
University of Pisa, Scuola Superiore Sant’ Anna

Faculty of Engineering

Master Degree in Embedded Computing Systems

Master degree thesis

A real-time scheduling simulator for engine control applications

Laureando

Stefano Simoncelli
Supervisor

Prof. Ing. Giorgio Buttazzo

Correlator

Prof. Ing. Marco Di Natale

Academic Year 2013 - 2014

Contents

Summary 3

1 Introduction 5

2 Theoretical models 11

2.0.1 Task Model . 11

2.0.2 Rotation Source Model . 15

2.0.3 Issues of this new scenario . 16

3 Simulator Description 17

3.1 Overview . 17

3.2 Available Libraries . 19

3.3 Metasim . 19

3.3.1 Entities . 20

3.3.2 Events . 20

3.3.3 RandomVar . 21

3.3.4 Simulation . 22

3.3.5 BaseStat . 22

3.3.6 Trace . 23

3.4 RTLib . 23

3.4.1 RTKernel . 24

3.4.2 Scheduler, TaskModel . 25

3.4.3 Task . 26

3.4.4 Instruction . 28

3.4.5 TaskStat . 28

1

CONTENTS 2

4 Task model: AVRTask 30

4.1 Overview . 30

4.2 Theoretical model . 30

4.3 Implementation . 31

5 Rotation Source Entity: AVRActivator 36

5.1 Overview . 36

5.2 Implementation . 36

5.2.1 Tasks management . 37

5.2.2 Physical engine management . 40

6 Task Set Generator Entity: AVRGenerator 50

6.1 Overview . 50

6.2 Implementation . 50

6.2.1 Random parameters generation . 52

7 Experimental results 55

7.1 Main programs . 55

7.2 Scripts . 62

7.3 Experiments . 64

7.3.1 Schedulability . 64

7.3.2 Maximum Normalized Tardiness 75

8 Conclusions 79

Summary

Automotive engine control applications include computational activities released at spe-

cific crankshaft rotation angles, so their activation rate depends on the angular velocity

of the engine. This phenomenon leads to the presence of variable-rate tasks that have to

be executed on the Electronic Control Unit (ECU).

As the engine speed increases, the computational bandwidth required to the ECU tends

to increase, so bringing the system in an overloaded condition potentially compromising

the system performance as well as damaging the engine itself.

To deal with this issue, engine control tasks are designed such that their behavior is

adapted as a function of the engine speed; this is done by performing a mode-change to

adapt their computational demand so avoiding overload conditions. This brings to the

definition of Adaptive Variable Rate (AVR) Tasks.

The goal of this Master Thesis is to design and develop a scheduling simulator han-

dling AVR tasks in order to perform simulation experiments to better understand the

behavior of such a new task model. In particular, experiments have been focused on

the comparison between Dynamic-Priority scheduling (such as Earliest Deadline First

scheduling) and Fixed-Priority scheduling.

The work is organized as follows: the thesis starts with an introduction about engine

control; then scheduling problems and related works are presented. In the second chapter

we report the theoretical models involved.

The simulator engine used in this work is RTLib 2.0 (Real-Time Library for Kernel Sim-

ulation) which relies on the Metasim 2.0 event-based simulator.

Since in this thesis we extended this simulation infrastrucure, the other three chapters

are related to the implementation of the new components: namely AVRTask, AVRAc-

tivator (the simulator of the rotation source), AVRGenerator (AVR- task-set random

3

Summary 4

generator).

Then an extensive set of experimental results are reported, including a brief description

of the 32-core virtual machine setup used to perform the experiments.

Finally we state the conclusion from the overall experience.

Chapter 1

Introduction

Engine control is a very important field of research in which automotive industries are

interested, in order to get new models closer to their realistic requirements. Such kind

of systems are characterized by computational activities that are triggered by specific

crankshaft rotation angles and are designed to adapt their functionality based on the

angular velocity of the engine. Although a few models have been proposed in the litera-

ture to handle such tasks, most of them are quite simplistic and do not allow expressing

features that are presently used by the automotive industry. Automotive applications

include tasks that are activated with different mechanisms. Some engine control tasks

are activated by a timer at a fixed rate (periodic tasks), whereas other tasks are linked

to the rotation of the crankshaft and are activated at specific rotation angles (angular

tasks). The activation rate of such angular tasks is therefore proportional to the engine

speed: the higher the engine speed, the higher the activation rate (Fig. 1.1).

Utilization values for such kind of tasks linearly increase with speed.

Figure 1.1: Angular Activations

5

CHAPTER 1. INTRODUCTION 6

A problem with such a type of activities is that, for high engine speeds, the system uti-

lization can increase beyond a limit, generating an overload condition on the processor

of the engine control unit (ECU) executing the application. If not properly handled, an

overload can have disruptive effects on the controlled system, introducing unbounded

delays on the computational activities, or even leading to a complete functionality loss

(Fig. 1.2).

To prevent overload conditions, a common practice adopted in automotive applications

Figure 1.2: Overload

is to implement angular tasks in such a way they automatically decrease their compu-

tational requirements (by changing their functionality) for increasing speeds. To change

their behavior, angular tasks are implemented as a set of execution modes, each op-

erating within a specified range of rotation speeds. As a result, angular tasks have a

variable activation rate (dependent on the engine speed) and a self-adaptive behavior

implemented through a set of mode changes. For this reason, they are often referred to

as adaptive variable-rate tasks (or AVR tasks) (Fig. 1.3).

More recently, the consideration of a fuel injection systems, as representatives of a

possibly larger class of applications, has highlighted the limitations of the existing ap-

proaches and the need for a new type of task model and analysis. The general goal of

a fuel injection system is to determine the point(s) in time and the quantity of fuel to

be injected in the cylinders of an engine, relative to the position of each piston, which is

in turn a function of the angular position of the crankshaft. In a reciprocating engine,

CHAPTER 1. INTRODUCTION 7

Figure 1.3: Adaptive Behaviour

the dead centre is the position of a piston in which it is farthest from, or nearest to, the

crankshaft. The former is the top dead centre (TDC) while the latter is the bottom dead

centre (BDC), as illustrated in FIg. 1.4. In a four-cylinder engine, the pistons are paired

Figure 1.4: Crankshaft rotation period and motor phases

in phase opposition, so that, when two of them are in a TDC, the others are in a BDC.

The TDC is the typical reference point, in the controller activities, for the functions and

actions that need to take place within the rotation. These action include (among others)

computing the phase (time relative to the TDC) of the injection and the quantity of fuel

to be injected, but also checking whether the combustion occurred properly. Depending

CHAPTER 1. INTRODUCTION 8

on the structure of the engine control application, these functions are implemented in

tasks that are activated at each TDC, that is twice every crankshaft rotation (pseudo-

cycle) or even more frequently (half-TDC). Here In Fig. 1.5 is an example of ECU.

Figure 1.5: Engine Control Unit Sample

Given the peculiar characteristics of AVR tasks, the schedulability analysis of engine

control applications cannot be addressed using classical real-time approaches. For in-

stance, the elastic task model proposed by Buttazzo et al. [1], [2] is not suited to handle

AVR tasks. In fact, in the elastic model, an overload condition is not handled by the task

itself (by self-scaling its functionality), but through a global resource manager, which

reduces the utilization of all the tasks by properly enlarging their periods. Similarly,

classical mode change analysis [3], [4], [5] is not suited for engine control applications,

because the activation rate of an AVR task changes continuously, thus an infinite number

of modes would be required to describe all possible situations.

The problem of analyzing the real-time properties of engine control applications includ-

ing AVR tasks has recently been considered in the literature by several authors, under

different models and assumptions.

A task model suitable for engine control tasks with activation rates and execution times

depending on the angular velocity of the engine has been proposed for the first time

by Kim, Lakshmanan, and Rajkumar [6], who derived preliminary schedulability results

CHAPTER 1. INTRODUCTION 9

under simple assumptions. In particular, their analysis applies to a single rate-adaptive

task with a period always smaller than the periods of the other tasks, and running at

the highest priority level. In addition, they assume that all relative deadlines are equal

to periods and priorities are assigned based on the Rate-Monotonic algorithm.

Pollex et al. [7] presented a sufficient schedulability analysis under fixed priorities, assum-

ing a constant angular velocity. The analysis is formulated using continuous intervals,

hence it cannot be immediately translated into a practical schedulability test, whose

complexity has not been evaluated.

The dynamic behavior of AVR tasks under fixed-priority scheduling has been analyzed by

Davis et al. [8], who proposed a sufficient test based on an Integer Linear Programming

(ILP) formulation. Besides being only sufficient, their approach is based on a quanti-

zation of the instantaneous crankshaft rotation speed, which may introduce additional

pessimism in the analysis to guarantee the safety of the test.

The exact interference of an AVR task under fixed priorities has been analyzed by Biondi

et al. [9]. Here, the interference is analyzed using a search approach in the speed domain,

where the complexity is contained by deriving a set of dominant speeds, which also avoid

quantizing the instantaneous speed considered in the analysis.

The analysis of a mixed set of classical and AVR tasks under Earliest Deadline First

(EDF) scheduling has been addressed by Buttazzo, Bini, and Buttle [10], but for AVR

tasks related to independent rotation sources. They also provided a design method that

allows computing the set of switching speeds at which modes have to be changed to keep

the overall utilization below a desired bound. Although the results produced in the pre-

vious papers represent important milestones for the analysis of engine control systems,

the task models used for the analysis are not always able to capture features that are

currently adopted by the automotive industry in the implementation of AVR tasks. For

example, in some work [10], tasks are considered to be linked to independent rotation

sources, while in reality all the angular tasks related to engine control are linked to the

same rotation speed and may be triggered at different rotation angles.

A typical engine control application includes both classical periodic tasks (with period

ranging from a few milliseconds up to 100 ms) and a number of angular tasks activated

every single, half, and quarter engine revolution. The assumption of independency clearly

simplifies the analysis, but introduces an additional source of pessimism, considering sit-

uations that cannot actually occur when tasks are related to the same state variable.

Also, all the previous papers consider mode transitions occurring at fixed speeds, while in

CHAPTER 1. INTRODUCTION 10

practice, to avoid frequent mode transitions when the engine speed is close to a switching

speed, mode changes are implemented with hysteresis; therefore, the speed at which an

AVR task adapts its functionality is not the same in acceleration and deceleration.

I have implemented in C++ the recently proposed AVRTask using an already available

real-time scheduling simulator in Retis Laboratory (Sant’ Anna): RTLib 2.0. The main

contribution is to better understand how EDF and FP scheduling algorithms perform in

such environment.

