
UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria "Leonardo da Vinci"

Corso di Dottorato di Ricerca in

Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

HIDE: User centred Domotic evolution
toward Ambient Intelligence

Dario Russo

Anno 2015

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria "Leonardo da Vinci"

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

HIDE: User centred Domotic evolution
toward Ambient Intelligence

Autore:

Dario Russo

Relatori:

Prof. Stefano Giordano

Dott. Vittorio Miori

Anno 2015
SSD: ING-INF/03 - TELECOMUNICAZIONI

Sommario

La realizzazione degli obiettivi di ricerca del Pervasive computing e dell’Ambient Intelli-
gence (AmI) è ancora lontana dall’essere raggiunta soprattutto negli ambiti della Domo-
tica e delle relative applicazioni domestiche. Secondo la concezione dell’Ambient Intelli-
gence, le più avanzate tecnologie sono quelle che scompaiono: ciò significa che la tec-
nologia all’interno delle nostre case, dovrebbe essere integrata nell’ambiente e diventare
invisibile. L’intero ambiente fisico in cui gli utenti saranno immersi dovrà essere fornito di
un sistema informatico nascosto, dotato di software appropriato e in grado di mostrare un
comportamento intelligente. Recentemente sono inziate a comparire varie implementa-
zioni di questo tipo, ma poche di queste sono dedicate alla casa o agli ambienti di vita in
generale. Una probabile causa di ciò, condivisa in letteratura, è la segmentazione dei nu-
merosi standard e delle soluzioni proprietarie domotiche che distorgono il mercato, con
la conseguenza di un’offerta scarsa di dispositivi e presenza di sistemi non interoperabili.

L’obiettivo di questo lavoro di ricerca è quello di proporre una possibile soluzione
a tale problema, da un lato con la realizzazione di un sistema software progettato per
rendere eterogenei ed interoperabili i sistemi domotici nativamente incompatibili tra loro,
e dall’altro con l’ideazione e al messa in opera di un’applicazione software in grado di
apprendere il comportamento e le abitudini degli abitanti. Tale lavoro contribuisce atti-
vamente all’aumento del comfort e della sicurezza, anticipando e cercando di prevenire
possibili esigenze o situazioni di emergenza per la salute. Applicando tecniche di rico-
noscimento delle attività e di apprendimento automatico, il lavoro di ricerca si concentra
sulla messa in opera di un’applicazione che riesce ad apprendere i comportamenti e le
abitudini dell’utente, al fine di migliorare la sua qualità di vita. La soluzione proposta ope-
ra in un ambiente tecnologicamente arricchito, come ad esempio una casa domotica o
un edificio intelligente. L’applicazione realizzata, oltre a rendere la vita più comoda per
gli utenti normodotati, rappresenta una grande facilitazione per contribuire ad aumentare
l’autonomia e la sicurezza agli occupanti disabili o anziani e in particolare a chi soffre di
malattie croniche o è gravemente malato.

Il prototipo è stato sviluppato ed è attualmente funzionante presso il laboratorio di
Domotica del CNR di Pisa, dove è stato fedelmente ricreato un vero ambiente domestico.

I

II

Abstract

Pervasive Computing and Ambient Intelligence (AmI) visions are still far from being
achieved, especially with regard to Domotics and home applications. According to the
vision of Ambient Intelligence (AmI), the most advanced technologies are those that dis-
appear: at maturity, computer technology should become invisible. All the objects sur-
rounding us must possess sufficient computing capacity to interact with users, the sur-
roundings and each other. The entire physical environment in which users are immersed
should thus be a hidden computer system equipped with the appropriate software in or-
der to exhibit intelligent behavior. Even though many implementations have started to
appear in several contexts, few applications have been made available for the home en-
vironment and the general public. This is mainly due to the segmentation of standards
and proprietary solutions, which are currently confusing the market with a sparse offer of
uninteroperable devices and systems. Although modern houses are equipped with smart
technological appliances, still very few of these appliances can be seamlessly connected
to each other.

The objective of this research work is to take steps in these directions by proposing,
on the one hand, a software system designed to make today’s heterogeneous, mostly
incompatible domotic systems fully interoperable and, on the other hand, a feasible soft-
ware application able to learn the behavior and habits of home inhabitants in order to ac-
tively contribute to anticipating user needs, and preventing emergency situations for his
health. By applying machine learning techniques, the system offers a complete, ready-to-
use practical application that learns through interaction with the user in order to improve
life quality in a technological living environment, such as a house, a smart city and so on.
The proposed solution, besides making life more comfortable for users without particular
needs, represents an opportunity to provide greater autonomy and safety to disabled and
elderly occupants, especially the critically ill ones.

The prototype has been developed and is currently running at the Pisa CNR labora-
tory, where a home environment has been faithfully recreated.

Keywords: Ambient Intelligence, Interoperability, Domotics, Internet of Things, Ma-
chine Learning, Semantics, E-health.

III

IV

This work is dedicated to my little son Diego and to his magic smile.

Contents

1 Introduction . 1
1.1 Motivations . 1
1.2 Involved technologies . 4

1.2.1 Ambient Assisted Living . 4
Assistive Technologies . 5
Independent Living . 6

1.2.2 Ambient Intelligence . 6
1.2.3 Data Mining . 7
1.2.4 Digital ecosystem . 9
1.2.5 Domotics . 11
1.2.6 Internet Of Things . 12
1.2.7 Semantic web and ontologies . 13

Development of Ontologies . 14
Ontology editors . 18

1.2.8 Machine Learning . 19
1.3 Thesis Structure . 20

2 State of the art . 21
2.1 Ambient Assisted Living . 21

2.1.1 HERA . 21
2.1.2 HOMEdotOLD . 21
2.1.3 I2HOME . 22
2.1.4 MPower . 22

Use case methodology . 22
Requirement Analysis . 23

2.1.5 OASIS . 24
Use case methodology . 24
Requirement Analysis . 24

2.1.6 PERSONA . 25
Use case methodology . 26

Requirement Analysis . 28
2.1.7 SOPRANO . 30

Use case methodology . 30
Requirement Analysis . 31

2.1.8 universAAL . 32
Use case methodology . 34
Requirement Analysis . 35

2.2 Digital ecosystem . 38
2.2.1 DBE project . 39

DBE architecture . 39
DBE infrastructural services . 40

2.2.2 Meteor-S project . 42
The semantic . 42
The components . 43

2.3 Interoperability using semantics . 43
2.3.1 Introduction . 43
2.3.2 eBiz . 44

Introduction . 44
The architecture . 45

2.3.3 Kassetts . 48
Introduction . 48

2.3.4 Moda-ML . 49
2.4 Semantics for Domotics . 50

2.4.1 DogOnt . 50
2.4.2 SensorML . 51

2.5 Other works . 54

3 Architecture . 57
3.1 Introduction . 57
3.2 Dictionary . 58
3.3 Analysis requirements . 58
3.4 Use Case . 59
3.5 Network architecture . 61

3.5.1 Domotic agents . 63
3.5.2 User agents . 63
3.5.3 Intelligent agents . 64

3.6 Semantic approach . 64
3.7 Implementation tools . 65

3.7.1 Java . 65
3.7.2 JADE. 67
3.7.3 OWLAPI . 68

4 Domotic agent . 71
4.1 Introduction . 71

4.1.1 UPnP system . 71
Introduction . 71
UPnP technology . 72
The UPnP Device Architecture . 72

4.1.2 KNX system . 74
Introduction . 74
KNX Group address . 75
KNX Physical address . 75
KNX Specifications . 76
KNX Tools . 76
Interesting implementations . 77

4.2 Interactions with domotic bus . 77
4.3 Semantic layer . 79
4.4 IPv6 and IoT . 81

4.4.1 Introduction . 81
4.4.2 State of the art . 83
4.4.3 The IPv6 gateway . 84
4.4.4 The web interface . 85

5 User agent . 89
5.1 Introduction . 89
5.2 Semantic layer . 89
5.3 Track and identification of users . 90
5.4 User interaction with the environment . 92

6 Intelligent agent . 97
6.1 Introduction . 97

6.1.1 Associative rules . 99
Frequent Itemset Generation: Apriori . 99

6.2 Agent that learns and anticipates user needs . 100
6.2.1 Association rules manager . 100
6.2.2 Statistical rules manager . 104

6.3 Agent that anticipates user health emergencies . 107

7 Test and verification .111

8 Conclusions and future works .115
8.1 Future works . 116

References .119

List of Figures

2.1 MPower use case specifications . 23
2.2 OASIS use case specifications . 25
2.3 Use Case design in the Persona project . 26
2.4 Persona user requirements analysis process . 29
2.5 SOPRANO use case specifications . 31
2.6 The root concept map of the universAAL reference model 34
2.7 The root concept map of the universAAL reference model 35
2.8 UniversAAL use case specifications . 36
2.9 UniversAAL iterative process . 37
2.10 The eBiz architecture . 44
2.11 The eBiz architecture . 46
2.12 The eBiz use profile definition . 47
2.13 The eBiz recommended standards . 48
2.14 The DogOnt ontology . 51
2.15 The DogOnt architecture . 52
2.16 SensorML overview . 54

3.1 Hierarchy of actors . 59
3.2 Hierarchy of actors . 60
3.3 User use case diagram . 60
3.4 Use case diagram . 61
3.5 Agent class diagram . 62
3.6 Intelligent Agent is an Environmental Manager . 63
3.7 Ontological representation of the Lamp class, using UML 65
3.8 JADE behaviour model, using UML . 68
3.9 Generic JADE agent architecture . 69

4.1 The ontologies used to represent devices . 77
4.2 The Domotic Agent reads an event from the bus . 78
4.3 A screenshot of the ontology that defines the Dimmerling Lamp 80

4.4 A screenshot of the ontology that merges the DomOnt with knxDomOnt
ontologies for the KNX Domotic Agent . 81

4.5 Device callable functions . 86
4.6 Device function call . 87
4.7 Response of the device function call . 87

5.1 Class hierarchy of the ontology . 90
5.2 List of properties of the ontology . 91
5.3 Web interface used to control the home environment: light 93
5.4 Web interface used to control the home environment: light with radio buttons 94
5.5 Interface for Android used to control the home environment 94
5.6 The "Pronto" remote control . 95

6.1 Intelligent agent architecture . 98
6.2 Modules of the Intelligent agent . 101
6.3 The Apriori algorithm . 101
6.4 Association rules manager life-cycle . 103
6.5 Reinforcement algorithm . 105
6.6 Example of medical recommendations . 107
6.7 Creation of structures in Knowledge repository . 108
6.8 Filled structures in Knowledge repository . 108

7.1 A view of the ISTI-CNR laboratory . 111

1

Introduction

This work is the result of the research and the development of the activities that I have
conducted within the Socialize AAL European project, the Arianna "Industria 2015 - Made
in Italy" project, and Shell Italian Ministry of Education and of University project for the
development and strengthening program of national technology clusters.

My activities were conducted at the Domotics Lab of the Institute of Science and
Technologies of Information (ISTI) of the National Research Council of Italy (CNR) under
the responsibility and supervision of Dr. Vittorio Miori, with the collaboration of the TLC
Networks Research Group of the Information Engineering Department of the University
of Pisa under the responsibility and supervision of Prof. Stefano Giordano.

1.1 Motivations

Ubiquitous Computing and Ambient Intelligence (AmI) refer to a vision of the future infor-
mation society where humans will be surrounded by intelligent interfaces supported by
computing and networking technologies that will be everywhere and, largely thanks to the
miniaturization of computer components, embedded in objects such as furniture, clothes,
vehicles, roads and smart materials.

New advanced services will be created by exploiting the ability to make these objects
interact with other people’s objects and with the environment. Such technologies will be
designed to be ‘invisible’ to people, who will use them without even realizing it. Thus,
the actual computing capacity should remain in the background, in the periphery of our
attention, and should only move to the center if and when necessary.

In the near future the home will be a technologically rich environment able to offer
a wide range of network-based services through support middleware in gateways which
will make them discoverable by and accessible to residential environments. The domestic
network will connect all household appliances and displays regardless of manufacturer,
and will moreover interact with the personal area network and the body network of each
person in the home. Within homes, local networks with potentially different underlying
implementations can be combined, or at least managed, as one logical network. The

1

CHAPTER 1. INTRODUCTION

need to support interoperability services, such as bridges, gateways or adapters [63]
between different networks in the backbone, as well as in access and local networks, is
an essential prerequisite for all AmI applications. The AmI vision foresees that our homes
will contain a distributed network of intelligent devices that can adapt themselves so as
to satisfy and anticipate users’ needs. Thus, Ambient Intelligence refers to the presence
of a digital environment that is sensitive, adaptive and responsive to people’s presence.

Unfortunately, the state of the art of the Weiser Ubiquitous Computing vision [88] is
still far from becoming a reality, though research activities are continuously proposing
new services, algorithms and perspectives [1] able to provide ever more powerful and
sophisticated solutions.

If we focus on the home, Ambient Intelligence may be seen as the layer on top of the
domotics, per se. The aim of Ambient Intelligence is to progress from the mere program-
ming of isolated devices, to integrating them in order to achieve global, unified goals.
Home networks, that is, the specific Local Area Networks for home environments, in-
clude both networks to the home (access networks) and networks throughout the home.
The inter-working capabilities are required beyond house boundaries, towards external
services and towards other houses as nodes of a global network.

The current immaturity of the field of domotics and, more specifically, the lack of def-
inition of application requirements, have led to the development of a large number of ad
hoc proposals, which unfortunately are often limited and difficult to integrate. In order to
make the advent of genuine AmI applications possible, there is a crucial need to define
and develop a standard way forward. Although domotic and smart home technologies are
currently ready and operational, they have as yet not been able to garner a broad con-
sumer market, some of the main causes being the lack of standards and interoperability,
as well as the absence of any “must-have” new functionality provided at an appealing
cost.

Today’s e-health solutions provide important contributions to the health management
of the elderly and chronically ill within their own homes. Indeed, they provide for constant
monitoring of many vital parameters via portable sensors (inserted into shirts, bracelets,
watches, etc.), in order to be able to identify and opportunely signal any hazardous sit-
uation requiring intervention. In most cases, however, by the time the call for help is
issued, the emergency is already in progress. A system able to anticipate danger be-
fore life-threatening situations arise would certainly lead to a faster, and more effective
intervention. The ability to anticipate and recognize certain behaviors or events heralding
serious health problems in time can often save lives.

One interesting open issue regarding Home Automation and Ambient Intelligence is
related to recognizing unusual or dangerous situations in order to anticipate health prob-
lems or special individual home user needs. Indeed, every user has different behaviors
and habits that may depend on his preferences, inabilities or state of health. Such prob-
lems may be addressed by monitoring users’ habitual activities, which enables creating
rules-based profiles in order to capture and formalize their normal behavior. Such mon-
itoring activities can be carried out using a system based on machine learning, which

2

1.1. MOTIVATIONS

exploits artificial intelligence algorithms to learn user habits and build a knowledge base
that enables taking into account experiences accumulated during day-to-day activities.
However, many people have privacy concerns about having their behaviors monitored
[62], the rules for monitoring implementation and what information is transmitted and to
whom.

To make a system able to recognize any abnormal behaviour pattern and to antici-
pate user needs, the system should be provided by a software able to learn the behaviour
and habits of home inhabitants. This software should be an adaptive, context-aware ap-
plication that thus works in a fully interoperable environment. In order to anticipate and
recognize such situations, data on user activity and the surrounding environment need
to be contextualized and enhanced semantically. This aim can be achieved by exploiting
one of the most important paradigms underlying the Web 3.0: Semantic Intelligence [44].
The Semantic Web [11] is an Internet space that includes documents (or portions thereof)
describing the explicit relations between things, and containing semantic information in-
tended for automated processing by machines. Not only Web pages, but databases, pro-
grams, sensors and even household appliances will be able to present data, multimedia,
and status information in forms that powerful computing agents can use to search, filter
and prepare information in new and exciting ways. By way of definition then, in the Se-
mantic Web an ontology [7] is a partial conceptualization of a given knowledge domain,
shared by a community of users, that has been defined in a formal, machine-processable
language for the explicit purpose of sharing semantic information across automated sys-
tems.

The objective of this research work is to take steps in the direction of Internet Of
Things and Ambient Intelligence. The work proposes a feasible software application able
on the one hand, to abstract the peculiarities of underlying heterogeneous and natively
not interoperable domotic systems letting them co-exist and interwork, and on the other
hand, to learn the habits and behaviours of people in their own residence in order to
anticipate their needs, and hence to recognize any abnormal behaviour pattern signalling
potential imminent health crises, preventing emergency situations.

By applying semantic and machine learning techniques, the solution offers a complete
and ready-to-use practical application that learns through interaction with the user in
order to improve the quality of life in a technological living environment, such as a house,
a smart city and so on. The proposed solution is currently suitable both for application
to comfort and health issues. The solution represents an opportunity to provide greater
autonomy and safety to disabled and elderly occupants, especially the critically ill ones.

To this end, the system is endowed not only with knowledge of the devices and their
functions (knowing what a lamp, thermostat or switch means), but also with tools that
enable it to learn concepts such as room, furniture, object position and the repercussions
(effects) of the use of such objects in the environment in order to make possible to assign
to the system a specific goal to perform without however having to specify each single
action making it up. For these purposes, the semantic layer provides solutions for:

3

CHAPTER 1. INTRODUCTION

• semantic interoperability among heterogeneous technological systems and devices,
to mask their technological differences inside the framework;

• equipping the user environment, the domotic devices and their functionalities with
semantic capabilities;

• defining the position of domotic devices and furniture in order to communicate with
them using their location descriptions (e.g. the night-table lamp, the kitchen TV);

• modelling the effects within the environment caused by the domotic functions in order
to understand the impact that a device will have on the surrounding area.

The prototype has been developed and is currently running at the Pisa CNR labora-
tory, where a home environment has been faithfully recreated.

1.2 Involved technologies

The research area is evolving its interests following new programming approaches. In par-
ticular, during these recent years, many efforts were made by the research community
regarding Ambient Assisted Living, Ambient Intelligence, Data Mining, Digital Ecosys-
tem, Domotics, Internet Of Things, Machine Learning and Semantic web and ontologies
paradigms.

1.2.1 Ambient Assisted Living

Ambient Assisted Living (AAL) aims to extend the time people can live independently in
their home environment by increasing their autonomy and self-confidence, the discharge
of monotonously everyday activities, to monitor and care for the elderly or ill persons, to
enhance the security and to save resources.

Ambient Assisted Living (AAL) is an European Initiative based on the Article 169 of
the European Treaty that was born in order to address the needs of the ageing popu-
lation, to reduce innovation barriers of forthcoming promising markets and also to lower
future social security costs. This initiative is planned to be implemented during the 7th
EU Framework Programme. The overall goals of AAL are the following:

• improve the quality of life of elderly people in their homes as it is known that they
prefer to live in their own home instead of living at an old people’s home;

• reduce the costs associated with elderly care.

AAL addresses in particular the issues affecting an ageing population and targets the
needs of the individuals as well as their caretakers, but two groups of persons are con-
sidered:

• elderly people who can be disabled or actively aged. Actively aged are those elderly
people whose limitations because of age are not perceived as a disability;

• disabled people.

4

1.2. INVOLVED TECHNOLOGIES

AAL is a European initiative but Europe is not the only one facing the problem of an
ageing society because the problem is a worldwide one. The philosophy behind AAL,
which is, assisting elderly people to live independently in their own home environment
as long as possible, is extended worldwide. In the following paragraphs we will describe
projects and initiatives that have been developed or are being developed not only in
Europe but in the rest of the world too. AAL is not a technology but a philosophy. Typically,
several technologies will be needed to develop AAL solutions. Those technologies include
products and services that enable persons to perform tasks or functions at a level similar
to an earlier experience, and/or contribute to a lifestyle of independence. Some of these
AAL-related technologies are the following:

• software and network technologies;
• sensors and actuators;
• human machine interfaces;
• new materials;
• embedded systems;
• several technologies involved in smart homes;
• other ambient intelligence technologies.

Assistive Technologies

Assistive Technologies are those products and services that enable persons (regardless
of age) to perform a function that due to some disability would otherwise be difficult to
perform.

While some disabilities are associated with ageing, ageing itself is not a disability and
even if some limitations exist many elderly people do not perceive themselves as being
disabled. On the one hand this means that assistive technologies would be a part of AAL
technologies. On the other hand, healthcare technologies are not AAL technologies but
are closely related to them because ageing population is the most concerned with health-
care. AAL technologies cover a wider range of ageing-related concerns. They represent
a new category of technologies with the following functionalities:

• enable elderly and disabled people to live in their own environment;
• assist ageing people to function in society, facilitating social contacts, in addition to

context-based infotainment and entertainment;
• provide communication services to ageing persons so that they can communicate

with family, caregivers and medical personnel;
• tele-health, which means allowing a medical source to remotely monitor, diagnose

and treat a patient.

Each functionality describes functions that may apply less to persons of a certain age
than to “quality of life” and independence regardless of age.

5

CHAPTER 1. INTRODUCTION

Independent Living

The concept of Independent Living (IL) challenges the preconceived medial models of
disability and old age, by emphasizing self-determination and equal opportunities and
the removal of societal barriers to participation. The medical view casts frail older and
presents disabled people as defective and deviant, a burden for society and as passive
recipients of professional interventions. IL emphasizes active social participation and the
organization of societal supports within a radical agenda. Recent disability rights legisla-
tion and the recasting of health and social care policy has begun to move in this direction,
but older and disabled people still find themselves marginalized within society. A review
of the IL concept is provided in the paper by Sarah Gillinson, Hannah Green and Paul
Miller [37].

1.2.2 Ambient Intelligence

In computing, Ambient Intelligence (AmI) refers to electronic environments that are sen-
sitive and responsive to the presence of people. With the increasing influence of tech-
nology on our lives, it is becoming ever more important to offer new ambient intelligence
solutions which enable humans to adapt and organize their lives around computational
technologies able to adapt to meet user behaviour. An important concept related to AmI
is Internet Of Things. In computing, the Internet Of Things, also known as the Internet Of
Objects, refers to the direct network interconnection with all our everyday objects. It is de-
scribed as a self-configuring wireless network of sensors the purpose of which would be
to interconnect all things. Ambient Intelligence combined with Internet Of Things permits
easily and with more efficiency, to carry out people’s everyday life activities in a natural
way.

The characteristics of an Ambient Intelligence are to be:

• embedded : a network of devices that are integrated into the environment;
• context aware: environmental devices able to recognize the user and the context

around him;
• personalized : the environment is tailored to the user’s needs;
• adaptive: the environment change in response to the user;
• anticipatory : the environment anticipates user’s desires without conscious mediation;
• hidden: users must not notice an high technology intervention. The technology must

disappear into the user’s surroundings.

Ambient Intelligence should also:

• facilitate human contacts;
• be oriented towards community and cultural enhancement;
• inspire trust and confidence;
• be consistent, sustainable, personal, societal and environmental;
• be made easy to control by ordinary people.

6

1.2. INVOLVED TECHNOLOGIES

1.2.3 Data Mining

Data Mining, the extraction of hidden predictive information from large databases, is a
powerful new technology with great potential to help companies focus on the most im-
portant information in their data warehouses. Data Mining tools predict future trends and
behaviours, allowing businesses to make proactive, knowledge-driven decisions. The au-
tomated, prospective analyses offered by Data Mining move beyond the analyses of past
events provided by retrospective tools typical of decision support systems. Data Min-
ing tools can answer business questions that traditionally were too time consuming to
be solved. They scour databases for hidden patterns, finding predictive information that
experts may miss because it lies outside their expectations.

Most companies already collect and refine massive quantities of data. Data Mining
techniques can be implemented rapidly on existing software and hardware platforms to
enhance the value of existing information resources, and can be integrated with new prod-
ucts and systems as they are brought on-line. When implemented on high performance
client/server or parallel processing computers, Data Mining tools can analyse massive
databases to deliver answers to questions such as, "Which clients are most likely to re-
spond to my next promotional mailing, and why?"

Data Mining derives its name from the similarities between searching for valuable
business information in a large database - for example, finding linked products in giga-
bytes of store scanner data - and mining a mountain for a vein of valuable ore. Both
processes require either sifting through an immense amount of material, or intelligently
probing it to find exactly where the value resides. Given databases of sufficient size and
quality, Data Mining technology can generate new business opportunities by providing
these capabilities:

• Automated prediction of trends and behaviours. Data Mining automates the process
of finding predictive information in large databases. Questions that traditionally re-
quired extensive hands-on analysis can now be answered quickly directly from the
data. A typical example of a predictive problem is targeted marketing. Data Mining
uses data on past promotional mailings to identify the targets most likely to maximize
return on investment in future mailings. Other predictive problems include forecasting
bankruptcy and other forms of default, and identifying segments of a population likely
to respond similarly to given events.

• Automated discovery of previously unknown patterns. Data Mining tools sweep through
databases and identify previously hidden patterns in one step. An example of pattern
discovery is the analysis of retail sales data to identify seemingly unrelated products
that are often purchased together. Other pattern discovery problems include detecting
fraudulent credit card transactions and identifying anomalous data that could repre-
sent data entry keying errors.

Data Mining techniques can yield the benefits of automation on existing software and
hardware platforms, and can be implemented on new systems as existing platforms are
upgraded and new products developed. When Data Mining tools are implemented on

7

CHAPTER 1. INTRODUCTION

high performance parallel processing systems, they can analyse massive databases in
minutes. Faster processing means that users can automatically experiment with more
models to understand complex data. High speed makes it practical for users to analyse
huge quantities of data. Larger databases, in turn, yield improved predictions.

Databases can be larger in both depth and breadth:

• more columns: analysts must often limit the number of variables they examine when
doing hands-on analysis due to time constraints. Yet variables that are discarded
because they seem unimportant may carry information about unknown patterns. High
performance Data Mining allows users to explore the full depth of a database, without
preselecting a subset of variables;

• more rows: larger samples yield lower estimation errors and variance, and allow users
to make inferences about small but important segments of a population.

The most commonly used techniques in Data Mining are:

• artificial neural networks: non-linear predictive models that learn through training and
resemble biological neural networks in structure;

• decision trees: tree-shaped structures that represent sets of decisions. These deci-
sions generate rules for the classification of a dataset. Specific decision tree methods
include Classification and Regression Trees (CART) and Chi Square Automatic Inter-
action Detection (CHAID);

• genetic algorithms: optimization techniques that use processes such as genetic com-
bination, mutation, and natural selection in a design based on the concepts of evolu-
tion;

• nearest neighbour method : a technique that classifies each record in a dataset based
on a combination of the classes of the k record(s) most similar to it in a historical
dataset (where k ³ 1). Sometimes called the k-nearest neighbor technique;

• rule induction: the extraction of useful if-then rules from data based on statistical sig-
nificance.

Many of these technologies have been in use for more than a decade in specialized
analysis tools that work with relatively small volumes of data. These capabilities are now
evolving to integrate directly with industry-standard data warehouse and OLAP platforms.

