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ABSTRACT

Data is extremely heterogeneous: it is presented to us in a large variety of
formats. There is a basic need to find efficient ways to store these kind of
data so that access and manipulation is facilitated.

In all practical applications, space-efficiency and fast access to data are key
driving-parameters in the design of possible solutions.

In particular, the so-called succinct data structures have acquainted a lot
of attention in recent years for their double promising goal: compress data
with performance close to the information-theoretical lower bound while
supporting exceptionally fast access to data paying a negligible, lower order
term, space factor.

In this related context, we studied the problem of storing monotone se-
quences of integers and how to solve it using succinct data structures. Fun-
damental to this dissertation will be the Elias-Fano integer encoding of such
sequences.

While most theoretical and practical results on Elias-Fano encoding
regard statically compressed data structures, little attention has been de-
voted to dynamic ones. Therefore, in this dissertation we tackle the prob-
lem of applying this compression strategy to a dynamic scenario, showing
achieved results and trade-offs. We will show that if such sequences grow
in an append-only way (new integers are added only at the end of the se-
quence) the resulting data structure takes only a negligible space more and
very small time degradation with respect to a static counter part.

A fully dynamic representation supports insertions and/or deletions of
integers in any position of the sequence, at a price of a higher access time.
We provide tools to understand how to mitigate such problem and find
the right trade-off between time and space complexities.

In conclusion, some interesting applications of these succinct data struc-
tures are illustrated.
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1
INTRODUCTION

The incredibly fast growth of computer hardware and software technolo-
gies in the past few decades have radically changed the world in which we
are living: in the way we buy things (E-commerce); in the way we relate
to other people (Social Networks); in the way we access and search infor-
mation (Search Engines). Computers play a key role in everything we do
and think of and it would be impossible to recall their applications in just
few lines.

Instead, we would like to focus on the kind of data they can produce
and process. We call information the ultimate interpretation, being from a
human being or an automaton, of data by a precise semantics. As an exam-
ple, the World Wide Web represents the biggest source of information for
news regarding any aspects of the human life. In fact, computers search,
manipulate and publish information over the Internet, mostly.

Because of the fast processors and large memories we can build nowa-
days, computations are also more data-intensive than ever. Therefore, the
efficient treat and management of such information is so crucial that a
new generation of scientists was born to accomplish these goals.

Data is extremely heterogeneous: it is presented to us in a large vari-
ety of formats. From completely unstructured data such as text, to semi-
structured data such as HTML and XML files, to structured one we can
find in relational databases. There is a basic need to find efficient ways
to store these kind of data so that access and manipulation is facilitated.
To achieve this, knowledge of algorithms and data structures has become in-
dispensable for engineers since the their wise use largely outperform any
kind of computer hardware improvement.

In all practical applications, space-efficiency and fast access to data are
key driving-parameters in the design of possible solutions. In modern pro-
cessors architectures, we can feed cache memories with the mostly used
data so that their access is extremely fast if compared to main memory,
disk and network in order. Therefore there is a fundamental need for data
compression and an entire field of active research is working on it.

In particular, the so-called succinct data structures [18, 5] have acquainted
a lot of attention in recent years for their double promising goal: compress
data with performance close to the information-theoretical lower bound
while supporting exceptionally fast access1 to data paying a negligible, lower

1 Usually constant time.order term, space factor called redundancy. As we will notice later on in
the text, succinct data structures should be engineered as much as possible
since, otherwise, their redundancy factor may not be negligible at all due
to large constants hidden by the asymptotic notation [30, 14, 33].

1



I N T RO D U C T I O N

Succinct data structures benefit a lot from some important trends in
computer architecture too. The first concerns memory access patterns. Since
a bad exploitation of memory hierarchy is probably the first source of per-
formance degradation in computer systems, we wish to induce sequential
and predictable access patterns to memories.

Secondly, the now ubiquitous 64-bits architectures can process larger
chucks of data in fewer accesses. This is of particular help in storing and re-
trieving data and broadword programming techniques, along with bit-level
manipulations [30], exploit this new hardware feature.

1.1 THIS WORK

This Thesis finds its origins in the aforementioned context and it is mo-
tivated by the above considerations. We studied the problem of storing
monotone sequences of integers and how to solve it using succinct data struc-
tures. Fundamental to this dissertation will be the Elias-Fano integer encod-
ing of such sequences [10, 11, 12]. As for illustrative purposes, it has been
successfully applied to inverted-indices’ compression, showing excellent
compression ratio and query evaluation times [26]. Another meaningful
example is its potential use in storing graphs: Facebook’s engineers have
recently adopted this compression strategy building Unicorn, an online,
in-memory social graph-aware indexing system [7].

In particular, most theoretical and practical results on Elias-Fano en-
coding regard statically compressed data structures. In this dissertation we
tackle the problem of applying this compression strategy to a dynamic
scenario, showing achieved results and trade-offs. Monotone integer se-
quences we take into account are not static, but can grow over time. We
will show that if such sequences grow in an append-only way (new inte-
gers are added only at the end of the sequence) the resulting data structure
takes only a negligible space more than the static counter part with a very
small time degradation.

We also take into account random deletions and additions from such
compressed sequences. While being not yet competitive in query time with
the append-only structures, it only implies a very small space redundancy
and it is the first attempt to dynamize Elias-Fano compressed integer se-
quences.

These Elias-Fano succinct data structures will be natural good candi-
dates for any engineered computation which handles large amount of in-
tegers applying compression on the fly. The implemented structures form
a library, publicly available under proper license, in the hope that it will
be useful for applications and further research.

1.1.1 CHAPTERS OVERVIEW

The Thesis is subdivided into three main parts.

2



I N T RO D U C T I O N

1. Background and Tools. The very first part contains all needed back-
ground to fully comprehend subsequent chapters. More specifically,
Chapter 2 deals with basics tools in algorithmic analysis and data
compression that will appear in all the dissertation, such as asymp-
totic notation, succinct bounds, entropy and models of computa-
tion.

Chapter 3 illustrates the best state-of-the-art algorithms and tech-
niques to build efficient rank & select succinct data structures as they
are the basis for all following chapters. Broadword programming
concepts and their use in the design of fast rank & select structures
are presented.

Finally Chapter 4 shows the Elias-Fano integer encoding, the strat-
egy at heart of this Thesis, with examples and bounds.

2. Elias-Fano Structures. This second part focuses on the main work
performed for this Thesis and present the main achieved results.

Chapter 5 introduces two append-only Elias-Fano-compressed suc-
cinct data structures along with their algorithmic descriptions and
performance guarantees. As already mentioned, the most impor-
tant result is showing they introduce a negligible space factor and
very small time degradation with respect to their static counter
parts.

Chapter 6 naturally makes a step forward and describes how to fully
dynamize the previously introduced append-only structures.

3. Practical Impact. This final third part is intended to show the practi-
cality of the implemented structures. Therefore, Chapter 7 presents
the large number of tests performed for what concern both space
and time measurements. In this chapter we will confirm and stress
the quality of the developed theoretical models.

Chapter 8 contains three selected applications, one for each struc-
ture, where we show how the implemented library could be used.
The first concerns the efficient storage of large in-memory graphs;
the second the building of a crawling index for web pages; the third
the storage of dynamic inverted lists.

Finally, Chapter 9 sums up salient features of the presented material.
We also point the reader to future directions and open problems the
Author would be pleased to work on.

3
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2
BASIC CONCEPTS AND NOTATION

This chapter deals with important tools and concepts that must be known
to fully comprehend subsequent analysis. It also introduces part of the
notation used in the text, along we some examples and further readings.

If not strictly necessary, we will omit redundant parentheses, with the
aim of obtaining a compact and elegant math display. Throughout the
text, numbering starts at zero, to spontaneously reflect how we are used
to think when programming [9].

A set is, informally, Basicsan unordered collection of items. Given a set S, we
denote with | · | the cardinality operator, such that |S | is its cardinality, i.e.,
how many elements it contains. We indicate with [n] the ordered set of the
first n natural numbers, i.e., [n] = {0,1, . . . , n� 1} and |[n]| = n. Unless
otherwise specified, all logarithms will be binary, i.e., lg n = log2 n.

The bit is the minimum quantum of information of computer systems.
A byte (B) is a unit of measure for bits, equivalent to 8 bits. In our practical
experiments we assume1 1 KB (Kilo byte) = 103 B and 1 MB (Mega byte) =

1 http://www.nist.gov/pml/wmd/

metric/prefixes.cfm
106 B. 1 GB (Giga byte) = 109 B and 1 TB (Tera byte) = 1012 B.

2.1 TIME AND SPACE COMPLEXITIES

Analyzing an algorithm means predicting the resources Analysis and resources of an
algorithm

that it will use.
We refer to the voluntarily generic term resources as the set of all kind of
artifacts an algorithm needs to properly compute its task and eventually
terminate.

This set may include several items such as communication bandwidth
and computer hardware, but most often we are primarily interested in
knowing the computational time of an algorithm and its space occupancy.

We usually have that algorithms compute their job in a time which
depends on the size of their input data. The memory they reference varies
with this input data dimension too.

Therefore, in this sense, an algorithmA differs from a function in the
mathematical sense Algorithms and mathematical

functions
. However, we can use the same algebraic notation of

functions to express algorithmic computations: starting from some input
elements of an input data set I ,A produces some output values belong-
ing to an output data set O, by means of a function f : I ! O which
corresponds to the body definition of the algorithm itself, namely the set
of instructions it is made up of.

Let us call the dimension of the input data set n = |I |. Then we have
that

A : I
f��!O.

5
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2. B A S I C C O N C E P T S A N D N O TAT I O N

We define the the computational time Time and space complexitiesof an algorithm as the time it takes
to perform all the elementary operations that uniquely define it. The
space occupancy of an algorithm measures the amount of memory it uses
during its execution.

The time complexity of algorithm A will be indicated as TA (n) and
its space complexity as SA (n). If the space complexity refers to a data struc-
ture D, we will use SD(n) as well. A data structure is a way of represent-
ing and organizing information so that we can easily access and modify
it. Whenever clear from the context we are referring to an algorithm or a
data structure, we can relax the notation and drop the lower script specifi-
cation letter.

2.2 ASYMPTOTIC GROWTH

Sometimes we are able to write precise formulas describing the exact time
or space occupancy of an algorithm. However, such precision is usually
not worth the effort to obtain it: when we deal with big input sizes, all
multiplicative constants and additive terms in our formulas are dominated
by the problem size itself [28, 6].

Whenever this situation happens, we are studying the asymptotic effi-
ciency of algorithms and we only care about the order of growth of inter-
esting quantities, namely execution time and memory.

We typically use the asymptotic notation Asymptotic notationto describe the above men-
tioned quantities that was first introduced by the mathematician P. G. H.
Bachmann in 1894. This notation, however, applies to functions and we
should pay attention to not misuse it. We will make an extensive use of
asymptotic notation throughout this dissertation.

Definition 2.2.1. Asymptotic tight boundsFor a given function g (n), we denote by Q(g (n)) the
set of functions

Q(g (n)) = { f (n) : 9 positive constants c1, c2,⌘ such that
0 c1 g (n) f (n) c2 g (n),8 n � ⌘}.

Therefore whenever we write that f (n) 2Q(g (n)) we mean there ex-
ist some positive constants, c1 and c2, for which our function f (n) is sand-
wiched between c1 g (n) and c2 g (n) for all n sufficiently large.2 Usually

2 As an example, we can verify that
1/4n2�5n = Q(n2). We wonder
if there exist a choice of constants
c1, c2 and ⌘ such that

c1n2  1
4

n2�5n  c2n2,

8 n � ⌘. Dividing by n2, it is quite
easy to verify that for a choice of
c1 = 1/4, c2 = 1/84 and ⌘= 21,
the above double-inequality is
satisfied.

we will drop this set notation and introduce some syntactic sugar to al-
low us to just write f (n) = Q(g (n)). In conclusion f (n) is limited both
from above and below by g (n) starting from some value of the problem
size: g (n) is an asymptotically tight bound for f (n).

As claimed before, when we use this notation, we do not specify for
which choice of constants the condition 0  c1 g (n)  f (n)  c2 g (n) is
true. We are interested in describing the asymptotic behaviour of f (n),
with a practical and easy-to-understand notation.

In general, if p(n) =
Pd

i=0↵i ni is a polynomial of degree d , where
coefficients {↵0,↵1, . . . ,↵d } are constants, we have that p(n) = Q(nd ).

6



2. B A S I C C O N C E P T S A N D N O TAT I O N

Using this simple consideration, we derive that, since each constant
can be though of as a polynomial of degree 0, we can express any constant
function with Q(n0) = Q(1).3

3 There is a little abuse in this
notation, since we do not specify
which is the variable going to
infinity [6]. However, unless
otherwise specified, we can
tolerate this abuse whenever the
variable is clear from the context.

Definition 2.2.2. For a given function g (n), we denote by O(g (n))
the set of functions

O(g (n)) = { f (n) : 9 positive constants c ,⌘ such that
0 f (n) c g (n),8 n � ⌘}.

This notation is used to specify Asymptotic upper boundsasymptotic upper bounds: if f (n) =
O(g (n)) we mean that f (n) is upper bounded by g (n) for all n suffi-
ciently large.4

4 As an example, we can verify that
2n2 = O(n3). By applying the
definition, for c = 1 and ⌘= 2 the
condition is satisfied.
Similarly we can show that
n3 6= O(n2), since we will obtain
n  c , which we cannot make
always true, because c is a constant
and n tends to infinity.

Notice that f (n) = Q(g (n)) implies f (n) = O(g (n)), so the first
writing is a stronger condition than the second.

Definition 2.2.3. For a given function g (n), we denote by o(g (n)) the
set of functions

o(g (n)) = { f (n) : 8 positive constant c ,9 ⌘> 0 such that
0 f (n)< c g (n),8 n � ⌘}.

The main difference with the big-Oh notation is that while it requires
0  f (n)  c g (n) for some positive constant c , the little-Oh notation
requires that 0 f (n)< c g (n) for all c > 0.

This notation is suggesting us that function f (n) becomes negligible
with respect to g (n) when n grows infinitely5, i.e., when

5 As an example, considerp
n = o(n). Then we can always

determine ⌘= 1/c2, 8 c > 0.
Similarly lg n = o(n). But
n/4 6= o(n), in fact we would
obtain the condition c > 1/4
which does not hold for any choice
of c .

lim
n!1

f (n)
g (n)

= 0.

Similar definitions can be given for W and! notations, less used in this
dissertation. We suppose the reader be familiar with these concepts [6].

2.2.1 ANONYMOUS FUNCTIONS

Of particular interests for our purposes is when the asymptotic notation
is used inside a formula, say an equation or inequality. In such cases it is
used to indicate some anonymous function that we do not care to mention.

For the sake of clarity, consider 3n2+n+4 = 3n2+Q(n). This means
that 3n2 + n + 4 = 3n2 + f (n), for some function f (n) 2 Q(n) (in this
specific case f (n) = n + 4). f (n) is clearly what we call an anonymous
function: we do not specify its name and express it with the term Q(n).

Practical use cases of such anonymous functions are very common. A
famous, well known, example is when we write recurrence relations, as we
do for Merge Sort: T (n) = 2T (n/2) + Q(n). When we would like to
express space occupancies of algorithms, anonymous functions are very
useful too, as we will see next. We will use them in this way, mostly.

7
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2.3 SEQUENCES AND BITVECTORS

Many times in this thesis we will mention sequences, arrays, list, vectors
and strings. While being all mathematically equivalent, each term has a
different flavour according to the topic/field we are referring to. Typically,
when speaking, usual common sense fills up the gap between abstraction
and concrete usage of these terms and leads us to comprehension. In this
way, if we mention a “vector” while speaking about algebraic linear oper-
ators, we immediately get the corresponding meaning of the term, and do
not think (usually) about C++’s std::vector.

The elements these objects are made up of are also different. Arrays
and vectors are usually constituted by numbers (integers or reals), while
strings by characters from a given alphabet.

Trying to understand the common properties these terms have, we no-
tice that sequence is the most abstract of all. Then we give the following,
tentative, definition.

Definition 2.3.1. SequencesLet S be a set, called the alphabet, of � = |S| symbols.
Then for any set S of n = |S | symbols drawn from S, we define a sequence
s as a couple s = hS,⇡i, where ⇡ : [n]! S defined as i 7! si .

Therefore, s = hs0, s1, . . . , sn�1i and si denotes the i -th element of s . We
indicate with |s | = n the length of s . Note that ⇡ is a labelling function,
associating an item of S with a position in s . Whenever we need to specify
a subrange of s ’values, we use the algebraic syntax for intervals, e.g., s [i , j )
refers to the subsequence hsi , si+1, . . . , s j�1i.

Now, if we are talking about algebraic vectors, S = K field; if we refer
to strings of a text, an alphabet may be S = {c |c 2 {set of ASCII symbols}}6.

6 http://www.ascii-code.comA particular case of interest for us is when S = {0,1}. In this case, we
call any sequence a bitvector.

Definition 2.3.2. BitvectorsA bitvector is a sequence s , with S = {0,1}.
For example, the following sequence is a bitvector

s = 010010010001100101001011101001101000

More commonly, we care about the number of bits set to 1 in a bitvec-
tor of length u bits. For this purpose, we will indicate with b (n, u) a
bitvector having n out of u bits set to 1. In the example given below,
s = b (15,36).

8
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2.3.1 OPERATIONS

We now need to define the main operations we would like to implement
on a sequence. Given a generic sequence s of length n, defined over an
alphabet S, for any x 2 S, there are four basic operations we require to
implement:

• appends (x) adds x to the end of s and increment n by one, i.e.,
⇡(n) = x;

• gets (i) returns the i -th element of s , namely gets (i) = si , 8 i 2 [n];
• ranks (x, i) returns the number of elements equal to x in s [0, i), 8

i 2 [n];
• selects (x, i) returns the position of the i -th element equal to x in s

or just �1 if there is no such element in s .

As an example, if s is the following string:

f r e s h n e s s
0 1 2 3 4 5 6 7 8

then

gets (0) = f ranks (s, 4) = 1 selects (r, 1) = 1
gets (5) = n ranks (s, 8) = 2 selects (e, 3) =�1
. . . . . . . . .

Whenever clear from the context we are performing such operations
on s , we can drop the subscript letter.

In the case we are referring to a known bitvector, we can indicate
the above operations with: get(i), rank0/1(i) and select0/1(i) respectively
(now, the subscript is used to specify the symbol).

As an example, if b (7,13) is:

1 1 0 0 0 1 1 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12

then

get(5) = 1 rank0(6) = 3 select0(4) = 7
get(10) = 0 rank1(4) = 2 select1(11) =�1
. . . . . . . . .

9
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2.4 SUCCINCT DATA STRUCTURES AND BOUNDS

We have already introduced the concept of a data structure. Obviously,
information can be represented in many different ways and, consequently,
there is no data structure that fits well for every problem we would like to
address.

Of particular interest for this thesis, are the so-called succinct data struc-
tures. They constitute a specific class of compressed data structures: data is
first compressed using an ad-hoc compressor; secondly a Redundancy space factorredundancy space-
factor is added to the data structure, in order to support the requested
operations. Usually this additional factor depends on the time we want
to perform the designed operations on the data. What we typically find
out is the usual trade-off between space and time complexities: the less we
compress the faster we go and viceversa. We will experimentally confirm
this trend many times, in Chapter 5, 6 and 7.

Therefore, what we expect is that our compressed data structure’ s
memory footprint is given by the sum of two contributions:

• a compressed-data-dependent factor;

• a redundancy factor.

What we mean by succinct is that, adopting certain techniques, the redun-
dancy factor can be made small compared to the data size, i.e., a lower
order term of the data-compressed factor. Usually it is so small to become
a negligible factor indeed.

Now, suppose that a sequence s takes, at least, m bits to be represented.
Then, by using a succinct data structure for7 s , we will use o(m) additional

7 We also say a succinct
representation of.

bits of information to implement all needed operations. The total space
occupancy will now be: m + o(m) bits. This quantity is also referred to
as a succinct bound Succinct bounds.

However a theoretical negligible redundancy of o(n) bits does not al-
ways imply a practically negligible redundancy too. Some real-life datasets
exhibit less space with a O(n)-bit data structures than with a o(n)-bit one.
This is due the Hiding constants“hiding constants” effect of asymptotic notation. Clear dis-
tinction between theoretical and practical implementation of such data
structures will be pointed out, whenever necessary, throughout the text.

Next, we should understand how many bits are at least needed to en-
code the data structures we will work with, in order to be able to compare
theoretical and experimental results. This will be the subject of the next
section.

2.5 INFORMATION-THEORETICAL LOWER BOUNDS

In general, given a set X of combinatorial objects, the minimum amount
of bits we need to uniquely identify each object x 2 X is dlg |X |e bits.
This quantity is what we call an information-theoretical lower bound. This
means, generally speaking, there is no hope of doing better than this for

10
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the set X . But here is the trick, we shall say. In fact, if we further restrict
X by making some assumptions on its elements, we can beat the lower
bound.

As an example, consider the set X of all bitvectors of length u. Then
we have than |X |= 2u and therefore we need at least u bits. If we restrict
our attention to the class of all bitvectors of length u having n bits set to 1,
then we have |X |= (u

n), i.e., all possible ways we can select n 1s from a set
of u bits. Therefore, for a bitvector b (n, u) the information-theoretical
lower bound is

&
lg
✓ u

n

◆'
bits. (1)

By doing some math, i.e., using Newton’s coefficient formula8 and Stir-
8 Recall that:

✓ u
n

◆
=

u !
n!(u� n)!

, 8u � n.

ling’s factorial approximation9, we obtain

9 Recall that:

x !⇠p2⇡x
⇣ x

e

⌘ x
, 8x � 0.

u lg u� n lg n +(u� n) lg
1

u� n
�O(lg u) bits

and, by adding and subtracting (u� n) lg u, we finally get

n lg
u
n
+(u� n) lg

u
u� n

�O(lg u) bits.

This function is symmetric and has a maximum in n = u/2, meaning
that we can concentrate our attention to the values of the function for
0 n  u/2 [29], obtaining Information-theoretical lower

bound for bitvectors

B(n, u) = n lg
u
n
+O(n) bits, (2)

which represents a more practical way of describing the minimum num-
ber of bits we need to encode b (n, u). Now a succinct representation of
b (n, u) will takeB(n, u)+ o(B(n, u)) bits.

