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Abstract

The aim of this thesis work is to study the behaviour of SEALER (SwEdish

Advanced LEad Reactor) under the three main unprotected accidents that could

hypothetically happen for this Lead-cooled Fast Reactor (LFR): Unprotected

Transient of Over Power (UTOP), Unprotected Loss Of Flow (ULOF) and

Unprotected Loss Of Heat Sink (ULOHS). The work was carried out at the KTH

department of Nuclear Reactor Physics, using the SAS4A/SASSYS-1 code.

The first part of the activity consisted of a model development for the reactor

core, from the 1-channel one to the 4-channel one, based on the core symmetry

and on the different peak factors of fuel assemblies. The main step of this part

was the calculation, using the Serpent code, of the channel dependent reactivity

coefficients for each channel at the three analysed conditions over the reactor

lifetime: Beginning Of Cycle (BOC), Middle Of Cycle (MOC) and End Of Cycle

(EOC). The second part of the work consisted of the transient simulations of the

reference accidents and of some sensitivity calculations regarding the dependence

of the peak fuel and cladding temperatures on the reactivity coefficients.

The obtained results show that, in the studied accident scenarios, the max-

imum Peak Cladding Temperature (PCT) is less than 1000 K and that the

fuel temperature remains under the melting value. Moreover, for the transients

UTOP, ULOF and ULOHS with the radiative heat loss through the vessel

(ultimate heat sink), a new steady state condition is reached due to the reactivity

feedback, while for the ULOHS accident without ultimate heat sink, the reactor

is self shutdown.
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KTH Kungliga Tekniska Högskolan (Royal Institue of Technology)

LBE Lead Bismuth Eutectic

LEADER Lead-cooled European Advanced DEmonstration Reactor

LFR Lead-cooled Water Reactor

LMFBR Liquid Metal Fast Breeder Reactor

LWR Light Water Reactor

MOC Middle of Cycle



LIST OF TABLES 12

MSR Molten Salt Reactor

MYRRHA Multi-purpose Hybrid Research Reactor for High-tech

Applications

PCT Peak Cladding Temperature

pcm PerCent Millirho

PF Peak Factor

RIA Reactivity Initiated Accident

SBO Station Black Out

SCRAM Safety Control Rod Axe Man

SCWR Supercritical Water-cooled Reactor

SEALER SwEdish Advanced LEad Reactor

SFR Sodium-cooled Water Reactor

SG Steam Generator

ULOF Unprotected Loss of Flow

ULOHS Unprotected Loss of Heat Sink

UTOP Unprotected Transient of Over Power

VHTR Very High Temperature Reactor



Chapter 1

Introduction

In the last decades the global warming and the air pollutants production, in

particular carbon dioxide (CO2), sulfur dioxide and trioxide (SOx) and nitrogen

oxides (NOx), emerged as the main problems caused by human activity and

more specifically by the energy production mainly due to the burning of fossil

fuels. In order to overcome these concerns and to ensure a better environmental

impact for the energy production in the last years the energy industry is trying

to give more importance to the renewable energy (biofuels, solar power and wind

power) and to improve the conditions of operation for the other sources of energy

(coal, nuclear and gas) with some programs of Research & Development (R&D)

for the new plants.

Regarding the improvement of the nuclear power plants, for more than a

decade, the Generation IV International Forum (GIF) has led international

collaborative efforts to develop next-generation nuclear energy systems that can

help meet the world’s future energy needs. Generation IV designs will use fuel

more efficiently, reduce waste production, be economically competitive, and meet

stringent standards of safety and proliferation resistance. In this framework

eight technology goals have been defined for Generation IV systems in four

broad areas: sustainability, economics, safety and reliability, and proliferation

resistance and physical protection.

� Sustainability-1: generation IV nuclear energy systems will provide sus-

tainable energy generation that meets clean air objectives and provides

long-term availability of systems and effective fuel utilisation for worldwide

energy production.

� Sustainability-2: generation IV nuclear energy systems will minimise and

manage their nuclear waste and notably reduce the long-term steward-

ship burden, thereby improving protection for the public health and the
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environment.

� Economics-1: generation IV nuclear energy systems will have a clear

life-cycle cost advantage over other energy sources.

� Economics-2: generation IV nuclear energy systems will have a level of

financial risk comparable to other energy projects.

� Safety and Reliability-1: generation IV nuclear energy systems operations

will excel in safety and reliability.

� Safety and Reliability-2: generation IV nuclear energy systems will have a

very low likelihood and degree of reactor core damage.

� Safety and Reliability-3: generation IV nuclear energy systems will elimi-

nate the need for offsite emergency response.

� Proliferation Resistance and Physical Protection: generation IV nuclear en-

ergy systems will increase the assurance that they are very unattractive and

the least desirable route for diversion or theft of weapons-usable materials,

and provide increased physical protection against acts of terrorism.

With these goals in mind, GIF selected six reactor technologies for further

research and development. These include: the Gas-cooled Fast Reactor (GFR),

the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR), the

Supercritical Water-cooled Reactor (SCWR), the Sodium-cooled Fast Reactor

(SFR) and the Very High Temperature Reactor (VHTR). A brief description for

each reactor is presented below:

� GFR: the gas-cooled fast reactor combines the advantages of a fast neutron

core and helium coolant giving possible access to high temperatures. It

requires the development of robust refractory fuel elements and appropriate

safety architecture. The use of dense fuel such as carbide or nitride pro-

vides good performance regarding plutonium breeding and minor actinide

burning. A technology demonstration reactor needed for qualifying key

technologies could be in operation by 2020.

� LFR: the lead-cooled fast reactor system is characterised by a fast-neutron

spectrum and a closed fuel cycle with full actinide recycling, possibly in

central or regional fuel cycle facilities. The coolant may be either lead

(preferred option), or lead/bismuth eutectic. The LFR may be operated as

a breeder, a burner of actinides from spent fuel, using inert matrix fuel,

or a burner/breeder using thorium matrices. Two reactor size options

are considered: a small 50-150 MWe transportable system with a very
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long core life, and a medium 300-600 MWe system. In the long term a

large system of 1200 MWe may be envisaged. The LFR system may be

deployable by 2025.

� MSR: the molten-salt reactor system embodies the very special feature of

a liquid fuel. MSR concepts, which may be used as efficient burners of

transuranic elements from spent light-water reactor (LWR) fuel, also have a

breeding capability in any kind of neutron spectrum ranging from thermal

(with a thorium fuel cycle) to fast (with a uranium-plutonium fuel cycle).

Whether configured for burning or breeding, MSRs have considerable

promise for the minimisation of radiotoxic nuclear waste.

� SCWR: supercritical-water-cooled reactors are a class of high-temperature,

high-pressure water-cooled reactors operating with a direct energy conver-

sion cycle and above the thermodynamic critical point of water (374�,

22.1 MPa). The higher thermodynamic efficiency and plant simplifica-

tion opportunities afforded by a high-temperature, single-phase coolant

translate into improved economics. A wide variety of options are currently

considered: both thermal-neutron and fast-neutron spectra are envisaged;

and both pressure vessel and pressure tube configurations are considered.

The operation of a 30 to 150 MWe technology demonstration reactor is

targeted for 2022.

� SFR: the sodium-cooled fast reactor system uses liquid sodium as the

reactor coolant, allowing high power density with low coolant volume

fraction. It features a closed fuel cycle for fuel breeding and/or actinide

management. The reactor may be arranged in a pool layout or a compact

loop layout. The reactor-size options which are under consideration range

from small (50 to 150 MWe) modular reactors to larger reactors (300 to

1500 MWe). The two primary fuel recycle technology options are advanced

aqueous and pyrometallurgical processing. A variety of fuel options are

being considered for the SFR, with mixed oxide preferred for advanced

aqueous recycle and mixed metal alloy preferred for pyrometallurgical

processing. Owing to the significant past experience accumulated with

sodium cooled reactors in several countries, the deployment of SFR systems

is targeted for 2020.

� VHTR: the very-high-temperature reactor is a further step in the evo-

lutionary development of high-temperature reactors. The VHTR is a

helium-gas-cooled, graphite-moderated, thermal neutron spectrum reactor

with a core outlet temperature higher than 900�, and a goal of 1000�,

sufficient to support high temperature processes such as production of
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hydrogen by thermo-chemical processes. The reference thermal power

of the reactor is set at a level that allows passive decay heat removal,

currently estimated to be about 600 MWth. The VHTR is useful for the

cogeneration of electricity and hydrogen, as well as to other process heat

applications. It is able to produce hydrogen from water by using thermo-

chemical, electro-chemical or hybrid processes with reduced emission of

CO2 gases. At first, a once-through low enriched uranium (< 20% U235)

fuel cycle will be adopted, but a closed fuel cycle will be assessed, as well

as potential symbiotic fuel cycles with other types of reactors (especially

light-water reactors) for waste reduction purposes. The system is expected

to be available for commercial deployment by 2020 [1].

Focusing the attention on the LFRs and their state of the art, the European

Commission in its 6th and 7th Framework Program has co-founded the European

Lead SYstem (ELSY [2, 3]) project and the Lead-cooled European Advanced

DEmonstration Reactor (LEADER [4]) project with the purpose to obtain a

preliminary design of the ELSY and ALFRED (Advanced Lead Fast Reactor

European Demonstrator [5, 6]) reactors. Together with the development of

these programs, in the European framework another two reactor projects have

been investigated and developed: MYRRHA (Multi-purpose Hybrid Research

Reactor for High-tech Applications [7, 8]) and ELECTRA (European Lead

Cooled TRaining Reactor [9–11]). Since all these four reactors are prototype,

demonstrator, research or training reactors their goals are to ensure that the

design fully matches the requests and the objectives of the Generation IV,

eventually to point out which are the areas that need an improvement (as

already done for the SFR with Phénix, SuperPhénix and Monju power plants)

and at the end to establish if it is possible to use them in a large scale context

for the energy production, like actually performed with the Light Water Reactor

(LWR). In this framework, also the reactor analysed in this thesis work the

SwEdish Advanced LEad Reactor (SEALER), although some particular features

(chapter 2) and its very small size that makes it a modular reactor, can be

included.

During these years of R&D for all these reactors, the main concerns are

related to the resistance of the materials, since they have to deal with an high

corrosive and erosive environmental given by the coolant and also with an higher

energy neutron flux. As a consequence of these problems, some limits on the

operating temperatures, that reduce the thermal efficiency of the plants in order

to ensure a proper lifetime of the materials, were adopted. As a matter of fact,

the demonstration that the reactors presented before can work without any

significant problems from a safety and an economic point of view together with
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the development of new and improved materials or special coatings and with

the progress in the design of UN, to adopt as fuel in substitution of the UO2,

could lead to establish the LFR as a reference point for the future nuclear power

plant and to a more efficient and powerful reactors.

1.1 Aim of the Work

The aim of this work is to give a first assessment about the behaviour of

the SEALER reactor under the three reference unprotected accidents that

could hypothetically happen over its lifetime and to understand if the human

intervention is necessary to stabilize the accidents development and which are

the safety margin on the peak temperatures (fuel and cladding). The three

accidents taken into account in this analysis are the unprotected transient of

over power, the unprotected loss of flow and the unprotected loss of heat sink.

The steps conducted to achieve the final target are: SAS4A/SASSYS-1 core

model extension from 1-channel to 4-channel based on peak factors and core

symmetry, calculation of the channel dependent reactivity coefficients using the

Serpent code, implement the results in the SAS4A/SASSYS-1 input file and

then run the transients. The Doppler, the fuel and cladding axial expansion,

the coolant void worth and the radial expansion are the reactivity coefficients

included in the analysis. In order to evaluate them, it is necessary to give a

perturbation channel by channel (like an increase in the fuel temperature or

length or in the pitch between the assemblies and a reduction in the fuel or

coolant density) and to assess the related variation in the core reactivity.

At the end of the work some sensitivity calculations are performed with the

purpose to understand which is the dependence of the peak temperatures on

each one of the reactivity coefficients.



Chapter 2

SEALER Reactor

This is an introduction chapter where a general view of the SEALER reactor is

presented, pointing out the main peculiarity about its design that would help to

understand the meaning of the results presented in the remainder of the work.

2.1 Philosophy and Design

SEALER is a LFR with a thermal power of 8 MW (3 MWe), designed to

produce heat and electricity for off-grid consumers. It should demonstrate the

work capability of LFR which are lacking in years of reactor work with respect

to the SFR, and lead the way for bigger LFR in terms of power and dimensions.

In the next few years its construction should start in Canada.

The choice of the lead as a coolant over sodium and Lead Bismuth Eutectic

(LBE) is due to the lower source term following a possible coolant release from

the primary circuit and to the lower number of required components. As a

matter of fact, lead is not activated by the neutrons contrary to what happens

with the sodium and, moreover, the Intermediate Heat eXchanger (IHX) and its

related systems (needed in case of SFR in order to avoid the possible exothermic

reaction between the radioactive sodium and water) are not required. Regarding

the LBE, the problems are related to the generation of polonium (Po210) that is

a highly radioactive α emitter and a chemically toxic element. The importance

to have a smaller number of big components and to reduce as much as possible

the source term are explained in the remainder of the chapter.

SEALER is a pool type fast reactor (figures 2.1 and 2.2) with particular

features, the most relevant of which are here presented: it is very small compared

to the other LFR of the same power size, it never requires the fuel reload over

the entire predicted lifetime of 30 years and it has safety features that allow

no public evacuation for all the accident scenarios. Since SEALER should be
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Figure 2.1: General view of the SEALER reactor.

located in off-grid sites, these could be far away from highways and the small

dimensions are needed in order to have the possibility to transport all the reactor

components in the easiest way in all the possible locations. The dimension of

the vessel are determined upon the necessity to insert it in the cargo space of an

Hercules airplane and the maximum value for the diameter is setted at 2.75 m.

The height of the vessel is 6 m.

For what it concerns the no evacuation of the population, it is a consequence

of the radiological impact assessment that ensures very low equivalent dose also

in case of core melting (E < 1 mSv at 200 m from the reactor) and of the very

low population density that characterizes the off-grid sites. Moreover, it could be

more convenient to take shelter inside the houses than to organize an evacuation,

but it depends on the site conformation and it should be determined on a case

by case analysis for each site.

To prevent an accident SEALER is equipped with two independent shutdown

systems based on the separate insertion of the 6 shutdown elements (figure 2.3).

Since 3 out of 6 are sufficient for the SCRAM (Safety Control Rod Axe Man), the

design provides two sets of 3 elements: the insertion of the first one is controlled

hydraulically by the primary lead, while the second one uses a different system

that implies the use of gas for the hydraulically insertion.

Another option, for a second shutdown system based on different physical

phenomenon, could be the drain of the lead pool. It ensures the total amount of

negative reactivity insertion required for the shutdown, but the problem is the

design of an auxiliary system able to remove the decay heat in the first minutes

after the drainage of the pool. From a nuclear safety point of view, the design
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Figure 2.2: Vessel and core view (left) and a simple scheme of the reactor pool
(right).

of such systems (different and independent) is necessary in order to reduce the

probability of an unprotected accident (i.e. an accident where both SCRAM

systems are unavailable at the same time).

As a consequence of the small size and of the absence of the fuel reloading,

the main cost for the SEALER construction is strictly related the fuel production

that, in its turn, is bounded to the enrichment level. The fuel is UO2 enriched in

U235 at 19.9%. In the future there might be the possibility to use UN as fuel and

it would bring an increase in the power maintaining the same lifetime thanks to

the higher density of the uranium nitrides with respect to the uranium dioxides.

The reactor core (figure 2.3) is made by 19 hexagonal wrapper tube fuel

assemblies containing each one 91 fuel pins. The choice of this type of geometry

is due to guide the coolant flow through the core and to limit the consequence

of a cladding failure [12]. The active core diameter is 0.8 m and the height is 1.1

m, while the total length of the fuel pins is 1.55 m (2 insulation pellets made by

ZrO2 of 0.5 cm at the bottom and at the top and 35 cm of gas plenum). The

gas plenum is above the fuel pellets and the gap between the fuel pellets and

the cladding is filled with Krypton. A particular feature of the core design is

the position of the burn-up control elements, which are located outside the fuel

region. They form a ring made of 12 elements for the burn-up control and 6

elements for the reactor shutdown. These kind of elements are made by B4C

but with different enrichment: natural for the first, while 90% in B10 for the

second. The reason for which no burn-up control elements are placed between

the hexagonal fuel assemblies, like in any other reactor, is the need to have a
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Figure 2.3: Core radial cross section.

reactor vessel diameter as small as possible (maximum diameter value of 2.75

m). This tight request brings to have some disadvantages, the most important

of which is the relatively high difference in the peak factors between the core

zones at the Beginning Of Cycle (BOC). The reactivity worth related to each

one of the burn-up control element is 0.5 $. The core periphery is filled with 2

rings of 24 elements each one: the first constitutes the reflector (Yytra stabilised

zirconia) while the second the shielding (B4C enriched at 90% in B10).

Another important aspect related to the absence of the fuel reloading, is

that the fuel cladding must be designed to withstand against the high corrosion

generated by the cooling lead. With the purpose to satisfy this requirement,

two main actions are planned: the first is to reduce the operating temperature

in the core in such a way that during normal operation the maximum cladding

temperature should not exceed 450�, a condition that can be achieved with

a coolant forced flow of 1311 kg/s; the second is to adopt a special coating of

FeCrAlY in order to reduce the fretting corrosion that under oscillating loads

produces unacceptable results for the cladding material Sandvik’s 12R72, a

15-15 Ti steel with 0.4% Si [13–19]. The special coating is necessary for all the

length of the cladding except for the lower end cap that is expected to work at a

temperature lower than 400�, since the core inlet temperature during normal

operation is 390°C with the aim to provide a minimum margin for freezing of

the lead [20].

The forced flow through the primary system is secured by 8 pumps. This

relatively high number of pumps is due to the fact that in this way the availability

of the system increases as the forced flow can be satisfied by only 6 pumps.