Some successful application areas include:

• a pharmaceutical company can analyse its recent sales force activity and their results
to improve targeting of high-value physicians and determine which marketing activi-
ties will have the greatest impact in the next few months. The data needs to include
competitor market activity as well as information about the local health care systems.
The results can be distributed to the sales force via a wide-area network that enables
the representatives to review the recommendations from the perspective of the key
attributes in the decision process. The ongoing, dynamic analysis of the data ware-
house allows best practices from throughout the organization to be applied in specific
sales situations;

8

1.2. INVOLVED TECHNOLOGIES

• a credit card company can leverage its vast warehouse of customer transaction data
to identify customers most likely to be interested in a new credit product. Using a
small mailing test, the attributes of customers with an affinity for the product can be
identified. Recent projects have indicated more than a 20-fold decrease in costs for
targeted mailing campaigns over conventional approaches;

• a diversified transportation company with a large direct sales force can apply Data
Mining in order to identify the best prospects for its services. Using Data Mining to
analyse its own customer experience, this company can build a unique segmenta-
tion identifying the attributes of high-value prospects. Applying this segmentation to a
general business database such as those provided by Dun and Bradstreet can yield
a prioritized list of prospects by region;

• a large goods company can apply Data Mining to improve its sales process to retail-
ers. Data from consumer panels, shipments, and competitors’ activity can be applied
to understand the reasons for brand and store switching. Through this analysis, the
manufacturer can select promotional strategies that best reach their target customer
segments.

Each of these examples have a clear common ground. They leverage the knowledge
about customers implicit in a data warehouse to reduce costs and improve the value
of customer relationships. These organizations can now focus their efforts on the most
important (profitable) customers and prospects, and design targeted marketing strategies
to best reach them.

1.2.4 Digital ecosystem

A Digital Ecosystem is inspired to the Biological Ecosystem. The biological ecosystem is
composed by two main elements:

• species: there can be multiple species and they need to interact and balance each
other (even though some species may play a leading role at times). Members of
species are called Individuals. Each Individual can again be considered as an en-
tire ecosystem;

• environment : must supports the needs of its species so they can continue generation
after generation.

Boley [12] has individuated four essential aspects of an ecosystem:

• interaction and engagement : the inter-species and environment interactions for the
social well-being in order to share and defend resources as a unique group against
threats from human interference, pollution or natural disasters;

• balance: harmony, stability and sustainability within an ecosystem. A single point of
failure will not lead to a disaster but may become a contribution to a new balance of
welfare for the ecosystem as a whole;

• domain clustered and loosely coupled species: loosely coupled species that have
similar culture, social habits, interests and objectives can originate a group. Each

9

CHAPTER 1. INTRODUCTION

specie preserves the environment and it is proactive and responsive for its own bene-
fit. Grouped species are able to live together and support each other for sustainability;

• self-organization: each species is independent, self empowered, self prepared, un-
dertakes self defence, self surviving and undertakes self coordination through swarm
intelligence.

Boley makes a comparison between the existing network architectures with the Digital
Ecosystem paradigm and he does not find an existing reference to use. Below, for each
network architecture, the contradictions with Digital Ecosystem:

• client-server : the communications are centralized and act as to to control the environ-
ment;

• peer-to-peer : at any time, each agent has a well defined role and it can only be a
client or a server but not both simultaneously;

• grid : it ties partners together for resource sharing but it is not possible to avoid the
Free Riding [43] problem;

• web services: brokers are centralized, service requesters and providers are dis-
tributed in a hybrid architecture that does not guarantee trust and QoS.

Digital Ecosystem instead is an open community and there is no permanent need for cen-
tralized or distributed control or for single-role behaviour. A leadership structure may be
formed and dissolved in response to the dynamic needs of the environment. Usually, the
Digital Ecosystem architecture is implemented like a Service Oriented Architecture(SOA).
Ferronato [35] deepens the related problematic regarding this type of approach and he
raises a possible theoretical solution to implement Digital Ecosystem architecture fea-
tures. However, SOA is not suitable to implement Digital Ecosystem because:

• any functional or structural aspect is managed via a central governance entity and
the infrastructure is under control and managed via a single department unit (it has a
single reference model);

• the functional specifications are planned in advance or in joint meetings among par-
ties or defined by a single central authority and so, it is a hierarchical structure;

• Web Services Description Language (WSDL) represents the common technical con-
tract for service invocation that is defined up front and has to be used by all the
partners;

• in the Universal Description Discovery and Integration (UDDI) there is no separation
between the technical and the functional specifications. UDDI is conceived as a static
catalog of services and so, it is not dynamic;

• if a service finds that the UDDI is not available, the requesting service is not able to
know the reason of that failure (e.g. if it is a temporary or technical issue);

• the service instances are not resolved at run-time.

10

1.2. INVOLVED TECHNOLOGIES

1.2.5 Domotics

The slang of new technologies is always enriched with new terms as Home Automation,
Building Automation, Smart Home. These terms are all synonyms diverted by the Do-
motique neologism. Domotique is a word coined in France and it is composed by the
fusion of two terms: Domus and Informatique. The neologism Domotique is recovered in
English with the term Domotics [52] and it represents the technological applications of
the information and communication in the domestic World, to offer:

• comfort : domotic applications must make more pleasant the space in the house facili-
tating the management especially for the disabled users (for example, management of
audio/video streams, control and supervision of the remote appliances, shine, blinds,
gates, etc.);

• security and safety : the domotic applications have to guarantee the safety of the user
facing situations of emergency (for example, techniques of anti intrusion, survey of
fires, escapes of gas, etc.);

• more independence: even for people with special needs;
• energy saving: the employment of the domotics has to allow a more accurate and

efficient management of the energetic consumptions (for example, advanced tools to
get information that allow a more equitable distribution of the energetic loads);

• entertainment ;
• remote control ;
• access to external services,

using:

• user friendly interfaces;
• mobile and wireless technologies;
• integration;
• communication;
• digital networks;
• . . .

The domotics includes all the technologies that are dedicated to the integration of
electronic devices, appliances, systems of communication and control placed inside a
domestic environment.

Domotic view is still in development. The industry and the market has played (and still
play) a role of primary importance for the definitive take-off of the domotic technologies.
Different industry coalitions have promoted numerous and always more sophisticated
middle-wares and standards that are always too poorly interoperable each others. This
situation has made the domotics an unexploded bomb.

The worlds of research and industry are waiting for the “boom“ that is not still hap-
pened. The real employment of the domotic technology is still hindered by the attempt of
each industry to impose its standard on the others. The presence of such a vast num-
ber of domotic standards announces that there will hardly be a definitive consecration of

11

CHAPTER 1. INTRODUCTION

one of them. It is as much unlikely that all the coalitions would gather about to realize an
unique middle-ware that represents the standard de-facto for the domotics.

Paradoxically, the different and poorly interoperable domotic technologies are so nu-
merous causing an obstacle to the expansion of the market. For the final consumer point
of view, the lack of interoperability between the different domotic standards limits his free-
dom. The consumer will in fact be forced to acquire only the products conforming to a
particular system and it could happen in two conditions: (i) the contemporary acquisition
of all the needed devices in the building, or (ii) a technical knowledge that allows the user
to acquire devices conforming to those he already owns. Both conditions are however
difficult to meet because in most cases, the domestic environment is very dynamic: the
topology and the removal of its elements change frequently and the devices are acquired
in different moments.

Try to think, for example, to the appliances: it is unlikely that all home equipment are
purchased at the same time. To better understand this limitation, there is a classical and
practical example of the domotic application: lets suppose to have a coffee pot that is able
to alight with a radio alarm at a pre-established hour. If the radio alarm and the coffee pot
"speak the same language" (have the same standard), every morning will be possible to
have a coffee ready when the user wakes up. If one of the two devices must be changed,
it will be necessary to replace it with another belonging using the same standard. It is
instead desirable to allow the consumer to choose the devices independently from the
belonging standard: in this way the consumer doesn’t have to know the technical detailed
of his system but he is however able to exploit all its possible advantages.

1.2.6 Internet Of Things

The Internet Of Things (IoT) is a scenario in which objects, animals or people are pro-
vided with unique identifiers and the ability to transfer data over a network without re-
quiring human-to-human or human-to-computer interaction. IoT has evolved from the
convergence of wireless technologies, micro-electromechanical systems and the Inter-
net.

IPv6’s huge increase in address space is an important factor in the development of
the Internet Of Things. The transition to IPv6 is important not only because the 4.3 billion
IPv4 addresses are running out, but also because the proliferation of Internet-connected
devices is creating a new environment of information. Every device that connects to the
Internet requires an IP address, and it has been predicted that by 2020 there will be
50 billion Internet-enabled devices in the world. To put that number in perspective, that
equates to more than six connected devices per person, based on an expected global
population of 7.6 billion people. Thus the move to IPv6 is necessary as it provides an
almost unimaginable number of IP addresses — 18 quintillion blocks of 18 quintillion
possible addresses.

A thing, in the Internet Of Things, can be a person with a heart monitor implant, a
farm animal with a biochip transponder, an automobile that has built-in sensors to alert

12

1.2. INVOLVED TECHNOLOGIES

the driver when the tire pressure is low – or any other natural or man-made object to
which can be assigned an IP address and provided with the ability to transfer data over a
network. So far, the Internet Of Things has been most closely associated with machine-
to-machine communication in manufacturing and power, oil and gas utilities. Products
built with machine-to-machine communication capabilities are often referred to as being
smart. (See: smart label, smart meter, smart grid sensor).

1.2.7 Semantic web and ontologies

The Semantic Web [44] is an Internet space that includes documents (or portions of
them) describing the explicit relations among things, and containing semantic information
intended for automated processing by machines. Not only Web pages, but databases,
programs, sensors and even household appliances will be able to present data, multime-
dia and status information in forms that powerful computing agents can use to search,
filter and prepare information in new and exciting ways. In the Semantic Web an Ontology
there is a partial conceptualization of a given knowledge domain, shared by a community
of users, that has been defined in a formal, machine-processable language for the explicit
purpose of sharing semantic information across automated systems.

In reality many definitions exists for the Ontology concept. The most cited and preva-
lent is attributed to Tom Gruber [38] who defines it as "an explicit specification of a con-
ceptualization". This definition derives from the Declarative Knowledge of the Artificial
Intelligence field where the first-order predicate calculus are used to describe models of
the world because natural languages are too ambiguous for machine interpretation. The
Conceptualisation is a simplified view of the world or of the Domain of Interest we are
representing.

Ontologies was born from the philosophical science that studies the nature of being.
This discipline was introduced by Aristotle and it attempts to address the question "What
is being?" and "What characteristics do all beings have in common?" [40].

In computer and information sciences, "an ontology is a designed artifact consisting
of a specific shared vocabulary used to describe entities in some domain of interest, as
well as a set of assumptions about the intended meaning of the terms in the vocabulary"
[40]. Chandrasekaran [19] explains that "an ontology is a representation vocabulary, often
specialized to some domain or subject matter ". More precisely, it is not the vocabulary as
such that qualifies a ontology, but the conceptualizations that terms in the vocabulary are
intended to capture. Translating the terms from one language to another does not change
the ontology conceptually. For example, we can refer to the word mouse. Mouse can be
the animal or the input computer device. The mouse word can therefore represent two
different concepts and it is important to know which one is referred to in the ontology. In an
ontology, instead, it is not important the language used for the concept that is described.
It is possible to call the input device as "mouse" in English, "muis" in Afrikaans or "Maus"
in German. The important is that names refer all to the same concept.

Ontologies are usually combined with a Semantic Reasoner . A Semantic Reasoner
is a piece of software able to infer logical consequences from a set of asserted facts or

13

CHAPTER 1. INTRODUCTION

axioms introduced in the Ontology . There are many reasoners that take advantage of
first-order predicate logic to perform reasoning. The benefits obtained using Ontology
are described by Happel [42] who underlines all the advantages related to the use of
Ontologies in software engineering development process.

Ontologies are often used to implement semantic interoperability. Some technical
methods to realize interoperability are explained by Lopez [85] and Castano [17].

Development of Ontologies

The development of an ontology can be classified according to the specificity of its de-
scription:

• top-level : describes very general concepts or common sense knowledge in a coher-
ent, consistent and independent domain way;

• domain: describes the categories of a certain discipline and it is applied to a specific
application domain (e.g. medicine, chemistry). It is not used directly to build systems
or information stores (knowledge bases) but instead, it helps to establish cooperative
working agreement terms and meaning of a domain to be understandable by team
members belonging to different cultural backgrounds;

• task : defines the topics of a field. A field can be a discipline, a industry or any area of a
company that unifies many application domains (e.g. diagnostics, sales). A discipline
can require different domain Ontologies;

• application: describes the knowledge specialization of a domain or task.

Ontology development steps

The steps that are typically required for the development of an ontology are:

• acquire the knowledge of the domain: in this first phase, the collaboration with domain
experts is useful to try to gather as much information as possible about the domain
of interest and to understand the terms used, to formally be able to describe the
entities in a consistent manner. The purpose of this step is to answer at the following
questions:
– which domain ontology will be covered?
– which is the purpose of the ontology?
– what types of questions is it possible to provide an answer to using the information

expressed by the ontology?
– who will use and who will be responsible for the maintenance of the ontology?

• consider the re-use of existing resources: once the domain is characterized, it can
be useful to check the existence of resources that can be reused. In fact, the idea
to complete and to extend existing resources, such as glossaries and dictionaries of
terms and synonyms, documents and so on, is an advantage in terms of development
and time of creation.

14

1.2. INVOLVED TECHNOLOGIES

• plan ontology : design the conceptual structure of the domain, identifying the main
concepts and their properties. Consider the relations between the various concepts
and create an abstraction of them, specifying which of these are instances etc. It’s
useful to answer at the following questions:
– what are the important terms?
– what are the properties?
To do that, there are three basic steps:
– developing a flat glossary to formalize each term using a natural language defini-

tion and also providing appropriate examples in which the names become objects
or actors, and the verbs are transformed into relationships or processes;

– develop a structured glossary to decompose and / or specialize the terms and
identify the attributes of the concepts;

– identify all of the conceptual relationships between objects.
• organize and integrate the ontology : adding concepts, relations and entities to reach

the necessary level of details to reach the objectives of the needed ontology;
• check your work : the final developed ontology, must be analyzed to detect any logical

and semantic inconsistency among its elements. This phase often facilitates the au-
tomatic classification process that leads to highlight new concepts on the basis of the
properties of entities and relations among classes;

• deliver the ontology : it is necessary that domain experts check the correctness and
validity of the ontology to proceed with the delivery of the product and of all the related
documents. An ontology is valid if it has the following features:
– completeness: predict all the distinction keys;
– conciseness: do not make implicit and redundant assumptions;
– consistency : do not contain contradictory definitions;
– coherence: allow the presence of all and only the consistent relations for the defi-

nition of concepts;
– re-usability / scalability : extend the ontology without modifying already existing

concepts.

However, there is not a uniquely correct way to model an ontological domain because it
represents a description of a particular reality and the concepts defined in it reflect only
a piece of that world. It is highly unlikely that an ontology may exhaustively contain all in-
formation and properties available in the domain that it expresses. It appears evident that
the user experience helps in the ontology and documentation processes construction. It
is useful to document each step of the development phase and in particular regarding the
encountered problems and the proposed solutions, to help users and designers in later
changes. The work of modeling is not easy but the use of tools that provide a graphic
visualization of the ontology, suggesting even automatically concepts and relationships,
avoiding to write the code by hand, can be of paramount importance.

15

CHAPTER 1. INTRODUCTION

Specification languages

To be useful, Ontologies must be expressed in a concrete notation. A language for on-
tologies is a formal language used to build an ontology. To meet the needs of an ontology,
the language for ontologies must possess these requirements:

• extend existing Web standards to simplify its use;
• be easy to understand and use;
• be specified in a formal way;
• have an adequate expressive power to describe the domain.

There are different proprietary and standard languages to define ontologies.
A Metadata is a Resource able to provide information about itself. It should be written

in a machine universally readable way. Adding semantics to web content requires the
creation of languages and technologies that can extract meaning from information, that
can express data and rules for reasoning. The term Resource is used since the creation
of the web to indicate anything available in Internet through the use of its protocols.
The generality of the Resource term has encouraged a process of generalization on
the methods to access to these resources: from the idea to simply locating a resource
(Uniform Resource Locator - URL), passing to the idea of being able to identify a resource
regardless of its location (Universal Resource Identifier - URI) to define semantic through
links (Resource Description Framework - RDF).

In general, any logic programming language, like Prolog [5], can be used to build
an Ontology . Anyway, other languages were created and specialized on the description
of ontology logic like Loom, DAML+OIL and the Ontology Web Language (OWL) stan-
dard. Instead, it is not reasonable to realize a semantic structure using relational and
XML databases. In fact, these kind of databases use a composition and formatting of
information bind to capture all the semantic in the application logic. Ontologies, however,
are able to provide a specification of domain information by representing a consensual
agreement between the concepts and relations. In this way it is possible to characterize
the knowledge in the described domain.

The RDF language

The RDF is a tool for the coding, exchange and reuse of structured Metadatas. RDF al-
lows interoperability among applications that exchange information using Web permitting
automatic elaboration.

The RDF Data Model is very easy and it is based on three kind of objects that are all
always referred by URI:

• resources: everything described by an RDF Expression is a Resource. A Resource
can be a web page or a part of it, an XML element inside a source document. A
Resource can be a collection of web pages or an object that it is not directly accessible
through web (a book, a picture and so on);

16

1.2. INVOLVED TECHNOLOGIES

• properties: a Property is a specific aspect, a characteristic, an attribute or a relation
used to describe a Resource. Every Property has a specific meaning and it defines
admissible values;

• statements: a Statement is a Resource with a Property , a Name and a Value.

The basic syntax to define a RDF Document provides the conceptual links by defining
Predicates (or properties) that relate a subject to an object. A statement is a triple of type:
Subject - Predicate - Object where the Subject is a Resource, the Predicate is
a Property and the object is a Value.

The cases in which RDF can be applied to bring benefits are:

• to describe the contents of a Web site, a page or a digital library;
• to implement intelligent software agents for the exchange of knowledge and best use

of Web resources;
• to classify the content to apply selection criteria;
• to describe a set of pages that represent a single logical document;
• with the mechanism of the digital signature, to contribute to the creation of the Web

of Trust, for applications in electronic commerce, cooperation, etc.

The RDF , therefore, does not describe the semantics but provides a common basis to
express itself, allowing to define the semantics of XML Tags. RDF is formed by of two
components:

• RDF Model and Syntax that define the RDF Data Model and its XML Encoding;
• RDF Schema that allows to define specific vocabularies for Metadata.

The OWL language

Whilst RDF provides much more subtle and powerful syntactic details, it is not sufficient
to implement features in the semantic web applications. In order to get a full semantic
qualification there is the need to add special constraints to the RDF Syntax . This purpose
is reached by the Ontology Web Language (OWL), a language of the Description Logic
family and expressed by using XML syntax. OWL is developed as the next step of RDF
and RDFS as well as previous ontology languages such as Ontology Inference Layer
(OIL) and DAML. OWL is the current standard for ontologies in Web environments. The
purpose of OWL is not only to allow the attribution of meaning to resources, but also to
make such meanings computable using automatic mechanisms to evaluate inferences
about these meanings. According to a well-established information technology practice
in Object Oriented programming languages, the resources within the RDF and OWL, are
classified as Classes (usually to abstract and conceptualize objects) and Instaces (to
represent concrete objects). OWL has been released in three different versions that differ
in complexity and expressiveness:

• OWL-Lite is the syntactically simpler version, through which it is possible to define
class hierarchies using low complexity constraints;

17

CHAPTER 1. INTRODUCTION

• OWL-DL is the intermediate version and it is defined as DL for its correspondence with
the Descriptive Logic language. A descriptive language is simpler than a first-order
language because it contains only atomic Concepts, Roles and Names of objects.
A Concept is an atomic common name as father, wife, etc.; a Role is a binary
relation and an object Name is just a single object. OWL-DL has a high expressive
power and maintains computational completeness (all conclusions are computable)
and decidability (all computations end in a finite time);

• OWL-Full provides maximum expressiveness without any guarantee regarding com-
pleteness and decidability.

Each version of the language includes and extends the previous one, thus OWL-Lite
ontology is always valid in OWL-DL, OWL-DL ontology is always valid in OWL-Full .

The main components of OWL ontology are:

• individuals: represent objects in the domain of interest;
• properties: binary relations (i.e. linking two objects at a time) between individuals,
• classes: groups of individuals.

Ontology editors

The development process often involves solutions using numerous ontologies that can
be linked from external or internal sources. Linked ontologies may progress through a
series of versions and became necessary to keep track of them. It can be convenient to
use tools that can help to map, to link, to compare, to merge, to convert and to validate
them. When starting out an ontology project, it is reasonable to find a suitable ontology
software editor.

Protégé

An important software used for the ontology creation is Protégé [83]. Protégé is an Open
Source OWL editing tool developed by the Stanford Center for Biomedical Informatics
Research at Stanford University School of Medicine that includes a growing user com-
munity and a suite of tools to create models that cover several domains: from the medical
(to model the spread of disease) to the military (for the management of nuclear power
plants) fields. Protégé helps domain experts to build applications for the information man-
agement.

The developers of ontologies have access to relevant information in a simple and fast
way and they can use tools to directly manipulate, and to easily and quickly navigate
among ontologies and their class hierarchies.

The Protégé platform supports two main ways of modelling ontologies:

• Protégé-Frames editor : allows users to build and populate ontologies that are based
on frame, in accordance with the Open Knowledge Base Connectivity (OKBC) proto-
col. In this model, an ontology is composed by a set of classes organized in a hier-
archy that represents concepts. The classes are characterized by properties (Slots)
and Relations;

18

1.2. INVOLVED TECHNOLOGIES

• Protégé-OWL editor allows users to create ontologies for the Semantic Web. OWL
ontology may include descriptions of classes, properties and their instances. Besides
the presence of a simple interface Protégé provides:
– support for classes and class hierarchies;
– a variety of template slots ready to be used;
– specifications of the attributes of the slots, which include allowable values, restric-

tions on the cardinality, defaults;
– metaclasses (classes to handle the classes of domains) and hierarchies of meta-

classes.

Two other features that distinguish Protégé by many other development environments are
the scalability and the extensibility. The system is modular and its architecture is based
on components that simplify the addition of new functionalities through the Protégé Plugin
Library that collects plug-ins created by developers around the world. The plug-ins are
used for example to provide visualization capabilities, advanced control versions, and so
on. An example is OntoViz that displays an ontology as a graph using an open source
library optimized for graphical display: classes and instances are represented as nodes
and relations are displayed as strings. Both nodes and arcs are classified and arranged
in such a way as to minimize overlaps at the expense of the size of the graph. Another
example is for the 3D visualization of ontologies: Ontosphere3d , a software developed
by E-Lite group of Politecnico di Torino.

1.2.8 Machine Learning

Machine Learning is sub set of Artificial Intelligence and it is a study of systems that can
learn from data. A Machine Learning system could be trained. Core of Machine Learning
deals with representation and generalization.

Machine learning is a "Field of study that gives computers the ability to learn with-
out being explicitly programmed". A core objective of a learner is to generalize from its
experience. Generalization in this context is the ability of a learning machine to perform
accurately on new, unseen examples/tasks after having experienced a learning data set.

The goal of machine learning is to program computers to use example data or past
experience to solve a given problem. Many successful applications of machine learn-
ing exist already, including systems that analyse past sales data to predict customers’
behaviour, optimize robot behaviour so that a task can be completed using minimum
resources, and extract knowledge from bioinformatics data.

The main differences between Machine Learning and Data Mining are:

• Machine Learning focuses on prediction, based on known properties learned from
the training data;

• Data Mining focuses on the discovery of (previously) unknown properties in the data
(this is the analysis step of Knowledge Discovery in Databases);

• Data Mining uses many Machine Learning methods, but often with slightly different
goals;

19

CHAPTER 1. INTRODUCTION

• Machine Learning also used Data Mining methods as "unsupervised learning" to im-
prove learner accuracy;

Typical Machine Learning algorithm types are:

• Supervised learning (labelled);
• Unsupervised learning (unlabelled);
• Semi-supervised learning;
• Transduction (reasoning from observed);
• Learning to learn (multi-task learning);
• Reinforcement learning;
• Developmental learning (imitation);

Typical applications for Machine Learning are:

• Computer vision (object recognition)
• Natural language processing
• Syntactic pattern recognition
• Search engines
• Medical diagnosis
• Detecting credit card fraud
• Stock market analysis
• Speech and handwriting recognition
• Game playing
• Software engineering
• Adaptive websites
• Computational advertising
• Computational finance

1.3 Thesis Structure

The document is organized as follows: the "Introduction" chapter introduces the concepts
used in this work. Then, in the "State of the Art" chapter, are mentioned some of the most
important research projects that make use of the innovative technologies considered to
design and implement the presented architecture. In the descriptions of the projects it is
also outlined the current state of the art of the research in the related field. The "Architec-
ture" chapter contains an overview about the architecture and the design choices used
to implement the software platform. The following "Domotic agent", "User agent" and "In-
telligent agent" chapters deepen the different components of the architecture explaining
how they work and how they interact with the other parts of the software. Finally, the "Test
and Verification" chapter describes the evaluation of the software and then, "Conclusions
and future works".

20

2

State of the art

2.1 Ambient Assisted Living

2.1.1 HERA

The HERA [78] (Home sERvices for specialized elderly Assisted living) project aims to
provide a platform with cost-effective specialized assisted living services for the elderlies
suffering of mild Alzheimer with identified risk factors. The aim is to significantly improve
the quality of their home life and, at the same time, reinforce their social networking. The
HERA platform will provide three main categories of services:

• cognitive and physical reinforcement services: these services will be a supplement of
non-drug therapeutic interventions provided to the patient by specialized Alzheimer
care centers;

• patient specific home care services: this service category will include social reinforce-
ment services, reality orientation support services and services capable to monitor
several Alzheimer related risk factors;

• general home care services for elderly : this service category will include medication
reminder services, information services as well as alarm services in cases of abnor-
mal health conditions.

2.1.2 HOMEdotOLD

The HOMEdotOLD project [68] (HOME services aDvancing the sOcial inTeractiOn of
eLDerly people) aims to provide a TV-based platform with cost-effective services that
will be delivered in a highly personalized and intuitive way and will advance the social
interaction of elderlies, aiming at improving the quality and joy of their home life, bridging
distances and reinforcing social voluntaries and activation, thus preventing isolation and
loneliness.

The project main objectives are to:

• provide the appropriate platform based on INHOME and Net TV technologies for sup-
porting the services described above advancing the social interaction of the elderlies;

21

CHAPTER 2. STATE OF THE ART

• provide services allowing the elderly to stay socially active including the social working
and the personalized news headlines services;

• provide services for bridging distances and supporting elderly’s existing roles, includ-
ing the video-conference, the remote dining, the photos, videos, experience sharing
and the intelligent calendar services;

• install the HOMEdotOLD pre-product prototype and perform trials at pilot sites by
involving real elderlies;

• evaluate and demonstrate the commercial feasibility and the business potential of the
HOMEdotOLD services by drafting a realistic business and exploitation plan.

