
Università di Pisa
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Computer Engineering

Laurea Specialistica in Computer Engineering

Design and implementation of a system for
incremental real-time visual object

detection and autonomous recognition

Supervisors:

Giuseppe Amato

Claudio Gennaro

Francesco Marcelloni

Candidate:

Fabio Carrara

February 2015

http://www.unipi.it
http://dip.iet.unipi.it/

Abstract

In this work, a system for incremental real-time visual object detection and autonomous

recognition is presented. The system is designed for indoor smart cameras and identifies

objects appearing on the scene by detecting video changes in the video stream. Object

detection is based on a novel interest point-based background subtraction method, which

results in a more robust and informative background model with respect to typically color-

based approaches. Objects are incrementally learnt by collecting observations in real-time.

A similarity function between objects observations relying on local feature matching and

geometric consistency checking is defined. The key idea of the system is to relate past

and present object observations: clusters of similar observations are maintained exploiting

transitivity of similarity between observations and are used to recognize a new observation

of an already seen object. Since the system incrementally builds it up from observations

during time, no training set for recognition is needed. Experiments have been performed on

publicly available datasets to evaluate the detection task and the ability of the system to

build good clusters of observations. The system has also been tested on the Raspberry Pi

platform equipped with the Pi Camera module.

i

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1

1.1 Background . 3

1.1.1 FAST Interest Point Detector . 3

1.1.2 ORB Interest Point Detector and Descriptor 5

1.2 Related work . 6

2 PiCVi: autonomous object detection and recognition system 9

2.1 Goals and Assumptions . 9

2.2 Software architecture . 11

2.2.1 Stage 1: Foreground Object Extraction 11

2.2.2 Stage 2: Object Description and Matching 12

2.2.3 Stage 3: Object Online Clustering 12

2.2.4 Output: Labels . 12

3 Foreground Object Extraction 13

3.1 Background Subtraction Methods . 14

3.1.1 Frame differencing . 14

3.1.2 Pixelwise Background Subtraction based on Gaussian Mixture Model 15

3.2 IP-Based Foreground Extraction Method Implemented in PiCVi 17

3.2.1 Background Model . 18

3.2.2 Model Training . 19

3.2.3 Model Evaluation . 19

3.2.4 Foreground Extraction State Machine 21

4 Object Description and Matching 25

4.1 Object Sample Description . 25

ii

Contents iii

4.2 Similarity Function . 27

4.2.1 Feature Matching . 27

4.2.2 RANSAC Filtering of Matches . 29

4.2.3 Similarity Output . 31

5 Online Object Clustering 33

5.1 Semi-supervised Clustering Technique . 34

5.1.1 Unsupervised Clustering . 35

5.1.2 Supervised Clustering . 35

6 Experiments and Results 37

6.1 Experiments and Results . 37

6.1.1 Evaluation of Foreground Extraction 37

6.1.2 Evaluation of Object Recognition . 40

6.2 Conclusions . 43

6.2.1 Future Work . 45

Bibliography 48

List of Figures

1.1 Research Fields of Ambient Intelligence . 2

1.2 FAST Segment Test for Corner Detection 4

1.3 ORB Intensity Test Examples . 6

2.1 Raspberry Pi . 11

2.2 Software Pipeline Architecture . 11

3.1 Pipeline Stage 1 . 13

3.2 Background Subtraction Scheme . 15

3.3 Result of Background Subtraction based on Gaussian Mixture Model 16

3.4 MoG Color Confusion . 17

3.5 MoG Memory Effect . 17

3.6 Event visualization and description . 19

3.7 Feature Foreground/Background Partition example 21

3.8 IP 2-Tier Classification . 22

3.9 Output of pipeline stage 1 . 23

3.10 Performances of Feature Detectors . 24

4.1 Pipeline Stage 2 . 25

4.2 Performances of Feature Descriptor Extractors 26

4.3 Example of Similarity Computation . 28

4.4 Example of Ugly Homography . 30

4.5 Similarity Values Among Samples . 32

5.1 Pipeline Stage 3 . 33

5.2 Example of Object Sample Clusters . 34

5.3 Example of Cluster Merge . 34

5.4 Supervised Cluster Merging . 36

6.1 Foreground Extraction Test Scenes . 39

6.2 Foreground Extraction Evaluation Metrics 40

6.3 Performances of Recognition . 44

iv

List of Tables

3.1 Performances of Foreground Extraction methods 18

3.2 Example of Background Model of a Block 20

3.3 The 2D 3× 3 filter used to compute the number of foreground neighbors of
a block. 21

4.1 Information stored in the DB for each object sample. 27

6.1 Excerpt from the Stanford “3D Objects” dataset: only some samples of some
objects of some classes are reported. 40

v

Abbreviations

PiCVi Raspberry Pi Computer Vision experiment

AmI Ambient Intelligence

GMM Gaussian Mixture Model

MoG Mixture of Gaussians

IP Interest Point

FGE ForeGround Extraction

BGS BackGround Subtraction

vi

To my parent and my closest relatives who

made this work possible.

To Regina and my closest friends who

supported me.

Special thanks to my supervisors,

particularly Giuseppe Amato and Claudio

Gennaro, who made study and work during

this thesis pleasant and constructive.

vii

Chapter 1

Introduction

Thanks to the miniaturization of electronics many computing and sensing devices can become

part of our environments and help us in our daily activities.

Sensors, actuators and processing units are now very affordable and can be used to build

networks of intelligent devices with the capability to understand events in a specific context

and take decisions in real-time without the the user thinking explicitly about it. This smart

devices grow smaller and are going to completely disappear in the environment, exposing to

the user only friendly, human-centric interfaces.

This emerging field of research attempting to bring invisible intelligence in evnironments is

known as Ambient Intelligence (AmI), defined as [1, Chapter 11]:

“a digital environment that proactively, but sensibly, supports people in their

daily lives”.

Many technologies and research areas are related to AmI, such as Sensor Networks, Human-

Computer Interfaces, Pervasive Computing and Artificial Intelligence.

In the Sensor Networks research field, much effort has been put in Smart Camera Networks.

Due to their descreasing cost, video surveillance systems are installed in locations ranging

from big organizations to small personal habitations. Visual sensors such as cameras are

capable of bringing a lot of informations that can be used in many applications, such as

surveillance, healthcare, teleconferencing, and so on.

Thanks to the possibility to deploy smart cameras with some processing power and commu-

nication capabilities, decentralized networked systems has been designed and implemented

to coordinate cameras in extracting useful informations with less and less need for direct

oversigth of a human operator. Unlike single-camera systems, multi-camera systems can

1

Chapter 1. Introduction 2

Pervasive-Ubiquitous
Computing

Human Computer
Interfaces

Sensors Networks

Ambient
Intelligence

Figure 1.1

Relationship between AmI and other areas (taken from [1]):

exploit spatio-temporal informations for the application purposes, but also for automatic

calibration and self-recofiguration.

In this work, PiCVi is presented: a system for incremental real-time visual object detection

and autonomous recognition for smart cameras. Object detection and recognition are classi-

cal problems in computer vision, but are still challenging when trying to solve them without

a priori knowledge of objects and with a limited user interaction. Moreover, the scarce

resources available on current smart camera hardware pose challenges for the real-timing

constraint. The implemented software tries to enable a single smart camera to detect, learn

and recognize objects exploiting change detection in the scene: given the evolution of the

scene during time, the system incrementally builds in a semi-supervided way a knowledge

it can exploit for the recognition task. The user is queried when ambiguities cannot be

resolved.

The system has not been designed for a particular smart camera platform in mind, but it

has been tested on the Raspberry Pi platform equipped with a Pi Camera module.

Experiments have been made using public available datasets in order to evaluate the main

two aspects of the system: a) the ability to detect objects from a video stream and b) the

ability to build a knowledge base for object recognition.

Thesis Structure

In the rest of this Chapter 1, Smart Camera Newtorks are presented. The most used hardware

architectures are briefly presented and some of their applications are briefly described.

Chapter 1. Introduction 3

In Chapter 2 the application scenario is described and system assumptions and specifications

are reported. Also the object models and the pipelined software architecture that has been

chosen are described.

In Chapter 3 the first pipeline stage dedicated to foreground objects detection from the video

stream is described. The most commonly used approach for foreground extraction are briefly

reported and the implemented technique is described.

In Chapter 4 the second pipeline stage is described. This stage is dedicated to the description

and the comparison of the various images of objects collected in the first stage. The choosen

description of the objects and the similarity function used to compare them are reported.

In Chapter 5 the third and last pipeline stage dedicated to aggregation of similar objects is

described. In this stage, images of objects are clustered together based on their similarity.

In Chapter 6 the experiments done are described and the evaluation of the presented system

is reported. In addition, future works and enhancements are discussed.

1.1 Background

Image matching usually relies on a set of visual features of image content. In particular, local

features of images are used. Local features are peculiar parts of the image (like edges, corners,

blobs etc.) whose statistics can be described and compared. Matching images through their

local features has the advantage to be robust to clutter and occlusions. Moreover, many

algorithms have been proposed to detect and describe local features invariant to scale,

rotation and affine transformations. In this section, two algorithms used in this work (one

for detection only, one for detection and description of local features) are briefly described.

1.1.1 FAST Interest Point Detector

FAST (Features from Accelerated Segment Test) is a high-speed corner detector good for

real-time applications. It uses an machine-learning acceleration of the segment test in order

to classify a pixel as corner or not.

Segment Test The segment test on a pixel p considers a circle of 16 pixels around the

candidate corner (see Figure 1.2). The intensity Ix of each pixel x on the circle is compared

with the intensity of Ip and the pixel is classified as brighter if Ix > Ip + t, darker if

Ix < Ip − t, similar otherwise. If exists at least n contiguos pixels on the circle all brigther

or darker, p is considered a corner.