Moreover, it permits to use the pumps in a working range that is very similar to
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that of the normal industry pumps. The peculiar aspect related to the pumps

is the position. Indeed, they are located in the hottest part of the primary

circuit, between the outlet plenum of the core and the entrance of the Steam

Generators (SGs). This is due to the need to reduce the shaft height and to the

fact that this change in the configuration of the primary circuit does not affect

the performance of the reactor. In addition, the rather small difference in the

coolant temperature between the hottest and the coldest part of the primary

circuit of about 40°C makes this solution feasible.

The same problem, previously described for the fuel cladding, is present also

for the components of the 8 SGs which have to resist to the lead corrosion at

430-450�, although with lower pressure and induced stress comparing with the

fuel cladding, for the whole reactor lifetime of 30 years without any significant

problem that could bring to a reactor shutdown. To match this request the

material chosen for the SGs is an aluminium bearing ferritic steel like Fe-10Cr-

4Al-RE [21]. A very important characteristic of the SGs is the relative height

with respect to the core in order to ensure a proper natural circulation flow

during the accident scenario of unprotected loss of flow. In SEALER this height

is 2.5 m. The geometry of the SGs tubes is spiral like for the reactor Elsy [22,

23].



Chapter 3

Background

In this chapter, the two codes used for this project, namely SAS4A/SASSYS-1

and Serpent, and the corresponding reactor models are described. Moreover, a

discussion regarding the reactivity coefficients, their definition and the physics

behind the different phenomena is also presented.

3.1 SAS4A/SASSYS-1 Code

3.1.1 General Overview

The SAS4A/SASSYS-1 code is a combination of two deterministic codes that

provide safety analysis for design basis and beyond design basis accident in

Liquid Metal Fast Breeder Reactor (LMFBR).

Within the SAS4A and SASSYS-1 codes detailed, mechanistic models of

steady-state and transient thermal, hydraulic, neutronic, and mechanical phe-

nomena are employed to describe the response of the reactor core and its coolant,

the fuel elements and structural members as well as the reactor primary and

secondary coolant loops, the reactor control and protection systems, and the

balance-of-plant to accident conditions caused by loss of coolant flow, loss of

heat rejection, or reactivity insertion. The SAS4A analysis is terminated upon

loss of subassembly hexcan integrity while the SASSYS-1 analyses is terminated

upon demonstration of reactor and plant shutdown to permanently coolable

conditions, or upon violation of design basis margins. The objective of SAS4A

and SASSYS-1 analysis is to quantify severe accident consequences as measured,

for the first, by the generation of energetics sufficient to challenge reactor vessel

integrity, leading possibly to public health and safety risk, while, for the second,

by the transient behaviour of system performance parameters, such as fuel and

cladding temperatures, reactivity, and cladding strain [24].
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In this work only the neutronic and thermo hydraulic parts of the codes are

taken into account neglecting the mechanical analysis related to pre-failure and

failure phases of the cladding and also the fuel and clad relocation mechanisms

following a severe accident.

For what it concerns the neutronic part, these codes utilize the point kinetic

scheme, in which the spatial flux shapes φ(~r) in both directions, radial and axial,

are given as fixed parameters in the input file, while the flux development during

a transient is calculated using the following set of equations:

dφ(t)

dt
= φ(t)

ρ(t)− β
Λ

+

6∑
i=1

λiCi(t)

dCi(t)

dt
=
βiφ(t)

Λ
− λiCi(t)

φ(0) = 0

Ci(0) =
βi
λiΛ

(3.1)

where φ(t) is the neutron flux, ρ(t) the net reactivity, β the total effective delayed

neutron fraction, Λ the effective prompt neutron generation time and λi is the

decay constant for the i-th group of delayed neutron precursors whose population

is Ci(t). The net reactivity is assessed with the following general formula:

ρ(t) = ρp(t) + ρCS(t) + ρD(t) + ρd(t) + ρPb(t) + ρre(t) + ρcr(t) + ρfu(t) + ρcl(t)

where

� ρp(t)=user programmed reactivity,

� ρCS(t)=control system reactivity,

� ρD(t)=fuel Doppler feedback reactivity,

� ρd(t)=fuel and cladding axial expansion feedback reactivity,

� ρPb(t)=coolant density or voiding feedback reactivity,

� ρre(t)=core radial expansion feedback reactivity,

� ρcr(t)=control rod drive expansion feedback reactivity,

� ρfu(t)=fuel relocation reactivity feedback,

� ρcl(t)=cladding relocation reactivity feedback.
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Regarding the thermal hydraulic part, as in any other deterministic code,

SAS4A/SASSYS-1 uses a numerical discretization method to solve the mass,

momentum and energy partial differential equations:

∂ρ

∂t
+

1

A

∂(GA)

∂z
= 0

∂G

∂t
+

1

A

(G2A

ρ

)
= −∂p

∂z
− ρgsin(θ)− τw

Pf
A

∂ρe

∂t
+

1

A

∂[GA(e+ pv)]

∂z
= q

′′ Ph
A

+ q
′′′

(3.2)

in the equations (3.2) ρ is the density, G the mass velocity, A the cross section

area, p the pressure, τw the wall friction factor, Pf the heated perimeter, e is

the specific energy per unit of volume, pv is the flow work, q
′′

the heat flux, Ph

the wetted perimeter and q
′′′

the heat power source.

The equations presented are for general geometry and component. For the

specific treatment of different elements (core structures, SG, fuel, coolant, etc.),

starting from these equations, the terms that are not needed can be cancelled,

while correlations or special models can be added in order to close the set of

equations for a specific phenomenon in a specific element.

The discretization method implemented in SAS4A/SASSYS-1 is the finite

difference method. It consists in the substitution of the partial derivatives, in

the equations (3.2), for finite differences of the independent variable with finite

increments in space and time. For example the mass balance equation becomes:

∂ρ

∂t
+

1

A

∂(GA)

∂z
= 0⇒ ρn+1

i − ρni
∆t

+
1

A

Gni+1A− 2Gni A+Gni−1A

∆z
= 0

where i corresponds to the spatial location in the mesh and n to the time step.

For a better understanding of these concepts the reader has to refer to the

appendix.

In SAS4A/SASSYS-1 the spatial discretization of the primary circuit consists

in the definition of compressible volumes, filled with liquid, gas or both, connected

between them by liquid or gas segments divided, in their turn, into elements

and into temperature groups. A compressible volume can represent many parts

of the primary circuit like inlet plenum, outlet plenum with or without cover

gas (depending on the coolant choice lead or sodium), pool, expansion tank,

pipe rupture source and pipe rupture sink; on the other hand a liquid or gas

element can represent core assemblies, pipes, valves, SG shell or tube side,

pump impeller, steam generators and DRACS (Direct Reactor Auxiliary Cooling

System) heat exchangers. The segments are mono-dimensional and characterized

by an incompressible single phase flow, with the exception of the core region,
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Figure 3.1: Example of channel discretization in SAS4A/SASSYS-1.

and they can be made by different elements. The temperature groups can be

defined inside the segments or the elements, except for the core, and they adopt

the same heat transfer routine for the calculation, thus for this reason to use the

same temperature groups for different segments is not advised.

The core region is discretised axially and radially through a suitable mesh

structure and the number of points used in the discretization vary depending

on the structure analysed. In the figure 3.1 a general example of the core

discretization scheme is presented. Along the axial direction the core region can

be divided at maximum into 7 different regions (lower and upper reflector and

blanket, core, gas plenum above or below the core) and the sum of the axial

nodes must be equal or lower than 48. Moreover the sum of the reflector nodes

must be lower than 7. Regarding the radial direction, the fuel (included the

blanket) has a minimum of 4 nodes and a maximum of 11, the cladding has 3

nodes, the coolant 1, the structure and the reflector 2, the gas plenum and the

cladding in the gas plenum region have 1 radial node.

It is important to keep in mind that the temperature and pressure values,

for the coolant along the axial direction, are assessed in the junction between

two mesh elements while the temperatures for the fuel, the cladding and the

structures are evaluated in the middle of a mesh element (in the node).
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The thermal hydraulics calculations are carried out in a number of separate

modules. A steady-state thermal hydraulics module provides the initial conditions

for the transient. The transient temperatures are calculated in a pre-voiding

module until the onset of boiling. After the onset of boiling, the fuel pin

temperatures are calculated in a separate module coupled with the boiling

module. The core thermal hydraulic routines interact with a number of other

modules, before the onset of voiding, a routine calculates the coolant temperatures

used in the hydraulic calculations and the initial coolant flow rate and pressure

distribution are supplied by the pre-voiding hydraulics routines. The point

kinetics module supplies the power level (including the decay power) used in the

heat transfer routines, and the heat transfer routines supply the temperature

dependent reactivity feedback. This module is based on the approximation that

the neutron flux spatial shape is invariant during a transient and the effects of

the changes in geometry can be neglected.

The transient calculations uses a multi level time step approach, with separate

time steps for each module. For the heat transfer routines, all temperatures are

known at the beginning of a heat transfer step, and the routines calculate the

new temperatures at the end of the step. The heat transfer time step can be

longer than the coolant time step, but the heat transfer time step can be no

longer than the main time step that is used for reactivity feedback and main

printouts. All the calculations are performed with semi-implicit or fully implicit

methods. The degree of implicitness is automatically calculated by the code with

empirical relations based on the time step and other heat transfer time constants

given by the user and dependent on the type of routine. The user must specify

also the minimum grade of implicitness achievable during the calculations [25].

3.1.2 Input File

The SAS4A/SASSYS-1 input file is organized by functional purpose and it is

not strictly related to the input blocks of the code structure. This is done with

the purpose to make modifications and revisions in the easiest way and to help

the comprehension of the file also for new users. It is divided into many parts or

sections: coolant property, core and decay power, point kinetics parameters, fuel

and cladding properties, average channel geometry and discretization, feedback

models, different channels feedback and properties, primary circuit definition,

running parameters and accident simulation.

Regarding the coolant properties, once chosen the type of coolant, the related

properties are taken from a data library implemented in the codes. For the

fuel and cladding properties, it is necessary to create some tables specifying the

temperatures and the values of some specific parameter. For the cladding, the
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thermal conductivity, the specific heat and the specific heat multiply by the

cladding density have to be specified; for the fuel, in addition to these properties,

the theoretical density and the porosity grade have to be defined.

The point kinetics part defines the parameters described in the set of equations

(3.1). The core and decay heat power section requires the total reactor power,

the fraction of the total power produced in the fuel and the number of decay

groups to take into account in the decay heat calculations.

The field related to the average channel geometry and discretization defines

the geometry of the fuel pin, the cladding and the structures in the core region.

Since all the fuel pins and the assemblies have the same dimensions (height,

radius, thickness, coolant flow area, hydraulic perimeter and gas plenum position)

and the same power profile (radial and axial) this section refers to all the 19

assemblies while the channel depending properties (peak factors and reactivity

feedback) are defined in a different section of the input file. The coolant mass

flow and the coefficients to be used in the different correlations, together with the

information on when it occurs the transition from the laminar to the turbulent

flow, are also included in this section. Since SAS4A/SASSYS-1 uses a per

pin concept, some of these values must be inserted per number of total pins

(19 · 91 = 1729). Here the same table for the properties listed before for the

cladding and the fuel are described for the reactor structures. Finally, into

this section are also defined the discretization parameters (e.g. the number

and length of the axial and radial nodes of each structure) and the degree of

implicitness to be used in the calculation (0.5, i.e. semi-implicit method).

The feedback models section specifies the type of feedback taken into account

during the transient: for the control rod driveline no expansion and for the core

structures free axial expansion and radial expansion proportional to the core

inlet coolant temperature. For the latter case, the core flower effect is neglected.

In this section the radial expansion coefficient is also defined.

For what it concerns the different channel feedback and properties, this part

contains the information needed to complement the previous ones about the

geometry and the dimensions of each one of the channels: i.e. the number of

assemblies in each channel, the peak factors, the Doppler coefficient, the coolant

void worth and the fuel and cladding reactivity worth. The reactivity coefficients

must be implemented per unit of mass (of coolant, fuel or cladding) except for

the Doppler one that requires the definition of two core state: the normal one,

with the coolant, and the voided one without the coolant. In addition, the fuel

thermal expansion coefficient and the Young elasticity module for the free axial

expansion model chosen in the previous section are here also defined.

The primary circuit (figure 3.2) is modeled with 3 compressible volumes: inlet

plenum, outlet plenum and cold leg. These volumes are connected by 3 segments:
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Figure 3.2: Simple scheme of the primary circuit model implemented in
SAS4A/SASSYS-1.

core, SG and pump. The 3 segments are divided in 7 elements. The core segment

is equal to the core element, while the other two segments (SG and pump) are

made by 3 elements each one. The elements pipe, SG and pipe form the SG

segment and the elements pipe, pump and pipe constitute the pump segment.

Moreover, 4 temperature groups are defined: 3 for the segment SG and 1 for the

segment pump. For the first a temperature group for each one of the elements

(pipe, SG and pipe) is specified, while for the second an unique temperature

group that includes all the elements (pipe, pump and pipe) is setted. The core

is modeled as a 4-channel segment that contains only the fuel, neglecting the

presence in the external region of the reflector and the shielding. In the figure

3.2 the two arrows, that connect the inlet and outlet plenum with the core,

represent only the coolant flow direction, while the other four arrows symbolize

the pipe segments. For each one of the volumes and of the segments are defined

the volume, the elevation, the length, the flow area and the hydraulics diameter.

In addition, the relative elevation between the core and the SG, the conductance

coefficients of pipes and SG are specified. In this primary circuit model the eight

pumps and the eight steam generators are simulated by only one pump and one

SG. The minimum degree of implicitness is here setted to 0.8, thus an almost

fully implicit calculations.

Here a specification is in order. Indeed, in the figure 3.2 the pump is located

in the coldest part of the primary circuit, after the SG and the cold leg, while

in the actual design of the SEALER reactor the pumps are located before the

SG in the hottest part of the primary circuit. This inconsistency in the model

is due to the fact that the design of the reactor has changed and with it also
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the pumps position. However, the influence during an accident scenario of this

different positioning of the pumps is expected to be negligible.

Continuing the description of the input file, the running parameters are:

the total transient time, the maximum number of time step, the initial and

maximum time step for the main time step and for the primary circuit time step,

the maximum change in the temperature for each heat transfer time step, the flux

and temperature convergence value and, finally, the time step intervals between

two printed outputs regarding the main parameters (temperatures, pressure,

coolant flow, etc.).

The last section is dedicated to the accident simulation that, in the case of

UTOP, is represented by an external linear reactivity insertion in 1 second, for

the ULOF scenario it is a linear coast down of the pump in 10 seconds and,

finally, for the ULOHS it is a complete loss of the power removal capabilities of

the SGs. A more detailed description of the accidents is done in chapter 5.

3.2 Serpent Code

3.2.1 General Overview

Serpent is a three-dimensional continuous-energy Monte Carlo reactor physics

burnup calculation code and like any other Monte Carlo (probabilistic) code

in the nuclear field it solves the problem of radiation transport simulating

the particles behaviour, from the birth up to their death, by sampling all the

events that they can undergo, according to defined occurrence probabilities. For

example if σc, σf , σs,i, σs,e and σT are respectively the capture, fission, inelastic

scattering, elastic scattering and total cross sections of a given material the

probabilities of occurrence for each possible kind of collision are:

Pc =
σc
σT

,

Pf =
σf
σT

,

Ps,i =
σs,i
σT

,

Ps,e =
σs,e
σT

,

Pc + Pf + Ps,i + Ps,e = 1

Using these definitions and introducing the cumulative probabilities as follow:

� P1 = Pc;
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� P2 = Pc + Pf ;

� P3 = Pc + Pf + Ps,e;

� P4 = Pc + Pf + Ps,i + Ps,e = 1;

thus generating a random number M, between 0 and 1, it is possible to determine

which type of event takes place in this way:

� if M ≤ P1 the simulated neutron is captured by the material nuclei;

� if P1 ≤M ≤ P2 the simulated neutron generates a fission;

� if P2 ≤M ≤ P3 an elastic scattering process takes place between neutron

and the nuclei,

� if P3 ≤M ≤ P4 an inelastic scattering process takes place.

This process used to determine the type of interaction can be extended also to

all particles properties (energy, angle of motion etc.).

The random numbers in a Monte Carlo code are actually pseudo-random

numbers because they are determined by generated through a suitable algorithm.

As a consequence, running twice the same simulation, despite the stochastic

character of the code, exactly the same results will be obtained.

The advantages of a Monte Carlo code with respect to a deterministic code

that uses real discretised equations are the absence of any type of spatial meshes

and energy discretization (figure 3.3). It with a probabilistic code the required

computational time for a calculation is much longer, there is a difficulty to

sample events with a very low probability of occurrence and it is possible to

evaluate only the required tallies.

In a probabilistic code it is very important to achieve results with very low

statistical errors, that means to have an high grade of precision. The parameters

on which the precision depends are:

� tally type;

� variance reduction techniques;

� number of history to run.

For this kind of error the most significant element is the number of history to

run (N), since the precision is proportional to 1√
N

: more histories (neutrons)

are ran more precise will be the result. The obvious inconvenience is the great

increase of the calculation time. The tally error might become relevant when

there is a very small tally region or a very low occurrence probability of the
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tallied event. Since in both these cases it is more difficult to get contributions to

the tally estimate. The variance reduction techniques can help to increase the

sampling efficiency in the previous cases.

In a probabilistic code the statistical errors are added to the systematic ones

that are due to these three main factors:

� the code;

� the model that simulates the physics of the problem;

� the user.

The code contribution to the systematic error might come from the uncertainties

in the data (such as the transport and reaction cross sections, Avogadro’s number,

atomic weights, etc.) or from the approximation of the mathematical models

used to solve the equations (only for deterministic code). Instead the errors in

the model are based on which kind of approximation are done for example in the

geometry description or in the number of energy groups into which the neutron

spectrum is divided. Finally, the user can be a very important source of errors

due to his inexperience or his disattention during the preparation of the input

file.