2.1.3 I2HOME

I2HOME project [4] (Intuitive interaction for everyone with home appliances based on in-
dustry standards) will address the problem of living an independent life and realizing full
potential with an approach based on existing and evolving industry standards. The project
will focus on the use of home appliances for elderlies and persons with cognitive disabil-
ities. At the same time the project will take care that the developed and standardized
access strategies will be applicable to domains beyond the home. I2HOME is a STREP
project launched on September 1st, 2006 and has an estimated duration of 36 months.

In I2HOME, participants will build upon a new series of industry standards (AN-
SI/INCITS 389ff) for interfacing networked appliances by means of a Universal Remote
Console (URC). The participants will use an architecture with a Universal Control Hub
(UCH) as core component that communicates to networked (off-the-shelf) home appli-
ances and consumer electronic devices through industry networking protocols. The user
interfaces will be designed according to the results of a broad requirements analysis and
will include multi-modal communication and activity management.

2.1.4 MPower

The FP6-STREP MPower project is aimed at defining and implementing an open platform
as a suite of independent building blocks to simplify and speed up the task of developing
and deploying services for persons with cognitive disabilities and elderlies. The platform-
related goals of the project were to support:

• the integration of smart house and sensor technology;
• interoperability between profession and institution specific systems;
• secure and safe information management;
• including both social and medical information;
• mobile users which often change context and tools.

Use case methodology

The target groups in the MPower were elderlies, people with dementia/cognitive decline
and relatives.

22

2.1. AMBIENT ASSISTED LIVING

In general MPower follows an iterative process in identifying scenarios, Use Cases
and features, as explained in Figure2.1.

Figure 2.1. MPower use case specifications

In MPower project, two types of scenarios were used:

• Problem Scenarios: tells a story of current practice - it is developed according to the
gathered user and expert requirements;

• Activity Scenario: tells a story about someone trying to accomplish something with
the product/system in the future.

Overall eighteen problem scenarios have been developed and several activity scenarios
were elaborated from them. Each of these activity scenarios usually have more than
one actor, which resulted in a lot of Use Cases. Several of the activity scenarios were
overlapping therefore those scenarios were identified and more general Use Cases were
created.

Requirement Analysis

Requirements analysis in MPower project has been based on group interviews and ques-
tionnaires prepared for the target groups in the partner countries consisting of elderlies
in a senior’s home in the Netherlands, relatives/family carers of people with dementia
in Austria and Norway, and experts on elderlies and dementia in Austria, Poland and
Norway.

The prioritization of the functional requirements was done based on the following
criteria:

• it should reflect a challenge for family carers, for professional care givers, for service
providers and for society;

• it should improve everyday living for elderlies and people with cognitive impairments
and dementia;

23

CHAPTER 2. STATE OF THE ART

• it should possibly lead to cost effectiveness regarding safety and security (safety
value);

• it should cover a future need for society and provide improvements of care services.

2.1.5 OASIS

OASIS (Open architecture for Accessible Services Integration and Standardization) is an
Integrated Project with the scope to revolutionize the interoperability, the quality and the
usability of services for all daily activities of elderlies. More specifically, OASIS project
intends to utilize ICT and other key technologies in order to provide holistic services to
elderlies to support their physical and psychological independence, to stimulate their so-
cial or psychological engagement and to foster their emotional well being. OASIS is the
acronym of a Large Scale Integrated Project co-financed by the European Commission
(7th Framework Programme, ICT and Aging - Grant Agreement No: 215754). The full
project name is: Open architecture for Accessible Services Integration and Standardiza-
tion. It started on January 1st, 2008 and it lasted four years. The OASIS Consortium was
composed of 33 Partners from 11 countries. Large Industries, SMEs, Universities, Re-
search Centers, Non-Profit Organizations, Public Organizations and Healthcare Centers
are all represented.

Use case methodology

Benchmarking was the first step for Use Case definition. A thorough investigation was
carried out on the relevant technological aids, systems and services able to support AAL
environment, as well as the lack or existence of relevant ontologies in the different do-
mains. As a result, an online database has been implemented to facilitate the compilation
of information and analysis of all the identified Products, Services and Research Projects
in the area of Independent Living Applications, Autonomous Mobility and Smart Work-
places area for elderlies. The aim of benchmarking was to define the context framework
in which Use Cases of OASIS would be specified.

The first step of benchmarking (Figure 2.2) was to create a template in order to deter-
minate the most relevant information needed. Based on this template, the database was
defined and the gathering of information was made.

Use Cases are generated using a goal-oriented methodology: examining all the ac-
tor’s goals that the system satisfies yields the functional requirements. Use Cases were
the goals that were made up of scenarios.

After the first definition of the Use Cases, these were validated in different forums to
get feedback to the user and the Use Cases were redefined. The objective of this process
is to achieve the participation of the user in service definition phase.

Requirement Analysis

Different types of questionnaires were devised for collecting user needs and require-
ments based on the different sub-project topics and areas, e.g. the Questionnaire on In-

24

2.1. AMBIENT ASSISTED LIVING

Figure 2.2. OASIS use case specifications

dependent Living Applications and the Questionnaire on Autonomous Mobility and Smart
Workplaces applications.

For each one of the aforementioned questionnaire types, two surveys conducted; one
for elderlies and one for caregivers in five European countries (Bulgaria, Germany, Italy,
Romania and Spain) and related to the approach of elderlies towards the ageing.

After analyzing the results from the questionnaires, the following domains were iden-
tified: Designing for the elderly with adaptability to the characteristics of the elderlies as
the key requirement in order to improve technology acceptance for this sector of the pop-
ulation, Personalization in interaction of disabled and elderlies with ICTs, provision of
content and information search, ICT in the ageing process with Reassurance and Re-
minding, Stimulation and Enabling, Belonging and Participation, Safety and Protection as
the four clusters of needs, Consumer behaviour using a “gerontographic model”.

The set of the requirements were then extracted from this gathered data by analyzing
the statistics and interrelationships and comparing the needs with the achievements of
the AAL research so far. As a result, 141 requirements in 18 categories were identified.

2.1.6 PERSONA

The PERSONA project [80] aims to develop a scalable open standard technological plat-
form and building a broad range of AAL services for the development of sustainable and
affordable solutions for the social inclusion and independent living of Senior Citizens. One
of the main challenges the project has faced is the design of these solutions in a way that
they meet real user needs that they and are psychologically pleasant and easy to use.
In order to do this, the project has defined an activity line of work devoted specifically to
design User Experience. The goal of this activity line has been to assure the involvement
of end-users and stakeholders in the process of defining, developing and validating AAL
Services in such a way that these services will provide a total end-user experience from
the start to the end, having them embedded in people’s daily context of life in, around, and
out of home. These kind of services support people’s exploration of their own boundaries
in relation to their social needs, wish for autonomy, security and mobility.

25

CHAPTER 2. STATE OF THE ART

Use case methodology

The User Experience approach has been defined as an iterative process combining
trends research with user experience methodologies with the aim of enabling continu-
ous end-user insights and feedback along the project life-cycle.

The User Experience methodology followed has adopted a human-centered approach
according to the principles referenced in ISO 9241-210:

• design is based upon an explicit understanding of users, tasks and environments;
• users are involved throughout design and development;
• design is driven and refined by user-centred evaluation;
• process is iterative;
• design addresses the whole user experience;
• design team includes multidisciplinary skills and perspectives.

In order to comply with these principles, the work in UX design has applied the Goal
Oriented Design methodology proposed by Alan Cooper [30]. The process and links of
PERSONA work is depicted in the following figure (Figure 2.3):

Figure 2.3. Use Case design in the Persona project

The first initial categorization of users, domains and needs has been done based on
the definition of the four AAL service domains: 1) social integration, 2) performance of
daily activities, 3) living safe and protected, and 4) mobility.

During the first step of design, user social inclusion, independence, security and mo-
bility needs have to be identified and analyzed. After that, AAL service scenarios have
been specified and they was derived from the analysis made in advance on the services
of high potential impact for independent living of senior citizens, the partners experience,
the user context delivered by the previous work, and the close collaboration with the pilot
sites from an end user point of view. Main focus has been put on describing the user
interaction with the system that constituted the user experience model.

26

2.1. AMBIENT ASSISTED LIVING

The second step was the enrichment phase aiming at improving the service offer
by working out the implications of the user experience model resulting in a high-level of
specifications of service directions.

The enrichment process consisted in three steps:

1. improve value creation:
• improve storyline based on end user’s feedback;
• specify the drivers and core values behind the service considering the business

aspects;
• review stakeholders involved in the service by specifying the business role and

information flow;
• review system capability considering feedback of technical experts;

2. subdivide scenarios into functionalities;
• specify single functionalities drivers based on user needs;
• list tasks (Use Cases) needed to enable functionality;

3. define interaction paradigms for service access and use;
• determine common Use Cases;
• define key touch points between actor and system;
• specify related assumptions, pre and post conditions;

The evaluation process of the second step consisted of a technical, business and
user experience evaluation. Technical analysis was done in order to determine the com-
pleteness of the scenarios already described and the level of feasibility according to the
technologies to be developed; business analysis was done in order to determine the vi-
ability of the scenarios and the complexity to develop a business model around each of
them; and user experience analysis was done to determine if user needs were appropri-
ately addressed and proposed services were desirable from the user perspective as well
as from the public and private welfare system. Based on the results of this evaluation,
scenarios for building mock-ups were selected.

The third step was the refinement phase which objective was to reach a solid service
specification by refining the services through iterative stakeholders input loops. Based
on the previous work mock-ups were developed and presented to end users and stake-
holders with the aim of gathering qualitative insights from the stakeholder perspectives.
These qualitative insights supported:

• the process of prioritizing the most attractive services, by providing guidance and
ensuring comparability (as much as feasible);

• the further development of services, by validating the concepts and identifying im-
provement points and strengths.

The analysis of the results was used for improvement of Use Cases and to provide the
guidelines for Service specifications. The outcome was delivered to the developer teams
in charge of implementing the AAL Services.

27

CHAPTER 2. STATE OF THE ART

Requirement Analysis

The requirements analysis process in PERSONA started in two parallel threads, one with
regard to the platform and the other with regard to user requirements:

• platform-related thread : the collection of requirements was based on investigation
of scientific literature and existing solutions and studies. These investigations were
done in the context of a series of state-of-the-art studies in the fields of architecture
and middle-ware, context-awareness, service infrastructure, multi-modality and multi-
media integration, and privacy-awareness and trust. An interesting aspect here was
that PERSONA, similar to universAAL, had an explicit focus on the creation of an AAL
platform and hence tried to reuse existing achievements in the field as much as pos-
sible. For this purpose, the platform-related requirements were simultaneously looked
at as a set of criteria for evaluating existing solutions.

• user-related thread : the requirements analysis started with the creation of an overall
user experience model based on the specifications of users’ needs in the applica-
tion domains of social inclusion, assistance in daily activities, safety and security,
and mobility, while considering the socio-dynamic factors that influence and shape
the acceptance of this kind of services. For determining the socio-dynamic factors,
an analysis of the current state of AAL services and technologies was performed fo-
cusing on the differences between European countries in general as well as in the
pilot sites. The analysis included the following dimensions: socio-economic factors,
socio-cultural factors, services and technologies, legal and regulatory environment
and ethical aspects.

The result of the work performed in this first phase was a set of high-level user re-
quirements based on story-lines where an elderly had solved a specific need by means of
PERSONA solutions. These scenarios were used to devise the services from a business
perspective and the functionalities from a user experience perspective, while using them
to derive additional technical requirements.

A first prioritization of scenarios was done based on their added value and usability
to the end user, and based on its technical feasibility and system capabilities.

At a second stage, mock-ups created scenarios to gather end-user’s feedback. These
scenarios were evaluated at the selected pilot sites using individual interviews with elder-
lies as the method to collect qualitative insights together with questionnaires to assess,
in a standard and formal way, subjective judgments, attitudes, opinions or feelings about
the scenarios presented during the interview.

The results of this assessment were used to refine the scenarios, improving the use
cases derived from them as well as the service specifications from the business and
technical perspective. A summary of this partially iterative process is shown in Figure
(Figure 2.4).

Figure 2.4 also shows that user requirements in PERSONA were extracted from a
combined analysis of the mock-ups, use cases, and the services. It is worth mentioning

28

2.1. AMBIENT ASSISTED LIVING

Figure 2.4. Persona user requirements analysis process

that users explicitly expressed some requirements during the mock-ups evaluation pro-
cess or by the domain experts during workshops. This approach has linked two main
problems:

• requirements were scattered across different information sources, and
• there was a multiplicity of ways of expressing the requirements depending on their

source.

The VOLERE [72] methodology was selected due to its capability of solving those prob-
lems as it defines a common language for the expression of all requirements, combined
in a single document, and it provides the ability to keep track of all requirements and their
sources during the development phase.

One of the most important points when defining the user’s requirements was the
correct definition of the fit criterion. That is, the measurement of the requirement that
can be monitored by the system or an evaluator in order to test until which degree the
solution matches the requirement. Three types of fit criteria have been defined which are
also included in the parameters defined in the pilot sites evaluation methodology:

• capability checked during implementation;
• performance tested in the field;
• benefit evaluated in the field from a long-term perspective.

29

CHAPTER 2. STATE OF THE ART

2.1.7 SOPRANO

SOPRANO [77] stands for Service-oriented Programmable Smart Environments for Older
Europeans and it is an Integrated Project in the European Commission’s 6th Framework
Programme (IST Priority 6th Call on Ambient Assisted Living - AAL).

The project aims to develop an affordable smart ICT-based assisted living service with
interfaces which are easy to use for elderlies and relatives in their home environment. The
societal trends that SOPRANO is responding to are:

• the increase of elder citizens in the population due to demographic change, the scale
and type of needs of older citizens which society must plan to meet, the rejection of
current ICT-based services by many older citizens, the steady deterioration of non-
ICT-based service provision in the Information Society;

• the lack of ICT-based services usable by elder citizens;
• the difficulty of designing ICT-based services that can be used by elder citizens.

SOPRANO is developing supportive environments for elderlies based on the concept of
Ambient Assisted Living, using information and communication technologies (ICTs) to
enable elderlies to live independently in their own homes. SOPRANO will not only ad-
dress the problems of old age (e.g., falls, health problems), but will focus on positively
enhancing the quality of life of elder people. Focus groups and interviews with elderlies
and care providers identified a number of potential opportunities for the development of
SOPRANO. Social isolation has profound negative outcomes such as loneliness, depres-
sion, boredom, social exclusion and disruption of patterns of daily living.

The project foresees an avatar (an interactive computer-generated assistant; pictured
here) on a TV screen that will be able to interact with the persons in their home using
natural language, for example, providing prompts for what exercises to carry out and
reminding people to leave their house in a safe and secure manner when they go out
(e.g., locking doors, shutting windows).

Social isolation may be alleviated through the more extensive use of video-telephony
to link elderlies who live alone with their family and friends. Many of the features of SO-
PRANO will be useful for people with mild dementia: particularly those that help and
support people to carry out tasks of daily living. However, extensive research and de-
velopment is required to ensure that the interaction media (interfaces, avatars, etc.) are
appropriate for a diverse range of potential users, such as people with dementia, or those
with sensory impairments.

Use case methodology

SOPRANO used the Experience and Application Research (E&AR) methodology to fa-
cilitate the active and strong involvement of elderlies throughout the entire R&D process.
Participative methods in the area of research and development enable to thoroughly focus
on the users when defining the user requirements, iteratively generating design solutions
and evaluating those designs in real life settings.

30

2.1. AMBIENT ASSISTED LIVING

The SOPRANO Use Cases development (Figure 2.5) started with composing an ex-
tensive list of situations that threaten independence in the life of the elderly. The list com-
prises circa 80 situations that are of interest to the SOPRANO project. These situations
were extracted based on extensive literature research.

Figure 2.5. SOPRANO use case specifications

The collection of user needs started in a second step with the help of focus groups
consisting of elderlies and of formal and informal carers, in four EU countries. Main goal
was to elicit user requirements in terms of key challenges that threaten independence
together with initial ideas for possible technological solutions.

Use Cases were then further explored in a second stage of user’s involvement: the
multilevel prototyping. In a first cycle multimedia mock-ups and theatre presentations
were used to help users visualize technologies prior to prototyping. Feedback from users
was used to refine Use Cases and Requirements. Subsequently also the system archi-
tecture was revised and SOPRANO component prototypes were developed. After that,
prototyping focused on testing usability of the different SOPRANO components and re-
sulted in concrete design refinements of certain aspects of the system. Based on this,
the final system was developed and it will again be tested. Results from this interaction
phase will be used to further improve the system as a whole.

Requirement Analysis

Based on the Description of Work and further literature analysis, about 80 core user’s
needs were collected in a short XML-like format. The user’s needs focused on situations
of concern and situations of assistance highly centred on elderlies living in their own
homes. This collection of user’s needs served as input to the requirements analysis,
which included the first interaction with potential end- user. Within focus groups in four
EU countries discussions were held with elderlies, formal and informal carers. Within
these discussions relevant needs and situations were identified. The user’s needs served
as initial guideline in those discussions.

Based on these discussions a set of key challenges to independence and initial ideas
for possible technological solutions where derived. Ideas for improving services were
developed in response to each challenge to independence, taking into account not only
features of technology seen as desirable by focus group participants but also their fears
or rejection of other features of technology and of action by service providers seen as
intrusive or unnecessary. These key challenges (over 22) acted as the basis for further
scenario development.

31

CHAPTER 2. STATE OF THE ART

In a next step, 11 scenarios (in SOPRANO also called use cases) were developed that
effectively helped to capture the functional requirements describing interactions between
users and the system.

In a final step of the first iteration, a list of ca 100 requirements capturing the essence
of these scenarios were extracted. These requirements and scenarios then served as
basis to further develop the SOPRANO architecture and the different SOPRANO compo-
nents. Use cases and requirements were then further explored in subsequent iterations
with heavy end user involvement.

The SOPRANO project has focused mainly on the requirements of end-users, namely
elderlies, formal and informal carers. Therefore most of the requirements are captured in
the category of functional requirements. These requirements describe functionalities of
certain applications and services from a user’s perspective and have been categorized
into the groups Reminders, Alerts and messages, User interfaces, Locators, Home man-
agement and security, System administration, AP safety and living habits, and General
functional requirements.

To capture the refinement according to input from the first and second user cycles,
the requirements were collected in a tabular format, e.g. with one column for the original
requirement as derived from the first version of the UC, and an additional column for
refinements that have to be applied to the original requirement to be compliant with user
input from the first and second user cycles.

A far shorter list of non-functional requirements (about 14) mostly captures security
concerns and emphasizes SOPRANO’s focus on the home of the assisted person. This
list has been extended during the process of the project mostly driven by input from
technicians but also user’s input. In general, due to the strong user’s involvement an
overly formal approach to requirements and use case specification (e.g. UML-diagrams
or enterprise architecture) has been avoided. Exchange and specification formats for UC
and requirements were mostly based on MS Word and Excel documents.

2.1.8 universAAL

universAAL [41] aims to reduce user’s barriers adoption promoting the development and
widespread uptake of innovative AAL solutions. It will benefit end-users (i.e. elderlies and
people with disabilities, their carers and family members) by making new solutions afford-
able, simple to configure and to personalize. It will benefit solution providers by making
it easier and cheaper to create innovative new AAL services or adapt to existing ones
using a compositional approach based on existing components, services and external
systems. The result shoud be as simple for users to download and setup AAL services
as it is to download and install software applications on a modern operating system.
universAAL establish a store providing plug-and-play AAL applications and services that
support multiple execution platforms and can be deployed to various devices and users.

universAAL aims to produce an open platform that provides a standardized approach
making it technically feasible and economically viable to develop AAL solutions. The plat-
form will be produced by a mixture of new development and consolidation of state of the

32

2.1. AMBIENT ASSISTED LIVING

art results from existing initiatives. A variety of similar important projects has been funded
in this area in recent years, including PERSONA, MPOWER, SOPRANO, and OASIS. In
order to achieve a high acceptance of the emerging open AAL platform, universAAL will
consolidate the earlier work by adopting and integrating earlier results where possible
and making new developments where needed.

An early result of the analysis and consolidation of different input projects is the uni-
versAAL reference model. The model specifies the project’s view on the core set of do-
main concepts and the essential interrelationships among them. The reference model is
described as a set of conceptual maps and the Root Concept Map (Figure 2.6) presents
the consolidated understanding of AAL systems in a single picture using the fewest possi-
ble set of concepts. AAL systems are all about the provision of AAL Services. The impor-
tance of ambient technologies in the provision of such services is highlighted by putting
the concept of AAL Spaces (aka Smart Environments) and the underlying technologies
(Networked Artefacts) right in this top level map. The AAL Reference Architecture and the
compliant AAL Platforms incorporate the engineering challenges beyond single technolo-
gies towards modular and interoperable infrastructures. The AAL Reference Architecture
identifies the basic building blocks necessary for constructing an AAL Space, such as
homes, supermarkets, cars or hospitals. This facilitates the provision of AAL Services with
the help of embedded Networked Artefacts that implement (or contribute to the implemen-
tation of) those AAL Services. The cooperation between Networked Artefacts distributed
in an AAL Space is facilitated by an AAL Platform that implements the previously men-
tioned reference architecture in order to provide for resource sharing, context-awareness,
and personalization.

AAL spaces are smart environments centred on human users. The devices embed-
ded in such environments operate collectively using information and intelligence that is
distributed in the infrastructure connecting the devices. AAL Spaces are classified in
space profiles, each identifying the typical set of devices used in a specific AAL sce-
nario; the project distinguish between private space profiles, like homes, versus public
space profiles, like supermarkets. Space profiles include industrial standards used by
devices that currently populate market segments like e-healthcare, home and building
automation (eg ISO/IEEE 11073 standards, IEEE 802.15 standards). The definition of
space profiles makes it economically viable to develop heterogeneous products that are
still interoperable, thus paving the way to the creation of a promising AAL ecosystem.

Another important aspect of AAL spaces is that they may be remotely managed. This
is a typical requirement derived from use cases where a person is assisted by formal
and informal caregivers (relatives, neighbors, and friends). Remote access and manage-
ment of a AAL space can be provided only after a design process that involves various
professionals. The idea of standardizing the AAL space design according to a specific
profile and following a well-defined process (Figure 2.7) is essential to enable the seam-
less assistance needed by people traversing different environments. In particular, the
commissioning of a system is related to the binding of the distributed services that co-
operatively guarantee the basic common services characterising every AAL space (eg

33

CHAPTER 2. STATE OF THE ART

Figure 2.6. The root concept map of the universAAL reference model

context information provision, user adaptation). In this way, end-users will experience an
integrated world, easy to interact with, and based on natural communication where the
complexity of the environment is mitigated and hidden by different ICT solutions (plat-
forms) implementing a shared AAL reference architecture.

Work on establishing and running a sustainable community will receive attention right
from the start, with promotion of existing results gradually evolving into promotion of the
universAAL platform, as it develops into one consolidated, validated and standardized
European open AAL platform.

Use case methodology

For the process of alignment of the Use Cases, it was important that the Use Cases
collected from the different projects were defined at the same level of detail. Therefore,
the Use Case hierarchy in each of the previous projects was identified and an appropriate
level for the collection was defined.

The collection step involved identifying similar Use Cases from different projects within
a category and consolidating them as a single Use Case. This involved extending certain
Use Cases to be more general to cover minor variations of the Use Case in the differ-
ent projects. Apart from the consolidation of the existing Use Cases from the previous
projects, certain Use Cases that were relevant for the universAAL specific categories
were also added. This last step was not done extensively with the idea that more addi-
tions would be made in the future as the project progresses.

34

2.1. AMBIENT ASSISTED LIVING

Figure 2.7. The root concept map of the universAAL reference model

An overview of Use Case categories and related subcategories is depicted in figure
2.8.

Requirement Analysis

Throughout the whole iterative process, which is described in the next subsection, the AR-
CADE architecture development framework [13] was used. ARCADE defines two models:

• Requirement Model : its purpose is to identify, and eventually specify all relevant re-
quirements to the target system where a requirement shall be verified. According to
this model, it is mandatory that each requirement is uniquely identifiable and testable
for the target system verification. Furthermore, the model recommends to hierarchi-
cally decompose requirements to one or more levels;

• Target System Information Model : the purpose is to be a supplementary specification
to the Requirement model in order to obtain a more complete, easier and understand-
able specification of the target system interfacing to its environment. The main idea is
to include only requirements specification related to the target system interfacing with
its environment. This model must include a specification of who operated the inter-
faces, initiated actions and given responses, and the type of functionality performed

35

CHAPTER 2. STATE OF THE ART

Figure 2.8. UniversAAL use case specifications

as a result of executed operations through UML sequence diagrams, UML use case
diagrams and UML collaboration diagrams.

Figure 2.9 shows an overview of the iterative process applied in universAAL for require-
ment analysis. It consists of four iterations of refinement where the 1st iteration takes the
requirements from the input projects as starting point and combines and consolidates
them to a comprehensive list in a common format. Each further iteration takes the results
from the previous iterations, analyzes possible drawbacks, and refines the list:

• iteration 1: for requirements, consolidation is understood as the collection of all re-
quirements from the input projects, mapping them to each other, and finally merging

36

2.1. AMBIENT ASSISTED LIVING

Figure 2.9. UniversAAL iterative process

them into one harmonized and prioritized list of requirements. However, universAAL
has to also complement this process with a gap analysis, especially to cover the in-
novative aspects of the project work.
After gathering the statistics from the input projects, it was immediately clear that
even having this focus on the above set of projects, the identified tasks of collecting,
mapping, merging, harmonizing, and prioritizing the requirements cannot be done
mechanically in a simple sequential way. Finally, the conclusion was to bring important
aspects of the mapping and harmonization tasks into the collection phase in the sense
that all the experts from the input projects that are contributing to the universAAL set
of requirements have to agree on a target form of representing the requirements so
that each of them does a mapping and harmonization of its own set of requirements
in terms of the target form of representation.
The basic form was known to be a table, as this is the way ARCADE defines the
requirement model. Hence, it was immediately clear that the agreed and common
way of representing requirements in universAAL had to be related to the structure of
this table. The first consequence was to agree on the set of columns in this table,
which it is called the requirement collection template. Hence, by describing the input
requirements based on this set of columns, requirements were automatically getting
harmonized at a certain level.
The first consolidated list of requirements after the collection phase still suffered from:
(1) missing data in the different columns because of the differences between the
templates used in the input projects and the template used in universAAL, and (2)
the different levels of abstraction and quality in the formulation of the requirements.
These issues had made the task of merging similar requirements into one unique
requirement almost impossible. One of the important initial works by the task force
was to agree on the methodology for prioritizing the requirements. These groups of
criteria were prioritized, according to which impact-related criteria and those related
to the methodological evidence had higher scores.

37

CHAPTER 2. STATE OF THE ART

• iteration 2: the objectives are: (i) narrowing the focus to reference architecture re-
quirements. This was achieved by defining what reference architecture requirements
shall look like and by selecting a set of reference architecture requirements from the
set of consolidated requirements; (ii) categorizing and reformulating requirements to
provide a list of requirements; (iii) analysing the requirements in relation to concerns
in order to provide a consistent list of reference architecture requirements.

