
University of Pisa and Scuola Superiore
Sant’Anna

Master Thesis

Compressing Dictionaries of Strings

Master Degree in Computer Science and Networking

Author
Lorenzo Landolfi

Supervisor
Rossano Venturini

a.y. 2013/2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79617867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 4

2 Background and Tools 8
2.1 Basic Notation . 8
2.2 Asymptotic notation . 8
2.3 Sequences . 9
2.4 Basic Operations on sequences . 10
2.5 Theoretical lower bounds . 11
2.6 Models of computation . 13
2.7 Succinct representation of sequences . 16
2.8 String dictionaries . 17
2.9 Range Minimum queries . 18
2.10 Integers encodings . 18

2.10.1 Bit-aligned integers encoders . 19
2.10.2 Byte-aligned encoders . 19

2.11 Prefix search . 20
2.12 Tries . 21

2.12.1 Compacted trie . 22
2.12.2 PATRICIA trie . 22

2.13 Ternary search trees . 24
2.14 Path decomposed tries . 26

3 Compressing string dictionaries 28
3.1 Dictionary representation . 28

3.1.1 Front coding . 29
3.1.2 Front coding with bucketing . 31
3.1.3 Locality preserving front coding . 32
3.1.4 Optimal prefix retrieval . 34

3.2 Storing additional information . 39
3.2.1 Storing the references to the strings 40

2

CONTENTS 3

3.2.2 Integers encoding . 47

4 Retrieval Experiments 50
4.1 Implementation . 51
4.2 Datasets . 52
4.3 Competitors . 54
4.4 Experiments . 55

4.4.1 Google 1gram . 56
4.4.2 URLs . 62

5 Prefix Search 66
5.1 Binary search approach . 66

5.1.1 Trivial binary search . 66
5.1.2 Binary searching only on the uncompressed strings 68

5.2 Ternary search trie . 70
5.2.1 Insertion . 72
5.2.2 Search . 74

6 Prefix search experiments 77
6.1 Experiments on Google 1gram . 80
6.2 Experiments on URLs . 84

7 Conclusion and future work 90
7.1 Summing up . 90
7.2 Ideas for future works . 92
7.3 What did I learn . 94

Chapter 1

Introduction

In the time we are living right now we have seen an unbelievably fast growth of the com-
puter science related technologies. Such a growth has driven one of the most important
revolution of mankind, currently and constantly changing the life of all of us. Indeed we
are living and experiencing such a revolution on our skin. Think about for instance how it
changed the way we buy things, we relate to people and have access to information. The
e-commerce gives us the possibility to visit the largest store on Earth without the need to
physically go in there; the Social Networks changed the way we relate with other people,
allowing us to communicate and know persons from all over the world; Search Engines
radically changed the way we access any information, allowing all of us to know almost
everything cheaply and democratically. In general, we can say that nowadays computers
play an important role in everything we do and maybe in everything we are.

Connecting all the computers through the Internet offered the possibility to connect
also all the people of the world to each other, speeding the process of creating a self-aware
Mankind, in which each man, thanks to the incredibly various sources of information, is
capable of enlarging the horizons of his mind.

The enormous growth of computational technologies actually coincided with an enor-
mous growth of the data available (mostly) on the Internet. Such data is extremely het-
erogeneous, we go from human readable, completely unstructured data such as text to
semi-structured, still human readable data such as HTML1 or XML2, to completely struc-
tured and only machine readable data such as the data used in relational databases. The
study of the algorithms and data structures needed to store and handle this huge quantity of
diversified data in an efficient fashion has grown up together with the growth of data. The
reason is that hardware improvements do not suffice to manage big data. An inefficient al-

1HyperText Markup Language.
2eXtensible Markup Language

4

CHAPTER 1. INTRODUCTION 5

gorithm will probably remain unusable whatever the speed of memory or processor, forever.

One of the most studied problem in the field of algorithm engineering for big data is
the prefix search problem, which asks for preprocessing a set of variable length data3 in
such a way that we can retrieve all the elements that have the queried pattern P as prefix.
This problem, easy to enunciate, is the backbone of many other more complex problems
and nowadays it is experiencing a revamped interest because of the discovered usefulness
of Search Engines auto-completion facility or because of the intense use of the IP-lookup
facility in Internet based applications.
Indeed, the auto-completion facility provided by all the modern Search-Engines is exactly
a prefix search query executed on the fly over a dictionary composed by the most relevant
queries every issued by the users. Since the customers of any Search-Engine is in theory
everyone on Earth we can imagine how big such a dictionary is and how much efficiently
the prefix search facility must be provided in order to get the response in few milliseconds.
Another typical application of prefix search is Bioinformatics, where a common problem is
to find the occurrences of a given pattern over the DNA chain. Indeed we can reduce this
kind of problem to prefix searching the pattern over the set of all the possible suffixes of
the DNA subset we want to analyse. The set of those suffixes is actually a dictionary, so we
are prefix searching over a dictionary. A popular software that solves the aforementioned
problem is BLAST [22], which stores the positions where all the different substrings of
length L occur in the sequence database, allowing to index them.
Just to give an idea of how much this problem has been studied, we propose in the next
lines a brief history of the research done around it.
The first (theoretically) efficient solution to prefix search dates back to 1960, when Fredkin
in [18] proposed a new data structure, called (compacted) Trie capable of solve prefix
search. From that point on, the trie structure became the most known solution for this
problem. In particular, it became very famous in the algorithmic community during the
80s-90s because of one of its variant, known as the Suffix Tree, which dominated the scene
for a long time.
The Oxford English Dictionary initiative [17] and the subsequent advent of the Web forced
the design of efficient tries managing large datasets. However, scientists noticed soon that
storing a trie in little space allowing performant prefix search queries was not easy at all.
In particular, tries suffered of a poor amount of memory transfers [9]. The article that
allowed to make a decisive step towards the solution of the problems posed in the paper
just mentioned was [13], in which Ferragina and Grossi designed the String B-Tree data
structure. In few words, String B-Trees are analogous to Tries and Suffix Trees, but they
have some redundant bits in their representation that permit to overtake the bounds stated
in [9].
After the devisal of the String B-Tree, the research moved further on, improving such data

3Data representable with various amount of bits.

CHAPTER 1. INTRODUCTION 6

structure in many of its aspects, for instance, space occupancy. One of the last step in the
design of efficient solutions for prefix search has been made again by Ferragina et al. in
[14]. In such a paper it is described a data structure which is close to the optimal storage
complexity and supporting efficiently prefix search queries. The interesting feature of this
data structure is that its space occupancy actually depends on a modifiable parameter,
which allows the user to trade between space occupancy and query time.

This work The aim of this work is to develop a data structure capable of storing a set of
strings in a compressed way providing the facility to access and search by prefix any string
in the set. The notion of string will be formally exposed in Section 2.3, but it is enough to
think a string as a stream of characters or a variable length data. We will prove that the
data structure devised in our work will be able to search prefixes of the stored strings in a
very efficient way, hence giving a performant solution to one of the most discussed problem
of our age.
In the discussion of our data structure, particular emphasis will be given to both space and
time efficiency and a tradeoff between these two will be constantly searched. To understand
how much string based data structures are important, think about modern search engines
and social networks; they must store and process continuously immense streams of data
which are mainly strings, while the output of such processed data must be available in few
milliseconds not to try the patience of the user.
Space efficiency is one of the main concern in this kind of problem. In order to satisfy real-
time latency bounds, the largest possible amount of data must be stored in the highest
levels of the memory hierarchy. Moreover, data compression allows to save money because
it reduces the amount of physical memory needed to store abstract data. This fact is
particularly important since storage is the main source of expenditure in modern systems.
Indeed compressed data can be read faster by the CPU because any memory access brings
to the CPU cache a fixed amount of bits, decided by the hardware.
Therefore, the more the data is physically compressed, the more the information accessible
to the CPU. If important chunks of data are in the closest levels of memory, the probability
of accessing a data which is in a farer memory level decreases, hence reducing the memory
transfer cost, which is for nowadays algorithms on big data, the most relevant cost in terms
of time.
A very important feature of our data structure is that the primitives that allow to prefix
search and access any string in the dictionary are performed directly on the compressed
data structure. What we mean is that we do not need the decompress the whole file to
answer any query carried out on the dictionary, we just need to decompress a portion of
the file, or a block of it.
In fact, we can say that our data structure is constituted by such blocks, and the smaller
are the them, the poorer is the compression ratio. Anyway, if the blocks are large, the
cost of decompressing one of such block can be not acceptable. For this reason, a tradeoff
between the size of the blocks and their decompression time is constantly studied in this

CHAPTER 1. INTRODUCTION 7

work. We will see that we will adopt a solution capable of decompressing blocks that are
guaranteed to be of optimal size.
Finally, we can say that we managed to devise a parametric and compressed data structure,
solving the prefix search problem in asymptotically optimal time and space.
The following paragraph illustrates how we decided to organise the work done in this
Thesis.

Thesis overview This Thesis is divided into seven chapters.

• Chapter 2 Contains a review of the arguments that are needed in order to understand
the topics covered in this work together with the notation that will be used.

• Chapter 3 Illustrates the methods we devised and implemented in order to compress
a set of strings and in order to provide access to any string or prefix belonging to the
set.

• Chapter 4 Shows the experiments that have been performed in order to prove the
efficiency and the correctness of the methods presented in chapter 3.

• Chapter 5 Illustrates the methods we devised in order to lookup any prefix or any
string belonging to the set compressed and indexed with the same algorithms de-
scribed in chapter 3.

• Chapter 6 Shows the experiments performed in order to prove the efficiency and the
correctness of the solutions provided in chapter 5. In chapter 6 will be presented also
the comparison between our data structure and other state-of-the-art solution that
have been proved to be particularly efficient.

• Chapter 7 Sums up what has been done in this Thesis and indicates some future
directions to improve our designed data structure.

Chapter 2

Background and Tools

In this chapter we propose a quick review of the arguments and tools that are needed in
order to fully understand the topics covered in this work together with the notation that
will be used. The exposition of every topic in this chapter will be supported by examples
and reference to the literature for further reading.

2.1 Basic Notation

We denote the cardinality of a set S as |S|. Ranges of integers from 0 to a certain natural
number n: {0, 1, ..., n − 1} will be denoted with [n] or [0, n) in case of ambiguity. All the
logarithms will be in base 2, unless otherwise specified: log (x) = log2 (x).

2.2 Asymptotic notation

Assume that f(x) and g(x) are functions from N to the set of all the positive real numbers
R+.

1. g(x) ∈ O(f(x)) : 0 ≤ lim
x→∞

g(x)
f(x) <∞

2. g(x) ∈ Ω(f(x)) : 0 < lim
x→∞

g(x)
f(x) ≤ ∞

3. g(x) ∈ Θ(f(x)) : 0 < lim
x→∞

g(x)
f(x) <∞

4. g(x) ∈ o(f(x)) : lim
x→∞

g(x)
f(x) = 0

5. g(x) ∈ ω(f(x)) : lim
x→∞

g(x)
f(x) =∞

8

CHAPTER 2. BACKGROUND AND TOOLS 9

According to a deep rooted tradition of computer science literature, in this work we will
drop the set notation and substitute the ”∈” symbol with the ”=” symbol. So for example
writing f(x) = O(g(x)) has the same meaning of writing f(x) ∈ O(g(x)).
The notation illustrated in this section is of crucial importance because it allows to com-
pare the behaviour of very complex functions to the behaviour of other very well known
ones when their input grows large.
For example if f(x) = 1

2x
2 + 2x − 1, we may say that f(x) = O(x2), or f(x) = Θ(x2)1

because lim
x→∞

1
2
x2+2x−1

x2
= 1

2 .

Another widespread tradition allows to use asymptotic notation inside formulas. For in-
stance we may meet an equation like 4x2 + 10x − 3 = 4x2 + O(x). Obviously also in this
case O(x) does not represent a set (how can we add a set to an expression?), but a generic
function g(x) ∈ O(x), which in this case is 10x − 3. When functions are represented in
such a way, they are conventionally called anonymous functions.
In the following we also give the intuitive meaning of the formal definitions given in this
section.

1. g(x) ∈ O(f(x)) : g asymptotically grows not faster than f

2. g(x) ∈ Ω(f(x)) : g asymptotically grows not slower than f

3. g(x) ∈ Θ(f(x)) : g has asymptotically the same growth of f

4. g(x) ∈ o(f(x)) : g asymptotically grows slower than f

5. g(x) ∈ ω(f(x)) : g asymptotically grows faster than f

2.3 Sequences

Definition 1. We define a sequence of length n simply as an ordered collection of elements
s = 〈s0, s1, ..., sn−1〉 belonging to an alphabet Σ of cardinality σ. si or s[i] is the i-th element
of s, and |s| = n.

We denote the set of all the sequences of length n drawn from Σ with Σn. The set of
empty sequence Σ0 will be also called ε, while the set of sequences of any possible length
is called Σ∗ =

⋃∞
i=1 Σi. The elements of the alphabet are also called symbols.

We will also exploit a notation very well known in computer science and engineering world:
s[i, j] to denote a contiguous range of elements of a sequence s, i.e.,

s[i, j] = 〈si, si+1, ..., sj〉 .

1Note that Θ(g(x)) = O(g(x)) ∩ Ω(g(x)).

CHAPTER 2. BACKGROUND AND TOOLS 10

It is important to note that s = s[0, |s| − 1]2 and |s[i, j]| = j − i+ 1.
A binary sequence, i.e., a sequence drawn from alphabet Σ = {0, 1} is called bitvector. The
symbols of such an alphabet are also called bits, while a sequence made by characters is
called a string.
For simplicity, strings will be denoted as plain sequences of characters, without any sepa-
rator. For instance in the following way.

s = abaco

In this case |s| = 5, s0 = a, s4 = o.
Moreover, for any string s, its prefix of length l ≤ |s| is exactly s[0, l− 1]. A generic string
p is a prefix of s if for i = 0, ..., |p| we have that si = pi.
Recursively, we denote a sequence of strings S as a sequence S ∈ Σ∗∗ drawn from an
alphabet of strings Σ∗, which in turn are drawn from an alphabet Σ.
A sequence of strings can be represented as follows.

S = 〈abaco, zio, nonno, abate, abaco〉

In this case |S| = 5, S0 = abaco, S2 = nonno.
It is important to mention the fact that any sequence s drawn from an alphabet Σ can be
represented as a binary sequence. This is possible if we represent any symbol of Σ as a
binary sequence of length dlog |Σ|e.
The binary representation of s, denoted B(s), is therefore the concatenation of the binary
encodings of the symbols constituting s. Hence, the length or cardinality of B(s) can be
expressed by the following.

|B(s)| = |s|dlog |Σe bits.

2.4 Basic Operations on sequences

In this section we mention some of the most common operations used on sequences. Suppose
that a generic sequence b is drawn from an alphabet Σ and k is any of the symbols of Σ.
Then we define the following

• Rankk(b, i) returns the number of occurrences of k in b[0, i− 1]

• Selectk(b, i) returns the position of the i -th occurrence of k

• Access(b, i) returns the i-th element of b

• Predecessork(b, i) returns the position of the rightmost occurrence of k preceding or
equal to i

2We follow the convention accepted by all the major programming languages according to which the
index of the first element of any collection is 0.

CHAPTER 2. BACKGROUND AND TOOLS 11

If the sequence on which the operation are applied is clear from the context, then from
now on any of the operations above can be written without the first argument, e.g.,
Selectk(b, i) =Selectk(i).
So, if we take the following bitvector b

b = 101101001110011

Access(2) = 1, Rank1(0) = 0, Rank1(6) = 4, Select1(0) = 0, Select1(3) = 5,
Predecessor1(7) = 5

The following properties are noteworthy.

1. Rankk(Selectk(i)) = i

2. Selectk(Rankk(i)) =Predecessork(i)

Now we mention other important operations which are defined only for sequences of se-
quences. Taking a generic alphabet Σ and S ∈ Σ∗∗, we define the following.

• lcpS(i, j) returns the longest common prefix among the sequences in range [i, j]

• RetrievalS(i, l) returns the first l symbols of the sequence returned by Access(S, i),
or, equivalently RetrievalS(i, l) = Access(S, i)[0, l − 1]

2.5 Theoretical lower bounds

In this section we report the space occupancy theoretical lower bounds concerning the data
structures we are going to deal with in this work.

Sequences. When we have to deal with sequences, if we do not dispose of any additional
information except the alphabet Σ and the sequence length n, then, as a consequence of
the pigeonhole principle, for each encoding algorithm, there will be at least one sequence
encoded with at least ndlog |Σ|e bits.
This quantity is the space occupied by the binary representation of any sequence and it
can be viewed as a worst case lower bound.
If we can have access to some additional information, i.e., the data set we are going to
compress, we may obtain more satisfying bunds which are called data dependent bounds.
A very theoretical way to achieve a perfect lower bound is via the study of the Kolmogorov
complexity [27], which is defined as the shortest encoding of a Turing machine that outputs
a given sequence. This complexity, despite its clear definition, is actually impossible to
compute starting from a specific sequence and it’s therefore useless in the devising of lower
bounds.

CHAPTER 2. BACKGROUND AND TOOLS 12

A paper by one of the fathers of Information theory, Claude Elwood Shannon, [36] in-
troduced the notion of information content of a discrete random variable X which can
have values belonging to a finite set Σ. We call the distribution of such a random variable
(pc)c∈Σ, so that pc = P{X = c}. He then defined the entropy of X as

H(X) = −
∑
c∈Σ

pc log (pc)

If we take a generic sequence s and we assume empirical frequencies as probabilities, i.e.,
pc = nc/n, where nc is the number of occurrences of c in s. We can define what is called
0-th order empirical entropy of a sequence s of length n as

H0(s) = −
∑
c∈Σ

nc
n

log
nc
n

=
∑
c∈Σ

nc
n

log
n

nc
bits. (2.1)

Now, suppose that s is a binary sequence of length n which has n1 bits set to 1. Because
of the empirical frequencies as probabilities assumption, we have that p1 = n1

n = p and
p0 = 1 − n1

n = 1 − p. We can rewrite the 0-th order empirical entropy of such a sequence
in the following way

H0(s) = −p log p− (1− p) log(1− p) = p log
1

p
+ (1− p) log

1

(1− p)

If we assume that the elements of s are independent and identically distributed random
values, H0(s) can be an estimate of H(X), and pc = nc

n ∀c ∈ Σ are called empirical proba-
bilities.
Concerning our main aim, which is define a practical lower bound in space occupancy valid
for any sequence, the following important theorem has been shown in [10]

Theorem 1. The minimum number of bits needed to encode a generic sequence s of length
n with an encoder that maps every symbol of the alphabet Σ into a binary sequence is equal
to nH0(s).

The encoder described in Theorem 1 is position independent. As a first step it defines
the binary encoding for each symbol of the sequence s and then it directly substitutes any
of the occurrence of this symbol in s with its binary representation.
In general, we can also define the k-th order empirical entropy of a generic sequence Hk(s)
as follows

Hk(s) =
∑
u∈Σk

|su|
n
H0(su) (2.2)

where u ∈ Σk is a sequence composed of k alphabet symbols and su is the sub-sequence of
s that follows any occurrence of u.
The impressively important result reported in the following Theorem was given by Manzini
in [28].

CHAPTER 2. BACKGROUND AND TOOLS 13

Theorem 2. nHk(s) is the lowest number of bits needed to encode any sequence s of length
n using an encoder that decides the encoding of a symbol basing its decision on the k symbols
that precede it (also called its k-context).

Subsets. If we call U a set of cardinality n, usually referred as universe and X a subset
of this universe, whose cardinality is m ≤ n, then the minimum number of bits needed to
represent X is given by the following.

B(m,n) =

⌈
log

(
n

m

)⌉
(2.3)

Notice that B(m,n) is nothing more than the logarithm of the number of all the possible
subsets of m elements out of a universe U of cardinality n.
The following interesting properties also hold:

1. B(m,n) ≤ nH(mn) +O(1)

2. B(m,n) ≤ m log m
n +O(m)

The first of the properties above is intuitively linked to the fact that any subset S of size
m of a universe of size n can be represented as a bitvector of length n with m bits set to
one. This bitvector is called the characteristic function of S.

2.6 Models of computation

Models of computation provide a way to estimate the computational complexity of any
algorithm through the definition of a set of elementary operations. The computational
complexity, representing an estimation of the completion time of an algorithm is therefore
given by the number of such elementary operations performed by an algorithm during its
execution.

Word-RAM model. The most used model of computation emulating the behaviour
and the set of operations available on modern machines is the word-RAM model. In this
model, the unit of memory is called word, and its size is w bits. Any word can be accessed
in constant time. The basic operations are the typical logic and arithmetic ones, including
also the bitwise shifts.

If we denote the size of any problem (or input) with n, then the word -RAM model also
assumes that the size of a word is bounded by the following equation.

w = Ω(log n)

CHAPTER 2. BACKGROUND AND TOOLS 14

Figure 2.1: RAM model of computation

So that the word size is, for large enough n, at least k log n for some constant k. Indeed
if this were not true, then we could not fit any address of the input in a constant number
word.
A stronger condition is the transdichotomous assumption [19],which states the following.

w = Θ(log n)

i.e., the length of the word is upper and lower bounded by a multiple of the logarithm of
the input size. The reason for its name is due to the fact that this assumption ties the
characteristic of an abstract CPU (the word size) to the size of the problem.

External-memory model. Even though the word -RAM model is widely used in com-
puter science, it does not take into account one of the most important feature of modern
computers; that is, it assumes that the access time to any memory location is constant.
This is particularly false nowadays because modern machines memory are hierarchical and
the access to a datum that is located for example in main memory could be thousand of
times slower than the access to one that is in primary cache. A model that takes into
account the organisation of modern memories is the external-memory model [38]. It con-
siders the machine as composed by two levels of memory: one ”fast” memory of bounded
size M (e.g. the main memory) and another one of unbounded size (e.g., the hard disk),
which is considered ”slow”. The I/O complexity of an algorithm is computed taking in
consideration the number of transfers from the external memory to the main one. Each
one of these transfers moves exactly B words across the memories.
Actually, reality is much more complex. Modern machines have many memories hierar-
chically organised. Typically there are 2-3 level of cache memories, the RAM memory (or

CHAPTER 2. BACKGROUND AND TOOLS 15

main memory), the disk and possibly the ”Network” of memories, made by the union of
all the machines that are connected through a network infrastructure to the one executing
the algorithm.
The faster the memory, the smaller it is. The smallest memory is layer 1 cache (L1 cache),
whose size is in KiloBytes as order of magnitude. Moving from an inner layer to an outer
layer, the size is increased by one order of magnitude as well as the access time.
Memory layers do not differ only in size and access time, also the amount of words fetched
per reference increases while moving away from the CPU, as it is shown in Figure 2.2.

