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Sommario

La crescente diffusione di dispositivi mobili dotati sempre e ovunque di connessioni

affidabili ed idonee a supportare l’utilizzo delle più comuni applicazioni, ha richiesto

negli ultimi anni la messa in opera di reti di telecomunicazioni basate su tecnologie

in grado di rispondere efficacemente alle richieste del mercato, in continua crescita ed

ancora lontane da livelli di saturazione.

Le tecniche di trasmissione multiportante, utilizzate ampiamente negli standard per

reti locali (Wi-Fi) e per reti metropolitane (WiMAX) e già da anni oggetto di ricerca,

sono state adottate definitivamente a partire dalla quarta generazione di sistemi di

comunicazione cellulare (LTE). L’impiego di tali tecniche di segnalazione, se da una

parte risulta di notevole vantaggio nel contrastare effetti deleteri che si riscontrano

in ambienti con canale di propagazione particolarmente ostile, dall’altra pone dei

requisiti molto stringenti per quanto riguarda la sensibilità ad errori di recupero del

carrier frequency offset (CFO) con il conseguente impatto sulla corretta rivelazione

del segnale.

È in questo ambito che si focalizza la tesi, andando ad investigare alcuni aspetti legati

alle procedure di sincronizzazione per sistemi basati su segnalazione multiportante.

Si farà riferimento in particolare ad una procedura utilizzata per l’associazione di un

utente ad una rete radiomobile in sistemi LTE, a soluzioni per il recupero del CFO in

sistemi basati su OFDM e filtered multitone modulation e ad uno studio di tecniche

di recupero del CFO in ricevitori a conversione diretta.

Altri contributi inerenti a problematiche di strato fisico in sistemi di comunicazione,

sia radio che su portante acustico, completano la tesi.
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Abstract

The increasing diffusion of mobile devices requiring, everywhere and every time,

reliable connections able to support the more common applications, induced in the last

years the deployment of telecommunication networks based on technologies capable

to respond effectively to the ever-increasing market demand, still a long way off from

saturation level.

Multicarrier transmission techniques employed in standards for local networks (Wi-

Fi) and metropolitan networks (WiMAX) and for many years hot research topic,

have been definitely adopted beginning from the fourth generation of cellular systems

(LTE). The adoption of multicarrier signaling techniques if on one hand has brought

significant advantages to counteract the detrimental effects in environments with

particularly harsh propagation channel, on the other hand, has imposed very strict

requirements on sensitivity to recovery errors of the carrier frequency offset (CFO)

due to the resulting impact on correct signal detection.

The main focus of the thesis falls in this area, investigating some aspects relating

to synchronization procedures for system based on multicarrier signaling. Particular

reference will be made to a network entry procedure for LTE networks and to CFO

recovery for OFDM, filtered multitone modulation and direct conversion receivers.

Other contributions pertaining to physical layer issues for communication systems,

both radio and over acoustic carrier, conclude the thesis.
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Chapter 1

Introduction

1.1 Motivation

The ever-increasing coverage with high-speed connectivity via cellular and wireless

networks, the widespread diffusion of mobile devices such as smartphones, tablets,

notebooks and the resulting popularization of many useful or trendy applications,

have changed the way we communicate, our lifestyle and working habits. Taking as

reference some simple data [1], allows us to get an impression of how the mobile

technology has already become pervasive and ubiquitous. For example Fig. 1.1

shows the trend of active mobile-broadband subscriptions in developed countries as

indicated by the International Telecommunication Union and consisting primarily of

connections via mobile cellular phones, USB dongle/modem or add-on data packages.

We can observe how this surprising increase, started in 2007 (year of the beginning for

this time series), has led to a penetration greater than eighty broadband subscriptions

for one hundred inhabitants, with 2.3 billion of world-wide subscriptions reached

during 2014 and a double-digit growth rate on annual basis. Other interesting data,

to give a big picture of the information era we are going through, are the number of

mobile-cellular subscriptions, that has overtaken during 2014 the level of 6.9 billion in

the world (one for inhabitant on average!), and the global number of individuals using

the Internet, greater than 2.9 billion in the entire world with a peak of 78 percent of

the population in the developed countries.

In view of this, it is easy to figure out that the general trend is to rapidly reach,
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Figure 1.1: Active mobile-broadband subscriptions in developed countries per 100 inhabi-

tants.

at least in developed areas, an almost total diffusion of broadband services and, at

the same time, a replacement or coexistence of mobile-cellular devices with mobile

broadband connections.

Going into more technical details, wireless communication systems, that already

nowadays provide wideband access to a large numbers of subscribers, will be required

to guarantee more and more demanding quality of service requirements in terms of

coverage area, connection reliability, data rate and so on.

The design challenges for the communication system engineers, many and difficult,

arise primarily but not only, from the scarcity of frequency spectrum, the limitation

on total transmit power and the nature of wireless channel. For the latter, the issues

to face are principally due to broadband communication with mobile devices and in

general to the need of self-adapting receiving algorithms able to operate in a rapidly

changing environment both in time and in space. All this motivated and inspired the

huge effort of the research activity in the field, of both academia and industry.

One of the previously cited challenges, the harsh nature of the communication

channel, is principally due to the phenomena of scattering, diffraction, reflection
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and Doppler effects to which the radiated electromagnetic waves arriving at the

receiving antennas are subjected. As a result, the receiver observes the superposition

of several attenuated and delayed copies of the transmitted signal. The constructive or

destructive combination of these copies causes large fluctuations in the received signal

strength with a corresponding degradation of the link quality. Moreover the unpre-

dictable variations of the propagation environment characteristics and the relative

motion between transmitter and receiver lead to a randomly time varying channel. A

further and very tricky impairment of wireless transmissions may be the interference

arising from channel reuse.

The adoption of a multicarrier air-interface is a common feature of many current

wireless standards for high-rate wireless communication and can efficiently cope with

the previously problems. Some examples of largely adopted commercial implemen-

tations of these standards are Wi-Fi, WiMAX, LTE, TEDS, DVB-T. The main idea

behind multicarrier signaling is to split the high-rate data stream into many low-rate

substreams. The substreams are then transmitted simultaneously over orthogonal

narrowband subchannels characterized by partially overlapping spectra. If the system

parameters are properly tuned, each orthogonal subchannel can be approximated as

a flat fading channel with constant channel gain and with respect to single-carrier

transmissions, this technique can provide the system with increased resistance against

narrowband interference and channel distortions. Furthermore, the adoption of mul-

ticarrier transmission ensures a high level of flexibility since transmission parameters

like power, constellation size and coding rate can be selected independently over each

subchannel and can also be combined with conventional multiple-access techniques

to operate in a multiuser scenario. Even though the basic principle of multicarrier

signaling techniques is well established among researchers and communication engi-

neers, their practical implementation is far from being trivial as it requires rather

sophisticated signal processing techniques in order to fully achieve the attainable

system performance. Furthermore, practical algorithms implementation must be

able to guarantee a real-time execution, often a very tight constraint, which makes

the computational complexity an additional aspect to be tackled. Synchronization,

channel estimation and radio resource management are only a few examples of the

numerous challenges related to multicarrier technology.

Among the recalled physical layer design aspects, that if correctly designed can lead

to an efficient, reliable, and robust wireless multicarrier communication system, a
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major (and often key) role is played by the synchronization procedures. Essentially,

these functions aim at retrieving some reference parameters from the received signal

that are necessary for reliable data detection.

A fundamental synchronization task discussed within this work is relevant to the

network searching procedure accomplished when a mobile device is switched on for

the first time, during an handover, or if synchronization is lost. Power adjustment,

timing offset estimation, and synchronization between a base station (BS) and all

users within a cell are done through this process. The complexity arises from the fact

that the uplink waveform arriving at the BS is a mixture of signals transmitted by

different users, each characterized by different timing and frequency offsets.

Other contributions of this thesis address the problem of carrier frequency offset

(CFO) recovery in multicarrier systems. The CFO is a frequency error between

the received carrier and the local oscillator used for signal demodulation and results

in a loss of orthogonality among subcarriers with ensuing limitations of the system

performance. Frequency synchronization aims at restoring orthogonality by compen-

sating for any frequency offset caused by oscillator inaccuracies or Doppler shifts. In

particular the CFO problem is here discussed for OFDMA-based systems, filtered

multitone modulations and for OFDM direct-conversion receivers, an alternative

wireless receiver architecture to superheterodyne that offers significant advantages

in terms of cost, package size, and power consumption.

A further section is devoted to describe an algorithm developed for a network

composed of several single-antenna transmitter-receiver pairs. The target in this case

is the minimization of the power required to achieve a given signal-to-interference-

plus-noise ratio in a limited-feedback scenario and the proposed solution is based on

a non-cooperative game.

The thesis is completed by two contributions relevant to underwater acoustic com-

munications. The former treats an enhanced modem structure using a particular

wideband communication technique with a focus on synchronization issues, while the

latter shows some highlight on the design of the communication and sensor subsystems

for an autonomous underwater vehicle.

To better appreciate the contents of this dissertation some theoretical basis are

needed. For the first part the reader can refer to [2] for an excellent introduction

to synchronization issues in multicarrier systems with particular reference to OFDM,

while an interesting introduction to filtered multitone modulations is reported in [3].
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For the mathematical and theoretical foundation of the estimation theory, [4] is an

optimum reference, while for general digital communication basis [5] can be consulted.

The foundation of game theory, useful to understand the theoretical framework of

one contribution of the thesis, can be found in [6]. Finally, an excellent treatise of

underwater acoustic is [7].

1.2 Organization of the thesis and major contribu-

tions

The thesis is organized as follows.

In Chapter 2 a novel Random Access algorithm for initial synchronization in LTE

systems is derived on the basis of a generalized likelihood ratio test. In contrast

to existing alternatives, the proposed approach provides better results by properly

taking into account the frequency selectivity of the channel. Computer simulations are

employed to assess the effectiveness of the proposed solution and to make comparisons

with existing alternatives.

In Chapter 3 the joint maximum likelihood (ML) estimation of the CFO and

preamble index in a multicarrier system compliant with the WiMAX specifications is

investigated, and a novel expression of the relevant Cramer-Rao bound (CRB) is de-

rived. Since the exact ML solution is prohibitively complex in its general formulation,

suboptimal algorithms are developed which can provide a reasonable trade-off between

estimation accuracy and processing load. Specifically, it is shown that the fractional

CFO can be recovered by combining the ML estimator with an existing algorithm

that attains the CRB in all practical scenarios. The integral CFO and preamble index

are subsequently retrieved by a suitable approximation of their joint ML estimator.

Compared to existing alternatives, the resulting scheme exhibits improved accuracy

and reduced sensitivity to residual timing errors.

In Chapter 4 the problem of CFO recovery in an OFDM receiver affected by

frequency-selective in-phase/quadrature (I/Q) imbalances is investigated . The anal-

ysis is based on ML methods and relies on the transmission of a training preamble

with a repetitive structure in the time domain. After assessing the accuracy of the

conventional ML (CML) scheme in a scenario characterized by I/Q impairments, the

joint ML (JML) estimator of all unknown parameters is reviewed and its theoretical
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performance is evaluated. In order to improve the estimation accuracy a novel CFO

recovery method that exploits some side-information about the signal-to-interference

ratio is also presented. It turns out that both CML and JML can be derived from this

scheme by properly adjusting the value of a design parameter. The accuracy of the

investigated methods are compared with the relevant CRB. These results can be used

to check whether conventional CFO recovery algorithms can work properly or not in

the presence of I/Q imbalances and also to measure the potential gain achievable by

more sophisticated schemes.

Chapter 5 is concerned with ML pilot-aided frequency offset recovery for filtered

multitone modulations such as that employed in TETRA Release 2 Enhanced Data

Service (TEDS). An approach is proposed improving on previously published algo-

rithms. When pilot symbols are arranged on a rectangular time-frequency grid, the

acquisition range of a pilot-based frequency synchronizer may occur to be very narrow

as it cannot exceed the inverse of pilot spacing in the time domain. It is shown here

that the above drawback can be relieved resorting to a non-rectangular pilot pattern

where the pilot symbols are simply shifted in time along the subcarriers with respect

to the rectangular arrangement.

Chapter 6 presents a network composed of several single-antenna transmitter-

receiver pairs in which each pair aims at selfishly minimizing the power required

to achieve a given signal-to-interference-plus-noise ratio. This is obtained modeling

the transmitter-receiver pairs as rational agents that engage in a non-cooperative

game. Capitalizing on the well-known results on the existence and structure of the

generalized Nash equilibrium (GNE) point of the underlying game, a low complexity,

iterative and distributed algorithm is derived to let each terminal reach the GNE

using only a limited feedback in the form of link-layer acknowledgement (ACK) or

negative acknowledgement (NACK). Numerical results are used to prove that the

proposed solution is able to achieve convergence in a scalable and adaptive manner

under different operating conditions.

In Chapter 7 an improved receiver architecture for Sweep-Spread-Carrier (S2C)

modulation is presented. S2C is a spread-spectrum technique recently proposed to

effectively contrast the effects of time dispersion over multipath propagation channels

in underwater acoustic wireless links. The proposed structure is capable to take

advantage of the energy received from all propagation paths rather than only from the

strongest one, as envisaged in previous works dealing with this modulation technique.
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A hardware version of the modem was implemented in laboratory and its behavior was

assessed and compared, using standard propagation models, to that exhibited by the

traditional single-path-based scheme in terms of bit error rate. Results are presented

showing that gains of a few decibels of signal-to-noise-plus-interference ratio can be

achieved. Issues relevant to carrier/symbol synchronization and channel estimation

are also addressed.

In Chapter 8 an overview of the VFIDES project is reported for completeness as

it represented a substantial part of the doctoral activity. The project was carried out

in collaboration with Whitehead Sistemi Subacquei (WASS) located in Livorno and

other high-tech companies. WASS is a Finmeccanica leading company operating in

the sector of advanced underwater systems. The goal of the project is the development

of an innovative autonomous underwater vehicle with advanced capabilities. The main

tasks were inherent to the selection, simulation and integration activities concerning

communication and sensor subsystems of the vehicle. Unlike the other contributions

within the thesis, for this activity, only a high level description is reported being this

topic far from the main theme of the thesis and because many project details and

obtained results pertain to industrial classified information.

Finally some Conclusions are given.
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Chapter 2

Random Access for

Long-Term Evolution

Networks

2.1 Introduction

Long-term evolution (LTE) has been introduced by the Third-Generation Partner-

ship Project (3GPP) in order to face the ever-increasing demand for packet-based

mobile broadband communications. This emerging technology employs orthogonal

frequency-division multiple-access (OFDMA) for downlink transmission and single-

carrier frequency-division multiple-access (SC-FDMA) in the uplink [8]. To maintain

orthogonality among subcarriers of different users, the 3GPP-LTE specifies a network

entry procedure called random access (RA) by which uplink signals can arrive at the

eNodeB aligned in time and with approximately the same power level [9], [10].

In its basic form, the RA function is a contention-based procedure, which essentially

develops through the same steps specified by the Initial Ranging (IR) process of the

IEEE 802.16 wireless metropolitan area network [11]. Specifically, each user equip-

ment (UE) trying to enter the network computes frequency and timing estimates on

the basis of a suitably designed downlink control channel. The estimated parameters

are next used in the subsequent uplink phase, during which the UE selects a time-slot
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and transmits a randomly chosen code over the Physical Random Access Channel

(PRACH), which is composed by a specified set of adjacent subcarriers. The codes

are obtained by applying different cyclic shifts to a Zadoff-Chu (ZC) sequence so as to

ensure their mutual orthogonality [12]. As a consequence of the different terminals’

positions within the cell, uplink signals are subject to users’ specific propagation

delays and arrive at the eNodeB at different time instants. After identifying which

codes are actually present in the PRACH (active codes), the eNodeB must extract

the corresponding timing and power information. Then, it will broadcast a response

message indicating the detected codes and giving instructions for timing and power

adjustment.

From the above discussion, it follows that code identification as well as multiuser

timing and power estimation are the main tasks of the eNodeB during the RA process.

These problems have received great attention in the last few years and some solutions

are currently available [13]– [22]. The methods illustrated in [13] and [14] perform code

detection and timing recovery by correlating the received samples with time-shifted

versions of a training sequence. The code is detected if the correlation peak exceeds

a specified threshold, with the peak position providing the timing information. Since

these schemes operate in the time-domain, they are not suited for multicarrier systems,

wherein users’ codes are transmitted over a subset of the available subcarriers. In

such a case, the frequency-domain correlation approach outperforms its time-domain

counterpart as it can easily extract the PRACH from data-bearing subcarriers [15].

A simple energy detector is employed in [16] to reveal the presence of a network entry

request. However, since this approach requires that the user’s codes are real-valued,

it cannot be applied to the ZC sequences employed in the LTE. A timing recovery

scheme devised for the LTE uplink is discussed in [17]. Here, the PRACH is firstly

extracted from the uplink multiuser signal by means of a discrete Fourier transform

(DFT) operation. Then, the corresponding frequency-domain samples are multiplied

by the root ZC sequence and converted in the time-domain using an inverse DFT

(IDFT) device. The code detection process searches for the peak of the resulting

timing metric within an observation window that is univocally specified by the cyclic

shift associated to the tested code. If the peak exceeds a suitably designed threshold,

the code is declared to be active and the corresponding timing estimate is obtained

as the difference between the peak location and the beginning of the observation

window. This method is expected to work properly as long as the received codes



2.1 Introduction 11

maintain their orthogonality after passing through the propagation channel. In the

presence of multipath distortions, however, the PRACH subcarriers may experience

different attenuations and phase shifts, thereby leading to a loss of code orthogonality.

This gives rise to multiple-access interference (MAI), which may severely degrade the

code detection capability.

Possible approaches to mitigate the MAI are proposed in [18]- [22]. More precisely,

in [18] the users’ codes are divided into several groups which are mapped over exclusive

sets of subcarrier in order to make them perfectly separable in the frequency domain.

In the signal design illustrated in [19], the codes are transmitted in the time direction

over a specified number of OFDMA blocks. This way, the code orthogonality is main-

tained as long as the channel response keeps constant over the entire transmission slot.

However, using a relatively large number of OFDMA blocks increases the sensitivity to

residual carrier frequency offsets (CFOs), which may compromise the orthogonality of

the received codes. Ranging schemes that are robust to frequency errors are presented

in [20] and [21], where users’ CFOs are estimated by resorting to subspace-based

methods. In [22], the generalized likelihood ratio test (GLRT) criterion is applied to

decide whether a given code is present or not in the ranging subchannel. The proposed

scheme is fully compliant with the IEEE 802.16 specifications and inherently takes

into account the multipath distortions introduced by the propagation channel.

Despite their resilience to MAI, the schemes discussed in [18]– [22] are based on signal

designs that cannot be supported by the PRACH structure and, accordingly, they are

not suited for LTE systems.

In this chapter, we derive a novel RA method which is specifically tailored for LTE

applications with single or multiple receive antennas and makes use of the generalized

likelihood ratio test (GLRT) to decide whether a given code is present or not in the

PRACH. In formulating our testing problem, the PRACH is divided into sub-bands

referred to as tiles, each composed by a certain number of adjacent subcarriers over

which the channel is assumed to be constant. The timing error and the channel

frequency response of the hypothesized codes are assumed to be unknown and are

jointly estimated using the maximum-likelihood (ML) criterion. The power level of the

detected codes is eventually retrieved from the estimated channel frequency response.

Compared to [17], our approach provides the system with improved resilience against

multipath distortions. However, this advantage is achieved at the price of an increase

of the system complexity.
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2.2 System description and signal model

Our system is compliant with the LTE-3GPP standard for wireless data commu-

nications. We denote by B the available bandwidth and assume that K UEs are

simultaneously trying to enter the network. As mentioned previously, each UE notifies

its entry request by transmitting a randomly chosen code over the PRACH. According

to the standard, a set C of 64 different RA codes are available in each cell. These codes

are generated by cyclically shifting one or more ZC root sequences of prime-length

NZC = 839. Specifically, denoting by

ξu(n) = e−jπun(n+1)/NZC n = 0, 1, . . . , NZC − 1 (2.1)

the elements of the uth ZC root sequence, the νth RA code obtained from ξu(n) has

entries

xu,ν(n) = ξu((n+ Cν) mod NZC ) (2.2)

where Cν denotes the νth cyclic shift. The latter is given by Cν = νNCS , where NCS

is a system parameter related to the cell radius (the larger the radius, the greater NCS)

and ν is an integer belonging to the set {0, 1, . . . , NU−1}, with NU = bNZC/NCSc and

bxc rounding x to the smallest integer. Bearing in mind that 64 different codes must

be available in C and observing that a total of NU codes are generated from a single

ZC root sequence, it follows that two or more root sequences are necessary whenever

NU < 64. For simplicity we set NCS = 131, which amounts to assuming a cell radius

of approximately 1.5 km. In these circumstances we have NU = 64 and, accordingly,

one single root sequence is sufficient for the generation of the 64 codes in C. For this

reason, in the sequel we omit the root index u. Also, without loss of generality, we

assume that different UEs select different codes with indices {1, 2, . . . ,K}.
As specified in [9], the PRACH occupies a bandwidth BRA = 1.08 MHz2 with

subcarrier spacing ∆fRA = 1.25 kHz. Vector xk = [xk(0), xk(1), . . . , xk(NZC−1)]T is

transmitted over the PRACH subcarriers using an OFDM modulator, which comprises

an IDFT unit of size N = B/∆fRA along with the insertion of a cyclic prefix and

a guard time of NCP and NGT samples, respectively. This produces the NB =

1All the provided results can be easily extended to different values of NCS .

2This value corresponds to the smallest uplink bandwidth of six resource blocks in which LTE

may operate.
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N +NCP +NGT time-domain samples given by

sk(l) =


bk(l) 0 ≤ l ≤ N +NCP − 1

0 N +NCP ≤ l ≤ NB − 1

(2.3)

where

bk(l)=
1√
N

NZC−1∑
n=0

xk(n)ej2πinl/N (2.4)

with in being the frequency index of the nth PRACH subcarrier. Samples sk(l) are

eventually fed to a digital–to–analog converter (DAC) with impulse response g(t) and

signaling interval T = 1/B or, equivalently, T = 1/(N∆fRA). The complex envelop

of the signal transmitted by the kth UE takes the form

zk(t) =

NB−1∑
`=0

sk(l)g(t− lT ) (2.5)

where g(t) is the DAC impulse response. This signal propagates through a multipath

channel and arrives at the eNodeB, which is assumed to be equipped with R antennas.

At each antenna, the received signal is down-converted to baseband and sampled at

a rate 1/T . The resulting time domain samples are next passed to an N−point DFT

unit to extract the PRACH. Due to the different positions occupied by the users

within the cell, the uplink signals are received at the eNodeB with specific timing

offsets. We denote by θk the timing error of the kth UE expressed in sampling

intervals. As mentioned previously, each UE performs its uplink transmission by

using the frequency estimates obtained during the downlink phase. Accordingly, the

received signals are also affected by the CFOs induced by downlink estimation errors

and/or Doppler effects. The presence of uncompensated CFOs destroys orthogonality

among PRACH subcarriers and gives rise to inter-channel interference. We assume

that downlink estimation errors are within a few percents of the subcarrier spacing

and consider low mobility applications characterized by negligible Doppler shifts so as

to reasonably neglect any residual CFO. Moreover, we assume that users other than

those performing RA have been successfully synchronized to the eNodeB so that they

do not generate significant interference over the PRACH [17]. In these hypotheses,

the DFT output over the inth subcarrier at the rth antenna can be approximated as
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follows

Z(r)(in) =

K∑
k=1

xk(n)H
(r)
k (in)e−j2πinθk/N + w(r)(in) (2.6)

where H
(r)
k (in) is the kth channel frequency response over the inth subcarrier at

the rth antenna, while w(r)(in) accounts for background noise and is modeled as a

circularly-symmetric complex Gaussian random variable with zero mean and variance

σ2
w.

2.3 Problem formulation

The eNodeB exploits the quantities {Z(r)(in)} to detect the active codes and for

extracting the associated timing and power information. Since it has no knowledge

as to which codes are actually present in the PRACH, the summation in (2.6) must

be extended over the entire code set C, with the assumption that H
(r)
k (in) = 0 if the

kth code is not active. Then, we have

Z(r)(in)=
∑
k∈C

xk(n)H
(r)
k (in)e−j2πinθk/N+w(r)(in). (2.7)

As mentioned previously, we divide the RA subcarriers into M tiles, each composed

by V = bNZC/Mc adjacent subcarriers. We denote by im + v the index of the vth

subcarrier within the mth tile. Moreover, we assume that the channel response is

nearly flat over a tile and replace the quantities {H(r)
k (im + v)}V−1

v=0 with an average

frequency response given by

S
(r)
k (m) =

e−j2πimθk/N

V

V−1∑
v=0

H
(r)
k (im + v). (2.8)

In such a case, we may rewrite (2.7) as

Z(r)(im + v) =
∑
k∈C

xk(mV + v)S
(r)
k (m)e−j2πvθk/N + w(r)(im + v) (2.9)

while the power that the eNodeB receives from the kth UE is found to be

pk =
1

MR

R−1∑
r=0

M−1∑
m=0

∣∣∣S(r)
k (m)

∣∣∣2 . (2.10)
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To proceed further, we collect the DFT outputs corresponding to the mth tile into

a single vector Z(r)(m) = [Z(r)(im), Z(r)(im + 1), . . . , Z(r)(im + V − 1)]T . Then, we

have

Z(r)(m) =
∑
k∈C

Xk(m)a(θk)S
(r)
k (m) + w(r)(m) (2.11)

where w(r)(m) = [w(r)(im), w(r)(im + 1), . . . , w(r)(im + V − 1)]T is the noise vector,

Xk(m) is a V × V diagonal matrix with elements {xk(mV + v)}V−1
v=0 along its main

diagonal and a(θk) is expressed by

a(θk) =
[
1, e−j2πθk/N , . . . , e−j2π(V−1)θk/N

]T
. (2.12)

Code detection is now accomplished by resorting to a single-user strategy that

operates individually for any xk ∈ C. More precisely, for each ` = 1, 2, . . . , |C| (where

|·| denotes the cardinality of the enclosed set) the eNodeB decides in favour of one of

the following two hypotheses: H0) the code x` is not present in the observation vector

Z = [Z(0)T ,Z(1)T , . . . ,Z(R−1)T ]T , with Z(r) = [Z(r)T (0),Z(r)T (1), . . . ,Z(r)T (M−1)]T ;

H1) x` is present in Z. In doing so, the contribution of the active codes xk with

indices k 6= ` is treated as a disturbance term which inevitably degrades the system

performance. Although suboptimal, this approach has the advantage of allowing a

simple formulation of the detection problem as a composite binary hypothesis test:

H0 : Y
(r)
` (m) = n

(r)
` (m) (2.13)

H1 : Y
(r)
` (m) = a(θ`)S

(r)
` (m) + n

(r)
` (m) (2.14)

where n
(r)
` (m) accounts for the contribution of MAI plus thermal noise, while Y

(r)
` (m)

is defined as

Y
(r)
` (m) = XH

` (m)Z(r)(m). (2.15)

In all subsequent derivations, the entries of n
(r)
` (m) are modeled as statistically

independent Gaussian random variables with zero mean and unknown power σ2.