In order to obtain a good result it is necessary to reach both low statistical

and systematic errors, that means precision and accuracy. Because it is useless

to obtain a very precise result that does not represent the real behaviour of

the physical process and the same is true for a very accurate result with a not

properly precision. A deterministic code has only the systematic error.

Another important aspects that characterize Serpent are the geometry defi-

nition, the cross sections use and the Doppler routine. The geometry consists of

material cells, defined by elementary quadratic and derived macrobody surface

types. The code also provides some additional geometry features specifically

for fuel design. These features include simplified definition of cylindrical fuel

pins and spherical fuel particles, square and hexagonal lattices for LWR and fast

reactor geometries, and circular cluster arrays for CANDU fuels. The random

dispersion of microscopic fuel particles in high-temperature gas-cooled reactor

fuels and pebble distributions in pebble-bed type HTGR cores can be modeled

using geometry types specifically designed for the task.

Continuous-energy cross sections in the library files are reconstructed on a

unionized energy grid, used for all reaction modes. Macroscopic cross sections

for each material are pre-generated before the transport simulation. Instead of

calculating the cross sections by summing over the constituent nuclides during

tracking, the values are read from pre-generated tables, which is another effective

way of improving the performance.
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Figure 3.3: Comparison between a multigroup (red line) and a Monte Carlo
point-wise (black line) cross section for the U235.

A built-in Doppler-broadening preprocessor routine allows the conversion of

ACE format cross sections into a higher temperature. This capability results in

a more accurate description of the interaction physics in temperature-sensitive

applications, as the data in the cross section libraries is available only in 300 K

intervals [26].

3.2.2 Input File

The Serpent input file provides a very detailed 3 Dimensional description of the

SEALER core. It starts with the definition of the pins and of their geometry

and physical properties. They represent the elements to use to fill the other

components of the Serpent universe-based geometry model: the lattices, the cells

and the universe cells. Each pin is circular and it is made by different elements

in the radial direction. For example, a fuel pin is made of fuel (UO2), Krypton

in the gap, cladding and coolant. In addition, there is a further division in

axial levels due to the fact that the physical properties changes along the axial

development of the core. After this step, the assembly lattices are defined. They

are hexagonal and they contain the pins defined before in order to create axial

slices of assemblies for each regions in the core (fuel, reflector, shielding and

burn-up control elements). In the final step these slices are putted together to

create the entire core, but before it is needed to define the cells and the universe

cells with the purpose to reach the right radial geometry.
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The cells define, in the radial direction, the geometry of the hexcan duct that has

within it the assembly lattices defined before and outside it the coolant. Then

these cells are used to fill the universe cells, that correspond to the whole core

frame in the radial direction, but divided in axial levels. Thus these universe

cells are putted together to obtain the whole core model, to do that, before, it is

necessary to define the axial and radial dimensions of the whole core and also

the length of all the single axial level for each region (fuel, reflector, shielding,

and burn-up control elements).

The core is modeled as follow: the active zone is divided in 4 batches, that

represent the 4 channels subdivision required by the SAS4A/SASSYS-1 model,

and in 5 axial levels (figure 3.4).

Figure 3.4: Core axial cross section.

The fuel region is completed by the definition of the gas plenum, the upper and

lower insulator pellets and the lower shield inside the fuel pins (B4C). The

reflector and the shielding regions are divided in only 5 axial levels, instead

for the burn-up control elements, there is any type of division. Moreover for

all these three regions, the lower and the upper end caps are defined. In the 6

channels left empty by the withdrawn shutdown elements, there is lead with the

same properties of that one in the lower plenum. This is an approximation that

affects the Keff but not the reactivity coefficients that depend on the difference

between two Keff . As explained in the section 4.2.4, this is true for all the

reactivity coefficients with the exception of the coolant void worth that deserves



3.3. Reactivity Coefficients 35

a specific treatment with some differences. The most important of which is the

division in 5 axial levels also for the burn-up control elements in order to give a

trend at the coolant temperature in that region.

3.3 Reactivity Coefficients

A reactivity coefficient expresses the change in the core reactivity value caused

by a change in a given parameter and thus it is defined as the derivative of

reactivity with respect to that parameter:

αi =
∂ρ

∂i
(3.3)

where i is the parameter (fuel or coolant temperature, power, pressure etc.) that

affects the reactivity ρ.

The reactivity coefficients are used to assess the influence of the different

parameters on the core reactivity and its total amount determines the time

change of the neutron population, thus the reactor power (figure 3.5). A general

reactivity coefficient αi produces a negative feedback when the variation of the

parameter i gives an opposite response on the total reactivity. Therefore ∂ρ
∂i < 0

means negative feedback and ∂ρ
∂i > 0 means positive feedback.

Figure 3.5: General scheme that represents the variation mechanism of the
reactor power as a result of a perturbation.
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The core reactivity is defined as follow:

ρ =
Keff − 1

Keff
(3.4)

when the reactivity is greater than zero (Keff > 1) the reactor is supercritical,

when it is equal to zero (Keff = 1) the reactor is critical and when it is lower

than zero (Keff < 1) the reactor is sub-critical. Generally, the reactor condition

during normal operation indicates a steady state very close to the criticality

(power constant), thus the equation (3.4) can be simplified:

ρ ' Keff − 1

Keff is the effective multiplication factor and it is defined as the ratio between

number of neutrons generated in one generation divided by the sum of the

number of neutrons absorbed and leaked in the previous one. For a thermal

reactor the Keff can be expressed with the 6 factors formula:

Keff = εpfηP1P2 (3.5)

where:

� ε = number of neutrons generated by fast and thermal fissions
number of neutrons generated by thermal fissions is the fast fission

factor;

� p = number of neutrons that reach thermal energy
number of fast neutrons that start to slow down is the resonance escape

probability;

� f = number of thermal neutrons absorbed by the fuel
total number of thermal neutrons absorbed in any reactor material is the ther-

mal utilization factor;

� η = number of fast neutrons produced by thermal fission
total number of thermal neutrons absorbed in the fuel is the thermal fission

factor;

� P1 = number of fast neutrons that do not leak from reactor
number of fast neutrons produced by all fissions is the fast neutrons

non leakage probability;

� P2 = number of thermal neutrons that do not leak from reactor
number of neutrons that reach thermal energies is the thermal

neutrons non leakage probability.

For a fast reactor the meaning of some factors are slightly different while some

others are meaningless (p and P2) and the 6 factors formula becomes a 4 factors

one:

Keff = εP1fη ≈ εP1

N∑
i=1

ν
σf,i

σf,i + σc,i
(3.6)
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where:

� ε = number of neutrons generated by all fast fissions
number of neutrons generated by fast fissions in fissile material is the fast

fission factor;

� f = number of fast neutrons absorbed by the fuel
total number of fast neutrons absorbed in any reactor material is the fast uti-

lization factor;

� η = number of fast neutrons produced by fast fission
total number of fast neutrons absorbed in the fuel is the fast fission factor;

� P1 = number of fast neutrons that do not leak from reactor
number of fast neutrons produced by all fissions is the fast neutrons

non leakage probability.

Without focusing on what type of reactor is studied, what is important to know

in order to understand how a parameter like the fuel or coolant temperature

affects the change in reactivity of any reactor, is how this parameter influence

each one of the factor of the equations (3.5 or 3.6) and which is their relative

magnitude. With the purpose to better understand this concept, a general

reactivity coefficient, combining the equations (3.3), (3.4) and 3.5 and taking

advantage of the reactor criticality condition during normal operation, can be

expressed in this form:


αi =

∂

∂i

(
Keff − 1

Keff

)
=

1

K2
eff

∂Keff

∂i
' 1

Keff

∂Keff

∂i

αi '
1

Keff

∂Keff

∂i
=

1

ε

∂ε

∂i
+

1

p

∂p

∂i
+

1

f

∂f

∂i
+

1

η

∂η

∂i
+

1

P1

∂P1

∂i
+

1

P2

∂P2

∂i

(3.7)

The choice of using the 6 factors formula is just for a more general treatment of

the topic, since the 4 factors one is simply derived from it as described above.

For a typical LWR the reactivity coefficients of interest are: Doppler (fuel

temperature), moderator (moderator to fuel ratio), coolant void worth (coolant

density or temperature), pressure and power. Instead for a LFR, since there

is any type of moderator and the pressurization of the primary system is not

needed (pressure serves only to overcome the pressure drop along the primary

circuit) only Doppler and coolant void worth coefficients are of practical interest.

Besides these two, there are also other coefficients own by fast reactors, on which

it is useful to put the attention: fuel and cladding axial expansion, core radial

expansion, and control elements driveline expansion. The addition of these

parameters is essentially due to the configuration of the LFR cores: more flat

and small, with a bigger surface to volume ratio and with greater neutron mean

free path. All these things contributes to make the fast reactors more sensitive
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to geometry variations than thermal one. A further and less important addition

is the greater change in the temperatures of the core material due to the higher

heat transfer property of the lead or sodium with respect to the water.

In this work the control elements driveline expansion is not taken into account

because of their peripheral position in the core region that allows a negligible

thermal expansion effect.

The reactivity coefficients described below are presented according to their

response time, indeed the ones related to the fuel temperature are said prompt

reactivity coefficients because they have a prompt feedback (in the order of

microseconds), while the ones related to the coolant temperature are said delayed

reactivity coefficients because they have a delayed feedback (in the order of

seconds). The time on which the feedback acts is very important for safety

reason and to have more negative feedback from the prompt ones, in order to

have an immediate safety reaction in case of nuclear incident or accident, is

preferred.

3.3.1 Doppler Coefficient

The Doppler coefficient is defined as follow:

αD =
∂ρ

∂Tfuel

often the value of αD is substituted by a more practical parameter:

KD =
∂ρ

∂Tfuel
Tfuel = αDTfuel (3.8)

The Doppler coefficient is strictly related to the Doppler effect according to which

there is a wide spectrum of relative energy between monoenergetic neutrons

and the target nuclei, as a result of the vibration energy spectrum related

to the material temperature (Maxwell-Boltzmann law). The nuclei vibration

energies increase with the temperature and the cross sections broaden, and as

a consequence there is a reduction in the height of the cross sections and an

enlargement in their width (figure 3.6). This change in the cross sections shape

is due to the fact that their area must be constant because it represents the

interaction probability between the incident neutrons and the target nuclei. Like

for any other cross section, the resonance peaks in the capture cross section

undergo at this broadening effect. The change of the resonance peaks shape

causes the increment of the neutron flux and thus of the capture reaction rate,

because it enlarges the neutron spectrum that has to considered in the flux

evaluation related to that peak. It means that a fuel temperature increase in a
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Figure 3.6: Example of cross section broadening following an increase in the
temperature of the target nuclei.

material has the effect to reduce the neutron population (reactivity), since the

capture reaction rate grows and less neutrons are able to reach the thermal energy

(thermal reactor) or less neutrons are available to sustain the chain reaction

(fast reactor). Thus, as a consequence, the Doppler coefficient is negative and it

provides negative feedback. For a nuclear safety point of view this coefficient is

very important both for its intrinsically and fast response to an accident scenario.

For fast reactor, the absolute value of the cross sections are lower, with the

exception of σf for the U238, if compared with the ones of a thermal reactor,

but what is important is the relative magnitude of the capture cross section

with respect to the fission one and it is almost the same. Moreover, the Doppler

coefficient in a fast reactor has a lower value, since the neutron spectrum is

harder than the energy region for the capture resonances.

It is not already mentioned but this phenomenon induces also a rise in the

fission reaction rate and thus an increase in the core reactivity. This effect starts

to be significant only with greater enrichment in fissile material with respect

to the actual law limitation of 5% and 20%, respectively for thermal and fast

reactors. Anyway this contribution gives a very little reduction in its magnitude.

The Doppler coefficient is related to the neutron spectrum hardness so that a

harder spectrum gives lower (more positive) Doppler coefficient. For this reason

putting uranium dioxide with lower enrichment as a fuel or more quantity (less

porosity) of B4C in the burn-up control elements or simply the build up of fission

products in the fuel are all factors that bring an higher (more negative) Doppler

coefficient. The minor actinides generated during the reactor life, especially the
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americium, make it less negative due to their greater capture cross section for

the neutron with respect to the uranium.

3.3.2 Fuel Axial Expansion Coefficient

This reactivity coefficient depends on two parameters: the fuel length and the

fuel density. Indeed, a fuel temperature growth leads to an increase in the

total core height (approximation of only axial expansion) and to a consequent

reduction in the fuel density. In addition, these two contributions provide an

opposite feedback: the first gives a positive reactivity insertion and the second a

negative one as a result of the same fuel temperature increment. Their opposite

feedback is valid also for the case of fall in the fuel temperature.

Studying the two effects separately, it is observed that the gain in the fuel

length creates a new zone in which the fuel is present, while the lower density

value decreases the total mass of the fuel reducing the number of fissions.

For a good core design the second effect must be greater than the first one

in order to have an intrinsic negative feedback in case of fuel temperature rise

and it is nearly always verified without any type of particular expedient. As a

matter of fact, the reduction in the fuel density for a 1 m of active length has a

greater effect than the increase of the fuel length of about few centimetres.

3.3.3 Cladding Axial Expansion Coefficient

The cladding material (Sandvik’s 12R72 with FeCrAlY coatings) is composed

mainly by non heavy atoms and, from a neutronic point of view, they act like a

moderator. Thus, the cladding response, following a fuel or coolant temperature

increase, supplies a reduction in the involuntary moderation and an hardening in

the neutron spectrum. Like the fuel axial expansion coefficient, also this one for

the cladding is made by the contributions of the change in the material density

and length as a result of a temperature perturbation. However, the length effect

variation can be neglected with respect to the one of the density, since the change

of the moderation given by the cladding expansion or contraction is negligible

if compared with the one given by the density reduction or increase in all the

claddings.

An hypothetically diminution in the cladding density generates a decrease in

the capture cross sections (σc) and an increase in the leakages with more effort

in the periphery in both the direction radial and axial. Regarding the fission

cross sections (σf ), taking into account the fuel composition with an enrichment

of 19.9%, its trend as a function of the energy and the energy of the neutron

spectrum, both an increase and a reduction are expected. As shown in the figure

3.7, the reference energy for the neutron is a little bit lower than 1 MeV and as
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Figure 3.7: Capture and fission cross sections for the U235 and U238 with the
marker for the mean neutron spectrum energy assessed at BOC.

a consequence of a reduction in the cladding density the σ238
c is decreased and

the σ238
f is incremented, while the σ235

c and the σ235
f are both reduced.

Remembering the equation (3.6), the Keff is proportional to the ratio∑N
i=1

σf,i

σf,i+σc,i
and it is possible that a greater decrease in the σc,i can have the

effect to increase that ratio also with a reduction of σf,i. Thus, the feedback in

each channel is a combination of all these effects and their relative magnitude

decides if it is a positive or a negative one.

As a matter of fact, considering the effect of the new nuclides generation in

the fuel (fission and activation products), it leads to a more positive value for the

cladding axial expansion coefficient. This because the activation products give a

great contribution to the total capture cross section of the fuel, thus when the

spectrum becomes harder, as a result of reduction in the cladding density, there

are more neutrons that escape from these captures and therefore the neutron

population rise increasing the total reactivity. This effect is more important in

the central part of the core where the production of these isotopes is higher.

The softening in the neutron spectrum leads to have a reference starting energy

at MOC and EOC a little bit moved on the left with respect to the lines in the

figure 3.7.

3.3.4 Coolant Void Worth

The coolant void worth is defined as:

αC =
∂ρ

∂α
(3.9)

where α at the denominator is the coolant void fraction.

The coolant in a FBR deteriorates the neutron spectrum, thus a reduction

in the coolant density, caused by an increment in the temperature or by a void

formation for boiling (this latter case in LFR could happen rarely due to the
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high boiling temperature of lead but for SFR it is a real possibility), determines

an hardening in the spectrum, but with a less effort with respect to the cladding

due to the greater atomic number of the lead. This fact reduces the magnitude

in the variation of the parameters and it could promote the effect of the leakages

over the others as a result of the small core dimension.

The impact on the total reactivity is the same of that described for the

cladding axial expansion, thus this perturbation modifies the same parameters:

the ratio
∑N
i=1

σf,i

σf,i+σc,i
and the leakages. Once again what decides the sign of

total feedback is the relative magnitude between them.

The formation of new nuclides in the fuel due to the burn-up increase, leads

to a degradation of the negative feedback especially given by the generation

of americium and of the even isotopes of the plutonium. The reasons that

explain this fact are the same of those described for the cladding axial expansion

coefficient.

3.3.5 Radial Expansion Coefficient

The radial expansion coefficient is associated to the contraction and the expansion

of the core structures as a consequence of the variation in the coolant temperature.

The reasons for which a fast reactor is so sensitive to a geometry change are

the small dimension, the greater value surface to volume ratio and the high

neutrons mean free path. Moreover, since the coolant is lead and it has, like the

other heavy metal, very good heat transfer property also in case of non fluid

motion, the induced temperature variation in the structural materials can be

quite high as well as the radial expansion. Along the axial direction the coolant

temperature increases, therefore also the radial expansion of core does the same

generating the so-called flower effect, that in the framework of this project is

neglected.

As seen for the other coefficients, the reactivity tends to be greater in the

central part of the core and lower in the periphery where there are more neutrons

leakages. For this reason a radial expansion of the core moves the fuel assemblies

from a region at high reactivity to another one with lower reactivity introducing

a negative feedback. The opposite case of radial contraction instead produces a

positive reactivity insertion.

This coefficient should be independent from the type of nuclides generated

during the reactor life and also on the type of fuel enrichment and a constant

value over the reactor life in criticality conditions is expected.