• iteration 3: the previous iteration provided the template but lacked in providing the
detailed information for each requirement. Collecting all the properties of this template
for each requirement was the main work done in this iteration.
Furthermore, a mapping between the requirements from the current list and the re-
quirements form the list as defined in first iteration was created. This mapping in-
formation is part of the field “References” in the template. From this mapping, the
information collected in the first iteration could be used; for example, the first itera-
tion already specified a measure to check the solution against the requirement. This
specification was reviewed and, if multiple requirements from the old list were found
in the mapping, the specifications were combined.
A validation in form of a mapping between requirements’ categories and reference use
cases (RUC) was performed. This is due to the fact that the requirements are needed
to reflect the RUCs. During the mapping of RUCs to requirements it appeared that in
most cases all requirements of a specific category were mapped to the same set of
RUCs. Thus, it was decided to provide only a mapping between RUCs and categories
instead of individual requirements.

• iteration 4: in universAAL experts’ groups deal with fields like security and privacy, the
several functions of the middleware layer, remote interoperability, hardware abstrac-
tion, service orientation, user interface, configuration and context management. The
purpose of the experts’ groups is to drive the development of the system in relation to
the specific expert group topic.
Experts’ groups were created in discussions similar to the one that produced the new
categories. These discussions identified the major technical topics of AAL that need
to be addressed by an AAL reference platform. Therefore, the scope of the new re-
quirement categories and the experts’ groups is strongly overlapping. Consequently,
experts’ groups will deal with the refinement of the requirements and requirement
categories that are related on a topical level.

2.2 Digital ecosystem

In the following, two of the most important implementations of Digital Ecosystem archi-
tectures are analyzed: the DBE [14] and Meteor-S [67] projects.

2.2.1 DBE project

The aim of DBE project is to provide an infrastructure to small and medium European
sized enterprises (SMEs) able to make them more competitive through the adoption of

38

2.2. DIGITAL ECOSYSTEM

an information and communication program. This program allows SMEs to cooperate in
the production of components according to local business needs.

DBE is inspired to living organisms mechanisms: evolution, adaptation, autonomy,
viability, introspection, knowledge sharing, selection and it will lead to the emergence of
novel architectures and technologies, business processes and knowledge. DBE wants to
create an ecosystem where applications within it behave like intelligent, interactive and
adaptive organisms.

The description of the model must be expressible in a natural language way but must
also be computable and it must be searchable in order to support intelligent discovery.
The semantics is coming from the Model Driven Architecture (MDA) [15] approach. A
complete MDA specification consists of a definitive platform-independent (programming
language and environment of execution) base model, plus one or more platform-specific
models and sets of interface definitions (typically using UML formalism).

DBE architecture

The DBE software project was architected [34] into three core systems: the Execution
Environment (ExE) to host services, a Service Factory do design and develop services
and an Evolutionary environment (EvE) to help to optimize the system.

Execution Environment ExE

The ExE system [24] is a peer-2-peer application container that isolates the programmer
from the coding complexity. It hosts all the available services of the DBE providing a set
of structural features like authentication, authorization, privacy, transactions, logging, and
so forth.

It is composed by four main components:

• the servent that can be considered like a DBE service container that provides a gate-
way (service adapter) to existing services. The publication of the existence of service
adapters consists on the creation of a data item which contains the service URL end-
point, the conforming models used by the service and additional user defined tags.
The data items are then registered in a registry for service proxy called FADA that
adopts a Jini [8] like protocol. If an external or internal module asks for a service, the
servent searches for that acting as a client to the FADA;

• the Service Factory described later;
• the locally accessible core components that implement fundamental low level DBE

functionality;
• the networked addressable services that are either infrastructural or SME specific.

The Service Factory

After the modelling phases, the service adapters, are created using the Service Factory
module. The service factory is represented by a set of tools that allows organizations to

39

CHAPTER 2. STATE OF THE ART

describe and publish their services using DBE Studio [21], Eclipse [53] based develop-
ment environments and a decentralized repository to publish and retrieve service models
and data. Each service in the DBE is specified using a set of formal languages that aims
at defining the business models as well as the technical interfaces. The project has also
developed a Semantic of Business Vocabulary (SBVR) [65], a Business Modeller Editor
(SBeaVer) [23] for capturing business models and rules using natural languages. SBVR
is a metamodel specification, adopted by OMG, for capturing business vocabularies and
rules in a controlled natural language and representing them in formal logic structures.
This approach has been demonstrated to be more effective with respect to the more
common "boxes and lines" approach.

Evolutionary Environment EvE

The EvE [22] is and optimization engine of the DBE and it is designed to monitor the
consumption of services on the DBE for pointing out the one that is most likely to be
consumed. It has also been designed to support the automatic composition of services,
putting together atomic ones in order to deploy them as new to help satisfy potential
users’ needs.

DBE infrastructural services

Knowledge base

The knowledge base service [66] provides the distributed storage facilities. Due to the
distributed and dynamic nature of the SME-based network, the knowledge base repli-
cates data following a primary / secondary asynchronous model in which one node is
always the primary node for a particular piece of content. Should it fail, a secondary
node becomes the primary. Content is replicated from primary to secondary nodes asyn-
chronously. To improve the efficiency of queries, content is stored on nodes that already
include semantically similar data. This is achieved by comparing the ontologies and se-
mantics referred to inside the models. Then initial queries from a node are propagated to
all nearby neighbors that store information regarding which nodes the results came from
and a comprehensive set of routing information is built up to help direct future.

Semantic registry

The semantic registry [66] service is used to store published Service Manifest. A Ser-
vice Manifest is an XML document that completely describes an individual DBE service.
Service Manifest can be considered to be an advertisement for a service on the DBE.

Distributed storage system

The distributed storage system [51] delivers a generic distributed storage capability to the
DBE. Essentially the distributed storage system allows arbitrary content to be persisted
onto the DBE peer-2-peer network, and it generates an identifier by which the content can

40

2.2. DIGITAL ECOSYSTEM

later be retrieved from any node on the network. For redundancy, the content is replicated.
To avoid the distributed system overfilling, all content must be assigned a time-to-live by
the storing entity.

DBE portal

The DBE portal [32] is a core service which provides a user-friendly HTML interface DBE.
This portal consists of a completely arbitrary website representing the SME’s business.
The DBE portal includes links pointing to the DBE services which that particular SME
has deployed as well as the ability to search for arbitrary DBE services. DBE portal can
also link to local DBE administration interfaces allowing basic servant configuration and
functionality to be administered via web. The portal includes self-registration functionality
which automatically publishes the existence of the portal service within the DBE semantic
registry. Ultimately, this enables a peer-2-peer network of DBE portal to be formed.

Recommender

The recommender service [66] is an autonomous system that uses pre-configured user
profile information to identify the best-matching service manifest published on the se-
mantic registry that may be of interest. For example, if a user whose profile explains that
he is interested in low-cost flights, he could be automatically alerted when a new low-cost
flight booking service is published in the semantic registry.

Habitat

The EvE [22] is implemented in the Habitat service that is designed to support fea-
tures such as autonomous service composition, the initial implementation uses neural
networks to identify services that closely match those that have already been invoked.

FADA

FADA stands for Federated Autonomous Directory Architecture [81] and it is an open-
source project originated in the European Commission. FADA was the first peer-2-peer
infrastructure embedded into the DBE. FADA nodes find each other either by using broad-
casting on a LAN or via manual configuration and they provide a location to store and re-
trieve proxies to services. If the FADA node does not have the requested proxy, it queries
its neighbors and they, their neighbors, until the requested proxy is found. To avoid in-
definite queries, maximum query times and number of hops can be specified. Whilst
DBE uses FADA as a registry for service proxy, FADA also provides searching facilities
whereby it is possible to assign tags, known as entries, to service proxies. FADA can
then be queried to return not just proxies to specific services but also the proxies to all
services that have been assigned with a certain entries too.

41

CHAPTER 2. STATE OF THE ART

2.2.2 Meteor-S project

The growth of web services and service oriented architecture (SOA) offers attractive
basis for realizing dynamic architectures. With the help of industry’s wide acceptance
of standards like Business Process Execution Language for Web Services (BPEL4WS),
Web Service Description Language (WSDL) and Simple Object Access Protocol (SOAP),
Web Services offer the potential of low cost and immediate integration with other appli-
cations and partners. The Meteor-S [67] project aims to extend these standards with
Semantic Web technologies to achieve greater dynamism and scalability. The Meteor-S
helps to provide plug-and-play support for dynamically selecting web services by enhanc-
ing discovery of relevant services using semantics. The project reduces manual interven-
tion during Web process composition. The project has the ability of choosing the optimal
set automatically [2].

The semantic

Four main semantic categories for the web process life cycle are individuated [75]:

• data semantics: formal definitions of input and output data messages of a web ser-
vice. The semantic is needed for discovery and interoperability functions and it is
performed annotating them using ontologies;

• functional semantics: are formally representing capabilities of a web service for dis-
covering features. The composition of web service description is realized by annotat-
ing operations as well as providing preconditions and effects;

• execution semantics: are formally representing the execution or flow of a service in a
process or operations in a service. They are used for analysis (verification), validation
(simulation) and execution (exception handling) of the process.

• QoS Semantics: are formally describing operational metrics of a web service / pro-
cess to select the most suitable service to carry out an activity in a process.

The service description layer of the web service stack provides the necessary infor-
mation for invoking web services. WSDL is the de-facto standard for this layer. WSDL
descriptions are syntactic and do not explicate the semantic of the service providers. For
this reason, Meteor-S advocates semantic annotation of WSDL in two ways:

• annotated WSDL 1.1: it is a WSDL document with semantic features added to it via
permissible extensibility elements present in the language. Meteor-S contains tools
for manual annotation of WSDL or java source code as well as a schema matching
based approach for semi-automatic annotation of WSDL;

• WSDL-S[3][70]: it is a semantically enriched WSDL 2.0 document. It can be used the
preferred semantic language (OWL, UML, WSMO) as well as a combination of them.
enhancing web services description and discovery to facilitate composition.

42

2.3. INTEROPERABILITY USING SEMANTICS

The components

The Meteor-S is composed of five elements:

• abstract process: it is like a BPEL4WS process with assigned semantic annotation.
The component allows users to create the control flow of the process using BPEL
constructors, to annotate each call to web services which require late binding and to
specify process constraints / objectives from local and global optimization;

• semantic web service developer / annotator : the annotation process of WSDL de-
scribed;

• semantic publication and discovery engine: it adds semantic extensions to UDDI. The
ontology based semantic annotations are used to provide semantic matching based
on subsumption and property matching. This tool allows users to publish semanti-
cally annotated Web services. Users can also employ a template based GUI or the
discovery API to query the engine for matching services;

• constraint analyzer : it dynamically selects services form candidate services which
are returned by the discovery engine. This selection is done on the basis of global
QoS constraints and objectives for the process as well as domain constraints. The
QoS optimization uses an keywordInteger Linear Programming solver and the SWR
algorithm;

• execution environment : it consists of a binder and an execution engine. The binder
performs actual late binding of services returned by the constraint analyzer and con-
verts abstract BPEL to executable BPEL.

2.3 Interoperability using semantics

2.3.1 Introduction

To establish interoperability among different systems, there are at least three aspects that
must be tackled:

• business processes;
• data models (semantic, syntax, including product classification and identification);
• communication protocols.

As regards interoperability, the communication protocols are not affected by sector
specific issues and they are not so critical, in general they can come from other applicative
domains and they can be directly applied, with no adaption. On the contrary, business
processes and data models are very sector specific and if they try to directly transfer
tools and solutions from other sectors, this is often unsuccessful.

43

CHAPTER 2. STATE OF THE ART

2.3.2 eBiz

Introduction

The European project [69] aims to enable interoperability among small, medium and large
enterprises among to the Textile / Clothing and Footwear (TCF) sectors, encouraging
technology suppliers to provide better support and new advanced services for e-Business
in order to create a reference architecture for the sector. The general key features of this
architecture are (Figure 2.10):

Figure 2.10. The eBiz architecture

• the exploitation of past experiences and advices of the different communities of users
as Moda-ML [18] for the textile / clothing manufacturing, Shoenet [29] for the footwear
industry, OASIS [26] and GS1 [55] for industry and the generic technology Electronic
Data Interchange (EDI) [31] for retailers;

• an inclusive open approach designed to support many models and communication
solutions (ASP, P2P, Hub...);

• the use of public and usable specifications to reduce the gap between standard ex-
perts and company managers and technicians;

• the use of scalable architecture because it can be applicable to small and to medium
enterprises as well as to large organizations;

• studied to be targeted to e-business real needs considering the different relation re-
quirements that exists inside manufacturing networks, between producers and sellers
and among retails themselves.

44

2.3. INTEROPERABILITY USING SEMANTICS

In this project was developed a shared semantics derived from standard specifications
of Moda-ML/TexWeave [82], ebXML [25] and methodologies and tools were developed
to facilitate their adoption. As an outcome of this work a Knowledge Exchange Infrastruc-
ture (KEI) was created. KEI is a conceptual framework supported by artifacts, software
tools and a sectorial ontology [61] that, subsequently, has been published to support both
semantic reconciliation applications as well as document (re-) engineering. TFC sectors
are characterized by a large presence of SMEs and by an average level of adoption of
e-Business and interoperability standards that appears to be quite low comparing to other
similar manufacturing sectors. Innovative e-collaboration combined with other new man-
ufacturing and supply chain paradigms can provide some of the answers to the European
companies to strengthen or re-gain global competitiveness.

The specifications of e-Business for retail organizations are based on more generic
EDI and in particular on WWS Profile and XML data model called Universal Business
Language (UBL) [46]. A specific issue addressed in the architecture is the need for logis-
tics and point of sale to have a common method to identify products and parties (com-
panies and locations). The use of various and proprietary coding systems adopted by
producers and retailers can present very hard problems of communication. To overcome
this problem GTIN [39] and GLN [54] numbers, managed by GS1, provide identifica-
tion for products and locations respectively and are internationally recognized and widely
accepted by retail organizations in the world of consumer products. The need for a com-
mon product identification is not applicable to networks of manufacturers who deal with
materials, components, processes and finished products that are easily identifiable as
belonging to a specific producer.

The architecture

The reference architecture includes two different areas:

• the high specialized networks of manufacturing enterprises (upstream area): the pro-
ducers of final goods rely on complex networks of enterprises with highly specialized
processes;

• the retail channels for the Textile/Clothing and Footwear final goods (downstream
area): the retail organizations need to achieve a common and efficient connection
with the producers.

The project architecture is composed by three distinct layers (Figure 2.11):

• business / application: it is based on sectoral standards;
• middleware: it is based on ebXML CPPA [27] and ebMS [28]. It creates a connection

between the upper and lower layer;
• communication: it specifies the type of connection and the underlying protocols.

In addition there are a Security / Privacy block and other vertical ones which can be
applied on each of the hierarchical layers.

The architecture is based on four different types of specifications:

45

CHAPTER 2. STATE OF THE ART

Figure 2.11. The eBiz architecture

• business processes: they are represented using UML notation and ebBP [25] tem-
plates;

• data models: document template specifications, based on a logical and syntactic
level, implemented on XML but related with pre-existing EDI specifications;

• collaboration and communication protocols;
• product classifications.

Business application layer

This layer describes all scenarios, processes and activities of the possible transactions
among different actors of the business system.

As regards TCF sector, different standards related to data models exists and they can
be classified in two categories:

• horizontal : as UBL, GS1, XML. They are inter-sectoral standards and aim to cover a
generic set of processes and data;

• vertical : as TexWeave, ModaML. They are closed in a specific domain.

This means that horizontal standards have specifics that are partially used in a realistic
scenario and the vertical ones try to furnish a data model designed to manage exchanged
information in a specific business domain. In real supply chain networks, the enterprises,
need to define constraints that are stricter than the vertical standard specifications to
reflect the requirements arising form very specific and dynamic businesses. In particular,
two aspects are critical:

46

2.3. INTEROPERABILITY USING SEMANTICS

• the mapping between internal processes and data models into the standardized mod-
els;

• the reconciliation between different implementations of the same standardized speci-
fications managed by different organizations.

Vertical standard appears to be more focused and effective to support real e-Business,
but the problem is that certain industrial domains lack a sectoral standard to adopt for
their e-Business transactions. Both using a horizontal and a vertical standard, at different
levels, one of the problems is to define a trade-off between generality and complexity of
specifications. To solve the problem, a solution consist in using UML, the most known
modeling language. UML provides rules for the definition of profiles intended as exten-
sions of the modeling language in order to make it fit to specific application domains. The
possibility to define use profiles exists also for the EDI standard and they are called EDI
subsets. These subsets are tailored for specific industrial sectors, but the specifications
are released only in terms of hard paper manuals, without a clear and simple machine
readable format that could ease their adoption. Another possible approach is based on
the semantic reconciliation through a domain ontology without relying on a standardized
specification but it is not taken into account because the largest part of the IT suppliers of
the industry were not able to manage such kind of technologies while the more diffused
XML based technologies are accepted and recognized.

According to this analysis, in business document modeling we envisage an approach
not only to support the reduction form a general horizontal specification (UBL 2.0) to a
sectoral scenario without loosing the conformance with the standard, but also to simplify
the process of implementation and to limit the complexity of UBL documents for the final
users; this approach leads to the definition of a use profiles (Figure 2.12)

Figure 2.12. The eBiz use profile definition

Middleware and Communication layers

Middleware and Communication layers are composed by:

47

CHAPTER 2. STATE OF THE ART

• e-Business Middleware to formalize the agreements among collaboration partners in
such a way to allow automatic configuration of the underlying Messaging Middleware
Layer. This layer can provide also for additional services such as data format and
content transformations, business process management (process integrity control,
exception handling, error handling);

• Messaging Middleware allows for automatic configuration of the communication layer
and on top of it provides for additional services such as routing, message reliability,
security-related services etc.;

• Communication to physically transport the messages is based on Internet protocols
(HTTP for synchronous communication and SMTP for asynchronous communica-
tion).

In particular (Figure 2.13):

Figure 2.13. The eBiz recommended standards

• SMTP / POP based approach implementing full EDI over internet;
• ebXML based approach corresponding to XML (instead of EDI) e-Business;
• Web services based approach, corresponding to advanced distributed computing

paradigms in the context of e-Business.

2.3.3 Kassetts

Introduction

The project pursues the ambitious objective to facilitate the information exchange be-
tween actors in a multicultural and multilingual environment. To obtain this result it is
necessary to analyze and classify the specific business documents of the logistic domain

48

2.3. INTEROPERABILITY USING SEMANTICS

and extract from them a common reference data model and vocabulary for automatic
document translation.

Kassetts objective is to facilitate the information exchange among actors of a multi-
cultural and multi-language environment. To reach this purpose is needed to analyze and
classify the specific business documents of the logistic domain and extract from them a
common data model and a vocabulary for automatic translations.

Metodology

The output is build following these steps:

• the identification of logistic documents of all the countries of interest;
• formalization following a simple data model schema of the choose documents in the

previous phase, identifying each relevant term and each description in the local and
the English language;

• extraction of Business-to-Business taxonomies from the SEAMLESS ontology con-
sidering ISO standards, the currency, the language and the geo-references;

• extraction and drafting of data models of profiles of all companies from the SEAM-
LESS ontology, in local and English language;

• extraction of data models for the drafting do Business-to-Business documents. The
model is the core of the ontology and it is derived from the Universal Business Lan-
guage (UBL) and Texweave [82]. The model was accepted by all partners of the
project and it models documents regarding the request for estimate, the estimate it-
self, the order, the state of the order, the delivery notification and invoice;

• the definition of a first version of a logistic vocabulary that includes relevant terms for
the exchange of information among system actors. The vocabulary is created using
logistic and business documents;

• analysis of the documents to identify things in common and to classify them according
to categories;

• specification of the first embryo of the data model KASSETTS.

Communication and collaboration across the SEAMLESS system is based on the exis-
tence and on the relationships between a global ontology and the more general regional
/ sectoral and local ones. The Global Ontology (GLOB) includes all the concepts that are
used to exchange information within the network and it can be thought as the union of
things in common between the ontologies adopted by different mediators. The concepts
are developed and described in English choosen as a lingua-franca.

2.3.4 Moda-ML

Moda-ML [18] is an initiative that aims to publicly offer tools and format specifications
for the data exchange based on XML and Internet and to stimulate convergence and
consensus of associations and firms. It is the most powerful interoperability language for
the Textile-Clothing industry from yarn to apparel manufacturing. Since its first release in

49

CHAPTER 2. STATE OF THE ART

2003 it has constantly progressed in quantity and quality to provide for the needs of an
ever extending demand of Users. At present it covers:

• 10 Business processes;
• 22 types of Companies of the T/C sector,

with the support of:

• about 80 e-document models (XML Schema);
• about 700 vocables (XML Types).

The approach of Moda-ML is based on the exchange of standardized XML documents
(messages) that are publicly available via Internet.

The transmission of the XML messages is based on the ebXML protocol that is pub-
licly availble. Moda-ML participated the CEN/ISSS initiative TexSPIN and TexWeave to
create a sectorial European standard for the B2B exchanges leaded by the European
Association of the Textile and Apparel industry, Euratex.

Moda-ML began thanks to the European support to the Moda-ML project (IST Take-
Up Action Line IV.2.5 "Computing, communications and networks take-up measures")
through the V Framework Research Programm (cluster of projects Eutist-AMI). After the
conclusion of the initial contract, Moda-ML continues through the activities of the Techni-
cal Group and of the Pilot Users of the project in other initiatives with regional, national
and European support. In 2008 the DG Enterprise and Industry project eBIZ-TCF, aim-
ing at harmonizing e-Business in Textile Clothing and Footwear industry, adopted the
Moda-ML specifications to support industry networking.

2.4 Semantics for Domotics

2.4.1 DogOnt

DogOnt is a novel modeling language for IDEs (Intelligent Domotic Environment), based
on Semantic Web technologies. By adopting well known representations such as ontolo-
gies and by providing suitable reasoning facilities, DogOnt is able to face interoperation
issues allowing to describe:

• where a domotic device is located;
• the set of capabilities of a domotic device;
• the technology-specific features needed to interface the device;
• the possible configurations that the device can assume;
• how the home environment is composed;
• what kind of architectural elements and furniture are placed inside the home.

This information can then be leveraged by inference-based intelligent systems to pro-
vide advanced functionality required in Intelligent Domotic Environments. DogOnt is com-
posed of two elements: the DogOnt ontology (Figure 2.14), expressed in OWL, which

50

2.4. SEMANTICS FOR DOMOTICS

allows to formalize all the aspects of a IDE, and the DogOnt rules, which ease the mod-
eling process by automatically generating proper states and functionalities for domotic
devices, and by automatically associating them to the corresponding device instances
through semantic relationships. DogOnt is currently adopted to provide house modeling
and reasoning capabilities to a domotic gateway called Domotic OSGi Gateway (Dog),
which is under development in the authors’ research group and that will be distributed
as open source toolkit for building IDEs running on low cost PCs. In this context, a third
component of DogOnt, namely DogOnt queries, supports runtime control of the IDE.

Figure 2.14. The DogOnt ontology

The Domotic OSGi Gateway is able to expose different domotic networks as a sin-
gle, technology neutral automation system (Figure 2.15) using the DogOnt ontology to
model devices and house environment. Dog provides the ability to control different de-
vices installed in a home environment and to query different device properties ranging
from location to current operating state.

2.4.2 SensorML

The primary focus of the Sensor Model Language (SensorML) is to provide a robust
and semantically-tied means of defining processes and processing components associ-
ated with the measurement and post-measurement transformation of observations. This
includes sensors and actuators as well as computational processes applied pre- and

51

CHAPTER 2. STATE OF THE ART

Figure 2.15. The DogOnt architecture

post-measurement. The main objective is to enable interoperability, first at the syntactic
level and later at the semantic level (by using ontologies and semantic mediation), so that
sensors and processes can be better understood by machines, utilized automatically in
complex work-flows, and easily shared between intelligent sensor web nodes. This stan-
dard is one of several implementation standards produced under OGC’s Sensor Web
Enablement (SWE) activity. This standard is a revision of content that was previously
integrated in the SensorML version 1.0 standard (OGC 07-000).

In its simplest application, SensorML can be used to provide a standard digital means
of providing specification sheets for sensor components and systems.

By using SensorML it is possible to accomplish (Figure 2.16):

• discoverage of sensors, sensor systems and processes: sensor systems or pro-
cesses can make themselves known and discoverable. SensorML provides a rich
collection of metadata that can be mined and used for discovery of sensor systems
and observation processes. This metadata includes identifiers, classifiers, constraints

52

2.4. SEMANTICS FOR DOMOTICS

(time, legal, and security), capabilities, characteristics, contacts, and references, in
addition to inputs, outputs, parameters, and system location;

• lineage of observations: SensorML can provide a complete and unambiguous de-
scription of the lineage of an observation;

• on-demand processing of Observations: process chains for geolocation or higher-
level processing of observations can be described in SensorML, discovered and dis-
tributed over the web, and executed on-demand without a priori knowledge of the
sensor or processor characteristics. This was the original driver for SensorML, as a
means of countering the proliferation of disparate, stovepipe systems for processing
sensor data within various sensor communities. SensorML also enables the distribu-
tion of processing to any point within the sensor chain, from sensor to data center
to the individual user’s PDA. SensorML enables this processing without the need for
sensor-specific software;

• support for tasking, observation, and alert services: SensorML descriptions of sensor
systems or simulations can be mined in support of establishing OGC Sensor Ob-
servation Services (SOS), Sensor Planning Services (SPS), and Sensor Alert Ser-
vices (SAS). SensorML defines and builds on common data definitions that are used
throughout the OGC Sensor Web Enablement (SWE) framework;

• Plug-N-Play, auto-configuring, and automous sensor networks: SensorML enables
the development of plug-n-play sensors, simulations, and processes, which can
seamlessly be added to Decision Support systems. The self-describing character-
istic of SensorML-enabled sensors and processes also supports the development of
auto-configuring sensor networks, as well as the development of autonomous sensor
networks in which sensors can publish alerts and tasks to which other sensors can
subscribe and react.

• archiving of Sensor Parameters: SensorML provides a mechanism for archiving fun-
damental parameters and assumptions regarding sensors and processes, so that
observations from these systems can still be reprocessed and improved long after
the origin mission has ended. This is proving to be critical for long-range applications
such as global change monitoring and modeling.

SensorML was approved by OGC as an international, open Technical Specification
on June 23, 2007. UAH and other within a wide variety of sensor communities are in
the process of building Process Models, Process Chains, documentation, and software
in support of SensorML. Much of this will be Open Source, while some will be within
Commercial Software. SensorML has been under serious consideration and testing by
a wide range of communities, including those in the science, defense, intelligence, and
public sectors.

SensorML is currently encoded in XML Schema. However, the models and encod-
ing pattern for SensorML follow Semantic Web concepts of Object-Association-Object.
Therefore, SensorML models could easily be encoded for the Semantic Web. In addi-
tion, SensorML makes extensive use of soft-typing and linking to online dictionaries for
definition of parameters and terms.