Vector Y` = [Y
(0)T

` ,Y
(1)T

` , . . . ,Y
(R−1)T

` ]T , with Y
(r)
` = [Y

(r)T

` (0), . . . ,Y
(r)T

` (M −
1)]T , is eventually exploited to make a decision between the two hypotheses H0 and

H1. From (2.13) and (2.14), it is seen that this task is complicated by the presence

of the unknown parameters (S`, θ`, σ
2), where S` = [S

(0)T

` ,S
(1)T

` , . . . ,S
(R−1)T

` ]T and

S
(r)
` = [S

(r)
` (0), S

(r)
` (1), . . . , S

(r)
` (M − 1)]T . To overcome this problem, the GLRT

criterion is applied in the sequel.
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2.4 RA algorithm based on the GLRT criterion

Let pdfHi be the probability density function (pdf) of Y` under the hypothesis Hi
for i = 0, 1. Then, from (2.13) and (2.14), we have

pdfH0

(
Y`;σ

2
)

=
1

(πσ2)
MVR

e
− 1
σ2

R−1∑
r=0

M−1∑
m=0

∥∥∥Y(r)
` (m)

∥∥∥2
(2.16)

and

pdfH1

(
Y`; S`, θ`, σ

2
)

=
1

(πσ2)
MVR

e
− 1
σ2

R−1∑
r=0

M−1∑
m=0

∥∥∥Y(r)
` (m)−a(θ`)S

(r)
` (m)

∥∥∥2
(2.17)

The GLRT is mathematically formulated as

pdfH1

(
Y`; Ŝ`, θ̂`, σ̂

2
H1

)
pdfH0

(
Y`; σ̂2

H0

) H1

≷
H0

λ (2.18)

where λ is a suitable threshold, (Ŝ`, θ̂`) is the ML estimate of (S`, θ`) and σ̂2
Hi is the

ML estimate of σ2 conditioned on Hi for i = 0, 1.

2.4.1 Code detection and timing estimation

Maximizing pdfH0

(
Y`;σ

2
)

in (2.16) with respect to σ2 produces

σ̂2
H0

=
‖Y`‖2

MVR
(2.19)

from which it follows that

pdfH0

(
Y`; σ̂

2
H0

)
=

(
MVR

πe ‖Y`‖2

)MVR

. (2.20)

We now look for the maximum of pdfH1
(Y`; S`, θ`, σ

2) in (2.17) with respect to θ`,

while keeping σ2 and S` fixed. This yields

θ̂` = arg max
0≤ θ̃≤ θmax

Λ`(θ̃) (2.21)

where θmax is the maximum round trip delay while Λ`(θ̃) takes the form

Λ`(θ̃) =
1

MVR

R−1∑
r=0

M−1∑
m=0

∣∣∣aH(θ̃)Y
(r)
` (m)

∣∣∣2 . (2.22)
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Maximizing pdfH1
(Y`; S`, θ̂`, σ

2) with respect to S` leads to

Ŝ`
(r)

(m) =
1

V
aH(θ̂`)Y

(r)
` (m) (2.23)

with m = 0, 1, . . . ,M − 1. Substituting this result back into pdfH1
(Y`; S`, θ̂`, σ

2) and

maximizing with respect to σ2 produces

σ̂2
H1

=
1

MVR

[
‖Y`‖2 −MRΛ`(θ̂`)

]
(2.24)

from which we get

pdfH1

(
Y`; Ŝ`, θ̂`, σ̂

2
H1

)
=

 MVR

πe
(
‖Y`‖2 −MRΛ`(θ̂`)

)
MVR

. (2.25)

From the above results, the GLRT is eventually found to be[
‖Y`‖2

‖Y`‖2 −MRΛ`(θ̂`)

]MVR
H1

≷
H0

λ (2.26)

or, equivalently,

Λ`(θ̂`)

‖Y`‖2
H1

≷
H0

η (2.27)

with η = [1− λ−1/(MVR)]/(MR).

2.4.2 Power estimation

Using the invariance property of the ML estimator, from (2.10) it follows that the

estimate of the power p` can be obtained as

p̂` =
1

MR

R−1∑
r=0

M−1∑
m=0

∣∣∣Ŝ`(r)(m)
∣∣∣2 (2.28)

or, equivalently,

p̂` =
Λ`(θ̂`)

V
(2.29)

having used (2.22) and (2.23). It is worth noting that, if the timing offset is perfectly

estimated (i.e., θ̂` = θ`), then we have

E {p̂`} = p` +
σ2

MVR
(2.30)
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and

E
{
σ̂2
H1

}
=
MR(V − 1)

MVR
σ2 (2.31)

from which it follows that p̂` and σ̂2
H1

are biased estimates of p` and σ2, respectively.

From the above results, an unbiased estimate of p` is found to be

p̂
(f)
` = p̂` −

σ̂2
H1

MR(V − 1)
(2.32)

which can also be rewritten as

p̂
(f)
` =

1

V − 1

[
Λ`(θ̂`)−

‖Y`‖2

MVR

]
. (2.33)

Using standard computations, it turns out that the variance of p̂` for θ̂` = θ` is given

by

var{p̂`} =
2p`
MVR

σ2 +
σ4

MVR(V − 1)
. (2.34)

Numerical results shown later indicate that different values of (M,V ) should be used

to optimize the accuracy of the power and timing estimators. This results into a mod-

ified scheme in which M and V are respectively replaced by Mθ and Vθ = bNZC/Mθc
for the evaluation of the timing metric Λ`(θ̃) for θ̃ = 0, 1, . . . , θmax. After obtaining

the timing estimate θ̂`, Λ`(θ̂`) is recomputed from (2.22) after replacing M and V by

MP and VP = bNZC/MP c, respectively. Finally, Λ`(θ̂`) is used in (2.33) to get the

power estimate.

In the sequel, we refer to the above procedure as the GLRT-based RA scheme

(GLRT-RA).

2.4.3 Implementation and complexity analysis

The computational load of GLRT-RA is mainly involved in the evaluation of the

timing metric Λ`(θ̃) for any possible code in the set C and for θ̃ = 0, 1, . . . , θmax.

In the ensuing discussion, we show how the quantities Λ`(θ̃) can be computed by

exploiting the specific properties of the ZC sequences. We begin by expanding the

right-hand side (RHS) of (2.22) so as to obtain

Λ`(θ̃) =
1

MVR

R−1∑
r=0

M−1∑
m=0

Λ
(r)
` (m, θ̃) (2.35)
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where we have used (2.12) and (2.14) and we have defined

Λ
(r)
` (m, θ̃) =

∣∣∣∣∣
V−1∑
v=0

ej2πvθ̃/Nx∗` (mV + v)Z(r)(im + v)

∣∣∣∣∣
2

. (2.36)

Collecting (2.1) and (2.2), we get

xk(n) = ξ(n)e−j2πunCk/NZCe−jφk (2.37)

from which it follows that the quantities {xk(n)} are obtained by superimposing a

phase shift on the root sequence {ξ(n)}. Substituting (2.37) into (2.36) yields

Λ
(r)
` (m, θ̃)=

∣∣∣∣∣
V−1∑
v=0

e
j 2π
N v(uC`

N
NZC

+θ̃)
Z

(r)
ξ (mV + v)

∣∣∣∣∣
2

(2.38)

where

Z
(r)
ξ (mV + v) = ξ∗(mV + v)Z(r)(im + v). (2.39)

Denoting by

a(r)(m, l) =

N−1∑
n=0

A(r)(m,n)ej2πnl/N (2.40)

the N−point IDFT of the sequence

A(r)(m,n)=

{
Z

(r)
ξ (mV + n) 0 ≤ n ≤ V − 1

0 V ≤ n ≤ N − 1
(2.41)

we may rewrite the RHS of (2.38) as follows

Λ
(r)
` (m, θ̃) =

∣∣∣a(r)(m,
⌊
uC`N/NZC + θ̃

⌋
)
∣∣∣2 . (2.42)

From the above equation it is seen that, for any ` ∈ C and θ̃ = 0, 1, . . . , θmax, the

quantities Λ
(r)
` (m, θ̃) are obtained from a single N−point IDFT operation applied

to the sequence {A(r)(m,n)}, thereby leading to the scheme depicted in Fig. 2.1.

It is worth observing that the IDFT operation in Fig. 2.1 requires approximately

5ηN log2N floating-point operations (flops), with

η = 1− log2(N/V ) + 2(V/N − 1)

log2N
(2.43)

accounting for the computational saving achievable by skipping the operations on

the zero entries of {A(r)(m,n)} [23]. Since the IDFT operation must be performed
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Figure 2.1: Block diagram of the receiver for a RA scheme based on GLRT.

for any value of r and m, the total amount of flops required to evaluate the timing

metrics Λ`(θ̃) in (2.42) is 5MRηN log2N . Recalling that different values of M and

V are required for power and timing estimation, it follows that the overall number of

flops needed by GLRT-RA is eventually given by 5(Mθηθ +MP ηP )RN log2N where

ηθ and ηP are obtained from (2.43) after replacing V with Vθ and VP , respectively.

It is worth noting that a single IDFT operation is required when Mθ = MP = 1 and

in such a case the scheme depicted in Fig. 2.1 reduces to the one illustrated in [17].

This means that GLRT-RA is equivalent to [17] under the assumption of a flat fading

channel. Since in practical applications the received signal is typically affected by

multipath distortions, the GLRT-RA is expected to provide some potential benefits

with respect to [17]. As we shall see, such an advantage is achieved at the price

of a higher complexity since the required IDFT operations involved by GLRT-RA

increases with the tile number.
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2.5 Numerical results

2.5.1 System parameters

The system parameters are chosen in compliance with the LTE standard [9]. The

signal bandwidth is B = 7.68 MHz, so that the DFT size is N = B/∆fRA = 6144

and the sampling interval T is 130 ns. The cyclic prefix and guard time have duration

of 0.1 ms, which corresponds to NCP = NGT = 768 samples. The carrier frequency is

2.6 GHz and the CFO of each UE is uniformly distributed in the interval [−0.01, 0.01].

We use a root-raised cosine function with roll-off α = 0.22 and duration Tg = 6T as

a modulation pulse. The path gains are modeled as statistically independent and

circularly symmetric Gaussian random variables with zero mean and power delay

profile as specified in the ITU IMT-2000 Vehic. A channel model [24]. A new channel

snapshot is generated at each simulation run. The channel impulse responses of the

active UEs have a maximum order of 30 and unit average power. Recalling that

we assume a cell radius of 1.5 km, the maximum propagation delay (normalized by

the sampling period T ) θmax is equal to 80. The performance of GLRT-RA is first

assessed in the presence of a single UE with a fixed timing offset θ1 = 25, while the

case of multiple UEs is considered later.

2.5.2 Performance evaluation

We start evaluating the impact of the number of tiles on the timing estimation

accuracy of GLRT-RA. Figure 2.2 illustrates the variance of the timing estimate θ̂1,

defined as var(θ̂1) = E{(θ̂1 − E{θ̂1})
2
}, vs. Mθ for different values of SNR and with

K = 1 and R = 1. It is worth observing that, since θ1 is the timing error normalized

by the sampling period T , its estimate θ̂1 is a dimensionless quantity. As it is seen,

the best results are obtained for 4 ≤ Mθ ≤ 7, while a degradation is observed for

larger values of Mθ as the SNR decreases. As expected, some advantage is achieved

with respect to Mθ = 1, which corresponds to the conventional RA scheme (CRA)

illustrated in [17]. Since the number of flops required by GLRT-RA increases with

Mθ, in all subsequent simulations Mθ is fixed to 4. Figure 2.3 illustrates var(θ̂1) as

a function of the SNR with K = 1 and R = 1. Although the estimation accuracy of

both CRA and GLRT-RA is only marginally affected by the SNR, a remarkable gain

is achieved by using GLRT-RA in place of CRA.
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Figure 2.2: var(θ̂1) vs. Mθ for GLRT-RA with K = 1, R = 1 and different SNR values.
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Figure 2.3: var(θ̂1) vs. SNR for the investigated schemes with K = 1 and R = 1.
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We now assess the performance of the power estimator. For this purpose, Fig. 2.4

illustrates the normalized variance of the power estimate, say nvar(p̂
(f)
1 ) = var{p̂(f)

1 }/
[E{p1}]2, as a function of MP for different SNR values and with K = 1 and R = 1.

The theoretical results given in (2.34) are also shown for comparison. As is seen, the

agreement between numerical results and theoretical analysis is achieved only when

MP is adequately large. In order to achieve a good trade-off between accuracy and

system complexity, the value of MP is chosen equal to 25.
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Figure 2.4: nvar(p̂
(f)
1 ) vs. MP for GLRT-RA with K = 1, R = 1 and different SNR values.

In Fig. 2.5 we show nvar(p̂
(f)
1 ) as a function of the SNR with K = 1 and R = 1.

As before, comparisons are made with the CRA scheme, which corresponds to set-

ting MP = 1. We see that GLRT-RA attains the theoretical results at all SNR

values, while the accuracy of CRA is virtually independent of the SNR and ex-

hibits a significant loss compared to GLRT-RA. The code detection capability of

the investigated schemes is assessed in terms of mis-detection probability Pmd and

false alarm probability Pfa. For this purpose, the SNR is set to 12 dB and we let

K = R = 1. Numerical results averaged over 50, 000 channel realizations have shown

that for threshold values centered around η = 0.1 both GLRT-RA and CRA provide
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Figure 2.5: nvar(p̂
(f)
1 ) vs. the SNR for the investigated schemes with K = 1 and R = 1.

a Pfa smaller than 2 · 10−5. On the other hand, GLRT-RA achieves a Pmd in the

order of 7 · 10−4, while CRA provides Pmd = 4 · 10−3. This means that GLRT-RA

exhibits improved code detection capability with respect to CRA. The performance of

GLRT-RA when multiple antennas are employed at the eNodeB is now investigated.

Figures 2.6 and 2.7 illustrate var(θ̂1) and nvar(p̂
(f)
1 ) as a function of the SNR with

K = 1 and R = 1, 2 or 4. As expected, increasing R improves the timing and power

estimation accuracy of GLRT-RA. In particular, for SNR values smaller than 16 dB

an array gain equal to 10 logR dB is achieved in terms of nvar(p̂
(f)
1 ) with respect

to a single-antenna scenario. The performance of GLRT-RA in the presence of K

UEs is reported in Figs. 2.8 and 2.9 for R = 1 or 4. Here, the timing offset of

the kth UE (with k = 1, . . . ,K) is chosen equal to θk = 25 + 5(k − 1), while the

average signal power of all active UEs is set to unity. Without loss of generality, the

system performance is measured on the basis of the signal received from the first UE.

Inspection of Fig. 2.8 reveals that the accuracy of the timing estimates is virtually

independent of the number of UEs, while the results in Fig. 2.9 indicate that the

accuracy of the power estimator deteriorates as K increases. Moreover, from Fig. 2.9

it follows that using more than one antenna has no practical benefit when K ≥ 2.
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Figure 2.6: var(θ̂1) vs. the SNR for GLRT-RA with K = 1 and R = 1, 2 or 4.
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(f)
1 ) vs. the SNR for GLRT-RA with K = 1 and R = 1, 2 or 4.
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Figure 2.8: var(θ̂1) vs. K for GLRT-RA when SNR= 12 dB and R = 1 or 4.
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Figure 2.9: nvar(p̂
(f)
1 ) vs. K of GLRT-RA when SNR= 12 dB and R = 1 or 4.
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2.5.3 Computational complexity

It is interesting to compare the investigated schemes in terms of their computational

requirement. In doing so it is worth pointing out that, even though N = 6144 is not

a power of two, the number of flops involved in the IDFT operation in Fig. 2.1 is

still well approximated by 5ηN log2N just because the IDFT size can be decomposed

into the product of an integer number and a power of two as N = 3 · 211. Hence,

setting Mθ = 4, Vθ = 209, MP = 25, VP = 33 and R = 1, the complexity of

GLRT-RA is approximately 18.7 times higher than that involved by CRA. This means

that the improved performance of GLRT-RA is achieved at the price of an increased

computational load. However, the results shown in Fig. 2.4 indicate that, at practical

SNR values around 10 dB, parameter MP can be reduced from 25 to 11 with only

a marginal loss of the estimation accuracy. The same value can be used for Mθ

without incurring any significant degradation in the timing estimation accuracy for

SNR ≥ 12 dB. In these circumstances, one single IDFT operation can be used, thereby

reducing the complexity of GLRT-RA by a factor 2.4. These arguments allow the

system designer to achieve the desired trade-off between computational requirement

and system performance.

2.6 Concluding remarks

In this chapter we presented a novel RA method which is specifically devised for

low-mobility LTE-3GPP systems characterized by negligible Doppler shifts. The

proposed scheme relies on the GLRT criterion to decide whether a given code is present

or not in the PRACH and inherently takes into account the multipath distortions

introduced by the propagation channel. After modeling the MAI as white Gaussian

noise, the ML principle is employed to estimate the timing error and power level of the

detected codes. Computer simulations indicate that the resulting scheme (GLRT-RA)

outperforms the conventional RA method derived under the simplifying assumption of

a flat-fading channel. The price for such a performance gain is a certain increase of the

computational complexity. However, a judicious design of the algorithm parameters

allows one to reduce the processing load without incurring any significant performance

degradation.
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Chapter 3

Frequency Estimation and

Preamble Identification in

OFDMA Systems

3.1 Introduction

Orthogonal frequency-division multiple-access (OFDMA) is a popular technology for

multiuser high-speed wireless transmissions. Due to its recognized advantages in

terms of spectral efficiency, dynamic channel allocation and resilience to multipath

distortions, OFDMA has been selected by the WiMAX alliance as one of the physical

layer modulation technique for fixed and nomadic broadband access in a wireless

metropolitan area network (WMAN) [11].

WiMAX systems compliant with the IEEE 802.16e specifications support multi-cell

communications and operate in a time division duplexing (TDD) mode, with each

TDD frame being fragmented into a downlink (DL) subframe and an uplink (UL)

subframe. Each cell is divided into three sectors known as segments, and is identified

by an integer number called cell ID. Upon entering the network or during an handover

operation, the mobile terminal (MT) has to recover both the segment number and cell

ID in order to establish a radio link with the serving base station (BS). This operation

is known as cell search and is accomplished by exploiting a suitably designed training
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preamble placed at the start of the DL subframe. Such a preamble conveys one out of

114 possible pseudo-noise (PN) pilot sequences which univocally identifies the segment

number and cell ID. In addition to cell search, the preamble is also used for other

fundamental tasks, including frame detection as well as initial time and frequency

synchronization.

Most pilot-based synchronization algorithms for multicarrier transmissions exploit

the repetitive structure of a training preamble [25]– [27]. For example, in the IEEE

802.11a/g wireless local area network (WLAN) [28] the preamble consists of ten

identical short symbols for timing acquisition and fractional frequency offset (FFO)

estimation, followed by two identical long symbols which are used to recover the

integral frequency offset (IFO) [29]. Unfortunately, the same approach cannot be

adopted in a WiMAX cellular network for a couple of reasons [30]. First, the preamble

specified in the IEEE 802.16e standard is modulated on every third subcarrier, which

results into a non-perfectly periodic structure in the time domain. Second, the MT

has only partial knowledge of the received preamble waveform as it ignores which

pilot sequence has been selected by the BS out of all 114 possible candidates. These

facts significantly complicate the cell search problem and the synchronization task in

a WiMAX system.

Although in principle it is possible to consider the joint estimation of the timing

error, the FFO, the IFO and the preamble index, the resulting complexity would

make such a method unsuitable for practical implementation. A more pragmatic

approach relies on the following two-stage procedure. Firstly, timing acquisition and

FFO recovery are accomplished in a blind fashion without exploiting any information

about the received preamble sequence. In the second stage, after timing alignment

and FFO compensation, the IFO and preamble index are jointly detected. These

problems have recently attracted much attention in the open literature and several

solutions are currently available. Specifically, in [30] a new timing metric for frame

synchronization is proposed by exploiting the conjugate symmetry property of the

IEEE 802.16e training preamble. In a multipath scenario, however, the metric exhibits

several secondary peaks which may result into a false detection of the frame boundary.

The FFO is estimated in [31]– [33] by measuring the phase shift between the last part

of an OFDM block and its cyclic prefix (CP) extension. This method was originally

presented in [34] and does not require the transmission of any specific pilot sequence.

Its main drawback is that in the presence of multipath dispersion the CP is affected by



3.1 Introduction 31

interblock interference (IBI), which may seriously degrade the estimation accuracy.

A similar problem occurs in [35], where the authors suggest a modification of the

Schmidl and Cox algorithm [25] which provides accurate results only in the absence

of any channel distortion. A universal FFO estimator for OFDM systems employing

training preambles composed by non-identical segments is illustrated in [36]. This

scheme can be applied to WiMAX systems [37] and provides accurate estimates

with affordable complexity. Regarding the joint detection of the IFO and preamble

index, the conventional approach operates in the frequency domain and shifts the

discrete Fourier transform (DFT) of the received signal by the hypothesized IFO

values. The shifted sequence is next correlated with all possible pilot sequences, and

the unknown parameters are eventually retrieved through non-coherent differential

detection methods [38]- [41]. The resulting scheme is computationally heavy as it

requires an exhaustive search over all candidate IFO and preamble index pairs. As

shown in [40], however, the number of candidates is reduced by a factor of three if

an energy detection method is firstly applied to find the location of the modulated

subcarriers. Further simplifications are suggested in [41], where early dropping of bad

candidates is proposed by resorting to the principle of dynamic metric thresholding.

In [42], the authors present the joint maximum likelihood (ML) estimator of the

channel impulse response (CIR) and preamble index under the simplifying assumption

that the IFO has been previously recovered in some way.

With the only exception of [42], all the aforementioned methods have been derived

by following heuristic reasoning. In order to check whether their performance can be

substantially improved or not, it is of interest to make comparisons with alternative

approaches based on some optimality criterion. With this goal in mind, in the present

chapter we employ ML methods to study the problem of carrier frequency offset

(CFO) estimation and preamble index identification in the presence of a training

preamble composed by some correlated but non-identical parts (as specified by the

IEEE 802.16e standard). In doing so, we assume that timing information has been

previously acquired and is available with some residual error. In particular, after

modeling the channel-distorted pilot symbols as nuisance parameters, we address the

CFO estimation problem and derive the relevant Cramer-Rao bound (CRB). It turns

out that, in principle, the CFO estimator is able to retrieve the entire frequency

error without the need for splitting it into fractional and integer parts. In practice,

however, such a decomposition is recommended to avoid large errors that might
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otherwise occur. We also show that the heuristic algorithm proposed in [36] has

virtually the same accuracy of the ML frequency estimator, but provides ambiguous

estimates. In order to remove such an ambiguity, we combine this method with the

ML estimator and obtain a scheme that approaches the CRB in all practical scenarios

while requiring affordable complexity. We next investigate the joint estimation of the

IFO and preamble index, and suggest some approximations to the exact ML solution

in order to trade system performance against computational burden.

In summary, this chapter provides a threefold contribution. First, we present a

novel expression of the CRB for CFO recovery which, in contrast to other bounds

available in the literature, can be applied to the WiMAX preamble. Second, we show

that combining the FFO recovery scheme illustrated in [36] with the ML estimator

leads to an accurate and low-complexity algorithm which turns out to be a promising

candidate for WiMAX applications. Third, we derive a novel ML-based approach for

joint IFO and preamble index recovery which outperforms existing methods in terms

of increased accuracy and improved resilience against residual timing errors.

3.2 System model

We consider the downlink of a TDD multi-cell OFDMA system having N available

subcarriers with indices in the interval [−N/2, N/2−1] and frequency spacing ∆f . In

order to facilitate the synchronization and cell search tasks, each DL subframe begins

with a training preamble modulated by a pilot sequence of length Np < N . This

sequence is chosen from a set of candidates {pu = [pu(0), pu(1), . . . , pu(Np−1)]T ;u =

0, 1, . . . , NU − 1}, where NU is the number of possible sequences, pu(n) = ±A are

pseudo-noise (PN) binary symbols and u is the preamble index belonging to the set

IU = {0, 1, . . . , NU − 1}. The latter univocally determines the cell segment mu and

the cell ID `u through a mapping rule u→ (mu, `u) reported in [11]. In general, the

receiver has full knowledge of the sequences pu, but ignores which of them has been

selected for transmission. During the training preamble, the pilot symbols are placed

at the subcarrier indices

in,u = N1 +mu + nδ 0 ≤ n ≤ Np − 1 (3.1)

where δ is the interval between two used subcarriers and N1 +mu is the index of the

first used subcarrier. It is worth observing that the cell segment mu belongs to the
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interval {0, 1, . . . , δ − 1} and defines δ distinct sets of pilot positions. The illustrated

pilot pattern is general enough to include the WiMAX preamble defined in the IEEE

802.16e standard, where A = 2
√

2, N1 = −426 and δ = 3.