Concerning a general sequence s of symbols drawn from an alphabet
S of size � , in absence of any additional information the best we can do
is to encode each symbol of S using lg� bits. Doing so, any sequence

Information-theoretical lower
bound for sequences

consisting of n symbols will take

S (n,�) = n lg� bits. (3)

In many cases, this bound is not satisfactory and can indeed be consid-
ered as a worst case bound since it corresponds to the space required by
the, plain, binary representation of s . As similarly noticed before, we suc-
cinctly represent each sequence of n symbols drawn from that alphabet,
with S (n,�)+ o(S (n,�)) bits.

11
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2.6 ENTROPY

The father of Information Theory, Claude Elwood Shannon, left us a pow-
erful tool that he names entropy [29]. He was concerned with the prob-
lem of defining the information content of a discrete random variable
x : S!R, with distribution px = P{x = x}, 8x 2 S.

He defined the entropy of x as

H (x) =
X
x2S

px lg
1
px

bits ⇥ value.

The quantity lg(1/ px) bits is also called the self-information of x 2 S.
H (x) give us an idea of how many bits we need to encode each value of
S.

Let now s be a string of n characters drawn from an alphabet S. Let
denote nc the number of times character c occurs in s . Assuming empir-
ical frequencies as probabilities (the larger is n, the better the approxima-
tion) [27], i.e., pc ' nc /n, we can similarly consider s as a random vari-
able assuming value c with probability pc . Therefore, we can define the
entropy of a string10 s as

10 This generally applies to a “text”,
since a text can be seen as a “long
string”.H0(s) =

X
c2S

nc

n
lg

n
nc

bits.

This quantity is also knows as the 0-th order empirical entropy of s . Notice
that nH0(s) How many bits do I need?tell us how many bits should be required to represent s in
binary.

In the context of this Thesis, we are mainly interested in the case when
s is a bitvector b (n, u). In this setting, we have only two symbols and we
immediately get

H0(b (n, u)) =
n
u

lg
u
n
+

u� n
u

lg
u

u� n
bits,

which, as already noticed, is a symmetric function and we can focus on the
interval n 2 [0, u/2]. In this case we obtain H0(b (n, u)) = (n/u) lg(u/n)
bits. In conclusion, this quantity is related to the information-theoretical
lower boundB(n, u) with the following relation

uH0(b (n, u)) =B(n, u)+O(lg u) bits.

2.7 MODEL OF COMPUTATION

In order to properly quantify the two fundamental complexities of an
algorithm and, therefore, be able to analyze the algorithms proposed in
this dissertation, we need a model of computation.

We will adopt a classic, theoretical, model of RAM modelcomputation called word-
RAM (Random Access Machine) model. This model tries to approach the

12
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behaviour of real (also modern, if properly tuned) processors. This goal is
achieved by defining two main ingredients:

1. a set of elementary operations (elops) Elementary Operations, all executed in constant time
worst case, O(1);

2. a set of memory cells, that we can dereference, without loss of gen-
erality, with the integers in [u ]. Every cell is accessed in O(1) worst
case. If u = 2w , w bits are transferred from memory to the CPU in
constant time.

Figure 1: RAM model.

CPU
O(1)

w bits

Memory

0
1

i

u-2
u-1

However it is under our responsibility to not abuse the word-RAM
model, pretending it includes some instructions it should not. For illustra-
tive purposes, think of an elementary sorting instruction. Than it means
that we are able to sort in just one instruction, in constant time. This is,
of course, a very unrealistic assumption [6].

We will not report here the complete set of elementary operations de-
fined by the model, since it will be a tedious and less informative task.
We can imagine this set coincide with the set of instruction of ubiquitous
C programming language, including: arithmetic operations, bitwise opera-
tions, data movements and control structures (loops and conditionals).

w is the word-size Word-sizeand it is a crucial parameter of the model. It defines
how big is the memory used by the model. The only assumption made on
w is that it is at least n, our input problem size, i.e.,

w = W(lg n) bits.

This assumption is consistent to the fact that if w were not an W(lg n),
then we would not even be able to index all elements in our data (n > u).

The assumption is also revealing the power and the generality of the
model: w changes with n and so does the modelled processor. This model
was called trans-dichotomous and was formalized by Michael Fredman and
Dan Willard in [13].

Space requirements of our algorithms will be measured in the number
of words addressed by the algorithm and, similarly, the space of a data struc-
ture will be measured in the number of words this data structure consists
in.

13
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Analogously, we can express the time complexity of an algorithm A
as the number of elementary operations performed during its execution
and we will write

• TA (n) [ elops ]

• SA (n) [ w ]

Finally, notice that when w = 32 or w = 64, the model fairly matches the
commodity PCs we use everyday.

The RAM model seems, however, too simple under many aspects. Pri-
mary, New models of computationthe fact that we only assume the presence of a single CPU and a
monolithic block of memory. Revolutionary changes have been made to
such a simple structure over the last decades: we are just in the middle of
the multi/many-core technological trend and can enjoy faster and bigger
memory hierarchies. In particular, nowadays computations are more data-
intensive applications than ever. When we previously wrote that n!1,
it seems not just a theoretical assumption.

For these reasons, scientists have developed new models of compu-
tations so that algorithms can meet and adopt to this new scenario of
computing [32]. Figure 2 shows a 2-level memory model 2-level memory model, along with an
overview of memory hierarchies of modern processors and their dimen-
sions. The closer a memory level is to the CPU, the faster it is but also
smaller and costly.

Figure 2: 2-level memory model.
The picture shows a typical choice
of b between Disks and RAM. In
this case we can transfer several
KBs with a single I/O.

RAML2 L3 Network

Cache
Disks

b

CPU

L1

32-64 KB 1-12 MB 1-8 GB 80 GB - 100 TB � �

The model is characterized by a demarcation boundary b that we can
decide where to place. This boundary splits our model in two memory
components: a fast one and bounded one; and a slower but unbounded
one. Usual choices for b ’s placement are: between Cache and RAM or
between RAM and Disks.

In any case, we are able to transfer several words (a block) across the two
chosen memory levels, instead of only one as in the RAM model. This
hypothesis is introduced to reflect how modern memories are read and
written. Clearly, each memory level has its own technology-dependant
parameters, such as dimension and access time. The operation we use to
access, in R/W mode, a memory level is called an I/O (input/output) op-
eration. Using this model, the efficiency of algorithms will be measured
in number of performed I/Os.

We would like to conclude this section with a table reporting the main
order of magnitudes of memory accesses and everyday-operations ma-
chine perform. It is worth noting that these numbers are not interesting

14
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per se since they clearly depend on application/implementation-specific
features (hardware, operating system, network technology, programming
language...), but they are meaningful to understand the order of magni-
tude of such operations and be able to compare them.

Table 1: Latency Numbers Each
Programmer Should Know:
http://www.eecs.berkeley.edu/

~rcs/research/interactive_

latency.html.

OPERATION TIME

L1 cache reference 1 ns

Branch mispredict 3 ns

L2 cache reference 4 ns

Mutex lock/unlock 17 ns

RAM reference 100 ns

Send 2 KB over a commodity
network

0.4 µs

Disk seek (random I/O) 4 ms

2.8 PROGRAMMING MODEL

We firmly believe there is no algorithm without an implementation. “An algorithm must be seen to be
believed.” D. E. KnuthTherefore, all the algorithms we will describe in this text have been

implemented using the Java11 programming language. However, we only
11 https://www.java.com/en/use a subset of Java which turns out to be a point of strength of our code

rather than a limitation. We put emphasis on those constructs that can
be easily found (or equivalent) in any programming language. In this way,
translating our implementation in C++ code is, as an example, as simple
as a one-to-one statement translation.

Whenever in the Thesis we mention some external library as a depen-
dency, we will provide a reference to it.

2.8.1 JAVA PERFORMANCE TUNING

We have used version 1.8, the latest release of Java, along with the na-
tive HotSpot Virtual Machine designed by Oracle that supports JIT (Just-
In-Time compilation) to improve code performance. All codes have been
compiled with javac using the optimizing compilation flag -O and -g:none

to reduce .class files footprint by removing debugging information. Java
code formatting adheres to the style rules12 of Google.

12 https:

//google-styleguide.googlecode.

com/svn/trunk/javaguide.html

As two main guidelines to efficient code production we always recom-
mend to

1. “stay high-level” since good algorithmic and data-structure design
is the best promising source of performance improvement and, more-
over, “premature optimization is the root of all evil.” [19];

2. use a code profiler to better understand where most computing time
is spent by the program (a good tool for Java is YourKit13).

13 https://www.yourkit.com/
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In the following we report the most important Java performance tips
the Author has used to guarantee a robust and efficient code. Further sug-
gestions and details will be given in Chapters 5 (Section 5.3) and 7.

OBJECTS. We wrote simple constructors and keep a minimal inheritance
hierarchy. We also reduce the number of temporary objects avoiding to cre-
ate them in loops or in very frequently called methods. We reuse objects
whenever possible.

LOOPS. We do not use any method calls nor casts within loops. We make
use of final local variables to test for the terminating condition of a loop,
since local variables are faster accessed than instance/class variables. We
also avoid using wrapper methods to access class fields, but just allow a
protected-like access.

CLASS METHODS. We use only iterative methods to avoid repeated stack
frames allocation due to recursive calls.

Although there is no explicit mechanism in Java to inline methods,
we wrote short and simple methods and make them final to encourage
inlining by the compiler.

We also limit the use of Exceptions which degrade performance and
should only be used for error conditions, not for control flow.

OPTIMIZED UTILITY DATA STRUCTURES We wrote some utility data
structures that are used as backing structures for the developing of ad-
vanced ones. No range checking is performed since those classes should
not be used in a standalone fashion. No primitive data wrapper objects
(like Integer, Long, ecc.) have been used but their primitive data types
which are faster and do not suffer from extra space overhead. Those util-
ity data structures are pre-sized whenever possible, since this improves per-
formance significantly. Whenever we need an array copy, we use the opti-
mized built-in function System.arraycopy() (which is faster than a simple
for copying-loop).

General strength reduction techniques (substitute complex arithmetic
operations with less expensive ones) have been adopted.

2.8.2 APIS

When writing code for a library intended to be used by others, a funda-
mental component is providing a proper documentation, describing the
content of such library. As a good practice, we will present the methods of
the implemented classes in application programming interfaces (APIs) that
list the name of the class along with all implemented method signatures
and a short description of each method [28].

In order to clearly show what our notation for APIs consists in, we
report an example (excerpts) for the Java ArrayList class14 that we will

14 Full API description available at
http://docs.oracle.com/javase/

8/docs/api/java/util/ArrayList.

html.

use in subsequent chapters.
We call a client code a fragment of code that uses a specific API. The

purpose of an API is to separate as much as possible the provided code
implementation from the client. The client, in fact, should know nothing
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about the implementation; conversely the API should not rely on partic-
ular assumption on the client code (e.g., type checking or proper input
parameters). Then, no matter who the client is, we can reuse the imple-
mented library again and again. An elegant interpretation of this concept
considers the API as a contract between the library implementation and
the client code. As programmers, our goal is to honor the terms of the
contract.

ArrayList APIpublic class ArrayList<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, Serializable

Appends the specified element to the end of this list.

boolean add(E e)

Inserts the specified element at the specified position in this list.

void add(int index, E element)

Appends all of the elements in the specified collection to the end of this list,
in the order that they are returned by the specified collection’s Iterator.

boolean addAll(Collection<? extends E> c)

Removes all of the elements from this list.

void clear()

Returns true if this list contains the specified element.

boolean contains(Object o)

Returns the element at the specified position in this list.

E get(int index)

17



3
RANK & SELECT PRIMITIVES

The main character of this chapter is the bitvector, the ultimate represen-
tation of any computerized kind of information1. As we have seen in Sec-

1 It is interesting to note how small
a single bit of information is. Yet,
it allowed us to conceive the most
powerful machine and largest
artifact in the history of humanity,
such as the computer and the web.
By the way

“Big things have small beginnings.”

tion 2.3.1, there are few primitives we would like to implement efficiently
on a bitvector. Among them rank and select have recently gained lot of
attention since they constitute essential building blocks in the design of
succinct data structures.

For a generic bitvector b of n bits, rank(i) returns the number of bit
set (1s) in the semi-open interval [0, i) (we can also say “to the left of”)
and select(i) returns the position of the i -th bit set, 8i 2 [n]. We can just
focus on ranking and selecting set bits, since it is sufficient to observe that2

2 Please, pay attention to subscript
symbols!

8i 2 [n]
rank0/1(select0/1(i)) = i �1 (4)
rank0/1(i) = i � rank1/0(i) (5)
select0/1(i) = i + rank1/0(select0/1(i)) (6)

The formulas above fully describe the inner relations among the primi-
tives. In the following we review most important and useful techniques
used to build a data structure able to efficiently support these two opera-
tions. As we will see in Chapter 4, rank & select can be also employed for
succinct data structures that store monotone sequences of integers.

3.1 CLASSIC DESIGN

Because the design of aforementioned primitives usually follows different
approaches, we treat them separately.

3.1.1 RANK

The classical constant-time solution Constant-time solutionwe are going to describe is quite sim-
ple and elegant [18].

Given our bitvector b of n bits, we follow the general design of:

1. Determining the basic block size to divide b along with an efficient
way of counting the number of set bits inside each basic block.

2. Building an index (possibly multi-layered) that stores aggregation
information for a specified number of basic, consecutive, blocks.
This aggregation information is organized in superblocks and rep-
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resents, for each superblock, how many set bits we have up to that
superblock.

Almost all approaches to ranking leverage on this guideline and differ by
how they choose block sizes; number of index layers and way of counting
in a basic block.

The classical choice is to have just two layers for the index. We divide
the bitvector in basic blocks of size B0 = blg n/2c = O(lg n); consecu-
tive blocks are grouped together in superblocks of size B1 = B0blg nc =
blg ncblg n/2c = O(lg2 n). Therefore, the index can be structured using
two arrays:

1. I1 of O(n/ lg2 n) entries, also called first-layer counters, each of them
storing the number of set bits up to its corresponding superblock.
Each entry requires O(lg n) bits. This array constitute the first-
layer of the index and takes overall O(n/ lg n) bits;

2. I2 of O(n/ lg n) entries, also called second layer counter, each of
them storing the number of set bits up to its corresponding ba-
sic block. Each entry requires O(lg lg2 n) = O(lg lg n) bits3. Ar-

3 Using definition 2.2.2, we have
that

lg lg2 n  c lg lg n = lg lgc n,

which, passing to the argument of
the logarithms is satisfied 8c � 2,
8n � 0.

ray I2 constitute the second-layer of the index and takes overall
O(n lg lg n/ lg n) bits.

In addition to this 2-level structure, we also add a pre-computed, universal
(i.e., independent on the bitvector) table, T , storing the number of set bits
for each position of every bitvector of length blg n/2c. This table takes

O(2blg n/2c lg n lg lg n) = O(
p

n lg n lg lg n) bits.

This is built in order to count in constant time inside a basic block (just
access the proper entry in the table). The following picture sums up what
explained.

Figure 3: Ranking structure with a
2-level index and precomputed
table. In this example B0 = 8 bits
and B1 = 32 bits.
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Summing up these three contributions, we obtain

O

 
n

lg n
+

n lg lg n
lg n

+
p

n lg n lg lg n

!
= o(n) bits. (7)
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In conclusion, storing our bitvector b plus the succinct data structure
needed to answer rank & select queries takes n + o(n) bits. Albeit the ele-
gance of the approach and the above theoretical guarantee, even for large
bitvectors such as n = 230 bits the extra o(n) space is not so negligible,
since terms in formula 7 will sum up to 6.67% + 60% + 0.18% = 66.85%
of n [14]. This is due to the high constants hidden in the asymptotic no-
tation. This is a crucial consideration concerning the practicality of such
data structures. We will stress this consideration later on in Chapter 5.

Now we show Rank query evaluationthe algorithmic steps performed to answer a rank query
in constant time, worst case. Assume the structure in Figure 3 and suppose
we want to know rank(i), for some i 2 [n]. Then we will naturally resort
on the three shown components (I0, I1 and T ) as follows.

1. We determine the number of set bits, say c1, up to the superblock
where i resides: c1 = I1[di/B1e].

2. Then we determine the number of set bits, say c2, up to the basic
block where i resides: c2 = I2[di/B0e].

3. Finally we determine the number of set bits within the basic block
where i is located, by looking up the proper counter, say c3, in table
T . Row index is just the basic block bitmap, while column index is
the position of i relative to that basic block.

In conclusion, our query is evaluated as Trank(i) = c1 + c2 + c3 and it is
obviously constant time worst case, O(1).

3.1.2 SELECT

Selecting is more complicated than ranking. This is intuitively justified by
the observation that we do not know which entry is needed. In processing
rank(i) we know exactly that i is located in di/B0e 8i 2 [n], while in
select(i) the position of the i -th bit could potentially be in any basic block
and we resort on searching.

As noticed for rank, also for select structures we can identify some com-
mon design choices. Two techniques Rank-based and position-based

selection
are usually adopted: rank-based and

position-based selection. Both these two approaches share the common
step of (similarly to that of rank) choosing the size of the basic block along
with an efficient way of selecting inside it.

For a rank-based selection, we re-use the previously described index for
ranking. It actually need not to be the same for selecting as, for example,
we could possibly change the size of a basic block. Assume, however, it is
the same. We stress that the structure is the same, but its use is different:
now, we have to search for the position of the i -th bit set. Binary searching
is usually employed since first and second layer counters are trivially or-
dered. Therefore, by just applying three times binary search, we originate
a simple algorithm for rank-based selection in O(lg n) steps. Notice that
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we do not need table T . However if we are designing a succinct data struc-
ture able to answer both rank and select queries, we use the same index
structure. Reasoning in this way, select uses the same extra space as rank,
i.e., o(n) bits.

Differently, a position-based selection makes use of a pre-computed ar-
ray, say S, of select answers. This array is used to identify a position that
is close (hopefully as close as possible) to the i -th set bit’s position. We
store the result of select queries for multiples of k 1s. k can be chosen as
we want, keeping in mind that the larger it is the less space S occupies
but (possibly) the further the i -th set bit will be from the read value; con-
versely, the smaller k is the bigger S is be but we are likely to obtain a
closer position to the i -th set bit. Formally, we first identify the largest
j such that j k  i by looking up in array S, then we identify the basic
block where the i -th one lies in (with the help of an auxiliary index or
not) and perform a selection on it (linear4 or binary search). Assuming

4 Since each basic block is assumed
to be small in size, even a linear
scan can be effective in practice.

the best algorithm for searching, this is again O(lg n) time. The following
picture shows this idea.

Figure 4: Position-based selection
structure. Parameter k trades-off
between space and time
performance. B0 is the size of a
basic block and can be different
from the B0 of Figure 3. The
auxiliary index appears like a
ghost since it is optional.

...b

B0

S select(k) select([n/k]n)select(2k) ...

Auxiliary index

10010110 11011000 00101100 10101110

Without taking into account for the optional auxiliary index, we have
O(n/k) entries in S each consisting of O(lg n) bits. This reveals in a total
space of

O

 
n lg n

k

!
which theoretically is not a o(n).

There exists a constant-time solution for select queries which is much
more involved with respect to that of rank. This solution was proposed by
David Clark in his Ph.D. Thesis [5] and uses a three-level directory tree
for a total of

3n
dlg lg ne +O(

p
n lg n lg lg n) = o(n) extra bits.

However, as already noticed by authors of [14] for Guy Jacobson constant-
time solution for rank, also Clark’s solution for select takes nearly 60% of
extra space for n = 230 bits (not negligible).
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3.2 IMPLEMENTATION

We now provide some useful guidelines [30, 14, 33] for the implementa-
tion of rank & select succinct data structures. There are three considera-
tions, arising from computer architecture, that deeply influence the perfor-
mance of such structures.

• Cache missesWhen dealing with large bitvectors that cannot fit inside cache mem-
ories, the overall performance is strongly influenced by cache misses
(also called cache faults). Given the very fine grain of the operations
performed by rank & select, even a single cache miss more can dis-
rupt all programming optimization efforts. We recall from Section
2.7, that fetching a cache line from memory costs approximately
100 ns and this is enough time to perform hundreds of arithmetic
and logic operations (less than 1/4 ns⇥ operation). Therefore, opti-
mizing our code to be much faster than this fetch time will produce
almost no gain in speed.

• ParallelismGiven the fast spread of parallel architectures, we can process more
data in parallel exploiting hardware registers and instructions.

• Optimization orderWe should optimize cache misses first, then branches, and finally
arithmetic and logic operations. This is suggesting us the we should
avoid branching whenever possible and code these structures to be
cache-aligned (we fetch exactly one cache line for each query) and
64-bits aligned (a query manipulates just one word).

With this tentative guideline in mind, we illustrate (and adopt) two ideas
that play a key role in state-of-the-art implementations.

3.2.1 POPULATION COUNTING

We have already encountered a population counting technique when we
build the 2-level structure for ranking: we have populated table T with
counters keeping track of the number of bit set for all possible basic block
configurations. The term population counting (in short, popcount) refers to
counting how many bit set we have in a bitvector. Newer Intel® proces-
sors5 (Nehalem and later architectures) make available a popcnt hardware

5 http://www.intel.eu/content/

www/eu/en/homepage.html
instruction [17] that does the job for us.

Clearly, we can use popcnt instructions in order to count efficiently
the number of set bits in a basic block. This makes a great reduction in
space, since we do not need to store table T any more. Moreover, notice that,
since 64 B = 512 bits is (usually) the size of a cache line, popcounting
512 bits for well cache-aligned bitvectors leads to exactly 1 cache miss. In
fact, previous studies on rank & select data structures have demonstrated
that their performance is inversely proportional to the basic block size.
This is quite intuitive. The larger a basic block is, the less superblocks we
have and we save space. But excessively enlarging this block size makes op-
erations waste more memory accesses that are the most time-consuming
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sources of performance degradation. Therefore, choosing a basic block
size of 512 bits is the way to go [30, 33].

3.2.2 BROADWORD PROGRAMMING

The term broadword has been introduced by Knuth in his masterpiece
The Art of Computer Programming, Volume 4, in the fascicle about bit-
wise manipulation and tricks [20]. The underlying idea of broadword
programming6 is that we can use broad hardware registers (theoretically

6 Also known as SWAR (SIMD
Within A Register).

even larger than 64 bits) as small parallel computers able to process several
pieces of information at a time. As noted by Vigna [30], broadword pro-
gramming techniques are a promising source of speed-up in modern 64-bit
architectures. The main advantage is that we gain more speed as the width
of words increases with absolutely minimal effort.

Careful bitwise manipulation can be also used to count the number of
set bits in a word (sideways addition algorithm) and avoid tests and branch-
ing (sequential code disruption). Moreover, wisely storing more informa-
tion together in an interleaved fashion, whenever possible, makes us reduce
cache misses.