Chapter 1. Introduction 4

15

11
10

16

14
13
12

p

21
3

4
5
6

7
89

Figure 1. 12 point segment test corner detection in an image patch. The highlighted
Figure 1.2

Segment Test with n = 12: The highlighted squares are the pixels used in the corner detection.
The pixel at p is the centre of a candidate corner. The arc formed by the dashed line passes
through 12 contiguous pixels which are brighter than p by more than the threshold t.

For n = 12, a fast test to exclude non-corner pixels is used: if p is a corner at least three of

the four pixels (1, 5, 9, 13) has to be brither or darker, therefore testing those pixel first will

exclude many non-corners. However, the full test has to be performed to correctly classify

corner pixels.

Accelerated Segment Test Using Machine-Learning The above test is accelerated (but

approximated) building a decision tree using a training set of images. Corners are detected

using the full segment test on all the training images and for each detected corner its circle

of 16 pixels is stored in a feature vector. Choosing a position x ∈ 1..16, the set of all corners

P detected from all training images can be divided in three subsets Pb, Ps, Pd containing

features having pixel number x in the circle respectively brighter, similar or darker than the

central one. A decision tree is built choosing x that yields the most information (based on

the entropy of the generated subset) at each level of the tree.

Non-maximal Suppression In order to avoid multiple corner detection in adjacent loca-

tions, non-maximal suppression is applied: a score function V is computed for each corner

and only the corner with maximum V among the cluster of corners is returned. V is chosen

as the sum of absolute differences between p and its 16 surrounding pixels.

Chapter 1. Introduction 5

1.1.2 ORB Interest Point Detector and Descriptor

ORB (Oriented FAST and Rotated BRIEF) [2] is a high-speed patent-free alternative to SIFT

[3] and SURF [4] features detectors and descriptors, offering up to two order of magniture

faster computation with almost the same matching results.

Feature Detection with oFAST Keypoints are detected in ORB using FAST feature de-

tector (described in Subsection 1.1.1). Since FAST algorithm is not scale invariant, images

pyramids are used to detect scale-invariant features. Harris cornerness measure [5] is com-

puted on the detected keypoints and only the top N keypoints are retained. FAST also does

not provide keypoint orientation, therefore rotation-invariant featuers are obtained using the

intensity weighted centroid C and the center O of the detected image patch: the direction

of the vector
−−→
OC is assumed as orientation θ of the keypoint. This enhanced version of

FAST is called by the authors oFAST (oriented FAST).

Feature Description with rBRIEF In order to compete with SIFT and SURF descriptors,

ORB descriptor should perform well under rotations, still remaining efficient. An enhanced

version of BRIEF descriptor called rBRIEF (rotation-aware BRIEF) is used in ORB.

Original BREIF descriptor [6] consists in a bit string representing results of intensity compar-

isons between fixed pairs of pixels belonging to the smoothed image patch. Let p, x, y be

respectively the image patch and the positions of the pixels to be compared. The intensity

test is defined as:

t(p;x, y) =

1 if p(x) < p(y)

0 if p(x) ≥ p(y)

The descriptor is then defined as a vector packing those bits. Comparisons are made for each

pair of pixels (xi, yi) belonging to a predefined set S. A subset of S is visually represented

in Figure 1.3.

This approach does not perform well under rotation transformations. Therefore in rBRIEF the

positions of the pixels (xi, yi) to be compared are rotated using the orientation information

θ of the keypoint, obtaining a new set of Sθ for comparisons. The orientation θ is discretized

in increments of 12 degrees and all possible Sθ are precomputed and stored in a lookup table.

A greedy learning algorithm has been developed and used to select the best positions (xi, yi)

in order to have uncorrelated tests.

Chapter 1. Introduction 6

Figure 6. A subset of the binary tests generated by considering
high-variance under orientation (left) and by running the learning
algorithm to reduce correlation (right). Note the distribution of the
tests around the axis of the keypoint orientation, which is pointing
up. The color coding shows the maximum pairwise correlationof
each test, with black and purple being the lowest. The learned tests
clearly have a better distribution and lower correlation.

 0

 20

 40

 60

 80

 100

 0 45 90 135 180 225 270 315 360

P
er

ce
nt

ag
e

of
 In

lie
rs

Angle of Rotation (Degrees)

Percentage of Inliers considering In Plane Rotation

rBRIEF
SIFT

SURF
BRIEF

Figure 7. Matching performance of SIFT, SURF, BRIEF with
FAST, and ORB (oFAST +rBRIEF) under synthetic rotations
with Gaussian noise of 10.

The results are given in terms of the percentage of correct
matches, against the angle of rotation.

Figure7 shows the results for the synthetic test set with
added Gaussian noise of 10. Note that the standard BRIEF
operator falls off dramatically after about 10 degrees. SIFT
outperforms SURF, which shows quantization effects at 45-
degree angles due to its Haar-wavelet composition. ORB
has the best performance, with over 70% inliers.

ORB is relatively immune to Gaussian image noise, un-
like SIFT. If we plot the inlier performance vs. noise, SIFT
exhibits a steady drop of 10% with each additional noise
increment of 5. ORB also drops, but at a much lower rate
(Figure8).

To test ORB on real-world images, we took two sets of
images, one our own indoor set of highly-textured mag-
azines on a table (Figure9), the other an outdoor scene.
The datasets have scale, viewpoint, and lighting changes.
Running a simple inlier/outlier test on this set of images,

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 90 180 270 360

P
er

ce
nt

ag
e

of
 In

lie
rs

Angle of Rotation (Degrees)

Comparison of SIFT and rBRIEF considering Gaussian Intensity Noise

rBRIEF
SIFT

Figure 8. Matching behavior under noise for SIFT and rBRIEF.
The noise levels are 0, 5, 10, 15, 20, and 25. SIFT performance
degrades rapidly, while rBRIEF is relatively unaffected.

Figure 9. Real world data of a table full of magazines and an out-
door scene. The images in the first column are matched to thosein
the second. The last column is the resulting warp of the first onto
the second.

we measure the performance of ORB relative to SIFT and
SURF. The test is performed in the following manner:

1. Pick a reference viewV0.

2. For all Vi, find a homographic warpHi0 that maps
Vi → V0.

3. Now, use theHi0 as ground truth for descriptor
matches from SIFT, SURF, and ORB.

inlier % N points
Magazines

ORB 36.180 548.50
SURF 38.305 513.55
SIFT 34.010 584.15

Boat
ORB 45.8 789

SURF 28.6 795
SIFT 30.2 714

ORB outperforms SIFT and SURF on the outdoor dataset.
It is about the same on the indoor set; [6] noted that blob-
detection keypoints like SIFT tend to be better on graffiti-
type images.

Figure 1.3

A subset of intensity tests performed on pixels nearby the keypoint in ORB.

1.2 Related work

Healthcare, Teleimmersion, and Surveillance

Chen et al. [7] present variuos domains and applications enabled by markerless motion cap-

ture and object tracking systems implemented through smart camera networks. Human

body motion capture systems can be useful for applications in healthcare (posture analy-

sis, remote rehab feedback, telemonitoring of patients), teleimmersion (virtual presence, 3D

teleconferencing) and surveillance (face and/or gender identification, anomaly detection).

The main objective of this technology is to exploit smart camera networks to build mod-

els for objects or human parts in scenes under different conditions and assumptions (with

overlapping or nonoverlapping fields of view, with or without markers). Much of the work is

on marker-less motion caputre systems, since they does not require preparation to collect

data, such as markers attached to the body or 3D scanners, hence enabling wider application

area. However, they introduce the problem of calibration of cameras and they obtain a less

rigorous movement description with respect to marker-based systems.

For teleimmersion applications, multiple cameras offers different viewpoints and can be used

to construct a 3D free-viewpoint video. High resolution 3D video can be useful in many

fields, such as medical imaging, scientific data and models, remote training and teaching,

3D teleconferencing. Smart camera networks systems capable of obtaining 3D videos are

Chapter 1. Introduction 7

divided in a) passive reconstruction systems, in which 3D video is obtained by analyzing the

single 2D videos of each camera and combining them together and b) active vision systems,

in which specialized hardware is used to estimate the world 3D model. The former technique

is less robust than the latter, but requires no additional hardware.

For surveillance applications, Chen et al. generalize survelliance systems to a four stage

processing pipeline: spot the mover (detection), find its position (localization), predict

mover’s movements (track), label the mover if it is known (verify and recognize). The

use of smart camera networks (in particular motion capture systems) can help in any of the

above stages.

Surveillance of Public Spaces

Abas et al. [8] present a taxonomy based on cost-performance tradeoff of smart camera

network systems applied to indoor and outdoor surveillance. System architectures such as

Citric1, HuSIMS, OmniEye, Wi-FLIP, CamInSens2, MeshEye are analized. For each project

the following properties are reported: energy efficiency techniques used, usage of multimodal

sensors, bandwidth efficiency techniques used, wireless technology used, computer vision

algorithm used, system software used, whether camera overlaps or not, how security is

assured. The authors also introduce their solution: SWEETcam, a network of specialized

hardware that tries to maximize the cost-performance tradeoff. SWEETcam is based on

the Raspberry Pi platform running a specialized Linux OS which assures flexibility and code

reuse. WiFi is used as wireless link among cameras. The platform is equipped with the Pi’s

camera module which does not drain as much current as USB cameras and algorithms are

implemented in C/C++ using the OpenCV library. A low power MSP430 microcontroller

accepts hardware interrupts from a passive motion sensor (PIR) and wakes the Raspberry Pi

only if an event occurs, saving energy. The system is equipped with a solar cell for energy

harvesting and image processing is based on a simplified MoG foreground extraction and

object classification capable of running with the scarce resources available.

