10000 
2000 307 45667 0.67% 

LINES 

10001-11000 
2000 402 52587 0.76% 

 

Table 4.3.1. Occurrences detected in the smear in camera 5  

for two different MERIS swaths, year 2009. 

 

 

The same procedure was applied for the remaining files related to six orbits crossing the 

SAA, from 2003 until 2008. The results are reported in Tables 4.3.2-4.3.7 (see Appendix A for the 

histograms of the swaths analyzed). 
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ENVISAT 

ABSOLUTE 

ORBIT 

32041, 

16th Apr 

2008 

CAMERA 5 

CONSIDERED 

LINES 

THRESHOLD 

VALUE FOR 

WATER 

MASKING 

FOR BAND 

13 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER PIXELS 

PERCENTAGE 

OF 

OCCURRENCES 

OVER THE 

SAA 

LINES 

9001-10000 
4750 117 

58877 0.20% 

 

Table 4.3.2. Occurrences detected in the smear in camera 5, year 2008. 

 
 

 

 

ENVISAT 

ABSOLUTE 

ORBIT 

25499, 

15th Jan 

2007 

CAMERA 5 

CONSIDERED 

LINES 

THRESHOLD 

VALUE FOR 

WATER 

MASKING 

FOR BAND 2 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER PIXELS 

PERCENTAGE OF 

OCCURRENCES 

 

 

OVER THE 

SAA 

LINES 

9001-10000 
2500 

237 
159676 0.15% 

 
Table 4.3.3. Occurrences detected in the smear in camera 5 , year 2007. 
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ENVISAT 

ABSOLUTE 

ORBIT 

21706, 

25th Mar 

2006 

CAMERA 5 

CONSIDERED 

LINES 

THRESHOLD 

VALUE FOR 

WATER 

MASKING 

FOR BAND 2 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER PIXELS 

PERCENTAGE OF 

OCCURRENCES 

 

OVER THE 

SAA 

LINES 

9001-10000 
7500 2802 113376 2.47% 

 
Table 4.3.4. Occurrences detected in the smear in camera 5 , year 2006. 

 

 
 

ENVISAT 

ABSOLUTE 

ORBIT 

14878, 

3rd Jan 2005 

CAMERA 5 

CONSIDERED 

LINES 

THRESHOLD 

VALUE FOR 

WATER 

CLASSIFICATI

ON IN BAND 

13 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER PIXELS 

PERCENTAGE OF 

OCCURRENCES 

 

OVER THE 

SAA 

LINES 

9001-10000 
3000 3 1308 0.23%  

 

Table 4.3.5. Occurrences detected in the smear in camera 5 , year 2005. 
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ENVISAT 

ABSOLUTE 

ORBIT 

13646, 

9th Oct 

2004 

CAMERA 5 

CONSIDERED 

LINES 

THRESHOLD 

VALUE FOR 

WATER 

MASKING 

FOR BAND 2 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER PIXELS 

PERCENTAGE OF 

OCCURRENCES 

 

OVER THE 

SAA 

LINES 

9001-10000 
3250 599 73736 

 

0.40% 

 

 
Table 4.3.6. Occurrences detected in the smear in camera 5 , year 2004. 

 

 
 

ENVISAT 

ABSOLUTE 

ORBIT 

9267, 

8th Dec 2003 

CAMERA 5 

CONSIDERED 

LINES 

THRESHOLD 

VALUE FOR 

WATER 

MASKING 

FOR BAND 2 

NUMBER OF 

DETECTED 

OCCURRENCES 

IN THE SMEAR 

BAND 

NUMBER OF 

CONSIDERED 

WATER PIXELS 

PERCENTAGE OF 

OCCURRENCES 

 

OVER THE 

SAA 

LINES 

9001-10000 
7250 746 85322 0.87% 

 
 

Table 4.3.7. Occurrences detected in the smear in camera 5 , year 2003. 
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For the developed procedure a analysis result over the duration 2002 – 2009 has been 

obtained. The result can be depicted from Figure 4.3.13. It shows the trend of the occurrences of 

PPEs for MERIS smear band in the SAA. The results obtained, apart from year 2006, are in line with 

the occurrence probability estimated in Chapter 3 that was in the order of 10^-3, thus 

corresponding to a percentage of 10^-1. A slightly deviating result was obtained for year 2006, 

maybe due to the Solar activity cycle, as the latter is decorrelated with the number of PPEs.  

 

It needs to be noted that the retrieved results only represent a snapshot accuracies over the 

different years. Even though 103 to 105 pixels have been used, a more systematic analysis of 

annual data is needed to retrieve a final conclusion. 

 
 
 

 
 
 

Figure 4.3.11. Trend of the occurrence percentage in the SAA, from 2003 until 2009. 
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Chapter 5. PPEs detection in Maximum Chlorophyll 

Index images   
 

 

5.1 MCI algorithm 

 

In order to analyze the influence of PPEs on Earth Observation user products a specific 

MERIS algorithm was selected which is making use of MERIS Top Of the Atmosphere (TOA) 

radiance/reflectance signal. 

The Maximum Chlorophyll Index (MCI) algorithm exploits the height of the water-leaving 

radiance peak measurement in 9th MERIS  spectral band (705 nm) above a baseline passing 

through two other spectral bands (see Table 5.1.1 below for all MERIS bands), the 8th (681 nm) and 

the 10th (753 nm). The MCI index is associated to the concentration of chlorophyll a on the surface 

of ocean, costal and lake waters [4].  

  

 

Table 5.1.1. MERIS spectral bands and main potential applications. 
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MCI values are computed from level 1B (L1B) data, i.e., Top Of the Atmosphere (TOA) 

calibrated radiances, before atmospheric correction, since the events of interest give radiances 

outside the range that can be handled by correction algorithms. 

The interpolated baseline is designed to represent the shape of the spectrum of “clear” 

water which does not show any peaks in nominal conditions. 

The algorithm is the following: 

 

                    
     

      
  

 

where Li indicates the water-leaving radiance for band i, centered at wavelength λi (i=8,9,10). 

The next Figure 5.1.1 remarks the peak exploited by the algorithm. 

 

 

Figure 5.1.1. Example of chlorophyll peak at 708 nm [23]. 

 

As mentioned, the MCI index computed through the algorithm indicates the concentration of 

chlorophyll a against a scattering background. In particular, MCI values are high in evident “red 

tides” conditions, when intense and visible surface phytoplankton blooms appear.  

Phytoplankton are photosynthesizing microscopic organism living in the lit surface of cold 

bodies of water. It is of high scientific interest to study with the use of satellite data the extent and 
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concentration of phytoplankton or “primary production”. Phytoplankton obtains energy through 

the process of photosynthesis and because of this, when the concentration is significantly high, 

they may appear as a green discoloration of the water due to the presence of chlorophyll a within 

their cells or they may appear as “red tides” in the case of algal blooms. 

In Figure 5.1.2 below three different curves are plotted. The clear-water water-leaving 

reflectance doesn’t show any peaks in the 681 nm, 708 nm and 753 nm bands. Green water shows 

a peak in correspondence of the 681 nm band, while red tides peak is really high in the 708 nm 

band. 

 

 

Figure 5.1.2. Measured reflectance spectra above the water in the northern North Sea from the 

research vessel Gauss. Spectra are corrected for reflected sky light: clear blue water (no peaks), 

green water (peak at  681 nm) and red tides (peak at 708 nm) are represented [24]. 

 

In Figure 5.1.3 the water-leaving reflectance spectrum is represented with different colors 

for different chlorophyll concentrations, from 0.1 mg/m3  up to 30 mg/m3. 
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Figure 5.1.3. Water-leaving reflectance for different chlorophyll-a concentrations [25].  

 

Among ocean color satellites sensors, the MCI index was unique to the MERIS/OLCI 

instruments, because the 708 nm band is not present on other optic sensors such as NASA’s 

MODIS or SeaWiFS. 

 

 

5.2 PPEs false alarms in MCI images 

 

Cosmic rays are one of the sources of false alarms when MERIS MCI algorithm is used for 

retrieving phytoplankton blooms and other aquatic vegetation in ocean, sea, lake and other body 

of cold water.  

Many sources of false alarms exist and need to be taken into account when analyzing MCI 

images in terms of phytoplankton blooms [26], such as for example benthic vegetation and coral 

reefs in shallow waters, or floating sargassum. Anyhow, the analysis will be focused in detecting 

false alarms in MCI images due to cosmic rays hitting on some elements of the CCD placed in the 

Focal Plain Assembly of the five cameras. 

The global spatial distribution of single pixel events in the MCI image detected by MERIS 

makes possible to assert that most of these occur in the SAA and they are due to the impact of 

cosmic rays on the detectors of the instrument. Figure 5.2.1 was computed using all daily MCI 

composites for the month of July 2006. In other parts of the world, in the same figure, most events 

are due to water vegetation on isolated coral and other reefs. MCI values are computed only over 

cloud‐free areas.  
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Figure 5.2.1. The global spatial distribution of single pixel events in the MCI image detected by 

MERIS revealing the typical pattern of the SAA. The image uses a color sequence according to 

which black indicates zero counts, and blue, green, yellow and red to white indicate 1 to 20 counts 

per pixel per month. Land is masked to grey [26]. 

 

The false alarms that occurred in the composite MCI image perfectly match with the region 

off Brazil where the Earth’s magnetic field has its absolute minimum, see Figure 1.2.1. 

 

 

5.3 Cosmic ray detection algorithm in MCI images 

 

The objective of the following analysis is to develop an algorithm to detect pixels in open 

oceans (i.e. away from the coastal boundaries) which are affected by cosmic rays hitting on the 

relative elements of the CCD. In such a way it may be possible to distinguish high MCI value pixels 

which indicate a high presence of clorophyll a from those which represent a false alarm due to 

PPEs. 

