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Abstract

This Thesis investigates innovative exploration methods for marine

area search with teams of autonomous underwater vehicles (AUVs).

In particular, methods for cooperative adaptive motion planning

have been developed, general in nature, but in our case applied to

the field of marine archaeological search, where the goal is to find

remnants or objects resting on, or buried in, the seabed.

The exploration and motion planning problem is divided in two

main lines of investigation. The first consists in defining a map of a

priori detection probability in accordance with the available informa-

tion and data over the survey area. Therefore, a refined mathemati-

cal method, that uses Parzen windows theory with Gaussian kernels,

is developed for building the a priori map. The Renyi’s entropy is

used as the metric indicating relative information gain.

The second line of investigation instead defines how to compute

the optimal waypoints for each AUV when the search mission is in

progress. It can be seen as a classical problem of motion planning,

which in marine environment usually involves preplanning paths of-

fline before the exploration, either zig-zag or regular lawn-mower

transects. The lawn-mower patterns have some failings:

vii



• The AUV may not be able to search in marine areas where

the a priori probability is optimum. Hence, the AUV does

not move in areas with higher density of objects resting on or

buried in the seabed.

• If during the mission some objects are discovered the pre-

specified path does not change. Instead, these objects may

have influence on a priori information used at the beginning

of the mission and therefore a new planning path may be re-

quested.

• The map of a priori detection probability is not updated dy-

namically with the exploration in progress.

• The AUVs are not able to establish a cooperative commu-

nication and localization procedure. Hence, once the vehicle

submerges, its location estimate will drift, eventually deviating

from the pre-specified paths.

These failures are ridden out using a new online and adaptive ap-

proach to define the AUVs’ paths. Therefore, a cooperative dis-

tributed algorithm is developed defining the AUVs’ waypoints by

the minimization of the information entropy over the a priori map.

Note that the a-priori map built as previously indicated is naturally

suited to this approach. The algorithm is implemented by partition-

ing the marine area through the Equitable Power Diagrams theory,

by potential functions for motion planning and taking into account

communication constraints.

The benefits of the proposed algorithms are evaluated within

the application field of underwater archaeology. In particular, a

viii
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performance metric has been defined in terms of relicts found in

a fixed time, time to complete the mission, number of relicts found

and area explored for relicts found. The Tuscan Archipelago data-

base, kindly made available to us by the Tuscan Superintendence

on Cultural Heritage, has given the ground information to apply the

investigated algorithms. Simulations results are summarized to show

the effectiveness of the novel proposed exploration method. While

the performance results are tied to the application domain chosen,

it is clear that the methodology and approaches proposed can also

be used for other search and rescue applications.
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Chapter 1

Preface

1.1 Motivation

In the near future autonomous underwater systems technology will

compete against its ground and aerial robotics counterparts. Groups

of autonomous agents, fixed or mobile, will be used to perform ocean

monitoring and explorative operation for oceanographic, biological

and geophysical purposes. There are a number of advantages in

considering a team of small autonomous underwater vehicles (AUVs)

for specific operations instead of a single, large, more powerful AUV:

• the team will not be affected as a whole by the malfunctioning

of a single vehicle, or at least the system performance will

degrade gently;

• scale economies may be gained in vehicle production;

• launch and recovery issues are less relevant for small vehicles;

1
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• overall mission time may be minimized, with consequent cost

savings.

Nevertheless a team of mobile autonomous vehicles needs to be de-

ployed over regions, to move in a synchronized manner or to assume

a specified pattern.

Multi agents systems introduce numerous advantages for appli-

cation in area mapping, environmental surveying and underwater

surveillance system but need to address the problems of motion co-

ordination, communication and localization. The motion coordi-

nation can be inspired by the behaviour of self organized systems,

from interactions among molecules and cells to the ecology of animal

groups. Flocks of birds and schools of fish travel in formation and

act as one unit, allowing these animals to defend themself against

predators, protect their territories and explore new areas. A multi

agents system is like a group of animals that move together. How-

ever, the motion cooperation may be intended in several ways, from

simply having more vehicles pursuing different pre-planned missions

in different areas, to interaction among the vehicles throughout the

mission (as in our case), to strict formation control, the strongest

form of cooperation.

Historically, in marine environment the motion cooperation was

intended as in the first way and therefore the agents seabed sur-

veys were using primitive heuristic planning methods, such zig-zag

or lawn-mower paths. Such an approach has different limitations:

• Plans are not adaptive to the situation where the vehicle does

not exactly follow the prescribed path either because it is in-

feasible or due to unexpected external disturbances.
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1.2 Thesis Overview and Contributions

• Once the vehicle submerges, its location estimate will drift,

eventually deviating from the pre-specified path.

• Although some events may require to adjust the pre-specified

paths, as the mission progresses, it is not possible to change

the paths.

These issues are overcome when the motion coordination is intended

as interaction among the vehicles throughout the mission. Therefore

several benefits in terms of efficiency and robustness are achieved.

The advantages can be exploited in a multi agent system of AUVs

to survey the seabed. However with the benefits come additional

costs in terms of complexity of algorithms required to control and

coordinate multiple vehicles that have limited on-board computation

capabilities. Communicating among vehicles in water is limited due

to lack of available bandwidth, slow throughput rate, and unrelia-

bility of the acoustic channel.

1.2 Thesis Overview and Contributions

This thesis focuses on the problem of cooperative search within the

marine environment, with specific application to the case of objects

resting on the seabed in marine areas of archaeological interest.

The investigated method is: 1) cooperative in the sense that the

availability of the multi agents system is exploited by letting each

vehicle explores a sub-region of the search area, 2) adaptive in the

sense that plans can be updated based on sensor data that are gath-

ered during the mission and 3) online in the sense that the vehicles’

3
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waypoints are computed combining the current mission state with

the a priori detection information.

The determination of maps of a priori percentage density of ex-

pected findings is in itself a problem; in this thesis it is proposed to

exploit the theory of refined Parzen windows, applied to the available

a priori information. Within the chosen application field (i.e., ma-

rine archaeology) the approach is particularly valuable since it can

deal with information at different degrees of reliability. Clearly, this

may be the case not only of archaeological findings but also of other

important application fields, as those related to seabed dumpings,

hazard waste, etc.

In the algorithm proposed, the a priori density map is updated

within the mission taking into account the sensor data gathered

throughout the exploration. The method has significant advantages

for teams of AUVs employed in ocean monitoring and explorative

operations for oceanographic, biological and geophysical purposes:

• The a priori and a posteriori density maps design a more ac-

curate representation of likelihood to gather relevant data.

• The vehicles move over the survey area taking into account

communication and localization constraints.

• The mission is completed more efficiently in terms of relicts

found, mission time employed, area explored.

4
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1.3 Organization of the Thesis

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 is devoted to de-

scribe the background and literature review. Specifically within

the chapter, the sections introduce the information theory (Sec-

tion 2.1), Voronoi and Equitable Power diagrams (Section 2.2), path

planning (Section 2.3), side-looking sensors (Section 2.4) and AUV

communication-localization (Section 2.5). Chapter 3 describes the

method to consistently represent the prior knowledge and the conse-

quent determination of the prior density map over a marine area of

archaeological interest. Chapter 4 presents the core of the proposed

Cooperative Algorithm for seabed surveying with a team of AUVs.

Chapter 5 presents a novel Multi-RRT* algorithm. Finally, the sim-

ulation scenario, together with the performance indicators for the

assessment of the algorithms for seabed surveying in above Chapter

proposed and the results of numerical simulations are presented in

Chapter 6.

5
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Chapter 2

Background

This thesis treats many several research domains to propose a novel

exploration method for marine area search. Therefore, this chapter

is dedicated to present the background of the most important areas

of research examined, mainly relating to:

• Information theory, the Shannon information and the Renyi’s

entropy.

• Voronoi diagram and its generalization the Equitable Power

diagram.

• Robotics motion planning, with focus on the sampling-based

motion planning philosophy.

• Side Scan Sonar (SSS) and Multi Beam Echo Sounders (MBES),

the side-looking sensors which are used as payload for the

AUVs.

• Underwater Acoustic Communication and Localization

7



Background

2.1 Information Theory

The information theory 1 has been developed by Claude Shannon in

1948 by his seminal work, ‘‘A Mathematical Theory of Communica-

tion’’ [58] . Originally the theory was founded to find the fundamen-

tal limits of data compression, communication and storage, and it

has now broadened to diverse fields [55], [20]. Indeed, it has resolved

two fundamental questions in communication theory: what is the

ultimate data compression (answer: the entropy), and what is the

ultimate transmission rate of communication (answer: the channel

capacity). Currently, information theory has fundamental contribu-

tions to make in statistical physics (thermodynamics), computer sci-

ence (Kolmogorov complexity or algorithmic complexity), statistical

inference (Occam’s Razor: “The simplest explanation is best”), and

to probability and statistics (error exponents for optimal hypothe-

sis testing and estimation). Figure 2.1 describes the relationship of

information theory to other fields. As the figure suggests, informa-

tion theory intersects physics (statistical mechanics), mathematics

(probability theory), electrical engineering (communication theory),

and computer science (algorithmic complexity).

2.1.1 Shannon Information

The Entropy is a quantity with many proprieties that defines the

notion of what a measure of information should be. In more detail,

Shannon has defined the Entropy as a measure of the uncertainty of

1The review presented in this section is based on the book by Thomas M.

Cover and Joy A. Thomas [21].

8
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2.1 Information Theory

Figure 2.1: Information theory. (Figure appears in [21])
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a random variable.

Let X be a discrete random variable with alphabet X and prob-

ability mass function p(x) = Pr{X = x}, x ∈ X . The Shannon

entropy H(X) of a discrete random variable X is defined as:

H(X) = −
∑
x∈χ

p(x) log p(x) (2.1)

or similarly for continuous random variable X, with probability

density function p(x), is defined as:

H(X) = −E[log p(x)] = −
∫
p(x) log p(x)dx (2.2)

The log is to the base 2 and entropy is expressed in bits. The

base of the logarithm can also be in e measuring the entropy in nats,

but in that case it is specified with He(X). Note that entropy is a

functional of the distribution of X. It does not depend on the actual

values taken by the random variable X, but only on the probabilities.

As an example consider:

X =

1 with probability p,

0 with probability 1 − p
(2.3)

Therefore the Shannon entropy is:

H(X) = −p log p – (1− p) log(1− p) = H(p) (2.4)

H(X) can be represented as a function of p, in this case. Figure

2.2 shows the graph of the function H(p) and it illustrates some of

the basic properties of entropy. The H(p) is a concave function of

the distribution and equals 0 when p = 0 or 1. This makes sense,

10
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2.1 Information Theory

Figure 2.2: Shannon entropy

because when p = 0 or 1, the variable is not random and there is

no uncertainty. Similarly, the uncertainty is maximum when p = 1
2
,

which also corresponds to the maximum value of the entropy. The

definition of entropy can also be extended through the joint entropy

for two random variables X and Y .

The joint entropy H(X, Y ) of a pair of discrete random variables

(X, Y ) with a joint distribution p(x, y) is defined as:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.5)

which can also be expressed as

H(X, Y ) = −E log p(X, Y ) (2.6)

Now we defines the conditional entropy of a random variable

given another as the expected value of the entropies of the condi-

11
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tional distributions, averaged over the conditioning random variable.

If (X, Y ) ∼ p(x, y), the conditional entropy H(Y | X) is defined

as:

H(Y | X) =
∑
x∈X

p(x)H(Y | X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y | x) log p(y | x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y | x)

= −E log p(Y | X) (2.7)

The entropy of a pair of random variables is the entropy of one

plus the conditional entropy of the other, as proved in the following

theorem.

Theorem 1

H(X, Y ) = H(X) +H(Y | X) (2.8)

Another two related concepts regarding the entropy are defined:

relative entropy and mutual information. The relative entropy is a

measure of the distance between two distributions. Therefore, given

two distributions p and q the relative entropy D(p ‖ q) measures the

inefficiency of assuming that the distribution is q when the true dis-

tribution is p. For example, if we knew the true distribution p of the

random variable, we could construct a code with average description

length H(p). If, instead, we used the code for a distribution q, we

would need H(p) + D(p ‖ q) bits on the average to describe the

random variable. Instead, the mutual information is a measure of

12
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the amount of information that one random variable contains about

another random variable. It is the reduction in the uncertainty of

one random variable due to the knowledge of the other.

The relative entropy between two probability mass functions p(x)

and q(x) is defined as

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep log

p(X)

q(X)
(2.9)

where is used the convention that 0 log 0
0

= 0 and the convention

(based on continuity arguments) that 0 log 0
q

= 0 and p log p
0

= ∞.

Thus, if there is any symbol x ∈ X such that p(x) > 0 and q(x) = 0,

then D(p ‖ q) = ∞. The relative entropy is always nonnegative

and is zero if and only if p = q. However, it is not a true distance

between distributions since it is not symmetric and does not satisfy

the triangle inequality. Nonetheless, it is often useful to think of

relative entropy as a “distance” between distributions.

Given two random variables X and Y with a joint probability

mass function p(x, y) and marginal probability mass functions p(x)

and p(y), the mutual information I(X;Y ) is the relative entropy

between the joint distribution and the product distribution p(x)p(y):

I(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= D(p(x, y) ‖ p(x)p(y))

= Ep(x,y) log
p(X, Y )

p(X)p(Y )
(2.10)

The mutual information I(X; Y ) can be rewritten in function of

13
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entropy.

I(X; Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x | y)

p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x | y)

= −
∑
x

p(x) log p(x)−
(
−
∑
x,y

p(x, y) log p(x | y)
)

= H(X)–H(X | Y ) (2.11)

Thus, the mutual information I(X; Y ) is the reduction in the un-

certainty of X due to the knowledge of Y .

By symmetry, it also follows that

I(X; Y ) = H(Y )–H(Y | X) (2.12)

Thus, X says as much about Y as Y says about X.

Since H(X, Y ) = H(X) + H(Y | X) the mutual information is

simplified as:

I(X; Y ) = H(X) +H(Y )–H(X, Y ) (2.13)

Figure 2.3 shows the relationship between entropy H(X), H(Y ) and

mutual information I(X; Y ) of a pair of random variables X and Y .

Although the concept of Shannon entropy was originally devel-

oped to represent communication over a noisy channel, it readily

extends to exploration, which is closely related to coverage.

14
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2.1 Information Theory

Figure 2.3: Relationship between entropy and mutual information. (Fig-

ure appears in [21])

2.1.2 Renyi’s Entropy

The Hungarian mathematician Alfred Renyi [56] proposed in the

60s a new information measure generalizing the Shannon entropy.

The Renyi’s entropy for a discrete random variable X with possible

outcomes 1, 2, . . . , n and corresponding probabilities pi = P (X =

i), i = 1, . . . , n is defined as:

Hα(X) =
1

1− α
log
( n∑
i=1

pαi
)

α > 0 α 6= 1, (2.14)

Similarly for continuous random variable X, with probability density

function p(x), the Renyi’s entropy is defined as:

Hα(X) =
1

1− α
log
( ∫

pα(x)dx
)

α > 0 α 6= 1, (2.15)
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As is easily seen with following limiting:

lim
α→1

Halpha(X) = −
n∑
i=1

pi log pi (2.16)

the Shannon’s entropy is a special case of the Renyi’s entropy.

The Renyi’s entropy has the following properties:

• Hα(X) is nonnegative: Hα(X) ≥ 0.

• Hα(X) is decisive: Hα(0, 1) = Hα(1, 0).

• For α ≤ 1 Renyi’s entropy is concave. For α > 1 Renyi’s en-

tropy in not pure convex nor pure concave. It looses concavity

for α > α∗ > 1 where α∗ depends on N and obeys the relation

α∗ ≤ 1 + ln(4)
ln(N−1)

.

• Since α−1
α
Hα(X) ≤ β−1

β
Hβ(X) for α ≤ β, (α − 1)Hα(X) is a

concave function of X.

• Hα(X) is bounded, continuous and non-increasing function of

α.

• Renyi’s entropies for different α are correlated.

• The following is a simple but not very sharp bound on Shannon

entropy (HS(X)) of any probability mass function H2(X) ≤
HS(X) ≤ lnN + 1

N
− exp(−H2(X)).

• HZ(X) with z = α + jw is analytic in all the complex plane

except the negative real axis.

16
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In this thesis the Renyi’s entropy will be used with α = 2, called

the quadratic entropy. The quadratic entropy for discrete random

variable is defined as:

H2(X) = − log
( n∑
i=1

p2
i

)
(2.17)

Instead, the Renyi’s quadratic entropy is defined for continuous ran-

dom variable as:

H2(X) = − log
( ∫

p2(x)dx
)

(2.18)

2.1.3 Parzen theory

The Renyi’s quadratic entropy is defined using the pdf for continuous

random variable or the pmf for discrete random variable. The pdf

can be estimated by Parzen density estimation method [50] starting

from a samples set, which is the realization of the random variable.