We argue that a joint use of popcnt instructions, broadword program-
ming techniques and interleaving can offer the best state-of-the-art imple-
mentation of rank & select data structures. By using some of these tools
we can implement the structures described in [30, 14, 33].

Of particular interest for our purposes is the Java library Sux4J7 writ-
7 http://sux.di.unimi.itten by Sebastiano Vigna. This library offers practical implementation of

rank & select succinct data structures and uses the aforementioned tools.
The latest release of Sux4J makes use of broadword programming + in-
terleaving+ popcnt instruction8. All implemented algorithms contain no

8 In Java the population count
instruction is the built-in static
method bitCount() of Integer
and Long classes:
https://docs.oracle.com/

javase/8/docs/api/java/lang/

Integer.html.

tests, no branching and no precomputed tables are involved. We briefly
summarized here the performance of his structures. We point the reader
to [30] for a full description.

Rank9 is the basic structure providing ranking. Its structure is a classical
2-level index as previously described. It guarantees practical constant time
performance with at most 2 cache misses for each rank query and uses
25% additional space.

Select9 is the other basic structure providing selection. It naturally
exploits Rank9 selection capabilities (rank-based selection) and uses 25%-
37.5% additional space (25% for a backing instance of Rank9). It guarantees
practical constant time evaluation with at most 4 cache misses per query.

SimpleSelect is another structure providing selection. It is a position-
based solution which does not depend on Rank9. It uses a 2-level index
plus a spill list (recording the exact position of each bit individually if the
second-level counter does not suffice) and a broadword bit search algo-
rithm. This solution uses more or less 13.75% extra space on evenly dis-
tributed bitvectors, providing very fast selections. This simple select data
structure reveals to be very useful for its low-space occupancy when stor-
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ing monotone sequences of integers in a succinct way, as we are going to
describe in next chapter.

We have used some of the primitives implemented in Sux4J as black
boxes in order to develop our own structures and exploit some bitwise
tricks, along with interleaving, in our algorithms. Some meaningful ex-
amples will be presented in Chapter 5.
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4
ELIAS-FANO INTEGER ENCODING

Suppose we have a sequence s = hs0, . . . , sn�1i consisting of n positive in-
tegers, possibly repeated, upper bounded by some value u, i.e., si 2 [0, u ],
8i 2 [n]. u may be finite or not, known or unknown. Our goal is to
represent this sequence as a bitvector in which each original integer is self-
delimited, using as few as possible bits. This is the very basilar problem
of integer encoding Integer encoding. We say that a compressed integer has a self-delimited
representation if we know exactly how many bits to read in the bitvector
resulting from the compression process for its retrieval.

Applications are various, ranging from the storage and retrieval of large
textual collections in (web) search-engines inverted indexes to data compres-
sion. We point the reader to [25] for a nice overview of most useful and
important integer codes.

We can relax the constraint of positive integers, simply observing that
each positive integer x can be mapped into y = 2x and each negative one
into y = �2x + 1. In this way we obtain a sequence of the above kind
and by looking at the parity of the elements we can understand which
inversion formula to apply. Moreover, once we have a sequence of positive
integers, we can focus on the case of strictly increasing integers, since from
s we can obtain the equivalent sequence s 0 of prefix sums where s 0i = 1+Pi

k=0 sk , 8i 2 [n]. The operation is reversible by just “taking gaps”. In
this case it guaranteed that n  u. Formally, we provide this preliminary
definition, useful in what follows.

Definition 4.0.1. Given a sequence s = hs0, . . . , sn�1i of integers, we say
that s is a monotone sequence of increasing integers if and only if si�1  si ,
i = 1, . . . , n�1. We say it is strictly increasing if < holds, instead of .

4.1 ELIAS-FANO SCHEME

Let us fix a couple of conventions. Given an integer x, let B(x) be its
binary representation and U (x) its unary representation, i.e., a binary
number made up of1 x 1s and a final 0. So U (x) takes x + 1 bits, 8x.

1 Swapping ones with zeros is
possible, of course.

Example: U (13) = 11111111111110.

Now we illustrate an elegant scheme that works for monotone sequences
of increasing integers. This encoding was independently proposed by Pe-
ter Elias [10, 11] and Robert Mario Fano [12].
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4.1.1 ENCODING

What Elias-Fano encoding consists in can be summarised by the following
theorem.

Theorem 4.1.1. Given a monotone sequence s of n increasing integers,
there exists an encoding for s that needs

C = n
l

lg
u
n

m
+ 2n bits, (8)

where u is the maximum integer of the sequence, i.e., u = sn .

Proof. We represent each integer of s in binary using dlg ue bits. Then
we split each binary representation in two parts: a higher part consisting
in the first2 dlg ne bits that we call higher bits and a lower part consisting in

2 Start counting from the left.the other `= dlg ue � dlg ne = dlg(u/n)e bits that we similarly call lower
bits. Let us call hi and `i the values of higher and lower bits of si respec-
tively, 8i 2 [n]. The concatenation L = `0 · · ·`n�1 is stored explicitly and
trivially takes n` bits. Concerning the higher bits, we represent them in
unary using a bitvector of n + u/2` = 2n bits as follows. We start from
an empty, i.e. where there are no bit set, bitvector H and we set the bit
in position hi + i , 8i 2 [n]. Finally the Elias-Fano representation of s is
given by the concatenation3 H ·L, of H and L. Ñ

3 Let · be the operator
concatenating two bitvectors.Now, in order to understand if this encoding is performing well or not,

we would like to compare its space with the information-theoretical lower
bound. In Section 2.5, we have seen that a bitvector b (n, u) requires, at
least, n lg(u/n) +O(n) bits. This formula is very similar to the space
of Elias-Fano encoding, except from the fact that u and n, in b (n, u),
stand for the number of 1s and length of the bitvector respectively. So
how do we relate these two formulas together? Suppose we have a very
sparse bitvector, i.e. a bitvector in which the ones are small in number
compared to the number of zeros. A, trivial, compact representation of
such bitvectors can be obtained keeping track of the positions of the ones4.

4 If ones are dominant in number,
we reason the other way round
and we store the positions of 0s.

Reasoning in this way, we give birth to exactly a monotone sequence of
length n (total number of 1s) of increasing integers where the maximum
element is upper bounded by the length of the bitvector, which is u.

We observe something more. For example, the following theorem.

Theorem 4.1.2. Indicating with C the space required by Elias-Fano en-
coding of a bitvector b (n, u) of 0-th order entropy H0, then

uH0 ÆC  u(H0 + 2).

Proof. From Section 2.6 we know that uH0(b (n, u)) = n lg(u/n) +
(u� n) lg(u/(u� n)). We derive

C = uH0 + 2n +(u� n) lg
u� n

u
bits, u � n. (9)
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Let us now divide C by u: C /u represents how many bits we dedicate
to the representation of each bit in b (n, u). Since u � u, we distinguish
two cases. The first is when u = n. Imposing this condition in equation
9 we immediately get5 the upper boundC /u H0 + 2. The other case is

5 lg0 =�1but this naturally
rounded up to 0 in computer
science.

when u � n. In this case 2n/u ⇡ 0 and (u� n)/u ⇡ 1, from which we
obtain the lower bound C /u ¶H0. Ñ

In particular this theorem is telling us that the larger is u the closer the
space of Elias-Fano is to the 0-th order entropy of the sparse bitvector it is
compressing. In this way, it is possible to make C arbitrary close to uH0.
Furthermore, we claim that in practical situations the condition u = n is
almost never met, while condition u� n is very likely to happen.

In conclusion the Elias-Fano encoding is, a powerful tool to compress
(sparse) bitvectors and achieve compression performance very close to the
0-th order entropy of such bitvectors.

The pseudo code implementing the compression routine of Elias-Fano
is show below. Its complexity is clearly Q(n).

Algorithm 1: Compression
algorithm applied to a monotone
sequence s of increasing integers.

1: procedure compress(s )
2: n = s .length;
3: u = sn�1;
4: lowerBitsList = {};
5: higherBits = [2n];
6: for i = 0, . . . , 2n�1 do
7: higherBits[i] = 0;

8: for i = 0, . . . , n�1 do
9: add `i to lowerBitsList;

10: higherBits[hi + i] = 1;

4.1.1.1 AN EXAMPLE

Let us show a concrete, yet toy, example. Let us suppose to have s =
h3,4,7,13,14,15,21,43i. Then n = 8 and u = 43. So the first step is
to represent every integer using dlg ue = 6 bits. Since dlg ne = 3, both
higher and lower part count 3 bits. We immediately derive that6 L =

6 Space inserted for ease of
visualization.

011 100 111 101 110 111 101 011. Building up H can be done with the al-
gorithm implicitly contained in the proof of previous theorem, i.e., start-
ing from a bitvector of 16 zeros, we set the bit in position hi + i , i =
0, . . . , 7. In Figure 5 we also use another method. Running the algorithm,
we obtain H = 1110111010001000. Finally, the Elias-Fano representation
of this sequence is H ·L = 1110111010001000011100111101110111101011.
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Figure 5: Elias-Fano encoding
example. We can obtain H in the
following, equivalent, way. We
group in different bucket the same
consecutive higher bit values. We
also take into account for the
missing buckets. Then we just
count the cardinality (light blue
numbers) of each bucket,
including the missing ones too.
Then just write in unary code
these cardinalities.

0  1  0  1  0  1

0  0  0  0  1  1 
0  0  0  1  0  0
0  0  0  1  1  1
0  0  1  1  0  1
0  0  1  1  1  0
0  0  1  1  1  1

1  0  1  0  1  1

3

4

7

13

14

15

21

43

higher lower

0 1 1
1 0 0

1 1 0
1 1 1

3

3

1

0
0

0
0

1

missing buckets

3 3 1 0 0 1 0 0
in unary

1110111010001000

4.1.2 SUCCINCT REPRESENTATION OF SEQUENCES

We have seen how to compress s , but not how we can access its elements,
once compressed. The most important property of Elias-Fano encoding is
that it supports the retrieval of any element of s without the need of decom-
pressing the entire sequence, differently from several compression strategies.
With careful design we can implement this operation in constant time.
Given an integer i 2 [n], we have, basically, to re-link together hi with `i ,
previously split-up. Let `= dlg(u/n)e be the number of lower bits. Then
the retrieval of `i is trivial, we just need to read L[i`, (i +1)`) bits. More
interesting is the retrieval of the higher part hi . Since we code the cardi-
nality of buckets in unary, we have a zero whenever we change bucket. So
we would like to know how many zeros are present in H [0, selectH (1, i)):
this is rankH (0, selectH (1, i)) = selectH (1, i)� i for the relations we have
seen at the beginning of the previous chapter. This quantity, read in bi-
nary, gives us the information we are searching for, i.e., hi . Notice that
Elias-Fano encoding is, therefore, self-delimiting. Summing up7

7 Selections occurs on H , therefore
we can just drop the subscript
letter.

accesss (i) = hi ·`i = B(select(i)� i) ·L[i`, (i + 1)`), 8i 2 [n].
In this case hi ·`i is naturally interpreted as a bitwise addition of program-
ming languages, i.e., accesss (i) = hi << `i |`i .

Therefore, we can use a succinct rank & select data structure to sup-
port select queries (we do not actually need rank) on bitvector H . This
gives birth to an Elias-Fano succinct data structure Static Elias-Fano succinct data

structure
for storing a monotone
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sequence s of increasing integers and support fast access to its elements.
The space needed is, in conclusion

EF (s [0, n)) = n
l

lg
u
n

m
+ 2n + o(n) bits, (10)

where the redundancy, extra, factor o(n) accounts for the ad-hoc selection
structure that we call selector.

Then we can write the following pseudo code.

Algorithm 2: Random accessing.1: procedure access(i , selector, `)
2: return (selector.select(i ) � i ) ·L[i`, (i + 1)`);

The selection structure we use is SimpleSelect in our implementation.
Clearly, if applications demand it, we can use Select9 for even better se-
lection performance, but tolerating a greater redundancy factor (37.5 %).

In the following of this dissertation we will refer to an Elias-Fano suc-
cinct data structure, as previously described, as a Static Elias-Fano data structurestatic Elias-Fano data
structure. Its space occupancy is EF (s [0, n)) bits of formula 10 and we
can access any compressed integer in practical constant time.

Inspecting the above pseudo-code, we can immediately derive the time
complexity of a gets operation on a static Elias-Fano representation of s .
For sufficiently large sequences, i.e., the ones that do not fit completely
in cache, the time is dominated by one cache miss (cf in the following) to
access the right portion of array L plus the time for the selects primitive.
This results in

T ⇤gets
= 1cf+Tselects

, (11)

where 1cf⇡ 100 ns according to Section 2.7. We will use this formula for
subsequent analysis.

We use the term static since we silently assume to already have s . But
what if we do not have s in our hands?

Read next chapter.

29



Part II

ELIAS-FANO STRUCTURES



5
APPEND-ONLY

This chapter deals with the problem at the heart of this dissertation. This
is formalized as follows.

Problem. Starting from an empty monotone sequence s , append non-
decreasing integers to s as to compress them and support fast appends
and gets operations.

We propose two succinct data structures that make use of the previ-
ously introduced Elias-Fano integer encoding. We have seen that Elias-
Fano strategy is able to compress s achieving very close compression per-
formance to the 0-th order entropy of the underlying bitvector1. This is

1 Section 4.1.1.possible since we have full knowledge of both n and u, namely the length
of the sequence and the maximum sequence element respectively. We re-
fer to such scenario as a static Static scenarioone, i.e., in which we already know s . But
what happens, if, instead, we do not know n nor u? We develop a new
strategy that makes possible to apply Elias-Fano integer encoding, even
when we do not know any information a priori. Conversely to the static
case, we build s incrementally, in an append-only Dynamic scenariofashion. Because of the
lack of a priori information, we are going loose something in both space
and query time with respect to the static case. However, such dynamic sce-
nario occurs in a lot of practical situations, where we would like to apply
compression on the fly (and not only at the end of the building process of
s ) while adding new integers to our sequence.

Despite of such additional complexity, fundamental to this dissertation
will be the proof that we are only loosing a negligible factor in space while
introducing a minimal time degradation with respect to the static case.

5.1 KNOWN SEQUENCE LENGTH

Given an empty sequence s , suppose we know its future length n but
we ignore which integers will be appended to it. In particular, we do not
know the maximum element of the sequence, u. The strategy we adopt is
described in the following.

5.1.1 ALGORITHMIC DESCRIPTION

We maintain a buffer of to-be-compressed integers, of fixed length B . When
we need to append a new integer to the sequence, we check if it is greater
than or equal to the last inserted. If it is so, the integer is added to the
buffer, otherwise we report an error (exception) to the user. The buffer
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keeps growing until the maximum capacity is reached. At this point, we
compress the B added integers using the Elias-Fano encoding and keeping
three extra information: the number of lower bits, say `0, we need to read
to randomly access an integer in s [0,B); the maximum integer among the
B compressed, say u0, and a pointer to the selector’s structure selector0,
supporting the select primitive on the bitvector resulting from the com-
pression. Now we can empty the buffer and repeat the steps just described,
with only one small difference: since we append increasing integers, we
will compress the difference between current integers and previous bucket
upper bound. This is fundamental2. As an example, we compress integer

2 See Property 5.1.1.x belonging to k-th bucket as x� uk�1.
What we are implementing is a bucketing strategy, compressing each

bucket (the buffer of B integers) when it is full.
Imagine we have added as many integers as to have b0, b1, . . . , bk formed

buckets and we are currently forming bk+1, then the following picture
describes what our data structure looks like.

Figure 6: Append-only Elias-Fano
data structure. The darker blended
part represents the portion of
uncompressed integers, while the
light blended parts the already
formed buckets. As we will
explain next, in our Java
implementation, {ui }i , {`i }i and
the reference to each selector’s
structure have been stored in
proper resizing-arrays.
Array-resizing implementation is
the classical one described in [28],
pages 136-141.

B

buffer

...

...

...

...

extra
information

u0 uku1 ...

b0 b1 bk

0

selector0 selector1 selectork

� 1� k�

Notice that b0, b1, . . . , bk plus their corresponding extra information
are static Elias-Fano succinct data structures, as described in Chapter 4.
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5.1.2 OPERATIONS

We need to implement three operations on our data structure.

• The basic appends (x) and gets (i), as defined in Subsection 2.3.1;

• nextGEQs (x) which returns the smallest integer of the sequence
which is greater than or equal to x or just �1 if such value does not
exist.

The pseudo code for the operations is shown below. We have omitted, for
ease of presentation, the tests for correctness of the input parameters that
can throw proper exceptions. They are present in the actual Java imple-
mentation.

Algorithm 3: compress is the
compression algorithm we have
explained in Section 4.1.1. In this
case, it is applied to compress the
B integers stored in buffer.
Variable length indicates the
number of stored integers.

1: procedure append(x)
2: if buffer.isFull() then
3: compress(buffer);
4: buffer.clear();

5: buffer.add(x);
6: length++;

Algorithm 4: access is the
algorithm to access the i -th integer
of an Elias-Fano succinct data
structure we have explained in
Section 4.1.2.

1: procedure get(i )
2: bj = i ’s bucket;
3: offset = i % B ;
4: if si 2 buffer then
5: return buffer.get(offset);

6: return bj .access(offset, selector j , ` j ) + uj�1;

Algorithm 5: A 2-step nextGEQ
pseudo code. This operation could
be trivially implemented by
iterating over the integers in the
sequence and return the first
integer v � x. But clearly this
search can be speeded-up by first
binary searching over the buckets’
upper bound values and then
iterating over a single bucket’s
integers.

1: procedure nextGEQ(x)
2: bucket = x  0 ? 0 : binarySearchOverU(x, 0, u.size());
3: it = new iterator starting from bucket;
4: while it has elements do
5: v = it’s next element;
6: if v � x then
7: return v;

8: return �1;
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Algorithm 6: Suppose that u is the
array storing buckets’ upper
bounds and buckets is the number
of total formed buckets. The
binary search over u identifies a
bucket bucket such that:
u[bucket]  x < u[bucket + 1].

1: procedure binarySearchOverU(x, i , j )
2: bucket = (i + j )/2;
3: u1 = u[bucket];
4: if x = u1 then
5: return bucket � 1;

6: u2 = bucket < buckets ? u[bucket + 1] : last;
7: if u1 < x < u2 then
8: return bucket;

9: if x � u2 and u2 6= last then
10: return binarySearchOverU(x, bucket, j );

11: if x � u2 and u2 = last then
12: return buckets;

13: return binarySearchOverU(x, i , bucket);
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5.1.3 SPACE COMPLEXITY

In this section we develop an expression for the space occupancy of the im-
plemented, append-only Elias-Fano data structure. We will use the word-
RAM model introduced in Section 2.7 to write such expression, recalling
that w = lg u bits represents a memory word.

Suppose we would like to encode our monotone sequence s of n non-
decreasing integers with Elias-Fano as we did in Chapter 4. Let u be the
maximum integer of the sequence (last element). We already show that
the sequence takes3

3 Throughout the chapter, we drop
the ceil notation d·e when we refer
to the result of a division that the
context imposes to be an integer
quantity if it is not already. In fact,
all these quantities have been
rounded up to the next closest
integer value in our Java
implementation.

S⇤(n, u) = EF (s [0, n)) = n lg
u
n
+ 2n + o(n) bits (12)

Now, the append-only version takes, at most, for each bucket bi :

B lg
ui

B
+ 2B + o(B)+ 8 lg u bits,

where we recall that w = lg u represents the word-size of the RAM model.
The 8 lost words per bucket are due to:

• the additional information we need to store for each bucket, i.e., ui ,
`i and a reference to selectori (3 words);

• padding bits for selectors’ structures (4 words) and array of lower
bits (1 word).

Notice that for the static version, o(n) already includes all needed padding
bits, since they are negligible.

Summing on all buckets, the total space of append-only is

S(n, u,B) = B
n/B�1X

i=0
lg

ui

B
+

n
B
·2B +

n
B
· o(B)+B lg u + 8 lg u · n

B
bits,

which simplifies to

S(n, u,B) = B
n/B�1X

i=0
lg

ui

B
+ 2n + o(n)+B lg u +

8n lg u
B

bits. (13)

The additional cost of B lg u bits is due to the buffer of uncompressed
integers. Now, comparing formula 12 with 13, we start getting an idea of
what may be the extra cost of the append-only version with respect to the
static one. In the following we show how to sharpen this idea: we need to
manipulate the summation in formula 13, which depends on sequence s .

We can proceed in two ways. The first one is trying to estimate the
average ui , i = 0,1, . . . , n/B � 1. The second one is, as similarly done
in [26], resorting on the following
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Property 5.1.1. Given a monotone sequence s of integers, we can show
that:

EF (s [0, k))+ EF (s [k, n)) EF (s [0, n)), 8 0 k < n.

This property can be easily generalized to the case of an arbitrary num-
ber of splitting. Let us proceed in order, considering both of them.

For what concerns the first one, remember that u/n represents the
average gap between two consecutive integers of s . So considering the we
encode, for each bucket, the difference between each integer with the max-
imum integer of the previous bucket, we need to evaluate the entity of the
average gap between two consecutive maxima. But this average gap is soon
evaluated as ui = uB/n, i = 0,1, . . . , n/B � 1. This is an approximation,
done in order to let the formula be independent of the sequence’s integers.
The approximation lies in the fact that we are considering the average ui ,
which can be different in reality. We will see, however, that this model is
anyway very accurate by a large numbers of experiments in Chapter 7.

Substituting the found value for ui in formula 13, we finally get

S(n, u,B) = n lg
u
n
+ 2n + o(n)+B lg u +

8n lg u
B

bits. (14)

We derive that the upper bound E (n, u,B) on the extra space is Extra space function

E (n, u,B) = B lg u +
8n lg u

B
bits. (15)

The upper bound on the space occupancy of append-only Elias-Fano en-
coding, can therefore be written as Total space occupancy of

append-only Elias-Fano data
structureS(n, u,B) = S⇤(n, u)+E (n, u,B) bits. (16)

The above formula is of outermost importance: it is telling us that the space
occupancy of append-only Elias-Fano encoding of an integer sequence s
is the one of the static Elias-Fano version (independent of the bucket size),
plus an extra contribution, which depends on the bucket size B .