They have been already analyzed separately, especially in the case of fixed priority

Biondi, Di Natale and Buttazzo [11], provide an exact Response-Time-Analysis for hy-

brid task set, but these are going to be the first general experimental results on this

recent field of research.

In addition, the modules implemented in this thesis are taken into account also in a

more general scenario, where the focus is not on the scheduling parameters, but on

cyber-physical systems’ aspects and functions.

In order to build this, more general system’s simulation, also the CPU abstraction and

task scheduling are needed, togheter with physical entities management and control the-

ory applications: this is another field in which my work is involved.

Chapter 2

Theoretical models

This section introduces the notation adopted throughout the thesis and the models used

for the rotation source and the computational tasks.

The rotation source considered in this paper is characterized by the following state

variables:

• θ: the current rotation angle of the crankshaft;

• ω: the current angular speed of the crankshaft;

• α: the current angular acceleration of the crankshaft.

The rotation speed ω is assumed to be limited within a range [ωmin, ωmax] and the

acceleration α is assumed to be limited within a range [α−, α+]. In my simulations, the

acceleration is assumed to be constant between two consecutive AVRTask activations.

In addition jerk is taken into account, limited within a range [Jerk−, Jerk+] and used

to update acceleration after an activation.

2.0.1 Task Model

The task set considered in this work consists of n real-time preemptive tasks Γ =

{τ1, τ2, τ3, τ4...τn}. Each task can be either a regular periodic task, or an AVR task,

activated at specific crankshaft rotation angles. The subset of regular periodic tasks is de-

noted by ΓP , whereas the subset of angular tasks is denoted by ΓA, so that Γ = ΓP
⋃

ΓA

and ΓP
⋂

ΓA = ∅.
Whenever needed, an AVR task may also be denoted as τ∗.

11

CHAPTER 2. THEORETICAL MODELS 12

Both types of tasks are characterized by a worst-case execution time (WCET) Ci, an

interarrival time (or period) Ti and a relative deadline Di.

However, while for regular periodic tasks such parameters are fixed, for angular tasks

they depend on the engine rotation speed ω.

An angular task τ∗i is characterized by an angular period Θi and an angular phase Φi,

so that it is activated at the following angles:

θi = Φi + kΘi, for k = 0, 1, 2...

This means that the period of an AVR task is inversely proportional to the engine speed

ω and can be expressed as:

Ti(ω) = Θi/ω

An angular task τ∗i is also characterized by a relative angular deadline ∆i expressed as

a fraction δi of the angular period (δi ∈ [0, 1]). In the following, ∆i = δiΘi represents

the relative angular deadline.

In engine control, the angular phase Φi is relative to a reference position called Top Dead

Center (TDC) corresponding to the crankshaft angle for which at least one piston is at

the highest position in its cylinder.

The execution time of an angular task τ∗i i is also a function of the rotation speed,

since the task adapts its functionality to decrease its utilization at higher speeds. In

the actual practice, angular tasks are implemented as a set of modes, each operating

within a specified range of speeds; in addition, a hysteresis is introduced to avoid fre-

quent mode changes when the engine speed is around to a switching speed. Therefore,

the computation time of an angular task can be described by a step function consisting

of Mi execution modes, where each mode m = (1, ...,Mi) is defined by a computation

time Cm
i and a speed range [ωm−

i , ωm+
i]. An example of C function is in Fig.2.1:

Note that, when considering hysteresis in mode changes, the computation time of an

AVR task depends not only on the value of ω but also on the current mode m, lead-

ing to leading to two alternative mode-change behaviors, characterized by the following

CHAPTER 2. THEORETICAL MODELS 13

Figure 2.1: Computation time of an AVRTask as a function of the speed at the job

activation

computation functions:

C+
i (ω) = Cm

i ∀ω ∈ (ω
(m−1)+
i , ωm+

i)

C−
i (ω) = Cm

i ∀ω ∈ (ωm−
i , ω

(m+1)−
i)

Similarly, the utilization of an AVR task with hysteresis (in steady-state conditions) can

be expressed by the following two functions:

u+i (ω) =
C+
i (ω)

Ti(ω)
=
ωC+

i (ω)

Θi

u−i (ω) =
C−
i (ω)

Ti(ω)
=
ωC−

i (ω)

Θi

In the following, to simplify the notation of the analysis with no hysteresis, we use

Ci(ω) and ui(ω) to denote C+
i (ω) and u+i (ω), respectively.

Let’ s make an example in order to clarify the ideas:

Consider two AVR tasks τ∗1 and τ∗2 , both activated at the TDC (Φ1 = Φ2 = 0), with

the same angular period Θ1 = Θ2 = 2π and implicit angular deadlines (δi = 1). Each

CHAPTER 2. THEORETICAL MODELS 14

Figure 2.2: Task example parameters

task implements two modes and is triggered by the same rotation source. The task pa-

rameters are reported in Fig. 2.2. Note that ω1−
1 = ω1−

2 and ω2+
2 = ω2+

2 , since the same

rotation source has clearly the same minimum and maximum speed. The implementation

of such a type of tasks is typically performed as a sequence of conditional if statements,

each executing a specific subset of functions. By defining an array of modes, however,

an angular task can be efficiently implemented in this way:

//Global variables

mode[M] = {f1(), f2(), f3()};

w_plus[M] = {2000, 4000, 6000};

w_minus[M] = {500, 1500, 3500};

m = 1;

task sample_angular_task{

w = read_rotation_speed();

while (w > w_plus[m]) m = m+1;

while (w < w_minus[m]) m = m-1;

}

execute(mode[m]);

In this implementation, function read rotation speed() returns the instantaneous speed

ω at the task activation time (not at the execution time of the function).

Figure 2.3 graphically illustrates functions C−
i (ω) and C+

i (ω) for the AVR task shown

in Fig. 2.2, while Figure 2.4 illustrates the steady-state utilization functions u−i (ω) and

u+i (ω).

CHAPTER 2. THEORETICAL MODELS 15

Figure 2.3: Task WCET as function of ω

Figure 2.4: Task utilization in steady-state condition as function of ω

2.0.2 Rotation Source Model

For the purpose of analyzing the schedulability of engine control applications consisting

of AVR tasks, it is crucial to characterize the relation between the task parameters and

the dynamics of the engine.

Following the approach proposed by Buttazzo et al. [10], if (ωk, αk) is the state of the

engine at time tk, the next job release time of an AVR task can be computed (assuming

CHAPTER 2. THEORETICAL MODELS 16

no other activations happen in this slice of time) as:

Ti(ωk, αk) =

√
ω2
k + 2αkΘi − ωk

αk

The corresponding relative deadline in the time domain can be computed by considering

the value given by the max acceleration value, namely α+

Di(ωk, αk) =

√
ω2
k + 2α+∆i − ωk

α+

In a similar way, the instantaneous rotation speed at the next job release can be computed

(assuming there are no other activation in the meantime) as

Ωi(ωk, αk) =
√
ω2
k + 2αkΘi

If a job Ji,k is released when the engine has an instantaneous speed ωk, the interar-

rival time T̃ (ωk, ωk+1) to the next job Ji,k+1 released with instantaneous speed ωk+1 (if

reachable with acceleration bounds) can be like this:

T̃ (ωk, ωk+1) =
2Θi

ωk + ωk+1

2.0.3 Issues of this new scenario

Dealing with variable rate tasks, it is not easy to deduce the behaviour of different sched-

ulers, because the speed of the rotation source evolves in an unpredictable manner.

Lots of analisys studies have been performed in this case, searching for worst-case work-

load for AVRTask under EDF, or interference under FP.

Previous studies and scheduling theorems are no longer valid in such scenario: this is why

is interesting to build up a simulator that manages AVRtasks, in order to get concrete

values of scheduling parameters and performances and compare them with theoretical

ongoing studies.

Chapter 3

Simulator Description

3.1 Overview

In order to build a basic scheduling simulator, the essentials software components are:

• Simulator Engine

• Kernel

• Scheduler

• Task

In order to handle AVRTasks, other three components are needed:

• AVRTask

• Rotation Source

• AVRTask Random Generator

17

CHAPTER 3. SIMULATOR DESCRIPTION 18

Figure 3.1: General Simulator Schema

Look at the schema in Fig. 3.1: Dealing with simulator engine, means that personalized

events should be post (passed to it) with a specific time value; the kernel is the software

module that has to do this work, with informations provided by the other components.

Of course task parameters like instructions, period, deadline... are stored inside the cor-

responding software module and used by the kernel to post events like Arrival, End,

Miss.

Schedulers’ job is to maintain the tasks’ queue ordered according to the related policy,

updating the kernel’s data structures.

Then AVRTask extends the task module in order to store the new parameters like an-

gular period, angular deadline and mode index.

The random AVRTask generator is needed to generate random parameters for simulation

purposes; finally the rotation source module implements the functions that describe the

engine rotation and is responsible for AVRTask activations.

CHAPTER 3. SIMULATOR DESCRIPTION 19

3.2 Available Libraries

Instead of program from scratch the basic blocks, two already available C++ libraries

have been used:

RTLib2.0 Real-time kernel simulator based on Metasim.

Metasim2.0 Event-based discrete-time simulator.

Both of them has been developed inside Retis Laboratory as internal project in Scuola

Superiore Sant’ Anna. The author is Giuseppe Lipari, with the contrbution of many Phd

students. This is all open source code, see here for more details:

• https://github.com/glipari/metasim2.0

• https://github.com/glipari/rtlib2.0

In this way, the work becomes to integrate the new modules to handle AVRTasks, with

the already available basic ones that are provided by the libraries.

3.3 Metasim

Metasim is a very powerful framework that allows programmers to develop their own

simulation entities that can post discrete events in time. In addition some useful classes

are provided in order to handle random variables, collect statistical values , write traces

and debug output. The user of a simulator wants to analyze the behavior of a system

without actually having the system. So, he makes a model and runs it under different

conditions and with different inputs, deterministic or randomly distributed. In a de-

terministic simulation the user is interested in analyzing the temporal evolution of the

system state (trace) under certain conditions. If the input is randomly distributed, the

user is interested in obtaining statistics on certain system variables, like average, vari-

ance, maximum and minimum value, confidence intervals, etc. The library has been built

following the ideas of the Pattern Community. The manifesto of this community is the

famous book ”Design Patterns and Analysis” by E. Gamma et al. Here the list of the

main classes of the framework:

CHAPTER 3. SIMULATOR DESCRIPTION 20

• Entities: they are the bricks with which is possible to model a system. Every

component of the system must be derived from this class. This class provides basic

functionalities for initialization and provides a naming system.

• Events: our simulation is based on the discrete event model. Events are the basic

objects for describing the temporal evolution of the system.

• RandomVar : the basic class to generate random variables from different distribu-

tions.