The algorithm revealing false alarms in retrieving chlorophyll surface blooms is applicable in 

that part of the water spectrum where the behaviour is “almost flat”, so that the base line slope is 

low and the peak can easily come out. Thus, MERIS bands suitable for this purpose are those 

located from 680 nm up to 900 nm, that is from the 8th  to the 15th. The same bands (with the 

addition of Oa 14, 15, 20 and 21) are foreseen also in Sentinel-3/OLCI, thus making the algorithm 

exploitable for the new upcoming ocean products. 
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The L1b data were processed making use of the Beam MCI L1B processor. MERIS bands 

number 8 (680 nm) and 10 (753 nm) were used as baseline and band 9 (708 nm) was used as the 

peak wavelength. The MCI algotithm (in nominal cases) gives high indexes when the radiance 

spectrum in the 9th band shows a high value of radiance due to the presence of a phytoplankton 

surface bloom. 

All the pixels which can be considered as clouds, land, coast line or ‘’no data’’ (cosmetic, 

duplicated, glint risk, suspect and invalid) were not taken into account making use of the 

appropriate flags2. For this, the "land/ocean", "bright" and "coastline" flags are direct inputs from 

Pixel Classification. The "duplicate" flag is a direct input of the Radiance Resampling. The "glint 

risk" flag is a direct input from geolocation. The "invalid" flag is a direct input, logically recombined 

with other flags, in order to gather all pixels satisfying any one of the following conditions : 

samples of all bands are saturated and/or out-of-swath product pixels and/or pixels added at the 

end of the product to reach the last tie frame and/or pixels added to fill a transmission gap of 

more than sixteen packets. The "cosmetic" flag coming from the processing chain is a per band 

flag ; the "suspect" flag is a new flag gathering pixels with diverse internal flags configurations. 

"Cosmetic" are those pixels for which at least one radiance sample has been replaced by 

interpolation from neighbors. “Suspect" are those pixels satisfying one of the following conditions 

: for any pixel, if it is flagged "stray light risk"; for a "clear sky" and "ocean" pixel, at least one of 

the radiance samples is "saturated" or "dubious" ; for a "clear sky" and "land" pixel, at least one of 

the radiance samples of the bands dedicated to "land" is "saturated" or "dubious" [21]. 

 
In order to establish if the MCI value associated to a pixel may be real or a false alarm, the 

3x3 pixel area around the central pixel under investigation was analyzed. Among the eight edge 

pixels surrounding the one under test, just the ones with “valid”MCI value were used for the 

statistics.  

Case 1 

The central pixel value was considered as a false alarm due to cosmic rays when both of the 

following conditions were verified [4]: 

a) The center MCI value exceeds the average of the edge pixels by more than 0.3 

mW/(m2*sr*nm); 

b) The edge pixels standard deviation is lower than 0.05 mW/(m2*sr*nm). 

                                                           
2 The product data convention contained in the file name are explained in MERIS product 

handbook (see http://earth.esa.int/).  
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Case 2 
 
If the previous two conditions are partially satisfied, that is condition a) is satisfied and 

condition b) is not, the pixel under test still needs to be considered a false alarm if its MCI value is 
greater than the threshold MCIth, where the latter is equal to the mean value µ plus three times 
the standard deviation σ (MCIvalue > MCIth= µ + 3σ ) of the “valid” MCI data set under inspection. 

 
 
In case 1, condition a) points out the higher value that the cosmic ray impact produces for 

the central affected pixel,  while condition b) indicates that the pixel values around the one under 
test are uniform (and low, if condition a) is valid).  

In some less probable cases, the cosmic ray may affect more adjacent pixels. Thus, even 
having condition a) satisfied, condition b) may not be true. This is the reason why it was 
introduced case 2. The choice of the threshold was made by inspection of the histograms of 
several swaths located in the SAA (at same coordinates) acquired by MERIS in different years. 
Focusing on the right tale of the histogram, different outliers were coming out.  

 
 

 

5.4 Analysis and results 

 
Seven Envisat MERIS Reduced resolution (RR) level 1B (L1B) images acquired during the 

period from 2003 to 2009 over the SAA were downloaded from MERCI (MERIS Catalogue and 

Inventory) database and were processed making use of the open source user-friendly BEAM VISAT 

software [27]. One criterion for the selection was a minimal presence of clouds as possible in the 

observed scene.  

The following files related to the SAA were analyzed: 

-MER_RR__1PRBCM20031208_121250_000002902022_00195_09267_0002.N1 ; 

-MER_RR__1PRBCM20041009_115541_000002932031_00066_13647_0002.N1 ; 

-MER_RR__1PRBCM20050103_115243_000002932033_00295_14878_0003.N1 ; 

-MER_RR__1PRBCM20060425_120114_000002962047_00109_21706_0001.N1 ; 

-MER_RR__1PNBCM20070115_113251_000002762054_00395_25499_0004.N1 ; 

-MER_RR__1PRBCM20080416_120942_000002902067_00424_32041_0003.N1 ; 

-MER_RR__1PRBCM20090124_121524_000002842075_00467_36092_0006.N1 ; 
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The instrument cross-track FOV of 68 degrees produces an image swath width of 

approximately  1150 km. The swath is comprised of 5 imaging spectrometer modules (5 cameras). 

For FR (Full Resolution) each pixel has an IFOV (Instantaneous Field Of View) of 0.019 degrees, 

with a nadir spatial sampling of 260 m across track by 290 m along track. Accordingly in a RR image 

a pixel represents an area of 1040 m across track × 1160 m along track. For oceans, the only MERIS 

L1B data available are in Reduced Resolution mode. The scene width is of 1121 (horizonthal) x 

1665 (vertical) pixels. 

 
In the following the analysis  is summarized for the first file: 
 
-MER_RR__1PRBCM20031208_121250_000002902022_00195_09267_0002.N1  
 
 
The file refers to Envisat absolute orbit number 9267, relative orbit 195, sensing start on 

December 8th 2003 at 12:12:50 and sensing stop at 12:17:40. 
 

In Figures 5.4.1 the swath of interest is shown on the world map and in Figure 4.4.2 it has 

been imaged the same swath in RGB mode making use of MERIS bands number 13 (R), 4 (G) and 2 

(B). 

 

  

 
Figure 5.4.1. World map with the region of interest delimited by the red line. 
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Figure 5.4.2. The region of interest shown in a RGB image. 
 

 

The MCI image was computed processing MERIS L1b radiance data making use of the Beam 

MCI L1B processor. The next Figure 5.4.3 shows the MCI image of the swath under investigation.  

 

Figure 5.4.3. MCI image of the region of interest. 
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The attention was focused on those pixels whose value was exceeding the threshold MCIth. 

Among these, as shown below, it was possible to detect both false alarms belonging to case 1 and 

case 2.  

The MCI value histogram (see Figure 5.4.4 and 5.4.5) was studied in order to retrieve the 

threshold. This is equal to the mean value µ plus three times the standard deviation σ of all the 

valid data set.   

As illustrated in Table 5.4.1, the following threshold value resulted:  

MCIth= -0.59784 + 3*0.391115= 0.575505. 

 

 

Figure 5.4.4. Histogram of the image obtained only using MCI valid values.  

 

 

Figure 5.4.5. Ouliers pixels can be seen making a zoom on the right tale of the histogram. The red 

line indicates the threshold. 
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ROI-mask name Only water 

Number of pixels total 1848529 

Number of considered 
pixels 

1141364 

Ratio of considered pixels 61.74445 % 

Minimum -5.47664 mW/(m^2*sr*nm) 

Maximum 1.7318 mW/(m^2*sr*nm) 

Mean µ -0.59784 mW/(m^2*sr*nm) 

Standard deviation σ 0.391115 mW/(m^2*sr*nm) 

Coefficient of variation -0.65421 

Median -0.45236  mW/(m^2*sr*nm) 

P90 threshold -0.30819 mW/(m^2*sr*nm) 

P95 threshold -0.27935 mW/(m^2*sr*nm) 

Threshold MCIth (µ + 3σ)  0.575505 mW/(m^2*sr*nm) 

 

Table 5.4.1. Main statistical values of the valid MCI image. 

 

The pixels which exceed the threshold were indicated in the image with some pins and are 

just a small part of the population of false alarms in retrieving high values of chlorophyll, see 

Figure 5.4.6.  

Eight outliers exceeding were detected in the MCI image and their MCI values and MCI 

slopes are expressed in Table 5.4.2 together with other parameters such as the latitude and 

longitude of the pixels to which the pins refer to, the sun zenith and azimuth angles and the 

sensorzenith and azimuth view. 

The following Tables 5.4.3-5.4.10 sumarize the main statistics computed for the mask made 

of the edge pixels surrounding the one under inspection. Just “valid pixels” were taken into 

account. Below each table, it is shown the zoomed MCI image in grey scale where it is clearly 

recognizable the bright pixel (indicated with a pin) caracterized by a high (false) MCI value (the 

yellow pixels refer to duplicated pixel values). 
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Figure 5.4.6. MCI image with the pins indicating those pixels over the threshold. In red the pixels 

flagged as “bright” (clouds) and in yellow the ones “duplicated”. 

 

Pin 
number 

Longitude Latitude 
MCI 

Value 
MCI 

Slope 
Sun 

Zenit 
Sun 

Azimuth 
View 
Zenit 

View 
Azimuth 

1 -39,14 -25,46 1,566315 -0,06 30,84 92,08 14,01 103,75 

2 -42,43 -25,98 1,311013 -0,06 33,71 92,47 34,94 105,17 

3 -38,85 -27,6 0,730349 -0,05 30,46 88,29 7,46 103,54 

4 -39,47 -33,05 1,311344 -0,07 31,26 79,35 0,67 51,72 

5 -41,82 -33,83 1,077425 -0,05 33,26 79,93 15,79 104,74 

6 -32,73 -29,12 0,775869 -0,1 25,21 81,58 37,66 280,59 

7 -38,24 -29,34 1,7318 -0,05 29,93 84,88 0,84 310,41 

8 -37,52 -29,61 1,068616 -0,06 29,33 83,95 6,87 282,79 

 

Table 5.4.2. Main characteristics of the outlier pins. 
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 Pin 1 

 

ROI-mask name 
Around 

pin 1 

 

Number of 
considered pixels 

8 

Minimum -0.95836 

Maximum -0.72821 

Mean -0.81785 

Standard deviation 0.088721 

Median -0.79864 

 

Table 5.4.3 . Pin 1 surrounding mask description. 