The Parzen’s fundamental idea is to place a kernel function over a

samples set and sum with proper normalization.

p̂X(x) =
1

M h

M∑
i=1

κ

(
x− xi
h

)
(2.19)

17
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where κ is the kernel function. A kernel function κ satisfies the

following properties:

sup
<
| κ(x) |<∞∫

<
| κ(x) | dx <∞

lim
x→∞

| xκ(x) |= 0

κ(x) ≥ 0,

∫
<
κ(x)dx = 1 (2.20)

Some examples of kernel functions are given in Table 2.1.

κ(x)
1
2
, | x |≤ 1

0, | x |≥ 1

1− | x |, | x |≤ 1

0, | x |≥ 1
4
3
− 8x2 + 8 | x |3, | x |< 1

2
8
3
(1− | x |)3, 1

2
≤| x |≤ 1

0, | y |> 1
exp− 1

2
x2√

2π
1
2

exp− | x |
( 1
π
)(1 + x2)−1

1
2π

(
sin(x/2)
x/2

)2

Table 2.1: Summary of kernel functions
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2.1 Information Theory

The kernel width h, or Bandwidth, in 2.19 remains to define after

a kernel function is chosen. The optimal Bandwidth h is a crucial

problem because with large h the estimated density will oversmooth

and mask the structure of the data while with small h the estimated

density will be spiky and very hard to interpret. The statistical ap-

proach leads to determine the bandwidth through the minimization

of mean integrated squared error (MISE) [59].

hMISE = argmin
{
E
[ ∫

(p̂X(x)–p(x))2dx
]}

(2.21)

For example, the h∗ for Gaussian kernels has been proposed [59] for

estimating normally distributed data with unit covariance

h∗ = 1.06 · σ ·M− 1
5 (2.22)

where, σ is the sample standard deviation and M is the quantity of

data. However using a robust measure of the spread instead of the

sample variance, and reducing the coefficient 1.06 to better cope with

multimodal densities, a better result can be obtained. The optimal

bandwidth then becomes

h∗ = 0.9 ·min(σ, IQR/1.34) ·M− 1
5 (2.23)

where, the interquartile range (IQR), is the difference between the

75th percentile (Q3) and the 25th percentile (Q1), of the generated

data sample. A percentile rank is the proportion of samples in a

distribution that a specific sample is greater than or equal to.

The Parzen theory can also be extended to p-dimensional sample

data obtaining a multivariate kernel density estimator. Therefore,
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given a set of M p−dimensional data xn, n = 1, . . . , N , the multi-

variate kernel density estimator, with the kernel function κ and a

kernel width h, is defined as:

p̂X(x) =
1

M hp

M∑
i=1

κ

(
1

h
(x–xi)

)
(2.24)

where, M is the samples and h is the kernel variance often called

Bandwidth. A popular choice for the kernel is the Gaussian pdf,

which is a symmetric kernel with its value smoothly decaying away

from the kernel center.

κ(x) =
1√
2π

p exp

(
− 1

2
(xT x)

)
(2.25)

In this thesis the multivariate kernel density estimator 2.24 with

Gaussian kernel function 2.25 will define the a priori density map

over the test case data of Tuscan Archipelago archaeological rem-

nants.

2.2 Voronoi diagram and Equitable Power

diagram

Ukrainian mathematician Georgy Fedosievych Voronyi (or Voronoy)

has defined the general n−dimensional Voronoi diagrams in 1908

[27], [23]. Even though originally the Voronoi diagram dates back

to Descartes in 1644. To date, Voronoi diagrams have been applied

in several fields of science and technology, finding numerous practi-

cal and theoretical applications [8], [48]. Fejes Tóth basing on the
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2.2 Voronoi diagram and Equitable Power diagram

Voronoi diagram has also introduced a new diagram called Power di-

agram in 1977 [61] and then Aurenhammer has traced the definition

of the power distance to the work of 19th-century mathematicians

Edmond Laguerre and Georgy Voronoy in 1987 [7]. Finally, in the

last years the Power diagram has been improved in the Equitable

Power diagram [53], [54] designing novel algorithms for partitioning.

The Voronoi diagram is a partitioning of a plane into regions

according to closeness of a set of points called seeds, sites or gen-

erators. In detail, after that the position of the seeds are defined

each corresponding region is made up of the whole set of closest

points. Instead, the Power diagram is a partitioning of a plane with

the sizes of the regions depending on weights assigned to each seed

beforehand. Then, the Power diagram can become Equitable if the

weights are computed to achieve an equitable partition.

In the following the Voronoi diagram and the Power diagram

are more formally described. Then the concept of Equitable Power

diagram will be introduced.

2.2.1 Voronoi diagram

Assume that G = (g1, ..., gm) is an ordered set of m-distinct points

(called sites) in the plane Q ∈ <2. For two distinct sites gi, gj ∈ G,

the dominance of gi over gj is defined as the subset of the plane

being at least as close to gi as to gj:

dom(gi, gj) = { x ∈ Q | δ(x, gi) ≤ δ(x, gj)} (2.26)

where, δ is the Euclidean distance function. Clearly, dom(gi, gj) is

a closed half plane bounded by the perpendicular bisector of gi and
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gj, that is

b(gi, gj) = {x ∈ Q | δ(x, gi) = δ(x, gj)} (2.27)

This bisector separates all points of the plane closer to gi from those

closer to gj and will be termed the separator of gi and gj. Thus the

region of a site gi ∈ Q is the portion of the plane lying in all of the

dominances of gi over the remaining sites in Q. Formally

Vi(G) =
⋂

gj∈G–gi

dom( gi, gj) (2.28)

Notice each region is a convex polygon since it come from the in-

tersection of n− 1 half planes. Therefore, the boundary of a region

consists of at most n − 1 edges (maximal open straight-line seg-

ments) and vertices (their endpoints). Each point on an edge is

equidistant from exactly two sites, and each vertex is equidistant

from at least three. As a consequence, the regions are edge to edge

and vertex to vertex forming a polygonal partition of the plane. This

partition defines the Voronoi diagram V(G) = (V1(G), . . . , Vm(G) )

generated by points G = (g1, . . . , gm) (see Figure 2.4).

2.2.2 Power diagram

Basing on the Voronoi diagram the Power diagram is developed.

Thus it is a generalization of the Voronoi diagram having strongest

similarities with the original diagram. Although some differences

exist. For instance, a region might be empty and one site might not

be in its own region. Basically, the Power diagram is a partitioning

of a plane as the Voronoi diagram where each site has assigned one

weigh, that influences the location of the regions’ edges.
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2.2 Voronoi diagram and Equitable Power diagram

Figure 2.4: Voronoi diagram for three seeds.

Assume that G = (g1, ..., gm) is an ordered set of m-distinct

sites where each one has assigned an scalar weight wi ∈ <. A new

ordered set of distinct points GW and a new distance dP(·) called

power distance are defined

GW = ((g1, g1), . . . , (gm, wm)) (2.29)

dP(x, gi; wi) = δ(x, gi) – wi (2.30)

Similarly to the Voronoi diagram, each region called power cell of

the Power diagram V(GW ) = (V1(GW ), . . . , Vn(GW ) ) generated

by power points GW = ((g1, w1). . . , (gm, wm)) is defined by

Vi(GW ) =
⋂

gj∈GW –{(gi, wi)}

dom( (gi, wi), (gj, wj)) (2.31)

where the dominance of (gi, wi) over (gj, wj) is

dom((gi, wi), (gj, wj)) =

{ x ∈ Q | δ(x, gi)–wi ≤ δ(x, gj)–wj} (2.32)
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and the bisector of (gi, wi) and (gj, wj) is defined as

b
(

(gi, wi), (gj, wj)
)

= {x ∈ Q | (gj − gi)Tx =

1

2
(δ(gj)− δ(gi) + wi–wj)} (2.33)

It worth to note that each power cell is a convex set and the bisector

b
(

(gi, wi), (gj, wj)
)

is a face orthogonal to the line segment gigj and

passing through the point g∗ij given by

g∗ij =
δ(gj)− δ(gi) + wi–wj

2δ(gj, gi)
(gj − gi) (2.34)

This last property will be important and crucial to compute the

right weights following the prior proprieties requests for an equi-

table partitioning of the plane. Effectively it means that is possible

to arbitrarily move the bisector modifying the weights while still pre-

serving the orthogonality constraint. Figure 2.5 shows an example

of Power diagram for three power points.

2.2.3 Equitable Power Diagram

Starting from a Power diagram and computed an equitable parti-

tioning of the plane, the Equitable Power diagram is achieved. This

diagram allow to regulate the applied resource allocation among cus-

tomers balancing the assigned workload to each resource [53], [54].

Customers and resources depend on the application field. For in-

stance, in surveillance and exploration missions the customers are

specific points of interest to be surveyed over a region that is the

workspace and the resources are the available agents (i.e. vehicles

with sensors); in the transportation and distribution applications the
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2.2 Voronoi diagram and Equitable Power diagram

Figure 2.5: Power diagram for three power points.

customers are people demanding some service (e.g., utility repair) or

goods and in logistics tasks they could be troops in the battlefield.

Recently the equitable partitioning policy has been even proposed

in multi-agent systems to guarantee a workload-balancing among

the agents, which refer resources [9], [10], [18], [41]. A partitioning

policy is an algorithm that partitions a given workspace Q into m-

subregions basing on the knowledge of the position and the other

information of the m available agents. Then, each i-th agent is

assigned to subregion Qi and it gives services to customers in Qi.

Finally, modeling the workload over the space Q through a measure

function λ : Q → <, the workload for a region Qi is λQi =∫
Qi
λ(x)dx and a equitable partition of Q is λQi = λQj for all i, j ∈

(1, . . . ,m) or in equivalent mode λQi = λQ/m, for all i. Here

only the concept of Equitable Power diagram has been presented

but in chapter 4 an partitioning algorithm will be describe in more
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detail because it will be a main step of the cooperative distributed

algorithm for AUVs seabed survey, which is the core of the thesis.

Notice the use of the Equitable Power diagram will allow to intend

the proposed algorithm to be cooperative: each agent will negotiate

with the others which portion of the neighboring area to explore.

2.3 Robotics motion planning

In robotics the motion planning and the trajectory planning are

algorithms that define the sequence of robot configurations to achieve

the high-level specifications of tasks 2.

In case of marine systems, the paths are represented by a set of

waypoints to be visited. These waypoints are stored in a database

and used for generation of trajectory or a path for moving underwa-

ter vehicle to follow. Moreover, weather routing, obstacle avoidance

and mission planning can be incorporated in the design of waypoints.

Waypoint database is generated using different criteria according to

information on: mission, environmental data, geographical data, ob-

stacles, collision avoidance and feasibility.

• Mission: the vehicle moves from the starting point to the goal

point via the waypoints.

• Environmental data: information about wind, waves, currents

are used to define the waypoints for obtaining optimal routes.

• Geographical data: geographical information such as the posi-

tion of islands and shallow waters are included.

2The review presented here is based on the book by Steven M. LaValle [39].
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2.3 Robotics motion planning

• Obstacles: floating constructions and other obstacles are avoided.

• Collision avoidance: the vehicle moves avoiding collision with

other vehicles by introducing safety margins on the routes.

• Feasibility: the waypoints are defined in order to the maneu-

vers are feasible.

Each waypoint can be also defined either one at a time in accor-

dance with the current up-to-date information, or a priori before the

motion.

In the next sections will be reported the available techniques in

the literature and the most important reviews on path planning.

2.3.1 Problem Formulation

A few fundamental terms are introduced to formulate the path plan-

ning problem.

WorkspaceW : World W is the physical world where the robot

exists and it can be chosen by two modes: either a 2D worldW = <2

or 3D world W = <3. Generally, the world contains two kinds of

entities:

• Obstacles: Portions of the world that are “permanently” oc-

cupied, as an example the walls of a building.

• Robots: Bodies that are modelled geometrically and controlled

via motion plan.

A method that uses a collection of primitives permits the system-

atically constructing representations of obstacles and robots. Both

obstacles and robots are (closed) subsets of W .
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Configuration space (C): The set of configurations that a

robot can achieve. By this abstraction the same motion planning

algorithm can be used for different problems. In this mode the path

planning becomes a search on a space of transformations.

The configuration space C can be subdivided into free configuration

space, Cfree and obstacles configuration space, Cobs. The configura-

tions in Cobs result in contact with an obstacle, while those in Cfree
are not. Formally, given world W , a closed obstacle region O ⊂ W ,

closed robot A, and configuration space C. Let A(q) ⊂ W denote

the placement of the robot into configuration q. The obstacles con-

figuration space Cobs in C is defined as:

Cobs = {q ∈ C | A(q) ∩ O 6= ∅} (2.35)

Instead the free configuration space Cfree is an open subset of C:

Cfree = C \ Cobs (2.36)

Path (τ(s)): Curve through Cfree parameterized by s.

Degrees of Freedom: The minimum number of independent

variables required to represent the robot configuration. In this thesis,

the focus is on autonomous underwater vehicles AUVs, which require

six degrees of freedom for a full characterization: q = {x, y, z, φ, θ, ψ},
where x, y, z refer to the position in 3D space, and φ, θ, ψ to the

Euler angles so the orientation. Moreover the planning for an AUV

can be simplified assuming that θ = θref , φ = φref , z = zref , reduc-

ing the representation with three degrees of freedom: q = x, y, ψ.

Given robot A and obstacle O models, C-space C, a start lo-

cation qI
.
= {xI , yI , zI , φI , θI , ψI} ∈ Cfree and a goal location qG

.
=

{xG, yG, zG, φG, θG, ψG} ∈ Cfree. According to the fundamental terms
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2.3 Robotics motion planning

Figure 2.6: The representation of basic motion planning problem by

C-space ideas. (Figure appears in [39])

the basic motion planning problem is defined as an algorithm that

computes a (continuous) path, τ : [0, 1] → Cfree, such that τ(0) =

qI and τ(1) = qG, or correctly report that such a path does not exist.

The problem is conceptually illustrated in Figure 2.6.

The motion planning problem, above formulated, is addressed

through two main philosophies, sampling-based motion planning and

combinatorial motion planning. In sampling-based motion planning

the main idea is to avoid the explicit construction of Cobs and con-

ducting a search that probes the C-space with a sampling scheme

by a collision detection module as a “black box”. This approach

allows to develop planning algorithms independent from the partic-

ular geometric models. Instead, the combinatorial motion planning

philosophy finds paths through the continuous configuration space
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without resorting to approximations. This approach is alternatively

referred to as exact algorithm, due to this last property. Therefore

it is in contrast to the sampling-based motion planning algorithm.

2.3.2 Combinatorial motion planning

The combinatorial approach develops elegant and efficient algorithms

for many special classes. These algorithms are complete and do not

depend on approximations, so if a solution exist they find one, other-

wise they report failure. They also provide theoretical upper bounds

on the time needed to solve motion planning problems.

In the combinatorial approach before to define an algorithm is

constructed a roadmap along the way to solving queries. Roadmap

is a topological graph G that maps in Cfree with two conditions:

• Accessibility: from anywhere in Cfree it is trivial to compute

a path that reaches at least one point along any edge in G.

• Connectivity-preserving: If there exists a path through

Cfree from qI to qG, then there must also exist one that travels

through G.

A topological graph is a graph where, every vertex q corresponds

to a point in Cfree (topological space) and every edge corresponds

to a continuous, injective (one-to-one) function, τ : [0, 1] → Cfree.
The image of τ connects the point in Cfree that corresponds to the

endpoints (vertices) of the edge. Therefore the roadmap G(V,E)

represent a topological graph where V is a set of robot configurations

(vertices) and E (edges) is the set of paths that map into Cfree.

A roadmap is obtained in two modes, either derived from a cell
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2.3 Robotics motion planning

decomposition of Cfree or directly constructed without considering

the cells. In the first case, a cell decomposition algorithm partitions

the free configuration space Cfree into a finite set of regions, called

cells, satisfying three proprieties:

• Computing a path from one point to another inside of a cell

must be trivially easy, i.e. if every cell is convex, then any pair

of points in a cell can be connected by a line segment.

• Adjacency information for the cells can be easily extracted to

build the roadmap.

• For a given qI and qG, it should be efficient to determine which

cells contain them.

Thus, the motion planning problem is reduced to a graph search

problem. In the second case, instead the partition in cell is not done

and the roadmap is constructed directly.

