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Abstract

The evaluation of particle concentration in wall-bounded turbulence is a problem for a variety

of industrial and environmental applications. This problem cannot be tackled using a numerical

approach based on Direct Numerical Simulation (DNS), which would require excessive computa-

tional costs to match flow Reynolds number and geometry configurations typical of practical flow

instances. Currently, one of the most promising and viable approach is represented by Large-

Eddy Simulation (LES), in which only the large flow scales are resolved directly taking into

account the small flow scales (smaller than a given space filtering width) through a model. The

missing scales in LES not only influence the resolved scales of the fluid flow, but also affect the

motion of small particles present in the flow. The disregard of the smallest scales of fluid velocity

in the particle motion leads to significant errors in the prediction of turbulent dispersion and of

turbophoresis, the tendency of particles to accumulate at the walls in wall-bounded turbulent

flows. The influence of the missing sub-grid scales can be modeled by a SGS model for particle

equation.

In this work we adopted a stochastic model for the velocity seen by particles coupled with a LES

solver for the fluid field. This model is an adaptation to the LES case of that proposed by Minier

& Peirano [16] for RANS. We implemented and coupled it with a LES flow solver. Then, in the

second part of the work, the mathematical validation carried out and the first results obtained

with this model are shown. First of all, tests of consistency show that the model behaves well

in the limit case of very small inertia particles, i.e. fluid particles. Duplicate fields obtained

both from LES and from particles are compared. Finally tests with inertial particles show re-

sults in line with LES. This is a good result because it means that this class model, with some

improvements, can really lead to a better description of the phenomenon addressed.
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Chapter 1

Introduction

The physical problem addressed in this work is the dispersion of inertial particles in turbulent

flows, which is characterized by macroscopic phenomena such as nonhomogeneous distribution,

large-scale clustering, and preferential concentration due to the inertial bias between the denser

particles and the lighter surrounding fluid. Both direct numerical simulation (DNS) and large-

eddy simulation (LES) together with Lagrangian particle tracking (LPT), have been used to

investigate and quantify the behavior of particles near the wall, for instance, in channel flow

or in pipe flow. Among previous LES applications to gas-solid turbulent flows, the fluid SGS

velocity fluctuations were neglected for particles tracking and previous works showed that this

is not satisfactory for the prediction of particle accumulation at the wall. Vreman and Kuerten

[2] showed that, due to both subgrid and modeling errors, LES underestimates the tendency

of particles to move toward the wall by the effect of turbulence. To circumvent this problem

Marchioli, Salvetti and Soldati [3], proposed a way to reconstruct fluid velocity fluctuations by

fractal interpolation and approximate deconvolution techniques, but results showed that, even

when closure models are able to recover the fraction of SGS turbulent kinetic energy for the fluid

velocity field (not resolved in LES), prediction of local segregation and, in turn, of near-wall

accumulation may still be inaccurate. Giving up with this kind of approach, further studies have

been carried out by Bianco et al.[4] on the nature of the filtering error. Results showed that

filtering error is stochastic and has a non-Gaussian distribution. In addition, the distribution of

the filtering error depends strongly on the wall-normal coordinate being maximum in the buffer

region. This findings established the requirements that any closure model aimed at recovering

sub-grid scale effects on the dynamics of inertial particles must satisfy. These achievements led

1



1.1. Two-phase flow regimes 2

us to think to a stochastic model for particle tracking. In particular we adopted a Langevin

stochastic model to simulate the fluid velocity seen by particles inspired to the model proposed

by Minier and Peirano [16] and adapted for the LES case, as it was originally written in a RANS

context. Our purpose is thus to develop a stochastic model for the fluid velocity seen by particles

and to couple it with a LES solver, trying in this way to restore the right amount of fluctuations

and to obtain better results for how concern particles concentration at the wall.

1.1 Two-phase flow regimes

As it transpires from their name, two-phase flows are encountered when two non-miscible

phases coexist. Depending on the form of the interface between the two media, different regimes

can be found. This is illustrated in Figure 1.1 which shows a range of regimes for the case of a

boiling liquid (for example water) in a classical heat exchanger. At the bottom of the tube, the

liquid has not yet started to boil and we have a single-phase turbulent flow. When nucleation

starts at the walls, bubbles can be found as separate inclusions within the liquid (bubbly flows).

Then, as more vapour is created we go through the so-called slug and plug regimes where vapour

occupies a more important volumetric fraction. Then, as the liquid continues to boil, we find the

annular regime with a thin liquid layer at the walls and a central vapour flow with small droplets

carried by the vapour. The wide variety of regimes, merely outlined above, is typical of immiscible

liquid–gas or liquid–liquid flows since the interface can be deformed. Two of these regimes (the

bubbly and annular regimes) are characterized by the presence of one phase, either liquid or

vapour, as separate inclusions embedded in the other phase. These are two examples of what is

defined as dispersed turbulent two-phase flows, where one phase (called the continuous phase)

is a continuum and the other phase (called the dispersed phase) appears as separate inclusions

dispersed within the continuous one, assumed here to be a turbulent fluid. When the dispersed

phase is characterized by a distribution in size, one speaks of a polydispersed turbulent two-phase

flows. The dispersed regime (either mono or polydispersed) is of first importance in most cases.

It is always found when the dispersed phase is made up by solid particles (solid particles in a gas

or a liquid turbulent flow). It is often found for a liquid dispersed as separate droplets in a gas

flow (sprays for example) or for two immiscible liquids where one liquid is dispersed in the other

liquid. In the present work we limit ourselves exclusively to the dispersed regime and we will

talk of a fluid (the continuous phase) and of solid discrete particles. In particular, the second

phase is characterized by small heavy spherical particles wich are carried by the continuous fluid
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Figure 1.1: Two phase flow regimes on heat exchanger pipes.

phase in turbulent motion.

1.2 Governing equations

In this work, the dispersed phase will be assumed dilute; consequently, the one-way momen-

tum coupling is adequate and particle collisions can safely be neglected. Yet, for a sufficiently

high load of the dispersed phase, the two-way coupling needs to be accounted for in the mo-

mentum and energy equations; moreover, for high particle number densities, the interparticle

collisions will affect their dynamics.

Additional complexity to the physical picture would be added through the interphase mass and

energy transfer in the case of evaporating droplets or volatilizing solid particles. As told, no feed-

back from the dispersed particles to the carrying fluid is taken into account, thus the continuous

phase will be resolved separately.

The continuous phase is supposed to be an incompressible turbulent fluid so that the governing

motion equations are the continuity (which express mass conservation) and the Navier-Stokes

equation (which express the linear momentum conservation) that, for an incompressible flow are:

∇ ·U = 0 (1.2.1)

ρ
DU

Dt
= −∇p+ µ∇2U (1.2.2)

where U = U(x, t) is the fluid velocity vector, p = p(x, t) is the equivalent pressure (−∇p =

−∇p+ ρg), ρ is the fluid density and µ the dynamic viscosity. These equations are numerically

solved by using different methods that will be presented later.

The governing equation of the single particle of the second phase, see Maxey and Riley [5], will
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be:
dX

dt
= Up (1.2.3)

dUp

dt
=

(
1− ρf

ρp

)
g +

Us −Up

τp
(1 + 0.15Re0.687

p )

+
ρf
ρp

DUp

Dt
+ CL

ρf
ρp

[(Us −Up)× ω]

+
9µ

dpρp
√
πν

∫ t

0

(
dUs

dt
− dUp

dt

)
dτ

(t− τ)0.5

+
ρf
2ρp

(
DUs

Dt
− dUp

dt

)
(1.2.4)

The first two terms on the right hand side are the buoyancy and the drag, while the other

terms are in order the effect of the pressure gradient, the lift, the Basset term and the added

mass term. Following the Lagrangian approach (or ‘trajectory approach’) the dispersed phase is

directly treated as an ensemble of many individual inclusions; the exact instantaneous equations

governing particle dynamics will be replaced by modelled ones for the reasons given above. As

we will consider the case of heavy particles, so that the fluid density is order of magnitude lower

than the particle density, the equation of the particle motion can be simplified further. It has

been shown that with the assumption of ρp/ρf � 1 drag is the only significant force acting to

the particle, so that the simplified equation that will be treated in this work is:

dUp

dt
=

Us −Up

τp
(1 + 0.15Re0.687

p ) (1.2.5)

where Us is the fluid velocity at the particle position and Up is the particle velocity.

1.3 Wall turbulence and coherent structures

Particle transport, dispersion, and segregation in turbulent flows are highly non-uniform and

intermittent phenomena which are recognized to depend on the local dynamics of turbulence

structures. So a deep comprehension of the interactions between particle dynamics and turbu-

lent transport and mixing is required. In literature, many papers (Marchioli et al.[6],[7]) have

shown that there is a strong correlation among coherent wall structures, local particles segre-

gation and resulting deposition phenomena. Modelling these physical mechanisms is not easy,

especially with numerical methods coarser than DNS. The complication consists in the com-
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plex interaction between particle inertia and the non-homogeneous structure of turbulence in

the wall-normal direction and justifies the scarcity of physically-based accurate correlations for

particle deposition flux. In the specific case of turbulent boundary layer, the local interaction

between particles and turbulence structures leads to an unusually unique macroscopic behavior,

i.e. particle accumulation in the viscous sublayer. This macroscopic behavior is caused from the

combined action of the many microscopic transfer phenomena which drive particles toward the

wall and away from the wall. In 1975 Cleaver and Yates [8] proposed a sub-layer model based

on the Reynolds analogy for particle transport in turbulent boundary layer for the deposition of

small solid particles from a gas stream. According to this mechanism, particles are driven toward

the wall and away from the wall by sweeps (coherent downwash of outer fluid to the wall) and

ejections (coherent upwash of wall fluid toward the outer flow) which are instantaneous realiza-

tions of the Reynolds stresses. In Figure 1.2 we represent schematically the situation.

Specifically, ejections bring the low-momentum fluid close to the wall into the outer region

Figure 1.2: Sweeps and ejections are some of the coherent structures forming near the wall and causing
the particle accumulation. We represent particles moving away from wall in blue and particles moving
toward the wall in red.

whereas sweeps bring the high-momentum fluid from the outer flow into the wall region. From

DNS studies, it results that particles segregating at the wall are many more than particles that

ejections move away from the wall, because is more dificult to carry particles away from wall.

To better understand the reasons of this apparently strange behaviour it’s necessary to deeply

investigate the mechanisms governing the dynamics of these coherent structures. Sweeps and

ejections are in fact just the final outcome of the dynamics of turbulence structures in the wall
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layer, and there is still some uncertainty about the mechanisms which generate and maintain the

sweep/ejection events. They appear to be generated by the quasi-streamwise vortices which pop-

ulate the near wall region. Quasi-streamwise vortices have been the object of a number of works.

There is a general agreement about their characteristics: quasi-streamwise vortices appear to

have a characteristic length of about 200 wall units and a spacing of about 400 wall units. These

vortices are slightly tilted away from the wall and also with respect to flow direction. Owing

to the continuous action of the quasi-streamwise vortices in generating sweeps and ejections,

regions between two vortices are characterized by a streamwise velocity lower than the mean,

whereas the regions outside the two vortices are characterized by a streamwise velocity higher

than the mean. Specifically, the regions with velocity lower than the mean are called low-speed

streaks, whereas the regions with velocity higher than the mean are called high-speed regions.

Many quasi-streamwise vortices are usually associated with one single low-speed streak.

Figure 1.3: One low speed streak with counterrotating quasi-streamwise vortices.

In Figure 1.3 granted by Marchioli [9], a 450 wall units long piece of one low-speed streak

is shown, flanked by two counter-rotating quasi-streamwise vortices. It has been shown that

the generation of the quasi-streamwise vortices is associated with changes in the shape of the

low-speed streak surface. In particular Schoppa & Hussain [10] showed from a stability analysis

of an idealized low-speed streak that it is unstable to lateral perturbation. This lateral, sinuous

instability is thus closely linked to the generation of new quasi-streamwise vortices which in turn

generate sweeps and ejections that contribute to mantain the low-speed streak.
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Results (Soldati & Marchioli [11]) show that clockwise and counterclockwise quasi-streamwise

vortices appear flanking the low-speed streak as a staggered array in most of the cases. Only

rarely do a clockwise and a counterclockwise quasi-streamwise vortices appear together. This

peculiarity can be used to explain the reasons of particle segregation near the wall. We can

envision the following cycle for particles initially in the outer flow: if a particle is captured by

a sweep, it moves along a curved trajectory around the quasi-streamwise vortex generating the

sweep, approaches the wall and moves between the vortex and the wall. During this phase, the

particle may touch the wall or not. Then, the particle is on the upwash side of the vortex and is

subject to the influence of the ejection. The next step involves trespassing the lifted low-speed

streak and exiting from the wall layer.

Figure 1.4: Simultaneous presence of a ’mature’ and a ’new’ vortex that weaken the ejection like envi-
ronment.

Particles should migrate toward the surface of the lifted low-speed streak, which is an ejection-

like environment, and find an ejection strong enough to drive them into the outer flow. Yet most

of the particles remain trapped under the lifted low-speed streak. This may be explained with

the fact that the two counterrotating quasi-streamwise vortex are staggered and do not appear

at the same time. When a ‘mature’ one is trying to carry particles away from the wall, the

co-presence of a newly born vortex of the opposite sign below the low speed streak, as illustrated

in Figure 1.4, weaken the ejection so that not all particles carried to the wall by the sweep are

able to go back to center of the channel.

This is just a possible explaination of particle transfer and segregation at the wall since this

mechanism is not enterily clear, while the only certain thing is the segregation itself.



Chapter 2

Fluid models

2.1 DNS approach

With the simplifying hypothesis for which the two phases can be simulated separately, we

start by introducing some of the most important techniques used to solve the equations of the

continuous phase. The most precise and reliable methodology for the solution of Navier-Stokes

equation is the direct numerical simulation. This means that the computational domain is

divided in many parts by a three dimensional grid. The size of the mesh must be small enough

to describe all the significative turbulent scales. Following the Kolmogrov cascade theory the

mechanical energy is provided at the integral scale L (dimension comparable with the dimension

of the domain) to the fluid by external processes and it is transfered scale by scale up to the

dissipation ones (or Kolmogrov scale η) . Here, energy is dissipated by the viscous friction into

heat.

This is an enormous problem when we consider turbulent flows at high Reynolds number because,

the number of grid points must be sufficient to capture the wide range of turbulent structures,

moreover the equation must be integrated on time considering discrete time-steps small enough

to describe the faster velocity fluctuation related with the Kolmogrov scales. The dimension of

the dissipative scales (η) and its characteristic frequency (fη) are related with Reynolds number

and for the turbulent channel flow the relations can be estimated as follow, see Pope [12]:

∆x,∆y,∆z ≤ η ≈ l0Re
− 3

4

l

1

∆t
≥ fk ≈ νl−2

0 Re
3
2

l (2.1.1)

8
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where l0 is the reference large scale length which can be approximately be considered as h which

is the distance between the channel walls. Rel is the Reynolds number and ν the fluid viscosity.

As equation (1.2.1) and equation (1.2.2) fully describe the turbulent motion of incompressible

Newtonian fluid, they are rewritten on discrete form and than computationally integrated on

time considering enough point grids (Lx/∆x, Ly/∆y, 2h/∆z) and a sufficient computational

time-step (∆t). Thus, the number of degree of freedom is very high and increases much more

when we also have to simulate together the dispersed phase.

Direct numerical simulations are then possible in theory but very often impossible in practice.

This method is limited to low Reynolds numbers and very simple geometries thus, flows of in-

dustrial interest cannot be studied. In any case the statistics and the physical insights that can

be obtained by DNS are used to estimate the performances of other models. For this reason, this

methodology is gaining progressively an attention equal to experimental results.

Most turbulent flows involve far too many degrees of freedom to be directly simulated. The issue

is therefore to reduce the number of degrees of freedom to a tractable number and to come up

with a contracted description.

2.2 LES approach

A less accurate approach, for the solution of Navier-Stokes equations is the so called Large

Eddy Simulation or LES. In large-eddy simulation, the larger three-dimensional unsteady turbu-

lent motions are directly represented, whereas th effects of the smaller scale motions are modelled.

Nearly all of the computational effort in DNS is expended on the smallest, dissipative motions,

whereas the energy and anisotropy are contained predominantly in the larger scales of motion.

In LES, the dynamics of the larger scale motions (which are affected by the flow geometry and

are not universal) are computed explicitly, the influence of the smaller scales (which have, to

some extent, a universal character) being represented by simple models. Thus, compared with

DNS, the vast computational cost of explicitly representing the small-scale motions is avoided.

If we introduce a filtering operation, see Pope [12]:

〈U(x, t)〉L =

∫
Ω

G(r,x)U(x− r, t)dr (2.2.1)
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where Ω is the flow domain and G(r,x) is the filter function and U(x, t) the quantity that

has to be filtered we can decompose the velocity U(x, t) into the sum of a filtered (or resolved)

component 〈U(x, t)〉L and a residual (or subgrid-scale) component u′(x, t). In this case 〈U(x, t)〉L
(three dimensional and time dependent) represent the motion of the large eddies.

If we consider a generic filter operator 〈 〉L that decompose a generic quantity in filtered and

residual, the filtered continuity and Navier-Stokes equations can be rewritten as follow:

∂〈Uj〉L
∂xj

= 0 (2.2.2)

∂〈Ui〉L
∂t

+ 〈Uj〉L
∂〈Ui〉L
∂xj

= −1

ρ

∂〈p〉L
∂xi

+ ν
∂2〈Ui〉L
∂xj∂xj

− ∂τij
∂xj

. (2.2.3)

where τij = 〈UiUj〉L−〈Ui〉L〈Uj〉L is the the SGS stress term that must be modelled to close the

equation. The closure problem is one of the central problems in LES. The most commonly used

SGS models are the Smagorinsky model and its variants. They model the unresolved turbulent

scales, in analogy with the Bousinnesq hypothesis, through the addition of an eddy viscosity into

the governing equations. The basic formulation of the Smagorinsky model is:

τij −
δij
3
τkk = −2νT 〈Sij〉L (2.2.4)

where:

〈Sij〉L =
1

2

(
∂〈Ui〉L
∂xj

+
∂〈Uj〉L
∂xi

)
(2.2.5)

is an entry of the strain rate tensor and the eddy viscosity νt is calculated as:

νT = (Cs∆g)
2
√

2〈Sij〉L〈Sij〉L (2.2.6)

where ∆g is the grid size and Cs is a constant. Many techniques have been developed to calculate

Cs. Some models use a static value for Cs, often calculated from experiments of similar flows to

those being modeled. Other models dynamically calculate Cs (dynamic Germano model) as a

function of space and time. In some case, as usually happen in two-phase flow LES, the SGS term

is completely neglected with the assumption that the long term behavior of the heavy particles

is merely affected by the large scale structure.

Most commonly the filter used is defined in the spectral space as in our case, so that it operate
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a cut-off of the highest wave numbers as follows:

Ĝα(k) =

1 if − π/∆α ≤ k ≤ π/∆α

0 otherwise

(2.2.7)

There are two sources of error with this kind of filtering (and with LES in general): an error due

to the action of filtering itself, that means that only the largest scale (lowest wave number) are

resolved, and a secondary source of error due to the model used for the closure of the equation

which leads an error also in the resolved scales.

2.3 PDF approach

In this chapter we introduce also the PDF methods even if they are not used in our work for

the fluid phase, but for the particles tracking. Anyway this approach was born for single phase

fluid, so it’s useful to understand the basis of this method for the description of the fluid only

and to extend it to two phase flows in the next chapter. For a complete picture on this class of

methods, see Pope [12]

In PDF methods, a model transport equation is solved for a PDF (probability density function)

such as f(V;x, t). In fact in a turbulent flow the velocity field is a random field so that it can

be treated with a statistical approach. That U is a random variable means only that it does not

have a unique value if one repeats an experiment under the same set of condition N times. This

is because the extreme sensibility to initial and boundary condition of turbulent flows.

2.3.1 Definitions and properties

f(V;x, t) is the one-point, one-time, Eulerian PDF of the velocity U(x, t), where V =

{V1, V2, V3} is the indipendent variable in the sample space. Integration over the entire velocity

space gives the normalization condition

∫
f(V;x, t)dV = 1 (2.3.1)

Then for any function Q(U(x, t)), its mean is defined by

〈Q(U(x, t))〉 =

∫
Q(V)f(V;x, t)dV (2.3.2)
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so that the mean velocity and the Reynolds stresses are given by

〈U(x, t)〉 =

∫
Vf(V;x, t)dV (2.3.3)

and

〈uiuj〉 =

∫
(Vi − 〈Ui〉)(Vj − 〈Uj〉)fdV (2.3.4)

We define also the fine-grained PDF as follows

f ′(V;x, t) = δ(U(x, t)−V) =
∏
i=1,3

δ(Ui(x, t)− Vi) (2.3.5)

At each point and time, f ′ is a three dimensional delta function in velocity space. The fine-grained

PDF is very useful in obtaining and manipulating PDF equations because of the following two

properties:

〈f ′(V;x, t)〉 = f(V;x, t) (2.3.6)

〈Φ(x, t)f ′(V;x, t)〉 = 〈Φ(x, t)|U(x, t) = V〉f(V;x, t) (2.3.7)

We can easily obtain these two properties simply using equation 2.3.2.

