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1. ABSTRACT 

TusA is a small sulfurtransferase protein of 81 amino acid residues encoded by  yhhP gene 

in E. Coli. A great number of organisms have similar proteins.  

Yamashino et al. showed that a deletion of yhhP gene in E. Coli cells, grown in standard 

laboratory rich medium (i.e. Luria Broth), leads to physiological general problems which 

come out with the formation of filamentous cells. TusA also plays a critical role in 2-thio 

modification of tRNA at the wobble position of U34. It mediates activated-sulfur transfer 

from desulfurase IscS to the ternary complex TusBCD, allowing sulfur flow towards 

TusE/MnmA-tRNA complex.   

More recently it has been shown that TusA operates within the Moco-dependent pathway. 

In more details, TusA is not indispensable for Molybdenum cofactor synthesis, but because 

it and IscU bind to IscS, sulfur is transferred to a particular metabolic pathway by the 

availability of IscS binding partners. So in the absence of TusA more IscS is available for 

iron-sulfur cluster biosynthesis. Since [Fe-S] clusters regulate expression for many genes 

an overproduction of iron sulfur clusters leads to either inactivity for almost all molybdo-

enzymes or higher amount of hydrogenase enzyme. 

I cloned tusA (yhhP) gene, expressed and characterized the protein through NMR, Mass 

Spectroscopy  and Circular Dichroism. Results from spectra analysis suggest that TusA 

after expression and purification is a folded protein with a high thermal stability. 
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2. INTRODUCTION 

    

   2.1 Sulfur cluster and evolution of life 

Iron-sulfur clusters have important roles in living systems biochemistry. Various 

metalloproteins such as nitrogenase, NADH dehydrogenase, hydrogenases, Coenzyme Q, 

cytochrome c reductase and ferrodoxins bear iron-sulfur clusters
[1]

.  

They are mainly involved in oxidation-reduction reactions. It is noteworthy that these 

reactions involves CO, H2, N2, which were probably present in a primordial Earth’s 

atmosphere. Moreover the ubiquity of  these proteins in most organisms led scientists to 

theorize that iron-sulfur compounds had an important role in an hypothetical “Fe-S world”: 

they could be a window between the Biological and the Inorganic world
[2]

. 

Many evolutionary theories postulate about a “pioneer inorganic organism” originated in a 

volcanic hydrothermal flow at high temperature and pressure. It was proposed to be an 

ancestral precursor involved in a sort of reductive citric acid cycle
[3]

. It might have been 

capable to catalyze  autotrophic carbon fixation through a set of simple reactions, yielding 

small organic molecules. These molecules were retained on the mineral surface and acted 

as ligands, to accelerated their own production. From this autocatalytic system more 

complex replication systems could have evolved later.  

These reactions would have occurred on the surface of minerals which geologists believe 

the primeval Earth was rich of. From its starting materials (carbon dioxide or an equivalent 

C1-unit plus a reducing agent) the reaction can be plausible only in presence of a strong 

energy source able to drive the reaction. These conditions are fully satisfied by the 

formation of pyrite from iron and hydrogen sulphide (Eq. 1.1).  

 

                                      FeS + H2S    FeS2 + 2H
+
 + 2e

-
   (1.1) 

    

Before this theory was published, it was believed that pyrite can be formed only in one 

way
[4]

 (Eq. 1.2). 

                                              FeS + S               FeS2       (1.2)   

 

Further studies showed that iron sulphide reacts with hydrogen sulphide in water under 

anaerobic conditions to yield pyrite and molecular hydrogen
[5]

 (Eq. 1.3).  
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Presence of hydrogen is meaningful because an electron acceptor is needed for pyrite 

formation. A biological example of this reaction is what is accomplished by hydrogenase, 

which catalyses the reversible oxidation of H2 in the presence of  iron-sulfur cluster. 

 

         FeS + H2S      FeS2 + H2    (1.3) 

   

The obtained results seemed highly promising, nonetheless some authors showed their 

criticism towards the chemoautotrophic theory after their inability to reproduce previous 

results
[6]

. After all, despite some disputes, it cannot be denied that from an inorganic 

catalytic system, like a simple Fe-S cluster with a broad nonspecific properties, a more 

specific and efficient system was originated. In fact from a less elegant and less efficient 

structure, in selective conditions like the ones dominant in a primeval atmosphere, the 

association between small clusters and simple proteins could have led to an advantage for 

the host organisms. 

 

   2.2 The role of sulfur in living systems 

A very important element in all living systems is sulfur. It is highly incorporated into 

proteins as amino acids,  but also as sulfur-containing cofactors and vitamins, as iron-

sulfur clusters, and into RNA molecules after posttranscriptional modifications. 

 

      2.2.1 The sulfur-containing amino acids and their biosynthesis 

Among the twenty amino acids commonly present in proteins, two of them bear a sulfur 

atom. Cysteine and Methionine are the main sulfur-containing amino acids, but also 

homocysteine and taurine can be found, as they play an important role in living systems. 

The nature employs sulfur other than the canonical oxygen, hydrogen, carbon and nitrogen, 

because it is less electronegative than oxygen and its replacement with sulfur results in a 

less hydrophobic amino acid. Furthermore, the thiol side chain in cysteine participate quite 

often in enzymatic reactions as nucleophile, but also it is readily oxidized to form 

disulphide which has an important role in proteins.  

During every protein translation, methionine and N-formyl methionine are the starting 

amino acids respectively in Eukaryotes and Prokaryotes. But because of their following 

removal,  it is believed that they do not play any role in protein structure. In eukaryotes, 
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translation starts with association among initiator tRNA  (met-tRNAi
met

), eIF-2 and the 40S 

ribosomal subunit at the same time with a molecule of mRNA. Scientists suggested
[10]

 that 

the hydrophobic nature of methionine lets initiator tRNA and eIF-2 bind together. 

Cysteine has a critical role in protein structure: if it is bonded with the sulfur atom of 

another cysteine, a covalent disulphide bond is formed. The new bond is stronger than the 

usually weak interactions (hydrogen bond, salt bridges, hydrophobic and Van der Waals 

interactions) but weaker than a peptide bond. Proteins use disulphide linkage to drive 

folding, stabilize tertiary structure, increase rigidity and connect each other leading to a 

quaternary structure. Due to its features, cysteine does stabilize secondary structure as 

well,  unless a disulphide bond is formed, because it would dominate on other weak 

interactions, breaking the helical regularity that would not be allowed anymore.   

S-Adenosylmethionine discovered by G. L. Cantoni in 1952
[7]

 is a molecule involved in 

methylation and acts as a remarkable coenzyme. It can donate
[8,9]

 its methyl group to vary 

acceptors, DNA, RNA, amino acid residues, etc. 

 
 

 

 

 

 

 

 

                                

 

Figure 1 Structure of methionine, cysteine and S-adenosylmethionine 

 

Human beings and animals are unable to synthetize de novo methionine, so they need to 

ingest it. Other organisms like plants and microorganisms synthetize methionine from 

aspartic acid which is converted to β-aspartyl-semialdehyde and then to homoserine by two 

reduction steps. After the activation of the hydroxyl group conducted by Succinyl-CoA, 
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cysteine react as nucleophile and Succinate is replaced to give Cystathionine, which is 

cleaved to yield homocysteine. Homocysteine is methylated and methionine is obtained
[11]

. 