Figure 2.2: External-memory model of computation. Image borrowed from [29]

Cache-oblivious model. Another very well known model is the cache-oblivious model,
introduced in [20]. This model is very similar to the external-memory one but it assumes
that the size of the main memory M and the ”page size” B for external memory transfers
are unknown to the analysed algorithm. This assumption prevents the algorithm designer
to ”tune” the algorithm according to B. Actually, designing an efficient algorithm for this
kind of model is particularly valuable because it is performant whatever are the values of
B or M. Good cache-oblivious algorithms or data structures are extremely useful in reality,
since modern machines have many levels of memory with different sizes.

CHAPTER 2. BACKGROUND AND TOOLS 16

2.7 Succinct representation of sequences

Succinct data structures have been introduced by Jacobson in [25] as data structures that
occupy a space equal to their theoretical lower bounds plus a negligible number of bits.
This additional space is actually used to let the succinct data structure support in efficient
time i.e., in a time comparable to the one needed to perform the same operation on non
succinct data structures, the operations described in Section 2.4.
In particular, Jacobson proposed in his paper a succinct data structure which could encode
a bitvector of size n with n+ O(n log logn

logn) bits, supporting Access and Rank operations in
constant time.
The data structure proposed by Jacobson was later be improved by Clark in [7], allowing
to state the following theorem.

Theorem 3. There exists a data structure D that can encode a bitvector b of size n with

|D| = n+O(n log(logn)
logn) bits

supporting Access, Rank and Select operations in O(1) time.

The field of applications of succinct data structures is vast and the benefit is significant
expecially for large data sets that can be kept in main memory when encoded in succinct
format.

Fully indexable dictionaries. Raman et al. in [35] further improved the results by
Jacobson and Clark introducing the term fully indexable dictionary (FID) defining a data
structure that was able to support the properties asserted in the following theorem.

Theorem 4. There exists a data structure F able to encode a set of m elements drawn
from a universe U of size n such that

|F| = B(m,n) +O((n log logn)
logn) bits

and capable of supporting Access, Rank and Select operations in O(1) time.

The improvement with respect to the data structure introduced by Clark is given by
the fact that we can encode a bitvector of length n with m ones with the bound reported
in the Theorem above. In fact the following equation shows that B(m,n) < n.

B(m,n) =
⌈
log
(
n
m

)⌉
<

⌈
log

n∑
k=0

(
n
k

)⌉
= dlog 2ne = n

CHAPTER 2. BACKGROUND AND TOOLS 17

Elias-Fano representation. The Elias-Fano representation of monotone sequences was
introduced in [11] and [12]. It is a widely exploited and elegant data structure satisfying
the properties stated in the following theorem.

Theorem 5. Given a non decreasing sequence of non negative integers s = 〈a1, a2, ..., am〉
drawn from the universe [0, n− 1] of cardinality n, there exists an encoding scheme able to
represent s with 2m+m

⌈
log n

m

⌉
+ o(m) bits and supporting Access operation in O(1) time.

Such a representation of s is called Elias-Fano representation of s.

Proof. Let’s call l = blog(n/m)c. First of all, each integer ai is transformed in its binary
representation B(ai), composed by dlog ne bits. Then, the binary encoding of each integer
is split in two parts: the first part is formed by the most significant dlog ne − l bits, called
higher bits, while the second one is formed by the least significant l lower bits.
Now, the higher and the lower bits are treated separately. The higher ones are represented
as a bitvector H of length m + n

2l
able to support the Select operation (hence requiring

additional o(m) bits according to Theorem 3). If hi is the value of the higher bits of the
integer ai, the position hi + i of H is set to one. All the other positions of H are set equal
to zero. In order to define hi unambiguously, it is better to say that

hi =

dlogne−l−1∑
j=l

2j−lB(ai)[j]

Another bitvector L of length ml is formed concatenating the lower bits of the integers.
To access the i-th integer we have to retrieve the higher and the lower bits of it and
concatenating them. Therefore, we start accessing the lower bits of ai which is easy because
they are exactly L[l(i -1),li -1], then we retrieve hi noting that hi = Select1(H, i)− i.

It is very important to notice that the Elias-Fano representation is particularly useful
and efficient to represent a generic sparse bitvector3 b by encoding the sequence of the
positions of the ones. In this way accessing to the i-th integer of such a sequence can be
interpreted as Select1(b, i)

2.8 String dictionaries

If we call S ∈ Σ∗ a set of string (Σ is an alphabet), a String dictionary is a data structure
that stores this set and supports the following operations.

1. Lookup(s) returns an integer for each string s such that s ∈ S, or NULL otherwise.

2. Access(i) returns the string s such that Lookup(s)=i.

It is possible to say that Lookup and Access primitives form a one-to-one correspondence
between S and [|S|].

3A sparse bitvector is a bitvector having much more 0s than 1s

CHAPTER 2. BACKGROUND AND TOOLS 18

2.9 Range Minimum queries

A Range Minimum Query (shortly RMQ) is an operation defined on a sequence A whose
elements belong to a totally ordered universe U .4

RMQA(i,j), with i ≤ j retrieves the position of the minimum element of A[i,j] according
to the ordering relation of the universe U (in case of ties the leftmost position is returned),
for example.

A=[8,7,3,20,2,17,5,21,11,12]

RMQA(2, 6)=4; RMQA(6, 9)=6;

A trivial implementation of RMQA(i, j) would be to scan the entire interval A[i,j], thus
requiring O((j − 1)) = O(|A|) elementary operation.
The range minimum query problem on sequences is reducible to the Least Common An-
cestor (LCA) problem on trees and LCA is reducible to RMQ. In fact, LCA can be reduced
to RMQ transforming the nodes of the tree in a sequence of integers, while RMQ can be
reduced to LCA transforming the sequence in a tree, called Cartesian Tree, as proved by
Bender and Colton in [1].
Fischer and Neun devised in [16] a data structure able to support RMQ in constant time
on any sequence of length n with 2n+ o(n) bits, hence with a negligible overhead.

2.10 Integers encodings

In this section we face the problem of representing a sequence of positive integers in a
binary output alphabet {0,1} using the least possible number of bits. This problem has
to be tackled in many situation, for example search engines inverted indexes would require
too much space if integers were stored not compressed.
The simplest encoding of a positive integer is its binary representation. Suppose that we
must encode a sequence A of integers whose maximum value is M, then we need dlogMe
bits for each number, which can imply a large number of non meaningful bits if the sequence
is composed mostly by small numbers.
In general, according to the Shannon’s theory [36], the following equation leads to the
probability distribution P (x) such that the binary representation of x has optimal length
Lx.

P (x) = 2−Lx (2.4)

Therefore, since the formula above holds for any x, if we use a fixed length binary encoder
we need that the numbers are uniformly distributed in {1, ...,M}; something that happens
very rarely in reality. As a consequence, it is much more fruitful to encode the numbers

4 A totally ordered universe is simply a set in which the relation ≤ is defined.

CHAPTER 2. BACKGROUND AND TOOLS 19

with a different amounts of bits.
Huffman encoding [24], provides an algorithm capable of encode any sequence of integers in
an optimal way. Unfortunately this method requires the explicit storage of a data structure
of size O(M logM) that must be accessed in order to decode the integers, hence leading
to performance degradation both in time and space.
In the following subsection we will show some of the most common integers encoders that
do not require any additional data structure.

2.10.1 Bit-aligned integers encoders

Bit-aligned encoders are integers encoders such that ∀x ∈ N, |Eb(x)| = y bits. Where
Eb(x) : N→ {0, 1}∗ is a generic Bit-aligned encoder of an integer x.
Bit-aligned encoders produce representations which are just a constant factor far from the
optimal one. For this reason they are indeed theoretically good encoders, nevertheless they
are very slow during the decoding phase because of the many bit related operation they
require.

Elias-γ coding Elias-γ coding is a bit-aligned integer encoder that represents a number
x with its binary representation prefixed by the its length expressed in unary. The last
bit of the prefix is shared with the first bit of the binary representation (which is always
1). So, encoding x with Elias-γ encoding requires overall 2blog xc+ 1 bits. We denote the
Elias-γ encoding of an integer x with γ(x).
Some examples are shown in the following line.

γ(9) = 000|1001; γ(14) = 000|1110

Elias-δ coding This kind of encoding, denoted δ(x) represents an integer x with its
binary representation prefixed by the γ coding of its length. Thus for example.

δ(9) = 00|100|1001; δ(14) = 00|100|1110

2.10.2 Byte-aligned encoders

Byte-aligned encoders are integers encoders such that the cardinality of the binary sequence
outputted by them is always a multiple of 8. It is therefore measurable in bytes.
Byte-aligned encoders are theoretically worse than Bit-aligned ones for what concern space
occupancy. Anyway they are much faster and easier to implement because the smallest unit
of measure of indexing in modern machines is the Byte. In general Byte-aligned encoders
provide an excellent tradeoff between time and space.

CHAPTER 2. BACKGROUND AND TOOLS 20

Variable-bytes coding Variable-bytes coding (shortly VB) represents any integer x with
a variable number of Bytes. In each of those Bytes there is a status bit followed by 7 bits
of data. If the status bit is 0 then it means that the algorithm is currently scanning the
last byte of the encoded integer, else, also the following Byte has to be scanned. In order
to get the binary representation of x we just have to concatenate the payload bits of each
of the scanned Bytes. So for example:

VB(216) = VB(100 0000000 0000000) = 1|0000100 1|0000000 0|0000000

VB-Fast coding VB-Fast coding (VBFast) has, as its name suggests, a very fast decoding
phase. The reader will immediately argue why from its description. VBFast(x) outputs
the leftmost byte as composed by the leftmost six bits of the binary representation of x
(if x requires less than 6 bits, the remaining bits are padded) prefixed by 2 bits indicating
the number of bytes in addition to the first required to encode the x. In the remaining
bytes there are the rightmost bits of the binary representation of x properly padded. So
for example:

VBFast(10)=00|001010; VBFast(127)=01|111111 00000001

2.11 Prefix search

In the following we give the definition of the prefix search problem, which is the heart of
this work.

The Prefix search problem. Given a set of strings D consisting of n strings whose total
length is N , drawn from an alphabet Σ, and an input string P , the problem consists on
preprocessing D in order to retrieve the strings of D that have P as prefix.

The prefix search problem is experiencing huge interest by the algorithmic community
because of its applications in web search engines. The auto-completion facility currently
supported by the most known search engines is one of them. In fact it is a prefix search
over a dictionary composed by the millions of most frequent and recent queries issued by
the users.
The solution is given on the fly and what id called P in the definition of the problem is
actually the query pattern the user is currently inserting in the search bar.
The problem is challenging because it requires that the answers to it must be given in ”real
time” in order not to try the patience of the user.
Another problem that is strictly linked to prefix search is substring search over a dictio-
nary D . Substring search is a sophisticated problem and finds important application for
example in computational genomics and asian search engines. It consists on finding all the
positions where the query pattern P occurs in as a substring of the strings in D.
This apparently complex problem can actually be algorithmically reduced to prefix search

CHAPTER 2. BACKGROUND AND TOOLS 21

over the set of all suffixes of the dictionary strings.
In practice, prefix search is the backbone of all important problems related to the searching
of strings.
Now, supposing that the strings are lexicographically ordered so that we can give an in-
creasing index to them and supposing that the dictionary D and the query pattern P are
given as in the prefix search definition, we can divide prefix search problem in the following
ones.

Weak prefix search. Returns the range of strings prefixed by P , or an arbitrary value
whenever such strings do not exist.

Full prefix search. Returns the range of strings prefixed by P , or NULL whenever such
strings do not exist.

Longest prefix search. Returns the range of strings sharing the longest common prefix
with P .

In this work we are mainly interested to find a solution to the full prefix search problem.

2.12 Tries

A trie is an ordered tree-like data structure, invented by De la Briandais in [5], capable of
storing and indexing any dynamic set.5 They are widely used because they allow to prefix
search any pattern P on any set of strings S in O(P) time, thus regardless of the number
of strings.
In particular, a trie is a multi-way tree whose edges are labeled by characters of the strings
belonging to S, exactly one character per edge. Any node u of the trie is associated with a
string, denoted by string(u), obtained by concatenating the characters on the edge labels
in the path from the root to u. Therefore, if v is a leaf of the trie, string(v) is one of the
strings in S. In general, for any internal node u, string(u) is a prefix of one or more strings
in S.
The following observation is crucial.

Observation 1. If u is a node of trie T , then ∀ v ∈ T such that v is a leaf and there exist
a downward path from u to v, string(u) is a prefix of string(v). In other words string(u) is
the longest common prefix shared by all the strings associated to the leaves descending from
u

We may also notice that a trie has exactly n = |S| leaves, and at mostN =
n−1∑
i=0
|Si| nodes

(”at most” because some paths can be shared among several strings).6

5We can considered a dynamic set as a sequence whose elements can be added or removed arbitrarily
6Note that N = Ω(n).

CHAPTER 2. BACKGROUND AND TOOLS 22

If we need to check wether a string P prefixes some strings in the set, we just have to see
if there exist a downward path from the root to any node u ”spelling” P, i.e., a path whose
edge label characters are the same of P. The main problem in tries is how to efficiently
implement the following of the path, that is, determine which is the edge we need to chose
in order to follow the characters of P. Indeed, the very best solution is to use a perfect hash
table which stores only the used characters and the pointers to their associated nodes.

2.12.1 Compacted trie

The trie described in the previous section can be of unacceptable size if there are long
strings with short common prefixes, thus resulting in a trie with a lot of unary nodes, i.e.,
nodes with just one son. To circumvent this situation we may contract the unary paths
into one single edge, making edge labels variable length strings instead of single characters.
The resulting trie is called compacted, or PATRICIA and any edge label in such a trie is
actually a substring of a string Sk ∈ S: Sk[i, j]. Thus, edge labels can be represented as a
triple 〈k, i, j〉.
Since any node is at least binary and there are no NULL pointers in internal nodes, we have
that the total number of nodes in a compacted trie is O(n). As a consequence, the space
occupied by a compacted trie is O(n) too. The compacted trie was devised by Morrison in
[30].

2.12.2 PATRICIA trie

A PATRICIA trie, or blind trie, defined in [13], is a compacted trie whose edge labels are
single characters and whose nodes are labelled with the length of their associated strings.
The conversion from a compacted trie to a Patricia trie is straightforward and, rather than
the Patricia trie strips some information out of the associated compacted trie, it is still able
to perform prefix search over a set of strings S with the same asymptotical complexity:
O(|P |), exploiting an algorithm called Blind search.
Moreover, the fact that we just have to store a single character per edge label greatly
increases the possibility to store the whole trie in main memory, avoiding the I/Os needed
to access the substring characters in the compacted trie. For this reason, PATRICIA tries
are extremely efficient in practice. Indeed, because of the fact that any node in a PATRICIA
trie is at least binary and there are no NULL pointers stored in internal nodes7, we may
point out that it occupies O(n) bits of space, thus O(1) bits per indexed string (e.g., 8 bits
for the edge label and 32 bits for the node labels). Moreover, for the same reasoning, the
time to perform a blind search of a prefix of S on such a trie belongs to O(log |S|).

7The topology of PATRICIA trie indexing a set S is the same of the compacted trie indexing the same
set.

CHAPTER 2. BACKGROUND AND TOOLS 23

Figure 2.3: Tries associated to the set of strings S = {abaco, abate, abbazia, abraso,

asso, caccia, cane}

ε

S6S5

ccia ne

ε

S4ε

S3S2ε

S1S0

co te

a

bazia

raso

b sso

a ca

(a) Compacted trie associated to S

0

2

S6S5

c n

1

S42

S3S23

S1S0

c t

a

b

r

b s

a c

(b) PATRICIA trie associated to S

CHAPTER 2. BACKGROUND AND TOOLS 24

2.13 Ternary search trees

Ternary search trees (shortly TST) were described for the first time by Bentley and Saxe
in [3]. They combine the features of binary search trees and search tries. Any node of a
ternary search tree stores a single character, a pointer to an object (or an object depending
on the implementation) and exactly three pointers to its children. Because of the limited
number of sons per node TSTs are much more space efficient than tries, whose nodes must
store one pointer for each alphabet symbol.
When we search for a string (or a prefix) in this data structure, we compare the character
a associated to the current node with the currently scanned character of our string, call it
b. If a < b we continue the search in the right son of the current node, if a > b we search
in the left son; if instead a = b then we may examine the next character of the looked
string and proceed the search in the middle child of the node.
The search stops when all the character of our string has been matched or when a mismatch
is found but the current node has not a pointer to the son we would want to visit.
In order to insert a new string S in the ternary search tree we follow the same procedure
used to search S up to we do not find a mismatch. Suppose that S[i] is the mismatch
character and a is the character contained by the current node u; if S[i] < a then the left
child of u becomes the root of a ternary search tree formed by |S| − i + 1 unary nodes
with only the pointer to the middle child set, whose labels are the symbols spelling the
characteristic suffix of S; else, the same tree is rooted by the right child of u.
Unfortunately space efficiency in TSTs comes at the cost of time. Indeed we have to per-
form a percolation of binary search tree for each character of the looked string, which may
cost from O(log |Σ|) comparisons to O(|Σ|) comparisons, where Σ is the alphabet from
which the strings are drown. The cost of such a search depends on how well the tree is
balanced.
Eventually, a search in a ternary search tree would require from O(|P | log |Σ|) up to
O(|P ||Σ|) comparisons in the worst case, therefore, keeping a ternary search tree balanced
is crucial for the performance of the search. The balancing of a TST is directly dependent
on the order in which the strings are inserted in the data structure.
In this regard, imagine to insert a set of strings one by one according to their lexicographic
order: there would be no node with a left son and the whole data structure would result
in a concatenation of linked lists.
In this case looking for a match in each character of the pattern P would require O(|σ|)
comparison in the average case. Moreover, It has been shown in [3] that searching for a
string out of n in a perfectly balanced ternary search tree requires at most blog nc + |P |
comparisons.
If we know all the strings we are going to insert in the tree, then we may insert them
in random order to get a randomised ternary search tree composed by randomised binary
search trees, which are binary search trees requiring amortised O(log |Σ|) comparisons for
searching in the worst case scenario. For deeper understanding of amortised analysis see

CHAPTER 2. BACKGROUND AND TOOLS 25

[37].
We may also build a completely balanced tree by inserting the median element of the input
set, then recursively apply the same criteria of selection inserting all the lesser strings and
greater strings.[4]
Ternary search trees suffer from the same ”unary path pathology” of digital search tries.
Fortunately we can build compacted ternary search trees to remove unary paths storing
string pointers instead of single characters in each node. We may also build PATRICIA
ternary search trees which can avoid random I/Os on the string set while performing
searches.

a

c

n

s

εS3ε

S2ε

S1ε

S0ε

ca

Figure 2.4: Unbalanced compacted ternary search tree according to string set:
{abaco,caccia,cane,caso}.

c

εn

S3S2S1

S0

a

Figure 2.5: Balanced compacted ternary search tree according to string set:
{abaco,caccia,cane,caso}.

CHAPTER 2. BACKGROUND AND TOOLS 26

2.14 Path decomposed tries

Path decomposition is an effective way to reduce the height of any trie. A path decompo-
sition T c of a trie T is a tree whose nodes represent a path of T .
Path decomposed tries can be defined recursively in the following way: a root-to-leaf path
in T is chosen as the root of T c. The same procedure is applied for each sub-trie hanging
off the chosen root-to-leaf-path. Any path branching from the root-to-leaf path chosen as
the root of the path decomposed trie becomes a child of the root of T c. There is not a
specified order for the children of the root; for instance, in [14] the sub-tries are arranged
in lexicographic order, while in [34] they are arranged in bottm-to-top left-to-right order.
The main property of path decomposed tries is that there exist a one-to-one correspondence
among the nodes of T c and the paths in T . That is, a root-to-node path in T c corresponds
to a root-to-leaf path in T .
Therefore, if we index a set of strings S with T c, each node in T c corresponds to a string
in S and the number of nodes in T c is exactly equal to the cardinality of S.
The height of the path decomposed trie is surely not larger than the height of the trie
T . T c has different properties according to the policy adopted when choosing the decom-
position paths (i.e., the node-to-leaf paths hanging off the currently chosen one). In the
following we describe two of these strategies underlying their consequences on the path
decomposition of T .

Leftmost path. We always choose the leftmost child in path decomposition. If the leftmost
path policy is used in path decomposition, the depth first order of the nodes in T c is equal
to the depth first order of their correspondent leaves in T . Hence, if T is lexicographic
ordered, so T c is.

Heavy path. Always choose the child who has the most leaves (arbitrary breaking ties). If
this kind of strategy is used, the height of the path decomposed trie is bounded by O(log |S|).

The decomposition obtained with the leftmost path policy is called lexicographic path
decomposition, while the one obtained via the heavy path strategy is called centroid path
decomposition.
When we implement a string dictionary with a path decomposed trie, the leftmost path
strategy ensures that the indexes returned by Lookup (and the strings returned by Access)
are lexicographic, but incurring in no guarantees on the height of the decomposed trie,
which anyway can be no higher than the original trie.
Instead, heavy path ensures logarithmic guarantees on the height of the trie hence it is
advantageous when the order of the indexes is not significant.

CHAPTER 2. BACKGROUND AND TOOLS 27

abaco

caccia

cane

assoabrasoabbaziaabate

Figure 2.6: Path decomposition trie obtained via lexicographic decomposition of the trie
in Figure 2.3a.

Chapter 3

Compressing string dictionaries

In this chapter we deal with the problem of representing a dictionary of strings (see Section
2.8) in a compressed fashion. In particular, in Section 3.1 we will show the methods used to
represent the dictionary data, i.e., the strings, while in Section 3.2.1 we will illustrate how
to store the additional information needed to implement Lookup and Access operations on
such a dictionary.