Chapter 4

SAS4A/SASSYS-1 Core

Model Extension

This chapter deals with core model extension done in the SAS4A/SASSYS-1

input file. The reactivity coefficients are assessed at three different burn-up

values for the fuel that correspond to Beginning Of Cycle (BOC) 0 days and 0
MWday

kg , Middle Of Cycle (MOC) 5913 days and 19.31 MWday
kg and End Of Cycle

(EOC) 9855 days and 32.19 MWday
kg . The fuel composition at EOC is evaluated

with the hypothesis that the reactor works for 27 years at full power or for 30

years with 90% of availability. In addition, the presented data are evaluated

according to the SAS4A/SASSYS-1 input file specifics and not properly to the

rigorous definitions described in the previous chapter. For the latter case, in the

last section of the chapter there is a table that summarizes the time evolution of

the reactivity coefficients (table 4.18).

4.1 From 1-channel to 4-channel Model

This is the preliminary part of the work and it consists in the extension of the

core model from a 1-channel one to a 4-channel one. The choice of a 4-channel

model is based on core geometry and assemblies Peak Factors (PFs). As it is

possible to see in the figure 4.1, the 19 core assemblies can be subdivided in 4

channels each one with a different peak factor:

� Channel 1 = central assembly (PF=1.52)

� Channel 2 = first ring of 6 assemblies (PF=1.30)

� Channel 3 = 6 assemblies of the second ring not in touch with shutdown

elements (PF=0.88)
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� Channel 4 = 6 assemblies of the second ring in touch with shutdown

elements (PF=0.73)

Figure 4.1: Zoomed view on the 19 fuel assemblies and on the ring of 12 burn-up
control elements.

The second ring of assemblies can be divided in two different channels because the

6 shutdown elements, the azure hexagons without pins inside in figure 4.1, during

reactor normal operation are withdrawn. The space left free by them is occupied

by the lead, thus in the 6 fuel assemblies of the second ring that are in touch also

with these elements, the PF is lower due to the more leakages with respect to the

other 6 fuel assemblies that are in touch only with the burn-up control elements.

The PFs presented above are assessed for the BOC core configuration and the

approximation, that they are the same over the reactor lifetime, is made. This is

a conservative assumption, indeed as a result of the different fuel consumption

and of the withdrawal of the burn-up control elements, the PFs tend to be more

uniform along the radial direction as the reactor life increase. Their quite high

difference at BOC is a consequence of the burn-up control elements periphery

position.

4.2 Channel Dependent Reactivity Coefficients

The second and more important step consists of to calculate, with the Ser-

pent code, the channel dependent reactivity coefficients for the 4 channels, to



4.2. Channel Dependent Reactivity Coefficients 45

implement these data in the SAS4A/SASSYS-1 input file and to perform the

multi-channel transient analysis of SEALER in a much more completed and

detailed way.

The importance of the reactivity coefficients during an unprotected accident

is basic because there is no activation of both the reactor shutdown systems and

they are the only inherent feature that can prevent a serious accident development

with possible fuel and cladding damage. Thus, it is necessary to evaluate their

behaviour over the reactor life and to make sure that the core design is such

as to ensure intrinsic negative feedback following an accident initiating event.

Moreover for the ULOF scenario, it is important to establish if the natural

circulation takes place in order to cool the reactor in middle and long term.

In the following part of this chapter all the results presented for the Keff are

obtained with a statistical error of 4 pcm (σ = ±0.00004). To find this very low

value of uncertainty all the calculations are performed with this configuration:

1000000 neutrons 330 active cycles and 30 inactive cycles.

Three values of Keff with reference geometry, all the cross sections data

library for the fuel assessed at 600 K and with fuel, cladding and coolant density

at nominal values as well as fuel length and pitch between the assemblies, are

taken as reference for the three burn-up cases:
Keff600 BOC = 1.00108

Keff600 MOC = 0.99485

Keff600 EOC = 1.00596

(4.1)

Analysing these three data, it is possible to see that they are quite far from

the criticality condition (Keff = 1), in which the reactor is supposed to work

during its entire life. The reasons of this fact are multiple. The first is that the

criticality configuration for the fuel cross sections data library over the entire

life is 600 K for the lower axial level and 900 K for the remaining four, with this

configuration a lower value of Keff is obtained. The second and more effective

is the burn-up control elements position. The core model in Serpent allows to

move them only by discretised positions of 22 cm and thus it is almost impossible

to match the criticality condition. At MOC, when they are all withdrawn of

3 axial levels, there is a sub-criticality condition of about 500 pcm, if another

level of extraction is applied the results is Keff600 MOC = 1.01467. It is clear

that the correct position of the burn-up control elements, to reach the criticality,

should be in the lower part of third axial level. Regarding the Keff600 EOC ,

when all the burn-up control elements are withdrawn, the almost 600 pcm of

excess in reactivity mean that there is some margin with the purpose to extend

the reactor life without any fuel reload for brief time (3 years). Since the EOC
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fuel is assessed for 30 years at 90% of availability, this fact can be also seen as a

possibility to have a reactor that works 30 years with an availability of 100%.

The last factor that increases the values of the Keff in the equation (4.1) is the

approximation of constant coolant temperature in the channels left free by the

withdrawn shutdown elements and occupied by the burn-up control elements.

As a matter of fact, with a coolant temperature that increases along the axial

direction, the leakages grows and lower Keff values are obtained.

Regarding the latter assumption, as explained in the coolant void worth

section (4.2.4), it is not still valid for this coefficient and thus it is necessary

to take other three reference values for the Keff with a variation of the lead

temperature and of the density along the axial direction also in this core region.

The results are: 
Keff600 BOC = 1.00037

Keff600 MOC = 0.99443

Keff600 EOC = 1.00578

(4.2)

Making a comparison between the values given in the equations (4.1) and (4.2), it

can be noted a Keff reduction with the second configuration and that this drop

is decreasing over the reactor lifetime. The latter consideration is a consequence

of the neutron spectrum softening (less leakages) due to the generation of fission

products in the fuel and of the withdrawal of the burn-up control elements that

promote the moderation provided by the reflector elements.

4.2.1 Doppler Coefficient

For what it concerns this reactivity coefficient in the SAS4A/SASSYS-1 input

file one has to insert two different values for each channel, one for normal state

and one for voided state of the core. The first value is simply calculated by

changing channel by channel the fuel temperature from the reference value of 600

K to 1800 K and putting the corresponding value of Keff1800 i,j in the equation:

KDi,j =

(
Keff1800 i,j − 1

Keff1800 i,j
− Keff600 j − 1

Keff600 j

)/
log(1800/600) (4.3)

where i is the fuel channel that is at 1800 K (i=1, 2, 3, 4 or Tot), j the core

burn-up (j =BOC, MOC or EOC) and KDi,j = [pcm].

The second value is determined setting equal to zero the lead density (voided

state of the core) and evaluating the Doppler coefficient using the equation (4.3)

between the configurations in which all the fuel is respectively at 600 K and

1800 K. Then, in order to give a different value to each channel, it is multiplied
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by the ratios: Doppler coefficient of one channel divided by the total Doppler

coefficient, both assessed for the normal state of the core.

4.2.1.1 BOC

The results for Keff1800 i,BOC of each channel for normal and voided state

conditions are:

Keff1800 1,BOC = 1.00081 (4.4)

Keff1800 2,BOC = 0.99958 (4.5)

Keff1800 3,BOC = 1.00046 (4.6)

Keff1800 4,BOC = 1.00062 (4.7)

Keff1800 Tot,BOC = 0.99817 (4.8)

Keff600 Tot V OID,BOC = 0.97095 (4.9)

Keff1800 Tot V OID,BOC = 0.96824 (4.10)

Putting the previous values (4.4), (4.5), (4.6), (4.7) and (4.8) in the equation

(4.3) with also the reference value (4.1), one obtains the data presented in the

table 4.1. The last line of this table contains the data calculated for all the fuel

with a temperature of 1800 K and it has to be compared with the data of the

penultimate line, obtained summing up the values for each channel.

[pcm] Per Channel Per Assemblies (-)

KD1 -24.5 -24.5 (1)

KD2 -136.4 -22.7 (6)

KD3 -56.3 -9.4 (6)

KD4 -41.8 -6.9 (6)

KD TOTAL -259.1 -13.7 (19)

KD TOTAL -265.1 -13.9 (19)

Table 4.1: Doppler coefficient evaluated in core normal state at BOC.
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Making use of the data in the equations (4.9) and (4.10), placing them in the

equation (4.3) and remembering how to calculate the Doppler coefficient for

the voided state core condition presented above, the data of the table 4.2 are

achieved.

[pcm] Per Channel Per Assemblies (-)

KD1 -24.3 -24.3 (1)

KD2 -135.1 -22.5 (6)

KD3 -55.8 -9.3 (6)

KD4 -41.4 -6.9 (6)

KD TOTAL -262.4 -13.8 (19)

Table 4.2: Doppler coefficient evaluated in core voided state at BOC.

4.2.1.2 MOC

The results for Keff1800 i,MOC of each channel for normal and voided state

conditions are:

Keff1800 1,MOC = 0.99456 (4.11)

Keff1800 2,MOC = 0.99344 (4.12)

Keff1800 3,MOC = 0.99405 (4.13)

Keff1800 4,MOC = 0.99419 (4.14)

Keff1800 Tot,MOC = 0.99158 (4.15)

Keff600 Tot V OID,MOC = 0.97033 (4.16)

Keff1800 Tot V OID,MOC = 0.96738 (4.17)

Putting the previous values (4.11), (4.12), (4.13), (4.14) and (4.15) in the equation

(4.3) with also the reference value (4.1), one obtains the data presented in the

table 4.3. The last line of this table contains the data calculated for all the fuel

with a temperature of 1800 K and it has to be compared with the data of the
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penultimate line, obtained summing up the values for each channel.

[pcm] Per Channel Per Assemblies (-)

KD1 -26.7 -26.7 (1)

KD2 -129.9 -21.6 (6)

KD3 -73.6 -12.3 (6)

KD4 -60.7 -10.1 (6)

KD TOTAL -290.9 -15.3 (19)

KD TOTAL -301.7 -15.9 (19)

Table 4.3: Doppler coefficients assessed in core normal state at MOC.

Making use of the data in the equations (4.16) and (4.17), placing them in the

equation (4.3) and remembering how to calculate the Doppler coefficient for

the voided state core condition presented above, the data of the table 4.4 are

achieved.

[pcm] Per Channel Per Assemblies (-)

KD1 -25.3 -25.3 (1)

KD2 -123.1 -20.5 (6)

KD3 -69.8 -11.6 (6)

KD4 -57.6 -9.6 (6)

KD TOTAL -286.1 -15.1 (19)

Table 4.4: Doppler coefficients assessed in core voided state at MOC.

4.2.1.3 EOC

The results for Keff1800 i,EOC of each channel for normal and voided state

conditions are:

Keff1800 1,EOC = 1.00564 (4.18)

Keff1800 2,EOC = 1.00437 (4.19)

Keff1800 3,EOC = 1.00477 (4.20)

Keff1800 4,EOC = 1.00499 (4.21)
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Keff1800 Tot,EOC = 1.00208 (4.22)

Keff600 Tot V OID,EOC = 0.98933 (4.23)

Keff1800 Tot V OID,EOC = 0.98566 (4.24)

Putting the previous values (4.18), (4.19), (4.20), (4.21) and (4.22) in the equation

(4.3) with also the reference value (4.1), one obtains the data presented in the

table 4.5. The last line of this table contains the data calculated for all the fuel

with a temperature of 1800 K and it has to be compared with the data of the

penultimate line, obtained summing up the values for each channel.

[pcm] Per Channel Per Assemblies (-)

KD1 -28.8 -28.8 (1)

KD2 -143.2 -23.9 (6)

KD3 -107.2 -17.9 (6)

KD4 -87.3 -14.6 (6)

KD TOTAL -366.5 -19.3 (19)

KD TOTAL -350.3 -18.4 (19)

Table 4.5: Doppler coefficients calculated in core normal state at EOC.

Making use of the data in the equations (4.23) and (4.24), placing them in the

equation (4.3) and remembering how to calculate the Doppler coefficient for

the voided state core condition presented above, the data of the table 4.6 are

achieved.

[pcm] Per Channel Per Assemblies (-)

KD1 -28.1 -28.1 (1)

KD2 -140.1 -23.3 (6)

KD3 -104.8 -17.5 (6)

KD4 -85.4 -14.2 (6)

KD TOTAL -342.6 -18.0 (19)

Table 4.6: Doppler coefficients calculated in core voided state at EOC.
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4.2.1.4 Results Discussion

Comparing the data presented in the tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, it is

possible to note the increase in the negative value of the Doppler coefficient.

This trend has more effort passing from MOC to EOC and in the peripheral

channels (3 and 4). This is due to softening of the neutron spectrum over the

reactor lifetime, as a consequence of the fission products generation and also of

the greater moderation given by the reflector elements when the burn-up control

ones are withdrawn. As a matter of fact, when there is a fuel temperature

growth and a broadening of the cross sections, with a softer neutron spectrum,

the number of neutrons affected by the capture phenomenon rises and also the

negative reactivity insertion has the same behaviour.

The values for the total core Doppler coefficient presented in the table 4.1

are lower if compared with the ones for LWR and also with the others LFR

[5, 27–29]. For the first case, one can think that it is an obvious thing for the

harder neutron spectrum of a LFR with respect to a LWR, while for the second

one, the reason of that must be searched in the small dimension of the SEALER

reactor. Indeed it leads to have a smaller quantity of coolant in the core region,

thus to a smaller moderation by the lead and at the end to an harder neutron

spectrum with respect to the other LFR.

As can be seen from the results presented above, the Doppler coefficient in

the voided state is the 95−99% of the one in the normal state. This is due to the

absence of the lead and of its involuntary moderation that makes the neutron

spectrum harder. Moreover, comparing the data presented in the equations (4.1),

(4.9), (4.16) and (4.23), it is possible to understand why the drain of the pool

could be taken as an alternative second SCRAM system: negative insertion of

about 3100 pcm at BOC, 2500 pcm at MOC and 1700 pcm at EOC. The decrease

in the reactivity insertion is due to the softening of the neutron spectrum that

generates less leakages as the burn-up increase.

4.2.2 Fuel Axial Expansion Coefficient

As discussed in the section 3.3.2, the fuel axial expansion coefficient depends on

the change in fuel density and fuel length. The general formula to assess these

two contributions are presented below (equations (4.25) and (4.26)). Both are

divided by the fuel mass fraction that generates the variation in the reactivity

with the purpose to satisfy the SAS4A/SASSYS-1 input file requests, that include

also to give a value for this coefficient at each one of the 23 axial nodes in which

the core is divided. The assumption that this coefficient does not change along

the axial direction is made. Regarding the raise of the fuel axial length another

approximation is done: the uniform axial expansion of the core, as a matter of
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fact in the real case there is a different expansion based on the different fuel

temperatures in the 4 channels (different PFs). As a consequence, the equation

(4.26) refers to the whole core expansion and to evaluate the contribution of each

channel, it is necessary to divide its value by the total number of assemblies

(19) and then to multiply for the number of assemblies of the related channel

(1-6-6-6).

The values for Keff i,j in the equation (4.25) are achieved reducing the fuel

density of 5% in one channel at a time keeping constant the fuel length, while

for the values of Keff length,j in the equation (4.26), the total active length of

the fuel is increased by 5% keeping constant the fuel density.

Rfd i,j =

(
Keff i,j − 1

Keff i,j
− Keff600 j − 1

Keff600 j

)/
(α1 ·MFuel i) (4.25)

Rfh j =

(
Keff length,j − 1

Keff length,j
− Keff600 j − 1

Keff600 j

)/
(α2 ·MFuel) (4.26)

Where i represents the fuel channel (i=1, 2, 3 or 4), j the core burn-up (j =BOC,

MOC or EOC), α1 the fraction of reduction in the fuel density and α2 the

increase fraction in the fuel length. Both the α are equal to 0.05. The final value

for this coefficient is the sum of these two contributions and it is expressed in[
pcm
kgfuel

]
. The two fuel masses at the denominator are evaluated as follow:

MFuel i =

5∑
k=1

ρi,k ·NUi,k ·Afuelpin · Lk · 91 · 19

MFuel =

4∑
i=1

MFuel i

where k is the axial level (k=1,2,3,4 or 5), ρi,k the fuel density in the axial level

k of the channel i, NUi,k the percentage of Uranium nuclides in the fuel density,

Afuelpin the fuel pin area per unit of pin and Lk the axial length of each axial

level (22 cm). 91 · 19 represents the total number of fuel pins. The further

subdivision of each channel in axial levels, it is needed since at MOC and EOC

the fuel density and the percentage of uranium nuclides vary channel by channel

and axial level by axial level. Instead at BOC, the fuel has the same composition

and density, thus this subdivision is redundant.
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4.2.2.1 BOC

The results for Keff i,BOC and Keff length,BOC of each channel are:

Keff 1,BOC = 0.99902 (4.27)

Keff 2,BOC = 0.99124 (4.28)

Keff 3,BOC = 0.99531 (4.29)

Keff 4,BOC = 0.99683 (4.30)

Keff length,BOC = 1.00665 (4.31)

Putting the previous values (4.27), (4.28), (4.29), (4.30) and (4.31) in the

equations (4.25) and (4.26) with also the reference value (4.1), one obtains the

data presented in the table 4.7.

[pcm/kgfuel] Density Length Total

RF1 -31.88 0.24 -31.64

RF2 -25.64 1.42 -24.2

RF3 -14.96 1.42 -13.54

RF4 -11.01 1.42 -9.59

RF -17.53 4.51 -16.61

Table 4.7: Fuel axial expansion coefficient at BOC.

4.2.2.2 MOC

The results for Keff i,MOC and Keff length,MOC of each channel are:

Keff 1,MOC = 0.99305 (4.32)

Keff 2,MOC = 0.98582 (4.33)

Keff 3,MOC = 0.98914 (4.34)
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Keff 4,MOC = 0.99059 (4.35)

Keff length,MOC = 1.00094 (4.36)

Putting the previous values (4.32), (4.33), (4.34), (4.35) and (4.36) in the

equations (4.25) and (4.26) with also the reference value (4.1), one obtains the

data presented in the table 4.8.