• Simulation: this is the main engine of the library.

• BaseStat : the basic class to collect statistics.

• Trace: the basic class to trace the behavior of a system.

The last two classes are exclusive: you may want to use only one of them, depending on

the type of the simulation.

3.3.1 Entities

The base class for every simulation object. An entity has an internal status, an interface

for modyfing the status, and can contain one or more events. An entity can be referred

also by its name (a string of characters) using the static method find. A specific entity

class should redefine the find function for doing type checking. A useful method for this

class, especially when some simulation parameters have to be changed after some runs,

is newRun(): it resets the entity status at the beginning of every run. This function is

called automatically at the beginning of every run, and its job consists in initializing the

entity status. It can be redefined in order to perform the desired changes. Warning: in

newRun() is not permitted to create/destroy new entity objects.

3.3.2 Events

The basic event class. It models an event in the simulator: contains all the basic methods

for handling an event. To define a new ”type” of events in your system model, you need

to derive a class from this, overriding the virtual doit() method. This class also inclides

a static event queue, where all ”active” events are enqueued. To insert an event in the

queue, you can call the post() method specyfing a triggering time. Events are ordered in

CHAPTER 3. SIMULATOR DESCRIPTION 21

the queue by triggering time. In case of two events with the same triggering time, events

are ordered by priority. In fact, it is also possible to specify a priority for every event

object. The priority is for the object, and not for the class! The lowest priority value is :

const int MetaSim::Event::_DEFAULT_PRIORITY = 8

while the highest one is

const int MetaSim::Event::_IMMEDIATE_PRIORITY = 0

It is not possible to post an event in the past, but is possible to post an event in the

present. If the event is marked disposable, the main simulation loop will delete it after it

has been processed. In practice, by setting disp to true, we are giving ownership of the

object to the Simulation engine, which will destroy the object after using it.

When an event is ”triggered” in the simulation, its doit() method is invoked. In most of

the cases, the doit() method simply calls a method of an entity, which will be informally

called ”handler” of the event. In case the doit() method only calls the appropriate event

handler, you can use the template class GEvent< X > instead of deriving a new class.

An event can have a list of statistical objects. These are objects that are used to collect

statistics on the system. See BaseStat for more details.

Finally, an event has a list of tracing objects. These are used to trace the evolution of

the system for analysing it later. See Trace class for more details.

3.3.3 RandomVar

This class implements a random variable: some derived class provide more detailed

implemetation depending on the type of random variable. The class diagram is self-

explanatory.

Figure 3.2: RandomVar class diagram

CHAPTER 3. SIMULATOR DESCRIPTION 22

3.3.4 Simulation

This singleton implements the simulation engine and some debugging facilities. The main

function is run(Ticklenght, size t runs) that is responsible for running the simulation

for one or more times. After defining all the objects in a simulation, this function should

be invoked for running the simulation.This example code show how it should be used:

// create entities ane events, link them to each other

// create statistics and traces, attach them to the events

Simulation::run(10000, 10); // run 10 simulations, each one for 10000 ticks

// collect and save statistics on files

At the beginning and at the end of each run, initialization and and finalization are called,

respectively, namely the Entity::newRun() and Entity::endRun(). The random seed is

not initialized at every run, but it is left as it is. Of course, it makes sense to run multiple

replicas of the same simulation only if the simulation itself includes random variables,

otherwise the result will always be the same. See the statistical section for more details.

The getTime() returns the current globalTime in the simulation; the dbg object is used

for debugging output.

3.3.5 BaseStat

This is the class that let the programmer to collect statistical values. Looking at Fig. 3.3

2 levels of abstraction are implemented, while the third is left to the programmer, de-

pending on his needs. Level 0 (BaseStat) cannot be changed: it implements the functions

for doing statistic: it is initialized with the number of experiments to be done, and has

an array where the data are recorded at the end of the simulation. It has two pure

virtual function, probe() and record(), so no object of this class can be instanciated.

It has some function to get the final stats (like getMean and getConfInterval). Level 1

(StatMax ...) implements the function for collecting statistic; for example, the StatMax

class record the maximum value during an experiment. The user can add his own classes

to this level, and he must implement the record() function and the initValue() function.

Level 2 implements the probe() for a single event. The user must write entirely this level,

depending on the variable he needs to measure. When implementing a class of this level,

the user must write the probe function, which has to call the record() function with the

appropriate value.

CHAPTER 3. SIMULATOR DESCRIPTION 23

Figure 3.3: BaseStat class diagram

3.3.6 Trace

This class allows programmers to trace variables on a stream. By default it opens a binary

stream. The derived class TraceASCII put the traced values into an ASCII stream.

Figure 3.4: Trace class diagram

3.4 RTLib

RTLib provides software modules needed to simulate a real-time kernel, with all related

stuff. It is based on Metasim, so Tasks, Schedulers, Kernels are classes derived from

Entity, with all related events that are posted during the simulation. In order to get a

concrete idea of how this library works, and how to use it to build new features, like

AVRtaks, let’s go inside implementation of some basic modules:

• RTKernel :The base module of real-time operating system.

• Scheduler, TaskModel : Modules that provide methods to handle task’ s priority

queues and scheduling parameters.

• Task : Base class that implements task functionalities.

• Instr : The base class for every pseudo-instruction.

• TextTrace: Module that let each event to be traced in a text file.

CHAPTER 3. SIMULATOR DESCRIPTION 24

• TaskStat : Contains some classes in order to collect different statistical parameters

related to tasks, i.e. : miss count, lateness, respons time...

There are other simulation entities provided by RTLib2.0; i am going to list them for

the sake of completeness, but withouth enter in details, because they are not essential

for my work.

• CPU

• PollingServer

• SporadicServer

• Grub

• Supervisor

• Resource

• ResManager

• JavaTrace

3.4.1 RTKernel

An implementation of a real-time single processor kernel. It contains :

• a ponter to one CPU

• a pointer to a Scheduler, which implements the scheduling policy;

• a pointer to a Resource Manager, which is responsable for resource access related

operations and thus implements a resource allocation policy;

• the set of task handled by this kernel.

This implementation is quite general: it lets the user of this class the freedom to adopt

any scheduler derived form Scheduler and a resorce manager derived from ResManager

or no resorce manager at all.

Also the implementation for real-time multiprocessor kernel is available, as can be seen

CHAPTER 3. SIMULATOR DESCRIPTION 25

from the class diagram in Fig. 3.5 . Method dispatch() compares currently executing

task with the first in the ready queue. If they are different, it forces a context switch.

The corresponding schedule and deschedule functions of the two tasks are called.

Function onArrival() is invoked from the task onArrival function, which in turn is invoked

when a task arrival event is triggred. It inserts the task in the ready queue and calls

dispatch(); An example pseudo-code to start a simple scheduling simulation can be like

this:

CreateScheduler();

CreateKernel(&scheduler);

CreateTask;

kernel.addTask(&task,params);

Finally function onEnd() is invoked from the task onEnd function, which in turn is

invoked when a task completes the execution of the current instance. It removes the

task from the ready queue, set current executing pointer to NULL and calls dispatch().

Figure 3.5: Kernel class diagram

3.4.2 Scheduler, TaskModel

Scheduler is an abstract class and cannot be instanciated.

This class models a generic real-time scheduler. It implements the Scheduler interface.

Basically, this and the derived classes in Fig. 3.6 manage a priority queue in a convenient

manner, and offer a clean interface toward the kernel and the resource manager.

The class keeps internally a repository of all tasks that can be scheduled by this sched-

uler. Every time a task is ”added” to the scheduler, an appropriate TaskModel object

is built, which contains the scheduling paramenters of the task. In this way, we clearly

separate the task parameters (like period, deadline, wcet, etc.) that are contained in the

task class, from the scheduling parameters that are contained in the TaskModel derived

CHAPTER 3. SIMULATOR DESCRIPTION 26

classes. Implements the scheduling policy for a set of tasks. Tipically a scheduler con-

tains a queue of task model’ s instances. The responsibility of this class is to mantain

the queue. Class TaskModel contains the scheduling parameters and a pointer to the

Figure 3.6: Scheduler class diagram

task. It is used by a scheduler to store the pointer to the task and the set of scheduling

parameters. Each scheduler has its own task model. So the class inheritance trees of the

task models and of the schedulers are similar (see Fig. 3.7).

Figure 3.7: TaskModel class diagram

3.4.3 Task

This class models a cyclic task. A cyclic task is a task that is cyclically activated by a

timer (for example a periodic task) or by an external event (sporadic or aperiodic task).

This class models a ”run-to-completion” semantic. Every activation (also called arrival),

an instance of the task is executed. The task executes all the instructions in the sequence

CHAPTER 3. SIMULATOR DESCRIPTION 27

until the last one, and then the instance is completed (task end).

At the next activation, the task starts executing a new instance, and the instruction

pointer is reset to the beginning of the sequence.

When a job arrives (onArrival()), the corresponding deadline is set (the class Task has no

deadline parameter). It adds deadline event to check deadline misses, with the possibility

to abort the simulation in case of deadline miss (depending on the abort parameter in

the constructor). In order to create a Task the programmer must provide two essential

Figure 3.8: Task class diagram

parameters:

• Interarrival-time time between consecutive activations. Set it to NULL if you want

just one activation.

• Relative Deadline Used to calculate the absolute deadline, when the task arrives.

Another important feature is to provide pseudo-code to the created task: function in-

sertCode(const string).

It parses and inserts instructions into this task. The input string must be a sequence of

instructions separated by a semicolon (also for last instruction). The instruction’ s types

will be described in the related subsection.

Here is just an intuitive example of code:

t1.insertCode("fixed(4);wait(Res1);delay(unif(4,10));

signal(Res1); delay(unif(10,20));");

In this case, the task performs 5 instructions; the first one lasts 4 ticks; the second

one is a wait on resource Res1; the third one has variable execution time, uniformely

distributed between 4 and 10 ticks; the fourth one is a signal on resource Res1. Finally,

CHAPTER 3. SIMULATOR DESCRIPTION 28

the last instruction has variable execution time uniformely distributed between 10 and

20 ticks.

3.4.4 Instruction

The base class for every pseudo instruction. Pseudo-instructions represents the code that

a task executes.

An instruction is identified by an execution time (possibly random) and by a certain op-

tional functionality. A task contains a list of instructions, that are executed in sequence.

From the Fig. 3.9 it is possible to deduce different types of pseudo-instructions imple-

Figure 3.9: Instruction class diagram

mented.

3.4.5 TaskStat

Using statistical modules provided by Metasim i.e. StatMean, StatMax, StatMean it is

possible to create custom statistics related to task. Here is the list of the task statistics

implemented:

• PreemptionStat< Measure > Computes the preemption count for each job

• GlobalPreemptionStat Computes the total number of preemptions.