Distributed 3D object recognition

Naikal et al. [9] present a scheme for distributed 3D object classification on band-limited

smart cameras. Compressive sensing (CS) based codec is used to reduce bandwidth needs

and exploiting the reconstruction of jointly sparse feature histograms. A new training set

of 3D buildings is created by the authors: the BMW (Berkley Multiview Wireless) DB. The

proposed recognition workflow is the following:

1http://www.eecs.berkeley.edu/~yang/software/CITRIC/
2http://www.caminsens.org/

http://www.eecs.berkeley.edu/~yang/software/CITRIC/
http://www.caminsens.org/

Chapter 1. Introduction 8

1. A vocabulary of features using hierarchical k-means clustering is built offline from the

data set.

2. Each camera:

(a) extract features Fi from the scene,

(b) quantize them against the build vocabulary and obtain a feature histogram xi,

(c) randomly projects it (motivated by CS, obtaining bi) and send it to central station,

3. The central station:

(a) receives L projections b1...bL from the cameras,

(b) jointly decodes them with a L1-min algorithm to achieve x̂1...x̂L,

(c) classify object using a vocabulary tree built during clustering.

Experiments shown that feature dimensionality reduction obtained with compressive sensing

based codec leads to quite the same recognition rates as for the uncoded case, with the

advantages of a lower bandwidth usage by the cameras.

Chapter 2

PiCVi: autonomous object detection

and recognition system

In this chapter, PiCVi is described: a Raspberry Pi Computer Vision experiment on visual

object detection and autonomous recognition in indoor environments.

2.1 Goals and Assumptions

The main goal of the presented work is to design and implement a system being able to:

• visually detect movable 3D objects in the environment,

• autonomously and incrementally learn to recognize detected objects.

The developed system is intended to be a first processing stage or task for a single smart

camera in a larger collaborative project involving a newtork of smart camera, hence no

communication between multiple cameras is expected at this stage. Moreover only movable

(not fixed) objects are detectable.

Application Scenario In this work, it is assumed that the camera used by the system

is fixed and working in indoor environments. In the application scenario, the camera is

continuosly screening a room (or part of it) while people are entering and leaving the camera’s

field of view adding, moving or removing objects (e.g. a book, the remote control, a backpack

etc.) from the scene. The scene is therefore composed by a substantially fixed part containing

walls and fornitures in which sometimes objects and/or people appear. The camera has the

possibility to see various objects in different poses and illuminations over time. Therefore, it

9

Chapter 2. PiCVi 10

can inspect the similarity between observed objects and learn to distinguish them from each

other. Each time an object enters the scene, the camera can extract it from the background,

recognize and label it if it is known or learn to recognize it in the future.

Future Goals A single learning camera could distinguish many objects over time. Using

a network of cameras, the system could refine the recognition task adding new poses of

the same object, implementing position triangulation and geometry checks. Moreover the

system could proactively ask the user which of the most often seen objects he wants to track

and to give them a name. Doing so, the system could be able to answer querys like where

is object X? or where did you last seen it? and perhaps send a robot to the current object

location to fetch it.

Object Model There are many solutions to object detection and recognition already

present in computer vision literature. Unfortunately, most of them need a training set

or a motion of the object ([10, 11] cites). Since the system has to detect objects only,

the detection schemes applied are not based on motion, which is peculiar to living beings.

Instead, the system tries to observe changes of the scene that persist over time, assuming

changes to be due to objects added, moved or removed from the scene.

Computing Platform The software is written in Java and the computer vision algorithms

are implemented using the OpenCV1 library. This choice ensures a great portability on

different smart camera platforms, which usually run an embedded Linux operating system.

Moreover, as the system name suggests, the developed software has been tested on the

Raspberry Pi platform equipped with a Pi Camera Module in order to have a feedback on

the performances on a possible smart camera platform.

Raspberry Pi The Raspberry Pi2 is a low-power credit card-sized single board computer

with a 700MHz ARM processor, VideoCore IV GPU, 512Mb of RAM and around $30 of

price. Camera sensors can be attached to it via USB using classic webcams or better via CSI

(Camera Serial Interface) using the Raspberry Pi Camera module, which enables a faster

visual data acquisition rate and a less current drain with respect to the USB interface. Its

specifications make the Raspberry Pi a good candidate for a smart camera hardware platform,

indeed it is already present in camera networks literature [8].

1http://opencv.org/
2http://www.raspberrypi.org/

http://opencv.org/
http://www.raspberrypi.org/

Chapter 2. PiCVi 11

Figure 2.1

A Raspberry Pi equipped with the Pi Camera Module.

2.2 Software architecture

The system is designed as a pipeline of processing steps applied to the incoming video stream.

Object
Clustering

Object
Description
& Matching

Foreground
Object

Extraction
video

frames
object
sample label

new object
descriptor

Obj
#5

similar
objects

descriptor

#5

Figure 2.2

PiCVi Pipeline Software Architecture

2.2.1 Stage 1: Foreground Object Extraction

In this first stage, the incoming video stream is analized to search for objects. A background

model is created and continuosly updated: each incoming frame of the video is compared

with the model and non matching parts are interpreted as foreground. Foreground parts

stable over time are likely to contain new objects, therefore are extracted and given to the

next stage. This stage is described in detail in Chapter 3.

Chapter 2. PiCVi 12

2.2.2 Stage 2: Object Description and Matching

In this stage, the incoming foreground regions of the video frame are analized to search for

recognizable objects. The parts with too little or no information are discarded whereas the

information-rich parts are considered as particular 2D views (samples) of 3D objects. The

visual features of each new object sample are extracted and a descriptor is inserted in the

local database. Furthermore, the new object sample is compared with already met samples

present in the local database and a list of matches is generated and given to the next step.

This stage is described in detail in Chapter 4.

2.2.3 Stage 3: Object Online Clustering

In this stage the incoming new object sample and the ones that potentially match are analized

and grouped into object clusters in a semi-supervised way. Usually a new object sample is

added automatically in an existing cluster, but this is not always the case. After the online

clustering, a label is given to the new object sample, which is the output of this last stage.

This stage is described in detail in Chapter 5.

2.2.4 Output: Labels

The systems gives in output at certain frames the contour and the label of the object samples

detected in the scene. Since objects are autonomously learnt, a numeric label is assigned to

each new object. The user will be called to give a name to the objects he is interested to

be recognizeable.

Chapter 3

Foreground Object Extraction

In this chapter, the first stage of the PiCVi pipeline is described and the techniques for

foreground extraction that have been studied and implemented are reported.

The goal of this stage is to analize frames coming from the still video camera and extract

object samples, i.e. the parts of the scene containing a view of an object that has to be

recognized (see Figure 3.1).

Foreground
Object

Extraction
video

frames
object
sample

Figure 3.1

First stage of the PiCVi pipeline, having video frames coming from the camera as input and
foreground object parts (object samples) as output.

Since the system comes with no information about the objects the user wants to detect and

recognize, the system searches for objects where it detects chages in the scene: foreground

extraction is applied to the video stream.

Foreground extraction is the task of segment an image coming from a video stream in

two parts: the relatively fixed and usually not interesting part (the background) and the

13

Chapter 3. Foreground Extraction 14

unexpected new part (the foreground) which is different from what is usually seen. In the

literature, this task is accomplished by appling a background subtraction method.

3.1 Background Subtraction Methods

In this section the concept of background subtraction is introduced and the studied state of

the art techniques applied to object detection are briefly reported [12].

The idea behind the background subtraction technique is to build and maintain a background

model, which can be compared with the incoming video frame in order to find spots of the

image that differs from the model.

The output of background subtraction method is a foreground mask: a binary or grayscale

image where a pixel is zero-valued if it is considered background, non-zero otherwise.

Background subtraction methods differs in the type of background model and in the algo-

rithms to evaluate and update the model.

3.1.1 Frame differencing

A very simple background model that can be maintained is the entire frame, i.e. the RGB

values of each pixel in the image.

In order to evaluate the current foreground mask, the background model is litterally sub-

tracted from the current frame and a threshold is applied. A pixel value farther more than

the threshold from the background model is considered as foreground (see Figure 3.2). This

technique is called frame differencing and its key idea gave the name of “background

subtraction” to the methods executing this type of task.

The background model can be updated in various way: a new frame can substitute or be

combined with the old model in order to maintain a model more representative of the current

background state.

This method has good performances since no complex operations are done for each frame

and can be easly implemented in OpenCV (see Table 3.1). A simple implementation can

be attractive in smart camera embedded platforms where usually computational resources

have to be saved, but this method is not robust to any type of background changes, such

as illumination changes or active background (i.e. moving leaves on tree, see Figure 6.1).

Chapter 3. Foreground Extraction 15

Figure 3.2

Background Subtraction: Frame differencing scheme, taken from [13]

3.1.2 Pixelwise Background Subtraction based on Gaussian Mixture Model

A widely used approach for background modelling is mixtures of gaussians [14]. In this

approach, statistics of each pixel are modelled by a mixture of a variable number N of

gaussians. The probability of of observing a pixel with a certain RGB value x ∈ R3 is the

following:

p(x) =
N∑
i=1

wi · n(x;µi,Σi)

where n(x;µi,Σi) is a multidimensional gaussian probability density with mean vector µi ∈
R3 (representing the mean of value the pixel) and covariance matrix Σi ∈ R3×3:

n(x;µi,Σi) =
1√

(2π)3|Σi|
e−

1
2

(x−µi)T Σ−1
i (x−µi)

and wi are the weights associated with each gaussian, defined such that

N∑
i=1

wi = 1.

This kind of model can represent up to N different “sources” of background in a single pixel.

For example, given a repetitive moving background such as a tree blowing in the wind, a pixel

value could oscillate between green of the leaves and another color from the background.

A gaussian component of the mixture could represent the green value from the leaves and

Chapter 3. Foreground Extraction 16

another component could represent the underneath color. If the model is correctly trained,

both colors can be correctly classified as background.

The model training and update requires to change accordingly the parameters of the mixture,

that are the weigths w1 . . . wN and the parameters of each gaussian (µ1,Σ1) . . . (µN ,ΣN),

based on incoming frames. A good choice of those parameters is their maximum-likelihood

estimates given a set of samples (i.e. pixel values). This can be done using the EM

(Expectation-Maximization) algorithm [15] on a sliding window of pixel values.