For what concerns the second way, we start demonstrating Property
5.1.1.
Proof. We split s in two subsequences, s [0, k) and s [k, n), and we en-
code them with Elias-Fano: the second subsequence compress the differ-
ence between its integers and sk�1. In this way we have split the universe
u as u = u1 + u2, where u1 = sk�1 and u2 = sn�1. For ease of notation, let
n1 = k and n2 = n� k. Thus n = n1 + n2.
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Then we have

EF (s [0, k)) = S⇤(n1, u1) = n1 lg
u1

n1
+ 2n1 + o(n1), bits

EF (s [k, n)) = S⇤(n2, u2) = n2 lg
u2

n2
+ 2n2 + o(n2), bits.

Summing up the two spaces we obtain

n1 lg
u1

n1
+ n2 lg

u2

n2
+ 2n + o(n).

Now, comparing this result with the total Elias-Fano encoding space of s ,
which is

n1 lg
u1 + u2

n1 + n2
+ n2 lg

u1 + u2

n1 + n2
+ 2n + o(n),

the claim follows if only if

u1

n1
 u1 + u2

n1 + n2
^ u2

n2
 u1 + u2

n1 + n2
.

Recalling that n1  u1 and n2  u2, both inequalities simplify to n1n2 
u1u2 which is always true. Ñ

Therefore, we can rewrite formula 16 into

S(n, u,B) S⇤(n, u)+E (n, u,B) bits.

Calling D � 0 the amount of bits that possibly separate S(n, u,B) from
S⇤(n, u)+E (n, u,B), we can rewrite S(n, u,B) as

S(n, u,B) = S⇤(n, u)+E (n, u,B)�D bits.

This formula is quite interesting because is telling us that if D� E (n, u,B),
i.e., what we gain in compression is even larger than the extra introduced
overhead, our append-only strategy will actually prove to be better than
a static one. This is due to the fact that append-only is compressing each
bucket with a much smaller upper bound value with respect to u. This
implies shorter compressed bitvectors, as we have seen in Chapter 4.

Now a fundamental question is posed: does this condition hold in practi-
cal cases? Since most of the contribution to E (n, u,B) comes from B and
this is fixed4, for very long sequences D is very likely to grow while B re-

4 Or, at least, grows slowly as we
will see later on.

mains relatively small. In almost all experiments performed in Chapter 7,
the introduced overhead is not compensated by the append-only compres-
sion gain. However, we will see in Chapter 8 some concrete example in
which append-only can offer better compression with respect to a static
encoding.

In conclusion, the satisfaction of D� E (n, u,B) cannot be guaranteed
nor predicted, since it depends on ui , i = 0,1, . . . , n/B � 1, that are un-
known at the time we are acquiring s .
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5.1.3.1 MINIMIZING EXTRA STORAGE

Now we are left with the task of choosing the best bucket size B, in order
to minimize the additional space represented by formula 15.

From 5

5 We must be rigorous. For fixed n
and u, the formula only holds for
integer choices of B. Therefore, in
order to be able to differentiate it,
we should consider its extension
to the field to real numbers R.

@ E (n, u,B)
@ B

= 0

we obtain

B⇤ = 2
p

2n integers. (17)

If we substitute this result in formula 15, we immediately get an upper
bound on the extra space when choosing the best possible B . By doing so,
we obtain the elegant result of

E⇤ = E (n, u,B⇤) = 4
p

2n lg u = 2B⇤ lg u bits. (18)

This result is suggesting us, that the maximum extra space we can have,
when choosing the best B , is equal to 2B⇤ words, i.e., twice the buffer oc-
cupancy. The space upper bound for the best choice of B, can be then
rewritten as S(n, u,B⇤) = S⇤(n, u)+E⇤ bits.

Our ultimate dream would be that of proving that we are only adding
o(S⇤(n, u)) bits with respect to the static Elias-Fano encoding, thus achiev-
ing the so-called succinct bound for s . We can actually do better than this,
surpassing the succinct bound and adding only o(n) bits. In other words
we would like that the additional space remains negligible for reasonably
large values of n, u and optimal choice of B and ask for the minimum
number of integers, say ⌘, for which

Theorem 5.1.1. E⇤ = o(n) bits.

Proof. By definition 2.2.3, E⇤ = o(n) if and only if 8 c > 0 9 ⌘> 0 such
that 0 E⇤ < cn, 8 n � ⌘. Therefore by solving

2
p

8n lg u < cn,

with respect to n we obtain n > 32 lg2 u/c2 so that we can conclude the
claim holds 8 n � ⌘= 32 lg2 u/c2. Ñ

Figures 7 and 8 clearly show what Theorem 5.1.1 states6 for a certain
6 The plots have been generated for

a fixed choice of lg u = 64 bits:
they are meaningful just for
illustrative purposes.

n � ⌘. Solving the following equation with respect to n

2
p

8n lg u = n,

yields n = 32 lg2 u integers (this corresponds to choose c = 1 in Theorem
5.1.1). This value will give us an additional space of exactly n bits. Actually
we require a different value for ⌘ and we need to go further with n to
satisfy Theorem 5.1.1. The problem, here, is that we should fix a constant
c > 0 in Theorem 5.1.1 and determine ⌘ consequently. We will see how
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to avoid this with another, more practical, approach in next section. In
conclusion, the append-only data structure takes

S(n, u,B⇤) = S⇤(n, u)+ o(n) bits,8 n =!(lg2 u). (19)

This is the space complexity of static Elias-Fano plus a small amount of
memory, i.e., o(n) extra bits.

Notice that the previous bound is stronger than the succinct bound
S(n, u,B⇤) = S⇤(n, u)+ o(S⇤(n, u)), therefore this is automatically satis-
fied. Formally, since we can lower bound S⇤(n, u) with

c(n lg(u/n)+ 2n)< c(n lg(u/n)+ 2n + o(n)),

as immediate from Theorem 5.1.1, we obtain that the succinct bound is
satisfied 8 n � ⌘ = 32 lg2 u/(c2(lg(u/n) + 2)2). In conclusion we can
say

S(n, u,B⇤) = S⇤(n, u)+ o(S⇤(n, u)) bits,8 n =!

 
lg2 u

(lg(u/n)+ 2)2

!
.

Notice that since the quantity (lg(u/n)+2)2 is always greater than 1 (just
recall that u � n), the succinct bound is more easily satisfied (for smaller
values of n) with respect to the strict bound of Theorem 5.1.1. The reason
we take into account the succinct bound too will be clear in next section.

Figure 7: Curves intersecting. For
lg u = 64 bits, we obtain
n = 131072 integers and an
addition of exactly the same
amount of bits.
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Figure 8: Asymptotic behaviour.
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5.1.3.2 PRACTICAL TOOL

We would like to know for which amount n of stored integers, the ad-
ditional space of an append-only Elias-Fano structure, with respect to a
static Elias-Fano encoding, is below a certain threshold 0 < "  1, fixed
as small as we want. For this purpose, consider the following equation,
where we ask for which n the extra memory is " times of the Elias-Fano
static space7

7 We can neglect the o(n) term in
formula 12, since
ndlg(u/n)e+ 2n < S⇤(n, u) and,
therefore, equation 20 gives us an
upper bound on such value of n.

B lg u +
8n lg u

B
= "

⇣
n
l

lg
u
n

m
+ 2n

⌘
. (20)

For our purposes, the above formula is a versatile and fundamental tool. If
we fix B , u and " we can solve it with respect to n, i.e., finding the mini-
mum n for which the extra space is below "%. On the other hand, if we fix
B , u and n and we solve the equation with respect to "we immediately get
an idea of how many bits we are adding to the static case. Notice that if we
are using best B , then the formula reduces to 2B lg u = "(n lg(u/n)+2n).
We mostly use it in the first way: we fix " to be very small, e.g. " = 0.01
(1% extra) or "= 0.02 (2% extra) and, for a given B and u, we evaluate n.

For such values of ", we can actually state that n � ⌘ and the extra
space used by our append-only data structure is practically o(S⇤(n, u)).
This is the same as theoretically fixing a constant c > 0 and calculating
corresponding ⌘ in the bounds of previous section.

It should be clear, now, why we have introduced the succinct bound.
Using the above formula and imposing the satisfaction of the strict bound
in Theorem 5.1.1, i.e., B lg u + 8n lg u/B = "n, will yield too much large
values of n that, in conclusion, will be very hardly satisfying in practical
situations. This fact is due to the potentially high constants hidden by the
asymptotic notation (e.g., 32 in our case) and plays a fundamental role
in the study and design of succinct data structures (as well as in many
other situations). In such cases, as correctly pointed out by the authors
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of [30, 14, 16], before the asymptotic advantage comes clearly into play
the data structure is usually too large. Therefore, while it is theoretically
and mathematically fair to claim an additional space of o(n), it has poor
value as a real-application, effective, data structure. This is a very common
trend in the design of succinct data structures.

On the other hand, by resorting on the succinct bound S⇤(n, u) +
o(S⇤(n, u)) we are able to embrace theoretical and practical worlds, achiev-
ing a good, practical, data structure.

5.1.4 TIME COMPLEXITY

In this section, we present the time complexity of the two fundamental
operations of append-only Elias-Fano: append() and get() that we have
previously introduced and explained.

5.1.4.1 AMORTIZED ANALYSIS

When dealing with resizing-arrays, the usual strategy to provide a perfor-
mance guarantee is to keep track of the total cost of all performed opera-
tions and then divide this total cost by the number of operations. What
obtained is an amortized cost Amortized costof the operations: in such cases we allow
some expensive operations while keeping the total cost of operations low.

Consider a resizing-array and suppose we want to insert n items in
it. We assume, for simplicity, that n is a power of 2. Now, starting from
an initial capacity of 2 elements (as in my implementation), we want to
evaluate the total cost of performing n consecutive append() operations.
The cost will be expressed in memory accesses, according to the fact that
the RAM model is able to access any memory location in constant time,
worst case.

The number of memory accesses for n consecutive insertions is easily
evaluated as

n + 4+ 8+ 16+ . . .+ 2n = n +
lg n+1X

i=2
2i ,

where the first term, n, accounts for each insertion performed in the array
and the second term, the summation, is taking into account all memory
accesses performed when the data structure doubles in size.

The geometric series is evaluated as8

8 Recall that
n�1X
i=0
↵i =

1�↵n

1�↵ , 8↵ 6= 1.
lg n+1X

i=2
2i =

lg n+1X
i=0

2i �3 = 4n�4.

In conclusion, we can say that n items are inserted paying 5n� 4 mem-
ory accesses. As a rule of thumb, we are paying 5 times the number of
elements to insert. The number of accesses per insertion is constant and
approximately equal to 5 in all meaningful cases. What we are doing is
somehow spreading the cost of very few expensive operations9, i.e., each

9 The number of operations that
cause array-resizing is lg n�1.
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time the array doubles its capacity and copies all elements, through a very
large number of inexpensive operations.

Another way to look at this process is shown in Figure 9, as similarly
done in [28].

Figure 9: Amortized analysis.
Green dots show how we keep the
total cost of operations low.
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5.1.4.2 APPEND

Using the result of the amortized analysis, we develop a formula describ-
ing a theoretical upper bound on the construction time of an append-only
Elias-Fano integer sequence, i.e., how much time we spend in appending
n monotonically increasing integers.

The time of n consecutive append() operations is made up of the fol-
lowing three contributions.

• n total insertions in buffer, which is not a resizing-array.

• 3n/B total insertions in the following resizing-arrays:
info, selectors and lowerBits (storing each lowerBitsList of the
compression algorithm in Section 4.1.1).

• n/B compression routines.

The cost of a compression routine is dominated by the loop we show
in the following Java code fragment.10

10 In the illustrated snippet of code, l
is the current number of lower
bits. As immediate from the code,
we are performing 3 memory
accesses in each iteration of the
loop.

1 long v;

2 for (int i = 0; i < B; i++)

3 {

4 v = buffer[i] - previousUpperBound;

5 lowerBitsList.set(i, v & lowerBitsMask);

6 upperBits.set(( v >>> l ) + i);

7 }

It costs a total of 3B memory accesses.
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By these considerations, we can write the total amortized cost of n
consecutive append() operations as

T (n,B) = n + 5 · 3n
B

+ 3B · n
B
= 4n +

15n
B

.

By substituting the optimal value of B⇤ =
p

8n in the above formula, we
end up with

T (n,B⇤) = 4n + 15
r

n
8
⇡ 4n, 8n sufficiently large. (21)

Comparing the result in formula 21 with the amortized cost of n resizing-
array insertions, we get that the append-only Elias-Fano is at least 5/4 =
1.25 times faster than a simple resizing-array.

5.1.4.3 DE-AMORTIZATION

We can use a classical de-amortization argument, similar to the one con-
tained in [3], to let append operations be performed in constant worst
case time as follows.

We maintain two buffers, say buffer1 and buffer2, of B integers each
instead of only one. We append incoming integers to buffer1 until it gets
full. At this point each successive append operation will perform two steps:
we store the incoming integer in buffer2 and perform an iteration of the
for loop in the compression routine. When buffer2 itself will become
full, conversely buffer1 will become empty so that we can swap the role
of the two buffers and repeat the strategy. At any point in time (after
the first B integers are appended to the structure), we have two buffers:
one is full and is under compression; the other stores newly appended
integers. In order to maintain the correctness of the data structure, the
last appended integers (at most 2B � 1) will be accessed directly in the
buffers. This guarantees a worst case running-time performance.

It should be clear that this de-amortization is perfectly possible but
does not come for free: it automatically doubles the memory require-
ment11 for the to-be-compressed integers (which is the dominant factor

11 It is possible to use only one
buffer but we do not guarantee a
constant running time. In fact,
when the buffer becomes full, we
compress an integer from it and
store the next one overwriting the
integer just compressed. The
tricky point is that we need to
initialize a SimpleSelect structure
at each step of the for loop (which
is already very costly) to maintain
the correctness of the data
structure. This initialization does
not run in constant time,
obviously.

in formula 15) since it needs two arrays.
In conclusion, while it is theoretically fair to claim our data structure

achieves constant time worst case running time for each append operation,
we have not implemented this strategy in our Java codes for the reason
given above.

5.1.4.4 ACCESS

Looking at the pseudo codes from Section 4.1.2 and 5.1.2, we immediately
see that we are paying, basically, the identification of the bucket where the
requested integer lies plus an access operation. The additional bucket iden-
tification cost requires a constant number of operations (2 array accesses
and a couple of bitwise manipulations in our implementation, as we are
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going to see in Section 5.3) and this is clearly constant time. Therefore
we should expect a very close level of performance to the access time of
the equivalent static Elias-Fano data structure that, as seen in Chapter 4,
requires practical constant time.

More precisely, now the select operation is not performed on the whole
sequence s but only on a compressed portion consisting of B integers.
Let indicate with TselectB

the time needed to perform a selection of this
compressed portion of s . Then we can write

Tgets
= 3cf+TselectB

= 2cf+T ⇤gets
+TselectB

�Tselects
. (22)

As it is clear, now we spend two cache misses more with respect to the
static version since we need to access additional information (ui and `i for
i -th bucket). However, since B ⌧ |s | we have TselectB

< Tselects
(their time

difference is one cache miss on average, as we will see later on). In conclu-
sion, while the append-only version of Elias-Fano introduces a time over-
head due to the access to additional information, selection is performed
faster and this automatically trades off with the equivalent gets static time.
We will validate this model with experiments in Chapter 7.

5.1.4.5 NEXT GREATER OR EQUAL

From pseudo codes in 5.1.2, we derive that a nextGEQs (x) operation

costs O
⇣

lg
n
B
+ B

⌘
, which is O(B) = O(

p
8n) if we use the best pos-

sible bucket size. The first addend represents the cost of the binary search
over buckets’ upper bounds while the second one represents the cost of a
linear scan through a bucket’s integers.
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5.2 UNKNOWN SEQUENCE LENGTH

Now we take the theoretical results of the previous section, to implement
our second data structure. Therefore, assume we can use our append-only
Elias-Fano data structure as a black box for developing more advanced
structures.

In most practical situations, we do not have any knowledge of both u
and n. We simply do not know how much our sequence will grow and
which elements will end up in it. This means, that we cannot choose the
best possible bucket size, as we did in formula 17. We need to adopt an
adaptive strategy in which B changes over time as n and u do. In the
following we deeply analyse this strategy.

5.2.1 ALGORITHMIC DESCRIPTION

In order to dynamically adapt our data structure to the length of the se-
quence, we have to change B “every now and then”. We would like to
pick the best possible B for the current length of s , so that we can con-
trol extra space growth. For that reason, we start creating an append-only
Elias-Fano data structure with an initial choice of B as we did in previous
section. Let us call this initial value B0. In equation 17, B = 2

p
2n, we can

fix any of the two parameters, n or B , (namely, the one we know) and
choose the other consequently. In this case we do not know n, so we fix
B and compute best n, i.e., the number of integers for which that choice
of B minimizes additional space. From B = 2

p
2n we derive n = B2/8.

So starting with B0, we optimally compute n as B2
0 /8. This means that

once we have added B2
0 /8 integers to s , B0 will not be optimal any more

and we have to change it. Suppose we change it using some strategy, that
we are going to describe next, in a new B that we call B1. Now simply
reconstruct the sequence s with this new optimal bucket size B1. Then
compute optimal n = B2

1 /8 as before and keep adding new integers to s
until we reach this new value of n. At that point, repeat the strategy we
have just outlined, i.e., make a new choice for B and compute correspond-
ing optimal n.

Suppose we have added as many integers to our sequence as to have
changed B for k times. This means that we have reconstructed s for k
times. This process is necessary to minimize the needed extra memory. If we
do not do so and we create a new sequence to juxtapose the old one, this
will reveal in a large memory waste for small sequences. The problem lies
in the fact that from a certain value of n on, the reconstruction process
becomes too costly, even if the more integers we add, the less frequent these
reconstructions will be. This consideration implies that we will adopt an
hybrid strategy, conceptually separated in two parts:

1. we reconstruct s with optimally chosen B values for k times, until
we reach a threshold of added integers, say �, for which we guar-
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antee an upper bound on required extra memory and confirm that
this is very small in practice;

2. when k reconstructions have been performed, we just keep on eval-
uating B and n as before, but we create a new append-only Elias-
Fano data structure with such value of B , thus avoiding the poten-
tially high cost of a reconstruction process.

In other words,� represents the value of n for which we have a reasonable
trade-off between reconstruction cost and extra space.

Therefore, after we have done k reconstructions, our new data struc-
ture, that we will call adaptive append-only Elias-Fano Adaptive append-only Elias-Fano

data structure
, is an array of chunks

c0, c1, . . . , cm , each of these being an append-only structure. As similarly
done for the append-only data structure, whenever we create a new chunk,
all successive appended integers will be stored as the difference between
their own values and maximum integer of previous chunk. This is nec-
essary as we will see in Section 5.2.3. Notice that c0 represents the first-
created chunk, i.e., the append-only structure we have reconstructed for
k times, while m represents the total number of created chunks except the
first (surely created), which is, once again, unknown.

If Bi is the chosen value of bucket size after we have changed it for i
times, the structure is graphically represented in the following picture.

Figure 10: Adaptive append-only
Elias-Fano data structure. We have
specified each bucket size for each
created chunk. ui represents the
maximum stored integer for the
i -th chunk, for i = 0, . . . , m, and it
is stored inside its corresponding
chunk. Light blended parts
represent already formed chunks
while the darker one the
under-construction chunk.

u0 umu1 ...extra
information

...c0(Bk) c1(B     ) cm(Bk+m)

chunk under construction

k+1

We have not yet explained two fundamental points:

1. how we choose a new value of B when s keeps growing;

2. how we have chosen the threshold� for which we stop reconstruct-
ing the sequence while guaranteeing an upper bound on extra mem-
ory. Moreover, we will see that the number of performed recon-
struction is very low.

These two points are the subject of the next subsection.
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5.2.1.1 ADAPTIVE STRATEGY

We now show the strategy we have adopted to change bucket size starting
from an initial value B0. We follow the classical approach of doubling the
bucket size each time the corresponding value of n is reached. Moreover
we observe that big values of B when s is small will significantly enlarge
memory occupancy because most integers will be stored uncompressed.
Therefore, we derive that, as a rule of thumb, small values of B are good
for small sequences and conversely, big values of B for big sequences. Fol-
lowing this empirical rule, B0 should be chosen small, e.g., equal to 16 or
32. In our implementation B0 = 32.

We stop at n = (27B0)
2/8 integers as a good trade-off between B and n

growth. In fact, remember that we are choosing n = B2/8 and if B grows
further beyond 4096, we start getting too large values of B which, in turn,
will yield too much large values of n.

As an example, consider (28B0)
2/8 and (29B0)

2/8. For an initial choice
of B0 = 32, we will obtain 8388608 and 33554432 respectively. The differ-
ence between the two values of n is huge and, as already claimed, we will
not exploit the possibility of using a better value of B for more than 25
million append() operations.

In other words, as already noticed, given the relation B = 2
p

2n, it is
up to us to fix one parameter and obtain the other. Therefore, if we fix B
to obtain n, the latter will grow quadratically; conversely if we fix n to
obtain B , the latter will now grow as a square root.

This suggests us to use the “fast” relation n = B2/8 until n becomes
equal to n0 = (27B0)

2/8 and next to use the “slow” relation B = 2
p

2n
that makes B growing much slower with respect to n and, therefore, more
suitable for smaller spans of n. Once n0 is reached, we start fixing n as
large as twice the previous value and evaluating optimal bucket size as
2
p

2n. In particular we have chosen �= (26B0)
2/8 integers Choice of �.

For an initial choice of B0 = 32, our strategy will produce the following
values for B and n.

B0 = 32 ) n = 128
B1 = 64 ) n = 512
B2 = 128 ) n = 2048
B3 = 256 ) n = 8192
B4 = 512 ) n = 32768
B5 = 1024 ) n = 131072
B6 = 2048 ) n =�= 524288
B7 = 4096 ) n = n0 = 2097152

Using equation 20 we can evaluate the maximum extra space that our
adaptive structure will use when storing � integers. All we need to do is
to plug in equation 20 a value for u. Unfortunately is this setting, u is not

47



5. A P P E N D-O N LY

known nor we can estimate it in any way. All we can do is to do the cal-
culation in the worst ever possible scenario, i.e., when u = n. This is the
case in which we have stored a sequence s of consecutive integers starting
from 1. The space required by the Elias-Fano encoding of the sequence
will be 2n + o(n) bits. In this setting, we derive an extra space12 of 25%.

12 It will be actually lower, since in
equation 20 we are neglecting the
additional term o(n).

Therefore we conclude it is guaranteed that when we stop reconstructing
the sequence, our structure is not using more than 25% of the static Elias-
Fano sequence storing the same integers. Moreover, notice that this case
is very unlikely to happen in practical cases and u will be much larger than
n yielding a much lower extra memory percentage. We will confirm this
fact in Chapter 7 where we show some experimental results.