• FinishingTimeStat< Measure > Computes the finishing time of each job.

• LatenessStat< Measure > Computes the lateness of each job of the task attached.

• TardinessStat< Measure > Computes the finishing time normalized by the rela-

tive deadline.

• UtilizationStat< Measure > Computes the utilization of each job.

CHAPTER 3. SIMULATOR DESCRIPTION 29

• MissPercentage Computes the miss percentage.

• MissCount Computes the number of deadline misses . It can be applied to a single

task or to the entire task set.

• ConsumedPower< Measure >

• SavedPower< Measure >

Some of them are created depending on the template class (Measure) that is passed to it,

in order to allow programmers to collect the mean, max, min of the desired parameters

within all the jobs of all the tasks that are attached to that class. Example code:

//average lateness of task(s) attached

LatenessStat<StatMean>

//max number of preemptions experienced by task(s) attached among all its(their) jobs

PreemptionCount<StatMax>

Chapter 4

Task model: AVRTask

4.1 Overview

In order to correctly implement the software module for Adaptive Varibale-Rate task

it is needed to clearly understand the changes that it introduces with respect to the

classical task.

A complete overview on the literature about this topic been already described in the in-

troduction, following steps defined by research papers included in the bibliography. Now

we have to define the new task model in terms of parameters, variable and implement the

desired (already discussed) behaviour. Second step, but not less important, is to adapt

these theoretical changes to the software modules that are already in RTLib2.0.

4.2 Theoretical model

AVRTasks run inside ECU and they are started at predetermined rotation angles. From

this sentence I can immediately deduce the need of three parameters:

• AngularPeriod

• AngularPhase

• AngularRelativeDeadline

These parameters are fixed for each instance of taskAVR and don’t change during the

single simulation run.

This work allows the possibility to change them (between two simulation runs), withouth

30

CHAPTER 4. TASK MODEL: AVRTASK 31

the need to re-create the AVRTask with different parameters, but the reasons for doing

this will be analyzed later.

It is easy to see that these three doubles need to be translated in the time domain,

but this is left to another software module that will be analyzed in chapter 5 (Rotation

Source).

For sure an integer variable is needed in order to distinguish between different execution

modes depending on the current engine velocity (mode).

For the same reason thresholds of angular velocities are necessary for the correct mode

transition. That is not enough, because if we want to consider hysteresis (that is different

transition velocities in acceleration and deceleration), two arrays of angular velocities

must be considered instead of one. The size of the velocity arrays and the maximum

value (increased by 1) of the integer variable mode must be equal and correspond to the

AVRTask ’s number of modes. Last elements to be considered in order to have a general

view are Computation Times values for each mode.

Summarizing in C++ code this first, incomplete version :

class AVRTask{

double AngularPeriod;

double AngularPhase;

double AngularDl;

int mode;

vector<double> OmegaMinus;

vector<double> OmegaPlus;

vector<int> CompTime;

vector<vector<Instr*>> myInstr;

}

4.3 Implementation

Looking at already available modules, the first one that can be used as base class from

which derive AVRTask is of course Task. This is for sure a good choice, but some ad-

justments have to be made in order to get the correct behaviour.

First of all, AVRTask is not periodic in time, so the interarrival time parameter of task

CHAPTER 4. TASK MODEL: AVRTASK 32

class must be set to NULL.

If it is not periodic, each instance must be activated from external entities (Rotation

Source), by calling the related function : activate(). In addition, at each activation, the

mode index should be computed togheter with the temporal RelativeDeadline (both

values depend on the current engine velocity). This is the final activate code:

void AVRTask::activate(int mode, Tick rdl) throw (ModeOutOfIndex){

if (mode >= myInstr.size() || mode < 0)

throw ModeOutOfIndex("Mode Index out of range");

BufferedDeadlines.push_back(rdl);

BufferedModes.push_back(mode);

arrEvt.drop();

arrEvt.post(SIMUL.getTime());

}

As you can see, the mode index and the relative deadline are buffered into std::vectors:

this is in order to handle overload conditions; let me describe how RTLib::Task behaves

in such scenario. Suppose that a job of periodic task ”Task1” is currently executing at

simulation time 10 and the next job arrives exactly at time 10, while the previous one

is not yet finished. RTLib manage this situation buffering the arrival time of the second

job, that will be popped back when the first job finishes, posting fakeArrivalEvent that

calls handleArrival(PoppedArrivalTime).

So far, back to AVRTask, not only arrival time is need to be buffered, but also mode

index and relative deadline that are essential job ’s parameters. In order to pop back

them in the correct order, the virtual handleArrival() should be redefined:

void AVRTask::handleArrival(Tick arr){

setRelDline(*(BufferedDeadlines.begin()));

BufferedDeadlines.erase(BufferedDeadlines.begin());

mode = *(BufferedModes.begin());

BufferedModes.erase(BufferedModes.begin());

CHAPTER 4. TASK MODEL: AVRTASK 33

instrQueue.clear();

vector<RTSim::Instr*> myCurrInstr = myInstr.at(mode);

vector<RTSim::Instr*>::iterator j = myCurrInstr.begin();

while (j!=myCurrInstr.end()){

addInstr(*j);

j++;

}

Task::handleArrival(arr);

}

Another problem that has to be solved is how to handle instructions.

Regular task requires the function insertCode() to build their instruction queue before

the simulation starts: in fact Task::newRun() function throws an exception in the case

of empty instruction queue.

AVRTask should have different instruction queues depending on the mode index; in addi-

tion it cannot build the instruction queue before the simulation starts, because it doesn’

t know the execution mode until activate();

This problem has been solved by creating all the possible instruction queues (one per

mode) in the constructor function: buildInstr(), that receives as parameter a vector of

string. Each string is parsed in order to create instruction instances from the instruc-

tion factory like the implementation of insertCode(). Then all of them are stored inside

instance variable myInstr.

This is the constructor code, angular velocitiy values are passed in rpm and translated

in rad/s;

AVRTask::AVRTask(double angPeriod, double angPhase, double angDl,

vector<string> instr, vector<double> Omegaplus, vector<double>

Omegaminus, const std::string &name) throw(WrongParameterSize)

:Task(NULL, 0, 0, name, 1000), AngularPeriod(angPeriod),

AngularPhase(angPhase), AngularDl(angDl){

if (instr.size() != Omegaminus.size() ||

CHAPTER 4. TASK MODEL: AVRTASK 34

instr.size() != Omegaplus.size())

throw WrongParameterSize();

buildInstr(instr);

OmegaPlus.assign(Omegaplus.begin(),Omegaplus.end());

OmegaMinus.assign(Omegaminus.begin(), Omegaminus.end());

std::transform(OmegaPlus.begin(), OmegaPlus.end(), OmegaPlus.begin(),

std::bind1st(std::multiplies<double>(), 2 * M_PI / 60));

std::transform(OmegaMinus.begin(), OmegaMinus.end(), OmegaMinus.begin(),

std::bind1st(std::multiplies<double>(), 2 * M_PI / 60));

}

Then as can be seen above, in the handleArrival(), the correct instruction queue is

selected, and used for that specific job.

After handleArrival() the flow of execution passes to the kernel entity, that insert the

task in the ready queue and schedules it according to the policy established.

For simulation purpose, it is necessary to change AVRTask parameter, that are randomly

generated, after some simulation runs; for this reason changeStatus() function has been

implemented. It is very similar to the constructor, but allows to use the same entity for

all the simulation runs.

Other functions that have been implemented are:

• createInstance(string param).

• getWCET(int mode).

• ∼AVRTask().

The first one is needed by the task-factory, in order to create AVRTask instances.

An example code can be like this:

auto_ptr<Task> curr = genericFactory<Task>::instance().create(

"AVRTask", vector<string>{

CHAPTER 4. TASK MODEL: AVRTASK 35

to_string(M_PI), to_string(0), to_string(M_PI_4),

string("fixed(20);"), string("fixed(12);"),

string("fixed(7);delay(1);"),

string("2000,4000,6000"),

string("500,1500,3500")

}

);

AVRTask *t1 = (AVRTask*)curr.release();

The second, returns the worst-case execution time of all the instructions corresponding

to the mode index passed as argument.

Last one, the destroyer, deallocates all the dynamic memory used for instructions cre-

ation and clears all vectors.

Chapter 5

Rotation Source Entity:

AVRActivator

5.1 Overview

As described in the previous chapter, each job of each instance of AVRTask needs to be

activated, with arguments like relative deadline and mode index.

In order to accomplish this task, and to simulate a new component, like an engine in the

real world a new Metasim::Entity called AVRActivator has been implemented.

To be more precise, it is an entity that given acceleration and omega values, calculates

the simulation time (number of Ticks) needed to rotate of an angular displacement and

use this value to activate AVRTasks attached to it, correctly.

5.2 Implementation

Some implementation choices have been made, depending on the needs of usage of the

implemented components. AVRTask code needs to be kept as simple as possible, in or-

der to be reused, so some of the implementation complexity shifts to the AVRActivator

component. In order to better understand these differences, let me describe the general

algorithm performed by AVRActivator.

This is an iterative algorithm, that passes from an activation event to the next one, fol-

lowing the order imposed by the AVRTasks’ parameters (AngularPhase and AngularPe-

riod) that are attached to that rotation source. So far, a personalized event: actEvt is

posted every time an activation should be performed.

36

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 37

The handler of the event (OnActivate(Event* e))includes all the computations of the

rotation source model implementation.

This pseudo-code summarizes the flow of execution:

onActivate(Event* e){

AccelerationUpdate();

PostNextActivation(NextJob);

Activate(CurrentJob);

}

Let’ s analyze more in deep, the main functionalities of this software module:

• Task Management

• Physical Engine Management

5.2.1 Tasks management

First of all, it needs a list of elements like this one:

typedef struct elem{

AVRTask* task;

double ActivationAngle;

};

ActivationAngle values are clearly angular values that indicates the activation angle of

the corresponding task.

The list:

list<elem*> _angularPositionToAVRTask;

must be ordered by increasing ActivationAngle values, because the AVRActivator work

is to iteratively activate all the tasks ’ jobs that are attached to it, only when the acti-

vation angle is reached.

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 38

List Management

List management consists in update the ActivationAngle value of the next task by adding

its AngularPeriod ; but to let the code work for even infinite time, I have to insert some

kind of periodicity. The solution I have used is to define a threshold:

#define ACTIVATOR_PERIOD 2*M_PI

When the first ActivationAngle value in the list becomes greater than this threshold (like

all the other values, because it is the lowest), the modulo with ACTIVATOR PERIOD

is calculated and used, for all the tasks.