The transmitted waveform propagates through a multipath channel with discrete-

time impulse response {h(`); 0 ≤ ` ≤ L − 1} of order L. At the MT receiver, the

incoming signal is down-converted to baseband and sampled with period Ts. We

assume that a coarse timing estimate is available such that the set of N time-domain

samples x = [x(0), x(1), . . . , x(N − 1)]T belonging to the training preamble can be

identified without incurring any IBI. Then, assuming that the uth pilot sequence has

been selected by the BS, we have

x(k) = ej2πfdk/Nsu(k − τd) + wI(k) + wn(k) 0 ≤ k ≤ N − 1 (3.2)

where fd is the CFO (normalized to ∆f), τd denotes the residual timing error (nor-

malized to Ts), wI (k) accounts for possible inter-cell interference (ICI) and wn(k) is

the noise term, which is Gaussian distributed with zero mean and power σ2
n. Finally,

su(k) is the sample taken at t = kTs of the useful signal waveform

su(t) =
1√
N

Np−1∑
n=0

pu(n)H(in,u)ej2πin,ut/T (3.3)

where T = NTs and

H(n) =

L−1∑
`=0

h(`)e−j2πn`/N (3.4)

is the channel frequency response over the nth subcarrier. The quantities {wI(k); k =

0, 1, . . . , N − 1} in (3.2) are the superposition of OFDMA signals from neighbour-

ing cells and can reasonably be approximated as zero-mean Gaussian random vari-

ables with power σ2
I and negligible cross-correlation [43]. Accordingly, in the sequel

we replace the sum wI(k) + wn(k) by a single term w(k), which is modeled as

a circularly-symmetric white Gaussian process with zero mean and power σ2
w =

σ2
I + σ2

n. From (3.3) we see that the average power of su(k) is σ2
s = σ2

HA
2Np/N ,

with σ2
H =E{|H(n)|2} being the average channel power. The signal-to-noise-plus-

interference ratio (SINR) [44] is thus given by

SINR =
σ2
s

σ2
w

=
σ2
HA

2Np
Nσ2

w

. (3.5)
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It is worth noting that, although su(t) is periodic with period T/δ, the repetition

structure is not preserved in the sampled sequence su(k) if N is not an integer multiple

of δ.

After defining the quantities

ξu(n) = pu(n)H(in,u)e−j2πin,uτd/N 0 ≤ n ≤ Np − 1 (3.6)

we may rewrite x(k) as

x(k) = ej2πνk/N
1√
N

Np−1∑
n=0

ξu(n)ej2πk(N1+nδ)/N + w(k) (3.7)

where ν = fd+mu can be interpreted as an equivalent frequency error comprising both

the true CFO value fd and the frequency shift mu, which is artificially superimposed

on the transmitted training preamble to specify the cell segment. Letting ξu =

[ξu(0), ξu(1), . . . , ξu(Np − 1)]T and w = [w(0), w(1), . . . , w(N − 1)]T , we may put

(3.7) into the equivalent form

x = Γ(ν)Fξu + w (3.8)

where F is an N ×Np matrix with entries

[F]k,n =
1√
N
ej2πk(N1+nδ)/N 0 ≤ k ≤ N − 1, 0 ≤ n ≤ Np − 1 (3.9)

and Γ(ν) =diag{ej2πnυ/N ;n = 0, 1, . . . , N−1}. To proceed further, we define the diag-

onal matrices Pu =diag{pu(n);n = 0, 1, . . . , Np−1} and D(τd) =diag{e−j2πτdnδ/N ;n =

0, 1, . . . , Np − 1}. Then, from (3.6) it follows that

ξu = PuD(τd)Gc (3.10)

where G has entries

[G]n,` = e−j2π`nδ/N 0 ≤ n ≤ Np − 1, 0 ≤ ` ≤ L− 1 (3.11)

and c = [c(0), c(1), . . . , c(L − 1)]T is an L-dimensional vector which collects the

modified CIR

c(`) = h(`)e−j2π(`+τd)(mu+N1)/N 0 ≤ ` ≤ L− 1. (3.12)
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Our goal is the estimation of the frequency error ν and preamble index u based on the

received vector x. Inspection of (3.8) and (3.10) indicates that this task is complicated

by the presence of the nuisance parameters τd and c. Since the joint ML estimation of

all unknown quantities cannot be pursued with affordable complexity, in what follows

we adopt a suboptimal approach wherein ν and ξu are firstly recovered by applying

the ML strategy to the signal model (3.8), while (u, τd, c) are subsequently retrieved

on the basis of (3.10).

3.3 ML frequency estimation

3.3.1 Derivation of the ML estimator

Given the unknown parameters (ξu, ν), from (3.8) it turns out that x is Gaussian

distributed with mean Γ(ν)Fξu and covariance matrix σ2
wIN . Hence, the joint ML

estimate of (ξu, ν) is found by looking for the global maximum of the log-likelihood

function (LLF)

Λ(ξ̃u, ν̃) = −N ln(πσ2
w)− 1

σ2
w

∥∥∥x− Γ(ν̃)Fξ̃u

∥∥∥2

. (3.13)

Maximizing with respect to ξ̃u produces

ξ̂u(ν̃) = (FHF)−1FHΓH(ν̃)x (3.14)

with FHF = INP . The concentrated likelihood function of ν is obtained after sub-

stituting ξ̂u(ν̃) into the right-hand-side of (3.13). Skipping irrelevant factors and

additive terms independent of ν̃, we obtain

Λ1(ν̃) =
1

Np

∥∥FHΓH(ν̃)x
∥∥2

(3.15)

from which the ML estimate (MLE) of ν is obtained as

ν̂MLE = arg max
ν̃
{Λ1(ν̃)} . (3.16)

A physical interpretation of the MLE is found by rewriting Λ1(ν̃) as

Λ1(ν̃) =
1

Np

Np−1∑
n=0

|X(N1 + nδ; ν̃)|2 (3.17)
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where

X(m; ν̃) =
1√
N

N−1∑
k=0

x(k)e−j2π(m+ν̃)k/N (3.18)

is the DFT of the received samples {x(k)} counter-rotated at an angular speed 2πν̃/N .

Hence, from (3.17) it follows that ν̂MLE is the value of ν̃ that maximizes the overall

energy received onto the subcarriers with indices {N1 + nδ} for n = 0, 1, . . . , Np − 1.

A special situation occurs when N = Npδ. In such a case the preamble sequence

su(k) is periodic of period N/δ and the MLE metric takes the conventional form [45]

Λ1(ν̃) = C0 + 2<

{
δ−1∑
m=1

Cme
−j2πmν̃/δ

}
(3.19)

where Cm is the auto-correlation of x with lag mN/δ, i.e.,

Cm =
1

N

N−1∑
k=mN/δ

x(k)x∗(k −mN/δ). (3.20)

Interestingly, when δ = 2 the global maximum of (3.19) is located at ν̂MLE = arg{C1},
which coincides with the FFO estimator proposed in [25].

3.3.2 Accuracy and estimation range of MLE

By invoking the asymptotic efficiency property of the MLE [4], we expect that ν̂MLE

is unbiased and attains the asymptotic CRB (ACRB) for large data records. The

ACRB is computed in the Appendix and is found to be

ACRB{ν} =
3(SINR)−1

2π2N(1− 1/N2) [1− γ(N,Np, δ)]
(3.21)

where the SINR is expressed in (3.5) and γ(N,Np, δ) is defined as

γ(N,Np, δ) =
6

Np(N2 − 1)

Np−1∑
m=1

Np −m
sin2(πmδ/N)

. (3.22)

It is worth noting that the bound (3.21) represents a modified version of the CRB ex-

pressed in [26] and [45], the difference lying in the presence of the factor 1−γ(N,Np, δ)

in the denominator. Since this factor is less than one, the novel ACRB in (3.21) turns

out to be tighter than the CRB available in the literature.
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The estimation range of the MLE can be inferred from the expected value of the

CFO metric Λ1(ν̃). Skipping the details, it is found that

E{Λ1(ν̃)} = σ2
HA

2

Np−1∑
m=−Np+1

(
1− |m|

Np

)
f2
N (ν̃ − ν −mδ) + σ2

w (3.23)

with

fN (x) =
sin(πx)

N sin(πx/N)
. (3.24)

Figure 3.1 illustrates E{Λ1(ν̃)} over a wide range of ν̃ values for SINR = 10

dB. The training preamble is taken from the IEEE 802.16e standard with N = 1024,

Np = 284 and δ = 3. Without any loss of generality, the average channel power

σ2
H is normalized to unity and the CFO value is fixed to ν = 0. A zoom is also

shown on the top right of the figure to better highlight the shape of the metric

over the restricted range ν̃ ∈ [−10, 10]. We see that the metric exhibits a global

maximum placed at the true CFO value ν̃ = ν, while secondary peaks are present at

ν̃ = ν + mδ (m = ±1,±2, . . .). Furthermore, from (3.23) it follows that E{Λ1(ν̃)} is

8

6

4

2

0

E
x
p
ec

ta
ti

o
n
 o

f 
th

e 
C

F
O

 m
et

ri
c

-100 -80 -60 -40 -20 0 20 40 60 80 100

ν

8
6
4
2
0

-9 -6 -3 0 3 6 9

 SINR = 10 dB 

 ν = 0 

~

Figure 3.1: Expectation of the CFO metric obtained at SINR = 10 dB using the IEEE

802.16e training preamble.
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periodic of period N . Collecting these facts together we conclude that, in principle,

the MLE is able to recover the CFO over the full range [−N/2, N/2). However, since

the amplitude of the secondary peaks of E{Λ1(ν̃)} decreases slowly with |m|, in the

presence of ICI and/or noise the global maximum of the frequency metric may occur in

the proximity of ν +mδ for some m 6= 0. In such a case, ν̂MLE would be ambiguous

by multiples of δ, thereby resulting into large errors (outliers). This situation is

depicted in Fig. 3.2, which reports the estimation error ν − ν̂MLE measured over

1000 simulation runs using the IEEE 802.16e preamble. Here, the SINR is set to

10 dB and the maximum of Λ1(ν̃) is found through a grid-search over the interval

ν̃ ∈ [−12, 12]. We see that several outliers are present, with disabling effects on the

receiver performance. One possible approach to avoid the outliers is to decompose ν
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Figure 3.2: Estimation error ν − ν̂MLE over 103 runs for SINR = 10 dB using the IEEE

802.16e preamble.

into a fractional part (FFO) ε, less than δ/2 in magnitude, plus an integer part (IFO)

which is a multiple of δ. This amounts to putting

ν = ε+ ηδ (3.25)
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where η is an integer and ε belongs to the interval [−δ/2, δ/2). Due to its potential

ambiguity by multiples of δ, the MLE can only be used to retrieve the FFO in the

form

ε̂MLE = arg max
ε̃∈[−δ/2,δ/2)

{Λ1(ε̃)} (3.26)

while η is subsequently estimated as specified later.

3.3.3 Implementation and complexity analysis of MLE

In practice, the maximization of the MLE metric Λ1(ε̃) in (3.26) can be accomplished

by following a two-step procedure. The first step (coarse search) evaluates Λ1(ε̃) over

a set of ε̃ values, say {ε̃i}, and determines the location ε̃M of the maximum over this

set. In the second step (fine search), the samples Λ1(ε̃i) are interpolated and the local

maximum nearest ε̃M is found. Without any loss of generality, the quantities {ε̃i} are

uniformly distributed within the search region [−δ/2, δ/2) and take the form

ε̃i = −δ
2

+
i

Ns
i = 0, 1, . . . , Nsδ − 1 (3.27)

where Ns ∈ N is a design parameter (pruning factor) representing the number of

trial FFO values in a frequency band equal to the subcarrier spacing. The coarse

search can be efficiently performed by considering the following zero-padded sequence

of length NZP = NsN

xZP (k) =

{
x(k)

0

0 ≤ k ≤ N − 1

N ≤ k ≤ NZP − 1
(3.28)

and computing its fast Fourier transform (FFT) at the frequencies fm = m/NZP ,

with −NZP /2 ≤ m ≤ NZP /2−1. This produces the quantities X(N1 +nδ; ε̃i), which

are next exploited to evaluate Λ1(ε̃i) in (3.17).

The computational requirement of the MLE can be assessed as follows. The NZP−
point FFT needs 2ζNZP log2NZP real multiplications plus 3ζNZP log2NZP real ad-

ditions, for a total of 5ζNZP log2NZP floating point operations (flops). Here, the

coefficient

ζ = 1− log2Ns + 2(1/Ns − 1)

log2NZP
(3.29)
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accounts for the computational saving achievable by skipping the operations on the

zeros in the FFT of xZP (k) [46]. Once the FFT output is available, additional

4NpNsδ flops are required to evaluate Λ1(ε̃i) over the set of Nsδ values ε̃i. The

overall complexity of MLE is summarized in the first row of Tab. 3.1. In writing

this figure we have neglected the operations involved with the fine search, which is

comparatively easier than the coarse search.

Algorithm Number of flops

MLE 4NpNsδ + 5ζNsN log2 (NsN)

LCE 4Npδ +N (14 + 5 log2N)

Table 3.1: Complexity of MLE and LCE for FFO recovery.

3.3.4 Low-complexity estimation of the FFO

Evaluating ε̂MLE as indicated in the previous subsection requires a computationally

demanding grid search over the ε̃i values specified in (3.27). An alternative low-

complexity scheme for FFO recovery in WiMAX systems has been derived by Ruan,

Reed and Shi (RRS) in [36]. This method computes the following correlations of lags

Nδ = bN/δc and N −Nδ

R1 =

N−Nδ−1∑
k=0

x(k +Nδ)x
∗(k) (3.30)

R2 =

Nδ−1∑
k=0

x(k +N −Nδ)x∗(k) (3.31)

and provides an FFO estimate in a closed-form as

ε̂RRS =
1

2π
arg {R1R2} . (3.32)

Numerical simulations shown later indicate that the accuracy of ε̂RRS attains the

ACRB at intermediate SINR values, thereby making RRS a promising candidate

for practical applications. However, since arg {R1R2} takes values in the interval

[−π, π), from (3.32) it follows that ε̂RRS is ambiguous by multiples of unity. In

order to remove such an ambiguity, we define a set of δ candidate FFO values J =

{(ε̂RRS +m)mod δ; 0 ≤ m ≤ δ−1} and look for the maximum of the ML metric Λ1(ε̃)



3.4 Estimation of the integral CFO and preamble index 41

when ε̃ ∈ J . This leads to the following low-complexity estimator (LCE)

ε̂LCE = arg max
ε̃∈J
{Λ1(ε̃)} (3.33)

which exhibits the same accuracy of RRS while extending its estimation range to the

interval [−δ/2, δ/2).

In assessing the computational burden of LCE, we observe that ε̂RRS is obtained

from (3.30)-(3.32) with N complex product plus N complex additions, for a total of

8N flops. Furthermore, evaluating ε̂LCE in (3.33) requires the computation of the

metric Λ1(ε̃) for ε̃ ∈ J . This is achieved as indicated in (3.17), where the quantities

{X(N1 + nδ; ε̃); ε̃ ∈ J} are efficiently obtained through the N -point FFT of the

sequence {x(k)e−j2πε̂RRSk/N ; k = 0, 1 . . . , N − 1}. Such operations involve N(6 +

5 log2N) flops, while additional 4Npδ flops are necessary to get {Λ1(ε̃); ε̃ ∈ J} from

the FFT output. The overall complexity of LCE is reported in the second row of Tab.

3.1.

3.4 Estimation of the integral CFO and preamble

index

3.4.1 Derivation of the joint ML estimator

The estimated FFO ε̂LCE is used to counter-rotate the received samples at an angular

speed 2πε̂LCE/N . This produces the quantities y(k) = e−j2πε̂LCEk/Nx(k), which are

collected into an N−dimensional vector y = [y(0), y(1), . . . , y(N − 1)]T . To facilitate

the ensuing discussion, we assume ideal FFO compensation, i.e., ε̂LCE = ε. Hence,

from (3.8) and (3.10) it follows that

y = Γ(ηδ)FPuD(τd)Gc + w′ (3.34)

where w′ = ΓH(ε̂LCE)w is statistically equivalent to w. Our goal is the estimation

of η and the preamble index u based on the observation of y. Unfortunately, the

dependence of y on the unknown parameters τd and c greatly complicates this task.

One possible solution is to consider τd and c as nuisance quantities and proceed to

the joint ML estimation of the extended parameter set (η, u, τd, c). Following this

approach, we write the corresponding LLF in the form

Φ(η̃, ũ, τ̃d, c̃) = −N ln(πσ2
w)− 1

σ2
w

‖y − Γ(η̃δ)FPũD(τ̃d)Gc̃‖2 (3.35)
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and look for its global maximum over the set spanned by (η̃, ũ, τ̃d, c̃). The maximum

with respect to c̃ occurs at

ĉ(η̃, ũ, τ̃d) = (GHG)−1GHDH(τ̃d)Z(η̃, ũ) (3.36)

with Z(η̃, ũ) = PH
ũ FHΓH(η̃δ)y. Denoting by

Y (n) =
1√
N

N−1∑
k=0

y(k)e−j2πnk/N − N

2
≤ n ≤ N

2
− 1 (3.37)

the N−point DFT of y, we may put the entries of Z(η̃, ũ) in the form

Z(η̃, ũ;n) = p∗ũ(n)Y (N1 + nδ + η̃δ) 0 ≤ n ≤ Np − 1 (3.38)

which can be physically interpreted as the cross-correlation of the ũth pilot sequence

with the hypothesized set of modulated subcarriers. Substituting (3.36) back into

(3.35) and skipping some irrelevant additive terms independent of (η̃, ũ, τ̃d), yields

the concentrated LLF

Φ1(η̃, ũ, τ̃d) = ZH(η̃, ũ)D(τ̃d)B1D
H(τ̃d)Z(η̃, ũ) (3.39)

with B1 = G(G
H

G)−1GH . After standard computations, it turns out that (3.39)

can be equivalently rewritten as

Φ1(η̃, ũ, τ̃d) = ρ0(η̃) + 2<


Np−1∑
m=1

ρm(η̃, ũ)ej2πmτ̃dδ/N

 (3.40)

with

ρm(η̃, ũ) =

Np−1∑
n=m

[B1]n−m,nZ(η̃, ũ;n)Z∗(η̃, ũ;n−m) (3.41)

from which the joint MLE of the unknown parameters is eventually obtained as

(η̂, û, τ̂d)MLE = arg max
(η̃,ũ,τ̃d)

{Φ1(η̃, ũ, τ̃d)} . (3.42)

Unfortunately, implementation of the MLE as indicated in (3.42) requires a grid-

search over the multi-dimensional domain spanned by (η̃, ũ, τ̃d). Since this operation

is computationally unfeasible, in the next subsection we make some approximations

to the MLE and arrive at a suboptimal but practically implementable scheme for the

joint estimation of η and u.
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3.4.2 Simplification of the joint ML estimator

We begin by observing that GHG is an L× L Toeplitz matrix with entries

[GHG]`1,`2 = ejπ(`1−`2)(Np−1)δ/NNpfNp [(`1−`2)Npδ/N ] 0 ≤ `1, `2 ≤ L−1 (3.43)

where fN (x) is defined in (3.24). Inspection of (3.43) reveals that GHG reduces

to NpIL in the specific case Npδ = N and under the reasonable assumption that

L < Np. In a more general situation where the ratio Npδ/N is close to unity, we expect

that replacing GHG by NpIL may only lead to a negligible perturbation of the ML

estimates. Thus, a first simplification of MLE is achieved by assuming GHG ' NpIL,

which amounts to replacing B1 in (3.39) with a new matrix B2 = (GGH)/Np such

that

[B2]n1,n2
=

L

Np
ejπ(n2−n1)(L−1)δ/NfL[(n2 − n1)µ] 0 ≤ n1, n2 ≤ Np − 1 (3.44)

with µ = Lδ/N . This results into a modified objective function

Φ2(η̃, ũ, τ̃T ) =
L

Np
R0(η̃)

2L

Np
<


Np−1∑
m=1

fL(mµ)Rm(η̃, ũ)ej2πmτ̃T δ/N

 (3.45)

where

Rm(η̃, ũ) =

Np−1∑
n=m

Z(η̃, ũ;n)Z∗(η̃, ũ;n−m) (3.46)

is the auto-correlation of the sequence Z(η̃, ũ;n) with lag m, while

τ̃T = τ̃d +
L− 1

2
(3.47)

can be interpreted as the (hypothesized) overall timing misalignment of the received

training sequence, comprising both the residual timing error τ̃d plus the average delay

(L− 1)/2 introduced by an unknown CIR of order L.

A second simplification arises after substituting (3.34), (3.37) into (3.38) and letting

(η̃, ũ) = (η, u). After some manipulations, this yields

Z(η, u;n) = A2H(N1 +mu + nδ)e−j2πτd(N1+mu+nδ) + γ(n) (3.48)

where H(n) is the channel frequency response given in (3.4) and γ(n) is a disturbance

term. Since the channel gains over subcarriers separated by mδ∆f in the frequency
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domain become less and less correlated as m grows large, we expect that the cor-

relation Rm(η̃, ũ) in (3.46) decreases with m when (η̃, ũ) = (η, u). Accordingly,

the summation index in (3.45) can be limited to some interval 1 ≤ m ≤ M , with

M < Np − 1 being a design parameter that must be carefully chosen so as to achieve

a desired trade-off between performance and system complexity. Furthermore, since

the term R0(η̃) collects the energy over the set ofNp hypothesized training subcarriers,

its dependence on η̃ is expected to be negligible if η̃ − η is relatively small compared

to Np. This is easily seen by assuming a frequency-flat channel with H(n) = 1 and

ignoring the noise and ICI contributions, which leads to R0(η̃) = A4(Np − |η̃ − η|).
Hence, neglecting the term R0(η̃) and an irrelevant factor, the metric (3.45) reduces

to

Φ3(η̃, ũ, τ̃T ) = <

{
M∑
m=1

fL(mµ)Rm(η̃, ũ)ej2πmτ̃T δ/N

}
. (3.49)

A further simplification of the objective function is obtained by removing its depen-

dence on τ̃T by means of the following heuristic arguments. Our idea relies on the

observation that the channel gains at neighboring preamble subcarriers have approx-

imately the same amplitude and only differ for a phase shift which is proportional to

the channel delay spread τT − τd. Bearing this fact in mind, after substituting (3.48)

into (3.46) we get

Rm(η, u) ' A4e−j2πmτT δ/N
Np−1∑
n=m

|H(N1 +mu + nδ)|2 (3.50)

where we have neglected the disturbance term γ(n) for the sake of simplicity. This

equation indicates that, apart for noise and ICI, the argument of Rm(η, u) is equal

to −2πmτT δ/N and an estimate of τT can thus be obtained for each candidate pair

(η̃, ũ) as

τ̂T (η̃, ũ) = − N

2πδM

M∑
m=1

arg{Rm(η̃, ũ)R∗m−1(η̃, ũ)} (3.51)

with R0(η̃, ũ) = 1. Such an estimate is next used in (3.49) in place of τ̃T , yielding the

final metric

Φ4(η̃, ũ) = <

{
M∑
m=1

fL(mµ)Rm(η̃, ũ)ej2πmτ̂T (η̃,ũ)δ/N

}
(3.52)
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from which the approximate ML estimate (AMLE) of (η, u) is derived as

(η̂, û)AMLE = arg max
(η̃,ũ)
{Φ4(η̃, ũ)} . (3.53)

Inspection of (3.53) indicates that the AMLE requires a bidimensional grid search

over all possible candidate pairs (η̃, ũ), where ũ ∈ IU and η̃ is an integer belonging to

a set Iη which is specified by the maximum expected CFO value.

3.4.3 Remarks

The following remarks are of interest:

i) From (3.46) and (3.52), it follows that AMLE can be interpreted as a kind

of differential detector in the frequency domain, where only a small number M of

correlation values {Rm(η̃, ũ);m = 1, 2, . . . ,M} are employed in order to keep the

computational load to a tolerable level. Since the correlation coefficient between

Z(η, u;n) and Z(η, u;n−m) reduces with m as a consequence of the channel frequency

selectivity, we expect that the amount of information conveyed by Rm(η̃, ũ) on the

unknown parameters (η, u) decreases with m as well. This explains why the weighting

coefficients {fL(mµ)} in (3.52) become smaller and smaller as m grows large.

ii) Letting M = 1 in (3.52) and skipping the irrelevant factor fL(µ), yields

Φ4(η̃, ũ) = |R1(η̃, ũ)| (3.54)

which represents a modified version of the metric employed by the conventional

estimator (CE) [39]- [41]

ΦCE(η̃, ũ) = <{R1(η̃, ũ)} . (3.55)

Intuitively speaking, the use of the magnitude ofR1(η̃, ũ) in place of its real component

makes AMLE more robust than CE in the presence of residual timing errors.

iii) Comparing (3.52) with (3.55), we see that AMLE represents an extension of

CE in two directions. On one hand, the former exploits an increased number of

correlations Rm(η̃, ũ) than the latter. On the other hand, the phase correction term

2πmτ̂T (η̃, ũ)δ/N employed in (3.52) reduces the sensitivity of AMLE to timing errors.

iv) The processing load of AMLE can be assessed as follows. Neglecting the com-

plexity involved with the N−point FFT of y and denoting by Nη the cardinality of

Iη, it turns out that 6M(Np +Nη − 1) + 2MNpNηNU flops are required to evaluate
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the correlations Rm(η̃, ũ) for m = 1, 2, . . . ,M and (η̃, ũ) ∈ Iη × IU . Next, we observe

that computing τ̂T (η̃, ũ) in (3.51) needs 7M flops for each pair (η̃, ũ) ∈ Iη × IU , while

5M additional flops are involved in the evaluation of Φ4(η̃, ũ) in (3.52). This leads

to the overall complexity of AMLE as summarized in the first row of Tab. 3.2. For

comparison, in Tab. 3.2 we also report the number of flops required by CE.