Cysteine is synthetized in animals starting from Serine which react with Homocysteine to 

yield Cistathionine, then the enzyme cystathionine gamma-lyase converts it into Cysteine 

and alpha-ketobutyrate
[12]

. 

 

 

 

 

 

 

   

 

  

 

  

 

 

 

   

       

 

 

 

Figure 2 Methionine biosynthesis. 1. Aspartokinase 2. Aspartate-semialdehyde dehydrogenase 3. 

Homoserine dehydrogenase 4. Homeserine O-transsuccinylase 5. Cystathionine-γ-synthase 6. Cystathionine  

βlyase 7. Methionine synthase 

      2.2.2 Cofactors 

Cofactors are small organic molecules or ions used by enzymes in their catalytic 

reactions.They can be divided into two main groups: organic cofactors, sometimes further 

divided into coenzyme and prosthetic groups, and inorganic cofactors that are typically 

metal ions Cu
+
, Mn

2+
, Mg

2+
, Fe-S clusters. 
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Despite functional groups in proteins are able to catalyse acid-base reactions, nucleophilic-

electrophilic reactions and  in few cases radical reactions, proteins alone lack on the ability 

to catalyse redox reactions. Metals provide electrophilic centres and in many cases their 

availability in multiple oxidation states help electron transfer and redox reactions. Almost 

all the first row transition metals plus molybdenum, tungsten and magnesium are known to 

take part in enzymatic reactionS as cofactors. Frequently, amino acid side-chains 

coordinate metal ion cofactors, either through tightly bound as in metalloenzymes or 

metal-activated enzymes. The former ones can be isolated with their enzymatic activity 

still intact since the metal ion is still bounded to the enzyme. The latter ones require an 

appropriate amount of metal ions in the buffer solution to show enzymatic activity.   

Furthermore, other than redox reactions, cofactors take part in rearrangements, group 

transfer and other types of reactions.   

Some coenzymes derived from vitamins, for instance thiamine pyrophosphate (TPP) which 

is a phosphorylated derivative of vitamin B1 (thiamine) and coenzyme B12 which derived 

from vitamin B12. A different classification is made taking into account bond strength 

between cofactors and enzymes. If the cofactors are loosely or even tightly bounded, but 

non covalently, they are still able to co-catalyse the  reaction and are called coenzymes. It 

is unnecessary for coenzymes to stay attached to a single enzyme molecule for all the 

catalytic cycle. If the cofactors, are covalently bounded, whether they are a small 

molecules or a metal ions, they are called prosthetic group.  

The exclusive proprieties of sulfur, together with the vast amount of biomolecules that 

bears it, give an extraordinary variety of significant functionality.  

Another type of sulfur-containing functional group was suggested in the 1980s. It is an 

activated form of sulfur, named “persulfidic sulfur” (R-S-SH), already characterised in 

many sulfurtransferase enzymes such as ThiI, NifS, Azotobacter, Rhodanese and 

Mercaptopyruvate, involved in biosynthesis of sulfur-containing vitamins. The highly 

reactivity of the persulfidic group is kept under control thanks to the protected environment 

of the active site. 

 

         2.2.2.1 Thiamine  

Thiamine is a small, water soluble vitamin belonging to the B group, which plays an 

important role in cell metabolism. It is involved in carbohydrates metabolism and 

biosynthesis of branched chain amino acids.  
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Thiamine is only synthetized by bacteria, fungi and plants
[13,14]

. The two constituent parts, 

thiazole and pyrimidine, are separately synthetized and then joined by the action of 

thiamine phosphate synthase to give ThMP. Its translation is regulated by a negative 

feedback control. If there is enough thiamine it binds to the mRNAs which translates for 

the enzymes required for its synthesis, blocking the entire pathway. If thiamine is present 

in low concentration, no inhibition is carried out. TPP riboswitch is the only one observed 

in both eukaryotes and prokaryotes
[15]

. 

The phosphorylated form of thiamine, thiamine pyrophosphate (TPP), is implicated in 

carbon-carbon bonds cleavage; among these, the critical α-Ketoacid decarboxylation is 

carried out by pyruvate decarboxylase. During the decarboxylation step, an electron 

acceptor is required so as to stabilize the incipient negative charge that is built up on the α-

carbon; TPP carries out this role. The sulfur atom on the thiazole ring bears a formally 

positive charge, that stabilizes the negative charge previously formed on TPP
[16]

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Chemical structure of Thiamine  

 

         2.2.2.2 Molybdenum cofactor (MOCO) 

Many enzymes such as sulphite oxidase, xanthine oxidoreductase and aldehyde 

oxidase
[17,18]

 showed a particular cofactor, essential for their activity, which bears a 

molybdenum atom coordinated by two sulfur atoms. All the three kingdoms of life 

maintain its biosynthesis and conserve the genes encoding for molybdenum enzymes
[19]

.  
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N-hydroxylated analogs, such as 6-N-hydrozylaminopurine (HAP), are modified 

nucleobases that can be exchanged for natural bases in cell metabolism. Lack of 

molybdenum cofactor (MOCO) in E. Coli results in an hypersensitivity to mutagenic and 

toxic effects
[20]

. 

 

 

 

 

 

 

 

 

 

 

Figure 4 Chemical structure of molybdenum cofactor required for the activity of many enzymes. 

 

 

         2.2.2.3 Lipoic Acid and Biotin 

Lipoic Acid and Biotin are important cofactors of many enzymes involved in central 

metabolism pathway. Biotin is mainly involved in carboxylation reactions, while Lipoic 

Acid supports transfer of acyl groups. 

Biotin (figure 5) is covalently bounded to the enzyme through an amide group between its 

carboxyl group and the amino group of a lysine on the enzyme. It accepts an activated 

carbonyl group formed from bicarbonate and ATP and then transfer it to a suitable 

substrate. 

Lipoic acid (figure 5) is an organosulfur vitamin essential for aerobic metabolism and it 

derives from octanoic acid. Its catalytic role is mainly carried out by a disulphide group 

which is able to go through reduction reactions quite easily. Accepted electrons and 

protons turn it into a dithiol group which is now ready to bind an acyl group to be transfer 

successively.  

Lipoic Acid and Biotin synthesis is allowed by many enzymes bearing Fe-S clusters
[21-26]

.   
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Figure 5 Chemical structure of Biotin and Lipoic Acid 

 

 

         2.2.2.4 Clusters Fe-S  

Clusters Fe-S are  among the most structurally and functionally versatile cofactors in 

biology. They are widely used by many enzymes to carry out different processes in cell,  

like DNA repair and replication and RNA modification
[27]

.  

In the early 1960s Beinert and Sands through a new electron paramagnetic resonance 

(EPR) technique, observed in beef heart mitochondria  a new signal associated to non-

heam iron cofactor
[28,29]

. In 1962 a plant-type [2Fe-2S] ferrodoxin was isolated from 

spinach chloroplasts
[30]

.  Immediately afterwards knowledge on iron sulfur proteins grew 

exponentially. 