53

CHAPTER 2. STATE OF THE ART

Figure 2.16. SensorML overview

2.5 Other works

Tin-Yu Wu et al. [89] propose an interesting work related the auto configuration of intel-
ligent appliances in a networked domain. It implements three functions: (i) to assist the
information appliance in acquiring a regular domain name without manual configuration;
(ii) to provide session initialization protocol, uniform resource identifier, auto configura-
tion and their registration; (iii) to initiate communication messages between devices, to
manage the residential gateway and to configure the user management system interface.
Unfortunately this solution requires to embed a program that runs during device system
boot and this means to modify the original device design adding different routines to
embed.

Another interesting work is presented by van Moergestel and Meyer [84]. They
present a multi-agent based architecture for domotics to implement interoperability. The
described architecture provides to each device an independent agent to which, an IPv6
address should be assigned. Unfortunately, the solution requires the equipment of a small
computer system for each device, where the corresponding agent is executed.

Ruta et al. [74] presented a distributed knowledge-base agent framework for home
and building automation based on a semantic enhancement of KNX standard allowing the
integration of knowledge representation technology and reasoning techniques. The pro-

54

2.5. OTHER WORKS

posed approach supports advances, fine-grained resource/service discovery grounded
on the formal annotation of user characteristics and device capabilities and exploiting
logic-based negotiation. To support agent-based collaborative framework, the approach
leverages a knowledge base evolution of KNX and particularly it implements a semantic
micro-layer on the top of KNX protocol stack. Novel services and functions have been
introduced while keeping a full backward-compatibility with the current protocol and de-
vices. Thanks to such semantic enhancement to the standard, device features can be
fully described by means of annotations expressed via logic languages. Unfortunately,
this solution seems to work only for KNX domotic standard.

55

56

3

Architecture

3.1 Introduction

The path undertaken in this research work is to supplement a monitoring platform with
a software able to learn and anticipate the habits and behaviors of people in their own
residence, and hence the ability to recognize possible worsening of health status such as
abnormal behavior patterns signaling potential imminent health crises. The work presents
a software architecture based on a semantic layer that enables the software platform to
fully exploit knowledge-based representations of the environment. To this end, the soft-
ware platform must be endowed not only with knowledge of the devices and their func-
tions (e.g. knowing what a lamp, thermostat are and giving a meaning to switching them),
but also with tools that enable it to learn concepts such as room, furniture, object posi-
tion and the repercussions (effects) of the use of such objects. In this way, it is possible
to assign to the software platform a specific goal to achieve without however having to
specify every single action to perform. As an example, if the user wants more light in the
environment, the software platform must autonomously decide to lift the blind or to switch
the light on.

For these purposes, the semantic layer must provide solutions for:

• semantic interoperability among heterogeneous systems and devices, while masking
their technological differences to users and external applications;

• enrich the user environments, domotic devices and their functions with semantic abil-
ity;

• defining the position of domotic devices and furnitures in order to communicate with
smart objects using their position inside the environment (e.g. the lamp on the night-
table, the TV in the kitchen);

• modelling the effects activating domotic functions in order to understand the changes
that a device produces inside an environment.

To make the software platform able to recognize any abnormal user’s behavior pattern
and to anticipate his needs, the software platform must learn behaviors and habits of
home inhabitants. This software must be adaptive, a context-aware application that works

57

CHAPTER 3. ARCHITECTURE

in a fully interoperable environment. To this end, the software must perform real-time
analyses to identify user’s behaviors and verify and apply the rules learned.

3.2 Dictionary

This is a collection of the key words and their definitions that are used in this work:

• domotic function: capability of the domotic device that permits it to change its state
and to cause a modification in the environment and or a benefit for the user;

• domotic system: set of intelligent devices (sensors and actuators) and communication
protocols belonging to a particular brand or standard and that are able to implement
smart functionalities in the home environment. Each domotic system is often different
and not interoperable with the others;

• physical or domotic device: the hardware of the device installed in the environment;
• software platform: product object of this study and development;
• user action: user interaction with a domotic device to activate one of its functions;
• virtual device: digital representation of a device that is physically installed in the envi-

ronment.

3.3 Analysis requirements

The purpose of the requirements’ analysis is to establish an understanding of the ap-
plication domain and to capture, formalize, analyze and validate the user requirements
on the software platform to be built. For this purpose the software platform is viewed as
a black-box and only the objects and concepts visible on the boundary and outside the
software platform are modeled.

The user interacts with the environment activating one or more functions available
on the environment. A function can be the simple switch of a light, the interaction with
the TV, stereo and so on. The interaction can take effect through a physical interaction,
like acting on a switch button, or a remote interaction, like using a specific software in a
tablet, smart-phone and so on. The interaction produces effects on the environment due
to the changing of the state of some smart device (using the actuator of the lamp, this
illuminates the environment; turning on the radio, the music is widespread etc.). Mean-
while, the activation of the functionality is captured by a sort of Environmental Manager
that computes the information to eventually generate rules to let the software platform
to autonomously interact with intelligent devices. As shown in figure 3.1, the lifecycle
of an AmI-based system includes the acquisition of information about users and their
environment by means of a monitoring service software module. The collected data is
then analysed and processed by the information manager module. A decision-making
software application then uses this processed information to identify the actions to be
performed using machine learning techniques. Lastly, decisions are translated into com-
mands and sent to recipient domotic devices, which together with any reaction on the

58

3.4. USE CASE

part of the occupants, modify the initial settings. The operation of the system can there-
fore be viewed as an infinite loop whose steps are performed in sequence each time that
an update notification is received on the status of a device in the domotic network.

Figure 3.1. Hierarchy of actors

The software platform:

• is an application;
• is able to make interoperable domotic devices belonging to different systems and

protocols;
• identifies and analyzes user actions;
• creates rules to anticipate user actions to satisfy user needs;
• sends commands to domotic devices;
• notifies behavior changes in user activities.

The user:

• interacts with the environment physically activating domotic devices and exploiting
web, palm, smart-phone, tablet graphical interfaces to satisfy his needs.

3.4 Use Case

Use cases permit to describe the use of the software platform from the point of view of
actors. An actor is a role played by a user or any other system that interacts with the
subject. The primary purposes for these use cases are:

59

CHAPTER 3. ARCHITECTURE

• to decide and describe the functional requirements of the software platform;
• to give a clear and consistent description of what the software platform should do;
• to provide a basis for performing software platform tests;
• to provide the ability to trace functional requirements into actual classes and opera-

tions in the software platform.

The actors of the software platform are classified as follow:

Figure 3.2. Hierarchy of actors

As shown in figure 3.2, an actor (Environmental Actor) is a entity that interact with the
environment and it can be a human (User) or a software agent (Environmental Manager).

Figure 3.3. User use case diagram

As regards the human user (Figure 3.3), he can interact with the software platform
activating a function on a device acting on it both physically (e.g. pushing a button) and
using a remote interface (e.g. using the smart-phone to activate remotely a function). The

60

3.5. NETWORK ARCHITECTURE

result of this interaction produces a change in the devices state and therefore, a change
on the state of the environment.

Figure 3.4. Use case diagram

The software platform can decide by itself to act in place of the users (Figure 3.4) to
satisfy a user’s need. In this case, the Environmental Manager interacts properly with the
correct device to activate the desired function able to change the state of the environment
as needed. To do that, the Environmental Manager invokes a remote call to the software
platform to control the device.

3.5 Network architecture

The architectural network model used to develop the software platform is inspired to the
Digital Ecosystem paradigm. This paradigm permits to better model the issue. In fact, as
shown in 1.2.4, the Digital Ecosystem is composed by two main elements: the species
and the environment.

In this architecture, the species are represented by all the objects in the user envi-
ronment like Domotic systems, furnitures, users, intelligent systems; the environment is
represented by locations (e.g. rooms like kitchen, bedroom and so on.) that implement
support services to permit species to live and to cooperate.

Each category of objects is controlled at least by one software agent (Figure 3.5).

61

CHAPTER 3. ARCHITECTURE

Figure 3.5. Agent class diagram

A software agent is a piece of software that functions as an agent for a user or an-
other program, working autonomously and continuously in a particular environment. It is
inhibited by other processes and agents, but it is also able to learn from its experience
acquired by functioning in an environment over a long period of time.

Software agents offer various benefits to end users by automating repetitive tasks.
The basic concepts related to software agents are:

• they are invoked for a task;
• they reside in "wait" status on hosts;
• they do not require user’s interaction;

62

3.5. NETWORK ARCHITECTURE

• they run status on hosts upon starting conditions;
• they invoke other tasks including communication.

3.5.1 Domotic agents

As shown in paragraph 1.2.5, in the market exist a lot of not interoperable domotic sys-
tems. The proposed solution foresees that each domotic system is managed by a spe-
cific and independent agent that connects the domotic bus with the software platform.
This connection allows the software platform to share data, information and to manage
devices inside the software platform to implement the needed interoperability and to op-
erate with different domotic systems together.

Each domotic agent has to:

• open the connection with the domotic bus;
• read and write messages from / to the domotic bus;
• load at startup time, all devices belonging to the domotic system;
• implement interoperability features sending a command to other domotic agents;
• send notifications of events to other agents (e.g. to apply artificial intelligence algo-

rithms, to compile statistics etc.).

In figure 3.5 is shown that a domotic agent is a subclass of the Agent class and it is
composed by the domotic bus used as communication channel between the software
platform and the real devices. The domotic bus permits to read information related to the
events that occur in the domotic network and to write on it in order to execute commands.

Figure 3.6. Intelligent Agent is an Environmental Manager

3.5.2 User agents

Each user is represented inside the software platform like an agent. Users are generally
humans that live in a domestic environment where the software platform is running. The

63

CHAPTER 3. ARCHITECTURE

agent is a sort of alter ego of the user and it represents him, his needs, preferences
(e.g. like the preferred music genre, the ideal temperature in the house), and medical
constraints.

The user interacts with the system platform using his virtual representation when it
acts using the device physically (i.e. he pushs the switch button) or through a remote
interface (like smart-phone, tablet etc.). A user identification is required to gather a set of
actions to the correct agent.

Each user agent has to:

• identify the user;
• keep track of user’s actions;
• set and modify the user profile according to user’s actions;
• verify the defined preference and medical constraints;
• execute domotic functions sending commands to domotic agents.

As shown in Figure 3.6, due to their ability to interact with the environment, User
agents are Environmental Actors and in particular, they are Users.

3.5.3 Intelligent agents

Intelligent agents are special agents that exploit intelligent behaviors to implement spe-
cial functionalities and reach defined goals. They are able to collect information coming
from the other agents and to process input data to take decisions and act consequently.
Example of intelligent agents are those used for statistics, to implement energy saving
measures, etc.

Since these kind of agents need to be customized, they are described here using a
general description. Each intelligent agent has to:

• receive notifications from the other agents;
• query data of other agents to get necessary information;
• elaborate input data;
• send messages.

As shown in Figure 3.6, due to their ability to interact with the environment, Intelligent
agents are Environmental Actors and in particular, they are Environmental Managers

3.6 Semantic approach

To abstract and represent devices inside the software platform and to implement inter-
operability, a semantic approach is applied. The semantic approach provides a semantic
description of the operations of the home automation devices, the furniture, the environ-
ments and the lexicon that are supported by the platform.

All of the descriptions are formalized through a set of dedicated Ontological Classes,
whose concepts are applicable and always true independently of the context in which

64

3.7. IMPLEMENTATION TOOLS

Figure 3.7. Ontological representation of the Lamp class, using UML

they are used. For example, figure 3.7 shows the semantic model of a SwitchingLamp

class device and its functionalities: SetSwitch to set the light on or off using a Boolean

value; GetSwitch to get the lamp’s current status. SwitchingLamp class includes a
DimmingLamp class, which has the extra feature (over a "simple light") of being adjustable
in its intensity. Such information is described in the DomOnt ontology (Domotic Ontology),
which defines an integrated "taxonomy" of domotic devices and their functionalities. This
ontology defines separate classes of devices, their functionalities, input/output parame-
ters and the effects they have on the environment.

3.7 Implementation tools

3.7.1 Java

The Softare Platform is implemented using the Java programming language. Java has
gained enormous popularity since it first appeared. Its rapid ascension and wide accep-
tance can be traced to its design and programming features, particularly in its promise
that you can write a program once, and run it anywhere. Java was chosen as the pro-
gramming language for network computers (NC) and has been perceived as a universal
front end for the enterprise database. As stated in Java language white paper by Sun
Microsystems: "Java is a simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, multithreaded, and dynamic."

65

CHAPTER 3. ARCHITECTURE

Java has significant advantages over other languages and environments that make it
suitable for just about any programming task.

The advantages of Java are as following:

• Java is easy to learn: Java was designed to be easy to use and it is therefore easier
to write, compile, debug, and learn than other programming languages;

• Java is object-oriented : this allows you to create modular programs and reusable
codes.

• Java is platform-independent : one of the most significant advantages of Java is its
ability to move easily from one computer system to another. The ability to run the
same program on many different systems is crucial to World Wide Web software, and
Java succeeds at this by being platform-independent at both the source and binary
levels.

• Java is distributed : Java is designed to make distributed computing easy with the
networking capability that is inherently integrated into it. Writing network programs in
Java is like sending and receiving data to and from a file.

• Java is secure: Java considers security as part of its design. The Java language,
compiler, interpreter, and runtime environment were each developed with security in
mind.

• Java is robust : robust means reliable. Java puts a lot of emphasis on early checking
for possible errors, as Java compilers are able to detect many problems that would
first show up during execution time in other languages.

• Java is multithreaded : multithreaded is the capability for a program to perform sev-
eral tasks simultaneously within a program. In Java, multithreaded programming has
been smoothly integrated into it, while in other languages, operating system-specific
procedures have to be called in order to enable multithreading.

• Internationalization: the Java language and the Java platform were designed from
the start with the rest of the world in mind. Java is the only commonly used pro-
gramming language that has internationalization features at its very core, rather than
tacked on as an afterthought. While most programming languages use 8-bit charac-
ters that represent only the alphabets of English and Western European languages,
Java uses 16-bit Unicode characters that represent the phonetic alphabets and ideo-
graphic character sets of the entire world. However Java’s internationalization features
are not restricted to just low-level character representation. The features permeate the
Java platform, making it easier to write internationalized programs with Java than it is
with any other environment.

• Performance: as I described earlier, Java programs are compiled to a portable inter-
mediate form known as byte codes, rather than to native machine-language instruc-
tions. The Java Virtual Machine runs a Java program by interpreting these portable
byte-code instructions. This architecture means that Java programs are faster than
programs or scripts written in purely interpreted languages, but they are typically
slower than C and C++ programs compiled to native machine language. Keep in
mind, however, that although Java programs are compiled to byte code, not all of

66

3.7. IMPLEMENTATION TOOLS

the Java platform is implemented with interpreted byte codes. For efficiency, com-
putationally intensive portions of the Java platform–such as the string-manipulation
methods–are implemented using native machine code. Although early releases of
Java suffered from performance problems, the speed of the Java VM has improved
dramatically with each new release. The VM has been highly tuned and optimized
in many significant ways. Furthermore, many implementations include a just-in-time
compiler, which converts Java byte codes to native machine instructions on the fly.
Using sophisticated JIT compilers, Java programs can execute at speeds compara-
ble to the speeds of native C and C++ applications.

• Programmer Efficiency and Time-to-Market : the final, and perhaps most important,
reason to use Java is that programmers like it. Java is an elegant language combined
with a powerful and well-designed set of APIs. Programmers enjoy programming in
Java and are usually amazed at how quickly they can get results with it. Studies have
consistently shown that switching to Java increases programmer efficiency. Because
Java is a simple and elegant language with a well-designed, intuitive set of APIs, pro-
grammers write better codes with fewer bugs than for other platforms, again reducing
development time.

Because of Java’s robustness, ease of use, cross-platform capabilities and security fea-
tures, it has become a language of choice for providing worldwide Internet solutions.

3.7.2 JADE

The structure of the architecture is based on the JADE Platform. JADE (Java Agent
DEvelopment Framework) [10] is a software Framework fully implemented in the Java
language. It simplifies the implementation of multi-agent systems through a middleware
that complies with the FIPA specifications and through a set of graphical tools that sup-
port the debugging and deployment phases. A JADE-based system can be distributed
across machines (which don’t even need to share the same OS) and the configuration
can be controlled via a remote GUI. The configuration can be even changed at run-time
by moving agents from one machine to another, as and when required. JADE is com-
pletely implemented in Java language and the minimal system requirement is the version
5 of Java (the run time environment or the JDK).

Besides the agent abstraction, JADE provides a simple yet powerful task execution
and composition model, peer to peer agent communication based on the asynchronous
message passing paradigm, a yellow pages service supporting publish / subscribe dis-
covery mechanism and many other advanced features that facilitate the development of
a distributed system.

The communication architecture offers flexible and efficient messaging, where JADE
creates and manages a queue of incoming ACL messages, private to each agent. Agents
can access their queue via a combination of several modes: blocking, polling, timeout
and pattern matching based. The full FIPA communication model has been implemented

67

CHAPTER 3. ARCHITECTURE

and its components have been clearly distincted and fully integrated: interaction pro-
tocols, envelope, ACL, content languages, encoding schemes, ontologies and, finally,
transport protocols. The transport mechanism, in particular, is like a chameleon because
it adapts to each situation, by transparently choosing the best available protocol. Most
of the interaction protocols defined byFIPA are already available and can be instantiated
after defining the application-dependent behaviour of each state of the protocol. SL and
agent management ontology have been implemented already, as well as the support for
user-defined content languages and ontologies that can be implemented, registered with
agents, and automatically used by the framework.

Figure 3.8. JADE behaviour model, using UML

In Figure 3.9 is shown the architecture of a generic JADE agent. The actual job of an
agent is typically carried out within "behaviours". A behaviour represents a task that an a
gent can carry out (Figure 3.8).

Thanks to the contribution of the LEAP project, ad hoc versions of JADE exist de-
signed to deploy JADE agents transparently on different Java-oriented environments
such as Android devices and J2ME-CLDC MIDP 1.0 devices. Furthermore suitable con-
figurations can be specified to run JADE agents in networks characterized by partial
connectivity including NAT and firewalls as well as intermittent coverage and IP-address
changes.

JADE is a free software and is distributed by "Telecom Italia", the copyright holder, in
open source under the terms and conditions of the LGPL (Lesser General Public License
Version 2) license.

3.7.3 OWLAPI

Ontologies for the software platform are developed using the OWL language (Paragraph
1.2.7) and the Protégé editor (Paragraph 1.2.7). To manage ontologies, the OWLAPI

68

3.7. IMPLEMENTATION TOOLS

Figure 3.9. Generic JADE agent architecture

library is used. The OWLAPI is an open-source Java library for the Web Ontology Lan-
guage (OWL) and RDF (S). The API provides classes and methods to load and save
OWL files, to query and manipulate OWL data models, and to perform reasoning based
on Description Logic engines. Furthermore, the API is optimized for the implementation
of graphical user interfaces.

The API is designed to be used in two contexts:

• for the development of components that are executed inside of the Protégé-OWL
editor’s user interface;

• for the development of stand-alone applications (e.g., Swing applications, Servlets, or
Eclipse plug-ins).

The OWLAPI [45] includes the following components:

• an API for OWL 2 and an efficient in-memory reference implementation;
• RDF/XML parser and writer;
• OWL/XML parser and writer;
• OWL Functional Syntax parser and writer;
• Turtle parser and writer;
• KRSS parser;
• OBO Flat file format parser;
• reasoner interfaces for working with reasoners such as FaCT++, HermiT, Pellet and

Racer.

69

70

4

Domotic agent

4.1 Introduction

As explained in the 3.5.1 paragraph, there is a Domotic Agent for each domotic sys-
tem introduced in the software platform. The developed prototype includes two domotic
agents for two supported domotic systems: KNX and Universal Plug and Play (UPnP).
These two domotic systems are particularly interesting when using them together be-
cause they are based on very different technologies. The first main and fundamental
difference consists in the different approach method used to present devices inside their
network. UPnP system in based on a Plug and Play approach. This means that when a
device is inserted inside the UPnP Network , it presents itself exposing its functions for
auto-configuration. A UPnP Device can join its network at any time without the need to
restart the system. UPnP is used mainly for multimedia purposes and it uses the wireless
network as a communication channel. A device belonging to KNX , in general, is not able
to auto-configure and to present itself to the network. A setup procedure in needed. This
procedure is performed using an external software application able to set device param-
eters to exploit its functions.In order to install physically a device, it could be necessary
to shut down the network. KNX is used mainly for home automation purposes and it often
uses a dedicated bus as a communication channel.

4.1.1 UPnP system

Introduction

A growing number of embedded devices are connected to TCP/IP networks. And many of
these devices are no longer passive network nodes, waiting for someone else to control
them. They are full-blown network citizens, actively communicating with their peers and
often relying on the network services provided by other devices to do their job. In order to
work, all these devices must be configured properly. Configuring the network parameters
(e.g., IP address, netmask, etc.) of a device is a tedious task, as many devices do not
have an appropriate user interface to do this comfortably. This is especially an issue

71

CHAPTER 4. DOMOTIC AGENT

with consumer devices, where the user might not even have the necessary technical
knowledge to configure such a device. As the number of devices in a network grows,
configuring each device separately is no longer practical. From this issue comes the
need for the automatic configuration of network devices and the automatic discovery
and invocation of network services. In recent years, the industry has come up with a
variety of different technologies and specifications to address this problem. One of these
technologies is UPnP - Universal Plug and Play.

UPnP technology

UPnP technology offers pervasive peer-to-peer network connectivity of PCs, peripher-
als, consumer electronics and home automation devices. The UPnP Architecture is a
distributed, open networking architecture based on TCP-IP and Web technologies like
HTTP, XML and SOAP to enable seamless proximity networking in addition to control
and data transfer among networked devices.

The UPnP Device Architecture

The UPnP Forum, founded in 1999, is the industry initiative responsible for defining the
specifications and standards for UPnP. In addition to the UPnP Device Architecture,
which forms the basis of UPnP, the UPnP Forum defines device control protocols for
specific devices’ categories such as audio/video, home automation, networking, printing,
etc.

The UPnP Device Architecture is the core of the UPnP and it defines the basic net-
work protocol for communication among devices. The UPnP Device Architecture speci-
fies six levels of protocols and technologies that must be implemented in a UPnP device.
These are:

• addressing;
• discovery;
• description;
• control;
• eventing;
• presentation.

Addressing

Every device must be assigned a unique network address. In case of TCP-IP networks
this can be done with the help of a Dynamic Host Configuration Protocol (DHCP) server.
Should, however, no DHCP Server be available, another way of assigning an IP Ad-
dress must be found. Apart from manual configuration, which is often undesirable, a
method called Automatic Private IP Addressing (APIPA, or Auto IP) is used. In this
case, a device’sTCP-IP Stack randomly chooses an IP Address in the private range

72

4.1. INTRODUCTION

from 169.254.0.0 to 169.254.255.255. To prevent two or more devices from acciden-
tally selecting the same address, each device must probe, using the Address Resolution
Protocol (ARP), whether the chosen address is available.

Discovery

A user or device must be able to find a service provided by one or more devices in the
network. The important part here is that the user (or device) usually does not care which
device implements the service, as long as the service with specific properties is available
and accessible. A typical example for service discovery is: I need to print a document in
color. Give me an IP Address and Port Number where I can send the print job to, using
the Internet Printing Protocol (IPP), so that the document will be printed in color.

What all technologies for service discovery have in common is, that they make use of
IP Multicasting. IP Multicasting uses addresses in a special address range (224.0.0.0
to 239.255.255.255). A packet (typically, a UDP Packet) sent to a Multicast Address
is received by all hosts listening to that specific address. UPnP uses Simple Service
Discovery Protocol for that purpose.

Service discovery is implemented in the following way:

• an application or device that needs a certain service sends a request describing the
required properties of the service to a specific Multicast Address (and Port Number);

• other applications or devices on the same network receive the request, and if they
provide the requested service themselves (or know another device that implements
the service), respond with a message describing where the service can be found;

• the application or device searching for the service collects all responses, and from the
responses chooses the one service provider it is going to use.

In addition, devices that join or leave a network can send announcements to other
devices describing the availability of the services they provide.

Description

Once a certain service has been discovered, it may be necessary to obtain more infor-
mation about the service. For example, if a service consists of multiple operations, it is
necessary to find out exactly what operations are supported, and what arguments must
be passed to them. This is the purpose of service description.

In case only well-defined service protocols are used (e.g., HTTP, Internet Printing,
or media streaming), service description is not necessary, because the only information
needed to access the service is the network address (IP Address and Port Number , or
URI), and this information can be obtained by service discovery. In other cases, such as
UPnP, the information obtained via service discovery may be insufficient to successfully
access the service. In such a case, service discovery only returns the address of a net-
work resource that provides detailed information about the capabilities of the service, and
how to access them.

73

CHAPTER 4. DOMOTIC AGENT

Control

After an application has obtained enough information about the services it wants to ac-
cess — either via service discovery alone, or together with service description, the ap-
plication will access or invoke them in order to control the device. This is usually beyond
the scope of most service discovery technologies, and the domain of specialized tech-
nologies and protocols. Examples for such technologies are HyperText Transfer Protocol
(HTTP), SOAP, Remote Method Invocation (Java RMI), Common Object Request Bro-
ker Architecture (CORBA), or media streaming protocols such as Real Time Streaming
Protocol (RTSP). UPnP uses SOAP for service invocation.

Eventing

Eventing allows a device to notify interested parties about changes to its internal state,
without requiring interested devices to actively poll its state. UPnP uses GENA, a protocol
based on HTTP and XML, for eventing.

Presentation

Presentation allows a device to display a user interface that can be used for monitoring or
controlling the device by a human. UPnP capable devices use web technologies - HTTP
and HTML - to implement the user interface. Thus, a web browser is necessary to display
such a user interface. The web browser usually does not run on the device itself, but on
a PC, smartphone or network-enabled TV.

4.1.2 KNX system

Introduction

The main concept of the specification is that of interworking which is a made up word to
describe interactions around a standard message protocol. Unlike proprietary end-to-end
solutions, where one vendor offers an integration solution and interacts with others on a
one-off basis, here vendors implement the standard KNX messages. This opens up the
end-to-end stack at each step of the interaction. For example panels from many vendors
can interact with lighting from other, completely unrelated vendors. The advantage of this
is an economical one in the market place. Where the mainframe was end-to-end solution
with high prices (and margins), the PC offered modularity around an Operating System
where unrelated vendors could participate in a solution by implementing the drivers. As
a result there is a wealth of offering at every step of the solution. KNX creates a market-
place. KNX :

• works over various twisted pair, power line (230V or low voltage bus), RF and IP. In
the real world the only media supported is TP with low voltage;

• ISO/IEC 14543-3, ANSI + certain Europe specific standards and a Chinese stan-
dards;

74

4.1. INTRODUCTION

• operation over IP or mobile available.

Covers:

• lighting;
• blinds and shutters;
• heating, ventilation and air control (HVAC);
• audio/video control (AV);
• operation and visualization;
• security;
• remote access.

KNX Group address

The communication between devices is made with telegrams sent to Group addresses.
A Group address is a logical name for a given topic linking the output of a sensor with the
input of an actuator. The topic can be encoded in a bit, a nibble, a byte, 2 bytes. These
are considered signatures. Compatible devices listen in a group. One or more sensors
emit the bits many actuators listen on a given group. This is the primary way to connect
things in KNX.