3.1 Dictionary representation

In this section we expose the algorithms exploited in order to compress the strings of the
dictionary. All of them suppose that the set of strings are lexicographically ordered so
that the longest common pieces of information are shared between two consecutive strings.
Moreover, we suppose that the ordered strings are stored contiguously on disk because
all the encoders reconstruct any string of the dictionary scanning the ones that precede
it according to lexicographic order. In fact, we know from the external-memory model
(Section 2.6) that accessing contiguous memory locations yields to great benefits in terms
of time.
Section 3.1.1 describes Front coding, which is the backbone of all our encoding schemas,
even though it does not ensure optimal performance when decoding a generic string of the
dictionary. In Section 3.1.2 we describe another algorithm: Front coding with bucketing
or Bucket coding, which is nowadays the most used dictionary compression algorithm,
enabling good empirical performance in decoding but not any clear theoretical bounds on
space and time. Section 3.1.3 contains the description of the Locality preserving front coding
algorithm, which ensures optimal efficiency both in space occupancy and in decompression
time. Lastly, in Section 3.1.4 we illustrate a method that, inspired by locality preserving
front coding, allows to encode a set of string ensuring the optimal access to any prefix of
the string set, yet ensuring optimal space.

28

CHAPTER 3. COMPRESSING STRING DICTIONARIES 29

3.1.1 Front coding

One of the most effective but also intuitive way to compress an array of lexicographically
ordered strings is to exploit their common prefix.
The ordering of the strings will likely make happen that if we pick any string at random,
the ones that succeed it will probably share some of its first characters. We know that any
string Si of the dictionary can be though as composed by two parts: the first p characters
are the ones that are shared with at least one of the strings in the dictionary; the last
|Si| − k characters are not shared with any other string and they are called the character-
istic suffix of Si. Indeed, if the strings are ordered, p is equal to the number of characters
that Si shares with Si−1 or Si+1, so we do not need to find the strings sharing the longest
common prefix with Si in all the dictionary.
Therefore, we can represent any string in a dictionary as composed by a numerical part en-
coding the length of the shared prefix and by a literal part representing the its characteristic
suffix. For instance, if we examine the following small set of strings

{abaco, abate, abbazia, asso, casa}

we may compress it with the method mentioned above, obtaining

(0,abaco),(3,te),(2,bazia),(1,sso),(0,casa)

or equivalently, starting from right and proceeding to the left

(3,co),(2,ate),(1,bbazia),(0,asso),(0,casa)

This compression method is called front coding (shortly FC) and the encoding of a dictio-
nary D obtained with this algorithm is denoted FC(D). Front coding is a well known and
widely used method to encode an ordered set of strings, it was introduced by Witten and
al. in 1999 [39].
Note that the total number of characters and the set of integers are the same in both the
examples; actually, this property holds for the front coding of any dictionary. Conven-
tionally, in this work we assume to front code any dictionary starting from the first string
according to lexicographic order. Formally, we may define the front coding of a dictionary
D = 〈s1, s2, ..., sk〉 as the sequence

FC(D) =〈(l1, ŝ1), (l2, ŝ2), ...(lk, ŝk)〉

where li for i = 1, ..k represents the length of the prefix that string si shares with si−1:
lpc(i,i-1)1, while ŝi is the remaining suffix of si, i.e., its last | si | − li characters.
Also note that we do not store only the characteristic suffix of each string, otherwise we
would lose some symbols, anyway we are sure that the characters belonging to the longest
common prefix of each string are stored just once. So, the following observation holds.

1See section 2.4

CHAPTER 3. COMPRESSING STRING DICTIONARIES 30

Observation 2. Given an ordered set of string S and its encoding FC(S) obtained by front
coding, then ∀s ∈ S, if p is the longest common prefix of s among all the strings of S, we
have that if a ∈ p, there exists one and only one suffix ŝ in FC(S) such that a ∈ ŝ.

Obviously, using this kind of technique, we have a gain in compression in the case the
binary representation of the numerical part does not exceed the size of the binary repre-
sentation of the shared prefix. For example, if we represent the integers of the dictionary
above as 4 Byte integers, the compressed dictionary would actually require more space than
the not compressed one.2 For further understanding, an estimation of the storage cost of
this algorithm has been done in [14]. In that work it has been introduced the concept of
Trie size of any dictionary D as

Trie(D) =
k∑
i=1

|ŝi| (3.1)

which stands for the total number of characters front coding emits as output. Moreover,
the authors of the paper devised a lower bound LT(D) that is valid for any dictionary of
strings. In particular LT(D) = Trie(D) + log

(Trie(D)
t−1

)
, where t is the the number of nodes

in the compacted trie built on D3.
In order to have a clearer understanding of the quantity log

(Trie(D)
t−1

)
, in [15] it has been

proved that log
(Trie(D)

t−1

)
= o(Trie(D)) +O(K).

As a final result, in [14], the authors found also that the space occupied by a front coded
ordered set of strings could be put in the following range.

LT(D) ≤ FC(D) ≤ LT(D) +O(K log
N

K
) (3.2)

Where N is the total number of characters in D.
In order to estimate the size of a file4 produced by front coding, we can sum the average
suffix length of each string, we call this number E[ŝ]. If we multiply E[ŝ] with the number
of strings K we get the total amount of characters outputted by FC, which is Trie(D).

Trie(D)= KE[ŝ]

If we call I the sequence of the binary representations of integers outputted by FC, which
we will see can have different encodings, we can get an estimation of the size of a file
generated by from coding using the following formula.

|FC(D)| = KE[S] + |I| (3.3)

2Assuming each character is encoded with 1 Byte.
3See Figure 2.3a to see an example of compacted trie built on a dictionary.
4A file can be thought as a binary representation.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 31

Supposing that we have a way to access the position of any pair in the dictionary compressed
by front coding, the time to decode a randomly accessed string in such a dictionary is
directly proportional to the density of the not compressed strings (the ones that have
li = 0, i.e., the ones that do not share characters with their previous string). In fact, once
we have had access to the position of the i-th encoded string, if it has li > 0, we need
to decode its previous string si−1 in the dictionary in order to reconstruct si. si−1 could
in turn be encoded, forcing us to repeat this proceedings up to the first string that has
been inserted uncompressed in the dictionary. Therefore, the time to access a string in a
dictionary compressed in such a way could be not negligible at all, and in the worst case
could force us to scan the entire string set.5

Rear coding Rear coding (shortly RC) encodes the set of strings in a way that is very
similar to front coding. The suffixes are exactly the same that FC would have outputted,
but instead of pairing each suffix with the length of the longest common prefix for that
string, we put for the i-th string si the value |si− 1| − lpc(i, i − 1), that is the number of
characters we have to discard from si−1 in order to get the longest common prefix between
si and si−1. Formally, calling li = lpc(i, i− 1) we have that

RC(D) = 〈(0, s0), (|S0| − l1, ŝ1), (|s1| − l2, ŝ2),, (|sn−2| − ln−1, ŝn−1)〉

Therefore, if we encode the same set of strings previously encoded via FC with rear coding
we would get the following.

(0,abaco),(2,te),(3,bazia),(6,sso),(4,casa)

For simplicity, in this work we will not make any distinction between front coding and rear
coding. We will denote both the algorithm with FC and we will use the one or the other
according to practical convenience. Indeed the only difference between these two algorithms
resides in the numerical part of the pairs and both the techniques can be exploited in any
of the compression algorithms exposed in the following subsections, which instead modify
the number of not compressed strings.

3.1.2 Front coding with bucketing

Front coding with bucketing or Bucket coding, is a parametric compression algorithm, de-
noted with BC(D, x) x ∈ N, D ∈ Σ∗∗ or BC(x) when the encoded dictionary is clear from
the context, simply stating that there must be an uncompressed string every x. In this
way, we never have to decompress more than x strings in order to reconstruct any string
in the compressed dictionary (provided that we can access to all the uncompressed ones).
Bucket coding is the easiest algorithm that deals with the number of fully copied strings in
a compressed dictionary and it is also the most used, even though it does not ensure any

5In other words the time to decode a string in D is Θ(|FC(D)|).

CHAPTER 3. COMPRESSING STRING DICTIONARIES 32

theoretical bound both on space and on time because it does not allow any control on the
number of characters that must be scanned backwards to decode a string. For instance,
we may have to compress a file which has mostly short strings and some very long ones,
thus, we may stuff in a bucket some short strings and many very long ones. In order to
reconstruct a short one, call it si we may have to scan one or more long strings entirely,
preventing to reconstruct si in O(|si|) I/Os.
Also note that the scan of a bucket of x strings produced by BC(x) might be increased in
time complexity from O(x) to O(x2) because of the decompression of that block. In fact,
if we take the following sequence of strings.

(a,aa,aaa,...)

which is front coded as

((0,a),(1,a),(2,a),(3,a),...)

There are Θ(x) pairs in this block, which represent Θ(x) strings whose total length is
x∑
i=0

Θ(i) = Θ(x2) characters. Despite these pathological cases, in practice the space reduc-

tion consists of a constant factor so the time increase incurred by a block scan is negligible.
Overall this approach introduces a time/space trade-off driven by the parameter x. As far
as time is concerned we can observe that the bigger is x, the better is the compression
but the higher is the decompression time; conversely, the smaller is x, the faster is the
decompression, but the worse is the compression because of a larger number of fully-copied
strings. Moreover, the lengths of the uncompressed strings are unbounded hence, the com-
pression made by BC can be ineffective.
Bucket coding allows to argue the number of copied strings Cs directly from the parameter
x and from the total number of string K with the following formula.

Cs =

⌊
K

x

⌋
(3.4)

While, if we consider the subset of the uncompressed strings produced by BC(D, x), that
is {U0, U1, ..., Uj , ..., UCs−1} ⊆ D, we may notice that Uj = Dj·x.

3.1.3 Locality preserving front coding

Locality preserving front coding, denoted with LPFC(D, x) D ∈ Σ∗∗, x ∈ N, proposed by
Bender et al. in [2], is another parametric compression algorithm that deals with the num-
ber of uncompressed strings in a dictionary. The best feature of this algorithm is that it
provides a controlled trade-off between space occupancy and the time to decode a string.
The underlying algorithmic idea of locality preserving front coding is the following: a string
is front-coded only if its decoding time is proportional to its lengths, otherwise it is written
uncompressed. The outcome in time complexity is clear: we compress only if decoding is

CHAPTER 3. COMPRESSING STRING DICTIONARIES 33

optimal. Actually, this ”constant of proportionality” controls also the space occupancy of
the dictionary compressed with such an algorithm. Formally, suppose that we have front
coded the first i strings (s0, ..., si−1) into the compressed sequence
F = 〈(0, ŝ0), (l1, ŝ1), ..., (li−1, ŝi−1)〉; we want to compress si so that we have to scan back-

wards at most x|si| characters of F . So, we check wether
i−1∑
j=0
|ŝj | ≤ x|si|. If this happens,

we front code si into (li, ŝi) and we append this pair to the sequence F ; otherwise si is
copied uncompressed and we append the pair (0, si) to F .
Surprisingly, the strings that are left uncompressed, and were instead compressed by the
classic front-coding scheme, have a length that can be controlled by the means of the
parameter x, as it is shown in the following.

Theorem 6. Locality preserving front coding LPFC(D, x) takes at most (1+ε)FC(D) space,

and supports the decoding of any dictionary string si in O(|si|εB) optimal I/Os. Where
ε = 2

x−2 and B is the page size according to external memory model.

It is very noteworthy the close relation between the time constant x which express the
maximum number of characters to scan a string si and the space constant ε that provides
a bound to the space occupied by LPFC(D, x).

So, locality-preserving front coding is a compressed storage scheme for strings that can
substitute their plain storage without introducing any asymptotic slowdown in the accesses
to the compressed strings. In this sense it can be considered as a sort of space booster for
any string indexing technique.

Since it will be useful in the next chapters, in the following lines we describe how to
get the number of copied strings Cs produced by LPFC(D, x).
Suppose that the average string length of the dictionary is E[s], and suppose that the av-
erage length of a suffix is E[ŝ], that is the average number of characters which each string
does not share with the preceding one.
Once we have inserted a copied string, the algorithm will emit on average E[ŝ] characters
for each appended one. Hence, we can estimate the number of compressed strings between
two copied strings Sc as follows.

Sc =

⌊
(x− 1)E[s]

E[ŝ]

⌋
(3.5)

On average we have one copied string every Sc + 1. If we know that the number of strings
in the dictionary is K, we can evaluate the number of copied strings Cs with the following.

Cs =

⌊
K

Sc + 1

⌋
(3.6)

Note that the average length of the suffixes of a dictionary D can be calculated empirically

CHAPTER 3. COMPRESSING STRING DICTIONARIES 34

by applying FC(D) = LPFC(D,∞)6 and then computing the average length of the literal
part of each string outputted by the algorithm.

3.1.4 Optimal prefix retrieval

In the previous section we presented a solution which is optimally compressed and still
supports the decoding of every string with optimal I/Os.
The only issue with that solution is that it does not guarantee optimal decompression time
for prefixes of the strings, in fact, the decompression of a prefix p of a string si may cost
up to Θ((1 + 1

ε)|si|), rather than Θ((1 + 1
ε)|p|) I/Os.

In order to acquire the optimal decompression time for any prefix of any string in the sorted
set D we modify locality preserving front coding according to a method reported in [15],
in the following way.
We construct the superset D̂ of D which contains all the possible prefixes of all the strings
in the ordered set. D̂ is actually another ordered set of strings: the one which is obtained
by the DFS7 visit of the trie associated to D.8 Figure 3.1 shows an example of such a visit.

We call TD the trie associated to D; we assume that its nodes are numbered according
to its DFS visit. Any node u in this trie is associated with a label label(u), which is the
string of variable length on the edge (p(u), u), where p(u) is the father of u in TD.
Note that any node u uniquely identify a string: string(u), obtained by juxtaposing the
labels on the edges of the path from the root of the trie to u. string(u) is actually the prefix
of all the strings string(v) associated to the nodes v descending from u.
It is possible to compress the superset D̂ with locality preserving front coding which assures
optimal decoding time for any strings belonging to D̂, hence to any prefix of any string
belonging to D.
In order to prove an important property of D̂, we recall that the quantity Trie(S), that is
related to any dictionary S having T as associated trie is the following.

Trie(S) =
∑
u∈T

l(p(u), u)

In practice, Trie(S) is the sum of the lengths of the edge labels in T . The following
observation is crucial.

Observation 3. Given a set of string S and its superset Ŝ obtained by the DFS-visit of
its associated T , we have that

Trie(Ŝ) = Trie(S) (3.7)

6Obviously we may pass as parameter of LPFC the total number of characters of the dictionary instead
of ∞.

7DFS stands for Depth First Visit ; it is an algorithm for traversing a tree starting from the root and
exploring as far as possible along each branch before backtracking.

8See Section 2.12 for the definition of a Trie associated to a set of strings.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 35

Figure 3.1: Depth-first visit of the trie associated to dictionary D ={abaco, abate,

abbazia, abraso, asso, caccia, cane}. A node with label n is the n-th node visited
by DFS.

0

9

1110

ccia ne

1

82

763

54

co te

a

bazia

raso

b sso

a ca
a

ab

aba

abaco

abate

abbazia

abraso

asso

ca

caccia

cane

The observation above implies that the sum of the lengths of the literal parts outputted
by LPFC(S, x) is the same of the one produced by LPFC(Ŝ, x), hence

|LPFC(Ŝ, x)| = (1 + ε)|FC(S)|+ O(|S|)

because the number of prefixes of S is bounded by the number of internal nodes of T , that
are O(|S|).
So, if we take as example the set of strings taken in Figure 3.1, we have that the front
coding of such a set is the following

(0,abaco),(3,te),(2,bazia),(2,raso),(1,sso),(0,caccia),(2,ne)

while the front coding of the set procured by its DFS-visit is the following.

(0,a),(1,b),(2,a),(3,co),(3,te),(2,bazia),(2,raso),(1,sso),(0,ca),(2,ccia),(2,ne)

It is easy to note from the example above that the sums of the lengths of the literal parts
of the pairs are equal to 27.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 36

Superset creation In this paragraph we discuss how to build up the superset Ŝ from
the sorted set of strings S.
In order to obtain such a superset, we need to visit the trie associated to S in Depth-first
search (DFS) order, because it is the visiting order that ensures the lexicographic ordering
of the strings associated with each node u of the trie, namely string(u).
The trie associated to S: Trie(S) is too big to be created and visited directly, so, we devised
a way to just simulate the DFS visit of such a trie, without the need to allocate the huge
amount of memory needed to store it. As we will explain later, first of all, in order to
perform such a visit, we need to build up what is called the longest common prefix array
of S, which we denote LCPA(S).
This array simply stores in position i the longest common prefix between Si+1 and Si.
To build up LCPA we just have to scan the whole set of sorted strings checking which is the
maximum number of shared characters between each pair of consecutive strings. Actually,
the time complexity for instantiate such an array is not directly proportional to the the
total number of characters in the string set, which we call N, but to the total number of
shared characters C.

Of course C < N , and C =
S−1∑
i=0
|lcp(i + 1, i)|, so, we can stop the scanning of each string

as soon as we find a mismatch character.
Starting from the longest common prefix array, we devised a recursive algorithm able to
output the strings associated to each node of TS , which is illustrated in Algorithm 1.

Algorithm 1 Trie DFS visit simulation

1: S[] = input sorted set of strings
2: T[] = output set of strings
3: LCPA[] = lcp-array
4: i = 0, j = length of LCPA[]
5: procedure DFS visit simulation(i,j,S[],T[],LCPA[])
6: if i==j then
7: Append S[i] to T[]
8: else
9: newi = index of the leftmost minimum element in LCPA[i+1,j]

10: if LCPA[newi] > LCPA[i] then
11: Append LCP(S[newi],S[newi-1]) to T[]
12: end if
13: Call DFS visit simulation(i,newi-1,S[],T[],LCPA[])
14: Call DFS visit simulation(newi,j,S[],T[],LCPA[])
15: end if
16: end procedure

Analysing this algorithm, we can realise that it outputs all the prefixes of all the strings

CHAPTER 3. COMPRESSING STRING DICTIONARIES 37

in the dictionary S, and the strings themselves in lexicographic order. Considering that
LCP(sk, sr), with sk, sr ∈ S9 returns the longest common prefix between sk, sr, for each
range delimited by the couple (i, j), the algorithm outputs the leftmost shortest prefix in
that range, which is in position newi and whose value is stored in LCPA[newi]. Then, the
algorithm recurs calling itself in the range i, newi−1, hence outputting the leftmost shortest
prefix among the strings from si+1 to snewi. As final step, it recurs again to output the
leftmost shortest prefix among the strings from snewi to sj . The recursion stops when the
range extrema coincide: i = j. At that point, the algorithm has already outputted all the
possible prefixes of si and it must output string si itself.
The complexity of the algorithm is actually given by the search for the leftmost minimum
element in the various ranges and by the number of characters we need to ”copy” in the
output buffer T. For the latter, we can do nothing, since that quantity is exactly the total
number of characters we need to output, the former instead can be optimised in order to
avoid a linear scan of the longest common prefix array from position i to position j at each
recursive step, which would make the overall time complexity become O(|S|2), absolutely
unacceptable for large dictionaries.
So, an efficient implementation of line 9 of Algorithm 1 is important. Fortunately, finding
the minimum element among a collection of them is a very diffused and studied problem,
commonly called Range minimum query (RMQ).10 The solution we have adopted in our
implementation allows to answer RMQ in constant time with the help of a data structure
commonly called Cartesian tree that occupies O(|S|) space. The description of the RMQ
solution adopted can be found in [23] and its implementation in the Succinct library by
Ottaviano [33]. This data structure allows us to build up Ŝ in O(|S|) time and space,
which is optimal.
Moreover, we may modify algorithm 1 to reduce the number of recursive calls, for example
outputting the strings in their lexicographical order when we have a series of equal consec-
utive values in the LCPA.
The improved version of Algorithm 1 is illustrated by Algorithm 2 located in the following
page.

