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Abstract

Over the past years the demand of energy from renewable sources has been
increasing due to increased environmental awareness and foreseeable shortage
of non-renewable energies. This has had a strong impact on wind energy power-
plants. In fact in order to supply large quantities of energy high-density clusters
of wind turbines have been designed.

However, the actual production has been lower than the expected because
of wake interactions, which are more severe as more densely the turbines are
placed, and turbulent motion. It follows that in order to optimize the power
extraction from wind a deep understanding of wakes features and dynamics is
required.

Historically employed engineering models do not provide such a detailed
knowledge and their predictions on wakes characteristics may be quite erro-
neous due the simplifying assumptions they rely upon. Conversely Large-Eddy
Simulations (LES) take into account the dynamics of wind turbine flows with-
out making a priori hypotheses on airflow behaviour. Therfore LES results are
expected to be more detailed and accurate.

In the present thesis, LES of wind turbine flows have been performed. The
results obtained have been discussed and compared to the predictions of the
simplified engineering models. The impact of the subgrid-scale (SGS) model,
which is a key feature of LES, has also been investigated within the framework
of eddy-viscosity subgrid-scale models.
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Chapter 1

Introduction

The increasing environmental awareness and the shortage of long term fos-
sil fuels provisions have stimulated an increasing interest in renewable energies.
Among those, wind energy is widely regarded as one of the most promising
alternative source of energy and is among the world’s most rapidly expand-
ing industries. According to the Wall Street Journal, wind power is the most
effiecient source of electricity1

Despite these remarkable recent developments, harvesting power from wind
is one of the oldest activities humans have carried out over the history. Sails are
one of the oldest propulsion devices known by the men and date as far back as
4,000 years BC. Windmills have been used for more than 3,000 years to extract
mechanical energy from wind for agricultural purposes and can be considered
as the forerunners of modern wind turbines.

These latter machines have a different purpose, which is electricity produc-
tion. First wind turbines were constructed by the end of the 19th century in
Scotland and the United States. They were characterised by rotor diameters
around 15-25 m, 10-20 kW generators and pioneristic designs. The evolution of
these machines has been quite discontinous over the 20th with the development
of new generations of turbines being mainly subjected to the world’s current
economical trends rather than the availability of new technologies. Renewed
interest arose during the World War II because of the supply crises and in the
1970s because of the oil crisis of 1973.

Recently wind power industry has benefited from considerable governing sub-
sidies in various countries of the world which has led to record growing rates
because of environmental concerns and strategical interests in renewable ener-
gies. Accordingly the technological development has been remarkable. Today
utility scale wind turbines have rotor sizes over 100m and an installed capacity
up to 7.5MW.

In order to live up to the huge demand of energy wind turbines are today
clustered in large areas, wind farms, with a cumulative production which can
reach that of a nuclear powerplant[81]. However the overall production has been
lower than the expected, with losses being around 10 to 20% of the total power
output. Another major concern is the maintenance and reliability of these large
wind parks, with wind turbines actually wearing sooner than predicted.

1http://blogs.wsj.com/numbers/what-is-the-most-expandingcient-source-of-

electricity-1754/

1



CHAPTER 1. INTRODUCTION 2

The reason for these setbacks lies in the wake interactions which occur in
wind farms. The wake generated by the upstream turbines creates a highly tur-
bulent and inhomogenous flow. As a consequence waked turbines are subjected
to fatiguing loads which reduce their lifespan. Moreover, the trailing turbines
are also affected in terms of power production since in wakes less kinetic energy
is left for energy conversion.

The challenge for wind farm designer and engineers to-date is to understand
how to predict and control these wake effects in order to optimize power extrac-
tion and loading spectra. The tools which are more commonly used however give
little physical insight into flow dynamics and their prediction can be misleading.
These so-called wake models are often based on simplifying assumptions about
flow behaviour which allows to obtain simple analytical relantionship. Though
their reliability is limited because these assumptions are often found to be not
verified in actual wind turbine flows, their use is so extended because they are
very simple to be implemented and do not require significant computational
resources.

In order to gain an adequate knowledge of wake interaction, a more accurate
flow description is necessary. A detailed numerical description of the flow field
past wind turbines, a so called Direct Numerical Simulation (DNS), is to-date
beyond computer capabilities because of the wide range of scales which are in-
volved and the high Reynolds number. Recently Large-Eddy Simulations (LES)
have been applied to wind turbine flows [30, 31]. In LES only the large scales of
the flow are simulated, while the small ones are modeled. In the LES approach
the turbine rotor is generally not resolved in detail, but is represented with an
actuator model. In practice, the turbine blades are replaced with the forces they
apply to flow. The two most common model used are the Actuator Disk Model
(ADM) [30, 31, 50, 67, 95], which distributes the forces uniformly over a disk
corresponding to the area swept by the blades, and the Actuator Line Model
(ALM) [86, 87, 28, 48], which distributes the forces over rotating lines mimcking
the actual blades motion [83, 52].

LES have shown to have the potential of faithfully reproducing wake fea-
tures, interaction with the atmospheric boundary layer [9, 1] and predicting
overall performances [82]. The ALM has been proved to be the most accurate
method presently disposible [94, 48], capable of capturing small scales structures
characterising wind turbine wakes. On the other hand the ADM is computation-
ally more efficient and has allowed the simulation of multiple aligned turbines [9]
or wind farms [60, 96], even though examples in the literature exist also for the
ALM [10].

Overall, the LES approach is definitely the most accurate tool presently dis-
posible for the analysis of wind turbine flows. It provides several information
on the flow field which are not accessible with simple wake models. LES have
the potential of giving the physical insight in the flow aerodynamics which is
necessary to understand, control and master flow mechanisms. This deep knowl-
edge has an invaluable importance since it can be exploited for optimisation of
existing wind farm in terms of production and durability as well as for siting
and design of new clusters.
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The main drawback of the LES is the dramatic increase in computational
resources and times connected with its use. Large-eddy simulations of wind tur-
bines requires modern high-performances parallel computers and simulations
can take up to several days depending on mesh resolution. This has confined
the use of LES to the academic world for fundamental research on wind turbine
flows, preventing its diffusion in the industry where wake models still represent
the standard methodology.

The aim of this thesis is to show that LES are nontheless necessary to cor-
rectly describe the flow past wind turbines and particularly wind farms. As it
has been mentioned above, wake interaction plays a fundamental role in wind
farm performances and an accurate simulation of wake evolution is thus neces-
sary to carefully study this role. Wake models, because of the assumptions they
are based on, do not furnish an accurate description and LES can be used to
highlight this weakness and obtain accurate predictions.

In order to preserve the accuracy of the method and at the same time to limit
as far as possible the computational requirements, a new turbine parametrisa-
tion, the Rotating Actuator Disk (RADM), has been developed. The turbine
rotor is represented with a rotating disk over which the force are not distributed
smoothly, but according to the actual blades position. The method can be con-
sidered as being intermediate between the ADM and the ALM both in terms of
accuracy and computational resources.

Another aspect, specific to the LES approach, has been addressed. A key
feature of LES is the subgrid-scale (SGS) model which is the way through which
the small scale of the flow not directly represented are introduced in the simula-
tion. Various models and hypotheses have been proposed and their influence on
the results and validity have been analised in numerous studies and for different
kind of flows (see [71]).

However this issue have never been sistematically analised for wind turbine
flows. A recent exception is constituted by the work of Sarlak et al.[75]. Therein,
however, it was concluded that the impact of the SGS model is low compared to
that of other parameters. A similar study is carried out in the final part of this
thesis. The originality of this analysis consists in the fact in the present simula-
tions the turbine tower and nacelle are explicitly simulated and not represented
through virtual forces. Santoni et al.[74] have shown that explicit consideration
of tower and nacelle provides close agreement with experimental results whereas
the virtual forces method do not. The aim of the analysis is then to investigate
if this feature can affect the final results and a different impact than in [75] can
be found.

The thesis is organised as follows. In Chapter 2 the numerical methodology
for performing the simulation is described. A theoretical background on the
LES framework and the SGS which will be considered afterwards is given. The
turbine modeling is also described in detail.

In Chapter 3 a validation of the numerical code is performed with numer-
ical simulations of the turbulent channel flow. This is classic study case for
which well-established numerical and experimental data as well as theoretical
results are available. Therefore it is a well-suited case to evaluate and assess the
performances of the numerical code.
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In Chapter 4 a brief account on the wake models is given. Their performances
are then compared to that of Large-Eddy Simulations carried out for utility-scale
wind turbine. The large amount of information obtained from these simulations
is analysed so as to provide a brief outline of wind turbine wakes aerodynamics.
A comparison of the predictions of the ALM and the RADM is presented.

In Chapter 5 the specific argument of the effect of the SGS modeling is
addressed. Various models are considered and evaluated with the use of both
a priori and a posteriori tests. Results are also compared with experimental
measurements for a model wind turbine.

In Chapter 6 conclusions are presented.



Chapter 2

Numerical Methodology and

Modeling

2.1 Physical model and governing equations

The flow around a wind turbine can be assumed as incompressible to a
good approximation. This choice is usual in the literature and it is suggested
by the low Mach numbers pertaining to wind turbines under normal operating
conditions, which allow compressibility effects to be sensibly neglected.

The governing equations of the fluid motion are the incompressible Navier-
Stokes equations [8, 4]:

∇ · u = 0 (2.1a)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2

u (2.1b)

where u = (u, v, w) is the velocity vector, p is the pressure, ρ the fluid den-
sity and ν the kinematic viscosity.

Equations (2.1) can be adimensionalised by choosing a length and a velocity
scales – which, though in principle can be arbitrary, are usually selected such
that they are characteristic of the problem under study –, denoted by L and U
respectively.

This procedure yields the non-dimensional Navier-Stokes equations, which
assume the following form:

∇∗ · u∗ = 0 (2.2a)

∂u∗

∂t∗
+ u

∗ · ∇∗u
∗ = −∇∗p

∗ +
1

Re
∇∗

2
u
∗ (2.2b)

Quantities denoted by ∗ represents non-dimensional quantities, for instance:

u
∗ =

u

U
t∗ =

tL

U
p∗ =

p

ρU2

5
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and:

[∇∗]i =
∂

∂x∗i
with x∗i =

xi
L

while Re is the Reynolds number, defined as: Re = UL/ν, and is the only
similarity parameter which appears in Equation (2.2).

As a consequence, according to the dynamic similarity principle [41], two
flows – geometrically similar –, having the same Re, will obey exactly the same
equations, Eq. (2.2), and thus will have the same solution in terms of non-
dimensional variables: this feature enlightens the power of the non-dimensional
approach and constitutes one of the reason why it is so widely employed in var-
ious branches of Physics.

Since all the analysis in the following has been conducted within the frame-
work of the non-dimensional Navier-Stokes equations, for the sake of simplicity
of notation, the super-script ‘*’ will be henceforth omitted and all quantities
are meant to be conveniently adimensionalised with the appropriate length and
velocity scale.

2.2 Numerical Code

Discretisation of Equations (2.2) is required in order to obtain a numerical
solution.

The discretisation method, described in [61] and [62], consists of a second-
order central finite-difference approximation on a Cartesian orthogonal grid for
the spatial derivatives. Time advancement is obtained with a fractional step
method which employs Cranck-Nicolson scheme for the linear terms, treated im-
plicitly, and low-storage Runge-Kutta for the non-linear convective term which
is treated explicitly.

The large sparse matrix resulting from the implicit terms is then inverted by
an approximate factorization technique and a projection method is employed
for the pressure correction.

The grid is staggered, i.e. flow variables are defined at different points of the
computational cell: such a choice allows to avoid spurious pressure modes in
the solution of the Navier-Stokes equations and to increase numerical accuracy
while keeping the scheme compact [18].

Velocities are defined at the centre of the faces, while the pressure is com-
puted at the centre of the cell. Vorticity is thus naturally computed at the edges
of the cell and each variable may then be computed at the desired position by
linear interpolation.

The computational cell is shown, together with the location of the velocity
components and pressure, in Figure 2.1.
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x

y
z

u

v

w

p

Figure 2.1: Grid cell with staggered velocities.

2.2.1 Discretisation schemes

In this section details are given on the discretisation schemes and on the
solution process to numerically evaluate the Navier-Stokes equations.

Linear terms

The linear terms are discretized in time through the Crank-Nicolson scheme,
which approximates time derivatives by a centered scheme about the point t =
tn+ 1

2
:

un+1
i − uni

∆t
+Ni(u

n) =
δp

δxi

∣∣∣∣
t=t

n+1
2

+
1

Re
Ljj

(
un+1
i + uni

2

)
(2.3)

where
δ

δxi
is the discrete gradient operator – which employs, as reported

above, centered finite-difference schemes – and Ljj is the discrete Laplacian
operator.

The term Ni(u
n) indicates the non-linear convective term which is explicitly

computed as a function of the solution uni at time t = tn; ∆t = tn+1 − tn is the
discrete time step.

Non-linear terms

The non-linear terms, which are the convective transport terms in Eq. (2.2b),
are treated in explicit form which is easy to implement and permits to avoid
linearisation which decreases the overall accuracy.

The scheme used is a low-storage third-order Runge-Kutta method. This
method was developed by A. Wray in 1972 [35]. The convective term is ad-
vanced from time t = tn to time t = tn+1 using three intermediate steps (frac-
tional steps) which guarantee third-order accuracy in time and also increase the
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stability of the numerical scheme, as it will be discussed later.

The scheme is said to be low-storage because it is build such that it re-
quires the same memory storage of a second-order scheme, while actually being
third-order accurate: in this sense, the scheme can be regarded as being compu-
tationally very efficient.

At each intermediate step l the updated solution is computed as:

ul+1
i = uli + ρl∆tNi(u

l) + γl∆tNi(u
l−1) l = 0, . . . , 2 (2.4)

with ul=0
i = uni and ul=3

i = un+1
i . The coefficient ρi and γi can be determined

resorting to the Taylor expansion for un+1
i centered in uni up to the third order.

The coefficient ρ0 is set equal to zero because at the first step no previous
information are known other then the starting solution uni .

By summing Equations (2.4) for each time step l and comparing with the
Taylor approximation one obtains a system for five of the unknown coefficients
which has among the possible solutions the following employed in the present
code:

ρ0 = 0 ρ1 = −17

60
ρ2 = − 5

12

γ0 =
8

15
γ1 =

5

12
γ2 =

3

4

(2.5)

Solution procedure and pressure correction

Merging the discretisation schemes in Equations (2.3) and (2.4) one obtains
the completely discretized momentum balance.

However, care must be taken when merging the two schemes that the time
advancement is consistent, i.e. the same for the linear and non linear terms.
This may be accomplished by centering the Crank-Nicolson scheme around the
step l+ 1

2 for each Runge-Kutta fractional step. The discrete time step ∆tl may
then be computed as:

∆tl = αl∆t (2.6)

with

αl = ρl + γl (2.7)

The discrete counterpart of Equation (2.2b) assumes the form:

ul+1
i − uli
∆t

+ρlNi(u
l)+γlNi(u

l−1) = − δp

δxi

∣∣∣∣
l+ 1

2

+αl
1

Re
Ljj

(
ul+1
i + uli

2

)
(2.8)
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Direct integration of Equation (2.8) is prevented only by the fact that the
pressure field is known only at time t = tl and not at time t = tl+ 1

2
.

This may be overcame by using a projection method, which consists in solv-
ing Eq. (2.8) with the (known) pressure field at time t = tl for an intermediate,
non-solenoidal, velocity field ûi and then in projecting ûi onto a solenoidal space
and updating p|t=tl+1

accordingly.

By introducing the variable ∆ui = ûi − uli, Eq. (2.8) may be recast in the
following form:

∆ui
∆t

+
αl

Re
Ljj

(
∆ui
2

)
= − δp

δxi

∣∣∣∣
l

− ρlN(ul)− γlN(ul−1) +
αl

Re
Ljj(u

l
i) (2.9)

(
δii +

αl∆t

2Re
Ljj

)
∆ui = bi (2.10)

where bi embodies all the (known) terms in the right-hand side of Equa-
tion (2.9) and δii is the conventional Kronecker’s delta.

Due to the stencil of the centered second order approximation employed for
the discretisation of spatial derivatives, the matrix resulting from the implicit
terms on the left-hand side of Equation (2.10) is a seven-diagonal sparse matrix.