They are inorganic cofactors bearing  till eight iron atoms, quite unstable in air, assembled 

inside the cells, sometimes present in more than one in the same molecule.  

The main ones are the rhombic [2Fe-2S] and the cubane [4Fe-4S], but there are also [3Fe-

4S] in enzyme like ferrodoxin I and more complex [8Fe-7S] found on MoFe nitrogenase,  

able to act as a double electron carrier
[31]

. In each of them iron is bounded as a cation with 

sulphide anion as a bridge ligand in a rhombic, or cubic structure. While the oxidation state 

can change from Fe
2+

 to Fe
3+

 for iron, for sulphide it cannot. 
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Figure 6 The four main iron-sulfur cluster configurations and their chemical formulae. Atoms coloring: iron 

in orange, sulfur in yellow.  

 

 

Clusters Fe-S are held up inside the proteins by amino acid side chains that provide various 

functional groups able to bind them.  

Furthermore, since proteins can bind more than one cluster in a defined space, electrons are 

allowed to move in a long distance inside the polypeptide chain. A longer distance can be 

swept in a multiprotein system such as Complex I that bears nine different Fe-S clusters
[32]

.   

These clusters fit perfectly their role in redox reactions, as they can have many redox 

states, because the potentials associated with every redox couples can be finely tuned by 

the environment, hydrogen bonding and the electronic characteristics of the site to which it 

is bounded. Redox potential can range from 500mV to -500mV, which is a big range for 

any kind of biological redox reactions.    
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Many studies demonstrated  that [Fe-S] clusters can condition proteins structure in their 

proximity, indeed, they are able to response to solvent effect
[33]

 or to reorganize tertiary 

structure after cysteine substitution
[34]

.  

Endonuclease III is an enzyme involved in DNA repair: it has a [4Fe-4S]cluster that plays 

a purely structural role, as it controls the structure of a loop crucial to bind and to repair 

damage DNA
[35,36]

.  

Several examples have shown how [Fe-S] clusters take part in transcriptional and 

translational regulation of gene expression in bacteria
[37]

. The recognition of particular 

environmental stimuli involve cluster assembly, conversion or redox reactions
[38,39]

. 

The FNR (Fumarate and Nitrate Reduction) protein is able to regulate genes involved in 

the aerobic and anaerobic respiratory pathways of E. Coli through an oxygen sensing 

system that convert a dimeric [4Fe-4S]
2+

 cluster to a monomeric [2Fe-2S]
2+

 one
[40]

. 

Moreover, [Fe-S] clusters are involved in disulphide reduction
[34-36]

 and sulfur donation. 

The biotin synthase contains a [2Fe-2S] cluster that is degraded during every catalytic 

cycle to donate the sulfur atom necessary to convert the dethiobiotin to biotin and 

reassembly soon later in order to restart its catalytic activity
[41-42]

. 

 

[Fe-S] Biogenesis 

The [2Fe(µ2-S)2] rhomb is thought to be the basic building block necessary for the 

construction of more complex structures like the cubane-type [4Fe-4S]. From the latter, 

[3Fe-4S] and [8Fe-7S] clusters can be assembled. 

An additional evidence that Fe-S clusters are probably the most ancient type of prosthetic 

groups is that their biosynthesis is highly conserved in all three kingdoms of life
[43-46]

.  

Three different types of biosynthesis machinery have been shown to be responsible for Fe-

S clusters assembly: NIF, ISC and SUF have been found in bacteria, archea and 

eukaryotes
[47,48]

. 

The ISC system is responsible for Fe-S clusters biosynthesis in bacteria such as E. Coli
[49]

, 

but with additional proteins ISC is the mitochondrial machinery for Fe-S clusters assembly 

in Eukarya as well
[44,45]

.  

The SUF has the same role of ISC in bacteria but its proteins are expressed during 

oxidative stress or limited iron concentration.  

The NIF system manages iron sulfur clusters biosynthesis in organisms that are involved in 

nitrogen fixation
[49-51]

.  
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Three are the main actors that a [Fe-S] cluster biosynthetic system requires: scaffold 

protein(s), sulfur donor and iron donor. Cysteine donates its sulfur atom to a cysteine 

desulfurase (NifS, IscS and SufS) and an alanine is released. A scaffold protein, NifU and 

IscU respectively for NIF and ISC systems and SufBCD for SUF system, assembles the 

clusters. When an already assembled cluster is transferred to an apo-protein (protein 

lacking in cluster), some other proteins can participate as chaperone, i.e.  HscA and HscB 

for ISC system. The iron donator is still not fully understood. Frataxin is thought to be the 

iron donor in ISC systems, while its bacterial homolog CyaY might regulate cysteine 

desulfurase activity
[55]

. 

 

   NIF system 

The first iron sulfur cluster biosynthetic system identified was NIF that acts for the 

assembly of nitrogenase. MoFe protein and Fe protein form nitrogenase: the first one 

carries a [Mo-7Fe-9S] Molybdenum-Iron cofactor and a P [8Fe-7S] cluster, the second one 

contains only a [4Fe-4S] cluster.  

Trying to assemble nitrogenase MoFe protein is a hard challenge, because of its many 

components expressed by  nifS, nifU, nifB, nifE, nifN, nifV, nifQ, nifZ, nifH, nifD, and nifK 

genes. But just NifS, NifU nd IscA
nif

 are required to NIF system to work
[46]

. NifS is a 

cysteine desulfurase, that, as all desulfurase proteins bears a PLP molecule
[56,57]

. PLP 

together with a highly conserved Cys
325

 regulates the function of any NifS-like proteins. 

The first step is the formation of an adduct between NifS and L-cysteine. Then the thiolate 

anion of the cysteine of the active site attacks as nucleophile and an L-alanine is released. 

The last step leads to the transfer of the sulfur from the persulfide to a [Fe-S] scaffold
[46,58]

, 

NifU in this case. This sulfur transfer might be possible because it has been found that 

NifS and NifU form a transient complex
[59]

. Some in vitro experiments show that NifS is 

needed for cluster loading in NifU but it is not necessary for clusters transfer
[60]

; similar in 

vivo results have not been obtained. 

The IscA
Nif

 and the other A-type proteins have a not clearly understood role. What current 

evidences suggest is that A-type proteins are able to regulate cluster homeostasis inside the 

cells, like [Fe-S] clusters storage proteins. They are able to transfer iron-sulfur cluster to 

apo-proteins but at a lower efficiency than IscU
[61]

. They can accept from IscU iron-sulfur 

clusters but are not able to give them back 
[62]

. Lastly a deletion of A-type proteins is 

neither a cause of death for cells nor leads to any other phenotypic consequence
[63]

. 
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Figure 7 Organization of genes in selected bacterial nif, isc and suf operons. 

Av,Azotobacter vinelandii; Ec, Escherichia coli; Tm, Thermotoga maritima. 

 

 

   ISC system 

After expression of a A. vinelandii strain lacking of the gene nifS and nifU encoding 

respectively for NifS and NifU, it was observed nitrogenase activity
[64,65]

 even if it was 

very low. This result suggested the presence of another system capable to cover for NIF 

system lack. In the 1996 another L-cysteine desulfurase was found, so the ISC system was 

discovered
[66]

. 