9While lcp(i, j) outputs the length of LCP(si, sj).
10See Section 2.9.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 38

Algorithm 2 Trie DFS visit simulation with reduced number of recursive calls

1: S[] = input sorted set of strings
2: T[] = output set of strings
3: LCPA[] = lcp-array
4: i = 0, j = length of LCPA[]
5: procedure DFS visit simulation(i,j,S[],T[],LCPA[])
6: if i==j then
7: Append S[i] to T[]
8: else
9: newi = index of the leftmost minimum element in LCPA[i+1,j]

10: Append LCP(S[newi],S[newi-1]) to T[]
11: Call DFS visit simulation(i,newi-1,S[],T[],LCPA[])
12: while newi <j AND LCPA[newi+1] == LCPA[newi] do
13: Append S[newi] to T[]
14: newi = newi+1
15: end while
16: Call DFS visit simulation(newi,j,S[],T[],LCPA[])
17: end if
18: end procedure

Calling newi = RMQ(i+ 1, j), lines from 12 to 15 of Algorithm 2 output all the strings
which follow snewi that share the same prefix, and snewi itself. Those strings are outputted
after all the prefixes and all the strings that lexicographically precede snewi have been
already put in the output buffer and before all the prefixes and the strings that are lexico-
graphically greater than them. The last two statements are guaranteed by the procedure
callings in line 13 and 18.
Note that in this version of the algorithm we need no more the ”if” statement in line 10 of
algorithm 1 because the ”while” related code (lines 13-18) ensures to take care of blocks
of consecutive identical lcps in LCPA.
In fact, without the check in line 10 on algorithm 1 it may happen that we output the
same prefix that the algorithm has already outputted during the preceding recursive call in
the case that we have a sequence of local minima after the position returned by the range
minimum query.
In Table 3.1 we show the execution of algorithm 1 on a very simple sorted set of strings.
We may notice that visiting the trie in Figure 3.1 in DFS order we obtain the same set of
strings outputted by the algorithm, shown in table 3.1 (b). Lastly, Figure 3.2 shows the
implementation of Algorithm 2, written in C++.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 39

1 void T r i e V i s i t U t i l (const uint ∗ lcpArray , s u c c i n c t : : c a r t e s i a n t r e e &t ,
↪→ s u c c i n c t : : e l i a s f a n o &E, const char ∗ f , const std : : o f s tream ∗output ,
↪→ u i n t 6 4 t i , u i n t 6 4 t j) {

2 u i n t 6 4 t s i , s i end , newi ;
3 i f (i == j) {
4 s i = E. s e l e c t (i) ;
5 s i e n d = E. s e l e c t (i +1) ;
6 s t r i n g a (& f [s i] , s i end−s i −1) ;
7 ∗output << a . append (”\n”) ;}
8 else {
9 // f i nd the index o f the minimum lcpArray

10
11 newi = t . rmq(i +1, j) ;
12
13 i f (lcpArray [newi] != 0 && lcpArray [newi] > lcpArray [i]) {
14 ∗output << EmitString (newi , lcpArray ,E, f)<< ”\n” ;
15 }
16 T r i e V i s i t U t i l (lcpArray , t ,E, f , output , i , newi−1) ;
17 while (lcpArray [newi +1] == lcpArray [newi] && newi+1<=j) {
18 s i = E. s e l e c t (newi) ;
19 s i e n d = E. s e l e c t (newi+1) ;
20 s t r i n g a (& f [s i] , s i end−s i −1) ;
21 ∗ output << a . append (”\n”) ;
22 newi = newi +1;
23 }
24 T r i e V i s i t U t i l (lcpArray , t ,E, f , output , newi , j) ;
25 }
26 }

Figure 3.2: Actual implementation of Algorithm 2. The positions of the strings are stored
in the Elias-Fano bitvector E (See section 2.7). The function EmitString(i,...) simply
returns the fist LCPA[i] characters of the i− th string in the set of strings

3.2 Storing additional information

In this section we deal with the problem of storing efficiently the additional information
needed to access any string of a dictionary compressed by the algorithms described in the
previous section. We have seen that all those algorithms store some strings compressed and
others uncompressed and that we can not decode a compressed one without having access
to its closest uncompressed string Uj . Therefore, we need some information to access such
a string and some others to decode the strings appearing after Uj . Some of both these
kinds of information can be stored together with the representation of the strings while
some others must be stored separately. The information stored outside the memory area
dedicated to the representation of the strings are treated in Section 3.2.1, whilst the ones
blended with the strings are discussed in Section 3.2.2.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 40

Table 3.1: Simulation of the execution of Algorithm 1 on a string set

Set of strings: abaco abate abbazia abraso asso caccia cane
lcp-array: 0 3 2 2 1 0 2

indexes: 0 1 2 3 4 5 6

(a) Description of the input string set with the associated lcp-array

Call depth i j RMQ(i+1,j) Left Range Right range Emitted

1 0 6 5 [0,4] [5,6] ε
2 0 4 4 [0,3] [4,4] a

3 0 3 2 [0,1] [2,3] ab

4 0 1 1 [0,0] [1,1] aba

5 0 0 / / / abaco

5 1 1 / / / abate

4 2 3 3 [2,2] [3,3] ε
5 2 2 / / / abbazia

5 3 3 / / / abraso

3 4 4 / / / asso

2 5 6 6 [5,5] [6,6] ca

3 5 5 / / / caccia

3 6 6 / / / cane

(b) Execution of the algorithm on the input described in table (a), the output set can be read by
reading the last column from top to bottom.The symbol ε stand for the empty string.

3.2.1 Storing the references to the strings

In this part of our work we tackle the problem of storing the data enabling the first access
to the compressed dictionary C(D), where C is any of the compression algorithms illus-
trated in Section 3.1. If we call U ⊆ D the set of fully-copied strings outputted by C, we
have that in order to implement Access(i)11 we need to retrieve the position of Uj = Dk
such that k ≤ i and Uj+1 = Ds is such that s > i. In other words, we need to retrieve the
position of the encoding of the first uncompressed string preceding the i-th in C(D).
Typically, those information are stored separately from the dictionary and increase the
time to perform Access(i) of at least a constant number of I/Os, nevertheless, they are
fundamental because without them we would have to scan the compressed dictionary from
the beginning whatever is the position of the string to be decoded. In the following para-
graphs, we will denote the total number of strings of the dictionary with n while the total
amount of characters will be indicated by N.

11See Section 2.8.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 41

Array of string pointers The simplest solution to have access to any string of a dic-
tionary D is to store the pointers of the starting character of each string in an array of
pointers called A[0, n − 1]. We denote the fact that the i-th cell of A stores the position
of the i−th string with A[i] → Di, or A[i] = &(si[0]) where & is the symbol, inspired by
the C programming language, indicating the function returning the virtual address of an
abstract memory location.
For now, we assume that each cell of the array A is w bits long with w = Ω(logN), other-
wise we may not have references of the strings whose address is too long. Typically w is 4
or 8 Bytes in modern machines. Moreover, we would need another array, B[0, n− 1] such
that B[i] stores the index of the first uncompressed string Uj appearing before Di. After
all, assuming we compress the dictionary with locality preserving front coding, exploiting
arrays A and B we would need O(1) I/Os to access the position of Uj and O(|Di|/B) I/Os
to decompress the i-th string, which is optimal. Nevertheless, the total space would be
|LPFC(D, x)| + 2wn, which would be not acceptable because the term 2wn would be the
dominant one for many dictionaries. In fact, it is quite reasonable that in real world the
average size of the suffixes outputted by LPFC is greater than 2w. At the end we would
need more space to index the strings than to store them.
In the following paragraphs we will expose some solutions that try to avoid this issue. It is
also possible to point out that we may avoid to store the array B in case we compress the
dictionary with FC or BC, anyway, both the solutions are not optimal because the decoding
of a string would require O(|FC(D)|) I/Os.

Figure 3.3: Array of pointers of FC(〈abaco, abate, abbazia, abraso, asso〉)

Succinct array of string pointers In this section we describe a solution, proposed
in [15], which allows to efficiently perform a variant of the Access(i) operation, called
Retrieval(i,l) which returns the first l characters of the string Di. In particular, this solution
allows to represent the arrays A and B described in the previous paragraph in a succinct

CHAPTER 3. COMPRESSING STRING DICTIONARIES 42

way, reducing the space occupancy of the indexing data structure of the dictionary.
Now we call R the binary representation of the output of the dictionary compressed via
the locality preserving front coding, which we remind it is a sequence of couples composed
by an integer and by the suffixes of the strings in D. At this point, we define the following
binary arrays:

1. The binary array E[0, |R| − 1] which has a bit set to 1 in correspondence of the
starting of the encoding of some string Di. That is, if E[k] = 1 then, assuming that
E[k] contains the i-th 1, R[k] = Pi[0], where Pi is the binary representation of the i-th
pair produced by the compression algorithm. k is exactly the index of the starting
position of the i-th pair (li, D̂i) of the compressed dictionary. E contains n bits set to
one and it is encoded via the Elias-Fano encoding, enriched with some bits providing
the Select1 operation12, thus taking 2n+ n log (|R|/n) + o(n) bits of space.

2. The binary array V[0, n− 1] such that V[i] = 1 if D̂i = Di, V[i] = 0 elsewhere; where
D̂i is the suffix of the i-th string outputted by locality preserving front coding.
Some bits are added to V in order to provide Select1 and Rank1 operations, as pro-
posed by Munro in [31], so that overall V is n+ o(n) bits long.

The space occupancy of our indexed ordered set of strings D is now equal to
(1 + ε)FC(D) + O(n) bits, where the factor O(n) is here actually negligible thanks to the
succinctness of E and V.

Now we have all what we need to implement efficiently Retrieval(i,l). In fact, a query
Select1(E, i) gives us in constant time exactly the starting position of Pi in R. If the i-th
string belongs to the set of the uncompressed ones, we are done, since it is enough to report
the characters between Select1(E, i) and Select1(E, i+ 1).
In order to know wether Di belongs to such a set, we perform a Predecessor1(V, i) that
according to the definition given in Section 2.4 is equal to Select1(V,Rank1(V, i+ 1)).
Indeed, Predecessor1(V, i) returns i if the i-th string is uncompressed, or the index of the
first uncompressed string preceding Di, call it j, if Di is stored compressed.
Now we can reconstruct Di starting from Dj by copying characters from R starting from
the position in which Dj starts.
First of all, we put the characters belonging to Dj in a buffer B, then, for u = j+1, ..., i we
overwrite the last m = |Du−1| − lcp(Du,Du−1) characters of B. Note that we always know
the length of each string because of the bitvector E13 and because of the encoded lengths
of the shared prefixes.
We can avoid the calculation value m at each step of the algorithm simply modifying the
locality preserving front coding in locality preserving rear coding, outputting, instead of
the longest common prefixes, the value m described above.

12See Section 2.4.
13To get the position of the string after su it is enough to perform Select1(E, u+ 1).

CHAPTER 3. COMPRESSING STRING DICTIONARIES 43

This fact does not break the LPFC guarantees on the optimality of time in decoding
because we do not modify the outputted suffixes D̂i, therefore, reconstructing Di does not
need more than O(|Di|) I/Os.

Having a look to reality, this solution is actually good with respect of storing the plain
array of string pointers, which we remind it is wn bits long. Nowadays typically w = 64,
which implies that we achieve gain in compression with our solution if

2n+ n log (|R|n) < 64n; 2 + log (|R|n) < 64

The quantity |R|n can be upper bounded by N
n , which is equivalent to the average string

length of the dictionary. Having noted this, it is quite straightforward to point out that it
is quite difficult to find strings which are longer than 262 bits (259 characters!).
Moreover, while the number of strings remains constant augmenting the locality preserv-
ing front coding parameter, the outputted sequence of bits R shrinks, reducing in turn the
dimension of the bitvector E.
The binary array V remains unchanged because it depends only by n; obviously it is much
convenient in terms of space because |V| = n+ o(n) < wn = |B|.
Lastly, time efficiency is guaranteed because both the succinct data structures provides
constant time Select and Rank on them.

Actually, we may study method to estimate a lower and upper bound relative to the
storage of the Elias-Fano bitvector E.
We recall the formula for the size of an Elias-Fano bitvector is the following, calling n = |D|
and M = |R|.

|E| = E(n,M) = 2n+ ndlog M
n e+ o(n) ≈ 2n+ n logM − n log n+ o(n) bits

Since the number of strings n remains invariant whatever the compression algorithm, we
may notice that the size of the bit-vector E increases logarithmically, or equivalently
E(M) = Θ(logM) with M standing for the dimension of the compressed file. Thus, we get
the minimum value for M when the size of the binary representation of the compressed
dictionary is minimal, which happens when we compress it with FC. So, we may use formula
3.3 to estimate this number.
If we know the average suffix length for a single string E[ŝ] (the number of characters which
it does not share with the previous string), we have that the following holds.

nE[ŝ] + |I| < M ≤ |B(D)|

Where I is the binary representation of the set of integers outputted by FC whilst B(D) is
the binary representation of D.
At this point we have a lower and upper bound for M , hence we can evaluate the lower
and upper bound for |E| when n is fixed as follows.

E(nE[ŝ] + |I|) < E(M) ≤ E(|B(D)|) (3.8)

CHAPTER 3. COMPRESSING STRING DICTIONARIES 44

Storing only the positions of the copied strings with Elias-Fano We propose now
a different way to store the positions of the strings that can be competitive with respect
to the one described in the previous paragraph. In practice we keep stored in E only the
positions of the uncompressed strings of LCFC(D,x), while the lengths of the suffixes are
stored beside the encodings of their prefixes (or rears). The lengths are stored in such a
position instead that in a separate array in order to avoid one random I/O per Access. The
binary array V remains unchanged.
We recall that in order to implement Access(i) over this data structure we need to retrieve
the index of the first copied string preceding the i− th.
So, we need to find the number of copied strings occurring before the i − th, we call this
number v, which can be obtained by v =Rank1(V, i+ 1).
At this point, since E stores only the positions of the copied strings, we need a Select1(E, v)
to retrieve the position of the v-th string in the compressed dictionary. Instead, to get the
index of the v-th string, call it j, we just need to perform j =Select(V, v). Note that j
is needed because otherwise we would not know how many strings we have to scan before
accessing the i-th one.
The number of operations to get the position and the index of the copied string closest to
the i-th is the same of the version illustrated in the previous paragraph, but we can achieve
some gain in time if the decoding of the lengths is faster than the Selects needed to get the
positions of strings which are stored contiguously after the i-th.
Moreover we surely achieve some gain in space in the representation of E because we just
have one bit set to 1 for each copied string, whilst in the previous version we had a bit set
to 1 for each string. The gain can be relevant because the number of copied strings may
be much lower than the number of the strings.
Recalling the formula to calculate the space occupied by an Elias-Fano bitvector.

E(n,M) = 2n+ n
⌈
log M

n

⌉
+ o(n)

We can express the following observation.

Observation 4. If M is the size of the compressed file and n is the number of ones in the
bitvector E, if k < n < M

E(k,M) < E(n,M) < E(M,M) (3.9)

Proof. We assume for simplicity that the function E is continuous in [0,M] thus, we get
rid of the ceiling. At this point we calculate when the partial derivative of dE

dn is equal to
zero.

2− 1
ln 2 + logM − log n = 0; log n− 2 ≈ logM − 1.45; log n ≈ logM + 0.55; n ≈ 1.46M

We may argue that this point is a maximum from the fact that when n < 1.46M the
derivative is positive. Therefore if n goes from 0 to M , E(n) is monotonically increasing.
It has been proved that reducing the number of ones to be inserted in our Elias-Fano
bitvector of size M (which are at most M) reduces the space occupied by it.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 45

Figure 3.4 illustrates the number of bits occupied by by the Elias-Fano data structure
when M is equal to 100.

Figure 3.4: Number of bits occupied by an Elias-Fano bitvector with M = 100

Array of positions and array of indexes It could be also interesting to store the
positions of the copied strings and the indexes of those, as plain arrays, without exploiting
any succinct data structure.
Indeed, increasing the parameter x of LPFC(x), we decrease the number of copied strings,
which can be very low when the parameter is high enough.
It could be so low that we may save both space and time. For instance, we know that to
store the indexes of the copied strings with a bitvector V we need approximately n+ o(n)
bits, where n is the number of strings, therefore n/8 + o(n) Bytes.
If we store each cell of the array as a 4-Byte integer, we need 4m bytes to store such an
array, where m is the number of the copied strings. Indeed it may happen that the space
required to store V as a plain array is lower than the one required to store if succinctly.

4m < n/8 , m < n/32

So, we save in space if the number of copied strings is approximately less than one 32th

of the total number of strings (actually, the copied strings could be a bit more, since the
bitvector requires a bit more than n bits).

CHAPTER 3. COMPRESSING STRING DICTIONARIES 46

We can also save in time because we can get the index of the copied string closest to the i-th
one via a simple variant of binary search, which requires exactly at most log(m) operations
and I/Os. Since the Select and Rank on the bitvector require a constant amount of time,
independent from the number of the copied strings, it may be faster to perform a binary
search than those operations when the number of copied strings shrinks enough.
The positions of the copied strings can be stored in a plain array too. In this case it is
quite difficult to achieve some savings in space because the Elias-Fano bitvector storing
them is very sparse, very small and tends to reduce its space linearly as the number of
copied strings decreases.
Anyway, we may save time because we would get rid of the initial Select on such a bit-
vector14, substituting it with a simple Access performed on the plain array storing the
positions.
Moreover, despite the fact that we hardly save space storing such positions as an array, in
any case the loss in space would be negligible because again the size of the array depends
on the number of copied strings, which can be very low. Indeed we expect that the size of
this array will be negligible with respect to the size of the compressed dictionary.
In our implementation, we exploited the upper bound function of the C++ standard library
in order to find the index of the copied string preceding the i-th one in the array of indexes.
The following listing shows its signature.

1 template <class ForwardIterator , class T>
2 ForwardIterator upper bound (ForwardIterator f i r s t , ForwardIterator l a s t ,

↪→ const T& val) ;

upper bound returns an iterator15 pointing to the first element in the range [first,last) which
compares greater than val.
So, the following lines of code allow to find the index we are looking for.

1 std : : vector<u int32 t > : : i t e r a t o r i t = std : : upper bound (Copied indexes . begin () ,
↪→ Copied indexes . end () , i) ;

2 u i n t 3 2 t key = i t −1 −Copied indexes . begin () ;

Where Copied indexes is the vector storing the indexes of the copied strings, while
Copied indexes[key] is the searched index.
Note that in our case the iterator returned by upper bound points always to the element
immediately after the one we are looking for. In fact, independently of i belonging or not
to Copied indexes, upper bound returns the iterator pointing to the leftmost element which
is greater than i, that is, the index of the leftmost copied string greater than the i-th one.
If we take the element preceding it in Copied indexes, we get i if i belongs to Copied indexes,
or the index of the rightmost copied string smaller than the i-th one if i does not belong
to Copied indexes.
For example take the following array V = [0, 2, 5, 7, 9, 10]. We may perform

14Which is implemented with a constant number of random memory accesses.
15The concept of iterator is a generalisation of the concept of pointer. In this context it is possible to

think an iterator simply as a memory area storing the address of another memory location.

CHAPTER 3. COMPRESSING STRING DICTIONARIES 47

upper bound(L, 7) = 4

In this case 7 belongs to V and indeed L[3] = 7 is correct because to decompress the seventh
string we have to start scanning from the seventh one, which is the fourth uncompressed
string. Otherwise we may perform

upper bound(L, 6) = 2

And in this case 6 does not belong to V but L[2] = 5 is still correct, in fact we decompress
the sixth string starting from the fifth one because they are in the same block.

Combinations Until now, we proposed storage schemes that forced the memory layout
of both the two data structure needed to implement Access on the compressed dictionary.
Actually, this is not mandatory: we can mix the solutions illustrated until this point
because storing the indexes and storing the positions are two separated problems.
For instance we can store V as a plain array and E as an Elias-Fano bitvector, which can
index only the positions of the copied strings or the positions of all the strings.
On the contrary nothing stops us from storing V as a succinct bitvector and E as a plain
array (even though in this case it does not make sense to store the position of all the strings
in E).
In the following chapter, we are going to study the consequences of the applications of the
various indexing methods to actual compressed dictionaries.

3.2.2 Integers encoding

Compressing a dictionary using the methods we have described until now requires some
integers to be encoded: for example the prefixes or the rears respectively in Front coding
or in Rear coding. If also the lengths of the suffixes are stored directly in the compressed
file of strings, as proposed in Section 3.2.1, they must be encoded too.
There are actually two big families of integers encoders: the bit-aligned ones and the byte-
aligned ones.
Depending on the distribution of the integers to be encoded, a bit-aligned encoder could be
better than a byte aligned one or viceversa. Often in theory bit-aligned encoders would be
a good and winning choice to encode integers, anyway, nowadays machines cannot index
single bits, they can index only bytes. For this reason byte aligned encoders are the most
used when the real target is performance, despite sometimes they are not as close to the
optimum space occupation as bit-aligned ones.
One of the encoders that we used in our implementation is VBFast16.VBFast is very fast in
decoding, since it just have to scan the first two bits of the encoded number to decide how
many bytes it has to scan after the first.

16See Section 2.10.2

CHAPTER 3. COMPRESSING STRING DICTIONARIES 48

The preamble bits allow us to use a ”for” loop instead of the ”while” that would be re-
quested by a generic variable byte code. The only limitation of this algorithm is that we
cannot represent integers higher than 230 − 1, which is actually not a limitation since it’s
quite impossible to find prefixes, suffixes or rears of such a length.
In general, since the strings to be compressed are sorted, subsequent strings tend to share
a long prefix and to differ in few characters, thus encoding rears instead of prefix could be
a good choice.
If we are sure that we will not encode numbers greater than 215 = 32768, which is plau-
sible, we can modify a little VBFast reducing the preamble to one single bit. That would
allow to encode much more lengths with one byte only, i.e., all the ones that would need
7 bits to be binary represented. In this work, we will call the version of VBFast with two
preamble bits VBFast(32), and the version which requires just one preamble bit VBFast(16).

Another possibility is to use a bit-aligned coder with padding, so that the compressed
dictionary is kept Byte-aligned. Such a scheme can be particularly useful if we encode
the lengths of the rears and of the suffixes one after the other consecutively in memory
(therefore E must index only the positions of the copied strings). In fact, in case of byte
aligned encoders, we always need at least two Bytes to encode two integers, while in this
case one can be enough.
Our Gamma-encoder, which we call Gamma Padding (shortly GP) is a variant of Elias-γ
coding, described in [39], and it allows to encode the numbers from 1 to 8 with 4 bits.
Therefore if we have to encode 2 consecutive numbers in that range we use exactly one
Byte rather than the two that would be needed by VBFast, without any space overhead.
Since in sorted files it is very common to encode rears and suffixes lower than 8, often we
can approximately halve the space that would be needed by VBFast to encode the integers.
The padding is needed because otherwise we would incur in too much overhead during de
decoding of any strings, since we would need many shift and logical operations during the
scan of a block.
Unfortunately, the Gamma padding encoder requires more time in the decoding than VB-
Fast, and also more time than Elias-γ, because we have to insert the padding in the correct
places. Moreover if the numbers to be encoded are large on average, we may use more
bytes than VBFast.
Now we will spend some more words about our Gamma Padding implementation because
it is not simply the byte aligned variant of Elias-γ coding. Suppose we have to encode an
integer x via Gamma Padding, the implementation looks at what cost class x belongs to,
and encodes it accordingly.
The cost classes are stored as an array, call it CS[]. The algorithm checks what is the i
such that CS[i] < x ≤ CS[i+ 1] and then it accesses to the i-th position of another array,
which is the binary width array BW [].
At the end, i is the number of preamble bits, whilst BW [i] contains the number of bits
that must be used to represent x− CS[i].

CHAPTER 3. COMPRESSING STRING DICTIONARIES 49

The array of cost classes can be tuned in order to optimise the numbers we are going to
encode. The array which we used in our implementation tries to be the best for encoding
couples of small numbers. It is reported in the following listing, together with the array of
binary width.