Let us finally introduce some notation. We define Bi as

Bi ¨
(

2i B0 i = 0, . . . , 7p
8ni�7 i � 7

. (23)

Let us call ni�1 the number of integers stored up to chunk ci , i =
1, . . . , m. This means that chunk ci stores ni � ni�1 integers. Since, after
the first n0 integers, we double n each time we change bucket size, we
have that chunk ci stores ni = 2i�1n0 integers, i = 1, . . . , m.

5.2.1.2 RECONSTRUCTING

In this subsection, we derive an upper bound for the cost of reconstruc-
tion operations. First of all, notice that these operations are 7 in number.
Therefore, as usual, we will spread the cost of very few expensive opera-
tions through a large number of low-cost operations. We proceed as fol-
lows.

Whenever we have to reconstruct our current sequence s , we know
exactly its length, therefore we can allocate all resizing-array dimensions
so that each reconstruction process does not incur in any resizing operation.
Recalling the result of Section 5.1.4.2, we have that upon reconstruction
we will pay:

1. the cost of having inserted (B2
i �B2

i�1)/8 integers;

2. the cost of reconstructing as many integers we have so far inserted
in s , i.e., B2

i /8.

Summing up these two contributions, we obtain

4n +
15n
Bi

+ 4
B2

i

8
=

7B2
i + 11.25Bi

8
, 8 i = 0, . . . , 6,

where n = (B2
i �B2

i�1)/8 = 3B2
i /32 and we can assume B�1 = 0.
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Therefore for any n  �, we derive that the total number of memory
accesses is

c =
1
8

iX
k=0

(7B2
k + 11.25Bk)+ 4�+

15�
Bi+1

, n 2
⇣

B2
i /8,B2

i+1/8
i

, (24)

where �= n�B2
i /8, i = 0, . . . , 6. Determining index i is immediate given

n. Finally, the amortized cost for each append() operation is evaluated as
c/n memory accesses.

More interesting is the case in which n = �, i.e., when we pay all
reconstructions. Using the previous formula, we only need to sum up the
7 contributions, i.e., 1/8

P6
k=0(7B2

k + 11.25Bk). We derive that the total
cost of performing � append() operations is

7
8

B2
0

6X
k=0

4k +
11.25

8
B0

6X
k=0

2k (25)

that, neglecting the lower order term, is approximately 4778B2
0 . Now, di-

viding for the total number of added integers�, we get the amortized cost
for each append() operation:

4778
B2

0

�
⇡ 9.33 memory accesses. (26)

In conclusion, comparing this result with the one we would obtain if we
knew the length of the sequence, we obtain that in appending � integers
we are paying 9.33/4� 1 = 1.33 times more than a single append() oper-
ation. This extra time is constant and independent13 on the initial bucket

13 The lower order term in formula
25 has a negligible impact.

size B0, so we get an amortized constant time for each append(). It worth
noting that averaging this cost with the total number of added integers to
the sequence, this amortized, extra, initial cost tends to become more and
more negligible, as we will see later on in 5.2.4.1.
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5.2.2 OPERATIONS

The three operations appends (x), gets (i) and nextGEQs (x) for adaptive
append-only Elias-Fano are naturally based on the corresponding opera-
tions of the append-only structures that constitute its chunks. The pseudo
code for the operations is shown below.

Algorithm 7: Multiplying n by 8
instead of 4, at line 19, is an
insidious bug! In fact, recall that
each chunk stores ni = 2i�1n0
integers, i = 1, . . . , m and not 2i n0.
Appending a new integer to the
sequence at line 21 is done with
the append algorithm illustrated in
Subsection 5.1.2.

1: procedure initialization
2: length = 0;
3: next = �1;
4: choose initial B ;
5: n = B2/8;
6: chunks = [];
7: create chunk c0 with B ;
8: chunks.add(c0);
9: n0 = (27B)2/8;

10: procedure append(x)
11: if length > n then
12: next++;
13: if next < 7 then
14: B = 2B ;
15: n = B2/8;
16: reconstruct c0 with B ;
17: else
18: n = 2n;
19: B =

p
4n;

20: create a new chunk with B and add it to chunks;

21: append (x� previous’ chunk upper bound) to current chunk;
22: length++;

Algorithm 8: Again, getting an
integer at line 3 is done with get
algorithm illustrated in Subsection
5.1.2. Notice that u0 = 0.

1: procedure get(i )
2: c j = i ’s chunk;
3: return c j .get(i � nj�1) + uj�1;

Algorithm 9: A 2-step nextGEQ
pseudo code. The identification of
the chunk where x lies, at line 2,
can be done by binary searching
over chunks’ upper bounds as
similarly done in Subsection 5.1.2.

1: procedure nextGEQ(x)
2: c j = the chunk x lies in;
3: return c j .nextGEQ(x);
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5.2.3 SPACE COMPLEXITY

In this section we will derive an expression representing space occupancy
and an upper bound to the the extra space with respect to the static case
for the adaptive append-only structure. As for operations, we will use pre-
vious theoretical results for the append-only data structure.

As usual, remember that w = lg u are the number of bits used to en-
code a memory word.

As a first observation, we notice that the additional information rep-
resented by the maximum element of each created chunk has a negligible
impact on the space occupancy of the data structure and can be discarded
from the analysis.

We split the expression we want to derive in two parts: the first taking
into account the space occupancy for n  n0 (case 1.); the second one for
the opposite case, i.e, when n > n0 (case 2.).

1. Let us call u0 the element sn0
. This is an upper bound to every integer

stored in the first chunk. Recalling definition 23, the space occupancy for
n  n0 integers is expressed as

S1(n, u0) = S⇤1 (n, u0)+E1(n, u) bits,

where, since by construction we have only one chunk which is an append-
only data structure and we have already show in Section 5.1.3 that its
static part is equal to the space of a static Elias-Fano encoding of the same
sequence, S⇤1 (n, u0) = S⇤(n, u0) = n lg(u0/n)+ 2n + o(n) bits. E1(n, u)
is defined as

E1(n, u) = Bi+1 lg u +
8n lg u
Bi+1

, n 2
⇣

B2
i /8,B2

i+1/8
i

bits, (27)

i = 0, . . . , 6. For any n  n0, the construction of the data structure is
described by the following picture.

Figure 11: Construction of chunk
c0.

...c0

0 n n0

B²i  / 8 B²i+1 / 8

( ]
2. Now, for the case n > n0, we similarly have

S2(n, u) = S⇤2 (n, u)+E2(n, u) bits,

where S⇤2 (n, u) = S⇤(n0, u0)+
P j�1

c=1 S⇤(nc , uc )+ S⇤(n� nj , uj ) and

u =

(
u0 n  n0

u0 +
P j�1

c=1 uc + uj n > n0

. (28)
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E2(n, u) is equal to

E2(n, u) = E1(n0, u)+
j�1X
c=1
E (nc , u,Bc+7)+E (n� nj , u,Bi ) bits.

(29)

First terms of formulas S⇤2 (·) and E2(·) account for the static and extra
space respectively in chunk c0; summations account for static and extra
space in chunks up to the j -th, where uc is the upper bound for the c -th
chunk; last terms account for static and extra space in the chunk where n
falls in14, i.e., c j . Notice that j = i �7.

14 Notice that the determination of
such chunk (that gives us index j )
is immediate given n.

Doing some math, we can simplify the previous expression into

E2(n, u) = 2B7 lg u
h

1+
1�

p
2 j�1

1�p2

i
+E (n� nj , u,Bi ) bits. (30)

For any n > n0, the construction process is represented by the following
picture.

Figure 12: Light blended parts
represent already constructed
chunks; the darker part represents
the under-construction chunk (c3
in the example picture).

c0 c2c1

0 2n0

c3

n

... ...

n0 4n0 8n0

Finally, combining cases 1. and 2. together Upper bound on total space
occupancy and extra memory for
adaptive append-only Elias-Fano
data structure

, we obtain the upper bound
on the space occupancy and the extra space function for a adaptive append-
only Elias-Fano data structure respectively

S(n, u) =

(
S1(n, u) n  n0

S2(n, u) n > n0

bits, (31)

and

E (n, u) =

( E1(n, u) n  n0

E2(n, u) n > n0

bits. (32)

Notice that Bi , in both E1(·) and E2(·), is uniquely identified by n and its
definition is 23.

Now we have to show how the static parts of S1(·) and S2(·) are related
to the space of the equivalent, static, Elias-Fano encoding storing the same
integer sequence. As done before, we split the proof in two distinct cases.
The first is when n  n0 and we have already shown that S⇤1 (n, u0) =
S⇤(n, u0). More interesting is the case for n > n0. We would like to show
that

S⇤(n0, u0)+
j�1X
c=1

S⇤(nc , uc )+ S⇤(n� nj , uj ) S⇤(n, u), bits. (33)
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Using property 5.1.1, inequality 33 follows automatically by adopting
the splitting of s as in Figure 12 and consequently splitting u as in formula
28. Finally we can safely upper bound S(n, u) by

S(n, u)
(

S⇤(n, u)+E1(n, u) n  n0

S⇤(n, u)+E2(n, u) n > n0

bits. (34)

Now our last goal is to understand how E2(n, u) is related to E⇤ in
order to be able to quantify the extra introduced space. From Section 5.1.3,
we recall that E⇤ = 2B⇤ lg u bits is the minimum extra we achieve in an
append-only data structure choosing the best possible bucket size. Let us
similarly call E j ¨ 2Bj lg u bits, j = i � 7. We wish to relate these two
quantities and we proceed as follows.

Since 2 j�1n0 < n  2 j n0 8 j � 1 we derive that

2Bj lg u < E (n, u,Bj ) = Bj lg u +
8n lg u

Bj
 3Bj lg u,

that implies

E j < E⇤ 
3
2
E j ()

2
3
E⇤  E j < E⇤. (35)

Then we will prove the following theorem.

Theorem 5.2.1. E2(n, u)<

p
2p

2�1
E⇤ bits, 8 n > n0.

Proof. Doing the calculations in term E (n� nj , u,Bi ) of E2(·), we ob-

tain E (n�nj , u,Bi ) =
4n

∆
2 j n0

lg u  4
∆

2 j n0 lg u, where, since nj < n 
nj+1 = 2 j n0, we can safely upper bound n with 2 j n0. Substituting this
value in E2(·), we have

E2(n, u) 2 lg u

2
42
p

2n0

 
1+

1�
p

2 j�1

1�p2

!
+ 2

∆
2 j n0

3
5.

Now recalling that Bj =
∆

82 j�1n0, we have

E2(n, u) 2Bj lg u

 
1+

 
1+

1�
p

2 j�1

1�p2

!
/
p

2 j�1

!
.

Now, it is sufficient to notice that the function � function

�( j ) = 1+

 
1+

1�
p

2 j�1

1�p2

!
/
p

2 j�1, j � 1 (36)
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has an horizontal asymptote in

lim
j!1�( j ) = 1+

1p
2�1

=

p
2p

2�1
⇡ 3.414.

In conclusion, using 35 we get

2Bj�( j ) lg u < 2

p
2p

2�1
Bj lg u < 2

p
2p

2�1
B lg u,

that is our claim. Ñ

The theorem is telling us that the extra space needed by the adaptive
strategy is always less than a constant times the minimum extra of append-
only. Moreover, this constant is small and at most equal to approximately
3.4. This factor can be also considered as the “cost” we have to pay in a
scenario in which we have no knowledge of both n and u.

Figure 13: � function and its
horizontal asymptote.
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Now we are finally ready to show:

Theorem 5.2.2. E2(n, u) = o(n) bits.

Proof. Following the very same approach of the proof of theorem 5.1.1,
we can solve

E2(n, u)< 2

p
2p

2�1
B lg u < cn

with respect to n and concluding that 8 c > 0 9 ⌘ = 64 lg2 u

(
p

2�1)2c2
> 0

such that previous inequality holds 8 n � ⌘, i.e., our claim. Ñ

Of course, as already shown for the append-only structure, this theo-
rem automatically implies the succinct bound satisfaction.

Now we deal with the case n  n0. As already noticed when we in-
troduced the append-only Elias-Fano data structure, for small sequences
the needed extra memory will not be negligible with respect to the over-

54



5. A P P E N D-O N LY

all memory of the data structure. However, when s keeps growing, the
percentage of extra memory decreases quickly and we approach the limit
situation in which E1(n, u) = o(S⇤(n, u)). In conclusion we can say that
in practical situations

S(n, u)
(

S⇤(n, u)+E1(n, u) n  n0

S⇤(n, u)+ o(S⇤(n, u)) n > n0

bits, (37)

where E1(n, u) is such that

lim
n!n0

E1(n, u) = o(S⇤(n, u)).

5.2.4 TIME COMPLEXITY

In the following we derive upper bounds on worst case performances for
our two fundamental operations. The analysis naturally exploits previ-
ously found results for the first introduced data structure.

5.2.4.1 APPEND

We have already evaluated the number of operations due to the recon-
structions that happen in the first segment of � appended integers. Now,
in order to evaluate the time of n consecutive append() operations, we
distinguish two cases. The first one is when n  �: in this case the amor-
tized constant time can be obtained with formula 24 and averaging with
the number of added integers n.

More interesting is the case when n >�, represented below.

Figure 14: Reconstruction process
occurs for the first � added
integers.0

reconstructed

n

not reconstructed

�

Using the result found in Subsection 5.2.1.2, is enough to do a weighted
mean, as follows:

9.33�+ 4(n��)
n

= 4+ 5.33
�

n
memory accesses, n >�. (38)

We clearly see that the more integers we add the less our amortized cost
will be. However, 9.33 represents a constant amortized upper bound cost,
O(1).

5.2.4.2 ACCESS

Before accessing an integer at a specified position, we need to identify its
chunks, i.e., the append-only Elias-Fano data structure where it is stored.
This preliminary operation is performed in constant time worst case in
our implementation, resorting, again, on bitwise manipulations with no
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tests nor branching, as we are going to see next. Then we just access the
required integer in the identified chunk using its get() function. In con-
clusion, as similarly noticed in Section 5.1.4.4, we expect to perform an
access almost as fast as an append-only Elias-Fano structure because of the
extra, constant-time, contribution. In fact, we will see in Chapter 7 that
this extra time is practically negligible.

5.2.4.3 NEXT GREATER OR EQUAL

As done for the append-only structure, we derive that a nextGEQs (x) op-

eration costs O
⇣

lg c + lg
nj

Bj
+Bj

⌘
= O(Bj ), where c is the total number

of created chunks and j is the index of the chunk storing x. The contribu-
tion of O(lg c) is negligible, since c is small even for huge sequences.
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5.3 IMPLEMENTATION KEY-POINTS AND APIS

In this section we overview general implementation considerations along
with a detailed discussion of some selected, yet meaningful, implementa-
tion choices.

For an append-only Elias-Fano data structure, the buffer of integers
to be compressed is a simple Java array of longs (64-bit integers) of size
B . We keep a resizing-array of references to objects SimpleSelect as im-
plemented in Sux4J, as well as a resizing-array of long[] representing the
lower bits resulting from the compression step of Elias-Fano encoding of
buffer integers. Finally, for each bucket bi , we keep track of its maximum
element ui and the number of lower bits `i we need to access its com-
pressed elements. These two values could be trivially stored in two sepa-
rate arrays. However while ui could be very large, `i is at most lg64 = 6
bits. Thus, we store them in an interleaved fashion as follows. We take a
64-bit integer and split its representation in two parts: the first 6 bits start-
ing from the right are dedicated to the storage of `i and the remaining 58
bits for the representation of ui . Notice that this choice actually restricts
the dynamics of the integers we can store in our structure15. In this way

15 Integers range from 0 to a
maximum of 258�1, probably
enough for most practical
applications.

we need only an array access and a couple of easy bitwise manipulations
to retrieve both ui and `i . Cache misses are therefore minimized [30].
The following Java code snippet16 illustrates the needed manipulation to

16 info is the array storing ui and `i
in such interleaved form.

retrieve ui and `i .

1 final long LOWER_BITS_MASK = (1L << 6) - 1;

2 final long UPPER_BITS_MASK = ~ LOWER_BITS_MASK;

3 final long li_ui = info[i];

4 final long li = li_ui & LOWER_BITS_MASK;

5 final long ui = (li_ui & UPPER_BITS_MASK) >> 6;

As we can see only few, constant time, operations suffice. Clearly, the two
masks are constants17 and need not to be computed each time.

17 Use modifiers static and final.

Regarding the adaptive data structure, we basically need to maintain a
resizing-array of append-only structures. Therefore, the append-only data
structure is the backbone of our adaptive structure but it can be used in a
standalone way too. The meaningful point we would like to illustrate is
the code of the get() function.

1 public long get(final int index)

2 {

3 final int d = mostSignificantBit(index) - msbn0;

4 final int MASK = d >> 31;

5 final int x = d + ((d + MASK) ^ MASK) >> 1;

6 final int id = x + ((n0 << x) - index >>> 31);

7 AppendOnlyEliasFano s = chunks.get(id);

8 return s.get(index - (((id - 1) >>> 31) ^ 1) *
9 ((n0 << id - 1) + 1)) + s.prevUpper;

10 }
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Names are self-explanatory. msbn0 tells us which is the most significant
bit of n0, while the static method mostSignificantBit(index) calculates
it for the input index. This method can be easily implemented in Java us-
ing the built-in static method numberOfLeadingZeros() of Integer and/or
Long classes18 that returns the number of zero bits to the left of the most

18 For the class Integer API:
https://docs.oracle.com/

javase/8/docs/api/java/lang/

Integer.html.

significant bit of an integer.
We can use this method to implement mostSignificantBit() in the fol-
lowing way19

19 This is trivially generalized for the
long case.1 public static int mostSignificantBit(final int x)

2 {

3 return 31 - Integer.numberOfLeadingZeros(x);

4 }

When index is greater than n0 the computed difference d tells us the
power-of-2 that multiplied by n0 is closer to index, i.e., 2dn0 individuates
one of the thresholds in Figure 12. The problem, here, is when the com-
puted difference is negative, i.e. for those values smaller than 2msbn0. This
case is handled in lines 4, 5 and 6. What we want is that whenever the dif-
ference is positive then 2dn0 is the threshold we are looking for, but when
the difference is negative just returns us 0, since index will be surely lo-
cated in chunk c0. To implement this, we can compute the absolute value
of the difference and sum it to the difference itself. This will give us ex-
actly 0 when the difference is negative or twice the absolute value of the
difference when it is positive. Then just divide it by two to obtain exactly
what we want and save it in x.

Then we just have to decide if index is located to the left (index is stored
in cx) or to the right (index is stored in cx+1) of such threshold. This can
be trivially done with a comparison with 2xn0 but this is exactly what
we want to avoid: no tests nor branching should be involved. To avoid
performing a test, we compute again the difference between the threshold
2xn0 and index. If this difference is positive then index is stored in the
(id=x)-th chunk, otherwise in the (id=x+1)-th. In other words we have to
sum a 1 if the difference is negative or a 0 if it is positive. But this infor-
mation is already encoded in the difference itself, which, left shifted by 31
positions20 gives us its sign bit, i.e., the proper value to sum.

20 Signed integers are 32-bit integers
in Java.

Last but not least, now that we have the chunk’s identifier we have to
get the proper element, i.e. pick the element of index index-(n0«id-1)+1

from chunk cid. This is true except for the chuck c0. In such case, we
should just return the integer in position index from it. We can therefore
multiply the term (n0«id-1)+1 by 0 when id=0 or by 1 when id=1. Again
another difference! We can compute the sign bit of id-1 and complement
it using a bitwise XOR with a 1.

Remember we have also to sum previous chunk’s upper bound. This
value is stored inside the same chunk we are accessing, so that we do not
incur in any further cache miss.
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Another meaningful point Iterating over the structureto describe is how it is possible to iterate
over the compressed integers in the sequence without using any select op-
eration. A select is, in fact, the most expensive operation in the access pro-
cedure and avoiding to perform it reveals in a great optimization.

We recall from Section 4.1.2 that to retrieve the i -th integer of an Elias-
Fano-compressed sequence, we need to concatenate the i -th upper bits
with the i -th lower bits. Reading the i -th lower bits is straightforward: we
just need to access a proper word of the lower-bits array. Retrieving the
i -th upper bits require to know how many zeros are present up to the
position of the i -th one. This information can be computed by making a
simple difference as follows

1 nextOne = selector.bitVector().nextOne(nextOne + 1);

2 upperBits = nextOne - ones++;

by just keeping track of two variables: nextOne which is initialized to -1
and ones which is initialized to 0. selector is clearly the SimpleSelect

structure from whose bitVector we retrieve the i -th upper bits.
The nextOne(p) operation of a bitVector returns the position of the

first bit set after position p.
In conclusion, we are just sequentially accessing a bitvector an making

a difference with a counter. As a net result we manage to almost halve the
accessing time, as we are going to see in Chapter 7.

The discussed optimized iteration implies that our structures should
not implement the so-called Java interface RandomAccess (as ArrayLists
do), even if they effectively support random access in constant time. This
may apparently seem a contradiction since constant-time random access
is, indeed, the most important feature of Elias-Fano. This design choice
is actually dictated by the Java language which encourages programmers
to check whether the structure is an instanceof such interface21 before

21 http://docs.oracle.com/javase/

8/docs/api/java/util/

RandomAccess.html

iterating over it. Doing so, experienced programmers should understand
to prefer using an iterator for sequential accessing rather than a simple for
loop.

In other words, the loop22

22 s is an instance of one of our
append-only Elias-Fano structures.

1 for (Long integer : s)

2 {

3 // do something on integer...

4 }

runs twice faster than this loop

1 for (int i = 0, length = s.size(); i < length; i++)

2 {

3 Long integer = s.get(i);

4 // do something on integer...

5 }
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We finally show the Java APIs of the implemented succinct data struc-
tures. These implemented structures form a library called Ef4J - Elias-Fano
Succinct Data Structures for Java and it is freely available under proper li-
cense.

Both structures extend the operations defined in
AbstractAppendOnlyMonotoneLongSequence. This is an abstract Java class,
meaning that it cannot be instantiated but serves to define a behaviour com-
mon to all extending classes.

The class, in turn, extends the AbstractMonotoneLongSequence, which
implements the Java interface List<Long>, therefore offering to imple-
ment all methods in the interface (.clear(), .isEmpty(), .size(), .iterator(),
just to name a few23). The role of the append-only variant of the class is to

23 http://docs.oracle.com/javase/

7/docs/api/java/util/List.html
provide proper restrictions, since it represents an append-only monotone
sequence (as an example, set a specific element to a given value or inserting
at arbitrary positions are not permitted operations).