Given the dimension which usually reaches such matrix for well-resolved
simulations an exact inversion would result in too high computational costs.
As a consequence an approximate factorisation scheme [36] in three steps is
adopted:

(
I +

αl∆t

2Re
L1 1

)
∆u

∗∗ = b

(
I +

αl∆t

2Re
L2 2

)
∆u

∗ = ∆u
∗∗

(
I +

αl∆t

2Re
L3 3

)
∆u = ∆u

∗ (2.11)

where Lii represents the discrete second derivative operator in the i-th direc-
tion. The matrix resulting from the implicit terms involves only three diagonals
different from zero for each intermediate step. This makes the inversion feasible
at a resonable expense in terms of memory and computations.

In order to obtain the solution u
n+1 from û = ∆u− u

n a scalar quantity ψ
is used to project û onto a solenoidal space:

u
n+1 = û−∆t∇ψ (2.12)

The scalar ψ is determined by solving a Poisson equation derived from the
divergence of Eq. (2.12):

∇2ψ = ∇ · ∇ψ = ∇ · û (2.13)
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Using Eq. (2.12) into Eq. (2.8) permits to compute the new pressure field
compatible with a solenoidal velocity as:

pn+1 = pn − ψ +
αl∆t

2Re
Ljj (ψ) (2.14)

This procedure, Eqs. (2.12)-(2.14), is equivalent to enforce the continuity
equation, Eq. (2.2a), which is required for the discrete numerical scheme in order
to accurately represents the physical, continous, model and also shows the role
of the pressure in incompressible flows as the enforcer of mass conservation.

2.2.2 Accuracy and Stability

The numerical scheme is second-order accurate in space and time. The
Runge-Kutta method used for the discretisation of the convective term is actu-
ally third-order accurate in time. Although these higher precision is lost in the
complete scheme, it must be recalled that the scheme is low-storage and thus
there is no greater computational burden from the memory viewpoint. Further-
more, the real advantage in using this method is rather in the stability globally
achieved by the numerical scheme.

In fact, due to the explicit treatment of the convective terms, the so-called
CFL condition – named after Courant, Friedrichs and Lewy [13] – applies, i.e.:

CFL =

∣∣∣∣
ui∆t

∆xi

∣∣∣∣
max

≤ 1 (2.15)

This limit states that, for the solution to be stable, the (maximum) distance
travelled by a material particle in a time step must be smaller than the mesh
size and thus acts as a severe constraint on the amplitude of the time step ∆t:
as the grid is refined the CFL condition becomes more and more limiting.

Using a fractional step Runge-Kutta method allows to relax this condition
and one can afford a larger CFL number. For the present three steps method,
in fact, the CFL condition actually is formulated as

CFL ≤
√
3 ≈ 1.7

A larger CFL number allows to use a larger time step ∆t, given the mesh
size, and therefore allows to reduce the computational time.

It should be noted that condition (2.15) is rigorously derived considering
a pure advection problem: including the viscous terms, which appear in the
Navier-Stokes equations, acts to stabilise the solution thus to further expand
the CFL limit.

Implicit treatment of the convective term would permit to avoid the CFL
limit, but this solution is quite laboured due to the non-linearity of the term.

Another restriction which has to be considered is the one related to the
explicit treatment of the viscous term [64]:

∆t

∆x2Re
≤ 1

2n
(2.16)
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where n expresses the dimensionality of the problem. This condition ba-
sically states that information diffused by the viscous term ν∇2

u must not
propagate for more than one cell-grid size in one time step. This limit becomes
particularly severe for tri-dimensional low Reynolds number flows. In this case,
given that the viscous term is linear, implicit treatment is a feasible effective
way to overcome this limit.

2.2.3 Immersed Boundary

The presence of tower and nacelle in the computational domain is taken into
account through the use of the efficient Immersed Boundary Method (IBM).

This method is very versatile since it allows to retain structured grid for
describing bodies of complex geometry without recurring to computationally
expensive body-fitted curvilinear grids or unstructured meshes. It allows treat-
ment of moving bodies inside the domain without major numerical complications
and with no need of re-meshing which is a cumbersome and long procedure when
employing different techniques.

The method presently implemented is due to Leonardi [62] and it is devel-
oped from the formulation of Mohd-Yusof [53] and Fadlun [17].

The method essentially consists in prescribing in the grid points occupied
by the body volume the value of the velocity according to desired boundary
condition:

u
l+1 = Vbody (2.17)

While it is relatively easy to treat the interior volume of the body, particular
care must be taken when dealing with its boundaries. In fact, unless special
recipies are adopted, one would describe a body with a step-wise contour leading
inaccurate results, especially when the mesh is not fine (see Figure 2.2).

Figure 2.2: Immersed Boundary Method for a 2D cylinder: • points inside
the body, × points outside the body; ∆x1and∆x2 indicates the body’s contour
corrections for first and second derivatives.

As proposed in [43] and [44] the real contour of the body is simulated by re-
placing the computational mesh distance with the effective distance from the real
boundary of the body when computing spatial derivatives that involve points
across the body boundaries, Fig. 2.2.
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2.3 LES Approach

In order for the numerical simulation to be accurate and physically sound, the
discretisation of the Navier-Stokes equations should be fine enough to include in
the computation all the relevant time-space scales of the flow under examination.

This means that grid size ∆x, and consequently the time step ∆t, must be
small enough to be able to describe the dynamics of the smallest scales of the
flow.

This requirement, which would lead to a so-called Direct Numerical Sim-
ulation (DNS), may become too challenging to accomplish when a very large
range of scales characterises the problem under study: this is definitely the case
for turbulence problems. For instance, in the case of isotropic homogeneous
turbulence – which is the most studied case and the one for which analytical
theories are available – it is possible to derive the ratio of the characteristic
lengths of the biggest scale of the flow L to the smallest active one η (i.e. that
one whose energy is still large enough to dynamically influence the flow and not
to be dissipated by viscosity) within the framework of Kolmogorov theory [38]:

L

η
= O

(
Re3/4

)
(2.18)

Analogously, the ratio of the characteristic times is obtained as follows

T

tη
= O

(
Re1/2

)
(2.19)

As consequence, a three dimensional well-resolved DNS of isotropic homoge-
neous turbulence would require at least O

(
Re11/4

)
unknowns [71, 72].

Equations (2.18)-(2.19), despite being derived for isotropic homogeneous tur-
bulence, represent a fairly good estimate for other types of flows, such as those
of engineering interest which are usually anisotropic and inhomogeneous. If one
considers that a modern utility scale wind turbine may have a diameter D as
large as 100m and a design wind speed U around 10m s−1, the Reynolds num-
ber Re = UD/ν is of the order O(108). It is clear that, despite the disposal of
modern powerful computers, a DNS of wind turbine flow is still beyond present
capabilities.

A possible solution to overcome this problem, is the Large-Eddy Simulation
(LES) approach. The LES approach basically consists in solving only the large
scales (the largest eddies precisely) which contain most of the energy in flow
and which are supposed to be characteristic and directly linked to the particular
problem under study.

The smallest scales – which, on the contrary, are considered to be universal
or, at least, not closely related to the particular flow – are modeled with the
resolved (simulated) scales.

These assumptions lead to local isotropy hypothesis, i.e. that the small scales
are independent of the flow and thus, being universal, are isotropic and statis-
cally homogeneous.

This hypothesis holds better as far as the Reynolds number is greater: in fact,
in this case the viscous stresses – responsible for the kinetic energy dissipation
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and thus determining the magnitude of the Kolmogorov dissipative scale η –
would be significant at very small scales since at bigger scales the convective
effects are predominant.

This means that the energy cascade process, which progressively transfers
the energy contained in the large scales, would be long and thus it is reasonable
to assume that the vortical structures, as their scale decrases and the energy
is transferred, lose memory of the large anisotropic flow-dependent eddies and
thus becomes locally isotropic [72].

This feature justifies the LES philosophy and makes the modeling effort more
rational since it is not an ad hoc accommodation to resolve a particular case
but is contextualized within a more general framework.

2.3.1 Filtered Navier-Stokes Equations

The scale separation to identify the resolved scales is performed by applying
a filtering operation to the Navier-Stokes equations.

The filter is a mathematical tool which allows to remove all the scale lower
than a selected cut-off scale (scale high-pass filter or, equivalently, frequency
low-pass filter). It is defined as a convolution product between the physical
variable φ(x, t) and the filter kernel G(x, t):

φ(x, t) =

ˆ +∞

−∞

ˆ +∞

−∞

G(x− ξ, t− t′)φ(ξ, t′) dt′ dξ (2.20)

where φ(x, t) is the filtered, resolved, variable. The unresolved part of φ(x, t)
is denoted by a prime and is defined as:

φ′(x, t) = φ(x, t)− φ(x, t) (2.21)

The filter kernel is associated with a length cutoff scale ∆ and a time cutoff
scale τc and is required to meet some properties such as linearity, conservation
of constants and commutation with derivatives [71].

Application of Eq. (2.20) to the Navier-Stokes equations, Eqs. (2.1), yields
the filtered Navier-Stokes equations:

∂ui
∂xi

= 0 (2.22a)

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+
∂τij
∂xj

(2.22b)

where τij is the so-called subgrid-scale (SGS) tensor which represents the
interaction between the resolved scales and the unresolved ones which otherwise
would not be present in the simulation. The subgrid tensor is defined as:

τij = uiuj − uiuj (2.23)

The appearance of this term in Equation (2.22b) is due to the non-linearity of
the convective term and reflects the coupling between the large resolved eddies
and small scales. Considering the filtered convective term and definitions (2.20)
and (2.21) one can write:
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uiuj = (ūi + u′i)
(
ūj + u′j

)

= ūiūj + ūiu′j + u′iūj + u′iu
′
j

= ūiūj + Cij +Rij (2.24)

where Cij = ūiu′j + u′iūj is the cross-stress tensor which represents the
interactions between the resolved and the subgrid scales, while Rij = u′iu′j is
the SGS Reynolds tensor which represents the interactions among the subgrid
modes.

From a theoretical point of view it should possible to evaluate all the terms
which appear in the filtered momentum equation directly from the filtered field
itself. Since the term ūiūj would require a second application of the filter,
Eq. (2.24) can be further manipulated into:

uiuj = uiuj + Lij + Cij +Rij (2.25)

where Lij = ūiūj − uiuj is the Leonard tensor, which represents the interac-
tions among the resolved scales. The subgrid tensor is then composed of three
contributions:

τij = Lij +Rij + Cij (2.26)

This is the so-called Leonard triple decomposition, named after Leonard who
first proposed this viewpoint in 1974[42], and it provides a physical interpreta-
tion of the mechanisms which the SGS tensor accounts for. This is not the
only ‘interpretation’ of the SGS term since other decompositions are possible
based on different observations or definitions. Examples are the Leonard dou-
ble decomposition[42], which arises from Eq. (2.24), or the Germano consistent
decomposition[22] which is formally identical to Eq. (2.26) and can be seen as
a generalization of the Leonard triple decomposition[71].

To close the system of equations (2.22) the subgrid tensor has to be modeled
as function of the filtered velocity field u.

Before giving a description of some of the various SGS models developed
over the years, some remarks should be made over operation (2.20) and the
interpretation of the results obtained with Eqs (2.22) respect to those arising
from a DNS.

Though many filters can be built rather easily which have the required prop-
erties [71], explicit application of Equation (2.20) is seldom performed, mostly
because of its high computational expense.

The filtering operation is instead meant to be implicitly applied by the com-
putational grid.

This procedure has the advantage of being completely inexpensive from a
computational point of view and exploit the sampling effect of the computational
grid which, due to Nyquist theorem, is equivalent to the application of filter with
cut-off frequency fc = 1/(2∆x) – or, as more common, with cut-off wavenumber
kc = π/∆x – and thus filters out all the structures of scale lower than the grid
spacing.

The choice of the mesh size has to ensure that the cut-off includes all the
dynamically active scales of the flow, i.e. the cut-off wavenumber has to be in



CHAPTER 2. NUMERICAL METHODOLOGY AND MODELING 15

the dissipative range of the energy spectrum of the solution. Of course, this size
∆x is not known a priori and that is a potential source of error in the numerical
simulation. Grid independence studies are performed to check the convergence
of the solution

Another common problem which may arise especially when simulating com-
plex geometries is related to the topology of the grid: if the grid, or the filter, is
not uniform then commutation with the derivatives is not guaranteed and this
generates a commutation error.

In this case the error should be eliminated or controlled, for example by
employing high-order commuting, explicit, filters [89].

2.3.2 Subgrid-Scale Modeling

The filtering operation removes a number of degrees of freedom from the so-
lution of the Navier-Stokes equations which however still have an effect on it due
to the non-linearity of the convective term which gives rise to the appearance of
an extra term in the momentum balance: expressing this term as function of the
filtered solution is often referred to as the closure problem of LES [45], which
many reaserchers have tackled over the years through their modeling efforts.

In the following we focus on the so-called eddy-viscosity models. These mod-
els describe the effects of the SGS terms analogously to the viscous mechanisms
which take place at a molecular level in the fluids such as momentum or thermal
exchanges.

In practice the motion of the subfilter eddies is assumed to be analogous to
the Brownian motion of the molecules and the interactions which in the gaski-
netic theory occur at microspic level in turbulent motions are assumed to occur
at macroscopic level and to be relevant to the fluid particle.

As the molecular viscosity ν characterises those phenomena, so a subgrid,
or eddy, viscosity νsgs is defined to characterise the turbulent energy cascade.
According to the so-called Boussinesq’s hypothesis [45, 19], the deviatoric part1

of the subgrid stress tensor is the expressed as a function of the symmetric part
of the velocity gradient tensor (rate of strain tensor):

τd = −νsgs
(
∇u+∇t

u
)

(2.27)

where the superscript ‘t’ indicates the transpose operator. Notice that with
definition (2.27) the structure which describes the interactions between the re-
solved and unresolved scales is exactly the same as that which accounts for the
viscous stresses:

ν∇2
u = ∇ ·

[
ν
(
∇u+∇t

u
)]

as assumed by the eddy-viscosity hypothesis.

The major drawback of this formulation, which on the other hand is based
on sensible physical arguments, is that the subgrid tensor principal axes are
parallel to those of the strain rate tensor and this is not the case for many types
of flows [72, 71].
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Other approaches are possible, such as the mixed models [2, 97, 73], gradient
models [11, 47] and others (see [71] for a review), and often the choice of the
employed model depends upon a number of factors such as the type of flow, the
computational resources or the authors’ expertises in treating one model.

Smagorinsky model

Historically, the first model which has been proposed, and still today one of
the most used, is the one described by Joseph Smagorinsky in 1963 [79].

The subgrid viscosity is modelled as:

νsgs =
(
Cs∆

)2√
2SijSij

=
(
Cs∆

)2 ∣∣S
∣∣

(2.28)

where Sij is the rate of strain tensor and Cs is the so-called Smagorinsky
constant, which in general depends upon the type of flow and usually ranges
between Cs = 0.1–0.2.

The simplicity of the model has contributed in making it successful as well
as the fact that it allows to obtain quite good results. The reason for this
is probably that the model well represents the globally dissipative nature of
turbulence: in fact the subgrid dissipation provided by the model, defined as
ε = −τdijSij , is by construction always positive, i.e. the subfilter modes drain
energy from the large scale (forward energy cascade).

Although this well describes the average behaviour of turbulence, it must be
pointed out, however, that locally the dissipation could be negative (backscatter
or backward energy cascade), that is the subgrid modes provide energy to the
resolved ones: this mechanism is not considered by the Smagorinsky model and
that may be a problem when a detailed analysis of the flow features is sought.

Another major problem of the Smagorinsky model is its behaviour near a
solid wall. Indeed very near the wall, the flow is always essentially laminar (see
Section 3.3) and the subgrid, turbulent, viscosity is then expected to vanish as
a suitable power of the distance from the wall.