Several cell decomposition algorithms and two approaches to con-

struct a roadmap directly (called shortest path and maximum clear-

ance) are defined in the literature, see the review in [12], [39], [22],

[24], [19], [37]. For the sake of clarity, Figure 2.7 depicts some ex-

amples of cell decompositions and Figures 2.8 show roadmaps con-

structed directly.
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(a) (b)

(c) (d)

Figure 2.7: (a) The approximate cell decomposition and the path found

into the cells not marked. (b) Example of the MIXED cell subdivision (c)

The vertical cell decomposition method and the roadmap derived. (d) A

triangulation decomposition of Cfree and the roadmap obtained.
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2.3 Robotics motion planning

(a) (b)

Figure 2.8: (a) The shortest path roadmap and the shortest path between

qI − qG obtained. (b) The maximum-clearance roadmap built by a gen-

eralized Voronoi diagram (GVD) (Figure appears in [51]). Each point in

the GVD is equidistant from at least the two nearest obstacles.

2.3.3 Sampling-based motion planning

Before detailing the incremental sampling and searching methods the

general sampling concepts and the collision detection module that

they rely on, are defined.

Sampling based motion planning algorithms extract a countable

number of samples from the state space C which is uncountably in-

finite. If the algorithm runs forever, this may be countably infinite,

but in practice it terminates after a finite number of samples. The

type of sequence with which the samples are chosen to be sampled

the state space C influences the performance of sampling based plan-

ning algorithms and this mismatch between the infinite sampling

sequence and the uncountable C-space leads to the concept of dense-

33



Background

ness and it motivates careful consideration of sampling techniques.

Denseness Given U and V two subsets of a topological spaces, the

set U is dense in V if the closure of U is V , cl(U) = V . For example

(0, 1) is dense in [0, 1], Q is dense in R.

Random sequence is probably dense Simply, a dense sequence

is obtained by choosing points at random. The purpose is to have a

dense sequence in probability of samples in C−space. For instance,

given C = [0, 1], let l = [a, b] ⊂ C with b−a = l. Consider a sequence

of k independent random samples, the probability that no one of the

samples falls into I is p = (1 − l)k. When the number of samples

tends to infinity the probability p tends to 0. Hence, the probability

that any nonzero length interval contains no point converges to zero.

In other words, the infinite sequence of samples is dense in C with

probability 1.

Random Samples The goal is to generate uniform random sam-

ples, i.e. to determine a uniform probability density function on the

C−space. The random sampling is the easiest of all sampling meth-

ods for the C−space because it often consists of Cartesian product.

If a uniform sample is taken from X1 and X2 the uniformity is ob-

tained also for X1×X2. Therefore, for example given 5 robots with

translational movements in [0, 1]2 the C−space is C = [0, 1]10.

Low-dispersion Sampling The Low-dispersion sampling is an

alternative to random sampling. It places samples in a way that

makes the largest uncovered area be as small as possible by gener-

alizing of the idea of grid resolution. For a grid, the resolution can

be increased by decreasing the step size of each axis. A possible

extension of this concept is the criterion of dispersion:

Definition 1. In a metric space (X, ρ) the dispersion of a finite set
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2.3 Robotics motion planning

P of samples is

δ(P ) = sup
x∈X
{min
p∈P
{ρ(x, p)}}

Figure 2.9: Interpretation of the dispersion definition with two different

metrics. (Figure appears in [39])

Once the sampling component has been defined, before to con-

struct the solution to the original motion-planning problem is nec-

essary to check if a configuration is in collision. Therefore a collision

checking module, providing information about feasibility of candi-

date trajectory, is crucial since it will also take the largest amount

of time in the planning algorithm. Even though it is often treated

as a black box, it is important to study its inner workings to under-

stand the information it provides and its associated computational

cost. Several collision detection algorithms exist for different appli-

cations.

In case of 2D convex robot and convex obstacles where the model

of Cobs can be determined, is used a logical predicate φ : C → T, F

with T = true and F = false, where if q ∈ Cobs then φ(q) = T
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otherwise φ(q) = F . The logical predicate is easily implemented

based on the available model. However, it is not sufficient in some

cases, for example the logical predicate is a boolean function and it

does not provide any information on how far the robot is from the

obstacle. Hence, in this case a distance function d : C → [0, +∞)

between q and the closed point in O is preferred. Moreover, the

collision detection for a robot with m links and an obstacle set O
with k connected components is more difficult then previous cases.

It is faced with a two-phase approach. In the first phase defined

broad the computation for bodies that are far away from each other

is avoided. A bounding–box is placed around the objects and over-

lapping between bounding–boxes is easily checked. In the second

narrow phase instead individual pairs of probably closer bodies are

checked. Finally, for the case of nonconvex bodies the collision detec-

tion is done with a hierarchical approach which decomposes a body

into a set of bounding boxes (see Figure 2.10). Such boxes may be

as tight as possible around the part of the body or may be as simple

as possible so that intersection test is easy.

Figure 2.10: Four different kinds of bounding regions: (a) sphere, (b)

axis-aligned bounding box, (c) oriented bounding box, and (d) convex hull.

(Figure appears in [39])
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2.3 Robotics motion planning

Motion planning algorithm also require that an entire path is in

Cfree. The check cannot be done point-by-point because it would

require an uncountably infinite number of collision detection tests.

Hence, suppose a parametrization of the path τ : [0, 1] → C a

possible solution, for checking if τ([0, 1]) ⊂ Cfree, is to determine

a resolution 4q in Cfree and call the collision checker only on the

samples. The resolution 4q induce a step size t2 − t1 where t1, t2 ∈
[0, 1] and ρ(τ(t1), τ(t2)) ≤ 4q where ρ(·) is a metric on C. Note that

if the4q is too small an high computational times is obtained and on

the other hand, if it too large some miss collisions may happened.

Therefore the choice of the resolution in [0, 1] may lead to a no

efficient resolution in C or to a collisions missing.

Once the sampling component and the collision checking module

have been defined, the incremental sampling and searching algo-

rithms are developed. Such algorithms are strikingly similar to the

family of search algorithms on discrete optimization. The main dif-

ference is that in search algorithm on discrete optimization the edges

represent control actions while in incremental sampling and search-

ing algorithm is constructed a topological graph where the edges

are path segments. The sampling-based planning algorithms can be

synthetized as follows:

1. Initialization: consider a graph G(V,E) with E = ∅ and V

contains at least qI and qG (and possibly other points in Cfree).

2. Vertex Selection Method (VSM): Choose vertex qcur ∈ V
to expand the graph.

3. Local Planning Method (LPM): For some qnew ∈ Cfree try
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to construct a path τ : [0, 1] → Cfree with τ(0) = qcur and

τ(1) = qnew. If a collision occurs along τ go to step 2.

4. Insert edges and nodes to the graph: Insert τ in E and

if not already in V insert qnew in V .

5. Check for a solution: Check if in G there is the desired path.

6. Iterate: Iterate until a solution is found or termination con-

ditions are met.

A large family of sampling-based algorithms can be described by

varying the implementations of steps 2 and 3, where the algorithms

are based on the number of search trees. For these algorithms

similarity to algorithms for graph explorations can be used unidi-

rectional (single-tree), bidirectional (two-trees) or multi-directional

(more than two trees) methods [39]. Bidirectional and multi-directional

methods are useful in case of complex spaces with “traps” but are

more difficult to manage. A bidirectional method defines the vertex

selection method to alternate between trees when selecting vertices

while, a multi-directional method selects pair of trees for connection.

Another method that can also be used for the sample and search-

ing scheme is the Grid search algorithm [39]. The basic idea is to dis-

cretize each dimension of the C–space obtaining k−neighbourhood

with k ≥ 1. The algorithm start searching the closest 1−neighbourhood

(or k−neighbourhood) that are in Cfree.
Arguably, to date the most influential algorithms for incremental

sampling and searching are Probabilistic RoadMaps (PRMs) [33],

[34] and Rapidly-exploring Random Trees (RRTs) [35], [38], [39].

These two algorithms differ in the way that they construct the graphs
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2.3 Robotics motion planning

connecting the points sampled randomly from the state space. The

PRM is designed such that the roadmap building and the query

phases of operation are separate; the entire roadmap is built before

a path is found from start to goal. The challenging aspects of this

type of algorithm are: 1) determining whether a randomly generated

sample lies in the free configuration space at all, and 2) determining

whether the edge between two nodes remains in the free configuration

space. An implementation of the PRM planner is given in Algorithm

1. Instead the RRT find a path to the goal as samples are generated.

Algorithm 1: Probabilistic RoadMap

Input : Map, C
Output: Probabilistic RoadMap PRM

1 Add qstart and qgoal to PRM ;

2 while No path exists from qstart to qgoal in PRM do

3 Randomly generate q from C;
4 if q ∈ Cfree then

5 Add q to PRM ;

6 forall the node n ∈ PRM with n 6= q do

7 if Good path exists from n to q then

8 Add edge in PRM between n and q;

More details of the PRMs and RRTs algorithms can be found in

[32].
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2.4 Side-Scan Sonar - Multi Beam Echo

Sounders

Underwater applications in area mapping and/or area surveillance

are conducted by acoustic looking sensors: either side-scan sonar

(SSS) or multi-beam echo sounder (MBES). The images of seabed

are generated by SSS and the seabed bathymetry is determined by

MBES.

2.4.1 Side-Scan-Sonar

To date, two types of Side Scan Sonar sensors [11], [43], [25] have

been developed, either as payload for AUV or to be vessel-towed

and installed on a standard Towfish. In the first case the side-scan

transducers are on-board the AUV and gather data as the AUV

moves forward in rectilinear motion. In the second case instead the

side-scan transducers is placed in a “towfish” and pulled by a “tow

cable” by a surface vessel, which performs regular lawn-mower tran-

sects paths. In both cases the side-scan transducer leaves a narrow

channel not scanned directly beneath itself. Figure 2.11 shows an

AUV path and corresponding SSS coverage swath and Figure 2.12

shows a vessel with the towfish towed. Side Scan Sonar systems

use high frequency acoustic pulses in the range 100-600 kHz, which

result in strong reflection from seabed features and rapid attenu-

ation of energy transmitted into the seabed. Therefore, features

located either on or above the seabed cause the reflections detected.

The interpretation of reflections detected takes two main aspects:

detection of vertical offsets and recognition of textural differences.
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2.4 Side-Scan Sonar - Multi Beam Echo Sounders

Figure 2.11: An example of AUV trajectory and corresponding area

covered by its SSS.

Figure 2.12: Above the seabed a towfish is towed by a vessel on the

surface.
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Vertical offsets are identified by discrete strong reflections (seabed

has stepped upward) and shadow zones (seabed has dropped down);

combinations of these effects facilitate identification of troughs (e.g.

dredge marks, scour, channels) and ridges (sand bars, man-made

features). Objects such as mines, buoys, and wrecks also give rise

to distinctive, characteristic images. Changes in seabed material

grain size and composition result in differing acoustic backscatter

patterns. However, in the late 1990s the advent of digital acquisi-

tion and accurate positioning systems has developed modern sonars

that has used image processing, real-time data mosaic and pattern

recognition. Figure 2.13 shows an example of image obtained by

SSS.

Finally, the resolution is divided into range (track-perpendicular)

and transverse (track-parallel) components. Range resolution is a

function of pulse frequency content, although transverse resolution

is defined by beam width, determined by transceiver geometry and

pulse content. Modern systems may employ either simple pulses or

swept frequency (‘Chirp’) signals, which offer improved resolution at

the expense of repetition rates.

2.4.2 Multi Beam Echo Sounders

The bathymetry measurements and the nature of seabed are achieved

through two different technologies, beamforming and interferomet-

ric or phase discrimination sonars, but both the techniques give the

same results.

The multi beam echo sounders collect bathymetric soundings in a

swath perpendicular to the ship track by transmitting a broad acous-
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2.4 Side-Scan Sonar - Multi Beam Echo Sounders

Figure 2.13: Shipwrecks from Estonia: image obtained with the Klein

System 5000 by the Estonian Navy near Tallinn Estonia - Polaris/Raa

- The sailing vessel was built in 1917 in Koivisto, Finland. She was 32

meters long, 9 meters wide and the waterline was at 3,6 meters. She

was originally named Polaris until the year 1938, when she was sold to

Estonia and renamed Raa. She sunk in 1941.

tic fan shaped pulse from a specially designed transducer across the

full swath across-track. In reception it is possible to form multiple

narrow receiver beams (beamforming) in the across-track direction

(around 1 degree depending on the system). From these narrow

beams a two way travel time of the acoustic pulse is established uti-

lizing a bottom detection algorithm. The algorithm requires also an

accurate measurement of the sonar’s motion relative to a Cartesian

coordinate system to determine the transmit and the receive angle

for each beam. Typically the measures of motion are: heave, pitch,

roll, yaw, and heading. Furthermore, the depth and position of the
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return beams can be adjusted if the speed of sound in water is known

for the full water column profile [30]. Various transmit frequencies

are utilized by different MBES systems depending on the sea floor

depth. Low frequencies (12 kHz) systems can collect swath sound-

ings at full ocean depths, many up to 10.000 meters, while high

frequency systems (300 kHz and more) collect swath bathymetry in

depths of 20 meters or less.

In contrast, the interferometric technique uses the phase content

of the sonar signal to measure the angle of a wave front returned

from a sonar target. When backscattered sound energy is received

back at the transducer, the angle the return ray makes with the

transducer is measured. The range in the corresponding direction

is calculated from the two-way travel time of the ray. The angle

is determined by knowing the spacing between elements within the

transducer, the phase difference of the incoming wave front, and the

wavelength [42].

2.5 Autonomous Underwater Vehicles Lo-

calization

The estimate of autonomous vehicle’s absolute position is defined

as localization problem. The guidance system and/or the post-

processing of data gathered through sensor need measures of absolute

position to compute their own outputs.

Most autonomous system rely on radio frequency communica-

tions and global positioning system (D)GPS on surface. However,

underwater such signals propagate only short distances and acoustic

44



i
i

“PhDThesis” — 2015/3/5 — 17:40 — page 45 — #33 i
i

i
i

i
i

2.5 Autonomous Underwater Vehicles Localization

based sensors and communications perform better. Therefore an Un-

manned Underwater Vehicle (UUV) localization system relies on two

different techniques, either acoustic transponders and modems or in-

ertial navigation. In the first technique, the localization is based on

measuring the time-of-flight (TOF) of signals from acoustic beacons

or modems. In the second technique, instead are used accelerome-

ters and gyroscopes for increased accuracy to propagate the current

state. Nevertheless, this method has position error growth that is

unbounded.

The type of localization systems depend on the characteristics

of mission and different systems can be combined improving the

performance.

2.5.1 Acoustic Localization

The acoustic positioning systems measure by the time-of-flight TOF

of acoustic signals the positions relative to a framework of active

sensing elements, which must be deployed prior to operations. These

systems are categorized into three broad classes based on the base-

line, which is the distance between the active sensing elements [63]:

• Ultra-Short Baseline (USBL), the baseline length is shorter

than 10cm. See Figure 2.14b.

• Short Baseline (SBL), the baseline length is between 20mt to

50mt. See Figure 2.14a.

• Long Baseline (LBL), the baseline length is between 100mt to

6000mt. See Figure 2.14c.
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Figure 2.14: (a) Short baseline SBL (b) Ultra-short baseline USBL (c)

Long baseline LBL (Figure appears in [52])

• Single Fixed Beacon, the localization is performed from only

one fixed beacon.

• Acoustic Modem, new techniques are developed using acoustic

modems. Beacons no longer have to be stationary.

USBL system measures phase comparison on an arriving ping be-

tween individual elements within a multi-element (≥ 3) transducer.

This phase comparison is used to determine the bearing from USBL

transceiver to a beacon. The transceivers are placed at either end

of the ship hull. The USBL system works in pinger, responder, or

transponder mode. Any range and bearing (position) derived from

a USBL system is with respect to the transceiver mounted to the

vessel and as such a USBL system needs a Vertical Reference Unit

(VRU), a Gyro, and possibly a surface navigation system to provide

a position that is seafloor referenced.

The main advantages of USBL system are:

• Low system complexity and easy tool to use.

• Not need to deploy transponders on the seabed.
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2.5 Autonomous Underwater Vehicles Localization

• Good range accuracy with time of flight system.

The disadvantages of USBL system are:

• Detailed calibration of system required.

• Absolute position accuracy depends on additional sensors that

are on board of the ship.

• Minimal redundancy.

• Large transceiver/transducer gate valve or pole required with

a high degree of repeatability of alignment.