1 std : : array<unsigned int , 16> soda09 l en : : c o s t c l a s s e s =
2 {
3 0U, 8U, 16U, 24U,
4 32U, 48U, 64U, 80U,
5 112U, 176U, 304U, 560U,
6 1072U ,2096U, 4144U, 1052720U
7 } ;
8
9 std : : array<unsigned int , 15> soda09 l en : : b inary width =

10 {
11 3U, 3U, 3U, 3U,
12 4U, 4U, 4U, 5U,
13 6U, 7U, 8U, 9U,
14 10U, 11U, 20U
15 } ;

In the following, we show some examples.

Gamma Padding(3) = 1010 0000 , Gamma Padding(4) = 1011 0000

Gamma Padding(3,4) = 1010 1011

The last example shows that we can fit two integers in the same byte using this kind of
encoder (in that case without padding bytes). It would have been impossible with any
byte-aligned encoder.

Chapter 4

Retrieval Experiments

In this chapter we will analyse in depth the implementation of the various methods we
devised in order to compress and index dictionaries of strings. We will propose various
theoretical considerations on the best algorithm to be used in order to achieve a good
spacetime tradeoff concerning the Retrieval operation. All these considerations will be
supported by the results obtained by the various benchmarks implemented to know the time
and space needed to perform the sub-operations which constitute the Retrieval. Finally,
we will compare and comment the time and space results obtained by our implementation
with the ones got with competitor data structures.
To give an idea of how this chapter is structured, we anticipate that in Section 4.1 we
discuss about some of the details of the implementation of the compression algorithms
described in the previous chapter, in Section 4.2 we introduce the actual dictionaries on
which our experiments have been performed, in Section 4.3 we expose a brief description
of the algorithms with which we compared our solutions and in Section 4.4 we illustrate
the results of the experiments and the comparison with other efficient data structures.
The following table shows all the most important features of the machine on which the
tests have been performed.

Processor 2GHz Intel core i7 quad core

L2 cache (per core) 256 KB

L3 cache 6 MB

Main memory 8 GB, 1.6 GHz, DDR3

Since it will be widely used in this chapter and in the following ones, we give the following
definition.

Definition. We define the compression ratio (CR) between the binary representation of a
dictionary B(D) and its encoding via any compression algorithm C(D) as

CR =
|C(D)|
|B(D)|

50

CHAPTER 4. RETRIEVAL EXPERIMENTS 51

We recall that the cardinality of the binary representation of any set is given by the
number of bits composing it.

4.1 Implementation

The implementation has been written in C++, exploiting some features of the C++11
standard. The code was developed trying to separate the indexing method from the inte-
gers encodings algorithm.
For this purpose, the C++ struct which implements the Retrieval(u, l) function (call it
Retriever) has a template argument: the indexer IND, which in turn has another template
argument : the integer encoder ENC.
When the constructor of the Retriever class is called, one instance of the class IND: ind
is created and put as fields of the instance of the Retriever class. In order to get the
position and the index of the rightmost copied string preceding the u-th in the compressed
dictionary, the Retrieval(u,l) implementation calls the function ind.Get(u), which executes
the right operation according to the representation of the indexes and of the positions. We
can say that Retriever delegates to ind the management of the indexing and IND delegates
to ENC the management of the integers encoding.
For example, if the indexes are stored in an array, Retriever calls a binary search on it
and if the positions are stored as an Elias-Fano bitvector, it calls a Select.
All the functions calling performed by the Retrieval code incur in no overhead caused by
the subroutines invocations because these subroutines have been qualified with the inline

keyword. Such a keyword allows the compiler to substitute the invocation of subroutine f

inside a routine F with the actual assembly code of f.
For the same reasons we never use any recursive function to implement Retrieval.

In order to optimise the scan of the blocks, the copy of the characters from the com-
pressed input to the output buffer are performed 8 Bytes at a time instead of 1 Byte at
a time. This would be good because it would reduce the number of iterations in the for

loop that copies the characters and therefore the number of checks needed to see if the
condition of the loop is still satisfied. To do that, we set a pointer st to a 64 bit unsigned
integer pointing to the first Byte to be copied and another one, sc, pointing to the first
character of the output buffer to be overwritten. Knowing that suffix is the amount of
Bytes to be copied, the following listing shows the lines of code needed to perform such a
copy.

CHAPTER 4. RETRIEVAL EXPERIMENTS 52

1 for (addi = 0 ; addi <(s u f f i x +7)>>3; addi++){
2 ∗ sc = ∗ s t ;
3 sc = sc +1;
4 s t = s t +1;
5 }

We point out that in C and C++ the division between two integers x, y gives
⌊
x
y

⌋
. So,

given that
⌈
x
y

⌉
=
⌊
x+y−1

y

⌋
, x>>y =

⌊
x
2y

⌋
and that the * operator is the dereferencing1

operator of the C language, we have that the lines of code shown above allow to copy the
correct amount of Bytes. Note that we do not need to copy exactly suffix Bytes, we may
copy more and report only the ones we need.

4.2 Datasets

In this section we will spend some words to introduce the data sets on which the test have
been performed. We will show why we choose to use right them instead of others and we
will illustrate their most important features, that is, the features that influenced the choice
on what compression schema to use in order to compress them.
For example, if we know that the average length of the rears2 in a dictionary is smaller than
the average length of the longest common prefixes, we may choose to encode the dictionary
with rear coding instead that with front coding, or vice versa.
Moreover, if we know that the average lengths of the suffixes is low, e.g., three or four
characters, we may decide to use an integer encoder which is not very performant in terms
of time but is efficient in terms of space, because the amount of saving in space would be not
negligible. Obviously, also the number of bits occupied by the uncompressed dictionary
is an important feature, because it allows to evaluate the compression efficiency of our
solutions. In the following paragraphs we will report such features for each dictionary
tested in this chapter.

Google Books 1gram Google Books 1gram (shortly 1gram) is a file belonging to the
Google Ngram corpus. In general, in the fields of computational linguistic and probability,
a n-gram is a contiguous sequence of n items from a given sequence. In particular, 1gram
is the file containing all the sequences of one words appearing at least forty times in any
english book printed from 1800 to 2012 and belonging to the Google Books corpus. The
Google Books corpus is simply the dataset of all the books scanned and digitalised by
Google.3 Google 1gram has several entries according to the contextual meaning of each
word, for example, in 1gram we find four separated entries for the word ”circumvallate”,
illustrated by the following list.

1If P is a pointer such that P = &A[i] for some sequence A, then *P = A[i].
2See section 3.1.1, paragraph dedicated to rear coding.
3See http://books.google.com for further information

http://books.google.com

CHAPTER 4. RETRIEVAL EXPERIMENTS 53

1. circumvallate. The word ”circumvallate” has been found at least 40 times in the
corpus.

2. circumvallate ADJ. The word ”circumvallate”, used as an adjective, has been found
at least 40 times in the corpus.

3. circumvallate NOUN. The word ”circumvallate”, used as a noun, has been found at
least 40 times in the corpus.

4. circumvallate VERB. The word ”circumvallate”, used as a verb, has been found at
least 40 times in the corpus.

The sources are downloadable from http://storage.googleapis.com/books/ngrams/

books/datasetsv2.html. The most important features of the 1gram dictionary are de-
scribed in Table 4.1.

Google 1gram

Size (MB) 275.086

Number of strings(Millions) 24.359

Average string length 10.29

Average LCP 7.30

Average rears length 3.99

Average suffix length 2.99

Table 4.1: Google 1gram features.

ClueWebUrls The ClueWebUrls dataset is a huge collection of URLs taken from about
one billion web pages written in ten languages, collected in january and february 2009. URL
stands for Uniform Resource Locator, that is a sequence of characters uniquely identifying
the address of a resource on the internet. Typically, such a resource is located on a server
and it is accessible through a transfer protocol by any client machine. A resource is any
kind of digitalised data, such as videos, texts or images.
Since the ClueWebUrls dataset is enormous, we decided to take end examine only a portion
of it to perform quicker tests. Taking a large enough portion of a dataset do not alter
too much the performance analysis of our algorithms. Indeed, if we take contiguous,
lexicographic ordered URLs, we expect that the dimension of the blocks of uncompressed
strings are the same both for the complete file and for the partial one.
The whole ClueWebUrls dataset can be found at http://lemurproject.org/clueweb09

and it contains almost five billion URLs, for a space of more than three hundred GigaBytes.
Our sample, which we denote for simplicity URLs, contains instead just twenty millions
contiguous strings taken from ClueWebUrls, its main features are summarised in Table 4.2.

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://lemurproject.org/clueweb09

CHAPTER 4. RETRIEVAL EXPERIMENTS 54

ClueWebUrls sample

Size (MB) 1,387.956

Number of strings(Millions) 20

Average string length 68.40

Average LCP 54.49

Average rears length 14.66

Average suffix length 15.50

Table 4.2: Features of ClueWebUrls sample

We see from Table 4.2 that the strings belonging to such a dictionary are much longer
than the ones in Google 1gram, which are taken from the natural language. URLs tend to
share a lot of characters4, almost the 80% of their length, so, we expect that our encoding
schemas will produce compressed files which are approximately 20% the size of the URLs
dictionary. Hence, we expect that the additional information needed to decode and index
any string of the dictionary will have less impact on the compression ratio with respect to
1gram, whilst the time to scan a block will be obviously longer in this file than in 1gram.

4.3 Competitors

In this section we briefly describe the methods used to compare the efficiency of our data
structure. For instance, we will show the comparison between our solutions with other
widely used compression algorithm, such as gzip and bzip. We expect that these algo-
rithms will occupy less bits than ours, also because they do not support the indexing of
the strings. Indeed, in order to access a single string when the dictionary is encoded via
gzip or bzip we have to decode the entire file and then scan it up to the point in which the
string to be found is reconstructed.
The comparison with gzip and bzip is significant because these two algorithms are known
to be among the most efficient compression algorithms for set of strings, hence they can
be considered ”empirical” lower bounds for the space of any compressed dictionary.
In particular, the gzip compression algorithm is based on a variant of LZ77 [40], commonly
called deflate. More information may be found at http://www.gzip.org/algorithm.txt.
The bzip algorithm is instead based on the Burrows-Wheeler transform [6], further infor-
mation about bzip implementation can be found at http://www.bzip.org.
We also propose a comparison with the solutions proposed by Ottaviano and Grossi in
[34], implemented in [32]. A survey of the techniques used in this solution can be found
in section 2.14. From now on, we will refer to the schemas illustrated in that article using

4All the strings share the transfer protocol name, which is http, indeed all of them share the same prefix
http://.

http://www.gzip.org/algorithm.txt
http://www.bzip.org

CHAPTER 4. RETRIEVAL EXPERIMENTS 55

the following names.

1. centroid: path decomposed trie through centroid path decomposition

2. lex: path decomposed trie through lexicographic path decomposition.

The comparison with these data structure is significant because they have been proved to
be among the best ones in storing and indexing compressed dictionaries. In particular, the
most relevant comparison is the one between our data structure and lex because for both
of them Access(i) returns the i-th string according to the lexicographic order. Instead,
Access(i) performed on centroid returns just any of the strings of the dictionary, without
following any order. If we encode a dictionary D such that |D| = n with centroid path
decomposition we are only sure that for i, j = 0, ..., n−1 (j 6= i)⇒ (Access(i) 6= Access(j)).

4.4 Experiments

In this section we will report and comment the performance measurement obtained with
our compressing schemas. Before any experiment being performed, we will discuss all the
possible indexing variants and we will report some benchmarks to evaluate quantitatively
such variants. We remind that the time and space efficiency of our solution can be influ-
enced by the algorithm used to encode the integers, or by the way we store the positions
and the indexes of the strings. Hence, for the rest of the chapter we will give the following
names to the data structures storing such values.

1. E: set of the positions

2. V : set of indexes

We recall that E can be made by the positions of copied strings, and in this case it can
be represented as an Elias-Fano bitvector or as an array. In the case E is made by the
positions of all the strings, it can be represented (space efficiently) only via Elias-Fano. V
always consists of the indexes of the copied strings and it can be represented as a bitvector
supporting Rank and Select operations, or as a plain array. For more details about the
implementations of E and V as succinct data structures, see [21].
We give the following names to the various (binary) representations of E and V.

1. Eall: E is represented as an Elias-Fano bitvector indexing the starting positions of
the encodings of all the strings.

2. Ec: E is represented as an Elias-Fano bitvector indexing only the positions of the
copied strings.

3. E[]: E is represented as an array such that E[i] contains the position of the i-th copied
string (according to the lexicographic order).

CHAPTER 4. RETRIEVAL EXPERIMENTS 56

4. VRS : V is represented as a binary array capable of supporting Rank and Select
operation.

5. V[]: V is represented as an array such that V[i] contains the index of the i-th copied
string.

Another important choice is the choice of the integer encoder to encode the numbers
located in the compressed representation of the dictionary. Indeed this choice may impact
significantly the performance of the implementation. The following list shows the integer
encoders which have been implemented and taken into account in our solution. Unless it
is specified differently, the description of the encoders can be found in Section 3.2.2.

1. VBFast(32): version of VBFast which has two preamble bits to determine the number
of bytes to be scanned in order to decode the integer.

2. VBFast(16): version of VBFast which has only one preamble bit.

3. Variable Byte: standard Variable Byte encoder5.

4. GP: byte-aligned variant of Elias-γ coding.

4.4.1 Google 1gram

In this section we will report many considerations on the application of our compressing
scheme to the Google 1gram dictionary. Then we will report the results of the experiments
and some comments about them.

Choosing the integer encoder We may immediately notice from Table 4.1 that on
average the common prefixes are almost two times longer than the rears. This is quite
reasonable in any big sorted file since two consecutive strings tend to have shared prefixes
longer than their characteristic suffixes.
Therefore we may encode the rears instead of the longest common prefixes in our com-
pression algorithm. Table 4.3 reports the space occupancy and the average time to access
decode an integer with the various encoding algorithms we have at our disposal. In order
to take such measurements, we considered the case in which the number of integers in
the compressed dictionary D is maximal, hence the case in which the compression is done
by LPFC(|B(D)|). Table 4.3 shows that despite a considerable loss of time, with Gamma
Padding (GP) we can save a remarkable amount of space. This is confirmed by the fol-
lowing table, showing the most relevant entries of the distribution of the integers in the
compressed file.

5See Section 2.10.2, paragraph named ”Variable-Bytes coding”.

CHAPTER 4. RETRIEVAL EXPERIMENTS 57

Table 4.3: Space and time performance of the integers encoders

Number of integers: 48,718,374

Name Space(Bytes) Time(ns)

Variable Byte 48,718,376 3

VBFast(32) 48,718,384 2.4

VBFast(16) 48,718,376 2.4

GP 26,436,995 10

Distribution of the rears Distribution of the suffixes

Value Frequency Value Frequency

1 35.8% 1 33.2%

2 5.8% 2 11.9%

3 3.9% 3 6.5%

4 15.9% 4 24.8%

5 9.3% 5 21.6%

6 8.6% 6 0.8%

7 7.8% 7 0.5%

8 4.4% 8 0.3%

According to the values reported in the table above, since 99.9% of the suffixes and ap-
proximately 90% of the rears can be encoded with just four bits, we have that more or less
90% of the compressed strings can have their suffix and rear that fit in one byte, with no
padding overhead. While for the same cases, any other considered encoder would use two
Bytes. The actual save is about 22.3 MB, a quantity which is not negligible considering the
file to be compressed, in fact it represents 8.1% of the size of the uncompressed dictionary.
As a conclusion Gamma Padding can be chosen as integer encoder to compress 1gram.

Choosing the representation of E and V As we did when we had to choose the
integers encoder, we have to consider both the space and time performance of the data
structures representing E and V . Table 4.4 shows the time to perform the Rank and Select
operations when E and V are stored succinctly. Time values are expressed in nanoseconds
(ns)6. In the second column of this table we show the time to perform the operations when
the parameter i of Rank(i) or Select(i) is being increased by one at each iteration, while
the results presented in the third column are obtained spanning the parameter i randomly.
We may see that the most expensive operation is Select(VRS). In fact this operation is

6We recall that one nanosecond is equal to 10−9 seconds, while one microsecond (µs) is equal to 10−6

seconds

CHAPTER 4. RETRIEVAL EXPERIMENTS 58

Table 4.4: Time to perform operations on the succinct data structures

Operation Consecutive queries time (ns) Random queries time (ns)

Select(Ec) 24 37

Select(Eall) 24 113

Select(VRS) 84 131

Rank(VRS) 6 13

not implemented via a constant number of memory accesses like the other ones, but via a
hinted binary search, see [21].
It is also interesting to see that if the argument i of Select(Eall,i) is taken randomly we
have a much higher execution time than the one obtained with Select(Ec,i), even though
the implementations and the data structures are identical. This is simply due to the fact
that Eall is larger than Ec (whatever the compression algorithm), so it avoids to exploit
locality as much as Ec in random memory accesses. Indeed we may say that an higher
memory level is needed to store Eall.

For what concerns space occupancy, VRS has always the same size, because its size de-
pends only on the number of strings in the dictionary, that never changes. VRS needs
approximately one bit for each string, hence approximately 3 MB plus the bits needed to
support Rank and Select. The empirical value of the size of VRS is given in the following.

|VRS | ≈ 3.8 MB

If E is represented as Ec, its size is actually negligible; when E is represented as Eall, we
can estimate a lower bound relative to its space occupancy exploiting formula 3.8. We
know the average suffix length for a single string E[u] and the total number of strings n
from table 4.1.

nE[u] ≈ 72.83 ∗ 106 = 72.83 MB

If we sum to nE[u] the minimum amount of bytes needed to encode the integers, that we
may find in the GP entry of Table 4.3, calling M the size of the compressed dictionary, we
may get an estimation for the minimum value of M as follows.

M ≈ 72.83 + 26.44 = 99.27 MB

Now we have n and M . We can evaluate the lower bound for the size of Eall.

|Eall| > 2 ∗ 24.36 + 24.36(log 99.27− log 24.36) = 48.72 + 24.36(6.6− 4.6) =
48.72 + 48.72 = 97.44 Mb = 12.18 MB

CHAPTER 4. RETRIEVAL EXPERIMENTS 59

If we set M to its maximum value, which is the size of the uncompressed file, we get an
upper bound for the size of Eall.

|Eall| < 48.72 + 24.36(log 275
24.36) = 48.72 + 24.36(3.5) = 48.72 + 85.26 = 133.98 Mb =

16.75 MB

Finally, we may conclude that the size of Eall fits in the following range.

12.18MB < |Eall| < 16.75 MB (4.1)

We may notice from Table 4.3 and 4.4 that it is not convenient to represent E as Eall
because if we store in Ec only the positions of the copied strings inserting directly beside
each string the length of its suffix encoded with Gamma Padding we get some advantages
both in time and space. Indeed the time to know the starting position of the next string
in the latter case is equivalent to two consecutive decoding with Gamma Padding which
is equal to 20ns, while with the former technique we need a Select and a decoding with
VBFast, which take approximately 26 ns.
Moreover, Gamma Padding is able to fit the largest part of the suffixes lengths in the same
bytes in which the rears are stored, allowing to compact most of the information given
by VBFast+Eall directly in the rear-coded dictionary. The saving in space is consistent
because Ec is always much smaller than Eall.
Now we must also take into account the possibility of storing V as plain array. The next
table shows the space occupied by V[] and the time to perform binary search on it.

Algorithm Consecutive queries time (ns) Random queries time (ns) space (MB)

LPFC(4) 33 204 9.993

LPFC(8) 28 155 5.175

LPFC(16) 25 134 2.745

LPFC(64) 22 111 0.788

LPFC(128) 21 99 0.424

It is possible to note from the table above that in 1gram binary search is not always
convenient in terms of time with respect to Rank+Select on VRS . Nonetheless, if we consider
only Retrievals performed to retrieve strings which are stored contiguously in memory, we
have that binary search beats Rank+Select on V immediately, even with low parameters.
In fact, if we search for string u + 1 after the u-th, it’s very likely not to have additional
I/Os.
The same table says that binary search is convenient if the parameter is greater than a
number in the range (8,16), call it b. Up to that parameter it is better to represent V as
succinct bitvector.
If the parameter x of LPFC(x) is such that x ≥ b, then it is surely convenient that both
E and V are memorised as plain arrays. For x ≥ b, the space occupied by them starts
to become negligible and the time for binary search is lower than the time to perform

CHAPTER 4. RETRIEVAL EXPERIMENTS 60

Rank+Select. In this case it is not convenient to store E as an Elias-Fano bitvector, indeed
we would not achieve a consistent gain in space, but there would be some overhead due to
the Select operation needed to access the position of the copied strings.

Results After the reasoning performed in the previous paragraph, we may finally report
the time and space measurements of our compressing scheme applied to Google 1gram.
Such measurements are shown in Table 4.5and in Figure 4.1, both of them report the
values obtained with the representations of E and V we did not discard in the previous
paragraph.

Table 4.5: Performance measurements changing the representation of E and V relative to
1gram. We retrieve 2 ∗ 106 strings at random and all the strings of the file consecutively.
Time values are expressed in µ-seconds.
TCon is the average retrieval time when we retrieve strings which are soared contiguously
in memory, TRan is the average retrieval time when we retrieve strings at random. The
integer encoder is always GP.

(a) Comparison with E=E[], V=V[]

Name TCon (µs) TRan (µs) CR %

LPFC(4) 0.226 0.698 48.01

LPFC(8) 0.336 0.771 42.03

LPFC(16) 0.545 0.995 39.14

LPFC(64) 1.650 2.194 36.90

(b) Comparison with E=E[], V=VRS

Name TCon (µs) TRan (µs) CR %

LPFC(4) 0.285 0.594 45.76

LPFC(8) 0.396 0.735 41.53

LPFC(16) 0.606 0.975 39.52

LPFC(64) 1.715 2.262 38.00

(c) Comparison with E=Ec, V=VRS

Name TCon (µs) TRan (µs) CR %

LPFC(4) 0.311 0.713 43.03

LPFC(8) 0.426 0.846 40.17

LPFC(16) 0.634 1.076 38.83

LPFC(64) 1.747 2.320 37.82

We can notice from Table 4.5 and from Figure 4.1 the small overhead in time when
E=Ec.We can also note that the version in which E=E[] and V=V[] is asymptotically the
best both in space (the size of E[] ad V[] tend to become 0) and time. It is also the best
choice if we want for example to retrieve consecutive pieces of the file because binary search
has the best exploitation of locality. If we retrieve strings at random, the other versions
seem to be a little better when the parameter x of LPFC(x) is low. In that case the best
tradeoff is E=E[] and V=VRS since we do not loose to much space representing E as an
array and we may exploit the better performance of VRS with respect to V[].