Finally we introduce the temporal and spatial derivatives of the fine-grained PDF. The derivative

of the delta function δ(v−a) (with a being a constant) is denoted by δ(1)(v−a) and it is an odd

function
d

dv
δ(v − a) = δ(1)(v − a) = −δ(1)(a− v) (2.3.8)

Thus, differentiating the fine grained PDF we obtain:

∂

∂t
f ′(V;x, t) = −∂f

′(V;x, t)

∂Vi

∂Ui(x, t)

∂t
(2.3.9)

∂

∂xi
f ′(V;x, t) = −∂f

′(V;x, t)

∂Vj

∂Uj(x, t)

∂xi
(2.3.10)

A final result required in the derivation of the PDF transport equation is

Ui(x, t)
∂

∂xi
f ′(V;x, t) =

∂

∂xi
[Ui(x, t)f

′(V;x, t)]

=
∂

∂xi
[Vif

′(V;x, t)] = Vi
∂

∂xi
f ′(V;x, t) (2.3.11)
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which can be obtained thanks to the incompressibility relation.

2.3.2 The PDF transport equation

From equations 2.3.9-2.3.11 we can obtain the substantial derivative of f ′(V;x, t)

Df ′

Dt
=
∂f ′

∂t
+ Vi

∂f ′

∂xi
= − ∂

∂Vi

(
f ′
DUi
Dt

)
(2.3.12)

and the mean of this equation yields

∂f

∂t
+ Vi

∂f

∂xi
= − ∂

∂Vi

(
f
〈DUi
Dt

∣∣∣V〉) (2.3.13)

This PDF equation is quite general and contains no specific physics (we have only used the

incompressibility of the fluid). The physics enter when the Navier-Stokes equations are used to

substitute for DUi/Dt :

∂f

∂t
+ Vi

∂f

∂xi
= − ∂

∂Vi

(
f
〈
ν∇2Ui −

1

ρ

∂p

∂xi

∣∣∣V〉) (2.3.14)

The Reynolds decomposition of pressure (p = 〈p〉+ p′) leads to

〈 ∂p
∂xi

∣∣∣V〉=
∂〈p〉
∂xi

+
〈 ∂p′
∂xi

∣∣∣V〉 (2.3.15)

Being ∂〈p〉/∂xi non-random, it is unaffected by the mean and conditional mean operations, so

that we finally obtain:

∂f

∂t
+ Vi

∂f

∂xi
=

1

ρ

∂〈p〉
∂xi

∂f

∂Vi
− ∂

∂Vi

(
f
〈
ν∇2Ui −

1

ρ

∂p′

∂xi

∣∣∣V〉) (2.3.16)

The terms on the left-hand side are in closed form as well as the mean pressure gradient. In

fact, known f(V;x, t) we can evaluate the mean velocity and the Reynolds stresses thanks to

which we can evaluate the mean pressure from the poisson equation. Conversely the dissipative

term and the gradient of the fluctuating pressure are not in closed form. The quantity ν∇2Ui is

not known because we have the single-point PDF while to evaluate a derivative we would need

the two-point one. For the same reason is not known the fluctuating pressure gradient, as the

pressure is a global quantity which depends on the velocity in the whole field.

An equation like the 2.3.16 is called Liouville equation. There is always a perfect duality between
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an equation which describes a dynamical stochastic system and a PDF transport equation:

Du

Dt
= A(x,u) (2.3.17)

∂f

∂t
+ Vi

∂f

∂xi
= − ∂

∂Vi

(
f
〈
A
∣∣∣V〉) (2.3.18)

Once the PDF transport equation is resolved, we can evaluate for example the mean velocity

〈U(x, t)〉 which is the same quantity resolved in the RANS approach, even if the PDF approach

is more accurate because the terms to be modelled for the closure of the equations are evidently

less important than in the RANS case (convective terms).

Different types of models have been proposed for the closure of the PDF transport equation

whereas the most commonly adopted is the generalized Langevin model which has the follow-

ing form:

∂f

∂t
+ Vi

∂f

∂xi
− 1

ρ

∂〈p〉
∂xi

∂f

∂Vi
= − ∂

∂Vi
[fGij(Vj − 〈Uj〉)] +

1

2
C0ε

∂2f

∂Vi∂Vi
(2.3.19)

where C0(x, t) andGij(x, t) are coefficients that define the particular model: C0 is non-dimensional,

whereas Gij has dimensions of inverse time. Here we limit ourselves to consider the simplest

choice of these constants, which is the simplified Langevin model :

Gij = −
(1

2
+

3

4
C0

) ε
k
δij (2.3.20)

which correspond to the Rotta model in terms of Reynolds equation with

CR = 1 +
3

2
C0 (2.3.21)

In fact from the PDF equation it’s not hard to find the corresponding Reynolds equation by

simply multiplying the equation by Vk and integrating. So each Langevin model has a corre-

sponding Reynolds stress model. The constant Gij cannot be assigned arbitrarly, but it must

satisfy a condition dictated by the pressure-rate-of-strain tensor to be redistributive, which gives

(1 +
3

2
C0)ε+Gij〈uiuj〉 = 0 (2.3.22)
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2.3.3 The Lagrangian approach

To better understand the meaning of the Langevin model and where does it come from,

it’s meaningful to show the Lagrangian approach, which can better give a physical meaning to

the model. When Lagrangian approach is adopted, every fluid particle is followed so that the

quantities attached to each particle can be denoted as X+(t,Y) and U+(t,Y) and they indicate

the position and the velocity of the fluid particle originating from position Y at the reference time

t0. Their joint PDF is accordingly called the Lagrangian PDF and is denoted by fL(V,x; t|Y).

As we can easily see, the difference between the Eulerian PDF is that the position in the sample

space has become a dependent variable, and the PDF is conditioned to the initial position Y.

The Lagrangian PDF can be expressed in terms of the fine-grained Lagrangian PDF f ′L as

fL(V,x; t|Y) = 〈f ′L(V,x; t|Y)〉 (2.3.23)

where

f ′L(V,x; t|Y) = δ(U+(t,Y)−V)δ(X+(t,Y)− x) (2.3.24)

Now, considering the integral of f ′L over all initial points, since there is a one-to-one mapping

between points Y and X+(t,Y), we can express it as

∫
f ′LdY =

∫
f ′LJ−1dX+ (2.3.25)

where J is the determinant of the Jacobian. For the incompressible flow being considered, a

consequence of the continuity equation is that J is unity. Thus we have

∫
f ′LdY =

∫
δ(U+(t,Y)−V)δ(X+(t,Y)− x)dX+

= δ(U+(t,Y)−V)|X+(t,Y)=x

= δ(U(x, t)−V) (2.3.26)

The sifting property of the delta function singles out the fluid particle located at X+(t,Y) = x,

which has velocity U(x, t). It may be recognized that δ(U(x, t)−V) is the fine-grained Eulerian

PDF, so that the expectation of Eq. 2.3.26 leads to

∫
fL(V,x; t|Y)dY = f(V;x, t) (2.3.27)
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2.3.4 Stochastic differential equations

In the Lagrangian approach we will be concerned with the equations which describe particle

dynamics, so Navier-Stokes equations written in the Lagrangian form

DU+

Dt
= −1

ρ
∇p+ + ν∇2U+ (2.3.28)

and
DX+

Dt
= U+(t) (2.3.29)

where the plus means that the quantities observed are Lagrangian, so attached to each particle.

If these equations are directly used to obtain the PDF transport equation, Eq. 2.3.16, as seen

in the section above, this equation is unclosed and a closure model is needed. However trying to

model directly the PDF transport equation is difficult and far from the physical meaning. So the

better way to proceed is to follow the Lagrangian approach and to model directly the Lagrangian

Navier-Stokes equations. So the equation for the velocity becomes

DU∗(t)

Dt
= F [t,X∗(t),U∗(t)] (2.3.30)

where with U∗(t) we indicate the modelled velocity. The principles of modelling is to replace fast

variables, so those with very small characteristic times, with white noise processes (see Appendix

A). This approach will lead to a stochastic differential equation for the velocity

dU∗(t) = a[U∗(t), t]dt+ b[U∗(t), t]dW(t) (2.3.31)

2.3.5 Shifting from an ordinary differential equation to a stochastic

differential equation

Let us consider the case of a system X(t) whose time rate of change is Y (t)

dX(t)

dt
= Y (t) (2.3.32)

We consider that we are dealing with stochastic processes which are differentiable and can those

be handled with normal calculus rules. This gives

d〈X2(t)〉
dt

= 2

∫ t

0

〈Y (t)Y (t′)〉dt′ (2.3.33)
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Now for the sake of simplicity we consider Y (t) as a stationary process and we introduce its

autocorrelation Ry(s) defined by Ry(s) = 〈Y (t)Y (t+ s)〉/〈Y 2〉, we can write

d〈X2(t)〉
dt

= 2〈Y 2〉
∫ t

0

Ry(s)ds (2.3.34)

The important scale in that reasoning is the integral time scale of Y (t), say T , which is defined

by the integral of the autocorrelation

T =

∫ ∞
0

Ry(s)ds (2.3.35)

This time scale is a measure of the ‘memory’ of the process. If we consider time intervals s small

with respect to T , successive values of Y (t) are well correlated. On the other hand, successive

values of Y (t) over time intervals that are large with respect to T are nearly uncorrelated.

Therefore, in this second limit, we have

∫ t

0

Ry(s)ds v T ⇒ 〈X2〉 w 2〈Y 2〉T × t (2.3.36)

That is the mean square of X(t) varies linearly with the time interval, here t. That is the

‘diffusive regime’ (see Appendix A).

As we are concerned in modelling the instantaneous trajectories, if we assume that the trajectories

of X(t) are continuous, the previous result suggests that, in the range t� T , X(t) can be seen

as a Wiener process. This behaviour is obtained by first introducing T and then making t

or ∆t large enough. Now imagine to reverse the reasoning, so that we introduce a time step

∆t v dt representing the time interval over which we observe the process X(t), and we assume

that the integral time scale of Y (t), T , is very small with respect to dt. Thus, Y (t) is a fast and

rapidly changing variable. Actually, we would like to take directly the limit T → 0, but if we

take that limit, Eq. 2.3.36 shows that the effect of the fluctuations of Y (t) vanishes completely.

Consequently, to retain a finite limit when T → 0, we are forced to consider that 〈Y 2〉 becomes

arbitrary large such that 〈Y
2〉 → +∞

T → 0

with 〈Y 2〉T → D (2.3.37)

where D is a finite constant. In that case the modelling step consists in replacing the differentiable

process Y (t) by a white noise and writing that X(t) becomes a diffusion process defined by the
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SDE

dX(t) =
√

2DdW (t) with D = lim
T→0
〈Y 2〉T (2.3.38)

By making this step, X(t) becomes a Markov process since the memory of Y (t) becomes in-

finitesimally small. The significance of this modelling step can be further clarified by writing the

consequences in the pdf equation. If p(t, y) is the PDF associated to the process X(t), we have

∂p

∂t
= −∂〈Y (t)|X(t) = y〉

∂y
T → 0

∂p

∂t
= D

∂2p

∂y2
(2.3.39)

The guiding principle is then to retain only the slow modes or variables in the state vector used to

build the model and to ‘eliminate’ the fast ones. The latter modes are eliminated by expressing

them as functions of the slow ones. Of course, this procedure will be successful if there exist a

clear separation of scales between the integral time scales of the slow modes and of the fast ones.

A typical example of this reasoning is the historical case of a Brownian particle. For this case a

model has been proposed by Langevin in which he retained in the state vector the position and

the velocity of the particle, while the acceleration was to be modelled. The stochastic process

U(t) generated by the Langevin equation is called the Ornstein-Uhlenbeck process.

2.3.6 Langevin equations

The model proposed by Langevin (1908) for a Brownian particle (see Minier and Peirano

[16]) is: 
dX(t)
dt = U(t)

dU(t)
dt = A(t)

→

dX(t) = U(t)dt

dU(t) = −U(t)
T dt+

√
2σ2

T dW (t)

(2.3.40)

and the corresponding PDF equation is the Fokker-Planck equation (see Appendix A)

∂f1

∂t
=

∂

∂V

[ 1

T
V f1

]
+
σ2

T

∂2[f1]

∂V 2
(2.3.41)

where with f1 we indicate the Lagrangian conditional PDF f1(V ; t|V1, t1). Following the mod-

elling principle discussed above, in practice we are assuming that the particle acceleration is

a ‘fast mode’ (its integral time scale is smaller than a reference time scale, which may be the

velocity integral time scale) and thus we are modelling it with a Gaussian process. Thanks to the

help of characteristics functions, we can find the solution to this equation, which is the normal
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distribution

f1(V ; t|V1, t1) = N [V1e
−(t−t1)/T , σ2(1− e−2(t−t1)/T )] (2.3.42)

If now we regard to the autocovariance of successive particle velocities, assuming that the process

is statistically stationary, it is given by

R(s) = 〈U(t1 + s)U(t1)〉 =

∫ +∞

−∞

∫ +∞

−∞
V V1f1(V ; t1 + s|V1, t1) dV1dV =∫ +∞

−∞
V1

[∫ +∞

−∞
V f1(V ; t1 + s|V1, t1) dV

]
dV1 =∫ +∞

−∞
V1〈U(t1 + s)|U(t1)〉f(V1; t1) dV1 =

〈〈U(t1 + s)|U(t1)〉U(t1)〉 =

〈U(t1)2〉e− s
T = σ2e−

s
T (2.3.43)

where in the last two passages we used the results found in Eq. 2.3.42. In normalized form we

have the autocorrelation function

ρ(s) = e−|s|/T (2.3.44)

By the definition of the integral time scale as the integral of the autocorrelation function we can

easily find out that the reference time T in the Langevin model is exactly the integral time scale

of the velocity.

Even if the Langevin model was originally proposed for modelling Brownian motion, it has been

shown that it may provide a good model also for the velocity of a fluid particle in turbulence.

Homogeneous turbulence

Considering the simplest case of homogeneous isotropic turbulence, the mean velocity is zero,

and the values of k and ε are constant. In these circumstances all fluid particles are statistically

identical, and their component of velocity are also statistically identical. It is sufficient therefore

to consider one component of the fluid particle velocity, which is denoted by U+(t). The model

for U+(t) given by the Langevin equation is denoted by U∗(t).

As we have seen before for the case of Brownian motion, the Langevin equation is the stochastic

differential equation

dU∗(t) = −U∗(t) dt
TL

+
(2σ2

TL

)1/2

dW (t) (2.3.45)
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In Eq. 2.3.45 the deterministic drift term (−U∗dt/TL) causes the velocity to relax toward zero

on the time scale TL, whereas the diffusion term adds a zero-mean random increment of standard

deviation σ
√

2dt/TL.

The PDF f∗L(V ; t) of U∗(t) evolves by the Fokker-Planck equation

∂f∗L
∂t

=
1

TL

∂

∂V
(V f∗L) +

σ2

TL

∂2f∗L
∂V 2

(2.3.46)

The Langevin equation is correct in yielding a Gaussian PDF of velocity as it has been shown

from experiments and DNS. The specification

σ2 =
2

3
k (2.3.47)

produces the correct velocity variance. To fully specify the constants appearing in the Langevin

equation we need to resort to the Lagrangian structure function. Considering a high-Reynolds-

number turbulence in which there is a large separation between the integral timescale TL and

the Kolmogorov timescale τη, we examine U+(t) through the Lagrangian structure function on

inertial-range timescales s, TL � s� τη

DL(s) = 〈[U+(t+ s)− U+(t)]2〉 (2.3.48)

The Kolmogorov hypotheses predict

DL(s) = C0εs, for TL � s� τη (2.3.49)

whereas the Langevin equation yields

D∗L(s) = 〈[U∗(t+ s)− U∗(t)]2〉 =
2σ2

TL
s (2.3.50)

Thus the Langevin equation is consistent with the Kolmogorov hypotheses in yielding a linear

dependence of DL on s in the inertial range. So, thanks to this last result and to the specification

obtained in Eq. 2.3.47, we can express the Langevin equation in terms of k and ε in place of σ2

and TL
2σ2

TL
= C0ε (2.3.51)
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so that the time scale is given by

T−1
L =

C0ε

2σ2
=

3

4
C0

ε

k
(2.3.52)

where C0 is a model constant and must not be confused with C0 which is instead the Kolmogorov

constant. With the coefficient re-expressed in this way, the Langevin equation becomes

dU∗(t) = −3

4
C0

ε

k
U∗(t)dt+ (C0ε)

1/2dW (t) (2.3.53)

The Langevin equation is quantitatively consistent with the Kolmogorov hypotheses if the model

coefficient C0 is taken to be the Kolmogorov constant C0. In that case DL(s) and D∗L(s) are

identical (in the inertial range).

Inhomogeneous turbulence

The extension of the Langevin equation (Eq. 2.3.53) to inhomogeneous turbulent flows

leads to the simplified Langevin model (SLM), from which can then be obtained the general-

ized Langevin model (GLM). The subject of these Langevin equations is the velocity U∗(t) of

a particle with position X∗(t). The particle models the behaviour of fluid particles and conse-

quently it moves with its own velocity

dX∗(t)

dt
= U∗(t) (2.3.54)

The simplified Langevin model is written as the stochastic differential equation

dU∗i (t) = −1

ρ

∂〈p〉
∂xi

dt− (
1

2
+

3

4
C0)

ε

k
(U∗i (t)− 〈Ui〉)dt+ (C0ε)

1/2dWi(t) (2.3.55)

where W(t) is a vector-valued Wiener process, and the coefficients (∂〈p〉/∂xi, k, ε, and 〈Ui〉) are

evaluated at the particle’s location X∗(t).

The differences from the scalar Langevin equation (Eq. 2.3.53) are the two drift terms (mean

pressure and mean velocity). The drift term in the mean pressure gradient is an exact term from

the Navier-Stokes equations. In the second drift term the particle velocity U∗(t) relaxes toward

the local Eulerian mean (in homogeneous isotropic turbulence the mean velocity is zero). The

additional 1/2 in the coefficient ( 1
2 + 3

4C0) is necessary to have the correct energy-dissipation rate

ε. These modifications are the minimum necessary for consistency with the mean momentum
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and kinetic energy equations. We can then easily generalize the SLM to obtain the generalized

Langevin model (GLM)

dU∗i (t) = −1

ρ

∂〈p〉
∂xi

dt−Gij(U∗j (t)− 〈Uj〉)dt+ (C0ε)
1/2dWi(t) (2.3.56)

where the coefficient Gij(x, t) depends on the local values of 〈uiuj〉, ε, and ∂〈Ui〉/∂xj .

In the generalized Langevin model, X∗(t) and U∗(t) model the fluid-particle properties and hence

their joint PDF f∗L is a model for fL. The evolution equation for f∗L is simply the Fokker-Planck

equation as seen above

∂f∗L
∂t

= −Vi
∂f∗L
∂xi

+
1

ρ

∂〈p〉
∂xi

∂f∗L
∂Vi
−Gij

∂

∂Vi
[f∗L(Vj − 〈Uj〉)] +

1

2
C0ε

∂2f∗L
∂Vi∂Vi

(2.3.57)

where all the coefficients are evaluated at (x, t). On the basis of the relationship between La-

grangian and Eulerian PDFs, the model Eulerian PDF corresponding to the generalized Langevin

model is

f∗(V;x, t) =

∫
f∗L(V,x; t|Y)dY (2.3.58)

The evolution equation for f∗ is readily obtained by integrating the equation for f∗L over all Y.

Since this equations contains no dependence on Y, the result is simply

∂f∗

∂t
= −Vi

∂f∗

∂xi
+

1

ρ

∂〈p〉
∂xi

∂f∗

∂Vi
−Gij

∂

∂Vi
[f∗(Vj − 〈Uj〉)] +

1

2
C0ε

∂2f∗

∂Vi∂Vi
(2.3.59)

This equation is precisely the model Eulerian PDF equation examined in Sec. 2.3.2.

For computational reasons, the equation to be solved is not the evolution equation of the PDF,

but is the Langevin equation for a very large number of particles (Monte Carlo method). Then

from the solutions, by evaluating the means we can find back all RANS quantities. This method

can be built in a stand-alone code in which at each time step we will have also to evaluate the

mean velocity and the mean pressure to put in the Langevin equations. More frequently a hybrid

approach is adopted, where the PDF solver is coupled with a RANS solver which directly gives

to the PDF module the mean quantities. Since for the fluid part we are using a LES solver, as

said previously, we are more interested in another kind of approach, which is very similar to the

PDF one, but instead of treating the probability density function, it treats the so called Velocity

Filtered Density Function (VFDF).
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2.4 Velocity Filtered Density Function

This approach is very similar to the PDF one and it’s for this reason that the PDF methods

have been introduced nevertheless they are not used. This class of method is analysed in more

details by Colucci et al.[13], Gicquel et al.[14], Sheikhi et al.[15]. The velocity filtered density

function (VFDF), denoted by PL, is formally defined as

PL(V;x, t) =

∫ +∞

−∞
%[V,U(x′, t)]G(x′ − x)dx′ (2.4.1)

%[V,U(x, t)] = δ[V −U(x, t)] =

3∏
i=1

δ[Vi − Ui(x, t)] (2.4.2)

where δ denotes the delta function, V is the velocity state vector and G is the filter function.