This solution works because also the other variables: LastActivation, ActivationTime

and AngularVelocity (see later for detailed description) are updated taking into account

this particular case.

Next Activation Event creation

Togheter with list management also next actEvt creation and post is performed by:

PostNextActivation(NextJob)

I have defined the actEvt class with four variables:

• AVRTask* task;

• int mode;

• AVRActivator* myact;

• Tick RelDline;

The pointer to the task is need to call AVRTask::activate(int mode, Tick RelDline) inside

the event handler.

The pointer to the activator is only for self-made event implementation issue.

The mode index and the relative deadline are computed and passed to the constructor

of the actEvt, that then is posted with the correct activation time.

Coming back to the implementation choiches i was talking about in the implementa-

tion section of this chapter, the mode index computation is implemented inside the

AVRActivator instead of AVRTask, to let the last module easier to be used, also in other

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 39

simulation scenarios.

In order to do this, the task’ s velocity threshold must be obtained by the AVRActivator :

int AVRActivator::CalculateMode(double Omega, AVRTask* task){

vector<double> OmegaPlus = task->getOmegaPlus();

vector<double> OmegaMinus = task->getOmegaMinus();

int mode = 0;

while (Omega > OmegaPlus.at(mode))

mode++;

while (Omega < OmegaMinus.at(mode))

mode--;

return mode;

}

Of course as all iterative methods, the initial case is implemented inside newRun() func-

tion, where the postNextActivation() is performed for the first job of the first AVRTask.

In addition the initial values of the ActivationAngles is set to the AngularPhase of the

corresponding task.

void AVRActivator::newRun(void){

ElemIterator p = _angularPositionToAVRTask.begin();

while (p != _angularPositionToAVRTask.end()){

(*p)->ActivationAngle = (*p)->task->getAngularPhase();

p++;

}

_angularPositionToAVRTask.sort(MyElemComparator());

AlphaCurrent = UniformVar(AlphaMinus, AlphaPlus, &mygen).get();

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 40

LastUpdate = 0;

LastActivation = 0;

//post the first task activation

ElemIterator k = _angularPositionToAVRTask.begin();

PostNextActivation(k);

}

The task list is created in the constructor and never changes, but task parameters can

be changed by AVRTask interface, already described in the previous chapter.

5.2.2 Physical engine management

Physical laws

The model of a rotation source requires some physical laws to be implemented in order

to update the activation times and angular velocity at each each step.

The functions that compute these values are:

getActivationTime(double omega, double alfa, double theta);

getAngularVelocity(double omega, double alfa, double theta);

The arguments required are the same for both of them:

• double omega the angular velocity at the current time instant t

• double alfa the angular acceleration that is assumed constant for the angular dis-

placement theta.

• double theta the angular displacement the motor has to rotate, after which we want

to know the time elapsed from t, or the new angular velocity.

Here the physical laws:

(1)ActivationT ime =

√
omega2 + 2 ∗ alpha ∗ theta− omega

alpha

(2)AngularV elocity =
√
omega2 + 2 ∗ alpha ∗ theta

In the implementation I have made some adjustments:

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 41

• In (1) if alpha is zero the new formula becomes:

(3)ActivationT ime =
theta

omega

• In (2) saturation values for angular velocities are used:

– #define MAX_ANG_VELOCITY 6500*M_PI/30

– #define MIN_ANG_VELOCITY 500*M_PI/30

Class Variables

There are two class variables that needs to be kept between two consecutive activation:

• LastActivation

• AngularVelocity

The first one is need to define the angular displacement (theta) between two consecutive

activations, that has to be passed to physical laws implementation:

theta = firstActivation− LastActivation

The second one also is one of the parameters to be passed to physical laws function.

The AngularVelocity value can be changed at any time during the simulation, using the

SetOmegaZero(double newOmega) function, where newOmega is in rpm. There are other

class variables, related to acceleration update, that i will analyze in the last paragraph

of this chapter.

PostNextActivation() Variables

Here the main variables used:

• FirstActivation: angular value of the next activation; the first of the ordered list.

• NextAngularVelocity : angular velocity at next activation instant, returned by getAn-

gularVelocity().

• ActivationTime: time elapsed from the current activation to the next one (in sec-

onds), returned by getActivationTime().

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 42

• ActivationTimeTick : time elapsed from the current activation to the next one (in

Tick)

• RelDeadline: time elapsed from the next activation to the angular deadline expi-

ration (in seconds), returned by getActivationTime().

• RelDeadlineTick : time elapsed from the next activation to the angular deadline

expiration (in Tick).

Of course class variables are substituted every activation with the corresponding function

variable, to keep track of the status of the system, that continue evolving following the

two already mentioned rules.

The only difficulty is just to set up parameters of physical function correctly and to

handle periodicity.

From seconds to simulation ticks

As can be read from the previous paragraph, for each time variable, which has unit of

measure in seconds, the corresponding one in simulation tick must be computed.

Physical laws return values in seconds, but this is a descrete-time, event-based simulator.

A scale factor has been created, in order to set the desired granularity of the simulation

time:

#define SIM_STEP_NS 1000000000

#define SIM_STEP_US 1000000

#define SIM_STEP_MS 1000

#ifndef SIM_STEP

#define SIM_STEP SIM_STEP_US

#endif

Depending on the SIM STEP define statement, three values can be used: nanoseconds,

microseconds, milliseconds.

Acceleration management

Looking at the activation event handler, the first function that is invoked is UpdateAc-

celeration(). Three modalities of acceleration updates are considered:

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 43

• Jerk values are taken into account: JerkMinus and JerkPlus are the boundaries.

The time between two updates (timeElapsed) is needed to compute the delta of

acceleration:

AlphaCurrent = UniformVar(

AlphaCurrent + JerkMinus*timeElapsed,

AlphaCurrent + JerkPlus*timeElapsed

)

Then a saturation to AlphaMinus and AlphaPlus values is performed.

• Input values read from an external file.

• Random, uniformely distributed acceleration between AlphaMinus AlphaPlus.

An important issue in the first kind of update, is to set JerkMinus, JerkPlus, AlphaMi-

nus, AlphaPlus in order to obtain velocity and acceleration realistic profiles. Now some

example profiles will be showed, they have been elaborated during tuning phase: On

the x-axis the simulation time in seconds (until 5s), on the y-axis rpm for velocity and

rad/s2 for acceleration.

The colored indexes in the legend chart identify different simulation runs.

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 44

Figure 5.1: Velocity Profile with JerkMinus=-120rad/s3, JerkPlus=120rad/s3,

AlphaMinus=-50rad/s2, AlphaPlus=50rad/s2

Figure 5.2: Velocity Profile with JerkMinus=-120rad/s3, JerkPlus=120rad/s3,

AlphaMinus=-50rad/s2, AlphaPlus=50rad/s2

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 45

Figure 5.3: Velocity Profile with JerkMinus=-200rad/s3, JerkPlus=200rad/s3,

AlphaMinus=-50rad/s2, AlphaPlus=50rad/s2

Figure 5.4: Velocity Profile with JerkMinus=-200rad/s3, JerkPlus=200rad/s3,

AlphaMinus=-50rad/s2, AlphaPlus=50rad/s2

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 46

Figure 5.5: Velocity Profile with JerkMinus=-300rad/s3, JerkPlus=300rad/s3,

AlphaMinus=-100rad/s2, AlphaPlus=100rad/s2

Figure 5.6: Velocity Profile with JerkMinus=-300rad/s3, JerkPlus=300rad/s3,

AlphaMinus=-100rad/s2, AlphaPlus=100rad/s2

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 47

Figure 5.7: Velocity Profile with JerkMinus=-400rad/s3, JerkPlus=400rad/s3,

AlphaMinus=-150rad/s2, AlphaPlus=150rad/s2

Figure 5.8: Velocity Profile with JerkMinus=-400rad/s3, JerkPlus=400rad/s3,

AlphaMinus=-150rad/s2, AlphaPlus=150rad/s2

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 48

Figure 5.9: Velocity Profile with JerkMinus=-500rad/s3, JerkPlus=500rad/s3,

AlphaMinus=-200rad/s2, AlphaPlus=200rad/s2

Figure 5.10: Velocity Profile with JerkMinus=-500rad/s3, JerkPlus=500rad/s3,

AlphaMinus=-200rad/s2, AlphaPlus=200rad/s2

CHAPTER 5. ROTATION SOURCE ENTITY: AVRACTIVATOR 49

Figure 5.11: Velocity Profile with JerkMinus=-5000rad/s3, JerkPlus=5000rad/s3,

AlphaMinus=-700rad/s2, AlphaPlus=700rad/s2

Figure 5.12: Velocity Profile with JerkMinus=-5000rad/s3, JerkPlus=5000rad/s3,

AlphaMinus=-700rad/s2, AlphaPlus=700rad/s2

Chapter 6

Task Set Generator Entity:

AVRGenerator

6.1 Overview

AVRTasks require some parameters in order to be instanciated; we can simply look at

the class construnctor to list them:

• AngularPeriod.

• AngularPhase.

• AngularDeadline.

• Instruction’ s lenghts and types.

• Angular velocities thresholds.

The goal is to randomly generate all these values by means of an entity, with some

functions useful for my specific simulation purposes.

6.2 Implementation

The approach used for this entity implementation, is to maintain the last AVRTask

parameters generated stored into class variables.

Also the list of all generated tasks is stored inside a class variable:

50

CHAPTER 6. TASK SET GENERATOR ENTITY: AVRGENERATOR 51

typedef vector<AVRTask*> AVRTaskList;

typedef vector<AVRTask*>::iterator AVRTaskIterator;

class AVRGenerator : public Entity {

protected:

RandomGen mygen;

AVRTaskList myTasks;

double period, phase, rdl;

vector<Tick> MaxC;

vector<string> Instr;

int index;

vector<double> OmegaPlus; //rpm

vector<double> OmegaMinus; //rpm

public:

....

}

The random generator mygen is created in the class constructor and it is used for all

random variables.

The general behaviour of the task generator consists in three main steps:

• Generate random AVRTask’ s parameters from the generator’ s parameters.

• Create AVRTask’ s instances with last generated parameters.

• Update AVRTask ’s instances parameters or create new instances with newly gen-

erated values.

Task list is needed to maintain a reference to all created AVRTasks; it can be returned

by getList() function.