Algorithm Number of flops

AMLE 2M (3Np + 3Nη + 6NUNη +NpNUNη)

CE 3 (Np +Nη) +NpNUNη

Table 3.2: Complexity of AMLE and CE for the joint recovery of IFO and preamble index.

v) As mentioned, the cell segment mu and cell ID `u are univocally determined by

the preamble index u and are recovered from û using the mapping rule û→ (mû, `û)

specified in [11]. Furthermore, recalling that fd = ν −mu with ν = ε + ηδ, we can

use the triplet (ε̂, η̂,mû) to get the CFO estimate in the form

f̂d = ε̂+ η̂δ −mû. (3.56)

3.5 Simulation results

3.5.1 System parameters

The downlink synchronization algorithms developed in the previous sections are ap-

plied to a WiMAX system compliant with the IEEE 802.16e standard for wireless

MANs [11]. The DFT size is N = 1024, with a CP composed by 128 samples. The

sampling period is Ts = 89.28 ns, corresponding to a subcarrier spacing of 10.94

kHz. There are a total of 114 possible training sequences of length Np = 284, which

are specified by the preamble index u. At each simulation run, a new value of u

is randomly chosen in the set IU = {0, 1, . . . , 113} with equal probability, and the

associated preamble sequence is taken from Table 438 of [11]. The pilot symbols

belong to a BPSK constellation with amplitude A = 2
√

2, which corresponds to a

power boosting of 9 dB. The non-zero subcarriers in each preamble sequence are

spaced three subcarriers apart. Their indices are given in (3.1), where δ = 3,

N1 = −426 and mu ∈ {0, 1, 2}. The discrete-time CIR is composed by L = 40

channel coefficients. The latter are modeled as independent circularly symmetric
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Gaussian random variables with zero-mean (Rayleigh fading) and an exponentially

decaying power delay profile

E{|h(`)|2} = λ exp(−`/L) 0 ≤ ` ≤ L− 1 (3.57)

where the constant λ is chosen such that the average energy of the CIR is normalized

to unity, i.e., E{‖h‖2} = 1. A channel snapshot is generated at each simulation run

and kept fixed over the training preamble. The range of CFO values is related to the

oscillator instability, while it is only marginally affected by the Doppler shift induced

by the MT speed. Hence, assuming a carrier frequency of 5 GHz and an oscillator

instability of ±10 parts-per-million (ppm) at both the transmitter and receiver ends,

the CFO value fd lies within ±9 subcarrier spacing. Recalling that ν = fd + mu =

ε + ηδ with mu ∈ {0, 1, 2}, ε ∈ [−δ/2, δ/2) and δ = 3, it follows that the search

range for the IFO is Iη = {0,±1,±2,±3, 4} and the bidimensional search in (3.53) is

thus made over a total of 114× 8 possible IFO-preamble index pairs. As mentioned,

inter-cell interference and thermal noise are collectively treated as a white Gaussian

process and the system performance is assessed at different SINR values.

3.5.2 Performance assessment

Figure 3.3 illustrates the accuracy of the FFO estimates provided by MLE and LCE

in terms of their mean square error, which is defined as MSE = E{(ε̂− ε)2}, vs. the

SINR. Marks indicate simulation results, while solid lines are drawn to ease the reading

of the graphs. The CFO is randomly generated at each simulation run with uniform

distribution within the interval [−δ/2, δ/2), which amounts to letting η = 0. The

ACRB given in (3.21) is represented by the dashed line and used as a benchmark to the

accuracy of the considered schemes. The MLE is implemented through a coarse search

with pruning factor Ns followed by a cubic interpolation (fine search). Intuitively

speaking, we expect that increasing Ns will reduce the interpolation error at the price

of a corresponding increase of the computational burden. This intuition is confirmed

by the numerical results shown in Fig. 3.3, where the MLE curves are plagued by

an error floor which reduces as Ns grows large. The floor is particularly evident with

Ns = 4, but it nearly disappears when Ns = 16. It is worth noting that the accuracy

of the LCE keeps close to the ACRB at all SINR values of practical interest. The

performance of the joint estimators of the IFO and preamble index is assessed in
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Figure 3.3: MSE of the FFO estimates provided by MLE and LCE versus SINR.

terms of their failure probability, which is defined as Pf = Pr{(η̂, û) 6= (η, u)}. The

latter is illustrated in Fig. 3.4 as a function of the SINR in the ideal case of perfect

FFO compensation (i.e., ε̂ = ε) and in the absence of any residual timing error (i.e.,

τd = 0). The best results are obtained with MLE, which provides a benchmark to

the performance of both AMLE and CE. As expected, the detection capability of

AMLE improves with M . Actually, the loss with respect to MLE is nearly 3 dB when

M = 1 and reduces to 1 dB for M = 3. As for CE, it performs slightly better than

the AMLE with M = 1. This fact can be explained by recalling that for M = 1

the AMLE employs the magnitude of R1(η̃, ũ) for the estimation of (η, u) in order

to reduce the impact of residual timing errors on the system performance. Such an

advantage, however, is achieved at the price of some noise enhancement with respect

to the CE metric shown in (3.55). Hence, in the absence of any timing error, taking

the real part of R1(η̃, ũ) as indicated in (3.55) results into an improved detection

capability with respect to using the AMLE metric in (3.54). Figures 3.5 and 3.6 show

Pf vs. SINR in case of perfect FFO compensation and for τd = 20 and τd = 40,

respectively. Comparing these results with those in Fig. 3.4, we see that both MLE

and AMLE are virtually insensitive to the timing error, while the performance of
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Figure 3.4: Probability of failure versus SINR for τd = 0 and ε̂ = ε.
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Figure 3.5: Probability of failure versus SINR for τd = 20 and ε̂ = ε.
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Figure 3.6: Probability of failure versus SINR for τd = 40 and ε̂ = ε.

CE progressively degrades with τd. Indeed, the loss of CE with respect to MLE is

2.5 dB when τd = 0 and becomes 6 dB when τd increases to 40. Such a remarkable

sensitivity of CE to residual timing errors must be ascribed to the use of the real

part in the metric ΦCE(η̃, ũ) shown in (3.55). In fact, letting m = 1 into (3.50) and

substituting the result into (3.55) we see that, apart for noise and ICI, ΦCE(η̃, ũ)

is proportional to cos(2πτT δ/N). The latter may be interpreted as an attenuation

factor whose magnitude reduces with the timing error and leads to a corresponding

SINR loss. This problem does not occur with the AMLE metric (3.54), where the

real part of R1(η̃, ũ) is replaced by the modulo operation. The impact of residual

timing errors on the system performance is further investigated in Fig. 3.7, which

illustrates Pf as a function of τd for an SINR of −10 dB. These results emphasize

the remarkable insensitivity of AMLE to τd. In contrast, the detection capability

of CE is significantly impaired by τd, which represents a major disadvantage of this

scheme with respect to AMLE. So far, ideal FFO compensation has been assumed in

assessing the performance of the joint estimators of the IFO and preamble index. At

this stage, it is interesting to investigate how the accuracy of these schemes is affected

by imperfect FFO compensation. Figure 3.8 shows Pf as a function of the residual

FFO ∆ε = ε̂ − ε for both AMLE and CE. The SINR is fixed to −10 dB, while the
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timing error is τd = 20.
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Figure 3.7: Probability of failure versus τd for SINR=−10 dB and ε̂ = ε.
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As expected, Pf increases with ∆ε as a consequence of the interchannel interference

arising from the presence of ∆ε. However, such an increase is marginal even for

values of ∆ε as large as 10% of the subcarrier spacing. Since the MSE of ε̂LCE in Fig.

3.3 is approximately 10−4 at SINR = 3 dB, in practical applications the detection

capability of AMLE and CE should not be significantly impaired by imperfect FFO

compensation.

3.5.3 Complexity comparison

We conclude our study by comparing the investigated schemes in terms of their

computational complexity. In the considered scenario with N = 1024, Np = 284 and

δ = 3, from Tab. 3.1 it follows that FFO recovery by means of MLE approximately

requires 249 kflops when Ns = 4, while 508 or 1027 kflops are needed with Ns = 8 or

16, respectively. On the other hand, LCE is implemented with only 69 kflops, thereby

achieving the same accuracy of MLE with a significant computational saving. This

feature makes LCE a promising candidate for FFO recovery in WiMAX systems.

The complexity of AMLE and CE for the joint recovery of the IFO and preamble

index is obtained by substituting NU = 114 and Nη = 8 in Tab. 3.2. It turns out

that application of AMLE needs 530M kflops, while only 260 kflops are required

by CE. This means that the improved performance of AMLE with respect to CE is

achieved at the price of an increase of the computational load by a factor of nearly

2M . Hence, satisfactory performance can be achieved with affordable complexity only

with a judicious design of M .

3.6 Concluding remarks

We have investigated the joint ML estimation of the CFO and preamble index in

multicarrier systems that employ a training sequence composed by some correlated

but non-identical parts. Our study applies to the OFDMA-mode of WiMAX networks

compliant with the IEEE 802.16 family of standards. A novel expression of the CRB

for CFO recovery is also derived as a benchmark to the accuracy of the frequency

estimates. Although in principle the resulting ML metric is able to identify the CFO

in one single step, it is convenient to decompose the frequency error into a fractional

part (FFO) plus a remaining integer part (IFO). In order to avoid the huge complexity
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of the exact ML solution, the FFO is recovered by resorting to an ad-hoc frequency

estimation method which is shown to achieve the relevant CRB at all SINR values of

practical interest. After FFO estimation and compensation, the IFO and preamble

index are jointly retrieved using an approximated ML approach which is made robust

against residual timing errors. Compared with existing alternatives suited for the

WiMAX preamble, our scheme exhibits improved detection capability at the price of

an increase of the computational burden. This offers the opportunity of achieving the

desired trade-off between complexity and system performance.

3.7 Appendix

In this Appendix we highlight the major steps leading to the CRB in the estimation

of (ξu, ν). For this purpose, we call ξu,R and ξu,I the real and imaginary parts of ξu

and let ϕ =
[
ξTu,R, ξ

T
u,I , ν

]T
be the set of unknown parameters. Then, the components

of the Fisher information matrix Fϕ are given by [4]

[Fϕ]i,j = −E

{
∂2Λ(ϕ)

∂ϕ(i)∂ϕ(j)

}
1 ≤ i, j ≤ 2Np + 1 (3.58)

where Λ(ϕ) is the LLF in (3.13), while ϕ(k) denotes the kth entry of ϕ. Substituting

(3.13) into (3.58), after standard computations we get

Fϕ = 2
σ2
w

 INp 0Np −={vu}
0Np INp <{vu}

−={vHu } <{vHu } ‖QFξu‖2

 (3.59)

where vu = FHQFξu and

Q = diag

{
2πk

N
; k = 0, 1, . . . , N − 1

}
. (3.60)

The CRB for the estimation of ν is given by [F−1
ϕ ]2Np+1,2Np+1. Hence, applying to

(3.59) the formulas for the inverse of a partitioned matrix, we obtain

CRB{ν} =
σ2
w

2ξHu FHQF(IN−FFH)QFξu
(3.61)

which depends on the specific realization of ξu. A simpler bound independent of ξu

is the asymptotic CRB (ACRB), which is evaluated by averaging the denominator of
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(3.61) with respect to ξu [47]. For this purpose, we model the pilot symbols pu(n)

as statistically independent random variables with zero mean and power A2. Hence,

from (3.6) it follows that ξu has zero-mean and covariance matrix σ2
HA

2INp . Using

this result and bearing in mind (3.5), after some computations we obtain

ACRB{ν} =
Np(SINR)−1

2N · tr{Q2FFH−QFFHQFFH}
(3.62)

which can also be rewritten as indicated in (3.21) and (3.22).



Chapter 4

Frequency Estimation in

OFDM Direct-Conversion

Receivers

4.1 Introduction

Orthogonal frequency-division multiplexing (OFDM) is a popular multicarrier tech-

nology which offers remarkable resilience against multipath distortions, increased

spectral efficiency and the possibility of performing adaptive modulation and coding.

Due to such potential advantages, it has been adopted in several wideband commercial

systems, including the IEEE 802.11a wireless local area network (WLAN) [48], the

IEEE 802.16 wireless metropolitan area network (WMAN) [11] and the 3GPP long-

term evolution (LTE) [9].

In recent years, the combination of OFDM with the direct-conversion receiver (DCR)

concept has attracted considerable attention as an effective mean for the implemen-

tation of user terminals with reduced size and power consumption [49]. In contrast

to the classical superheterodyne architecture, in a DCR device the radio-frequency

(RF) signal is down-converted to baseband without passing through any intermediate-

frequency (IF) stage. On one hand, this approach avoids the use of expensive image

rejection filters and other off-chip components, with a remarkable advantage in terms
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of cost and circuit board size. On the other hand, a DCR front-end introduces some

RF/analog imbalances arising from the use of in-phase/quadrature (I/Q) low-pass

filters (LPFs) with mismatched frequency responses and from local oscillator (LO)

signals with unequal amplitudes and imperfect 90o phase difference. While the LO-

induced imbalance can be considered as frequency-flat, filter mismatches can vary

substantially over the signal bandwidth and are particularly critical in wideband

communication systems [50]. Overall, I/Q non-idealities give rise to a conjugate

mirror-image interference on the down-converted baseband signal which can seriously

degrade the system performance if not properly compensated. An OFDM receiver

also exhibits a remarkable sensitivity to the carrier frequency offset (CFO) between

the received waveform and the LO signals, which originates inter-channel interference

(ICI) at the output of the discrete Fourier transform (DFT) unit. It follows that accu-

rate estimation and compensation for CFO and I/Q imbalance is mandatory in order

to benefit all the potential advantages promised by the OFDM/DCR combination.

An intense research activity has been recently devoted to the problem of CFO recov-

ery in OFDM systems plagued by frequency-selective I/Q imperfections. The methods

presented in [51] and [52] exploit a dedicated training preamble (TP) composed of

three repeated parts to retrieve the cosine of the normalized CFO. However, since the

cosine is an even function of its argument, the corresponding frequency estimate is

affected by a inherent sign ambiguity, which severely limits the accuracy in case of

small CFO values. A similar problem occurs in [53], where a low-complexity scheme

is suggested to jointly compensate for the CFO and I/Q imbalances. In [54]– [56] the

original preamble proposed in [51] is extended by a second part which is intentionally

rotated by an artificial frequency shift before transmission. The resulting TP allows

one to recover both the cosine and the sine of the CFO, which are eventually combined

to get unambiguous estimates of the frequency offset. A similar approach is adopted

in [57] and [58], where the sign ambiguity problem is fixed by rotating the repeated

parts of the TP by a specified phase pattern. Albeit effective, all the aforementioned

solutions cannot be applied to practical OFDM systems since they rely on suitably

designed TPs that cannot be found in any commercial standard.

The schemes presented in [59]– [63] exploit the conventional repeated TP specified by

the IEEE 802.11a WLAN standard. Specifically, in [59] the authors present a suitable

matrix formulation of the received signal samples to derive novel sine and cosine-based

CFO estimators, while the frequency-domain correlations of the TP are used in [60].
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An alternative cosine-based estimator is derived in [61] using a general relation among

three arbitrary segments of the repeated TP, while the signal parameters via rotational

invariance technique (ESPRIT) [64] is applied in [62] after interpreting the useful sig-

nal component and its mirror image as the contributions of two independent sinusoidal

waveforms. Finally, an iterative interference-cancellation approach is presented in [63]

by resorting to the space-alternating generalized expectation-maximization (SAGE)

algorithm [65].

This chapter provides a theoretical investigation of the CFO recovery problem for an

OFDM receiver affected by frequency-selective I/Q imbalance. In doing so, we adopt a

maximum-likelihood (ML) oriented approach and consider a burst-mode transmission

wherein each frame is preceded by the conventional repeated TP. One major outcome

of our study originates from the common belief that conventional CFO estimators

derived without taking RF imperfections into account cannot work properly when

applied to a DCR architecture. However, so far only numerical measurements have

been used to support such a prevailing idea and any solid theoretical analysis is still

missing. In order to fill such a gap, in our study we first review the classical ML (CML)

frequency estimator presented in [45] and analytically evaluate its accuracy in the

presence of I/Q imbalance. This provides the system designer with useful guidelines

about the possibility of using the CML in a practical OFDM direct-conversion receiver.

Next, we assess the theoretical performance of the algorithm presented in [57] for

the joint ML (JML) estimation of the CFO, the channel-distorted TP and its mirror

image. Such an analysis was not provided in [57] and represents a second contribution

of this chapter. As we shall see, JML is very sensitive to the magnitude of the

CFO value and fails whenever the CFO becomes vanishingly small. Motivated by

such a result, we also derive a novel ML-based estimator of all unknown parameters

which exploits some side information about the average signal-to-image ratio (SIR).

Interestingly, such an estimator serves as a joining link between CML and JML since

the latter schemes are obtained from the former by simply adjusting a suitable design

parameter. A last contribution of this study is the derivation of the Cramer-Rao

bound (CRB) for CFO recovery in the presence of I/Q imbalance using the true noise

statistics. This result is of paramount importance as it can be used to check whether

the approximated bound derived under the traditional white Gaussian noise (WGN)

assumption deviates substantially or not from the true CRB.
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4.2 Signal model in the presence of I/Q imbalance

4.2.1 Direct conversion receiver

Fig. 4.1 illustrates the basic DCR architecture in the presence of I/Q imbalances. The

latter originate from the use of I/Q filters with mismatched impulse responses gI(t)

and gQ(t), as well as from LO signals with an amplitude imbalance α and a phase

error ψ. While LO imperfections can be considered as frequency-independent [57],

filter mismatches vary over the signal bandwidth, thereby resulting into a frequency-

selective imbalance.

Figure 4.1: Basic architecture of a direct-conversion receiver.

The baseband equivalent of the receiver front-end is depicted in Fig. 4.2. Here, r(t)

is the complex envelope of the received waveform with respect to the carrier frequency

f0, while ∆f = f0 − fLO is the offset between the carrier and the LO frequencies.

Denoting by s(t) and v(t) the baseband representations of the transmitted signal

and propagation channel, respectively, we have r(t) = s(t)⊗ v(t) +n(t), where n(t) is

circularly symmetric Additive WGN (AWGN) with two-sided power spectral density

2N0. From the analysis in [66], it follows that the down-converted baseband signal

x(t) = xI(t) + jxQ(t) can be written as

x(t) = ej2π∆ft[s(t)⊗ h(t)] + e−j2π∆ft[s∗(t)⊗ q(t)] + w(t) (4.1)



4.2 Signal model in the presence of I/Q imbalance 59

Figure 4.2: Baseband equivalent of the receiver front-end.

where the impulse responses h(t) and q(t) are defined as

h(t) =v(t)⊗ p+(t)e−j2π∆ft

q(t) =v∗(t)⊗ p−(t)ej2π∆ft
(4.2)

with

p+(t) =
1

2
[gI(t) + αgQ(t)e−jψ]

p−(t) =
1

2
[gI(t)− αgQ(t)ejψ]

(4.3)

while the noise term w(t) is related to n(t) by

w(t) = n(t)ej2π∆ft ⊗ p+(t) + n∗(t)e−j2π∆ft ⊗ p−(t). (4.4)

Letting w(t) = wI(t)+jwQ(t) and observing that n(t)ej2π∆ft is statistically equivalent

to n(t), from (4.3) and (4.4) it follows that wI(t) and wQ(t) are zero-mean Gaussian

processes with auto- and cross-correlation functions

E{wI(t)wI(t+ τ)} =N0[gI(τ)⊗ gI(−τ)]

E{wQ(t)wQ(t+ τ)} =α2N0[gQ(τ)⊗ gQ(−τ)]

E{wI(t)wQ(t+ τ)} =− αN0 sinψ[gI(τ)⊗ gQ(−τ)].

(4.5)

Inspection of (4.1) reveals that a DCR architecture affected by I/Q imbalance

introduces self-image interference in the down-converted signal. Also, from (4.5) it is

seen that w(t) is not circularly symmetric as its real and imaginary components are

generally cross-correlated and exhibit different auto-correlation functions.
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4.2.2 Signal model

We consider an OFDM burst-mode communication where each block has length T

and is preceded by a cyclic prefix (CP) to avoid inter-block interference (IBI). The

subcarrier spacing is 1/T and the number of available subcarriers is N . As specified in

many standards for wireless communications [9], [11], [48] a TP is appended in front

of each data frame to facilitate the synchronization and channel estimation tasks. In

particular, we assume that the TP has a periodic structure in the time-domain and

is composed by M ≥ 2 identical segments [25], [27]. The basic segment comprises

P time-domain samples (with P being a power of two) and is generated by feeding

a sequence of pilot symbols c = [c(0), c(1), . . . , c(P − 1)]T into a P−point inverse

discrete Fourier transform (IDFT) unit. Hence, denoting by s(k) the kth sample of

the TP, we have

s(k) =
1√
P

P−1∑
n=0

c(n)ej2πnk/P −Ng ≤ k ≤MP (4.6)

where Ng is the CP length normalized by the signaling period Ts = T/N .

After propagating through the multipath channel, the received signal rRF (t) is down-

converted to baseband and sampled with period Ts using the DCR architecture of

Fig. 4.1. Assuming that a coarse timing estimate is available at the receiver, samples

belonging to the TP are extracted from the incoming stream and arranged into M

vectors xm = [xm(0), xm(1), . . . , xm(P−1)]T (m = 0, 1, . . . ,M−1), where each vector

has length P and corresponds to a specific TP segment. According to the baseband

equivalent of Fig. 4.2, the pth entry of xm can be written as

xm(p) = ej[m−(M−1)/2]ϕa(p) + e−j[m−(M−1)/2]ϕb(p) + wm(p) (4.7)

where wm(p) is the noise contribution and we have defined

ϕ =
2πν

Q
(4.8)

with Q = N/P and ν , ∆f · T being the CFO normalized by the subcarrier spacing.

Furthermore, a(p) and b(p) are given by

a(p) = ej(M−1)ϕ/2ej2πνp/N [s(t)⊗ h(t)]t=pTs (4.9)

b(p) = e−j(M−1)ϕ/2e−j2πνp/N [s∗(t)⊗ q(t)]t=pTs (4.10)
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where

s(t) =
1√
P

P−1∑
n=0

c(n)ej2πnQt/T (4.11)

is the transmitted TP. In writing (4.9) and (4.10), we have borne in mind that [s(t)⊗
h(t)]t=pTs+mPTs = [s(t)⊗h(t)]t=pTs and [s∗(t)⊗ q(t)]t=pTs+mPTs = [s∗(t)⊗ q(t)]t=pTs
due to the repetitive TP structure.

To proceed further, we consider the following M−dimensional vectors

x(p) = [x0(p), x1(p), . . . , xM−1(p)]T p = 0, 1, . . . , P − 1 (4.12)

where x(p) is obtained by collecting the pth entry of vectors xm for m = 0, 1, . . . ,M−
1. Hence, taking (4.7) into account, we get

x(p) = u(ϕ)a(p) + u(−ϕ)b(p) + w(p) p = 0, 1, . . . , P − 1 (4.13)

where w(p) = [w0(p), w1(p), . . . , wM−1(p)]T is a complex-valued zero-mean Gaussian

vector, and

u(ϕ) = e−j(M−1)ϕ/2
[
1, ejϕ, ej2ϕ, . . . , ej(M−1)ϕ

]T
. (4.14)

Inspection of (4.13) and (4.14) reveals that x(p) consists of two spectral lines u(ϕ)

and u(−ϕ), symmetrically positioned around the origin and accounting for the direct

signal and its mirror image, respectively. In the ensuing discussion, we investigate

the ML estimation of the normalized CFO ϕ in the presence of the nuisance vectors

a =[a(0), a(1), . . . , a(P − 1)]T and b =[b(0), b(1), . . . , b(P − 1)]T . In doing so, we first

review the CML estimator presented in [45], which assumes b = 0, and evaluate its

performance in the presence of I/Q imbalance. Next, we assess the accuracy of the

JML algorithm proposed in [57], which jointly estimates (ϕ,a,b) without exploiting

any side information about b. On the other hand, since the signal component is

typically much stronger than its mirror image (i.e., ‖a‖ � ‖b‖), a novel ML estimator

of (ϕ,a,b) is eventually derived by imposing a constraint on the ratio ‖a‖2/‖b‖2.

To make the analysis mathematically tractable, we model the noise term w(t) as a

zero-mean circularly-symmetric Gaussian (ZMCSG) complex random process. This

amounts to saying that {w(p); p = 0, 1, . . . , P − 1} are considered as statistically

independent ZMCSG vectors with covariance matrix Kw = σ2
wIM . Numerical simu-

lation will be used later to validate the theoretical results in a more realistic scenario

characterized by the true noise statistics.
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4.3 CFO estimation in the absence of I/Q imbalance

4.3.1 Estimator’s design

The CML is suggested in [45] for an OFDM receiver without any RF imperfections.

This scheme performs the joint ML estimation of (ϕ,a) based on the following signal

model

x(p) = u(ϕ)a(p) + w(p) p = 0, 1, . . . , P − 1 (4.15)

which is obtained from (4.13) by setting b(p) = 0. The log-likelihood function (LLF)

is expressed by [4]

Λ(ϕ̃, ã) = −N ln(πσ2
w)− 1

σ2
w

P−1∑
p=0

‖x(p)− u(ϕ̃)ã(p)‖2 (4.16)

and its maximization with respect to (ϕ̃, ã) leads to the following CFO estimate

ϕ̂CML = arg max
ϕ̃∈[−π,π)

{ΨCML(ϕ̃)} (4.17)

where

ΨCML(ϕ̃) =

P−1∑
p=0

∥∥uH(ϕ̃)x(p)
∥∥2
. (4.18)

Taking (4.12) and (4.14) into account, we may put the metric ΨCML(ϕ̃) in the

equivalent form

ΨCML(ϕ̃) =

M−1∑
m=0

M−1∑
k=0

<
{
χCML,m,k(ϕ̃)xHmxk

}
(4.19)

with χCML,m,k(ϕ̃) = ej(m−k)ϕ̃.

4.3.2 Performance analysis

Since the CML is derived under the simplifying assumption b = 0, it is interesting

to assess its accuracy in the presence of I/Q imbalance. For this purpose, we define

the estimation error as εCML = ϕ̂CML − ϕ and assume that the system operates at

sufficiently large signal-to-noise ratio (SNR) values. Hence, following the approach

outlined in [67], we get

E{εCML} ' −
E{Ψ′CML(ϕ)}
E{Ψ′′CML(ϕ)}

(4.20)



4.3 CFO estimation in the absence of I/Q imbalance 63

E
{
ε2
CML

}
' E{[Ψ′CML(ϕ)]2}

[E{Ψ′′CML(ϕ)}]2
(4.21)

where Ψ′CML(ϕ) e Ψ′′CML(ϕ) are the first and second order derivatives of ΨCML(ϕ̃),

respectively, evaluated at ϕ̃ = ϕ. In Appendix A it is shown that

E{εCML} =
6

M2 − 1
· [<{aHb}+ qM (ϕ)‖b‖2]q′M (ϕ)

ΩM (ϕ)
(4.22)

with

qM (ϕ) =
sin(Mϕ)

M sinϕ
(4.23)

ΩM (ϕ) = ‖a‖2 + [qM (ϕ)− γM (ϕ)]<{aHb} − [βM (ϕ) + qM (ϕ)γM (ϕ)]‖b‖2. (4.24)

In the above equation, the quantities βM (ϕ) and γM (ϕ) are expressed by

βM (ϕ) =
3

M2 − 1
[q′M (ϕ)]2 and γM (ϕ) =

3

M2 − 1
q′′M (ϕ) (4.25)

where q′M (ϕ) and q′′M (ϕ) are the first and second order derivatives of qM (ϕ), respec-

tively. Inspection of (4.22) and (4.24) indicates that, in general, ϕ̂CML is a biased

estimate of ϕ. The only exceptions occur in the absence of I/Q imbalance (i.e., b = 0)

or when ϕ = 0, since in the latter case we have q′M (ϕ) = 0.