Without loss of generality, let us consider a solid wall in (x, z) plane at
y = 0; if one performs a Taylor expansion in the limit y → 0 then, in virtue
of the no-slip condition and of the incompressibility constraint, Eq. (2.1a), it is
obtained:

1The decomposition is necessary since the strain rate tensor has zero trace. The isotropic,
or sferic, part of the tensor 1

3
τkkδij which is not taken into account by τdij = τij −

1

3
τkkδij is

then lumped into the pressure term of the Navier-Stokes equation.
That is, the filtered pressure p is replaced by the modified pressure p⋆:

p⋆ = p+
1

3
τkk

The subgrid contribution to the pressure may be significant and may be computed with the
aid of some kind of estimate for the subgrid kinetic energy qsgs =

1

2
τkk
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u(x, y, z, t) = a(x, z, t)y + o(y2) (2.29a)

v(x, y, z, t) = b(x, z, t)y2 + o(y3) (2.29b)

w(x, y, z, t) = c(x, z, t)y + o(y2) (2.29c)

where a, b and c are functions which describe the space and time evolution
of the velocity components but are not dependent on the distance from the wall
(this is an approximation in the limit y → 0). An analogous expression holds
for the expansion of the filtered field since it has to respect the same boundary
and incompressibility conditions:

ū(x, y, z, t) = ā(x, z, t)y + o(y2) (2.30a)

v̄(x, y, z, t) = b̄(x, z, t)y2 + o(y3) (2.30b)

w̄(x, y, z, t) = c̄(x, z, t)y + o(y2) (2.30c)

From Eq. (2.27) with the scalings in Eqs. (2.29)-(2.30) it can be seen that
the only way for the subgrid stresses τdxy and τdyz to vanish at the wall – and
with the proper asyntotic behaviour – is that νsgs = o(y3). At the same time, it
is clear that if the eddy viscosity is given by Eq. (2.28) it remains finite as the
distance from the wall diminishes.

A possible solution, which has been employed in the present simulations,
is the adoption of the so-called Van Driest’s damping [88] which modifies the
constant Cs in the vicinity of the wall by means of a suitable damping function:

(Cs∆)
2
damped =

[
Cs∆

(
1− e(y

+/A)
)]2

(2.31)

where y+ = uτδ/ν, where δ is the distance from the wall and uτ =
√
τw is

the friction velocity (more details will be given in Section 3.2), and A = 25 is
the Van Driest’s constant.

This correction ensures that turbulent viscosity goes to zero as approaching
a solid wall, but still not with the correct asymptotic behaviour which is o(y3).

Dynamic Model

The introduction by Germano et al. in 1991 [24] of the dynamic model repre-
sented a significant improvement in turbulence modeling: indeed, the dynamic
procedure for computing the model constant allows to overcome some of the
most critical problems of Smagorinsky.

The dynamic procedure requires the use of a second, necessarily explicit,
filter, often referred to as the test filter (in contrast to the grid filter ), and is
based on a mathematical identity due to Germano [23].

From the definition of subgrid tensor, Eq. (2.23), if follows that the SGS
tensor due to the application of the second filter is:
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Tij = ũiuj − ũiũj (2.32)

where the ·̃ indicates the test filter level, of width ˜̄∆. The Germano identity
states that:

Lij = Tij − τij (2.33)

where Lij = ũiuj − ũiũj is the so called Leonard tensor. It is important to
notice that this latter term can be computed exactly from the filtered field.

At this point, if one assumes scale invariance, it is possible to describe the
two subgrid tensors with same functional form. For example, by using the
Smagorinsy model, Eq. (2.28), one can write:

τij −
1

3
τkkδij = −2(Cd∆

2
)
∣∣S
∣∣Sij (2.34)

Tij −
1

3
Tkkδij = −2(Cd

˜̄∆2)|S̃|S̃ij (2.35)

Substituting Equations (2.34)-(2.35) into Eq. (2.33) one obtains six equa-
tions to determine the constant C(x, t) = Cd(x, t)∆

2
:

Lij −
1

3
Lkkδij = 2C(x, t)Mij (2.36)

with

Mij =
˜̄∆2

∆̄2
|S̃|S̃ij − |̃S|Sij (2.37)

Following the proposal of Lilly [46], in order to obtain one single relationship
to determine the constant, we contract Eq. (2.36) with Eq. (2.37) and thus
obtain:

C(x, t) = Cd(x, t)∆̄
2 = −1

2

L d
ijMij

MklMkl
(2.38)

The subgrid tensor is then given by:

τdij = −2C|S|Sij (2.39)

There is no more need to assign an input value to the model constant, since
it is computed dynamically during the simulation. Furthermore, in principle,
the model constant is computed tridimensionally, in every grid point, so that
it can adapt to local condition of the flow: it can also be negative and thus
account for backscatter of energy.

Also, the model constant is automatically adjusted to have to correct be-
haviour in proximity of a solid wall.

However the model still has some drawbacks which attenuate the advantages.
In practice, the three-dimensional constant presents strong oscillations and may
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remain negative for long periods: these features are critical for the numerical
stability and thus some sorts of regularization procedures are needed.

Usually the numerator and denominator of Equation (2.38) are averaged
along homogeneous directions (if they exist) or using other kind of average such
as the Lagrangian average [49].

Also the subgrid viscosity is usually ‘clipped’ such that the total dissipation
remains positve or equal to zero (ν + νsgs ≥ 0).

These numerical recipes have the consequences that the local character of
the constant is obviously lost and backscatter is considered only in an average
sense, but nevertheless they are necessary for the stability of the simulation.

Other Eddy-Viscosity models

Besides the classical Smagorinsky model, some other static eddy-viscosity
models have been considered in the present thesis for the reason that they
are expected to have a better behaviour than the Smagorinsky model in the
neighborhood of a solid wall without the need of a dynamic procedure, which
involves an increase in the computational costs.

These models are simple to be implemented, since they involve only local
quantities, but compared to the Dynamic model present the disadvantge, in
their static version, of requiring as input parameter the specification of a model
constant whose value is in general flow-dependent and quite arbitrary (as is the
case for the static Smagorinsky model).

Those models, being part of the eddy-viscosity models family, have the struc-
ture reported in Eq. (2.27) and differ in the definition of the subgrid viscos-
ity. One of the considered models is the Wall-Adapting Local-Eddy (WALE)
model [59], in which the eddy-viscosity is given by:

νsgs = (CW ∆̄)2
(S

d

ijS
d

ij)
3/2

(SijSij)5/2 + (S
d

ijS
d

ij)
5/4

(2.40)

where:

S
d

ij =
1

2
(g2ij + g2ji)−

1

3
g2kkδij (2.41)

with g2ij = gikgkj being the square of the transpose of the velocity gradient
tensor:

gij =
(
∇t

u
)
ij
=
∂ui
∂xj

(2.42)

The model constant CW has been evaluated numerically for isotropic turbu-
lence and is reported by the authors to be in the range CW = 0.5 – 0.6.

Another model is the one proposed by Vreman [91] which defines the eddy
viscosity as:

νsgs = CV

√
Bβ

αijαij
(2.43)
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where

αij = (∇u)ij =
∂uj
∂xi

(2.44)

is the velocity gradient tensor while Bβ is the second invariant of the matrix
βij = ∆̄2αkiαkj . The model coefficient is related to the usual Smagorinsky
constant by the formula:

CV ≈ 2.5C2
s (2.45)

and is obtained from a realizability condition for the subgrid dissipation
within the framework of isotropic homogeneous turbulence [92].

Finally, the σ-model proposed by Nicoud et al. [58] has also been taken into
account. The subgrid viscosity is defined in this case as:

νsgs = (Cσ∆̄)2
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

(2.46)

where σi are the singular value of the matrix ∇t
u. The model constant is

evaluated numerically by comparison with the subgrid dissipation provided by
the Smagorinsky model and is reported to be Cσ ≈ 1.35.

As already stated above, all these models have a vanishing viscosity near
a solid wall: in particular the WALE model, Eq. (2.40), and the σ-model,
Eq. (2.46), present the correct asymptotic behaviour o(y3), while the Vreman
model is only o(y) which is, anyway, still better than the undamped Smagorin-
sky eddy-viscosity [58].

2.4 Turbine modeling

It is beyond the present computational resources to carry out a numerical
simulation which can capture physical phenomena within such a wide range of
scales as those which take place in wind farm and wind turbine aerodynamics:
it is impossible to treat with the adequate accuracy the boundary layer which
develops on the skin of the turbine blade and characterises the forces over the
blade responsible of the power production and at the same time describing the
dynamics of the large scale wake features which significantly affect the perfor-
mance of downstream turbines in the aligned operational configuration.

Modeling the rotor effect on the flow field, instead of directly simulating the
presence of the blades, has made numerical simulations of the flow past wind
turbines feasible.

The two most popular models for wind turbine parametrization are the Ac-
tuator Disk Model (ADM) and the Actuator Line Model (ALM). They both
replace the actual rotor with the forces it applies to the flow: while the ADM
distributes the forces over a circular area corresponding to the area swept by the
turbines blades, the ALM spreads the forces over a rotating line which mimics
the rotor blade motion.
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The ADM has been the first model to be employed in conjunction with
LES [30] and counts several examples in the literature especially for the simu-
lation of large array of wind turbines [96, 9, 50] due to its lower computational
cost with respect to the ALM.

The ALM has been widely used as well [86, 87, 66, 67] and it is recognized as
the most accurate method due to its capability of representing detailed features
of the wind turbine wake [48].

In the present thesis a new model has been developed, the Rotating Actuator
Disk Model (RADM), which, contrarily to the classic ADM formulation, takes
explicitly into accounts the rotation of the blades and is thus expected to provide
a more realistic description of the wake characteristics.

2.4.1 Actuator Line Model

The Actuator Line Model was introduced by Sørensen and Shen [83]. In the
ALM approach each turbine blade is represented as a rotating line which is then
divided into a number of discrete sections.

For each section of the line the blade forces per unit length, lift FL and drag FD

are computed using a bidimensional approach as:

FL =
1

2
ρU2

relCL(α)c (2.47)

FD =
1

2
ρU2

relCD(α)c (2.48)

where CL and CD are respectively the blade’s airfoil lift and drag coefficient,
c is the airfoil’s chord, α is the local angle of attack and Urel is the relative
velocity approaching the blade leading edge, see Figure 2.3

Figure 2.3: Blade cross-section in the T – θ plane, where T is the direction of
the thrust force and θ is the azimuthal direction.

The relative velocity magnitude Urel is obtained from the local flow velocity
considering the effect of the rotational speed of the blade:
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Urel =
√
U2
x + (Uθ − ωr)2 (2.49)

where ω is the rotational speed of the rotor and r the radial distance of the
considered section from the rotor centre.

The angle of attack is computed as (Fig. 2.3):

α = arctan

(
Ux

Uθ − ωr

)
− φ (2.50)

where φ is the local twist angle of the blade. To consider the root and
tip vortices the angle of attack is then corrected by means of modified Prandtl
correction factor [5]:

F =

(
2

π

)2

cos−1
(
e−ft

)
cos−1

(
e−fr

)
(2.51)

where

ft =
B

2

D/2− r

r sin (α+ φ)
and fr =

B

2

r −Dh/2

r sin (α+ φ)
(2.52)

where Dh is the nacelle diameter and B is the number of blades.

The forces computed with Eqs. (2.47)-(2.48) are then projected onto the
computational axes as components of the vector Fturb and distributed among
the nearest gridpoints within a cylinder with axis parallel to the actuator line
according to a gaussian regularization kernel:

η = e−(
r
ǫ )

2

(2.53)

fturb =
Fturb η
˜

Acyl
η dA

(2.54)

where r is the radial distance of the gridpoint from the centre of the blade
(actuator line), ǫ a parameter which determines the spreading of the force and,
consequently, the area of the cylider Acyl. This is done because the application
of singular point force is likely to cause numerical instabilities [48]. The issue
of numerical stability is also important when the simulation time step ∆t is
concerned: indeed, in order to guarantee a smooth transition in the force ap-
plication as the blade rotates, the time advancing is limited in order that at
each time step the actuator line advances of one gridpoint. This is obtained by
restricting the Courant number (see Section 2.2) CFLALM = CFL/TSR where
the tip speed ratio TSR is an important performance parameter of the turbine
defined by:

TSR =
ωR

U∞
(2.55)

where R = D/2 is the blade radius and U∞ is the freestream velocity im-
pinging the blade.
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2.4.2 Rotating Actuator Disk Model

With the RADM approach the force is computed exactly as in Eqs. (2.47)-
(2.48) but is then spreaded by means of Gaussian function on the whole rotor
area:

η = e−(
x−xc

ǫ )2e−(
φ−θ
2π )2 (2.56)

fturb =
Fturb η
˜

A η dA
(2.57)

where x − xc is the distance of the considered gridpoint in the streamwise
direction from the rotor location xc, ǫ is a spreading regulation parameter which
determines the thickness of the disk and φ− θ is the angular distance from the
angular position of the blade θ; A is the annular ring over which the force is
spreaded. Therefore, the distribution over the disk is not constant but depends
on the radial and azimuthal coordinate of each gridpoint. As the blade moves,
the section at which the forces are computed changes accordingly and thus the
disk rotates.

In Figure 2.4 colour contours of the axial force (thrust) are reported for both
the RADM and the ALM for qualitative comparison.

2 4 60.0 8.0

force Magnitude

Figure 2.4: Thrust force: ALM (left), RADM (right). Colours level in the figure
are different, the integral of the forces in the disk being equal to the integral of
the forces over the 3 blades.

With the Rotating Actuator Disk Model the forces are distributed over a
larger area and this greatly weakens the stability concerns encountered with the
ALM. Furthermore, the field associated with the RADM in the rotor area is
globally smoother, due to the enhanced force spreading, and this allows the use
of larger time steps, thus diminishing the computational cost of the simulation
which is the major drawback connected with the ALM approach.

However, this gain in computational time is associated with a loss of accu-
racy in depicting wake details such as, for instance, the tip vortex as can be
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appreciated in Figure 2.5.

0 0.4 0.8-0.2 1.2

Vel@s Z

Figure 2.5: Instantaneous streamwise velocity in a vertical plane through the
tower axis: ALM (top), RADM (bottom)



Chapter 3

Turbulent channel flow

3.1 Outline

The turbulent channel flow is one of the most studied case of turbulent mo-
tion. The simplicity of its geometry and nonetheless the possibility of studying
some of the most essential features of turbulent flows are the major factors that
had made it attractive for researchers, both in the experimental and in the nu-
merical field.

One of the first examples of LES is actually the plane channel simulation by
J.W. Deardoff in 1970[14].

The now classic Smagorinsky SGS model [79] was then used for the first time
in a channel simulation, after having had considerable success in meteorological
applications [80, 34]. Despite the very coarse mesh employed, with only 6720
grid points, fairly good results were obtained, thus showing the potentiality of
the LES approach to the study of turbulent motion.

This early, pioneeristic work was then followed by a number successive stud-
ies which took advantage of the rapidly increasing computer capabilities and of
the disposal of much sofisticated turbulent models.
Among the first to follow Deardoff’s footsteps were the Karlsruhe group [77, 78,
27] and the Stanford group [55, 54].

By the end of the ‘80s Direct Numerical Simulations at moderately high
Reynolds number, with the employment of very fine mesh able to guarantee
accurate results, also became feasible.
Early examples are represented by the works of Kim et al.[37] and Spalart[84].

Although the essential dynamics and kinematics of the turbulence motions
is far from being completely understood, however those works provided a clear
description of the velocity and vorticity statistics

Even though some doubts were recently casted by Meyers & Sagaut [51] on
whether the plane channel flow is the most appropriate case for assessing the
performance of SGS models – due to its sensitivity to the computational grid ar-
rangement –, it still represents the most common, and thus broadenly accepted,
benchmark to evaluate the characteristics of various LES closure hypotheses.

25
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3.2 Geometrical setup

In Figure 3.1 the geometry of the channel is shown as well as the reference
system used.

x

y

z 2δ

Figure 3.1: Geometry of the channel and reference system: x-direction is the
streamwise direction

In both the spanwise and streamwise directions periodic boundary conditions
are applied. Such a choice, which is widely employed in channel simulations, al-
lows to adopt a smaller computational domain which greatly reduces the cost
of the simulation.