[pcm/kgfuel] Density Length Total

RF1 -29.46 0.40 -29.06

RF2 -24.68 2.40 -22.28

RF3 -15.40 2.40 -13.0

RF4 -11.47 2.40 -9.07

RF -17.83 7.54 -15.56

Table 4.8: Fuel axial expansion coefficient at MOC.

4.2.2.3 EOC

The results for Keff i,EOC and Keff length,EOC of each channel are:

Keff 1,EOC = 1.00432 (4.37)

Keff 2,EOC = 0.99794 (4.38)

Keff 3,EOC = 1.00066 (4.39)

Keff 4,EOC = 1.00165 (4.40)

Keff length,EOC = 1.01153 (4.41)

Putting the previous values (4.37), (4.38), (4.39), (4.40) and (4.41) in the

equations (4.25) and (4.26) with also the reference value (4.1), one obtains the

data presented in the table 4.9.
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[pcm/kgfuel] Density Length Total

RF1 -26.97 0.25 -26.75

RF2 -21.94 1.50 -20.44

RF3 -14.23 1.50 -12.73

RF4 -11.56 1.50 -10.06

RF -16.4928 4.7013 -15.07

Table 4.9: Fuel axial expansion coefficient at EOC.

4.2.2.4 Results Discussion

Analysing the tables 4.7, 4.8 and 4.9, it can be noted that the reduction of the

fuel density has a negative feedback, while the gain in the fuel length produces

a positive reactivity insertion. Anyway, the first effect is larger and their sum

gives always a negative value, even if a little bit decreasing.

The values for both the terms of this coefficient were supposed to be slightly

less negative as time goes on due to the formation of the activation and fission

products in the fuel, instead oscillating results are found. The reason for that

behaviour is the different condition in which they are assessed: BOC and EOC

are in a supercritical configurations instead MOC is in a sub-critical one. In the

latter case with respect to the other, the same fuel axial expansion produces

a bigger positive reactivity insertion for the fuel length and a lower negative

feedback for the fuel density because it creates a new fuel zone but with a reduced

density in a system where the number of neutrons is decreasing. Since the fuel

density component has a greater value, it provides a more negative feedback.

However, the fluctuating behaviour, observed in the channel by channel analysis,

is not evident comparing only the total coefficients for the whole core in the

BOC, MOC and EOC configurations.

4.2.3 Cladding Axial Expansion Coefficient

The cladding axial expansion coefficient is assessed using the equation (4.42)

and the values for Keff i,j are calculated setting zero the cladding density one

by one in the 4 channels. Since the SAS4A/SASSYS-1 input file requires values

per unit of cladding mass, they are normalized with the total core cladding mass

(MClad). For this coefficient, contrary to the fuel axial expansion one, the effect

of the gain in the axial length is negligible with respect to the one of density

reduction.

Rc i,j =

(
Keff i,j − 1

Keff i,j
− Keff600 j − 1

Keff600 j

)/
MClad (4.42)
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Where i represents the channel (i=1, 2, 3 or 4) and j the core burn-up (j =BOC,

MOC or EOC). Rc i,j is expressed in [pcm/kgclad].

4.2.3.1 BOC

The results for Keff i,BOC of each channel are:

Keff 1,BOC = 1.00178 (4.43)

Keff 2,BOC = 1.00203 (4.44)

Keff 3,BOC = 0.99834 (4.45)

Keff 4,BOC = 0.99857 (4.46)

Keff Tot,BOC = 0.99743 (4.47)

Putting the previous values (4.43), (4.44), (4.45), (4.46) and (4.47) in the equation

(4.42) with also the reference value (4.1), one achieves the data shown in the

table 4.10. The first value in the last line is calculated summing the ones of each

channel, while the second is evaluated with all the cladding density setted to

zero.

[pcm/kgclad] Total Per Assemblies (-)

RC1 0.21 0.21 (1)

RC2 0.29 0.05 (6)

RC3 -0.83 -0.14 (6)

RC4 -0.76 -0.13 (6)

TOTAL -1.09 -1.07

Table 4.10: Cladding axial expansion coefficient at BOC.

4.2.3.2 MOC

The results for Keff i,MOC of each channel are:

Keff 1,MOC = 0.99559 (4.48)

Keff 2,MOC = 0.99676 (4.49)
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Keff 3,MOC = 0.99320 (4.50)

Keff 4,MOC = 0.99305 (4.51)

Keff Tot,MOC = 0.99390 (4.52)

Putting the previous values (4.48), (4.49), (4.50), (4.51) and (4.52) in the equation

(4.42) with also the reference value (4.1), one achieves the data shown in the

table 4.11. The first value in the last line is calculated summing the ones of each

channel, while the second is evaluated with all the cladding density setted to

zero.

[pcm/kgclad] Total Per Assemblies (-)

RC1 0.23 0.23 (1)

RC2 0.58 0.10 (6)

RC3 -0.51 -0.08 (6)

RC4 -0.55 -0.09 (6)

TOTAL -0.25 -0.29

Table 4.11: Cladding axial expansion coefficient at MOC.

4.2.3.3 EOC

The results for Keff i,EOC of each channel are:

Keff 1,EOC = 1.00681 (4.53)

Keff 2,EOC = 1.00891 (4.54)

Keff 3,EOC = 1.00553 (4.55)

Keff 4,EOC = 1.00505 (4.56)

Keff Tot,EOC = 1.00853 (4.57)

Putting the previous values (4.53), (4.54), (4.55), (4.56) and (4.57) in the equation

(4.42) with also the reference value (4.1), one achieves the data shown in the
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table 4.12. The first value in the last line is calculated summing the ones of each

channel, while the second is evaluated with all the cladding density setted to

zero.

[pcm/kgclad] Total Per Assemblies (-)

RC1 0.25 0.25 (1)

RC2 0.88 0.15 (6)

RC3 -0.13 -0.02 (6)

RC4 -0.27 -0.04 (6)

TOTAL 0.73 0.77

Table 4.12: Cladding axial expansion coefficient at EOC.

4.2.3.4 Results Discussion

Making a comparison between the data presented in the tables 4.10, 4.11 and

4.12, it can be observed that the channels 1 and 2 have a positive feedback,

while the channels 3 and 4 ensure a negative reactivity insertion. In addition,

the cladding axial expansion coefficient for the whole core, that has a negative

feedback for the BOC and less negative for the MOC configurations, becomes

slightly positive in the EOC one.

The explanation of a similar behaviour can be found analysing the different

relative magnitude in the parameters variation, as a consequence of the same

perturbation (a neutron spectrum hardening due to the reduction in the cladding

density), between the increment in the ratio
∑N
i=1

σf,i

σf,i+σc,i
and in the leakages

term. As it is possible to see in the table 4.13, in the central part of the core

(channels 1 and 2) prevails the positive feedback related to the increment in

the cross sections ratio with a lower decrease in the fast neutrons non leakage

probability, while in the periphery (channels 3 and 4) happens the opposite

and the leakages term outnumbers the positive reactivity insertion leading to

a negative feedback. Moreover, in the third channel there are more leakages

than in the fourth. It is a consequence of the different neutron energy in the

two channel that is larger for the third.

In order to obtain the data in the table 4.13, these assumptions are done: ε=1.2,

ν=2.51, the value for the cross sections ratio coming from the product f · η is

calculated putting detectors [30] in the fuel with the purpose to evaluate the

cross sections and the value of P1 is assessed using the formula (3.6) in which is

the only unknown. The Keff for each channel is found reducing the cladding

density of the 20%. The positive reactivity insertion in the channel 1 and the

very low negative one in the others for factor P1 are due to the approximation
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[pcm] f · η Change P1 Change

Reference 1.49159 - 0.55885 -

Channel 1 1.49184 25 0.55887 +2

Channel 2 1.49297 23 0.55849 -6

Channel 3 1.49252 15.5 0.55821 -10.7

Channel 4 1.49230 11.8 0.55827 -9.7

Table 4.13: Comparison between the variation in the product f · η and in the
fast neutrons non leakage probability foe the cladding axial expansion coefficient
at BOC.

of constant values for ε and ν. Since the gain in the energy leads to a greater

values for these factors, it implies a lower value for P1. Anyway these results

have the purpose to show how the values change between them and they have to

be seen in relative terms and not in an absolute framework.

At BOC the negative feedback related to the leakages is higher than the

positive one linked to the product f · η and this coefficient for the whole core is

negative, but with the burn-up increase this situation is reversed and at EOC it

becomes slightly positive because of its more positive value in each channel. It is

a result of the softening of the neutron spectrum that leads to a lower negative

effort by the leakages but also of activation products generation that increment

the total capture cross section. As a consequence, when the capture reaction

rate becomes lower, due to the hardening in the neutron spectrum, there are

more neutrons available and the positive feedback is larger. Thus, the ratio∑N
i=1

σf,i

σf,i+σc,i
becomes higher for the greater reduction of σc,i with respect to

what happens for σf,i.

4.2.4 Coolant Void Worth

Before to start to describe how this coefficient is calculated and to present the

results acquired, it is important to explain that for the coolant void worth it is

necessary to use a non constant coolant temperature along the axial direction

in the ring of 18 assemblies that are between the fuel region and the reflector

one (figure 2.3). As a matter of fact, the comparative calculations done between

the two temperature configurations have shown that it is the only coefficient

in which there is an appreciable and not negligible change in its values. The

reason for this behaviour is not totally clear but it is probably attributable to

the SEALER design and to its high sensitivity at the leakages term due to the

quite large surface to volume ratio.

The SAS4A/SASSYS-1 input file requires to insert values per unit of coolant
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mass that causes the reactivity change. To determine the coolant void worth,

the lead density is reduced by 20% from the nominal value in each channel and

axial level, according to the updated Serpent core model. Proceeding on this

way, one acquires 5 different constant values for each one of the 4 channels. With

the purpose to obtain a more realistic dependence of the coolant void worth with

respect to the axial direction, it is possible to make a regression of these data

and to find a different value for each one of the 23 axial nodes that describe

the related feedback in the SAS4A/SASSYS-1 model. The general formula to

calculate the coolant void worth is:

ρCi,j,k =

(
Keff i,j,k − 1

Keff i,j,k
− Keff600 j − 1

Keff600 j

)/
(α ·MLead i,k) (4.58)

where i represents the fuel channel (i=1, 2, 3 or 4), j the core burn-up (j =BOC,

MOC or EOC), k the axial level along the core axis (k=1,2,3,4 or 5) and

ρCi,j,k = [ pcm
kglead

]. MLead i,k is assessed as follow:

MLead i,k = Aflow ·Npin · L · ρlead i,k

where Aflow is the coolant flow area per unit of pin, Npin the total number of

pin, L the axial length of each axial segment and ρlead i,k the density of the lead

in the axial level k of the channel i.

4.2.4.1 BOC

The results for Keff i,BOC,k of each axial level and channel are outlined in the

table 4.14. In the figure 4.2 the regression of these data in each channel is shown,

while in the figure 4.3 the comparison between the regressed data of the each

channel is presented.

[pcm] Channel 1 Channel 2 Channel 3 Channel 4

Axial level 1 1.00023 0.99998 1.00005 1.00012

Axial level 2 1.00032 1.00021 0.99983 0.99985

Axial level 3 1.00038 1.00025 0.99963 0.99980

Axial level 4 1.00036 1.00015 0.99992 0.99993

Axial level 5 1.00030 1.00001 1.00010 1.00013

Table 4.14: Keff values for the coolant void worth in each channel and axial
level at BOC.



4.2. Channel Dependent Reactivity Coefficients 61

Figure 4.2: Regression of the coolant void worth values for the 4 channels at
BOC.

Figure 4.3: Trend comparison for the coolant void worth in the 4 channels along
the axial direction at BOC.

4.2.4.2 MOC

The results for Keff i,MOC,k of each axial level and channel are outlined in the

table 4.15. In the figure 4.4 the regression of these data in each channel is shown,

while in the figure 4.5 the comparison between the regressed data of the each

channel is presented.
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[pcm] Channel 1 Channel 2 Channel 3 Channel 4

Axial level 1 0.99431 0.99393 0.99407 0.99411

Axial level 2 0.99436 0.99436 0.99398 0.99399

Axial level 3 0.99445 0.99451 0.99395 0.99394

Axial level 4 0.99444 0.99429 0.99402 0.99397

Axial level 5 0.99430 0.99411 0.99411 0.99425

Table 4.15: Keff values for the coolant void worth in each channel and axial
level at MOC.

Figure 4.4: Regression of the coolant void worth values for the 4 channels at
MOC.

Figure 4.5: Trend comparison for the coolant void worth in the 4 channels along
the axial direction at MOC.
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4.2.4.3 EOC

The results for Keff i,EOC,k of each axial level and channel are outlined in the

table 4.16. In the figure 4.6 the regression of these data in each channel is shown,

while in the figure 4.7 the comparison between the regressed data of the each

channel is presented.

[pcm] Channel 1 Channel 2 Channel 3 Channel 4

Axial level 1 1.00573 1.00544 1.00552 1.00559

Axial level 2 1.00589 1.00577 1.00547 1.00554

Axial level 3 1.00588 1.00591 1.00551 1.00550

Axial level 4 1.00586 1.00589 1.00551 1.00557

Axial level 5 1.00574 1.00552 1.00553 1.00564

Table 4.16: Keff values for the coolant void worth in each channel and axial
level at EOC.

Figure 4.6: Regression of the coolant void worth values for the 4 channels at
EOC.
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Figure 4.7: Trend comparison for the coolant void worth in the 4 channels along
the axial direction EOC.

4.2.4.4 Results Discussion

In the figures 4.3, 4.5 and 4.7 the results for the coolant void worth with the

new temperature configuration are shown. Putting the attention on the BOC

configuration results (figure 4.3), it is possible to note that all the channels

give negative feedback, with the central channels (1 and 2) that have a concave

trend and with the peripheral channels (3 and 4) that have a convex one. This

is due to the different dependence on the parameters, as a result of the same

perturbation. The little hardening of the neutron spectrum, due to the decrease

in the involuntary moderation of the coolant, leads to a gain in the leakages, with

more effort in the core periphery (axial levels 1 and 5 and channels 3 and 4), and

in the ratio
∑N
i=1

σf,i

σf,i+σc,i
. The latter fact is a consequence of the gain in the

σ238
f and in the fall of the σ238

c that have more effort than the reduction in both

σ235
f σ235

c . In the central channels (1 and 2) the gain of this ratio is greater than

that in the peripheral ones (3 and 4), while the increase in the leakages, that is

higher in magnitude and has on opposite behaviour with respect to the cross

sections ratio, explains the negative feedback and the combination of these two

contributions clarifies the different concavity. The table 4.17 shows the results

of a reduction of the lead density of 20% in each channel for the product f · η
(≈ ν

∑N
i=1

σf,i

σf,i+σc,i
) and the fast neutrons non leakage probability (P1). It can

be seen that the increment in the product is proportional to neutron energy in

the channels, while the leakages are more affected by the radial position, even if

the value in the third channel is larger than the one in the fourth. This is due to

the higher neutron energy and for the same reason together with the leakages at

the top and bottom of the core, the channel 1 has the biggest negative variation

for the factor P1.
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[pcm] f · η Change P1 Change

Reference 1.49159 - 0.55885 -

Channel 1 1.49197 38 0.55857 -28

Channel 2 1.49340 30.2 0.55766 -19.8

Channel 3 1.49285 21 0.55720 -27.5

Channel 4 1.49252 15.5 0.55750 -22.5

Table 4.17: Comparison between the variation in the product f · η and in the
fast neutrons non leakage probability foe the coolant void worth at BOC.

In order to obtain the data in the table 4.17 these assumptions are done: ε=1.2,

ν=2.51, the value for the cross sections ratio coming from the product f · η is

calculated putting detectors [30] in the fuel with the purpose to evaluate the

cross sections and the value of P1 is assessed using the formula 3.6 in which now

is the only unknown.

Analysing the development of this coefficient over the reactor life (figure 4.8),

it is observed that in the central part of the core (axial levels 2,3 and 4) there are

a more positive values. This is a result of the activation products generation, like

plutonium fertile isotopes, americium and neptunium that, with their capture

cross sections, increase the capture reaction rate. Another contribution is given

by the fission products that allow a greater moderation of the neutrons generating

a softer spectrum. As a result, a raise in the neutron spectrum, following a

reduction in coolant density, gives lower neutron captures and thus a more

positive coolant void worth because it provides an higher gain in the product

f · η as seen in the case of the cladding axial expansion.

Regarding the bottom and the top of the core (axial levels 1 and 5), also

in these core regions, to find less negative values at MOC and EOC as a result

of the softer neutron spectrum and thus to the less effort of the leakages was

expected. Instead as shown in the figure 4.8, there is a fluctuating trend with a

more negative value at MOC and a more positive one at EOC with respect to

BOC. Once again this fact can be explained with the non criticality condition of

the three configuration.

Despite the positive value for the coolant void worth in the central channel

and in the center part of the second in the EOC scenario, the high leakages

effect, due to small dimension of the core, provides a whole core value that is

negative. The change in the concavity in the figure 4.8 between BOC, MOC and

EOC is due to the decreasing effect of the leakages and to the increase in the

growth of the cross sections ratio.

In the figure 4.9 also the data obtained with the old configuration, used for
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all the other coefficients, are presented. This comparison is due with the purpose

to understand the influence of the new temperature trend in the ring of control

elements (burn-up and shutdown) in the assessment of this reactivity coefficient.

It can be seen that with the new configuration there is a gain in the negative

feedback for the whole core at BOC, while for the MOC and EOC there is a

more positive value for the coolant void worth.

Figure 4.8: Comparison of the whole core coolant void worth in the three
configurations of BOC, MOC and EOC.

Figure 4.9: Coolant void worth comparison between the old and the new tem-
perature configuration in the ring of burn-up and shutdown elements.