For example, connecting the event "click on" is sent to a group we can call "lights on".
The actuators are draged-and-dropped in this group and when a message is sent with
the group address on, the devices know to answer.

One can view a device, sensor or actuator, as a collection of objects. Whether these
objects are exported, in a Remote Procedure Call (RPC) way is a configuration option.
Once they are exported the output objects can be linked to the input objects by way of a
communication group address.

A group address is represented as 2/3/4 (with slashes).
Is a group address the equivalent of Scene? yes and no. A group communication

address is based on a type that is either bit , nibble, byte and one value, while a scene
may involve several types (on bits and absolute dimming for example) and different values
(one dimming at 25 and others at 75). So while programming groups that all respond to
exactly the same input is a trivial task in KNX, a scene is a difficult, product dependent
issue.

KNX Physical address

A device always has a physical address. A Physical address is of the form n/n/n where
the numbers represent a real topology. For example 1.2.4 (with dots). A physical address
is allocated to each device during commissioning. A button needs to be pressed on the
physical device the first time around for the commissioning to happen. Even on sub-
sequent prints of the addresses the device requires to physically press the button. It
makes sense that devices can be identified during installation. You can also ask for a
given address to blink so you can physically identify a unit in the field.

75

CHAPTER 4. DOMOTIC AGENT

The Physical addresses have an impact on topology. Because the devices are mem-
ory constrained, the numbers cannot be more than 64. This, it seems, means that the line
segments need to have 64 devices and which has an impact on the electricians’ work.

KNX Specifications

KNX specifications include no less than 10 volumes.
Volume 3 - System Specification is the core of the spec, defining the reference for

both hardware and software implementations.
The other volumes cover general architecture, information on specification tests and

certification, conformance tests, device profile definitions, etc.

Hardware and Networking Notes

Depending on which media is used:

• KNX Over IP: KNX specification defines KNX telegrams which can be sent over IP
using UDP (unicast and multicast). No additional equipment besides regular Ether-
net hardware is required. 10Mbit Ethernet is sufficient. The communication stack is
a standard IP stack (what we get from Linux with Java socket abstraction) + what
is called the KNX Common Kernel on top of IP which basically handles the KNX
Telegram <–> UDP translation.

• KNX Over RF : No custom component required. RF protocol is defined in the KNX
specification. KNX/RF doesn’t seem to be used much. Since most devices are pow-
ered by the bus, RF does require independent powering. Bitrate 16kbps.

• KNX Over Powerline (230V): Needs a bus coupling unit with the appropriate circuitry
+ comms stack on top of ASIC for PL110. Bitrate 1200bps.

• KNX Over Twisted Pair : Chipsets and comms stack available from KNX system ven-
dors. Bitrate 9600bps.

KNX Tools

KNX Association provides a collection of software tools for software developers, integra-
tors and installers to ease the adoption of the platform.

• ETS - Engineering Tool Software: tools for configuring KNX certified products. ETS
is independent of manufacturer, installer/integrator can use it to orchestrate all com-
pliant devices over all different media. The ETS is licensed per PC. It uses Falcon as
protocol stack. ETS is Windows only.

• PC (Windows DCOM and .NET): software component implementing the KNX com-
munication stack over IP, RS232 and USB. It targets for software developers.

76

4.2. INTERACTIONS WITH DOMOTIC BUS

Interesting implementations

Some open source or otherwise relevant KNX projects:

• Calimero/KNX@Home: Open source implementation (http://calimero.sourceforge.net/
and http://knxathome.fh-deggendorf.de/knxathome/wiki/index.php/KNXatHome). A point
of interest for OR is that Calimero abstracts away most of the network implementa-
tions for an application like the ORC. Access to the network becomes a simple API
programming matter. It can be seen as a gateway to the KNX bus;

• KNX USB Linux Driver : User space module for Linux that bridges USB and KNX bus.
LGPL license With a Simple USB coupler this is in essence a serial gateway to the
KNX bus. The API seems less well documented than Calimero.

Figure 4.1. The ontologies used to represent devices

4.2 Interactions with domotic bus

For its funcioning, the Domotic Agent has to establish a connection with the devices to be
managed. In general, it is not possible and it is not expedient to interface directly devices
but it is appropriate to do that interfacing their domotic bus.

A domotic bus realizes interconnections between the various home automation de-
vices belonging to the same domotic system, introducing new features compared with a
traditional wiring composed by individual components or small groups of them. In fact,
while in the wiring of a simple electrical system of a house there is no distinction between
communication lines and power lines, in a home automation system bus these two paths
are decoupled. In the traditional electrical plant, each device is connected by a point-to-
point wire and receives the information and the power on the same cable. The switch is
used to determine the on / off state of the light bulb. If the two paths of the electrical power
and information were decoupled, the pressure of the switch would mean only the signal
of change of state of the bulb and in particular, the signal that would travel on the bus until
the intelligent device which in turn would manage the transfer of necessary power to the
bulb. The decoupling of the two lines has the enormous advantage of being able to add

77

CHAPTER 4. DOMOTIC AGENT

new control points or new power devices without having to overturn the wiring, but simply
by reprogramming the central control device. In addition, the digitization of information
allows operations that are typical in a home automation system like the remote control.

Once the connection with the Domotic bus is established, the Domotic Agent is able
to control domotic devices. To change the state of a domotic device, there is the need
to have the ability to write packets on the Domotic bus. Writing packets in the Domotic
bus is usually simple. Once the packets to send are built, it is sufficient to put them into
the bus media. Instead, if there is the need to know the state of a domotic device, or to
check when it changes state, it is necessary to have the ability to read from the Domotic
bus. To read packets from the Domotic bus (Figure 4.2) can be a little more difficult than
the writing process. Infact, there is often the need to provide a listener who waits for
packets to pass through the Domotic bus to analyze them to find information of interest.
The captured information can be used and sent to the other Agents.

Figure 4.2. The Domotic Agent reads an event from the bus

In the ideal case, at startup time, the Domotic Agent creates all the available Domo
Devices depending on the possibility to discover the domotic network in that moment.
The typical situation is when the Domotic network does not change after the startup time.
Instead, if the domotic network can grow at run time, DomoDevices are created when
they become available.

When the Listener captures an event that is related to the change of state of a do-
motic device, the related packets are analysed to individuate the device involved and the
change occurred. The Domotic Agent then finds the related device in the semantic de-
scription that acts consequently. If the events related to the device are also of interest for
other Agents, (e.g. for interoperability or for further analysis), the notification of the event
is spread properly.

The way that a Domotic Agent implements the described functionalities can be differ-
ent for each domotic system because they depend on many factors like:

• the media of the bus: it can be wired like twisted pair, coaxial, ethernet, power line
etc. or wireless;

• the functioning of the domotic system: what the system permits to do;
• the available APIs: what the software that implements the protocol of the domotic

system permits to do.

78

4.3. SEMANTIC LAYER

4.3 Semantic layer

To exploit their functionalities, including interoperability, each domotic agent exploits three
categories of ontologies (Figure 4.1) to work:

• DomOnt : is the universal semantic model which abstracts and standardizes the fea-
tures and functions of the domotic devices independently from their belonging home
automation systems. It’s shared among all agents;

• TechOnt : for each domotic system agent, it provides a semantic model describing the
functioning of the domotic system and the available devices conforming to it;

• TechMapOnt : for each domotic system agent, a semantic model providing a map
between the two previously descripted ontologies.

The underlying idea is to use DomOnt ontology to describe and standardize home smart
devices. DomOnt is composed by classes of objects organized in an hierarchical tree
structure where each node has its own characteristics to which are added those of its
ancestors. At startup time, DomOnt is only a taxonomy of classes. To be used, DomOnt
must be filled with the virtual representation of the devices that are in the environment.
These virtual devices are represented by ontological Individuals. In an ontology, an Indi-
vidual is like an Instance in an Object Oriented programming language.

The configuration, the available domotic devices and the functioning of each domotic
system in the environment, is described using the TechOnt ontology. There is a specific
TechOnt for each specific domotic system. As an example, if in the environment are in-
stalled the KNX and UPnP systems, also KNXOnt and UPnPOnt ontologies exist that
are owned respectively by the KNX Domotic Agent and UPnP Domotic Agent. Being the
TechOnt only a description of the domotic system functioning, there is the need of an
ontology that is able to put in relation the DomOnt with each TechOnt. For this reason,
for each TechOnt a specific TechMapOnt is created. These ontology are able to prop-
erly map devices stored in the TechOnt into DomOnt. The Domotic Agent acts as a real
gateway that interface on one hand, the domotic system and, on the other hand, the ab-
straction layer of the software platform. For example, let’s say that in the domotic system
X there is a switching lamp that accepts the commands: setStatus with a boolean in-
put value getStatus with and output boolean value (Figure 3.7). When an interaction
between the virtual and physical device is needed to modify the status of the lamp, the
corresponding Domotic Agent , through the use of the defined ontologies, has to asso-
ciate the equivalence of the setSwitch and setStatus functionalities and to associate
the equivalence of the input parameter (on ≡ true, off ≡ false).

Recalling the example of the switch and the lamp bulb, when a button is pressed
on the panel, a message that describes the event passes through the domotic bus. The
Domotic Agent captures this message and maps it in the DomOnt ontology to make it
undersable and usable by the system. In this way, the Domotic Agent is able to identify
the corresponding ontological Individual of the pressed button. The ontological Individual
contains all the information related to the device and to how it interacts with the other

79

CHAPTER 4. DOMOTIC AGENT

devices. In this example, the Individual is related with the Individual of the lamp bulb
belonging to another domotic system. The Domotic Agent of the button then commands
the Domotic Agent of the lamp bulb to change the state of that device. In a similar way, the
Domotic Agent of the lamp bulb receives the command to change the state of the device.
The Domotic Agent of the lamp bulb locates the right physical device that corresponds
to the involved Individual. According to the information stored in ontologies, the Domotic
Agent of the lamp bulb generates the message to be sent to the domotic bus to act the
change of state of the device.

Figure 4.3. A screenshot of the ontology that defines the Dimmerling Lamp

In Figure 4.3 is shown an example that defines a DimmeringLamp as a SwitchingLamp

but also with the functionalities to set and get the percentage of light to release. More-
over, in Figure 4.4 are shown the properties for a KNX device to be classified as
DimmeringLamp. In the same ontology there are all the needed information that allow
the device to interact with its proper Domotic bus for reading and writing operations.

80

4.4. IPV6 AND IOT

Figure 4.4. A screenshot of the ontology that merges the DomOnt with knxDomOnt ontologies for
the KNX Domotic Agent

4.4 IPv6 and IoT

4.4.1 Introduction

Although the Internet has already fundamentally changed society [36], the greatest trans-
formation still lies ahead of us. Several new technologies are now converging in a way
that sets the Internet on the brink of a true revolution, as billions of large and small objects
are connected and take on their own Web identity.

Following on from the Internet of computers, the next phase of development is the
Internet of Things [9], when more or less everything will be connected and managed in
the virtual world. This transformation will be the Net’s largest expansion ever and will have
sweeping effects on every industry, and all of our everyday lives.

In fact, in the near future, more and more devices and systems will be capable of
sending and receiving data automatically via the Internet. This new scenario involves
new developments with enormous potential, for example, in business markets. Indeed,
the Internet of Things (IoT) will enable connecting market participants and sectors that
previously had no business dealings with one another. This will generate new products

81

CHAPTER 4. DOMOTIC AGENT

and services, which will in turn lead to the creation of new business models as well. In
such a scenario, companies must get used to the idea of sitting down and cooperating
at a "virtual table". Web-based platforms can create the basis for partners to extend or
supplement what they offer in completely new ways. The Internet of Things is however
not just a distant vision of the future - it’s already here and is having an impact on more
than just technological developments.

Every device that connects to the Internet requires an IP address, and it has been
predicted that by the year 2020 there will be 50-100 billion Internet-enabled devices in
a world [33] with an expected global population of 7.6 billion people. Considering that,
according to a survey of urban environments, each human being is surrounded by 1000
to 5000 trackable objects [86], the move to IPv6 [47] is necessary, as it provides an
almost unimaginable number of IP addresses — 18 quintillion blocks of 18 quintillion
possible addresses.

Domotics, or home automation in a so-called "Smart Home" involves the controlling
and monitoring of home appliances in a unified system. Such control systems include
lighting, climate control (HVAC: Heating, Ventilation, and Air Conditioning), security sys-
tems and even home electronics. Home automation is closely related to (industrial) build-
ing automation, which focuses on the automation of large commercial buildings.

There are many different types of home automation systems available. These sys-
tems are typically designed and purchased for different purposes. In fact, one of the
major problems in the area is that these different systems are neither interoperable nor
interconnected. These systems range from simple remote-controlled light switches to
fully integrated, networked devices controlling all appliances in an entire building. Home
automation is an extremely appealing application of the Internet of Things. It envisions
a future home environment where embedded sensors and actuators (e.g., in consumer
electronic products and systems) are self-configuring and can be controlled remotely
through the Internet, enabling a variety of monitoring and control applications. Such com-
munication capabilities are often offered by manufacturers of domotic systems, though
without Internet compatibility. In fact, each manufacturer produces its own special device
called an IP gateway that enables physically interfacing a proprietary domotic bus with
an IPv4-enabled Ethernet socket. By connecting the IP gateway to the Internet, either di-
rectly or through a home / residential gateway [87], the domotic system can be managed
remotely using a PC, Smartphone or Tablet through the use of the proper software.

In contrast to the true IoT paradigm, such solutions provide the home (but not each
device) with a unique Internet access point (and hence, a unique public IP address that
can be assigned to the IP gateway or the home / residential gateway according to the
home network configuration) for controlling all the devices connected to a certain do-
motic bus. In this scenario, the assigned public IP address identifies not a single device
or function, but the entire domotic network. For this reason, using common Internet appli-
cations (e.g. Web browsers) is often not sufficient to interact directly with a single home
device through the Internet: in addition to the IP gateway, a customized software manager
application is required to locate devices and activate their functions within the domotic

82

4.4. IPV6 AND IOT

network. In this case, the software manager application may be run within the IP gateway
of the home / residential gateway, but not within the domotic devices themselves, which
are lacking a public IP address. One example of a software manager application would
be a Web server that translates Web browser user interactions into specific domotic com-
mands, and can hence display and enable interaction with the available devices belonging
to a certain domotic network.

However, by exploiting the functionalities of these IP gateways, it is possible to de-
velop a system for controlling home electrical devices via the Internet using the IPv6
addressing system to enable direct control. Thus, the aim of this work consists in devel-
oping a software able to interface directly with domotic devices following the principles of
the IoT paradigm.

4.4.2 State of the art

Current domotic systems differ widely in characteristics, operation, functionality, device
management and so on. For these reasons, in general they are not natively interoperable
and moreover they use different proprietary media to transmit messages across their
own networks. This is because most domotic systems use physically different wired or
wireless proprietary buses, and protocols that are incompatible with Internet and IPv6
technologies.

To overcome the current lack of direct Internet connectivity, many home automation
manufacturers still provide special interfaces called IP gateways that interface the do-
motic system buses with the Internet using the IPv4 protocol. As mentioned, this results
in the ability to interconnect only the domotic bus and not each single device. Thus, al-
though domotic devices can be piloted remotely through the Internet, it is still impossible
to interact directly with them using standard protocols.

Many works have addressed the IoT paradigm in some early attempts to make do-
motic devices compliant with the IPv6 protocol.

Two main approaches to assigning IPv6 addresses to domotic devices lacking IPv6-
compatible interfaces have been followed in the literature:

• hardware: using a NIC (Network Interface Card) for each domotic device. The NIC
acts as a hardware gateway able to interface the device with the network. This solution
is poorly scalable because it requires physically modifying and adding hardware to
each domotic device;

• software: can be implemented without making hardware modifications. It is potentially
quick and easy to apply to a virtually infinite number of devices without additional
single hardware costs.

Tin-Yu Wu et al. [90] has proposed an interesting approach to intelligent appliance auto-
configuration in a networked domain. It implements three functions: (i) assisting the infor-
mation appliance in acquiring a regular domain name without manual configuration; (ii)
providing a session initialization protocol, uniform resource identifier, auto-configuration

83

CHAPTER 4. DOMOTIC AGENT

and seeing to device registration; (iii) initiating communications between devices in order
to manage the residential gateway and configure the user management system interface.
Unfortunately, this solution requires adding a software application that must be executed
during the device system boot, which involves modifying the original device design by
adding different embedded routines.

Another work in this regard has been presented by van Moergestel and Meyer [84],
who propose a multi-agent based architecture to implement home automation device
interoperability. The architecture described provides each device with an independent
agent to which an IPv6 address can then be assigned. However, the solution requires
installing small computer equipment to execute the corresponding agent on each device,
thus making the system poorly scalable.

Jung et al. [50] propose an approach using a gateway that allows the integration of a
building’s automation system into constrained RESTful environments by means of a per-
device oBIX-based IPv6 interface. This solution does not require any direct manipulation
or adjustment of the devices. In another work, Jung et al. [49] propose a solution for
adding IPv6 and illustrate it using the BACNet system as an example. In the example,
however, significant modifications are made to the BACNet protocol functioning.

Jeong et al. [48] also address the problem of IPv6 and the Internet of Things, propos-
ing a solution that permits users to discover, identify and communicate with things inde-
pendently of their underlying addresses and network protocol stacks. The solution ex-
ploits the EPC (Electronic Product Code), a worldwide standard that provides a unique
identity for every physical object anywhere in the world via RFID or optical data carriers.
The solution proposed does not modify either standard protocols or devices, but imple-
ments an ad hoc network infrastructure.

4.4.3 The IPv6 gateway

Exploiting the peculiar feature of the software platform, that is, its ability to provide a uni-
form system view of networked devices implementing different technologies, the aim of
this gateway is to develop a module to make domotic devices compliant with IoT goals.
The gateway is perfectly scalable and immediately adoptable without the need for hard-
ware or hybrid solutions that may require direct device alterations, which can in general
be risky and difficult for non-specialized users. Moreover, modifying the hardware of a
large number of devices can be very demanding, especially when some are not physi-
cally accessible.

The proposed solution aims to:

• link together each physical device via an IPv6 address using a mapping scheme. This
function creates a correspondence between the ontological URI of the virtual device
and the assigned IPv6 address enabling a translation function that permits to find the
address from one representation to an other bi-directionally;

84

4.4. IPV6 AND IOT

• make each physical device managed by the software system reachable anywhere
and any way through an IPv6 address. Obviously, all Pv6 addresses associated to
domotic devices must be globally valid, unique and fully compliant with IPv6 system;

• implement a dedicated Model View Controller (MVC) [71] Web interface for each
physical device. This interface, which must be reachable using the device’s IPv6 ad-
dress, displays each device’s status and available functions.

The solution requires assigning a set of global IPv6 addresses to each machine running
a Domotic Agent . Each IP address in the set, created by the Domotic Agent machine
itself, must include two main fields in order to be valid:

• a prefix that it is used for routing purposes. This can be achieved by exploiting OS
functions and APIs. On a Linux machine, for instance, the ip command line is invoked
to obtain the network prefix field and assign an address to the network interface;

• an interface identifier, which distinguishes the host network interface. This can be cre-
ated randomly by the server machine itself. If combining the prefix with the interface
identifier leads to the generation of an already existing IPv6 address, a Duplicate

Address Detection error of the Address Resolution Protocol NDP) is reported.

When a Domotic Agent notifies a new physical device in its network, it creates the virtual
device’s representation and it associates to it an IPv6 address providing dual identifica-
tion. In doing so, the Domotic Agent compiles a bi-directional map in order to enable iden-
tification of address correspondences. When an IPv6 request is forwarded by a resource
belonging to the Internet of Things, the Domotic Agent responsible for the requester’s ad-
dress responds. The mapping scheme is then used to find the correspondence between
the IPv6 address and the ontological physical device URI to identify the correct device
involved. To process the request, the Domotic Agent translates the request to a formal-
ism (the proper domotic system language) that the device can process and queries the
device involved. The device’s response is delivered to the Domotic Agent which finally
sends it to the requester.

A dynamic Domain Name server (DNS) service cooperates with the IPv6 gateway
and the Domotic Agent . In this way, accessing a network resource does not require spec-
ifying long, difficult IPv6 addresses. A Bind9 DNS server [64] is used for this purpose. In
order to automatically and dynamically assign names to the entries in the DNS database,
each time a new virtual device joins the Domotic Agent network and requests a new IPv6
address, a DNS entry is created using the device name.

4.4.4 The web interface

One of the main objectives of the Internet of Things is to enable direct interaction with
devices. A simple way to achieve this is through a Web interface. However, unfortunately
domotic devices cannot in general interact directly with Web browsers because they lack
standard Internet protocols, such as HTTP, ldap, imap, pop, and so on. Moreover, imple-
menting such protocols directly on domotic devices is not possible due to their hardware
limitations. For these reasons, the Internet protocols must be implemented elsewhere.

85

CHAPTER 4. DOMOTIC AGENT

The implementation includes the use of a Web server running on the same computer
where a Domotic Agent in running. This Web server can respond to http requests as if
they were direct Web interactions with a device identified by its IPv6 address. As test, the
Tomcat Web server was used to display all the necessary Web pages.

Due to the potentially extremely different characteristics of the various devices in the
network, in order to avoid generating many distinct Web pages for each device, the Web
server must rely on a dynamic page generator. To this end, JavaBean, JSP and Servlet
technologies [6] have been adopted in the test and applied under the constraints of the
MVC [6] paradigm. In this way, the Web server responds to requests with Web interfaces
customized to each device, which are invoked using the device’s IPv6 address directly.
When a Web request originates from the Internet, Tomcat Web server responds because
it shares the same set of IPv6 addresses as the Domotic Agent . The request is received
by a servlet, which reads the address of the device involved in the communication from
the requester URL. Using the IPv6 - ontology URI mapping, the Domotic Agent then
identifies the device and queries it in order to obtain the information needed to satisfy
the request. To display the results on a Web page, the Domotic Agent creates a Jav-
aBean to represent the device involved and fills it with the needed data. Tomcat takes the
completed JavaBean as input and shows the result through a JSP.

To test the platform’s functioning, some test Web pages for controlling a device have
been created.

Using a Web browser, a request was sent to load the main page of the device, which
in this example, was an electric oven (Figure 4.5).

Figure 4.5. Device callable functions

This resulting page shows the functions that can be activated, in particular: request
the device state, power it on or off, check the state of the electrical socket and enable or

86

4.4. IPV6 AND IOT

disable it. For instance, the oven power on or off function can be activated by specifying
the needed parameters (Figure 4.6).

Figure 4.6. Device function call

When the function has been activated, the response shows the updated state of the
oven (Figure 4.7).

Figure 4.7. Response of the device function call

87

88

5

User agent

5.1 Introduction

The final users of the Software Platform are humans that live in an environment where
the system is installed and running. One of the principal objectives of today’s Ambient
Intelligence environments is to provide users with services according to their activity, i.e.
preferences in order to accomplish a specific user’s goal. In fact, each user has differ-
ent needs and habits and it is not possible to generalize them using an unique universal
model for all of them. For this purpose, miscellaneous user information must be collected
and structured into user profiles. These profiles offer the advantage of being easily en-
riched and exploitable by the environment, in order to deliver to the user, at any moment
and at any place, the best fitted service, with regard to his activity.

The User Agents are the digital representation of users that interact with the system
and are able to collect and structure user’s profiles.

5.2 Semantic layer

Each User Agent contains an ontology that profiles a specific user. The type of infor-
mation that is stored in the ontology depends and varies according to the specific appli-
cations implemented by the Software Platform. As an example, if the aim is to analyse
a clinical situation of a user, the ontology may contain data related to medical parame-
ters. For convenience, instead, the ontology may contain data related to preferred home
settings.

In Figure 5.1 and 5.1 are shown parts of the structures of the implemented ontology
that are needed for the developed Software Platform. These structures cover:

• biological information like blood pressure, body temperature;
• preferences like brightness level, humidity, noise level, temperature and so on;
• person related information like disabilities, dislikes, physical information and so on.

89

CHAPTER 5. USER AGENT

Figure 5.1. Class hierarchy of the ontology

5.3 Track and identification of users

The tracking and identification of users is a challenging problem that is related mainly to
the complexity of the smart home environmental conditions and the variety of services
and users’ demands. The literature proposes different approaches. In general, these ap-
proaches can be classified into three major categories that adopt a different concept,
strategy, and design to deal with the problem:

• tagged identification and tracking including Infrared, Ultrasonic, and Radio frequency
based approaches;

• non-tagged identification and tracking including machine vision, smart floor, and wire-
less distributed PIR approaches;

• multimodal identification and tracking including smart floor with RFID, smart floor with
machine vision, and machine vision with laser scanners approaches.

However, these solutions often fail because they don’t take into account the problems
related to privacy and user’s preferences like in the case of videocameras use. Other
approaches are still inapplicable due to several fundamental problems. For instance, the
majority of smart floor approaches suffer from unrealistic overall cost and system hard-
ware complexity. Considerable research works have been directed toward multimodality

90

5.3. TRACK AND IDENTIFICATION OF USERS

Figure 5.2. List of properties of the ontology

identification and tracking approaches as a way to enhance system performance through
strengthening complementation and overcoming or minimizing their weaknesses. How-
ever, these approaches often have their own problems and limitations, such as high costs,
due to the improper combination of strategies utilized.

The majority of services related to Ambient Intelligence are context-aware and/or
person-aware. This means that there is the need to provide appropriate services to the
right person at the right place and at the right time. Therefore, the human identification
and tracking (HIT) approach should be able to support all context-aware services by ful-
filling the following requirements:

• context-aware applications demand the information of person’s location to provide
their services efficiently. Less than 0.3 m error range of person’s location is usually
required. Thus, the HIT approach should be able to detect person’s presence and
determine their location accurately;

• recognising the residents’ identities is essential to ensure providing the appropriate
services to the right person. Some personal-aware services, specifically health care,
require reliable identification while dealing with older and/or disadvantage people.
Therefore, the HIT approach should be able to provide great accuracy in personal
identification, i.e. the CCR should be greater than 98%;

91

CHAPTER 5. USER AGENT

• reliability and robustness are both vital for the HIT approach because person-aware
services are dealing with humans, and mistakes could be too expensive to pay. In
addition, low cost for mass market, scalable to satisfy various environments, low com-
plexity for ease of use and maintenance, ambient for minimum intrusion and privacy
are required as well;

• the HIT approach should detect, track, and identify inhabitants automatically without
imposing particular conditions like the need of wearing or carrying a special device.

In this work, the recognition of the user who performs the actions is still an open
issue unless the interaction with the environment is acted by a computer interface re-
quiring identification. For this reason, for testing purposes, the environment is considered
inhabited by one person.

5.4 User interaction with the environment

As shown in Figure 3.3, the user can interact with the environment in two main ways:
acting physically with the device (e.g. acting on the light switch) or using a remote system
(e.g. a web interface or a remote control).

As shown in section 5.3, the physical interaction with devices poses some problems
related to the identification of the user in order to track his actions. On the contrary, acting
through a remote interface, like a PC, a tablet, a smart-phone and so on, it is possible to
implement authentication methods that are useful to recognize users.