SBL system derives a bearing to a beacon from multiple (≥ 3)

surface mounted transceivers. This bearing is derived from the de-

tection of the relative time of arrival as a ping passes each of the

transceivers. The transceivers are placed at opposite ends of a ship’s

hull and so the baseline depends on the size of the support ship.

Any range and bearing (position) are based on the transceivers and

as such a SBL system needs a Vertical Reference Unit (VRU), a

Gyro, and possibly a surface navigation system to provide a po-

sition that is seafloor (earth) referenced. A SBL system works in

pinger, responder or transponder mode.

The main advantages of SBL system are:

• Low system complexity and easy tool to use.

• Good range accuracy with time of flight system.

• Spatial redundancy built in.

• Not need to deploy transponders on the seabed.
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• Small transducers/gate values.

The disadvantages of SBL system are:

• Detailed offshore calibration of system required.

• Large baselines for accuracy in deep water (≥ 40mt) needed.

• Very good dry dock/structure calibration required.

• Absolute position accuracy depends on additional sensors that

are on board of the ship.

• ≥ 3 transceivers deployment poles/machines needed.

LBL system derives a position basing on an array of transpon-

ders deployed on the seabed but over a wide mission area. The

localization is based on triangulation of three or more time of flight

of acoustic signals to/from the seafloor stations. LBL system works

in responder or transponder mode and any range/range position is

based on relative or absolute seafloor coordinates. As such the LBL

system does not require a VRU or GYRO. Other diverse implementa-

tion of LBL system is with GPS intelligent buoys where the beacons

are installed at the surface rather than on the seabed. Therefore

GPS intelligent buoys system reduces the installation costs and the

need for recovery of the beacons.

The advantages of LBL system are:

• Very good position accuracy independent of water depth.

• Observation redundancy.

• Provide high relative accuracy positioning over large areas.
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2.5 Autonomous Underwater Vehicles Localization

• Small transducer

The disadvantages of LBL system are:

• Complex system requiring expert operators.

• Large arrays of expensive equipment.

• Operational time consumed for deployment/recovery.

• Conventional systems require comprehensive calibration at each

deployment.

The major detractor of LBL system is the cost and time required

to install the beacons and to geo-reference them. This is reduced by

the use of only a single fixed beacon instead of a network of them

where, the baseline is synthesized by propagating the ranges from

a single beacon forward in time until the next update is received.

This technique has been simulated on real world data in [36] and

defined “virtual LBL”[49], [6]. For instance, Figure 2.15 shows a

visual representation of single beacon navigation. In the figure the

vehicle receives three acoustic pings and knows the beacon location

a priori. Each time, reception of a ping results in a reduction of

uncertainty in the direction of the beacon.

Recent fast technological developments have induced a new local-

ization system based on the acoustic modems. Acoustic modems al-

low simultaneous communication of small packets and ranging based

on TOF. Moreover the receiver can bind its position to a sphere cen-

tered on the transmitter if the position of the transmitter is included

in the communicated information. So the operations of localization

and fixing for beacons prior to the mission is no longer necessary.
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Figure 2.15: An example of the localization system with single fixed

beacon at known location is showed. Uncertainty grows in between updates

from the beacon. On reception of an update, uncertainty is reduced in the

dimension coinciding with the location of the beacon. (Figure appears in

[52])

The main producers of acoustic modems are: Aquatec, Woods

Hole Oceanographic Institute, Teledyne Benthos, TriTech, LinkQuest,

Desert Star Systems and EvoLogics. The communication uses either

frequency shift keying with frequency hopping (FH-FSK), which is

more reliable but provides lower data rates, or variable rate phase-

coherent keying (PSK). Some models also include precise pulse-per-

second clocks to allow synchronous ranging. The communication

channel can be also shared using a TDMA scheme, where each node

of the network is allotted a time slot within which to broadcast in-

formation. Nevertheless TDMA scheme has the main disadvantage

that the total cycle time grows with the number of nodes. At present,

the features of commercial modems in optimal conditions are shown

in Table 2.2.

The use of acoustic modems provides two important advantages:

• The geo-reference of the beacons prior to starting the mission

50



i
i

“PhDThesis” — 2015/3/5 — 17:40 — page 51 — #36 i
i

i
i

i
i

2.5 Autonomous Underwater Vehicles Localization

Modem
Frequency [kHz] Bit Rate

[bps]

Range

[km]Center Bandwidth

AQUAModem 1000 9.75 4.5 2000 5

MicronModem 22 4 40 0.5

MicroModem (FSK) 25 4 80 2

MicroModem (PSK) 25 5 5388 2

ATM9XX (PSK) 11.5/18.5/24.5 5 2400 6

ATM9XX (MFSK) 11.5/18.5/24.5 5 15360 6

ATM885 18.5 5 15360 0.7

S2CR 48/78 63 30 31200 1

S2CR 40/80 51 26 27700 1

S2CR 18/34 26 16 13900 3.5

S2CR 12/24 18.5 11 9200 6

S2CR 7/17 12 10 6900 8

UWM1000 35.695 17.85 17800 0.35

UWM2000 35.695 17.85 17800 1.5

UWM2000H 35.695 1 7.85 17800 1.5

UWM2200 71.4 35.7 35700 1

UWM3000 10 5 5000 3

UWM3000H 10 5 5000 3

UWM4000 17 8.5 8500 4

UWM10000 10 5 5000 10

SAM-1 37.5 9 154 1000

Table 2.2: Commercial underwater acoustic modems. FSK, frequency-

shift keying; PSK, phase-shift keying.
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is no longer necessary.

• The beacons can move during the missions.

Consequently, time and money are saved and the mission range can

be extends as necessary without redeploying the sensor network.

Many methods have been recently published that exploit these ad-

vantages [45], [46], [62], [65], [66].

2.5.2 Cooperative Localization

In the last ten years the research in AUV localization has been ex-

ploded shifting from old technologies, which require pre-deployed

and localized assets, towards dynamic multi-agent system approaches

that allow rapid deployment by minimal infrastructure. A particu-

lar instance is the localization system for a team of AUVs developed

and experimented in Thesaurus Project [3], [4], [14]. Three acoustic

modems, one USBL and a cooperative localization algorithm make

the localization system. Where, the algorithm uses USBL measure-

ments, range and navigation information to reduce errors on AUVs’

position. Figure 2.16 depicts the scenario of the developed system.

In this cooperative localization system one AUV stays on surface to

get GPS and to geo-localize the other vehicles that remain underwa-

ter to continue the mission.

2.5.3 Inertial Systems

Two approaches are possible to resolve the navigation problem, one

that uses and refers external aids, and second instead completely in-

dependents from them. This sub-section explains the first approach.
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2.5 Autonomous Underwater Vehicles Localization

Figure 2.16: Cooperative localization scenario. (Figure appears in [14])

Dead-Reckoning is a navigation system not based on external

aids. This system does not uses acoustic positioning support from a

ship or acoustic transponders but it dead reckons to resolve the lo-

calization problem. Dead-Reckoning relies on the continuous updat-

ing of the position data derived from inputs of velocity components

or speed and heading generated from a known start position. The

main disadvantages are that errors are cumulative and the accuracy

is largely influenced by the accuracy with which the initial position,

velocity and heading are known. Consequently, the position error

grows unbounded with distance traveled.

The inertial navigation system aims to improve upon the dead-

reckoning pose estimation by integrating measurements from ac-

celerometers and gyroscopes. These sensors can reduce the growth

rate of pose estimation error, although it will still grow without

bound. The inertial navigation is characterized by the navigation

equations that are a set of nonlinear differential equations relating

53



Background

vehicle’s Attitude, Velocity and Position to known/measured inertial

quantities. The inertial quantities are gathered by inertial sensors,

accelerometers (f bib) and gyroscopes (ωbib), which represent the inputs

of the navigation system. The inertial mechanization state variables

can be defined as the angular parameterization Θ of the Direction

Cosine Matrix Rn
b = Rn

b (Θ), which rotates from body (b) to naviga-

tion (n) frames, the velocity vector Vn = [ Vn Ve Vd]
T , expressed

in navigation frame, and the position vector re = [ ϕ λ h ],

composed of the latitude, longitude and altitude of the navigation

frame with respect to an Earth-fixed frame (e). Any navigation

and Earth-fixed frames can be used. The NED and ECEF reference

frames [37] are adopted and without loss of generality, the body

frame is assumed coincident with the INU.

Following these assumptions, the continuous-time navigation equa-

tions resolved in the NED frame have the following form:

ϕ̇ =
Vn

Rm + h

λ̇ =
Ve

(Rn + h) cos(ϕ)

ḣ = −Vd
˙V n = Rn

b f
b
ib–(2ωnie + ωnen) ∧ V n + γn(ϕ) (2.37)

Ṙn
b = Rn

b (ωbib–R
b
nω

n
in)∧

where ωnin denotes the transport rate, that can be computed as

ωnin = ωnie + ωnen

The transport rate is as the summation between the NED frame

angular velocity ωnen and the Earth rotation rate ωnie, projected onto
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2.6 Underwater Communication

the axes of the navigation frame. The angular velocity ωnen is defined

as such velocity needed to make the navigation frame constantly

aligned with the Geodetic North-East-Down configuration, while the

body travels on the Earth surface. The two velocities of the transport

rate are included into the navigation Equations 2.37 also, to account

for the Coriolis and centripetal acceleration effects. The term γn(ϕ)

denotes the local gravity acceleration, aligned with the vertical axis

of the navigation frame, γn(ϕ) = [ 0 0 γnlocal(ϕ)]T . Note that the

navigation equations depend on some local constants which are the

Earth WGS84 Datum constants, such as the local Normal (Rn)

and Meridian (Rm) Earth radii of curvature, together with ‖ωnie‖
and the local value of the gravitational acceleration, γlocal(ϕ). Full

derivation of the above equations and the detailed descriptions of

the model local constants can be found in several textbooks (see, for

instance,[57]).

2.6 Underwater Communication

Localization of underwater vehicle employs the communication if it

is worked out by techniques based on either acoustic positioning sys-

tems or cooperative systems. Even if the underwater communication

and localization are actually two distinct underwater problems, they

become linked. For instance, the solution in [14] resolves the local-

ization problem by a communication network. Consequently all the

underwater localization systems based on acoustic measurements are

affected by the underwater communication’s failing.

Underwater communication is still a challenging problem due to
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lack of available bandwidth, slow throughput rate, and unreliability

of the acoustic channel [2], [16]. It endures many shortcomings [15]

such as:

• Small bandwidth, which means that multiple pairs of com-

municating nodes have to use time division multiple access

(TDMA) techniques to share the communication channel.

• Low data rate, which constrains the volume of data that can

be transmitted.

• High latency since the speed of sound in water is only 1500m/s

(five orders of magnitude slower than electromagnetic signals).

• Variable sound speed due to variable water temperature, den-

sity, and salinity.

• Multi-path transmissions due to the presence of an upper (free

surface) and lower (sea bottom) boundary coupled with vari-

able sound speed.

• Unreliability, resulting in the need for a communications sys-

tem designed to handle frequent data loss in transmissions.

The design of distributed cooperative algorithms able to face these

failures on communications with a team of AUVs is currently an

active new area of research. The main purpose is ridden out the

communication’s shortcoming making a team of AUVs able to adapt

their behaviours in accordance with the variation of acoustic channel

[5], [15], [40], [47].
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Chapter 3

Priori Density Map

This section defines a mathematical method that provides a map

of a priori percentage density of expected findings in accordance

with available historical archival data-base, either previous findings

or new discoveries, over the survey area. The map is developed by

applying Parzen theory with Gaussian kernels to a set of data which

are built from the archival data-base keeping into account both the

uncertainty and reliability of each datum. This a priori density map

drives the choices of vehicles’ waypoints in the systematic search

strategy that it will be describe in the next chapter.

3.1 Problem Formulation

In the systematic search problem, an object rested on the seabed

has its location given by a probability density and a fixed amount of

a resource, in terms of energy, time, or money, is allocated to try to

find this object. The classical theory centers on the determination
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of the search location together with the distribution of search effort

within it, to maximize the expected percentage of detections, with-

out spending more than the allocated amount. Therefore, the union

of the expected density of detection associate to each object draws

the a priori density map over the survey area.

Figure 3.1: The a priori density map built by the Bayesian approach.

Hot colours indicate points with high expected density of objects on the

seabed, while cold colours indicate low expected density.

Historically, the a priori density map was built through the clas-

sical Bayesian inference, which allows the organization of available

data with associated uncertainties and computation of the Proba-

bility Distribution Function (PDF) for target location given these

data. Bayesian approach organizes the available priori information
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3.2 Mathematical Method

into consistent scenarios, quantifying the uncertainties with proba-

bility distributions, weighting the relative likelihood of each scenario,

and performing a simulation to produce a prior PDF for the loca-

tion of the object rested on the seabed. The Bayesian approach

doesn’t compute a smooth map but a too crude approximation of

the a priori percentage density of expected findings, as Figure 3.1)

shows. Hence, a refined mathematical method is provided adapting

the theory of Parzen windows [50] to account for the qualitative in-

formation available from archaeological data-bases. Parzen window

theory naturally adapts to, or at the very least is able to cope with,

data-base where each entry has a qualitative judgment on the reli-

ability of the indication itself and on the accuracy of the referred

position.

3.2 Mathematical Method

In the early ’60s it has been proposed by Parzen [50] a mathematical

method to estimate the Probability Density Function (PDF) through

Gaussian kernel function from a data set given. In this section the

Parzen method is refined to draw an a priori density map.

Available a priori information can be formalized by considering

a set of data X = {Xi} as points Xi, i = 1, . . . , Ndata with some

attributes. For modelling purposes, each element in the data set

has three attributes to encode the spatial and qualitative informa-

tion. These attibutes are: the geographical position xi of the datum

Xi, which represents the specific position on the map where that

particular finding was discovered/reported, the reliability Pi of the
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indication and the uncertainty σi ∝ 1
λi

of the referred position, being

λi the accuracy. Each point is thus a triple of attributes

Xi(xi, Pi, σi) , i = 1, . . . , Ndata (3.1)

Note that here the concept of reliability is recast into that of prob-

ability, for which the symbol P is used. This is made in the sense

that the more reliable a particular datum is, the more probable it

is finding objects of archaeological interest in that specific position.

For this reason, the value of this latter attribute is rescaled in the

range [0; 1] to formally represent a probability.

The estimation of a priori density map is interested in represent-

ing the knowledge encoded in the set of data X, given the single obser-

vations Xi, i = 1, ..., Ndata, to finally obtain an a priori description

of the environment in terms of percentage density of detections per

area. Actually, it is interested in computationally simple estimators

of this density, that have the further property to be continuous and

differentiable, given that the aim is to employ such distribution in an

optimization framework. Non-parametric sample-based estimators,

usually adopted in assessing the probability density function of a set

of given data, can be considered good candidates to be adopted in

this particular case also, being able to naturally cope with the spa-

tial and qualitative information embedded in the data Xi. For this

aim, a huge literature has been produced; one can refer to the re-

view in [29], for example. What renders our problem particular, is

the further description of the entries in the historical database in

terms of the reliability of the referred position, which represents a

very useful and discriminating characteristic. De facto, the method

of estimation would like to give much more importance to that indi-
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3.2 Mathematical Method

cations which reliability is very high, with respect to the ones that

are lesser and lesser reliable, such that the resulting spatial distribu-

tion is less affected by them. This latter characteristic, validates to

employ a non-parametric estimator based on Parzen window theory

[50], which seems to naturally adapt to the entire set of information

encoded in the data Xi. The remaining part of the section illustrates

the process of estimating the whole prior spatial distribution of the

given set of observations Xi.

Given the intrinsic probabilistic nature of the data Xi, ;∀i, it can

be reasonable to associate a random variable χi ∼ pχi to each point,

which is able to represent the confidence in the knowledge of the aver-

age position of a specific element and how such position is uncertain,

i.e. how it is expected to be spread over space. Since no other infor-

mation about the actual probability distribution pχi of such data is

generally available, we chose to associate a Gaussian random variable

to each point, having the geographical position (north-east) as the

mean value and the uncertaintly σi as the standard deviation. Given

that the accuracy in the referred position (thus the uncertainty σi)

is defined as a scalar value, the same value of the variance along the

two directions is assigned, that is

pχi = N(xi, σ
2
i I) i = 1, ..., Ndata (3.2)

At this stage, the problem is partially modeled, since the variables χi

fully describe the spatial uncertainty in the corresponding archival

datum, however they do not encode the reliability information. This

work proposes to cope with such futher attribute in a Monte Carlo

fashion. A realization of each Gaussian prior pχi , by sampling a

certain number of particles πij, j = 1, ..., mi from pχi , is obtained.
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The number mi of particles extracted from each prior is proportional

to the reliability Pi. More specifically: a total of Kmax particles are

extracted per each random variable when Pi = 1, thus:

mi = Kmax · Pi, i = 1, ..., Ndata (3.3)

Clearly, there is no a unique criterion for the determination of the

Kmax. Although arguably other choices can be made, this work

proposes to select such value based on the desired resolution of the

density map. In the next section, some comparisons in the obtained

map, with different values of the gain Kmax, are proposed.