CHAPTER 4. RETRIEVAL EXPERIMENTS 61

Figure 4.1: Occupied space and average retrieval time.

(a) Occupied space (b) Average retrieval time

Finally, Table 4.6 shows the results obtained with other solutions.

Table 4.6: Time and space performance obtained with other solutions applied to 1gram.
Both gzip and bzip are applied with the maximum compression level.

Algorithm Consecutive queries time (µs) Random queries time (µs) CR%

gzip 0.075 // 23%

bzip 0.289 // 26.34%

centroid 0.768 1.677 45.14%

lex 0.924 1.973 43.64%

We may argue from Table 4.6 that the improvement in time with respect centroid and
lex is due to the fact that LPFC better exploit memory locality with respect to path de-
composed tries. Indeed, with LPFC we are sure to have an optimal amount of contiguous
memory accesses up to the string we are looking for, whilst path decomposed tries do not
ensure that.
In the same table we see also the results obtained with gzip and bzip. Indeed these al-
gorithms greatly outperform ours but they do not support random string accesses. To
retrieve any string si of the dictionary, we need to decompress the whole file up to the
point in which si is reconstructed, which is definitely not convenient.

CHAPTER 4. RETRIEVAL EXPERIMENTS 62

4.4.2 URLs

In this section we deeply analyse the application of our data structure to the ClueWebUrls
sample dictionary described in Section 4.2, following the same outline of the previous
section.

Choosing the integers encoder As we did for the Google 1gram dictionary, having
a look to Table 4.2 we may argue that it is much more convenient to store the ”rears”
instead of the prefixes beside the compressed strings. Table 4.7 shows the time and space
performance of the various encoders when the number of integers is maximal, that is with
FC and with E 6= Eall.

Table 4.7: Integer encoders space and time cost for URLS

Number of integers: 39,999,998

Name Space(Bytes) Time(ns)

Variable Byte 46,260,400 3

VBFast(32) 47,281,796 2.5

VBFast(16) 46,260,400 2.4

Gamma Padding 40,895,687 10

In this case, as it is suggested by table 4.7, it is not convenient to use Gamma Padding
because the saving in space with respect to VBFast is really negligible: less than 6MB
(approximately 0.5% of the size of URLs). Even if the gain in space were not so low,
Gamma Padding should not be used because though we could stuff couples of rears and
suffixes in one single byte, we would save only 20MB, which are more or less 1.5% of the
file, at the cost of a remarkable accretion of the decoding time and therefore also of the
time to scan a block.

Choosing the representation of E and V Thanks to the fact that the average string
length is noticeably higher than the one in 1gram, we can immediately think that it is
convenient to represent both E and V as arrays already when the parameter is low. The
copied strings would be very few even in that case, so we will get advantages both in
time and space very soon. The interesting fact about storing E and V as arrays is that
the lower is their space, the lower is the time to binary search on them. Which is the
contrary of what happens when we retrieve a string from the compressed file. Indeed,
the block scanning phase becomes increasingly dominant as much as the parameter of the
compression algorithm grows.
Regarding the time performance of E and V stored as succinct data structures, we point
out that Table 4.4 is valid also for this file. As a matter of fact, the sizes of such data

CHAPTER 4. RETRIEVAL EXPERIMENTS 63

structures are similar and we know that the operations require the same number of steps.
The size of V when it is represented as a bitvector able to support Rank and Select is akin
to the one of 1gram, its actual value is given in the following.

|VRS | ≈ 3.59 MB

Using formula 3.8, which we exploited to derive the bounds in 4.1, we may notice that
when E = Eall the following condition holds.

15 MB ≤ |Eall| ≤ 22.5 MB

Hence, also in this case it is better to store the lengths of the suffixes directly beside the
strings, but this time encoded with VBFast(16). The benefits in time are clear: the time
to decode an integer with VBFast is much lower than the time to perform Select(Eall, i).
For what concerns space, storing E = Eall we achieve a gain in space which is equal to
few MegaBytes, hence negligible. In order to prove the efficiency of storing E = E[] and
V = V[], we may notice that their size is quite neglectable with respect to the size of the
uncompressed dictionary even when the compression parameter is low. For instance even
if we take 2 as compression parameter, and we apply LPFC(2), because of the formulas
3.5, 3.6 we get that the number of fully copied strings in the compressed dictionary is the
following.

Cs ≈ 20∗106

5.36 ≈ 3.73 ∗ 106

Thus, representing each entry of V[] as 32 bits integers, we have that |V[]| ≈ 14.92MB
≈ 1.1% of the file.
The following table shows the time to binary search on V[] and its size varying the LPFC
parameter.

Algorithm Consecutive queries time (ns) Random queries time (ns) space (MB)

LPFC(4) 29 164 6.078

LPFC(8) 26 134 2.960

LPFC(16) 23 120 1.511

LPFC(64) 20 99 0.420

The table above points out that binary search on V[] beats Rank(VRS ,Select(VRS ,i)) in
time when it beats it also in space. From the very same table we see that this fact happens
already when the parameter is 8, which is low and in general implies a good space-time
tradeoff. We recall the the size of E[] is the same of the one of V[].

Results Summing up the considerations done in the previous paragraphs, we decided to
use VBFast(16) as integers encoder and to represent both the positions and the indexes
of the uncompressed strings as arrays of 32 bits cells. Table 4.8 and Figure 4.2 show the

CHAPTER 4. RETRIEVAL EXPERIMENTS 64

space and time performance obtained performing Retrievals on the URLs file compressed
with the settings previously mentioned.

Table 4.8: Time to perform Retrieval(u, l) on compressed URLs. We retrieve 2 million
strings at random and all the strings of the file consecutively. Time values are expressed
in µ-seconds

Algorithm Consecutive queries time (µs) Random queries time (µs) CR(%)

LPFC(4) 0.240 0.770 30.50

LPFC(8) 0.371 0.908 27.83

LPFC(16) 0.609 1.183 26.64

LPFC(64) 1.930 2.692 25.79

Figure 4.2: Occupied space and average retrieval time.

(a) Occupied space (b) Average retrieval time

We may notice from Table 4.8 that the compression ratio is quite good with respect
to Google 1gram thanks to the fact that the strings share a larger part of their total
length. Moreover, the binary representation of the shared characters is much wider than
the encodings of the integers.
Finally, Table 4.9 shows the performance obtained with other solutions.

CHAPTER 4. RETRIEVAL EXPERIMENTS 65

Table 4.9: Time and space performance obtained with other solutions applied to URLs.

Algorithm Consecutive queries time (µs) Random queries time (µs) C.R.%

gzip 0.141 // 9.4%

bzip 1.163 // 8.1%

centroid 1.356 2.707 23.5

lex 2.036 3.756 23.44

Once again, we notice from Table 4.9 that gzip and bzip outperform all the presented
solution for what concern space and the time to extract the whole compressed file, though
they do not support Access(i) without scanning the entire file up to the point si is decom-
pressed.
Comparing our solution with lex or centroid, we see that they beat ours very slightly in
space, whilst they are widely beaten by ours in Access time.

Chapter 5

Prefix Search

In this chapter we analyse some strategies to solve the prefix search problem (described in
Section 2.11) in an efficient way. We briefly recall that we want to find the range of strings
in a dictionary D which are prefixed by an input pattern P . The basic data structures
to support such a facility are the ones described in Chapter 3, which are in summary a
dictionary D compressed with locality preserving front coding plus some indexing scheme
to access any string of D.
We have divided the current chapter in two sections. In Section 5.1 we analyse the al-
gorithms needed to support prefix search without adding any additional information to
the solutions devised in Chapter 3, in Section 5.2 instead, we describe an additional data
structure which allows our solution to support prefix search more efficiently.

5.1 Binary search approach

Here we describe the techniques that can be exploited in order to support prefix search
on a dictionary compressed via LPFC without storing additional bits. Section 5.1.1 shows
an inefficient, yet intuitive way to support such a facility, whilst Section 5.1.2 illustrates a
more efficient way to perform prefix search on the compressed dictionary.

5.1.1 Trivial binary search

The data structures described in Chapter 3 indeed offer the opportunity to devise an algo-
rithm to prefix search on them. The array of string pointers, or its succinct version allows
in fact to access any of the sorted strings, which can be compared with our lookup pattern
P in order to find its possible lexicographic position in the dictionary D. If |D| = n, the
order of the strings makes sure that we can ”binary search” P in the dictionary, hence the
maximum number of strings taken into account in order to determine the lexicographic
position of P is dlog ne = O(log n).
In order to find a solution to the prefix search problem, we augment the alphabet Σ from

66

CHAPTER 5. PREFIX SEARCH 67

which the strings of the dictionary D are drown with a special symbol : ”#” such that #
is lexicographically greater than all the others symbols in Σ. Hence, a new alphabet Σ+ is
given by Σ+ = Σ ∪ {′#′}.
So, supposing that we have at our disposal an algorithm that finds the lexicographic posi-
tion of any pattern in the compressed dictionary, we can find a solution to the full prefix
search problem finding the position of P and then the position of P# in D. Now, we may
distinguish two cases.

• Case 1. There exists a range [i, j] with i ≤ j in D such that for k = 0, ..., (j − 1); P
is a prefix of Di+k. In this case the lexicographic position of P would be i, while the
position of P# would be j + 1.

• Case 2. There are no strings in D prefixed by P . In this case the lexicographic
positions of P and P# would coincide.

Hence if we can find the lexicographic position of any patter P in D we were able to answer
full prefix search because we were able to see when such pattern is not a prefix of any string
of the dictionary.
The only additional primitive that we need to perform a binary search on the dictionary
as it were a binary search on integers1 is a function that allows to compare two strings.
We call such a function StrCompare(string x, string y)2, it returns 0 if x and y are equal, a
negative integer if x is lexicographically smaller than y and a positive integer if x is greater
than y. We may point out we never need to compare more than |P | + 1 symbols, hence
at each step of binary search we can extract at most the first |P |+ 1 of each string to be
compared. Now we have all we need to answer full prefix search with a binary search like
procedure, which is described by Algorithm 3.

1Or in general performed on a sequence of sorted fixed lengths elements.
2Whose implementation can be found in the C++ standard library

CHAPTER 5. PREFIX SEARCH 68

Algorithm 3 Binary Prefix Search

1: procedure Binary Prefix Search(P ,D)
2: R[0] = Search(P ,D)
3: R[1] = Search(P#,D)
4: return R
5: end procedure
6: procedure Search(P ,D)
7: L = 0 , R = |D| − 1;
8: while L ≤ R do
9: M = b(R+ L)/2c

10: if StrCompare(P , RetrievalD(|P |,M) > 0) then
11: L = M + 1
12: else
13: R = M
14: end if
15: end while
16: return L
17: end procedure

We may note that Algorithm 3 requires O(|P | log n) operations and, if we compress the
dictionary D with locality preserving front coding, it needs O(((1 + 1

ε)/B)|P | log n) I/Os,
where ε is a constant tuned by the strings compressor and B is the page size.
Obviously, if the strings are stored not compressed, the number of I/Os is reduced to

O(|P |B log n).

5.1.2 Binary searching only on the uncompressed strings

A way to much further improve prefix search is to apply binary search only to the strings
which are directly copied in the compressed dictionary.
Thus, we exploit a two level schema in which as a first step, we find the lexicographic
position of pattern P among the copied strings, then we scan the blocks of the compressed
dictionary in order to find the actual position of P in D. Regarding the latter point, we
must pay attention to the following important observation.

Observation 5. Given that the lexicographic position of P in the set of the copied strings
C is i, then, if Ci is the j-th string in the dictionary D and Ci−1 is the k-th string of D; we
know that the actual lexicographic position of our searched pattern P is in the range (k, j].

Thus, scanning the block of compressed strings in that range, that are at most all
the strings in a block produced by LPFC, we find the lexicographic position of P among
the strings of the dictionary. Obviously we may apply the same technique looking for

CHAPTER 5. PREFIX SEARCH 69

the pattern P# (assuming that the strings of the dictionary are drawn from the alphabet
Σ+ = Σ ∪ {#} described in the previous subsection). At the end, if l is the lexicographic
position of P in D and h is the lexicographic position of P#, we know that the range
identifying the strings which are prefixed by P is [l, h).
Figure 5.1 shows the source code for the two-level prefix search, written in C++. Note
that:

1. Num Copied: contains the total number of copied string in the dictionary D.

2. uint64 t Get Index of Copied(int L): is the function such that, given the index
of a copied string with respect the ordered set of copied string, returns the index of
the very same string but with respect to all the strings of the dictionary.

3. uint64 t ScanBlock(string P, int i,int j): is the function scanning the block
between the i-th and j-th string and returning the index of the first string which is
lexicographically greater or equal than P.

Figure 5.1: C++ function used to return the range of strings prefixed by P , exploiting
binary search.

1 void P r e f i x s e a r c h (const s t r i n g &P, u i n t 6 4 t ∗Range) {
2 u i n t 6 4 t LSI=0;
3 Range [0] = ScanBlock (P, Pre f i x s ea r ch LRI (P, 1 , NumCopied,&LSI)−1,LSI) ;
4 s t r i n g NP = P+(char) 0xFFFF ;
5 Range [1] = ScanBlock (NP, Pre f i x s ea r ch LRI (NP, 1 , NumCopied,&LSI)−1,LSI) ;
6 }
7
8 u i n t 6 4 t Pre f i x s ea r ch LRI (const s t r i n g &P, u i n t 6 4 t L , u i n t 6 4 t R, u i n t 6 4 t ∗

↪→ v) {
9 u i n t 6 4 t mid Point = 0 ;

10 int P s i z e = P. s i z e () ;
11 while (L!=R) {
12 mid Point = (L+R) /2 ;
13 switch (P. compare (Ret r i eva l Cop i ed (mid Point , v , P s i z e))) {
14 case 0 :
15 return mid Point ;
16 case 1 . . . INT MAX :
17 L = mid Point +1;
18 break ;
19 case INT MIN . . . −1:
20 R = mid Point ;
21 break ;
22 }
23 }
24 ∗v = coder . Get Index of Copied (L) ;
25 return L ;
26 }

CHAPTER 5. PREFIX SEARCH 70

We have chosen to use the switch statement instead that a chain of if,then,else

because the switch is much more performant in checking constant expressions. Now we can
point out the several benefits of the two-level binary search with respect to the single-level
binary search.

1. |D| > |C|. The number of copied strings is lower than the number of the dictionary
strings.

2. During the first level we have that Retrieval(u, l) requires exactly |Du|
B I/Os, where B

is the page size.

Regarding the first point: the number of copied string can be much lower than the number
of strings in the dictionary, so, despite the logarithmic reduction of the I/Os, the utter
number of I/Os with the two level scheme can be significantly lower. Very roughly, dou-
bling the compression parameter x of LPFC(x), we decrease the number of I/Os by one.
The second point gives the fundamental contribution with respect to the performance of
Algorithm 3. Indeed, with the two-level binary search the time to retrieve the strings taken
in examination during the binary search is perfectly optimal regardless of the compression
parameter. As a consequence of point 1 and 2, the time to perform binary search on the
copied strings decreases with the increase of the compression parameter.

On the other hand, the scan of the block required by the second phase of the algorithm
is equivalent to just one additional random Retrieval(u,l). Its I/O complexity is therefore
equal to O(|Du|/B) if the file is compressed with LPFC(x). Actually, If the average length
of a string in D is L, we have that we need on average Lx

2B I/Os to retrieve the lexicographic
position of the pattern in the block.
Despite the fact that the number of I/Os is optimal, a source of inefficiency can be the
number of comparisons needed to find the first string which is lexicographically greater or
equal than P . In order to reduce the number of such comparisons, we may point out the
following observation.

Observation 6. In order to improve the search inside a block it is possible to compare the
pattern P we are searching with the currently scanned string s only if |s| > |P |.

Proof. Whatever the pattern P we are searching for, we are assured from the binary search
procedure to start the scan of the block from a copied string which is lexicographically
smaller or equal than P .

5.2 Ternary search trie

In this section we show that we can answer full prefix search very efficiently with the
help of an additional ternary search tree3 built upon our dictionary. Our dictionary is

3See Section 2.13 for further information.

CHAPTER 5. PREFIX SEARCH 71

still compressed via locality preserving front coding and indexed using the data structures
illustrated in Section 3.2.1, but we add an additional ternary search tree (TST) built over
the the set of the uncompressed strings. In particular we may store the TST as a PATRICIA
ternary search tree, in which every node contains exactly one character and the length of
the longest common prefix shared by the strings associated to all the descending leaves.
In section 5.2.1 we illustrate how to build up such a ternary search tree, while in Section
5.2.2 we point out how to support prefix search on the compressed dictionary with this
kind of data structure.
We have chosen to represent the ternary search tree in a PATRICIA fashion because
PATRICIA tries are very efficient in reality. In fact they avoid unary paths and random
I/Os to be performed on the memory area in which the dictionary is stored, without
incurring in serious slowdowns in the search for a particular pattern P .
Actually, performance in ternary search trees (or tries) is assured by their balancing. A
not balanced tree may make its traversal (and hence pattern search) very expensive. In
pathological cases the average time complexity of the traversal may become linear with
respect to the number of nodes of the tree. For instance if the strings are inserted in
lexicographic order, there will be no nodes with a left child. The traversal of the tree will
actually become the traversal of a series of linked lists.
Fortunately, it has been shown in [4] that inserting the strings in a proper order allows
to create an almost perfectly balanced tree. For instance we can insert the median string
of the dictionary, split the dictionary in two sub-dictionaries and inserting recursively the
median string of these subsets. The trie obtained in such a way is called in that paper
Tournament trie.
Moreover, a balanced trie takes up less space than a not balanced one. In fact, since we
have a constant number of leaves equal to the number of the copied strings, regardless of
how the tree is balanced, we also have that the more the trie is unbalanced, the greater is
the number of NULL pointers.
NULL pointers do not bring to any node but they have to be stored in memory. Suppose for
instance that the strings have been inserted in lexicographic order, then all internal nodes
would store a NULL pointer as pointer to the left chid. As a result, if the number of leaves
is n, we waste O(n) space for NULL pointers.
In order to exploit locality, we have decided to store the tree in a contiguous portion of
memory. To do that, we have represented the trie as a C++ vector4 of nodes. The
following listing show the C++ structs used to represent any node of the tree.

1 struct PATRICIA Node
2 { pair<u int32 t , u int32 t> Value ;
3 u i n t 3 2 t l e f t , r i g h t ;
4 u i n t 1 6 t l ength ;
5 unsigned char data ;}

4In C++ a vector is simply a collection of elements having the same memory layout and stored con-
tiguously.

CHAPTER 5. PREFIX SEARCH 72

6 struct PATRICIA TST {
7 std : : vector<PATRICIA Node> V;
8 u int Stack [2 5 6] [2] ;
9 }

First of all we remind that the kind of tree we have decided to use is a PATRICIA tree, the
fields of the struct PATRICIA Node are arranged from the bigger to the smaller in order
to minimise the padding. In the following list we show the meaning of PATRICIA Node
fields.

• Value: stores the indexes of the leftmost and the rightmost string which are prefixed
by the string associated to this node.

• left,right: they store respectively the left and the right child of the current node.
The middle child is not stored because it is assumed that it is the next one in the
vector.

• length: stores the length of the string associated with this node. We assume that
the strings lengths are bounded by 64KB.

• data: it is the character such that the prefixes {Pi} for i = 1, ..., k associated to the
middle child node and all its descendants have data = Pi[length], for i = 1, ..., k

Regarding the Stack array field of struct PATRICIA TST, we will see that it will be used
to memorise the nodes visited during pattern search. It would be enough to allocate log |C|5
cells if the ternary search trie were perfectly balanced because we would have a tree with
D leaves in which all internal nodes are at least binary. Actually, the trie we are going to
build (that is a tournament trie) is not assured to be perfectly balanced (in that case an
array of 32 cells would be enough because we suppose the copied strings are at most 232),
but it is ”almost” perfectly balanced. So, an array one order of magnitude greater than 32
ensures no segmentation faults with a really negligible space overhead.

5.2.1 Insertion

However, the structs defined in the previous subsection are not used during the construc-
tion of the trie. In order to build the trie from scratch, we need a temporary data structure
in which the nodes have pointers to their children instead of indexes.
This is due to the fact that if we have to add an internal node to the trie, we have to modify
the positions of all the nodes that are located after the inserted one and all the indexes of
all the nodes greater or equal the position in which the insertion was done. Basically, we
need to scan all the nodes of the tree. If we store pointers instead of indexes, each insertion
requires constant time, thus the construction of the trie would require throughout O(|C|)

5We remind that C is the set of uncompressed strings.

CHAPTER 5. PREFIX SEARCH 73

operation instead of O(|C|2).
Since the number of copied strings may be higher than 106 as order of magnitude, it follows
that inserting nodes in the middle of a vector of nodes is not feasible. Just to take an exam-
ple, suppose that |C| = 3 · 106 and that our machine is able to perform 109 operations per
second; the number of such operations to be performed to build up a ternary search tree
implemented as a vector of nodes would be approximately (3 · 106)2 = 9 · 1012, hence the
time needed to complete the procedure would be (9·1012)/109 = 9·103 seconds = 2.5 hours,
while if we support insertion in constant time, the construction of the tree would require
only some milliseconds. Indeed, once we have inserted all the nodes exploiting the pointers,
it is easy to serialise the obtained tree in a vector of nodes.
It is supposed that the inserted strings are prefix-free because otherwise a node u such that
string(u) ∈ C and string(u) is a prefix of another string belonging to C would be not a leaf,
which could create issues during the search of a pattern. In order to do that, all the strings
are extended with a special character which is not in the alphabet from which they are
drawn.
For simplicity, given a node v of the ternary search tree, we may denote its fields using the
”.” operator, for instance the length field of v is denoted by v.length.