Combining the ontological abstraction layer of domotic devices created in Domotic
Agents (that permits to obtain an uniform and formalized description of devices and their
functionalities regardless of their belonging technology) with the information stored in the
user’s profile, it is possible to build at run time any type of Human Machine Interface
(HMI) interface tailored on user’s abilities.

In this work, exploiting the same ontological device descriptions, three different inter-
faces are implemented for three different control devices:

• web interface (Figure 5.3 and Figure 5.4): it is possible to interact with the domotic
devices using a common browser for PC. The application is implemented using Tom-
cat Web Server, Servlet, and JSP exploiting the MVC paradigm. The user interface is
composed by three grouping elements:the header (containing a logo/title), the main
area, and the footer. In the footer are represented the rooms available in the home
and some general controls. In the main area there is a map zone (which provides a
graphical representation of the rooms available), a device area with a list of the avail-
able devices and the controls for the currently selected device. The user’s interface
is build dynamically: depending on the type of device selected at run time, different
controls will be shown in the user interface in order to operate with it. This has been
obtained by exploiting the device abstraction.

• Android app (Figure 5.5): an interface implemented as App for smartphone and tablet
based on Android OS. It provides Text To Speech (TTS) and Automatic Speech

92

5.4. USER INTERACTION WITH THE ENVIRONMENT

Figure 5.3. Web interface used to control the home environment: light

Recognition (ASR) features. The starting point for the creation of the mobile version
is still the same as for the web interface. In this case, smaller icons and, generally,
more simplified representations are used. For a more suitable visualization on small
screens, the splitting of the user interface in areas depends on the information regard-
ing the screen size of the current device.

• remote control (Figure 5.6): Philips PRONTO TSU 9400 is a programmable special-
ized device that works like an advanced traditional remote control for TV. This device
is provided with wifi and infrared connections. For the creation of an intuitive and user
friendly interface, three characteristics where identified: (i) an interface that would al-
low the use of a wifi socket to communicate with the system; (ii) a compact dimension
of the device but with a large monitor that allows easy viewing of the menu and a rapid
management of devices in the home; (iii) usable in a simple manner from any type
of person (especially elderlies). In addition, the user interface is familiar as it has the
same characteristics of a device present in all homes. Because of the limited hard-
ware resources of the device, you have created an intermediary gateway between the
remote control and the Software Platform that implements the same functionalities to
support device operations.

93

CHAPTER 5. USER AGENT

Figure 5.4. Web interface used to control the home environment: light with radio buttons

Figure 5.5. Interface for Android used to control the home environment

Moreover, if the user suffers from a disability, discovered by the user’s profile (for
example he has visual deficits) the same interfaces can be automatically adapted as
needed (for example, increasing standard fonts and using higher contrast of colours).

94

5.4. USER INTERACTION WITH THE ENVIRONMENT

Figure 5.6. The "Pronto" remote control

95

96

6

Intelligent agent

6.1 Introduction

Intelligent agents are special entities of the software platform that are able to interact
actively with the life of users. Intelligent agents are able to participate pro-actively in
users’ life interacting directly and autonomously with the environment to support and offer
services to users. To do that, the agents are usually equipped with special algorithms of
artificial intelligence and they are able to query the knowledge bases of domotic agents
and user agents.

Exploiting an Artificial Intelligence system based on an AmI paradigm, the system
configuration stage of Intelligent agent is limited to the physical installation of the devices
and software without regard to adjustments and settings, which often can be difficult to
understand and put into practice. Users can simply go about their usual business within
their living quarters and just ignore the technology surrounding them.

The life-cycle of an Intelligent agent can be divided into 4 steps (Figure 6.1):

• the information collection step is activated when a device changes state and conse-
quently a multicast update message is sent to all Intelligent agents that have sub-
scribed to the update notification service, according to the publish/subscribe design
pattern paradigm. At the same time, a log manager archives the information about
the updates in an XML file for diagnostic purposes and appropriate analysis. It stores
all the actions performed by users, the device that has changed status, the new sta-
tus and the identifier of the user who performed the action, as well as the time of
activation;

• the collected information analysis step identifies the sets of actions that may lead to
the recognition and creation of new scenarios;

• if the analysis step has recognized a new scenario to be created, the creation / re-
moval of rules step will create new rules that represent the application of the new sce-
nario. Previously learned rules are modified by the system when, over time, a change
in learned habits or external factors occurs. In such circumstances, the system is

97

CHAPTER 6. INTELLIGENT AGENT

Figure 6.1. Intelligent agent architecture

able to remove and eventually substitute previously learned rules that are deemed no
longer valid according to newly acquired experience;

• finally, during the rules execution step, the prerequisites for a learned rule are verified,
the rule is applied by the system by invoking the corresponding commands to be
routed to the appropriate devices.

In pervasive environments, a scenario is defined as a set of user’s actions that are
in some way related to each other. A scenario represents a particular configuration of
some devices in a particular moment. The particular moment can be, for example, the
reaching of a certain time of the day or the execution of specific actions by the user.
A scenario is represented digitally through a rule that formally describes the specific
configurations of the devices for that particular moment. Moreover, the context is defined
as the representation of the knowledge that a system has about its own state. The context
is not simply a snapshot of the environment at a particular time, but instead it usually
represents information over a given period of time during the life of the environment itself.
The context provides the knowledge bases for systems that learn from past contexts and
experiences, thereby allowing for advanced adaptive capacities and facilitating proactive
decision support with varying degrees of autonomy.

In this chapter, are presented two types of Intelligent agents. The first has the ob-
jective to learn user’s habits and to anticipate them automatically; the second, has the
objective to anticipate possible dangerous situations for user’s health.

98

6.1. INTRODUCTION

6.1.1 Associative rules

The methodology known as association analysis is useful for discovering interesting rela-
tionships hidden in large data sets. The uncovered relationships, that have to be extracted
from the know data, can be represented in the form of association rules or sets of fre-
quent items. An association rule is an implication expression of the form X => Y , where
X and Y are disjoint itemsets. The strength of an association rule can be measured in
terms of its support and confidence. Support determines how often a rule is applicable
to a given data set:

Support, s(X → Y) =
σ(X ∪ Y)

N
(6.1)

while confidence determines how frequently items in Y appear in transactions that con-
tain X :

Confidence, c(X → Y) =
σ(X ∪ Y)

σ(X)
(6.2)

Support is an important measure because a rule that has very low support may occur
simply by chance. A low support rule is also likely to be uninteresting from a business
perspective because it may not be profitable to promote items that customers seldomly
buy together. For these reasons, support is often used to eliminate uninteresting rules.
Support also has a desirable property that can be exploited for the efficient discovery of
association rules. Confidence, on the other hand, measures the reliability of the inference
made by a rule. For a given rule X => Y, the higher the confidence, the more likely it is
for Y to be present in transactions that contain X. Confidence also provides an estimate
of the conditional probability of Y given X.

Association analysis results should be interpreted with caution. The inference made
by an Association Rule does not necessarily imply causality. Instead, it suggests a strong
co-occurrence relationship between items in the antecedent and consequent of the rule.
Causality, on the other hand, requires knowledge about the causal and effect attributes
in the data and typically involves relationships occurring over time (e.g., ozone depletion
leads to global warming).

A common strategy adopted by many Association Rule mining algorithms is to de-
compose the problem into two major subtasks:

• Frequent Itemset Generation: whose objective is to find all the itemsets that satisfy
the minsup threshold. These itemsets are called frequent itemsets;

• Rule Generation: whose objective is to extract all the high-confidence rules from the
frequent itemsets found in the previous step. These rules are called strong rules.

The computational requirements for frequent itemset generation are generally more ex-
pensive than those of rule generation.

Frequent Itemset Generation: Apriori

The Apriori algorithm is an influential algorithm for mining frequent itemsets for boolean
Association Rules. It uses a "bottom up" approach, where frequent subsets are extended

99

CHAPTER 6. INTELLIGENT AGENT

one item at a time (a step known as candidate generation, and groups of candidates
are tested against the data. Apriori is designed to operate on database containing trans-
actions (for example, collections of items bought by customers, or details of a website
frequentation).

The steps to perform the Apriori algorithm are:

1. Let k = 1

2. Generate frequent itemsets of length 1
3. Repeat until no new frequent itemset is identified

a) Generate length (k+1) candidate itemsets from length k frequent itemsets
b) Prune candidate itemsets containing subsets of length k that are infrequent (How

many k-itemsets contained in a (k+1)-itemset?)
c) Count the support of each candidate by scanning the DB
d) Eliminate candidates that are infrequent, leaving only those that are frequent

Using the Fk-1ÖFk-1 Method, the candidate generation procedure in the Apriori
merges a pair of frequent (k - 1)-itemsets only if their first k 2 2 items are iden-
tical. Let A = a1, a2, ..., ak − 1 and B = b1, b2, ..., bk − 1 be a pair of frequent (k -

1)-itemsets. A and B are merged if they satisfy the following conditions:

ai = bi(fori = 1, 2, ..., k − 2) (6.3)

and
ak − 1 6= bk − 1 (6.4)

6.2 Agent that learns and anticipates user needs

By monitoring users’ activities in a highly enriched domotic home environment, it is pos-
sible to learn to recognize such scenarios and anticipate the needs of its inhabitants.

Given the wide variety of different scenarios that may arise, the agent is made up
of two complementary, interoperating modules: the association and the statistical rules
managers (Figure 6.2).

Working together, they perform real-time analyses aimed at discerning sequences of
events, that is, a set of interactions with the domotic environment that occur within a fixed
short time span (a few seconds, minutes or hours), though not necessarily in a specific
sequence, and may therefore represent user’s habits.

6.2.1 Association rules manager

The association rules manager is responsible for learning scenarios made up of a set of
actions habitually carried out by the user. These scenarios are made up of actions related
to each other in the sense that they occur within a short interval from each other, but are
unrelated to any specific time of execution. These are called non-temporal scenarios.

100

6.2. AGENT THAT LEARNS AND ANTICIPATES USER NEEDS

Figure 6.2. Modules of the Intelligent agent

Because it is very likely that some actions are preset in most scenarios, the necessary
condition for determining a non-temporal scenario is that a user perform a set of actions
sufficiently regularly to discriminate the scenario to be actuated. For example, a user
who, leaving the house, habitually turns off all the lights and closes all the shutters, may
occasionally also shut off the gas valve and turn off the TV or stereo, or even forget a
light on or leave the shutters deliberately open so that the sunshine heats the house in
the winter.

Figure 6.3. The Apriori algorithm

101

CHAPTER 6. INTELLIGENT AGENT

In order to recognize such patterns, the agent applies the Data Mining paradigm, in
particular, the association rules method. This allows the generation of opportune rules
using binary partitions of the itemset that determine a scenario being learned. It is thus
possible to anticipate upcoming actions when a user performs antecedents of such ac-
tions (i.e. actions leading up to them).

In order to generate the frequent item-sets (which are the potential scenarios), the
constraints of the Apriori algorithm are used (Figure 6.3), which generate candidate ac-
tion sequences via the standard method defined as F k-1 X F k-1 [79].

The rule for discovering whether a specific scenario is to be activated automatically
is represented via the form X => Y, where X and Y represent the two sets of events into
which each scenario is divided. X contains the precondition events for scenario activation,
while Y contains all other remaining events. The result is: if X occurs, then Y is

also performed. The strength of an associative rule can be measured as a function of
its support and its confidence. Support represents the fraction of scenarios that contain
both X and Y, while confidence instead represents how often the events in Y are also
present in a scenario containing X.

The problem of discovering Associative Rules, given a set of scenarios, consists in
finding all the rules whose support and confidence values are equal to or greater than
pre-set thresholds. The size of the dataset is very important for the proper functioning
of data mining algorithms. Indeed, data sets can be very large, often requiring days of
computer time to create a single model. From this prospective, usual Data Mining is
unsuitable for these purposes, because the dataset is empty at start-up and is created in
real time. The solution found to overcome this obstacle is to act on the support parameter
of the Apriori algorithm, bearing in mind that the few data available initially could lead to
the acquisition of erroneous habits. In order to limit such erroneous habits acquisition,
the dataset is enriched with a new item-set only when the minimum support parameter
is greater than a prefixed threshold. As this parameter is used to evaluate whether or
not a group of actions is frequent, simply increasing its value when dealing with small
datasets will make it more difficult for a given scenario to be learned, thereby preventing
infrequent item-sets from being considered. Thus, at first, a rather high value is set, which
is then decreased in the long term proportionally with the increasing population size of
the dataset, so that eventually most item-sets will be deemed frequent, thereby allowing
even rather rare habits to be learned.

The choice of implementing non-temporal scenarios using associative rules was
based on the consideration that sufficient training data is unavailable at start-up time and
the dimensions of the learning system hypothesis space should not be fixed. Thus, an
unsupervised machine learning system had to be adopted, in order to allow the creation
of relationships and groupings between similar data. Moreover, the possible scenario to
enact must be chosen among a finite set of possibilities.

To create a new non-temporal scenario rule, a method is needed that can efficiently
perform the following two tasks: (i) classify a group of actions as a scenario and (ii) find a
way to enact this scenario after learning it. Indeed, only in ideal cases would users per-

102

6.2. AGENT THAT LEARNS AND ANTICIPATES USER NEEDS

form the exact same sequence constituting a scenario. Scenarios are much more likely
to be identified through a subset of the entire action sequence making up the scenario.

Figure 6.4. Association rules manager life-cycle

The first task (Figure 6.4) that must be performed in this process is to arrive at some
groupings of potentially correlated actions, which will be represented by those performed
in succession over a brief time interval. Such time interval, called the correlation window,
is a system parameter whose duration can be adjusted as needed. It does not represent
an absolute time interval within which actions must be performed in order to be deemed
correlated, but it is the maximum time gap that indicates a logical dependency between
the last action performed by the user and the previously obtained set of correlated actions.
Such procedure necessarily requires a stage of data preprocessing, so as to determine

103

CHAPTER 6. INTELLIGENT AGENT

the minimum set of actions that enables recognizing the correct scenario. The result is
a table containing all the action sequences performed over a brief interval and therefore
potentially correlated. This is called a sequence table and will be used as the basis for
the subsequent stage of learning the scenarios.

The second task is performed under the constraint that any action belonging to a
specific scenario cannot be allocated to any other scenario.

It is worthwhile underlining that the efficiency of the algorithm does not depend on the
order of the completed actions, but only on the temporal correlations existing between
the actions performed, since the actions making up a scenario are not always performed
in the same order. Moreover, acquired scenarios are continually subject to modification.
An essential requirement for software efficiency is the ability to quickly adapt to users’
habits.

This goal is achieved by implementing a reinforcement function (Figure 6.5) in the
machine learning procedure. This function is activated by users when they unconsciously
correct undesired or incorrect system actions. For example, if the system enters a sce-
nario that calls for switching on a light, and the user switches off that very light, this fact
permits the system to "understand" that this particular scenario is incorrect. Another ex-
ample is when users modify their habits with changing seasons. The system adapts itself
automatically to new user habits (e.g. turning off the lights later or opening the windows
more often in springtime), without changing any hardware device settings. At the begin-
ning, the presence of this reinforcement procedure is essential in order to enable the
system to modify any erroneously learned rules due to a dearth of collected experience.
The erroneous rules are relegated to a blacklist and cannot be re-learned for a period of
time proportional to the number of times the user has provided negative feedback.

For the activation of non-temporal scenarios it is necessary to identify the minimum
set of actions that enables identifying the scenario to be applied. Automatic identification
of this minimum set is the most important and critical feature of the system. For exam-
ple, let us suppose that the system has learned a scenario that includes the two rules:
switch on the light in the living room and switch on the TV. Once the user
has switched the light on in the living room, it must be determined whether (s)he wants
to turn on the TV as well. To do this, it is necessary to calculate the probability that the
performance of a group of actions belonging to a scenario implies execution of the others
in that same scenario. The conditional relation doesn’t need to be one of certainty - a high
probability is a sufficient ground for anticipating the need. The associative rules method
permits to create a rule in such a way that it associates groups of antecedent actions for
executing groups of consequent actions.

The removal of a scenario comes about when the confidence level does not, within a
certain time period, reach the pre-set threshold value for triggering the scenario.

6.2.2 Statistical rules manager

The statistical rules manager is designed to learn scenarios that are not captured by the
association rules manager. These scenarios include events occurring with systematic

104

6.2. AGENT THAT LEARNS AND ANTICIPATES USER NEEDS

Figure 6.5. Reinforcement algorithm

periodicity (i.e. each day at the same time or during different periods of the year), as well
as the user’s living quarters preferences.

To this end, the module creates a user profile obtained by statistically analysing the
frequency and percentage of use of appliances. Activation of such preferences can be
tied to the particular moment or a sequence of events that has occurred.

Percentages of use are calculated both on a daily basis and for shorter periods of
time (e.g. in the morning from 8 to 9 am). This enables identifying potential habitual
system states that may present at certain times of the day, without the user performing a
sequence of actions.

105

CHAPTER 6. INTELLIGENT AGENT

Collected data are recorded in structures called UsageTables in the pair format
<device state, percentage>, which indicates either the percentage of time a device
is in a particular state, or the percentage time that certain events occur (for instance,
listening to favourite music or maintaining a room temperature). A number of different
time-frames (daily, weekly, seasonal and perpetual) are considered and a different Us-
ageTable is created for each.

Such data are used to satisfy user’s preferences through a conditional rule of the sort
condition => set preferences, where the condition is dictated by specific events,
such as for example, waking up, returning home, a new season’s start, and so forth.

The scenarios captured by the statistical rules manager are:

• temporal scenarios: these are made up of one or more events usually occurring at
the same time of day or for a long period of time. Once the constituent events of the
scenario are learned, they are executed automatically at the pre-established time. To
build temporal scenarios it is sufficient to observe the relations between actions and
time. A reasonable choice seems to be to observe the activation time of the scenario
within a pre-set number of days prior. If an action is performed every day at a certain
time within this pre-set time window, we can assume that a relation exists between
the action taken and the time of the day it is taken, and we can thus have it performed
automatically. The time for its execution can be calculated by taking the average time
at which the action was initiated over the preceding days. The removal of a temporal
scenario is accomplished exclusively through a negative reinforcement mechanism,
that is, when a user performs an action contrary to that learned by the system;

• personalized scenarios: these define a set of actions/parameters that the system uses
to configure the environment according to the inhabitant’s personal preferences. The
learning of a personalized scenario aims to increase the comfort and safety of the user
within the environment. To this end, the user’s preferences learned over time through
his/her daily device usage are analysed. The system is preconfigured to learn the
temperature, lighting levels, favourite musical genre and the values of the inhabitant’s
main vital functions, so as to allow for constant monitoring of the state of health. The
rules are created statistically based on the normal distribution over time of the param-
eter values automatically learned by the system. Activation of a scenario depends on
the occurrence of certain situations, such as for instance when a user enters the liv-
ing quarters. In this case, the actions taken are aimed at controlling the environment
according to the user’s preferences learned;

• personalized temporal scenarios: these represent the living parameters learned by
analysing any customary preferences repeatedly set by the user at specific times
(e.g., which take place each day or each week at the same time). Although learn-
ing this type of scenario depends on user execution at specific times, its removal is
accomplished in the same way as for a personalized scenario.

106

6.3. AGENT THAT ANTICIPATES USER HEALTH EMERGENCIES

6.3 Agent that anticipates user health emergencies

Today’s e-health solutions provide important contributions to the health management
of the elderly and chronically ill within their own homes. E-health solutions provide for
constant monitoring of many vital parameters via portable sensors (inserted into shirts,
bracelets, watches, etc.), in order to be able to identify and opportunely signal any haz-
ardous situation requiring intervention. In most cases, however, by the time the call for
help is issued, the emergency is already in progress.

One open issue regarding AmI is related to recognizing unusual or dangerous situa-
tions in order to anticipate health emergencies by monitoring users’ habitual activities and
capturing their normal behaviour. Such functionalities can be implemented using systems
based on machine learning techniques, which exploit artificial intelligence algorithms to
learn users’ habits by accumulating "experience" on their normal day-to-day activities in
order to be able to recognize "abnormal" situations. A system able to anticipate danger
before life-threatening situations arise would certainly lead to faster and more effective
interventions when used to predict health problems in time and it can thus often save
lives.

This agent uses substantially the same algorithms defined in 6.2.1 and 6.2.2 subsec-
tions but with some changes. In particular, the procedures that select, learn and apply
rules are based taking into account medical recommendations.

Figure 6.6. Example of medical recommendations

Medical recommendations are digitally represented using a table-like data structure
(Figure 6.6). Every row of the table is composed by cells. Every cell contains an empty
value or a percentage. The percentage represents the allowed average deviation between
the usual measure of the corresponding action and those of a prefixed period. A measure
can be a duration of the execution of an action (i.e. a rest or climbing the stairs) or the
number of times that an action is performed during a prefixed time interval (i.e. coughing).
If all the average deviations in a row are exceeded in the prefixed period, it is recognized
as a possible health risk.

When a frequent item reaches the conditions to become a scenario, a rule is created
represented via the form X => Y. X and Y are two sets composed both by one or more
actions which union represents the corresponding scenario. It is worthwhile underlining
that the functioning of the method does not depend on the exact order of execution of
the actions that are in the scenario, but it is only considered the temporal correlations
existing between the actions performed, since the actions can not always be performed

107

CHAPTER 6. INTELLIGENT AGENT

by the same user in the same order. For the purpose, in fact, it is important how the
actions are correlated independently of the order. The only exception is that the actions
in X that must be executed by the user before the actions in Y. For example, if there is a
scenario where there is the interest to measure the time that the user spends to rest after
an effort like climbing the stairs, the rule will be climb the stairs => sit. The climb

the stairs action is important to give a sense to the sit action. On the contrary, a rule
rest => climb the stairs is not significant because the rest action is not related to
any effort that is previously done. A rule switch on TV => sit is also not interesting
because the sit action can be related to watch the TV and not to a rest.

The decision to learn or discard a scenario and how to partition it in the X and Y sets,
is delegated to an ad-hoc algorithm that follows medical recommendations. As example,
a reasonable choice is to assign all the actions that require a significant effort, in the X

groups.

Figure 6.7. Creation of structures in Knowledge repository

At the creation of the scenario, a specific data structure is created (Figure 6.7) in the
Knowledge Repository module. Every time the user executes the scenario, the structure
is filled with durations or frequencies (Figure 6.8).

Figure 6.8. Filled structures in Knowledge repository

For the application of the learned scenario, the user has to execute the action belong-
ing to it. The measure of all user’s actions is needed because it is not possible to know
in advance if the user is actuating a scenario. When we are able to recognize it, part of

108

6.3. AGENT THAT ANTICIPATES USER HEALTH EMERGENCIES

the actions that compose that scenario are already performed and it is not possible to
get that measures anymore. However, only the measures that compose scenarios are
considered and evaluated.

The removal of a scenario comes about when the confidence level does not reach,
within a certain period, the pre-set threshold value for triggering the scenario.

Periodically, the Evaluation Algorithm verifies if there are the conditions to find in ad-
vance signals of possible health problems. If the algorithm verifies the conditions compar-
ing measured values with the medical recommendations, it throws the alarms informing
automatically about the possibility that there could be a worsening of the disease and that
a medical check could be useful.

109

110

7

Test and verification

The prototype’s functionality has been verified and validated in a use case study aimed
at checking the system’s ability to learn user’s habits, anticipate them and recognize
potential hazards to the users’ health. The software tests were performed at the ISTI-
CNR laboratory, where a domotic environment simulating a real residence has been set
up (Figure 7.1).

Figure 7.1. A view of the ISTI-CNR laboratory

A volunteer member of the research team was assigned the task of interacting with
the system during the course of his normal work in the laboratory. During the two-weeks
test period the volunteer carried out customary daily habits under usual circumstances,
that is, by simply performing a series of repetitive activities within the test setting.

Moreover, a number of actions, suggested by a cardiologist as typical of a potential
worsening of a heart patient’s state of health, were also simulated. To this end, four pa-

111

CHAPTER 7. TEST AND VERIFICATION

rameters representative of cardiac risk factors were inserted into the algorithm: coughing,
using the toilet, rest hours and body weight. The test environment was equipped with the
following domotic devices:

• presence sensors: to detect when someone enters or leaves a room;
• dimmer light : another way to detect the presence of someone in the room;
• thermostat : to measure the current ambient temperature;
• pressure sensor under the sofa and bed : to detect when someone is sitting or lying

down;
• panic button plus microphone: to send an alarm and communicate from any room in

the house;
• a fall detection system: to detect when a user falls;
• flood, fire and gas sensors: detecting anomalies in the environment;
• motion sensors: to verify if particular rooms in the house are not being used. When

rooms such as the bathroom and kitchen remain unused, it may signal the user’s
inability to fulfill the most basic needs;

• door opening sensors: to detect that a person is leaving;
• a pocket accelerometer : so that the user’s movements throughout the entire day can

be followed (time to climb the stairs, use of an exercycle, number and duration of
movements around the house), as well as the duration of subsequent rest periods;

• a microphone was installed in the user’s bedroom: to measure the frequency of
coughing, and its recordings were processed with an expressly developed DSP (Dig-
ital Signal Processing) software;

• night-time bathroom use: was checked by simply counting the number of times the
bathroom light was turned on;

• a body scale to check changes in body weight transmits data to the data control
system in real time.

The habitual activities had to be performed in relation to precise circumstances, which
were: “waking up in the morning and having breakfast”, “going out”, “returning home from
work in the evening and having supper”, and “after supper until going to bed”. In order to
reduce system training time and the subjects’ length of stay in the laboratory, data were
collected for a further four weeks using realistic random data with information replication
in order to have data available on eight weeks of system use.

At the end of the test, the system validation was carried out according to the K-Fold
Cross Validation method [76]. The rules produced during the execution of the test are:

• at 7:30 am each day => set thermostat to 21° C, switch on bedside lamp, open bed-
room blinds, switch on bathroom light;

• successful activation of fingerprint reader => switch on living room light, switch on
dining room light, switch on kitchen light, switch on kitchen TV, deactivate intruder
alarm, set thermostat to 21° C;

• detection of occupant in living room => switch on TV;

112

• at 11:00 pm each day => close all blinds and switch off all lights, close water and gas
electromagnetic valves, activate intruder alarm, set thermostat to 18° C;

• preferred temperatures 11:00 pm–07:30 am => 18°;
• preferred temperatures 07:30 am–11:00 pm => 21°;
• preferred music upon reentry => Jazz;
• preferred music on awakening => Classical;
• coughing + 30%, toilet use +20%, rest hours +34% => Alarm;
• using the toilet +30%, body weight +0.5% => Alarm;
• rest hours +21%, toilet use +85%; body weight +0.3% => Alarm;

After the test period, the software was able to learn sufficient user baseline routines.
Regarding the ability to anticipate user’s actions, the best results were obtained by set-
ting the correlation window size to fifteen minutes, while the best setting for successful
prediction of a possible health hazard was seven days. With such a value, the valida-
tion performed using the available dataset yielded a specificity value of 89%, with 88%
sensitivity and 89% accuracy.