Here are the functions that has been implemented:

• void updateTaskValues(int first, int max);

• AVRTaskList addTask(int n);

• void GenerateTaskParameter(AVRGeneratorParams myParams);

CHAPTER 6. TASK SET GENERATOR ENTITY: AVRGENERATOR 52

• AVRTaskList GenerateTaskSameParams(int n, int ncopies, AVRGeneratorParams

myParams);

• AVRTaskList getList();

• void printTaskParam();

Each of the created task’ s instance parameter can be changed by using updateTaskVal-

ues(int first, int max). This function will call changeStatus() of AVRTask class for each

element of index between first and max inside the list; of course new values must be

generated before function calling or it will be useless.

The two basic functions are GenerateTaskParameter() and addTask(): the first one gen-

erates random AVRTask parameters from generator parameters passed to it and stores

them in the corresponding class variables. The second one simply creates n AVRTask’

instances with stored parameters.

Depending on the simulation that has to be performed, previous functions allow the

programmer to implement the desired behaviour.

For example, in this case, the decision is to generate couples of AVRTask’ s instances

with the same parameters (they will be used to compare two different scheduling algo-

rithms performances); in addition the possibility to change their parameters after some

runs has been taken into account.

For these reasons, GenerateTaskSameParams function, simply generates parameters and

create ncopies of AVRTask instances: both this functionalities are repeated for n times.

Be careful because generating new tasks means deleting previous ones, while if I want

only to change some task’s values, withouth delete their instances, updateTaskValues(int

first, int max) must be used.

Last one: printTaskParam() prints on screen the parameters for all tasks generated.

6.2.1 Random parameters generation

This process is implemented inside function GenerateTaskParameter(), starting from

the modes number to the instructions generation. Here the structure that defines the

generator parameters:

CHAPTER 6. TASK SET GENERATOR ENTITY: AVRGENERATOR 53

typedef struct AVRGeneratorParams{

int modesL;

int modesH;

double MinPeriod;

double MaxPeriod;

double MinPhase;

double MaxPhase;

double MinDl;

double MaxDl;

double minUPercentage;

double maxU;

int SpeedInterval;

int MinSpeedSeparation;

int MinSpeedPlus;

int MinSpeedMinus;

int MaxSpeedPlus;

int MinHyst;

int MaxHyst;

};

The first step is to define the number of modes: it is randomly generated between two

integer values (modesL, modesH). Remember that AVRTask’ s class deduces the max-

imum mode index by looking at vectors’ sizes passed to the constructor (and checking

that they have the same lenght).

Next parameter to be generated is Hysteresis, in the same way of the modes number,

between MinHyst and MaxHyst.

The three main AVRtask’ s parameters are: period, phase and relative deadline.

Period is generated as random variable uniformely distributed between 2*PI*MinPeriod

and 2*PI*MaxPeriod.

Phase is generated as random variable uniformely distributed between 2*PI*MinPhase

and 2*PI*MaxPhase.

Relative deadline is generated as random variable uniformely distributed between MinDl*period

and MaxDl*period.

So far is possible to play with generator parameters, in order to get desired task param-

eters; for example if we want to set relative deadline equal to period, simply put:

CHAPTER 6. TASK SET GENERATOR ENTITY: AVRGENERATOR 54

MinDl = MaxDl = 1;

Antoher example: if you want to set phase equal to zero

MinPhase = MaxPhase = 0;

Otherwise just put correct fractions to the boundaries of the uniformely distributed

random var.

Then the utilization factor distribution among modes is performed:

• One mode index is selected randomly and the maxU value is assigned to it.

• For all the other modes a random value between 0 and 1 (let’ s call it randZeroOne)

is generated and used to compute the utilization value for this mode in this way:

double value = minUPercentage*maxU + (maxU - minUPercentage*maxU)*randZeroOne;

Angular velocity’ s thresholds, in rpm, for mode changes are generated taking into ac-

count also hysteresis value: first thresholds’ vector in the case of acceleration is computed,

let’ s call it OmegaPlus; then the other one in case of deceleration, namely OmegaMinus,

is computed by subtracting hysteresis from OmegaPlus.

There are two fixed values, that are in the generator parameters set: the maximum speed

threshold in acceleration (MaxSpeedPlus), and the minimum speed threshold in deceler-

ation (MinSpeedMinus).

OmegaPlus elements are computed in this way:

int value = MinSpeedPlus + SpeedInterval * randZeroOne;

The vector is sorted in increasing order, then the computation is repeated until at least

there is MinSpeedSeparation between two adjacent thresholds.

Both velocities and utilizations are needed to calculate the computation times for each

mode, that are essential parameters in order to create instructions.

The instruction’s queues are all composed by a single instruction of type ”fixed”, with

computation time like this:

double value = period * utilization / angular_velocity;

Where angular velocity is taken from OmegaPlus values, in the corresponding mode

index, of course translated in rad/s.

Finally the check if computation times are decreasing with the increasing of the mode

index is performed: if positive the parameters are stored and can be used to instanciate

tasks, otherwise the generation process restarts until ”good” values are reached.

Chapter 7

Experimental results

In order to perform lots of heavy computational simulations, that would take lot of

time using a normal uniprocessor machine, a Unix-based multicore machine that is built

inside Retis laboratory of Scuola Superiore Sant’ Anna has been used.

The way to use it is a ssh-access to a virtual machine that utilizes 32 core of the physical

machine.

Before showing the results, let’ s describe how to setup simulations, in particular:

• the main programs that uses the software modules already presented.

• the scripts needed to distribute simulation runs among processors.

7.1 Main programs

In this section the usage of the software components already provided by RTLib2.0 and

the three ones I have implemented, namely AVRTask, AVRActivator, AVRGenerator is

shown.

Of course it is not possible to describe each main program for every simulation, so I will

illustrate the general structure that, each time, can be adapted to the particular case.

Collecting statistical values requires lot of simulation to be run, in order to get meaningful

results.

In this case each simulation unit consists of several simulation runs, each one with a

different initial angular velocity for the AVRActivator module. In each simulation unit

task’ s parameters are left unchanged because the performances should be computed on

the entire spectrum of angular velocities, in order to obtain significant values.

55

CHAPTER 7. EXPERIMENTAL RESULTS 56

Launching one single simulation unit is not a clever idea, because we are dealing with

statistical variables and the random generator will be useless in this case.

So far the code of the main program should execute a high number, let ’s say at least

500, simulation unit, randomly generating new task’ s parameters before each one.

Coming to the implementation this is the skeleton of the main program loop:

int main(){

int NSims = NSIM;

double Omega = OMEGAMIN;

int count = 0;

while (count < NSims){

Omega = OMEGAMIN;

myUpdater.SetRegenerate();

while (Omega <= OMEGAMAX){

myUpdater.SetOmega(Omega);

SIMUL.run(SECONDS*SIM_STEP);

Omega = Omega + STEPOMEGA;

}

count++;

}

Here the define statments to adjust simulation parameters:

#define SECONDS 5

#define NSIM 1000

CHAPTER 7. EXPERIMENTAL RESULTS 57

#define NPERTASK 4

#define NAVRTASK 1

#define ROU 0.4

#define STEPOMEGA 500

#define OMEGAMIN 500

#define OMEGAMAX 6500

#define MINPERIOD 20000

#define MAXPERIOD 100000

#define STEPPERIOD 1000

The main goal is to compare the two main scheduling algorithms: Earliest Deadline First

and Fixed Priority when dealing with both periodic and AVR tasks.

In order to implement this behaviour in RTLib2.0, two RTKernel instances are needed,

each one with his own Scheduler instance attached to it.

Of course corresponding tasks attached to the kernels should be identical, otherwise the

comparison will be meaningless.

This means that, after generating parameters, two task’ s instances must be created,

each one attached to a different scheduler, of course for bot types: AVR and periodic.

In addition, also parameters change should be performed, between simulation units.

The choiche is to implement all this stuff inside a new Metasim::Entity calledl Updater.

The reasons of this decision are:

• use the newRun() method redefinition provided by Metasim in order to perform

task parameters updates.

• leave the main program cycle clean and easy readable.

Looking at the main code, you can see the class myUpdater usage: it manages all the

other simulation entities; more precisely:

• creates AVRActivator and gets the reference to the AVRGenerator.

• generates two periodic task-sets and other two AVRTask-sets with random param-

eters.

• attach tasks to kernels, links statistical variable to tasks and set fixed priorities.

• re-generates random parameters for tasks every simulation unit.

CHAPTER 7. EXPERIMENTAL RESULTS 58

AVRTask generation is performed by AVRGenerator module and has been already dis-

cussed in chapter 4.

Periodic tasks generation is done by Updater::GeneratePeriodicTasks(); the parameters

to be randomly computed are:

• periods.

• utilization factors.

From this two values, computation time also can be easily deduced.

This is the function used to generate periods:

Tick GetPeriod(RandomGen& mygen){

int Kmax = (MAXPERIOD - MINPERIOD) / STEPPERIOD;

UniformVar K(0, Kmax, &mygen);

int kvalue = K.get();

return MINPERIOD + kvalue*STEPPERIOD;

}

About utilization factors, the total utilization for both periodic and AVRTasks, let ’s

call it U, is passed as parameter to the main function; then two values are computed:

• U AVR = ROU * U

• U PERIODIC = U - U AVR

where ROU is one of the define statement, like the number of periodic taks (NPER-

TASK) and the number of AVRTasks (NAVRTASK).

The U AVR and U PERIODIC value are passed as input to the UUnifast algorithm

implementation. This is the C++ implementation:

vector<double> UUnifast(int number, double MYU, RandomGen& mygen){

vector<double> result;

double sumU = MYU;

double UMin = 0.001;

double NextSumU, base, exp, temp;

UniformVar myvar(0, 1, &mygen);

for (int i = 0; i < number - 1; i++){

base = myvar.get();

CHAPTER 7. EXPERIMENTAL RESULTS 59

exp = (double)((double)1 / (double)(number - i - 1));

temp = pow(base, exp);

NextSumU = sumU*temp;

if (NextSumU>sumU - UMin)

NextSumU = sumU - UMin;

if (NextSumU<(number - i - 1)*UMin)

NextSumU = (number - i - 1)*UMin;

result.push_back(sumU - NextSumU);

sumU = NextSumU;

}

result.push_back(sumU);

return result;

}

In brief, UUnifast receives, for example, U PERIODIC as MYU, the number of the

periodic tasks NPERTASK, as number and randomly distribute the U PERIODIC in

NPERTASK values, with each value greater than UMin.

Of course the same procedure holds with U AVR and NAVRTASK ; then each single

utilization value returned is set as maxU in the generator parameters.

While for AVRTasks, the random generation is totally performed by AVRGenerator, in

the periodic case, the utilization factors for each task are returned and multiplied by the

periods values, to get the computation time.

RTLib2.0 provides the insertCode() function to build the instructions, so we have just to

create a string with the type of instruction and the simulation Ticks for the corresponding

computation time.