The simulations of the channel flow were performed at a Reynolds number,
based on the laminar inflow centre-line velocity Uc and the channel semi-height
δ, of :

Re =
Ucδ

ν
= 10400

At this point it is worthwhile to introduce the concept of friction velocity
(or, also, wall shear velocity) uτ . It is defined as

uτ =
√
τw (3.1)

where τw is the shear at wall.
This leads to an alternative definition of the Reynolds number which is often

used for the turbulent channel:

Reτ =
uτδ

ν
(3.2)

The shear at the wall can be computed equivalently in two differnt way. In
fact, it can be obtained either from its definition as:

τw =
1

Re

(
∂U

∂y

)∣∣∣∣
y=0

(3.3)

or from equilibrium considerations by noticing that for the balance of mo-
mentum in the streamwise direction the wall shear must compensate for the
pressure gradient which drives the flow.
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This relation can be directly derived from the Navier-Stokes equations, as-
suming that the flow is steady and fully-developed:

0 = − ∂p̄

∂x
− d

dy
(u′v′) +

1

Re

d2U

dy2
(3.4a)

0 = −∂p̄
∂y

− d

dy
(v′v′) (3.4b)

By taking the derivative along the x-direction of equation (3.4b) and recall-
ing that the velocity is function of wall-normal coordinate only, it is straightly
obtained that the streamwise pressure gradient ∂p̄/∂x is independent of y coor-
dinate.

Thus, integration along the y-direction of equation (3.4a) yields:

y
∂p̄

∂x
=

1

Re

dU

dy
− u′v′ + const. (3.5)

The constant can be easily determined by observing that, for symmetry, at
the channel semi-height( y = δ) both dU

dy = 0 and u′v′ = 0, hence const. = δ ∂p̄
∂x .

Then equation (3.5) can be re-written as follows:

(
1− y

δ

)
δ
∂p̄

∂x
=

1

Re

dU

dy
− u′v′ (3.6)

By evaluating the equation (3.6) at the wall (y = 0), recalling equation (3.3)
and that the Reynolds stresses vanish at the wall due to the non-slip conditions,
it is finally obtained that:

τw = δ
∂p̄

∂x
(3.7)

This result provides an alternative way to compute the wall stress and the
friction velocity.

Equation (3.7) could also have been obtained by application of the integral
momentum balance equation to the whole domain.

For the present cases the Reynolds number Reτ is nominally equal to Reτ =
395, while the actual value depends on the particular simulation. The turbulent
database provided by the work of Kim et al.[57] is taken as reference in the
present thesis for evaluating the results obtained.

The choice of the computational domain and the grid spacing is mainly
influenced by the available computational resources, once the requirements on
the minimum size for avoiding the periodic boundary conditions to spuriously
affect the results have been accomplished.

Schumann[77] pointed out that artificialities due to these non-physical bound-
ary conditions can be avoided if the domain is large enough for the two points
correlations to be negligible for points separated by half the extension of the
grid in each periodic direction. Comte-Bellot[12] reported typical distances (for
the two point correlation to vanish) to be 1.6δ in the spanwise direction and
3.2δ in the streamwise direction.
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The grid spacing should be small enough to capture all the significant scales
of the flow in order to obtain trustworth results. Those requirements are depen-
dent on the Reynolds number and they can become severely limiting for high
values of Re. During the years the increase of computational power and the use
of parallel computing has allowed to perform numerical simulations with higher
Reynolds number.

Actually, Jiménez and Moin [32] has also shown that the domain has to be
large enough to contain the all the flow structures, but the largest characteristc
scales diminishes as the Re increases. Consequently the computational box may
be smaller.

Considering the present Reynolds number and the fact that when dealing
with a LES approach the constraint on the grid spacing can be relaxed because
the SGS model is expected to provide the information which are lost by neglect-
ing the smallest scales, the grid parameters shown in Table 3.1 were chosen.

axis range Npt ∆min ∆max

x [0 : 2π] 128 0.049 0.049

y [−1 : 1] 128
uniform 0.016 0.016

non-uniform 0.005 0.026

z [0 : π]
64 coarse 0.049 0.049
128 fine 0.025 0.025

Table 3.1: Mesh details

The meshes employed are rather coarse with respect to those used in the ref-
erence work which, in the same computational box, constitute of 256×193×192
grid points for streamwise, wall normal and spanwise direction respectively. Fur-
ther comparisons with the reference data grid is provided in Table 3.2 which
shows in detail the grid spacing in the three directions in terms of wall units.

Wall units are defined by adimensionalization of the physical coordinates
with the friction velocity and the kinematic viscosity as follows:

x+i =
xiuτ
ν

i = 1, 2, 3 (3.8)

∆+
axis coarse fine KMM

x 19.7 19.7 10.5

y
uniform 6.4 6.4
non-uniform (min) 2.0 2.0 0.03
non-uniform (max) 10.4 10.4 6.5

z 19.7 9.8 6.5

Table 3.2: Grid spacings in terms of wall units ∆x+i . KMM indicates the refer-
ence work by Kim, Moser and Mansour [57].
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The non-uniform distribution of points along the wall-normal direction accu-
mulates more points towards the walls of the channel to have a finer resolution
in the area where the gradients are more severe and where the most complex
and physically relevant phenomena of turbulence motions take place.

Points are distributed according to the following law:

yj =
tanhα

(
j−1
N − 1

2

)

tanh α
2

j = 1, . . . , N (3.9)

where N is the total number of points in the y-direction.
The values of the ordinates as well as the evolution of the grid spacing along

the wall-normal directions are shown in Figure 3.2.
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Figure 3.2: Wall normal grid details

The grid distribution used by Kim et al. is different from (3.9). In fact, in
view of the pseudo-spectral method which was employed for the discretization
in the wall-normal direction, they adopted as grid-points the Chebychev nodes
given by:

yj = cos

(
π
2j − 1

2N

)
j = 1, . . . , N

Such a distribution, besides being well suited for the numerical method there
employed, has also the feature of providing, given the number of point N , a
major accumulation towards the ends of the interval then equation (3.9). Thus
it allows to have very fine near-wall resolution, which is a primary requirements
for an accurate Direct Numerical Simulations.

3.3 Results

Two no-model simulations were carried out on two different grids to evaluate
the sensitivity of the results to the mesh employed in the computation. Further
the various SGS models described in Sec. 2.3.2 have been tested on the finest of
the two grids.

The models input parameters have been chosen according to respective au-
thors’ suggestions or, as was the case for the Smagorinsky model, according
to usual values found in the literature. As for the Dynamic version of the
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Smagorinsky, model the Germano-Lilly procedure [24, 46] has been adopted for
the computation of the constant which has later been averaged in spanwise and
streamwise directions for numerical stability purposes, i.e.:

C(y, t) = Cd(y, t)∆̄
2 = −1

2

〈LijMij〉
〈MijMij〉

(3.10)

where 〈. . . 〉 indicates the streamwise and spanwise average.

In Figure 3.3 is reported the time-averaged value assumed by
√
Cd(y) which

can be compared with Smagorinsky model constant.
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Figure 3.3: Time-averaged Dynamic Smagorinsky constant

Large-Eddy simulation parameters are reported in Table 3.3.

SGS model constant

Smagorinsky Cs = 0.17
σ-model Cσ = 1.35
Vreman CV = 2.5C2

s

WALE CW = 0.5

Table 3.3: LES models input parameters

The initial condition of the simulation is the laminar Poiseuille profile with
super-imposed random perturbations of the order of the 15% of the mean cen-
treline velocity. The governing equations were then integrated in time until a
fully-developed turbulent flow was obtained. Such a state is identified by the
value assumed by the pressure forcing, which is applied to the flow in order to
keep a costant mass-flow rate.

The pressure gradient to keep a constant flow rate is computed by integrating
over the whole domain the streamwise momentum equation:
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˚

V

(
∂u1
∂t

+
∂

∂xj
u1uj

)
dV =

˚

V

(
− ∂p

∂x1
+

1

Re

∂2u1
∂xj∂xj

)
dV (3.11)

where dV = dx1 dx2 dx3 . It is easily verified that the second term on
the left-hand-side vanishes because of periodic boundary conditions in x1 and
x2 directions (terms u1u1 and u1u3) and because of the no-slip conditions in
the wall normal direction (term u1u2). The first term represents instead the
variation of the total mass-flow rate. By posing:

Q =

˚

V

u1 dV

Π = − ∂p

∂x1
= const.

equation (3.11) may be recast as follows:

∂Q

∂t
= Π · V +

1

Re

˚

V

∂2u1
∂xj∂xj

dV (3.12)

For the mass-flow rate to be constant, then the pressure gradient must posed
equal to:

Π = − 1

V
1

Re

˚

V

∂2u1
∂xj∂xj

dV (3.13)

For the laminar Poiseuille, as can be determined by equation (3.13), the pres-
sure gradient assumes the typical value of − 2

Re . As the flow becomes turbulent,
the pressure gradient rises abruptly (in absolute value) since more energy is dis-
sipated by the internal mechanisms of turbulence. When the flow reaches the
fully-developed state, the the pressure gradient assumes a steady value, much
higher than the starting one. A typical time hystory of the pressure gradient is
shown in Figure 3.4.

All statistical quantities were computed considering only fully-developed ve-
locity field. The mean of a generic quantity q(x, y, z, t) is obtained by averaging
in time and in spanwise and streamwise directions, which are the directions of
homogeneity of the flow, and will be denoted by 〈q〉:

〈q〉(y) = 1

T

1

Lx · Lz

ˆ

T

ˆ

Lx

ˆ

Lz

q(x, y, z, t) dx dz dt (3.14)

The fluctuations from the mean value will be denoted by a prime, q′:

q′(x, y, z, t) = q(x, y, z, t)− 〈q〉(y) (3.15)
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Figure 3.4: Pressure gradient time history

3.3.1 Mean velocity

One of the primary quantities of interest in the plane channel simulation is
undoubtedly the mean streamwise velocity U = 〈u〉. An example of the typical
fully-developed velocity profile is shown in Figure 3.5, together with the initial
laminar Poiseuille profile.
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Figure 3.5: Mean velocity profile: ( ) U , ( ) Poiseuille profile u = 1−y2

Turbulence enhances the mixing processes in the flow, including the exchange
of momentum between fluid particles: this is clearly visible in Figure 3.5 as the
central, high velocity region of the channel experiences additional drag due to
the transport of low velocity fluid particles from the near-wall regions which,
in turn are accelerated by high velocity fluid particle from the centre of the
channel.
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Such a mechanism is analogous to the microscopic mixing of molecules which
occurs in laminar flows, but is much more efficient since in turbulent motion it
concerns particles of fluid, i.e. it takes place at macroscopic level. This results
in a velocity profile which is more flat in the central region of the channel and
presents higher gradients near the wall, meaning that the skin friction would be
higher too.

The behaviour of the velocity in the near wall region is a key feature for
understanding the dynamic of wall-bounded turbulent flow and has been one
of the principal subject of study since the introduction of the boundary layer
concept in 1904 [68].

A major step forward was made in 1925 when Prandtl [69] postulated the
existence of two zone within the turbulent boundary layer: the inner region,
dominated by viscous effects, end the outer region (also called wake region)
controlled by turbulence.

Following the path traced by Prandtl, von Kármán in 1930 [90] was able
to derive, thanks to his similarity theory, a mathematical relationship for the
velocity profile which is commonly referred to as the log–law :

u+ =
〈u〉
uτ

=
1

κ
ln y+ +A (3.16)

where κ is the von Kármán constant and A is a constant which depends upon
the type of flow. Both the constants are to be determined through eperimental
measurements. Two common values reported in the literature [76, 65] are:

κ = 0.41 A = 5.5 (3.17)

This law predict well the value of the velocity in the external parts of the
inner region and the initial part of the wake region (in wall units, approximately
y+ ≥ 30), which is therefore called the logarithmic layer.

In the immediate neighbourhood of the wall the flow is dominated by the
laminar viscous shear and a linear relationship between velocity and distance
from the wall may be extracted:

u+ = y+ (3.18)

Equation (3.18) is accurate for y+ ≤ 5, i.e. in the so-called viscous sublayer.
The transition zone between the two layers is often called buffer layer and it is
described by empiric relationship which connects the two laws.

The velocity profiles obtained from the various simulations are reported in
Figure 3.6, where a logarithmic grid is used for the distance from the wall
in order to better reveal the variations of the velocity in the near wall layers.
Comparison with reference data is also provided.

The results show overall good agreement with data despite the much coarser
grid than KMM, especially in the immediate vicinity of the solid wall. As the
central part of the channel is approached, accuracy generally decreases. This is
partly due to the differences in the actual Reτ of each simulation as well as to
the coarsening of the mesh towards the centre of the channel.

However, this does not seem to be the case for the LES cases, where the
SGS models prove to be effective at compensating for the poor grid resolution.
The profiles obtained fit well also the theoretical results reported above, as it
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Figure 3.6: Near-wall velocity profile
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can be seen in Figure 3.7, where the data from the Dynamic model simulation
are reported as an example: the agreement with reference data is excellent.
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Figure 3.7: Near-wall mean velocity profile: LES with Dynamic
model, ◦ KMM. Theoretical results are also shown for the viscous sub-
layer, eq. (3.18), and the log region, eq. (3.16)

3.3.2 Velocity fluctuations

The root mean square values of the velocity fluctuations, defined as urms =

〈u′2〉
1
2 (and analogously for the other components), normalized by the wall shear

velocity are shown in Figure 3.8 -3.10 for half the channel height.
The results depend on the grid resolution, especially in the spanwise and

wall normal components: this suggests that the coarse grid may not include all
the relevant small-scale eddies responsible for the turbulent fluctuation. The
streamwise component, instead, is nearly insensitive to the computional resolu-
tion, as was also the case for the computed average value.

The implementation of a SGS model has a moderate impact on the results,
compared to the that of the mesh size, probably suggesting that the resolution
employed may yet be enough fine to include most of the relevant scales. It may
be interesting to notice that in some cases, as for the vrms component with
the Smagorinsky model, the implementation of a subgrid-scale model produces
on the same grid produces a light worsening of the results, altough the general
accordance remains satisfactory.

The shape of the velocity fluctuations is characteristic of the flow, with large
amplitude concentrated in the near wall region where most of the turbulence is
producted by the complex mechanisms taking place in the boundary layer.

At the center of the channel the amplitude decreases for all the components
and approaches nearly the same value indicating that the nature of the turbulent
eddies becames quasi-isotropic.
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Smagorinsky model ( ); KMM ◦
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Figure 3.8: Root mean square velocity fluctuations: streamwise component



CHAPTER 3. TURBULENT CHANNEL FLOW 37

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

y/δ

v r
m

s
/
u
τ

(a) No model simulation: fine grid
( ), coarse grid ( );KMM ◦

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

y/δ

v r
m

s
/
u
τ

(b) LES: Dynamic model ( ),
Smagorinsky model ( ); KMM ◦
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Figure 3.9: Root mean square velocity fluctuations: wall-normal component
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Smagorinsky model ( ); KMM ◦
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Figure 3.10: Root mean square velocity fluctuations: spanwise component
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3.3.3 Shear stress

The Reynolds stresses −〈u′v′〉 are shown in Figure 3.11, where comparison
with reference data is provided too.
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Figure 3.11: Reynolds stresses −〈u′v′〉

The total shear τ in the channel is given by the sum of the viscous stress
and turbulent Reynolds stresses:

τ = −〈u′v′〉+ 1

Re

dU

dy
(3.19)

The behaviour of the total shear with the distance from the wall can be
determined from the streamwise momentum balance recalling equation (3.7).
Upon integration in the y-direction, the following law for the total shear stress
is derived:

τ = τw

(
1− y

δ

)
(3.20)

Hence the total shear decreases linearly from his proper value at wall, τw, to
the null value at the centre of the channel where both the viscous and Reynolds
contribution are zero due to simmetry.
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The linearity of the shear stress implies that the simulation has reached a
fully developed state [37, 54].
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Figure 3.12: Shear stress balance: turbulent stress −〈u′v′〉 ( ), viscous
stress 1

Re
dU
dy ( ),total ( ).

With regards to Equation (3.19) it is possible to determine the contribution
of the two component of the shear stress across the channel. As it shown in
Figure 3.12 the viscous term is prevailing within a very short distance from the
wall while departing from it the turbulent contribution becomes dominant and
nearly accounts for the whole shear stress in the core of the channel.

This behaviour could have been easily predicted from the previous arguments.
In fact, the mean profile shown in Figure 3.5 is characterised by a steep raise in
the near wall region, thus yielding a high value of the wall-normal gradient and
hence a high shear, and a plateau in the central zone.

One the other hand, the Reynolds stress can be expected to be maximum
where the turbulence is most intense, i.e. in the log region of the turbulent
boundary layer.

The behaviour in the near-wall region can be better appreciated by plotting
the stress in wall units.