The term %[V,U(x, t)] is the ‘fine-grained’ density, analogously to the one used in the PDF

formalism, and Eq. 2.4.1 defines the VFDF as the spatially filtered value of the fine-grained

density. With the condition of a positive filter kernel, PL has all the properties of the PDF. It is

now useful to define the “conditional filtered value” of the variable Q(x, t) by

〈Q(x, t)|U(x, t) = V〉L = 〈Q|V〉L =

∫ +∞
−∞ Q(x′, t)%[V,U(x′, t)]G(x′ − x)dx′

PL(V;x, t)
(2.4.3)

where 〈α|β〉L denotes the filtered value of α conditioned on β. Eq. 2.4.3 implies

• for Q(x, t) = c, 〈Q(x, t)|V〉L = c

• for Q(x, t) = Q̂(U(x, t)), 〈Q(x, t)|V〉L = Q̂(V)

•

〈Q(x, t)〉L =

∫ +∞

−∞
〈Q(x, t)|V〉LPL(V;x, t)dV (2.4.4)

where c is a constant, and Q(x, t) = Q̂(U(x, t)) denotes the case where the variable Q is com-

pletely described by the variable U(x, t). From these properties it follows that the filtered value

of any function of the velocity variable is obtained by integration over the velocity space

〈Q(x, t)〉L =

∫ +∞

−∞
Q̂(V)PL(V;x, t)dV (2.4.5)

where 〈Q(x, t)〉L follows exactly the definition given in the LES approach (Sec. 2.2). This result

is very important as it shows the close similarity between the averaging operator and the filtering



2.4. Velocity Filtered Density Function 24

operator if we think to PL as to a density function. So we now follow exactly the same passages

done in the PDF approach. First of all we evaluate the VFDF transport equation. We simply

use the result obtained for the fine-grained PDF (see Sec. 2.3.2) and multiplying Eq. 2.3.12 by

G(x′ − x) and integrating over dx′, we obtain

∂PL(V;x, t)

∂t
+ Vi

∂PL(V;x, t)

∂xi
= − ∂

∂Vi

[〈DUi
Dt

∣∣∣V〉
L
PL(V;x, t)

]
(2.4.6)

where to obtain the term on RHS we used also Eq. 2.4.3. From now on we can follow exactly the

same procedure we adopted in the PDF approach. So we substitute the Navier-Stokes equation

into Eq. 2.4.6 and we decompose into filtered and unresolved values, so that we obtain

DPL
Dt

= − ∂

∂xk
[(Vk − 〈Uk〉L)PL] +

1

ρ

∂〈p〉L
∂xi

∂PL
∂Vi

− ν∇2〈Ui〉L
∂PL
∂Vi

+
∂

∂Vi

[(〈1

ρ

∂p

∂xi

∣∣∣V〉
L
−1

ρ

∂〈p〉L
∂xi

)
PL

]
−

∂

∂Vi

[(〈
ν∇2Ui

∣∣∣V〉
L
−ν∇2〈Ui〉L

)
PL

]
(2.4.7)

where D/Dt = ∂/∂t + 〈Uk〉L(∂/∂xk) denotes the ‘filtered material derivative’. The first line

corresponds to the effects of the resolved scale (closed terms), while the last two lines correspond

to the effects of the unresolved values (unclosed terms). In effect, in our model we didn’t care of

large scale dissipation, as in the PDF model we didn’t care of the dissipation of the mean field.

This for two reasons: because we aim to elaborate a simply model and because that term is not

so relevant if compared to the changes that can be obtained varying even a little the model form.

So next step is to replace the unclosed terms with a model. Thus, we can use the same model

used in the PDF approach, simply replacing the averaged quantities by the filtered quantities.

DPL
Dt

= − ∂

∂xk
[(Vk − 〈Uk〉L)PL] +

1

ρ

∂〈p〉L
∂xi

∂PL
∂Vi

+
∂

∂Vi
[Gij(Vj − 〈Uj〉L)PL] +

1

2
C0εr

∂2PL
∂Vi∂Vi

(2.4.8)

Multiplying by V and integrating over the sample space we can obtain the momentum filtered

equations and verify that they are exactly the same that we obtain by filtering the Navier-Stokes

equations unless the viscous term. The same result of consistency is obtained for the SGS stresses,

if we multiply the above equation by the subgrid velocity and integrate.

So, keeping on treating the velocity filtered density function as a PDF, we can transfer all the



2.4. Velocity Filtered Density Function 25

reasoning made above on the duality between the PDF transport equation approach and the

Lagrangian one, modelling the particles transport equation as a stochastic diffusion process.

Hence, the SDEs which represent the modelled VFDF in the Lagrangian sense are

dX∗i (t) = U∗i (t) (2.4.9)

dU∗i (t) = −1

ρ

∂〈p〉L
∂xi

dt+Gij(U
∗
j (t)− 〈Uj〉L)dt+

√
C0εr dWi(t) (2.4.10)

So, if we replace Gij by the simplified Langevin model, we obtain our reference equation for the

fluid modelling

dU∗i (t) = −1

ρ

∂〈p〉L
∂xi

dt− (
1

2
+

3

4
C0)

εr
kSGS

(U∗i (t)− 〈Ui〉L)dt+
√
C0εr dWi(t) (2.4.11)

where εr and kSGS are the residual dissipation and energy.



Chapter 3

Particle model

3.1 Extension from the fluid model to the particle model

Following what we said in the introduction, our aim is actually to elaborate a stochastic model

for particle tracking in a LES contest. While for the fluid phase we will adopt a traditional LES

approach (it will be discussed more in detail in the next chapter), for the dispersed phase we

are using a VFDF methodology, that can be simply seen as an extension from the fluid case.

We now briefly recall the equations governing particle motion, considering only drag and gravity

forces as we are concerned with heavy small particle
dxp(t)

dt
= Up(t)

dUp(t)

dt
=

1

τp
(Us(t)−Up(t)) + g

(3.1.1)

In these equations, Us(t) = U(t,xp(t)) is the fluid velocity “seen”, i.e. the fluid velocity sampled

along the particle trajectory xp(t), where U(t,x) is the local instantaneous (Eulerian) fluid

velocity field. The particle relaxation time, τp, is defined as

τp =
ρp
ρf

4dp
3CD|Ur|

, (3.1.2)

where the local instantaneous relative velocity is Ur(t) = Up(t) −Us(t). The drag coefficient,

CD, is a non-linear function of the particle-based Reynolds number, Rep = dp|Ur|/νf , which

means that CD is a non-linear function of the particle diameter, dp.

26
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We remark that since we aim to resolve exactly this set of equations, we are dealing with instanta-

neous fluid velocities, U(t,xp(t)), which would be known only if we would adopt a DNS approach

to resolve the fluid. Instead we only know LES velocities, 〈U〉L(t,xp(t)), so a modelling step is

necessary and a statistical approach is adopted. In practice, the particles-VFDF approach has

the form of a particle stochastic method where the velocity of the fluid seen, Us(t), is modelled

as a stochastic diffusion process, i.e. the dynamics of the particles are calculated from SDEs, the

so-called Langevin equations (see Chapter 2). In polydispersed two-phase flows, a particle point

of view seems rather natural, given the physics considered. Yet, the particles which are to be

simulated represent samples of the FDF and should not be confused with real particles. Within

the VFDF formalism, this particle point of view is helpful to build the theoretical model and, at

the same time, represents directly a discrete formulation of the model.

We restrict ourselves to situations where only particle dispersion is the important issue. The

Figure 3.1: Crossing trajectory effect

modelling problem is sketched in Fig. 3.1. The problem is more complicated than pure diffusion

models. Indeed, compared to a fluid particle, the determination of the fluid velocity seen is

further compounded by particle inertia (τp) and the effect of an external force field (gravity in

our case g). Both effects induce a separation of the fluid element and of the discrete particle

which are located near the same point at the beginning of the time interval. This is represented

in Fig. 3.1 between two discrete time steps tn and tn+1. In the absence of gravity (or other

external force) and for small particle inertia, τp → 0, the separation effect disappears and, in

that limit, the modelling issue is to represent the successive velocities of a fluid particle, for

which the stochastic models developed in Chapter 2 can be applied. Two main approaches can

be found in the literature:

- approaches based on paths (trajectories). A two-step construction is considered: a La-
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grangian step and an Eulerian step. The Lagrangian step corresponds to the trajectory,

over a time interval dt, of a fluid particle located at time t in the vicinity of the discrete

particle (this step is directly given by Eq. 2.4.11). The Eulerian step corresponds to a

spatial correction which gives, from the location of the fluid particle at t + dt, the fluid

velocity seen by the discrete particle at time t + dt. This modelling point of view has

two major drawbacks: it leads to an artificial decrease of the integral time scale of Us(t)

(denoted T ∗L,i in the present paper) and there is no clear separation between the effects of

τp and g.

- approaches based on the physical effects. A two-step construction is also considered by

decoupling the two physical mechanisms: the first step corresponds to the effects of τp

in the absence of external forces (in that case T ∗L,i varies between two limit values, TE

-the integral Eulerian time scale- when τp → +∞ and TL when τp → 0). The second

step corresponds to the effects of gravity alone which induce a mean drift and result in a

decorrelation of Us(t) with respect to Uf (t). This effect is called the crossing trajectory

effect (CTE) and is related to the filtered relative velocity 〈Ur〉L = 〈Up −Us〉L.

In the present work, the derivation of a model for Us(t) is carried out by resorting to an approach

based on the physical effects where the influence of gravity is neglected, following the same

approach adopted by Minier & Peirano [16], and extending it to the LES case.

Assuming, for the sake of simplicity, that the mean drift (the filtered relative velocity 〈Ur〉L) is

aligned with one of the coordinate axes, it can be shown that a possible model for the increments

of the fluid velocity seen is

dUs,i(t) = − 1

ρf

∂〈p〉L
∂xi

dt+ (〈Up,j〉L − 〈Uj〉L)
∂〈Ui〉L
∂xj

dt

− 1

T ∗L,i
(Us,i − 〈Ui〉L) dt+

√
εr

(
C0bi +

2

3
(bi − 1)

)
dWi(t).

(3.1.3)

The CTE has been modelled by changing the time scale, compared to the fluid case, in the drift

term (third term on the RHS) and by adding a mean drift term (second term on the RHS). The

time scale is modified according to Csanady’s analysis

T ∗L,i = TL

(
1 + β2

i

|〈Ur〉L|2

2kSGS/3

)−1/2

, (3.1.4)
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where β1 = β, if axis 1 is aligned with the mean drift, with β = TL/TE , and in the transversal

directions (axes labelled 2 and 3) βi = 2β. In the diffusion matrix, the term bi is simply

bi = TL/T
∗
L,i. Equation (3.1.3) has two noteworthy properties:

- it is consistent, by construction, with Eq. 2.4.11 when τp → 0, that is when the discrete

particles behave like fluid particles,

- it is a Mac-Kean SDE even though the filtered fields of the fluid are known (they are given

by solving LES equations). Indeed, it is necessary to compute the filtered velocity of the

particles 〈Up〉L to calculate not only the mean drift term (second term on the RHS) but

also the integral time scale of Us(t), T
∗
L (〈Us〉L is also needed for the computation of this

time scale).

Moreover, it must be emphasised that Eq. (3.1.3) is a possible choice among others and that

the exact form of a Langevin equation for Us(t) still remains an open issue. There exists

an alternative to Eq. (3.1.3) in the literature where the coefficients are slightly different (the

drift vector and the diffusion matrix), the main difference being the form of the mean drift

term which is written in terms of instantaneous velocities rather that filtered velocities, i.e.

(Up,j − Us,j)(∂〈Ui〉/∂xj). This form of the mean drift term does not change the methodology

which is presented in the rest of the work, but it modifies the structure of the system of SDEs,

i.e. Us(t) depends explicitly on the particle velocity, Up(t).

The complete set of SDEs which describes the one-point dynamical behaviour of the discrete

particles is 
dxp,i(t) = Up,i dt,

dUp,i(t) =
Us,i − Up,i

τp
dt+ gi dt,

dUs,i(t) = As,i dt+Bs,ij dWj(t),

(3.1.5)

where As and Bs are calculated by resorting to Eq. (3.1.3)-(3.1.4).
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3.2 Limit cases

The system of SDEs describing the dynamics of the discrete particles reads (from now on

Bs,ij is denoted Bij for the sake of simplicity)



dxp,i(t) = Up,i dt

dUp,i(t) =
1

τp
(Us,i − Up,i) dt+Ai dt

dUs,i(t) = − 1

T ∗L,i
Us,i dt+ Ci dt+

∑
j

Bij dWj(t)

(3.2.1)

where Ci is a term that includes all mean contributions: the filtered pressure gradient, −(∂〈p〉L/∂xi)/ρf ,

the mean drift term, (〈Up,j〉L − 〈Uj〉L)(∂〈Ui〉L/∂xj), and the filtered part of the return-to-

equilibrium term, 〈Ui〉L/T ∗L,i. There are three different time scales describing the dynamics of

the discrete particles: dt, the time scale at which the process is observed, T ∗L,i the integral time

scale of the fluid velocity seen, Us(t), and τp the particle relaxation time. System (3.2.1) has

a physical meaning only in the case where dt � T ∗L,i and dt � τp. When these conditions are

not satisfied, it is possible to show that, in the continuous sense (time and all coefficients are

continuous functions which can go to zero), the system converges towards several limit systems.

Case 1: when τp → 0, the particles behave as fluid particles and one has

system (3.2.1) −−−→
τp→0



dxp,i(t) = Up,i dt

Up,i(t) = Us,i(t)

dUs,i(t) = − 1

ρf

∂〈p〉L
∂xi

dt− 1

TL
(Us,i − 〈Ui〉L) dt+√

C0ε dWi(t)

(3.2.2)

that is, the model is consistent with a known turbulent fluid VFDF model as explained in Chapter

2. This shows that the model is a coherent generalisation of the fluid one, which can be recovered

as a limit case.

Case 2: when T ∗L,i → 0 and BijT
∗
L,i → cst, the fluid velocity seen becomes a fast variable. It is
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then eliminated and one can write

system (3.2.1)
(BijT

∗
L,i→cst)

−−−−−−−−−→
T∗
L,i→0



dxp,i(t) =Up,i dt

dUp,i(t) =
1

τp
(〈Ui〉L − Up,i) dt+Ai dt+∑

j

BijT
∗
L,i

τp
dWj(t)

(3.2.3)

This result can be understood from the model problem of the previous Chapter. Us(t) has

been eliminated but its influence is left in the diffusion coefficient BijT
∗
L,i/τp. In this case, the

equations are equivalent to a Fokker-Planck model for particles of significant inertia.

Case 3: When τp, T
∗
L,i → 0 and at the same time BijT

∗
L,i → cst , the fluid velocity seen becomes

a fast variable and the discrete particles behave as fluid particles. It can be shown that

system (3.2.1)
(BijT

∗
L,i→cst)

−−−−−−−−−→
τp,T∗

L,i→0


dxp,i(t) = 〈Ui〉L dt+Ai dt+∑

j

(BijT
∗
L,i) dWj(t)

(3.2.4)

We retrieve a pure diffusive behaviour, that is the equations of Brownian motion.

Case 4: at last, when T ∗L,i → 0 with no condition on BijT
∗
L,i, the velocity of the fluid seen is no

longer random and the system becomes deterministic. The flow is laminar and it can be proven

that

system (3.2.1) −−−−−→
T∗
L,i→0


dxp,i(t) = Up,i dt

dUp,i(t) =
1

τp
(〈Ui〉L − Up,i) dt+Ai dt,

Us,i(t) = 〈Ui〉L

(3.2.5)

Limit cases 1 to 3 reflect the multiscale character of the problem. When the timescales go to

zero (with a condition on their products with the coefficients of the diffusion matrix), a hierarchy

of stochastic differential systems is obtained. Moreover, the elimination of the fast variables (the

velocities Up(t) and Us(t)) does not mean that these variables do not (physically) exist anymore:

they simply become Gaussian white noise.

The existence of limit systems is a key point in the development of weak numerical schemes to

integrate in time the set of SDEs describing the dynamics of the discrete particles, i.e. Eqs. 3.2.1.

As we shall see in the next Section, in numerical computations, dt the observation timescale of

the process, is the time step. A suitable weak numerical scheme should therefore be consistent

with all limit cases since, as we shall see, it is not possible to control the time step to enforce the
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conditions necessary for the validity of Eqs. 3.2.1.



Chapter 4

Numerical approach

The LES/VFDF model used in the present work for practical computations has now been

given. It consists in a set of PDEs describing the dynamics of filtered fluid quantities and a set

of SDEs. In this approach, the numerical solution is obtained by resorting to a hybrid method

where the filtered-fluid properties are computed by solving the LES equations with a classical

pseudospectral method whereas the local instantaneous properties of the discrete particles are

determined by solving the set of SDEs, Eqs. 3.1.5. Therefore, the filtered fluid properties are

computed on a mesh whereas the statistics of the discrete phase are calculated from particles

moving in the computational domain. In particular, numerical solution of the modelled stochastic

equation is obtained by a Lagrangian Monte Carlo procedure in which particles statistics are

simulated by an ensemble of N statistically identical Monte Carlo particles. Each of these

particles carries informations pertaining to its velocity and position which are updated at each

time step through a weak numerical scheme illustrated after. We must underline that these are

not physical particles but statistical, which then can be used to recover statistical informations,

like concentration and velocity statistics. In practice, the direct connection between statistics

derived from the particle system and LES filtered variables is given by the general PDF formalism.

By taking statistics from the local number of particles Nx located within a small volume dVx

centered around a given point x , we have that

〈Us,i(x)〉L '
1

Nx

Nx∑
n=1

U
(n)
s,i (4.0.1)
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〈τij(x)〉L '
1

Nx

Nx∑
n=1

(Us,i − 〈Us,i(x)〉L)× (Us,j − 〈Us,j(x)〉L) (4.0.2)

and analogously for all other filtered quantities. By averaging particles quantities within a small

volume we recover thus LES quantities because we are simulating the underlying FDF and not

the PDF (from which we would obtain averaged quantities). In practice we are trading on Eq.

2.4.4 which let us treating filtering as an averaging operator.

As we have just mentioned we adopt a hybrid method which couples the LES solver with La-

grangian particle tracking, so particular attention must be given also to the procedure used for

coupling. Let {Y[x]} stand for the set of the fluid filtered fields at the different mesh points and

let {Y(N)} be the fluid filtered fields interpolated at particle locations. Let {Z(N)} denote the

set of variables attached to the stochastic particles and {Z[x]} the set of statistics, defined at cell

centres, extracted from {Z(N)}. Time is discretised with a constant time step ∆t = tn+1 − tn
and space with a non uniform mesh with cells of constant size in the streamwise and spanwise

directions while varying in the wall-normal direction (Chebyshev points).

The first step (operator F ) is to solve the PDEs describing the fluid (done by FLOWSB),

{Y[x]}(tn)
F−→ {Y[x]}(tn+1). (4.0.3)

The second step (projection, operator P ) consists in calculating filtered fluid properties and

filtered particle properties at particle locations,

{Z[x]}(tn) and {Y[x]}(tn)
P−→ {Z(N)}(tn) and {Y(N)}(tn), (4.0.4)

Then, the stochastic differential system can be integrated in time (operator T ),

{Z(N)}(tn) and {Y(N)}(tn)
T−→ {Z(N)}(tn+1). (4.0.5)

Finally, from the new computed set of variables, at particle locations, new statistical moments

are evaluated at cell centres,

{Z(N)}(tn+1)
A−→ {Z[x]}(tn+1), (4.0.6)

and so on.
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4.1 FLOWSB

Attention is now focused in spatial and time discretization of LES equations (operator F). As

usually happens in fluid dynamic studies, equation of fluid motion are presented in dimensionless

form. As we will solve the equations over a channel, the computational domain sketched in Figure

4.1, has dimensions:

Lx = 4πh , Ly = 2πh , Lz = h (4.1.1)

where x, y and z coordinates represent the stream-wise, span-wise and wall normal directions.

We can get the dimensionless form of the equations by using the half-height h as characteristic

Figure 4.1: Reference domain for LES channel flow.

length scale and the shear velocity:

uτ =

√
τw
ρ

(4.1.2)

where, τw is the mean shear wall, as velocity reference. In this case, we have introduced the

outer-scaling units (indicated by ‘-’ apex) and variables are put in dimensionless form as follow:

x− =
x

h
, u− =

u

uτ
, p− =

p

ρu2
τ

, t− =
t

h/uτ
, (4.1.3)

By simple manipulation, omitting for simplicity the filtering symbol 〈 〉L, the LES equations (Eq.

2.2.3) become:
∂u−j

∂x−j
= 0 (4.1.4)

∂u−i
∂t−

+
∂(u−i u

−
j )

∂x−j
= −∂P

−

∂x−i
+

1

Reτ

∂2u−i
∂x−i ∂x

−
j

−
∂τ−ij

∂x−j
(4.1.5)
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Where we have defined the shear Reynolds number Reτ as follow:

Reτ =
ρuτh

µ
(4.1.6)

In particular, Navier-Stokes equations can be rewritten compactly, neglecting the apex notation,

if we split the pressure term on average and fluctuating part so that p = 〈p〉+ p′:

∂ui
∂t

= − ∂p

∂xi
+

1

Reτ

∂2ui
∂xi∂xj

+ Si (4.1.7)

where with Si (source term) we collect the non-linear transport term, the SGS stress term and

the mean pressure gradient that drives the flow (imposed -1 in outer units). Thus, the three

components of source term are:

S1 = −∂(u1uj)

∂xj
− ∂τ1j
∂xj

+ 1 , S2 = −∂(u2uj)

∂xj
− ∂τ2j
∂xj

,

S3 = −∂(u3uj)

∂xj
− ∂τ3j
∂xj

(4.1.8)

4.1.1 Rephrased equations

In the case of numerical simulation , it is convenient to rewrite the LES equations without

taking explicitly in count the pressure gradient term.