Given the ensemble of particles Υπ = {πij}, ∀i, j, the prior

density map of findings can be estimated by using the Parzen method

[50], with Gaussian kernels

p̂(π)
.
=

1

Nπ

∑
πij∈Υπ

φ(π − πij,Σπ)

=
1

Nπ

Ndata∑
i=1

mi∑
j=1

φ(π − πij,Σπ) (3.4)

where φ(·) is the bivariate Gaussian kernel with mean πij and covari-

ance matrix Σπ and Nπ =
∑Ndata

i=1 mi. By an intuitive point of view,

Equation 3.4 gives a closed form expression, as a function of the

geographical position π, of the (normalized) percentage density of

findings per area. For instance, when integrated over a certain area

A, the distribution gives the expected relative percentage of findings

over the area A, that is:

NA
Ndata

≈
∫
A
p̂ (π) dπ (3.5)
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3.2 Mathematical Method

being NA the expected number of findings on that area and Ndata

the a priori total number of (expected) objects in the environment,

Equation 3.1.

For implementation purposes, note that the covariance matrix

of the Gaussian kernels Σπ (often called bandwidth matrix), which

is the same among the particles, is a free parameter and plays an

important role in the estimation task. It exhibits a strong influence

on the resulting density estimate and a number of rules do exist in

the literature regarding its choice. In particular Wand and Jones [64]

identified various alternatives of specifying the bandwidth matrix.

However, they showed that using two independent bandwidths, one

per each coordinate, is often adequate. This was the choice adopted

in this work as well. For the purposes of the problem, we obviously

expect to cope with a multimodal density underlying the data set

X, given a putative realization of the variables χi. For this reason,

the optimal selection of the bandwidth for multimodal densities [28],

one per each coordinate (north, east) of the particles, is used

Σπ =

[
σ2
π,n 0

0 σ2
π,e

]
(3.6)

being

σπ,i = 0.9 min
(

STDπ,i,
IQRπ,i

1.34

)
N−1/5
π , i = n, e (3.7)

In the previous equation, STDπ,i and IQRπ,i are respectively the

sample-based standard deviation and the interquartile range of the

particles set, computed over the i-th coordinate.

Table 3.1 summarizes the algorithm used to generate the prior

spatial density map, given the set of points Xi(xi, Pi, σi).
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Prior Density Map Generation

Input: historical data set X = {Xi(xi, Pi, σi)}, i = 1, ..., Ndata;

gain value Kmax.

Algorithm:

1) For each datum Xi:

a) Define the Normal variable χi, by using Eq. 3.2;

b) Compute mi = KmaxPi, Eq. 3.3;

c) Sample mi particles from Gaussians χi;

2) Given the particle set {πij}, compute the bandwidth matrix,

Eq. 3.6;

3) Estimate the density function around the particles set, using

the Parzen window method, Eq. 3.4;

Table 3.1: Summary of the Prior Density Map Generation algorithm

3.3 Tuscan Archipelago: Prior Density

Map

This section applies the Parzen method with Gaussian kernels to

build the a priori density map of findings on the Tuscan Archipelago,

by a data set originate from the reserved data-base of the Tuscan

Superintendence on Cultural Heritage.
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3.3 Tuscan Archipelago: Prior Density Map

Archival historical data set is given from the reserved data-base

of the Tuscan Superintendence on Cultural Heritage, regional Au-

thority responsible of cultural heritage preservation. This data-base

includes both actual findings and the indications as gathered from

oral sources (divers, fishermen, etc.); each indication comprises a

qualitative judgment on the reliability of the indication itself and

on the accuracy of the referred position. For instance, an amphora

caught in a fishing net represents a very reliable information (it is

actually a finding), however the accuracy of the position could be

very low; moreover, the unconfirmed indication of an amateur diver

may be associated to both low reliability of information itself and

low accuracy in the referred position. Figure 3.2 shows the plot of

positions of such points localized in the northern part of the Tus-

can Archipelago. Note that the red dots represent the position of

historical harbors in the area.

Once the data set is given, each element has associated three

attributes and the gain valueKmax. Thus the refined Parzen method,

summarized in Table 3.1, generates the a priori density map.

As mentioned in previous section, there is not a unique criterion

to choose the gain value Kmax. Figure 3.3 show some comparisons

in the obtained density map with different values of the gain Kmax.

Note that the big gain values generate sharp maps with a lot of small

areas with high expected density of objects on the seabed, i.e. where

the number of findings is great, and the remaining areas where the

number of findings is low have an zero expected density of objects.

Instead, small gain values generate smooth maps without isolated

areas with high expected density. All the obtained density maps

are reasonable and the choice of the gain value Kmax depends on
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Figure 3.2: Plot of the historical archival data position in the Tuscan

Archipelago.

the desired resolution of the map. For instance, in the next chapter

the map is going to drive the choice of the vehicles’ waypoints in a

systematic search strategy. Therefore, by an intuitive viewpoint, the

intent behind the chosen value is to deal with a smoother map than

with a sharper one (see Figure 3.3), in order to force a wider coverage

of the exploration area. In effect, one region with low expected

percentage of detection could still have some object resting on the

seabed. Thus all the areas of the map will have to be explored

with different priority. For the systematic search strategy, defined

in detail in the next chapter, the empirically optimal gain value is

5, as Figure 3.5 shows. Hot colours correspond to regions with an

expected high density of objects of archaeological interest on the
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seabed. Clearly, hot colours are localized in the regions where the

number of points is greater and they are very close each other. It is

worth to note, however, that the value of the resulting map is only in

part determined by the spatial density of the points Xi in a certain

region – compare Figures 3.2 and 3.5.

(a) (b)

Figure 3.4: (a) Zoom of the historical data plot. (b) Zoom of the same

area showed in (a) with sampled data. Closely clustered data indicate

that the point that originated them is highly reliable, hence the position

has small variance. The number of generated samples from any individual

point in (a) is proportional to the probability of the original point.

The distinctive characteristic is actually the value of the relia-

bility and accuracy attributes, which are responsible of the number

and concentration of the particles in a given region, as Figure 3.4

suggests. Figure 3.4(b) shows the particles sampled from the ran-

dom variables χi, in the same area of Figure 3.4(a), but noticing the

difference in the dispersion and cardinality of the clouds of parti-

cles, depending on the corresponding qualitative indicators. In this
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3.3 Tuscan Archipelago: Prior Density Map

sense, in Figure 3.5 the area (for example) around the coordinates

(1620; 4760) presents an higher value in the density map than the

area around the coordinates (1590; 4740), even if the two regions

have comparable spatial densities of points Xi, as Figure 3.4 shows.

This is due to the fact that in the first region, the corresponding

findings were marked with higher values of reliability and accuracy,

with respect to the second one, thus resulting in a expected higher

density of findings.
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Figure 3.5: The prior density map built by the kernel density estimator

over the Tuscan Archipelago. Hot colors indicate points with high expected

density of objects on the seabed, while cold colors indicate low expected

density.
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Chapter 4

Cooperative Distributed

Algorithm

In the Thesaurus project [3] a team of three Autonomous Underwa-

ter Vehicles (AUVs) is considered to explore the Tuscan Archipelago,

historical marine area, by a cooperative distributed algorithm. This

algorithm implements a systematic search strategy, being cooper-

ative, online, and adaptive. It uses an a priori density maps to

compute the AUVs’ waypoints. The proposed algorithm is going

to overcome the issues of the standard planning methods (zig-zag or

lawn-mower paths) exploring the survey marine area more efficiently.

The efficiency is evaluated in terms of relicts found in a fixed time,

time to complete the mission, number of relicts found and area ex-

plored for relicts found. Note that while the original project that

inspired this thesis, as well as our simulations and test cases, con-

sider three AUVs, the proposed algorithm is scalable in terms of

motion planning. However, the algorithm is subject to increasing
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communication delays as the number of AUV increases, since the

communication backbone is based on a TDMA MAC (see Section

2.5.1).

4.1 Problem Formulation

Motion coordination for a multi-agents system is intended as the

interaction among the vehicles throughout an explorative mission. A

cooperative distributed algorithm is proposed resolving the problem

of motion coordination to execute the explorative mission, with a

team of AUVs, surveying a marine area. In particular, the algorithm

has the following properties:

• cooperation: each vehicle explores a sub-region of the total

search area.

• adaptation: the plans is updated basing on the sensor data

gathered on the mission in progress.

• online computation: the vehicles’ waypoints are computed based

on the vehicles’ locations and the a priori percentage density

of expected findings.

Historically, the motion coordination problem for a multi agents sys-

tem was resolved using systematic methods that involved preplan-

ning paths, either zig-zag or regular lawn-mower transects, pattern.

This method has some shortcomings:

• The available vehicles not are used in the best mode to cover

the space to the degree required. Some subspaces may need to

searched more than once and thus require denser coverage.
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4.1 Problem Formulation

• The vehicles are not assigned to sub-regions of the survey area

and so they do not take advantage of the workload sharing

method.

• The mission employs a lot time to explore all the survey area.

• Although during the mission some objects are discovered, the

pre-specified paths not change. Instead, these objects may

have influence on a priori information used at the beginning of

the mission and therefore a new planning path may be request.

• The map of a priori percentage density of expected findings is

not update dynamically with the exploration is in progress.

• The AUVs are not able to allow a cooperative communication

and localization. Once the vehicle submerges, its location esti-

mate will drift, resulting different from the pre-specified path.

Therefore the novel cooperative distributed algorithm is proposed to

overcome these issues.

The cooperative distributed algorithm take the a priori density

map over the survey area as input and search along the routes that

maximize the expected percentage of detections. The map of input

is calculated by the mathematical method explained in chapter 3.

Notice the search is cooperative, thus each vehicle needs to negoti-

ate with the others which portion of the neighboring area to search.

Once the vehicles have agreed on area subdivision, each one inde-

pendently selects its waypoints within the area assigned to it. The

policy ensures the workload sharing among the vehicles, conditioned

over the density map. Each vehicle is thus assigned to a portion of
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the area with the same expected density of detections of the other

ones in the team. At the same time, it is desired to fulfill given

range constraints, in order to keep each agent within communica-

tion range and to avoid collisions. With the above assumptions, the

proposed cooperative distributed algorithm can be summarized in

the following main steps:

• Determination of the vehicles sub-area via Equitable Power

Diagrams.

• Definition of the vehicles waypoints via maximization of the

information gain, within the assigned area.

• Motion and sampling of the assigned area.

• Update of the density map, in accordance to the actual result

of the survey.

These steps represent the algorithm’s topics that will be explained

in detail in the next sections.

4.2 Equitable Power Diagram: area par-

tition among the vehicles

The Equitable Power Diagrams [53] are particular extension of the

Voronoi Diagrams [31], [48], recently proposed as partitioning policy

in multi-agents systems. The diagrams allow the regulation of the

applied resource allocation among customers, to balance the assigned

workload to each resource. In multi-agent system applications the re-

sources are the available agents and the customers are specific points
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4.2 Equitable Power Diagram: area partition among the
vehicles

of interest over a given workspace Q. In the proposed algortithm,

the workspace is defined as the finite set of 2-D spatial coordinates –

say North and East – of the area to be surveyed. Within the frame-

work of the Equitable Power Diagram, the workspace is partitioned

into Nv sub-regions Qi ⊂ Q, i = 1, . . . , Nv, one per each agent,

parameterized via the distinct position gi ∈ Qi of the agents and

the corresponding weights wi, which encode a certain measure of the

workload over that specific region. Such weights de facto define the

sub-region’s bounds.

For the sake of clarity, here is followed the same notation used

in [54], in order to allow the interested reader to easily refer to the

cited work for the details of the employed theory, that are omitted

for brevity. Therefore, W indicates the set of weights and GW (t) the

set of power points, that is

GW (t) = {(g1(t) , w1(t)) , ..., (gNv(t) , wNv(t))} , t ≥ 0 (4.1)

Moreover, E(W ) indicates the local energy function, which maps the

set of weights into a positive real number. Such function encodes a

measure built over the prior map, defined over the marine area of

interest. With this assumption, that is

E(W )
.
=

NV∑
i=1

(∫
Vi(GW (t))

p̂(π) dπ

)−1

(4.2)

where, Vi(GW (t)) is the power cell [54] of the power diagram V(GW (t))

assigned to i−th vehicle at time t and p̂(π) is the (whole) prior den-

sity function defined over the workspace Q. With the above defini-

tions, the Equitable Power Diagram can thus be computed by using

the algorithm defined in [54]. In particular, the partitioning of the
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area among the vehicles is made by choosing the set of weights which

minimizes the local energy function 4.2. The iterative adaptation law

of the i−th weight is

ẇi(t) = −∂E(W )

∂wi
, t ≥ 0 (4.3)

being

∂E(W )

∂wi
=
∑
j∈Ni

1

2(‖ gj − gi ‖)
·

·

(
1

p̂(π)2
Vj(GW (t))

− 1

p̂(π)2
Vi(GW (t))

)
·
∫
4ij

p̂(π) dπ (4.4)

where, Ni denotes the set of indices of the power neighbors of i-th

vehicle and 4ij is the bound between i-th vehicle and j-th vehicle.

Details of the above development can be found in [54].

The optimization is made in a discrete-time fashion, starting from

value zero for wi(0), i = 1, ..., Nv. It is important that all the initial

weights have the same value. The optimal solution for the set of

weights exists, since the energy function 4.2 has two main proprieties,

as defined in [54]:

• it is based on the weights of the vehicles;

• all its critical points correspond to vectors of weights yielding

an equitable power diagram.

This is the case of the study in this work also.

Figure 4.2 shows an example of the Equitable Power diagram

and the Voronoi diagram calculated with the same team of vehi-

cles. Figure 4.1 depicts the function of measure, p̂(π), defined over
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4.3 Information-driven Waypoints Selection

the workspace Q, used to compute the Equitable Power diagram in

Figure 4.2.

Figure 4.1: Measure function is defined on the background and the cor-

responding Equitable Power Diagram by black line is drawn over.

4.3 Information-driven Waypoints Selec-

tion

Given the prior map derived from the historical information, the pur-

pose of the search strategy is to direct the search along the routes

that maximize the expected percentage of detected objects, or, in

an equivalent fashion, maximize a certain information gain. The
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Figure 4.2: The Voronoi diagram and the Equitable Power diagram are

in comparison. Red lines representative the Voronoi diagram, blue lines

the Equitable Power diagram, dotted circle the agents’ weights and dots

the positions of the vehicles over the area.

idea is to choose the local routes (within the assigned sub-region)

along which the percentage of detections is higher. In practice the

path that maximizes the expected density of objects on the seabed

among the possible straight-line paths of pre-assigned length (or time

duration) departing from the vehicle current position is found. Fur-

thermore, when the vehicles reach the selected waypoints, a new set

of locations is generated, by using the portion of the map which has

not been already visited.

Among the available techniques in the literature, see the review

in [29] as an example, the systematic search strategy is interested

in computationally simple estimators of the Information measures,

that have the property to be continuous and differentiable. Again,
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4.3 Information-driven Waypoints Selection

a non-parametric estimator is chosen, which can take advantage of

the non-parametric characteristic of the prior density map, based

on the Parzen window technique. It will be shown that the opti-

mized measure of information used in this work can be recast as the

minimization of a proper Renyi’s cross-entropy between the possible

routes and the map.