 

 

 

Figure 5.4.7. Grey-scale MCI image obtained zooming in the area around pin 1  

(the yellow pixels refer to duplicated pixel values). 
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 Pin 2 

 

ROI-mask name 
Around pin 

2 

 

Number of considered 
pixels 

5 

Minimum -0.65753 

Maximum -0.55723 

Mean -0.63292 

Standard deviation 0.042478 

Median -0.65136 

 

Table 5.4.4 . Pin 2 surrounding mask description.  

 

 

 

Figure 5.4.8. Grey-scale MCI image obtained zooming in the area around pin 2  

(the yellow pixels refer to duplicated pixel values). 
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 Pin 3 

 

ROI-mask name 
Around pin 

3 

 

Number of considered 
pixels 

8 

Minimum -0.39718 

Maximum -0.31586 

Mean -0.34703 

Standard deviation 0.025767 

Median -0.3481 

 

Table 5.4.5 . Pin 3 surrounding mask description.  

 

 

 

Figure 5.4.9. Grey-scale MCI image obtained zooming in the area around pin 3 

(the yellow pixels refer to duplicated pixel values) . 
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 Pin 4 

 

 

ROI-mask name 
Around pin 

4 

 

Number of considered 
pixels 

8 

Minimum -0.66306 

Maximum -0.52926 

Mean -0.58358 

Standard deviation 0.039874 

Median -0.5789 

 

Table 5.4.6 . Pin 4 surrounding mask description. 

 

 

 

Figure 5.4.10. Grey-scale MCI image obtained zooming in the area around pin 4 

(the yellow pixels refer to duplicated pixel values) . 
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 Pin 5 

 

ROI-mask name 
Around pin 

5 

 

Number of considered 
pixels 

5 

Minimum -0.37296 

Maximum 0.062998 

Mean -0.27917 

Standard deviation 0.19156 

Median -0.36794 

 

Table 5.4.7 . Pin 5 surrounding mask description. 

 

 

 

Figure 5.4.11. Grey-scale MCI image obtained zooming in the area around pin 5 

(the yellow pixels refer to duplicated pixel values) . 
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 Pin 6 

 

ROI-mask name 
Around pin 

6 

 

Number of considered 
pixels 

5 

Ratio of considered pixels 2.70E-04 

Minimum -1.15717 

Maximum -1.07457 

Mean -1.10118 

Standard deviation 0.035061 

Median -1.08288 

 

Table 5.4.8 . Pin 6 surrounding mask description. 

 

 

 

Figure 5.4.12. Grey-scale MCI image obtained zooming in the area around pin 6 

(the yellow pixels refer to duplicated pixel values) . 
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 Pin 7 

 

ROI-mask name 
Around pin 

7 

 

Number of considered 
pixels 

8 

Minimum -0.34286 

Maximum 0.077691 

Mean -0.27368 

Standard deviation 0.142327 

Median -0.31889 

 

Table 5.4.9 . Pin 7 surrounding mask description. 

 

 

 

Figure 5.4.13. Grey-scale MCI image obtained zooming in the area around pin 7 

(the yellow pixels refer to duplicated pixel values) . 
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 Pin 8 

 

ROI-mask name 
Around pin 

8 

 

Number of considered 
pixels 

8 

Minimum -0.56883 

Maximum 0.189368 

Mean -0.44817 

Standard deviation 0.258089 

Median -0.53395 

 

Table 5.4.10 . Pin 8 surrounding mask description. 

 

 

 

Figure 5.4.14. Grey-scale MCI image obtained zooming in the area around pin 8 

(the yellow pixels refer to duplicated pixel values). 

 

 

Pins number 2, 3, 4, 6, and 7 indicate pixels (just a small part of the entire popultion) whose 

MCI value was affected by PPE on the corresponding 9th band CCD element, according to case 1. It 

is possible to assert this because the MCI value under test exceeds the mean of the surrounding 
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pixels by more than 0.3 mW/(m2*sr*nm) and the standard deviation of the same sourrounding 

pixels is lower than 0.05.  

Pins number 1, 5 and 8 indicate three false alarms generated by PPEs according to case 2.  

The impact of the high energy particle may be observed also analyzing  (see Figure 5.4.15) 

the TOA radiance spectrum of the pixel under investigation in comparison with the average of the 

TOA radiance spectrums of the four adjacent pixels (the ones north, south, east and west located 

in respect to pin 1, for example).  The center of the adjacent selected pixels on ground is about 1.2 

km far from the center of the considered pixel; the relative distance on the Charged Coupled 

Device is 4 x 22.5 µm.  

As an example, it is shown the spectrum curve of pixel 1 slightly lying below the curve of the 

edge mean values for all MERIS bands except for band number 9 (708 nm). This is more evident 

studying the difference between spectrums for pin number 1 TOA radiance and the adjacent pixels 

mean radiance. The plot in Figure 4.4.16 clearly shows this peak at 708 nm measuring a positive 

difference of 0.5 mW/(m^2*sr*nm), while for the other wavelengths the same difference is 

negative. 

 

    

 

Figure 5.4.15. TOA radiance spectrums for pixel 1 and the mean TOA radiance spectrum of the 

surrounding adjacent pixels for the 15 MERIS bands. 
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Figure 4.4.16. Difference between the curves plotted in the previous figure (5.4.15), i.e., the TOA 

radiance of pixel 1 minus the mean TOA radiance spectrum of the surrounding adjacent pixels. 

 

 

5.5 Validation 

 

In order to validate the above MERIS data retrieved analysis results, data from the MODIS 

(Moderate Resolution Imaging Spectroradiometer) [28] were used. For this obersation data using 

the same swaths and days in which MERIS acquired the data previously processed with the MCI 

algorithm were used to validate the results reported in the previous paragraph for case 2. 

MODIS is on board of NASA’s AQUA and TERRA satellites. Level 2 MODIS data contain 

estimates of chlorophyll a concentration obtained through the application of a standard algorithm, 

the so-called OC3M [29]. The algorithm is an empirical equation relating remote sensing water 

leaving reflectances, Rrs, to chlorophyll a concentration. 
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The relation between chlorophyll a (Ca) and the water leaving reflectance (R3m) is expressed 

as follows: 

 

                              
          

          
  

, 

 

where                    
               

       and     
  

  
     

     
. 

 

MODIS bands centered at 443 nm, 490 nm and 550 nm are respectively MODIS bands 

number 9, 10 and 12, as shown in the Table 5.5.1 below. The spatial resolution for MODIS bands 

number 9, 10 and 12 is 1000 m.  

 

 

 

Table 5.5.1. MODIS bands in the Visible and Near InfraRed. 1The bandwidth is expressed in nm.  

2The spectral radiance is expressed in mW/(sr*m^2*nm). 3SNR stands for Signal to Noise Ratio [30]. 
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It needs to be mentioned that MODIS-OC3M algorithm makes use of different spectral 

bands, when compared to the MERIS-MCI algorithm. MCI uses the spectral band centered at 708 

nm over a baseline passing through the two bands centered at 680 and 750 nm. Indeed the MCI 

index was used to detect cosmic rays hitting the CCD on MERIS band number 9 (708 nm).  None of 

the MODIS bands used for OC3M match with those used for MERIS MCI. 

The MODIS L2 data were downloaded from oceancolor.gsfc.nasa.go/cgi/browse.pl website, 

red and processed with the open source SeaDAS (Sea WiFS Data Analysis Software, later adapted 

in version 7.0.2 also for reading and processing MODIS data).  

The files inspected are listed below: 

- A2003342161500.L2_LAC_OC; 

- A2004283160500.L2_LAC_OC; 

- A2005032163500.L2_LAC_OC; 

- A2006115163500.L2_LAC_OC; 

- A2007015163000.L2_LAC_OC; 

- A2008107162500.L2_LAC_OC; 

- A2009024161000.L2_LAC_OC. 

 

Next, it is shown all the false alarms associated to those MCI pixel values detected according 

to case 2 (i.e. those respecting condition a) of case 1 and having an MCI value greater than the 

aforementioned MCIth) in the first MERIS inspected file (MER_RR__ 1PRBCM20031208_ 121250_ 

000002902022_ 00195_ 09267_ 0002.N1) to the chlorophyll a values contained in MODIS L2 data 

related to the same sensing day. This was possible wherever MODIS pixels on ground were not 

coverd by clouds. 

The first inspected MODIS file is the follwing: 

- 2003342161500.L2_LAC_OC. 

MERIS start sensing time: 08 December 2003, 12:12:50. 

MODIS start sensing time: 08 December 2003, 16:40:00. 

At next stage, MODIS products are compared to the respective MERIS products, for 

pixels 1, 5 and 8.  

 

http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/A2004283160500.L2_LAC_OC.bz2
http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/A2005032163500.L2_LAC_OC.bz2
http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/A2006115163500.L2_LAC_OC.bz2
http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/A2007015163000.L2_LAC_OC.bz2
http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/A2008107162500.L2_LAC_OC.bz2
http://oceandata.sci.gsfc.nasa.gov/cgi/getfile/A2009024161000.L2_LAC_OC.bz2


 
110 

 

 

 Pixel 1 

 

 

Table 5.5.2. MERIS pixel 1 main informations.  