Scientists found that ISC system represents the general system for [Fe-S] cluster 

biosynthesis in prokaryotes, counting E. Coli and A. vinelandii too
[67,68]

, but also it was 

found in Eukaryotes
[46,69,70]

. 

At least seven genes encode for ISC system. These genes are iscR-iscS-iscU-iscA-hscB-

hscA-fdx-iscX  that form a gene cluster and in particular iscRSUA forms an operon. 

 

   IscR 

The first role associated to IscR was its capability to regulate isc operon expression 

through a negative feedback control
[71]

. Following studies proved that IscR is implicated in 

the regulation of no less than 40 genes
[72]

. These genes encode for proteins that  are 

directly or indirectly correlated with [Fe-S] clusters functions (periplasmic 

nitratereductase, hydrogenases-1 and −2, ErpA, NfuA, sufABCDSE (suf) operon
[72,73]

). 

However, its main role is to regulate [Fe-S] cluster homeostasis inside the cells. IscR 

selectively recognizes two different DNA binding sites (named type I and II), if the cluster 
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that it bears is present or not
[74,75]

. In more details [2Fe-2S]-IscR binds to type I while 

[2Fe-2S]-IscR and apo-IscR both bind to type II indistinguishably. But in order to 

accomplish this role another peculiarity is requested: IscR has an atypically ligation 

scheme for Fe-S clusters, indeed it is constituted of three cysteines and one histidine 

(Cys)3(His)1. This arrangement makes IscR a poor acceptor for iron sulfur cluster, meaning 

that it is able to catch  [Fe-S] clusters only at high concentrations. 

Finally, it was reported that under anaerobic conditions isc is less expressed than under 

aerobics ones
[75]

 since oxygen damages iron-sulfur clusters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Overall structure of IscR-3CA bound to the hya promoter. The IscR-3CA dimer is shown as a 

ribbon representation. Monomeric subunits are shown in purple and cyan; DNA is rendered as a stick model. 

Natural Structure and Biology (2013) 

 

   IscS 

IscS like NifS is a cysteine desulfurase that is classified as a group I desulfurase
[76]

. After 

purification in E. Coli has been found that IscS is a homodimeric protein of 90kDa that 

bears a molecule of PLP as cofactor
[77]

.  
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A visual examination of the crystal structure, obtained at a resolution of 2.1Å, has 

suggested that a conformational change is needed to allow Cys
328

 to take part into the 

catalytic cycle
[78]

.  

Depending on bacteria, IscS deletions can be lethal (A. vinelandii
[51]

) or alternatively (E. 

Coli
[52,79-81]

) can lead to growth deformities. After a sulfur atom has been transferred from 

cysteine to IscS, another transfer occurs towards IscU with the concomitant uptake of iron 

to form Fe-S clusters.  

 

   IscU 

IscU has a primary sequence quite similar to the N-terminal domain of NifU, plus three 

highly conserved cysteines. These evidences led scientists to consider IscU as a scaffold 

protein like NifU
[46,82,83]

.  

In vivo experiments showed that the uptake of iron-sulfur cluster in IscU leads to a 

conformational change that requires also IscU and IscS association-dissociation
[84]

.  

IscU aggregation states have been largely studied: monomer, dimer and oligomers was 

found after extraction from E. Coli, but also a dimeric covalently bounded aggregate was 

observed
[85]

 involving Cys
63

.  

More recently studies have observed two states which quickly interconvert within 

milliseconds. IscU and IscS form an α2β2 complex with 
IscS

Cys
328

 and 
IscU

Cys
63

 involved in 

a disulphide bond
[85]

. 

 

   IscA 

The role that IscA plays in iron-sulfur cluster biosynthesis is still unclear. During the last 

twenty years many roles were proposed: scaffold protein for Fe-S clusters biosynthesis
[86]

, 

iron donor for clusters assembly on IscU
[87]

, it can assemble an air sensitive [2Fe-2S] 

cluster
[88]

, its metal form can bind ferrodoxin so as to form [2Fe-2S]-ferrodoxin, it can 

receive iron sulfur cluster from IscU but not the reverse
[89]

. 

Anyway, even if it is not as important as IscU, its presence improves ferrodoxin 

overexpression in E. Coli
[90]

. 

 

   HscA and HscB 

Other two proteins play an important role in iron-sulfur cluster biosynthesis, HscA that is 

an Hsp70 (heat shock protein) chaperone and HscB which is a cochaperone.  
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HscA like every Hsp70 protein bears three highly conserved domains: N-terminal ATPase 

domain (that binds ATP), substrate binding domain (which contains a binding site with a 

remarkably affinity for hydrophobic residues) and C-terminal domain (which acts like a lid 

to cover the bounded substrate to the substrate binding domain when ATP is also bounded 

to the N-terminal domain)
[91]

. 

For biotin synthase (BioB) assembly, BioB-HscA complex is observed, but also IscU binds 

to form a three-members complex,  BioB-HscA-IscU
[92]

, which helps the transfer of [Fe-S] 

cluster to apo-proteins. 

HscB mainly stabilizes IscU in its ordered state
[93]

.   

 

   Ferrodoxin 

Ferrodoxin is a [2Fe-2S] cluster protein that accepts electrons from Fdx reductase (FDXR) 

that in turn accepts electrons from NADH or NADPH. Those electrons are thought to be 

used for reduction of sulfur (S
0
) to sulphide (S

2-
) in iron sulfur cluster biosynthesis

[82,94]
. 

A. vinelandii lacking in fdxD  gene that encodes for ferrodoxin undergos to death
[95]

, while 

E. Coli its lack comports growth retards
[96]

. More interestingly depletion of Yah1p, the 

homologues of fdxD in yeast, leads to iron accumulation in mitochondria and iron-sulfur 

cluster enzymes inefficiency
[97]

. These results suggest that Fdx is essential for iron-sulfur 

cluster biosynthesis since it certainly takes part to an crucial step for electronic transfer. 

 

   IscX 

IscX is a small protein of 7.7kDa encoded by iscX gene, placed at the end of the isc 

operon. Previous studies determined its structure and suggested that IscX can play a role in 

iron-sulfur cluster biosynthesis
[98,99]

. Its helical structure that exposes many acid residues 

can bind iron ions
[98,100]

. 

Interestingly, organisms which lack CyaY (frataxin in E. Coli)  show orthologous of IscX. 

This can suggest that CyaY and IscX play a similar role
[98]

. 

A more recent study
[101]

 confirmed that IscX acts as a regulator in iron-sulfur cluster 

assembly, indeed it binds to IscS and to IscU separately. Also a ternary complex IscU-

IscS-IscX was observed. During the study of the this complex, a low activity of IscS 

desulfurase was observed. These results led scientists to suggest two main roles for IscX: 

(i) it reduces IscS desulfurase activity so as to reduce unproductive cysteine conversion  

(ii) it provides iron to IscU-IscS complex. 
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 SUF system 

After the discovery of ISC system, it would expected that cells lacking all isc genes would 

die. This supposition was denied when E. Coli strains with isc delection were still able to 

grow. The SUF system was soon after discovered
[52]

. 