113

114

8

Conclusions and future works

Apart from making life more comfortable for users without particular needs, the software
system can offer significant advantages to the elderly and/or disabled people as well. For
these segments of the population, even the simplest of everyday’s actions may represent
an insurmountable obstacle, hence a system that learns their habits and performs actions
in their stead can offer much needed support and safeguards. It can moreover contribute
to reducing the currently acute problem of the digital divide.

This system can also provide advantages in terms of energy savings. Once the sys-
tem has acquired and learned good practices such as switching off lights and closing
shutters depending on the time of day or in relation to a change in season, this informa-
tion will never be lost and subsequent automatic system actions will be able to contribute
significantly to saving energy.

The results obtained serve to illustrate the effectiveness of the approach adopted and
its potential for use in cooperation and interoperablity with all existing domotic systems
without the use of a specialized software for each type of device.

The system developed fits well within the perspective and goals of current Ambient
Intelligence research. The implementation of the automatic learning system is able to
learn types of habits, which enable covering a large part of the common behaviors of
Ambient Intelligence system users, and can anticipate such users’ behaviors and rec-
ognize critical health situations in advance quite reliably. In fact, software validation test
performed has also demonstrated that this tool can be an important aid for preventing any
possible deterioration of the user’s state of health, as it already supports the application
of suitable rules and thresholds for recognizing any changes in some user’s behaviors
or sensor parameters that would signal a potential rise in any of the risk factors. In any
event, the need for the help and cooperation of medical specialists will undoubtedly be
essential for enabling the system to actually be used as a medical prevention tool.

With regard to related work following similar approaches, none seems able to cover
all the aspects considered by the developed Intelligent Agents. The choice of following a
hybrid approach - applying both the Data Mining technique of associative rule learning
and statistical learning methods - has rendered the system more versatile and reliable. In

115

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

fact, combining the two forms of learning has led to a summing of the strong points of the
two different learning methods, while limiting their respective shortcomings. Moreover,
system’s performance improves over time, as new experience was accumulated. The
number of errors committed by the system was relatively low right from the start and then
fell further as the system acquired ulterior data.

However, as it can be expected, in order to achieve more realistic results the prototype
clearly requires more thorough, longer-duration testing in order to improve learning and
enable more careful evaluation of the system’s parameters. A more extensive dataset will
surely enable more accurate validation and evaluation of the system’s capabilities. The
system thus represents a good point of departure for future development, with the main
goal of improving the learning capacity achieved so far.

Summarising, the main original results obtained in this work are:

• the development of a platform for interoperability between heterogeneous automation
systems based on a distributed architecture type Digital Ecosystem: the study [73]
[60] has led to the definition of an innovative model of representation of reality housing
conforms to the vision of Ambient Intelligence. The Digital Ecosystem approach was
the most suitable to the circumstances of design as it has enabled the implementation
of a collaborative system between the entities involved;

• the development of a scalable, oriented to the Internet of Things: The study in the In-
ternet of Things field has helped to provide answers to some of the open questions in
the field of research in the area, including the need to find solutions that allow direct
interfacing of home automation devices, with the IoT world. The proposed solution
[57] is scalable, universal and based on established standards. It is lowered into re-
ality; takes account of the technologies and home automation systems on the market
today and the limits of the possible hardware and software devices to be interfaced;

• the design and implementation of a comprehensive ontological model able to describe
the environment, the user and the device characteristics and their interaction model
in order to implement interoperability : the study has allowed to obtain a solution for
interoperability [59] between the domotic systems implemented at the semantic level,
by exploiting the ability of reasoning typical of an ontological approach [56];

• the definition of a new methodology of Artificial Intelligence hybrid applied in the fields
of environmental comfort and the Ambient Assisted Living: the study has allowed the
development of an instrument of Machine Learning able to learn the habits of the
user. The instrument is able to learn both usual actions, as the usual habitat prefer-
ences [56] of the inhabitants. In addition, using the same techniques, a new algorithm
designed to anticipate possible deterioration of health conditions was developed[58].

8.1 Future works

In order to achieve sufficiently reliabile deductions, the data acquired through the environ-
mental sensors are alone not sufficient. Such data must be integrated with the information
that can be captured via wearable devices able to provide data about:

116

8.1. FUTURE WORKS

• body temperature;
• blood pressure;
• pulse;
• blood oxygen saturation;
• body weight;
• percentage of body fat;
• percentage of muscle;
• percentage of water;
• blood glucose;
• EKG;
• peak of expiratory flow;
• coagulation.

Considering the wearable sensors that may be added, possible candidates for testing
will be patients that meet the following criteria:

• Chronic Disease History : primary diagnosis of Chronic Obstructive Pulmonary Dis-
ease (COPD) and / or Chronic Heart trouble; one or more hospital emergency admis-
sion in the last year due to exacerbation of the chronic disease and unstable condi-
tions deemed to be due to anxiety about their condition;

• Caretaker functioning/ability : reasonable cognitive ability to report observations and
reasonable skills in using the home appliances and peripherals for vital signal mea-
surements (e.g. blood pressure, pulse, glucose, oxygen saturation, and body weight
and temperature).

The goal of testing as applied to both actual scenarios and patients is to verify:

• whether the system can be considered a useful, convenient tool for health care deliv-
ery;

• whether it will be able to save time and money by reducing hospital admissions, emer-
gency room and medical practitioner visits and associated travel;

• that users feel they are better informed about their health conditions, thus promot-
ing active participation in their health management and empowering them to perform
better self-care;

• that the system can improve health management by providing physicians with more
accurate, up-to-date information to help them make better decisions.

The awareness of the elderly people and their reactions to being continually moni-
tored and supervised may present obstacles. They will likely feel controlled and managed
by something that they do not fully understand and must thus be given a sense of security
and protection, without inducing anxiety [62].

Exploiting the use of the developed ontologies, the software platform furnishes the
basis for the creation of a friendly human-machine interface (HMI) based on the use of
natural language, to:

117

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

• make the system autonomously able to know the actions to perform knowing the goal
to reach (e.g. “have more light in living room” the system can turn on a lamp or open
the blinds);

• pinpoint domotic devices using relative positioning (e.g. lamp above the table);
• refer to home environments using their characterizations (e.g. to refer to the kitchen,

the user can say: "the room where I cook");

Finally, further important future work will be dedicated to enabling the system to iden-
tify specific users and their locations, for instance when they enter or leave a room. To
improve such identification, an RFID-based strategy [16] [20] can be employed to enable
the system to recognize who performs an action, when and where.

118

References

1. Emile Aarts and Boris de Ruyter. New research perspectives on ambient intelligence. Journal
of Ambient Intelligence and Smart Environments, 1(1):5–14, 2009.

2. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint driven web service composition in
meteor-s. In Services Computing, 2004. (SCC 2004). Proceedings. 2004 IEEE International
Conference on, pages 23–30, 2004.

3. Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas Schmidt, Amit
Sheth, and Kunal Verma. Web service semantics-wsdl-s. W3C member submission, 7, 2005.

4. Jan Alexandersson. i2home—towards a universal home environment for the elderly and dis-
abled. Künstliche Intelligenz, 8(3):66–68, 2008.

5. Jesús M. Almendros-Jiménez. A prolog library for owl rl. In Proceedings of the 4th International
Workshop on Logic in Databases, LID ’11, pages 49–56, New York, NY, USA, 2011. ACM.

6. Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Martin Fowler. Core J2EE Patterns
(Core Design Series): Best Practices and Design Strategies. Sun Microsystems, Inc., 2003.

7. Grigoris Antoniou and Frank Van Harmelen. Web ontology language: Owl. In Handbook on
ontologies, pages 67–92. Springer, 2004.

8. Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and Ann Wollrath. Jini Specifica-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1999.

9. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer
networks, 54(15):2787–2805, 2010.

10. Fabio Bellifimine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade–a white paper.
EXP in search of innovation, 3(3):6–19, 2003.

11. Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific american,
284(5):28–37, 2001.

12. H. Boley and E. Chang. Digital ecosystems: Principles and semantics. In Digital EcoSystems
and Technologies Conference, 2007. DEST ’07. Inaugural IEEE-IES, pages 398–403, 2007.

13. H. Boudali, P. Crouzen, B.R. Haverkort, M. Kuntz, and M. I A Stoelinga. Architectural depend-
ability evaluation with arcade. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, pages 512–521, 2008.

14. G. Briscoe and A. Marinos. Digital ecosystems in the clouds: Towards community cloud com-
puting. In Digital Ecosystems and Technologies, 2009. DEST ’09. 3rd IEEE International Con-
ference on, pages 103–108, 2009.

15. Alan W. Brown. Model driven architecture: Principles and practice. Software and Systems
Modeling, 3(4):314–327, 2004.

16. D. Bruckner, C. Picus, R. Velik, W. Herzner, and G. Zucker. Hierarchical semantic processing
architecture for smart sensors in surveillance networks. Industrial Informatics, IEEE Transac-
tions on, 8(2):291–301, May 2012.

119

References

17. Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Ontology-based interoperability ser-
vices for semantic collaboration in open networked systems. In Dimitri Konstantas, Jean-Paul
Bourrières, Michel Léonard, and Nacer Boudjlida, editors, Interoperability of Enterprise Soft-
ware and Applications, pages 135–146. Springer London, 2006.

18. PG Censoni, Piero De Sabbata, Guido Cucchiara, Fabio Vitali, Luca Mainetti, and Thomas
Imolesi. Moda-ml, a vertical framework for the textile-clothing sector based on xml and soap.
Challenges and achievements in e e-business and e-work, 2002.

19. B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins. What are ontologies, and
why do we need them? IEEE Intelligent Systems, 14(1):20–26, January 1999.

20. Yuan-Hsin Chen, Shi-Jinn Horng, Ray-Shine Run, Jui-Lin Lai, Rong-Jian Chen, Wei-Chih
Chen, Yi Pan, and T. Takao. A novel anti-collision algorithm in rfid systems for identifying
passive tags. Industrial Informatics, IEEE Transactions on, 6(1):105–121, Feb 2010.

21. DBE Consortium. Dbe studio.
22. DBE Consortium. Evolutionary environment habitat network.
23. DBE Consortium. Sbeaver - business modeller editor.
24. DBE Consortium. Dbe servent, June 2007.
25. Oasis Consortium. ebxml - enabling a global electronic market.
26. OASIS Consortium. Oasis advancing open standards for the information society.
27. OASIS Consortium. Oasis ebxml collaboration protocol profile and agreement (cppa) tc.
28. OASIS Consortium. Oasis ebxml messaging services tc.
29. Shoenet Consortium. Shoenet.
30. Alan Cooper and Robert Reimann. About Face 2.0: The Essentials of Interaction Design.

Books24x7. com, 2005.
31. EDI. Edi - electronic data interchange.
32. Edmonds. D26.7: Dbe portal specification. Technical report, Intel, 2005.
33. Bob Emmerson. M2m: the internet of 50 billion devices. WinWin Magazine, pages 19–22,

2010.
34. P Ferronato. D21. 2 architecture scope document. internal, 2005.
35. P. Ferronato. Architecture for digital ecosystems, beyond service oriented architecture (ieee-

dest 2007). In Digital EcoSystems and Technologies Conference, 2007. DEST ’07. Inaugural
IEEE-IES, pages 660–665, 2007.

36. Christian Fuchs. Internet and society: Social theory in the information age. Routledge, 2007.
37. Sarah Gillinson, Hannah Green, and Paul Miller. Independent Living: The right to be equal

citizens. Demos, 2005.
38. Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl. Acquis.,

5(2):199–220, June 1993.
39. gtin. Gtin info.
40. Nicola Guarino. Formal ontology and information systems. In Proceedings of the 1st Interna-

tional Conference June 6-8, 1998, Trento, Italy, pages 3–15. IOS Press, 1998.
41. Sten Hanke, Christopher Mayer, Oliver Hoeftberger, Henriette Boos, Reiner Wichert,

Mohammed-R. Tazari, Peter Wolf, and Francesco Furfari. universaal – an open and consoli-
dated aal platform. In Reiner Wichert and Birgid Eberhardt, editors, Ambient Assisted Living,
pages 127–140. Springer Berlin Heidelberg, 2011.

42. Hans-Jörg Happel and Stefan Seedorf. Applications of ontologies in software engineering.
In International Workshop on Semantic Web Enabled Software Engineering (SWESE’06),
November 2006.

43. Russell Hardin. The free rider problem (stanford encyclopedia of philosophy). http://plato.
stanford.edu/entries/free-rider/, 2003. [Online; accessed 17-May-2013].

44. Jim Hendler. Web 3.0: Chicken farms on the semantic web. Computer, 41(1):106–108, January
2008.

45. Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl ontologies. Semantic
Web, 2(1):11–21, 2011.

120

http://plato.stanford.edu/entries/free-rider/
http://plato.stanford.edu/entries/free-rider/

References

46. UBL Italia. Ubl-italia.
47. Antonio J Jara, Pedro Moreno-Sanchez, Antonio F Skarmeta, Socrates Varakliotis, and Peter

Kirstein. Ipv6 addressing proxy: Mapping native addressing from legacy technologies and
devices to the internet of things (ipv6). Sensors, 13(5):6687–6712, 2013.

48. Suho Jeong, Seong Hoon Kim, Minkeun Ha, Taehong Kim, Jinyoung Yang, Nam Giang, and
Daeyoung Kim. Enabling transparent communication with global id for the internet of things.
In Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth Inter-
national Conference on, pages 695–701. IEEE, 2012.

49. Markus Jung, Christian Reinisch, and Wolfgang Kastner. Integrating building automation sys-
tems and ipv6 in the internet of things. In Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2012 Sixth International Conference on, pages 683–688. IEEE, 2012.

50. Markus Jung, Jürgen Weidinger, Wolfgang Kastner, and Alex Olivieri. Heterogeneous device
interaction using an ipv6 enabled service-oriented architecture for building automation sys-
tems. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages
1939–1941. ACM, 2013.

51. Lee Kennedy. D24.7: Distribuited storage system. Technical report, Intel, 2005.
52. S. Lorente. Key issues regarding domotic applications. In Information and Communication

Technologies: From Theory to Applications, 2004. Proceedings. 2004 International Conference
on, pages 121–122, 2004.

53. Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse rich client platform. Addison-
Wesley Professional, 2010.

54. GS1 Members. Global location number.
55. GS1 Members. Gs1 - the global language of business.
56. Vittorio Miori and Dario Russo. Anticipating health hazards through an ontology-based, iot

domotic environment. In Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2012 Sixth International Conference on, pages 745–750. IEEE, 2012.

57. Vittorio Miori and Dario Russo. Domotic evolution towards the iot. In Advanced Information
Networking and Applications Workshops (WAINA), 2014 28th International Conference on,
pages 809–814. IEEE, 2014.

58. Vittorio Miori and Dario Russo. Preventing health emergencies in an unobtrusive way. In Inter-
national Conference on IoT Technologies for HealthCare (HealthyIoT), 2014 First International
Conference on. IEEE, 2014.

59. Vittorio Miori, Dario Russo, and Cesare Concordia. Meeting people’s needs in a fully interop-
erable domotic environment. Sensors, 12(6):6802–6824, 2012.

60. Pillitteri L. Russo D. Miori V., Bianchi Bandinelli R. Research ambient assisted living solutions
in the european context. Technical report, Institute of Science and Technologies of Information
(ISTI) - National Research Council of Italy (CNR), 2014.

61. moda ml. moda-ml.
62. Stuart Moran and Keiichi Nakata. Ubiquitous monitoring and user behaviour: A preliminary

model. J. Ambient Intell. Smart Environ., 2(1):67–80, January 2010.
63. Sudhakiran V Mudiam, Gerald C Gannod, and Timothy E Lindquist. Synthesizing and inte-

grating legacy components as services using adapters. Science of Computer Programming,
60(2):134–148, 2006.

64. Shelena Soosay Nathan, Sanjaav Selan Mohan, Adelin Rose Harudas, and Kashif Nisar.
Berkeley internet name domain (bind).

65. OMG. Semantics of business vocabulary and business rules specification, second interim
specification, 2006.

66. Kotopoulos Pappas, Kotopoulos. D14.5: Final p2p implementation of the dbe knowledge base
and sr. Technical report, Technical University of Crete, 2005.

67. Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma. Meteor-s web service
annotation framework. In Proceedings of the 13th international conference on World Wide
Web, WWW ’04, pages 553–562. ACM, 2004.

121

References

68. Konstantinos Perakis, Gianna Tsakou, Christoforos Kavvadias, and Alkis Giannakoulias.
Homedotold, home services advancing the social interaction of elderly people. In José Bravo,
Ramón Hervás, and Vladimir Villarreal, editors, Ambient Assisted Living, volume 6693 of Lec-
ture Notes in Computer Science, pages 180–186. Springer Berlin Heidelberg, 2011.

69. Joanne H Pratt. E-Biz. com: Strategies for small business success. SBA Office of Advocacy,
2002.

70. Preeda Rajasekaran, John Miller, Kunal Verma, and Amit Sheth. Enhancing web services de-
scription and discovery to facilitate composition. In Semantic Web Services and Web Process
Composition, pages 55–68. Springer, 2005.

71. Trygve Mikjel H Reenskaug. The original mvc reports. 1979.
72. James Robertson and Suzanne Robertson. Volere: Requirements specification template.

Technical report, Technical Report Edition 6.1, Atlantic Systems Guild, 2000.
73. Dario Russo. Domotics and robotics. In The Church at the Service of Sick Elderly People:

Care for People with Neurodegenerative Pathologies, 2013.
74. Michele Ruta, Floriano Scioscia, Giuseppe Loseto, and Eugenio Di Sciascio. An agent frame-

work for knowledge-based homes. In 3rd International Workshop on Agent Technologies for
Energy Systems (ATES 2012)(2012, to appear), 2012.

75. Amit Sheth. Semantic web process lifecycle: role of semantics in annotation, discovery, com-
position and orchestration, 2003.

76. Takahiro Shinozaki and Mari Ostendorf. Cross-validation and aggregated em training for robust
parameter estimation. Comput. Speech Lang., 22(2):185–195, April 2008.

77. Andrew Sixsmith, Sonja Meuller, Felicitas Lull, Michael Klein, Ilse Bierhoff, Sarah Delaney, and
Robert Savage. Soprano – an ambient assisted living system for supporting older people at
home. In Mounir Mokhtari, Ismail Khalil, Jérémy Bauchet, Daqing Zhang, and Chris Nugent,
editors, Ambient Assistive Health and Wellness Management in the Heart of the City, vol-
ume 5597 of Lecture Notes in Computer Science, pages 233–236. Springer Berlin Heidelberg,
2009.

78. Nikolaos Spanoudakis, Pavlos Moraitis, and Yannis Dimopoulos. Engineering an agent-based
approach to ambient assisted living. In Adjunct Proceedings of the 3rd European Conference
on Ambient Intelligence (AmI09), Workshop on Interactions Techniques and Metaphors in As-
sistive Smart Environments (IntTech’09), Salzburg, Austria, pages 268–271. Citeseer, 2009.

79. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining, (First Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

80. Mohammad-Reza Tazari, Francesco Furfari, Juan-PabloLázaro Ramos, and Erina Ferro. The
persona service platform for aal spaces. In Hideyuki Nakashima, Hamid Aghajan, and Juan-
Carlos Augusto, editors, Handbook of Ambient Intelligence and Smart Environments, pages
1171–1199. Springer US, 2010.

81. TechIDEAS Asesores Tecnológicos. fada - federated advanced directory architecture, 2007.
82. Texweave. Texweave - standardization and interoperability in the texile supply chain integrated.
83. Tania Tudorache, Csongor Nyulas, Natalya Fridman Noy, and Mark A. Musen. Webprotégé:

A collaborative ontology editor and knowledge acquisition tool for the web. Semantic Web,
4(1):89–99, 2013.

84. L. van Moergestel, W. Langerak, and J.-J. Meyer. Agents in domestic environments. In Control
Systems and Computer Science (CSCS), 2013 19th International Conference on, pages 487–
494, 2013.

85. Jorge E. López De Vergara, Víctor A. Villagrá, and Julio Berrocal. Semantic management:
advantages of using an ontology-based management information meta-model. In Proceed-
ings of the HP Openview University Association Ninth Plenary Workshop (HP-OVUA’2002),
distributed videoconference, pages 11–13, 2002.

86. Jean-Baptiste Waldner and Jean Baptiste Waldner. Nano-informatique et intelligence am-
biante: inventer l’ordinateur du XXIe siècle. Hermès science publications, 2007.

122

References

87. Zhiqiang Wei, Jing Li, Yongquan Yang, and Dongning Jia. A residential gateway architecture
based on cloud computing. In Software Engineering and Service Sciences (ICSESS), 2010
IEEE International Conference on, pages 245–248. IEEE, 2010.

88. Mark Weiser. Human-computer interaction. chapter The Computer for the 21st Century, pages
933–940. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

89. Tin-Yu Wu, Chia-Chang Hsu, and Han-Chieh Chao. Ipv6 home network domain name
auto-configuration for intelligent appliances. Consumer Electronics, IEEE Transactions on,
50(2):491–497, 2004.

90. Tin-Yu Wu, Chia-Chang Hsu, and Han-Chieh Chao. Ipv6 home network domain name
auto-configuration for intelligent appliances. Consumer Electronics, IEEE Transactions on,
50(2):491–497, 2004.

123

References

124

Index

Address Resolution Protocol, 73
Ambient Assisted Living, 4
Ambient Intelligence, 1–3, 6, 91, 115,

116
Artificial Intelligence, 13, 19
Assistive Technologies, 5
Auto IP, 72
Automatic Private IP Addressing, 72
Automatic Speech Recognition, 93

Biological Ecosystem, 9
bit, 75
Building Automation, 11

Class, 17
Common Object Request Broker

Architecture, 74
Concept, 18
Conceptualisation, 13

DAML+OIL, 16
Data Mining, 7–9, 19, 20
DBE project, 38
Declarative Knowledge, 13
Description Logic, 17
DHCP Server, 72
Digital Ecosystem, 4, 9, 10, 38, 61, 116
DogOnt, 50
Domain of Interest, 13
Domotic Agent, 71, 77–80, 85, 86, 92

domotic bus, 77
Domotics, 11
Domotique, 11
Dynamic Host Configuration Protocol,

72

eBiz-TCF, 44
Evaluation Algorithm, 109

Free Riding, 10

Home Automation, 2, 11
Human Machine Interface, 92
HyperText Transfer Protocol, 74

Independent Living, 6
Individual, 9
Instace, 17
Internet Of Objects, 6
Internet Of Things, 3, 6, 12, 13
Internet Printing, 73
Internet Printing Protocol, 73
IP Address, 72, 73
IP Multicasting, 73
IPP, 73
IPv4, 12
IPv6, 12

Java RMI, 74

KNX, 71

Loom, 16

125

Machine Learning, 19, 20
Metadata, 16, 17
Multicast Address, 73

Name, 17, 18

OIL, 17
OKBC, 18
Ontologies, 13, 14, 16
Ontology, 13, 14, 16
Ontology Inference Layer, 17
Ontology Web Language, 16, 17
Ontosphere3d, 19
OntoViz, 19
Open Knowledge Base Connectivity, 18
Open Source, 18
OWL, 16–19
OWL-DL, 18
OWL-Full, 18
OWL-Lite, 18

Plug and Play, 71
Port Number, 73
Predicate, 17
Prolog, 16
Property, 17
Protégé, 18, 19, 68, 69
Protégé Plugin Library, 19

RDF, 16, 17
RDF Data Model, 16, 17
RDF Document, 17
RDF Expression, 16
RDF Syntax, 17
RDFS, 17
Real Time Streaming Protocol, 74
Relation, 18
Remote Method Invocation, 74
Resource, 16, 17
Resource Description Framework, 16
Role, 18

RTSP, 74

Semantic Intelligence, 3
Semantic Reasoner, 13
Semantic Web, 13, 19
Sensor Model Language, 51
Service Oriented Architecture, 10
Simple Service Discovery Protocol, 73
Slot, 18
Smart Home, 11
Software Platform, 89, 93
Statement, 17
Subject, 17

TCP-IP Stack, 72
Text To Speech, 92

Ubiquitous Computing, 1
UDP Packet, 73
Uniform Resource Locator, 16
Universal Description Discovery and

Integration, 10
Universal Plug and Play, 71
Universal Resource Identifier, 16
UPnP Architecture, 72
UPnP Device, 71
UPnP Device Architecture, 72
UPnP Forum, 72
UPnP Network, 71
URI, 16, 73
URL, 16
User Agent, 89

Value, 17

Web 3.0, 3
Web Services Description Language,

10

XML, 16, 17, 72, 74
XML Encoding, 17
XML Tag, 17

126

Acknowledgments

Foremost, I would like to thank my advisors Dr Vittorio Miori and Prof. Stefano Giordano
for their advices and their guidance during these years and for giving me the opportunity
to work in this beautiful research area.

Besides my advisors, I would also like to express my most sincere gratitude to my
parents, to my grandparents and to my wife Ada, who have always trusted and supported
me during my studies, my work and my life.

Last but not least, I would like to thank my closest friends. In particular I would like
to thank Marco Righi for being my dear friend as well as good colleague at work and
companion during these studies, and Luca Saiu for teching me a lot of technical notions
and, expecially, the true essence of being a computer scientist.

127

	Introduction
	Motivations
	Involved technologies
	Ambient Assisted Living
	Assistive Technologies
	Independent Living

	Ambient Intelligence
	Data Mining
	Digital ecosystem
	Domotics
	Internet Of Things
	Semantic web and ontologies
	Development of Ontologies
	Ontology editors

	Machine Learning

	Thesis Structure

	State of the art
	Ambient Assisted Living
	HERA
	HOMEdotOLD
	I2HOME
	MPower
	Use case methodology
	Requirement Analysis

	OASIS
	Use case methodology
	Requirement Analysis

	PERSONA
	Use case methodology
	Requirement Analysis

	SOPRANO
	Use case methodology
	Requirement Analysis

	universAAL
	Use case methodology
	Requirement Analysis

	Digital ecosystem
	DBE project
	DBE architecture
	DBE infrastructural services

	Meteor-S project
	The semantic
	The components

	Interoperability using semantics
	Introduction
	eBiz
	Introduction
	The architecture

	Kassetts
	Introduction

	Moda-ML

	Semantics for Domotics
	DogOnt
	SensorML

	Other works

	Architecture
	Introduction
	Dictionary
	Analysis requirements
	Use Case
	Network architecture
	Domotic agents
	User agents
	Intelligent agents

	Semantic approach
	Implementation tools
	Java
	JADE
	OWLAPI

	Domotic agent
	Introduction
	UPnP system
	Introduction
	UPnP technology
	The UPnP Device Architecture

	KNX system
	Introduction
	KNX Group address
	KNX Physical address
	KNX Specifications
	KNX Tools
	Interesting implementations

	Interactions with domotic bus
	Semantic layer
	IPv6 and IoT
	Introduction
	State of the art
	The IPv6 gateway
	The web interface

	User agent
	Introduction
	Semantic layer
	Track and identification of users
	User interaction with the environment

	Intelligent agent
	Introduction
	Associative rules
	Frequent Itemset Generation: Apriori

	Agent that learns and anticipates user needs
	Association rules manager
	Statistical rules manager

	Agent that anticipates user health emergencies

	Test and verification
	Conclusions and future works
	Future works

	References