 

 

Figure 5.5.1. MERIS MCI image of pixel 1 and surrounding ones 

 (in purple duplicated values). 

 

 

 

 

 

 

Pixel  1 informations 
(MERIS) 

Longitude Latitude 
MCI 

Value 
DEM 

altitude 
Sun 

zenith 
Sun 

azimuth 
View 

zenith 
View 

azimuth 

-39,14 -25,46 1,566 -3885 30,8 92,1 14,0 103,8 
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Mask  surrounding outlier pixel 1 
(MERIS) 

Number of considered 
edge pixels 

8 

Minimum 
[mW/(m^2*sr*nm)] 

-0,95836 

Maximum 
[mW/(m^2*sr*nm)] 

-0,72821 

Mean 
[mW/(m^2*sr*nm)] 

-0,81785 

Standard deviation 
[mW/(m^2*sr*nm)] 

0,088721 

 

Table 5.5.3. Surrounding MERIS pixel 1 mask statistics. 

 

 

Pixel 1 informations 
(MODIS) 

Product 2003A2013342164000 

Longitude 39°06'49" W 

Latitude 25°27'44" S 

Rrs@443 nm 
[sr^-1] 

0,011396 sr^-1 

Rrs@488 m 
[sr^-1] 

0,007284 sr^-1 

Rrs@547 nm 
[sr^-1] 

0,001856 sr^-1 

Chlor a 
[mg m^-3] 

0,053 mg m^-3 

 

Table 5.5.4. MODIS pixel 1 main informations. 
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Surrounding pixel 1 chlorophyll a pixel values 
(MODIS) 

Adjacent pixel 
location 

Chlorophyll a 
concentration 

[mg m^-3] 
 

North 
0.059128 

 

Nort-East 
0.058864 

 

East 
0.05331 

 

South-East 
0.047123 

 

South 
0.059128 

 

South-West 
0.061329 

 

West 
0.052799 

 

North-West 
0.064615 

 

 

Table 5.5.5. Surrounding pixel 1 chlorophyll a  values (MODIS). 

 

  
 

Figure 5.5.2 MODIS chl-a image in grey-scale  
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zooming in the area around pixel 1. 

 Pixel 5 

 

 

Table 5.5.6. MERIS pixel 5 main informations.  

 

 

 

Figure 5.5.3. MERIS MCI image of pixel 5 and surrounding ones 

 (in purple duplicated values). 

 

 

 

 

 

 

Pixel  5 informations 
(MERIS) 

Longitude Latitude 
MCI 

Value 
DEM 

altitude 
Sun 

zenith 
Sun 

azimuth 
View 

zenith 
View 

azimuth 

-41.83 -33.84 1.077 -4580 33.27 79.94 15.79 104.74 
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Mask  surrounding pixel 5 
(MERIS) 

Number of considered 
edge pixels 

5 

Minimum 
[mW/(m^2*sr*nm)] 

-0.3729 

Maximum 
[mW/(m^2*sr*nm)] 

0.0629 

Mean 
[mW/(m^2*sr*nm)] 

-0.2792 

Standard deviation 
[mW/(m^2*sr*nm)] 

0.19156 

 

Table 5.5.7. Surrounding MERIS pixel 5 mask statistics. 

 

 

 

Pixel 5 informations 
(MODIS) 

Product 2003A2013342164000 

Longitude -41.49 

Latitude -33.49 

Rrs@443 nm 
[sr^-1] 

0.00668 

Rrs@488 m 
[sr^-1] 

0.00504 

Rrs@547 nm 
[sr^-1] 

0.00113 

Chlor a 
[mg m^-3] 

0.058988 

 

Table 5.5.8. MODIS pixel 5 main informations. 
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Surrounding pixel 5 chlorophyll a values 
(MODIS) 

Adjacent pixel 
location 

Chlorophyll a 
concentration 

[mg m^-3] 
 

North 
0.077804 

 

Nort-East 
0.069507 

 

East 
0.061631 

 

South-East 
0.046669 

 

South 
0.046605 

 

South-West 
0.047082 

 

West 
0.071513 

 

North-West Not valid value 

 

Table 5.5.9. Surrounding pixel 5 chlorophyll a  values (MODIS). 

 

  
 

Figure 5.5.4. MODIS chl-a image in grey-scale zooming in the area  

around pixel 5 (in purple high or saturating TOA radiance). 
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 Pin 8 

 

 

 

Table 5.5.10. MERIS pixel 8 main informations.  

 

 

 
 

Figure 5.5.5. MERIS MCI image of pixel 8 and surrounding ones 

 (in purple duplicated values). 

 

 

 

 

 

 

Pixel 8 informations  
(MERIS) 

Longitude Latitude 
MCI 

Value 
DEM 

altitude 
Sun 

zenith 
Sun 

azimuth 
View 

zenith 
View 

azimuth 

-38,24 -29,34 1,7318 -0,05 29,93 84,88 0,84 310,41 
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Mask  surrounding pixel 8 
(MERIS) 

Number of considered 
edge pixels: 

8 

Minimum: 
[mW/(m^2*sr*nm)] 

-0,5688 
 

Maximum: 
[mW/(m^2*sr*nm)] 

0,1894 
 

Mean: 
[mW/(m^2*sr*nm)] 

-0,4482 
 

Standard deviation: 
[mW/(m^2*sr*nm)] 

0,2581 
 

 

Table 5.5.11. Surrounding pixel 8 mask statistics. 

 

 

Pixel 8 informations 
(MODIS) 

Product 
2003A2013342164000 

 

Longitude 
37°31'38" W 

 

Latitude 
29°36'55" S 

 

Rrs@443 nm 
[sr^-1] 

0.0096 
 

Rrs@488 m 
[sr^-1] 

0.0062 
 

Rrs@547 nm 
[sr^-1] 

0.0014 
 

Chlor a 
[mg m^-3] 

0.0436 
 
 

 

Table 5.5.12. Surrounding MERIS pixel 8 mask statistics. 
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Surrounding pixel 8 chlorophyll a values 
(MODIS) 

Adjacent pixel 
location 

Chlorophyll a 
concentration 

[mg m^-3] 
 

North 
0.05307421 

 

Nort-East 
0.06052298 

 

East 
0.04354695 

 

South-East 
0.058265936 

 

South 
0.0784116 

 

South-West 
0.06443726 

 

West 
0.06076408 

 

North-West 
0.053416647 

 

 

Table 5.5.13. Surrounding pixel 8 chlorophyll a  values (MODIS). 

 

  
 

 

Figure 5.5.6. MODIS chl-a image in grey-scale  

zooming in the area around pixel 5. 
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The same kind of analysis was done for all the aforementioned MODIS files (page 

111) to and similar results were obtained, confirming the validity of the algorithm to 

detect PPEs false alarms pixels in MCI images.  

In all the analyzed cases, according to MODIS OC3M algorithm, the central pixel 

does not show a concentration value of chlorophyll a significantly higher than the 

surrounding ones. Furthermore, all chl a values estimated by MODIS, including the central 

pixel, are in line with the values estimated by MERIS for the surrounding pixels, except, 

whenever found, the brighter ones, which most likely feel the effect of the same PPE 

causing the false alarm in the central pixel. This event corrupts the adjacent across-track 

pixel, as explained in Chapter 2, thus, when these brighter pixels appear, they lie on the 

right or left to the detected false alarm.  
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Chapter 6. Assessment of PPEs during OLCI 

preflight testing and prediction of OLCI in-flight 

sensitivity 
 

In this chapter an analysis of test measurement data acquired during the OLCI on-

ground test campaign related to the occurrence of PPEs will be provided. For this, the OLCI 

dark signal measurements and the occurrence of PPEs are analyzed in function of surface 

and time.  This will help to predict the effects of such radiation on the CCD once in orbit in 

terms of pixel sensitivity. Later in the chapter, it will be given a prediction of OLCI in-flight 

sensitivity to PPE occurrences.  

 

6.1 OLCI Test configuration for camera 1 – 5 
 

In order to analyze the influence of cosmic rays on the dark signal read out at the 

VAM output the following approach was used. 

Dark signal data provided by Thales Alenia Space and acquired by the five S3/OLCI 

cameras during AIT (Assembly, Integration and Test) activities in 2013 and 2014 in Cannes 

[31-35] were used. The impact of energetic particles was studied in order to understand 

their effects on ground on the whole video chain and to compare these results with 

previous and future models’ results and with the previous analysis done for Envisat/MERIS 

once in space (approx. 790 km). 

All five cameras are composed of the Camera Optical Sub Assembly (COSA) equipped 

with the Focal Plane Assembly (FPA), coupled to the Video Acquisition  Module (VAM). 

For the darkness measurements, 1000 non-averaged frames were collected. 

Minimum, medium and maximum gains were applied for each microband (see Table 6.1.1 

for the description of all gains  G0, G4 and G7). As band setting the AIT band configuration 

and related micro-bands were used as listed in Table 6.1.2.  
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FM 
typical 

gain 

 
G0 

 
G1 

 
G2 

 
G3 

 
G4 

 
G5 

 
G6 

 
G7 

 
[V/V] 

 
1.4763 

 
1.77156 

 
2.12587 

 
2.55105 

 
3.06126 

 
3.67351 

 
4.40821 

 
5.28985 

 

Table 6.1.1. Flight model typical gains. It is basically the G0 value times 1.2 = G1, 

G1*1.2=G2 and so on [36]. 

 

 

For each camera and for each gain, the dark mean value and the dark standard 

deviation were computed over 33.93e6 samples (754 spatial pixels, 45 microbands and 

1000 frames). The OLCI acquisition microbands are numbered from 1 to 46 in the 

decreasing order of the center wavelength (check Table 6.1.2). Microband number 1 

corresponds to the last smear micro band (Table 6.1.2). The reverse order comes from the 

projection of spectral bands on the CCD: the highest spectral band is read first by the 

VAM. 