Picture 15 shows the implemented hierarchy of classes.

Figure 15: Simple tree hierarchy of
the implemented Java classes.
Gray classes are meant to depict
abstract classes. The dynamic
Elias-Fano structure will be
introduced in Chapter 6.

Abstract
Monotone

LongSequence

Abstract
AppendOnly
Monotone

LongSequence

extends

EliasFano
AppendOnly
Monotone
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EliasFano
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AppendOnly
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LongSequence

extends extends

List<Long>implements

EliasFano
Dynamic
Monotone

LongSequence

extends
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Constructorspublic class EliasFanoAppendOnlyMonotoneLongSequence

extends AbstractAppendOnlyMonotoneLongSequence implements

Cloneable, Serializable

Create a new, empty, append-only Elias-Fano data structure with a specified
bucket size B.

EliasFanoAppendOnlyMonotoneLongSequence(int B)

Create a new append-only Elias-Fano data structure with a specified bucket
size and a specified initial capacity.

EliasFanoAppendOnlyMonotoneLongSequence(int B, int

capacity)

public class EliasFanoAdaptiveAppendOnlyMonotoneLongSequence

extends AbstractAppendOnlyMonotoneLongSequence implements

Cloneable, Serializable

Create a new, empty, adaptive append-only Elias-Fano data structure.

EliasFanoAdaptiveAppendOnlyMonotoneLongSequence()

Create a new, empty, adaptive append-only Elias-Fano data structure with
a specified initial bucket choice.

EliasFanoAdaptiveAppendOnlyMonotoneLongSequence(int B)

The next page reports the most important methods of the structures
(trivial ones have been omitted). The are clearly the same for both struc-
tures.
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MethodsAppends the specified integer to the sequence.

boolean add(long integer)

Append all integers in the specified collection.

boolean addAll(Collection<? extends Long>)

Returns the integer at the specified index.

Long get(int index)

Returns the smallest integer of the sequence that is greater than or equal to
the one specified or just -1 if such value does not exist.

Long nextGEQ(long integer)

Return true if the sequence contains the specified integer.

boolean contains(Object o)

Return true if the sequence contains all the integers in the specified collec-
tion.

boolean containsAll(Collection<? extends Long>)

Returns the sub list specified by the given range.

List<Long> subList(int from, int to)

Returns the number of bits used by the structure.

int bits()

Returns an array containing all of the elements in the sequence in proper
sequence (from first to last element).

Long[] toArray()

Trims the capacity of this sequence instance to be the sequence’s current size.
This operation affects all inner stored data structures that can possibly be
trimmed.

void trimToSize()

Returns an iterator over the elements in this list in proper sequence.

Iterator<Long> iterator()

Returns an iterator over the elements in this list in proper sequence in the
specified range, extremes included.

Iterator<Long> iterator(int from, int to)

Returns a copy of the object.

EliasFano(Adaptive)AppendOnlyMonotoneLongSequence clone()
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5.4 BRIEF SUMMARY

We have introduced two new append-only succinct data structures, that
use Elias-Fano integer encoding to store a monotone sequence of increas-
ing integers, while growing in dimension. Our data structures and algo-
rithms are relatively simple and elegant. “Simplicity is prerequisite for

reliability.” E. W. Dijkstra
This is a point of strength since

they can be implemented and used in practical applications as we will see
in Chapter 8.

With respect to the static case, we are adding some additional space,
that, with the help of some theorems, we have proven to be a o-term of
the number of stored integers. We have also remarked that this does not
always imply practical usage of succinct data structures, because of the po-
tentially large constants involved. On the other hand, we will see by some
experiments (Chapter 7 and 8) that our structures really use a negligible
extra space for relatively large sequences.

Summing up, we can state the following concluding theorem, solving
the problem we pose at the beginning of the chapter.

Theorem 5.4.1. There exists an encoding strategy for an append-only
sequence of monotonically increasing integers which takes

EF (s [0, n))+ o(n) bits, 8n =!(lg2 u),

while supporting append and get operations in constant time worst case.
EF (s [0, n)) is equal to ndlg(u/n)e+ 2n + o(n) bits and it represents
the space needed by the equivalent, static, Elias-Fano succinct data struc-
ture storing the sequence, where n is its current length and u the current
maximum stored integer.

Proof. Immediate from previous analysis. Ñ
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DYNAMIC

The next design step, which naturally arises from previous chapter’s ma-
terial, is taking into account a fully dynamic strategy, able of supporting
additions and deletions in random positions of the sequence. The new
problem that we would like to tackle is formalized as follows.

Problem. Starting from a non-empty append-only monotone sequence
s , encoded with the Elias-Fano strategy, dynamize it so that we can in-
sert and delete its integers, keeping the sequence as much compressed as
possible.

Being a more general problem it offers a wider number of practical im-
plications, but it is also a much harder problem to solve. The third struc-
ture we propose is, therefore, the most powerful and flexible of those pre-
sented, since we are not obliged to append monotonically increasing inte-
gers and we can change our mind deleting what we have previously add.
This power, of course, does not come for free: while the usability is greatly
improved, we use additional space and we are not performing constant-
time operations any more (except for few exceptions).

This is again Trade-offa very good example of a typical software trade-off: flexi-
bility if often sacrified for efficiency and viceversa.

Since we are dynamizing a compressed sequence, a first yet fundamen-
tal assumption Fundamental assumptionis made: additions and deletions are not as frequent as append
and access operations. This is reasonable since we want to keep the largest
amount of data compressed and use the sequence in an append-only fash-
ion mostly.

In the rest of the chapter we present the implemented strategy along
with our design choices.

6.1 ALGORITHMIC DESCRIPTION

Suppose we are given an append-only monotone sequence s as described
in previous chapter. Until the moment we decide to dynamize it, we use
it in an append-only way as usual. We now want to delete some integers
and make the sequence grow not necessarily from the end: we make it a dy-
namic one. This choice implies “attaching” a dynamic index to the already-
formed s that will contain the integers we would like to add/remove. This
index is, in turn, broken into a collection of smaller indices, one for each
compressed bucket of the sequence. The core implemented strategy is to
accumulate to-be-added/removed integers in the proper bucket index un-
til it becomes full. At that point, we just empty the index integrating its
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content with the compressed block. This latter process means reconstruct-
ing the block.

In just few lines we have explained a high-level overview of the strategy.
This is simple and has potential to work well in practice. Let us now dig
into the details of its design.

The backbone underlying structure is an Elias-Fano append-only se-
quence whose bucket size is fixed to B . Being n the length of the sequence,
we have n/B compressed buckets. Till now, nothing new.

The attached dynamic index is made up of n/B bucket-indices, say
I0, . . . , In/B�1. Each of them is made up of two ordered arrays: one for the
integers to add, the other for the ones to be removed. Let us use in the
following the names of additions and deletions to indicate such arrays,
as in our code implementation. They are kept ordered since this avoids to
sort them every time we need to access an integer, as we will see next. The
arrays are resizing ones but their size has been bounded by B/(4 lg n) =p

2n/ lg n = o(n) using best B .

As clear, now each bucket size can change and differ from B . There-
fore, when resolving an access query, we need to first identify the bucket
containing the desired integer. For this preliminary operation we need to
keep track of buckets’ sizes. These sizes are stored in a resizing array too,
in a prefix-sum fashion: if sizes is the name of the array, its i -th element is

sizes[i]=
iX

j=0
sizes[ j], i = 0, . . . , n/B �1.

This array takes n/B words. Apart from buckets’ sizes we do not need to
hold any other extra information.

Given the described structure, the space Dynamic index spacerequired by the whole dy-
namic index is at most (when all bucket-indices are full)

⇣ n
B

B
2 lg n

+
n
B

⌘
w =

⇣ n
2 lg n

+
p

n/8
⌘

lg u bits = o(n) bits,

so that the whole dynamic sequence will, theoretically, take the same
space as an-append-only one plus o(n) bits. We say theoretically for the
same reasons explained in Subsection 5.1.3.2. The initial dimension of
each bucket-index is just 2, so that the whole dynamic index takes at least
(when all bucket-indices are empty) 3n/B words⇡pn words= o(n) bits.

When a bucket needs reconstruction Updating the structurewe update (obviously) lower bits,
upper bits (selection structure) and bucket size. What about the info ar-
ray? When we add an integer to a bucket, u cannot change because inte-
gers greater than u we will be added to a proper subsequent bucket. So
nothing to worry about an addition. But u can still be deleted from its
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bucket. If this is the case, we delete it but we do not update it in info.
This choice is safe, in the sense that integers in the next bucket will be en-
coded with respect to the old value of u which is larger than the new one.
This also reveals in a better compression gain. In conclusion, the upper
bound values are never updated. The number of lower bits needs, instead,
to be updated because the bucket size can change.

When a bucket Merging and splittingwill contain more than 2B integers it will be split in two
buckets: the first counting B integers; the second counting the remaining
ones. When a bucket becomes too small, i.e. less than B/2 integers, it is
merged with the next bucket if and only if the sum of the dimensions of
these two blocks is less than 2B ; otherwise it is just re-compressed. In this
way, we are sure that the newly merged bucket will not cause any further
splitting because of its size. These are general and largely used techniques
in compressed dynamic data structures and have been inspired to the ones
described in [15].

The following picture shows a graphical representation of the data
structure.

Figure 16: Dynamic Elias-Fano
compressed structure. The two
main components are shown: the
dynamic index and the Elias-Fano
compressed sequence. For ease of
representation, info, selectors
and lowerBits arrays have been
omitted. Bi represents the i -th
bucket’s size, i = 0, . . . , n/B �1.
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The reconstruction strategy just presented is quite general and describes
a typical reconstruction case. Almost all programming effort is devoted
to handling corner cases, such as the one of the last bucket under construc-
tion, i.e., the buffer. As simple examples: the buffer is never split since it
accumulates uncompressed integers until it becomes full and, therefore,
compressed; if it needs to be merged with the previous bucket, it is just
emptied and its index cleared but not truly deleted as it occurs for any

66



6. DY N A M I C

other bucket. Also the reconstruction of the buffer differs from all the
others: if the size B is not reached, we merge the index content with the
buffer without any compression.

These examples are meant to provide just few clues about the complex-
ity of programming this data structure. The handling of such corner cases
implies more lines of code; more logic and in general, more complexity.

6.2 THEORETICAL IMPROVEMENT

In this section we present an advanced discussion concerning Binary Search TreesBinary Search
Trees [28, 6] (BSTs) and their application to our data structure.

Another possibility for implementing each bucket index could be using
two binary search trees, since they support basic dictionary operations
(search/insert/delete) in a time proportional to their own height.

Suppose, in the following, we are given a BST of height h storing n
items. Its power lies in this key observation: if complete1 then h = blg nc

1 Perfectly balanced, except for
bottom level.

and each operation takes O(lg n). Therefore, working with BSTs allow us
to insert/search each integer in logarithmic time and we do not need to
touch any other items as we do for resizing arrays. This would be a clear
advantage. However, there are some drawbacks we point out below and
are nicely illustrated by the following picture.

Figure 17: Not balanced BST
stored in a pointer-based manner
and in an array.

? ? ?

???????
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• As said, in order to have a worst-case performance guarantee of
O(h), we need to maintain it balanced so that h = blg nc. If not,
each operation could cost Q(n) (linear chain). What we would need
is a self-balancing implementation, such as red-black or AVL trees.

• If they are implemented in a pointer-based manner, then we need
at least 2dlg ne bits more for each node, ending up with 2ndlg ne
additional bits.

• A pointer-based implementation could be dangerous for the cache:
nodes could be spread through out all memory hierarchy.
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• Even if they are stored in resizing arrays2, thus eliminating the need
2 Node at position i keeps its

children at positions 2i + 1 (the
left one) and 2i + 2 (the right one)
respectively. Assume the root be
stored at position 0. The parent of
node i is kept at position
b(i �1)/2c.

of pointers, then they can lead to a great waste of space. Inserting
items in a breadth-first search order wastes no space only if the tree is
complete. The problem in our case is that we do not know the tree
(no search is possible) and we do not know how many integers we
will insert. Figure 17 shows this behaviour.

The array representation of a binary tree is a possible method used
for storing binary heaps [28, 6] Binary Heaps. If we use min-heaps, we do not incur
in any space waste and we support insertions in logarithmic time as
well. The problem arises when we want to retrieve all integers in
ascending order: this operation is performed in O(n lg n) time, the
same as for a sorting operation (which we want to avoid).

These are the considerations that have driven our design. Furthermore,
a simple ordered array permits the fastest sequential scan as possible, which
is fundamental during a random access operation (see next). A BST allows
to retrieve all keys in order too using an in-order visit (linear time) but this
is not performed as fast as for arrays (we need to allocate an Iterator ob-
ject during an access operation, which is costly and uses wrapper methods
to access collection’s elements).

In general, whether a data structure is better than another is often deter-
mined by the frequency of operations Frequency of operationsto be performed [28, 6]. Our case is
an excellent example: if insertions/deletions are very frequent, say more
frequent than accesses, than we would use tree data structures as previ-
ously discussed for their great dynamism3; if accesses are predominant (as

3 However, remember we are using
a succinct data structure, so: if we
need much more dynamism, are
succinct data structures the best
choice in this case?

it should be in a compressed data structure) than it could be almost useless
using this kind of data structures.

We need to keep in mind our fundamental assumption. Since insertion-
s/deletions should not be as frequent as access operations, we require these
latter being implemented as fast as possible. Therefore, we use an eager ap-
proach to the problem: we do as much work as possible up front in order
to go as fast as possible later on [28]. In conclusion, notice that the dimen-
sion of such arrays will be very small4 compared to bucket size, so that the

4 Just for illustrative purposes, if n
is 2 million integers, than best B
will be 4000 and each array will be
at most of length 50.

overhead introduced by a BST does not worth the benefit for the above
considerations.

For the storage of buckets’ sizes we could resort on a self-balancing
BST too. In particular we could store in each internal node the number
of integers present in its left subtree. In this way, binary searching over
the array or the tree uses the same algorithmic idea. Picture 18 offers an
example.

The clear advantage over a simple array is that, again, we update a
bucket’s size in O(lg(n/B)) keeping the tree balanced, against O(n/B)
in the worst case. The disadvantages of this choice is that also retrieving
a bucket’s size is done in logarithmic time and this is a problem for a
random access operation (see next). Same previous considerations about
BSTs apply to this case. Moreover, we would need to maintain not just the
n/B buckets’ sizes (that would become the leaves of the tree), but also the
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internal nodes which would be at least n/B � 1 (if n/B is a power of 2,
otherwise even more than that). Overall, we would use the double of the
space.

Figure 18: An example of how we
can use a BST to maintain buckets’
sizes. Each internal node stores the
number of items in its left subtree.
In this case we have 5 buckets of
sizes, respectively, 80, 57, 92, 90,
65.

80 57

80

92 90
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137

65

319

0 1 2 3 4

In conclusion, the advantage of using BSTs instead of ordered arrays
(our choice) will just be theoretical and not practical. This advantage is
summarized in what follows.

If we opt for BSTs and use best B we can support insertions/deletions
in O(lg

p
n) amortized instead of in O(

p
n) amortized as with ordered

arrays. Now we will have a dynamic index space of

⇣ n
2 lg n

+

p
2n

lg n
lg

p
n/2

lg n
+
p

n/2 lg
p

n/8+
p

n/8
⌘

lg u bits,

which is anyway o(n) bits as before, even though significantly greater.
This is the only theoretical advantage of BSTs and has no impact on the

other operations we are going to see. Therefore, from now on, we assume
the design and structure of Section 6.1.
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6.3 OPERATIONS

This section offers a description of the core operations of the structure
with their time complexities. The supported operations are the same for
the other implemented structures except for the remove operation.

6.3.1 ADD/REMOVE

In the general case, an addition (removal) of an integer from a block con-
sists in the following steps:

1. binary search over info array in order to identify the bucket the
integer has to be added (removed);

2. insertion in the proper ordered-array;

3. increment (decrement) the length of the sequence and bucket’s size.

The complexity of the operation is clearly O(lg(n/B)) + O(B/(4 lg n))
+O(n/B). If we are using best B , we obtain O(

p
n) as already mentioned

in previous section.
Appending an integer in last position in the buffer or deleting the last

item from it represent two trivially-handled, constant-timed, corner cases.
As said, adding/removing some integers may cause a reconstruction of

a bucket, a merging or a splitting. In the general case, all these operations
count two main subroutines: iterating over the bucket to reconstruct (to
properly integrate the index content with the bucket) and re-compressing
it. Therefore, the complexity of an add/remove operation needs to be
averaged by the complexity of such occasional5 routines.

5 They should not be as frequent as
the general case behaviour for the
assumption made at the beginning
of the chapter.

The aforementioned times are therefore amortized, not worst-case run-
ning times.

Furthermore, before performing a removal we have to be sure we are
deleting something which truly belongs to our sequence. We have first to
check if the sequence contains the to-be-removed integer. For that prelim-
inary task, just a nextGEQ operation suffices. The problem is that this
preliminary nextGEQ practically constitutes the whole running-time of a
remove operation which costs one order of magnitude more than an addi-
tion/removal. Therefore we have introduced the following optimization:
we do not check for the inclusion of the to-be-removed integer but it is
always inserted in its proper bucket-index. It will be the reconstruction
process in charge of discarding an integer to remove if it is not present in
the sequence. This greatly reduces the time for a removal.

However, Malicious usagethere is an important trade-off to mention. Since we accu-
mulate integers in the index even if they will not be removed because
not present at all, there is the potential risk of a malicious user trying
to remove such integers and, therefore, inducing a lot of reconstruction
processes. Moreover, this will cause problems in a random access opera-
tion since the structure will be misled about the number of deletions to

70



6. DY N A M I C

perform and may return the wrong item. In conclusion, it will be respon-
sibility of users to be sure they are deleting something truly belonging to
the sequence.

In the following we show some skeleton pseudo code for add and re-
move operations.

Algorithm 10: buckets is a
variable keeping track of the
number of created buckets. All
other routines are the ones already
met in previous chapters.

1: procedure add(x)
2: if x � last then
3: buffer.add(x);
4: bucket = buckets;
5: else
6: bucket = binarySearchOverU(x, 0, u.size());
7: insert(Ibucket.additions, x);

8: Bbucket++;
9: if Ibucket.additions.isFull() or buffer.isFull() then

10: if bucket 6= buckets then
11: newB = Bbucket;
12: if newB � 2B then
13: split in 2 buckets;
14: else
15: rebuild with newB;

16: else
17: newB = buffer.size() + indexSize(bucket);
18: if newB < B then
19: merge Ibucket.additions’ content with buffer;
20: else
21: compress(buffer);
22: buckets++;
23: buffer.clear();
24: create new bucket index;

25: Ibucket.clear();

26: length++;

27: procedure indexSize(bucket)
28: return Ibucket.additions.size() � Ibucket.deletions.size();
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Algorithm 11: remove algorithm.1: procedure remove(x)
2: if x = last and !buffer.isEmpty() then
3: buffer.remove(x);
4: else
5: bucket = binarySearchOverU(x, 0, u.size());
6: insert(Ibucket.deletions, x);

7: Bbucket� �;
8: if Ibucket.deletions.isFull() then
9: if bucket 6= buckets then

10: newB = Bbucket;
11: if newB  B/2 then
12: nextBlockDim = Bbucket+1;
13: finalBlockDim = newB + nextBlockDim;
14: if finalBlockDim < 2B and nextBlockDim > 0 then
15: merge bucket bucket with bucket bucket+1;
16: buckets� �;
17: else
18: rebuild with newB;

19: else
20: rebuild with newB;

21: else
22: newB = buffer.size() + indexSize(bucket);
23: merge Ibucket.additions’ content with buffer;

24: length� �;

6.3.2 ACCESS

This is, by far, the most delicate operation. Most of the data structure’s
complexity is due to this operation. Let us briefly explain why. Suppose
we want to retrieve the integer of index i from our sequence. Adding and
deleting some integers will alter the position of potentially many integers,
so that the i -th integer that we access may not be the i -th one any more.
More precisely, in the general case, having some additions to perform will
shift the i -th integer to the left; viceversa if we have some deletions the
i -th integer will be shifted to the right. This is to say that we have to
recompute the correct position of the accessed integer.

This time, instead of showing some boring pseudo code, we try a dif-
ferent approach with the help of picture 19. First of all, we need to un-
derstand which is the bucket storing such integer. This preliminary op-
eration is performed by binary searching the array storing buckets’ sizes.
Now that we have our bucket index, say `, we start accessing the inte-
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ger corresponding to the i -th integer of the compressed sequence. Let us
call it v and let i 0 be its position relatively to bucket `. Now we deter-
mine jv = |{n : additions[n] < v}| and kv = |{n : deletions[n]  v}| as
the number of integers in additions and deletions respectively that are
less or equal than v. We finally access `-bucket’s element p at position
i 00 = i 0 � jv + kv . Picture 19 illustrates what may happen next. Let us
analyse case by case.

Four cases can happen. There are obviously another two, dummy, cor-
ner cases. The first is when jv = kv = 0 and can just return v in constant
time O(1); the other is when i 0 < 0_ i 0 � B` and we resort on a merge-
like iteration (see below).

Figure 19: The different cases can
happen during a random access
operation inside a bucket. Light
gray blended part represents the
portion of the compressed bucket
which is subject to updates, i.e.,
some additions and/or deletions
occur in it.

i'i''

i'i''

i' i''

i' i''

1.

2.

3.

4.

1. The first case we take into account is when jv � kv and therefore
i 00  i 0. In this case if p > additions[ jv ] ^ p > deletions[kv ] is
true, i.e., i 00 falls outside the portion of the sequence which is subject
to updates, than we are sure p is the correct integer to return. This
case is handled in jv + kv +O(1) and has a worst case guarantee of
O(B/(2 lg n)).

2. The second case happens again when jv � kv but unfortunately
p  additions[ jv ] _ p  deletions[kv ] is true, meaning that p
falls inside the gray portion. If this happens, than we use a merge-
like iteration to return the correct integer. This operation is very
similar to the subroutine merge of Merge Sort which takes x + y
comparisons if x and y are the length of the two sorted sequences
to merge. Our algorithm has, however, three important differences.

a) We have to merge integers from three ordered sources, i.e., the
compressed integers from the bucket; the integers in additions

and in deletions.
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b) We do not need to merge until the end of the sequences but
only up to the i 0-th integer (the one that we will eventually
return).

c) We are not truly merging the three sequences: we do not want
to return the whole ordered, resulting, sequence but just un-
derstand which is its i 0-th element (therefore no extra space is
allocated as it occurs in Merge Sort).