This can be done by taking the curl of equation (4.1.5) which, on vectorial notation, gives:

∇× ∂u

∂t
= −∇×∇p+

1

Reτ
∇×∇2u +∇× S (4.1.9)

Reminding the definition of vorticity ω = ∇× u and that the curl of the gradient of any scalar

field is always the zero vector, we get the vorticity transport equation:

∂ω

∂t
= ∇× S +

1

Reτ
∇2ω (4.1.10)

If we take the curl of vorticity transport equation, we use the continuity equation (∇u = 0) and

the vectorial identity ∇ × (∇×A) = ∇(∇ · A) − ∇2A we will get the following fourth order

equation:
∇2u

∂t
= ∇2S−∇(∇ · S) +

1

Reτ
∇4u (4.1.11)
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Using the algorithm developed by Kim J., Moin P., Moser R. (1987), to solve the channel flow

equations we have to write the following system equations:

w3, u3 ←


w3

∂t = S2

∂x1
− S1

∂x2
+ 1

Reτ
∇2w3

(∇2u3)
∂t = ∇2S3 − ∂

∂x3

(
∂Sj
∂xj

)
+ 1

Reτ
∇4u3

↓
u1

∂x1
+ u2

∂x2
= u3

∂x3

u2

∂x1
− u1

∂x2
= w3

→ u1, u2

(4.1.12)

where the first equation and the second equation are the (4.1.10) and the (4.1.11) rewritten for

the third component respectively while the third and the forth equation are used to compute

the first and the second velocity components starting from continuity and vorticity definition.

The system is solved considering no-slip boundary condition at the walls and periodic boundary

conditions along x and y directions.

4.1.2 Channel flow equations on spectral space

To solve the system of equations (4.1.12) we use the FLOWSB code own by University of

Udine. FLOWSB is a pseudo-spectral Fortran code thus the equations seen in the previous

section are solved on the spectral space rather than the physical one. All quantities, starting

from velocity field, are decomposed in a Fourier-Chebyshev approximation, where the Fourier

modes are used to represent the homogeneous periodic directions (stream-wise and span-wise),

while the Chebyshev modes are used for the wall normal direction. In this case the Fourier-

Chebyshev representation of the generic component of velocity field permits us to rewrite:

ui(x, t) =

Nz∑
nz=0

1
2Nx∑

nx=1− 1
2Nx

1
2Ny∑

ny=1− 1
2Ny

ûi(kx, ky, nz, t)Tnz (z)e
i(kxx+kyy) (4.1.13)

where:

Tnz (z) = cos(nz arccos(x)), nz = 0, 1, ...Nz z ∈ [−1, 1] (4.1.14)

are the Nz Chebyshev polynomials.

By using this kind of representation, the Nz modes correspond to a non uniform grid spacing on
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physical space where:

z = cos(nzπNz), z ∈ [−1, 1] (4.1.15)

4.1.3 LES solver

By using the (4.1.13) transformation the system of equations 4.1.12 in physical space can be

rewritten, in Fourier spectral space, as function of the coefficients. Thus the second equation,

for example, will become:

∂

∂t

[
∂

∂z
− k2

x − k2
y

]
ûz =

∂

∂t

[
∂

∂z
− k2

x − k2
y

]
Ŝz

− ∂

∂z

[
ikxŜx + ikyŜy +

∂Ŝz
∂z

]

+
1

Reτ

∂

∂t

[
∂

∂z
− k2

x − k2
y

]2

ûz (4.1.16)

All the others can also be transformed on Fourier space and rewritten similarly.

The first two equation of the transformed system are solved for the coefficients of the third

component of vorticity and velocity. Then they are used to solve the last two equation from

which we extract the coefficients of the other two components of the velocity field.

Time advancement of equation (4.1.16) is done by two-level explicit Adams-Bashfort scheme for

the convective terms and by the implicit Crank-Nicholson method for the diffusion terms.

However, the resolution of the equations is not fully made in the wavenumber space, otherwise

the calculation of the non-linear convective terms would be very time consuming; in fact the

Si terms contain the uiuj products but because of the transformation properties, an algebraic

product in physical space corresponds to convolution product in spectral space.

Thus, ui and uj are back transformed on physical space, the product is then computed and

re-transformed on wavenumber space. During this operation some aliasing problem appears but

it is eliminated in a suitable manner.

4.2 Weak numerical scheme for particles equation

Attention is now focused on the time integration of the set of SDEs (operator T ). Numerical

schemes proposed in this section are directly derived from those proposed by Peirano, Chibbaro,

Pozorski, Minier [18]. A proper treatment of the physics of the multiscale aspect imposes to
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put forward weak numerical schemes which are consistent with all asymptotic limits when the

different time scales go to zero. The development of a suitable weak numerical scheme for the

time integration of SDEs is a much more difficult task than the corresponding one for ODEs.

Indeed, SDEs do not obey the rules of classical differential calculus, and one has to rely on the

theory of stochastic processes. In fact the Wiener process used to model particle velocity is

nowhere differentiable, so it’s obvious that normal differential calculus rules cannot be adopted.

In the present work, Itô’s calculus is adopted and therefore all SDEs are written in the Itô’ sense.

This choice has no physical motivation: Itô’s calculus is very convenient in the development of

weak numerical schemes for SDEs because of the zero mean and isometry properties. We now

recall briefly Itô’s calculus rules.

In classical integration, the limit of the following sum (τk ∈ [tk, tk+1])

∫ t

t0

X(s) dW (s) = lim
N→+∞

N∑
k=0

X(τk)(W (tk+1)−W (tk)), (4.2.1)

should be independent of the choice of τk. This is not true if we are dealing with Stochastic

calculus. As a consequence, a choice has to be made for the sake of consistency. Two main choices

(there exist others) are encountered in the literature, the Itô and the Stratonovich definitions.

In the Itô definition, τk = tk and the following limit is under consideration

lim
N→+∞

N∑
k=1

X(tk))(W (tk+1)−W (tk)). (4.2.2)

This choice has a major drawback, i.e. the rules of ordinary differential calculus are no longer

valid. However, this drawback is balanced by the zero mean and isometry properties which are

of great help when deriving weak numerical schemes

〈
∫ t1

t0

X(s) dW (s)〉 = 0,

〈
∫ t2

t0

X(s) dW (s)

∫ t3

t1

Y (s) dW (s)〉 =

∫ t2

t1

〈X(s)Y (s)〉 ds.
(4.2.3)

where 〈 · 〉 is the mathematical expectation (t0 ≤ t1 ≤ t2 ≤ t3, X(t) and Y (t) are two stochastic

processes).

In Chapter 2, the correspondence (in a weak sense) between a set of SDEs and a Fokker-Planck

equation (for the associated law) has been established. In this work, weak numerical schemes
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shall be developed for Eqs. 3.2.1, i.e. we are not interested in the exact trajectories of the process

but instead in statistics (the pdf) extracted from the stochastic particles (the real particles are

replaced by stochastic ones which should reproduce the same statistics). The numerical method

proposed in this work is therefore nothing else than the simulation of an underlying filtered

density function, or in other words, the equivalent Fokker-Planck equation is solved by simulating

the trajectories of stochastic particles, that is by a dynamical Monte Carlo method.

The weak numerical schemes are developed based on the analytical solution to Eqs. 3.2.1 with

constant coefficients (independent of time), the main idea being to derive a numerical scheme

by freezing the coefficients on the integration intervals. This methodology ensures stability and

consistency with all limit systems:

- stability because the form of the equations gives analytical solutions with exponentials of

the type exp(−∆t/T ) where T is one of the characteristic time scales (τp and T ∗L,i),

- consistency with all limit systems by construction, since the schemes are based on an

analytical solution.

Different techniques shall be used to derive first and second-order (in time) schemes from the

analytical solutions with constant coefficients. A first-order scheme can be obtained by comput-

ing, at each time step, the variables on the basis of the analytical solutions (all coefficients are

frozen at the beginning of the integration interval), i.e. a numerical scheme of the Euler kind is

obtained. A second-order scheme can be derived by resorting to a predictor-corrector technique

where the prediction step is the first-order scheme.

Before presenting the weak numerical schemes, it is a prerequisite to give the analytical solutions

to system 3.2.1, with constant coefficients (in time). These solutions are obtained by resorting to

Itô’s calculus in combination with the method of the variation of the constant. For instance, for

the fluid velocity seen, one seeks a solution of the form Us,i(t) = Hi(t) exp(−t/Ti), where Hi(t)

is a stochastic process defined by (indicating T ∗L,i with Ti)

dHi(t) = exp(t/Ti)[Ci dt+ B̌i dWi(t)], (4.2.4)

that is, by integration on a time interval [t0, t] (∆t = t− t0),

Us,i(t) = Us,i(t0) exp(−∆t/Ti) + Ci Ti [1− exp(−∆t/Ti)]

+B̌i exp(−t/Ti)
∫ t

t0

exp(s/Ti) dWi(s),
(4.2.5)
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where B̌i = Bii since Bij is a diagonal matrix, cf. Eq. 3.1.3. By proceeding in the same way

for the other equations (position and velocity), the analytical solution is obtained for the entire

system, cf. Table 4.1.

The three stochastic integrals, Eqs. 4.2.9 to 4.2.11 in Table 4.1, are centred Gaussian processes

(they are stochastic integrals of deterministic functions). These integrals are defined implicitly,

but they can be simplified by integration by parts, cf. Table 4.1. For the numerical representation

of the stochastic integrals, the knowledge of the covariance matrix (second-order moments) is

needed, see Table 4.2, as it will be explained in the next section.
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4.3 Limit systems of analytical solution

In limit case 1, where the discrete particles behave as fluid particles, the limit system is given

by Eq. 3.2.2. When τp → 0, Eq. 4.2.7 becomes

Up,i(t) = Us,i(t0) exp(−∆t/Ti) + Ci Ti exp(−∆t/Ti) + Γi(t), (4.3.1)

and for the stochastic integral Γi(t), one has


〈Γ2
i (t)〉 −−−→

τp→0

B̌2
i Ti
2

[1− exp(−2∆t/Ti)] = 〈γ2
i (t)〉,

〈Γi(t) γi(t)〉 −−−→
τp→0

〈γ2
i (t)〉.

(4.3.2)

The last two equations indicate that Γi(t)→ γi(t) when τp → 0. By comparing Eq. 4.3.1 to Eq.

4.2.8 with Γi(t) = γi(t), the results of Eq. 3.2.2 are retrieved, i.e. Up(t) = Us(t).

In limit case 2, the fluid velocity seen, Us(t), is a fast variable which is eliminated. The

results obtained in Table 4.1 and 4.2 with Ti → 0 and B̌i Ti = cst, give

Up,i(t) = Up,i(t0) exp(−∆t/τp) + [〈Ui〉L +Ai τp][1− exp(−∆t/τp)]

+

√
B̌2
i T

2
i

2τp
[1− exp(−2∆t/τp)] Gp,i,

(4.3.3)

where Gp,i is a N (0, 1) vector (composed of independent standard Gaussian random variables)

and we recall that 〈Ui〉L = 〈Ui(t,xp(t)〉L. It can be rapidly verified, by applying Itô’s calculus,

that Eq. 4.3.3 is the solution to system 3.2.3 when the coefficients are constant.

In limit case 3, both the fluid velocity seen and the velocity of the discrete particles become

rapid variables. When τp → 0 and Ti → 0 with B̌i Ti = cst, Eq. 4.2.6 becomes

xp,i(t) = xp,i(t0) + [〈Ui〉L +Ai τp] ∆t+

√
B̌2
i T

2
i ∆t Gx,i, (4.3.4)

which is the solution to Eq. 3.2.4 when the coefficients are constant (Gx,i is a N (0, 1) vector).

In limit case 4, when Ti → 0 (with no condition on B̌iTi) the system becomes deterministic,
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the results are in agreement with Eq. 3.2.5. When Ti → 0, Eqs. 4.2.6 to 4.2.8 become



Us,i(t) = 〈Ui〉L,

Up,i(t) = Up,i(t0) exp(−∆t/τp) + [〈Ui〉L +Ai τp][1− exp(−∆t/τp)],

xp,i(t) = xp,i(t0) + τp[1− exp(−∆t/τp)]Up,i(t0)

+ [〈Ui〉L +Ai τp]{∆t− τp[1− exp(−∆t/τp)]},

(4.3.5)

which is the analytical solution to system 3.2.5 when the coefficients are constant.

4.4 Simulation of a Gaussian vector

Let X = (X1, ..., Xd) be a Gaussian vector defined by a zero mean and a covariance matrix

Cij = 〈XiXj〉. For all positive symmetric matrix (such as Cij), there exists a triangular matrix

Pij which verifies

C = PPt → Cij =

d∑
k=1

PikPjk (4.4.1)

P is given by the Choleski algorithm

Pi1 =
Ci1√
C11

, 1 ≤ i ≤ d

Pii =
(
Cii −

i−1∑
j=1

Pij

)1/2

, 1 < i ≤ d

Pij =
1

Pjj

(
Cij −

j−1∑
k=1

PikPjk

)1/2

, 1 < j < i ≤ d

Pij = 0, i < j ≤ d

Let G = (G1, ..., Gd) be a vector composed of independent N (0, 1) Gaussian random variables,

then it can be shown that the vector Y = PG is a Gaussian vector of zero mean and whose

covariance matrix is C = PPt. Therefore, X and Y are identical, that is

X = PG → Xi =

d∑
k=1

PikGk (4.4.2)

Eq. 4.4.2 shows how stochastic integrals, obtained in the analytical solution, can be simulated.

From the zero mean property Eq. 4.2.3, it follows that the first order moments are equal to zero.
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From the isometry property Eq. 4.2.3 instead we obtain the following equality:

〈
(∑
m

gm(t)

∫ t

t0

fm(s)dW (s)
)2

〉 =

∑
m

g2
m(t)

∫ t

t0

f2
m(s)ds+ 2

∑
m<k

gm(t)gk(t)

∫ t

t0

fm(s)fk(s)ds (4.4.3)

where gim(t) and fim(t) are deterministic functions of time. Equation 4.4.3 allows us to derive

the covariance matrix, Table 4.2. Once the covariance matrix is known, we can build up the

stochastic integrals using the Choleski algorithm, see Table 4.3.

4.5 Weak first order scheme

The derivation of the weak first order scheme is now rather straightforward since the analytical

solutions to system 3.2.1 with constant coefficients have been already calculated. Indeed, the

Euler scheme (which is a weak scheme of order 1) is simply obtained by freezing the coefficients

at the beginning of the time intervals ∆t = [tn, tn+1]. Let Zni and Zn+1
i be the approximated

values of Zi(t) at time tn and tn+1, respectively. The Euler scheme is then simply written by

using the results of Tables 4.1 and 4.2 as shown in Table 4.3. Before showing that the scheme

is consistent with all limit cases, some clarifications must be given. Here, the limit systems

are considered in the discrete sense. The observation time scale dt has now become the time

step ∆t. The time scales τp and Ti do not go to zero, as in the continuous sense (Chapter 3),

but their values, depending on the history of the particles, can be smaller or greater than ∆t.

The continuous limits, i.e. Eqs. 3.2.2 to 3.2.5, represent a mathematical limit, whereas in the

discrete formulation, as we shall see just below, the limit systems correspond to a numerical

solution where the ratios ∆t/Ti and ∆t/τp become large (the limit systems are obtained by

Taylor expansions).

In limit case 1, when τp → 0 in the continuous sense and τp � ∆t� Ti in the discrete sense,

the numerical scheme gives Un+1
p,i = Un+1

s,i , see Table 4.3, which is consistent with the results of

Section 3.2.

In limit case 2, in the continuous sense Ti → 0 and B̌iTi = cst, that is the fluid velocity seen

Us(t) becomes a fast variable which is eliminated. In the discrete case, Us(t) is simply observed

at a time scale which is great compared to its memory, that is Ti � ∆t� τp, and the numerical
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Table 4.2: Derivation of the covariance matrix for constant coefficients.

〈γ2
i (t)〉 = B̌2

i

Ti
2

[1− exp(−2∆t/Ti)] where B̌2
i = B2

ii (4.4.4)

〈Γ2
i (t)〉 = B̌2

i θ
2
i

{
Ti
2

[1− exp(−2∆t/Ti)]−
2τpTi
Ti + τp

[1− exp(−∆t/Ti) exp(−∆t/τp)]

+
τp
2

[1− exp(−2∆t/τp)]
}

(4.4.5)

1

B̌2
i θ

2
i

〈Ω2
i (t)〉 = (Ti − τp)2∆t+

T 3
i

2
[1− exp(−2∆t/Ti)] +

τ3
p

2
[1− exp(−2∆t/τp)]

− 2T 2
i (Ti − τp)[1− exp(−∆t/Ti)] + 2τ2

p (Ti − τp)[1− exp(−∆t/τp)]

− 2
T 2
i τ

2
p

Ti + τp
[1− exp(−∆t/Ti) exp(−∆t/τp)] (4.4.6)

〈γi(t) Γi(t)〉 = B̌2
i θi Ti

{
1

2
[1− exp(−2∆t/Ti)]−

τp
Ti + τp

[1− exp(−∆t/Ti) exp(−∆t/τp)]

}
(4.4.7)

〈γi(t) Ωi(t)〉 = B̌2
i θi Ti

{
(Ti − τp)[1− exp(−∆t/Ti)]−

Ti
2

[1− exp(−2∆t/Ti)]

+
τ2
p

Ti + τp
[1− exp(−∆t/Ti) exp(−∆t/τp)]

}
(4.4.8)

1

B̌2
i θ

2
i

〈Γi(t) Ωi(t)〉 = (Ti − τp){Ti[1− exp(−∆t/Ti)]− τp[1− exp(−∆t/τp)]}

− T 2
i

2
[1− exp(−2∆t/Ti)]−

τ2
p

2
[1− exp(−2∆t/τp)]

+ Tiτp [1− exp(−∆t/Ti) exp(−∆t/τp)] (4.4.9)
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scheme yields (see Table 4.3)

Un+1
s,i = 〈Uni 〉L +

√
[B̌ni ]2Tni

2
G1,i, (4.5.1)

where 〈Uni 〉L = 〈Ui(tn,xnp )〉L. The fluid velocity seen becomes a Gaussian random variable, a

result which is physically sound since Us(t) is observed at time steps which are greater than

its memory. This result is in line with that of the model problem presented in Section 3.2.

Furthermore, by Taylor expansion, it can be shown that the numerical scheme is consistent with

Eq. 4.3.3.

In limit case 3, that is when 1 � ∆t/Ti and 1 � ∆t/τp (discrete case), one obtains for the

velocity of the particles and for the fluid velocity seen (see Table 4.3)
Un+1
p,i = 〈Uni 〉L +Ani τnp +

√
[B̌ni ]2

2

Tni
Tni + τnp

(
√
Tni G1,i +

√
τnp G2,i),

Un+1
s,i = 〈Uni 〉L +

√
[B̌ni ]2 Tni

2
G1,i.

(4.5.2)

Once again, Up,i(t), and Us,i(t), which were eliminated in the continuous case, do not disappear.

They become Gaussian random variables, a result which is physically sound since these two

random variables are observed at time steps which are greater than their respective memories.

Moreover, by Taylor expansion, one can show that the numerical scheme is consistent with Eq.

4.3.4.

In limit case 4, Ti = 0, and the flow becomes laminar. It can be easily shown that the

numerical scheme is consistent with Eqs. 4.3.5. For instance, one has for the fluid velocity

Un+1
s,i = 〈Uni 〉L, cf. Table 4.3.

The previous results show that the Euler scheme presented in Table 4.3 is consistent with all

limit cases. Therefore, the scheme gives numerical solutions which are physically sound, i.e. a

consistent representation of the multiscale character of the model is obtained.

4.6 Weak second order scheme

From a formal point of view, weak high-order schemes for a set of SDEs can be derived for

any desired accuracy, though this is much more complicated than for ODEs. Such high-order

schemes are generally based on truncated stochastic Taylor expansions. These techniques can
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Table 4.3: Weak first-order scheme (Euler scheme)

Numerical integration of the system:

xn+1
p,i = xnp,i +A1 U

n
p,i +B1 U

n
s,i + C1 [Tni C

n
i ] + Ωni ,

Un+1
s,i = Uns,i exp(−∆t/Tni ) + [Tni C

n
i ][1− exp(−∆t/Tni )] + γni ,

Un+1
p,i = Unp,i exp(−∆t/τnp ) +D1 U

n
s,i + [Tni C

n
i ](E1 −D1) + Γni .

The coefficients A1, B1, C1, D1 and E1 are given by:

A1 = τnp [1− exp(−∆t/τnp )],

B1 = θni [Tni (1− exp(−∆t/Tni )−A1] with θni = Tni /(T
n
i − τnp ),

C1 = ∆t−A1 −B1,

D1 = θni [exp(−∆t/Tni )− exp(−∆t/τnp )],

E1 = 1− exp(−∆t/τnp ).