Its expression was shown to be improved under iron-deficent conditions
[102]

 and also 

activated by H2O2-sensors
[103]

. Given the above studies and considered that, in order to kill 

E. Coli cells, it is strictly required to inactivate both ISC and SUF system, it can be 

concluded that SUF system is essential for iron-sulfur cluster biosynthesis under oxidative 

stress conditions and iron starvation.  

 

      2.2.3 tRNA posttranscriptional modifications 

RNA molecules can go through post-transcriptional modifications and in particular  more 

than 100 different sulfur containing-nucleosides were identified 
[104-107]

. The roles that 

modified  tRNA plays are critical, indeed it is involved in biogenesis, codon recognition, 

maintenance of riding frame, structural stability and identification of elements for the 

translation machinery
[108-109]

. 

In E. Coli its synthesis was cleared up and five modifications were identified: 4-thiouridine 

(s
4
U) at position eight, 2-thiocytidine (s

2
C) at position thirty-two, 5-methylaminomethyl-2-

thiouridine (mnm
5
s

2
U) or 5-cerboxymethylaminomethyl-2-thiouridine (cmnm

5
s

2
U) at 

position thirty-four, 2-methylthio-N
6
-isopentenyladenosine (ms

2
i
6
A) at position thirty-

seven. 

E. Coli uses two different ways for sulfur containing-nucleosides biosynthesis. The first 

one which leads to s
4
U8 and (c)mnm

5
s

2
U34 is independent in Fe-S cluster biosynthesis, the 

second one which instead leads to s
2
C32 and  ms

2
i
6
A37 depends on iron sulfur-cluster 

biosynthesis
[110-111]

.  

Both pathways start with mobilization of sulfur by IscS, that then transfers it in form of 

persulfide (IscS-SSH) to an acceptor. At this level the pathways diverge, indeed the sulfur 

atom can be transferred to a specific sulfur-carrier proteins
 [112-113]

 or to IscU, a scaffold 

protein, that together with IscS, is involved in iron-sulfur cluster biosynthesis. Fe-S cluster 

is then incorporated in modification enzymes which catalyzes tRNA modifications
[114-117]

. 

Forouhar et al. reported in 2013 that the sulfur atom is not the one of Fe-S cluster
[118]

, so it 

has to be determined. 
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Modification at position thirty-four (the wobble position) of tRNA for Glu, Gln and Lys 

for 5-methyl-2-thiouridine (xm
5
s

2
U) is widely observed: 5-methylaminomethyl-2-

thiouridine (mnm
5
s

2
U) and 5-cerboxymethylaminomethyl-2-thiouridine (cmnm

5
s

2
U) in 

bacterial tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm
5
s

2
U) in eukaryotic 

cytosolic tRNAs,  cmnm
5
s

2
U in yeast mitochondrial tRNA and 5-taurinomethyl-2-

thiouridine (τm
5
s

2
U) in mammalian mitochondrial tRNAs

[119]
. 

The wobble position modification allows wobble base pair, which is a matching between 

two nucleotides in RNA that follows non-standard base pairing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Sulfur-containing tRNA modification (A) Secondary structure of tRNA and positions of thiolated 

nucleosides in tRNA. (B) Chemical structure of thiolated nucleosides in E. coli: s
4
U,4-thiouridine; s

2
C, 2-

thiocytidine;xm
5
s

2
U,5-methyl-2-thiouridinederivatives; ms

2
i
6
A, 2-methylthio-N

6
-isopentenyladenosine. (C) 

Conformation of the xm
5
s

2
U: C3’-endo form is preferred because of the steric hindrance of the 2-thio and  

2’-OH groups. 

 

Since every codon translating for an amino acid is constituted of three bases, 4
3
=64 

possible tRNA molecules should be present inside a cell if every mRNA codon exactly 
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matched with  a tRNA anticodon. But three of them are stop codons which bind release 

factors, so 61 tRNA molecules should follow the canonical Watson and Crick base pairing. 

However, since most organisms have less than 45 tRNA species,  tRNA must match with 

more than one codon.   

One important consequence of the 2-thiouridine modification is the steric effect of the 

bulky 2-thiocarbonyl group (figure 9c) which is bigger than that of the 2-hydroxyl group 

and leads to a preferentially C3’-endo conformation for xm
5
s

2
U bases

[120,121]
.  

 

   2.3 Friedreich’s ataxia 

Spinocerebellar ataxia  is a progressive degenerative disease that can be divided into three 

principal groups: spinal ataxia, cerebellar ataxia and multiple system ataxia
[122]

. 

Friedreich’s ataxia (FRDA) is the most common among recessive ataxias. It involves 

spinal cord’s nerve tissue degeneration characterized by dysarthria, lower limbs areflexia, 

decreased vibration sense, muscles weakness of legs and positive extensor plantar 

response
[123,124]

. Non-neurological signs are also observed: hypertrophic 

cardiomyopathy
[125,126]

 and diabetes mellitus
[127]

 are the most common. It typically shows 

its symptoms between the ages of five and fifteen years. 

Friedreich’s ataxia is observed when frataxin levels are lower than 70% of the 

physiological value
[128]

. From a biological point of view Friedreich’s ataxia is 

characterized by low iron-sulfur proteins activity such as complex I-III [Fe-S] enzymes, 

aconitase and succinate dehydrogenase. It seems that ataxia diseases are strictly related  to 

iron-sulfur cluster biogenesis
[129,130]

. The role that frataxin is thought to play is iron binding 

chaperone during iron-sulfur cluster are assembly
[131]

. Frataxin bounded with IscU and 

ferrochelatase donates iron to [Fe-S]
[132]

. Moreover, under frataxin depletion, iron 

accumulation in mitochondria can occur leading to oxidative damages catalysed by 

iron
[133]

. 

When the FXN gene located on chromosome nine that encodes for frataxin contains highly 

repeated GAA intronic sequences, Friedreich’s ataxia occurs. GAA triplet is repeated in 

the first introne in a way that exceed the normal threshold
[134]

. Since the mutation involves 

introne, no abnormal frataxin is synthetized, but instead gene silencing takes place.    
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 2.4 TusA: State of arts 

TusA is a small protein of 81 amino acids, of about  9094 kDa, with a theoretical pI of 

5.18.  

The gene encoding for TusA named yhhP was identified in 1998 by Yamashino et al.
[135]

. 

Several hypothetical proteins homologous are present in a variety of organisms such as 

Haemophilus influenza, Bacillus subtilis, Synechocystis sp., Methanoccus jinnashii (figure 

11). The similarity among these genes occurs not only in conserved amino acids which can 

be aligned but also in protein size, since relatively small sequences (73-84) are observed. 

Moreover a CPxP motif which can drive protein folding or protein function is common 

among the organisms cited above. 

In 2000 Ishii et al. establish that TusA has a critical role in cells division, indeed cell with 

yhhP deletion do not form normal colonies if grown in a rich media (Luria-Bertani 

medium) but filamentous cells longer than 10µm. 