This is the most expensive operation and in the worst case it runs
in O(B +B/(2 lg n))).

3. The third case happens when kv > jv and i 0 will be shifted forward:
i 00 > i 0. This case is a little bit more subtle because, since we are
moving to the right, we do not know if the skipped part (from i 0
to i 00) is subject to modifications. Therefore we have to update both
jv and kv in j p and kp . At this point, however, we must ensure
anyway whether the candidate integer, say p 0, at position i 0 � j p +
kp , is not placed in additions or deletions by checking the usual
condition of case 1. If it evaluates to true, than we can return the
integer. Obviously the complexity is the same as the one of case 1.

4. The fourth case is the counter-part of previous one, i.e., when the
condition in case 2. yields true and, therefore, we have to resort on
a merge-like iteration.

Summing up, apart from the preliminary binary search in O(lg(n/B)),
in half of the cases we retrieve an integer spending additional O(1) while
in the other half of the cases the retrieval costs more. In conclusion, the
accessing time really depends on which integers we decide to add/delete
but has a worst case performance guarantee of

O(lg(n/B)+B +B/(2 lg n)) = O(
p

8n). (39)

6.3.3 NEXT GREATER OR EQUAL

We do not have to change a single line of code for the nextGEQ operation
once we have properly implemented the merge-like iterator. We proceed
as explained in Subsection 5.1.4.5. Its complexity is the one of formula 39.

6.4 API

The implemented operations are exactly the same as for append-only struc-
tures, but we also support remove and removeAll operations.

We point the reader back to Section 5.3 for the other operations con-
tained in the API. Moreover, Figure 15 illustrates the implemented, mini-
mal, Java class hierarchy.

74



6. DY N A M I C

Additional MethodsDelete the specified integer from the sequence if it is present.

boolean remove(long integer)

Remove all integers in the specified collection.

boolean removeAll(Collection<? extends Long>)

Dynamize the sequence.

void dyamize()

Tells us if the dynamic behaviour is ON or OFF.

boolean isDynamic()

Constructorspublic class EliasFanoDynamicMonotoneLongSequence extends

AbstractMonotoneLongSequence implements Cloneable,

Serializable

Create a new, empty, append-only Elias-Fano data structure with a specified
bucket size B.

EliasFanoDynamicMonotoneLongSequence(int B)

Create a new append-only Elias-Fano data structure with a specified bucket
size and a specified initial capacity.

EliasFanoDynamicMonotoneLongSequence(int B, int capacity)

6.5 BRIEF SUMMARY

We have introduced a new dynamic succinct data structure that makes use
of the Elias-Fano integer encoding to store a monotone sequence of non-
decreasing integers that grows in dimension.

As already done for the append-only data structures, we can state the
following concluding theorem, solving the problem we pose at the begin-
ning of the chapter.

Theorem 6.5.1. There exists an encoding strategy for a dynamic se-
quence of monotonically increasing integers which takes

EF (s [0, n))+ o(n) bits, 8n =!(lg2 u),

while supporting insert/delete in O(lg
p

n) amortized time and get in
O(
p

8n) worst case. EF (s [0, n)) is equal to ndlg(u/n)e+ 2n + o(n)
bits and it represents the space needed by the equivalent, static, Elias-
Fano succinct data structure storing the sequence, where n is its current
length and u the current maximum stored integer.

Proof. Immediate from previous analysis. Ñ
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7
EXPERIMENTAL RESULTS

In this chapter we validate our Java implementation of the previously in-
troduced succinct data structures, showing the results of the performed
experiments. In all experiments we will confirm and validate our theoret-
ical results.

All experiments Test machinewere run on a 2.4 GHz Intel Core 2 Duo with 3 MB
of L2 cache, 4 GB 1067 MHz DDR3 internal memory (RAM) and 7200
RPM SATA hard drive, running Mac OS X 10.10-64 bits. As said in Sec-
tion 2.8 the java compiler has been instructed with optimization -O.

We have run lots of experiments varying dimension of sequences and
confirming the theoretical models of previous chapters. While being im-
practical reporting all those numbers, we will concentrate on a represen-
tative sample sequence. Let s be its name in the following.

This sequence1 consists of n = 2348411 increasing integers, ranging
1 It has been generated using a

simple Java program, called
MonotoneSequenceGenerator.java,
whose example output was:

monotoneSeq1500-2348411.txt

1106

2095

2622

3802

5029

6160

6830

6877

7189

... (2348402 lines missing)

from 1106 to u = 1759782123 (dlg ue = 31). The dimension of such se-
quence is ⇡ 18.79 MB.

The maximum gap between an integer and the following one has been
fixed to 1500. Choosing another value for the maximum gap, e.g. 150 or
15000, will proportionally scale all curves. We can, therefore, focus on and
show results for that fixed choice of maximum gap.

During experiments, both sequence and query pattern have been read
with a linear scan of a simple array, therefore minimizing interference
(creating query positions during tests as well as the sequence itself pro-
duces, instead, a great perturbation on results, mainly because of the gen-
eration of pseudo-randomly generated numbers). Before each run, cache
was purged to enforce fairness of temporal results among different tests.

Before every timing, we call System.gc() to minimize inconsistent re-
sults due to garbage collection (even if such system call cannot force a
garbage collection algorithm execution).

All tests have been repeated 10 times and averaged after removing the
lowest and highest value.

We measured time with System.currentTimeMillis() and, for finest
grain computations, with System.nanoTime().

7.1 MEMORY FOOTPRINT

We start with the space occupancy of the implemented data structures,
offering a comparison between static, append-only and adaptive append-
only Elias-Fano. We will than consider the dynamic version.
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Figure 20 shows the number of bits required by static and append-only
Elias-Fano for the storage of s .

The number of bits required by the static version is 27581838 bits ⇡
3.447 MB. The empirical minimum of the blue curve is 27975853 bits
⇡ 3.496 MB. This minimum has been found for a choice of B⇤ = 4600.
Therefore we derive an extra storage of approximately 49.25 KB.

Now in order to validate our theoretical upper bound, we apply it to
such a concrete example. For n = 2348411 the model suggests B⇤ = 4335,
a very close value to what experimentally found. In correspondence of the
empirical B⇤ = 4600 the model is predicting a maximum extra of 73.6 KB.
What we experimentally found was 49.25 KB, thus the model correctly
guarantees an upper bound on extra storage.

Moreover, using our tool in 20 we derive an extra percentage of approx-
imately 2.15%. Therefore our theoretical model should have predicted a
bit less2. In fact, 73.6 KB is 2.13% of 3.447 MB, exactly a bit less than

2 Remember that in equation 20 we
are lower bounding S⇤(n, u)
neglecting the o(n) term.

2.15%. Finally, our experimental extra storage should be less than these
percentages: 49.25 KB corresponds, in fact, to an extra percentage of ⇡
1.428%. This is a negligible extra space, as claimed.

Figure 20: Bucket size against
number of bits.
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Notice that there is an almost flat area Flat regiononce we passed a certain thresh-
old (say the first 1000 values), so that users should not worry for subop-
timal choices of B : they will suffer from a negligible space degradation. In
what follows, we will use the best experimentally found value but very
similar results would have been obtained for B = 3000 or B = 4000. This
flat region plays a key role in the dynamic Elias-Fano data structure as we
are going to see in Subsection 7.2.2.

Next, we show a comparison between the theoretical extra memory
predicted by the model, and the one measured in practice.

As we can see form Figure 21, when B tends to the optimal experimen-
tal value, the upper bound is very close to, or even matches, real extra mem-
ory space. Being rigorous we have plotted also another curve (the green
one). This is due to the lack of implementation-specific details in formula
15, as it should be because it is a theoretical upper bound. In particular it
neglects the effect to resizing-arrays implementation which causes arrays’
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dimensions grow as powers of 2. For this reason, we need to introduce a
cpo2(x) cpo2(·) functionfunction which returns the closest power of 2 of the argument x.
This will slightly modify formula 15 in

E (n, u,B) = B lg u + 8cpo2(n/B) lg u bits,

which is plotted in green in the above picture. This plot is very interesting,
indeed. Firstly because, as already noticed, it clearly shows how close our
model is to reality; secondly because it demonstrates that resizing-arrays’
capacities have no impact on extra space occupancy of an append-only
Elias-Fano data structure and, therefore, we can rely on formula 15.

Figure 21: Extra space function
compared to the experimental
one.
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Now we take into account our second data structure, i.e., adaptive
append-only Elias-Fano. We report a comparison between the three dif-
ferent strategies of storing s , when the number of stored integers grows
more and more.

Figure 22 shows the comparison for the first 30000 appended integers.

Figure 22: Appended integers
against number of bits for n
ranging from 100 up to 30000
integers.
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As immediate from the picture, in this case our adaptive strategy ap-
proximates much better than append-only the space required by a static
Elias-Fano data structure. This is so since for all n  B integers will be
stored uncompressed, thus revealing in a big wasted space compared to a
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static Elias-Fano representation. The bucket size B for append-only has
been fixed to the optimal experimental value, i.e., B = 4600. As explained
in Chapter 5, the initial choice of bucket size for the adaptive data struc-
ture has been fixed to 32.

As an example, consider n = 10000 added integers. In this case, we
have already seen that append-only will theoretically take 73.6 KB of extra
space, while experimentally we get 35.68 KB. For adaptive, using formula
27, we derive an upper bound of 5.346 KB of extra space. Actually we have
4.453 KB of extra, thus validating the efficacy of our theoretical upper
bound. However, it worth noting that even 4.453 KB is not negligible in
this case because the overall space of the static Elias-Fano representation
takes approximately 14.7 KB.

Figure 23 shows the asymptotic behaviour of the space required by an
adaptive structure. In this case, append-only and adaptive almost3 coin-

3 adaptive is again slightly better
than append-only.

cide. For � ⇡ 525000 added integers, the static representation takes 0.77
MB of space. The adaptive representation takes ⇡ 0.8 MB, and we derive
an extra of 36.8 KB. This corresponds to approximately 4.78% extra mem-
ory, thus a negligible factor as claimed. Notice that this value is much less
than the one predicted by the model (25%), since that value was derived
assuming the worst ever possible u, i.e., u = n. Clearly, the more integers
we add the smaller the percentage of extra memory will become, since
limn!n0

E1(n, u) = o(S⇤(n, u)).

Figure 23: Appended integers
against number of bits for n
ranging from 500000 up to
2000000 integers.
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The last plot shows the behaviour of adaptive when we surpass the
threshold n0. Remember that from this value on, we create a new chunk,
i.e., a new append-only data structure. Therefore, since its space will be
added to the previous chunk space, we expect an increase in space occu-
pancy for n > n0.

This increase, in fact, clearly shows up in Figure 24 (because of the large
scale). Now, by using our �(·) function defined in 36 we can evaluate the
maximum theoretical extra space. In this case j = 1 since we have only
two created chunks. We then derive an extra of 128 KB. Experimentally,
for storing the whole s , adaptive takes 28232891 bits ⇡ 3.529 MB. We
derive an extra space of 81.38 KB, thus correctly upper bounded by the
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model. The difference between append-only and adaptive in this case is
only 32.13 KB, a negligible fraction compared to the overall space of the
structure.

Figure 24: Appended integers
against number of bits for n
ranging from 2000000 up to
2348411 integers.
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In conclusion adaptive is always better than append-only for n  n0
and behaves almost the same (with negligible difference) for n > n0.

We finally consider the dynamic Elias-Fano data structure. Storing s
without performing any further additions (empty dynamic index) will
cost 3.515 MB corresponding to a space overhead of just 0.543% and there-
fore negligible. On the other hand when the dynamic index is completely
full, we will obtain 3.965 MB, for 13.415% overhead. These are the two
extreme situations.

A typical use case will exhibit the following numbers. The experiment
we propose is to perform some additions to a dynamic sequence and com-
pare its space occupancy to the one of an append-only sequence storing
the same integers. We do so because we want to validate our analysis
on a loaded sequence, as it could be in a typical use case (working with
no further additions will yield the very same space/time performance of
append-only). Therefore, we add 10% integers more to s . An append-only
structure will now take 3.804 MB. Performing these additions on s will
cost 3.931 MB revealing approximately 3.33% space overhead. This is ac-
tually quite small while having a dynamically-compressed sequence.

The following table, finally, offers a schematic re-cap of the discussed
quantities.

Table 2: Space occupancies in MBs
and bpi (bit per integer) for the
storage of s .

DATA STRUCTURE MB bpi
static 3.447 11.75

append-only 3.496 11.91 + 1.428%
adaptive 3.529 12.02 + 2.37%

Now adding 10% more integers, will yield the following numbers.
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Table 3: Space occupancy after
10% more additions.

DATA STRUCTURE MB bpi
append-only 3.804 11.8
dynamic 3.931 12.17 + 3.33%

7.2 TIME MEASURES

In this section we report the experimental time measurements done to
evaluate the performance of the implemented append() and get() opera-
tions. As usual, we have used for the append-only structure the best exper-
imental B = 4600.

7.2.1 APPEND

Now we show a comparison between Mean Append Time per integer
(MATpi)

Mean Append Time per integer
per element of the first two implemented structures and a simple Java
ArrayList, for the creation of the whole sequence s (2348411 consecutive
append() operations). The results are summarized by the following table.

Table 4: MATpi. Shown times are
in nano seconds (1 ns = 10�9s).DATA STRUCTURE MATpi

append-only 161

adaptive 206

ArrayList 362

As expected, append-only is the fastest, while a Java ArrayList should
take, according to our model of Section 5.1.4.2, 161 ⇥ 1.25 = 201.25 ns,
which is, in fact, less then the one measured.

Concerning the adaptive structure, we know that the first� operations
will cost something like 1.33 times more. This means that is like we are
performing 2348411 + 1.33 ⇥ 524288 = 3045715 operations. In fact if
we do: 3045715 ⇥ 161 ns / 2348411 we approximately get 209 ns, a very
close value to the one experimentally found.

7.2.2 ACCESS

We report here the experimental results Mean Query Time per integer
(MQTpi)

concerning the Mean Query Time
per integer for the sequence s . The experiments have been made for query
patterns of 1500000 queries4, generated in both random and sequential

4 Patterns has been generated using
a simple Java program, called
QueryPatternGenerator.java,
whose example output was (for a
random pattern):

queryPatternRnd.txt

1500000 � number of queries
1767221

724002

... (1499998 lines missing)

way.
The analysis is based on a comparison of mean query times for four

different ways of storing s , namely:

1. static Elias-Fano;

2. append-only Elias-Fano;
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3. adaptive append-only Elias-Fano;

4. simple Java ArrayList.

The found results are summarized by the following two tables.

Table 5: Mean Query Times per
integer for sequential (sMQTpi)
and random (rMQTpi) accesses.
Shown times are in nano seconds.

DATA STRUCTURE sMQTpi rMQTpi

static 70 100

append-only 87 133

adaptive 97 147

ArrayList 11 17

As usual, a sequential pattern of accesses is performed faster than a random
one, thank to prefetching mechanisms Prefetchingof modern processors. Therefore,
the analysis will focus on random accesses.

First of all, concerning the adaptive structure, we see that the difference
in time from append-only is minimum and, therefore, negligible. They
perform practically the same.

Time loss of append-only Elias-Fano with respect to the static version is
something like 33 ns per query on average, which means append-only

needs just 30% more than the static version. The difference is actually
very low. We claim this is due to the fact that the compressed sequence
can almost completely fit in the cache hierarchy (L2 cache is 3MB). Only
a small portion is accessed in main memory and this results, on average,
in a very small difference. For this reason we also report the behaviour
of a bigger monotone sequence containing n = 10445688 integers whose
maximum gap is again 1500.

Since now we want to focus on the analysis of cache misses, we only
say this sequence takes 83.56 MB when uncompressed and 15.34 MB once
compressed with a static Elias-Fano scheme. The redundancy factors added
by append-only and adaptive structures are, respectively, 0.86 % and 1.6%.
They are negligible as we expect.

The following table shows the time performance of get on such se-
quence.

Table 6: Mean Query Times per
integer for sequential (sMQTpi)
and random (rMQTpi) accesses on
a sequence counting 10445688
integers. Shown times are in nano
seconds.

DATA STRUCTURE sMQTpi rMQTpi

static 70 150

append-only 87 240

adaptive 97 240

ArrayList 11 17

Obviously, the sequence performs as the smaller one when accessed in
a sequential manner. Also a Java ArrayList performs the same.
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We see append-only and adaptive perform exactly the same while there
is, roughly speaking, one cache miss of difference between the static ver-
sion and append-only. We now use our model from Section 5.1.4.4 to
understand this behaviour. Recall that we modelled the time complexity
of a get operation as

Tgets
= 2cf+T ⇤gets

+TselectB
�Tselects

. (40)

Therefore, we need to know TselectB
and Tselects

. Measurements show that5

5 Notice there is almost one cache
miss of difference as we claimed in
Section 5.1.4.4.

TselectB
⇡ 55 ns and Tselects

⇡ 145 ns (those numbers are consistent with
the ones reported by Vigna in [30]). Finally, plugging these values in our
model, we can expect a Tgets

of 200+ 150+ 55� 145 ns = 260 ns. There-
fore, we can immediately see how precise is the developed model.

We consider, now, the third implemented structure. Clearly, the ac-
cess time for the dynamic sequence does not compete with the one of the
append-only structures, since we have to pay at least the binary search
over buckets’ sizes. As previously said, we add 10% more integers to s and
we evaluate the performance on the same query pattern.

We now resort on the powerful shape of Figure 20. Since the access
time for a dynamic Elias-Fano structure depends on bucket size B , the
flat region of the curve permits us to find a reasonable trade-off between
time and space performance of the data structure. Intuitively, raising B
will yield a lower space, while slowing down access time. This is exactly
the behaviour shown in the following two plots. We vary B between 1000
and 5000 and evaluate both space and time performance.

Figure 25: Bucket size against
number of bits for the dynamic
Elias-Fano data structure storing s .
This is basically an enlargement of
Figure 20.

bi
ts

3.013E+07

3.043E+07

3.072E+07

3.101E+07

3.131E+07

3.160E+07

3.189E+07

3.219E+07

3.248E+07

3.277E+07

B
1000 1500 2000 2500 3000 3500 4000 4500 5000

As claimed, varying B towards the optimal value of, approximately,
5000 will decrease the number of bits, but not so much since we are operat-
ing in the flat region. In particular, the difference between the two extreme
points is of about 0.03 MB corresponding to 1% more bits if we choose
lowest B = 1000. This is a very small additional redundancy.
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Now, by looking at the next plot we definitively see this small redun-
dancy is really worth the trade-off.

Figure 26: Bucket size against
MQT in µs.
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As a rule of thumb, we wish to use the smallest value of B as possible
for a dynamic Elias-Fano structure. Picture 20 is clearly suggesting us that
choosing B as being too small (less than 1000 as an example) will unac-
ceptably enlarge the space required by our structure. Therefore we should
operate in the flat region. This region will provide us the proper value of
B : in this experimental example we are able to achieve an almost ⇥9 im-
provement with only 1% of additional space.

In conclusion the two plots 20 and 26 should be used together to let
us understand which is the value of B that achieves the right trade-off
between time and space complexity of the structure.

7.2.3 NEXT GREATER OR EQUAL

As claimed in Subsection 5.2.4.3, the difference in mean nextGEQ times
of append-only and adaptive Elias-Fano is minimal or non-existent. The
little overhead introduced by the dynamic structure is, instead, due to
the comparisons performed during the merge-like iterating process. The
shown times are, however, competitive.

The complexity of a nextGEQ operation is a function of bucket size
too, as already noticed for the dynamic random access time. For this rea-
son we show how its mean time varies choosing different values on B in
Figure 27.

7.2.4 ITERATING OVER THE SEQUENCE

We report here the result of the optimization discussed in 5.3 concerning
the way we iterate over the sequence. The following table offers a compar-
ison between iterating using sequential get operations and the optimized
iterating method.
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Table 7: MQTpi when iterating
over the whole sequence. Shown
times are in nanoseconds.

DATA STRUCTURE loop of gets iterator

append-only 87 50

adaptive 97 50

Figure 27: Bucket size against
mean nextGEQ times in micro
seconds.
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As we can see, we have almost halved the retrieval time and the there is
no difference between iterating over the two data structures.

The dynamic sequence exhibits the same iterating time, since integers
are accessed sequentially and the costs of tests due to the merge-like iterat-
ing process introduce a negligible overhead.

7.2.5 ADDING/REMOVING

Concerning the dynamic Elias-Fano structure, we add 10% more integers
to it and made sure that all merging/splitting cases are executed, as to
obtain a general analysis about add/remove time.

The obtained results strictly confirm the theoretical complexities pre-
sented in the previous chapter. Adding/removing one element takes on
average less than 10µs.
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8
APPLICATIONS

We can proudly claim our implemented library will be useful for a lot
and different engineering tasks. In this chapter we present three selected
application benchmarks to show the practicality of our data structures.

1. For an append-only Elias-Fano data structure we show how it can be
useful to succinctly represent large static graphs in memory, applying com-
pression on-the-fly while reading them from disk and supporting fast ac-
cess to their link structure.

2. An adaptive append-only Elias-Fano structure can be useful, instead,
when building an index for a web crawler. A common web crawler simply
downloads web pages and write them down to a large file on disk rep-
resenting the crawling dataset. As an example, we may need to support
exceptionally fast access to the position of the crawling collection where
a specific web page begins.

3. The dynamic structure can be used in large dynamic retrieval systems
that need to maintain huge inverted indexes. Since the indexed documents
can be edited by users, than we need to support random insertions and
deletions in large inverted lists. Our dynamic Elias-Fano structure is ex-
actly designed for that purpose.

In what follows we treat these selected applications in order.

8.1 COMPRESSED IN-MEMORY GRAPHS

We start reviewing some preliminary background points. Then we ex-
plain our succinct graph representation in details.

8.1.1 PRELIMINARIES

Let GhV , Ei be a graph, where V is the set of vertices and E is the set
of edges. G can be directed or not. For ease of notation, let us call n =
|V | and m = |E |. Without loss of generality, we can associate to each
vertex v 2 V an integer in [1, . . . , n], so that it is uniquely identified by
that number. Basically, three ways of representing a graph link structure
have been proposed in the literature. We recall them briefly because they
turn out to be fundamental to properly understand our design choices.
We point the reader to [28, 6, 24] for more details.