Let SQ ⊂ Qi be a sector of the i-th sub-region, encoding a pos-

sible route. For example, this sector could be an area, a line or a

geographic position. Recalling Equation 3.5, the percentage of de-

tections η over the route SQ can be evaluated by integrating the

density map over SQ, that is:

η (π ∈ SQ) =

∫
SQ

p̂ (π) dπ (4.5)

Using the non-parametric estimation of the function p̂ (π) derived in

Equation 3.4, yields to

η (π ∈ SQ) =

∫
SQ

p̂ (π) dπ

=

∫
SQ

1

Nπ

∑
πij∈Υπ

Φ (π − πij,Σπ) dπ
(4.6)

The optimal search can thus be formulated as finding the route which

maximizes η (π ∈ SQ) over the given sub-region, that is

max
SQ

∫
{SQ}

1

Nπ

∑
πij∈Υπ

Φ (π − πij,Σπ) dπ (4.7)

where {SQ} denotes the set of all possible routes contained in the

sub-region Qi and SQ is the one which maximizes the cost 4.7.
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Clearly, the evaluation of the integral in Equation 4.7 does not gener-

ally admit a closed form, since the set {SQ} has an infinite cardinal-

ity, as well as every component SQ ∈ {SQ}. For this reason, a Monte

Carlo sampling approximation is applied, by employing a finite dis-

cretization {SQ}k of the foregoing set and by sampling a certain

number of points within the selected route SQ ∈ {SQ}k. Without

loss of generality and in absence of prior assumptions for the distri-

bution of the points in SQ, a density function U (SQ) which depends

on the nature of SQ is sampled. For instance: if SQ is a line, then

U (SQ) is chosen uniform, while if it is an area (or a point), U (SQ)

is chosen normal, with proper covariance matrix. Under the above

assumptions, the integral can be evaluated numerically as

η (π ∈ SQ) ≈ 1

NSQ

1

Nπ

∑
πn∈SQ

∑
πij∈Υπ

Φ (πn − πij,Σπ) (4.8)

being πn ∈ SQ, n = 1, ..., NSQ the finite discretization of the forego-

ing sector, sampled from the distribution U(SQ). Actually, Equation

4.8 can be already used for the optimization of the search path. How-

ever, for the purposes of the presented work, a slight modification

of the above measure is proposed by embedding a further degree of

freedom in the computation of the variance of the Gaussian kernel

in Equation 4.8, that is

η (π ∈ SQ) ≈ I (SQ, Q) (4.9)

where I (SQ, Q) can be interpreted as a suitable information potential

[28], defined as

I (SQ, Q)
.
=

1

NSQ

1

Nπ

∑
πn∈SQ

∑
πij∈Υπ

Φ
(
πn − πij,Σπ + ΣSQ

)
(4.10)
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4.3 Information-driven Waypoints Selection

where, the covariance is augmented with the term ΣSQ . The reason

behind such choice is twofold. First, that is convenient to include

an uncertainty (encoded by ΣSQ) in the search of the route which

maximizes the cost function, over the assigned sub-region Qi. This

allows to keep the sampling of the possible routes made by the search

algorithm (i.e. the selection of a finite number of routes among the

infinite set of possible ones) less dense, if an exhaustive optimization

is performed. On the other hand, following [28], Equation 4.10 has

an interesting theoretical interpretation. In fact, it is straightforward

to show that Equation 4.10 is the argument of the natural logarithm

of the non-parametric estimation of the Renyi cross-entropy between

p̂ (π) and U (SQ), the latter being estimated employing a Gaussian

kernel built from πn, with covariance ΣSQ . That is

I (SQ, Q)
.
=

∫
Û (SQ) p̂ (π) dπ (4.11)

with p̂(π) given by Equation 3.4 and:

Û(SQ) =
1

NSQ

∑
πn∈SQ

Φ(π − πn,ΣSQ) (4.12)

Equation 4.7 together with 4.9 and 4.11 aim at showing that solving

the maximization problem, Equation 4.7, can be considered numer-

ically equivalent to minimizing the following Renyi cross-entropy,

with respect to the possible SQ ∈ {SQ}k.

HR (SQ, Q) = − ln I (SQ, Q) (4.13)

In the following subsections two possible methods are present for

the optimization of the information measure 4.13. The first one is
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actually a batch search over a finite set of possible routes, made via

gridding, radiating, etc. each sub-region and by selecting the ones

that minimize the information measure. The other one is a gradient

descent iterative search scheme, which minimizes the given informa-

tion measure over a certain parametrization of the sub-regions. In

this thesis the Gradient based optimization will be employed in the

cooperative algorithm, while the Exhaustive search is reported here

only for completeness.

4.3.1 Exaustive optimization

In the batch search variant of the algorithm, the optimization prob-

lem can be formalized, per each vehicle, asŜQ = minSQ HR (SQ, Q)

∀SQ ∈ {SQ}i ⊂ Qi

(4.14)

Every possible route SQ inside the finite set {SQ}i is checked with

respect to the measure 4.13. For example, it is possible to span in

a finite set of directions the region assigned to the i-th vehicle via

straight lines of fixed lengths. Thus, a possible route SQ is a straight

line along one of these directions. At each evaluation, NSQ particles

are sampled from the density U (SQ) (which is chosen uniform in

the example case of straight lines) and the cost function in Equation

4.13 is evaluated. The optimal waypoint is the end-point of the route

encoded by ŜQ, for which the value of the information measure is

minimum.

The optimal selection of a new waypoint is applied every time

the current waypoint is reached, that is, when the relative difference

82



i
i

“PhDThesis” — 2015/3/5 — 17:40 — page 83 — #52 i
i

i
i

i
i
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between the current position of the vehicle and the waypoint is below

a certain given threshold. When the result of the optimization is a

new position which has never been visited before, the optimization

step is considered valid and the vehicle is driven toward the selected

waypoint, by using the policies discussed in the next section. How-

ever, the optimal search of a new waypoint for one vehicle can fail

in two cases:

• no points exist, inside the region assigned to the vehicle, with

lesser entropy than the entropy value of the current vehicle

position;

• the new waypoint is chosen among the portions of the map

already visited.

Usually, the first condition happens in those regions where the den-

sity map is constant, that is sufficiently far from those regions with

high expected density of objects. On the other hand, the second

condition usually happens when the vehicle reaches a portion of the

map where the expected density of objects reaches a local maximum.

In this case, the optimal criterion would force the vehicle to remain

inside this area, if no specific countermeasures are taken. In both

these cases we use a heuristic method to push the vehicle out of this

local optimum by fostering the portions of the map that are still un-

explored. Thus an occupation map of the environment, composed by

regular cells controlled via a binary variable, is employed (see Figure

4.3). Each cell assumes the value one if it is coincident with a posi-

tion with an obstacle or which was previously explored, otherwise it

assumes the value zero. The heuristic method simply selects a new
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Figure 4.3: An example of the initialization procedure: the map is di-

vided into square cells. The red colour corresponds to value one, while the

blue colour to value zero.

waypoint coincident with one of those locations that are marked as

unexplored and are sufficiently far from the current vehicle position.

In this way, the algorithm marks the already explored areas as not

interesting for the future selections of the waypoint.
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4.3.2 Gradient-based optimization

An alternative method to the batch search is obtained via parametriza-

tion of the possible exploration route, starting from the vehicle cur-

rent position. In this case the problem can be simplified by directly

representing with SQ the waypoint, i.e. a pure position inside the

sub-region Qi. Such position is thus modeled as a random variable

ξ (θ), parametrized via a vector θ. Without loss of generality the

random variable is assumed normally distributed around the given

position ξ(θ), with covariance Σξ, that is ξ(θ) ∼ N(ξ(θ), Σξ). The

parameter vector θ may encode either a polar couple, north/east

position. Thus, the random variable can be written as

θ =

[
α

R

]
→ ξ (θ) ∼ N

([
R cosα

R sinα

]
,Σξ

)

θ =

[
x

y

]
→ ξ (θ) ∼ N (θ,Σξ)

(4.15)

In this case, the goal is to minimize the resulting information mea-

sure with respect to the selected parametrization of the position. It

is worth to notice that now the discretization over the possible route

(i.e. the particles πn) can be represented by a single sample, that is

the mean of the random variable ξ(θ) evaluated at a specific value of

the parameter. Recalling Equation 4.11, this means that the cross-

information is now evaluated between the prior map and the normal

variable ξ(θ), that is

I (SQ (θ) , Q)
.
=

∫
Φ
(
π − ξ̄ (θ) ,Σξ

)
p̂ (π) dπ (4.16)
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Thus the Information potential, Equation 4.10, and the correspond-

ing Renyi cross-entropy are reformulated accordingly

I (SQ (θ) , Q)
.
=

1

Nπ

∑
πij∈Υπ

Φ
(
ξ̄ (θ)− πij,Σπ + Σξ

)
HR (SQ (θ) , Q) = − ln I (SQ (θ) , Q)

(4.17)

The optimization problem can be thus formalized, per each ve-

hicle, as  θ̂ = min
θ

HR (SQ (θ) , Q)

SQ (θ) ⊂ Qi

(4.18)

or equivalently  θ̂ = max
θ

I (SQ (θ) , Q)

SQ (θ) ⊂ Qi

(4.19)

According to the Gradient descent approach, the parameter θ can

be thus updated as

θk+1 = θk − γ∇θkHR (SQ (θ) , Q) (4.20)

or equivalently (gradient ascent over the information potential)

θk+1 = θk + η∇θkI (SQ (θ) , Q) (4.21)

The optimization algorithm is applied until the estimation vector

θk reaches a stationary point, within a tolerance ε, such that ‖θk+1−
θk‖ < ε.
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4.4 Rules for movement of the vehicles:

potential function

Motion planning is implemented in different approaches: heuristic,

potential functions, roadmaps and cell decomposition. In this work,

the second approach based on potential function is going to be used.

Motion planning based on potential functions theory defines the

vehicles’ paths following negative gradient of a particular function.

This function – say potential function - is computed over the ve-

hicles’ workspace in based on the available knowledge of goals and

obstacles’ locations. In particular each goal and each obstacle rep-

resent an attractive and repulsive force, respectively. The sum of

positive and negative forces, defined per each workspace’s point, is

the potential function. Consequently, this motion planning method

is computationally simple because after the definition of the poten-

tial function the gradient is automatically computed.

In this thesis the workspace Q is a marine area to be surveyed,

which is known and simplified in a set of 2-D spatial coordinates –

say North and East –, since the vehicles move at constant depth on

the seabed gathering data by looking-sensor (either side-scan-sonar

SSS or multi-beam echo sounder MBES). For modelling purpose,

each vehicle motion is described as a pure kinematic point by the

following first-order differential equation:

ẋ(t) = u(t) + v(t) (4.22)

where, x ∈ <2 is the vehicle position, ẋ ∈ <2 is the vehicle speed,

u ∈ <2 is the control input to be defined, such that, at each time in-

stant, the vehicles avoid collisions and move towards the waypoints.
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Finally, the term v ∈ <2 allows for the inclusion of external motion

disturbances acting on each vehicle as, for instance, marine currents.

Although the proposed kinematic model is rather elementary, it is

sufficient to define the motion planning in this work. This kine-

matic model decouple the performance of the search algorithm from

the dynamical characteristics of the vehicles and thus it will allow

to analyse the proposed cooperative distributed algorithm’s perfor-

mance in the last chapter.

As previous defined, the vehicles motion over the marine area

depend on the control input u. The control input u is obtained

through simple rules ([44], [60]). In particular, it is defined per each

vehicle by refining the algorithm described in [47], [13] for oceano-

graphic and security applications. Specifically, each vehicle moves in

accordance to the following two rules of movement:

1. move towards the waypoint;

2. move away from neighbours and coasts.

Therefore the vehicles will be able to avoid collisions with coast or

other vehicles while reaching the waypoints.

The above two rules are enforced by definining two force, respec-

tively an attraction and obstacle avoidance function, as described in

the potential function theory. Specifically, they are defined as:

1. The attraction function hA(x(t), xW ) is a function of the vehi-

cle’s distance between its current position x(t) and the way-

point xW . It therefore defines the interest of each vehicle to

move towards its goal. Formally, the function is defined as:

hA(x(t), xW ) =
1

2
µ d(x(t), xW )2 (4.23)
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4.4 Rules for movement of the vehicles: potential function

where, µ is a scalar multiplier and d(·) is a measure of distance

between the two locations.

2. The obstacle avoidance function hO(x(t), Qobs) is a function of

the vehicle’s distance from either coasts or vehicles neighbours.

Qobs is the union of the obstacle areas contained in the explo-

ration region assigned to the vehicle. This function defines the

interest to move away from the obstacles enforcing the second

rule. Formally, it is written as:

hO(x (t) , Qobs) =
1
2

Nobs∑
i=1

ν

(
1

d(x(t),Qiobs)
− 1

qi∗

)2

, if d (x (t) , Qi
obs) ≤ qi∗

0, if d (x (t) , Qi
obs) > qi∗

(4.24)

where, ν is a scalar multiplier, d (x (t) , Qi
obs) is the minimum

distance between the vehicle location x (t) and the i-th obsta-

cle, qi∗ is the domain of influence of the i-th obstacle and Nobs

is the total number of obstacles over the exploration region.

Finally, the vehicle control input u(t), at each time instant, is ob-

tained as the vector sum of the gradient of each defined function:

u (t) = ∇hA (x (t) , xW ) +∇hO (x (t) , Qobs) (4.25)
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4.5 Updating and Tuning of the maps

The optimal search of the vehicles’ waypoints requires the updating

of the prior density map during the mission. Here, a mathemati-

cal method, which uses the sample data gathered by the vehicles’

looking-sensor, is defined. Two different maps will be employed: the

first to compute the waypoints during the search mission, while the

second one to build a posteriori density map over the marine area

of interest. Note that the posteriori map can be computed either

during the exploration or when the search mission comes to the end.

The proposed method to update the a priori map requires the

knowledge of the vehicles’ paths or in equivalent mode the sharing

of sample data gathered by the vehicles’ looking-sensor, while the

method to build the a posteriori map requires the knowledge of the

findings along the vehicles’ route. Therefore the vehicles commu-

nicate the sample data gathered among themselves at regular time

instants. Although the underwater acoustic communication may not

be continously allowed, in this work the communication is supposed

possible everywhere. For instance, the problem of communication

could be overcome if the vehicles come back up out of the water

transmiting information by the radio modem. Hence, under the

above assumptions the vehicles are able to share the sample data set

and their own executed routes at regular time instants. A priori and

a posteriori density maps are estimated by using the refined Parzen

method described in chapter 3. In particular, in the updating of the

a priori density map is used the Eq. 3.4 adding one negative Gaus-

sian kernel per each point that the vehicles have explored. Formally,

given the set Xexp = {Xk} of M points explored Xk, k = 1, ..., M
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until the time instant t, the a priori map is obtained by the formula:

p̂(π) = max

(
0,

1

Nπ

Ndata∑
i=1

mi∑
j=1

φ1(π − πij,Σπ)− 1

M

M∑
k=1

φ2(π −Xk,ΣX)

)
(4.26)

where φ1(·) is the bivariate Gaussian kernel with mean πij and covari-

ance matrix Σπ, Nπ =
∑Ndata

i=1 mi is the cardinality of the particles

set {πij} obtained from the historical data set as described in the

first step of the algorithm summarized in Table 3.1 and φ2(·) is the

bivariate Gaussian kernel with mean Xk and covariance matrix ΣX .

Moreover, the covariance matrix ΣX (the bandwidth matrix) associ-

ated with the set Xexp = {Xk} of points is computed with the same

method applied for the particle set {πij}, as described in section 3.2.

Starting from the sample data set used for the updating of the

a priori density map also the a posteriori density map is built. In

particular the data set Xexp = {Xk} of M points explored is divided

into two subset, the set Xfind = {Xp} of P findings and the set

Xnot = {Xq} of Q not findings, respectively. Then the posteriori

map is built by executing the steps 2 and 3 of the algorithm in Table

3.1 using the data set Xfind as particles.

4.6 Simulative results

The proposed cooperative distributed algorithm based on the min-

imum Entropy approach is now tested and evaluated in simulation.

The cooperative algorithm is performed on the a priori density map

corresponding to the Tuscan Archipelago, as built in section 3.3,
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exploring this marine area by a team of three autonomous underwa-

ter vehicles AUVs. The simulative code is written in MATLAB and

makes use of the C++ Computational Geometry Algorithms Library

CGAL [1].

The scenario of the simulation study is represented by a region

of 80 km x 140 km. Each vehicle moves at the maximum speed of

5 knots and it is supposed equipped with a side-scan sonar for de-

tection scanning, plus an acoustic and radio modems for cooperative

communication and localization.

The purpose of the simulation is to check the capability of the coop-

erative distributed algorithm, not that of the sensors, nor that of the

AUVs employed. In this respect, one simplifying assumption is made

on the operability of the side scan sonar. In particular, the sonars

are assumed without mistakes during their detection scanning but

they give measurements with uncertainty. Therefore, every time a

vehicle moves over a marine area with objects resting on the seabed

the sonar always detects the whole objects but nevertheless the de-

tected positions of the findings are uncertain. Thus a bi-dimensional

Gaussian random variable directed as the sonar is associated on the

measuring. In fact the random variable is able to represent the con-

fidence in the knowledge of the position of a findings (or not) and

how such position is uncertain. Hence, the model depicted in Figure

4.4 for the sonar measurements is given mathematically as

pSi ∼ N(πi,Σπi), i = 1, 2, 3.