An example code:

string k("fixed(" + to_string((int)C) + ");");

myTask->insertCode(k);

Of course when new parameters are generated, before inserting new instructions, previous

ones must be deleted, like this way:

myTask->discardInstrs(true);

Also fixed priority management should be taken into account: in this case the priority

value is an argument of addTask() function, from the FPScheduler interface.

CHAPTER 7. EXPERIMENTAL RESULTS 60

The problem come when we want to change this value, because no changePriority()

function is implemented; the trick used is:

• myscheduler.discardTasks();

• myscheduler.addTask(newPrio);

Let’ s now resume the work performed by the Updater module:

class Updater : public Entity{

protected:

vector<Task*> myEDFtasks;

vector<Task*> myFPtasks;

AVRGenerator* myGenerator;

AVRActivator* myActivator;

RTKernel* myEDFkern;

RTKernel* myFPkern;

RandomGen* mygen;

double Omega;

double U;

double UStar;

double UPer;

FPScheduler* myfpsched;

EDFScheduler* myedfsched;

//statistical variables

public:

Updater(...) : //initialization list

{

Omega = 500;

GeneratePeriodicTasks();

myGenerator->GenerateTaskSameParams(NAVRTASK, 2, *myParams);

myActivator = new AVRActivator(AVRtasks, 50.0, -50.0, 200, -200);

}

CHAPTER 7. EXPERIMENTAL RESULTS 61

void newRun(){

myfpsched->discardTasks(true);

myedfsched->discardTasks(true);

Clist = UUnifast(NPERTASK, UPer, *mygen);

for (int i = 0; i < NPERTASK; i++){

Tick myperiod = GetPeriod(*mygen);

//Update Task Period, Relative Deadline

//Instruction, Priority

}

myParams->maxU = UStar;

for (int i = 0; i < NAVRTASK; i++){

myGenerator->GenerateTaskParameter(*myParams);

myGenerator->updateTaskValues(i * 2, (i + 1) * 2);

}

AVRTaskList myvector = myGenerator->getList();

AVRTaskIterator p = myvector.begin();

while (p != myvector.end()) {

//add AVRtask to scheduler

//also with priority parameter

}

}

myActivator->SetOmegaZero(Omega);

}

The only remaining issue in the implementation of the main program, is the usage of

statistical variables; of course it depends on the specific simulation goal, and I will analyze

it for each experiment.

Let’ s now understand how to set up the 32-core virtual machine in order to handle large

scale simulations.

CHAPTER 7. EXPERIMENTAL RESULTS 62

7.2 Scripts

In order to completely exploit the available cores of the Unix machine, some bash scripts

are needed; in addition the structure of the main program should be created taking into

account the goal to parallelize the executions.

Most of the executed experiments are repeated for different total utilization factor values:

from 0.05 to 0.95 with step 0.05; now try to map one processor to one utilization factor.

The idea is to parametrize the main execution with the utilization factor value; but this

will not let to the total processors utilization: in fact only 19 processors over 32 will be

used in that way.

It is possible to divide the single main execution in two equal parts: each one with half

simulation units number; this process is performed until there is some free processor.

In order to do this another parameter is needed to be passed to the main program: an

index (1 or 2), that says the program to divide the total number of simulation units by

two.

At the end only 6 main executions will be left undivided (no index is passed to main in

that case).

Last argument of the main program is the name of the experiment, in order to save them

in an appropriate directory.

This script automatize the above behaviour by using variables that maintain the number

of available processors (Ncore) and the number of experiments to be performed (Nexp).

The executable name should be passed to it like that:

./launch ExpName AVRSimulator

This is the launch.bash code:

#!/bin/bash

args=("$@")

LD_LIBRARY_PATH=./lib

export LD_LIBRARY_PATH

Uno=1

Due=2

Ncore=32

Umax=0.95

CHAPTER 7. EXPERIMENTAL RESULTS 63

Umin=0.05

Ustep=0.05

Nexp=$(echo "($Umax-$Umin) / $Ustep + 1" | bc)

Expname=${args[0]}

mkdir -p ./results/$Expname/1

mkdir -p ./results/$Expname/2

for X in $(seq $Umin $Ustep $Umax)

do

if [$(echo $Nexp’<’$Ncore | bc -l) -eq 1]

then

nohup ./$2 $X $Expname $Uno &

nohup ./$2 $X $Expname $Due &

Ncore=$(($Ncore-2))

else

nohup ./$2 $X $Expname &

Ncore=$(($Ncore-1))

fi

Nexp=$(($Nexp-1))

done

Nohup is used to let the processes continue after ssh exit.

Of course also collecting the final results should take into account the experiment divi-

sion: the medium value is calculated and the final ”result.txt” file is updated with all

the values for each utilization factor.

This is also implemented in a script, namely ”collectAVR.bash”.

This is how final result.txt generally looks like:

0.95:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.9 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.85:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.8 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.75:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.7 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.65:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

CHAPTER 7. EXPERIMENTAL RESULTS 64

0.6 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.55:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.5 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.05:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.15:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.1 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.2 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.25:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.3 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.35:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.45:value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

0.4 :value1_EDF:value1_FP:value2_EDF:value2_FP:...:valueN_EDF:valueN_FP

Now let ’s describe the experiments that have been performed.

7.3 Experiments

7.3.1 Schedulability

Schedulability ratio is one of the basic parameters for real-time systems, like engine con-

trol systems.

So when comparing two scheduling algorithms in such scenario, we need to check the

schedulability ratio in both cases.

This means to evaluate the performance of each algorithm, in terms of number of schedu-

lable task set (with all jobs that ends before the corresponing deadline), divided by the

total number of generated task set.

RTLib2.0 provides a software module for deadline miss count: MissCount.

Two MissCount variables have been used(one for EDF and the other for FP): if the total

number of deadline misses (resEDF or resFP) in the same simulation unit is greater

than 0, the corresponding task set is not schedulable.

At the end of the entire simulation the values:

1 - resEDF / NSims;

1 - resFP / NSims;

CHAPTER 7. EXPERIMENTAL RESULTS 65

are the schedulability ratios for each algorithm.

Dealing with AVRTasks, it is obvious to run the same taks set with different initial an-

gular velocities (from 500rpm to 6500rpm, with step 500rpm) for the engine simulation

entity: this is what I called simulation unit.

After each simulation unit ends, new task’ s parameters are generated and udpated.

It is useful to establish a set of experiments, each one with some fixed parameters and

focused on a specific target, in order to better exploit the huge number of variables in-

volved.

Experiment 1: Best priority assignment

About the simulation parameters, two copies of the same task set have been considered,

they are composed by:

• 4 periodic tasks

• 1 AVRTask

Periods for periodic tasks are in the range (20,50)ms with step 1ms.

Angular period is 2Π, angular phases are all 0, angular deadlines are all equal to periods.

Computation time generation has already been explained in the Main program section

of this chapter, and ROU value for utilization factors computation is set to 0.4.

Fixed priorities are set in this way:

• for periodic tasks they are equal to periods.

• for AVRTasks three levels are considered:

– High (20ms).

– Medium (35ms).

– Low (50ms).

A total number of 1000 simulation units runs for every simulation.

The maximum acceleration that can be reached is 50 rad/s2, maximum Jerk is 200rad/s3.

CHAPTER 7. EXPERIMENTAL RESULTS 66

Figure 7.1: Schedulability ratio EDFvsFP, 4 periodic tasks, one AVR with highest pri-

ority

CHAPTER 7. EXPERIMENTAL RESULTS 67

Figure 7.2: Schedulability ratio EDFvsFP, 4 periodic tasks, one AVR with medium pri-

ority

CHAPTER 7. EXPERIMENTAL RESULTS 68

Figure 7.3: Schedulability ratio EDFvsFP, 4 periodic tasks, one AVR with lowest priority

CHAPTER 7. EXPERIMENTAL RESULTS 69

As expected from the scheduling-theory, Earliest Deadline First outperforms Fixed Pri-

ority in therms of schedulability ratio: it schedules all task-sets withouth deadline misses

for all the simulations.

However the main goal we want to achieve launching this sequence of experiments is

to determine a clever priority assignment for AVRTasks, that let FP algorithm perform

better, from the schedulability point of view (among the possible choiches). As evident

from the graphs, in such scenario (with only three priority levels), the best priority as-

signment for AVRTasks is the highest one.

Of course there is no optimal priority assignment, because they are variable rate, so

there will be some angular velocities for which the chosen priority is not the best one.

Looking at Fig.7.3, the AVRTaks always miss their deadlines, having the lowest priority

value.

Experiment 2: Acceleration and Jerk dependency

In this experiment the goal is to understand how much maximum acceleration and jerk

values affect the schedulability ratio.

About the simulation parameters, in this case I have considered two copies of the same

task set, composed by:

• 7 periodic tasks

• 1 AVRTask

Periods for periodic tasks are in the range (3,100)ms with step 1ms.

Angular periods are fixed at 2Π, angular phases are all 0, angular deadlines are all equal

to periods.

Running the same simulation at several speed let the period of AVRTask vary in the

range (9,120)ms, depending on the current engine speed.

Computation time generation has already been explained in the Main program section

of this chapter.

ROU value for utilization factors computation is set to 0.4.

Fixed priorities are set in this way:

CHAPTER 7. EXPERIMENTAL RESULTS 70

• for periodic tasks they are equal to periods.

• for AVRTasks is set to about 9ms.

A total number of 1000 simulation units runs for every simulation.

The maximum acceleration that can be reached varies from 50 rad/s2 to 700 rad/s2,

and maximum Jerk varies from 200rad/s3 to 5000rad/s3.

Figure 7.4: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with JerkMinus=-

120rad/s3, JerkPlus=120rad/s3, AlphaMinus=-50rad/s2, AlphaPlus=50rad/s2

CHAPTER 7. EXPERIMENTAL RESULTS 71

Figure 7.5: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with JerkMinus=-

300rad/s3, JerkPlus=300rad/s3, AlphaMinus=-300rad/s2, AlphaPlus=100rad/s2

Figure 7.6: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with JerkMinus=-

400rad/s3, JerkPlus=400rad/s3, AlphaMinus=-150rad/s2, AlphaPlus=150rad/s2

CHAPTER 7. EXPERIMENTAL RESULTS 72

Figure 7.7: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with JerkMinus=-

500rad/s3, JerkPlus=500rad/s3, AlphaMinus=-200rad/s2, AlphaPlus=200rad/s2

Figure 7.8: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with JerkMinus=-

5000rad/s3, JerkPlus=5000rad/s3, AlphaMinus=-700rad/s2, AlphaPlus=700rad/s2

CHAPTER 7. EXPERIMENTAL RESULTS 73

Figure 7.9: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with

JerkMinus=-10000rad/s3, JerkPlus=10000rad/s3, AlphaMinus=-5000rad/s2,

AlphaPlus=5000rad/s2

Look back at acceleration and velocity profiles in chapter 5, in order to quantify how

these variables change over time (Fig.5.1, ... Fig.5.11).