The EM algorithm iteratively performs two steps: in the first one (E-step) the likelihood of

each sample in the window is calculated evaluating the gaussian mixture with the current

parameters. In the second step (M-step) those likelihoods are used to refine the current

parameters. The algorithm stops when the relative change in likelihood is small.

An enhanced version [16] of this background subtraction algorithm is implemented and

present in OpenCV. In Figure 3.3 a result of the application of this method is shown. Mor-

phological filtering operations (like erosion, dilation, closing and opening) can be applied

to the obtained foreground mask in order to remove unwanted noise, such as single pixels

foregrounds or background holes in a foreground object.

(a) original frame (b) foreground mask

Figure 3.3

Result of Background Subtraction based on Gaussian Mixture Model: (a) the current frame on
which the foreground needs to be extracted. (b) The foreground mask obtained after the
background subtraction.

Performances on the Raspberry Pi platform are good (see Table 3.1), but still this method

presented some problems:

• the method is only color-based. Therefore if the foreground object we are trying to

detect shares colors with the background, the background subtraction does not perform

well (see Figure 3.4).

• training and updating the model with a number N > 1 of gaussian components results

in an unwanted memory effect. For instance consider the following scenario: a new

object appearing in the scene is correctly detected and after a while, thanks to the

online training, its pixel values becomes part of the background model. If the object

Chapter 3. Foreground Extraction 17

is removed from the scene and then reinserted in approximately the same position, a

gaussian component of the model previously trained will match with the object pixel

values, marking them as background. This problem is better visualized in Figure 3.5.

Figure 3.4

Example foreground-background missclassification in background subtraction method based on
GMM: half of the remote control shares color with the background and therefore is misclassified.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.5

Example of unwanted memory effect in background subtraction method based on GMM. Frames
(a-e) and extracted foreground masks (f-j) of a testing video are shown: background is initially
trained (a), then an object is inserted and detected (b). After a while it is inserted in the
background model (c). The object is then removed and reinserted in a slightly different position,
but its detection is not correct due to memory effect (d). No problem arises if the object is
reinserted in a position non overlapping with the first one (e).

3.2 IP-Based Foreground Extraction Method Implemented in

PiCVi

The main drawback of the methods presented is that they are color-based. The key idea

of the method implemented in PiCVi is to have a interest point (IP)-based model of the

Chapter 3. Foreground Extraction 18

Method FPS
Frame Differencing 8.60

Mixture of Gaussians 8.54

IP-based 5.01

Table 3.1
Performances in FPS of tested Foreground Extraction methods applied on the video stream
coming from the Raspberry Pi Camera Module.

background: analizing the evolution of the position of the interest points we can construct a

model robust to color variations. The choice of this kind of background model is justified by

the second stage of the PiCVi pipeline (described in Chapter 4), where object samples are

described and matched based on their local features: using a foreground extraction method

based on local features we may loose some relevant part of the foreground with respect

to color-based methods, but those parts will result in no useful informations for the next

stage. Adding the processing step of finding interest points leads to a higher computational

demand which decreases the frame processing rate of the camera (Table 3.1), but still

remaining acceptable for most smart camera real-time application.

The method presented in this section is an enhanced version of the method described in [17].

The main goal of this method is to segment the local features extracted from the current

frame in two sets: the foreground features, potentially belonging to a foreground object, and

the background ones, which are fixed and not interesting for our goal.

3.2.1 Background Model

A block-wise background model is built. The image coming from the camera is divided

into blocks of Wb ×Hb pixels. After all interest points (IPs), i.e. local features, have been

extracted from the image, they are assigned to the appropriate block based on their (x, y)

position in the image. In each block, the set of IPs positions is called an event (Figure 3.6a).

In order to facilitate event labelling, the 2D coordinates of the IPs are mapped in a 1D

coordinate by numbering the pixels from 0 at the top left corner of the block, and then

counting along each row from left to right to Wb × Hb − 1 at the bottom right corner.

Therefore, an event is represented by the set of those 1D coordinate (see Figure 3.6b).

A counter is associated with each event and it is incremented every time that particular

event (the simultaneous observation of that group of IPs) occurred.

The whole background model is made by the sets of the occurred events (one set for each

block) and their associated counters.

Chapter 3. Foreground Extraction 19

(a)

Event Label Counter Timestamp
(28,32,64,67,84) 7 143

(b)

Figure 3.6

(a) The visualization of an event as simultaneous observation of interest point positions inside a
block. (b) Numerical representation of the event.

3.2.2 Model Training

The model is continuosly updated at every incoming frame: each detected IP is associated

with the correct block and it is going to be part of the current event for that block. Then for

each block the event is inserted in the set of the occured events of that block. If the event

is already present in the set, its counter is incremented, otherwise a new counter is created.

In order not to store forever all IPs which occurred at least once, an aging technique is

applied. A timestamp (frame number) is associated with each event and updated every

time that event occurs: if an event does not occur again for a fixed number of frames, it is

discarded and removed from the model.

An example of background model for a block is reported in Table 3.2.

3.2.3 Model Evaluation

In each block, a set B of background IP positions is maintained: every time a counter is

above a threshold parameter T , all the 1D coordinates belonging to the associated event are

inserted in B.

If a position of an incoming IP is present in B, it is considered as a background IP, otherwise

it is considered as foreground one.

After this preliminary classification of the incoming IPs, two post-processing tasks are exe-

cuted in order to decrease misclassifications:

Background Zone Enlargment Due to acquisition noise the exact positions of the IPs

can slightly change during time. Therefore a background point could be incorrectly

classified as a foreground one when its position is not the same as the background

Chapter 3. Foreground Extraction 20

Event Label Counter Timestamp # Event Label Counter Timestamp
1 (16,19,22) 1 187 24 (18,20,23) 1 46
2 (10,16,20,23) 2 117 25 (11,22,32,48) 1 192
3 (20) 1 14 26 (22) 2 141
4 (10,23) 1 3 27 (11,16,22) 1 113
5 (11) 11 204 28 (16,18,20,22) 1 195
6 (19,23) 29 220 29 (20,23,32) 1 89
7 (16,18,20,23) 1 76 30 (20,23) 12 214
8 (20,22) 5 212 31 (18,22) 1 53
9 (11,22) 3 215 32 (11,23) 34 208
10 (18,23) 2 209 33 (11,23,32) 1 205
11 (20,22,26) 1 72 34 (16,23) 1 139
12 (12,23,25) 1 4 35 (9,19,23) 1 42
13 (11,16,23,32) 1 151 36 (12,16) 2 96
14 (23) 11 216 37 (12,18,23) 1 19
15 (11,16,23) 6 210 38 (12,23) 15 218
16 (11,23,48) 2 95 39 (10,12,22) 1 104
17 (19,22,32) 1 217 40 (12,18) 2 31
18 (18) 1 196 41 (12) 2 116
19 (19,22) 3 200 42 (9,11,13,23) 1 219
20 (13) 1 213 43 (9,11,23) 1 107
21 (4,20) 1 105 44 (12,16,23,26,32) 1 197
22 (10,20,23) 1 181 45 (11,23,25) 2 69
23 (16,20,22) 3 171 46 (12,16,23) 6 178

(a)

Background-IP-List: 11, 12, 16, 19, 20, 22, 23

(b)

Table 3.2
(a) Example of background model for an image block (without post-processing tasks), containing
all the events occurred (background events are bold). In this example, the background events are
obtained applying a threshold T = 5 to the counter column. (b) The obtained background
positions list B used to classify incoming interest points. It is obtained grouping together the
positions of background events.

point present in the B set. In order to limit this effect, the 3 × 3 neighbors pixels of

any background IP are considered as background and are inserted in B.

Neighbor Blocks Analisys The blocks of the image can be divided in three different types:

1) background blocks, that contains only background IPs, 2) foreground blocks, con-

taining only foreground IPs and 3) mixed blocks, that contains both. Some blocks are

spourious and all their IPs can be correctly reclassified in foreground or background

points. For example a mixed or foreground block with no foreground blocks in its negh-

borhood is probably spourious and has to be reclassified as background block. Similarly

a background block with many foreground blocks in its neighborhood is probably a

foreground one.

To do this, a binary image with one pixel per block is created: each pixel has value 1 if

the correspondent block is a mixed or foreground one, 0 otherwise. A 2D 3× 3 filter,

reported in Table 3.3, is applied to compute the number of foreground neighbors for

each block. If the neighbors count is below a threshold parameter TFG the block and

all its IPs are reclassified as background since it has not enough foreground neighbors

to be considered foreground. If the neighbors count is above a threshold parameter

Chapter 3. Foreground Extraction 21

1 1 1

1 0 1

1 1 1

Table 3.3
The 2D 3× 3 filter used to compute the number of foreground neighbors of a block.

TBG > TFG, the block is surrounded by enough foreground blocks to be considered a

foreground one and all its IPs are reclassified as foreground.

At the end, the output of this algorithm is the partition of the initial set of IPs in foreground

and background ones, respectively shown in Figure 3.7 as blue and red circles.

(a) (b)

Figure 3.7

IP based Background Subtraction output: (a) features are partitioned in Foreground IPs (red
circles) and Background IPs (blue circles). (b) The related foreground mask.

A foreground mask similar to the ones produced by the background subtraction algorithms

previously described is obtained “drawing white filled” circles centered in the foreground IPs

on a completely black mask. The radius of the drawn circles is fixed and is not depending

on the interest point size since in this stage we are not detecting them at different scales.

Morphological opening operation is applied to the mask, in order to discard singular spourious

foreground spots and to fill background holes inside a foreground area. Finally, the convex

hull of each isolated white spot is found and filled (see Figure 3.7).