Σπi = A · AT , A =

[
cosαi − sinαi

sinαi cosαi

]
·

[
sssx 0

0 sssy

]
(4.27)

where, πi is the geographical position of the i−th vehicle, αi is the
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4.6 Simulative results

Figure 4.4: The model of the side scan sonar’s measurement. The red

and blue arrows refer to the vehicle heading.

heading angle of the i−th vehicle and sssx, sssy are the dimensions

of the beam pattern, which is assumed rectangular with an aperture

of 200m x 50m on the ground, along sway and surge axes respec-

tively. In order to this assumption the sonars measurements gath-

ered throughout the exploration task will be obtained by sampling

a certain number of particles πSij , j = 1, ...,mi from pSi at each

time frame. The number mi will be set up with value 1 or 10 in

accordance to the objects resting on the seabed and the resolution

of the region to be surveyed. Specifically mi assumes value 1 when

the sonar finds an object, and value 10 in other cases. Furthermore

all the particles extracted from each vehicles will be arranged in the

data set Xexp, which also will be able to divide into two data subset

Xfind and Xnot of findings and not findings respectively.

Before starting the mission, initial conditions are configured as
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following (see Figure 4.6): vehicles position is chosen within the

bound of the environment Q in the North-East portion of the map,

the Equitable diagram weights are set to zero and the a priori den-

sity map p̂(π) is built one time with a maximum of five samples

selected for Kmax, according to the algorithm described in chapter

3. Moreover, potential functions to enforce the two rules of move-

ment for each vehicle - avoid collisions while some vehicle reaching

the waypoint - as detailed in section 4.4, are defined as Figure 4.5

shows, plotted against the distance term d(π(t);πw) and d(π(t);Qobs)

respectively.

(a) (b)

Figure 4.5: The obstacle avoidance (left) and attraction (right) potential

functions, plotted against the distance terms.

During the exploration task, the vehicles move toward the local

optimal waypoints, in accordance with the minimum entropy crite-

rion, scanning the followed routes with the side scan sonar. At the

same time, each vehicle communicates its own routes and the found
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Figure 4.6: The starting a priori density map in the Tuscan Archipelago

via kernel density estimation and the initial positions of the vehicles. The

straight red lines represent the Power Equitable diagram, the crosses are

the waypoints and the circles are the vehicles position.

relicts to the other vehicles. Hence, the equitable power diagram

is updated dynamically as the mission is in progress, together with

the a priori density map, using the side scan sonar measurements.

Figure 4.8 shows the realization of the exploration task performed

starting from the North-East portion of the map, and Figure 4.7

depicts an update of the equitable power diagram together with the

a prior density map at the time when the first waypoint was reached

by every vehicle. In particular, Figure 4.8(a) shows the status of
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the task at an intermediate point, while Figure 4.8(b) the complete

paths of the vehicles after the exploration came to an end. It is

worth to note that the routes of the vehicles follow the directions in

order to maximize the a priori expected percentage of detections that

corresponds, in equivalent fashion, to minimize the Renyi’s entropy.

Figure 4.7: The updated a priori density map, at the time when the first

waypoint was reached by every vehicle. The straight red lines represent the

Power Equitable diagram, the crosses are the waypoints and the circles

are the vehicles position.

The exploration task finish discovering about 90 percent of the

total relicts and covering around only 40 percent of the total marine

area. Additionally, after the end of the exploration the a posteriori

96



i
i

“PhDThesis” — 2015/3/5 — 17:40 — page 97 — #59 i
i

i
i

i
i

4.6 Simulative results

(a) (b)

Figure 4.8: Paths of the vehicles during the exploration task. (a) Status

of the mission at an intermediate point; (b) complete paths. The red,

cyan and blue lines are the paths of the three vehicles

map is tuned (see Figure 4.9) in accordance with the mathematical

model defined in section 4.5.
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Figure 4.9: The a posteriori density map built using the side scan sonars

measurements.
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Chapter 5

Multi-Agents RRT*

Algorithm

Motion coordination is a problem of finding a set of non-conflicting

trajectories for several mobile agents, such as autonomous aircrafts,

cars, or underwater vehicles. The systematic search of object resting

on, or buried in the seabed by a team of AUVs requires a coopera-

tive path-finding approach to perform the complex tasks efficiently.

Therefore the AUVs seabed surveying can be modelled as an instance

of motion coordination.

Motion coordination in terms of planning has been a highly ac-

tive area of research since the late 1970s. Early algorithms relied

on some heuristic forward-search path-finding technique, such as A*

[39], but during the last decade, incremental sampling-based motion

planning algorithms, such as the Rapidly-exploring Random Trees

(RRTs), have been shown to work better in practice and to possess

theoretical guarantees [39]. Recently, Karaman and Frazzoli [32]
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have also introduced a novel any-time sampling-based motion plan-

ning algorithm for single agent, called the RRT* algorithm, which

offers good scalability to high-dimensional environments and at the

same time it guarantees convergence to an optimal solution. In this

chapter, a novel Multi-RRT* algorithm is proposed: an algorithm

for multi-agent path planning that builds upon the RRT*. An exten-

sion of RRT* to multi-agent path planning was recently proposed by

Cáp [17]; with respect to the latter, the algorithm proposed here in-

troduces distance constraints on the tree structure. The algorithm is

developed for AUV seabed surveys, exploring the same regions of the

cooperative distributed algorithm (defined in chapter 4), and taking

in a centralized way the decision on optimal AUV paths via mini-

mization of the Renyi’s entropy computed over the assigned marine

area. The proposed Multi-RRT* algorithm is expected to overcome

the issues of the standard planning methods (zig-zag or lawn-mower

paths) exploring the marine area more efficiently. In simulative re-

sults it will be shown that the Multi-RRT* algorithm outperforms

the standard search approach, as expected, and that has similar per-

formances but not better with respect to the cooperative distributed

algorithm defined in chapter 4.

5.1 Problem Formulation

This section is devoted to introduce notation and problem formula-

tion for the Multi-RRT* algorithm, which will be defined in detail

later on. In particular, first the path planning is formalized taking

into account the background of section 2.3.3, and then the optimality
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problem is defined.

A team of n vehicles explores an assigned marine area. According

to planning theory the marine area to be surveyed is modelled for-

mally by a bounded connected open subset X of Rd, where d ∈ N and

d = 2. Thus the obstacle region Xobs and the goal region Xgoal are

open subsets of X. The obstacle-free space is denoted, i.e., X \Xobs,

as Xfree and the initial state for i-th agent, xiinit, is an element of

Xfree. Moreover, a path in X with length s ≥ 0 is defined as a conti-

nous function σ : [0, s]→ X, where s is considered in the usual way

as sup{n∈N, 0=τ0<τ1< ...< τn=s}
∑n

i=1 ‖σ(τi) − σ(τi−1)‖. In the sequel,

a path in Xfree is said to be a collision-free path and n-collision-

free path will have to be separated avoiding collision between the

vehicles, that in mathematical form is

∀j; k; t : j 6= k => dist(σi[t];σj[t]) > dsep

where, dsep is the required minimum separation distance among the

vehicles. Thus, the i-th vehicle’s collision-free path that starts at

xiinit and ends in the goal region with respect to the minimum sepa-

ration distance is said to be a feasible path, i.e., a collision-free path

σ : [0, s] 7→ Xfree is feasible if and only if

i) σ(0) = xiinit

ii) σ(s) ∈ Xgoal

iii) ∀j, k, t : j 6= k => dist(σi[t];σj[t]) > dsep

Finally, a cost function is also defined, c :
∑

Xfree
7→ R>0. It assigns

a non-negative cost to all nontrivial collision free paths computing
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the cost regarding the maximization of the information gain, i.e. the

Renyi’s cross-entropy between the a priori map built over the marine

area to be surveyed and the paths. The optimality problem of path-

finding is to find a feasible path with minimum cost, if one exists,

and report failure otherwise.

Problem 1 (Optimal multi-agents planning) Given a bounded

connected open set X, an obstacle space Xobs, an initial state xiinit,

a goal region Xgoal and a minimum separation distance dsep, find a

path for i-th agent σ∗i : [0, s] 7→ cl(Xfree), where cl(X) is the closure

of X, such that (i) σ(0) = xiinit and σ(s) ∈ Xgoal, (ii) ∀j, k, t : j 6=
k => dist(σi[t];σj[t]) > dsep and (iii) c(σ∗) = minσ∈∑cl(Xfree)

c(σ).

If no such path exists, then report failure.

5.2 Multi-RRT* Algorithm

A novel optimal sampling-based algorithm for multi agent system,

called the Multi-RRT* algorithm, is now introduced. Some common

primitive procedures are defined before to provide the Multi-RRT*.

It is worth to note that the proposed algorithm is representative of

paradigms for optimal sampling-based motion planning algorithms

since it is an extension of the single agent RRT*.

5.2.1 Primitive Procedures

Before detailing the Multi-RRT* algorithm the primitive procedures

that it relies on, are defined.

Sampling: The function Sample : N 7→ Xfree returns indepen-

dent identically distributed (i.i.d.) samples from Xfree.
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5.2 Multi-RRT* Algorithm

Sharing: Given a set of data Γ, the function Sharing : Γ→ {gi}
communicates the entire set of information between the vehicles G =

{gi}, i = 1, . . . , Nv.

Nearest Neighbor: Given a graph G = (V,E) and a point

x ∈ Xfree, the function Nearest : (G;x) 7→ v returns a vertex v ∈ V
that is ‘‘closest’’ to x in terms of a given distance function. The

Euclidean distance will be used, i.e.,

Nearest(G = (V,E), x) = argminv∈V {‖x− v‖}

Near Vertices: Given a graph G = (V,E), where V ⊂ X, a

point x ∈ X, and a positive real number r ∈ R>0, the function

Near : (G, x, r) 7→ V ′ ⊆ V returns the vertices in V that are

contained in a ball of radius r centered at x, i.e.,

Near(G = (V,E), x, r) := {v ∈ V : v ∈ Bx,r}

Steering: Given two points x, y ∈ X, the function Steer :

(x, y) 7→ z returns a point z ∈ X such that z is “closer” to y than

x is. Throughout the section, the point z returned by the function

Steer will be such that z minimizes ‖z–y‖ while at the same time

maintaining ‖z − x‖ ≤ η, for a prespecified η > 0, i.e.,

Steer(x; y) := argminz∈Bx,η‖z–y‖

Collision Test: Given two points x, x′ ∈ X, the Boolean func-

tion CollisionFree(x, x′) returns True if the line segment between x

and x′ lies in Xfree, i.e., [x, x′] ⊂ Xfree, and False otherwise.

Line: Given two points x1, x2 ∈ Rd, the function Line : (x1, x2) 7→
X denotes the straight continuos path from x1 to x2.
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Parent: Given a tree G = (V,E), Parent : V 7→ V is a func-

tion that maps a vertex v ∈ V to the unique vertex u ∈ V such

that (u, v) ∈ E. By convention, if v0 ∈ V is the root vertex of G,

Parent(v0) = v0.

Cost: Given a tree G = (V,E), Cost : V 7→ R0 is a function

that maps a vertex v ∈ V to the cost of the unique path from the

tree’s root to v. For simplicity in stating the algorithm, an additive

cost function will be assumed, so that Cost(v) = Cost(Parent(v)) +

c(Line(Parent(v); v)). By convention, if v0 ∈ V is the root vertex of

G, then Cost(v0) = 0.

Minimum Cost Walk: Given a set of trees G = {Gi}, the

function MinimumPath(G) returns a set of paths computed one per

each trees of length between the medium and the maximum length

among the all possible paths and with minimum cost.

Edges Minimum Distance: Given a set of trees G = {Gi}, one

new edge per each tree E = {Ei}, n ∈ N and a minimum separation

distance dsep, the Boolean function EdgesMinimumDistance(G, E, n, dsep)

returns True if the entire new edges E lie at the distance dsep or more

from the last n edges of the trees G, and False otherwise.

5.2.2 Proposed Algorithm

Multi-RRT* algorithm is similar to other incremental sampling-based

planning algorithms such as PRM, RRG, RRT, RRT*. It take as

input a path planning problem (Xfree; {x1
init, . . . , x

n
init};Xgoal), an

integer Nv ∈ N (number of agents), a cost function c :
∑

Xfree
7→ R>0

and initially, it start with Nv graph, one for each agent. At the be-

ginning each graph has a single vertex, which corresponds to the
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5.2 Multi-RRT* Algorithm

initial state xiinit, and no edges. Then, the Multi-RRT* incremen-

tally grow the Nv graphs on Xfree by sampling states Xrand =

{x1
rand, . . . , x

Nv
rand} from Xfree at random and extending the graphs

towards Xrand. At the end of N ∈ N iterations the Multi-RRT*

algorithm return a set of trees, G = {G1, . . . , GNv}, where ∀i, i =

{1, ..., Nv}, Vi ⊂ Xfree and Ei ∈ Vi x Vi. At this point the path-

planning for a single i−th agent can be described with the cor-

responding tree, Gi = (Vi, Ei), where the vertices represent the

positions in Xfree and the edges define the optimal feasible path.

Therefore Multi-RRT* resolves the optimal multi-agents planning

problem.

The detailed procedure of the Multi-RRT* algorithm is presented

in Algorithm 2. First, Multi-RRT* extends the nearest neighbour

towards the sample per each graph (Lines 7-8). Then, it connects

the new vertex per each i-th graph, xinew, to the vertex that incurs

the minimum accumulated cost of the unique path up until xinew, and

lies within the set X i
near of vertices returned by the Near procedure

(Lines 10-18). Notice that the cost of the unique path from xiinit to a

new vertex vi ∈ Vi is denoted by the function Cost(v). Finally, if the

all extensions of the entire Nv graphs result in collision-free paths

respecting the minimum separation distance (Line 22) are added

to the graphs as edges, and their terminal points as new vertices

(Line 24). Multi-RRT* also extends per each i-th graph the new

vertex to the vertices in X i
near in order to “rewire”the vertices that

can be accessed through xinew with smaller cost (Lines 25-29). It

is worth to note that the function EdgesMinimumDistance in Line

22 checks the minimum separation, dsep, between the entire com-

puted new edges and the last three edges of each optimal feasible
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path. Only the last three edges and no the whole optimal feasible

path are checked because the collision between the agents could hap-

pen when they explore close regions in Xfree. Obviously, there will

be no collision between agents if one optimal path is crossed by a

new edge before of the its own last three edges, because the agents

will be move on the point of intersection at different time frame.
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5.2 Multi-RRT* Algorithm

Algorithm 2: Summary of the Multi-RRT* algorithm

1 Vi ← {xi
init}, Ei ← ∅, Gi ← (Vi, Ei), i = 1, ..., Nv;

2 for k ← 1 to N do

3 G← {G1, ..., GNv
};

4 for i← 1 to Nv do

5 Gi ← (Vi, Ei);

6 xi
rand ← Sample(k);

7 xi
nearest ← Nearest(Gi, x

i
rand);

8 xi
new ← Steer(xi

nearest, x
i
rand);

9 if CollisionFree(xi
nearest, x

i
new) then

10 xi
min ← xi

nearest;

11 Xi
near ← Near(Gi, x

i
new, r);

12 forall the xi
near ∈ Xnear do

13 if CollisionFree(xi
near, x

i
new) then

14 ci ← Cost(xi
near) + c(Line(xi

near, x
i
new)) ;

15 if ci < Cost(xi
new) then

16 xi
min ← xi

near;

17 else

18 xi
new ← ∅;

19 if xi
new 6= ∅, ∀ i = 1, ..., Nv then

20 Sharing(G, Xmin, Xnew);

21 Ĝ← MinimumPath(G);

22 if EdgesMinimumDistance(Ĝ, {Xmin, Xnew}, 3, dsep) then
23 for i = 1, ..., Nv do

24 Vi ← Vi ∪ {xi
new}; Ei ← Ei ∪ {(xi

min, x
i
new)};

25 forall the xi
near ∈ Xi

near \ {xi
min} do

26 if CollisionFree(xi
near, x

i
new) and Cost(xi

near) >

Cost(xi
new) + c(Line(xi

new, x
i
near)) then

27 xi
parent ← Parent(xi

near);

28 Ei ← Ei \ {(xi
parent, x

i
near};

29 Ei ← Ei ∪ {(xi
new, x

i
near};
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5.3 Simulation and Results

The Multi-RRT* algorithm described in the preceding sections is

now tested and evaluated in simulation. Multi-RRT* algorithm is

performed on the a priori density map corresponding to the Tuscan

Archipelago, as built in section 3.3, solving the optimality problem

of path-finding for a team of three autonomous underwater vehicles

(AUVs). The simulative code is written in MATLAB.