 In order to detect the occurrences related to energetic particles striking on the CCD 

surface, a threshold was chosen. To be in line with previous analysis, the selected 

threshold is equal to the dark signal microband mean value plus 5 times the dark standard 

deviation. In this way it was possible to determine the maximum and the mean LSB value 

of the affected samples rays and the percentage of occurrences. This was done for all five 

cameras depending on the three different gains (except for camera 1 where the file 

referring to Gain 0 was missing).  

The test conditions are described in Appendix B for each camera module and dark 

signal main statistics, number of occurrences and affected pixels are reported in detail per 

each camera and gain.  

The results are expressed in terms of LSBs. As already mentioned, in contrast to 

MERIS, OLCI uses a 14-bit ADC (instead of 12).   
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Table 6.1.2. Sentinel-3/OLCI spectral band description [37]. 

 

 

For all OLCI cameras 1-5 the dark signal mean value recorded at the VAM output for 

each gain and camera varies in a range between 37.7 and 39.9 LSBs. The mean value was 

computed over all the pixels, including those with defects, i.e. cold and hot pixels, and 

those whose value was influenced by an energetic particle striking on the CCD under test.  
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Using a threshold equal to the dark microband mean value plus 5 times the standard 

deviation, as expected, several spikes due to prompt particle events were detected. They 

appear only in 1 frame from the 1000 acquired per each pixel. In ambient pressure (CCD 

temperature regulated at +17°C), on average, pixels affected by cosmic rays may vary 

from 50 LSBs (camera PFM2, Gain 0) up to 85 LSBs (camera PFM2, Gain 7). In vacuum (CCD 

temperature regulated at -22.5°C), on average, the affected pixels may vary from 55 LSBs 

(camera PFM2, Gain 0) up to 104 LSBs (camera PFM2, Gain 7).   

The results are summarized in Figures 6.1.1-6.1.5. In those figures, also the maximum 

value referred to a spike for each gain is provided. 

 

 

Figure 6.1.1. Pixel mean value, spike mean value and spike maximum value 

 for Camera PFM during OLCI ground tests. 
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Figure 6.1.2. Pixel mean value, spike mean value and spike maximum value  

for Camera FM2 during OLCI ground tests. 

 

 

 

Figure 6.1.3. Pixel mean value, spike mean value and spike maximum value  

for Camera FM3 during OLCI ground tests. 
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Figure 6.1.4. Pixel mean value, spike mean value and spike maximum value  

for Camera FM4 during OLCI ground tests. 

 

 

 

Figure 6.1.5. Pixel mean value, spike mean value and spike maximum value 

for Camera F5M during OLCI ground tests. 
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6.2 OLCI camera 1 – 5  on-ground PPE occurrence analysis 

 

In order to further analyze the AIT measurement data, the mean pixel level signal 

was subtracted from the mean spike level for all OLCI cameras (1 – 5). This was done for 

all the cameras and for the three different gains, whenever the occurrence of spikes was 

detected. Taking into account the five cameras, for G0 such difference was less or equal 

than 15 LSBs for G0, 36 for G4 and 66 LSBs for G7, see Figure 6.2.1. 

 

 

 

Figure 6.2.1.  Difference between mean spike level and mean dark signal level 

at VAM output during OLCI on-ground tests. 

 

 

Afterward, the difference between the maximum spike and the mean pixel value was 

computed for the three gains and the five cameras. Such difference reaches 41 LSBs for G0, 100 

for G4 and 309 for G7, see Figure 6.2.2. 

Camera 
PFM 

Camera 
FM2 

Camera 
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Camera 
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Camera 
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Gain 0 0 15 0 11 14 
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Gain 7 52 66 54 46 37 

0 

10 

20 

30 

40 

50 

60 

70 

LS
B

 

Difference between mean spike level  
and mean dark signal level @ VAM output 
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Figure 6.2.2.  Difference between maximum spike and mean dark signal level 

at VAM output during OLCI on-ground tests. 

 

 

The analysis allowed to make an estimation of the on-ground per-microband 

element occurrence probability (the location where the test was executed is 

approximately 43.3°N and 7.0°E). This is in the order of 10^-7. The results are presented in 

Figure 6.2.3.  

Considering the total surface of the CCD occupied by the 45 microbands (218 

elementary spectral lines x 754 horizontal pixels  x 22.52 µm2 pixel surface), it is possible to 

estimate the number of energetic particles striking on ground per cm2 per second. This 

was done in the case of Gain 0 (averaging the number of PPEs detected for cameras FM2, 

FM3, FM4 and FM5  over 1000 frames, that is 4 PPEs per camera module over 1000 

acquisition frames). Whenever in the same frame and microband two adjacent pixels were 

both exceeding the threshold, the double occurrence was considered caused by a single 

PPE.  Thus, the number amounts to 1.09 PPEs per cm2 per second (that is 4 PPEs / CCD 

surface / (integration time * 1000 frames), corresponding to 6.64 x 10^-9 cosmic rays per 

elementary CCD pixel element per integration time. 

Camera 
PFM 

Camera 
FM2 

Camera 
FM3 

Camera 
FM4 

Camera 
FM5 

Gain 0 0 32 0 17 41 

Gain 4 100 35 69 90 40 

Gain 7 273 309 234 140 113 
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http://tools.wmflabs.org/geohack/geohack.php?language=it&pagename=Cannes&params=43.55_N_7.016667_E_type:city_scale:200000&title=Cannes


 
128 

 

 

 

Figure 6.2.3. Estimation of the occurrence probability per microband pixel 

for the five cameras obtained using OLCI on-ground test data. 

 

 

6.3 Prediction of OLCI in-flight sensitivity to PPEs 

 

A prediction of OLCI in-flight sensitivity will allow to retrieve an estimate about how many, 

how much and how often pixels are affected due to PPEs striking the camera’s CCD during the 

operational phase. This will then allow to understand the influence on top-of-the-atmosphere 

radiance in level 1B Sentinel-3/OLCI product which then can be an important input to analyze the 

noise generated in higher-level products through PPEs.  

A simplified model was set up to make use of the analysis results of MERIS L0 data acquired 

during Envisat commissioning phase (see chapter 3). 

It needs to be reminded that OLCI, in respect to MERIS, will always operate in full spatial 

resolution over both land and water (at later stages, from level-1B on, OLCI products will be also at 

reduced resolution averaging the signal of 16 FR pixels, that is four adjacent pixels across track for 

four successive lines along track) thus suffering more from PPEs. 
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The two input values of the prediction model are the mean MERIS LSB value of the RR pixels 

affected by PPEs (171.2 LSBs) and the mean signal value (151.5 LSBs) of MERIS observation bands, 

according to the results obtained in Chapter 3 (Figure 3.4.1).  

Using this difference in LSBs, the additional number of electrons     generated through a 

PPE in the corrupt RR pixel of the CCD can be calculated. 

This will allow to calculate the spectral irradiance           at the detector surface. The 

assumption here is the fact that a PPE is generating for all spectral wavelength the same energy on 

the CCD (since the PPE will not strike through the optics the CCD). The corresponding TOA 

radiance mean error    is retrieved for a FR pixel for three particular wavelengths because the 

energy equal to one PPE is slightly different to the same energy retrieved through the nominal 

TOA signal (here the signal is created through the Earth scene’s photons passing the optics).  

Since it can be assumed that OLCI and MERIS CCDs (equal design, e.g., silicon depletion layer 

thickness) are of same material, the energy generated on CCD level for a single PPE can be also 

regarded as similar.  

The difference ΔLSBRR between the mean level of the affected pixels and the mean pixel 

level is calculated (19.7 LSBs).      

Considering MERIS instrument specifications (12 bits quantization, 4096 steps and shift 

register capacity of 2.5M electrons), the single quantization step (i.e. 1 LSB) capacity reaches 600 

electrons. So, it is possible to derive the corresponding mean number of electrons ΔNe generated 

on the related CCD surface by the PPE as expressed in the next equation: 

 

               

 

Knowing    , it is possible to calculate the corresponding spectral irradiance at the RR 

detector surface ΔEdet ( ), making use of the following formula: 
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where        represents the quantum efficiency of the detector at the specific central 

wavelength  ,       the surface occupied by the RR pixel under question,      the integration time, 

   the spectral bandwidth, h the Planck’s constant and c the velocity of light. 

Then, the mean TOA radiance error       occurring in the affected RR pixels by a PPE can be 

calculated as follows: 

 

      
 

 
                                       

 

being             the transmission coefficient of the camera objective,           the grating 

efficiency and F#  the inverse of MERIS f-number. 

In the prediction model, three different quantities that depend on the wavelength appear: 

these are the quantum efficiency, the transmission coefficient and the grating. Three different 

values per each quantity were used sampling the three curves (plotted in Figure 6.3.1) 412 nm, 

510 nm and 778.5 nm (corresponding to three typical OLCI spectral bands, the blue, the 

green and the red, i.e. Oa2, Oa5 and Oa16). 

 

 

Figure 6.3.1 Quantum efficiency, transmission coefficient 

and grating efficiency curves. 
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Three different results of      
 λ  were obtained (see Table 6.3.1), making use of a 10 nm 

large bandwidth and knowing that the integration time Tint equals 44 ms, the f-number 10, the 

detector surface       8.1 x 10^-9 m^2. 

 

 

 

  

[nm] 

                         E    

 

     
    

[mW/(nm*sr*m2)] 

412.5 

(Oa2) 
0.35 0.50 0.50 2.32 

510  

(Oa5) 
0.30 0.60 0.60 1.52 

778.75  

(Oa16) 
0.20 0.75 0.45 1.60 

 

Table 6.3.1. Mean TOA radiance errors      
    for affected FR pixels for three different OLCI 

spectral bands.  