The stochastic integrals γni , Ωni , Γni are simulated by:

γni = P11 G1,i,

Ωni = P21 G1,i + P22 G2,i

Γni = P31 G1,i + P32 G2,i + P33 G3,i,

where G1,i, G2,i, G3,i are independent N (0, 1) random variables.

The coefficients P11, P21, P22, P31, P32, P33 are defined as:

P11 =
√
〈(γni )2〉,

P21 =
〈Ωni γni 〉√
〈(γni )2〉

, P22 =

√
〈(Ωni )2〉 − 〈Ω

n
i γ

n
i 〉2

〈(γni )2〉
,

P31 =
〈Γni γni 〉√
〈(γni )2〉

, P32 =
1

P22
(〈Ωni Γni 〉 − P21P31), P33 =

√
〈(Γni )2〉 − P 2

31 − P 2
32).
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not be applied directly in our particular case since neither the unconditional stability nor the

consistency in limit cases can be obtained.

Let us consider the following model problem

dXi(t) = Ai(X(t)) dt+
∑
j

Bij(X(t)) dWj(t), (4.6.1)

where Bij verifies the following singular property

∑
k

∑
j

Bkj
∂Bij

∂zk
= 0 , ∀ i (4.6.2)

It can be shown, for example by stochastic Taylor expansions, that a predictor-corrector scheme

of the type


X̃n+1
i = Xn

i + Ani ∆t+
∑
j

Bn
ij ∆Wj ,

Xn+1
i = Xn

i +
1

2

(
Ani + Ãn+1

i

)
∆t+

∑
j

1

2

(
Bn
ij + B̃n+1

ij

)
∆Wj ,

(4.6.3)

is a weak second-order scheme (Ãn+1
i = Ai(X̃

n+1), B̃n+1
ij = Bij(X̃

n+1), ∆t = tn+1 − tn and

∆Wj = Wn+1
j −Wn

j ). This result is true, once again, only when the diffusion matrix verifies

property (4.6.2). Since the predictor step of the scheme above is the Euler scheme (already

developed in Section 4.5), the remaining task consists in finding a suitable correction step which

ensures the fulfilment of the constraints listed above.

How should the coefficients of the predictor step, Ãn+1
i and B̃n+1

ij , be computed? The main

idea here is to generate a correction step based on the analytical solutions by considering that

the acceleration terms vary linearly with time. This idea originates from considerations related

to Taylor series expansions. The numerical solution obtained from the analytical solution with

constant coefficients is an approximation of first-order accuracy. Mathematically, the solution is

given in terms of the integral of acceleration terms. Thus, one can state that the solution based

on the zero-th order (constant terms) development of the acceleration terms gives a first-order

approximation in time. By analogy, it can be guessed that approximating the acceleration terms

by piecewise linear functions in time yields a second-order approximation in time.

Let us introduce the following notation: Ũn+1
p,i and Ũn+1

s,i stand for the predicted velocities

and T̃n+1
i and τ̃p

n+1 are the predicted time scales. The values of the fields related to the fluid
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taken at (tn+1, xn+1
p ) are denoted, for example, 〈Un+1

i 〉L or 〈Pn+1〉L. As far as the computation

of the mean fields extracted from the discrete particles are concerned, it is worth emphasising

that none of them are computed at (tn+1, xn+1
p ), because the scheme would become implicit,

i.e. fields such as the expected value of the particle velocity are computed from the predicted

velocities. For example, one has

Ci(tn+1, xn+1
p ) = Cn+1

i =
〈Un+1

i 〉L
T̃n+1
i

+ f(〈Ũn+1
p 〉L, 〈Un+1〉L, 〈Pn+1〉L). (4.6.4)

Let us first consider the fluid velocity seen. The analytical solution to system (3.2.1) when

the coefficients are constant is, by applying the rules of Itô’s calculus

Us,i(t) = Us,i(t0) exp(−∆t/Ti) +

∫ t

t0

Ci(s,xp) exp[(s− t)/Ti] ds+ γi(t), (4.6.5)

where the temporal coefficients (the time scales) are considered constant, while the term Ci(s,xp)

is retained in the integral. Following the previous ideas, let us suppose that Ci(s,xp) varies

linearly on the integration interval [t0, t], that is (∆t = t− t0)

Ci(s,xp(s)) = Ci(t0,xp(t0)) +
1

∆t
[Ci(t,xp(t))− Ci(t0,xp(t0))](s− t0). (4.6.6)

By inserting Eq. (4.6.6) into Eq. (4.6.5), integration gives

Us,i(t) = Us,i(t0) exp(−∆t/Ti) + [Ti Ci(t0,xp(t0))]A2(∆t, Ti)

+ [Ti Ci(t,xp(t))]B2(∆t, Ti) + γi(t),
(4.6.7)

where the functions A2(∆t, x) and B2(∆t, x) are given by (x is a positive real variable)

A2(∆t, x) = − exp(−∆t/x) + [1− exp(−∆t/x)][∆t/x],

B2(∆t, x) = 1− [1− exp(−∆t/x)][∆t/x].
(4.6.8)

Accounting for the time dependence of the coefficients, i.e. Ti, it is proposed to write the following

correction step, which is in line with the treatment of the acceleration terms,

Un+1
s,i =

1

2
Uns,i exp(−∆t/Tni ) +

1

2
Uns,i exp(−∆t/T̃n+1

i )

+A2(∆t, Tni ) [Tni C
n
i ] +B2(∆t, T̃n+1

i ) [T̃n+1
i Cn+1

i ] + γ̃n+1
i ,

(4.6.9)



4.6. Weak second order scheme 51

where a consistent formulation for the stochastic integral γ̃n+1
i is needed. The same procedure is

used, i.e. the diffusion matrix Bij is linearised and integration is carried out. The final expression

is

γ̃n+1
i =

√
[B∗i ]2

T̃n+1
i

2
[1− exp(−2∆t/T̃n+1

i )] G1,i, (4.6.10)

where G1,i is the same N (0, 1) random variable used in the simulation of γni in the Euler scheme

and where B∗i is defined by

[
1− exp(−2 ∆t/T̃n+1

i )
]
B∗i =

A2(2 ∆t, T̃n+1
i )

√
(B̌ni )2 +B2(2 ∆t, T̃n+1

i )

√
( ˜̌Bn+1

i )2.

(4.6.11)

In the case of the velocity of the particles, the same approach followed for the fluid velocity

seen is adopted. It is worth emphasising that no correction is done on position, xp(t), since the

prediction is already of order 2. The complete scheme is summarised in Table 4.4.
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Table 4.4: Weak second-order scheme

Prediction step: Euler scheme, see Table 4.3.

(4.6.12)

Correction step:

Un+1
p,i =

1

2
Unp,i exp(−∆t/τnp ) +

1

2
Unp,i exp(−∆t/τ̃n+1

p )

+
1

2
Uns,i C2c(τ

n
p , T

n
i ) +

1

2
Uns,i C2c(τ̃

n+1
p , T̃i

n+1
)

+A2c(τ
n
p , T

n
i ) [Tni C

n
i ] +B2c(τ̃

n+1
p , T̃n+1

i ) [T̃n+1
i Cn+1

i ]

+A2(∆t, τnp )[τnp Ani ] +B2(∆t, τ̃p
n+1)[τ̃p

n+1An+1
i ] + Γ̃n+1

i ,

Un+1
s,i =

1

2
Uns,i exp(−∆t/Tni ) +

1

2
Uns,i exp(−∆t/T̃n+1

i ) +A2(∆t, Tni ) [Tni C
n
i ]

+B2(∆t, T̃n+1
i ) [T̃n+1

i Cn+1
i ] + γ̃n+1

i .

(4.6.13)

The coefficients A2, B2, A2c, B2c et C2c are defined as:

A2(∆t, x) = − exp(−∆t/x) + [1− exp(−∆t/x)][∆t/x],

B2(∆t, x) = 1− [1− exp(−∆t/x)][∆t/x],

A2c(x, y) = − exp(−∆t/x) + [(x+ y)/∆t][1− exp(−∆t/x)]− (1 + y/∆t)C2c(x, y),

B2c(x, y) = 1− [(x+ y)/∆t][1− exp(−∆t/x)] + (y/∆t)C2c(x, y),

C2c(x, y) = [y/(y − x)][exp(−∆t/y)− exp(−∆t/x)].

(4.6.14)

The stochastic integrals γ̃n+1
i and Γ̃n+1

i are simulated as follows:

γ̃n+1
i =

√
[B∗i ]2T̃n+1

i

2
[1− exp(−2∆t/T̃n+1

i )] G1,i,

with
[
1− exp(−2 ∆t/T̃n+1

i )
]
B∗i = A2(2 ∆t, T̃n+1

i )

√
(B̌ni )2+

B2(2 ∆t, T̃n+1
i )

√
( ˜̌Bn+1

i )2.

Γ̃n+1
i =

〈Γ̃n+1
i γ̃n+1

i 〉
〈(γ̃n+1

i )2〉
γ̃n+1
i +

√
〈(Γ̃n+1

i )2〉 − 〈Γ̃
n+1
i γ̃n+1

i 〉2

〈(γ̃n+1
i )2〉

G2,i

with 〈Γ̃n+1
i γ̃n+1

i 〉 = 〈Γiγi〉(τnp , T̃n+1
i , B∗i ) and 〈(Γ̃n+1

i )2〉 = 〈Γ2
i 〉(τnp , T̃n+1

i , B∗i ).



Chapter 5

Implementation and validation

Since we are concerned with a hybrid model which uses the output coming from the LES

solver (FLOWSB) for particle tracking, a brief description of the structure of the FLOWSB code

is useful to understand the interconnection between FLOWSB and the implemented stochastic

module. A picture of the structure of FLOWSB is given, included the “old” particle tracker with

no model. Then the main new routines and their position in the code are briefly described , with

particular attention to the exchanged information between the LES solver and the stochastic

module.

5.1 Structure of FLOWSB

The subroutine Buoyan open the files needed to write or from which it reads the informations

necessary for the restart of the simulation.

The subroutine Supvis reads from the ft5 file the input parameters for the simulation: number

of grid nodes, Reynolds number, subgrid model for LES and other technical parameters. If the

flag PART is equal to one, the Lagrangian tracker will be executed so that the next step will be

the call to the subroutine Partinput.

The subroutine Partinput reads from the input file inputpart the parameters necessary for particle

tracking: number of particles in the domain, number of set of particles, frequency of tracking,

order of interpolation, etc.

The subroutine Partinit initialize particles positions and velocities in the field: particles positions

are initialized randomly, while particles velocities are imposed equal to the velocity of the fluid

53
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at particle position. In the case of a restart for particles, their positions and velocities are read

from a restart file Readrestart.

Then is called Excute, which is the main subroutine of FLOWSB and which provides the time

advancement of the flow field through a pseudo-spectral method (the calls to all the subroutines in

Excute are omitted because not relevant for our purpose). At the end of the time advancement of

the flow field, in Excute is called the subroutine Parttrack which provides the Lagrangian particle

tracking. The “old” particle tracker with no model used the velocity field interpolated at particle

position to evaluate the drag force on each particle (also the other forces if requested, i.e. basset

force, lift, etc.) and then used a fourth order Runge-Kutta scheme for the time advancement.

Terminated Parttrack, we return back to Excute which begins the next step and so on. So the

subroutines that has been changed are all the ones mentioned above concerned with particles,

while all the others have remained the same.

BUOYAN

SUPVIS

PARTINPUT INFLD PARTINIT EXCUTE#

TIME ADVANCEMENT

OF FLUID FIELD

PARTTRACK

Figure 5.1: Structure of the FLOWSB code

5.2 Stochastic module

We show now the main changes applied to the code following the same order in which the

subroutines are called in FLOWSB.

Partinit

In the subroutine Partinit the initialization of the variable Us has been added, which was not

present previously because it is a new variable of this model. In the case of a new simulation,

for each particle, Us is imposed equal to the velocity of the fluid field interpolated at particle
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position, while in the case of a restart it is read from a particle restart file. In this subroutine

the Gaussian vector and in particular its seed for the generation of Gaussian random numbers

is also initialized. The random numbers generator has been taken from a library but we need to

pay some attention to its correct use. A first and unique call to the subroutine Zufalli provides

the initialization of the seed, and then at each time step a call to the subroutine Normalen

generates a vector, of the same length of the number of particles, of random numbers picked

from a Gaussian distribution of zero mean and unit variance. In the case of a restart, the call to

Zufalli is no more needed, but it’s necessary to read some parameters from the restart file before

calling the subroutine Normalen. These new quantities cited above are passed to the particle

tracker through a common block.

Parttrack

The subroutine Parttrack has been completely replaced because nothing was in common with

the old one. In Figure 5.2 the structure of the subroutine Parttrack is sketched with all its own

PARTTRACK

GETFLUIDVEL CALCULATE

DERIVATIVES

NORMALEN

LAGCAR LAGES#

REBOUNDS

Figure 5.2: Structure of the subroutine parttrack

subroutines called in the order from left to right. First of all the subroutines Getfluidvel and

Calculatederivatives are called, which convert the fluid velocity and velocity derivatives from

spectral to physical space and return as outputs the velocity field at grid nodes and the deriva-

tives of all velocity components in all three directions at grid nodes. This fluid field is the one

just advanced in time, so at time tn+1. For the first order scheme discussed in the previous

chapter, we need fluid quantities frozen at time tn, so it is necessary at the end of each time step

to store all fluid quantities in vectors like UOLD (the same for derivatives), which will be used

in the next step for tracking. Fluid quantities at time tn+1 are used only in the second order

scheme for the correction step.



5.2. Stochastic module 56

Next, we find the call to Normalen, which as previously said, generates a vector of random num-

bers picked from a Gaussian distribution.

The subroutine Lagcar provides the calculation of the diffusion coefficient, say BX(nset, n, i)

and of all the large scale terms appearing in the stochastic equation for Us, stored in the vector

PIIL(nset, n, i). In particular in PIIL we store the term− 1
ρf

∂〈p〉L
∂xi

dt+(〈Up,j〉L − 〈Uj〉L) ∂〈Ui〉L∂xj
dt

in Eq. 3.1.3, which in the discretized equations corresponds to the term Tni C
n
i in Table 4.3. The

following procedure is adopted to evaluate these terms, see Berrouk et al.[19]

- Known the velocity and the velocity derivatives from LES solver, subgrid dissipation and

kinetic energy are evaluated through the relations

εr = −τij
∂〈Ui〉L
∂xj

= (CS∆)2|S|3 (5.2.1)

and

kSGS = Cε(∆εr)
2/3 (5.2.2)

where Cε ≈ 1 is a model constant and CS ≈ 0.065 is the Smagorinsky constant (see Kim &

Moin [17]) and ∆ is the grid spacing. The second equality in Eq. 5.2.1 has been obtained

using the Smagorinsky model for τ . S is the module of the resolved rate of strain tensor

|S| = |2〈Sij〉L〈Sij〉L|1/2 with 〈Sij〉L =
1

2

(∂〈Ui〉L
∂xj

+
∂〈Uj〉L
∂xi

)
(5.2.3)

- The quantities 〈Up〉L and 〈Ur〉L are evaluated by the subroutine Lagstat accordingly to Eq.

4.0.1, i.e. for each cell of the domain the above quantities are summed for each particle

within the cell and then we divide for the number of particles in the cell. In this way we

recover LES Eulerian quantities.

- The Lagrangian time scale TL is computed by the relation

TL =
(1

2
+

3

4
C0

)−1 kSGS
εr

(5.2.4)

Then the modified time scale Ti is computed by multiplying TL by the Csanady’s factor

Ti = TL

(
1 + β2

i

|〈Ur〉L|2

2kSGS/3

)−1/2

, (5.2.5)
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- The diffusion coefficient attached to each particle is computed through the relation

BXi =

√
εr

(
C0bi +

2

3
(bi − 1)

)
(5.2.6)

where bi is simply bi = TL/Ti.

- Finally, the term PIIL, which contains the gradient of pressure and the term coming from

the crossing trajectory effect, is computed for each particle.

All the quantities recalled above are intended to be interpolated at particle position in case of in-

terpolation. For further explaining about the different types of interpolation techniques adopted

see Chapter 6.

The next subroutine called in Parttrack is Lages, which provides time advancement of parti-

cle velocity and position through the numerical scheme showed in the previous chapter, using

quantities calculated in Lagcar. The term TiCi appearing in the numerical scheme in Table 4.3

is assembled multiplying the previous calculated PIIL by Ti and summing the fluid velocity

at particle position. Then the Stokes number of particles is calculated including the Reynolds

number dependence

τ+
p =

St

(1 + 0.15Re0.687)
(5.2.7)

Finally we assemble all terms necessary for the time advancement scheme, see Table 4.3, and we

obtain particles position, velocity and velocity seen at tn+1.

Going back to Parttrack, the last call at each time step is to the subroutine Rebounds which

calculates rebounds for particles that at time tn+1 would be out of the domain. For particles

leaving the domain in the homogeneous directions, i.e. x and y, we simply relocate them at

the beginning of the domain ensuring periodic boundary conditions. Instead, for particles that

would be beyond channel walls, i.e. z direction, we apply a condition of elastic rebound for

particle position and velocity, while we assign to Us the velocity of the fluid from the LES solver

interpolated at new particle position.

If we are dealing with the second order scheme for time advancement, the procedure is a bit

more articulated: up to Lagcar it is exactly the same, but then instead of calling Lages we call

Lages2 twice. The first time is for the prediction step and to store some terms necessary for the

correction step (the terms that in Table 4.4 appear with the apex n). The second call is for the

correction step, using fluid field from LES at tn+1. The position is not corrected because it is

already computed with a second order accuracy.
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For a better comprehension of the implementation work see Appendix B where the main sub-

routines listed above are shown.

5.3 Mathematical validation

After the classical checks by printing quantities to see if every passage in the calculus was

done correctly, a stronger mathematical validation has been done. We ask, in fact, the numerical

solution to be consistent with the analytical solution in case of constant coefficients. We use also

this test case with constant coefficients to check if the numerical schemes are consistent with the

limit cases.

5.3.1 Preliminary study

Let us consider an isotropic case where Ci(t,xp) = 0 and where the initial conditions are

given by xp(0) = Up(0) = Us(0) = 0. In this case the system,


dxp(t) = Up dt

dUp(t) =
1

τp
(Us − Up) dt

dUs(t) = − 1

T
Us dt+ σdW (t)

(5.3.1)

admits xp(t) = Ω(t), Up(t) = Γ(t) and Us(t) = γ(t) as a solution, see Table 4.1. These random

variables are Gaussian and they have zero mean and known variances, see Table 4.2. As a matter

of fact, all second order moments (variances) are increasing functions of time with the following

asymptotes 

〈Ω2(t)〉 −−−→
t→∞

σ2θ2(T − τp)2t+B

〈Γ2(t)〉 −−−→
t→∞

σ2T

2

T

T + τp

〈γ2(t)〉 −−−→
t→∞

σ2T

2

(5.3.2)

where the constant B is defined as

B =
σ2θ2

2(T + τp)

(
T 3 + τ3

p − 4(T − τp)2(T + τp)− 4
T 2τ2

p

T + τp

)
(5.3.3)

In the stationary case, that is as time goes to infinity, the velocities become stationary processes,

and one can verify the well-known Tchen formulas which give a relation between the energy of
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the particles, the energy of the fluid seen and the velocity covariance

〈U2
p (t)〉

〈U2
s (t)〉

=
T

T + τp
and 〈Up(t)Us(t)〉 = 〈U2

p (t)〉 (5.3.4)

The equality, in the stationary case, between the energy of the particles and the velocity covari-

ance, can be easily obtained noticing that

〈Γ(t)γ(t)〉 −−−→
t→∞

σ2T

2

T

T + τp
(5.3.5)

5.3.2 Limit cases

We now verify that the two numerical schemes (first and second order) fulfill the above re-

quirements, that is (i) the numerical scheme gives the exact solution when the coefficients are

constant and (ii) the numerical scheme is consistent in the limit cases. The values taken by the

(constant) coefficients in the different cases are presented in Table 5.1. It can be seen that the

time step is constant and therefore the separation of scales is obtained by varying the coefficients:

in this numerical example, it is considered that there is a separation of scales when the ratio

between the smallest one and the greatest one is roughly 10−2.

In practice, the code is modified in order to simulate the trajectories in a domain which can

case τp(s) T (s) σ(m/s3/2) ∆t(s)

general case 10−1 2 · 10−1 101 10−3

limit case (i) 10−5 10−1 101 10−3

limit case (ii) 10−1 10−5 103 10−3

limit case (iii) 2 · 10−5 10−5 103 10−3

limit case (iv) 10−1 10−15 101 10−3

Table 5.1: Numerical simulation for system 5.3.1 in the general and limit cases. General case: ∆t� T, τp.
Limit case (i): τp � ∆t � T . Limit case (ii): T � ∆t � τp. Limit case (iii): T, τp � ∆t. Limit case
(iv): T → 0.

be considered as infinite. Since the purpose of the simulations is not the study of the statistical

error, only 6000 trajectories are simulated. It is observed that there is no difference between the

numerical solutions given by the first order and the second order scheme. This is not surprising

since, with constant coefficients, the correction step in the second order scheme is rigorously

the Euler scheme. The results are now displayed for the second order moments, the first order

moments are generally omitted since the solutions are Gaussian random variables of zero mean.