The scenario of the simulation study is represented by a region of

80 kmx 140 km width, which corresponds to the Tuscan archipelago.

Before of starting the simulation, the initial conditions are config-

ured. In particular, the vehicles position is chosen within the bound

of the environment Q and the a priori map is built one time with a

maximum of five samples selected for Kmax, according to the algo-

rithm described in chapter 3.

During the exploration task, the vehicles move toward the way-

points, scanning the followed routes by the side scan sonar. All

the vehicles’ waypoints are optimized offline in accordance with the

Multi-RRT* algorithm, before that the exploration mission begins.

Figures 5.1 and 5.2 show the solved path-finding by the Multi-RRT*,

starting from the East portion of the map. The first Figure shows

the application of the Multi-RRT* at an intermediate point, while

the second one shows the complete status of the algorithm. Defined

the waypoints and the paths offline, Figure 5.3 depicts the complete

real paths of the vehicles, after the exploration came to an end.

As Figure 5.3 clearly shows, the routes of the vehicles are directed

along the maxima of the a expected percentage of detections, or,

in an equivalent fashion, along the minima of the relative Renyi’s
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5.3 Simulation and Results

Figure 5.1: Trees and optimal paths-finding at an intermediate point

during the application of the Multi-RRT* algorithm. The green, cyan

and blue lines are the trees of the three vehicles.

entropy.

109



Multi-Agents RRT* Algorithm

Figure 5.2: Complete trees and optimal paths-finding when the Multi-

RRT* algorithm comes to end. The green, cyan and blue lines refer to

the trees of the three vehicles.
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5.3 Simulation and Results

Figure 5.3: Complete real paths of the vehicles during the exploration

task. The green, cyan and blue lines refer to the paths of the three vehicles.
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Chapter 6

Performance for exploration

algorithms

The design of an effective performance measurement system, which

includes the selection of appropriate measures and approaches for

analysing results, is central to evaluate either the effectiveness of

search algorithms or the comparison among different feasible algo-

rithms. Despite its importance, this is one area where the literature

is poor. Thus, this chapter suggests some indicators of measure

to evaluate and/or compare the previously proposed algorithms for

AUV seabed surveying.

6.1 Introduction

The proposed cooperative algorithms in chapters 4 and 5 with the

building of the a priori density map resolve the systematic search of

objects resting on (or buried in) the seabed of marine areas by teams
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of AUVs. At this point, some questions on performance arise: What

is the best algorithm? How is the quality evaluated? What are the

algorithm’s vantages and/or advantages?

In literature there are few attempts [26] for evaluating the sys-

tematic search with teams of AUVs, thus this section focuses on the

evaluation of proposed algorithms’ vantages and advantages by a per-

formance measurement system. Performance measurement system

selects appropriate measures for the data of results to be analyzed.

The selected measures are chosen in accordance with characteristics

or proprieties of interest. For instance, in this work the main inter-

esting metrics may be: the total mission time, the explored area over

the total available area, the number of findings, the time to discover

the first n findings, the time to discover the total number of findings

and the number of findings on the total mission time. It is remarked

that, while the comparison is done in simulation, the data on the ob-

jects resting on the seabed are real. Thus, while vehicle and sensor

performance can affect performance in real situation, our simulation

allows to compare just the motion planning approaches over a real

search scenario. It is remarked also that, to allow this comparison,

we have taken roughly half of the entries in the historical data base

to build the a priori map, and the remaining entries as validation

data in the metric performance comparison.

6.2 Performance measurement system

The performance measurement system selects appropriate measures

and defines approaches to analyse results of algorithms, novel sys-
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6.2 Performance measurement system

tems, methods of optimization. In this thesis, two novel approaches

are designed for AUV seabed surveying as explained in chapters 4

and 5. Consequently, the performance measurement system to anal-

yse the algorithms’ results of this work has based on three measures:

findings, mission time, explored marine area. In detail the employed

indicators of measures are:

• the fraction of explored area over the total available area;

• the number of findings over the total number of objects;

• the total mission time.

The performance measurement system even allows to depict graphs

of performance to better explain the advantages and disadvantages of

each algorithm combinating these three main indicators among (i.e.

plotted against) each other. In this context, for an accurate analysis,

are defined the optimal couples with more logical significance as

• the rate of found relicts with respect to the mission time;

• the fraction of explored area over the total available area with

respect to the mission time;

• the fraction of explored area over the total available area with

respect to the rate of found relicts.

Defined the performance measurement system the next section is

thus devoted to illustrate the evaluation of the different algorithms.
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6.3 Analysis of results

The cooperative distributed algorithm, the multi-agents RRT* algo-

rithm and the standard search (regular lawn-mower transects) are

now tested in simulative scenarios. The code is written in MATLAB

and makes use of the C++ Computational Geometry Algorithms

Library CGAL [1].

The objective of the all missions is to find the objects resting

on, or buried in, the seabed of the Tuscan Archipelago, Northern

Tyrrhenian Sea. The marine area is 80km x 140km width with the

data shows by 100mt x 100mt cell resolution, as Figure 6.1 depicts.

A team of three vehicles performs the missions. The vehicles

move at the maximum speed of 2.5m/s (five knots), and each vehi-

cle is equipped with a side scan sonar SSS for detection scanning and

with a network device that allows communication between any two

vehicles in the team. The cooperative distributed algorithm and the

multi-RRT* algorithm are tested via Monte Carlo simulations since

the vehicles trajectory depend upon their initial conditions that, in

turn, affect the selection of the waypoints during the search mission.

Hence, as expected, the initial conditions have an impact on the

performances of the cooperative algorithm and the Multi-RRT* al-

gorithm. Figure 6.2 gives an example of the realization of the Monte

Carlo evaluation of the algorithms, in which the vehicles starting po-

sitions are highlighted. Each group of three points of the same color

corresponds to the initial position of the team of the three vehicles, at

each simulation run. On the other hand, only one simulation, called

the “lawn-mower-optimized”, is performed for the standard search

(regular lawn-mower transects). “Lawn-mower”because the vehicles
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6.3 Analysis of results

Figure 6.1: The a priori density map over a sub-region of the Tuscan

Archipelago to be surveyed.

moves with zig-zag or lawn-mower transects and “optimized”since

the waypoints are selected offline in according to the a priori density

map. Figure 6.4 shows the “lawn-mower-optimized” pattern. How-

ever, all the testing use the same a priori density map depicted in

Figure 6.1. Finally, the simulative missions by either cooperative

distributed algorithm or multi-RRT* algorithm come to end when-

ever there is not a new waypoint or, in other case, when the particles

set Υπ - i.e. the set used to compute the prior map, Equation 3.4
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- becomes empty, due to every time the vehicles explore a region in

which some of the sampled particles πij are localized, the findings are

removed from the set Υπ. Nevertheless the simulation of the “lawn-

mower-optimized”search is completed in about 120 hours because it

must explore the whole marine area, being a method exhaustive in

nature.

Figure 6.2: Vehicles’ positions used as the initial conditions in the sim-

ulations of the systematic search strategies. The dots refer vehicles’ posi-

tions, the colours to the different executed simulation.

The purpose of the simulations is to evaluate the algorithms per-

formance and the vantages of the proposed novel cooperative ap-

proach for AUV seabed surveying, not that of the sensors, nor that
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6.3 Analysis of results

of the AUVs employed. In this respect, two simplifying assumptions

are made, and applied to all the three tested methods. In particular,

all the vehicles in the team are assumed that move at constant depth

and their own side scan sonars do not make mistakes. Specifically,

every time a vehicle moves over a marine area with objects resting

on the seabed the sonar always detects the whole objects but nev-

ertheless the detected positions of the findings are uncertain. Thus

a bi-dimensional Gaussian random variable directed as the sonar

is reasonable to associate on the measuring. In fact the random

Figure 6.3: The model of the side scan sonar’s measurement. The red

and blue arrows refer to the vehicle heading.

variable is able to represent the confidence in the knowledge of the

position of a findings (or not) and how such position is uncertain.

Hence, the model for the sonar measurements depicted in Figure 6.3
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is mathematically the following:

pSi ∼ N(πi,Σπi), i = 1, 2, 3.

Σπi = A · AT , A =

[
cosαi − sinαi

sinαi cosαi

]
·

[
sssx 0

0 sssy

]
(6.1)

where, πi is the geographical position of the i−th vehicle, sssx, sssy

are the dimensions of the beam pattern along the x, y axes and

αi is the heading angle of the i−th vehicle. As described in sec-

tion 2.4 that explains background detail, the beam pattern has a

wide and narrow shape along lateral axis and longitudinal axis, re-

spectively. Thus, in simulation it is set up with a range about of

200mt x 50mt. At this stage, the sample data gathered throughout

the simulative missions are obtained by sampling a certain number

of particles πSij , j = 1, ...,mi from pSi at each time frame. The num-

ber mi of particles extracted from each Gaussian variable depends

on the resolution of the region to be surveyed and on the objects

resting on the seabed. Recalling that the resolution of the marine

area is 100mt x 100mt, the selected value to mi is 1 or 10, depending

on the detection of the side scan sonar. More specifically, mi is set

up with value 1 when the side scan sonar finds an object resting on

the seabed, and with value 10 in the other cases. Finally, as defined

in section 4.5, all the particles extracted from each vehicles are the

data set Xexp, which can be divided into two data subset Xfind and

Xnot of findings and not findings, respectively.

Following the above assumptions, the remaining part of Section

is devoted to show comparisons of search strategies by the perfor-

mance measurement system previously defined. Thus two graphs are

depicted. The first shows comparisons of search strategies according
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6.3 Analysis of results

Figure 6.4: Optimal lawn-mower pattern. The red, cyan and blue lines

are the paths of the three vehicles.

to the rate of findings evaluated against the mission time, and the

second shows comparisons of search strategies according to the rate

of explored area evaluated against the rate of findings. For the sake of

clarity, each graph is also split into two sub graphs showing compar-

isons of “lawn-mower-optimized” search with cooperative distributed

algorithm and multi RRT* algorithm, respectively. As a result Fig-

ures 6.5 and 6.6 show the rate of findings evaluated against the

mission time for all the simulative search strategies, “lawn-mower-

optimized”, cooperative and multi-RRT* algorithms.
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Figure 6.5: Comparisons of the rate of found relicts plotted against the

mission time by two different approaches for the systematic search strat-

egy. The blue line refers the standard search ”lawn-mower-optimized”,

the other line to the cooperative distributed algorithm.
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6.3 Analysis of results

Figure 6.6: Comparisons of the rate of found relicts plotted against the

mission time by two different approaches for the systematic search strat-

egy. The blue line refers the standard search ”lawn-mower-optimized”,

the other lines to the Multi-RRT* algorithm.

And, Figures 6.7 and 6.8 show the number of findings over the

total number of objects to be found plotted against the fraction of

explored area over the total available area for the same simulative

search strategies. Note that the colours of the lines are the same

employed in Figure 6.2 to show the vehicles’ initial geographic posi-

tions.
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Figure 6.7: Comparisons of the fraction of explored area over the to-

tal available area plotted against the rate of found relicts by two different

approaches for the systematic search strategy. The blue line refers to the

standard search ”lawn-mower-optimized”, the other lines to the coopera-

tive distributed algorithm.

Comparisons of survey cooperative simulative missions (Figures

6.5, 6.6, 6.7 and 6.8) showed that cooperative distributed algorithm

and multi RRT* algorithm consistently outperformed “lawn-mower-

optimized” search, while reaching a comparable number of found re-

licts. It is worth to note that the cooperative distributed algorithm
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covers around the 60 percent of the total marine area to be surveyed,

against the 99 percent explored from the ”lawn-mower-optimized”

search, in a time about four times less. At the same time, the coop-

erative distributed algorithm has similar if not even better perfor-

mances with respect to the multi-RRT* algorithm. Figures 6.9 and

6.10 shows the comparisons of the cooperative distributed algorithm

and the multi-RRT* algorithm in detail. Notice the Multi-RRT*

exploration strategy covers more marine area than the cooperative

algorithm with the same ratio of found relicts and it requests more

time than the cooperative algorithm to discover the same amount of

relicts.
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6.3 Analysis of results

Figure 6.9: Rate of found relicts plotted against the mission time. The

solid lines refer to the cooperative distributed algorithm, the dashed lines

to the multi-RRT* algorithm, per each performed simulation.
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Conclusion

In this thesis we have presented two novel cooperation algorithms for

a team of Autonomous Underwater Vehicles, applied for surveying

areas with archaeological interest, and an innovative mathematical

method to consistently represent the prior knowledge by the a priori

density map over a marine area to be surveyed. In details, the first

algorithm employs the theory of Equitable Power Diagrams and of

potential functions to define rules that characterize the motion poli-

cies of the vehicles. The second algorithm instead is built upon the

RRT* algorithm. Both algorithms have been tested with numeri-

cal simulations to compare the Information-based approaches with

historical algorithms usually used for seabed surveying application.

The historical approaches plans the surveys by lawn-mower or zig-

zag patterns that are made prior to surveying and are not adapted

while the vehicles is underway.

The comparisons showed that the proposed cooperative algo-

rithms outperform the lawn-mower method, having minor costs in

terms of exploration time and of exploration area, versus the number

of discovered objects.

These cooperative algorithms have been focused on the marine
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archaeology case but they are indeed general. It is actually possible

to transfer the presented approach to other search applications that

may include different sensor payloads, with minor modifications. On

the other hand, the availability of information from the Archaeolog-

ical data base of the Tuscan Superintendence has allowed to test the

proposed algorithm over a real distribution of findings, and to con-

sider uncertainties and reliability of the a priori data as defined and

found in the field.
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tacharya. Causality detection based on information-theoretic

approaches in time series analysis. Physics Reports, 441(1):1–

46, March 2007.

[30] J.E. Hughes-Clarke, L.A. Mayer, , and D.E. Wells. Shallow-

water imaging multi beam sonars: A new tool for investigating

sea floor processes in the coastal zone and on the continental

shelf. Marine Geophysical Researches, 18:607–629, 1996.

[31] H. Imai, M. Iri, and Murota. Voronoi diagram in the laguerre

geometry and its applications. SIAM Journal on Computing,

14(1):93–105, 1985.

[32] S. Karaman and E. Frazzoli. Sampling-based algorithms for op-

timal motion planning. International Journal of Robotics Re-

search, 30(7):846–894, June 2011.

137



BIBLIOGRAPHY

[33] E. Kavraki, M.N. Kolountzakis, and J.C. Latombe. Analysis of

probabilistic roadmaps for path planning. IEEE Transactions

on Robotics and Automation, 14(1):166–171, 1998.

[34] E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars.

Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Transactions on Robotics and Au-

tomation, 12(4):566–580, 1996.

[35] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient ap-

proach to single-quert path planning. In Proceedings of the

IEEE International Conference on Robotics and Automation,

2000.

[36] Cara LaPointe. Virtual long baseline (VLBL) autonomous un-

derwater vehicle navigation using a single transponder. PhD

thesis, Massachusetts Institute of Technology, 2006.

[37] J.C. Latombe. Robot motion planning. Technical report,

Kluwer Academic Publishers, 1991.

[38] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic plan-

ning. International Journal of Robotics Research, 20(5):378–

400, May 2001.

[39] Steven M. LaValle. Planning algorithms. Cambridge University

Press, 2006.

[40] NE. Leonard, DA. Paley, RE. Davis, DM. Fratantoni, F. Lekien,

and F. Zhang. Coordinated control of an underwater glider fleet

138



i
i

“PhDThesis” — 2015/3/5 — 17:40 — page 139 — #80 i
i

i
i

i
i

BIBLIOGRAPHY

in an adaptive ocean sampling field experiment in monterey bay.

Journal of Field Robotics, 27(6):718–740, 2010.

[41] B. Liu, Z. Liu, and D. Towsley. On the capacity of hybrid

wireless networks. In IEEE INFOCOM 2003, pages 1543–1552,

San Francisco CA, April 2003.

[42] Submetrix Ltd. Submetrix 2000 series training pack. Technical

report, Bath U.K., 2000.

[43] X. Lurton. An Introduction to Underwater Acoustics : Prin-

ciples and Applications. Geophysical Sciences. Springer, 2nd

edition, 2010.

[44] S. Martinez, J. Cortez, and F. Bullo. Motion coordination with

distributed information. IEEE Control System Magazine, pages

75–88, August 2007.

[45] A. Matos and N. Cruz. Auv navigation and guidance in a mov-

ing acoustic network. In Oceans - Europe, volume 1, June 2005.

[46] S.D. McPhail and M. Pebody. Range-only positioninf of a

deep-diving autonomous underwater vehicle from a surface ship.

IEEE Journal of Oceanic Engineering, 34(4):669–677, 2009.
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