4.2.5 Radial Expansion Coefficient

For this coefficient, the approximation that all the core expands in the radial

direction with the same amplitude is made, neglecting the core flower effect. As

a matter of fact in the reality, the radial expansion increases along the axial

direction because of the coolant temperature gain. This approximation can be
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accepted because of the very low ∆T between the outlet and the inlet coolant

temperature that characterizes the SEALER reactor (∆ ' 40 �). The values

for Keff re j are assessed increasing the nominal value of the pitch between the

assemblies of 5%. In the SAS4A/SASSYS-1 input file, only one value valid for

all the core calculated with the equation (4.59), is inserted:

Cre j = β ·
(
Keff re j − 1

Keff re j
− Keff600 j − 1

Keff600 j

)/
∆TCI (4.59)

where j is the core burn-up (j =BOC, MOC or EOC), β the total effective

delayed neutron fraction (β = 0.00717) and ∆TCI = ε/αSS316L, with ε = 0.05

as percentage gain in radial dimension and αSS316L = 1.8 · 10−5 as thermal

expansion coefficient for stainless steel. Cre j is expressed in [$/K].

4.2.5.1 BOC

For this case, Keff re,BOC = 0.98667 is found and including it in the equation

(4.59) together with the reference value (4.1), one obtains:

Cre,BOC = −75.03 [$/K]

4.2.5.2 MOC

For this case, Keff re,MOC = 0.97954 is found and including it in the equation

(4.59) together with the reference value (4.1), one obtains:

Cre,MOC = −80.79 [$/K]

4.2.5.3 EOC

For this case, Keff re,EOC = 0.99207 is found and including it in the equation

(4.59) together with the reference value (4.1), one obtains:

Cre,EOC = −71.58 [$/K]

4.2.5.4 Results Discussion

The feedback of the core radial expansion is negative with an oscillating evolution.

The first thing is a result of the less reactivity zone in which the fuel assemblies

are located after the radial expansion, while the second one is a consequence of

the different conditions in which these three values are evaluated. Indeed at BOC

and EOC the reactor is supercritical, while at MOC it is sub-critical (equation

(4.1)). When a reactor is supercritical the neutron population is continuously

increasing and a fixed core radial expansion produces a less negative feedback
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with respect to the same one that happens in a sub-critical condition in which

the neutron population is continuously decreasing. For a criticality condition

this coefficients is expected to be flat over the entire reactor life.

4.3 Reactivity Coefficients Recap

The table presented below (table 4.18) summarizes the values, calculated with

the rigorous definition and not according to the SAS4A/SASSYS-1 requests, of

each reactivity coefficient in the three analysed configurations: BOC, MOC and

EOC.

Parameters BOC MOC EOC Errors

KD[pcm] -259.1 -290.9 -366.5 ±8.0

αFuel[
pcm
K

] -0.3268 -0.2942 -0.2740 ±1.8 · 10−3

αCoolant[
pcm
K

] -1.3086 -1.1638 -0.5853 ±2.02 · 10−2

αCladding[pcm
K

] -0.1296 -0.0288 0.0886 ±2.9 · 10−3

αRadial[
pcm
K

] -0.5188 -0.5512 -0.5001 ±2.0 · 10−3

Table 4.18: Summary of the reactivity coefficients development over the reactor
lifetime.

The time evolution of the reactivity coefficients (more negative value for the

Doppler and more positive values for all the other coefficients) is due to the

activation products generation in the fuel that increase the capture cross sec-

tion during normal operation and to the softening of the neutron spectrum as

consequence of the withdrawal of the burn-up control elements (more reflection

given by the reflector elements) and of the fission products formation in the fuel.

Regarding the radial expansion coefficients and its fluctuating time evolution,

this is due to the supercritical condition of the BOC and EOC scenarios and

to the sub-critical one of the MOC. With a criticality condition, it should be

constant over the reactor life. The errors shown in the last column are the same

for the three analysed configuration of each reactivity coefficient.



Chapter 5

Transient Analysis

In this chapter will be outlined the results of the multi-channel transient simula-

tions with the SAS4A/SASSYS-1 code under the three unprotected accidents of

over power (UTOP), loss of flow (ULOF) and loss of heat sink (ULOHS). An

unprotected accident consists in an initiator event such as a component failure

or an external event that causes a deviation from the steady state condition and

where both the reactor shutdown systems for some reasons are unable to operate.

In a such dangerous situation, only a properly reactor design can provide inherent

features (reactivity feedback given by the reactivity coefficients) able to prevent

a damage to the core or to the reactor systems. The simulations are performed

in three different configurations over the reactor life BOC, MOC and EOC.

From a nuclear safety point of view the two main important parameters to

point out are the fuel and the cladding temperatures, the latter must be always

less than safety limit setted for SEALER at 1200 K.

In the following chapter when it will speak about the axial expansion coeffi-

cient it means the sum of both the contributions given by fuel and cladding.

5.1 Unprotected Transient of Over Power (UTOP)

The over power transient happens when, starting from the steady state condition

of equal power (generated and removed) from the reactor core, there is an

increment in the generated one (fission power) keeping constant the removed

one. It leads to an unbalanced condition in the core with an increase in the

fuel, cladding and coolant temperatures controlled by the intrinsic core feedback.

This kind of accident can be caused by an unintentional extraction of one or

multiple burn-up control elements and for this reason it is more effective and

potentially dangerous at BOC, when they are totally inserted in the core. This

accident at BOC is simulated by a linear reactivity insertion of 0.5 $ in 1 second.
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This reactivity worth is chosen under the hypothesis that only one burn-up

control element can be suddenly withdrawn. Indeed, with the purpose to limit

the dangerousness of such an event, the number of burn-up control elements (12)

is selected in order to give at each element a worth equal to 0.5 $.

At MOC the linear reactivity insertion has a worth of 0.25 $ because of the

burn-up control elements position inside the core. Since they should be half

inserted, the accident following an unexpected withdrawal produces a reactivity

insertion that is the half of the case at BOC. At EOC all the burn-up control

elements are withdrawn and it is impossible to have an UTOP.

5.1.1 BOC

Since it is an unprotected accident, the reactor power behaviour is controlled

by the reactivity feedback (net reactivity), that in their turn, depend on the

reactivity coefficients calculated in the previous chapter and on the fuel and

coolant temperatures, that in their turn, depend on the reactor power. It is

clear that all these parameters are related to each others and in order to avoid

confusion, it is needed to define the right relationship of cause and effect between

them. The initiator event is a positive reactivity insertion whereby the net

reactivity variation is the cause, the power change is the first effect followed by

the fuel and the coolant temperatures one (second effect) and by the modification

of the reactivity feedback values (third effect). At this point, the impact of the

third effect on the primary cause (net reactivity) is evaluated and the assessment

of the parameters with the properly order is restarted.

To understand the accident development, it is necessary to analyse and to

compare the graphs of peak temperatures (figure 5.2), coolant temperatures

(figure 5.3), normalized total power (figure 5.4) and reactivity (figure 5.6). Below

also the figure of the peak heights (figure 5.1) and of the inverse period (figure

5.5) are shown.

After 100 seconds of steady state, there is the external reactivity insertion

of 0.5 $ and the power undergoes a sharp increase. Also the fuel and coolant

temperatures start to grow (figure 5.2 and figure 5.3), but with different trends

and time lines. The first rises faster and with greater magnitude and it gives a

strong negative prompt reactivity insertion, related to the negative feedback of

the Doppler and of the axial expansion (respectively green and black lines in

figure 5.6), that counterbalances and turns around the power sharp gain. During

this phase, also the feedback that depend on the coolant temperature (delayed

feedback), provide negative reactivity insertions (pink and yellow lines in figure

5.6), but their values are lower because the lead temperature needs more time to

appreciate the change (the heat power generated in the fuel has to be transferred
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to the coolant). The power drop, due to the net reactivity decrease, leads to even

smaller increment (more flat derivative) of the temperatures up to which also

these start to fall, always with the properly time lines. Since all the reactivity

coefficients in the BOC configuration have a negative feedback, it brings to a

little positive reactivity insertion with a raise in the net reactivity (figure 5.6).

It is followed by a new small power increase (figure 5.4) that produces a second

rise in the fuel and coolant temperatures that, in their turn, generate a more

negative values for the reactivity feedback and at the end the net reactivity

starts to decline again.

This continuous gain and drop of the net reactivity, with the related effects

described above, is increasingly damped each time until a new reactor steady

state condition is reached with the net reactivity equal to zero and a reactor

power equal to 8 MWth. This new steady state configuration, although it has

the same thermal power of the initial one, provides greater fuel and coolant

temperatures because it is necessary to counteract the external positive reactivity

insertion with the reactivity feedback. As a result, also the cladding and the core

structures operate at an higher temperature (≈200 K figure 5.2) with respect

to operating limits specified in the chapter 2 (for the cladding 450�). It could

lead to some problems related to the enhancement of the corrosion and erosion

phenomena especially for the cladding and the SGs materials.

Focusing the attention on the figure 5.6, it can be noted that the axial

expansion and the Doppler feedback are the main responsible for the peak

temperatures, while for the long term framework the core radial expansion

becomes important as the axial one.

The data for the peak parameters in the table 5.1 show that there is a margin

of 200 K for the PCT and of about 1100 K for the fuel before to start to melt

in the hottest point, thus the SEALER design provides an excellent feedback.

Regarding the time of the peak temperatures, it arrives before the one in the

fuel with respect to the cladding.

Peak Parameters Fuel Center Cladding

Temperature [K] 2002.5 999.9

Height [node number] 14 23

Time [s] 162.6 215.4

Table 5.1: Fuel and cladding peak parameters under UTOP transient at BOC.
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Figure 5.1: Peak heights time trend under UTOP transient at BOC.

Figure 5.2: Peak temperatures time trend under UTOP transient at BOC.

Figure 5.3: Coolant temperature time trend under UTOP transient at BOC.
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Figure 5.4: Total power time trend under UTOP transient at BOC.

Figure 5.5: Inverse period time trend under UTOP transient at BOC.

Figure 5.6: Reactivity contributions time trend under UTOP transient at BOC.
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5.1.2 MOC

For what it concerns the UTOP scenario at MOC, the physics that explains that

accident behaviour is the same. As presented in the main parameters graphs that

follow the same trends of the ones presented above for the BOC configuration

(figures 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13). The only things that change

are the relative importance of the reactivity feedback and the peak parameters

values. As a matter of fact, there is an external reactivity insertion that is the

half of the previous one and since the reactivity coefficients are almost the same,

all the temperatures (peak and long term) and the power peak are lower. It

means that this type of accident is less dangerous as the reactor lifetime grows.

It is confirmed by the data in the table 5.2, that if compared with ones for the

BOC scenario give almost 150 K less for the PCT and about 700 K less for

the fuel center temperature. In addition, the power peak during this transient

scenario is a little bit more than the half of that during the UTOP transient at

BOC: 23 MWth versus 45 MWth.

Comparing the two reactivity figures 5.6 and 5.13, it is possible to see that

the peak temperatures values are controlled by the reactivity feedback related

to the fuel temperature (black and green lines in the figure 5.13) and that the

difference in the Doppler and axial expansion feedback coefficient is became lower

thanks to their time evolution (more negative the Doppler and less negative the

axial expansion). In a long term analysis the radial expansion is became more

important than the axial one while the coolant decreased its negative feedback.

The same problem, regarding the corrosion and erosion enhancement due

to the greater operating temperature for the cladding and the core structures,

discovered for the BOC scenario, is valid for this transient even if with a less

effort (≈100 K compared to ≈200 K of the BOC configuration).

Peak Parameters Fuel Center Cladding

Temperature [K] 1339.7 867.1

Height [node number] 14 23

Time [s] 196.8 265.8

Table 5.2: Fuel and cladding peak parameters under UTOP transient at MOC.
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Figure 5.7: Peak heights time evolution under UTOP transient at MOC.

Figure 5.8: Peak temperatures time evolution under UTOP transient at MOC.

Figure 5.9: Coolant temperature time evolution under UTOP transient at MOC.
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Figure 5.10: Total power time evolution under UTOP transient at MOC.

Figure 5.11: Decay heat power time evolution under UTOP transient at MOC.

Figure 5.12: Inverse period time evolution under UTOP transient at MOC.
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Figure 5.13: Reactivity contributions time evolution under UTOP transient at
MOC.

5.2 Unprotected Loss Of Flow (ULOF)

The loss of flow accident is a consequence of an unbalanced condition between

generated and removed power in the core induced by a reduction of the heat

removal capabilities due to the loss of coolant flow. This kind of accident can be

the result of a Station Black Out (SBO) or by any other cause that implies the

loss of all the pumps simultaneously. It is simulated with a linear coast down

of all the eight pumps in 10 seconds, with the purpose to reproduce the inertia

effect of the impeller. Contrary to the UTOP, it could happen in all the three

studied conditions over the reactor life and its evolution time is much longer.

As a matter of fact, it requires 8 hours simulation to reach a stability condition

with respect to less than 40 minutes required by the UTOP. During this accident

development, it is really important to put besides the intrinsic negative reactivity

feedback the establishment of a properly natural circulation, in order to ensure

a minimum level of heat removal from the core.

5.2.1 BOC

Before to start to analyse the accident behaviour and the parameters trends, it

is important to have clear in mind which are the phenomena that characterize

the accident and which is their cause-effect relationship, as done before for the

UTOP transient.

Here the initiator event is the loss of coolant flow (cause), followed by an

increase in the fuel and coolant temperatures (first effect) that produces a

negative reactivity insertion and thus a reduction in the net reactivity (second

effect). It leads to a fall in the generated power with a consequent decrease in

the fuel and coolant temperatures (third effect) that induces a positive reactivity
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insertion and an increment in the power and in the temperatures. After awhile,

the gain in the coolant temperature creates the right condition of difference in

the coolant density between the core and the SG and the natural circulation

enhances the mass flow rate, already ensured by this process. When it happens

the heat removal is increased and the temperatures start to decrease again

(fourth effect). It brings a gain in the net reactivity and in the generated power

that produces the increment in the temperatures and the natural circulation

is enhanced again. These cyclic processes go on until the reactor reaches the

equilibrium condition where the coolant mass flow is ensured by the natural

circulation.

The accident development is explained with the help of the figures 5.14, 5.15,

5.16, 5.17, 5.18, 5.19 and 5.20 that show respectively the peak heights, the peak

temperatures, the coolant mass flow, the coolant temperatures, the normalized

total power, the inverse period and the reactivity.

Analysing the coolant mass flow figure, it can be noted that after 100 seconds

all the pumps are coasted down and there is a sharp drop that generates an

increase in the fuel and coolant temperatures (figures 5.15 and 5.17). It produces

a negative reactivity insertion and the power starts to decrease with a consequent

effect on the temperatures that after awhile begin to decrease too. The mass

flow trend is counterbalanced for a few minutes by a first gain in the natural

circulation mechanism. The short time (more or less half a minute) is due to the

sharp increase and decrease in the coolant temperature. The coolant mass flow,

after this little increment, continues its falling trend until it reaches an almost

constant value determined only by natural circulation process.

The evolution of the temperatures produces a change in the net reactivity

that begins to surge even if the radial expansion contribution continues to have a

declining behaviour. Indeed, it depends on the coolant inlet temperature and, as

it is possible to see in the figure 5.17, the first maximum is reached in delay with

respect to the outlet temperature and for this reason also its related feedback

has a delayed behaviour that slows the growth of the net reactivity and thus the

one of the reactor power and of all the temperatures.

The first positive peak in net reactivity after 4500 s has the effect to produce

a peak also in the generated power and in the temperatures. Since the time

of growth in coolant temperature is larger than in the first peak, the natural

circulation is enhanced with more effort and, as it can be noted in the coolant

mass flow figure, there is a little increase in the coolant mass flow. It leads to

a gain in the removed power from the reactor core that creates a reduction in

the fuel and coolant temperatures that, in their turn, generate a drop in the net

reactivity and a reduction in the natural circulation mechanism.

At this point of the transient (7000 s), another cycle of gain and drop of
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all the parameters and of the natural circulation process starts with the same

behaviour of the previous one with the only exception that is damped. This series

of oscillating cycles for the main parameters continues, even if each time more

damped, until when the new reactor equilibrium condition is reached. The new

steady state configuration provides a lower thermal power, around the 8% of the

initial one (figure 5.18), that is equal to removed power ensured by the natural

circulation of the coolant. In these final conditions the values of the cladding

temperature are slightly higher (only few Kelvin ≈ 5-6 K) than those before the

transient and it does not lead to a considerable gain in the corrosion and erosion

phenomena of the materials, like seen before under the UTOP transient.

Making a comparison between the reactivity figures of the UTOP and of the

ULOF transients both assessed at BOC (figures 5.6 and 5.20), it can be observed

that, in this accident scenario, the coolant void worth has a greater impact on the

peak temperatures than the Doppler. It is a consequence of the lower variation

in the fuel temperature, during the ULOF accident, that reduces the negative

feedback of its related coefficients. Anyway the axial expansion remains the

most important feedback for the peak values. Although the delayed development

of the radial expansion feedback, due its proportionality to the coolant inlet

temperature, it is the main feedback in the long term, where the contribution to

the net reactivity related to the fuel temperature become positive.

Moreover, analysing the peak parameters tables 5.1 and 5.3, it is noted that

the peak temperatures for both fuel center and cladding are much lower under

the ULOF transient. It is a foreseen thing, based on the different type of accident.

During the UTOP scenario there is a peak in the fission power that increases

strongly the temperatures, especially the fuel one, while in the ULOF accident

the generated power is always decreasing. In addition, another interesting thing

is the difference in the peak times. As a matter of fact, the UTOP is a more

fast transient but the temperature peaks happen later with respect to the ULOF

because of the power peak absence during the latter accident.

Peak Parameters Fuel Center Cladding

Temperature [K] 955.8 889.5

Height [node number] 19 23

Time [s] 150.5 147.5

Table 5.3: Fuel and cladding peak parameters under ULOF accident at BOC.
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Figure 5.14: Peak heights time trend under ULOF accident at BOC.

Figure 5.15: Peak temperatures time trend under ULOF accident at BOC (top),
with a zoomed view on the first minutes (bottom).
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Figure 5.16: Core flow time trend under ULOF accident at BOC (top), with a
zoomed view on the first minutes (bottom).