In the general case, Fig. 5.3, when ∆t� τp and ∆t� T , it can be seen that both schemes are
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Figure 5.3: General case with N = 6000: ∆t = 10−3s, T = 2 · 10−1s, τp = 10−1s, σ = 101m/s3/2
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Figure 5.4: Limit case (i) with N = 6000: ∆t = 10−3s, T = 10−1s, τp = 10−5s, σ = 101m/s3/2



5.3. Mathematical validation 61

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0  0.5  1  1.5  2

<
x

p
2
>

 (
m

2
/s

2
)

t (s)

position

sch1
sch2

analytical solution

(a)

 0.0001

 0.001

 0  0.5  1  1.5  2

<
U

p
2
>

 (
m

2
/s

2
)

t (s)

particle velocity

sch1
sch2

analytical solution

(b)

 4

 4.5

 5

 5.5

 6

 0  0.05  0.1  0.15  0.2  0.25

<
U

s
2
>

 (
m

2
/s

2
)

t (s)

fluid velocity seen

sch1
sch2

analytical solution

(c)

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0  0.05  0.1  0.15  0.2  0.25

<
U

p
U

s
>

 (
m

2
/s

2
)

t (s)

velocity covariance

sch1
sch2

analytical solution

(d)

Figure 5.5: Limit case (ii) with N = 6000: ∆t = 10−3s, T = 10−5s, τp = 10−1s, σ = 103m/s3/2
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Figure 5.6: Limit case (iii) with N = 6000: ∆t = 10−3s, T = 10−5s, τp = 2 · 10−5s, σ = 103m/s3/2
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Figure 5.7: Limit case (iv) with N = 6000: ∆t = 10−3s, T = 10−15s, τp = 10−1s, σ = 101m/s3/2
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Figure 5.8: Behaviour of first order moments in different cases.
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in agreement with the analytical solutions. One can verify that the limit values for 〈U2
p (t)〉 and

〈U2
s (t)〉 are correct, that is σ2T/2 = 10 and (σ2T/2)[T/(T + τp)] = 6.67, respectively, see Eq.

5.3.2. The results are also in line with the Tchen formulas, 〈U2
p (t)〉/〈U2

s (t)〉 = T/(T + τp) = 2/3

and 〈Up(t)Us(t)〉 = 〈U2
p (t)〉. Furthermore, the limit behaviour of 〈x2

p(t)〉 is correct since the slope

of the asymptote is (σT )2 = 4.

For limit case (i), Fig. 5.4, the fluid velocity seen and the particle velocity become identical.

The limit values for 〈U2
p (t)〉 and 〈U2

s (t)〉 are σ2T/2 = 5, and for 〈x2
p(t)〉 the slope of the asymp-

tote is (σT )2 = 1. The Tchen formulas are verified, 〈U2
p (t)〉/〈U2

s (t)〉 = T/(T + τp) ' 1 and

〈Up(t)Us(t)〉 = 〈U2
p (t)〉.

For limit case (ii), Fig. 5.5, the fluid velocity seen becomes a fast variable, that is, in the discrete

case, Us(t) is a Gaussian random variable of zero mean and variance σ2T/2 = 5. The asymptote

for 〈U2
p (t)〉 is (σT )2/(2τp) = 5 · 10−4, which is in agreement with Eq. 5.3.2. The slope of the

asymptote for 〈x2
p(t)〉 is (σT )2 = 10−4. As far as the Tchen formulas are concerned, it is verified

that 〈U2
p (t)〉/〈U2

s (t)〉 = T/(T + τp) ' 10−4 and 〈Up(t)Us(t)〉 = 〈U2
p (t)〉.

In the diffusive regime, limit case (iii), Fig. 5.6, both the fluid velocity seen, Us(t), and the par-

ticle velocity, Up(t), become fast variables, which in the discrete case gives two Gaussian random

variables of zero mean and of variances σ2T/2 = 5 and (σT )2[T/(T + τp)] = 1.67, respectively.

For 〈x2
p(t)〉, the slope of the asymptote is indeed given by (σT )2 = 10−4. The Tchen formulas

are also verified.

At last, in the laminar case, limit case (iv), Fig. 5.7 shows a laminar flow with an imposed

mean fluid velocity, 〈Us(t)〉 = 1m/s. It is seen that the asymptotes obtained for 〈Up(t)〉

and 〈xp(t)〉 are in agreement with the results derived in Eq. 4.3.5, 〈Up(t)〉 → 〈Us(t)〉 and

〈xp(t)〉 → 〈xp(t)〉 = t− 0.1 when t→∞. Furthermore, the numerical behaviour of the variances

shows that the dynamics of the particles is deterministic.

Finally, as far as the first order moments are concerned, Fig. 5.8 shows that the numerical values

obtained are in line with the zero mean result.

5.4 Discretization error

We limit ourselves here to the study of the time discretization error, to show that the first-

and second-order numerical scheme developed above, have the expected order of convergence.

It’s necessary, first of all, to recall the different sources of error occurring in a stochastic particle-

mesh method.
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The total error depends on three numerical parameters: ∆t for time discretization, ∆x for space

discretization and N for the evaluations of statistical quantities by a finite set of particles. As

explained by Chibbaro et al.[20], the total error (for 〈f(Z)〉, the expected value of a functional

of Z) is, at time t = T

ε(T ) = 〈f(ZT )〉 − {f(ZT )}N,∆x (5.4.1)

where ZT is the approximation of ZT after time integration (operator T in Chapter 4) and

{ }N,∆x is the approximation of the expected value. The total error, which is a random variable,

can thus be decomposed as follows

ε(T ) = εN (T ) + ε∆t(T ) + ε∆x(T ) + ε∞(T ) (5.4.2)

These numerical errors are:

- The statistical error

εN (T ) = 〈{f(ZT )}N,∆x〉 − {f(ZT )}N,∆x (5.4.3)

which is inherent to all Monte-Carlo methods. The statistical error is random and its

asymptotic behaviour is given by the central limit theorem.

- The bias error

ε∞(T ) = {f(ZT )}∞,∆x − 〈{f(ZT )}N,∆x〉 (5.4.4)

The bias, which is a deterministic error, is the difference between the mean value of a

quantity for a finite number of particles and the mean value for infinitely many particles,

all other parameter being unchanged.

- The time discretization error

ε∆t(T ) = 〈f(ZT )〉 − 〈f(ZT )〉 (5.4.5)

where 〈f(ZT )〉 = {f(ZT )}∞,0. This deterministic error is due to the numerical integration

in time of the stochastic differential system (operator T in Chapter 4).

- The space discretization error

ε∆x(T ) = 〈f(ZT )〉 − {f(ZT )}∞,∆x (5.4.6)
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This deterministic error is due to the exchange of information between the mesh and the

particles (A and P operators, and of course F for the fluid, see Chapter 4).

The study of the discretization error has to be performed in a numerical case where the influence

of other sources of error is negligible, in other words one has to make sure that the error is almost

deterministic. In the following, ideal cases will be chosen where there is no exchange between the

mesh and the particles, and therefore no spatial discretization error is present, i.e. ε∆x(T ) = 0.

In addition, the ideal system will be linear, which implies the elimination of the bias in the

numerical procedure, i.e. ε∞(T ) = 0. In such cases, the statistical and the time discretization

error can be studied. From Eqs. 5.4.3-5.4.6, for our particular test case we obtain

{f(ZT )}N,∆x = {f(ZT )}N =
1

N

N∑
i=1

f(Z
i

T ) (5.4.7)

where Z
i

T represents the value of Zt at time t = T for trajectory i. Therefore the statistical error

can be written

εN (T ) = 〈f(ZT )〉 − 1

N

N∑
i=1

f(Z
i

T ) (5.4.8)

The central limit theorem tells us that for a sufficiently large number of trajectories, this random

variable converges towards a Gaussian random variable G

εN (T ) −−−−→
N→∞

σ[f(ZT )]√
N

G (5.4.9)

where σ[f(ZT )] is the r.m.s value of f(ZT ). In summary, in our particular case, the total error

is the sum of the statistical and the time discretization error. From previous consideration,

one can state that the total error is a random variable which, for a sufficiently large number of

trajectories, becomes Gaussian. Its mean and r.m.s. values are given by

〈ε(T )〉 = ε∆t(T ) , σ[ε(T )] =
σ[f(ZT )]√

N
(5.4.10)

In the simulations, the following approximation is made

〈ε(T )〉 = ε∆t(T ) ' {ε(T )}M (5.4.11)
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which means that M simulations with N trajectories each are performed. The previous approx-

imation induces a numerical error εM (T ) defined by

εM (T ) = 〈ε(T )〉 − {ε(T )}M (5.4.12)

and from the central limit theorem, this random variable converges, for M and N sufficiently

large, towards a Gaussian random variable

εM (T ) −−−−→
M→∞

σ[ε(T )]√
M
G −−−−−−→

M,N→∞

σ[f(ZT )]√
M ·N

G (5.4.13)

Then we chose a confidence interval and we establish the values of M and N necessary to

evaluate the error with a given precision (see Chibbao et al.[20]). It is now obvious that a good

approximation of the time discretization error can only be obtained when M and N are large

and σ[f(ZT )] is small.

In the following study we will evaluate the error of the second order moments, known them from

an analytical solution. So we will have

f(ZT ) = x2
p(T ) f(ZT ) = U2

p (T ) f(ZT ) = U2
s (T ) f(ZT ) = Up(T )Us(T ) (5.4.14)

and the error will be computed by

〈ε(T )〉 = 〈f(ZT )〉 − {{f(ZT )}N}M (5.4.15)

We now look for a system with non-constant coefficients and known analytical solutions.

5.4.1 Analytical solutions

Let us assume that the coefficients depend on time only and look for analytical solutions to

the following system 
dxp(t) = Up dt

dUp(t) = −β(t)(Up − Us) dt

dUs(t) = −α(t)Us dt+ σ(t)dW (t)

(5.4.16)
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The exact solutions to system 5.4.16 are given by

xp(t) = xp(t0) +

∫ t

t0

Up(s) ds

Up(t) = Up(t0)exp[−G(t)] + exp[−G(t)]

∫ t

t0

exp[G(s)]β(s)Us(s) ds

Us(t) = Us(t0)exp[−F (t)] + exp[−F (t)]

∫ t

t0

exp[F (s)]σ(s) dW (s) (5.4.17)

where the functions F (t) and G(t) are given by

F (t) =

∫ t

t0

α(s) ds and G(t) =

∫ t

t0

β(s) ds (5.4.18)

Consequently, the functions α(t), β(t) and σ(t) must be chosen in such way so that the moments

of first and second order, which will be used for the study of the numerical error, can be calculated

explicitly. Some constraints must be, however, satisfied so that the system has a physical meaning

(positiveness of coefficients, smoothness, etc.). As already suggested by Haworth and Pope [21],

in a study of a simpler system, the basic idea is to take for α(t) and β(t) functions whose

primitives are logarithms. This property eliminates the exponentials. Let us write

α(t) =
a

α0t+ 1
and β(t) =

b

α0t+ 1
(5.4.19)

where a, b and α0 take the real positive values and therefore

F (t) = [ln(α0s+ 1)k]tt0 andG(t) = [ln(α0s+ 1)n]tt0 (5.4.20)

where k = a/α0 and n = b/α0. For the diffusion coefficient, an expression which allows control

(in time) and exact integration, is proposed, that is

σ(t) = σ0(α0t+ 1)p (5.4.21)

where σ0 takes real positive values and p is real. We set zero initial condition on all variables

at time t0. This implies that all first order moments are equal to zero. In Tables 5.2-5.3

the analytical solution and the computation of second order moments that can be carried out

following Eq. 4.4.3 are shown.
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5.4.2 Numerical study

The numerical values of the parameters of system 5.4.16 chosen in the simulation of the gen-

eral case and the limit cases are displayed in Table 5.4. These values are essentially chosen (i)

to respect the constraints of separation of scales in the different cases and (ii) to make sure that

the system remains stochastic, that is the diffusion coefficient is of the same order of magnitude

of the drift term. For the first order scheme, N = 3 · 104 trajectories, M = 100 simulations, a

α0 a b σ0 p

general case 0.5 0.1 0.25 0.5 −1.2
limit case (i) 0.5 0.1 250 0.5 −1.2
limit case (ii) 0.5 200 0.25 50 −1.2
limit case (iii) 0.5 200 250 50 −1.2

Table 5.4: Numerical values of the parameters of system 5.4.16 in the general and limit cases.

final time T = 2.4s and the time steps ∆t = [0.4, 0.2, 0.1, 0.05] were used. For the second order

scheme, of course more trajectories and simulations were necessary, N = 9 · 105 trajectories,

M = 200 simulations, a final time T = 3.2s with larger time steps ∆t = [0.8, 0.4, 0.2, 0.1] were

used. The final time for the second order scheme was different from that of the first order scheme

only to match an integer number with the largest time step, ∆t = 0.8.

Figures 5.9-5.12 show the results of the simulations in all tested cases, with the error normalized

with its maximum value. Fig. 5.9 shows that both schemes have the expected order of conver-

gence in the general case. For limit case (i), Fig. 5.10 shows once again that the expected order

of convergence is obtained. When the fluid velocity seen becomes a fast variable, limit case (ii),

the second order scheme becomes a first order scheme, see Fig. 5.11. The same phenomenon

is observed in limit case (iii), where both fluid velocity seen and particle velocity become fast

variables, Fig. 5.12.
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Figure 5.9: Study of the discretization error in the general case: α0 = 0.5, a = 0.1, b = 0.25, σ0 = 0.5,
p = −1.2. For sch1: N = 3 · 104, M = 100, T = 2.4s. For sch2: N = 9 · 105, M = 200, T = 3.2s.

 0.01

 0.1

 1

 10

 0.1  1

<
ε
(T

)>
/<

ε
(T

)>
m

a
x
 (

m
2
)

∆t (s)

position

sch1
slope1

sch2
slope2

(a)

 0.01

 0.1

 1

 10

 0.1  1

<
ε
(T

)>
/<

ε
(T

)>
m

a
x
 (

m
2
)

∆t (s)

particle velocity

sch1
slope1

sch2
slope2

(b)

 0.01

 0.1

 1

 10

 0.1  1

<
ε
(T

)>
/<

ε
(T

)>
m

a
x
 (

m
2
)

∆t (s)

fluid velocity seen

sch1
slope1

sch2
slope2

(c)

 0.01

 0.1

 1

 10

 0.1  1

<
ε
(T

)>
/<

ε
(T

)>
m

a
x
 (

m
2
)

∆t (s)

velocity covariance

sch1
slope1

sch2
slope2

(d)

Figure 5.10: Study of the discretization error in the limit case (i): α0 = 0.5, a = 0.1, b = 250, σ0 = 0.5,
p = −1.2. For sch1: N = 3 · 104, M = 100, T = 2.4s. For sch2: N = 9 · 105, M = 200, T = 3.2s.
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Figure 5.11: Study of the discretization error in the limit case (ii): α0 = 0.5, a = 200, b = 0.25, σ0 = 50,
p = −1.2. For sch1: N = 3 · 104, M = 100, T = 2.4s. For sch2: N = 9 · 105, M = 200, T = 3.2s.
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Figure 5.12: Study of the discretization error in the limit case (iii): α0 = 0.5, a = 200, b = 250, σ0 = 50,
p = −1.2. For sch1: N = 3 · 104, M = 100, T = 2.4s. For sch2: N = 9 · 105, M = 200, T = 3.2s.



Chapter 6

Results

The flow into which particles are introduced, is a turbulent channel flow of air, assumed

incompressible and newtonian. The main fluid physical parameters are summarized in Table 6.2.

Physical details

The reference geometry consists in two infinite flat parallel walls reported in Fig. 4.1, with

periodic boundary conditions on the fluid velocity field in stream-wise and span-wise directions,

and no slip conditions at the walls. The simulations have been performed on a grid with a

coarsening factor with respect to the DNS of CF = 8, at the shear Reynolds number Reτ = 300.

When not specified, LES is resolved with no subgrid model.

Channel properties
Pressure difference ∆p (−0.9060, 0, 0) [Pa]
Domain dimensions L1 = 4πh 251.33 [mm]

L2 = 2πh 125.66 [mm]
L3 = 2h 40 [mm]

L+
1 = L1Reτ/h 3770 [w.u.]

L+
2 = L2Reτ/h 1885 [w.u.]

L+
3 = L3Reτ/h 600 [w.u.]

Table 6.1: Channel properties.
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Fluid properties
Density ρf 1.3 [kg/m3]

Kinematic viscosity νf 1.57 · 10−5 [m2/s]
Shear Reynolds number Reτ 300

Friction velocity uτ 0.2355 [m/s]

Table 6.2: Fluid properties.

6.1 Test of consistency

We now proceed with some tests which will give a safe basis for future works. In particular

we carried out some tests of consistency, to verify if in the limit case where τp → 0 (in pre-

vious sections limit case 1), the particles really behave as fluid particles. We are particularly

interested in particle distribution, which should remain constant in the whole channel because

of the conservation of mass, and in velocity statistics calculated from particle velocity. We call

duplicate fields all the quantities that are calculated from the LES solver and from particles.

Such duplicate quantities should be nearly the same.

To calculate the filtered velocity starting from particle velocity, an averaging operation has to

be performed. Thus, we averaged the velocity of all the particles residing within an ensemble

domain of characteristic length ∆E = ∆, where ∆ = 3
√

∆x∆y∆z, centered on the same cell of

the LES discretization exactly in the same manner as we did in the integration of the SDEs.

First of all the sensitivity of the model to the interpolation technique has been studied. We

proposed three types of approach

• no-interpolation: for each particle we identify the cell in which it is residing and we assign

to the filtered quantities appearing in the model equation, the value calculated from the

LES solver at one node of the cell (so, no interpolation is done). This type of zeroth order

projection is also not symmetric

• NGP-interpolation (nearest grid point): it is still a zeroth order interpolation, but instead

of the value of one node it is assigned the averaging of all the nodes of the identified cell.

This one has the advantage that it is still very simple and symmetric

• interpolation: we interpolated the LES quantities at particles position with a first order

interpolation technique

In the following, all quantities with an overbar are Reynolds averaged quantities, which means

that an averaging operation over homogeneous directions and in time has been made. We also
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recall that 〈u2〉L indicates the root mean square of the filtered velocity, thus

〈u2〉L =

√
(〈U〉L − 〈U〉L)2 (6.1.1)

while τL(u, u) is a subgrid stress, i.e.

τL(u, u) =
1

N

N∑
i=1

(Us − 〈Us〉L)× (Us − 〈Us〉L) (6.1.2)

where N is the number of particles in the cell considered.

Focusing in particular on particles distribution in the domain we see from Figure 6.1 that the
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Figure 6.1: Reynolds averaged quantities (∆t+ = 3000) obtained with different particle model: no-
interpolation of the LES and particles quantities, NGP and full interpolation of first order. We consider
a mean number of particles per cell of N = 40, initially random distributed over the entire channel. The
grid used for the evaluation of the statistics is fixed and it is the same used for LES. (a) particle density,
(b) filtered streamwise velocity, (c) filtered streamwise velocity rms, (d) xx component of the subgrid
stress tensor.
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only suitable model is the one with interpolation, because of particle spurious concentration in

the other cases. Even in the case with interpolation there is a lack of particle near the wall of

the order of 10% which is not fully satisfactory but acceptable (in particular if we think that

we are interested in inertial particles and not fluid particles). It is even less worrying if we plot

the particle density normalized with particle position at beginning of the time interval used for

averaging, Fig. 6.2, from which we can see that the spurious drift occurs in the transient initial

phase. Also the other fluid statistics show a better behaviour in the case of interpolation. The

velocity root mean square is clearly underestimated with interpolation with respect to the LES

one. It is interesting to compare the results also with the DNS case. The results are much more

closer, see Fig. 6.3. Instantaneous correlation between LES and VFDF fields are quite good as

we can see in Fig. 6.4. A final remark to make is on subgrid stresses. They are higher for the

stochastic model but it is worth remembering that they have a different status.

From now on we will focus for further tests only on the model with interpolation. Some tests
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Figure 6.2: Reynolds averaged density (∆t+ = 3000) normalized with particle position at the beginning
of the time interval used to averaging. We consider a mean number of particles per cell of N = 40,
initially random distributed over the entire channel. The grid used for the evaluation of the statistics is
fixed and it is the same used for LES.

are then made to evaluate the importance of some terms in the model equations. In particular we

focused our attention on the filtered velocity in the mean drift term, see Eq. 3.2.1. We studied

the differences in interpolating it at particle position or not, Fig. 6.5. Further tests are made to

see the importance of the term of pressure gradient, Fig. 6.5. As we can see from Figure 6.5 it
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Figure 6.4: Instantaneous velocity correlation. Scatter plot of velocity evaluated from LES and from
VFDF at cell center: (a) stream-wise component, (b) wall normal component. We consider a mean
number of particles per cell of N = 40, initially random distributed over the entire channel. The grid
used for the evaluation of the statistics is fixed and it is the same used for LES.
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Figure 6.5: Reynolds averaged density (∆t+ = 3000) obtained in different test case: (a) test on 〈Uf 〉L,
(b) test on pressure gradient. We consider a mean number of particles per cell of N = 40, initially
random distributed over the entire channel. The grid used for the evaluation of the statistics is fixed
and it is the same used for LES.

seems that the pressure gradient has a negligible effect in this limit case. Further statistics are

not reported for these two test cases because there are not significant differences between them

and the reference case.