Figure 3.13 clearly shows as in the viscous sublayer the turbulent friction
may be neglected compared to the shear due to the physical viscosity: this
means that very near the wall the flow is essentially laminar.

Conversely, as the distance from the wall increases the flow is dominated by
the turbulent structures which develops in the boundary layer and the turbulent
stress becomes the most significant term in the total shear.

It is interesting to notice that the point where the viscous shear and the tur-
bulent stress are equal coincides (nearly) with the point at which the turbulent
production, P = −〈u′iu′j〉 ∂

∂xj
〈ui〉, reaches its maximum.

In fact, considering that – for the channel flow – one has |S| =
√
2SijSij =
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Figure 3.13: Near wall shear stresses: viscous stress ( ), turbulent stress
( )

dU
dy , from equations (3.19) and (3.20) it is derived that:

−〈u′v′〉 = τw

(
1− y

δ

)
− 1

Re
|S| (3.21)

By multiplying each side with |S|, the profile of the turbulent production P
is obtained:

P = τw

(
1− y

δ

)
|S| − 1

Re
|S|2 (3.22)

In the near-wall region, which is the zone under consideration, a dimensional
analysis reveals that:

y

δ
=
yuτ
ν

ν

uτδ
= y+

1

Reτ
(3.23)

Hence, for a sufficiently high value of Reτ , in the near-wall region (where
y+ ∽ 1) equation (3.22) may be re-written as:

P = τw|S| −
1

Re
|S|2 ≈ τ |S| − 1

Re
|S|2

By derivation along the wall-normal direction, it is possible to find the dis-
tance from the wall ymax at which the turbulent production attains a maximum:

1

Re
|S|(ymax) =

1

2
τ(ymax) (3.24)

As a consequence it remains proved that – up to the order O(Re−1
τ ) – the

Reynolds stresses are equal to the the viscous shear at the point where the
turbulence production is maximum.

We notice that this point is nearly the same point at which the the streamwise
velocity fluctuation reaches its maximum (see Figure 3.14) which shows, again,
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the extremely intense turbulence activity which takes place in that zone of the
channel.

3.3.4 Vorticity

In Figures 3.15 -3.17 it is shown the root mean square values of the vortic-
ity fluctuations, 〈ω′

i
2〉 1

2 , normalized by the kinematic viscosity and the friction
velocity:

ω+
i =

〈ω′
i
2〉 1

2 ν

u2τ

The overall agreement with the reference result is good. The shape of the
fluctuation is well captured by the simulation and minor discrepancies can be
attributed to the rather coarse mesh.

Contrarily to the velocity fluctuations, the behaviour of each of the three
components is very different in the near wall region and no similarity can be
identified.

However, departing from the wall the three profiles tend to collapse in one
curve, suggesting, as was the case for the velocity rms values, that the small
scales of the, responsible for the vorticity fluctuations, tend to be isotropic.
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Figure 3.14: (a) Near wall shear stresses: viscous stress ( ), turbulent
stress ( ); (b) Streamwise velocity fluctuation
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Figure 3.15: Streamwise vorticity fluctuations



CHAPTER 3. TURBULENT CHANNEL FLOW 45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80

y+

ω
+ y

(a) No model simulations: fine grid
( ), KMM ◦

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80

y+

ω
+ y

(b) LES: Dynamic model ( ),
Smagorinsky model ( ), KMM ◦

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80

y+

ω
+ y

(c) LES: σ-model ( ), Vreman
( ), WALE ( ); KMM ◦

Figure 3.16: Wall-normal vorticity fluctuations
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Figure 3.17: Spanwise vorticity fluctuations



Chapter 4

Aerodynamics and

Performances of Wind

Turbines

In this chapter the numerical results obtained with the code described in
Section 2.2 are presented and discussed. A brief outline of the anaylsis methods,
other than the LES approch, historically used for the prediction of wind turbines
and wind farms perfomances is first given. A description of the numerical setup
follows and then the results of the computations are analysed with particular
attention to advantages and disadvantadges which LES carries respect to the
methods mentioned before.

The effect of the turbine parametrisation within the LES approach (Sec-
tion 2.4) is also investigated as well as that of other parameters such as the
Reynolds number and the operating conditions.

4.1 Simplified models

Historically a large interest has always been devoted to the analysis of ro-
tating bladed disks immersed in a fluid stream because of the several practical
applications which can be related to this generalized abstract scheme: besides
wind turbines, ships and aircrafts propellers, helicopters rotors and windmills
(which are the forerunners of modern wind turbines)

For this reason, long time before a numerical solution of the relevant gov-
erning equations was even foreseeable, analytical theories were developed. They
were mainly focused in predicting those quantities which were of most immedi-
ate interest for practical use (rotor torque or rotor thrust, for instance) rather
than in thoroughly describing the flow dynamics. Those theories are based on
simplifying assumptions on the fluid and on the flow behaviour and are thus
often referred to as simplified models.

47
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Momentum Theory

The works of Rankine (1865, [70]), W. Froude (1878, [21]) and R.E. Froude
(1889, [20]) led to the so-called Momentum Theory, which is the first and most
simple description of wind turbine flow.

The theory assumes that the flow is:

i. incompressible

ii. inviscid

iii. non-rotating

iv. mono-dimensional

The rotor disk is modeled as an infinitely thin porous disk which applies a
uniform force in the axial direction to the flow. An expression for the thrust
force T applied by the disk might be determined by resorting to Bernoulli’s the-
orem, which, due to hypothesis (i) and (ii), is equivalent to apply momentum
conservation[8], and hence the name of the theory. By applying the Bernoulli’s
theoreme to the region upstream and downstream the rotor and further assum-
ing that the wake is completely recovered and thus in equilibrium with the
asymptotic pressure, p2 = p∞ (see Fig 4.1 for notation):

T = ρAu(U∞ − uw) (4.1)

with:
1

2
(U∞ + uw) = u (4.2)

The velocity at the rotor u may be computed once the axial interference
factor, or induction factor, a is known. This quantity is defined as:

a = 1− u

U∞
(4.3)

The axial interference factor is related to the rotor operating conditions and
it is possible to parametrise wind turbine performances as functions of a.

p∞

U∞

p− p+

u

p2

uw

A

Figure 4.1: Momentum Theory: flow arrangement and notations

In fact, by application of the energy conservation principle it is possible
to derive the relationship between the power extracted from the flow and the
axial interference factor. In terms of the adimensional power coefficient CP this
expression reads as:



CHAPTER 4. AERODYNAMICS AND PERFORMANCES 49

CP =
Power
1
2ρU

3
∞A

=
Tu

1
2ρU

3
∞A

= 4a(1− a)2 (4.4)

By differentiation of expression (4.4) in a it is possible to derive the value of
the induction factor which yields the maximum power extraction. This happens
when a = 1/3 and the maximum power coefficient is found to be:

CPmax
=

16

27
≈ 0.59 (4.5)

This CPmax
constitutes an upper limit for the power extraction and is known

as the Betz limit, after Albert Betz who first published its derivation in 1920 [6].
It is worthy to notice that this limit is not practically reacheable since all ‘real’
rotors induce a rotation in the flow which produces further momentum losses
which are not taken into account by the Momentum Theory.

It is possible to derive an expression similar to Eq. (4.4) also for the thrust
coefficient CT :

CT =
T

1
2ρU

2
∞A

= 4a(1− a) (4.6)

From Equations (4.4) and (4.6) it is possible to determine the performance
curves of a wind turbine as it is shown in Figure 4.2.
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Figure 4.2: Wind turbine performance curves: CT ( ), CP ( ). Opti-
mal operating condition, a = 1/3, are also shown

An important remark has to be made regarding the curves shown in Fig-
ure 4.2 and the validity range of the Momentum Theory: in fact, from Eqs. (4.2)
and (4.3) it derives that:

uw = U∞(1− 2a) (4.7)

Thus it follows that if a = 1/2 then uw = 0 which means that the streamlines
which compose the streamtube that impinges the rotor cease to exist: this
configuration is physically unacceptable and violates the underlying assumptions
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of continuum mechanics [93, 85]. For a > 1/2 the velocity in the far wake would
actually be negative according to Equation (4.7). What happens in reality is
that particles from the surrounding high velocity region entrain in the wake
due to turbulence. The velocity in the wake does not become negative, but
the streamtube shown in Figure 4.1 does not exists anymore because of the
entrainment. One should instead considers a larger area upstream to guarantee
mass conservation. This would lead to a continous increase in the thrust force,
contrarily of what it is shown in Fig. 4.2.

The Momentum Theory can not account for this mechanism since it assumes
the flow to be one-dimensional and conservation of mass has to be respected
within the streamtube which contains the rotor disk. Therefore it follows that
the curves in Figure 4.2 are valid only for:

a < 1/2 (4.8)

Blade Element Momentum Theory

The major drawback of the Momentum Theory lies in the fact that it is not
possible to compute the axial interference factor. To overcome this problem,
Glauert in 1926 [26] combined the results of the Momentum Theory with the
Blade Element approach and developed the so-called Blade Element Moment
(BEM) theory.

This theory is based on the same assumptions of the Momentum Theory,
except for the fact that the rotation of the rotor is now taken into account and
hypothesis (iii) is now dropped.

The rotor is divided into various annuli (see Fig 4.3) and independence be-
tween each annulus is assumed.

dr
r

Figure 4.3: BEM Theory: rotor scheme
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The blades are supposed to be rotating with angular velocity ω and to induce
an azimuthal velocity in the flow given by:

uθ = ωra′ (4.9)

where a′ is the tangential induction factor. The loading conditions under
which the turbine blades are operating are computed resorting to the two-
dimensional airfoil theory for each annulus the rotor is divided into. In fact,
it is possible to determine the forces that each section of the blade produces,
once the geometry and the performances (in terms of lift and drag coefficients)
of the airfoil and the local flow conditions are known. As it shown in Figure 4.4,
the lift and drag forces per unit length are given by:

FL =
1

2
ρV 2

relcCL(α) (4.10)

FD =
1

2
ρV 2

relcCD(α) (4.11)

Vrel

U∞(1 − a)

ωr(1 + a′)

Figure 4.4: Blade section; T is the thrust direction, θ is the azimuthal direction

where c is the local airfoil chord, and CL and CD are the airfoil lift and
drag coefficients respectively. The relative velocity impinging the blade leading
edge depends on the interference that the rotor creates to the flow and can be
expressed as a function of the induction factors:

V 2
rel = U2

∞(1− a)2 + ω2r2(1 + a′)2 (4.12)

Analogously the local angle of attack is given by:

α = arctan

[
ωr(1 + a′)

U∞(1− a)

]
− φ (4.13)

where φ is the local twist angle of the blade section. By projecting the lift
and drag forces onto the T –θ plane (see Figure 4.4) it is possible to derive the
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expressions of the thrust and tangential forces (per unit length) which are more
directly linked to the wind turbine performances:

FT = Nb
1

2
ρV 2

relc(CL cosβ + CD sinβ) (4.14)

Fθ = Nb
1

2
ρV 2

relc(CL sinβ − CD cosβ) (4.15)

where β = α + φ and Nb is the number of the blades. We can express the
local thrust force per unit length acting on annulus of area dA = 2πrdr as:

FT =
1

2
ρU2

∞ dAC loc
T (4.16)

We further assume that Momentum Theory equation (4.6) holds for the local
thrust coeffient too: consequently Equation (4.16) assumes the form:

FT = 4πrρU2
∞(1 − a)a (4.17)

Analogously, the conservation of angular momentum yields an expression for
the thrust force:

Fθ = 4πr3ρU∞ω(1− a)a′ (4.18)

By comparing Eqs. (4.14)-(4.15) with Eqs. (4.17)-(4.18) it is derived that:

a =

[
4 sinβ

σ (CL cosβ + CD sinβ)
+ 1

]−1

(4.19)

a′ =

[
4 sinβ

σ (CL sinβ − CD cosβ)
− 1

]−1

(4.20)

where σ = Nbc/2πr is the solidity of the rotor. These last two equations
fill the gap in the Momentum Theory which does not permit to compute the
induction factor. With the help of Eqs. (4.19) and (4.20) it is now possible to
implement an iterative procedure which allows the determination of a and a′

and thus the knowledge of the loading conditions and the performances of an
operating wind turbine. In fact, the thrust and power coefficient are now easily
obtained by integration along the rotor radius of Eqs. (4.14) and (4.15):

Thrust =
1

2
ρU2

∞ACT =

ˆ R

0

FT dr (4.21)

Power =
1

2
ρU3

∞ACP =

ˆ R

0

Fθωr dr (4.22)

The drawback of this approach is still represented by the limit in Eq. (4.8),
which holds for the BEM theory too. To overcome this problem various authors
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have proposed empirical corrections to account for the cases a ≥ 1/2. Among
others, Glauert itself derived a parabola fitted on data of highly loaded rotor
helicopters [7] which reads as:

CT = 0.889− 0.0203− (a− 0.143)
2

0.6427
(4.23)

which is tangent to Eq. (4.6) in a = 0.4 for CT = 0.96 (see Figure 4.5).
It must be noted, however, that Glauert derived this relation for the thrust
coefficient of the whole rotor (CT ). Nevertheless it has been applied locally, as
C loc

T in Eq. (4.14), in several BEM formulations [56].
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Figure 4.5: Thrust curve: ( ) original BEM formulation, ( ) Glauert
best-fit parabola

With this ad hoc correction, the BEM theory can be used to evaluate the
performance of operating wind turbines once the geometry and the aerodynam-
ics coefficients of the blade are known. Such results can be useful to make
first-order assessments or comparisons with more refined – and computationally
expensive – tools, such as LES.

A simple BEM code has been developed and some results are reported in
Figure 4.6 for the reference 5-MW turbine designed at the National Renewable
Energy Laboratory (NREL) [33]. Reference data were obtained with commercial
code AeroDyn [56] which is based on a BEM formulation as well. The figure
shows the power and thrust coefficients as function of the tip speed ratio TSR =
ωR/U∞ which is an important parameter which characterises the operating
condition of the wind turbine and may be seen as analogous to the induction
factor a.

Wake Models

Due to the increased demand for renewable energy, larger park with multi-
ple rotors began to be designed (wind farm). This motivated researchers and
engineers to look in deeper detail into wind turbine aerodynamics in order to
characterise wake interactions in clustered configurations of wind turbines.
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Figure 4.6: Performance curves of NREL 5-MW Turbine

The resulting models are often referred to as wake models since they aim
at describing the effect of the rotor in the whole flow field and particularly the
wakes of the turbines. They generally assume simplifying hypotheses, such as
wake being self similar, axisymmetric or having a prescribed shape. Even though
such assumptions may be not realistic and leading to inaccurate results [3], these
models have a very low computational cost and can be run on a workstation in
a few seconds and thus have represented a valuable tool for wind farm designers.

A notable example is the Jensen model [29], also known as Jensen-Park
model, which has historically been the first model to be developed. It assumes
the velocity deficit in the wake to be analogous to a negative jet. The wake
behind the rotor expands linearly and has a uniform velocity which depends only
on the distance from the rotor and on the constant κ which can be interpreted
as a measure of the turbulence intensity and controls the wake expansion.

In the Jensen model, the wake is axisymmetric with diameter Dw and veloc-
ity uw given by:

Dw = D(1 − 2κs) (4.24)

uw = U∞

[
1− 1−

√
1− CT

(1− 2κs)2

]
(4.25)

where s = x/D is the adimensional streamwise distance from the rotor and
CT is the operating thrust coefficient which can be determined, for instance,
through the BEM theory. In Figure 4.7 colour contours of the streamwise ve-
locity at the hub plane are shown for a turbine operating with CT = 0.75 and
κ = 0.075 which is a typical value for on-shore wind turbines[3].

4.2 Large-Eddy Simulations

Differently from the techniques presented above, the LES approach does not
assume any simplifying hypothesis but aims at giving a high fidelity description
of flow field past a wind turbine. As consequence, a large number of information
is obtained from a LES. The disadvantage is that substantial computational
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Figure 4.7: Streamwise velocity at hub plane. Rotor centre is at (x/D =
3, y/D = 0), CT = 0.75 and κ = 0.075

resources are required and hence the cost of a Large-Eddy Simulation is much
higher than that connected to the models described above.

Nevertheless, the use of LES for the analysis of wind turbine flows may be
justified in reason of the deep physical insight into the flow dynamics that they
can provide because of the richness of the flow features which are considered.