In Appendix A we also evaluate the mean square estimation error (MSEE) of ϕ̂CML,

which is found to be

E
{
ε2
CML

}
= E2{εCML}+

6σ2
w

M(M2 − 1)
· AM (ϕ)

Ω2
M (ϕ)

+
6Pσ4

w

M2(M2 − 1)
· 1

Ω2
M (ϕ)

(4.26)

with

AM (ϕ) = ‖a‖2 + 2qM (ϕ)<{aHb}+ [βM (ϕ) + q2
M (ϕ)]‖b‖2. (4.27)

4.3.3 Remarks

i) Observing that qM (0) = 1, βM (0) = 0 and γM (0) = −1, for ϕ = 0 we get

AM (0) = ΩM (0) = ‖a + b‖2 and (4.26) reduces to

E
{
ε2
CML

}∣∣
ϕ=0

=
6σ2

w

M(M2 − 1)‖a + b‖2

[
1 +

Pσ2
w

M‖a + b‖2

]
. (4.28)

ii) In the absence of I/Q imbalance we have AM (ϕ) = ΩM (ϕ) = ‖a‖2. In such a

case, (4.26) becomes independent of ϕ and takes the form

E
{
ε2
CML

}∣∣
b=0

=
6σ2

w

M(M2 − 1)‖a‖2

(
1 +

Pσ2
w

M‖a‖2

)
(4.29)
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which further simplifies to

E
{
ε2
CML

}∣∣
b=0,‖a‖2/σ2

w→∞
=

6σ2
w

M(M2 − 1)‖a‖2
(4.30)

at relatively high SNR values (i.e., ‖a‖2/σ2
w →∞). It is worth noting that the right-

hand side of (4.30) is the CRB for CFO estimation reported in [45]. This means that

CML is asymptotically efficient when b = 0, which can be justified by observing that

ϕ̂CML is the ML estimator of ϕ in the absence of any I/Q imbalance.

4.4 Joint ML estimation of the unknown parame-

ters

4.4.1 Estimator’s design

In this section we review the JML presented in [57], which aims at jointly estimating

the unknown parameters (ϕ,a,b). After rewriting (4.13) as

x(p) = A2(ϕ)θ(p) + w(p) p = 0, 1, . . . , P − 1 (4.31)

with A2(ϕ) = [u(ϕ) u(−ϕ)] and θ(p) = [a(p) b(p)]T , the LLF takes the form

Λ2(ϕ̃, θ̃) = −N ln(πσ2
w)− 1

σ2
w

P−1∑
p=0

∥∥∥x(p)−A2(ϕ̃)θ̃(p)
∥∥∥2

(4.32)

where θ̃(p) , [ã(p) b̃(p)]T and θ̃ = {θ̃(0), θ̃(1), . . . , θ̃(P − 1)}. The maximum of the

LLF with respect to θ̃(p) is attained at

θ̂(p; ϕ̃) = [AH
2 (ϕ̃)A2(ϕ̃)]−1AH

2 (ϕ̃)x(p) (4.33)

which is next substituted into (4.32) in place of θ̃(p), yielding the concentrated

likelihood function

Λ2(ϕ̃) = −N ln(πσ2
w)− 1

σ2
w

P−1∑
p=0

xH(p)[IM −C2(ϕ̃)]B2(ϕ̃)x(p) (4.34)

with C2(ϕ̃) = A2(ϕ̃)[AH
2 (ϕ̃)A2(ϕ̃)]−1AH

2 (ϕ̃). The ML estimate of ϕ is eventually

given by

ϕ̂JML = arg max
ϕ̃∈[−π,π)

{ΨJML(ϕ̃)} (4.35)
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where

ΨJML(ϕ̃) = M

P−1∑
p=0

xH(p)C2(ϕ̃)x(p). (4.36)

After some manipulations, it is found that the metric ΨJML(ϕ̃) can also be written

as

ΨJML(ϕ̃) =

M−1∑
m=0

M−1∑
k=0

<
{
χJML,m,k(ϕ̃)xHmxk

}
(4.37)

where

χJML,m,k(ϕ̃) =
cos[(m− k)ϕ̃]− qM (ϕ̃) cos[(m+ k −M + 1)ϕ̃]

1− q2
M (ϕ̃)

(4.38)

and qM (ϕ̃) has been defined in (4.23).

It is worth noting that letting M = 2 yields C2(ϕ̃) = I2, which makes ΨJML(ϕ̃)

independent of ϕ̃. This amounts to saying that application of JML is possible only for

M ≥ 3. Furthermore, since ΨJML(ϕ̃) is an even function of ϕ̃, it exhibits two global

maxima symmetrically positioned around ϕ̃ = 0. This results into an ambiguity in

the sign of ϕ̂JML which cannot be removed unless additional information is available.

One possible solution relies on the fact that the useful signal component is typically

much stronger than its mirror image. In such a case, we suggest to consider the

positive solution of (4.35), say ϕ̂+
JML, and compute the estimates â and b̂ from (4.33)

after replacing ϕ̃ with ϕ̂+
JML. Then, we set ϕ̂JML = ϕ̂+

JML if ‖â‖ > ‖b̂‖, otherwise

we choose ϕ̂JML = −ϕ̂+
JML.

4.4.2 Performance analysis

The accuracy of ϕ̂JML is assessed by applying the same methods used for the CML.

Skipping the details, it is found that E{ϕ̂JML} = ϕ, thereby indicating that JML

is unbiased. Furthermore, denoting by εJML = ϕ̂JML − ϕ the estimation error, the

MSEE turns out to be

E
{
ε2
JML

}
=

6σ2
w

M(M2 − 1)
· 1[

ΓM,1(ϕ)
(
‖a‖2 + ‖b‖2

)
+ 2ΓM,2(ϕ)<{aHb}

]
+

12Pσ4
w

M2(M2 − 1)
· ΓM,3(ϕ)[

ΓM,1(ϕ)
(
‖a‖2 + ‖b‖2

)
+ 2ΓM,2(ϕ)<{aHb}

]2 (4.39)
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where

ΓM,1(ϕ) = 1− βM (ϕ)

1− q2
M (ϕ)

(4.40)

ΓM,2(ϕ) = γM (ϕ) +
βM (ϕ)qM (ϕ)

1− q2
M (ϕ)

(4.41)

and

ΓM,3(ϕ) =
1

1− q2
M (ϕ)

[ΓM,1(ϕ)− qM (ϕ)ΓM,2(ϕ)] (4.42)

with βM (ϕ) and γM (ϕ) as defined in (4.25).

4.4.3 Remarks

i) For M = 2 we have ΓM,1(ϕ) = ΓM,2(ϕ) = 0 and the denominator in (4.39) vanishes.

Such a result confirms the fact that ϕ cannot be estimated when M < 3.

ii) Using the fourth-order Maclaurin series of qM (ϕ)

qM (ϕ) ' 1− M2 − 1

6
ϕ2 +

(M2 − 1)(3M2 − 7)

360
ϕ4 (4.43)

it is found that, for small values of ϕ, functions ΓM,i(ϕ) (i = 1, 2) can be approximated

as

ΓM,i(ϕ) ' M2 − 4

15
ϕ2 i = 1, 2 (4.44)

while ΓM,3(ϕ) ' ΓM,1(ϕ)/2. Substituting these results into (4.39) produces

E
{
ε2
JML

}∣∣
ϕ→0

' 90σ2
w

M(M2 − 1)(M2 − 4) ‖a + b‖2

(
1 +

Pσ2
w

M ‖a + b‖2

)
· 1

ϕ2
(4.45)

which indicates that the accuracy of JML rapidly degrades as ϕ approaches zero. The

reason is that in such a case the two spectral lines in (4.13) tend to overlap in the

frequency domain, until they collapse into a single dc component when ϕ = 0, thereby

preventing the joint estimation of a and b.

iii) In the absence of any I/Q imbalance we have b = 0 and (4.39) takes the form

E
{
ε2
JML

}∣∣
b=0

=
6σ2

w

M(M2 − 1) ‖a‖2
· 1

ΓM,1(ϕ)
+

12Pσ4
w

M2(M2 − 1) ‖a‖4
· ΓM,3(ϕ)

Γ2
M,1(ϕ)

(4.46)

which, at relatively large SNR values, reduces to

E
{
ε2
JML

}∣∣
b=0,‖a‖2/σ2

w→∞
=

6σ2
w

M(M2 − 1) ‖a‖2
· 1

ΓM,1(ϕ)
. (4.47)
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Comparing (4.30) with (4.47) and recalling that 0 ≤ ΓM,1(ϕ) ≤ 1, it turns out that

in a perfectly balanced receiver the CML outperforms (at least asymptotically) the

JML. This result is not surprising since, in the considered scenario, ϕ̂CML is the ML

estimate of ϕ.

4.5 Constrained joint ML estimation of the unknown

parameters

4.5.1 Estimator’s design

As mentioned previously, the JML is derived in [57] without considering the fact

that in a practical situation we have ‖a‖ � ‖b‖. We now illustrate how such a side

information can be exploited to solve the sign ambiguity of ϕ̂JML. Our approach

aims at maximizing (4.32) subject to a constraint on the SIR. The resulting scheme

is referred to as the constrained JML (CJML) and solves the following problem

min
ϕ̃,θ̃

P−1∑
p=0

∥∥∥x(p)−A2(ϕ̃)θ̃(p)
∥∥∥2

s.t. ‖b̃‖2 ≤ δ‖ã‖2
(4.48)

where δ > 0 is a design parameter. In Appendix B it is shown that CJML takes the

form

ϕ̂CJML = arg max
ϕ̃∈[−π,π)

{ΨCJML(ϕ̃)} (4.49)

where the metric ΨCJML(ϕ̃) is found to be

ΨCJML(ϕ̃) =

M−1∑
m=0

M−1∑
k=0

χCJML,m,k(ϕ̃)xHmxk (4.50)

with

χCJML,m,k(ϕ̃) =
{

2ζ1(ϕ̃)−M [ζ2
1 (ϕ̃)− 2qM (ϕ̃)ζ1(ϕ̃)ζ2(ϕ̃) + ζ2

2 (ϕ̃)]
}
ej(m−k)ϕ̃

+
{

2ζ3(ϕ̃)−M [ζ2
3 (ϕ̃)− 2qM (ϕ̃)ζ2(ϕ̃)ζ3(ϕ̃) + ζ2

2 (ϕ̃)]
}
e−j(m−k)ϕ̃

+ 2
{
M [ζ1(ϕ̃) + ζ3(ϕ̃)]ζ2(ϕ̃)−MqM (ϕ̃)[ζ1(ϕ̃)ζ3(ϕ̃) + ζ2

2 (ϕ̃)]−

2ζ2(ϕ̃)
}

cos[(m+ k −M + 1)ϕ̃]. (4.51)
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In the above equation, functions ζ1(ϕ̃), ζ2(ϕ̃) and ζ3(ϕ̃) depend on δ and are expressed

by

ζ1(ϕ̃) = [M + λ(ϕ̃)]/D(ϕ̃) (4.52)

ζ2(ϕ̃) = MqM (ϕ̃)/D(ϕ̃) (4.53)

ζ3(ϕ̃) = [M − δλ(ϕ̃)]/D(ϕ̃) (4.54)

with D(ϕ̃) = [M + λ(ϕ̃)][M − δλ(ϕ̃)]−M2q2
M (ϕ̃) and

λ(ϕ̃) = max

(
0,

Υ2(ϕ̃)−
√

Υ2
2(ϕ̃)−Υ1(ϕ̃)Υ3(ϕ̃)

Υ1(ϕ̃)

)
. (4.55)

Furthermore, we have

Υ1(ϕ̃) = δ
(
δ‖t2(ϕ̃)‖2 − ‖t1(ϕ̃)‖2

)
(4.56)

Υ2(ϕ̃) = Mδ
[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2 − 2qM (ϕ̃)<{tH1 (ϕ̃)t2(ϕ̃)}

]
(4.57)

Υ3(ϕ̃) =

M2
{[
q2
M (ϕ̃)− δ

]
‖t1(ϕ̃)‖2− 2qM (ϕ̃)(1− δ)<{tH1 (ϕ̃)t2(ϕ̃)}+ [1− δ q2

M (ϕ̃)]‖t2(ϕ̃)‖2
}

(4.58)

where t1 and t2 are P -dimensional vectors with entries [t1(ϕ̃)]p = uH(ϕ̃)x(p) and

[t2(ϕ̃)]p = uH(−ϕ̃)x(p) for p = 0, 1, . . . , P − 1.

Unfortunately, evaluating the theoretical performance of CJML is extremely chal-

lenging and all our attempts to accomplish this task encountered impassable barriers.

For this reason, the accuracy of CJML will be assessed by only resorting to numerical

simulations.

4.5.2 Remarks

i) When δ approaches zero, we have limδ→0 λ(ϕ̃) = +∞ and limδ→0 δλ(ϕ̃) = 0.

Hence, from (4.52)–(4.54) it is found that ζ1(ϕ̃) approaches 1/M , while ζ2(ϕ̃) and

ζ3(ϕ̃) become vanishingly small. These results lead to

lim
δ→0

χCJML,m,k(ϕ̃) =
1

M
ej(m−k)ϕ̃ =

1

M
χCML,m,k(ϕ̃) (4.59)
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which indicates that CJML reduces to CML. The reason is that letting δ = 0 in the

constraint ‖b‖2 ≤ δ‖a‖2 amounts to putting b = 0, which is just the main assumption

behind the CML.

i) When δ goes to infinity, we have limδ→+∞ λ(ϕ̃) = limδ→+∞ δλ(ϕ̃) = 0 leading to

lim
δ→+∞

ζ1(ϕ̃) = lim
δ→+∞

ζ3(ϕ̃) =
1

M [1− q2
M (ϕ̃)]

lim
δ→+∞

ζ2(ϕ̃) =
qM (ϕ̃)

M [1− q2
M (ϕ̃)]

.

(4.60)

In such a case it is found that

lim
δ→+∞

χCJML,m,k(ϕ̃) =
2

M
· cos[(m− k)ϕ̃]− qM (ϕ̃) cos[(m+ k −M + 1)ϕ̃]

1− q2
M (ϕ̃)

(4.61)

which, compared with (4.38), reveals that CJML reduces to JML. This fact can be

explained by observing that letting δ → +∞ amounts to removing any constraint on

the magnitude of b.

The above remarks indicate that CJML is a quite general ML-based estimator

which incorporates both CML and JML as special cases when δ → 0 and δ → +∞,

respectively.

4.6 CRB analysis

It is interesting to compare the performance of the ML-based estimation algorithms

illustrated in the previous section with the relevant CRB. The latter is computed

from the signal model (4.31) using the true statistical distribution of wI(t) and

wQ(t), whose auto- and cross-correlation functions are given in (4.5). For this pur-

pose, we arrange the samples xm(p) = xIm(p) + jxQm(p) into a real-valued vector

x = [xI0(0), xQ0 (0), xI0(1), xQ0 (1) · · · xIM−1(P − 1), xQM−1(P − 1)]T with 2PM entries.

Then, bearing in mind (4.7), we can write

x = η + w (4.62)

where w = [wI0(0), wQ0 (0), wI0(1), wQ0 (1) · · · wIM−1(P − 1) wQM−1(P − 1)]T is the noise

contribution, with wIm(p) and wQm(p) being the real and imaginary parts of wm(p),

respectively. Furthermore, letting a(p) = aI(p) + jaQ(p) and b(p) = bI(p) + jbQ(p),

we have

η = Qz (4.63)
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with z = [zT (0) zT (1) · · · zT (P − 1)]T and z(p) = [aI(p), aQ(p), bI(p), bQ(p)]T , while

Q is a matrix of dimension 2PM × 4P with the following structure

Q =
[

QT
0 QT

1 · · · QT
M−1

]T
. (4.64)

In the above equation, Qm (m = 0, 1, . . . ,M − 1) is a 2P × 4P matrix

Qm = diag{Rm,Rm, . . . ,Rm︸ ︷︷ ︸
P

} (4.65)

where Rm is defined as

Rm =

[
cm(ϕ) −sm(ϕ) cm(ϕ) sm(ϕ)

sm(ϕ) cm(ϕ) −sm(ϕ) cm(ϕ)

]
(4.66)

with cm(ϕ) and sm(ϕ) being a shorthand notation for cos[(m− M−1
2 )ϕ] and sin[(m−

M−1
2 )ϕ], respectively. For notational simplicity, in (4.64) we have omitted the depen-

dence of Q on ϕ.

In Appendix C it is shown that

CRB(ϕ) =
1

zT Q̇T
[
C−1
w −C−1

w Q
(
QTC−1

w Q
)−1

QTC−1
w

]
Q̇z

(4.67)

where Cw is the correlation matrix of w and Q̇ is the derivative of Q with respect to

ϕ. Unfortunately, such expression does not provide any indication about the impact

of the various design parameters on the estimation accuracy. A more useful expression

is obtained by assuming a white-noise scenario wherein Cw = (σ2
w/2)I2PM . In such

a case, after lengthy computations it is found that (4.67) takes the form

CRB(ϕ) =
6σ2

w

M(M2 − 1)
· 1[

ΓM,1(ϕ)
(
‖a‖2 + ‖b‖2

)
+ 2ΓM,2(ϕ)<{aHb}

] (4.68)

with ΓM,1(ϕ) and ΓM,2(ϕ) defined as in (4.40)-(4.41). It is worth noting that, at

relatively high SNR values, the accuracy of ϕ̂JML given in (4.39) approaches the CRB

in (4.68), meaning that JML is asymptotically efficient in the presence of AWGN. This

is a consequence of the fact that in such scenario ϕ̂JML is the ML estimator of (ϕ,a,b).
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4.7 Simulation results

4.7.1 Simulation model

The investigated OFDM system is compliant with the IEEE 802.11a standard for

WLANs [48]. Specifically, the DFT size is N = 64 with a signaling interval Ts = 50

ns, which corresponds to a subcarrier distance of 1/T = 312.5 kHz during the frame

payload. The TP is composed by ten repeated segments, each carrying P = 16 sam-

ples. By considering the first two segments as the CP of the TP, the remaining M = 8

segments are exploited for CFO recovery. We adopt a discrete-time channel model and

collect the Ts-spaced samples of v(t) into a vector v = [v(0), v(1), . . . , v(Lv − 1)]T of

dimension Lv. The entries of v are modeled as independent and circularly symmetric

Gaussian random variables with zero-mean and an exponentially decaying power delay

profile

E{|v(k)|2} = σ2
v exp(−k/Lv) k = 0, 1, . . . , Lv − 1 (4.69)

where σ2
v is chosen such that E{‖v‖2} = 1. As in [57], we consider the following two

scenarios.

Case A) Severe I/Q imbalance: in this case both frequency independent and fre-

quency selective RF imperfections are present. The analog I/Q filters have discrete-

time impulse responses gI = [0, 1, µ]T and gQ = [µ, 1, 0]T with µ = 0.1, while the

LO-induced imbalance is characterized by α = 1 dB and ψ = 5o. From (4.2), it

follows that h(k) and q(k) have support k = 0, 1, . . . , L− 1, with L = Lv + 2.

Case B) Moderate I/Q imbalance: in this case only frequency independent imbalance

is considered with α = 1 dB and ψ = 5o, while the I/Q filters have ideal responses

gI = gQ = [0, 1, 0]T .

In both scenarios, the average SIR is defined as σ2
a/σ

2
b and is found to be [57]

SIR =

∑L−1
p=0 E

{
|h(p)|2

}
∑L−1
p=0 E

{
|q(p)|2

} . (4.70)

Since the entries of v are statistically independent with zero mean and average power

(4.69), from (4.2) and (4.3) we can express the SIR as a function of the imbalance

parameters as

SIR =
1 + α2 + 2α cosψ + µ2 + µ2α2

1 + α2 − 2α cosψ + µ2 + µ2α2
(4.71)



72 Frequency Estimation in OFDM Direct-Conversion Receivers

yielding the values of 19.9 dB and 22.8 dB for Case A and Case B, respectively.

The accuracy of the investigated schemes is assessed in terms of their MSEE.

Assuming a carrier frequency of 5 GHz and an oscillator instability of ±30 parts-per-

million (ppm), the maximum value of the normalized CFO is approximately given

by νmax = 0.5. Hence, recalling that Q = N/P = 4, from (4.8) it follows that

ϕ ∈ (−π/4, π/4). The global maximum of the CFO metrics shown in (4.19), (4.37) and

(4.50) is sought in two steps. The first one (coarse search) evaluates the metric over a

grid of K uniformly-spaced values F = {ϕ̃k = −π/4 + kπ/(2K); k = 0, 1, . . . ,K} and

determines the location ϕ̃M of the maximum. The second step (fine search) makes a

parabolic interpolation between the metric values and computes the local maximum

nearest to ϕ̃M . Parameter K has been selected by means of numerical simulations

and it was found that K = 128 provides nearly optimal performance.

4.7.2 Performance assessment for FO estimation

An important design parameter for the implementation of CJML is the coefficient

δ, which specifies the constraint on the SIR level ‖a‖2/‖b‖2. Figure 4.3 shows the

accuracy of CJML as a function of δ (expressed in dB) for different SNR values.

These results are obtained in the severe I/Q imbalance scenario, and are qualitatively

similar to those pertaining to the moderate I/Q scenario. As is seen, at intermediate

and low SNR values the MSEE monotonically increases with δ, while at large SNR

values a global minimum is achieved around δ = −22 dB. From these measurements

it turns out that setting δ = −24 dB provides satisfactory performance in all prac-

tical situations. For this reason, such a value is used for CJML in all subsequent

simulations. Figures 4.4 and 4.5 illustrate the MSEE of the CFO estimators as a

function of ϕ measured at SNR = 15 dB. More precisely, we investigate the severe

I/Q scenario in Fig. 4.4, while the moderate I/Q case is assumed in Fig. 4.5. For all

the considered schemes, marks indicate simulation results. The solid line illustrates

theoretical analysis for CML and JML, while for CJML it is only used to facilitate

the reading of the plot. The CRB reported in (4.68) is also shown for comparison.

As expected, JML performs poorly for small CFO values since in this case the useful

signal component and its mirror image collapse into a single dc line and cannot be

easily resolved. This is also reflected by the CRB curve, which goes to infinity as ϕ

approaches zero. In contrast, the accuracy of both CML and JCML depends weakly
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Figure 4.3: Accuracy of CJML vs δ for different SNR values in the severe I/Q imbalance

scenario.

on the CFO value and is remarkably better than that of JML for |ϕ| < 0.1π. Although

CML and CJML perform similarly at all considered CFO values, the former scheme is

marginally better then the latter for ϕ = 0. The reason is that in this specific situation

the received signal in (4.13) reduces to a dc line embedded in (approximately) white

Gaussian noise and, due to the absence of any mirror interference, CML provides

nearly optimum performance. It is worth noting that the theoretical analysis of CML

and JML (derived under the white noise assumption) is in good agreement with

simulation results (obtained using the true noise statistics) except when we consider

JML at small CFO values. The discrepancy observed in the latter case is essentially

due to the fact that the MSEE shown in (4.39) is derived using the approach outlined

in [67], which is valid only for relatively small estimation errors. Surprisingly, at low

CFO values the MSEE of JML is smaller than the relevant CRB. The reason is that

in these circumstances JML provides biased estimates and the CRB theory cannot be

applied anymore.
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Figure 4.4: Accuracy of the CFO estimators vs ϕ in the severe I/Q imbalance scenario

with SNR = 15 dB.
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Figure 4.5: Accuracy of the CFO estimators vs ϕ in the moderate I/Q imbalance scenario

with SNR = 15 dB.
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For higher CFO values, JML becomes unbiased and its accuracy approaches the

CRB, meaning that it is an efficient estimator. It is also worth recalling that in both

the severe and moderate imbalance cases, no tangible difference is observed between

the true CRB (4.67) and its approximation (4.68), thereby justifying the adoption

of the white noise assumption in all practical scenarios. The results shown in Figs.

4.6 and 4.7 are obtained under the same operating conditions of Figs. 4.4 and 4.5,

respectively, except that the SNR is now set to 30 dB. In this case, we see that

CML outperforms JML only when |ϕ| is approximately smaller than 0.05π. Such

behavior is justified by the fact that at large SNR values the MSEE of JML becomes

proportional to (SNR)−1, while the accuracy of CML is essentially determined by the

bias term E2{εCML} present in (4.26), which vanishes only for specific values of ϕ. As

for CJML, it provides better estimates than CML except in the proximity of ϕ = 0.

Compared to JML, it performs similarly or slightly worsen when |ϕ| > 0.05π, while a

significant improvement is observed at smaller CFO values.
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Figure 4.6: Accuracy of the CFO estimators vs ϕ in the severe I/Q imbalance scenario

with SNR = 30 dB.
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Figure 4.7: Accuracy of the CFO estimators vs ϕ in the moderate I/Q imbalance scenario

with SNR = 30 dB.

Figures 4.8 and 4.9 illustrate the MSEE of the investigated schemes as a function

of the SNR for the severe and moderate I/Q scenarios, respectively. The curves are

obtained by varying the offset ϕ at each new simulation run according to a uniform

distribution over the range (−π/4, π/4). Marks indicate simulation results, while solid

line are drawn to facilitate the reading of the graphs. Comparisons are made with

some CFO recovery methods available in the open literature, which can cope with

I/Q imbalances by exploiting a repeated TP. Specifically, we consider the ESPRIT-

based estimator illustrated in [62] and other heuristic algorithms proposed by Pan and

Phoong (PP) in [59], by Kume, Lin and Yamashita (KLY) in [61], and by Wang, Xue,

Liu, Ye and Ren (WXLYR) in [60]. At SNR values smaller than 24 dB, both CML

and CJML exhibit a similar accuracy and outperform all the other methods. As the

SNR increases, however, CJML takes the lead due to its improved resilience against

mirror interference. Compared to CML and CJML, the ESPRIT-based scheme entails

a loss of approximately 5 dB, which increases to 10 dB when considering the JML.