3.2.4 Foreground Extraction State Machine

Given the assumption that the system has to detect and recognize non-moving objects, the

foreground is extracted from the scene only when a new object is present and the scene is

stable, i.e. there is no movement of the new objects. To do so, the system is defined as a

3-state machine that cyclically executes the following tasks:

Chapter 3. Foreground Extraction 22

Background Training Initially the system trains and evaluates the main background model

applying the algorithms described until almost every incoming IP is classified as back-

ground. A running average of the percentage of foreground points is maintained:

fgRatio(0) = 1

fgRatio(N+1) = α · fgRatio(N) + (1− α) · # fg IPs

all IPs

When fgRatio is below a threshold parameter Ttrain, the model training is suspended

and the system goes in the Foreground Detection state.

Foreground Detection In this state, the system is ready to detect new objects appearing

in the scene. A new background model is created in parallel to the main one and it

is fed with the foreground IPs classified by the main model, creating a second level

of classification (see Figure 3.8). The foreground IPs are divided in fixed foreground

points, which are the background ones of the new model, and transient foreground

points. A running average of the fixed foreground points is maintained:

fixedFgRatio(0) = 1

fixedFgRatio(N+1) = β · fixedFgRatio(N) + (1− β) · # fixed fg IPs

all IPs

When fixedFgRatio is stable to a value greater than 0, the system assumes there is at

least a new non-moving object in the scene and goes to the Object Extraction state.

Background IPs

Foreground
Model

Foreground IPs

Main
Background

Model

Image IPs Transient
Foreground IPs

Fixed
Foreground IPs

Figure 3.8

Scheme of the 2-tier classification of IPs

Object Extraction The system computes the foreground mask of the current frame using

the fixed foreground points obtained from the previous state. Morphological filters and

contour-finding algorithms are applied and foreground image patches are extracted and

Chapter 3. Foreground Extraction 23

given as input to the second stage of the PiCVi pipeline, described in Chapter 4. At

the end of this task, the system returns to the Background Training state and the IPs

of the new objects are inserted in the background model in order to avoid re-detection.

An example of output of this pipeline stage is shown in Figure 3.9.

(a) (b) (c) (d)

Figure 3.9

Foreground Extraction Method: background features are drawn in the scene (blue). (a) A new
object is inserted in the scene and its features are classified as transient foregroung features (red).
(b) After a while they became fixed foreground features (green), another object is inserted and its
features are classified again as transient foregroung features (red). (c) Both objects are
considered fixed and (d) object samples are extracted.

The above method is independent from the interest point detection algorithm. Among the

detectors already implemented and shipped in OpenCV, FAST [18] detection algorithm has

been chosen for different reasons:

• its implementation does not use image pyramids. In this stage, we are searching for

parts of the frame containing detectable features and we are not interested in finding

features robust to scale transformations, hence image pyramids are unnecessary.

• it does not limit the number of detected points. Since the background model is based

on interest point positions, detected points should not disappear from a part of the

image because of the insertion of something which has stronger points.

• it is faster than other detectors (see Figure 3.10), which is relevant in a low resource

computing platform.

Chapter 3. Foreground Extraction 24

FAST STAR SIFT SURF MSER GFTT HARRIS BRISK
0

10

20

30

40

50

60

Figure 3.10

Performances in FPS of Feature Detectors available in OpenCV applied on the video stream
coming from the Raspberry Pi Camera Module

Chapter 4

Object Description and Matching

In this chapter, the second stage of the PiCVi pipeline is described. The goal of this

stage is to extract a description of the object sample (i.e. a patch of the original video

frame containing only the object to be recognized) coming from previous stage, store it

in a database and compare it to other descriptions of other already met object samples.

Therefore the output of this stage is a list of descriptors of object samples that are visually

similar (match) with the incoming one (see Figure 4.1).

Object
Description
& Matching

object
sample

new object
descriptor

similar
objects

descriptor

#5

Figure 4.1

Second stage of the PiCVi pipeline, having object samples as input and object descriptors as
output.

4.1 Object Sample Description

A descriptor of an object sample is created and related to other descriptions of object samples

seen in the past: the system may alredy seen several times the same object under different

25

Chapter 4. Object Description and Matching 26

lightning conditions, different 3D poses or different scales, but should be able to relate each

observation to each other.

Many computer vision methods are reported in the literature for recognizing a known object

in a scene [10, 19–21]. In this work, the comparison of two object samples is based on

local features of the image [2–4]. Many of the widely used features detection, extraction

and matching algorithms are already implemented and bundled in OpenCV. Other type of

features, like the ones based on shape or color, may be integrated in order to obtain a better

description of the object sample, but are not covered in this work and left to future work

(see Subsection 6.2.1).

In PiCVi, an object sample is described by a) the position of its local features (keypoints)

and b) their extracted descriptors. ORB detector and extractor algorithms [2] have been

chosen among the methods available in OpenCV, mainly because of its good tradeoff between

performance (see Figure 4.2) and robustness. It can be seen in Section 4.2 that local features

matching is only the first of many processing steps for computing similarity among descriptors

and is not required to be precise: a low false negative rate is required in order not to loose

potentially good matches while false positives are filtered out by subsequent processing steps.

SIFT SURF ORB BRIEF BRISK FREAK
0

2

4

6

8

10

12

14

16

18

Figure 4.2

Performances in FPS of Feature Descriptor Extractors available in OpenCV applied on the video
stream coming from the Raspberry Pi Camera Module

Keypoints position and ORB descriptors of each object sample are stored in a SQLite1

database together with other useful informations. The complete description of an object

sample is reported in Table 4.1.

1http://www.sqlite.org/

http://www.sqlite.org/

Chapter 4. Object Description and Matching 27

FIELD Description

ID an integer unique identifier of the sample

URL the url of the image of the sample stored in the filesystem (used
only for debugging purposes)

TIMESTAMP the time the object sample descriptor has been created

KEYPOINTS the binary serialization of the keypoints detected in the sample

DESCRIPTORS the binary serialization of the descriptors extracted from the
sample

CLASS-TAG the label of the class the sample belongs to (used during the
third stage of the PiCVi pipeline: Object Clustering, described
in Chapter 5)

Table 4.1
Information stored in the DB for each object sample.

It may happen that the incoming sample has not enough features to be described and to be

compared with other samples. In this case, the sample is discarded.

4.2 Similarity Function

A similarity function S : (o1, o2) → [0, 1] is defined on a pair of object samples (o1, o2),

representing the quality of the match between the two object descriptors. Similarity value

goes from 0 (object samples do not match at all) to 1 (perfect match, usually obtained only

comparing an object sample to itself).

The similarity value among two objects is computed in steps shown in Figure 4.3 and de-

scribed.

In each step, the system tries to stop the similarity computation in case of bad match,

returning a value 0 of similarity and avoiding further processing. In this way bad matches

are fastly recognized and filtered out.

4.2.1 Feature Matching

Let K1,K2 be the sets of keypoints of the compared objects and D1, D2 their sets of

corresponding descriptors.

Bruteforce Nearest Neighbor Match A preliminary list of descriptor matches is created

finding for each descriptor in D1 its nearest neighbor in D2 using the bruteforce method (Fig-

ure 4.3d). The nearest neighbor descriptor is the one having smallest distance with respect

Chapter 4. Object Description and Matching 28

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

Figure 4.3

Example of similarity computation among object samples (a) and (b). Matches are obtained
finding nearest neighbor for each descriptor (d) and then are thresholded (e). RANSAC is applied
to find an homography and only inliers are kept (f). Found homography is shown in (g). The
sample (a) is transformed using the found homography in (c) and all matching steps are
reapplied: all matches (h), thresholded matches (i), RANSAC inliers (j) and homography found
(k). The computed similarity value is 0.48.

Chapter 4. Object Description and Matching 29

to the descriptor in D1 we are considering. Distances between descriptors are computed

using the method suggested by the authors of the descriptor. In case of ORB, Hamming

distance between the binary representation of descriptors is used.

Thresholding Matches Matches in the list are then filtered maintaining only the ones

having distance between descriptors below a parameter threshold Tm (Figure 4.3e). If there

are less than Nm matches left in the list, the system cannot correctly compare the object

samples and assumes there is no similarity among them, returning a similarity value of 0.

4.2.2 RANSAC Filtering of Matches

Thresholded matches are not sure to be good ones: although a matching couple of descriptors

have small Hamming distance among them, their respective keypoints may not be detected

from the same point of the object (see Figure 4.3e). In this case, the match is a false positive

one. These kind of matches can be filtered out checking whether the points that match are

geometrically consistent.

Homography Estimation Two images of the same planar surface in space are related

by a homography [22]. A homography is a invertible transformation that maps the 2D

coordinates of points in a image plane into the 2D coordinates in another plane. The 2D

coordinates (x, y) of a point p are represented in homogeneous coordinates, stored in a

3D vector ph = (x1, x2, x3) where x = x1
x3

and y = x2
x3

. Using this kind of coordinates,

homography transformations can be represented by a linear operation: a multiplication by

H, a 3×3 real matrix. After the transformation, the original 2D coordinates can be retrieved

dividing the first two coordinates for the third one.

p =

[
x

y

]
, ph =


x

y

1

 , H =


h11 h12 h13

h21 h22 h23

h31 h32 1



p′h = Hph =


ωx′

ωy′

ω

 → p′ =

[
x′

y′

]

Let K?
1 ,K

?
2 be the sets of keypoints corresponding to the descriptors belonging to the filtered

list of matches. Taking four points from each set we can find the 8-degree-of-freedom

homography that relates those points.

Chapter 4. Object Description and Matching 30

In order to find the homography that relates correctly the most of the points in K?
1 and

K?
2 , RANSAC is applied [22, 23]. RANSAC (RANdom SAmple Consensus) is an non-

deterministic algorithm to estimate parameters of a mathematical model from a set of ob-

served data which contains outliers.

RANSAC algorithms iteratevly executes the following steps:

(a) takes 4 matches (couple of points) at random from K?
1 and K?