Figure 5.17: Coolant temperature time trend under ULOF accident at BOC
(top), with a zoomed view on the first minutes (bottom).
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Figure 5.18: Total power time trend under ULOF accident at BOC.

Figure 5.19: Inverse period time trend under ULOF accident at BOC (top), with
a zoomed view on the first minutes (bottom).
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Figure 5.20: Reactivity contributions time trend under ULOF accident at BOC
(top), with a zoomed view on the first minutes (bottom).

5.2.2 MOC

As it was said for the UTOP, the mechanisms that control the time evolution of

the accident are the same whatever its moment of occurrence over the reactor

lifetime, thus the considerations done for this transient at BOC are still valid

for the MOC and EOC configurations. Examining the tables 5.3 and 5.4, it is

possible to notice that the peak temperatures are slightly higher, while the time

of the peaks are practically the same. The reasons for this little gain in the peak

values are the marginally decrease in the reactivity coefficients negative values,

the non time dependent initial event worth and the addition of the decay heat.

In the figure 5.28, it can be seen the reduction of the coolant void worth negative

feedback and the increase of the Doppler one that becomes more important,

contrary to what is expressed during transient at BOC (figure 5.20). The axial

expansion continues to be the most important feedback for the peak values and

the same valid for the radial expansion in the long term framework.
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Peak Parameters Fuel Center Cladding

Temperature [K] 960.7 892.4

Height [node number] 19 23

Time [s] 151.5 148

Table 5.4: Fuel and cladding peak parameters under ULOF accident at MOC.

Figure 5.21: Peak heights time trend under ULOF accident at MOC.

Figure 5.22: Peak temperatures time trend under ULOF accident at MOC (top),
with a zoomed view on the first minutes (bottom).
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Figure 5.23: Core flow time trend under ULOF accident at MOC (top), with a
zoomed view on the first minutes (bottom).

Figure 5.24: Coolant temperature time trend under ULOF accident at MOC
(top), with a zoomed view on the first minutes (bottom).
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Figure 5.25: Total power time trend under ULOF accident at MOC.

Figure 5.26: Inverse period time trend under ULOF accident at MOC (top),
with a zoomed view on the first minutes (bottom).
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Figure 5.27: Decay heat power time trend under ULOF accident at MOC.

Figure 5.28: Reactivity contributions time trend under ULOF accident at MOC
(top), with a zoomed view on the first minutes (bottom).
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5.2.3 EOC

The accident development is shown in the figures 5.29, 5.30, 5.31, 5.32, 5.33,

5.34, 5.35 and 5.36. In the EOC scenario the ULOF accident gives a little

bit higher peak temperatures for the cladding and the fuel (table 5.5). It is

due to the evolution of the reactivity coefficients that decrease their values

(except the Doppler) giving a less negative core feedback. As shown in the figure

5.36, the Doppler coefficient has a little bit more negative feedback of the axial

expansion while the coolant void worth has a quite high reduction. All the other

considerations done before for this accident and its behaviour in the BOC and

MOC configurations are still valid.

Peak Parameters Fuel Center Cladding

Temperature [K] 966.1 895.7

Height [node number] 19 23

Time [s] 152 148

Table 5.5: Fuel and cladding peak parameters under ULOF accident at EOC.

Figure 5.29: Peak heights time trend under ULOF accident at EOC.
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Figure 5.30: Peak temperatures time trend under ULOF accident at EOC (top),
with a zoomed view on the first minutes (bottom).

Figure 5.31: Core flow time trend under ULOF accident at EOC (top), with a
zoomed view on the first minutes (bottom).
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Figure 5.32: Coolant temperature time trend under ULOF accident at EOC
(top), with a zoomed view on the first minutes (bottom).

Figure 5.33: Total power time trend under ULOF accident at EOC.
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Figure 5.34: Decay heat power time trend under ULOF accident at EOC.

Figure 5.35: Inverse period time trend under ULOF accident at EOC (top), with
a zoomed view on the first minutes (bottom).
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Figure 5.36: Reactivity contributions time trend under ULOF accident at EOC
(top), with a zoomed view on the first minutes (bottom).

5.3 Unprotected Loss Of Heat Sink (ULOHS)

The loss of heat sink accident is a result of a total loss of removed power from the

reactor core due to the completely loss of the heat removal capabilities following

an unavailability of the SGs. When such an event happens the only way to

remove the core power is the ultimate heat sink that is a radiative heat exchange

between the vessel and the ground. This heat sink should be able to remove the

decay heat under a protected transient and for this reason its reference value of

removed power is taken as 5% of 8 MWth. The ULOHS scenario requires about

12 hours of simulation to reach the new stability condition and it is much longer

with respect to the other accidents analysed. In the EOC section of this accident,

a transient simulation without the ultimate heat sink, in order to understand

which is its effect on the accident scenario, is presented. Moreover, a parametric

analysis of the parameters of main interest, setting the removed power also at

10% and 15% of the nominal one, is performed.
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5.3.1 BOC

The cause-effect relationship between the main parameters is similar to the

one explained for the ULOF accident. The completely loss of the heat removal

capabilities of the SGs (cause) provides an increase in the fuel and coolant

temperatures (first effect) that generate a drop in the net reactivity (second

effect) due to the negative reactivity insertion. As a consequence, also the power

starts to decrease (third effect) and it leads to a change in the increasing trend of

the temperatures (fourth effect). At this point the evaluation of the parameters

must be restarted following the order described.

The figures to refer in order to find out the accident behaviour are: coolant

temperatures (figure 5.38), peak temperatures (figure 5.39), normalized power

(figure 5.40) and reactivity (figure 5.42). In addition, also the figures of the

peak heights (5.37) and of the inverse period (5.41) are presented. The initiator

event is the loss of heat removal capabilities and it causes an increase in the

fuel and coolant temperatures. It leads to an immediately negative reactivity

insertion that reduces the power, that, in its turn, decreases the fuel and coolant

temperatures. At this point during transient (1500 s), the reactor seems to have

a self-shutdown behaviour due to the fact that the fuel, cladding and coolant

temperatures become equal. The declining trend in the temperatures, that is a

consequence of the ultimate heat sink, produces a gain in the net reactivity, due

to the negative feedback of the reactivity coefficients, until it becomes positive

generating an increase in the power. It provides a variation in the temperature

trends that start to go up with the related feedback. This fluctuating behaviour

of the parameters continues each time more damped, until the new steady state

condition is reached. The reactor power of the new configuration is equal to the

removed one and, thanks to the ultimate heat sink, the cladding temperatures

(figure 5.39) are lower with respect to the nominal one in the 100 s of steady

state. It leads to not have the problem of the enhancement in the corrosion

and erosion phenomena seen before for the UTOP and to a lesser extent for the

ULOF scenarios.

Peak Parameters Fuel Center Cladding

Temperature [K] 859.6 742.1

Height [node number] 14 23

Time [s] 135 328.5

Table 5.6: Fuel and cladding peak parameters under ULOHS transient at BOC.

Contrary to what happen in the other two accidents, the main responsible for

the peak values are the feedback related to the coolant temperature (figure
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5.42), since the gain in the fuel one (figure 5.39) is almost negligible (only 1-2

K) and immediately counterbalanced by the power reduction. The latter fact

generates a negative feedback for the fuel temperature related feedback only in

the first minutes of the transient (≈500-1000 s). In the long term framework,

the feedback related to the fuel provide a positive feedback, while the coolant

ones gives a negative reactivity insertion. The two contributions are equal in

magnitude.

In table 5.6 are shown the peak parameters that, if compared with the other

ones for the UTOP and ULOF scenarios at BOC (tables 5.1 and 5.3), give very

small values for the temperatures. Regarding the peak times, the situation is

the same of the one during the UTOP transient, with the peak temperature that

is reached before in the fuel than in the cladding.

Figure 5.37: Peak heights time evolution under ULOHS scenario at BOC.

Figure 5.38: Coolant temperature time evolution under ULOHS scenario at
BOC.
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Figure 5.39: Peak temperatures time evolution under ULOHS scenario at BOC
(top), with a zoomed view on the first minutes (bottom).

Figure 5.40: Total power time evolution under ULOHS scenario at BOC.
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Figure 5.41: Inverse period time evolution under ULOHS scenario at BOC.

Figure 5.42: Reactivity contributions time evolution under ULOHS scenario at
BOC (top), with a zoomed view on the first minutes (bottom).
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5.3.2 MOC

The ULOHS accident, like the ULOF one, has an initiator event that does not

change its worth over the reactor life and together with the reactivity coefficients

time evolution and the decay heat power, these things provide very lightly higher

peak temperatures (tables 5.6 and 5.7). In this configuration the presence of

the decay heat provides that, in the first decrease of the temperatures (fuel,

cladding and coolant), they do not reach an equal value like seen before in the

BOC scenario (figure 5.39).

Regarding the reactivity figure (5.49), it shows the same behaviour of the net

reactivity components during the BOC transient (figure 5.42): positive value

for the fuel temperature related feedback, except for the first 500-1000 s, and a

negative one for the feedback linked to the coolant temperature.

For the explanation of the accident behaviour the reader has to refer to the

BOC section considering the figures presented below (5.43, 5.44, 5.45, 5.46, 5.47,

5.48 and 5.49).

Peak Parameters Fuel Center Cladding

Temperature [K] 859.8 742.8

Height [node number] 14 23

Time [s] 136.5 349.5

Table 5.7: Fuel and cladding peak parameters under ULOHS transient at MOC.

Figure 5.43: Peak heights time evolution under ULOHS scenario at MOC.
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Figure 5.44: Peak temperatures time evolution under ULOHS scenario at MOC
(top), with a zoomed view on the first minutes (bottom).

Figure 5.45: Coolant temperature time evolution under ULOHS scenario at
MOC.
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Figure 5.46: Total power time evolution under ULOHS scenario at MOC.

Figure 5.47: Decay heat power time evolution under ULOHS scenario at MOC.

Figure 5.48: Inverse period time evolution under ULOHS scenario at MOC, with
a zoomed view on the first minutes (top).
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Figure 5.49: Reactivity contributions time evolution under ULOHS scenario at
MOC (top), with a zoomed view on the first minutes (bottom).

5.3.3 EOC

In this section, in addition to the figures that show the accident behaviour for

the EOC configuration (5.50, 5.51, 5.52, 5.53, 5.54, 5.55 and 5.56), there are

two little subsections in which a transient simulation without the ultimate heat

sink and a parametric analysis of removed power through the radiative heat

exchange between the vessel and the ground are presented. They are located in

this section because, as it can be noted confronting the tables 5.6, 5.7 and 5.8,

in the EOC scenario this accident gives higher peak values with respect to the

BOC and MOC ones. As already said, it is a result of the less negative reactivity

insertion provided by the reactivity coefficients, of the decay heat presence and

of the non time dependent worth of the initiator event. In particular, the greater

increase in the peak temperatures compared to that between BOC and MOC is

due primary to the decrease of the coolant void worth and to the related negative

feedback (figures 5.42, 5.49 and 5.56). The physics that explains the accident

development is the same of the BOC and MOC configurations.
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Peak Parameters Fuel Center Cladding

Temperature [K] 860.4 746.3

Height [node number] 14 23

Time [s] 141 431.5

Table 5.8: Fuel and cladding peak parameters under ULOHS transient at EOC.

Figure 5.50: Peak heights time evolution under ULOHS scenario at EOC.

Figure 5.51: Peak temperatures time evolution under ULOHS scenario at EOC
(top), with a zoomed view on the first minutes (bottom).
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Figure 5.52: Coolant temperature time evolution under ULOHS scenario at
EOC.

Figure 5.53: Total power time evolution under ULOHS scenario at EOC.

Figure 5.54: Decay heat power time evolution under ULOHS scenario at EOC.
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Figure 5.55: Inverse period time evolution under ULOHS scenario at EOC.

Figure 5.56: Reactivity contributions time evolution under ULOHS scenario at
EOC (top), with a zoomed view on the first minutes (bottom).
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5.3.3.1 Transient without the ultimate heat sink

The case of no radiative heat exchange and thus of no heat loss from the vessel

is of quite simple explanation. After the initiator event (loss of heat sink)

the temperatures start to grow (figures 5.58 and 5.59) and there is a negative

reactivity insertion by all the four contributions to the net reactivity. It produces

an immediately decrement of the reactor power (figure 5.60) and as a result the

fuel temperature starts to fall until it reaches the same value of the cladding and

coolant temperature (case of reactor shutdown, figure 5.58). At this point in the

transient (≈1000 s) the reactor is self shutdown and the temperature continue

to grow because of the absence of an heat sink. The value for this temperature

is determined by the reactor linear power according to the conductivity integral

and by the decay heat power that is the responsible for its continuous growth.

As a consequence of the fuel temperature drop with respect to the initial value,

its related feedback start to increase, becoming slightly positive. Anyway the

strong negative feedback linked to the coolant temperature (radial expansion

and coolant void worth) ensure the total negative reactivity and the reactor self

shutdown (figure 5.63).

Peak Parameters Fuel Center Cladding

Temperature [K] 860.4 765.4

Height [node number] 14 23

Time [s] 139.4 3800

Table 5.9: Fuel and cladding peak parameters under ULOHS transient without
the ultimate heat sink at EOC.

Figure 5.57: Peak heights time evolution under ULOHS scenario at EOC without
ultimate heat sink.
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Figure 5.58: Peak temperatures time evolution under ULOHS scenario at EOC
without ultimate heat sink.

Figure 5.59: Coolant temperature time evolution under ULOHS scenario at EOC
without ultimate heat sink.

Figure 5.60: Total power time evolution under ULOHS scenario at EOC without
ultimate heat sink.
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Figure 5.61: Decay heat power time evolution under ULOHS scenario at EOC
without ultimate heat sink.

Figure 5.62: Inverse period time evolution under ULOHS scenario at EOC
without ultimate heat sink.

Figure 5.63: Reactivity contributions time evolution under ULOHS scenario at
EOC without ultimate heat sink.
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5.3.3.2 Parametric analysis of the removed power by the ultimate

heat sink

In the figures 5.64, 5.65, 5.66, 5.67 and 5.68 the comparison between the case

of 5%, 10% and 15% of removed power respectively for peak fuel temperature,

peak cladding temperature, coolant temperature, normalized power and net

reactivity is shown. It is possible to note that, increasing the removed power

from the core, the transient is faster in reaching the steady state and that the

peak fuel temperature is a little bit higher. The latter fact is due to the lower

temperature that is achieved in the first peak in the inlet coolant that provides

a lower negative feedback by the radial expansion that is the main responsible

for the peak values. Contrary to the fuel, the PCT has an higher value with the

case of 5% of removed power because of the greater coolant temperature that

increases its value.

Figure 5.64: Peak fuel temperature dependence on different percentage of heat
loss with the ultimate heat sink under the ULOHS accident at EOC (top), with
a zoomed view on the different peaks (bottom).
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Figure 5.65: Peak cladding temperature dependence on different percentage of
heat loss with the ultimate heat sink under the ULOHS accident at EOC.

Figure 5.66: Inlet coolant temperature dependence on different percentage of
heat loss with the ultimate heat sink under the ULOHS accident at EOC.

Figure 5.67: Total power dependence on different percentage of heat loss with
the ultimate heat sink under the ULOHS accident at EOC.
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Figure 5.68: Net reactivity dependence on different percentage of heat loss with
the ultimate heat sink under the ULOHS accident at EOC.

5.4 Sensitivity Calculations

During the transient analysis, it is seen that the SEALER design is such as

to have an excellent feedback that provides quite low peak temperatures with

respect to the temperature limits for all the accident scenarios. The sensitivity

calculations outlined in this section have the purpose to understand which is the

influence of each reactivity coefficient on the peak temperatures and which could

be the amount of the reduction in the negative feedback before exceeding the

limits for the fuel and cladding temperatures.

The data presented in this chapter are assessed for the UTOP transient

scenario at BOC. Since it is the most dangerous accident to deal with, if the

temperature limits for this accident are respected, it will be the same also for

the others.

5.4.1 Results Discussion

In the figures presented below, how the peak fuel and cladding temperatures

change their values according to the variation of one reactivity coefficient per

time is shown. This hypothesis is obviously an approximation, since they are

strictly related to the neutronics of SEALER and the alteration of only one

parameter in the reactor design affects and modifies all of them. This assumption

can be accepted because of the aim of this section described above.

In order to perform these calculations, an arbitrary value for the increase and

the decrease of each one of the reactivity coefficient is chosen. The coolant void

worth, together with the fuel and cladding axial expansion, suffered a reduction

and a gain of the 30% in their values calculated at BOC, while the Doppler

coefficient is setted to 200 pcm and 300 pcm. Regarding the radial expansion
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coefficient, its values are fixed at +15% and at -25% of the initial one.

It can be noted that the reactivity coefficients linked to the fuel temperature

vary the peaks of about hundreds of Kelvin for the fuel center (figures 5.69

and 5.71) and of about tens of Kelvin for the cladding (figures 5.70 and 5.72).

Regarding the reactivity coefficients related to the coolant temperature, they

modify the peak values of about only of tents of Kelvin (figure 5.73) and of

some Kelvin (figures 5.74, 5.75 and 5.76). These results reflect perfectly the

situation presented in the figure 5.6, in which the main responsible for the peak

temperatures in order of importance are: axial expansion, Doppler, coolant void

worth and radial expansion. The cladding axial has a very limited and negligible

influence on the peak temperatures (figures 5.77 and 5.78) and as a consequence

it is not a real concern that its value becomes positive in the EOC configuration.

In addition, a calculation in which all the coefficients are setted with their

reduced value is performed. The result is a peak fuel center temperature of

2445.9 K and PCT=1094.6 K. Thus, also in this configuration with a lower total

negative feedback the temperature limits are respected with a good margins

(≈ 700 K for the fuel and ≈ 100 K for the cladding), which are almost halved

with respect to the reference case (PCT=999.9 K with margin of 200 K and

peak fuel temperature of 2002.5 K with a margin of 1100 K).

As a consequence of these results, it could be considered the hypothesis to

reduce a little bit the negative feedback of the reactivity coefficients in order to

match a better mechanical or thermal hydraulic or neutronic design. In such

analysis should be taken into account also the costs.