• Perhaps the most intuitive way of storing a graph link structure, is
to use the adjacency lists representation. For each vertex v 2 V we
store its adjacency list adjv , i.e., the list of all the vertices pointed
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out by v: adjv = {u 2 V : 9(v, u) 2 E}. The space need for the
representation is Q(n + m) or Q(n + 2m) for an undirected (sym-
metric) graph. Indicating with d (v) the out-degree of vertex v, i.e.,
how many arcs depart from v, we clearly have that d (v) = |adjv |.
Then the time needed to retrieve all neighbours of v is Q(1+ d (v)).

• Another way of representing a graph is by its adjacency matrix. This
matrix M hmi j i 2 Mn⇥n is such that mi j = 1 if (i , j ) 2 E and
mi j = 0 if (i , j ) /2 E . Storing M requires Q(n2) independently of
whether the graph is sparse1 or not. Retrieving all neighbours of a

1 Informally, a graph is said to be
sparse if m = O(n) and dense if
m = Q(n2).

given node is performed in Q(1+ n). We notice a strong similarity
between this representation and the one with adjacency lists. In fact,
the latter representation can be seen as a compact way of storing the
adjacency matrix M .

• There is also a third representation which achieves its best usage
when the link structure is static. In such cases we can store all adja-
cency lists in an array, one after the other, and keep track of the po-
sitions from which each list begins in the array. The resulting struc-
ture is named an adjacency array representation of a graph. Time and
space complexities are identical to the ones of the adjacency list rep-
resentation.

The adjacency list representation works well both with static and dy-
namic graphs, since adding a new arc is as simple as a single append oper-
ation is a proper list. Therefore we can actually use our adaptive append-
only Elias-Fano data structure (or the dynamic one) as an adjacency list.
In this way, we will end up with n append-only data structures. The prob-
lem here is that, when the graph is sparse (almost all real-world useful
graph enjoy this property), almost every adjacency list will contain only
few integers and there could be the risk of storing them uncompressed
(large bucket size) or introducing a non-negligible space overhead. Even if
the graph were dense, poor advantage will come by this solution because
a smarter way of representing it is by the “complementary” graph, i.e.,
the structure storing the missing arcs for each node, which is expected to
be small because of the density of the graph.

What we would like to have is only one long sequence of monotone
integers. And this is possible, indeed, with the adjacency array representa-
tion for which our append-only data structure is a natural implementing
candidate. The only drawback is that, in doing so, inserting a new arc in
arbitrary position is a very costly operation, since we need to make room
for it and theoretically rebuild the whole compressed array representa-
tion. This could be solved with our dynamic structure but we encounter
another problem: how to efficiently update the whole, compressed, list
of positions to adjacency lists. A single update to this list needs to be re-
flected to all subsequent elements, inducting a reconstruction of the whole
sequence. This is too much costly. Therefore, we require the graph to be
a static one.
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So the scenario is: we already have our (large) graph structure stored
in a file on disk and we read it to incrementally acquire its link structure
in a compressed fashion in main memory, for querying, mining, applying
further compression and so forth.

DATASETS. We have used the following three graphs of increasing size.

• web-Stanford is the web graph of the Stanford University, in which
a node represents a page in stanford.edu domain and directed arcs
represents hyperlinks between them. The data was collected in 2002
and is available at2

2 At the same address the interested
reader can find a large collection
of (sparse) matrices useful for
scientific analysis and described
in [8]

http://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Stanford.html.

• dblp is the co-authorship network built in October 2014 from a
data downloadable at http://dblp.uni-trier.de. Nodes are rep-
resented by people and an edge (u, v) exists if u and v have co-
authored at least one publication.

• ljournal-2008 is a snapshot of the LiveJournal blogging commu-
nity crawled in 2008 and available at
http://www.cise.ufl.edu/research/sparse/matrices/LAW/ljournal-2008.html.

Nodes are people and a direct arc (u, v) exists if v is a friend of u.

Every graph was first preprocessed3 to eliminate potential “holes” in
3 Using a Java program called
GraphMapper.java.

vertices’ identifiers so that, after remapping, every vertex id falls in [1, . . . , n].
Basic statistics of the used graphs are summarized by the below table.

Table 8: Basic statistics of our
datasets.

GRAPH n m structure

web-Stanford 281903 2312497 unsymmetric

dblp 1420765 12005120 symmetric

ljournal-2008 5363201 79023142 unsymmetric

Figure 28: If we interpret an arc
(u, v) as a 2D point, we can
generate the following three plots.
They represent the top-left
corners (first 10% of vertices is
shown) of web-Stanford, dblp and
ljournal-2008 respectively. These
plots have been generated by a
Java program called
MatrixPlotter.java using the
JMathPlot library available at
https://code.google.com/p/jmathplot/
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8.1.2 THE STRUCTURE

As already said, the graph we have to acquire in main memory is stored
in a file on disk. This should have been stored in an easy-to-parse format
so that any algorithmic infra structure can successfully work with it. A
natural way of storing graphs is just by a sequence of arcs (u, v) such that
u, v 2 [1, . . . , n]. This is also known as the Matrix Market (MM) Coordi-
nate Format4. If vertex v does not point to any node we just read (v, 0)5.

4 http://math.nist.gov/

MatrixMarket/formats.html

5 0 cannot be interpreted as a node
identifier since they go from 1 to
n.

The first line of the file reports the dimension of the graph, namely the
number of vertices (n) and of arcs (m). All graph datasets used in our anal-
ysis have been stored in this way. As an example, a MM graph file will
look like the following one:

graph.txt

265000 1000000 � number of vertices and of arcs respectively
1 16544

1 23397

1 49821

... (27 lines skipped)
1 260675

2 69149

3 6115

3 13382

4 0

5 673

... (999964 lines missing)

We maintain two append-only Elias-Fano data structures. Let us call
them positions and arcs (as in our Java implementation). Now, by read-
ing the first line of the file, we know how many elements our sequences
will contain and we can compute best bucket sizes, B⇤, for both of them.
Then we just need to keep on reading sequentially6 this file from disk and

6 So the reading pattern is
predictable and we do not incur in
any random I/O (disk seek).

appending its arcs (i , j ) in arcs. Whenever i changes to i + 1, we store
an integer in positions, representing the position in arcs where the i -
th adjacency list begins. For this task a simple counter suffices, properly
initialized to 0 when we start reading the file.

The point here is that we are reading arcs (couples of integers), not a
single integer to append. Therefore we have to find a way of transform-
ing a sequence of arcs in a sequence of monotone non-decreasing integers.
This is achieved considering just the “second column” of the integers in
the file (the one formed by all j such that (i , j ) 2 E ). Still this could not
be a monotone sequence, as immediate from the above example. So we do
something similar to a prefix sum. When storing the (i + 1)-th adjacency
list, we sum to all j in adji+1 the value stored at the last position of the
i -th adjacency list. Clearly, at the beginning, when we have to store adj1,
we just sum 0. If the adjacency list of a vertex is empty, we just store the
previous stored value, since j will be 0. Now that we have our monotone
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sequence we can apply the strategy described in Chapter 5 to compress it.

Figure 29 illustrates how our data structure looks like if applied to the
graph.txt MM file. The resulting structure have been implemented in
Java and goes under the name EliasFanoAppendOnlyGraph.

Figure 29: An example showing
the adjacency array representation
applied to graph.txt.
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The query neighbours(v) which returns adjv is illustrated in the follow-
ing pseudo code and it runs in O(2+ d (v)) thanks to the constant time
random access of Elias-Fano encoding. Pseudo code follows.

Algorithm 12: neighbours pseudo
code.

1: procedure neighbours(v)
2: neighbours = [];
3: from = positions.get(v�1);
4: to = v == n ? arcs.size() : positions.get(v);
5: sum = v == 1 ? 0 : arcs.get(from � 1);
6: first = arcs.get(from) � sum;
7: if first = 0 then
8: return neighbours;

9: neighbours.add(first);
10: if to � from = 1 then
11: return neighbours;

12: for i in arcs from from + 1 to to � 1 do
13: neighbours.add(i � sum);

14: return neighbours;

Retrieving Querying the link structureall the adjacency lists in random order is performed, on av-
erage, in 182 ns ⇥ extracted neighbour (we measure it with the very same
methodology explained at the beginning of Chapter 7).

A static Elias-Fano encoding performs a bit better as expected from
previously discussed results: 170 ns ⇥ extracted neighbour.

Finally, implementing the adjacency array representation with plain
Java ArrayLists will prove to be, as usual, the fastest implementation. This
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is true as long as we stay in memory, as it holds for web-Stanford and dblp

graphs. In these cases, we access on average each neighbour in 97 ns. For
the largest graph, i.e., ljournal-2008, a portion of the array is not accessed
in main memory and query time ⇥ extracted neighbour is degraded to
1.52 µs.

8.1.3 REORDERING OF IDENTIFIERS

As we notice from the previous toy example, the obtained monotone se-
quence of integers can grow very fast and we could end up very soon in
adding huge integers. Think of the (pathological) case in which the very
first vertex points to the last one, i.e., we have an arc (1, n) 2 E . Then we
will add at least n to all node identifiers in the adjacency list of node 2 and
so on. This is dangerous for the Elias-Fano encoding scheme since it will
greatly enlarge u, the maximum integer of the sequence (Chapter 4).

So we wonder if there exists a method able of avoiding this situation.
Our solution consists in performing a reordering of vertices identifiers so
that we are able to save even more space with respect to the Elias-Fano
strategy we have outlined in previous section. However, remapping ver-
tices of a graph is a well-known NP-hard problem and we can only pro-
vide heuristic methods trying to dominate such complexity [2].

We show that visiting the graph with a BFS (Breadth First Search) and
sequentially assigning identifiers to vertices can work well with our Elias-
Fano encoding strategy. A simple id-counter and a direct-address table
suffice for this task. We start from the “first” vertex, namely the one of
id 1 which is not remapped7. Then we assign id 2 to the first node in

7 Or equivalently, it is always
remapped in itself.

the adjacency list of 1, id 3 to the second node...up to d (1). This is the
best we can do for Elias-Fano, since we will produce a list of arcs like
(1,2)(1,3)(1,4) · · · (1, d (1)), therefore minimizing the growth of u. Here
the BF order comes into play: we then consider the just remapped neigh-
bours and we repeat the same procedure of sequentially assigning (if not
already) vertices identifiers to their neighbours. This is a BFS-based re-
ordering. Its action can be imagined as if we were “pushing” towards the
bottom of the adjacency array the largest vertex ids. This can be graphi-
cally visualized as in Figure 30.

Moreover, this reordering will cause the presence of clusters of contigu-
ous integers, i.e., x, x +1, x +2, . . . , x + k, that are perfect to be exploited for
further compression (compressed intervals, for example).

It is worth noting that a DFS (Depth First Search) approach would be
of no great help instead. This is because we will assign identifiers in-depth
order starting from vertex 2 and when we consider vertex 3, the id-counter
could have grown indefinitely (at least for large graph). This will cause a
potentially big gap between the last vertex id of adj2 and the first id of adj3.
This means a greater average gap between our integers.
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Figure 30: Graphical example of
BFS reordering on a sample
matrix called hvdc1, available at
http://www.cise.ufl.edu/

research/sparse/matrices/HVDC/

hvdc1.html.

The following table sums up the effect of a BFS ordering on our test
graphs.

Table 9: Space occupancy
expressed in bpe (bits per edge). (a)
refers to web-Stanford, (b ) to
dblp and (c) to ljournal-2008.

ArrayList append-only static

BFS 7 BFS 3 BFS 7 BFS 3 BFS 7 BFS 3

(a) 35.89 35.89 17.63 15.74 17.46 16.67
(b ) 35.79 35.79 19.66 18.21 19.67 19.27
(c) 34.17 34.17 19.73 19.04 20.37 20.08

We clearly see that our append-only data structure offers better com-
pression with respect to a static Elias-Fano encoding. These are concrete
examples of what we said at the end of Subsection 5.1.3.

The mean query time per extracted neighbour is improved too, since
our iterator implementation of Section 5.3 will benefit from the presence
of clusters of contiguous values. All adjacency lists are now retrieved, in
random order and on average, in 162 ns achieving an improvement of
11% with respect to the unordered case. This result shows that, in case of
reordering and thanks to our optimized iterator, append-only is competi-
tive or even surpass the speed of a static encoding.

8.2 BUILDING A CRAWLING INDEX

Web crawlers (also known as web spiders or Internet bots) are programs that
systematically browse the World Wide Web (WWW) with the purpose
of (typically) downloading as mush as possible web pages for later analy-
sis. As an example, they are a core component of all modern web Search
Engines (SEs).
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Usually, downloaded pages are stored on large files on disks in the
WARC format8. These files constitute the crawling data sets that are pe-

8 http:

//www.digitalpreservation.gov/

formats/fdd/fdd000236.shtml

riodically inspected by web search engines for indexing the WWW.
SEs need fast access to web pages stored in these crawling data sets

while using little space. Our adaptive append-only Elias-Fano structure
can be useful for such purpose, since we do not know how many pages the
crawler will download in a single file. The process is completely general
toos: we parse the crawling datasets and we store in our succinct structure
the position in the file at which a specific information is found. Generated
positions form, of course, a monotone sequence of increasing integers.

The searched information can be whatever we want. As an example, the
most intuitive extracted information could be storing where each HTML
page begins. For these purpose we only need to parse the beginning of a
web page (<!DOCTYPE html...) and store the position at which this string
has been recognized by the parser.

We have tested this example on datasets available at

http://commoncrawl.org/the-data/

Each data segment, once unzipped, is about 3.3 GB of HTML pages.
On average, each segment contains 8000 web-pages, meaning that with a
sequence of 8 million integers we are able of indexing up to 330 GBs.

In this case, an interesting analysis could study how many .get() op-
eration per second (reads/sec) the data structure is able to support while
having a fixed number of .add() operation per second (writes/sec).

To this end, we have fixed 1 second as our unit of measure and count the
number of read operations performed within this time. We expect a clear
trade-off : augmenting the number of writes/sec we decrease the number
of reads/sec. The following plot gives a nice idea of what explained.

Figure 31: Number of reads per
second against number of writes
per second.
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With 0 writes/sec we are able to achieve nearly 4.2 million reads/sec on
average. Progressively increasing the rate of writes/sec of 20% will only
decrease, on average, the number of reads/sec of about 2.14%.
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8.3 DYNAMIC INVERTED LISTS

Inverted Indexes are the core data structure that modern search engines
use to search for all documents in their corpus containing the specified
user query [23]. At a high level, it basically maintains the collection of
all terms appearing in the indexed corpus and for each term t the list of
document identifiers (docIDs) that contain t . Such lists are called Inverted listsinverted
lists or postings-lists.

Indexing a new document in the collection means appending its docID
to all postings-lists of the terms appearing in the document. The compres-
sion of these integer lists has been largely studied since the 1950s and each
strategy exhibits its own space/time trade-off: usually a greater compres-
sion ratio implies a minor decoding speed and viceversa [23, 4, 1, 21, 22].

Since docIDs are assigned consecutively, postings lists are exactly mono-
tone integer sequences as the ones described in this dissertation. The appli-
cability of the Elias-Fano strategy to inverted indexes has been already pro-
posed in the literature few years ago. However, achieved results concern
static inverted indexes that are compressed to minimize their space [31,
26]. The Elias-Fano dynamic encoding we have proposed would be useful
to apply compression on-the-fly already at indexing time. This would highly
reduce running-time memory requirements of an inverted index.

In particular, if the collection is not static but documents can change
over time then updating a document means adding (deleting) some of the
terms appearing in it. This is naturally resolved by adding (deleting) the
docID to (from) the lists of such modified terms. The dynamic Elias-Fano
structure we design can, therefore, take into account these modifications.

In what follows we present a similar analysis to the one of Chapter 7
on a real-world data set in order to test the performance of our dynamic
structure.

DATA SET. The inverted lists we use for the presented analysis are from
the TREC collection Gov2, which contains nearly 25 million crawled web
pages from .gov and .us sites mostly. The data was packaged by D. Lemire
on April 2014. We list below the basic statistics for this data set, for more
information we point the reader to [22].

Table 10: Basic statistics of Gov2.DOCUMENTS TERMS POSTINGS

24622347 35636425 5742630292

The results we report below have been obtained for the longest postings-
list of the data set, namely a sequence of length 13059642 integers to make
us sure we are not operating completely in cache and validate our experi-
mental analysis in Chapter 7.

95



8. A P P L I C AT I O N S

The first picture shows how the space occupancy of such inverted list
decreases while we increase bucket size. The best experimentally found
value for B is 3500 in this case.

Figure 32: Bucket size against
number of bits. Dotted lines
illustrate the situation when no
integers are added/deleted.
Thicker curves take into account
10% more additions to both
static and dynamic.
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Figure 33: Bucket size against
mean query times. Shown times
are in µs.
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Below tables offer a comparison between a static and a dynamic Elias-
Fano representation of the same sequence: the first illustrates the situation
in which no integers are added to nor deleted from the sequence; the sec-
ond one accounts for 10% more additions.

Table 11: Comparison between
static and dynamic

representations when no
additions/deletions are performed.

MB bpi
static 5.47 3.352

dynamic 4.61 2.828 � 15.63%

As already noticed for compressed graphs, also this example shows that
a bucketing Elias-Fano strategy such as the one presented in this Thesis,
can be better that a static encoding (Property 5.1.1). In this case, dynamic
avoids a good 15.63% of the static counter part redundancy.
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Table 12: Result of adding 10%
more integers.MB bpi

static 5.5 3.13
dynamic 5.46 3.108 � 0.71%

Adding 10% more integers, however, will almost annul the achieved
improvement but still the space is less than the static one while having a
fully dynamic sequence.

We consider now the sequence access time. Choosing BFigure 33 reports MQTs
for a pattern of random and sequential accesses as we did in Chapter 7.
The plot should be used to help us deciding a good value for B to trade-off
space/time complexity of the data structure. Using B = 500 allows us to
randomly access each integer in 1µ on average, but we are using 15.16%
more space. This may not be acceptable. A value of B = 2000 could be
the right choice given that we access an integer in 2.8µs on average with a
(negligible) space redundancy of 1.237%.
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9
CONCLUSION AND RELATED
WORKS

The aim of this Thesis was to apply the Elias-Fano strategy to the com-
pression of dynamic monotone integer sequences. Taking into account
most recent results of its application [26, 7] in the context of Informa-
tion Retrieval and Data Compression, we wonder if it can be extended to
dynamic data structures.

For this purpose, we have presented three Elias-Fano compressed suc-
cinct data structures, showing space/time bounds and trade-offs.

The first two structures are append-only: new integers can only be ap-
pended to the end of the growing integer sequence. These two differs in
the the way the size of a bucket is chosen. We call bucket the basic com-
pressed span of integers that forms the fundamental building block of such
structures. In the first append-only implementation it is fixed once and
for all; in the second one it is adapted to the current dimension of the se-
quence with the purpose of minimizing the overall compressed space. The
first structure assumes to know the future length of the sequence to eval-
uate best possible bucket size; otherwise an almost random choice must
be performed. The other structure does not need this knowledge and can
adapt to the current sequence size.

The last presented structure is, instead, a fully dynamic one in which
no restriction is posed on the position where to add/remove an integer.
This is the most flexible structure, yet the most involved. In this case we
have provided a practical tool to find the proper value of bucket size to
trade-off space/time complexity of the structure.

Moreover, the implemented data structures and algorithms form a li-
brary, publicly available under proper license, in the hope it will be useful
for real-world applications and research.

9.1 SUMMARY OF RESULTS

We sum up here the achieved results and proofs.

1. Fundamental to this Thesis was the proof we only loose a negli-
gible factor in both space and query time with respect to a static
Elias-Fano compressed sequence. In particular, the first append-only
structure introduce only one cache miss more on average performing
a random access to very long (cache does not suffice) sequence. The
extra memory consumption of the structure is negligible if com-
pared to a static counter part for any real-world datasets.
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2. Implementing an adaptive strategy to change bucket size, does not
introduce any significant overhead on the first implemented struc-
ture. In fact, the second append-only structure performs practically
the same as the first one, showing the care we have put in the engi-
neering process. Again, through math proofs and large experiments,
we confirm that both space and time are almost the same for the two
structures for large sequences. For smaller sequences, the adaptive
strategy reduces the gap in space with respect to a statically com-
pressed sequence much better than a fixed choice of bucket size.

3. While being not competitive in query time with the append-only
structures, the dynamic sequence introduces small extra space to
maintain a dynamic index. Iterating through the structure is as fast
as for the append-only structures. Moreover, we have also shown
how to choose a proper value of bucket size to lower random access
time while tolerating a bit larger redundancy.

The following table shows a complete re-cap of space/time performance
of the designed structures. First row refers to the first append-only struc-
ture; second row to the second, adaptive, append-only structure; third row
to the third, dynamic, structure.

As usual n represents the length of the sequence and u its maximum
stored integer; B = 2

p
2n is the bucket size; Bi the i -th bucket size (Sub-

section 5.2.1.1).

Table 13: Performance table. To
distinguish between worst case
and amortized running times we
use symbols O(·) and O (·)
respectively. � = S⇤(n, u)+ o(n)
bits, where
S⇤(n, u) = n

l
lg

u
n

m
+ 2n + o(n)

bits.

access append add/remove nextGEQ space
append-only O(1) O(1) — O(B) �

adaptive O(1) O(1) — O(Bi ) �

dynamic O(B) O(1) O (lgpn) O(B) �

9.2 OPEN PROBLEMS

We would like to conclude this dissertation, illustrating some related prob-
lems the Author would be pleased to work on.

SMALLER REDUNDANCY FOR SMALL SEQUENCES. The redundancy
introduced by the implemented data structures is theoretically o(n) (and
therefore negligible) for small integer sequences while in practice it is not
so negligible because of the large constant involved in the asymptotic no-
tation (Subsection 5.1.3.2). In particular this is due to the buffer of uncom-
pressed integers that, for small sequences, constitutes the prominent space.
A further work could study solutions to cope with this space overhead.

One possibility could be applying standard compression strategies on
buffer integers, such as gap-encoding followed by delta-encoding [25]. Ac-
cessing an element from the buffer would require, in this case, to uncom-
press all the others up to the first1. This will anyway slow down access

1 Unless we adopt a bucketing
strategy inside the buffer itself.
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time. Therefore, guaranteeing smaller redundancy for small sequences with
also small access overhead is an interesting open problem.

FURTHER REDUCTION OF ACCESS TIME. We have seen that for append-
only structures the random access operation introduces one cache miss
more, on average. Being already a good result, we wonder if there is fur-
ther room for improvement to reduce this extra time up to the point it be-
comes practically negligible. Especially for the case of dynamic sequences,
the access operation could be speeded up using additional information on
each bucket-index. It would be great a further engineering work on the
code trying to avoid this additional redundancy or, at least, minimize it.
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