2 ,

(b) computes the homography H relating those points,

(c) counts the number of other matches that are correctly related by H (called inliers).

After a certain number of iterations, the matrix H which gave the maximum number of

inliers is returned.

Filter By Homography Using the homography found by the RANSAC algorithm (Fig-

ure 4.3g), we can further filter the list of matching descriptors, keeping only the inliers of

the perspective transformation (Figure 4.3f).

Not all the homographies returned by the RANSAC algorithm are good. Sometimes, quasi-

degenerate or flipping homographies are reported and in most of the cases they are not

representing a good match (see Figure 4.4).

Figure 4.4

Ugly Homography found by RANSAC algorithm, usually indicating a bad match.

Most of these spourious results can be detected analizing the homography matrix.

Three checks are done:

Chapter 4. Object Description and Matching 31

• flipping homographies can be discarded checking if det(H) < 0.

• very skewed or prospective homographies can be discarded if det(H) is too small or

too big: given a parameter N , H is discarded if det(H) > N or det(H) < 1
N .

• homographies transforming the matching keypoints bounding box in a concave polygon

can be filtered out with a convexity check.

In those cases, it is very unlikely that the samples under analysis are really related by this

perspective transformation, therefore the system assumes there is no similarity between them

and returns a similarity value of 0.

Second Stage RANSAC Some samples may pass the homography matrix check even if

the perspective transform described by H is very unlikely to be observed. In order to filter

out false positives homography matrices, the image of the first sample o1 is transformed in

ô1 using the homography to be validated (Figure 4.3c) and the similarity computation steps

are repeated considering the samples ô1 and o2. Features are re-detected and re-extracted

from ô1, matched with o2 and a second RANSAC is executed to estimate a new homography

Ĥ describing the prospective transformation among ô1 and o2 (Figure 4.3h-k). If the original

samples o1 and o2 were really different views of the same object, Ĥ should be very near to

the identity transformation (Figure 4.3k). If not the similarity between o1 and o2 is set to 0

and returned.

4.2.3 Similarity Output

After the system found a good homography relating the samples, the ratios r̂1, r2 among the

number of inliers and the total number of detected features are computed for each sample:

r̂1 =
I

|K̂1|
, r2 =

I

|K2|

where I are the number of inliers of the homography estimated between samples ô1 and

o2, |K̂1| and |K2| are respectively the number of detected keypoints in ô1 and in o2. The

similarity value among original samples under analysis S(o1, o2) is defined as the harmonic

mean between r̂1 and r2:

S(o1, o2) =
2

1
r̂1

+ 1
r2

Some similarity outputs among four object samples are reported in Figure 4.5.

Chapter 4. Object Description and Matching 32

(a) (b) (c) (d)

A B C D

A 1 0 0 0.63

B 0 1 0.57 0

C 0 0.62 1 0

D 0.68 0 0 1

(e)

Figure 4.5

Values of similarity among object samples a-d reported in table (e).

Similar Objects List Generation Given the new object sample ô, a list L of similar object

samples has to be generated by the system.

This step is completed in this stage scanning all object samples in the local database. For

each object sample oi the similarity value si = S(ô, oi) is computed and if it is above a

similarity threshold Ts, oi is inserted in L.

Chapter 5

Online Object Clustering

In this chapter the third stage of the PiCVi pipeline is described. The goals of this stage

are a) to label the new object sample and b) to maintain clusters of object samples that

potentially represent the same real 3D object.

Object
Clustering

label
new object
descriptor

Obj
#5

similar
objects

descriptor

#5

Figure 5.1

Third stage of the PiCVi pipeline, having object descriptors as input and a label as output.

Each cluster is identified by a label assigned to object samples. Each time a new object

sample descriptor is created, the system tries to put it in a cluster relying on the similarity

it has with other already clustered samples. To do so, the system uses the list of already

clustered object samples similar to the new one, which has been already computed in the

previous stage (see Figure 5.1).

The new object sample can bring informations useful to cluster reorganization: for example

let c1 and c2 be two clusters of object samples representing the same real object but viewed

from different poses. A new object sample representing the real object in an intermediate

pose could suggest the system to merge c1 and c2 in a unique cluster (see Figure 5.3).

33

Chapter 5. Online Object Clustering 34

(a) table calendar

(b) poetry book

Figure 5.2

Example of two object sample clusters: (a) and (b).

(a) frontal view cluster

(b) side view cluster

(c)

Figure 5.3

Example of cluster merging: cluster (a) and (b) group together respectively the frontal view and
a side view of the object. The new sample (c) is similar to both clusters and can lead to a cluster
merge.

5.1 Semi-supervised Clustering Technique

When trying to label a new object sample, the following scenarios can occur:

1. the new sample does not match with old samples.

2. the new sample matches with one or more old samples all belonging to the same

cluster.

3. the new sample matches with more than two samples beloging to different clusters.

Chapter 5. Online Object Clustering 35

In order to handle the above scenarios, a semi-supervised online clustering technique is

adopted. Most of the times the system will be able to reorganize the new object together

with the old ones, but sometimes a correct reorganization is difficult without user interaction.

5.1.1 Unsupervised Clustering

In the case of the first two scenarios, the incoming object can be labelled in an unsupervised

way without messing up with the current clusters configuration.

In scenario 1, no samples similar to the new one exist, hence a new label is created an assigned

to the sample. This is equivalent to create a new cluster containing only the new object. It

may happen that a new sample representing an object already present in the database is not

similar (in terms of similarity value) to the other samples. In this case the new sample is

incorrectly put in a new cluster instead of being grouped with the other samples representing

the same object, but this situation can be recovered in the future performing a cluster

merge operation (see Subsection 5.1.2) if new samples of the object will be collected by the

system.

In scenario 2, the new sample is similar to samples belonging to a same cluster, hence is a

good candidate for that cluster. Hence, the system assigns the corresponding cluster label

to the new sample.

In general, expanding a cluster with a new sample is a simple operation, since only the label

of the new samples has to be set. On the contrary, splitting clusters is a difficult operation

that requires many similarity evaluations and database accesses. In order to maintain a good

performance and to be able to do clustering online (each time a new sample is collected),

the system does not perform cluster splitting, hence clusters are expanded only if there is

a strong similarity among samples. This is obtained designing the similarity function (see

Section 4.2) in such way it is very unlikely that samples which are not visually similar have

a high similarity value.

5.1.2 Supervised Clustering

In scenario 3, the new object is similar to members of different clusters. Many actions may

be taken by the system in this situation:

1. the clusters containing the samples similar to the new one are merged together in

a unique bigger cluster to which the new object will belong (cluster merging, Fig-

ure 5.3).

Chapter 5. Online Object Clustering 36

2. the new sample is inserted into only one among the candidates clusters.

3. a new cluster is created containing only the new object.

The cluster merging operation is the way the system aggregates multiple views of a single

object into a single truth set, creating a base knowledge for the object recognition. It has

to be performed carefully since no cluster splitting is available. Using a single camera with

no a priori knowledge about the objects the user want to recognize, it is difficult to decide

when to perform cluster merging rather than the other actions listed above.

new object
sample

cluster 1
cluster 2

cluster 3

new cluster

already present similarity

similarity with new sample

Figure 5.4

On the left, the supervised clustering dialog: the system asks the user what to do when three
clusters are similar to each other. On the right, a visual representation of similarities between
samples affected by the merge.

Up to now, the system does not decide automatically and asks the user which action should

be taken (Figure 5.4). This may lead to many queries to the user that may rapidly get bored.

Interaction between multiple cameras and similarity values between samples and clusters may

be exploited to take the correct action automatically. Possible solution are briefly discussed

in Subsection 6.2.1 and are left to future work.

Chapter 6

Experiments and Results

In this chapter, the experiments conducted to evaluate the system are described and results

are reported. Conclusions of this work and are summarized and some directions for future

work are discussed.

6.1 Experiments and Results

No labelled datasets are available for evaluating the whole PiCVi pipeline, moreover the

first stage is loosely coupled with the following stages and suited to be tested separately too.

Hence two experiments, described in the following subsections, were done for evaluating a)

object detection (done through the foreground extraction taks) and b) object recognition

(done through description, matching, labelling and clustering of object samples).

6.1.1 Evaluation of Foreground Extraction

For the evaluation of the foreground extraction task accomplished by the first pipeline stage

of PiCVi the following publicly available videos were used:

• Street (Fifth Configuration) Video and

• Rotary (Fifth Configuration) Video, both taken from the BMC1 dataset [24],

• Sofa Video, taken from the Intermittent Object Motion category of the CDW-20122

dataset [25].

1Background Models Challenge: http://bmc.univ-bpclermont.fr/
2Change Detection Workshop: http://changedetection.net/

37

http://bmc.univ-bpclermont.fr/
http://changedetection.net/

Chapter 6. Experiments and Results 38

The first two are synthetic videos presenting two outdoor scenes. Camera acquisition noise,

illumination changes and background movements are artificially added emulating a windy

and cloudy environment. The last one is a real video of an indoor scene more representative

of the application scenario, where some objects are added, moved and removed from the

scene by human actors. Each frame of each video comes with a groundtruth mask indicating

which is the foreground part of it.

The three foreground extraction algorithms presented in Chapter 3 (Frame Differencing,

Subsection 3.1.1; Mixture Of Gaussians, Subsection 3.1.2 and IP-based, Section 3.2) are

evaluated. Each algorithm is applied to each video: since we are interested in extract-

ing images of objects rich of local features in order to match them later, at each frame

FAST keypoints are extracted and classified as foreground or background keypoint based on

the foreground mask obtained by the algorithm. The correct classification is given by the

groundtruth foreground mask (Figure 6.1).