 

 

At this point, an important assumption needed to be done: if a certain FR pixel is corrupted 

by a prompt-particle-event at frame n, the probability that the same across-track pixel is corrupted 

again before frame n+4,  (i.e. within the next 3 x 44 ms) by another PPE may be considered null. In 

other words, among the four consecutive along-track FR pixels having the same across-track pixel 

index, just one may be considered affected. The justification of the previous assumption derives 

from the analysis of MERIS L0 RR data acquired during Envisat orbit 292 revealing that the same 

across-track pixel value was exceeding the threshold  at most 4 times over 14809 frames (along-
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track lines) and such values were never in succession. Thus, according to the previous assumption, 

among the 16 FR pixels forming the RR one, at most, just 4 of them may be corrupted (maximum 

one per along-track line). In the most probable case, only 1 over 4x4 FR pixel may be considered 

affected. The reason of this may be found comparing the number of times two or more adjacent 

affected pixels were detected over the total number of considered samples with the estimated 

occurrence probability (see Chapter 3, paragraph 5).  

Thus, the average of the three TOA radiance values previously retrieved (that is 1.81  

mW/nm/sr/m2) may be used as a prediction of the mean radiance created as error for OLCI L1B FR 

data by a single PPE. 

Furthermore, using the results obtained in Chapter 3 (paragraph 3.4, page 61) about the 

conditional probability density function approximating the normalized histogram of L0 affected 

data and considering the linear relation between level 0 counts and the L1B data, the TOA 

radiance error       affecting corrupted FR pixels may be defined as an exponential random 

variable, with mean value equal to 1.81 mW/nm/sr/m2. Thus, it may be defined a shifted 

conditional exponential density probability function      of parameter η  (equal to 1/(1.81-

0.81)=1, where 0.81 is the minimum expected TOA radiance PPE-induced error), shown in Figure 

6.3.2 and expressed as follows (u is the step function): 

                                                   

 

 

Figure 6.3.2. TOA radiance error conditional probability density functionfor Sentinel-3/OLCI.   



 
133 

 

Chapter 7 Conclusions and way forward 
 

 

7.1 Summary of the study results 

 

The thesis is providing the first time in-depth analysis of Prompt-particle-events occurring 

during ESA’s Envisat/MERIS in-orbit observation and Sentinel-3/OLCI on-ground data. For this 

MERIS space observation data (Level 0 and Level 1) and OLCI ground test (raw) data were 

processed and analyzed. The retrieved results are provided in the various chapters of the thesis 

and briefly summarized in the following: 

1) The analysis of MERIS dark signal acquired during Envisat’s commissioning phase (see 

chapter 3) along one specific orbit (orbit number: 292) crossing the SAA (South-Atlantic-Anomaly) 

confirmed the occurrence of spikes due to PPEs striking the CCD. Inside the SAA, the occurrence 

probability per reduced resolution pixel was estimated to be in the order of 10^-3 for all 15 

observation bands (10^-2 for the smear) while outside the SAA, for almost all MERIS bands the 

occurrence probability is in the order of 10^-6 (for the 13th, the 15th and the smear it is of the 

order of  10^-5). The smear band is in general the most affected due to its wider surface (31 

elementary spectral lines binned together). As another reason the increase of the frequency (and 

the intensity) of the radiation on the CCD may also be induced by the presence of the aluminum 

layer shielding the smear band. Most of the detected spikes are in the range of 163-188 LSBs for 

the observation bands (the difference between the mean spike level and dark mean level is on 

average 19 LSBs over 12 bits of quantization) and the amplitude doesn’t vary with the orbit 

latitude. Approximately once every ten PPE strikes, one or more consecutive RR pixels are affected 

along the same across-track spatial line. In order to approximate the occurrence amplitude 

probability density, a shifted exponential function of known parameter    is proposed in chapter 3.  

In chapter 4 a strategy to detect PPE-affected pixels in the smear signal was developed 

making use of MERIS L0 reduced resolution operational data of all bands over open ocean. 

Different data sets were compared covering a time span of seven years. The data of the 15 MERIS 

observation bands were processed in order to make an estimation of the smear signal that was 

later subtracted from the smear digital counts as recorded by the sensor and read out from the 

inspected file. In this chapter 4, a specific threshold is proposed (after having classified the water 

pixels using MERIS band number 13) in order to detect the affected water pixels. By analysis L0 

data covering the time frame from 2002 until 2009, the percentage trend of PPE occurrences (in 

the order of 0.1%) are in line with the occurrence probability estimated in chapter 3. It is also 

shown that the occurrence probability is relatively stable globally and over the 7 years. Only the 
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data set from the year 2006 retrieved slightly higher percentage of occurrences (anyways, these 

are known to be decorrelated with the solar cycle). 

The “impact” of PPEs on a particular level 2 user product, the MERIS Maximum Chlorophyll 

Index (PI: Gower et al. (1999)), was investigated in chapter 5. MERIS level 1B data were processed 

to obtain the MCI image of seven scenes acquired over the SAA from 2003 to 2009, one per year. 

The thesis proposes an additional step to be included in the MCI algorithm according to which 

additional pixels exhibiting high MCI values may be classified as false alarms due to PPEs. These 

pixels may be flagged by ground processors or filtered using a 2D moving average window (or even 

compared with the same pixel values of previous or successive acquisitions). 

In chapter 6 the number of energetic particles striking on ground per cm2 per second was 

determined making use of Sentinel-3/OLCI dark signal data acquired during on-ground instrument 

testing. The number amounts to 1.09 PPEs per cm2 per second, corresponding to 6.64 x 10^-9 

cosmic rays per elementary CCD pixel element (22.5^2 µm^2) per 44 ms integration time. This 

estimate was then used in a simplified prediction model to find which could be the mean in-flight 

TOA radiance error measured by OLCI induced by PPEs: the impact of one PPE corresponds to 

about 1.81 mW/nm/sr/m2 (for all OLCI spectral bands). Furthermore, for pixels affected by an 

energetic particle, an exponential model of probability density function for the TOA radiance error 

is proposed in chapter 6. 

 

7.2 Recommendations for Sentinel-3/OLCI 
  

In the thesis the noise contribution of PPEs retrieved from ENVISAT/MERIS in-flight and 

Sentinel-3/OLCI on-ground data were analyzed. Due to the fact that both instruments are flown on 

similar low-earth orbits and that OLCI and MERIS CCD detectors can be considered as identical in 

construction (the OLCI CCD55-20 is a slightly updated version of the MERIS CCD25-20) it is 

expected that OLCI in-flight performance will be affected by noise spikes caused by prompt-

particle-events (PPEs). The effect will occur in both modes, Earth Observation and Calibration 

modes and is provided as part of the thesis, i.e., in chapter 3 for the PPE occurrence probability 

and in chapter 5 for the impact of a single PPE in terms of TOA radiance. 

a) Effect on OLCI data 

The estimation of the occurrence probability of affected FR pixels depends on the particular 

latitude and longitude that the instrument observes. Outside the South Atlantic Anomaly (SAA), 

the probability is usually in the order of 10^-6 for all those observation bands composed by less 

than 16 spectral lines and far from the aluminum shield; for the spectral band Oa17 (where 16 

spectral lines are spectrally binned together), Oa21 (far 720 µm from the adjacent shielded smear 
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band) and the smear band, the occurrence probability may reach the order of 10^-5. In the South 

Atlantic Anomaly (SAA) the occurrence probability may vary in the order of 10^-3 for all 

observation bands, reaching  10^-2 in the case of the smear band. Furthermore, the presence of 

two or more consecutive affected pixels caused by a single PPE along the same across-track line 

was observed in more than one MERIS band: this event approximately occurred with a frequency 

of 10^-7 and may affect OLCI in the same order of magnitude.  

Due to the linear relation between level 0 and level 1B data, the top-of-the-atmosphere 

radiance error for OLCI affected pixels may be characterized as a random shifted exponential 

variable of parameter η=1/(1.81-0.81)=1 and mean value equal to 1.81 mW/(nm*se*m^2).  

Even if the effect of high energy particles striking on the CCD may be considered to a first 

approximation irrelevant (at least outside the SAA) for level 0 and level 1B OLCI products, it could 

be a cause of corrupted values by retrieving level 2 scientific products, as it was demonstrated for 

the case of Maximum Chlorophyll Index (MCI) images (see chapter 5). Thus, the influence on L2 

products needs to be addressed in more detail.  

b) Further Level 2 product assessment using simulated data set 

It is proposed to perform a further analysis making use of the results reported above. For 

this a specific simulated data set would be needed to be simulated: first, two identical L1B top-of-

the-atmosphere radiance datasets (a cube of 21 bands composed of N pixels per dataset in full 

resolution with different ground target (e.g., clouds, ocean, land)) are created. Then, one of the 

two datasets is “artificial” degraded with noise injected according to the following strategy:  

- pixels are degraded with a probability in the order of 10^-6 (10^-3 if simulating an 

SAA scenario): thus, having every pixel its identification index number, from 0 to N-1 

and using a random uniform variable generator, the affected pixels may be 

identified; 

- among these degraded pixels, in the percentage of ten percent, some will be 

followed (on the right, on the left or both) by one or more (up to a total of 9) 

corrupted FR pixels along the same across-track spatial line (the number among 1 to 

10 may be chosen using a uniform random variable generator); 

- each corrupted sample should exceed the correct one by a random quantity 

generated according to the above mentioned shifted exponential probability density 

of parameter η=1, with mean value equal to 1.81 mW/(nm*se*m^2) and minimum 

value equal to 0.81 mW/(nm*se*m^2).  

In this way, two L1B top-of-the-atmosphere radiance datasets are created, one with and the 

other without the influence PPSs. Thereinafter, L2 algorithms and there retrieved products can be 

assessed after comparing the processed correct L1B data with the corresponding equally 

processed corrupt L1B data. 
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c) Potential mitigation strategy 

In order to mitigate the influence of PPE-affected pixels with unexpected high value, those 

pixels can be flagged in level 1 processing and these flags can be used on level 2. 