For reliable statistics with minimal numerical dispersion, it is desirable to minimize the size

Figure 6.6: Grid used for evaluating statistics with variable cell length: ∆E is the length of the new grid
centered on the nodes of the previous one, ∆ is the length of the previous grid.

of ensemble domain and maximize the number of the Monte Carlo particles. In this way the
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Figure 6.7: Reynolds averaged quantities (∆t+ = 3000, NE = 40) obtained for different cell length. (a)
filtered streamwise velocity, (b) filtered streamwise velocity rms, (c) xx component of the subgrid stress
tensor, (d) xz component of the subgrid stress tensor

ensemble statistics would tend to the desired filtered values

〈a〉E =
1

NE

∑
n∈∆E

a(n) NE→∞−−−−−→
∆E→0

〈a〉

τE(a, b) =
1

NE

∑
n∈∆E

(a(n) − 〈a〉E)(b(n) − 〈b〉E)
NE→∞−−−−−→
∆E→0

τ(a, b)

(6.1.3)

where a(n), b(n) denotes the information carried by the nth particle. So, we also carried out a

study in which we varied the length of the cell adopted to calculate the filtered values, and a

study in which we fixed the cell length and we varied the number of particles per cell. In the first

study (and only in that one) we used a different grid with respect to the one used in LES. It is

a staggered grid centered on the nodes of the LES one, see Fig. 6.6. From results in Fig. 6.7 we

notice that, according to our expectations, the root mean square of the filtered velocity increases
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Figure 6.8: Reynolds averaged quantities (∆t+ = 3000, ∆E = ∆) obtained for different number of
particles per cell. (a) filtered streamwise velocity, (b) filtered streamwise velocity rms, (c) xx component
of the subgrid stress tensor, (d) xz component of the subgrid stress tensor.

reducing the cell length, while the subgrid stresses decrease. Instead, we can notice from Fig.

6.8 that in the evaluation of averaged statistics the number of particles per cell does not affect

so much the results. This can be explained with the central limit theorem which states that the

statistical error decreases with the inverse of the square root of N , thus with an increasing factor

of 2 on the number of particles per cell, we obtain only a reduction of the error of the order

1/
√

2. Since we are averaging in homogeneous directions and in time over 2000 time steps, this

has the same effect of increasing particles number when we are evaluating the statistics and so

increasing the number of particles has a negligible effect with respect to this operation, except for

the pure statistical error on instantaneous quantities (because the number of particles in a cell

affects the averaging to evaluate the filtered quantities that are necessary in time advancement,

see Eq. 3.2.1).
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Figure 6.9: Reynolds averaged quantities (∆t+ = 3000, N = 40) obtained with different fluid subgrid
models for LES: no-model, smagorinsky and germano. (a) particle density, (b) filtered stream-wise
velocity, (c) xx component of the subgrid stress tensor, (d) xz component of the subgrid stress tensor.

Further tests are carried out to see the importance of the model used for subgrid stresses in

LES. Fig .6.9 reports the result for three different case: no model, Smagorinsky and Germano.

This test is necessary since the stochastic VFDF model is not perfectly consistent with none

of them when coupled in a hybrid algorithm like our. So it is useful to see which one suites

better the stochastic model and gives the better results. An evident result is that coupling with

Smagorinsky model is quite worse than the other two in predicting particles density over the

channel. The other statistics on velocity are instead very similar in each of the three cases. We

still notice high subgrid stresses when evaluated from VFDF, but as explained above it is not

so meaningful. Fig. 6.10 shows qualitatively agreement between velocity fluctuations from LES

and from VFDF, as was already shown from Fig. 6.4. We can also see that in the VFDF case

the entity of fluctuations is a bit smaller than in the LES case, which is in agreement with the
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Figure 6.10: Fluid streaks in the near wall region. Low-speed (resp. high-speed) streaks are rendered
using colored contours of negative (resp. positive) streamwise fluctuating velocity u′x on a horizontal
plane at z+ = 10 from the wall. Panel (a) shows the streaky structures obtained from the LES; panel
(b) shows the streaky structures from VFDF. LES is computed without subgrid model, and a number
of particle per cell N = 40 is adopted.

lower values of the velocity root mean square in Fig. 6.3.
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6.2 Test with inertial particles

6.2.1 Simulation details

Physical details

Flow properties are the same enunciated in the previous section. From the data reported in

Tables 6.2-6.3 for the physical details, the parameters of the particles tracked are summed up in

Table 6.4 and obtained from the Stokes number as follows:

τp =
ρpd

2
p

18µf
, τf =

ν

u2
τ

(6.2.1)

St = τ+
p =

τp
τf

=
(dpRe

H

)2 ρp
18ρf

(6.2.2)

dp =
H

Re

√
18ρfSt

ρp
(6.2.3)

d+
p = dp

Re

H
=

√
18ρfSt

ρp
(6.2.4)

Particle properties
Density ρp 1000 [kg/m3]

Stokes number St 1, 5, 25
Number of particles N 1310720

Table 6.3: Particle properties.

St τp d+
p dp

[s] [w.u.] [µm]
1 0.283 · 10−3 0.153 1
5 1.415 · 10−3 0.342 22.8
25 7.077 · 10−3 0.763 50.9

Table 6.4: Particle parameters.

Numerical details

For the LES solver we used two different grids as reported in Tab. 6.5, one with a coarsening

factor of 8 in all three directions with respect to the DNS grid, and the other with a coarsening
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factor of 8 in the homogeneous directions and of 4 in wall-normal direction. We remark that

with such a coarse LES grid, we are moving away from DNS, which means a very severe test

case. Particles are set into the channel randomly in a flow fully developed and concentrations

of particles in wall normal direction are computed at different times and compared in the three

different case: DNS with particle tracking, LES with particle tracking with no subgrid model for

particles, LES with stochastic particle tracking. The parameters of the simulations are reported

in Tab. 6.5. DNS results have been picked by a database of the University of Udine. As we

are concerned with a Monte-Carlo simulation, a large number of particles is requested to ensure

a small statistical error, so we have chosen the same number of particles used in the fluid test

case. We found that there was no significance difference between a number of particles per cell

of Npc = 40 and Npc = 80. Thus we chose Npc = 40 which gives a total number of particle in

the domain of N = 1310720 with a 323 grid.

Simulation parameters
Time step ∆t 5 · 10−4 [s]

∆t+ = ∆tu2
τ/νf 1.766 [w.u.]

Time computed ∆t1 = t1 − tSTART 0.6029 [s]
∆t+1 = t+1 − t

+
START 2130 [w.u.]

∆t2 = t2 − tSTART 1.223 [s]
∆t+1 = t+1 − t

+
START 4320 [w.u.]

DNS grid dimension n1 × n2 × n3 256× 256× 257
CF8 grid dimension n1 × n2 × n3 32× 32× 33
CF84 grid dimension n1 × n2 × n3 32× 32× 65

Table 6.5: Simulation parameters.

6.2.2 Results

We limit ourselves in this work to observe results concerning particle preferential concentra-

tion because it is our final purpose. First of all we report particle concentration for the CF8

grid on which we performed a LES with no subgrid model coupled with our stochastic particle

tracker. The results shown in Fig. 6.11 are not satisfactory at all because are even worse than

that with no subgrid model for particles. This led us to modify the diffusion term in the stochas-

tic equation for Us. In fact, following Minier and Peirano [16], we can see that they adopt a

slightly different diffusion term (the difference is the presence of k̃/k) of the form

Bs,ij =

√
〈ε〉
(
C0bik̃/k +

2

3
(bik̃/k − 1)

)
(6.2.5)
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Figure 6.11: Particle concentration obtained with DNS (DNS), LES without SGS modeling in the particle
equation of motion (LES) and LES with stochastic model for particles (MODEL). Tests on a coarse
computational grid of 32× 32× 33 grid nodes (CF8). In panel (a) St = 1 particles, in panel (b) St = 5
particles and in panel (c) St = 25 particles. Concentrations are computed at ∆t+1 = t+1 − t

+
START =

2130 [w.u.].
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with

k̃ =
3

2

∑3
i=1 bi〈u2

i 〉∑3
i=1 bi

(6.2.6)

This term is developed in the RANS context, but adopting the rules of stochastic calculus and

of filters, we can readapt it to the LES case. If we follow the same rules adopted by Minier and

Peirano, we can construct that term in three steps:

- We first consider the simplest case of stationary isotropic turbulence, when mean velocities

can be taken as zero. The stationarity constraint, d〈U2
s 〉L/dt = 0, implies that B2

s =

2〈U2
s 〉L/T ∗L. Then by substituting the expression for T ∗L = TL/b, we find

Bs =
√
C0bεr (6.2.7)

- For the case of fluid velocity seen stationary but not necessarily isotropic, the above closure

of the diffusion term is not satisfactory. Due to the anisotropy, the drift and diffusion

terms do not balance to ensure that the stationarity constraint is respected. To resolve

this difficulty a modified SGS kinetic energy is introduced

k̃SGS =
3

2

∑3
i=1 bi[〈U2

s,i〉L − 〈Us,i〈Us,i〉L〉L]∑3
i=1 bi

(6.2.8)

Using the modified SGS kinetic energy of the fluid velocity seen, the diffusion term is

modified

Bs,i =

√
C0biεr

k̃SGS
kSGS

(6.2.9)

- The next step is to consider the general case of a non-stationary turbulence. A new

constraint has to be taken into account, d〈U2
s 〉L/dt = −2εr. Thanks to stochastic calculus

and filtering rules we obtain for the diffusion term

Bs,i =

√
εr

(
C0bi

k̃SGS
kSGS

+
2

3

(
bi
k̃SGS
kSGS

− 1
))

(6.2.10)

with also the expression of the time scal T ∗L slightly modified

T ∗L =
(1

2
+

3

4
C0

)−1 kSGS
εr

(6.2.11)
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Figure 6.12: Particle concentration obtained with DNS (DNS), LES without SGS modeling in the
particle equation of motion (LES) and LES with stochastic model for particles (MODEL). Tests on
a coarse computational grid of 32 × 32 × 33 grid nodes (CF8). In panels (a)-(b) St = 1 particles, in
panel (c)-(d) St = 5 particles and in panel (e)-(f) St = 25 particles. Concentrations are computed at
∆t+1 = t+1 − t

+
START = 2130 [w.u.] on left panels and at ∆t+2 = t+2 − t

+
START = 4320 [w.u.] on right

panels.
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Figure 6.13: Particle concentration obtained with DNS (DNS), LES without SGS modeling in the particle
equation of motion (LES) and LES with stochastic model for particles (MODEL). Tests on a coarse
computational grid of 32× 32× 65 grid nodes (CF84). In panel (a) St = 1 particles, in panel (b) St = 5
particles and in panel (c) St = 25 particles. Concentrations are computed at ∆t+1 = t+1 − t

+
START =

2130 [w.u.].
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The new diffusion term improves significantly the accuracy of concentrations, taking it back to

the level of the LES with no subgrid model for particles, see Fig. 6.12 . There is still some

trouble with the first point near the wall where the concentration is always underestimated, but

we can see that for low Stokes number the model behaves quite well and concentration profiles

are improved with respect to the LES case with no subgrid model for particles.

For completeness we show also the results obtained with the CF84 grid in Fig. 6.13 . Unfortu-

nately we do not see significant improvements, but we underline that even this grid spacing is

very coarse for a Reτ = 300, and that usually the number of grid nodes is not reduced in the

wall-normal direction, if compared with DNS, while we decided to do it for a more severe test.

Finally we tried to achieve some improvement modifying slightly the way we computed dissipa-

tion. First of all we add, in the computation of dissipation through Smagorinsky formula, the

Van Driest factor (wall function) which should improve the behaviour near the wall. Secondly

we changed procedure, calculating dissipation from Us instead that from the LES flow field. In

fact, up to this point we are calculating dissipation through the Smagorinsky formula using in

it the LES flow field for velocity derivatives and then we evaluate subgrid kinetic energy from

relations

εr = −τij
∂〈Ui〉L
∂xj

= (CS∆)2|S|3 (6.2.12)

and

kSGS = Cε(∆εr)
2/3 (6.2.13)

We now invert the procedure calculating first the SGS kinetic energy from Us

kSGS =
1

2

3∑
i=1

τii =
1

2

3∑
i=1

[〈U2
s,i〉L − 〈Us,i〉L〈Us,i〉L] (6.2.14)

then we evaluate dissipation by

εr =
(kSGS
Cε

)3/2 1

∆
(6.2.15)

We found in this case a better behaviour for all Stokes number and in particular for small

particles the concentration profiles are very close to the DNS ones.
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Figure 6.14: Particle concentration obtained with DNS, LES with stochastic model for particles
(MODEL), LES with stochastic model for particles and wall function for dissipation (MODEL-wall
func.) and LES with stochastic model for particles and new computed dissipation (MODEL-dissip.).
Tests on a coarse computational grid of 32 × 32 × 33 grid nodes (CF8). In panel (a) St = 1 parti-
cles, in panel (b) St = 5 particles and in panel (c) St = 25 particles. Concentrations are computed at
∆t+1 = t+1 − t

+
START = 2130 [w.u.].



Chapter 7

Conclusions

We now recall what has been done throughout this work and focusing the attention on the

interesting results achieved. After the work of implementation a mathematical validation has

been carried out, showing a correct agreement between numerical results and analytical solution,

which made us sure that there were not errors in the simulation of Gaussian vectors, see Sec.

4.4. We obtained this result for the general case and for all limit cases discussed in Sec. 3.2.

Moreover we analysed the time discretization error, finding the expected accuracy respectively

for the first and the second order schemes in time. We found also that when the fluid velocity

seen becomes a fast variable, the second order scheme has a first order accuracy, as expected

from analytical solution of the limit systems.

After this first part of mathematical validation, we carried out physical tests, starting with

the fluid limit case, i.e. τp → 0. We required, in this limit case, particles to behave as fluid

particles, so that fields extracted from particle quantities should be the same as those calculated

from LES. We compared density, which should remain constant for the conservation of mass,

and other statistical moments (mean velocity, velocity root mean square, subgrid stresses tensor

components). Results showed that interpolation is a must, mainly because with other simpler

techniques the constraint of constant density was not satisfied. Mean velocity is always in perfect

agreement with the one calculated from LES, while velocity root mean square of the filtered field

is always lower, but closer to the DNS one. We showed also that, as for statistical quantities,

there is a close similarity also for instantaneous fields, i.e. there is a strong correlation between

LES velocity field and VFDF velocity field. Further tests have been made on sensitivity to the

number of particle per cell and to the grid spacing in evaluating statistics. We found that there

91
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was not much sensitivity to the number of particles, while reducing grid spacing (the ideal case

would be ∆E → 0) a convergence towards LES quantities is reached, especially for subgrid stress

tensor components. Finally we made a sensitivity test to the subgrid model used in LES and

we found that Smagorinsky model should be avoided because it leads to non constant particle

concentration.

Finally, tests with inertial particles have completed the picture. Initial poor results have been

considerably improved by adding the modified SGS kinetic energy in the diffusion term, k̃SGS ,

and changing the way we computed dissipation. Results are pretty good, especially with small

inertial particles, which is in agreement with the good consistency of the limit case of fluid

particles. Thus, we may only limit us to change and improve the part that takes into account

the inertia of particles, keeping the rest of the model as a good starting model. We recall also

that in the model formulated there are some constants that have been left unchanged in our

simulations and that can be tuned with further tests to improve the results. Further tests with

different grids are also needed to see if we have a better behaviour on finer grids.

The stochastic model studied in this work is probably the simplest that can be formulated because

our aim is to refine the results without complicating too much the procedure. However this is

not the only possible one, so it is not excluded that better results are possible with this class of

models.

Finally we underline that this is a stochastic model based on one-point, one-time pdfs. To recover

better coherent structures in the near wall layer it would be more powerful to have two-points

pdfs in order to take into account spatial correlations. However this class of model is much more

complicated. Another way to proceed is to use three different types of models depending on the

position of the particle in the channel: if the particle is in the central region of the channel we

can use the model adopted in this work, while if the particle is in the near wall region we have

to chose between different possibilities. Having the particle the same probability to be within

a sweep or an ejection, we simply assign to the particle a unitary wall normal velocity directed

towards the center of the channel or towards the wall, each one with one half probability. This

reasoning seems to work, but results for a 3D channel are not yet available.
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Appendix A

Diffusion processes

A diffusion process is a particular kind of stochastic process. It is a continuous-time Markov

process with continuous sample paths.

Markov processes

Let U(t) for t ≥ t0 be a stochastic process with one-time PDF f(V ; t). We introduce N times

and consider the PDF of U(tN ) conditioned on U(t) at the earlier times, which is denoted by

fN−1(VN ; tN |VN−1, tN−1, VN−2, tN−2, ..., V1, t1) (A.0.1)

The PDF of U(t) conditioned on a single past time is denoted by, for example

f1(VN ; tN |VN−1, tN−1) (A.0.2)

By definition, if U(t) is a Markov process then these conditional PDFs are equal

fN−1(VN ; tN |VN−1, tN−1, VN−2, tN−2, ..., V1, t1) = f1(VN ; tN |VN−1, tN−1) (A.0.3)

This means that, given U(tN−1) = VN−1, knowledge of previous values provides no further

information about the future value U(tN ).
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The Chapman-Kolmogorov equation

For any process, from the definition of conditional PDFs, we have

f1(V3; t3|V1, t1) =

∫ +∞

−∞
f2(V3; t3|V2, t2, V1, t1)f1(V2; t2|V1, t1)dV2 (A.0.4)

For a Markov process, Eq. A.0.3 can be used to replace f2 by f1(V3; t3|V2, t2) which leads to the

Chapman-Kolmogorov equation

f1(V3; t3|V1, t1) =

∫ +∞

−∞
f1(V3; t3|V2, t2)f1(V2; t2|V1, t1)dV2 (A.0.5)

Increments

A useful concept is the increment in a process: the increment in a positive time interval h is

defined by

∆hU(t) = U(t+ h)− U(t) (A.0.6)

It is important to note that h is positive and that the increment is defined forward in time. A

process can be considered as a sum of its increments

U(tN ) = U(t0) + ∆t1−t0U(t0) + ∆t2−t1U(t1) + ...+ ∆tN−tN−1
U(tN−1) (A.0.7)

The PDF of the increment ∆hU(t), conditional on U(t) = V , is denoted by g(V̂ ;h, V, t). If h is

taken to be t3 − t2, then U(t2) can be re-expressed as

U(t2) = U(t3)−∆hU(t2) (A.0.8)

and the first conditional PDF on the right-hand side of Eq. A.0.5 is

f1(V3; t2 + h|V3 − V̂ , t2) = g(V̂ ;h, V3 − V̂ , t2) (A.0.9)

Thus the Chapman-Kolmogorov equation can be rewritten as

f1(V ; t2 + h|V1, t1) =

∫ +∞

−∞
g(V̂ ;h, V − V̂ , t2)f1(V − V̂ ; t2|V1, t1)dV̂ (A.0.10)
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Diffusion processes

There are qualitatively different kinds of continuous-time Markov processes, which are distin-

guished from each other by the behaviours of their increments ∆hU(t) in the limit as h tends to

zero. One defining property of a diffusion process is that its sample paths are continuous. More

precisely, for every ε > 0

lim
h→0

1

h
P{|∆hU(t)| > ε|U(t) = V } = 0 (A.0.11)

If they exist, the infinitesimal parameter of a process are defined by

Bn(V, t) = lim
h→0

1

h
〈[∆hU(t)]n|U(t) = V 〉 = lim

h→0

1

h

∫ +∞

−∞
V̂ ng(V̂ ;h, V, t)dV̂ (A.0.12)

for n = 1, 2, .... In addition to Eq. A.0.11, the defining properties of a diffusion process are that

the drift coefficient

a(V, t) = B1(V, t) (A.0.13)

and the diffusion coefficient

b(V, t)2 = B2(V, t) (A.0.14)

exist, and that the remaining infinitesimal parameters are zero

Bn(V, t) = 0, for n ≥ 3 (A.0.15)

A diffusion process with b(V, t) 6= 0 is clearly nowhere differentiable, for the fact that 〈[∆hU(t)]2/h〉

tends to a positive limit.

The Kramers-Moyal equation

In the Chapman-Kolmogorov equation, both g and f1 on the right-hand side involve the

argument V − V̂ . Expanding these quantities in a Taylor series about V yields

f1(V ; t2 + h|V1, t1) = f1(V ; t2|V1, t1)

+

∫ +∞

−∞

∞∑
n=1

(−V̂ )n

n!

∂n

∂V n

[
g(V̂ ;h, V, t2)f1(V ; t2|V1, t1)

]
dV̂ (A.0.16)
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By dividing by h, taking the limit h → 0, and using Eq. A.0.12, we obtain the Kramers-Moyal

equation

∂

∂t
f1(V ; t|V1, t1) =

∞∑
n=1

(−1)n

n!

∂n

∂V n
[Bn(V, t)f1(V ; t|V1, t1)] (A.0.17)

The Fokker-Planck equation

For a diffusion process, all of the parameters Bn are zero, except for the drift and the diffusion.