Measures related to binary classification problems are extracted. The positive class represents

foreground points and the negative background ones. The following measures are extracted

for each algorithm and reported in Figure 6.2:

Precision

p =
TP

TP + FP
,

where TP is the number of correctly classified foreground points and FP is the number

of background points incorrectly classified as foreground. This measure represents the

fraction of keypoints classified as foreground that are really foreground keypoints.

Recall

r =
TP

P
,

where P is the number of foreground keypoints. This measure represents the fraction

of all foreground keypoints correctly classified as foreground points.

F1 Score

F1 =
2

1
p + 1

r

which is the harmonic mean of precision and recall.

The implemented method has higher recalls than other tested methods, since less foreground

points are left behind. In some tests, precision may be lower due to false positives, but for

the application it is more important to have a high recall, since spourious results can be

filtered out in further processing steps.

Chapter 6. Experiments and Results 39

(a) street

(b) rotary

(c) sofa

Figure 6.1

Foreground Extraction Test Scenes: an example frame of each test scene and the foreground
mask generated by each algorithm are shown. Red and blue circles drawn on the frame shows
respectively misclassified foreground and background keypoints.

Chapter 6. Experiments and Results 40

street rotary sofa
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

street rotary sofa
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
a
ll

street rotary sofa
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
1
S

c
o
re

FrameDiff

MoG

IP−Based

Figure 6.2

Foreground Extraction Evaluation Metrics: the figure plots Precision, Recall and F1 Score
obtained by each algorithm tested in each video sequence.

6.1.2 Evaluation of Object Recognition

In order to evaluate the second and the third stage of the PiCVi pipeline, the publicly

available 3D Objects dataset [26] has been used. This dataset is composed by images of 10

object categories. For each category, 9-10 objects are present and for each object, several

images are reported in which the specific object is shown in different poses. Each image

comes with a foreground mask which denotes exactly in which part of the image the object

is located. Images are taken from 8 different angles using 3 different scales and 3 different

heigths for the camera, leading to around 5500 labelled images of 100 specific objects (see

Table 6.1).

Class Object Samples

cellphone cellphone 1 . . .

.

cellphone 9 . . .

mouse mouse 1 . . .

.

toaster toaster 1 . . .

.

Table 6.1
Excerpt from the Stanford “3D Objects” dataset: only some samples of some objects of some
classes are reported.

The presented system autonomously groups objects into clusters without knowing their la-

bels, but cannot recognize them before the user labels at least some of them, hence the

system cannot be compared with traditional trained classifiers. Instead the ability of the

system to build good and easy to label clusters is measured.

Chapter 6. Experiments and Results 41

Let O = {(o1, l1), (o2, l2), . . .} the set of labelled samples. The entire dataset O is randomly

shuffled and splitted in training set Otrain (90%) and testing set Otest (10%): training

samples are presented to PiCVi as coming from the output of the foreground extraction

stage. The system builds clusters of samples while they are processed. In the case a

supervised clustering is needed, the test code simulates the user interaction choosing the

best action to be taken knowing the labels of the samples involved. The complete clustering

test code is reported in Algorithm 1.

Algorithm 1 Clustering algorithm simulating user interaction used during tests

for all (oi, li) ∈ Otrain do
Os = {oj ∈ D : S(oi, oj) > Ts} . Os is the set of samples similar to oi
if |Os| = 0 then

newC ← newC + 1
ci ← newC

else if |Os| = 1 then
k ← k : ok ∈ Os
ci ← ck

else
Cs = {cj : oj ∈ Os,∀(oj , cj) ∈ D} . Cs is the set of all cluster IDs to which each

sample in Os belongs
if |Cs| = 1 then

k ← k : ck ∈ Cs
ci ← ck

else
Ls ← majorLabels(Cs) . Ls is the set of the major labels for each clus-

ter in Cs
CI ← {c : l = li, ∀(c, l) ∈ Ls} . CI is the set of cluster IDs having major label

equal to li
OI ← {j : cj ∈ CI} . OI is the set indices of objects belonging to

one of the clusters in CI
newC ← newC + 1
for all k ∈ OI do

ck ← newC
end for
ci ← newC

end if
end if
D ← D ∪ {(oi, ci)}

end for

Once the clusters are built, they must be labelled to produce a labelled training set. Since

the user usually does not want to waste time in cleaning clusters or label singular objects,

the test code simulates a labelling technique based on major voting : an entire cluster is

labelled with the label of the most frequent object present in it.

The training set thus labelled is used for training a k-NN classifier. The cluster k-NN

classifier finds the k most similar samples (the ones with the higher value of similarity S)

and assigns a score for each label of those samples. The winning label is assigned to the

Chapter 6. Experiments and Results 42

Algorithm 2 Subroutine that finds major labels of a set of clusters

function majorLabels(D,Cs)
Ls ← ∅
for all c ∈ Cs do

Lc ← {(i, li) : (oi, c) ∈ D} . Lc is the set of all couples (sample, label)
belonging to the cluster c

uLc ← {li : (i, li) ∈ Lc} . uLc is the set of labels present in cluster c
C ← ∅ . C is the set of (label, count) couples
for all l ∈ uLc do

Lc,l ← {(i, li) ∈ Lc : li = l} . Lc,l is the set of all couples (sample, label)
belonging to the cluster c having label l

C ← C ∪ {(l, |Lc,l|)}
end for
majorL← argmaxl̂:(l̂,n̂)∈C{n : ∀(l, n) ∈ C, l = l̂}
Ls ← Ls ∪ {(c,majorL)}

end for
return Ls

end function

processed test sample. Another k-NN classifier is trained using the training set with correct

labels and another labelling of the test set is generated in the same way.

Test set labellings are evaluated with the same metrics used in Subsection 6.1.1: precision,

recall and F-score are computed for each class and then are aggregated using macro- and

micro-averaging techniques. Let n be the number of object classes, TPi the true positives,

FPi the false positives, Pi the total number of samples, pi the precision, ri the recall and

Fi the F1-score of class i, then:

Micro-averaged precision

pmicro =

∑n
i=1 TPi∑n

i=1(TPi + FPi)
,

Micro-averaged recall

rmicro =

∑n
i=1 TPi∑n
i=1 Pi

,

Micro-averaged F-score

Fmicro =
2pmicrormicro
pmicro + rmicro

,

Macro-averaged precision

pmacro =

∑n
i=1 pi
n

,

Macro-averaged recall

rmacro =

∑n
i=1 ri
n

,

Chapter 6. Experiments and Results 43

Macro-averaged F-score

Fmacro =
2pmacrormacro
pmacro + rmacro

Macro-averaged metrics tends to give the same weight to each class, while micro-averages

metrics takes into account possible biases introduced by each class and gives a more accurate

global performance index. Another measured metric is the number of interactions the system

must have with the user in order to label the training set: the groundtruth k-NN classifier

needs the user to label each training sample individually, which corresponds to a number of

query to the user equal to the number of samples in the training set. The cluster k-NN

classifier needs to interact with the user a) when a cluster merging can not be resolved

automatically during the online clustering and b) when a cluster has to be labelled.

In Figure 6.3, the performances of the two classifiers for various similarity thresholds Ts

are reported. It can be seen that for Ts around 0.2, the cluster k-NN classifier has almost

the same performances of the groundtruth k-NN classifier, having only around half the

interactions with the user. However, performance degradation of the cluster k-NN classifier

is due to the fact that we simulated a unique user interaction after the training phase which

used major voting paradigm to label all clusters at once. Since the system is incrementally

building richer and richer clusters, this is not the best way to interact with the user asking

labels: user interaction may be proactively requested only when big homogeneous clusters

are involved, maximizing the amount of information collected. Moreover, smarter techniques

than major voting may be implemented to simulate a more precise user labelling session. In

the performed tests, many singleton or small clusters are present at the end of the training

phase, raising the number of queries to the user needed to label the entire training set.

6.2 Conclusions

In this work, a system for incremental real-time object detection and automonous recognition

in indoor environments have been presented. The system detects movable foreground objects

relying on FAST interest points. Once the object has been segmented, the system relies on

ORB features to create its descriptor, store it and compare it with descriptors of previously

seen objects. A visual similarity function of two samples has been defined relying on ORB

features matching and geometry consistency checking through the use of homographies. The

system groups together similar objects into clusters relying on the transitivity of similarity

among objects. Each cluster identifies a class and the system learn to autonomously recog-

nize an object assessing cluster membership. No publicly benchmarks have been found for

evaluating the entire processing pipeline. Hence, experiments were done in order to asses:

Chapter 6. Experiments and Results 44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

similarity threshold

pr
ec

is
io

n

macroP
microP
clusterMacroP
clusterMicroP

(a) Micro- and macro-averaged precision
values when varying the similarity threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

similarity threshold

re
ca

ll

macroR
microR
clusterMacroR
clusterMicroR

(b) Micro- and macro-averaged recall
values when varying the similarity threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

similarity threshold

F
−

sc
or

e

macroF
microF
clusterMacroF
clusterMicroF

(c) Micro- and macro-averaged F1-score
values when varying the similarity threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

similarity threshold

qu
er

ie
s

to
 u

se
r

groundtruth
cluster

(d) The number of queries to the user
when varying the similarity threshold

Figure 6.3

Comparison of the perfromances of the recognition task, solved by a k-NN classifier trained with
the groundtruth training set (blue lines) and by a k-NN classifier with training set made by
cluster labelling (red lines).

• the ability of the system to detect foreground objects in an active background and

to extract patches of the video frame containing their interest points. The discussed

methods for foreground extraction has been tested with labelled datasets built for

background subtraction evaluation. During experiments it has been noticed that color-

based background subtraction method typically used in computer vision may omit

informative part or include a useless part of the image, hence a interest point-based

method has been implemented.

• the ability of the system to group together unlabelled samples, reducing the labelling

work of the user. A dataset of 5500 images has been processed and it has been point

out that in a k-NN classification task based on similarity as distance the presented

Chapter 6. Experiments and Results 45

labelling strategy requires about half of the user interaction without degrading too

much the classification results with respect to the groundtruth k-NN classifier.