There are no relevant changes in the graphics, because my choice is to use realistic

acceleration values that can be applied to the real world.

In order to see a lower schedulability value, an unfeasible maximum acceleration value

should be set: 5000rad/s2 and Jerk: 10000rad/s3 (Fig.6.9); FP highly decrease the per-

formance because of the increased number of AVRTask activations. On the other hand

EDF is affected by the relative deadline reduction caused by high acceleration values.

CHAPTER 7. EXPERIMENTAL RESULTS 74

Experiment 3: Overload conditions

Now the schedulability profile when the total utilization factor is greater than 1 will be

examined.

The maximum acceleration and jerk values are (100,300), the other parameters are the

same as in Experiment #2.

EDF drops to zero immediately after U=1, as expected, but always performs better than

FP from schedulability point of view also in overload conditions.

Experiment 4: Number of periodic tasks dependency

Another parameter that could affect schedulability is the number of periodic tasks.

Increasing this value will not overload the system, because the total utilization is ran-

domly distributed among tasks, using UUnifast; instead each periodic task will have

shorter computation times.

Experiment 5: Mean periodic task period dependency

Look at these period values:

• (1,50) ms for periodic tasks.

• (9,120)ms for AVRTask.

They are overlapping; in addition priorities for periodic tasks are equal to periods, while

for AVRTask is set to 9ms.

In this case there are few possibilities that period for periodic tasks is below 9ms and

consequently that they have higher priority than the AVR one.

The goal is to understand what happens when the Tmed (mean period value), varies from

25ms to 115ms with step 5ms; the interval lenght remains costant at 50ms.

The other simulation parameters are the same as in Experiment #2.

Increasing the mean period value, the probability that periodic tasks’ periods are higher

CHAPTER 7. EXPERIMENTAL RESULTS 75

than AVRTask’ s one increase and consequently the optimal priority assignment becomes

easier to be respected.

Experiment 6: ρU dependency

Setting a fixed value for U, in this case 0.7, how schedulability reacts to ρU variations?

This means increasing the utilization factor for the AVRTask, and consequently it’ s

computation times, at the expense of periodic tasks’ ones. The other simulation param-

eters are the same as in Experiment #2.

7.3.2 Maximum Normalized Tardiness

It is interesting to observe the behaviour of such systems in case of overload conditions

(U > 1).

Of course the most significant parameter in this scenario is the:

Tardiness = max{0, f − d/D}

Where f is the finishing time, d is the absolute deadline and D is the relative deadline.

Simulation parameters are the same used for the Maximum Response Time, except the

utilization factor values range, that becomes [0.7, 1.5] with step 0.05.

In this case two tasks with different priority levels are used (the AVR one with the high-

est, the other one with lower priority).

The most evident result from this graph is the high value reached by EDF in the AVR-

Task case, while FP tardiness decrease with the increasing priority.

This means that despite from schedulability point of view EDF outperforms FP, in

terms of maximum normalized tardiness EDF heavy penalizes AVRTask and higher pri-

ority(shorter periods) periodic tasks.

On the other hand FP never reaches so high values as EDF ones and seems to be more

fair from tardiness point of view, reflecting the corresponding task priority.

CHAPTER 7. EXPERIMENTAL RESULTS 76

Figure 7.10: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR with JerkMinus=-

300rad/s3, JerkPlus=300rad/s3, AlphaMinus=-100rad/s2, AlphaPlus=100rad/s2

Figure 7.11: Schedulability ratio EDFvsFP, one AVR, U=0.7, JerkMinus=-300rad/s3,

JerkPlus=300rad/s3, AlphaMinus=-100rad/s2, AlphaPlus=100rad/s2

CHAPTER 7. EXPERIMENTAL RESULTS 77

Figure 7.12: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR, U=0.7

Figure 7.13: Schedulability ratio EDFvsFP, 7 periodic tasks, one AVR, U=0.7

CHAPTER 7. EXPERIMENTAL RESULTS 78

Figure 7.14: Max Tardiness EDFvsFP, AVRtask (highest priority)

Chapter 8

Conclusions

Engine control is characterized by computational activities that are triggered by specific

crankshaft rotation angles and are designed to adapt their functionality based on the

angular velocity of the engine.

Automotive applications include tasks that are activated with different mechanisms.

Some engine control tasks are activated by a timer at a fixed rate (periodic tasks),

whereas other tasks are linked to the rotation of the crankshaft and are activated at

specific rotation angles (angular tasks). The activation rate of such angular tasks is

therefore proportional to the engine speed: the higher the engine speed, the higher the

activation rate.

As a result, angular tasks have a variable activation rate (dependent on the engine

speed) and a self-adaptive behavior implemented through a set of mode changes. For

this reason, they are often referred to as adaptive variable-rate tasks (or AVR tasks).

Several models have been presented in literature in order to analyze the schedulability

of such tasks (see References). Following Buttazzo, Di Natale, Biondi and others’ work

from Retis Laboratory, the C++ based scheduling simulator for AVR taks has been

implemented, using already available software modules in RTLib2.0.

One of the most important feature that has been focused is the comparison between

Earliest Deadline First and Fixed Priority scheduling algorithms (see [12]), in this new

scenario. The main problem that has been addressed is the schedulability one: deadline

misses may lead the entire system in bad performance state or even to failure, depending

on the missing task functionality.

79

CHAPTER 8. CONCLUSIONS 80

The results obtained are quite general, random values for tasks’ parameters are gener-

ated each time, but the values range are chosen taking into account the application field

involved.

As expected, there are no shocking results, in the sense that theoretical studies are in

line with simulation’ s statistical values returned.

Several experiments have been carried out, with the aim to indentify the most relevant

parameters, that affect schedulability performances.

The first important result is that fixed priority scheduing is not the best choice in this

environment, considering all the possible interarrival time’s values of AVRTask, there are

for sure some engine speed for which the priority assignment is far from being optimal,

causing the schedulability value to decrease.

On the other hand EDF is indipendent from the variable period values, being influenced

only by relative deadlines that are computed taking into account the current angular

velocity of the engine.

The only case that brings EDF schedulability a little under 1.0 is when using the not

realistic acceleration value 5000rad/s2.

However in the real world, only few operating systems provide the EDF scheduling algo-

rithms (e.g., Erika Enterprise [13], which is also OSEK-certified for automotive systems,

and Linux, using the SCHED DEADLINE scheduling class [14]).

The best priority assignment, even if not optimal, is to set the AVRTask priority as

the minimum interarrival time: AngularPeriod/MaxAngularV elocity; the other exper-

iments are carried out by assuming this priority choice.

The total number of periodic tasks don’t affect the schedulability ratio, of course, be-

cause the total utilization is randomly divided among them.

Increasing the utilization factor for AVRTask, while the total utilization is kept constant,

let the schedulability ratio decrease, only in the case of FP.

Another experiment shows that with the increase of the mean period value for peri-

odic tasks, the FP schedulability ratio grows until 1.0, because the probability that the

AVRTask period is the lowest increase.

About behaviours in overload conditions, of course schedulability drop to 0 in both cases

immediately after utilization value equal to 1; maximum normalized tardiness results are

interesting: AVRTask under EDF can end more then 60 times the relative deadline after

CHAPTER 8. CONCLUSIONS 81

miss. FP seems more fair from this point of view: tardiness values are not so high like

the EDF case and they decrease with the increasing priority of course.

Some of the simulation results of this thesis have been used for a research paper with

Buttazzo and Biondi, namely ”Feasibility Analysis of Engine Control Tasks under EDF

Scheduling”, submitted to ”Euro Micro Conference on Real Time Systems”.

Bibliography

[1] G. Buttazzo, L. Abeni, and G. Lipari, “Elastic task model for adaptive rate con-

trol,” in IEEE Real Time System Symposium, Madrid, Spain, December 1998.

[2] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic scheduling for flexi-

ble workload management,” IEEE Transactions on Computers vol. 51, no. 3, pp.

289–302, March 2002.

[3] L. Sha, R. Rajkumar, J. P. Lehoczky, and K. Ramamritham, “Mode change pro-

tocols for priority-driven preemptive scheduling,” Real-Time Systems, vol. 1, no.

3, pp. 243–264, December 1989.

[4] J. Real and A. Crespo, “Mode change protocols for real-time systems: A survey

and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp. 161–197, March 2004.

[5] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable mode changes in real-time

systems with fixed priority or EDF scheduling,” in Proceedings of the Design,

Automation and Test Conference in Europe (DATE 2009), Nice, France, April

20-24, 2009.

[6] J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A new task model

with continually varying periods for cyber-physical systems,” in Proc. of the Third

IEEE/ACM Int. Conference on Cyber-Physical Systems (ICCPS 2012), Beijing,

China, April 17-19, 2012, pp. 28–38.

[7] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader, and G. Wirrer, “Sufficient

real-time analysis for an engine control unit with constant angular velocities,”

82

BIBLIOGRAPHY 83

in Proc. of the Design, Automation and Test Conference in Europe, Grenoble,

France, March 18-22, 2013.

[8] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests for tasks

with variable rate-dependent behaviour under fixed priority scheduling,” in Proc.

20th IEEE Real-Time and Embedded Technology and Applications Symposium,

Berlin, Germany, April 15-17, 2014.

[9] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo, “Exact

interference of adaptive variable-rate tasks under fixed-priority scheduling,” in

Proceedings of the 26th Euromicro Conference on Real- Time Systems (ECRTS

2014), Madrid, Spain, July 8-11, 2014.

[10] G. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model, analysis, and

design issues,” in Proc. of the Int. Conference on Design, Automation and Test in

Europe, Dresden, Germany, March 24-28, 2014.

[11] A. Biondi, M. Di Natale, G. Buttazzo, ”Response-Time Analysis for Real-Time

Tasks in Engine Control Applications”.

[12] G.Buttazzo, ”Rate Monotonic vs. EDF: ”Judgment Day”, in Real-Time Sys-

tems,vol. 29, pp. 5–26, 2005.

[13] “Erika enterprise: an OSEK compliant real-time kernel.” [Online].

Available: http://erika.tuxfamily.org/drupal/

[14] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An edf scheduling class

for the linux kernel,” in Proc. of the 11th Real-Time Linux Workshop (RTLWS),

Dresden, Germany, September 28-30, 2009.