So, how do we insert a new string in the trie? If the trie is empty, then we create a
new leaf node which has both the elements of the pair that constitutes the Value field set
equal to the position of the string among the copied ones; the data field is set equal to the
last character of the string (which is the special a character mentioned before); and the
length is set equal to the length of the string.
If the trie is not empty, it has a root r. Suppose that the string to be inserted is S; if the
length of the longest common prefix between S and string(r), which we call p, is smaller
than the length field of r, a mismatch is found and so a new node u such that string(u) = p
is inserted in the tree.
Such a node has the Value field set to the range of copied strings prefixed by p, the length
field equal to |p|, the data field equal to string(r)[r.length], the middle child of u is set to
be r and the pointers to the left and right child are set to NULL.
Otherwise, that is when lcp(S, string(r)) ≥ r.length, then we simply compare S[length]
with the data field of r: if they are equal we apply recursively the procedure described
until now setting as root the middle child of r; if data is greater the root is set to be the
left child of r, else it is set equal to the right one.
The following observation gives us a bound on the number of nodes belonging to the ternary
search tree.

Observation 7. If we call S the strings set on which we build up the PATRICIA ternary
search tree T , the total number of nodes N in T is bounded by N < 2|S|

Proof. If T is empty, the insertion of a string S ∈ S implies the creation of a single new
node. If the trie is not empty, either we find a mismatch which implies exactly the creation

CHAPTER 5. PREFIX SEARCH 74

of one and only one internal node plus one leaf, or we do not find any mismatch, which
implies the creation of exactly one leaf. Finding a mismatch implies the allocation of an
internal node which has exactly two children: the middle one is the node in which the
mismatch has been found, the right or left one is the leaf associated to S.

The only problem left to solve in order to efficiently perform insertions in the tree is
how to find the range of strings [i, j] which are prefixed by string(u), for any node u in the
tree.
Suppose that during the insertion of a string S we reach a node v such that
lcp(S, string(v)) < v.length, we inductively know that v.Value contains the range of strings
[s, k] that are prefixed by string(v). Since the new node u to be created at this point is such
that string(u) is a prefix of string(v), we can argue that the range [i, j] of strings prefixed
by string(v) is such that i ≤ s and j ≥ k, hence we can start to scan the strings to find i
from Cs going backwards, while we may find j starting from Ck going forward. Such a fact
greatly reduce the number of comparison needed to find [i, j].

5.2.2 Search

The algorithm to look for a pattern P in a PATRICIA ternary search tree has many analo-
gies with the blind search6 used for the same purpose in a PATRICIA trie and it as subtle
as it is.

We start our search from the root r, which is the first element of the vector of nodes; we
compare P [length] with r.data in order to move to the next node, exactly the same way we
followed for insertions, e.g., given that the current node is node u, if P [u.length] = u.data
we do the next comparison on the middle child of u, if P [u.length] > u.data, we move
to the right son, else we move to the left one. We stop as soon as the length field of the
current node is greater or equal than |P |.

Now, if P is a prefix of one or more copied strings, then the search gives exactly the
range [i, j] of copied strings for which P is a prefix. I simply have to scan the block (i− 1, i]
to find the first string prefixed by P , and block [j, j + 1] to find the last string prefixed by
P.
Supposing that the set of copied strings is C and that the encoded dictionary is D, such
that C ⊆ D and Ci = Dj with j ≥ i, then we can translate the indexes of C to the indexes
of D using the V data structure described in Section 3.2.1. If P is not a prefix of any
copied string, than all the strings prefixed by P are located in one single block, but the
percolation of the tree can lead to a set of strings which is a subset of the strings sharing
the longest common prefix with P .
In fact, since we are traversing a PATRICIA trie, when we move to a new node w from v,

6See [13] for further understanding.

CHAPTER 5. PREFIX SEARCH 75

it may happen that w.length > v.length+ 1. Thus, we are not able to see any mismatch
from character P [v.length] on, but there could be one. So, to notice if there has been a
mismatch we just percolate the tree until we reach a leaf, a mismatch or an internal node
u such that u.length ≥ |P |. We take any of the strings in the returned range, for instance
Si and we check wether lcp(Si, P) < |P |. If this happen than we may have not noticed a
mismatch and the longest prefix shared between P and the copied strings can be associated
to an ancestor of u.

Indeed we can percolate again the tree until we find a node z such that
z.length > lcp(Si, P), or store the id and the length field of the nodes met during the
first percolation of the trie. The latter solution is better because allows to perform only
contiguous I/Os in a very small data structure to simulate the second visit of the tree.
Now, suppose the range indicated in the Value field of z is [k, s]. It is enough to compare
P [lcp(Si, P)] with Si[lcp(Si, P)] in order to find the exact lexicographic position of P . If
P is smaller than Si then all the strings prefixed by P (if any) are in the block (k − 1, k],
else, they can be found in the block [s, s+ 1]. We are sure that all such strings are in a
single block because P is not a prefix of any copied strings, otherwise we would not have
found a mismatch.

It is very important to notice that we must retrieve only one copied string per search
and that it is enough to compare one single character to retrieve the exact lexicographic
positions of the strings prefixed by P .
In fact, supposing that L = lcp(Si, P), we have that at least the first L+ 1 characters of Si
are the same of those of Sk and of Ss (otherwise there would not have been any mismatch),
indeed we have that k ≤ i ≤ s. The L + 1-th character of those strings is the mismatch
character with the pattern P , it is therefore sufficient to compare just that character to
find the lexicographic position of P among the copied strings.

Figure 5.2 shows the C++ function used to implement prefix search exploiting the
ternary search tree. Notice that the visit of the trie is triggered calling the procedure
Tree.It search(P.c str(),P.size()) which is iterative in order to save the time needed
for the recursive calls. Tree.Stack is the data structure in which are stored the indexes of
the visited nodes and their relative length field. We can also point out that string Fp1 is
long as min |P |+ 1, |Si| and that the scan of the block is optimised as said in observation 6 in
Section 5.1.2. The function PScanBlock() allows to find the first and the last string that are
prefixed by P if both are located in the same block, while coder.Get Index of Copied()

translates the index j of any copied string to its index i among the set of all the strings of
the dictionary.

CHAPTER 5. PREFIX SEARCH 76

Figure 5.2: C++ function used to return the range of strings prefixed by P , exploiting
ternary search trie

1 inl ine void P r e f i x s e a r c h (const s t r i n g &P, u i n t 6 4 t ∗ Range) {
2
3 pair<uint , uint> f = Tree . I t s e a r c h (P. c s t r () ,P . s i z e ()) ;
4
5 s t r i n g Fp1 = this−>Retr i eva l Cop i ed (f . f i r s t +1,P. s i z e () +1) ;
6 u int CC = LcpS (Fp1 . c s t r () ,P . c s t r ()) ;
7
8 i f (CC == P. s i z e ()) {
9 Range [0] = ScanBlock (P, f . f i r s t , this−>coder . Get Index of Copied (f . f i r s t +1) ,

↪→ fa l se) ;
10 Range [1] = ScanBlock (P+(char) 0xFF , f . second +1, this−>coder . Get Index of Copied (

↪→ f . second+2) , true) ;
11 return ; }
12
13 u int i =0;
14 while (Tree . Stack [i] [1] <= CC) { i ++; }
15 f = Tree .V[Tree . Stack [i] [0]] . Value ;
16 u i n t 6 4 t GoC;
17
18 i f ((unsigned)Fp1 [CC] > (unsigned)P[CC]) {
19 GoC = this−>coder . Get Index of Copied (f . f i r s t +1) ;
20 PScanBlock (P, f . f i r s t ,GoC, Range) ; }
21 else {
22 GoC = this−>coder . Get Index of Copied (f . second+2) ;
23 PScanBlock (P, f . second +1,GoC, Range) ; }}

0,c

ε2,n

S3S2S1

S0

Figure 5.3: Balanced PATRICIA ternary search tree according to string set:
{abaco,caccia,cane,caso}.

Chapter 6

Prefix search experiments

In this chapter we report the results of the experiments performed in order to measure the
quality of the solutions of the prefix search problem proposed in the previous chapter. In
particular we will compare the two-level binary search with the ternary search trie both
as solution for prefix search and for Lookup1. We will also compare these solutions with
the path decomposed tries described in Section 2.14. We anticipate that our solutions, in
particular the dictionary compressed by LPFC added to the ternary search trie TST will be
particularly competitive. The experiments have been divided according to the dictionary
on which they were performed. Hence, in Section 6.1 we report the experiments performed
on the Google 1gram dictionary described in Table 4.1, whilst in Section 6.2 we report the
results of the experiments performed on the dictionary URLs dictionary described in Table
4.2.

For the experiments reported in this chapter we have choosen to set E (data structure
used to store the positions of the copied strings) and V (data structure used to store the
indexes of the copied strings) as plain arrays.
With V stored in such a way we avoid the Select operation that would be needed to retrieve
the index of the i-th copied string among the set of all the strings, which we know it is
the most expensive one. Moreover, we know that storing E and V as arrays we achieve
negligible overhead in space when the blocks are sufficiently long without incurring in the
performance degradation of the succinct data structures.
In the following, we illustrate the notation that will be used for the various quantities we
will deal with in the experiments.

• TBin. Average search time with binary search on the copied strings.

• TFBin. Average time to locate the blocks in which the first and last string prefixed
by P are located.

1See Section 2.8

77

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 78

• SBin. Space occupied by binary search data structure and the dictionary.

• TTree. Average prefix search time with ternary search trie..

• TFTree. Average time to locate the blocks in which the first and last string prefixed
by P are located, with ternary search trie.

• STree. Space occupied by ternary search trie and the dictionary.

Depending on the context, time values can refer also to Lookup(S), so for example TFBin
can indicate the average time to locate the LPFC block in which S is located.

All the time measurements reported in this chapter are expressed in microseconds,
whilst all the space measurements are expressed in MB. In the rest of the chapter we de-
note a dictionary D compressed with an algorithm C exploiting a ternary search trie to
support prefix search with C(D)+TST.

In the following paragraphs we illustrate some theoretical considerations that will be
useful to understand the trend of the prefix search time for both the algorithms proposed
in the previous chapter.

Binary search It is possible to notice that the time to prefix search with the two-level
binary search does not increase linearly with the parameter x of LPFC(x).
In fact, increasing x, the size of the blocks increases but the number of copied strings
decreases. Actually, if we double the LPFC parameter we should have roughly on average
one random I/O less that ”balances” the increased number of contiguous I/Os needed to
scan the block.
Given that the page size is B, if we call the set of copied strings C such that |C| = nc, we
have that the time cost TBin of prefix search a patter P on a dictionary compressed by
LPFC(p) producing blocks of average size D is bounded by the following.

dP
B
e log nc + dD/Be ≤ TBin < 2(dP

B
e log nc + dD/Be) I/Os (6.1)

Indeed, looking for a prefix consists in two binary search on the copied strings and in at
most two block scans. Since the pivot strings2 are always the same for the same intervals; it
is very likely that some I/Os are avoided during the search for the pattern P#. Moreover,
the range of strings prefixed by P can obviously be completely contained in a single block,
causing no additional I/Os during the binary search for the pattern P#. There are no
additional I/Os at all during the search for P# if P is not a prefix of any string. This last
case is represented by the left term in formula 6.1. For the right term of the very same
formula we used the ”<” relation symbol instead that ”≤” because at least the first pivot
string is the same looking for pattern P or P#.

2The strings that are compared with the pattern P at each step of binary search.

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 79

We may also point out that is not convenient in terms of I/O to change the starting inter-
val of binary search when we look for pattern P# because we can reuse the pivot strings
previously compared with P to save I/Os. For example, suppose that the starting interval
of the binary search is [0, |C|) and that the lexicographic position of P is i ≥ 0, we could
start to binary search for pattern P# in the interval [i, |C|), which is a smaller interval
and therefore convenient to binary search on in terms of basic operations; anyway, we are
almost sure that we have to perform at least one I/O in each step of the binary search in
order to compare P# with the pivot strings.

It is interesting to calculate the difference δ between the I/Os needed to binary search
a pattern on LPFC(p) and LPFC(2p). We assume that doubling the parameter we halve the
number of copied strings and double the size of the blocks. So δ is given by the following.

δ ≈ log nc + dDB e − log nc
2 − d

2D
B e = dDB e − 1

And in general if we pass from LPFC(p) to LPFC(yp), y ∈ N+, δ(y) is approximately equal
to the following.

δ(y) ≈ dD(y − 1)

B
e − (y − 1) (6.2)

Equation 6.2 explains the possible non-linear increasing in time of the two-level binary
search with respect to the LPFC compression parameter. It also interesting to point out
that if the size of the block is equal to the page size D = B than δ(y) = 0 ∀y. We may
even gain time if D < B.

Ternary search tree The number of I/Os Ttree needed to solve prefix search with a
two level scheme exploiting a ternary search tree is directly influenced by the height of the
ternary search tree indexing the copied strings. In a perfectly balanced trie the expected
number of comparison is equal to |P | log |σ|, and if the ternary search tree is built picking

the strings randomly, the expected number of I/Os is 2Hnc +|P |+O(1). Where Hn =
n∑
i=1

1
i .

The ”tournament trie” we used in our implementation fits in between. Anyway we point
out that actually Ttree ≤ |P | log |σ|. In fact some character comparisons can be skipped
because the tree is a PATRICIA ternary search trie and it is not said that the strings use
all the characters of the alphabet at each level.
A more correct bound is given in [3], stating that the maximum number of I/Os to look for
a pattern in a ternary search tree is blog ncc+ |P |. So we may estimate the average number
of I/Os performed during a ”tournament trie” percolation with the following formula.

2Hnc + |P |+O(1) > Ttree ≥ blog ncc+ |P | (6.3)

An advantage given by the PATRICIA ternary search tree is that we do not have to
perform any I/O on the dictionary of strings, instead we perform I/Os only on the trie

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 80

during the first level search. It is advantageous because this data structure is much smaller
than the dictionary, so it is much more likely to exploit locality during the percolation of
the tree.
Locality is exploited also because the ternary search trie is stored contiguously in memory
so that the percolation of the tree shrinks the portion of memory on which the new I/O
will be performed. Indeed, if we are currently taking into account a node u which is located
in position T [i] in the vector of nodes, then its children are all in positions greater than
i. Moreover, since the middle child is located in cell i + 1 it is very likely that we do not
perform any new I/O accessing it.

6.1 Experiments on Google 1gram

In this section we show some experiments performed on the same file described in Section
4.2, table 4.1.
Table 6.1 shows the comparison between time and space results obtained binary searching
on LPFC and prefix searching on LPFC+TST, in particular we compare the behaviour of
LPFC(x) with the one of LPFC(x)+TST, varying the length of the searched pattern P .
Figure 6.1 shows graphically the comparison mentioned just before. Each plot illustrates
the average prefix search time in function of the pattern length. Table 6.2 shows the time
to perform Lookup on LPFC+TST (which is proven to be the best solution), while Table
6.3 shows that LPFC+TST is better than path decomposed tries to encode this dictionary
because it occupies less space yet providing faster Lookup and Access operations.

Figure 6.1: Comparing LPFC+TST and LPFC on prefix search efficiency.

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 81

Table 6.1: Comparison between prefix search on LPFC + TST and LPFC + binary search,
applied to Google 1gram. We retrieve two millions prefixes at random. Prefixes are actually
chosen as prefixes of strings which are in actually the file. The length of the prefixes are
indicated in the caption of every sub-table

(a) Comparison setting prefix length equal to 3

LPFC TBin SBin TFBin TTree STree TFTree

4 3.206 132.07 3.181 0.812 218.62 0.191

8 3.222 115.63 2.949 1.004 160.33 0.183

16 3.342 107.67 2.631 1.389 131.39 0.182

32 3.799 103.62 2.180 2.109 116.35 0.178

(b) Comparison setting prefix length equal to 4

LPFC TBin SBin TFBin TTree STree TFTree

4 3.521 132.07 3.330 1.325 218.62 0.326

8 3.535 115.63 2.990 1.357 160.33 0.298

16 3.722 107.67 2.651 1.773 131.39 0.262

32 4.195 103.62 2.339 2.431 116.35 0.243

(c) Comparison setting prefix length equal to 5

LPFC TBin SBin TFBin TTree STree TFTree

4 3.605 132.07 3.208 1.326 218.62 0.422

8 3.618 115.63 2.966 1.652 160.33 0.392

16 3.840 107.67 2.641 1.901 131.39 0.378

32 4.376 103.62 2.321 2.599 116.35 0.280

(d) Comparison setting prefix length equal to 6

LPFC TBin SBin TFBin TTree STree TFTree

4 3.553 132.07 3.141 1.463 218.62 0.545

8 3.634 115.63 2.922 1.585 160.33 0.430

16 3.835 107.67 2.581 1.957 131.39 0.369

32 4.433 103.62 2.278 2.568 116.35 0.314

(e) Comparison setting prefix length equal to 7

LPFC TBin SBin TFBin TTree STree TFTree

4 3.607 132.07 3.144 1.419 218.62 0.515

8 3.621 115.63 2.864 1.601 160.33 0.490

16 3.868 107.67 2.553 1.955 131.39 0.376

32 4.538 103.62 2.250 2.625 116.35 0.343

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 82

Figure 6.1 proves that in 1gram prefix-searching exploiting ternary search trie is better
than prefix-searching via binary search. In fact in both the case depicted in that figure, we
have that LPFC+TST (locality preserving front coding plus ternary search trie) is almost
twice as fast as LPFC, having approximately the same space cost. The non-monotonic
trends in the curves shown in Figure 6.1 are due to the fact that during the block scanning
phase needed to find the lexicographic position of our pattern P , we compare P with the
currently scanned string S only if |S| ≥ |P |3. Hence, increasing the cardinality of P reduces
the probability of finding a string S such that S ≥ |P |, possibly allowing to reduce the
number of comparisons and of I/Os needed to find the position of P .

It is evident also thanks to Table 6.1 that ternary search tree beats two level prefix
search. In fact, from that table we can argue that LPFC(16)+TST beats LPFC(4) both in
time and space and LPFC(32)+TST is very close in space to LPFC(8) but it requires less
time to solve prefix search.

In general we can notice from the very same table, that when binary search is consid-
ered, the time to locate the possible blocks in which the range extrema are located is very
close to the overall prefix search time. This happens because the blocks to be scanned have
probably already been accessed during the binary search. It is even possible, when the
blocks are small enough, that during the last I/O needed to compare the pattern P with
the copied string, we have already fetched all the rest of the block, causing no I/Os during
the linear scan.
The situation described above does not happen when the prefixes are searched with PA-
TRICIA ternary search trie. Indeed, the memory area of the trie is not shared with the
dictionary.

So, having understood that LPFC+TST is better than LPFC to solve prefix-search, we
may see how their behaviour is when implementing Lookup. The comparison between LPFC
and LPFF+TST on Lookup is illustrated in Table 6.2 and in Figure ??.

Table 6.2: Comparison on the average time to search for a string between LPFC+two level
binary search and LPFC+ternary search trie.

Name TBin SBin TFBin Ttree Stree TFtree

LPFC(4) 2.322 132.07 2.079 1.203 218.62 0.602

LPFC(8) 2.355 115.63 1.934 1.343 160.33 0.462

LPFC(16) 2.410 107.67 1.794 1.483 131.39 0.418

LPFC(32) 2.747 103.62 1.479 1.890 116.35 0.352

3See section 5.1.2, Observation 6.

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 83

Figure 6.2: Comparing space and time of LPFC and LPFC+TST on Lookup.

(a) Average Lookup time. (b) Space occupancy.

We see also from Table 6.2 that still it is better to exploit ternary search tries to
efficiently implement Lookup. Moreover, we can argue both from Table 6.1 and 6.2 that
the percolation of the trie is never the bottleneck of the prefix search algorithm: most of
the time is spent by the scanning of the blocks, and the percolation of the trie becomes
more and more negligible as much as the size of the blocks grows. Indeed, the time to
percolate the tree boils down logarithmically decreasing the number of the copied strings,
while the time to scan the blocks approximately increases linearly with the reduction of
the copied strings. Finally, in Table 6.3 we show the comparison between LPFC+TST and
the path decomposed tries.

Table 6.3: Comparison between our data structure and others regarding dictionary opera-
tions applied to 1gram

Data structures Lookup time (µs) Access time µs Space (MB)

LPFC(22)+TST 1.763 1.018 123.58

Centroid path decomposed trie 1.782 1.917 124.18

LPFC(27)+TST 1.908 1.114 119.4

Lexicographic path decomposed trie 2.133 2.211 120.06

It is possible to notice from Table 6.3 that tuning the LPFC parameter properly allows

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 84

to beat lexicographic path decomposition and centroid path decomposition both in space
and in time.
Access(i) is particularly fast in our data structures because we need to access very small
informative data structures to locate the block where the i-th string is located. Moreover,
if we perform Access(i) and then Access(j), with j 6= i, it is very likely that all the data
needed to complete Access(j) is already in a close level of memory, causing no additional
I/Os.
In Path decomposed tries the fact above does not happen because every Access has to
percolate the entire tree, which is much larger than the data structures needed to store E
and V .4

The efficiency of the implementation of the 1gram dictionary via LPFC+TST is very
remarkable. We see that with respect to lexicographic path decomposed trie we achieve
with almost the same space 12% speedup in Lookup and 98% speedup in Access. It is also
impressive the win against centroid path decomposed trie, because centroid path decom-
position ensures optimal bounds on the height of the path decomposed tree and therefore
to both Lookup and Access time.

6.2 Experiments on URLs

In this section we comment the results obtained performing string and prefix search on the
URLs file described in Section 4.2, Table 4.2.
In Table 6.4 we compare the time and space values obtained with LPFC+TST and with
binary search on LPFC, while in Table 6.5 we illustrate the comparison between BC and
BC+BC+TST. All the data structures mentioned up to this point are compared in Figure
6.3, where we can see the behaviour of various solutions occupying similar space solving
prefix search with patterns of different lengths. Table 6.6 shows instead the comparison
between LPFC and LPFC+TST, but regarding the implementation of the Lookup facility.
Finally, Table 6.7 illustrates the comparison between LPFC+TST (which is proven to be
the best solution) and the path decomposed tries.

4See Section 3.2.1.

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 85

Table 6.4: Comparison between prefix search on LPFC + TST and LPFC + binary search
applied to URLS. We retrieve 1 million prefixes at random. Prefixes are actually chosen
as sub-strings of strings which are in the file.