In any case, two main strategies of potential mitigation via ground processing were identified 

whenever a corrupt pixel is detected. First, the affected pixel may be compared with surrounding 

pixels and its value may be substituted by a 2-dimensional moving average filtering of the adjacent 

values (as for the case of false alarms in MCI images). Second, the pixel value under question may 

be compared with the same pixel value acquired by OLCI in a different (previous or next) temporal 

acquisition.  

The same algorithms used to detect the occurrences in MERIS level 0 data may be used to 

monitor the occurrence of PPEs affecting OLCI CCDs during Sentinel-3 commissioning phase and 

during nominal space operations. One additional way to monitor the occurrences of PPEs and their 

impact on the signal at the VEU (Video Electronic Unit) output may be obtained checking the 

behavior of the blank pixels, i.e. those shielded pixels located at the sides of the imaging zone of 

the CCD. 
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Appendix A 
 

 

The histograms of the Level 0 data sets analyzed in Chapter 4  are plotted in Figures A.1-A.6. 

The data sets refer to six swaths all located in the South Atlantic Anomaly and acquired by MERIS 

from 2003 to 2008 in different months at the same time (the order in which the figures appear 

starts from 2008 down to 2003). 

 

 
Figure A.1. MERIS level 0 data histogram  

(band 13, camera 5, orbit 32041, AT lines 9000-10000). 
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Figure A.2. MERIS level 0 data histogram  

(band 13, camera 5, orbit 25499, AT lines 9000-10000). 
 
 

 
Figure A.3. MERIS level 0 data histogram  

(band 13, camera 5, orbit 21706, AT lines 9000-10000). 
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Figure A.4. MERIS level 0 data histogram  

(band 13, camera 5, orbit 14878, AT lines 9000-10000). 
 
 
 

 
Figure A.5. MERIS level 0 data histogram  

(band 13, camera 5, orbit 13647, AT lines 9000-10000). 
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Figure A.6. MERIS level 0 data histogram  
(band 13, camera 5, orbit 9267, AT lines 9000-10000). 
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Appendix B 
 

 

Following the AIT (Assembly Integration Test) test conditions are described per each camera 

module and the main results of the analysis of PPE-induced noise are shown in Tables B.1-B.41.  

Per each camera (except for camera 1) three different gain values were applied (G0, G4 and G7, 

see Table 6.1.1). The test took place in Thales Alenia Space, Cannes (France) in 2013 and 2014. 

 

 Camera 1 
 

The camera 1 is composed of the COSA PFM equipped with the FPA PFM, coupled to 

the VAM FM2. 

The test was performed on 10/04/2013 with the following conditions [31]: 

- Ambient pressure; 
- CCD temperature regulated at +17°C (above dew point); 
- VAM temperature was neither regulated nor monitored; 
- medium and maximum gains: G4 and G7 for each microband; 
- nominal configuration of bands and microbands; 
- Sampling Interval parameters as used in “Test 7” according to RD-11; 
- Offset Compensation Loop has been operated as expected in flight conditions  

 

o Camera 1, Gain 4 
 

The following acquisition file was analyzed: 

- Adressing_G4_acq_20130712134730.cuo 
 

The main results of the analysis are shown in Tables B.1-B.3.  
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Dark signal main statistics (Camera 1, Gain 4) 

Dark 
Measurements 
Mean LSB Value 

(DMV) 
 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 
 

Occurrence 
Mean LSB 

Value 
(OMV) 

OMV-DMV 

39.2 1.4 139 72 32.8 

 

Table B.1. Main statistics of dark samples and occurrences during  

OLCI on ground dark tests (camera 1, gain 4). 

 

  

Occurrences (Camera 1, Gain 4) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

8 33930000 2.4*10^-7 

  

Table B.2. Percentage of occurrences during OLCI on ground dark tests  

(camera 1, gain 4). 
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Affected pixels (Camera 1, Gain 4) 

Spatial pixel number Microband number Frame number 

1 1 1 

4 3 502 

53 8 880 

69 13 140 

225 20 642 

363 21 801 

704 25 636 

284 37 833 

 

Table B.3. Affected pixels during OLCI on ground dark tests (camera 1, gain 4). 

 

 

 

o Camera 1, Gain 7 
 

The following acquisition file was analyzed: 

- Adressing_G7_acq_20130712135055.cuo 
 

The main results of the analysis are shown in Tables B.4-B.6.  

  



 
144 

 

 

 

Dark signal main statistics (Camera 1, Gain 7) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

38.9 2.2 312 91.1 52.2 

 

Table B.4. Main statistics of dark samples and occurrences during  

OLCI on ground dark tests (camera 1, gain 7). 

 

  

 Occurrences  (Camera 1, Gain 7) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

18 33930000 5.9*10^-7 

 

 Table B.5. Percentage of occurrences during OLCI on ground dark tests  

(camera 1, gain 7). 
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Affected pixels (Camera 1, Gain 7) 

Spatial pixel number Microband number Frame number 

1 4 1 

1 5 1 

1 6 1 

1 7 1 

185 10 521 

186 10 521 

424 15 36 

264 16 48 

12 19 504 

13 19 139 

478 22 139 

256 25 139 

695 29 985 

564 36 307 

701 41 295 

702 41 307 

665 45 307 

666 45 406 

 

 Table B.6. Affected pixels during OLCI on ground dark tests (camera 1, gain 7). 

 

 

 Camera 2 
 

The camera 2 is composed of the COSA FM2 equipped with the FPA FM2, coupled to 

the VAM FM2. 

The test was performed on 10/04/2013 with the following conditions [32]: 

- Ambient pressure; 
- CCD temperature regulated at +17°C (above dew point); 
- VAM temperature was neither regulated nor monitored; 
- Minimum, medium and maximum gains: G0, G4 and G7 for each microband; 
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- nominal configuration of bands and microbands; 
- Sampling Interval parameters as used in “Test 7” according to RD-11; 
- Offset Compensation Loop has been operated as expected in flight conditions  
 

 

o Camera 2, Gain 0 
 

The following acquisition file was analyzed: 

- Dsm_G0_Adressing_acq_20130410171526.cuo  
 

The main results of the analysis are shown in Tables B.7-B.9.  

 

Dark signal main statistics (Camera 2, Gain 0) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

39.6 0.8 72 55.3 15.7 

 

Table B.7. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 2, gain 0). 
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Occurrences (Camera 2, Gain 0) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

6 33930000 1.8*10^-7 

 

Table B.8. Percentage of occurrences during OLCI on ground dark tests 

(camera 2, gain 0). 

 

 

 

 

Affected pixels (Camera 2, Gain 0) 

Spatial pixel number Microband number Frame number 

581 2 339 

503 9 171 

504 9 171 

669 11 711 

678 16 89 

609 35 39 

 

Table B.9. Affected pixels during OLCI on ground dark tests (camera 2, gain 0). 

 

 

o Camera 2, Gain 4 
 

The following acquisition file was analyzed: 

- Dsm_G4_Adressing_acq_20130410171846.cuo  
 



 
148 

 

The main results of the analysis are shown in Tables B.10-B.12.  

 

Dark signal main statistics (Camera 2, Gain 4) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

39.6 1.3 75 61.7 22.1 

 

Table B.10. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 2, gain 4). 

 

 

Occurrences (Camera 2, Gain 4) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

9 33930000 2.7*10^-7 

 

Table B.11. Percentage of occurrences during OLCI on ground dark tests 

(camera 2, gain 4). 
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Affected pixels (Camera 2, Gain 4) 

Spatial pixel number Microband number Frame number 

85 2 977 

188 3 86 

342 7 132 

316 7 200 

405 8 200 

406 8 200 

698 17 218 

354 38 127 

353 41 654 

 

Table B.12.  Affected pixels during OLCI on ground dark tests (camera 2, gain 4). 

 

o Camera 2, Gain 7  
 

The following acquisition file was analyzed: 

- Dsm_G7_Adressing_acq_20130410172539.cuo  
 

The main results of the analysis are shown in Tables B.13-B.15.  

 

Dark signal main statistics (Camera 2, Gain 7) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

37.8 2.1 347 103.8 66.0 

 

Table B.13. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests  (camera 2, gain 7). 



 
150 

 

 

 

Occurrences (Camera 2, Gain 7) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

14 33930000 4.1*10^-7 

 

Table B.14. Percentage of occurrences during OLCI on ground dark tests 

(camera 2, gain 7). 

 

Affected pixels (Camera 2, Gain 7) 

Spatial pixel number Microband number Frame number 

85 2 977 

188 3 86 

342 7 132 

316 7 200 

405 8 200 

406 8 200 

698 17 218 

354 38 127 

353 41 654 

 

Table B.15.  Affected pixels during OLCI on ground dark tests (camera 2, gain 7). 
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 Camera 3 

 

The camera 3 is composed of the COSA FM3 equipped with the FPA FM3, coupled to 

the VAM PFM (before its refurbishment). 

The test was performed on 01/03/2013 with the following conditions [33]: 

- Ambient pressure; 
- CCD temperature regulated at +17°C (above dew point); 
- VAM temperature was neither regulated nor monitored; 
- Minimum, medium and maximum gains: G0, G4 and G7 for each microband; 
- nominal configuration of bands and microbands; 
- Sampling Interval parameters as used in “Test 7” according to RD-11; 
- Offset Compensation Loop has been operated as expected in flight conditions  

 

o Camera 3, Gain 0  
 

The following acquisition file was analyzed: 

- Adressing_G0_acq_20130301073247.cuo  
 

The main results of the analysis are shown in Tables B.16-B.17.  