Figure 5.69: Peak fuel temperature dependence on fuel axial expansion coefficient.
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Figure 5.70: Peak cladding temperature dependence on fuel axial expansion
coefficient.

Figure 5.71: Peak fuel temperature dependence on Doppler coefficient.

Figure 5.72: Peak cladding temperature dependence on Doppler coefficient.
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Figure 5.73: Peak fuel temperature dependence on coolant void worth.

Figure 5.74: Peak cladding temperature dependence on coolant void worth.

Figure 5.75: Peak fuel temperature dependence on radial expansion coefficient.
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Figure 5.76: Peak cladding temperature dependence on radial expansion coeffi-
cient.

Figure 5.77: Peak fuel temperature dependence on cladding axial expansion
coefficient.

Figure 5.78: Peak cladding temperature dependence on cladding axial expansion
coefficient.



Chapter 6

Conclusions

In this last chapter a summary of the main results achieved during the work is

reported. Since the aim of the work was the study of the transient behaviour

of the SEALER reactor under the three hypothetical accidents, most of the

attention was dedicated to this subject, but with a focus also on the evolution

of the reactivity coefficients evaluated using their rigorous definition.

In the last section some advices, as possible future improvements of the

analysis, are suggested.

6.1 Transient Results

In the chapter five the SEALER transient behaviours under the three main

accidents that could happen over the reactor life are presented. By a comparative

analysis between them, it is possible to note that, as expected, the most potential

dangerous accident is UTOP at BOC. This is a combination of two features,

respectively: the type of accident and the worth of the initiator event. Since the

UTOP is a Reactivity Initiated Accident (RIA), the unbalanced condition of

greater generated power is determined by the value of inserted reactivity and

thus it could be whatever value. For SEALER its maximum value is determined

by the design of the burn-up control elements that provides a worth of 0.5 $

per each one of them when they are completely inserted in the core (BOC).

The results found for this accident at BOC show a power peak of about 45

MWth, a PCT=999.9 K, that fully matches the safety limit of 1200 K setted for

SEALER, and a peak fuel temperature of 2002.5 K, that is more or less 1100

K lower than the melting temperature for the uranium dioxide. At MOC all

the peak values are lower due to the lower reactivity insertion (0.25 $) and they

are: power peak=23 MWth, PCT=867.1 K and peak fuel temperature=1339.7

K. In both these transients, a new steady state condition is reached. It means
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that SEALER has a such safety features for which, even in the case of no human

intervention, it can self-sustained its behaviour. The problem is that the new

operating temperatures for the fuel, the cladding, the coolant and all the other

core structures are higher than their nominal values. It implies that the reactor

can continue to work in these temperature conditions but for a limited period of

time, in order to avoid some drawbacks like cladding or SGs tubes failure before

the end of the reactor life (30 years) due to enhancement of the corrosion and

the erosion phenomena.

In the other two accident scenarios, the first consequence of the initiator

event is the partial and the total loss of removed power from the core. The

negative feedback of the reactivity coefficients provides that the reactor power is

always lower than the initial value of 8 MWth over the entire transient in all the

three analysed configurations and that the peak temperatures are lower than

the reference ones for the case of UTOP at BOC.

For the ULOF, the natural circulation process, together with the action of

the SGs, provides a long term heat sink with the purpose to remove the decay

heat from the core. Moreover, it brings to an another criticality condition with

a lower power, the value of which is determined by the driving force connected

to the difference in the relative elevation of the SGs thermal center with respect

to the core one. Regarding the ULOHS, the case of no heat loss through the

vessel brings to a self-shutdown of the reactor, but it does not represent the

real situation because the ultimate heat sink, supplied by the radiative heat loss

between the vessel and the ground, is not taken into account. Also in this case,

a new steady state is reached with a reactor power equal to the percentage of

heat loss through the vessel. The parametric analysis of the removed power by

the ultimate heat sink shows that an its increase leads to a little bit higher peak

fuel temperature together with a lower peak temperatures for the cladding and

the coolant and to a shorter development of the transient.

As shown before, in all the transients a new criticality is achieved without

the human intervention. Anyway, the temperature values at the end of the

transients could be a concern, since they can exceed the operating temperature

limits that ensure a safe worth for corrosion and erosion phenomena especially

in the cladding (UTOP and ULOF accidents).

In the table 6.1 are shown the data for the peak temperatures in the most

dangerous conditions for the three reference accidents. It can be noted that for

the ULOF and ULOHS scenarios the worst situation happen at EOC. This is

a consequence of the reactivity coefficients variation over the reactor lifetime,

of the fact that the accident initiator event does not change its worth like in

the UTOP case and of the decay heat power presence in the MOC and EOC

configurations.
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Peak Temperature [K] Fuel Center Cladding

UTOP at BOC 2002.5 999.9

ULOF at EOC 966.1 895.7

ULOHS at EOC 860.4 765.4

Table 6.1: Summary of the greater peak temperatures over the reactor lifetime
for the three accident scenarios.

For what it concerns the reactivity coefficients, the Doppler coefficient is the only

one that becomes more negative with a burn-up increase, while all the others have

a less negative trend, with exception of the radial expansion coefficient that has

a oscillating time evolution. The latter consideration can be explained with the

different conditions of the core: supercritical in the BOC and EOC configurations

and sub-critical in the MOC one. It leads to a fluctuating results also in the

channel by channel evaluation of the axial expansion (fuel and cladding) and

of the coolant void worth. Anyway this variation from the criticality condition

produces quite small and acceptable errors. The reason for which all the reactivity

coefficients have a similar behaviour is the softening of the neutron spectrum

due to the fission products generation in the fuel and to the withdrawal of the

burn-up control elements that allows a more efficient moderation given by the

reflector. In addition, it has to be taken into account also the activation products

that are generated in the fuel and their contribution in the increase of the capture

cross section.

6.2 Future developments

The SEALER behaviour under the analysed transients are quiet satisfying, but

in order to reach best estimate calculations, especially for the peak temperatures,

it is necessary to reduce the number of assumptions and approximations done

during both reactivity coefficients evaluations and transient simulations. For the

latter case, it could be done a better assessment of the coast down time for the

pumps in the ULOF scenario, or a change in the pumps position from the coldest

to the hottest part in the primary circuit as done in the last reactor design version,

or parametrize the peak temperatures with respect to the withdrawal time for

the burn-up control element under the UTOP transient, or again calculate the

peak factors also for the MOC and the EOC configurations.

Besides to improve these accidents, it could be interesting to investigate the

event of coolant freezing. It can happen as a result of a protected accident, in

which the removed power from the SGs is higher than the decay heat one.
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For what it concerns the reactivity coefficients, a possible improvement

consists in the reduction of the supercriticality and sub-criticality worth in

which they are assessed, improving as much as possible the discretization of

the axial length to obtain a better positioning of the burn-up control elements.

In addition, it must be taken into account the different fuel axial expansion

based on the channels peak factors or the flower effect in the case of the radial

expansion coefficient, or again calculate the fuel composition in the MOC and

EOC configurations also for the fourth channel and do not assume that is equal

to the third one.

Considering the quite high safety margins obtained for the peak temperatures

and the results of the sensitivity calculations with a less negative feedback,

another interesting improvement, that could be done, is an optimization of the

reactivity coefficients with the purpose to better match the design features in

the thermal hydraulic, mechanical or neutronic fields. In such analysis should

be taken into account also the costs.



Appendix A

Numerical Discretization

Methods

The present appendix wants to deal with the general properties of the numerical

discretization methods and, in the last part, to focus on the method used in the

SAS4A/SASSYS-1, in order to have a better comprehension on how this code

solves the partial differential equations.

A.0.1 General properties

Starting from the partial differential equations already presented in the chapter

3 (set of equations (3.2)), it is clear that to use a discretization method it is

necessary to solve the mass, momentum and energy partial differential equations

that describe the physics of the real problem.

∂ρ

∂t
+

1

A

∂(GA)

∂z
= 0

∂G

∂t
+

1

A

(G2A

ρ

)
= −∂p

∂z
− ρgsin(θ)− τw

Pf
A

∂ρe

∂t
+

1

A

∂[GA(e+ pv)]

∂z
= q

′′ Ph
A

+ q
′′′

To discretise these equations means to replace the mathematical scheme in the

continua of space and time with a new one in which the space and the time are

subdivided into discrete subset, where the solution is assessed in a point-wise

form. Below in the figure A.1, the principal steps for the partial differential

equations problem solution are shown. The choice of the discretization process

and method are very important phases of it. In addition, it is possible to see

which are the three classic numerical scheme used by a code:
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Figure A.1: General discretization scheme.

� finite differences: the partial derivatives in the equations are substituted

with finite differences of the independent variable with finite increments in

space and time;

� finite volumes: the domain is discretised in control volumes and the problem

governing equations are integrated over these volumes.

� finite elements: the domain is subdivided in elements and the governing

equation are substituted by local approximating functions depending on

the unknown variables.

Before to speak about the method used by SAS4A/SASSYS-1, it is important

to give a general perspective on the main mathematical and non features that

must be possessed by a discretization method. Starting from a general form for

a partial differential problem:

∂Ψ

∂t
= AΨ

where Ψ is a vector function of a general variable and A a linear differential

operator. By a discretization in both space and time, it can be found:

B1Ψn+1 = B0Ψn

where B1 and B0 are finite difference operators depending on some variables

including that used for the discretization (∆t,∆x,∆y and ∆z). With the

assumption that exists the inverse operator of B1, the previous equation becomes:

Ψn+1 = B−1
1 B0Ψn = CΨn

where C = B−1
1 B0 = C(∆t,∆x,∆y,∆z, ...). In addition, it is possible to assume
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that there is a link between the space and time increments such as all of them will

vanish when ∆t→ 0. For this approximation the operator C can be considered

function only of time in the discretization framework (C(∆t, ...)).

A discretization process has the purpose to approximate the differential

partial equations of a problem with their respective algebraic ones and, for this

reason, it introduces the so called discretization error, defined as follow:

δn = Ψn
e −Ψn

where Ψn
e represent the exact solution at the time step n and Ψn the solution

found with the discretization process. Moreover, it is composed by two terms: the

truncation error and the propagation one, obtained using the previous definition

and adding and subtracting the quantity C(∆t)Ψn−1
e :

δn = Ψn
e − C(∆t)Ψn−1 = Ψn

e − C(∆t)Ψn−1 + C(∆t)Ψn−1
e − C(∆t)Ψn−1

e

δn = Ψn
e − C(∆t)Ψn−1

e + C(∆t)δn−1

The difference between the first two terms represents the inaccuracy in the

approximation of the partial differential equations with the new set of discretised

equations and it refers to the truncation error, while the last term refers to

propagation of the error starting from initial data evaluated step by step.

For what just said, it is clear that is crucial to know if the solution given

by the discretised scheme is consistent with the one of the initial differential

problem. In order to ensure that this happens, there is a theorem that must be

satisfied. It is the Lax Equivalent Theorem:

Given a properly posed linear initial value problem and a finite difference ap-

proximation to it that satisfies the consistency condition, stability is the necessary

and sufficient condition for convergence.

Consistency and stability are therefore the properties to be possessed by a

numerical scheme to achieve convergence. Defining the concept of consistency,

stability and convergence:

� Convergence: a numerical method is said to be “convergent” if the solution

of the discretised equation tends to the exact solution of the differential

equation as the grid spacing tends to zero. This means that the total error

introduced by the numerical scheme tends to zero.

� Consistency: a numerical scheme is said to be “consistent” with the
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differential problem if the difference equations representing it tend to those

of the differential problem as the grid spacing tends to zero. This means

that the truncation errors tends to zero.

� Stability: a numerical scheme is said “stable” if it does not amplify the

errors appearing during the numerical solution process.

Using the Taylor series expansion, it is possible to assess the order of truncation

error in ∆t and ∆x and to understand how faster this error goes to zero when the

spatial mesh tends to zero. Moreover, with the purpose to ensure the stability of

the problem, avoiding the growth of the discretization errors, there are different

techniques that can be considered, one of these is the von Neumann stability

criterion. It consists into give a perturbation at the time step n in the value of

the variable calculated at previous one n-1 and to see how it is propagated in

space and time. It is assumed that the error between the perturbed and the non

perturbed value can be expressed as a complex exponential:

δ(x, t) = Ψp(x, t)−Ψnp(x, t) = δni e
α(t−tn)eiβ(x−xi)

where δ is the error, Ψp and Ψnp respectively the perturbed and non perturbed

variable values and α and β a complex and a real number. Since both the

variables have to satisfy the same equation, it can be wrote:

Ψnp(x, t+ ∆t) = C(∆t,∆x)Ψnp(x, t)

Ψp(x, t+ ∆t) = C(∆t,∆x)Ψp(x, t)

and making the subtraction side by side of the previous equation, it is found:

δ(x, t+ ∆t) = C(∆t,∆x)δ(x, t)

Defining the quantity G(∆t,∆x) as an amplification factor of the error between

two consecutive time steps:

G(∆t,∆x) =
δ(x, t+ ∆t)

δ(x, t)

it is possible to arrive at the von Neumann stability criterion:

|G(∆t,∆x)| = |eα∆t| ≤ 1 (A.1)

|G(∆t,∆x)| ≤ 1 +K∆t (A.2)
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This criterion expresses that if a physical system is perturbed and this pertur-

bation propagates in space and time, it is not amplified by the mathematical

method if the condition of negative real part for α is achieved (Re(α)<0). Thus,

the satisfaction of this criterion implies a damping in the errors given by the

mathematical scheme and that if the solution diverges this is due to the behaviour

of the physical phenomenon analysed. The difference between the equations

(A.1) and (A.2) is that the first refers to problems in which the real solution does

not increase with the time, while the second takes into account this possibility.

A.0.2 Finite Difference Method

As explained above, the finite difference is the discretization method implemented

in SAS4A/SASSYS-1 and it consists in the substitution of the partial derivatives

in the equations (3.2) with finite differences of the independent variable with

finite increments in space and time.

∂ρ

∂t
+

1

A

∂(GA)

∂z
= 0⇒ ρn+1

i − ρni
∆t

+
1

A

Gni+1A− 2Gni A+Gni−1A

∆z
= 0

In a general framework of this method, there are three type of choices for the

approximation of the spatial partial derivatives, evaluated in the point xi, as it

is possible to see in figure A.2:

� backward difference (
∂φ

∂x

)
xi

≈ φi − φi−1

xi − xi−1

� forward difference (
∂φ

∂x

)
xi

≈ φi+1 − φi
xi+1 − xi

� centered difference (
∂φ

∂x

)
xi

≈ φi+1 − φi−1

xi+1 − xi−1

Generally, the choice of the centered difference approach is done. Since its

accuracy in the finite difference approximation is proportional to ∆x2, while for

the other two possibilities there is only a linear proportionality with respect to

∆x. It means that the truncation error goes to zero faster when the spatial mesh

tends to zero. For what it concerns the time discretization, it is possible to do

the same considerations just done for the spatial derivatives.

For a more general approach with both spatial and time discretization, it is

more useful to take slightly different assumptions to deal with them:
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Figure A.2: Different choices of spatial discretization for the finite difference
method.

� explicit method
φn+1
i − φni

∆t
=
φni+1 − φni

∆z

with this method the value of the variable φ at the time step n+1 is

evaluated simply making use of known values of the variable at previous

time step n. The drawbacks for this rather simple formulation is the

conditional stability, according to the von Neumann criterion (equation

A.1).

� implicit method
φn+1
i − φni

∆t
=
φn+1
i+1 − φ

n+1
i

∆z

the advantage of this method is the unconditional stability and its deficiency

is that it has a greater truncation error. Moreover, in order to know the

value of the variable φ at time step n+1, the solution of coupled equations

is required. as a matter fact, this formulation solves simultaneously the

equations in each spatial cell between two time steps n and n+1.

� semi-implicit method or Crank-Nicolson method

φn+1
i − φni

∆t
= 0.5

[
φni+1 − φni

∆z

]
+ 0.5

[
φn+1
i+1 − φ

n+1
i

∆z

]
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this method is based on an average of the previous two and it is more

accurate than them, since it is similar to the centered difference explained

above.

Making use of three methods described above, it is possible to derive a general

formula in which the definition of the coefficients θ1 and θ2 determines the degree

of implicitness of the scheme (θ1 = 1 and θ2 = 0 explicit method, θ1 = 0 and

θ2 = 1 implicit method and θ1 = 0.5 and θ2 = 0.5 semi-implicit method):

φn+1
i − φni

∆t
= θ1

[
φni+1 − φni

∆z

]
+ θ2

[
φn+1
i+1 − φ

n+1
i

∆z

]
(A.3)

with the condition that θ1 + θ2 = 1.

The choice of the method to use is related to the characteristic time of the

phenomenon that has to be described. For a detailed time analysis, that requires

very small time step in order to follow the development of the phenomena studied,

it is preferable to use the explicit method because the stability condition is nearly

always satisfied with very low values for the time step. While for phenomena

that do not require detailed informations on short time windows, it is better to

use the implicit method because the greater size of the time step could create

some stability problems for the explicit discretization. For complex system,

characterized by phenomena with different time scale, two type of alternative

choices can be done: fully implicit approach or partially implicit method splitting

the phenomena (explicit for the faster and implicit for the slower).

After the discretization of the problem and the passage to the algebraic

equations, it is necessary to use a numerical method to solve them and to

find the approximate solution (figure A.1). In SAS4A/SASSYS-1 the Thomas’

algorithm, that is a very simple scheme derived from the Gaussian elimination

one in the case of tridiagonal matrix, is implemented. It consists of two steps:

the first, with increasing index, is to eliminate the unknowns in the equations

and the second, with decreasing index, is to solve the upper triangular system

obtained as a result of the first step. The upper triangular matrix can be found

getting the first equation as a function of one unknown in the second one and

then substituting it in that one. Continuing this process until the last equation is

reached, an equation that has only one unknown is found and now it is possible

to come back to the first one having only one unknown in each equation.
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