Such a remarkable loss can be explained by recalling the poor accuracy of JML in

case of small CFO values.
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Figure 4.8: Accuracy of the CFO estimators vs SNR in the severe I/Q imbalance scenario.
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Figure 4.9: Accuracy of the CFO estimators vs SNR in the moderate I/Q imbalance

scenario.
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The PP algorithm operates satisfactorily at medium-to-high SNR values, while

a significant degradation is observed when the SNR decreases. As for KLY and

WXLYR, they perform quite poorly. This is particularly true for the latter scheme,

which is plagued by a considerable floor in its MSEE curve.

4.8 Concluding remarks

We have presented an analytical investigation of the frequency recovery problem

in a direct-conversion receiver affected by frequency selective I/Q imbalance. The

considered communication system is an OFDM burst-mode transmission, wherein

each frame is preceded by a conventional TP composed of several repeated parts. The

first objective of our study was to check whether traditional CFO estimators derived

without considering any I/Q impairment can be applied or not to a DCR architecture.

For this purpose, we have analytically assessed the performance of the conventional

ML (CML) scheme in two different scenarios characterized by either moderate or

severe imbalance. Next, we have reviewed and analyzed the JML method, which

provides joint estimates of the CFO, the useful signal component and its mirror image.

Finally, we have derived a novel scheme (CJML), which aims to improve the estimation

accuracy by exploiting some side-information about the signal-to-interference ratio.

It was shown that both CML and JML can be obtained from CJML by properly

adjusting the value of a design parameter.

Computer simulations have been run to validate the theoretical results and to

compare various CFO recovery schemes in a realistic WLAN scenario. The main

conclusions that can be drawn from this study are as follows:

i) CJML is characterized by an excellent accuracy independently of the CFO value

and the operating SNR;

ii) although CML is a biased estimator, it performs similarly to CJML at SNR values

of practical interest, while some degradation is observed in the high SNR region;

iii) JML performs poorly for small CFO values and exhibits a loss of approximately

10 dB with respect to CML and CJML;

iv) alternative schemes based on the ESPRIT algorithm or other heuristic approaches

perform worse than CML and CJML;
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v) CML is a practical and powerful estimator, even when applied to a commercial

direct-conversion receiver. This result is in contrast with the prevailing idea

that conventional frequency recovery schemes for OFDM systems perform poorly

in the presence of I/Q imbalance. Actually, our analysis reveals that the gain

achievable when using more sophisticated schemes like CJML is quite marginal

and can barely justify the required extra complexity.

Appendix A

In this Appendix we evaluate the mean and the MSEE of the CML estimate given in

(4.17) under the simplifying assumption that the noise term w(t) in (4.1) is a ZMCSG

complex random process. We begin by taking the derivatives of ΨCML(ϕ) in (4.19),

yielding

Ψ′CML(ϕ) =

M−1∑
m=0

M−1∑
k=0

(k −m)=
{

xHmxke
j(m−k)ϕ

}
(4.72)

Ψ′′CML(ϕ) = −
M−1∑
m=0

M−1∑
k=0

(k −m)2<
{

xHmxke
j(m−k)ϕ

}
(4.73)

and rewrite (4.7) in vector form as

xm = ηm + wm (4.74)

where ηm is defined as

ηm = aej[m−(M−1)/2]ϕ + be−j[m−(M−1)/2]ϕ (4.75)

and {wm; m = 0, 1, . . . ,M−1} are statistically independent ZMCSG random vectors

with covariance matrix σ2
wIP . Denoting by δ(n) the Kronecker delta function, from

(4.74) we get

E
{

xHmxke
j(m−k)ϕ

}
= ηHmηke

j(m−k)ϕ + σ2
wPδ(m− k)ej(m−k)ϕ (4.76)

which, after substitution into (4.72) and (4.73), produces

E{Ψ′CML(ϕ)} = M2q′M (ϕ)
[
qM (ϕ)‖b‖2 + <{aHb}

]
(4.77)
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and

E{Ψ′′CML(ϕ)} =

−M
2(M2 − 1)

6

{
‖a‖2 + [qM (ϕ)− γM (ϕ)]<{aHb} − [βM (ϕ) + qM (ϕ)γM (ϕ)]‖b‖2

}
(4.78)

where qM (ϕ), βM (ϕ) and γM (ϕ) are defined in (4.23) and (4.25). Finally, inserting

these results into (4.20) yields E{εCML} as given in (4.22).

Now, we concentrate on the computation of the MSEE. From (4.21), it turns out

that we need the expectation of the quantity [Ψ′CML(ϕ)]2 which, using (4.72), can be

rewritten as

[Ψ′CML(ϕ)]2 = −
M−1∑
m=0

M−1∑
k=0

M−1∑
n=0

M−1∑
`=0

(m− k)(n− `)ej(m−k)ϕej(n−`)ϕxHmxkx
H
n x`.

(4.79)

The expectation with respect to the ZMCSG vectors {wm; m = 0, 1, . . . ,M − 1} is

computed from (4.79) using the identity

E{wH
mwkw

H
n w`} = P 2σ4

wδ(m− k)δ(n− `) + Pσ4
wδ(m− `)δ(k − n) (4.80)

and is found to be

E
{

[Ψ′CML(ϕ)]2
}

= [E{Ψ′CML(ϕ)}]2 +
M3(M2 − 1)

6
AM (ϕ)σ2

w + P
M2(M2 − 1)

6
σ4
w

(4.81)

where AM (ϕ) is defined in (4.27). Finally, taking (4.78) and (4.81) into account,

yields the MSEE of ϕ̂CML as expressed in (4.26).

Appendix B

In this Appendix we provide the solution to the optimization problem (4.48). For this

purpose, we rewrite (4.48) as

min
ϕ̃

{
min
θ̃

P−1∑
p=0

∥∥∥x(p)−A2(ϕ̃)θ̃(p)
∥∥∥2
}

s.t. ‖b̃‖2 ≤ δ‖ã‖2
(4.82)



4.8 Concluding remarks 81

and start by solving the inner optimization problem with respect to θ̃ and for a fixed

ϕ̃. Applying the Karush-Kuhn-Tucker (KKT) conditions to the Lagrangian function

L(ã, b̃, λ) =

P−1∑
p=0

∥∥∥x(p)− ã(p)u(ϕ̃)− b̃(p)u(−ϕ̃)
∥∥∥2

+ λ(‖b̃‖2 − δ‖ã‖2) (4.83)

we obtain

∂

∂ã∗(p)
L(ã, b̃, λ) =

[
‖u(ϕ̃)‖2 − λδ

]
ã(p)+uH(ϕ̃)u(−ϕ̃)b̃(p)−uH(ϕ̃)x(p) = 0 (4.84a)

∂

∂b̃∗(p)
L(ã, b̃, λ) = uH(−ϕ̃)u(ϕ̃)ã(p) +

[
‖u(−ϕ̃)‖2 + λ

]
b̃(p)− uH(−ϕ̃)x(p) = 0

(4.84b)

for p = 0, 1, . . . , P − 1, with

λ ≥ 0 ‖b̃‖2 − δ‖ã‖2 ≤ 0 λ(‖b̃‖2 − δ‖ã‖2) = 0. (4.84c)

After some algebraic computations, the solution of the KKT equations is found to be

â(p) =
[M + λ(ϕ̃)]uH(ϕ̃)x(p)− uH(ϕ̃)u(−ϕ̃)uH(−ϕ̃)x(p)

[M − δλ(ϕ̃)][M + λ(ϕ̃)]− |uH(ϕ̃)u(−ϕ̃)|2
(4.85a)

b̂(p) =
[M − δλ(ϕ̃)]uH(−ϕ̃)x(p)− uH(−ϕ̃)u(ϕ̃)uH(ϕ̃)x(p)

[M − δλ(ϕ̃)][M + λ(ϕ̃)]− |uH(ϕ̃)u(−ϕ̃)|2
(4.85b)

λ(ϕ̃) = max

(
0,

Υ2(ϕ̃)−
√

Υ2
2(ϕ̃)−Υ1(ϕ̃)Υ3(ϕ̃)

Υ1(ϕ̃)

)
(4.85c)

where Υ1(ϕ̃), Υ2(ϕ̃) and Υ3(ϕ̃) are defined in (4.56)–(4.58), and the dependence of

â(p) and b̂(p) on ϕ̃ has been omitted in (4.85a) and (4.85b) to ease the notation. The

optimal value of ϕ̃ that solves (4.82) is eventually obtained by searching for the global

minimum of the concentrated likelihood function, i.e.,

ϕ̂c = arg min
ϕ̃∈[−π,π)

P−1∑
p=0

∥∥∥x(p)− â(p)u(ϕ̃)− b̂(p)u(−ϕ̃)
∥∥∥2

(4.86)

Taking (4.85a) and (4.85b) into account leads to the CJML estimator shown in (4.49)-

(4.51).
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Appendix C

In this Appendix we compute the CRB for the estimation of ϕ based on the signal

model shown in (4.62) and (4.63). For this purpose, we collect the unknown param-

eters into a (4P + 1)-dimensional vector ς = [ϕ zT ]T and let Cw be the correlation

matrix of w in (4.62). Then, the entries of the Fisher information matrix (FIM) Fς

are given by [4]

[Fς ]k1,k2 =

(
∂η

∂ςk1

)T
C−1
w

(
∂η

∂ςk2

)
1 ≤ k1, k2 ≤ 4P + 1. (4.87)

Taking (4.64)–(4.66) into account, after lengthy computations we get

Fς =

[
γ mT

m M

]
(4.88)

where γ = zT Q̇TC−1
w Q̇z, m = QTC−1

w Q̇z and M = QTC−1
w Q. In the latter

expressions, Q̇ is defined as

Q̇ =
∂Q

∂ϕ
=
[

Q̇T
0 Q̇T

1 · · · Q̇T
M−1

]T
. (4.89)

with Q̇m = diag{Ṙm, Ṙm, . . . , Ṙm︸ ︷︷ ︸
P

} and

Ṙm =

(
m− M − 1

2

)[
−sm(ϕ) −cm(ϕ) −sm(ϕ) cm(ϕ)

cm(ϕ) −sm(ϕ) −cm(ϕ) −sm(ϕ)

]
. (4.90)

The CRB for the estimation of ϕ corresponds to
[
F−1
ς

]
1,1

. Using well-known results

for the inverse of a partitioned matrix [4], we obtain

CRB(ϕ) =
1

γ −mTM−1m
(4.91)

which reduces to (4.67) after using the expressions of γ, m and M.



Chapter 5

Carrier Frequency Recovery

for Filtered Multitone

Modulations

5.1 Introduction

Multicarrier modulations, such as orthogonal frequency-division multiplexing (OFDM)

and filtered multitone (FMT), are regarded as key technologies to achieve high data

rates in time-frequency selective propagation scenarios. Here we focus on the FMT

signal format, firstly proposed for digital subscriber lines [68] and soon after adopted

in a variety of wireless standards such as the DVB-RCT [69] and the recent TETRA

Release 2 Enhanced Data Service (TEDS) [70]. Sparse pilot symbols are inserted in

the data stream according to a given pilot pattern (PP), so as to permit channel

estimation at the receiver at all time-frequency symbol positions. For instance,

TEDS envisages a rectangular-grid PP, with pilots sent periodically over a fixed set

of subcarriers (SCs) [70], while DVB-RCT employs a staggered pattern with cyclic

transmission of pilots on different groups of SCs [69]. Additional known symbols are

usually included for recovery/cancellation of carrier frequency offset (CFO), a task

to be accomplished prior to channel estimation/equalization. To this aim the cited

standards recommend the use of a synchronization preamble/postamble at each data
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frame, permitting joint acquisition/tracking of frame/symbol timing and CFO. While

the latter approach achieves a wide acquisition range (AR) thanks to these dedicated

symbols being closely spaced in time, it is not equally satisfactory in terms of mean

square estimation error (MSEE), whose minimization conversely requires that pilots

are arranged as far as possible from each other. To relieve this drawback, in [71]

a maximum-likelihood (ML) technique is proposed whereby the CFO is estimated

from the sparse pilot symbols intended for channel recovery rather than from packed

synchronization symbols. The focus therein is limited to a TEDS-like signal format

with a rectangular-grid PP. Actually the above approach is shown to improve the

MSEE, but this advantage is paid in terms of a narrower AR, as this occurs to be

roughly as wide as the inverse of the time-domain pilot separation. In [72] a method

is discussed overcoming the issue by jointly exploiting the sparse pilot symbols along

with tentative differential decisions on data symbols, thus succeeding in broadening

the AR by a factor 2-3 while retaining the same or slightly improved MSEE. However

this technique is computationally more demanding than the pilot-only based CFO

estimator in [71] and its suitability with modulation formats more complex than 4-

QAM is doubtful. We make a step ahead providing further results that integrate

those in [71]- [72]. We show that a viable sparse-pilot-only based technique capable of

widening the AR is the adoption of a non-rectangular PP with pilots simply shifted

in time over the SCs with respect to the rectangular pattern. With reference to a

TEDS-like signal format, we take up the ML Pilot Aided (PA) frequency synchronizer

in [71] and analyze its performance when used in conjunction with two specific non-

rectangular PPs, demonstrating their capability to significantly widen the AR, with

little or no effect on estimation accuracy, nor on algorithm complexity. We finally

assess the impact of all cited PPs on a notional FMT receiver over doubly selective

channels by presenting curves of frame error rate (FER) vs. signal-to-noise ratio

(SNR). It is also shown how over fast fading channels the AR can be traded off

against FER performance.
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5.2 Signal and channel models

The analog baseband FMT signal for a burst composed of L blocks and N SCs can

be written as [68]

s(t) =

L−1∑
l=0

N−1∑
n=0

c
(n)
l g(t− lT )ej2πnMt/NT (5.1)

where c
(n)
l denotes the QAM symbol transmitted on block l and SC n, g(t) is the

impulse response of a square-root-raised-cosine filter with roll-off factor ξ, shaping

the signal spectrum on each SC, T is the SC symbol spacing and the parameter

M , (1 + ξ)N is constrained to be an integer for ease of system implementation. The

signal in (5.1) is transmitted over a U -path time-varying channel, whose Gaussian

independent circular path gains and delays, all assumed approximately constant over

the time span of g(t), are denoted as ρu(t) and τu, respectively, and whose impulse

response is h(t) =
∑U−1
u=0 ρu(t)δ(t − τu). It can be shown [71], under some mild

assumptions, that at the receiver site, after proper processing, the matched filter

output from the n-th SC at the instant t = kT can be written as follows:

z
(n)
k ' φ(n)

k c
(n)
k ej2πνk + w

(n)
k (5.2)

where

φ
(n)
k , ejΘ

U−1∑
u=0

ρu(kT )ej2πnMτu/NT (5.3)

is a multiplicative (fading) factor affecting the k-th symbol over the n-th SC, ac-

counting for channel double selectivity, ν is the CFO normalized to the rate 1/T , Θ is

the phase offset, and finally w
(n)
k is a zero-mean uncorrelated circular Gaussian noise

sequence with variance σ2 = 2N0.

5.3 CFO estimation algorithm

We borrow here the ML PA CFO estimator analyzed in [71], limiting ourselves to

review the basic steps leading to the estimator formulation. Let S ≤ N denote the

number of SCs utilized to host pilot symbols, each bearing a fixed number P ≤ L of

unit-energy pilots. The overall number of pilots in the burst is then NP = SP . Let

the pair of indices (aj , bi,aj ), j = 0, . . . , S−1, i = 0, . . . , P −1, identify the position of
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the generic pilot symbol p
(aj)
bi,aj

, where aj ∈ A and bi,aj ∈ B(aj) denote the SC and time

indices, respectively, and where the sets A and B(aj) define the PP. After modulation

removal, the sample associated to the above pilot position is

y
(aj)
bi,aj

= z
(aj)
bi,aj

/p
(aj)
bi,aj

= φ
(aj)
bi,aj

ej2πνbi,aj + ζ
(aj)
bi,aj

, (5.4)

where the noise term ζ
(aj)
bi,aj

is statistically equivalent to w
(aj)
bi,aj

in (5.2). Then, after

defining

y(aj) ,
[
y

(aj)
b0,aj

, y
(aj)
b1,aj

, . . . , y
(aj)
bP−1,aj

]T
(5.5)

φ(aj) ,
[
φ

(aj)
b0,aj

, φ
(aj)
b1,aj

, . . . , φ
(aj)
bP−1,aj

]T
(5.6)

ζ(aj) ,
[
ζ

(aj)
b0,aj

, ζ
(aj)
b1,aj

, . . . , ζ
(aj)
bP−1,aj

]T
(5.7)

A(aj)(ν) , diag
{
ej2πνb0,aj , . . . , ej2πνbP−1,aj

}
, (5.8)

the set of samples (5.4) relevant to the aj−th SC can be written in matrix notation

as

y(aj) = A(aj)(ν)φ(aj) + ζ(aj). (5.9)

Next, stacking (5.5)-(5.7) so as to form the vectors

y ,
[
y(a0)T ,y(a1)T , . . . ,y(aS−1)T

]T
(5.10)

φ ,
[
φ(a0)T ,φ(a1)T , . . . ,φ(aS−1)T

]T
(5.11)

ζ ,
[
ζ(a0)T , ζ(a1)T , . . . , ζ(aS−1)T

]T
, (5.12)

the observed sequence corresponding to the pilot locations of the whole FMT burst

can be expressed as

y , Γ (ν)φ+ ζ (5.13)

where Γ (ν) is a NP ×NP diagonal matrix defined as

Γ (ν) , diag
{
A(a0)(ν),A(a1)(ν), . . . ,A(aS−1)(ν)

}
(5.14)

and φ and ζ are zero-mean Gaussian vectors having (Hermitian) covariance matrices

Cφ = E{φφH} and Cζ = E{ζζH} = σ2INP , respectively. Following a standard
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derivation [71], we observe that for fixed ν = ν̃ the vector (5.13) is Gaussian, leading

to the log-likelihood function (LLF)

Λ(y|ν̃) , −Ψ(y|ν̃) = −yHΓ (ν̃)(Cφ + σ2INP )
−1

ΓH(ν̃)y. (5.15)

5.3.1 Exact ML estimator

From (5.15) we obtain the ML CFO estimator (MLE)

ν̂ = arg min
ν̃∈I
{Ψ(y|ν̃)} (5.16)

where I is the search interval for ν̃, whose width clearly reflects the amount of

uncertainty in the a priori knowledge of ν. For the algorithm to be useful, this

uncertainty interval must not exceed the AR of the estimator.

5.3.2 Approximate ML estimator

Use of (5.16) requires knowledge of the actual noise power σ2 which is not always

available. To circumvent the issue it might be useful to let σ2 → 0 (i.e., SNR→∞),

leading to the alternative metric

ν̂ = arg min
ν̃∈I
{Θ(y|ν̃)} (5.17)

where

Θ(y|ν̃) , yHΓ (ν̃)C−1
φ ΓH(ν̃)y. (5.18)

Unfortunately the matrix Cφ is almost singular and its inversion may suffer from

numerical instability. A way out from this impasse is to slightly modify the metric in

(5.18) so as to prevent the above instability. This can be done by simply replacing

the noise variance required in (5.16) with a constant value σ2
0 , set equal to the noise

variance relevant to a given reference SNR, e.g. the maximum envisaged SNR or the

SNR at the nominal receiver sensitivity. Accordingly, the modified LLF is

Ψ0(y|ν̃) , yHΓ (ν̃)(Cφ + σ2
0I)
−1

ΓH(ν̃)y (5.19)

and the related estimation strategy (referred to as fixed-MLE, or FMLE, in the sequel)

is

ν̂ = arg min
ν̃∈I
{Ψ0(y|ν̃)}. (5.20)

It is worth observing that the complexity of the above algorithms depends on NP ,

but not on the actual PP.
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5.4 System definition and simulation results

5.4.1 Signal format

For the sake of concreteness, the signal format and the set of simulation parameters are

taken to be compatible with those adopted in the TEDS standard [70]. The number of

SCs is fixed at N = 16, while the burst length is L = 50. The modulation format used

throughout the burst is 4-QAM, with symbol spacing T = 1/2400 s and roll-off factor

ξ = 0.25. The information bits are protected by a rate-1/2 PCCC turbo encoder, with

feedforward and feedback generators in both RSC blocks given by 15 and 13 (in octal),

respectively. The coded bits are next passed through a linear-congruence interleaver

of the type described in [73]. The 6-path channel model presents an exponentially

decaying power-delay profile1 with normalized delay spread στ/T = 0.02. As for time

selectivity, we consider two scenarios, namely, slow fading (SF) and fast fading (FF),

simulated by setting fDT = 0.0075 and fDT = 0.03, respectively, where fD denotes

the Doppler spread. Assuming carrier frequency f0 = 400 MHz (one of the options in

TEDS), the above choice implies a terminal speed around 60 km/h and 260 km/h, for

the SF and FF scenarios, respectively. Furthermore for the FMLE scheme the noise

variance is set at the value yielding Es/N0 = 5 dB.

5.4.2 Pilot pattern

In this section we define the three PPs adopted in the simulations, with the following

common properties:

1. the number of pilot-bearing SCs is S = N/2 and the relevant index set is taken as

A = {a0 = 0, a1 = 2, . . . , aS
2−1 = N

2 −2, aS
2

= N
2 +1, aS

2 +1 = N
2 +3, . . . , aS−1 =

N − 1};

2. on all pilot-bearing SCs, there are P pilot symbols evenly spaced δT symbols

apart;

3. the ratio χ = PS
LN between the total number of pilot symbols and the total

number of burst symbols is fixed. Specifically, in the simulations we let χ = 0.05,

implying time-domain symbol spacing δT = 10 and P = b LδT c = 5.

1In the simulations we let τu = 5u µs, for u = 0, . . . , 5.
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Figure 5.1: From top to bottom: PP1, PP2, PP3. P = pilot, D = data.

The first pilot pattern (PP1), used as benchmark, is rectangular and very similar

to that standardized in the TEDS normal downlink burst [70], [74]. In PP1, the

time-domain pilot arrangement is identical for each pilot-bearing SC, i.e.,

B(aj) = {0, δT , . . . , (P − 1)δT } for aj ∈ A.

The second pattern (PP2) has staggered pilots, as follows

B(aj) =

{0, δT , . . . , (P − 1)δT } for aj ∈ A(I)

{ δT2 ,
3δT

2 , . . . , (2P−1)δT
2 } for aj ∈ A(II)
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while the third PP (PP3) is somewhat midway between the former two

B(aj) =

{0, δT , . . . , (P − 1)δT } for aj ∈ A(I)

{2, 2 + δT , . . . , 2 + (P − 1)δT } for aj ∈ A(II)

A(I) and A(II) being the elements of A with even and odd indices, respectively. The

three above PPs are shown in Fig. 5.1 for N = 16. The previous arrangement rules

can be applied to a burst of arbitrary length composed of an arbitrary even number

of SCs.

5.4.3 Impact of PP on acquisition range

The AR can be defined as the interval of values of CFO that can be unambiguously

estimated by the synchronizer. Clearly, the AR achieved by PP1 cannot exceed the

interval (− 1
2δT

, 1
2δT

) and may turn out to be very narrow if the pilots are spaced

far apart: for instance, the absolute value of ν cannot exceed 0.05 for PP1 in Fig.

5.1. This limit can be considered too restrictive in some applications [72]. However,

we found that a wider AR can be achieved without changing the number of pilots,

by simply resorting to a staggered PP such as PP2 or PP3 in Fig. 5.1 (other

configurations are possible). This can be explained observing [72, eqs. (20)-(23)] that

the correlation between two arbitrary samples of the fading process can be written as

the product of two terms depending separately on their distance in time and frequency.

Therefore, provided the channel is sufficiently correlated in frequency2, the ML CFO

estimator (5.16) or (5.20) can exploit, among other statistics, phase rotations between

pairs of samples of type (5.4) belonging to different SCs. Indeed, as far as the AR is

concerned, what actually matters is the minimum spacing of pilots in time regardless

of the SCs they belong to. This observation permits to predict for PP2 and PP3 values

of (one-sided) AR around 0.1 and 0.25, i.e., twice and five times larger, respectively,

than the AR of PP1.

5.4.4 Channel estimator

Channel is estimated via the two-step approach suggested in [74], here briefly re-

viewed. As first step, we use a MMSE Bayesian smoother-interpolator on each

2The above choice of channel parameters leads to a channel correlation coefficient along the

frequency axis between consecutive pilot-bearing SCs around 0.87.
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pilot-bearing SC, so as to get an estimate of the fading process at all (pilot and

data) symbol locations. This requires a priori knowledge (or measurement) of the

fading covariance matrix over all symbols in a SC, and of noise power as well. The

latter could be estimated or replaced by a fixed value, as with the FMLE. Let

Φ(aj) ,
[
φ

(aj)
0 , . . . , φ

(aj)
L−1

]T
denote the (Gaussian) vector of actual fading samples

at the L symbol positions on the j-th pilot-bearing SC, and CΦ its covariance matrix

CΦ , E{Φ(aj )Φ(aj )
H
}, (5.21)

where the index aj was dropped on the left side in view of the stationarity properties

of the fading process. After modulation removal and (error-free) CFO compensation,

an appropriate representation of the noisy samples of the fading process observed at

the P pilot positions is, from (5.4)-(5.5)

y(aj) = H(aj)Φ(aj) + n(aj), (5.22)

where the noise vector n(aj) is statistically equivalent to ζ(aj) in (5.7), and H(aj) is

an “observation” matrix of size P ×L, whose entries on the i-th row, i = 0, . . . , P −1,

are all zeros except a single unitary element at position bi,aj . The Bayesian MMSE

linear estimator for Φ(aj) is [4]

Φ̂
(aj)

=
(
CΦ
−1 +H(aj)

T
Cn
−1H(aj)

)−1
H(aj)

T
Cn
−1y(aj)

Cn , σ2IP denoting the P × P noise covariance matrix. As next step, simple

linear interpolation is applied in the frequency domain (i.e., across the SCs), so as to

estimate the fading process at all symbol positions over the remaining SCs.