 

Dark signal main statistics (Camera 3, Gain 0) 

Dark 
Measurements 
Mean LSB Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

38.3 2.1 - - 

 

Table B.16. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests  (camera 3, gain 0). 
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Occurrences (Camera 3, Gain 0) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

0 33930000 0.0 

 

Table B.17. Percentage of occurrences during OLCI on ground dark tests 

(camera 3, gain 0). 

 

o  Camera 3, Gain 4 
 

The following acquisition file was analyzed: 

- Adressing_G4_acq_20130301073606.cuo   
 

The main results of the analysis are shown in Tables B.18-B.20.  

 

Dark signal main statistics (Camera 3, Gain 4) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

37.9 2.2 107 64.4 26.5 

 

Table B.18. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 3, gain 4). 
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Occurrences (Camera 3, Gain 4) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

7 33930000 2.1*10^-7 

 

Table B.19. Percentage of occurrences during OLCI on ground dark tests 

(camera 3, gain 4). 

 

Affected pixels (Camera 3, Gain 4) 

Spatial pixel number Microband number Frame number 

37 10 39 

309 19 398 

522 24 324 

498 25 324 

97 27 444 

391 34 483 

210 37 793 

 

Table B.20.  Affected pixels during OLCI on ground dark tests (camera 3, gain 4). 

 

 

o Camera 3, Gain 7 
 

The following acquisition file was analyzed: 

- Adressing_G7_acq_20130301073941.cuo  
 

The main results of the analysis are shown in Tables B.21-B.23.  
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Dark signal main statistics (Camera 3, Gain 7) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

37.7 2.6 272 92.2 54.5 

 

Table B.21. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests  (camera 3, gain 7). 

 

 

Occurrences (Camera 3, Gain 7) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

23 33930000 6.8*10^-7 

 

Table B.22. Percentage of occurrences during OLCI on ground dark tests 

(camera 3, gain 7). 
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Affected pixels (Camera 3, Gain 7) 

Spatial pixel number Microband number Frame number 

9 3 835 

63 3 940 

64 3 940 

65 3 940 

97 5 400 

98 5 400 

99 5 400 

113 5 400 

572 5 710 

113 6 400 

114 6 400 

122 6 400 

734 7 804 

271 9 271 

272 9 271 

566 20 447 

567 20 447 

488 33 527 

132 36 520 

133 36 520 

616 36 877 

617 36 877 

619 36 877 

 

Table B.23.  Affected pixels during OLCI on ground dark tests (camera 3, gain 7). 

 

 

 Camera 4 

 

The camera 4 is composed of the COSA FM4 equipped with the FPA FM4, coupled to 

the VAM FM2. 

The test was performed on 27/06/2013 with the following conditions [34]: 

- Vacuum pressure  ; 
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- CCD temperature regulated at -22.5°C ; 
- VAM temperature regulated at +10°C; 
- Minimum, medium and maximum gains: G0, G4 and G7 for each microband; 
- nominal configuration of bands and microbands; 
- Sampling Interval parameters as used in “Test 7” according to RD-11; 
- Offset Compensation Loop has been operated as expected in flight conditions  

 

o Camera 4, Gain 0  
 

The following acquisition file was analyzed: 

- Dsm_G0_Adressing_acq_20130627101035.cuo  
 

The main results of the analysis are shown in Tables B.24-B.26.  

 

Dark signal main statistics (Camera 4, Gain 0) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

39.1 1.3 56 49.8 10.7 

 

Table B.24. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 4, gain 0). 
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Occurrences (Camera 4, Gain 0) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

8 33930000 2.4*10^-7 

 

Table B.25. Percentage of occurrences during OLCI on ground dark tests 

(camera 4, gain 0). 

 

 

Affected pixels (Camera 4, Gain 0) 

Spatial pixel number Microband number Frame number 

107 5 525 

108 5 525 

645 12 450 

626 14 413 

627 14 413 

306 17 450 

745 22 247 

745 29 580 

 

Table B.26.  Affected pixels during OLCI on ground dark tests (camera 4, gain 0). 

 

 

o Camera 4, Gain 4 
 

The following acquisition file was analyzed: 

- Dsm_G4_Adressing_acq_20130627101456.cuo 
 

The main results of the analysis are shown in Tables B.27-B.29.  
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Dark signal main statistics (Camera 4, Gain 4) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

38.8 1.8 129 74.6 35.8 

 

Table B.27. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 4, gain 4). 

 

 

Occurrences (Camera 4, Gain 4) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

5 33930000 1.5*10^-7 

 

Table B.28. Percentage of occurrences during OLCI on ground dark tests 

(camera 4, gain 4). 

 

 

 

 



 
159 

 

Affected pixels,  (Camera 4, Gain 4) 

Spatial pixel number Microband number Frame number 

225 8 470 

226 8 470 

179 23 909 

13 28 560 

428 38 521 

 

Table B.29.  Affected pixels during OLCI on ground dark tests (camera 4, gain 4). 

 

 

 

o Camera 4, Gain 7  
 

The following acquisition file was analyzed: 

- Dsm_G7_Adressing_acq_20130627101919.cuo 
 

The main results of the analysis are shown in Tables B.30-B.32.  

 

Dark signal main statistics (Camera 4, Gain 7) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

38.6 2.3 179 84.7 46.1 

 

Table B.30. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 4, gain 7). 
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Occurrences (Camera 4, Gain 7) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

14 33930000 4.1*10^-7 

 

Table B.31. Percentage of occurrences during OLCI on ground dark tests 

(camera 4, gain 7). 

 

 

Affected pixels (Camera 4, Gain 7) 

Spatial pixel number Microband number Frame number 

393 2 98 

394 2 98 

396 2 98 

397 2 98 

311 3 572 

312 3 572 

62 3 780 

380 24 630 

379 25 630 

380 25 630 

14 34 474 

15 34 474 

28 36 474 

720 37 745 

 

Table B.32.  Affected pixels during OLCI on ground dark tests (camera 4, gain 7). 
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 Camera 5 

 

The camera 5 is composed of the COSA FM4 equipped with the FPA FM4, coupled to 

the VAM FM2. 

The test was performed on 24/08/2013 with the following conditions [35]: 

- Vacuum pressure  ; 
- CCD temperature regulated at -22.5°C ; 
- VAM temperature regulated at +10°C; 
- Minimum, medium and maximum gains: G0, G4 and G7 for each microband; 
- nominal configuration of bands and microbands; 
- Sampling Interval parameters as used in “Test 7” according to RD-11; 
- Offset Compensation Loop has been operated as expected in flight conditions  

 

o Camera 5, Gain 0  
 

The following acquisition file was analyzed: 

- Adressing_G0_acq_20130824162219.cuo     
 

The main results of the analysis are shown in Tables B.33-B.35.  

 

Dark signal main statistics (Camera 5, Gain 0) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

39.9 1.1 81 54.3 14.4 

 

Table B.33. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests  (camera 5, gain 0). 
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Occurrences (Camera 5, Gain 0) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

6 33930000 1.8*10^-7 

 

Table B.34. Percentage of occurrences during OLCI on ground dark tests 

(camera 5, gain 0). 

 

 

Affected pixels (Camera 5, Gain 0) 

Spatial pixel number Microband number Frame number 

574 4 781 

87 4 985 

88 4 985 

85 6 985 

94 20 256 

706 27 738 

 

Table B.35.  Affected pixels during OLCI on ground dark tests (camera 5, gain 0). 

 

o Camera 5, Gain 4 
 

The following acquisition file was analyzed: 

- Adressing_G4_acq_20130824162504.cuo  
 

The main results of the analysis are shown in Tables B.36-B.38.  
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Dark signal main statistics (Camera 5, Gain 4) 

Dark 
Measurements 

Mean LSB 
Value 
(DMV) 

 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 
(OMV) 

OMV-DMV 

39.7 1.3 80 51.8 12.1 

 

Table B.36. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 5, gain 4). 

 

 

Occurrences (Camera 5, Gain 4) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

5 33930000 1.5*10^-7 

 

Table B.37. Percentage of occurrences during OLCI on ground dark tests 

(camera 5, gain 4). 
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Affected pixels (Camera 5, Gain 4) 

Spatial pixel number Microband number Frame number 

309 2 905 

680 4 776 

14 10 255 

89 12 34 

250 33 560 

 

Table B.38.  Affected pixels during OLCI on ground dark tests (camera 5, gain 4). 

 

 

o Camera 5, Gain 7  
 

The following acquisition file was analyzed: 

- Adressing_G7_acq_20130824162731.cuo Gain G7    
 

The main results of the analysis are shown in Tables B.39-B.41  

 

Dark signal main statistics (Camera 5, Gain 7) 

Dark 
Measurements 

Mean LSB 
Value 

(DMV) 

Dark 
Measurements 

Standard 
Deviation 

Occurrence 
Max  LSB 

Value 

Occurrence 
Mean LSB 

Value 

(OMV) 

OMV-DMV 

39.6 1.7 153 76.7 37.1 

 

Table B.39. Main statistics of dark samples and occurrences during 

OLCI on ground dark tests (camera 5, gain 7). 
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Occurrences (Camera 5, Gain 7) 

Number of detected 

occurrences 

Number of considered 

samples 

Probability of occurrence 

15 33930000 4.4*10^-7 

 

Table B.40. Percentage of occurrences during OLCI on ground dark tests 

(camera 5, gain 7). 

 

 

Affected pixels (Camera 5, Gain 7) 
Spatial pixel number Microband number Frame number 

408 2 797 

426 1 658 

51 16 365 

52 16 365 

48 17 365 

49 17 365 

50 17 365 

277 24 426 

378 25 658 

36 33 538 

37 33 538 

139 33 759 

550 34 41 

550 35 41 

524 38 201 

 

Table B.41.  Affected pixels during OLCI on ground dark tests (camera 5, gain 7). 

 

 



 
166 
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