Its three-dimensional structure was resolved by NMR analysis
[136]

;  it folds in a two-

layered α/β-sandwich structure. The first layer is made of four β-sheet strands (β
1
 residues 

10-13, β
2
 37-43, β

3
 62-67, β

4 
73-80), the second layer consists of two α-helices (α

1
 residues 

20-31, α
2
 48-59); they are wound in a  βαβαββ structure with β

1
 and β

2
 connected by α

1
 in 

a classical right-hand parallel β/α/β motif, while the other β sheets form an antiparallel 

pattern.A hydrophobic core is shielded between the two layers. It was suggested that the 

highly conserved Pro
53

, that probably causes the slight distortion in α
2
 helix, contributes to 

this  preferable folding.  

During 2006 Ikeuchi et al. found that TusA is involved in 2-thiolation of mnm
5
s

2
U 

together with four other proteins encoded by yheL, yheM, yheN, yccK genes and named 

respectively TusB, TusC, TusD and TusE
[137]

. TusA, TusD and TusE contain conserved 

cysteines that may participate in sulfur transfer.  

TusA function was studied following [
35

S] radioactivity in the substrate tRNA
Glu(U8C)

 and 

data obtained showed that TusA has a critical role in sulfur transfer from the 

sulfurtransferases IscS to the wobble position of the substrate Uridine. The pathway starts 

with IscS which transfers an activated sulfur atom from the persulfide group to TusA. They 

interact to form a dimer
[138]

. Moreover, TusA bears two cysteines, C19 and C56 highly 

conserved in bacterial TusA homologous. C19 was identified to be the one implicated in 

sulfur acceptance from IscS since its substitution with serine does not allow sulfur transfer. 
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Then TusA transfers its sulfur activated atom to TusD, that together with TusB and TusC 

forms a ternary complex TusBCD. In the last step TusBCD interacts through TusE with 

MnmA, a 2-thiouridylase of mnm
5
s

2
U ATP dependent, that catalyzes the final  2-uridine 

modification.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Sulfur transfer mediated by the Tus proteins. Sulfur transfer in s
2
U biosynthesis is shown with 

solid arrows. The potential transfer of sulfur from Tus proteins to other proteins and then to a final acceptor is 

shown with dashed arrows. Each Tus protein can potentially donate sulfur to multiple proteins, each of which                     

might participate in the thiolation of multiple acceptors. 

 

 

Dahl et al. have found that TusA and IscU have a comparable dissociation constant with 

IscS
[139]

. Since they have to compete for binding on IscS, the equilibrium involving IscS 

and its partners is shifted to one direction or another when the concentration of one of the 

two partners is changed. This fact can have important effects in genes regulation. Instead, 

if TusA is present at low concentration, more IscS is available for IscU, leading to iron 

sulfur-cluster overproduction inside the cells.  

Kozmin et al. demostrated that TusA with IscS are involved in MoCo biosynthesis
[140]

, 

most likely in the introduction of the two sulfur atoms. It shows another possible role 

carried out by TusA, since E. Coli strains lacking in MoCo are hypersensitive to the 

mutagenic and toxic effects of (HAP) N-hdroxylated base analogs.   
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Figure 11  Sequence alignment of YhhP with putative YhhP paralogs and orthologs that are predicted to 

occur in microorganisms. Among these aligned sequences, conserved and conservatively substituted residues 

are highlighted in magenta and dark orange, respectively, as well as the highly conserved CPxP motifs which  

are in blue. 

 

  2.5 Aim of the thesis 

Sulfur is present in many forms in all the organisms in the three kingdoms of life. Since it 

plays many important roles in living systems a very important challenge to be overcome is 

to understand the entire sulfur pathway inside the cells.  

The main actor in bacteria which directs sulfur sorting is the desulfurase IscS. TusA, a 

small protein of 81 amino acids, is involved in one of the main pathways for sulfur relay 

that is initiated by IscS. The transulfurase TusA and the scaffold protein IscU bind to IscS 

with more or less the same affinity constant. The fact that one pathway can be preferred 

rather than another depends on many factors. 

The aim of this thesis was to clone TusA in E. Coli and fully characterize it with NMR, 

Mass Spectroscopy and Circular Dichroism experiments. This can help to reach a deep 

knowledge for the proteins involved in sulfur trafficking and to better understand sulfur 

pathways. The subject of this thesis reveals to be deeply crucial for further studies on the 

crucial step in sulfur transfers (i.e. following labelled [
35

S] in the presence of IscU, IscS, 

CyaY and TusA). 
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3. RESULTS AND DISCUSSION 

   3.1 TusA Cloning  

The cloning step is critical for the overall PCR experiment. In order to avoid errors and 

tedious manual selection and reduce costs and time involved in experimentation by 

lowering the chances of failed experimentations, the usually requirements for primers 

design were checked by many web-tools: length between 18-30 bases, the difference in Tm 

(ΔTm) between forward and reverse primers should be lower than 5°C, the ΔG of the 

secondary structure should be minimized  till a value of 5Kcal/mol, presence of repeats and 

runs and secondary priming sites must be avoided, low specificity at the 3
’
 end  to avoid 

mismatching , dimerization capability and significant hairpin should be absent too. 

 

Table 1 a)shows the regions involved in primers annealing b)recognition sites c)the chosen rimers 

 

a)Regions to cover with primers 

TusA gene: the 5’ region 

 

 

TusA gene: the 3’ region 

 

 

b)Restriction sites: 

Forward restriction enzyme:  

                 NcoI:                                  recognition site                       after cleavage 

 

 

Reverse restriction enzyme: 

               NotI:                    recognition site        after cleavage 

 

 

c)Primers’ annealing 

Forward:  

 

 

Reverse: 
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The chosen vector was pETM11. It derives from pET (Novagen) backbones and carries, in 

addition to an antibiotic resistance encoding for kanamycin and a T7 lac promoter, a 

6xHis-tag, a protease recognition site and a NcoI recognition site before protein gene. This 

recognition site has an ATG codon that results very useful since the number of non-native 

amino acids at the N-terminus can be minimized.  

The gene that codifies TusA protein was amplified by PCR using genomic DNA from E. 

Coli F11 as a template. PCR colony protocol was used in order to readily obtain TusA gene 

from E. Coli. 

The expected PCR product carried an extra amino acid, a glycine. This non-native amino 

acid is essential for adding NcoI restriction site just before TusA gene without having a 

mistrascription. 

After performing the above mentioned PCR a single band (figure 12) was obtained: this 

band clearly identifies TusA.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Agarose gel of TusA after PCR  

 

Digestion was optimized in order to avoid partial digest or non-specific DNA cut. 

TusA was treated carefully, since it appears to be easily hydrolysed during this step if 

scrupulous attention  was not paid. The best time obtained for a satisfactory digested 

products, both for TusA and pETM1, was 1.5h. 

Restriction enzyme were deactivated rising the temperature till 80°C and ligation was 

carried out without further purification.  
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In order to check TusA gene sequence after the entire cloning process the whole plasmid 

was expressed in DH5α E. Coli cells, purified and sent to sequencing. The figure 13 shows 

a perfect match between TusA E. Coli F11 strain sequence  and TusA PCR product.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Alignment of PCR product and yhhP gene 

 

 3.2 TusA Expression 

The plasmid encoding for TusA was transformed in E. Coli BL21(pLys), and expression 

was improved after an exhaustive expression test so as to obtain an highest yield-

production time ratio.  