5.4.5 Simulation results

Figures 5.2 and 5.3 show plots of the MSEE incurred by the MLE and FMLE vs. the

actual normalized CFO, for all PPs presented in a previous section for the SF and

FF scenarios, respectively.
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Figure 5.2: MSEE vs. ν for the SF scenario; Es/N0 = 15 dB.
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Figure 5.3: MSEE vs. ν for the FF scenario; Es/N0 = 15 dB.
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The SNR is fixed at Es/N0 = 15 dB while the FMLE assumes Es/N0 = 5 dB. In-

spection of the figures reveals that in the region of correct operation of the estimators

(the flat low part of the plots), the MLE and FMLE exhibit substantially the same

MSEE, thus confirming that the FMLE is hardly degraded even with rather large SNR

mismatches. It is also seen that the MSEE is substantially independent of the PP

while, conversely, the choice of PP has a strong impact on the CFO AR, i.e., on the

width of the flat region of the MSEE curves. Specifically, it is found that for both SF

and FF scenarios, the predictions are substantially confirmed: PP1 has the narrowest

AR (around ±0.04 in the normalized scale), while PP2 does around twice better

(±0.09) and finally PP3 attains a noteworthy ±0.24 (slightly less in the FF scenario).

To assess the impact of the CFO estimator and the PP on the receiver performance, in

Figs. 5.4 and 5.5 we also provide plots of FER as a function of Eb/N0 for both fading

scenarios and all considered PPs. It can be seen that the receiver is not affected at
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Figure 5.4: FER vs. Eb/N0 for the SF scenario.

all by the specific PP over the SF scenario, while in the presence of FF use of PP2 and

PP3 proves somewhat advantageous with respect to PP1 (a 2-dB gain is observed at

FER = 10−2). The reason is, switching from SF to FF tends to decorrelate the fading
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Figure 5.5: FER vs. Eb/N0 for the FF scenario.

process on the time axis, while the frequency-domain correlation is not affected. In

consequence, when the fading correlation between consecutive pilot-bearing SCs is

sufficiently large, use of PP2 or PP3 is equivalent to a tighter sampling of the fading

process in the time domain, thereby improving both channel estimation and decoder

performance. This also indicates that the AR can be somewhat traded off against the

FER performance, as PP3 entails a larger AR but a slightly worse FER than PP2,

and viceversa.

5.5 Concluding remarks

In this chapter we discussed the impact of the PP on the AR of a ML PA CFO esti-

mator for a TEDS-like filtered multitone system. We showed that use of a staggered

pilot distribution over the SCs may considerably widen the AR in comparison with

the rectangular PP (adopted in the TEDS standard), with no substantial impact on

estimation accuracy nor on complexity.



Chapter 6

Distributed Power Control

over Interference Channels

6.1 Introduction

The power consumption of the communication technology industry is becoming a ma-

jor societal and economical concern [75], which has stimulated academia and industry

to an intense activity in the new research area of green cellular networks [76]– [78].

The ultimate goal is to design new innovative network architectures and technologies

needed to meet the explosive growth in cellular data demand without increasing the

power consumption. Along this line of research, in this chapter we focus on a network

composed of several single-antenna transmitter-receiver pairs operating over the same

frequency band (or time slot) in which each pair aims at selfishly minimizing the power

required to achieve a given signal-to-interference-plus-noise ratio (SINR). The mutual

interference due to the simultaneous transmissions gives rise to a sort of competition

for the common resource. The natural framework to study the solution of such

interactions is non-cooperative game theory [6], [79] in which the transmitter-receiver

pairs are modeled as players that engage in a game using their own local information

while fulfilling the given requirements. The existence and uniqueness properties of the

equilibrium points of the underlying game have been widely studied in the literature

and a large number of works already exist on this topic [80]– [82]. Particular attention
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has also been devoted to derive schemes based on best response dynamics that allow

each player to achieve the equilibrium in an iterative and distributed manner. All

these schemes rely on the assumption that the transmitter has perfect knowledge of

the SINR measured at the receiver. This assumption does not hold true in practi-

cal applications and the only way for the transmitter to acquire this knowledge is

through a return control channel. Although possible, however, this solution is not

compliant with most of the current wireless communication standards in which the

receiver only sends back a link-layer acknowledgement (ACK) whenever it is able to

correctly decode the message and a negative ACK (NACK) otherwise. Most of the

existing works dealing with resource allocation schemes using a 1-bit feedback are for

centralized networks (see [83], [84], and references therein), while only a few examples

exist in decentralized scenarios. A first attempt in this direction is represented by [85]

where the authors propose a distributed power control algorithm maximizing the sum

rate in a secondary network, under a given outage probability at the primary user.

The latter is evaluated by the secondary user by means of the 1-bit ACK/NACK

feedback sent on the reverse link between the primary receiver and transmitter.

In [86], a distributed power allocation scheme for outage probability minimization

in multiple-input multiple-output (MIMO) interference channels is proposed. The

optimization problem is modeled as a non-cooperative game with mixed strategies,

where the probability of playing a certain strategy is updated with a reinforcement

learning rule based on the ACK/NACK feedback. The major contribution of this

chapter is a novel iterative and distributed algorithm that allows the transmitters

to converge to the equilibrium point using only the limited feedback in the form

of ACK or NACK over packet-oriented transmission links. The proposed solution

relies on a learning algorithm that is reminiscent of the scheme proposed in [83] and

allows each transmitter to locally update an estimate of the received SINR while

converging towards the equilibrium. This is achieved applying a simple updating rule

completely unaware of the structure of the underlying game and requiring knowledge

of local information only. Numerical results are used to assess the convergence and

performance (in terms of number of iterations required) of the proposed solution in

the uplink of a small-cell network.
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6.2 System model and problem formulation

We consider aK−user Gaussian interference channel, in which there areK transmitter-

receiver pairs sharing the same Gaussian channel, that might represent a time or

frequency bin. The transmission is organized in frames with each frame counting a

certain number of packets, each one composed of M data symbols of unity-energy. We

call xk(m) the mth data symbol of transmitter k within a generic packet and denote

xk = [xk(1), xk(2), . . . , xk(M)]T . Each xk is encoded at a rate rk ∈ Rk with Rk being

the set of feasible rates and is transmitted with an amount of power pk ∈ R+. The

channel is assumed to be constant over a frame and to change independently from

one frame to another (block-fading channel). We assume that the transmitters do not

have any a-priori knowledge of the channel.

Letting hk,i denote the channel coefficient between transmitter i and receiver k over

a generic packet, the vector yk ∈ CM×1 received at the kth receiver within the generic

packet can be written as

yk =

K∑
i=1

hk,i
√
pixi + wk (6.1)

where wk ∼ CN (0, σ2IM ) accounts for the additive white Gaussian noise. The

corresponding SINR is given by

γk =
pk|hk,k|2

K∑
i=1,i6=k

|hk,i|2pi + σ2

. (6.2)

For later convenience, we call

µk =
|hk,k|2

K∑
i=1,i6=k

|hk,i|2pi + σ2

(6.3)

the channel-to-interference-plus-noise ratio (CINR) and denote p−k =

[p1, . . . , pk−1, pk+1, . . . , pK ]T the vector collecting all the transmit power except that

of transmitter k.

The aim of this study is to solve the following power minimization problem for any

k = 1, 2, . . . ,K

min
pk∈R+

pk (6.4)

subject to γk ≥ γ̄k
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where γ̄k > 0 are given quality-of-service (QoS) requirements. The interplay among

the pairs through (6.2) makes (6.4) a multidimensional optimization problem in which

each transmitter-receiver pair aims at unilaterally choosing the minimum transmit

power pk so as to full fill its own requirement. In doing this, each pair affects the

choice of all other pairs as well.

6.3 Game formulation

The natural framework to study the solution of problems in the form of (6.4) is non-

cooperative game theory [6]. Interpreting (6.4) as a game G leads to the definition

of the tuple G = (K, {Ak}, {uk}), where K = {1, 2, . . . ,K} is the set of players, Ak
is the kth player’s strategy set such that the constraints in (6.4) are satisfied, and

uk = pk is the utility function of player k. Note that player k’s action set depends on

the actions of the other players, i.e., Ak = Ak(p−k) due to the presence of coupling

constraints. In this case, the solution concept to be used is the generalized Nash

equilibrium (GNE) that is defined as the point collecting all the system states stable

to unilateral deviations [87]. The GNE of the power allocation problem in (6.4) has

been extensively studied in the literature. The main results are summarized in the

following theorem.

Theorem 1 If the problem (6.4) is feasible, then there exists a unique power allo-

cation vector p∗ = [p∗1, p
∗
2, . . . , p

∗
K ]T that is the GNE of the game G. The elements of

p∗ are the solutions to the following fixed-point system of equations:

p∗k = BR(p∗−k) =
γ̄k

µk(p∗−k)
∀k ∈ K (6.5)

where the operator BR stands for the best-response of user k to given other users’

strategy p∗−k and µk is defined in (6.3).

As shown in [88], a necessary and sufficient condition for which problem (6.4) is

feasible is that ρG < 1 where ρG is the spectral radius of matrix G ∈ RK×K , whose

(k, i)th element is computed as

[G]k,i =

{
0 k = i

γ̄k|hk,i|2
|hk,k|2 k 6= i.

(6.6)

The existence and the uniqueness follows observing that the best-response is a stan-

dard function [89], [90].
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In addition to this, using the results of [89] it follows that the optimal point p∗ can

be reached via a distributed iterative power control policy based on best response

dynamics according to which every player k updates its power (strategy) p
(n+1)
k at

time n+ 1 as

p
(n+1)
k =

γ̄k

µk(p
(n)
−k )

(6.7)

with µk(p
(n)
−k ) being the CINR within the transmission time n.

6.4 Distributed algorithm

Using (6.2), we may rewrite (6.7) as

p
(n+1)
k = p

(n)
k

γ̄k
γk(p(n))

(6.8)

from which it follows that the computation of p
(n+1)
k for a given p

(n)
−k requires knowl-

edge of γk(p(n)). Most of the existing works rely on the assumption that each

transmitter has perfect knowledge of it. Unfortunately, this assumption does not

hold true in practical applications and the only way for the transmitter to acquire

this knowledge is through a return control channel. Although possible, however, this

solution is not compliant with current cellular standards in which the receiver only

sends back an ACK (fk = 0) whenever is able to correctly decode the packet and a

NACK (fk = 1) otherwise. Assume that a maximum likelihood (ML) decoder is used

at the receiver and denote by x̂k ∈ CM×1 the ML estimate of xk obtained from yk.

Therefore, an ACK or NACK is sent to transmitter k with probability

Pr
{
fk = f̄

}
=

{
εk(µk, rk, pk) f̄ = 1

1− εk(µk, rk, pk) f̄ = 0
(6.9)

where εk(µk, rk, pk) stands for the ML decoding error probability, which is clearly a

function of the CINR µk, the transmit power pk and the encoding rate rk. In partic-

ular, assuming Gaussian random codes a generic εk(µk, rk, pk) can be approximated

as follows [91]

εk(µk, rk, pk) ≈ exp

(
Mρ

[
rk log 2− 1

2
log

(
1 +

γk
1 + ρ

)])
where ρ ∈ [0, 1] is the union bound parameter and M is the number of data symbols

per packet encoded at a rate of rk bits/symbol.
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Algorithm 1 Distributed resource allocation algorithm

1. At n = 1 for any k ∈ K, choose a feasible r
(1)
k ∈ Rk and an arbitrary estimate

µ̂
(1)
k . Then, set p̂

(1)
k = γ̄k/µ̂

(1)
k ;

2. At n = 2, 3, . . . for any k ∈ K

(a) compute

µ̂
(n)
k = µ̂

(n−1)
k +

f
(n−1)
k − ε(µ̂(n−1)

k , p
(n−1)
k , r

(n−1)
k )

(n− 1)
β
ε′(µ̂

(n−1)
k , p

(n−1)
k , r

(n−1)
k )

and set

r
(n)
k = arg max

r∈Rk
Φ(µ̂

(n)
k , p

(n−1)
k , r)

(b) update

p
(n)
k =

γ̄k

µ̂
(n)
k

Based on the above considerations, we propose an iterative and distributed two-step

algorithm that allows each transmitter-receiver pair to reach the GNE of the game

only exploiting the knowledge of {p(n−1)
k , r

(n−1)
k , f

(n−1)
k }. The first step is reminiscent

of the iterative solution proposed in [83] and aims at locally computing a reliable

estimate µ̂
(n)
k of µ

(n)
k . Mathematically, µ̂

(n)
k is obtained as follows

µ̂
(n)
k = µ̂

(n−1)
k +

f
(n−1)
k − ε(µ̂(n−1)

k , p
(n−1)
k , r

(n−1)
k )

(n− 1)
β
ε′(µ̂

(n−1)
k , p

(n−1)
k , r

(n−1)
k )

(6.10)

where β is a design parameter that regulates the convergence speed of the iterative

procedure. The larger β, the smaller the convergence time. In addition, ε′ denotes
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the derivative of ε with respect to µ and is given by

ε′ =
−Mρpk

2(1 + ρ+ µkpk)
εk

where we have dropped the functional dependence from (µk, rk, pk) for notational

simplicity. The value of µ̂
(n)
k is then used to update r

(n)
k according to:

r
(n)
k = arg max

r∈Rk
Φ(µ̂

(n)
k , p

(n−1)
k , r) (6.11)

where

Φ(µ̂
(n)
k , p

(n−1)
k , r) =

[ε′(µ̂
(n)
k , p

(n−1)
k , r)]

2

ε(µ̂
(n)
k , p

(n−1)
k , r)[1− ε(µ̂(n)

k , p
(n−1)
k , r)]

is the Fisher information associated to the random variable fk. Following the same

arguments of [83], it can be proven that for any unbiased estimator based on n

ACK/NACK, the estimation error variance of µ
(n)
k is lower bounded by the reciprocal

of the cumulative Fisher information given by
∑n
i=1 Φ(µ

(i)
k , p

(i−1)
k , r

(i)
k ). The estimate

µ̂
(n)
k is eventually used in the last step for updating the transmit power as specified

in (6.7). The main steps of the proposed solution are summarized in Algorithm 1

where f
(1)
k is the ACK/NACK received after the first packet transmission.

Remark 1. Observe that similarly to a reinforcement learning approach in which

at each step the probability function is updated according to a certain rule and then a

strategy is randomly played according to this probability, in the proposed solution the

estimate of µk is updated through (6.10), but then, the strategy is deterministically

played, exploiting the knowledge of the optimal solution of the game with complete

information.

Remark 2. The analytical study of the convergence of the proposed algorithm is still

much open. In the next section, we limit to assess the convergence of Algorithm 1

by means of Monte Carlo simulations. Interestingly, it turns out that the proposed

solution converges (within the required accuracy) whenever the game with complete

information is feasible and thus the existence of the unique GNE point is guaranteed.

Moreover, the convergence point is the same meaning that the same performance can

be achieved despite the amount of required information is much lower. The only price

to pay is a greater convergence time.
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6.5 Simulation results

The performance of the distributed algorithm is now assessed by means of an extensive

simulation campaign. To this end, we consider the uplink of a small-cell network [92]

consisting of up to K = 6 single-antenna small cells, each serving a single UE. We set

γ̄ = [0.5, 1, 1.5, 2, 2.5, 3]T dB and assume that the coverage area of each small cell is

circular with radius R = 50 m and minimum distance Rmin = 5 m. The small cells

are randomly distributed over a 200× 50K area. Moreover, we consider a system in

which the large-scale fading is dominated by the path-loss. This amounts to saying

that the channel coefficients hk,i can be modeled as

hk,i =
d̄

dα
h̄k,i for d ≥ Rmin (6.12)

where h̄k,i ∼ CN (0, 1) accounts for the small-scale fading, d is the distance between

transmitter k and receiver i, α ≥ 2 is the path-loss exponent and d̄ > 0 is a constant

that regulates the channel attenuation at distance Rmin [93]. We set d̄ = 10−3.53

and α = 3.76. We assume that the channel coefficients maintain constant in time.

Moreover, the noise power level is set to σ2 = −100 dBm and each packet is assumed

to contain M = 500 symbols. The proposed algorithm is initialized for any k ∈ K as

follows: r
(1)
k = 1 bit/s/Hz, µ̂

(1)
k = |hk,k|2/σ2 and p

(1)
k = γ̄k/µ̂

(1)
k . Figure 6.1 illustrates

the values of γ
(n)
k (dashed lines) measured at the BS as a function of the number n

of transmitted packets in a scenario of K = 4 small cells when β = 0.9. The target

SINRs γ̄k for k = 1, 2, . . . ,K (continuous lines) are also reported for comparison.

Figure 6.2 reports also the variations of p
(n)
k (dashed lines) as n increases together

with the power (continuous lines) required at the GNE point. The results of Fig. 6.5

illustrates the behavior of γ
(n)
k when K = 4 and β is set to 0.5. As expected, reducing

β allows terminals to achieve convergence in a smaller number of packets. However,

this is achieved at the price of larger variations around the target values {γ̄k}. Figure

6.6 shows γ
(n)
k when K changes during the execution of the algorithm. We start with

K = 4 at n = 1 and assume that two new small cells become active at n = 300 and

inactive again at n = 600 and n = 800. As seen, the algorithm is very robust to

network perturbations and guarantees fast convergence in a dynamic scenario.
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Figure 6.1: SINR vs. number of packets when K = 4 and β = 0.9.
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Figure 6.2: Transmit power vs. number of packets when K = 4 and β = 0.9.
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Figure 6.3: SINR vs. number of packets when K = 6 and β = 0.9.
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6.6 Concluding remarks

In this chapter, we have focused on the problem of selfishly minimizing the power

consumption while satisfying target SINR constraints in interference channels charac-

terized by single-antenna transmitter-receiver pairs operating over the same frequency

band or time slot. In particular, we have first modeled the problem as a non-

cooperative game with perfect CSI and then we have solved it assuming that each

transmitter has no knowledge about the propagation channel but could only exploit

the ACK or NACK feedbacks generated at the link layer from the receiver. This choice

has been motivated by the fact that it is compliant with many wireless communication

standards and avoids the need of introducing a suitably designed return control chan-

nel. Accordingly, we have proposed an iterative and distributed algorithm inspired by

best response dynamics in which (at each step) every transmitter updates its power

exploiting a local estimate of its current SINR at the receiver. The latter is learned

step by step via an updating rule based on the 1-bit feedback information given by

ACK or NACK. The performance of the proposed solution have been evaluated by

means of numerical results in the uplink of a small cell network. It turns out that the

algorithm converges reasonably fast to the GNE point of the underlying game with

perfect CSI.



Chapter 7

An Efficient Receiver

Structure for Underwater

Acoustic Communications

7.1 Introduction

Underwater acoustic (UWA) communication systems have attracted considerable at-

tention in recent years due to the growing interest for issues related to exploration,

surveillance and exploitation of the submarine environment (e.g. [94]– [99]). Most of

these applications require some form of wireless communication capability between

submerged terminals such as autonomous underwater vehicles (AUVs), platform/-

mother ships, nodes of underwater networks etc. As is well known, the UWA multi-

path channel is plagued by several impairments, notably: i) severe time dispersion due

to the low sound propagation speed with consequent possible distortion of the received

waveform, ii) for the same reason, amplification of Doppler shifts/rates associated to

relative movements of terminals, iii) large propagation delays, iv) low-pass behavior

of the propagation channel caused by sound absorption, leading to strong limitation

of bandwidth usage. These factors considerably limit transmission rates and coverage

of UWA links in comparison with their electromagnetic radio counterparts and call

for the search of more specific and robust signaling schemes. Comprehensive accounts
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of the above issues along with presentation and discussion of specific transmission

schemes can be found e.g. in [96] - [99] and references therein.

Recently, a novel interesting spread-spectrum transmission technique was proposed

in [100] and applied to the UWA channel. The basic idea is to employ a sawtooth-

frequency-modulated waveform as signal carrier (termed S2C, sweep-spread carrier),

with linear frequency ramps, such to facilitate separation at the receiver of the signal

replicas collected from the various channel paths. Actually, since these replicas

undergo different propagation delays, they are mapped to different positions on the

frequency axis when the received signal is down-converted to baseband using a locally-

generated copy of the S2C synchronized to the strongest path. A proper design of the

signal parameters permits to space the spectral replicas associated with the various

paths far enough from one another so as to avoid their overlap. It is therefore possible

to single out the strongest path with no interference from the others, thus canceling

multipath-induced distortion.

Field trials have shown that this technique offers performance margins with respect

to other conventional modulation formats employed on UWA channels. However the

cited basic scheme is still amenable to significant improvements. In the following

we propose and discuss an advanced receiver structure capable of enhancing the

power efficiency of the scheme in [100] through exploitation of the energy received

from all non-negligible acoustic paths rather than only from the strongest path.

This goal can be achieved by first identifying the strongest paths, then performing

parallel elaboration for each path and finally combining the decision metrics from

each processing branch. This approach is similar to that used for the reception of

direct-sequence spread-spectrum (DS-SS) signals over time-dispersive wireless links,

known as “rake receiver” [5], but the context considered here is quite different and

more demanding as we have now to face the peculiar problems relating to both the

non-conventional format of the S2C signal and the rather adverse UWA propagation

environment. In particular, one of the critical issues to be addressed here is related

to the joint recovery of carrier and clock references for each of the signal replicas

involved.

A real-time hardware version of the modem, complete of synchronization functions,

was implemented in laboratory and its behavior was assessed over standard UWA

channel emulators and compared to that exhibited by the traditional strongest-path-

based scheme in terms of bit error rate (BER) vs. signal-to-noise ratio.
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7.2 Signal and channel models

Now we briefly review the S2C signal format referring the reader to [100] for further

details. We assume information is transmitted in the form of data packets, each

starting with a preamble of P known pilot symbols, to be employed for carrier and

symbol synchronization/tracking, followed by a payload of D symbols. Letting T

denote the symbol spacing, the packet length is TB = (P + D)T . The number

of packets and the instants for their transmission depend on both the amount of

information to be transferred and the specific link protocols.

Focusing then on a generic packet, the signal at baseband, prior to spectral expansion

and frequency up-conversion, is a conventional linearly-modulated waveform

s(t) =

P+D−1∑
i=0

aig(t− iT ) (7.1)

where a , [a0, . . . , aP+D−1]
T

= [p0, . . . , pP−1, d0, . . . , dD−1]
T

denotes the vector

of (differentially-encoded) QPSK symbols in the packet, and g(t) is a root-raised-

cosine pulse with roll-off factor α. In particular, the pseudo-random sequence p ,

[p0, . . . , pP−1]
T

of pilot symbols is common to all packets, while the sequence d ,

[d0, . . . , dD−1]
T

represents a specific data segment.

After spectral spreading and frequency up-conversion, the bandpass signal to be fed

to the acoustic projector can be written as

x(t) = <{s(t)c(t)} (7.2)

c(t) denoting a frequency-modulated carrier achieving both frequency conversion and

bandwidth expansion, as follows

c(t) = exp
{
j2π

[
fLτ(t) +mτ2(t)

]}
(7.3)

where τ(t) is a sawtooth-shaped periodic sweep function, with period Tsw

τ(t) = t−
⌊

t

Tsw

⌋
Tsw (7.4)

bzc being the largest integer not exceeding z. In (7.3), fL represents the lower limit of

the frequency ramps, while 2m is the ramp slope. The instantaneous carrier frequency
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during a ramp is proportional to the derivative of the argument of the exponential in

(7.3)

fi(t) = fL + 2m

(
t−
⌊

t

Tsw

⌋
Tsw

)
. (7.5)

It follows that the upper frequency limit is fH = fL + 2mTsw. The limits fL and fH ,

along with the sweep interval Tsw, usually taken an integer multiple of the symbol

spacing, are key design parameters as they define the slope 2m = fH−fL
Tsw

of the ramps

and characterize the ability of the receiver to resolve the multipath channel structure

(i.e., to separate the signal replicas arriving from the various paths).

After spreading and frequency up-conversion, the signal bandwidth amounts to

approximately B ≈ fH − fL, i.e., it is expanded by a factor (spreading factor)

M ,
fH − fL

1+α
T

(7.6)

with respect to a conventional narrowband signal,M usually being much greater than

unity.

A general expression of the multipath time-varying UWA channel impulse response

is as follows

rc(t, t0) =

K(t0)−1∑
k=0

hk(t0)δ [t− t0 − τk(t0)] (7.7)

where K(t0) is the number of (non-negligible level) paths and hk(t0), τk(t0) are the

(complex-valued) gain and delay of the k-th path, respectively, all evaluated at the

instant of application of the impulse t = t0. In the following we assume that the

channel variations are negligible in a time span comparable to the packet length, so

that the information about the channel parameters in (7.7), estimated from the packet

preamble, can be considered reliable throughout the whole payload segment. This is

not a severe constraint since transmission on the UWA link is normally preceded by

a procedure of adjustment of the transmission parameters to the channel conditions.

Accordingly, the dependence of the model in (7.7) on t0 can be dropped and all

channel parameters can be regarded as random variables instead of random processes.

Therefore the received waveform can be written as

y(t) =

K−1∑
k=0

yk(t) + w(t) (7.8)
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where w(t) is AWGN of double-sided spectral density N0/2, accounting for both

external and internal disturbance sources affecting the receiver, and yk(t) is the

waveform received through the k-th path, i.e., scaled by the coefficient hk and delayed

by τk

yk(t) = <{hks(t− τk)c(t− τk)}. (7.9)

7.3 Modem architecture

A functional block diagram of the S2C modem is depicted in Fig. 7.1. The transmitter

section consists of a standard S2C modulator similar to that discussed in [100]. The

information bits are fed to a BCH encoder followed by a DQPSK symbol mapper.

The resulting symbol sequence is used to build the data packet (function not detailed

in the figure) that is passed through the shaping filter and finally applied to the S2C

frequency upconverter.

Figure 7.1: Modem architecture.

The receiving section includes a block for preamble detection and channel impulse

response (CIR) estimation, whose task is to identify, for each packet, the times of

arrival of the preamble from the K strongest paths and also to estimate the (complex-

valued) gains of these paths. This leads to the receiver architecture indicated in Fig.