4.2.1 Computational Setup

Simulations were performed for the NREL 5-MW reference turbine[33]: it
is a three-bladed horizontal axis wind turbine (HAWT) with a rotor diame-
ter D = 126m, a hub height hhub = 90m and a design power production of
Pdes = 5MW, which are the typcal sizes of a modern utility-scale wind turbine.

The computational domain adopted for the simulations extends for 9D in the
streamwise direction, 10D in the wall-normal (vertical) direction and 3D in the
spanwise direction (as shown in Figure 4.8). The turbine is placed 3D from the
inlet. The number of points used for the numerical evaluation is 512×384×256
for the streamwise, wall-normal and spanwise direction respectively.

The grid is uniform in the streamwise and spanwise directions, direction
x and z respectively, while it is stretched in the wall-normal direction (see Ta-
ble 4.1 for details).

The stretching is designed such that the resolution is finer in the rotor area.
This is required by the ALM since previous studies [48] have shown that 35 - 40
grid points are need to obtain accurate results. In Figure 4.9 details of the grid
along the y-axis are shown.

Periodic boundary conditions are imposed on the lateral boundaries of the
domain (spanwise direction): this mimics an infinite number of side-by-side
turbines. The ‘virtual’ spacing, however, is large enough that lateral interaction
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9D

10D

3D 3D

Figure 4.8: Computational domain

axis range Npoints ∆min/D ∆max/D

x [0 : 9D] 512 0.018 0.018
y [0 : 10D] 384 0.014 0.042
z [0 : 3D] 256 0.012 0.012

Table 4.1: Mesh details

is avoided.
On the lower boundary (ground) a no-slip condition is prescribed, on the

upper a free-slip condition is applied. This boundary condition justifies the
rather large height of the domain. Since the free-slip condition corresponds to
imposing a straight streamline parallel to the ground at the boundary location,
if the boundary is placed too close to the body (wind turbine), the flow would be
over-constrained and unphysically high forces and velocities would be obtained
from the numerical simulation. This effect is analogous to the blockage effect
which is experienced in closed-wall wind tunnels.

At the inlet a uniform velocity U is prescribed as inflow profile. At the outlet
a radiative boundary condition is imposed:

∂ui
∂t

− c
∂ui
∂xi

= 0 (4.26)

(no summation over i is implied). The (adimensional) convection velocity is
taken to be c = 1.
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Figure 4.9: Wall-normal grid details

The tower and the nacelle of the turbine are effectively modeled in the sim-
ulation through the Immersed Boundary Method (see Section 2.2). A no-slip
condition is imposed on the surfaces of these bodies as well.

The rotor of the turbine has been modeled with both the Actuator Line
Method and the Rotating Actuator Disk Method described in Section 2.4. A
detailed comparison of the two methods is provided.

The effect of the Reynolds number has also been investigated: simulations
have been carried at two different Reynolds numbers, namely Re = 40 000 and
Re = 400 000. The Reynolds number is here defined as:

Re =
UD

ν
(4.27)

Considering the usual operating values of wind velocities, which ranges ap-
proximately from 3m s−1 to 20m s−1, and the typical dimensions it follows that
the actual Reynolds number at which a modern wind turbine is likely to operate
is Re = O(108). Such a Reynolds number is however beyond present capabili-
ties even for a LES approach (see Section 2.3 for explanations). However results
do not show a significant sensitivity to the Reynolds number for a value larger
than 105 and the analysis may be justified even though the complete dynamic
similarity is not satisified.

As for the SGS tensor, the classic Smagorinsky model has been employed.
The model constant has been set to Cs = 0.09 after an a priori analysis was
performed with the Dynamic model. The Dynamic model, Eq. (2.34), was ap-
plied to the results of a no-model simulation and the resulting tri-dimensional
constant, Eq. (2.38), was averaged in time. Figure 4.10 shows the color contour
of Cs =

√
Cd in a vertical plane containing the tower centreline.

In the present simulations the wind turbine is supposed to be working at
a constant, selected TSR. The rotational speed ω is computed accordingly
(Figure 4.11a). The power generated and the thrust applied by the turbine are
computed on-line directly from the forces which the turbine applies to the flow
(Figure 4.11b).



CHAPTER 4. AERODYNAMICS AND PERFORMANCES 58

Cs

Figure 4.10: Time-averaged tridimensional Smagorinsky constant computed
with the Dynamic model
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Figure 4.11: Code outputs, TSR = 5.0 Re = 400 000

Various tip speed ratios have been considered in order to cover a wide range
of operating conditions.

4.2.2 Results

All the statistics have been computed by means of time average. Given a
quantity q(x, y, z, t), its time-average 〈q〉(x, y, z) is computed as:

〈q〉(x, y, z) = 1

T

ˆ t0+T

t0

q(x, y, z, t) dt

where the initial time t0 is chosen such that the turbine wake has fully
developed in the domain (i.e. it has reached the outlet) and the sampling time
T is large enough for the statistics to be converged.

The fluctuation of q is denoted by a prime and defined as:

q′(x, y, z, t) = q(x, y, z, t)− 〈q〉(x, y, z) (4.28)

In Figure 4.12 the evolution of the time-average of the streamwise velocity
averaged over the area swept by rotor is shown:

urot =
1

A

¨

A

u dA (4.29)
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(a) Turbine model: ALM, Re = 40 000
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(b) Turbine model: RADM, Re = 40 000
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(c) Turbine model: ALM, Re = 400 000
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(d) Turbine model: RADM, Re = 400 000

Figure 4.12: Rotor Averaged Velocity

This quantity may be helpful to draw comparisons with the simpler methods
described above to evaluate wind turbine aerodynamics.

It is first noted that the rotor averaged velocity has a very steep gradient
in proximity of the rotor position. This may cast some doubts over the choice
of the induction factor, which can be computed as a = 1 − 〈urot〉/U , as per-
formance parameter. Indeed its evaluation involves a low accuracy procedure
because of the high rate of change. On the contrary, the TSR appears a far
more reliable variable to characterise the turbine operating status and is often
employed in wind turbine controller.

The curves in Figure 4.12 also show that the wake recovery has a marked
dependence upon the tip speed ratio. The slope of the curves downstream
the turbine increases as the TSR increases. This is due to the fact that the
turbulence level in the wake increases as well, because the swirling imparted
by the rotating blades to the flow is enhanced. As a consequence the mixing
between the wake and the surrounding high speed region is incremented and an
entrainment of kinetic energy takes place in the wake.

This feature has very important consequences, especially when one consid-
ers aligned configurations of wind turbines. At a first analysis a high level of
turbulence in the wake may appear as undesirable because of the fluctuating
fatiguing loads which are experimented by the waked turbines. On the other
hand a proper combination of longitudinal spacing and TSR may result in a
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Figure 4.13: Time-Averaged pressure at hub height

faster wake recovery from the upstream turbine: in this way more energy in the
wind would be available for the trailing turbine.

Simple wake models, such as the Jensen model, assume wake self-similarity
respect to the TSR, which is not evident in Figure 4.12, hence do not capture
this phenomenon. Other wake models have been developed with the aim of
including the effect of the entrainment. However, they are based on a constant
that has to be tuned with experimental measurements. LES, albeit at a higher
computational cost, model the non linear effects in the wake and the entrain-
ment without the need of ad hoc constants.

Finally, it can also be noted that the velocity ‘drop’ across the rotor disk is
an increasing function of the TSR. This is related to the fact that the thrust
coeffienct CT is also a monotonic function of the TSR as shown in Figure 4.6a
and this confirms the arguments which led to Equation (4.8).

In Figure 4.13 it is shown the behaviour of the time-averaged pressure at
hub height 〈p̄〉(x, yhub, zhub). At the outlet of the domain the pressure is still
not fully recovered (p|x/D=9 6= p∞): this was one the hypothesis underlying the
BEM theory and thus casts some doubts over the use of such method for the
evaluation of clustered configurations. In fact the typical spacing bewteen the
turbines is around 5 - 7D. This is the so-called far wake region where to flow is
expected to be influenced just indirectly from the upstream turbine. However,
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as it appears from Figure 4.13, the wake not only is far from being recovered
but also the effect of the TSR of the upstream turbine still is evident since the
pressure deficit depends on it.

These arguments are supported by the flow visualisation reported in Fig-
ures 4.14–4.17. In Figures 4.14 and 4.15 color contours of time-averaged stream-
wise velocity at the hub height are shown. It can be observed that large regions
downstream the turbine are characterised by rather low values of the velocity.
The extent of this low velocity regions and the magnitude of the velocity deficit
increase as the TSR increases. Clearly, this is due to larger thrust force which
the turbine exerts on the flow.

In addition, in the so-called near wake region, i.e. within a 1-2D distance
from the tower, the transversal expansion is qualitatively proportional to TSR.
This contradicts the predictions of Jensen model which assumes the wake expan-
sion to be dependent only on the coefficient κ representative of the incoming
turbulence intensity, Eq. (4.24). This suggests that the wake self similarity
hypothesis may be inappropriate.

Proceeding downstream, the behaviour is found to further deviate from the
wake model assumption. As the TSR grows the wake region becomes thinner.
The enhanced recovery for the high TSR cases is due to turbulence mixing
which is promoted by rotational effects imparted by the blades. This effect was
already observed when analysing the behaviour of the rotor averaged velocity
as a function of the TSR (Figure 4.12).

It also emerges that the velocity in the wake is far from being uniform as
assumed by the Jensen-Park model. Other commonly used Gaussian-like wake
shapes also prove not to be very accurate especially in the proximity of the
rotor due to the presence of tower and nacelle. The wake of the two bodies
interacts with that of rotor blades. As shown in Figures 4.16-4.17 the presumed
axisymmetry of the rotor wake is broken by the presence of tower and nacelle.

The importance of considering the effects of the tower and the nacelle when
analysing wind turbine flows can be best appreciated from Figure 4.18. In this
Figure color contours of the Turbulent Kinetic Energy (TKE) q are shown. The
TKE is defined as:

q =
1

2

[
〈u′2〉+ 〈v′2〉+ 〈w′2〉

]
(4.30)

where u′(x, y, z, t) = u(x, y, z, t)− 〈u〉(x, y, z) (and analogously for the other
two components) is the streamwise velocity fluctuation. The TKE quantifies the
kinetic energy contained in the turbulent eddies of the flow and is a measure of
the local turbulence intensity.

It can be seen how most of energy is due to the wake of tower and nacelle.
As it has been already stated above, turbulence motion has a significant impact
on the wake characteristic and thus on the performances of the trailing turbines.
As a consequence, since most of the turbulence production is due to the tower
and nacelle, proper modeling of these bodies is required to obtain high-fidelity
predictions of flow characteristics.

In Figure 4.18 it can be observed that, besides the tower, the region where
the highest turbulence activity is observed is the blade tip. This could have
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(a) TSR = 5.0, Re = 40 000 (b) TSR = 5.0, Re = 400 000

(c) TSR = 6.0, Re = 40 000 (d) TSR = 6.0, Re = 400 000

(e) TSR = 7.0, Re = 40 000 (f) TSR = 7.0, Re = 400 000

(g) TSR = 7.5, Re = 40 000 (h) TSR = 7.5, Re = 400 000

(i) TSR = 8.0, Re = 40 000 (j) TSR = 8.0, Re = 400 000

(k) TSR = 9.0, Re = 40 000 (l) TSR = 9.0, Re = 400 000

Figure 4.14: Color contours of time-averaged streamwise velocity at hub plane.
Model: ALM
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(a) TSR = 5.0, Re = 40 000 (b) TSR = 5.0, Re = 400 000

(c) TSR = 6.0, Re = 40 000 (d) TSR = 6.0, Re = 400 000

(e) TSR = 7.0, Re = 40 000 (f) TSR = 7.0, Re = 400 000

(g) TSR = 7.5, Re = 40 000 (h) TSR = 7.5, Re = 400 000

(i) TSR = 8.0, Re = 40 000 (j) TSR = 8.0, Re = 400 000

(k) TSR = 9.0, Re = 40 000 (l) TSR = 9.0, Re = 400 000

Figure 4.15: Color contours of time-averaged streamwise velocity at hub plane.
Model: RADM
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(a) TSR = 5.0, Re = 40 000 (b) TSR = 5.0, Re = 400 000

(c) TSR = 6.0, Re = 40 000 (d) TSR = 6.0, Re = 400 000

(e) TSR = 7.0, Re = 40 000 (f) TSR = 7.0, Re = 400 000

(g) TSR = 7.5, Re = 40 000 (h) TSR = 7.5, Re = 400 000

(i) TSR = 8.0, Re = 40 000 (j) TSR = 8.0, Re = 400 000

(k) TSR = 9.0, Re = 40 000 (l) TSR = 9.0, Re = 400 000

Figure 4.16: Color contours of time-averaged streamwise velocity in the vertical
plane passing for the tower axis. Model: ALM
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(a) TSR = 5.0, Re = 40 000 (b) TSR = 5.0, Re = 400 000

(c) TSR = 6.0, Re = 40 000 (d) TSR = 6.0, Re = 400 000

(e) TSR = 7.0, Re = 40 000 (f) TSR = 7.0, Re = 400 000

(g) TSR = 7.5, Re = 40 000 (h) TSR = 7.5, Re = 400 000

(i) TSR = 8.0, Re = 40 000 (j) TSR = 8.0, Re = 400 000

(k) TSR = 9.0, Re = 40 000 (l) TSR = 9.0, Re = 400 000

Figure 4.17: Color contours of time-averaged streamwise velocity in the vertical
plane passing for the tower axis. Model: RADM
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(a) TSR = 5.0, Re = 40 000 (b) TSR = 5.0, Re = 400 000

(c) TSR = 6.0, Re = 40 000 (d) TSR = 6.0, Re = 400 000

(e) TSR = 7.0, Re = 40 000 (f) TSR = 7.0, Re = 400 000

(g) TSR = 7.5, Re = 40 000 (h) TSR = 7.5, Re = 400 000

(i) TSR = 8.0, Re = 40 000 (j) TSR = 8.0, Re = 400 000

(k) TSR = 9.0, Re = 40 000 (l) TSR = 9.0, Re = 400 000

Figure 4.18: Color contours (logarithmic scale) of TKE in the vertical plane
passing for the tower axis. Model: RADM.
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been expected from the high shear observed in that region in Figures 4.14-4.17.
The peak of the TKE occurs after the near wake region. As the TSR increases,
it grows in intensity and moves closer to the turbine. This is in accordance
with changes of slope and the different recovery observed in Figure 4.12. For
the high TSR conditions the entrainment of kinetic energy from the high speed
region above the top tip height, promoted by the turbulent activity, is greater
in intensity and in axial extent: hence the faster wake recovery.

From a physical point of view the different turbulent activity, depending on
the operating TSR, in different regions of the wake also coincides with a change
in the structures of the wake. In the near wake region the turbulent, diffusive
phenomena are overcome by the convective mechanisms which are characterised
by smaller time scales. This implies that the large scale structures which origi-
nates from the bound vorticity on the blades surface are transported downstream
quite coherently. The wake is characterized by the helicoidal path which is fol-
lowed by the tip vortex departing from the blade tip and by the trailing vorticity
which originates from the blade trailing edge.

As the wake moves downstream and the turbulent mixing increases, the
large coherent structures are progressively dissipated into smaller ones with
the typical mechanisms of the energy cascade. The so-called vortex breakdown
occurs and the wake is no longer helicoidal but fully turbulent and characterised
by small chaotic eddies.

(a) TSR = 5.0, model: ALM (b) TSR = 5.0, model: RADM

(c) TSR = 7.0, model: ALM (d) TSR = 7.0, model: RADM

Figure 4.19: Color contours of vorticity magnitude at hub plane, Re = 40 000

The behaviour described above is particular evident in Figure 4.19a, where
contours of the vorticity magnitude are shown. Each individual tip vortex,
corresponding to the passage of a blade, is clearly visibly as well as the pattern
of the blade rotation. The TSR is relatively low and the vortices are convected
downstream coherently until the breakdown occurs.

As the TSR increases, Fig. 4.19c, the rotational velocity of the blades in-
creases and the frequency with which a blade passes through increases. This
results in an increment in the frequency with which the tip vortices are released
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(a) TSR = 5.0, model ALM (b) TSR = 5.0, model RADM

(c) TSR = 7.5, model: ALM (d) TSR = 7.5, model: RADM

(e) TSR = 9.0, model: ALM (f) TSR = 9.0, model: RADM

Figure 4.20: Color contour of TKE at hub plane, Re = 400 000

and thus they are much closer one to each other such that they can merge to-
gether. The turbulence in the wake is increased to and the breakdown occurs
earlier (more upstream).