(a) Prefix length equal to 11

LPFC TBin SBin TFBin TTree STree TFTree

4 2.374 388.56 2.024 0.608 431.34 0.087

8 2.484 354.35 1.853 0.828 375.09 0.086

16 2.727 339.16 1.702 1.216 349.73 0.085

32 3.474 331.94 1.618 1.989 337.47 0.084

(b) Prefix length equal to 13

LPFC TBin SBin TFBin TTree STree TFTree

4 2.787 388.56 2.392 0.743 431.34 0.122

8 2.885 354.35 2.328 1.082 375.09 0.110

16 3.289 339.16 2.096 1.587 349.73 0.106

32 4.172 331.94 1.947 2.712 337.47 0.111

(c) Prefix length equal to 15

LPFC TBin SBin TFBin TTree STree TFTree

4 3.167 388.56 2.668 0.910 431.34 0.141

8 3.265 354.35 2.514 1.233 375.09 0.128

16 3.625 339.16 2.285 1.859 349.73 0.115

32 4.964 331.94 2.122 3.047 337.47 0.111

(d) Prefix length equal to 17

LPFC TBin SBin TFBin TTree STree TFTree

4 3.277 388.56 2.767 0.946 431.34 0.147

8 3.428 354.35 2.550 1.370 375.09 0.149

16 3.900 339.16 2.315 1.932 349.73 0.138

32 5.003 331.94 2.118 3.236 337.47 0.131

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 86

Table 6.5: Comparison between prefix search on BC + TST and BC + binary search applied
to URLS. Same experiment settings of Table 6.4.

(a) Prefix length equal to 11

BC TBin SBin TFBin TTree STree TFTree

17 2.345 392.09 1.984 0.874 433.88 0.084

34 2.643 358.44 1.715 1.169 379.35 0.083

68 3.518 341.60 1.583 2.109 352.06 0.082

136 4.832 333.19 1.488 3.610 338.41 0.081

(b) Prefix length equal to 13

BC TBin SBin TFBin TTree STree TFTree

17 2.871 392.09 2.380 1.002 433.88 0.114

34 3.113 358.44 1.992 1.454 379.35 0.107

68 3.938 341.60 1.827 2.346 352.06 0.109

136 5.602 333.19 1.673 4.142 338.41 0.105

(c) Prefix length equal to 15

BC TBin SBin TFBin TTree STree TFTree

17 3.204 392.09 2.553 1.079 433.88 0.128

34 3.526 358.44 2.338 1.635 379.35 0.122

68 4.353 341.60 2.140 2.566 352.06 0.119

136 6.140 333.19 1.869 4.392 338.41 0.111

(d) Prefix length equal to 17

BC TBin SBin TFBin TTree STree TFTree

17 3.283 392.09 2.629 1.101 433.88 0.143

34 3.613 358.44 2.366 1.700 379.35 0.139

68 4.419 341.60 2.190 2.699 352.06 0.123

136 6.150 333.19 1.932 4.436 338.41 0.122

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 87

Figure 6.3: Comparing LPFC and BC on prefix search time.

Figure 6.4: Comparing space and time of LPFC and LPFC+TST on Lookup.

(a) Average Lookup time. (b) Space occupancy.

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 88

Table 6.6: Comparison on the average time to search for a string between LPFC+two level
binary search and LPFC+ternary search trie.

Name TSBin SBin TFSBin TStree Stree TFStree
LPFC(4) 4.758 388.56 4.509 1.778 431.34 0.633

LPFC(8) 4.693 354.35 4.097 2.077 375.09 0.599

LPFC(16) 4.902 339.16 3.842 2.567 349.73 0.473

LPFC(32) 5.557 331.94 3.470 3.193 337.47 0.389

Table 6.7: Comparison between our data structure and others regarding dictionary opera-
tions applied to URLS

Data structure Lookup time (µs) Access time µs Space (MB) CR (%)

LPFC(8)+TST 2.077 0.925 375.09 27.02

LPFC(16)+TST 2.567 1.264 349.73 25.20

LPFC(26)+TST 3.043 1.648 340.40 24.52

LPFC(32)+TST 3.193 1.862 337.47 24.31

Centroid path decomposed trie 2.437 2.710 326.22 23.50

Lexicographic path decomposed trie 3.496 3.765 325.38 23.44

We notice from Tables 6.4, 6.5 and from Figure 6.3 that LPFC is in general better than
BC thanks to the fact that LPFC has smaller blocks for analogous space occupancy. It is
also clear that LPFC+TST is better with respect to LPFC for prefix search.
For each pattern length taken in consideration LPFC(2x)+TST beats LPFC(x) both in space
occupancy and in prefix search time. The same can be said regarding the implementation
of the Lookup operation, as we can notice from Table 6.6.
From Table 6.7 we can argue that our data structure does not clearly win over the centroid
path decomposed trie, however, with a small overhead in space it is possible to obtain a
data structure which is faster both in Lookup and Access.
In fact one of the best advantage of LPFC+TST is that it is a parametric algorithm which
allows to ”tune” the parameter x of LPFC(x) in order to get a good tradeoff between space
occupancy and query time. In general with a small increase of the space occupancy we can
get much better Lookup and Access time.
Access is very fast in LPFC for the same reason exposed in the previous section: the data
structure used to find the exact location of the searched strings are very small and separated
from the compressed string set.
If only the lexicographic path decomposed trie is taken into account, and we remind that

CHAPTER 6. PREFIX SEARCH EXPERIMENTS 89

the comparison between LPFC+TST and lexicographic path decomposition is the most
meaningful since both the data structures index the dictionary lexicographically, we see
that with just approximately 0.9% of space overhead (with respect to the size of the not
compressed URLs dictionary), LPFC(26)+TST is a bit faster in Lookup and approximately
twice as fast in Access.

Chapter 7

Conclusion and future work

In this chapter we can finally draw the conclusions of this work. We started with the target
of designing a compressed data structure able to store a dictionary a strings providing
Lookup, Access and prefix search facilities. In the next section indeed we propose a brief
summary of the work done in order devise such a data structure efficiently, in Section 7.2
we indicate some ideas that can inspire future works to improve our data structure, whilst
in Section 7.3 I report some personal consideration about the drawing up of this Thesis.

7.1 Summing up

Here we sum up the arguments studied in this work, trying to synthetically analyse the
most relevant ones and the achieved results.
In Chapter 3 we have studied some methods to compress and index any dictionary. More
precisely, in Section 3.1 we analysed theoretically some of the most known and effective
algorithms able to represent the strings belonging to a dictionary in a compressed fashion,
finding that one of them, locality preserving front coding, ensures the optimal decoding
of any strings of the dictionary and at the same time a clear theoretical bound on the
occupied space not far from the best one achievable. Moreover, in the very same section,
we studied an algorithm able to assure not only the optimal decoding of any string, but
also the optimal decoding time of any prefix of any string belonging to the dictionary, yet
guaranteeing space bounds very close to the ones of locality preserving front coding.
After that, in Section 3.2.1, we studied several ways to support the Access and the Re-
trieval of any string in the dictionary. We analysed the drawbacks of storing the indexes
and the offsets of all the strings in plain arrays, hence we studied the advantages to store
the very same quantities in succinct data structures. Then, we also analysed the possibility
of storing only the positions and the indexes of the strings that are inserted fully copied
in the compressed dictionary. We studied both the case in which such values are stored in
succinct data structures and in plain arrays. At the end we came out with the fact that

90

CHAPTER 7. CONCLUSION AND FUTURE WORK 91

the best space-time tradeoff is the latter. Indeed, storing the indexes and the positions of
the uncompressed strings with two arrays gives the benefit that the size of both of them
tends to decrease as much as the time to perform operations on them.
Lastly, in the same chapter, in Section 3.2.2, we also discussed how to store the encodings
of the integers that must be inserted in the same memory area of the representation of the
strings, ending up with the fact that good theoretical solutions are VBFast, more oriented
towards decoding speed and GP, instead oriented towards the optimisation of space occu-
pancy.

After the theoretical discussion about how to implement Access and Retrieval on any
dictionary D, in Chapter 4 we presented the results of the experiments performed on some
actual dictionaries. In particular we analysed the application of our data structure to
Google 1gram, a dictionary drawn from natural language, and to a subset of the ClueWe-
bUrls dataset, a huge dictionary composed by Uniform Resource Locators (URLs). Before
any experiment is performed, for both of these file we discussed what representation of the
sets of positions and indexes we have to use in order to get good space-time tradeoff and
what wold be the best integer encoder. All such considerations were enhanced by space and
time measurements of the various supporting data structures and encoders. The outcome
of the experiments has been that our data structure won against path decomposed tries
both in space occupancy and in average Access time.

Continuing our dissertation, in Chapter 5 we started to study the possible approaches
to solve the prefix search problem on the dictionary encoded with the techniques illustrated
in Chapter 3. Initially, in Section 5.1 we described an algorithm that allows to prefix search
a pattern P in O(Plog |D|) I/Os, and then, another one, exploiting a two level scheme, that
ensure prefix search in O(Plog nc) I/Os, where nc is the number of uncompressed strings in
the dictionary. Both these techniques do not need the overhead of additional data struc-
tures other than the ones stored to have access to any string of the dictionary.
To further improve the prefix search time complexity, we presented in Section 5.2 a new
data structure: the ”tournament” PATRICIA ternary search trie, allowing to prefix search
a pattern P in a time Ttree that is in the following range: 2Hnc + |P |+O(1) I/Os > Ttree ≥
blog ncc + |P | I/Os, where Hn =

n∑
i=1

1
i , with the addition of O(nc) bits of space, hence

negligible when the block of the encoded dictionary are sufficiently long.

Finally, in Chapter 6, we analysed the results of the experiments regarding the searches
by prefix executed over the Google 1gram and ClueWebUrls dictionaries. We noticed that
the use of the ternary search tree allowed to prefix search on those dictionaries more ef-
ficiently than binary search. We also compared our solution, now supporting Lookup and
Access primitives, with the path decomposed tries, which are considered extremely effi-
cient solutions capable of supporting both the aforementioned primitives. At the end we

CHAPTER 7. CONCLUSION AND FUTURE WORK 92

got that our data structure, basically a dictionary compressed by locality preserving front
coding with two arrays storing the indexes and the positions of the uncompressed strings,
plus a ternary search trie indexing them, won completely against path decomposed trie in
Google 1gram, while it resulted competitive in ClueWebUrls. Indeed in both the cases, we
overwhelmed path decomposed tries in Access time, while we obtained similar values for
Lookup. The space occupied by path decomposed tries applied to ClueWebUrls was a little
bit smaller than the one occupied by our data structure, anyway we pointed out the fact
that our solution is parametric, while path decomposed tries are not. As a consequence,
we can get much faster Lookup and Access time with small space growths, depending on
the user’s needs.

7.2 Ideas for future works

Now, after that we summed up all the work done in this Thesis, we may concentrate on
what can be done in the future in order to improve our data structure. The following
paragraphs show some proposals that can inspire future works.

Making a dynamic compressed dictionary Indeed the implementation of our dictio-
nary is static. Given a dictionary D, we build up a data structure capable of compressing D
and providing prefix search and Access facilities. If we need to change, D by to inserting,
removing, or substituting a single string, we have to build up the data structure again
from scratch. An interesting problem would be to devise a front coded dictionary, like
ours, capable of ensuring the same facilities plus the capability of inserting and removing
strings from the encoded dictionary without the need to re-build the whole data structure.
An idea can be to store the chunks of the front coded (or rear coded) dictionary in differ-
ent buffers. Indeed, in our solution all the blocks are stored contiguously on memory and
the insertion of a new string S in the compressed dictionary would need the shift of all
the strings which are lexicographically greater than S, the update of the arrays and the
reconstruction of the tree. In practice, we would have to rebuild (almost) the whole data
structure from scratch.
If instead we store the compressed dictionary as a ”vector” of blocks, each one starting at
an arbitrary position in memory, the insertion and the deletion of the string S in the dic-
tionary would cause only the rearrangement of a single block of the front coded dictionary,
and the array of indexes should be rebuilt only in the case that the insertion of the new
string breaks the rules of locality preserving front coding. At the same time, the ranges
associated to the nodes of the ternary search trie must be recomputed only if the insertion
or the removal cause the modification of the set of uncompressed strings.
Just to take an example of the fact that inserting a string may cause the modification
of just a block, we start from the dictionary {aback, abate, abbazia, cane} and we

CHAPTER 7. CONCLUSION AND FUTURE WORK 93

insert the string abalone. Once located the lexicographic position of such a string, if its
insertion does not break the rule of LPFC, we have to shift only the strings which are in
the same block and lexicographically greater. The following image illustrates such example.

Further improve the compression In our data structure, we exploited for compression
only the symbols of the strings that are shared among several dictionary strings. We know
that the best algorithm exploiting such a fact would need to store only the characteristic
suffixes of the strings and separately, their longest common prefixes. Thanks to the results
of [14], we also know that front coding is not far from the optimal algorithm exploiting
only common prefixes.1

Despite this, we could achieve better compression exploiting common sequence of symbols
which appear repeatedly in the suffixes of the compressed dictionary. For example, if
there is a couple of symbols ab which appears frequently in the suffixes of the front coded
dictionary, we can think to augment the the alphabet Σ0 from which the strings are drawn,
obtaining a new alphabet Σ1, with a new symbol A such that Σ1 = Σ0 ∪ {A}, substituting
each occurrence of ab. Hence, we must store in the data structure also the information
that A→ab.
We can repeat this procedure considering A as a normal symbol, that is, if we find that
the sequence Ac appears frequently, we can define another new symbol B such that B→Ac.2

We can iterate until every pair of symbols appears just once.
Indeed what we are doing is extracting a grammar G generating the set of suffixes in the
compressed dictionary. G is such that its set of terminal symbols are the ones in the original
alphabet Σ0, its metasymbols are the ones with which we augmented Σ0, while its set of
rules is the one generated by the substitution of a couple of symbols belonging to Σi−1

with one symbol of Σi.
A studied algorithm, devised by Larsson and Moffat [26] able to perform this kind of
compression is called Re-Pair. There exists also an approximated version [8] that requires
a tuning parameter allowing the user to trade between the compression ratio and the
compression speed/memory usage.

1See Formula 3.2 in Section 3.1.1.
2Passing from Σ1 to Σ2.

CHAPTER 7. CONCLUSION AND FUTURE WORK 94

7.3 What did I learn

At the end of work done for this Thesis I can say that I achieved a deeper understanding
of how actually computer science research is. Without taking into account the precise field
of this work, I touched with my hands what the study and the design of a data structure
is. The mixture of theoretical and technical work constantly needed in order to achieve
satisfactory results and the continuous comparisons with other devised solutions and ideas.
I noticed that each phase is essential. It is essential to have clear in mind what must be
done, the abstract data structure and the theoretical study of the space-time complexity.
It is essential to code properly, accurately designing every detail of the algorithm and of
the structures involved, not only for the performance of the data structure but also for the
performance of the programmer.
I learned a lot of things about C++, most of all thanks to the code developed by more
experienced scholars. I also learned a lot about performance engineering and its related
technical tools like perf, needed to understand what is actually happening during the
execution of the code.
I learned that the theoretical study of an algorithm is fundamental, but we need always
to understand what is actually happening on our machine, which is the main source of
performance degradation , i.e., the bottleneck, of our application and try to get rid of it.
I learned that it is essential the phase in which we present our work, not only to allow
other people to know what has been done, but also to allow ourselves to deeper understand
what have we really done and to tide our ideas. To give dignity to our work.

Bibliography

[1] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Pro-
ceedings of the 4th Latin American Symposium on Theoretical Informatics, LATIN,
Punta del Este, Uruguay, pages 88–94, 2000.

[2] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious
string B-trees. In Proceedings of the Twenty-Fifth ACM, SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS, Chicago, Illinois, USA, pages
233–242, 2006.

[3] Jon Louis Bentley and James B. Saxe. Algorithms on vector sets. ACM SIGACT
News, 11(2):36–39, September 1979.

[4] Jon Louis Bentley and Robert Sedgewick. Fast algorithms for sorting and search-
ing strings. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, New Orleans, Louisiana, USA, pages 360–369, 1997.

[5] Rene De La Briandais. File searching using variable length keys. In Proceedings of
the Western Joint Computer Conference, San Francisco, California, USA, IRE-AIEE-
ACM ’59 (Western), pages 295–298, 1959.

[6] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital Equipment Corporation, 1994.

[7] David Richard Clark. Compact Pat Trees. PhD thesis, Waterloo, Ontario, Canada,
1998. UMI Order No. GAXNQ-21335.

[8] Francisco Claude and Gonzalo Navarro. Fast and compact web graph representations.
ACM Transaction on the Web, 4(4):16:1–16:31, September 2010.

[9] Erik D. Demaine, John Iacono, and Stefan Langerman. Worst-case optimal tree layout
in a memory hierarchy. CoRR, cs.DS/0410048, 2004.

[10] Sheri Edwards. Thomas M. Cover and Joy A. Thomas, Elements of Information
Theory (2nd ed.), john wiley & sons, inc. (2006). IPM, 44(1):400–401, 2008.

95

BIBLIOGRAPHY 96

[11] Peter Elias. Efficient storage and retrieval by content and address of static files.
Journal of the ACM, 21(2):246–260, 1974.

[12] Robert Mario Fano. On the Number of Bits Required to Implement an Associative
Memory. Computation Structures Group Memo. MIT Project MAC Computer Struc-
tures Group, 1971.

[13] Paolo Ferragina and Roberto Grossi. The string B-tree: A new data structure for string
search in external memory and its applications. Journal of the ACM, 46(2):236–280,
1999.

[14] Paolo Ferragina, Roberto Grossi, Ankur Gupta, Rahul Shah, and Jeffrey Scott Vitter.
On searching compressed string collections cache-obliviously. In Proceedings of the 27th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS, Vancouver, BC, Canada, pages 181–190, 2008.

[15] Paolo Ferragina and Rossano Venturini. Compressed cache-oblivious string B-tree.
In Proceedings of the 21st Annual European Symposium on Algorithms, ESA, Sophia
Antipolis, France, pages 469–480, 2013.

[16] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM, Journal on Computing, 40(2):465–492, 2011.

[17] William B. Frakes and Ricardo Baeza-Yates, editors. Information Retrieval: Data
Structures and Algorithms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[18] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, September
1960.

[19] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. JCSS, 48(3):533–551, 1994.

[20] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. Journal of the ACM, Transactions on Algorithms, 8(1):4,
2012.

[21] Roberto Grossi and Giuseppe Ottaviano. Design of practical succinct data structures
for large data collections. In Proceedings of the 12th International Symposium on
Experimental Algorithms, SEA, Rome, Italy, pages 5–17, 2013.

[22] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

[23] Bo-June Paul Hsu and Giuseppe Ottaviano. Space-efficient data structures for top-k
completion. In Proceedings of the 22nd International World Wide Web Conference,
WWW, Rio de Janeiro, Brazil, pages 583–594, 2013.

BIBLIOGRAPHY 97

[24] D.A. Huffman. A method for the construction of minimum redundancy codes. Pro-
ceedings of the IRE, (10):1098–1101, 1952.

[25] Guy Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, FOCS, Research Triangle
Park, North Carolina, USA, pages 549–554, 1989.

[26] N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. In Pro-
ceedings of the IEEE Data Compression Conference, DCC, pages 296–305, March
1999.

[27] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, Third Edition. Texts in Computer Science. Springer, 2008.

[28] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the
ACM, 48(3):407–430, 2001.

[29] Pat Morin. Open data structures. Web, 2014.

[30] Donald R. Morrison. PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. Journal of the ACM, 15(4):514–534, 1968.

[31] Ian Munro. Tables. In Proceedings of the 16th Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS, Hyderabad, India, pages 37–
42, 1996.

[32] Giuseppe Ottaviano. Path decomposed tries library. https://github.com/ot/path_
decomposed_tries.

[33] Giuseppe Ottaviano. Succinct library. http://github.com/ot/succinct.

[34] Giuseppe Ottaviano and Roberto Grossi. Fast Compressed Tries through Path De-
compositions. In Proceedings of the 14th Meeting on Algorithm Engineering & Exper-
iments, ALENEX. The Westin Miyako, Kyoto, Japan, pages 65–74, 2012.

[35] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dic-
tionaries with applications to encoding k -ary trees, prefix sums and multisets. Journal
of the ACM, Transactions on Algorithms, 3(4), 2007.

[36] Claude Elwood Shannon. A mathematical theory of communication. Mobile Comput-
ing and Communications Review, 5(1):3–55, 2001.

[37] Robert Endre Tarjan. Amortized computational complexity. SIAM, Journal on Alge-
braic and Discrete Methods, 6(2):306–318, 1985.

https://github.com/ot/path_decomposed_tries
https://github.com/ot/path_decomposed_tries
http://github.com/ot/succinct

BIBLIOGRAPHY 98

[38] Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, FTTCS, 2(4):305–474, 2006.

[39] Ian H. Witten, Alistair Moffat, and Timothy Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.

[40] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. Journal of the IEEE, Transactions on Information Theory, 23(3):337–343, 1977.

	Introduction
	Background and Tools
	Basic Notation
	Asymptotic notation
	Sequences
	Basic Operations on sequences
	Theoretical lower bounds
	Models of computation
	Succinct representation of sequences
	String dictionaries
	Range Minimum queries
	Integers encodings
	Bit-aligned integers encoders
	Byte-aligned encoders

	Prefix search
	Tries
	Compacted trie
	PATRICIA trie

	Ternary search trees
	Path decomposed tries

	Compressing string dictionaries
	Dictionary representation
	Front coding
	Front coding with bucketing
	Locality preserving front coding
	Optimal prefix retrieval

	Storing additional information
	Storing the references to the strings
	Integers encoding

	Retrieval Experiments
	Implementation
	Datasets
	Competitors
	Experiments
	Google 1gram
	URLs

	Prefix Search
	Binary search approach
	Trivial binary search
	Binary searching only on the uncompressed strings

	Ternary search trie
	Insertion
	Search

	Prefix search experiments
	Experiments on Google 1gram
	Experiments on URLs

	Conclusion and future work
	Summing up
	Ideas for future works
	What did I learn