7.1, wherein each of the K parallel branches is used to process the signal received

from a single path. Specifically, with regard to the k-th branch, the input is applied
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to a in-phase and quadrature converter which multiplies it by a replica of the S2C

waveform synchronized with that received from the k-th path. In this way the signal

spectrum relative to that path is despread and exactly converted to baseband, while

subsequent matched filtering removes interference from the other paths provided that

their spectra do not overlap the “good” spectrum at baseband, i.e., their differential

propagation delays with respect to the k-th path are sufficiently large. As next step,

the matched filter output is sampled at symbol rate at the instants iT+ τ̂k, where τ̂k is

an estimate of τk provided by the CIR estimator and, assuming exact ISI cancellation,

from (7.1) and (7.8)-(7.9) the generic sample takes on the form

vk,i = hkai + wk,i , (7.10)

the last term denoting the noise sample generated from w(t) in (7.8) after the above

processing steps through the k-th branch.

Finally, the K samples relevant to the symbol ai are combined according to the

maximal ratio combining (MRC) criterion [5] prior to being fed to the symbol detector

and the decoder. With regard to the MRC block, for the moment we observe that a

sufficient condition for the noise terms {wk,i}K−1
k=0 to be mutually uncorrelated is that

the differential delays between the various paths obeys the same conditions allowing

separation of the respective signal replicas.

It is noted that when K = 1 the receiver structure reduces to that discussed in [100]

where only the strongest path is processed.

7.4 Timing and channel estimation

As mentioned earlier, the first operation to be accomplished at the receiver site is

estimation of the timing of arrival of the signal replicas propagating along the channel

paths. This permits to synchronize locally generated copies of the S2C waveform with

those associated with the K strongest paths and then proceed to separate the signal

replicas received from these paths. Another important related task is estimation of

the complex-valued channel gains so as to identify the strongest paths and correctly

apply the MRC technique.

Both the above operations are carried out by means of a correlator, as is now briefly

outlined. Let sP (t) denote the baseband continuous-time version of the preamble
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separated from the payload, as follows

sP (t) =

P−1∑
i=0

pig(t− iT ) (7.11)

and also let

xT (t) = sP (t)c(t) (7.12)

denote the complex-valued bandpass version of the preamble incorporating both

frequency up-conversion and bandwidth expansion. It is noted from (7.2) that the

real part of (7.12) represents the transmitted preamble.

Using for simplicity continuous-time notation, the task of the correlator is to cal-

culate the inner product between the template function (7.12) and a newly received

segment of the input waveform, and then take its squared modulus, as follows

z(t) = |r(t)|2, t ∈ T (7.13)

where

r(t) =

∫ TP

0

y(t+ τ − TP )x∗T (τ)dτ, (7.14)

T is a time interval in which the preamble is expected to be received and TP = PT is

the preamble length. The receiver stores the functions (7.13)-(7.14) in memory along

with the raw received waveform y(t) for subsequent processing.

As can be easily verified, if path delays are sufficiently spaced from one another and

the signal-to-noise-plus-interference ratio on the paths is high, the squared correlation

z(t) exhibits a definite peak in correspondence of each of the delays {τk}. Figure 7.2

shows an example of such a function.

Specifically, assuming for a moment that the receiver is driven by a single noiseless

signal replica received from the k-th path (see (7.9)), it is found that (7.13) peaks at

the instant TP + τk, and the corresponding value for the inner product (7.14) is

r(TP + τk) =
ESP

2
hk, (7.15)

where ESP =
∫ TP

0
|sP (τ)|2 dτ is the energy of sP (t). From (7.15) it is seen that

at the instant where the squared correlation peaks the inner product yields a value

proportional to the path gain hk, while the squared peak level is proportional to

|hk|2. Therefore (7.14) provides all information necessary for path sorting, ramp

synchronization and implementation of the MRC detector.
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Figure 7.2: A sample correlation function (square modulus). The vertical scale is arbitrary.

Collecting the above, once correlation (7.13) has been calculated, a maximum search

procedure must be initiated to obtain an estimate of the delay associated to each

preamble replica arriving at the receiver. In particular, the time shift associated to

the strongest replica (assumed relevant to the path of index zero) is obtained as

τ̂0 = arg max
z(t)>λ
t∈T

z(t) (7.16)

where λ is a proper threshold affecting the detector performance. The time shifts

associated to other paths of significant gain are identified by looking for the other

local maxima of z(t), using for instance the following iterative approach

τ̂i = arg max
z(t)>λ
t∈T
t/∈Ii

z(t), i = 1, 2, . . . ,K − 1 (7.17)

where Ii denotes a set of subintervals of T centred around the values of delay already

identified through step i − 1, that must be excluded from the search at the current
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step i, i.e.

Ii = {(τ̂0 − Tcor, τ̂0 + Tcor) ∪ · · · ∪ (τ̂i−1 − Tcor, τ̂i−1 + Tcor)} . (7.18)

In this way the K strongest paths are orderly identified along with their delays.

As for the width 2Tcor of the subintervals in Ii, it has to be adjusted keeping into

account the values selected for the main transmission parameters, notably Tsw and

the frequency limits of the ramps in c(t). Accordingly, 2Tcor should not be too large to

avoid missing useful multipath components, nor too small to prevent secondary lobes

of strong correlation peaks in (7.13) from being misdetected as independent peaks.

Furthermore, the value of λ should be set by trading off false against missed detection

probabilities, with reference to limit conditions characterized by the least operating

signal-to-noise ratios, e.g. when the distance between terminals is at the limit of

coverage.

In addition to estimating the delay of the main paths of the UWA channel, the

receiver must proceed to evaluate the relevant complex-valued path gains in view of

their usage within the MRC block (see Fig. 7.1). As noted earlier, these gains are

provided by (7.15) as a by-product of the same correlation algorithm employed for

path delay estimation.

7.5 Design issues and hardware implementation

7.5.1 Conditions for path resolvability

Recalling the previous discussions, for the multi-branch receiver of Fig. 7.1 to work

properly it is required that, for each branch, the signal spectrum converted to base-

band does not collide with the spectra of the signal replicas being processed by the

other branches. This allows the signal at baseband to be extracted by means of a

simple (lowpass) matched filter. For these conditions to be met, it is necessary that

the differential delays between all pairs of paths do not drop below a certain threshold.

A further constraint is that the dispersion of delays must not exceed Tsw to avoid

ambiguities in delay estimation.

More specifically, with no loss of generality we can treat {τk}K−1
k=0 as differential

delays with respect to τ0, arranged in nondecreasing order, i.e., we set τ0 = 0 ≤ τ1 ≤
· · · ≤ τK−1 . Then the constraints to be put on these differential delays are as follows
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(see also [100]) 2mδτmin ≥ 1+α
T

−2mδτmax + fH − fL ≥ 1+α
T

(7.19)

where δτmin = min
0≤i,j≤K−1

|τi − τj |, i 6= j, is the minimum (absolute) differential path

delay and δτmax = max
0≤i,j≤K−1

|τi−τj | = τK−1, i 6= j, is the maximum differential path

delay, or channel time dispersion. Using (7.6) in (7.19) yieldsTsw ≤Mδτmin

Tsw ≥ M
M−1δτmax

. (7.20)

For the existence of values of Tsw satisfying both the above conditions it is required

that

1 ≤ δτmax
δτmin

≤M− 1. (7.21)

The first inequality in (7.20) sets a lower limit to the absolute difference between

the arrival times of any two signal replicas. When the difference exceeds this limit,

the receiver is able to accurately resolve the channel multipath structure. Otherwise,

when two received replicas are spaced too closely, after despreading they will overlap

in the frequency domain, thus preventing their exact separation. On the other hand,

the second inequality in (7.20) puts an upper limit to the differential path delays,

approximately equal to Tsw whenM is large. Actually, a signal replica delayed more

than Tsw with respect to the one traveling on the shortest path would generate a

timing estimate affected by an ambiguity equal to an integer multiple of Tsw that

could not be detected and recovered, with a negative impact on the MRC algorithm.

Figure 7.3 shows an example of power spectral density of the received signal after

downconversion/despreading for a three-ray scenario, assuming that downconversion

is carried out for the strongest path. Transmission parameters are the same as in

the example of Fig. 7.2. Inspection of the figure reveals that in this case all paths

are resolvable, and in particular the useful signal (whose spectrum lies around the

origin) can be recovered by means of a lowpass filter, without (or with negligible)

interference from the other replicas. The latter signal components, carrying useful

power as well, can in turn be extracted by multiplication of the received waveform by

properly delayed replicas of c(t) followed by lowpass filtering. More specifically, from

Fig. 7.3 it is seen that, in addition to the signal spectrum centered on the origin,
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Figure 7.3: Power spectral density of the received signal after downconversion/despreading

of the strongest path (k = 0). The vertical scale is arbitrary. The system parameters are the

same as in Fig. 7.1 and are specified in Tabs. 7.1–7.3.

there are four other spectral replicas generated by the paths with delays τ1 and τ2.

Indeed, recalling (7.19), the k-th path gives rise to two spectral components, centered

around the frequencies 2mτk and fH−fL−2mτk, k = 1, 2. The actual values of these

frequencies are specified in Tab. 7.2.

7.5.2 Merging branch outputs

As mentioned earlier, the receiver is made up of K parallel branches, designed to

jointly extract and elaborate up to K replicas of the signal received from the multipath

UWA channel. The k-th branch proceeds to downconvert/despread the received signal

through its multiplication by c(t − τ̂k), where τ̂k is an estimate of the propagation

delay on the k-th path. Assuming error-free delay estimates and exact resolvability

of the signal on all branches, the sampled output of the k-th branch takes on the

form (7.10). All branch outputs are then combined according to the MRC criterion,
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as follows

qi =

K−1∑
k=0

ĥ∗kvk,i (7.22)

where ĥk is the estimate of the k-th path gain. The sequence of samples (7.22) is

then fed to the decoder/data detector for further processing.

As mentioned in the Introduction, the above approach is reminiscent of that em-

ployed in the so-called “rake receiver” proposed for conventional DS-SS modulations

[5], even though the context here is quite different from that envisaged in typical

electromagnetic wireless links. However, if theK paths can be resolved, we can borrow

from the rake receiver the expression of the asymptotic gain in power efficiency

GR =

∑K−1
k=0 |hk|

2

|h0|2
, (7.23)

that can be achieved with respect to the receiver operating on the single path of gain

h0. This result has been confirmed experimentally.

7.5.3 Hardware implementation

Now we briefly present our real-time implementation of the modem architecture

discussed in the foregoing sections. The testbed is based on National Instruments

(NI) hardware [101], controlled by LabView (LV) applications. Specifically, we used

the chassis NI PXIe-1085 equipped with the controller NI PXIe-8135 and the data

acquisition board NI PXIe-6361. The entire system is controlled by a LV-based code

that exploits the built-in functions provided in the RF Communications toolkit. The

transmitter and receiver sections of the modem were both entirely implemented in

hardware. Figure 7.4 shows the complete test bench used for the modem implemen-

tation, composed by the controller board within the chassis, a PC running ad-hoc LV

application software and also a spectrum analyzer (Fig. 7.5 shows the spectrum of

the transmitted signal generated during the test).

Focusing on the LV application running on the PC, Fig. 7.6 shows a section of the

main control panel, from which the values of all physical-layer modem parameters can

be set up. Figure 7.7 shows the analysis tool developed for the graphic control and

performance evaluation of the entire transmission/reception chain. In particular, a

sample plot of the instantaneous amplitude of the transmitted RF signal is presented
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Figure 7.4: Test bench: NI chassis hosting controller and data acquisition board, PC with

LabView, spectrum analyzer.

Figure 7.5: Transmitted signal displayed on spectrum analyzer.

on the left, while a noisy I/Q diagram at the symbol detector input is visible on the

right. Further, Fig. 7.8 shows a fragment of LabView visual code developed for the

implementation of synchronization circuitry. The discussion of details of the LabView

code is out of the scope of this chapter and we limit ourselves to remark that this
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block implements part of the algorithm for the search of correlation peaks, hence it

is placed after the block computing the squared correlation (7.13) and generates the

K timing estimates to be used in the receiver parallel branches visible in Fig. 7.1.

Figure 7.6: LabView control interface: particular of the main control panel.

Figure 7.7: LabView control interface: particular of the analysis tools.



7.6 Experimental results 121

Figure 7.8: A functional block of the synchronization circuitry (LabView code).

7.6 Experimental results

The transmission architecture in Fig. 7.1 was implemented and assessed using the

hardware testbed previously described, in conjunction with the software package Bell-

hop [102], a popular open-source simulator of the UWA environment. In particular,

this simulator permits to identify both the coherent and non-coherent channel profile,

i.e., for a fixed number of paths, their complex-valued (modulus and phase) gains,

or simply their RMS values, vs. propagation delay, to be associated to an arbitrary

UWA operating scenario.

For simplicity, in the following we limit our consideration to a single, albeit rather

challenging, scenario characterized by shallow water (130 m) with sound speed profile

vs. depth typical of the summer period and plotted in the left section of Fig. 7.9. The

Figure 7.9: Ray tracing produced by Bellhop.

values assumed for the main geometric and acoustic parameters of the UWA scenario

are summarized in Tab. 7.1, while Fig. 7.10 provides a pictorial representation of the
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link geometry. In the right section of Fig. 7.9 we also show the curves produced by the

Bellhop ray tracing tool, that can be used to calculate the channel power-delay profile.

Using the parameter values of Tab. 7.1, it is found that there are three dominant

TX depth 80 m

RX depth 5 m

Horizontal distance 500 m

Bottom type gravel

Bottom depth 130 m

Surface sea state 0

Sound speed profile see Fig. 7.9

Center frequency 26 kHz

TX launching angles −60◦ : +60◦

Table 7.1: Main acoustic and geometric parameters of the UWA scenario.

Figure 7.10: Geometry of the UWA link.

paths, namely the direct path and the two paths experiencing a single reflection from

the surface or the bottom. The resulting power-delay profile for the geometry of Fig.

7.10 is identified in Tab. 7.2. Finally, the physical layer communications parameters

used throughout the trials are specified in Tab. 7.3.
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Path Normalized power Relative delay [ms] Spectral shift [kHz]

0 0.402 0 0

1 0.393 16.11 2.86, 13.14

2 0.205 60.05 10.68, 5.32

Table 7.2: Power-delay profile for the 3-path channel.

Tsw 90 ms

TP 2Tsw

M 13.33

α 0.2

Symbol spacing 1 ms

Packet length 1024 symbols

Modulation DQPSK

Codec uncoded, BCH (1431, 2047)

fL 18 kHz

fH 34 kHz

Tcor 8/(fH − fL)

Table 7.3: Physical layer parameters.

The three-path channel defined by Tab. 7.2 was implemented in the NI testbed

using the previously described model. In particular, the receiver input is generated

by combining three versions of the transmitted waveform, each with a different delay

and attenuation as specified in Tab. 7.2. The signal-to noise ratio (SNR), defined as

the ratio between the average energy per symbol received through all paths to the

noise power spectral density, is varied by injecting AWGN with variable spectral level.

Specifically, our purpose here is to compare the performance of the conventional

receiver in [100] with that achievable by the three-branch parallel structure in Fig.

7.1. To this aim, we observe that, from (7.23) and from the values of Tab. 7.2, the

maximum expected gain of the three-branch receiver is GR ≈ 3.96 dB. This margin

seems to be actually available in view of the fact that the parameters δτmin and

δτmax do largely satisfy condition (7.21): δτmax/δτmin ≈ 3.73�M−1. Further to be
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noted, since the three signal components can be exactly separated by the receiver, the

relative phase rotations associated to the path gains are immaterial, and the receiver

performance is only affected by the non-coherent power-delay profile. Figure 7.11

shows plots of the bit error rate (BER) vs. SNR obtained for uncoded transmission

and error-free channel estimation and carrier/symbol synchronization in all receiver

branches. The two curves of BER are relevant to the conventional single-branch (K =

1) and to the three-branch (K = 3) receivers. It is observed that the latter scheme

asymptotically outperforms the former by around 4 dB, i.e., by the asymptotic gain

GR. Figure 7.12 shows curves of BER vs. SNR for the same single-branch and three-
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Figure 7.11: BER vs SNR, uncoded transmission, 3-path channel, single-branch and three-

branch receivers.

branch receivers, obtained in the more realistic situation in which the transmitter

employs a BCH encoder, with coding rate r = 1431/2047 ' 0.7 and the receiver

actually incorporates the channel estimator and the carrier/symbol synchronizer. The

benefit in terms of SNR gain provided by the multi-branch receiving structure is still

apparent. For example, at BER= 10−5 this gain is around the asymptotic value of

4 dB, while the advantage provided by the BCH encoder with respect to uncoded
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transmission (curves in Fig. 7.11) is more than 3 dB.
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Figure 7.12: BER vs SNR, coded transmission, 3-path channel, single-branch and three-

branch receivers.

It is now appropriate to briefly discuss the performance of the path delay estimator

which, as we have seen, plays an important role for synchronization of the despreading

waveforms in the multi-branch receiver, as well as for symbol timing recovery. As

previously discussed, the delay is estimated by determining the instant at which the

squared correlation (7.13) exhibits a peak. Of course, a necessary condition to get an

accurate estimate is that the sampling rate at the receiver input be adequately high.

The results presented here are obtained using a sampling rate of 100 kHz, a condition

which, recalling the data of Tab. 7.3, corresponds to taking 100 samples per symbol

and slightly more than 3 samples per cycle at the highest instantaneous frequency

fH of the waveform c(t). In addition, to further improve the accuracy of the above

estimator, we resorted to a parabolic interpolator operating on the highest sample

of the squared correlation and on the adjacent two. This scheme was considered

satisfactory insofar as a further increase of the sampling rate was observed not to

entail any additional gain in terms of root mean square estimation error (RMSEE).
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Figure 7.13 shows plots of RMSEE affecting the delay estimates for each path of the

three-path scenario defined by Tabs. 7.1–7.3 as a function of SNR. As expected, the

lowest curve is the one relevant to the strongest (direct) path (k = 0) while the other

two curves, relative to the surface-reflected and bottom-reflected paths (k = 1, 2), are

somewhat shifted versions of the former along the SNR axis, where the shifts are to

be ascribed to the different (smaller) path gains. Also to be noted, when the SNR

grows, all curves do not decrease indefinitely, but rather they tend asymptotically

to different constant (floor) values. This behavior can be explained observing that

even though the three signal replicas are sufficiently shifted from one another as to be

uncorrelated, nevertheless they exert a mutual irreducible disturbance whose impact

is felt even when the noise vanishes. Accordingly, the different floor levels are related

to the different values of signal-to-mutual-interference existing between the signal

replicas. Furthermore, we found that the delay estimates are substantially unbiased

for all paths, and this holds true in general provided that the correlation peaks are

well separated from one another, i.e., when conditions (7.21) are met.
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Figure 7.13: RMSEE vs SNR, 3-path channel, delay estimate for k = 0, 1, 2.
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7.7 Concluding remarks

We have shown how to significantly improve the power efficiency of an S2C-based link,

operating over a time-dispersive UWA channel, through the use of a multiple-branch

parallel receiver structure, where each branch has the task to extract and process the

signal received from one of the paths, and the outputs of the branches are finally

combined together in an optimal way. In particular, we have identified the conditions

allowing the signal replicas from the various paths to be exactly separated. A real-

time version of the system has been implemented using a hardware testbed, and its

performance has been assessed in laboratory over typical UWA channel models. For

the common situation where in addition to the direct path there are also surface-

and bottom-reflected paths of non-negligible level, we have shown that it is possible

to achieve power gains of a few decibels in comparison with the traditional single-

path-based receiver. We also presented an algorithm for synchronization of the

despreading signal and for symbol timing recovery, and analyzed its impact on the

receiver performance.
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Chapter 8

VFIDES - An Autonomous

Vehicle for Underwater

Identification, Detection and

Exploration

8.1 Introduction

In this chapter we highlight some aspects relevant to the activity carried out during

the VFIDES project [103], [104]. First we report some details taken from the technical

specification of the three main stages in which we were involved (out of a total of 23

for the entire project). Finally, to give an idea of the global complexity, the chapter

concludes with a series of pictures about practical tests carried out during the project.

At each deadline a technical report on the outcomes of the corresponding work

packages was produced. Unfortunately the content of these documents is partially

confidential and not all relevant results can be reproduced here in full detail.

The VFIDES project includes the development of an autonomous underwater vehicle

(AUV) to be used for several missions such as:

• environmental monitoring of sea water;
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• exploration of sea bottoms;

• monitoring of sea life;

• archaeological prospection.

VFIDES is also characterized by the ability to work either as AUV or as a remote

controlled vehicle.

8.1.1 Features of the acoustic sensors and radio equipment

The first stage was primarily relevant to system analysis with the aim to outline

functionalities and devices the vehicle should be equipped with, in order to satisfy the

technical specifications. In particular the vehicle must be able to carry out missions

involving exploration and monitoring of the underwater environment by gathering

and storing information. Furthermore the AUV must be equipped with telemetry

devices that allow the remote control of position, velocity and attitude as well as of

equipment for data transmission from/to the mother ship. The arrangement of the

devices within the volumes and surfaces available onboard had to take into account

the mechanical and structural constraints of the hull.

Some key points of the activity were:

• evaluation of devices such as a side-scan sonar (SSS) or alternatively a multi-

beam echo sounder (MBES) for exploration of the underwater environment;

• investigation of a hydrophone for passive environmental monitoring in a fre-

quency band from few Hz to few tens of kHz;

• analysis of the underwater link when acoustic modems are employed and defi-

nition of minimum required performance in terms of range and bit rate;

• study of solutions for communications between the emerged AUV and the

mother ship through direct radio link or by satellite modems with a particular

attention on the antenna features (a pressure resistant case is necessary);

• proposal of devices for localization purpose.
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8.1.2 Selection and performance evaluation of radio and sonar

systems

Within this activity we first carried out market research to identify the appropriate

commercial devices strictly complying with the technical specifications and whose ty-

pology and features were identified in the prior stage. Next, a performance evaluation

step was necessary before the final purchase of the apparatus. For this task, computer

modeling based on data provided by the manufacturer of the apparatus was developed

and the simulation results carried out by emulating environmental conditions similar

to those provided by the technical specification were compared with the expected

performance. Finally, after the acquisition of all the devices, some on-field trials

(parts of which are reported in section 8.2) were necessary to effectively verify the

correct operation of the system, to optimize the parameters setting, and to make them

ready for the successive step of integration.

8.1.3 Integration of acoustic and radio equipment

The target of this stage was relevant to the onboard integration of all the devices and

the subsequent interfacing with the electronic control board (ECB) of the vehicle. The

ECB contains the central processing unit and runs all the algorithms and procedures

necessary to manage the execution of the operative missions. In particular the core

functions supervised by the ECB pertain to:

• the acoustical and radio communication system;

• the management of all the active and passive transducers;

• the guidance, navigation and control algorithms.

Particular attention was put on the development of suitable software packages that

can run on the ECB.

8.2 Experimental tests

Next we propose some highlights of the practical tests carried out during the project

activities. The target of the trials was to validate and test the various devices

in environmental conditions close to real operation scenarios. We remark that the
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following is only a small selection of the test campaign necessary to correctly tune

and validate all the devices and the related software.

8.2.1 Hydrophone testing and calibration

The performance evaluation of the hydrophone was carried out in a WASS facility near

La Spezia. The aim of the test was to measure the performance of the device under

different operating conditions and to compare these results with those provided by the

manufacturer and by a sample hydrophone. Basically the test consisted in a series of

measures realized with both the hydrophone under test and a calibrated hydrophone

(used as benchmark) when a training acoustic signal was transmitted by the acoustic

projectors. From the successive data analysis we obtained some curves of performance

(for example sensitivity as a function of the frequency) useful to correctly calibrate

the parameters of the hydrophone and to allow an improved use of the device. In

Figs. 8.1–8.3 some particulars taken during the tests are shown.

Figure 8.1: Particular of the test pool with the bridge crane and the rotating shaft.
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Figure 8.2: Hydrophone under testing.

Figure 8.3: Projectors used throughout the tests.
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8.2.2 Pool test of the acoustic communication system

This type of test was carried out to verify the correctness of the acoustic communica-

tion process between the two modems. In addition, the accuracy of the USBL (ultra-

short baseline) functionality, useful to measure the distance between the two nodes,

was checked out. The primary target of the test was to establish a data connection

between the two acoustic modems immersed in the water. The execution of the trials

in a highly reverberant environment as a small pool was very useful to reproduce a

severe multipath channel typical of shallow water communications. Figures 8.4–8.6

show the two modems and the test pool, within the WASS plant in Livorno.

Figure 8.4: Detail of the USBL modem.
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Figure 8.5: Detail of the modem hanged on a winch before the immersion.

Figure 8.6: Modems lowered in the test pool.
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8.2.3 Radio modem test over the sea surface

To better emulate the behavior of the radiocommunication system on a two-ray

channel (typical of the over-the-sea links) we chose to carry out the test in conditions

very similar to the real ones, even though the transmitting and receiving stations

were placed on the mainland. The test consisted in a series of bit rate measures

relevant to the connection established on a radio link between the two nodes with

various settings of communication parameters and antenna positions. The trials took

place on the Massaciuccoli lake and on the littoral zone of Viareggio. Some pictures

relevant to the measure campaign are reported in Figs. 8.7–8.10.

Figure 8.7: Receiving station during the test on Massaciuccoli lake.
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Figure 8.8: Transmitting station during the test in Viareggio.

Figure 8.9: Detail of the modem connections to control station and antenna.
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Figure 8.10: Paths of the tested radio links highlighted on a map.

8.2.4 The VFIDES

Finally in Fig. 8.11 we show a picture of the final version of the vehicle equipped

with all the devices and fully functioning.

Figure 8.11: The VFIDES.



Conclusions

This work mainly deals with a deep investigation of some specific aspects concerning

synchronization issues in wireless communication systems based on a multicarrier

air-interface. Not only many of the current commercial standards are based on this

technology but the adoption of multicarrier signaling format is expected to be a con-

solidated basis for future generation systems. Although the major design challenges

will turn the attention to higher layer and network operation aspects, synchronization

procedures and algorithms, mainly relating to frequency reuse and cross-interference

management, will remain key aspects in systems involving technologies of which

cooperative communications, cognitive radio, massive MIMO, small-cells and overlay

networks, represent only a few examples and whose strong investigation in many

research centers is tracing the route towards 5G and beyond.
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