From Figure 4.19 it is also possible to appraise the differences between the
models employed for the turbine rotor. As expected, the ALM provide a more
detailed characterisation of the field structure. The RADM does not capture
distinctly the tip vortices since the local effect of the blade tip is obviously lost
because of the larger force spreading. However, it is still possible to recognize
the pattern of the rotation of the disk, which represents an improvement with
respect to the traditional Actuator Disk.

It is interesting to notice that the RADM yields a field which is globally
smoother. As can be seen in Figure 4.19, the smallest scales structures present in
the ALM field are ‘filtered’ out by the RADM. This aspect can be observed also
in Figure 4.20 by comparing the Turbulent Kinetic Energy field. Although both
models show the trends and features discussed above, the turbulence intensity
of the RADM field is generally lower than that of the ALM.
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The reason for this behaviour may be indentified exactly in the fact that the
RADM does not describe all the detailed dynamics which occurs in the wake.
It is thus evident that these small scales affect significantly vorticity and TKE,
while on the other hand the average velocity (Figures 4.16-4.15) is less sensitive.
The overall agreement between the two models is good and the loss in accuracy
connected with the use of the RADM instead of the ALM is partially compen-
sated by the much lower computational cost.

Regarding the Reynolds number dependence, as already anticipated, the re-
sults do not show a significant sensitivity to this parameter, with only the TKE
showing a weak dependence (this fact could have easily been expected since
the TKE is a measure of the turbulence intensity which is closely related to the
Reynolds number). Therefore numerical simulations can be performed at a lower
Reynolds number than 108 and still having meaningful results. On the other
hand, it would be incautious to state that wind turbine flows are practically
Re-independent. Although computer capabilities have increased dramatically
over the years, simulation of some flow features, in particular the blade bound-
ary layer, is still not feasible – the blade boundary layer has been somewhat
indirectly modeled through the airfoil force coefficients. The blade boundary
layer is very likely to be dependent from the Reynolds number in many respects
(separation and transition points, re-attachments among others). Consequently,
it should be said that the resolved scales are not significantly influenced by the
Reynolds number, while it is possible that a dependence occurs at smaller scale
level.

4.3 Conclusions

The results of LES of a single wind turbine have been shown and discussed.
With respect to classic engineering methods employed for wind turbine flow anal-
ysis LES certainly represents a most expensive tools in terms of computational
resources and computational time.

However it has been shown that the expense is worth, since LES is capable
of providing accurate results and overcome some drawbacks that engineering
methods have because of their simplifying assumptions. These models fail in
correctly predicting the wake behaviour, while they provide quite good results
on overall perfomances such as the power production of a single turbine. How-
ever, this former aspect is crucial since the interaction between a turbine wake
and the trailing turbines in clustered configurations affects significantly the per-
formances of the waked turbines and thus of the whole park of turbines. The
large demand of energy from renewable sources is leading to the construction of
larger and larger wind farms and so a good understanding of wake interactions
is necessary to optimise efficiency and management of these wind parks.

Furhtermore, the use of LES guarantees an unprecendentedly large amount
of informations on flow features which can give a deep insight into the flow mech-
anisms. Once this knowledge is acquired and mastered could also be exploited
for optimisation of wind turbine components design, for instance.



Chapter 5

Effects of Subgrid-Scale

Modeling

In this chapter the effect of the SGS tensor modeling is investigated. The
subgrid scale tensor plays a very important role in LES and is generally expected
to have a significant impact on the quality of the results.

All the simulations performed in Chapter 4 employed the classic Smagorinsky
model which has the valuable advantage of being very efficient from a compu-
tational point of view and also very simple to be implemented. However, as
reported in Section 2.3.2, the Smagorinsky model suffers from the following ma-
jor drawbacks which can have a potential negative impact on the LES of wind
turbine flows:

i. isotropy

ii. flow-dependent model constant

iii. non-vanishing eddy viscosity in presence of a solid wall

Though many more sophisticated SGS models have been employed over the
years, a systematic analysis to assess the influence of subgrid tensor modeling
on the results has not been addressed in the literature so far for the flow past
wind turbines. A recent exception is consituted by the work of Sarlak et al.[75].
A comparison between the Smagorinsky model and two “mixed scale” models,
in which the velocity scale used to build the SGS viscosity is obtained from a
scale-similarity model [71], was carried out. It was found that the impact of the
turbulence models on the results is smaller compared to that of other parameters
which were considered. This insensitivity was attributed to the common belief
that, as long as the large scales features of wake-dominated flows – such as wind
turbine flows – are correctly represented in the simulation, the impact of the
smaller scales is negligible.

Nontheless, the analysis in this thesis is justified by the fact the turbine
tower and nacelle are directly represented in the present simulations through
the Immersed Boundary Method, while in [75] they were represented through
the introduction of volume forces in the domain. Santoni & Leonardi[74] have
shown the importance of taking into account the presence of the two bodies
for accurately representing the near wake field and demonstrated that the IBM
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provides close agreement with experimental results for the same configuration
considered in the present analysis. It may expected that the characteristics of
the SGS model do have an impact on the results, especially in the region of
separated flow behind the tower and in proximity of the bodies walls.

5.1 Numerical setup

The numerical setup of the simulations performed for the SGS modeling
evaluation reproduces that of the experiment conducted at the Norwegian Uni-
versity of Science and Technology (NTNU) in 2011[39]. A small wind turbine
was placed inside the wind tunnel facility at NTNU and various measurements
were performed.

The experiment was designed to provide a benchmark case against which
to test CFD codes within the blindtest organised jointly by NOWITECH and
NORCOWE[39]. In view of this aim the turbine was not designed to represent a
realistic machine, but rather its geometry was designed in an easily reproducible
way. Details of the design can be found in [39, 40, 16].

For the same reason the rather large size of the turbine compared to the
tunnel dimensions was not considered to be an issue. Indeed, if the numerical
setup faithfully reproduces the experimental configuration the blockage effects,
which are expected to be rather large given a blockage factor1around 12%, will
be included in the results with no need of corrections.

Furthermore the experiment was designed so as to have a uniform velocity
and a low level of turbulence intensity at the inlet of the test section. This kind
of incoming flow is not representative of realistic operating conditions. However
it is easily reproducible by numerical codes and thus is well-suited for the aim
of the experiment.

A schematic representation of the experimental (and numerical) setup is
shown in Figure 5.1. The rotor diameter D is 0.894m and the inflow velocity is
U∞ = 10m s−1. This gives a Reynolds number based on the turbine diameter
and the incoming velocity of Re = U∞D/ν = 6.3 · 105

The numerical configuration was set to reproduce the experimental one. A
no-slip condition was prescribed at the lower and upper buondary to mimick
the tunnel walls. The lateral walls were simulated through the IBM method,
as well as the tower and the nacelle. A no-slip condition was assigned at these
“boundaries” too.

At the inflow a uniform velocity was assigned in agreement with the experi-
mental inlet. At the outflow, the same radiative boundary condition in Eq. (4.26)
was applied.

The turbine rotor was modeled with the RADM. This choice was suggested
by the necessity of performing various simulations for testing the SGS models.
Therefore the RADM was preferred to the ALM for computational reasons.

1The blockage factor is defined as the ratio between the frontal area of the model tested S
to the area of the wind tunnel cross section A. Common values for S/A are around 5-10% for
which an appreciable correction is necessary [15].
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12.5D

2.1D

3.0D

6.0D

Figure 5.1: Experimental and numerical configuration

Despite this involves a moderate loss in accuracy, as it was shown in Section 4.2.2
most of the important wake features are still retained.

5.2 A priori tests

Before directly evaluating the perfomances of SGS models in LES of wind
turbines a priori tests were conducted to obtain preliminary information on the
models behaviour. A priori tests are a validation method which is based on
the knowledge of the ‘exact’ solution of the problem under consideration [71].
The explicit application of a filtering operator leads to the definition of a re-
solved field and a known subgrid one. In this way the predictions yielded by
the application of the model to the resolved, filtered, field can be compared
with the ‘exact’ subgrid field. The ‘exact’ solution is usually obtained through
a well-resolved Direct Numerical Simulation, generally performed at rather low
Reynolds number because of computational limitations.

A priori tests can give useful information on models behaviour and on hy-
pothesis underlying modeling efforts. However, it must be noted that numerous
factors which concur in an actual simulation (a posteriori test) to determine
the overall quality of the results – and therefore the quality of the SGS model
– cannot be included in this kind of analysis. In practice the field obtained
from an actual LES would be different from the resolved field obtained from the
‘exact’ solution because of modeling and numerical errors [71]. For this reason,
the conclusions drawn from a priori tests can be misleading sometimes and a
thorough analysis should include both a priori and a posteriori tests.
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5.2.1 Test case

For the present analysis a no-model simulation was carried out on a rather
fine grid at Re = 10 000 for an operating constant TSR = 3.0. Details of the
uniform grid employed are reported in Table 5.1.

axis range Npoints ∆xi/D

x [0 : 12.5D] 1024 0.012
y [0 : 2.1D] 512 0.004
z [0 : 3.0D] 512 0.006

Table 5.1: Mesh details

The velocity field obtained from this simulation has been filtered with a
second-order commuting discrete filter [89]. Given the discrete unfiltered mono-
dimensional variable φk = φ(xk) this filtering operation reads as:

φ̃k =

l=1∑

l=−1

wlφk+l (5.1)

where the weights wl are given by:

w−1 =
1

4
w0 =

1

2
w1 =

1

4
(5.2)

The filtering operation has been performed in all three directions by ten-
sorization of the kernel (5.1). A comparison between the unfiltered and the
filtered field is provided in Figure 5.2 where color contours of the time-averaged
streamwise velocity are reported for the vertical plane passing through the tower
axis.

Figure 5.2: Color contours of time-averaged streamwise velocity in the tower
axis vertical plane: left unfiltered field, right filtered field

The SGS models described in Section 2.3.2 were tested. The models input
parameters are shown in Table 5.2

For the Smagorinsky model, the value of the constant was chosen according
to the test performed with the Dynamic model for the NREL turbine described
in Section 4.2.1. As for the other eddy-viscosity models, the value was chosen
following the respective authors’ suggestions. Tests with the Dynamic model
were also carried out. The dynamic model parameter resulting from Eq. (2.38)
was averaged in time.
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SGS model constant

Smagorinsky Cs = 0.09
σ-model Cσ = 1.35
Vreman CV = 2.5C2

s

WALE CW = 0.5

Table 5.2: LES models input parameters

5.2.2 Results

In this section the results of the a priori tests are reported. The average in
time of a variable q(x, y, z, t) is defined as:

〈q〉(x, y, z) = 1

T

ˆ t0+T

t0

q(x, y, z, t) dt (5.3)

where the initial time t0 is chosen such that the turbine wake has fully de-
veloped in the domain (i.e. it has reached the outlet) and the sampling time T
is large enough for the statistics to be converged.

In Figure 5.3 color contours of time-averaged eddy viscosity in the tower
axis vertical plane are shown. The subgrid viscosity assumes large values in the
wake, especially in the re-circulating region behind the tower (cf. Figure 5.2).
This result was expected since the presence of the bluff body causes separation
of the boundary layer and transition to turbulence. The interaction with the
helicoidal wake of the rotor causes the early breakdown of the coherent vortices
and the diffusion of vorticity. This enhances the mixing further and so the eddy
viscosity increases.

The eddy viscosity predicted by the WALE model has generally the highest
value among the considered models and locally attains very large values. On the
other hand the Vreman model provides the lowest values in the domain. These
trends are in accordance with previous studies on the same models [63]. The
σ-model lies between the WALE model and the Smagorinsky model.

The Dynamic model is characterised by large fluctuations in space. As al-
ready discussed in Section 2.3.2 these fluctuations are likely to cause numerical
instability: this was indeed the case when a posteriori tests were performed.
This suggests the use of a different kind of average for the constant computa-
tion. This is a typical problem in LES of inhomogeneous flows, such as wind
turbine flows. The lack of homogeneous directions along which to perform en-
samble averages requires the adoption of more complex kinds of average rather
than the simple time-averge which may not provide enough samples for the
average to be converged.

In Figure 5.4, color contours of 〈νsgs〉 in the horizontal plane at hub height
are reported. The figure confirms the observations made above regarding the
value of the eddy viscosity predicted by the SGS models. Again the largest
values are found in the tower and nacelle wake region, with only the WALE
model presenting a subgrid viscosity significantly different from zero in the tip
region. This region is generally characterised by a high shear, although in this
case it is rather low because of the slow rotation of the blades (TSR = 3) and
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(a) Smagorinsky model

(b) Dynamic model

(c) σ-model

(d) Vreman model

(e) WALE model

Figure 5.3: Color contours of 〈νsgs〉/ν in the vertical passing through the tower
axis
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(a) Smagorinsky model (b) σ-model

(c) Vreman model (d) WALE model

Figure 5.4: Color contours of 〈νsgs〉/ν in hub plane

the consequent moderate intensity of the tip vortex.
It is important to notice that the Smagorinsky model yields a non-zero vis-

cosity near the vertical walls of the wind tunnel. This is due to the fact that
the model constant was not damped in this region whereas van Driest correc-
tion, Eq. (2.31), is succesfully implemented for the bottom wall (see Fig. 5.3a).
Conversely, the other models show the expected vanishing viscosity.

The near wall behaviour of the SGS models is particularly interesting in the
area where the tower and nacelle are present. In fact the complex geometry of
the two bodies makes the use of van Driest correction unfeasible. Therefore the
possibility to adopt a SGS model which yields the correct value of the subgrid
viscosity eliminates a potential source of error. However, from Figure 5.3 it
appears that the viscosity is non vanishing near the immersed boundaries. This
is confirmed in Figure 5.5 where color contours of 〈νsgs〉 in the vertical plane
passing through the tower axis normal to the flow direction.

Although a slight improvement respect to the Smagorinsky can be noticed,
at least for the Vreman and σ-model, the overall result is not as expected. This
may be due to the filtering operator which introduces an errors near the body
contour: possibly the adoption of a high-order filter may improve the results.
Also an increase in the grid resolution is bound to yield better outcomes because
the description of the body contour would be more accurate. Indeed only a few
points are inside the nacelle volume which is the body for which the results are
farthest from the expected values.
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(a) Smagorinsky model (b) σ-model (c) Vreman model (d) WALE model

Figure 5.5: Color contours of 〈νsgs〉/ν in the tower axis cross-sectional plane.

Figure 5.6 shows color contours of the subgrid dissipation 〈εsgs〉 = 〈τijSij〉
in the vertical plane through the tower centreline.

(a) Smagorinsky model (b) σ-model

(c) Vreman model (d) WALE model

Figure 5.6: Color contours of 〈εsgs〉 in vertical plane through the tower axis.

It is evident that the Vreman model is the least dissipative model. This
result could have been anticipated from the low values predicted for the eddy
viscosity (see Figs. 5.3-5.4). When a posteriori tests were performed the subgrid
dissipation proved to be too small and the solution diverged. This suggests that
the value adopted for the model constant (see Table 5.2) should be increased for
the sake of numerical stability. Determine the value of the model constant for a
complex type of flow, like the one under consideration, is one of the most con-
cerning problems in the LES framework. Since analytical theories are scarcely
available for complex turbulence problems, it is often difficult to find a basis
upon which to evaluate the constant.
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5.2.3 Conclusions

From the a priori tests it can be concluded that the value of the eddy viscosity
model is strongly affected by the model employed. In particular the WALE
model provides the highest values and the Vreman model the lowest one. The
σ-model is intermediate between the WALE model and the classic Smagorinsky.

As it has already been anticipated, this results in different estimates for the
subgrid dissipation with the Vreman model being not enough dissipative. In-
deed, it was not possible, during the simulation, to avoid instability. A possible
overcome can be an increase in the value of the model constant.

The models near wall behaviour was also addressed . The models did not
provide the expected result near the immersed buondaries. The use of the σ-
model, Vreman model and WALE model instead of the traditional Smagorinsky
model may then be questioned on the basis of these a priori results.