 

E.Coli F11         1 NCCCNNGGGAAATTCCNTNAAAAANTTTTG--TTAACTTTAAGAAGGAGA     48 

                                            | |||||  |||||||||||||||||| 

PCR PRODUCT        1 -----------------------AATTTTGATTTAACTTTAAGAAGGAGA     27 

 

E.Coli F11         49 TATACCATGAAACATCACCATCACCATCACCCCATGAGCGATTACGACAT    98 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT        28 TATACCATGAAACATCACCATCACCATCACCCCATGAGCGATTACGACAT    77 

 

E.Coli F11         99 CCCCACTACTGAGAATCTTTATTTTCAGGGCGCCATGGCGACCGATCTCT    148 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT        78 CCCCACTACTGAGAATCTTTATTTTCAGGGCGCCATGGCGACCGATCTCT    127 

 

E.Coli F11        149 TTTCCAGCCCTGACCACACACTCGACGCGCTTGGCCTGCGCTGCCCGGAA    198 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT       128 TTTCCAGCCCTGACCACACACTCGACGCGCTTGGCCTGCGCTGCCCGGAA    177 

 

E.Coli F11        199 CCGGTGATGATGGTGCGCAAAACCGTGCGCAATATGCAGCCTGGCGAAAC    248 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT       178 CCGGTGATGATGGTGCGCAAAACCGTGCGCAATATGCAGCCTGGCGAAAC    227 

 

E.Coli F11        249 GTTGCTGATTATCGCCGACGATCCGGCCACTACCCGCGATATTCCTGGGT    298 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT       228 GTTGCTGATTATCGCCGACGATCCGGCCACTACCCGCGATATTCCTGGGT    277 

 

E.Coli F11        299 TTTGTACCTTTATGGAACACGAACTGGTTGCTAAAGAGACGGATGGACTG    348 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT       278 TTTGTACCTTTATGGAACACGAACTGGTTGCTAAAGAGACGGATGGACTG    327 

 

E.Coli F11        349 CCTTATCGTTATTTGATTCGTAAAGGCGGTTGATAGGCGGCCGCACTCGA    398 

                      |||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR PRODUCT       328 CCTTATCGTTATTTGATTCGTAAAGGCGGTTGATAGGCGGCCGCACTCGA    377 

 

E.Coli F11        399 GCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGG    448 

                      |                                                  

PCR PRODUCT       378 G-------------------------------------------------    378 
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Expression 

0.1mM IPTG 

0.25mM Kan 

2h 

3h 

6h 

0.5mM Kan 

2h 

3h 

6h 

0.5 mM IPTG 

0.25mM Kan 

2h 

3h 

6h 

0.5mM Kan 

2h 

3h 

6h 

Different parameters were studied: growth time, IPTG and kanamycin concentration, 

incubation time after induction. 

A visual examination of the gel shown in figure 15 tells us that, over a period of four 

hours, the amount of recombinant protein (shown as a single band on SDS-PAGE) 

decreases from a background level to a minimum level. From this information it can be 

concluded that it is substantially useless to push expression over a period of three hours. 

Longer incubation time may not result in any significant increase in yield, rather it may 

involve degradation mechanisms which decrease protein concentration.  

The optimal concentration of IPTG may vary from  protein to protein. In order to test how 

IPTG concentration may modify TusA expression in BL21, its value was varied between 

0.1 and 0.5 Mm, and those samples were left grow for two, three and four hours. Even 

though we expected to reach the maximum protein concentration after three hours, no 

differences were found among ours samples. Indeed, although a low IPTG value should 

induce more slowly, it is enough to obtain an excellent expression even after two hours.  

Antibiotics were used since the early years of modern biotechnology  to select transformed 

cells from culture medium.  pETM11 contains a gene that encode for kanamycin.  To study  

how antibiotics can affect cells growth,  kanamycin concentration was varied between 0.25 

and 0.5 Mm. Its concentration was not found to have any appreciable effect within the 

range under study.  

    

 

 

 

 

 

 

 

 

 

Figure 14 TusA expression test diagram 
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In conclusion, expression test showed that only induction time has a significant effect on 

protein yield.  Degradation may occur after 3h and such a long time seems not to increase 

protein amount. Instead, neither IPTG concentration nor kanamycin concentration was 

found to have any significant effect on protein expression. So standard conditions were 

used for every expression. 

 

   

 

 

 

 

Figure 15 SDS-PAGE of TusA after expression 

   3.3 TusA Characterization 

TusA was overexpressed in E. Coli with an hexa histidine-tag and purified till 

homogeneity as indicated by ESI-MS spectra (figure 16). 

Gel filtration showed a sharp peak with a retention volume between 87 and 100 ml (data 

not shown). Even though no standard curve was carried out, it seems that TusA does not 

form dimers or aggregates. So it probably exists as a monomer under working conditions. 

  

 

 

 

 

 

 

 

Figure 16 Mass spectrum of TusA 



32 
 

   3.3.1 CD analysis 

Proteins can show till four distinct structural  levels. Secondary structure is a local 

regularly repeated structure stabilized by many hydrogen bonds. The most common are 

alpha helix, beta sheet and turns.  

Since Circular Dichroism (CD) shows high sensitivity for proteins secondary structure, it  

has been largely used to predict various conformations or conformational change of 

proteins in solution. CD working conditions are closer to the biological environment in 

which proteins work than the solid one of crystals used in X-rays. 

Proteins can be classified on the base of secondary structure: prevalent α-helix constitutes 

α-rich proteins, prevalent β-sheet constitutes β-rich protein, both α-helix and β-sheet can 

instead be assembled in two different  arrangement α+β with separate regions and α/β with 

intermixed region. 

Each of  this arrangement have a 

characteristic CD spectrum, shown in 

figure 17. Only α/β and α+β proteins 

cannot be easily distinguished between 

each other. Even unordered local 

secondary structure has a characteristic CD 

spectrum similar to that of poly(Pro)II. 

Protein analysis by CD spectroscopy is 

carried out in the far-UV region (190-250 

nm) since at these wavelengths peptide 

bond is a chromophore. 

There are a weak but broad n             π
*
 transition at more or less 210 nm and a strong  

π        π
*
transition about at 190 nm. 

The far-UV CD spectra of TusA in phosphate buffer at pH 7.2 is shown in figure 18. Each 

sample was prepared replacing NaCl with NaF so as to avoid NaCl absorbance below 200 

nm.The far-UV CD spectra was registered for a solution containing NaF 20 mM and TusA 

1.85x10
-5

 mM.  

After Tscan analysis, TusA far-UV CD spectrum was registered again in order to check 

possible damages occurred after heating. How it can be observed from TusA spectrum 

shown in figure 18, TusA has not suffered conformational changes or damages after its 

                 Figure 17 
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heating till a temperature of 90°C, since the two spectra registered before and after Tscan 

analysis show a perfect match in almost every region between 190 and 250 nm. 

   

 

 

 

 

  

  

 

 

 

 

 

Figure 18 CD spectrum of TusA, NaF 20mM   

 

From a visual examination of the spectrum, TusA appears as a β-rich protein since its 

spectrum is similar to that shown above for β-rich proteins. 