6.2.1 Future Work

Future work will explore two main aspects: a) the enhancement of the implemented methods

for object detection, description, clustering, labelling and recognition in the scope of a single

camera, b) the design of the distributed multi-camera system, the implementation of the

camera network protocol and of the tasks enabled by inter-camera communication. For the

former, some practical solutions are described in the following paragraphs. For the latter,

possible adoptable solutions for the complete system are suggested.

Exploit similarity values Similarity values has been defined to belong to the interval [0, 1]

and a single threshold Ts is used to decide whether the compared samples are similar or not.

Multiple similarity thresholds may be adopted to define different level of confidence of the

similarity between two samples. Levels of confidences can be exploited to automatically take

some decisions during the clustering of samples and limit the user interaction.

Proactive user interaction Up to now, the user is queried for each decision the system

could not take autonomously during the clustering of samples. This may lead to query the

user too often. Unresolved decision should be stored and the user queried in a proactive

way only when a considerably amount of samples can be labelled with little effort. In this

way the ratio between the collected information and the number of queries to the user is

maximized. An example of this behaviour can be observed in bulk face tagging in multiple

photos in popular social networks, where the user is prompted to tag only substantial groups

of similar faces at once.

Enhance object detection and description In this work, detection and description of

objects is mainly based on local features of images, describing the statistics pixel values of

the grayscale channel around relevant points of the image such as corners and edges. Other

types of features may be integrated to enhance each task:

object detection the implemented foreground extraction method may be combined with

color-based methods (such as Mixture of Gaussians Background Subtraction [14, 16])

to increase the confidence of the presence of a foreground object and to produce a

sharper contour of the extracted object. This may lead to the inclusion of less noise

in the image to be processed in the following steps.

Chapter 6. Experiments and Results 46

object description color-based features (such as color histograms, dominant colors etc.)

and shape informations may be included to obtain a better object sample description:

coherently the similarity function defined between two object samples shuold be up-

dated to consider the comparison of those elements as part of the final similarity score.

This may increase the rate of correct matches among samples.

Many samples collected from the same camera during time may be very similar to each other

and introduce redundant information. Moreover, handling many samples leads to storage

and computational issues. Hence, a technique for sample aggregation or deletion may be

implemented in the scope of a single camera. In the case of a network of cameras, sample

redistribution and query may be implemented in order to equally distribute the load among

cameras.

Local Optimizations: Metric-space Indexing and Hardware Exploitation For each

object sample under analysis, the list of similar objects is generated by the system scanning

the local database. The problem of this approach is that the execution time is linear with

the number of samples present in the database. Even if most of similarity values are equal

to zero and its computation has fast rejection of non matching couples, retrieving similar

objects may become too computational demanding when too many samples are present in

the database: the limited resources of a smart camera will fastly limit the amount of samples

it can handle.

Metric-space indices (such as M-trees [27, Chapter 3], Locality Sensitive Hashing etc.) may

be added in order to efficiently retrieve similar samples from the local database: an interme-

diate distance between object descriptors or the similarity value itself may be used as metric

for the index. Doing so, a single smart camera may handle more samples without degrading

its performaces during similarity searches.

In the special case of the Raspberry Pi computing platform, no OpenCV interfaces are

available to directly exploit the equipped GPU (VideoCore IV). Specific interfaces may be

developed in order to to accelerate computer vision algorithms and save CPU time for other

application tasks, such as network communications.

Multi-camera enabled tasks In this work, the system is limited to a single camera. Build-

ing a network of cameras may increase available space and computational resources and

enables new type of tasks. The confidence level of object detection and recognition may be

increased through inter-camera communication and cross-checking, enabling the system to

interact fewer times with the user. Object tracking with handover can be implemented. If

Chapter 6. Experiments and Results 47

cameras have overlapping field of views automatic camera calibration and object localiza-

tion can be done exploiting point triangulation. The complete distributed network may be

managed and queried by smartphone or other user-friendly interfaces.

Bibliography

[1] Juan Carlos Augusto. Artificial intelligence in challenging environments. In Alfons J

Schuster, editor, Intelligent computing everywhere. Springer, 2007.

[2] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient al-

ternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE International Conference

on, pages 2564–2571. IEEE, 2011.

[3] David G Lowe. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2):91–110, 2004.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.

In Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

[5] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision

conference, volume 15, page 50. Manchester, UK, 1988.

[6] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary

robust independent elementary features. In Computer Vision–ECCV 2010, pages 778–

792. Springer, 2010.

[7] Ching-Hui Chen, Julien Favre, Gregorij Kurillo, Thomas P Andriacchi, Ruzena Bajcsy,

and Rama Chellappa. Camera networks for healthcare, teleimmersion, and surveillance.

Computer, 47(5):26–36, 2014.

[8] Kevin Abas, Caio Porto, and Katia Obraczka. Smart camera networks for the surveil-

lance of public spaces. Computer, 2014.

[9] Nikhil Naikal, Allen Y Yang, and S Shankar Sastry. Towards an efficient distributed

object recognition system in wireless smart camera networks. In Information Fusion

(FUSION), 2010 13th Conference on, pages 1–8. IEEE, 2010.

[10] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple

features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings

of the 2001 IEEE Computer Society Conference on, volume 1, pages I–511. IEEE, 2001.

48

Bibliography 49

[11] Rita Cucchiara, Costantino Grana, Massimo Piccardi, and Andrea Prati. Detecting

moving objects, ghosts, and shadows in video streams. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 25(10):1337–1342, 2003.

[12] Kinjal A Joshi and Darshak G Thakore. A survey on moving object detection and

tracking in video surveillance system. International Journal of Soft Computing and

Engineering, 2(3):44–48, 2012.

[13] OpenCV Developer Team. Opencv documentation: How to use background sub-

traction methods. URL http://docs.opencv.org/trunk/doc/tutorials/video/

background_subtraction/background_subtraction.html.

[14] Thierry Bouwmans, Fida El Baf, and Bertrand Vachon. Background modeling using

mixture of gaussians for foreground detection-a survey. Recent Patents on Computer

Science, 1(3):219–237, 2008.

[15] Jeff A Bilmes et al. A gentle tutorial of the em algorithm and its application to

parameter estimation for gaussian mixture and hidden markov models. International

Computer Science Institute, 4(510):126, 1998.

[16] Pakorn KaewTraKulPong and Richard Bowden. An improved adaptive background

mixture model for real-time tracking with shadow detection. In Video-Based Surveillance

Systems, pages 135–144. Springer, 2002.

[17] Dehghani A. and Sutherland A. A novel interest-point-based background subtraction

algorithm. ELCVIA, 13(1):Gowri Srinivasa, 2014.

[18] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.

In Computer Vision–ECCV 2006, pages 430–443. Springer, 2006.

[19] David G Lowe. Object recognition from local scale-invariant features. In Computer vi-

sion, 1999. The proceedings of the seventh IEEE international conference on, volume 2,

pages 1150–1157. Ieee, 1999.

[20] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid object

detection. In Image Processing. 2002. Proceedings. 2002 International Conference on,

volume 1, pages I–900. IEEE, 2002.

[21] Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, and Stan Z Li. Learning multi-

scale block local binary patterns for face recognition. In Advances in Biometrics, pages

828–837. Springer, 2007.

[22] Elan Dubrofsky. Homography estimation. PhD thesis, UNIVERSITY OF BRITISH

COLUMBIA, 2009.

http://docs.opencv.org/trunk/doc/tutorials/video/background_subtraction/background_subtraction.html
http://docs.opencv.org/trunk/doc/tutorials/video/background_subtraction/background_subtraction.html

Bibliography 50

[23] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381–395, 1981.

[24] Antoine Vacavant, Thierry Chateau, Alexis Wilhelm, and Laurent Lequièvre. A bench-

mark dataset for outdoor foreground/background extraction. In Computer Vision-ACCV

2012 Workshops, pages 291–300. Springer, 2013.

[25] Nil Goyette, Pierre-Marc Jodoin, Fatih Porikli, Janusz Konrad, and Prakash Ishwar.

Changedetection. net: A new change detection benchmark dataset. In Computer Vision

and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Confer-

ence on, pages 1–8. IEEE, 2012.

[26] Silvio Savarese and Fei-Fei Li. 3d generic object categorization, localization and pose

estimation. In ICCV, pages 1–8, 2007.

[27] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity search:

the metric space approach, volume 32. Springer, 2006.

	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.1.1 FAST Interest Point Detector
	1.1.2 ORB Interest Point Detector and Descriptor

	1.2 Related work

	2 PiCVi: autonomous object detection and recognition system
	2.1 Goals and Assumptions
	2.2 Software architecture
	2.2.1 Stage 1: Foreground Object Extraction
	2.2.2 Stage 2: Object Description and Matching
	2.2.3 Stage 3: Object Online Clustering
	2.2.4 Output: Labels

	3 Foreground Object Extraction
	3.1 Background Subtraction Methods
	3.1.1 Frame differencing
	3.1.2 Pixelwise Background Subtraction based on Gaussian Mixture Model

	3.2 IP-Based Foreground Extraction Method Implemented in PiCVi
	3.2.1 Background Model
	3.2.2 Model Training
	3.2.3 Model Evaluation
	3.2.4 Foreground Extraction State Machine

	4 Object Description and Matching
	4.1 Object Sample Description
	4.2 Similarity Function
	4.2.1 Feature Matching
	4.2.2 RANSAC Filtering of Matches
	4.2.3 Similarity Output

	5 Online Object Clustering
	5.1 Semi-supervised Clustering Technique
	5.1.1 Unsupervised Clustering
	5.1.2 Supervised Clustering

	6 Experiments and Results
	6.1 Experiments and Results
	6.1.1 Evaluation of Foreground Extraction
	6.1.2 Evaluation of Object Recognition

	6.2 Conclusions
	6.2.1 Future Work

	Bibliography