However for a thourogh assessment of the models performances it is worthy to
carry out a posteriori tests since no additional computational expense is involved
with the use of these models compared to the Smagorinsky model. Moreover,
as stressed above, the outcome of an actual LES can be quite different from
the prediction of the a priori validation due to the interaction between the SGS
model and the numerical code.

5.3 A posteriori tests

A posteriori tests consist actually in performing an LES. This is a dynamic
evaluation of the SGS model performance which takes into account all the factors
occurring in a simulation.

Indeed, these a posteriori tests cannot give the same insight on modeling
hypotheses as the a priori validation since it is not possible to evaluate the
extent of the modeling errors respect to the other sources of error (numerical
error, resolution error etc...) [71].

Nevertheless, good a posteriori results are what definitely matters for the
success of the LES approach [65].

5.3.1 Test case

The LES were carried out at Re = 6.3 · 105, the same as in the experiment.
The tip speed ratio at which the turbine is operating is TSR = 3.0 as in the
a priori tests. The grid employed for the simulations is uniform in the three
directions and is coarser respect to the one used for the a priori tests. Details
are reported in Table 5.3.

For the SGS models, the same input parameters in Table 5.2 were adopted
for the large-eddy simulations. Simulations with the Vreman and the Dynamic
model were not successfully terminated due to numerical instability. As already
discussed in the a priori validation, the Vreman model is not enough dissipative.
This result is in accordance with the findings of a similar study [63] where an



CHAPTER 5. EFFECTS OF SGS MODELING 79

axis range Npoints ∆xi/D

x [0 : 12.5D] 512 0.024
y [0 : 2.1D] 256 0.008
z [0 : 3.0D] 256 0.012

Table 5.3: Mesh details

increased value of the numerical viscosity was adopted when this model was used.
This suggests that the model constant should be increased or possibly that the
relation (2.45), approximately derived for homogeneous isotropic turbulence, is
not as accurate for highly anisotropic flows.

The Dynamic model, on the other hand, suffers from an inadequate constant
averaging. In order to smooth the constant large fluctuations a more robust
average than the time-average could be used. Indeed, several authors employ
local averaging or Langrangian averaging [25, 97, 49].

5.3.2 Results

In this section the results of the large-eddy simulations are presented. The
average in time is defined as in Equation (5.3).

In Table 5.4 the time-averaged power and thrust coefficient, CP and CT

respectively, are shown together with the values yielded by the BEM code de-
scribed in Section 4.1 and the ones measured at NTNU.

CP CT

LES:
Smagorinsky model 0.190 0.327
σ-model 0.171 0.302
WALE model 0.162 0.294

BEM 0.126 0.303

Exp. 0.120 0.393

Table 5.4: Power and thrust coefficient: experimental results are taken from [40]

The predictions of the three models are similar, with the Smagorinsky model
yielding higher coefficients compared to the other eddy viscosity models. When
compared to the experimental results the three models show a similar trend with
the power coefficient being overpredicted and thrust coefficient being underes-
timated. The difference of LES results from the experimental measurements
should not be deemed too negative since it is in line with the state of the art
in predicting turbine performances. In Figure 5.7 the results of the blindtest
organised by NOWITECH and NORCOWE are reported. A large scatter for
on- and off-design conditions is observed.

A considerable disagreement with the experimental results was generally
found in the blindtest. No correlation was found systematically between the
model employed and the accordance with results, with BEM codes being in
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(a) Power coefficient (b) Thrust coefficient

Figure 5.7: Results of the NOWITECH/NORCOWE Blind Test: reproduced
from [39]

some case as good as (or more than) LES – which are expected to yield the
most accurate predictions. This shows how, at the present state, prediction
of CP and CT remains probably the most demanding problem in wind turbine
flows.

Moreover, the case considered in the present simulations is particularly
challenging, because the tip speed ratio is quite far from design condition
(TSR = 6.0) and the blade is almost fully stalled [39]. This may also give
a key to understand the reason for the lack of agreement obtained. In fact,
when an airfoil is working in stalled conditions the 3D effects are most evident.
Consequently, it is reasonable to expect the 2D theory employed for the force
prediction (see Section 2.4) being quite inaccurate. This last argument is sup-
ported by the fact that the scatter among LES simulations is rather low and
the BEM code yields a very good estimate of the CP : this is quite surprising
since this method does not take into account the blockage effect which, as stated
above, is expected to be not negligible.

In Figures 5.8a-5.8b the time-averaged streamwise velocity profiles at hub
height at two different downstream positions are reported together with experi-
mental results for comparisons.
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(a) 1.0D downstream rotor position
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(b) 3.0D downstream rotor position

Figure 5.8: Time-averaged streamwise velocity profile at hub height: Smagorin-
sky ( ), σ-model ( ), WALE ( ); ◦ experiments.

In Figures 5.9a-5.9b the time-averaged Turbulent Kinetic Energy profiles at
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hub height at the same downstream positions are shown.
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(a) 1.0D downstream rotor position
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(b) 3.0D downstream rotor position

Figure 5.9: Time-averaged streamwise TKE at hub height: Smagorinsky ( ),
σ-model ( ), WALE ( ); ◦ experiments.

The three models yield similar predictions. The results in Figure 5.8 are
actually quite surprising since the same code used in the present thesis provided
excellent agreement with the experimental measurements [74]. The reason for
this discrepancy may be found in the different model employed for representing
the turbine rotor. While in [74] the more accurate ALM is used, the RADM
adopted for these simulations may to a certain extent ‘shadow’ the effect of
tower and nacelle which are the cause of the large velocity deficit in the centre
of the wake, as was shown in [74]. The different predictions may also be affected
by the coarser resolution which is used in the present simulations.

In Figure 5.9 the shape of the profile is reproduced quite well although the
magnitude of the TKE is underestimated in the core of the wake. This is in
accordance with the trend observed in Section 4.2.2 regarding the smoothing
effect that the RADM has on the small scale turbulence which is generated by
the rotor blades. The TKE predicted by the RADM was found to be lower
compared to the ALM field especially in the near wake region.

Overall the comparison with the reference results is satisfactorily, with dis-
crepancies being of the same order as, or less than, those observed within the
blindtest comparison [39].

The Smagorinsky model furnishes higher values of the turbulent kinetic en-
ergy near the lateral wall of the tunnel respect to the other two models, Fig. 5.9.
It is believed the latter models reproduce a more realistic value of the turbu-
lence intensity. It must be remembered that there is no damping of the model
constant in this region of the domain (cf. Figure 5.4a) and the eddy viscosity is
too large. This is confirmed also by the velocity profiles in Figure 5.8: the SGS
model drains too much energy from the resolved field and the velocity is lower
in the boundary layer. The visualisation of the TKE field in Figure 5.10 is in
accordance with the previous arguments.

This different behaviour can be further appreciated in Fig. 5.11 where color
contours of vorticity magnitude are shown in the horizontal plane at hub height.

The higher value of the eddy viscosity indicates a higher level of turbulence
activity. The mixing is enhanced and the vortical structures are diffused more
rapidly away from the wall.
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(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.10: Color contours of time-averaged TKE in the hub plane

(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.11: Color contours of vorticity magnitude in the hub plane
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Figure 5.12: Iso-surfaces of vorticity magnitude: WALE model

Though the TSR is low it is not possible to distinguish the tip vortices in
Fig. 5.11. The lack of these details, which was partially expected, was already
observed when comparing the RADM with the ALM (see Fig. 4.19). However,
it is worthy to notice that in Fig. 5.11 a vortical structure is observed in the
far wake which appears similar to the helicoidal path formed by the tip vortices.
Instead, those vortices are not helicodail but are rather ‘ring’ vortices which de-
velops for Kelvin-Helmoltz instability [8] due to the shear which occurs between
the free-stream region and the turbine wake (cf. Fig. 5.8). This structure can be
appreciated in Figure 5.12 where iso-surfaces of vorticity magnitude are shown.

In general the results do not seem to be significantly affected by the SGS
models. A similar trend is observed for the time-averaged streamwise veloc-
ity and the turbulent kinetic energy in the vertical plane thorugh the tower
centerline shown in Figures 5.13 and 5.14.

The recirculation bubble behind the tower shows a moderate sensitivity to
the model employed. The length of the recirculation bubble is larger for the least
dissipative Smagorinsky model and shorter for the WALE and σ-model which
according to the a priori tests provide a larger amount of subgrid viscosity. This
behavior is more evident below the rotor bottom tip where the interaction with
the turbine wake is less significant. The same dependence on the SGS viscosity
was found in a previous study on the flow past a circular cylinder [63].

While a dependence on the SGS models is scarcely observed on flow features,
some differences can be observed in the prediction of the eddy viscosity. Color
contours of the time-averaged eddy viscosity 〈νsgs〉/ν are shown in Figure 5.15.

In Figure 5.16 the time-averaged subgrid dissipation εsgs = τijSij is also
shown.

All models result to be more dissipative and provide a higher subgrid vis-
cosity than what was predicted from the a priori tests. Apart from the model-
simulation interaction mentioned above, this behaviour can also be related to
the quite different Reynolds number. Even though the overall flow features were
shown not to be severely affected by the Re in Section 4.2.2, the eddy viscosity
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(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.13: Color contours of time-averaged streamwise velocity in the tower
axis vertical plane

(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.14: Color contours of time-averaged TKE in the tower axis vertical
plane
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(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.15: Color contours of time-averaged 〈νsgs〉/ν in the tower axis vertical
plane

(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.16: Color contours of time-averaged 〈εsgs〉 in the tower axis vertical
plane
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(a) Smagorinsky model (b) WALE model

(c) σ-model

Figure 5.17: Color contours of instanteneous 〈νsgs〉/ν in the tower axis vertical
plane normal to the flow direction

does depend on the Reynolds number. Moreover, the grid employed for the a
posteriori tests is coarser than the one employed for the a priori tests: conse-
quently the subgrid-scale contribution is expected to be larger. Some trends
previously individuated have been confirmed. The WALE model is globally
more dissipative with the σ-model being intermediate between the Smagorinsky
the WALE models.

As for the near wall behaviour, the a posteriori tests do not show an improve-
ment respect to the prediction of the a priori tests. Both the WALE model and
the σ-model yield a non vanishing eddy viscosity near the immersed boundaries.
This is shown also in Figure 5.17.

This results may possibly be improved by the use of a finer grid or by an
ad hoc modification of the Immersed Boundary procedure. Indeed, with the
resolution reported in Table 5.3 approximately only 4×10 gridpoints are present
inside a horizontal section of the tower which may not guarantee an accurate
description of the geometry.

5.3.3 Conclusions

Large-eddy simulations employing different SGS models have been performed.
The accordance with the reference experimental measurements was not excellent
but comparable to the state of the art. The flow past wind turbines poses par-
ticular challenges to researchers because of the wide range of scales active in the
flow, the turbulent motion and anisotropy. More accurate modeling, especially
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of wind turbine rotors, is required to improve predictions.
Conformly to a similar study in the literature [75], the impact of the SGS

model on the result is found to be rather small. The main flow features are
dependent especially on the large scale structures which are directly simulated
and thus the effects of the subgrid tensor is evident mainly in secondary aspects
(such as the tower wake mean recirculation length). Possibly a major sensitivity
could be devised employing ALM rather than RADM. This latter method does
not describe in very detail small scale sctrutures – for example the tip vortex –
where the influence of the SGS model could be significant.

The behaviour of the eddy viscosity near the bodies walls was also inves-
tigated. Although results were not encouraging, this respect may be further
analysed possibly with the finer body resolution which permits an accurate de-
scription of the geometry.
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Conclusions

Large-Eddy Simulations have been applied to the flow past wind turbines
and wind farms only in recent years. Its diffusion is yet to be large because
of the computational requirements that this technique involves. The standard
tools for the prediction and the analysis of wind turbine performances are still
represented by the simple engineering models. These tools are easy to be im-
plemented and capable of providing results in a very short time. These models
often rely on simplifying assumptions about flow behaviour whose derivation
and validity are rather questionable from a physical point of view.

The numerical evaluations performed have shown that the wind turbine
wakes are a turbulent inhomogeneous anistropic flow. It is very hard to give
a simple analytical description of its features: no evidence of axisymmetry or
uniformity, as assumed by wake models, was observed.

The wake evolution was found to be significantly influenced by the turbulence
level. The highest the turbulence intensity the faster is the wake recovery. It
is very important to take into account the dynamics of turbulent motion when
dealing with wind turbine wakes. In fact, a faster wake recovery would allow
manufacturers to reduce the turbine spacing in clustered configuration and to
reduce the size of a wind park or to increase the number of turbines, and thus the
total power, within the same area. On the other hand, turbulence is the cause
for fluctuating fatiguing loads on the turbine structure and this is a concern
from the point of view of durability and maintenance.

These considerations would have a significant impact in the design process
of a new wind farm or in the management strategy of an existing one. Con-
sequently it is evident that it is very important to take into account turbulent
motion. Unfortunately turbulence is a very complex phenomenon whose dynam-
ics and effects are difficult to be parameterised within simple analytical models
such as wake models.

Therefore LES represents a valuable method to obtain accurate predictions
and gain a deeper knowledge of flow mechanisms. In fact, the real advantage of
using LES lies not only in the possibility of obtaining more reliable estimates
on overall performances such as the power production – for which, at least for
the single turbine configuration, wake models are quite accurate –, but also in
the rich amount of information which is provided by these simulations.

88
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LES furnish a detailed description of the aerodynamic field which is not even
comparable to the output of wake models. These data can provide a physical
insight into flow dynamics and allow engineers and researchers to understand
physical mechanisms which occur in the flow and so to control and master them.
We believe that this analysis is even more important than the simple prediction
of a particular turbine production because can give a fundamental knowledge
on the flow dynamics which can be exploited in every future application. This
is an invaluable feature which LES can bring to the analysis of wind turbine
flows.

In LES of wind turbine flows the rotor is modeled through the forces it applies
to the flow. A new model, the Rotating Actuator Disk Model, was proposed.
The model was validated against the more accurate, but more time-expensive,
Actuator Line Model. An overall good agreement between the predictions of
the two models was observed. Indeed, the average velocity field obtained from
RADM simulations is very similar to that of ALM ones. Some discrepancies
were found when comparing turbulence kinetic energy fields. This is explained
by the fact that the RADM is not capable of representing all the small scales
structure which characterises the wake and give a non-negligible contribution to
TKE.

Overall the RADM retains most of the essential features of the wake. Its
main advantage lies in the relaxation of numerical time-step constraints which
are connected to the use of the ALM. Since the computational resources required
to perform LES represents a major concern in its use, this can be positively re-
garded as being a minor step towards the industrial feasibility of LES of wind
turbines flows.

The effect of the subgrid-scale model was also investigated. The SGS model
plays a key role in LES since it is expected to introduce the small scales which are
not directly simulated. Various eddy-viscosity models have been tested. Eddy-
viscosity models are a classic and widely used method for describing the subgrid-
scales interactions, even if they may not give the most accurate description of
the subgrid scales structures, but just reproduce their global average effect.

Though the eddy-viscosity itself showed a pronounced dependence on the
model, the overall results were rather insensitive to it. This is probably due to
fact that the variable analised are rather dominated by the large scale flow fea-
tures which are directly represented on the computational grid and somewhat
independent to the subgrid modes. Averaged velocity fields as well as vorti-
cal structures seem to be more sensitive to other flow parameters, primarily
the turbine model. Overall performances, such as power and thrust, showed
a similar trend with the various models yielding similar predictions. A similar
study in the literature confirms this conclusion. Moreover the analysis focused
more on the overall effect of the subgrid tensor, i.e. on its dissipative effect on
the resolved kinetic energy. Possibly a more significant sensitivity may be de-
vised considering detailed features of the SGS tensor such as the subgrid stress
structures.

A small influence of the SGS model was observed in the recirculating region
behind the tower which is directly represented in these simulations. The result is
not surprising since this area is characterised by separated flow and turbulence
modeling becomes important. Explicit simulation of the tower and the nacelle,
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through the Immersed Boundary Method, is particular to the code presently
employed, and it has been shown in previous works, and to a minor extent in
this thesis, that it is crucial for an accurate representation of the near wake field.

Future works should possibly be aimed at improving rotor modeling which
is crucial for the overall quality of the simulation. As for the SGS model further
analysis is required, e.g. by investigating the effects of grid refinement or by
focussing on the coupling between the different SGS models with the Immersed
Boundary Method.
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