In this case the Kramers-Moyal equation reduces to the Fokker-Planck equation

∂

∂t
f1(V ; t|V1, t1) = − ∂

∂V
[a(V, t)f1(V ; t|V1, t1)] +

1

2

∂2

∂V 2
[b(V, t)2f1(V ; t|V1, t1)] (A.0.18)

The corresponding equation for the marginal PDF f(V, t) is obtained by multiplying by f(V1, t1)

and integrating over V1

∂

∂t
f(V ; t) = − ∂

∂V
[a(V, t)f(V ; t)] +

1

2

∂2

∂V 2
[b(V, t)2f(V ; t)] (A.0.19)

Stochastic differential equations

Because diffusion processes are not differentiable, the standard tools of differential calculus

cannot be applied. Instead of differential calculus, the appropriate method is the Ito calculus;

and instead of being described by differential equations, diffusion processes are described by

stochastic differential equations.

The infinitesimal increment of the process U(t) is defined by

dU(t) = U(t+ dt)− U(t) (A.0.20)

where dt is a positive infinitesimal time interval. For the Wiener process in particular, we have

the following properties:

• the process has independent increments: (W (t3)−W (t2)) and (W (t1)−W (t0)) are inde-

pendent when t0 < t1 < t2 < t3

• the trajectories of the process are continuous functions (almost everywhere) but not differ-

entiable

• the increments of the Wiener process dW (t) are Gaussian random variables, with zero

mean and a variance equal to dt.
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〈dW (t)〉 = 0 〈(dW (t))2〉 = dt (A.0.21)

Now consider the process U(t) defined by the initial condition U(t0) = U0, and by the increment

dU(t) = a[U(t), t]dt+ b[U(t), t]dW (t) (A.0.22)

It is readily verified that the process U(t) defined by this stochastic differential equation is a

diffusion process, and as implied by the notation, the drift and diffusion coefficient are a(V, t)

and b(V, t)2.



Appendix B

Subroutines

SUBROUTINE PARTTRACK(DELTAT)

C################################################
inc lude ’ . . /FLW/ p r e c i s i o n . h ’
i n c lude ’ . . /FLW/param . h ’
i n c lude ’ par t i c l eparam . h ’
i n c lude ’common . h ’

C################################################
C These common b locks d i r e c t l y from FLOWSB are f o r the Fluid v e l o c i t y
C f i e l d :

COMMON / CONTRL / NTIMAX, CPMAX, XMON, YMON, ZMON, NSTART, NDUMP,
: NTIM, TIME, IT1 , IT2 , NPRINT(10) , NPLOT(10 ) , NLPLOT(10) , LDUMP
COMMON /ALFTOLD/ NTMOLD
COMMON /BUFFER/ A(38∗NXH∗NY∗NZ) , LBUFF, LFIELD
COMMON / POINT / IPU , IPV , IPW, IPPR , IPS1 ( 2 ) , IPS2 ( 2 ) , IPS3 ( 2 ) ,
: IPWO(17) , IPST ( 2 ) , IPT
COMMON /TABLES/ AK1(NX) , AK2(NY) , DT, BETA,GAMA, RE, REU,

& GRADPX, GRADPY, AL1 , AL2 , WAIT(NZ) , ISUB , UREF, CU1,CU2,
& RELAX, ZCOORD(NZ) , SPARE(10 ) , EDV, EDVOLD, VD, NORMAL,
& CT1, CT2, EDD, EDDOLD, XCOORD(NX)

C################################################
C Common block added f o r the S t o c h a s t i c t r a ck ing

COMMON / STOCHASTIC / U OLD , DUDX OLD , DVDX OLD , DWDXOLD ,
& DPDX OLD

C################################################
C Common block added to see when s t a t i o n a r y s t a t e i s reached f o r the
C p a r t i c l e s

COMMON / STATIONARY / SONDA
C################################################
C Fluid Ve loc i ty and Pressure f i e l d

r e a l ∗8 , dimension (−1:NX+3,−1:NY+3,−1:NZ+2 ,3) : : U,DUDX,DVDX
r e a l ∗8 , dimension (−1:NX+3,−1:NY+3,−1:NZ+2 ,3) : : DWDX,DPDX
r e a l ∗8 , dimension (−1:NX+3,−1:NY+3,−1:NZ+2 ,3) : : U OLD,DUDX OLD

99



100

r e a l ∗8 , dimension (−1:NX+3,−1:NY+3,−1:NZ+2 ,3) : : DVDX OLD,DWDXOLD
r e a l ∗8 , dimension (−1:NX+3,−1:NY+3,−1:NZ+2 ,3) : : DPDX OLD

r e a l ∗8 SONDA

r e a l ∗8 DELTAT

r e a l ∗8 , dimension ( npsetmax , 1 : npmax , 3 ) : : TLAG , BX , PIIL
r e a l ∗8 , dimension ( npsetmax , 1 : npmax , 3 ) : : TSUF , TSUP
r e a l ∗8 , dimension ( npsetmax , 1 : npmax) : : TAUP
i n t e g e r : : NOR , STATSPACE

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C Ass ign ing the time step from Excute1

DTP = DELTAT

C TIMEP i s ac tua l i n s t a n t in non−dimens iona l (+) un i t s
C (TIME i s in non−dimens iona l (−) un i t s
C [ taken from FLOWSB] )

TIMEP = TIME∗RE

CALL GETFLUIDVEL(U)
CALL CALCULATEDERIVATIVES(DUDX,DVDX,DWDX,DPDX)

DO ID = 1 ,9
CALL NORMALEN(nm, VAGAUS(1 , ID ) )

ENDDO

NOR=0

IF (INTERPART.EQ. 0 ) THEN

CALL LAGCAR2(U OLD,DUDX OLD,DVDX OLD,DWDX OLD,DPDX OLD,
& TLAG,BX, PIIL , 1 )

ELSEIF (INTERPART.EQ. 1 ) THEN

CALL LAGCAR2NGP(U OLD,DUDX OLD,DVDX OLD,DWDX OLD,DPDX OLD,
& TLAG,BX, PIIL , 1 )

ELSEIF (INTERPART.EQ. 2 ) THEN

CALL LAGCAR2INT(U OLD,DUDX OLD,DVDX OLD,DWDX OLD,DPDX OLD,
& TLAG,BX, PIIL , 1 )

ENDIF

10 CONTINUE

NOR=NOR+1

IF (NORDRE.EQ. 1 ) THEN
CALL LAGES(U OLD,DUDX OLD,DVDX OLD,DWDX OLD,
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& TLAG,BX, PIIL ,TAUP)
CALL REBOUNDS(U OLD)

ELSE
CALL LAGES2(U,DUDX,DVDX,DWDX,DPDX,U OLD,

& DUDX OLD,DVDX OLD,DWDX OLD,
& TLAG,BX, PIIL ,TSUP,TSUF,TAUP,NOR)

IF (NOR.EQ. 1 ) THEN
CALL REBOUNDS(U OLD)

ELSE
CALL REBOUNDS(U)

ENDIF

ENDIF

IF ( (NOR.EQ. 1 ) .AND. (NORDRE.EQ. 2 ) ) GOTO 10

DO ID=1,3
DO I =1,NX
DO J=1,NY
DO K=1,NZ

U OLD( I , J ,K, ID)=U( I , J ,K, ID)
DUDX OLD( I , J ,K, ID)=DUDX( I , J ,K, ID)
DVDX OLD( I , J ,K, ID)=DVDX( I , J ,K, ID)
DWDXOLD( I , J ,K, ID)=DWDX( I , J ,K, ID)
DPDX OLD( I , J ,K, ID)=DPDX( I , J ,K, ID)

ENDDO
ENDDO
ENDDO
ENDDO

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C−−−WRITE SONDA FILE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C

IF (NSTEP.EQ. 0 ) THEN
OPEN(199 ,FILE=’ sonda s ta t ’ ,STATUS=’UNKNOWN’ )

ENDIF
IF ( (MOD( (NTIM−NTMOLD) , 1 0 ) .EQ. 0 ) .OR. (NTIM.EQ.NTIMAX) )THEN

WRITE(199 ,∗ ) NTIM,SONDA
ENDIF
IF (NTIM.EQ.NTIMAX) THEN

CLOSE(199 ,STATUS=’KEEP’ )
ENDIF

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C−−−WRITE OUTPUT FILES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C

IF (OUT.GT. 0 . )THEN
IF ( (MOD( (NTIM−NTMOLD) ,OUT) .EQ. 0 ) .OR. (NTIM.EQ.NTIMAX) )THEN
WRITE(∗ ,∗ ) ’TRY: DUMPING PARTICLE−OUTPUTFILE ’ ,NTIM
CALL PARTOUT

ENDIF
ENDIF

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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C−−−WRITE OUTPUT FILES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
WRITE(∗ ,∗ )ICONC
IF (ICONC.GT. 0 . )THEN

WRITE(∗ ,∗ ) ’TRY: Ca l cu l a t ing concent ra t i on p r o f i l e s ’ ,NTIM
CALL PARTICLE CONCENTRATION(NTIM,NTMOLD,NTIMAX,TIME)

ENDIF

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C−−−WRITE RESTART FILES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C

IF (REST.GT. 0 . )THEN
IF ( (MOD( (NTIM−NTMOLD) ,REST) .EQ. 0 ) .OR. (NTIM.EQ.NTIMAX) )THEN
WRITE(∗ ,∗ ) ’TRY: DUMPING PARTICLE−RESTARTFILE ’ ,NTIM
CALL PARTWRITEREST(NTIM)

ENDIF
ENDIF

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C−−−CALCULATE STATISTICS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C

STATSPACE = 10
IF ( (MOD( (NTIM−NTMOLD) ,STATSPACE) .EQ. 0 ) .OR. (NTIM.EQ.NTIMAX) .OR.

& (NSTEP.EQ. 0 ) )THEN
CALL PARTSTATISTICS(STATSPACE)

ENDIF

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C−−−UPDATE OF PARTICLE POSITION AND VELOCITY−−−−−−−−−−−−−−−−−−−−−−−−−−−C

DO npset =1,nsetnumber
DO n=1,nm

DO j =1,3
P0( j , npset , n ) = P( j , npset , n )
V0( j , npset , n ) = V( j , npset , n )

ENDDO
ENDDO

ENDDO

RETURN
END

SUBROUTINE LAGES(U,DUDX,DVDX,DWDX,TLAG,BX, PIIL ,TAUP)
C#######################################################################

inc lude ’ . . /FLW/ p r e c i s i o n . h ’
i n c lude ’ . . /FLW/param . h ’
i n c lude ’ par t i c l eparam . h ’
i n c lude ’common . h ’

C#######################################################################
C Fluid Ve loc i ty f i e l d

r e a l ∗8 , dimension (−1:NX+3,−1:NY+3,−1:NZ+2 ,3) : : U,DUDX,DVDX,DWDX

r e a l ∗8 , dimension ( npsetmax , 1 : npmax , 3 ) : : TLAG , BX , PIIL
r e a l ∗8 : : VITF
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r e a l ∗8 : : AA , BB , CC , DD , EE
r e a l ∗8 : : AUX1 , AUX2 ,AUX3 , AUX4 , AUX5 , AUX6
r e a l ∗8 : : AUX7 , AUX8 , AUX9 , AUX10 , AUX11
r e a l ∗8 : : TER1F , TER2F , TER3F
r e a l ∗8 : : TER1P , TER2P , TER3P , TER5P
r e a l ∗8 : : TER1X , TER2X , TER3X , TER5X
r e a l ∗8 : : TCI
r e a l ∗8 : : GAMA2 , OMEGAM , OMEGA2
r e a l ∗8 : : GRGA2 , GAGAM , GAOME
r e a l ∗8 : : P11 , P21 , P22 , P31 , P32 , P33
r e a l ∗8 : : REYP
r e a l ∗8 : : TAUP( npsetmax , npmax)
i n t e g e r : : ID , NPSET , N
i n t e g e r : : IPARTX , IPARTY , IPARTZ

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
DO ID = 1 ,3

DO NPSET=1,nsetnumber
DO N = 1 ,nm

ETTPA(ID ,NPSET,N)=ETTP(ID ,NPSET,N)
ENDDO

ENDDO

ENDDO

DO ID = 1 ,3

DO NPSET=1,nsetnumber
DO N = 1 ,nm

CALL LOCATEPART(IPARTX,IPARTY,IPARTZ,
& P0(1 ,NPSET,N) , P0(2 ,NPSET,N) , P0(3 ,NPSET,N) )

IF (INTERPART.EQ. 0 ) THEN

IF ( ID .EQ. 1 ) VITF = U(IPARTX,IPARTY,IPARTZ, ID)
IF ( ID .EQ. 2 ) VITF = U(IPARTX,IPARTY,IPARTZ, ID)
IF ( ID .EQ. 3 ) VITF = U(IPARTX,IPARTY,IPARTZ, ID)

ELSEIF (INTERPART.EQ. 1 ) THEN

IF ( ID .EQ. 1 ) VITF = ( U(IPARTX,IPARTY,IPARTZ, ID) +
& U(IPARTX+1,IPARTY,IPARTZ, ID) +
& U(IPARTX,IPARTY+1,IPARTZ, ID) +
& U(IPARTX+1,IPARTY+1,IPARTZ, ID) +
& U(IPARTX,IPARTY,IPARTZ+1,ID) +
& U(IPARTX+1,IPARTY,IPARTZ+1,ID) +
& U(IPARTX,IPARTY+1,IPARTZ+1,ID) +
& U(IPARTX+1,IPARTY+1,IPARTZ+1,ID) ) / 8 .D0

IF ( ID .EQ. 2 ) VITF = ( U(IPARTX,IPARTY,IPARTZ, ID) +
& U(IPARTX+1,IPARTY,IPARTZ, ID) +
& U(IPARTX,IPARTY+1,IPARTZ, ID) +
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& U(IPARTX+1,IPARTY+1,IPARTZ, ID) +
& U(IPARTX,IPARTY,IPARTZ+1,ID) +
& U(IPARTX+1,IPARTY,IPARTZ+1,ID) +
& U(IPARTX,IPARTY+1,IPARTZ+1,ID) +
& U(IPARTX+1,IPARTY+1,IPARTZ+1,ID) ) / 8 .D0

IF ( ID .EQ. 3 ) VITF = ( U(IPARTX,IPARTY,IPARTZ, ID) +
& U(IPARTX+1,IPARTY,IPARTZ, ID) +
& U(IPARTX,IPARTY+1,IPARTZ, ID) +
& U(IPARTX+1,IPARTY+1,IPARTZ, ID) +
& U(IPARTX,IPARTY,IPARTZ+1,ID) +
& U(IPARTX+1,IPARTY,IPARTZ+1,ID) +
& U(IPARTX,IPARTY+1,IPARTZ+1,ID) +
& U(IPARTX+1,IPARTY+1,IPARTZ+1,ID) ) / 8 .D0

ELSEIF (INTERPART.EQ. 2 ) THEN

IF ( ID .EQ. 1 ) VITF = UPART(1 ,NPSET,N)
IF ( ID .EQ. 2 ) VITF = UPART(2 ,NPSET,N)
IF ( ID .EQ. 3 ) VITF = UPART(3 ,NPSET,N)

ENDIF

C#######################################################################
C Calcu la t i on o f TiCi

TCI = PIIL (NPSET,N, ID) ∗ TLAG(NPSET,N, ID) + VITF

C#######################################################################
C Calco lo de i c o e f f i c i e n t i / t e rmin i d e t e r m i n i s t i c i

REYP = ( ( ETTPA(1 ,NPSET,N) − V0(1 ,NPSET,N) )∗∗2 . +
& ( ETTPA(2 ,NPSET,N) − V0(2 ,NPSET,N) )∗∗2 . +
& ( ETTPA(3 ,NPSET,N) − V0(3 ,NPSET,N) )∗∗2 . ) ∗ ∗ ( 0 . 5 )
& ∗ DPP(NPSET)

TAUP(NPSET,N) = TAUPP(NPSET) / ( 1 .D0 + 0.15D0∗(REYP∗∗0.687D0) )

AUX1 = EXP( −DTP / TAUP(NPSET,N) )
AUX2 = EXP( −DTP / TLAG(NPSET,N, ID ) )
AUX3 = TLAG(NPSET,N, ID) / (TLAG(NPSET,N, ID)−TAUP(NPSET,N) )

AUX4 = TLAG(NPSET,N, ID) / (TLAG(NPSET,N, ID)+TAUP(NPSET,N) )
AUX5 = TLAG(NPSET,N, ID) ∗ ( 1 . D0−AUX2)
AUX6 = BX(NPSET,N, ID) ∗ BX(NPSET,N, ID) ∗ TLAG(NPSET,N, ID)

AUX7 = TLAG(NPSET,N, ID) − TAUP(NPSET,N)
AUX8 = BX(NPSET,N, ID) ∗ BX(NPSET,N, ID) ∗ AUX3∗∗2

C Terms f o r the t r a j e c t o r i e s

AA = TAUP(NPSET,N) ∗ ( 1 .D0 − AUX1)
BB = (AUX5 − AA) ∗ AUX3
CC = DTP − AA − BB
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C ETTPA i s the f l u i d model led v e l o c i t y
TER1X = AA ∗ V0(ID ,NPSET,N)
TER2X = BB ∗ ETTPA(ID ,NPSET,N)
TER3X = CC ∗ TCI

C Terms f o r the f l u i d

TER1F = ETTPA(ID ,NPSET,N) ∗ AUX2
TER2F = TCI ∗ ( 1 . D0−AUX2)

C Terms f o r p a r t i c l e v e l o c i t y

DD = AUX3 ∗ (AUX2 − AUX1)
EE = 1 .D0 − AUX1

TER1P = V0(ID ,NPSET,N) ∗ AUX1
TER2P = ETTPA(ID ,NPSET,N) ∗ DD
TER3P = TCI ∗ (EE−DD)

C Ca l cu l a t i on o f the c o r r e l a t i o n matrix

GAMA2 = 0.5D0 ∗ ( 1 .D0 − AUX2∗AUX2 )
OMEGAM = 0.5D0 ∗ AUX4 ∗ ( AUX5 − AUX2∗AA )

& −0.5D0 ∗ AUX2 ∗ BB
OMEGAM = OMEGAM ∗ SQRT(AUX6)

OMEGA2 = AUX7
& ∗ (AUX7∗DTP − 2 .D0 ∗
& (TLAG(NPSET,N, ID)∗AUX5−TAUP(NPSET,N)∗AA) )
& + 0.5D0 ∗ TLAG(NPSET,N, ID) ∗ TLAG(NPSET,N, ID) ∗ AUX5
& ∗ ( 1 .D0 + AUX2)
& + 0.5D0 ∗ TAUP(NPSET,N) ∗ TAUP(NPSET,N) ∗ AA ∗
& ( 1 .D0+AUX1) − 2 .D0 ∗ AUX4 ∗ TLAG(NPSET,N, ID) ∗
& TAUP(NPSET,N) ∗ TAUP(NPSET,N) ∗ ( 1 .D0 − AUX1∗AUX2)

OMEGA2 = AUX8 ∗ OMEGA2

IF (ABS(GAMA2) .GT. 0 ) THEN

P21 = OMEGAM / SQRT(GAMA2)
P22 = OMEGA2 − P21∗∗2

P22 = SQRT( MAX( 0 . D0 , P22 ) )

ELSE
P21 = 0 .D0
P22 = 0 .D0

ENDIF

TER5X = P21 ∗ VAGAUS(N, ID) + P22 ∗ VAGAUS(N,3+ID)
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P11 = SQRT( GAMA2∗AUX6 )
TER3F = P11∗VAGAUS(N, ID)

AUX9 = 0.5D0 ∗ TLAG(NPSET,N, ID) ∗ ( 1 .D0 − AUX2∗AUX2)
AUX10 = 0 .5D0 ∗ TAUP(NPSET,N) ∗ ( 1 .D0 − AUX1∗AUX1)
AUX11 = TAUP(NPSET,N) ∗ TLAG(NPSET,N, ID) ∗

& ( 1 .D0 − AUX1∗AUX2)
& / (TAUP(NPSET,N) + TLAG(NPSET,N, ID ) )

GRGA2 = (AUX9 − 2 .D0∗AUX11 + AUX10) ∗ AUX8
GAGAM = (AUX9 − AUX11) ∗ (AUX8 / AUX3)
GAOME = ( (TLAG(NPSET,N, ID) − TAUP(NPSET,N) ) ∗ (AUX5 − AA)

& − TLAG(NPSET,N, ID) ∗ AUX9 − TAUP(NPSET,N) ∗ AUX10
& + (TLAG(NPSET,N, ID) + TAUP(NPSET,N) ) ∗ AUX11) ∗ AUX8

IF (P11 .GT. 0 ) THEN
P31 = GAGAM / P11

ELSE
P31 = 0 .D0

ENDIF

IF (P22 .GT. 0 ) THEN
P32 = (GAOME−P31∗P21) / P22

ELSE
P32 = 0 .D0

ENDIF

P33 = GRGA2 − P31∗∗2 − P32∗∗2

P33 = SQRT( MAX( 0 . D0 , P33 ) )

TER5P = P31 ∗ VAGAUS(N, ID)
& + P32 ∗ VAGAUS(N,3+ID)
& + P33 ∗ VAGAUS(N,6+ID)

C Time advancement
C−−−> t r a j e c t o r y

P(ID ,NPSET,N) = P0(ID ,NPSET,N)
& + TER1X + TER2X + TER3X + TER5X

C−−−> f l u i d v e l o c i t y

ETTP(ID ,NPSET,N) = TER1F + TER2F + TER3F

C−−−> p a r t i c l e v e l o c i t y

V(ID ,NPSET,N) = TER1P + TER2P + TER3P + TER5P

ENDDO
ENDDO
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ENDDO

RETURN
END
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