Previous studies have determined its structure with different techniques such as NMR and 

X-rays
[141,142]

.  Even though the latter is carried out with TusA as a crystal in a solid state, 

it clearly confirmed that TusA has a α+β sandwich structure with a slight difference in 

favour of the β-sheet.  

This spectrum confirms that TusA is constituted of β-sheets more than it is constituted of 

α-helices. Though for a mixed α+β protein the spectrum should be predominant in α-helix, 

as the α-helix CD spectrum is quite more intense than that of a β-sheet, it was found that 

such a critical situation can lead to spectra which present only a broad minimum between 

210-220 nm because of the overlapping of many β-sheets and α-helices
[143]

.  

There are two sorts of stability for proteins such as enzymes, the first one is the chemical 

stability that involves chemical bonds, the second one is the conformational stability for 

the folded state. The latter allows to determine the usefulness of a protein because it shows 

the practical limits for its uses. 
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To measure the conformational stability of a protein it is required to determine the 

equilibrium constant and the free energy change (ΔG) for the reaction: 

 

                        Folded                  Unfolded      (3.1) 

 

In order to calculate specific thermodynamic parameters, the entire process of unfolding 

and refolding must be reversible. This reversibility must be checked before denaturation 

and after renaturation by CD ellipticity curves that should be superimposable. 

If the change in ellipticity reveals a monophasic transition between the two states, folded 

and unfolded, the thermodynamic parameters can be calculate. 

The main procedure to calculate these parameters is to follow the ellipticity change at a 

specific wavelength by increasing of the temperature as a function of many factors. It 

could be interesting to study protein stability in different conditions such as pH, salt 

concentrations or ligands concentration. 

Considering a two state model, the parameter can be calculate from the denaturation curve 

by linear extrapolation of the ΔG values
[144]

. The sum of the  fractions of the folded fF and 

the unfolded protein fU is one (fF  + fU = 1). Thus, the observed value y at any time will be  

y = yFfF + yUfU where yF and yU represent the distinctive values of y for the folded and 

the unfolded conformation. Combining these equations yields: 

 

fU = (yF - y)/(yF -yU)        (3.2) 

    

and the equilibrium constant, K, and the free energy change, ΔG, can be calculated using: 

 

                               K = fU/(1 - fU ) = fU / fF = (yF - y)/(y -yU)      (3.3) 

and  

                              ΔG = - RT ln K = - RT ln [(yF - y)/(y -yU)]      (3.4) 

 

where T is the absolute temperature and R is the gas constant (1.987 calories/deg/mol). 

In the case of CD analysis equations 3.2, 3.3 and 3.4 become: 
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                              fU = (θF - θ)/(θF - θU)    (3.5) 

 

                       K = fU/(1 - fU ) = fU / fF = (θF - θ)/(θ - θU)   (3.6) 

 

                      ΔG = - RT ln K = - RT ln [(θF - θ)/(θ - θU)]   (3.7) 

 

The values of θF and θU are obtained from the pre- and post-transition region by linear 

fitting based on least-square analysis. 

The Tm value can be calculate from the derivative of the plot θ versus T or graphically 

from the transition region of the plot ΔGD versus the absolute temperature when ΔG = 0. 

Moreover from this plot other information can be determined, such as ΔSm which is the 

slope of the plot and the Van’t Hoff enthalpy ΔHm that can be calculate from the equation 

3.8 when ΔG = 0: 

 

                                                      ΔGD = ΔHm - TΔSm    (3.8)  

 

Furthermore, to estimate the heat capacity change for unfolding (ΔCp
)
 it can be used the 

Kirchoff equation (3.9) and the data obtained from the equation are shown above: 

 

                                                    d(ΔHm) / d ΔTm = ΔCp    (3.9) 

 

ΔCp describes the amount of the curvature of the plot ΔGD versus T. If ΔCp
 
is higher so ΔG 

will depend more strongly from the temperature. The best choice to determine it is to plot 

ΔHm as a function of Tm by carrying out CD experiments at different values of some 

parameters. This because the value of ΔCp obtained from the difference between  θF and θU 

is affected by the error of the arbitral choice for the pre- and post-transition region. 

ΔCp is useful for the calculation of other parameters such as the enthalpy of unfolding at 

any temperature ΔH(T), the entropy of unfolding at any temperature ΔS(T) and ΔGD(T) at 

any temperature by the following equations: 
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                                          ΔH(T) = ΔHm + ΔCp (T - Tm)   (3.10) 

                                  ΔS(T) = ΔHm + ΔCp ln (T / Tm)   (3.11) 

 

and the Gibbs-Helmoltz equation that represents the stability curve of the protein
[145]

: 

 

        ΔGD(T) = ΔHm (1
 
– T / Tm) - ΔCp [(Tm – T) + T ln (T / Tm)]   (3.12) 

 

The temperature-inducing unfolding process of TusA was followed by registering CD 

spectra at 220 nm at different NaF concentration (Figure 19). After the unfolding process, 

the CD signal was registered also during cooling in order to check the reversibility of the 

process (Figure 20).  

 

 

  

 

 

 

 

 

 

 

 

Figure 19 Difference between thermal-inducing unfolding of TusA at two different salt concentration 

 

To calculate Tm, a best fit of the data was made with a sigmoidal fitting using the 

Boltzmann function. The derivative of the obtained curve yields the value of Tm. 

The plot ΔGD versus the absolute temperature for the data inside the transition region gave 

ΔSm as the slope of the curve.  

The Van’t Hoff enthalpy (ΔHm) was calculated considering the equation 3.8 when ΔGD = 0 

for both samples. 
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The temperature-independent heat capacity change at constant pressure (ΔCp) was obtained 

as the slope of the plot ΔHm as a function of Tm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Overlap of folding and unfolding curves for TusA with NaF 20 mM (above) and 150 mM (below) 
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The temperature of maximum stability (TS) where ΔS = 0 was calculated from  the 

equation 3.13. 

 

                                      TS = Tme
[-ΔHm/(Tm ΔCp )]

   (3.13) 

 

 

    20mM    150mM 

 

Tm(°C)   63.5    67.5 

ΔSm(cal mol
-1

 K
-1

)  -115.1    -115.6 

ΔHm(Kcal mol
-1

)  38.7    39.3 

TS(°C)   56.9    60.7 

yF    -11.45 + 5.96x10
-4 

(T) -7.40 + 3.06x10
-4

 (T) 

yU    -6.00    -3.99 

 

ΔCp(Kcal mol
-1

 ) 5.73   

 

 

Table 2 Thermodynamics parameters for thermal unfolding of TusA 

 

   

 

 

 

 

 

 

 

 

  

 

Figure 21 Conformational stability curve of TusA (NaF 20 mM) 
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Figure 22 Conformational stability curve of TusA (NaF 150 mM) 

 

TusA is a small protein of 82 amino acids. It acts as a sulfurtransferases to mediate sulfur 

transfer from IscS to TusBCD complex. It is also known that TusA plays other functions 

inside the cells, since its presence can skew the sulfur pathway towards iron-sulfur cluster 

biosynthesis. 

From a biophysical point of view TusA shows a typical conduct of small globular 

proteins
[146,147]

. It has a thermally reversible denaturation behaviour as described from CD 

spectra. Moreover TusA is highly stable as demonstrated by the Tm values and salt 

concentration leads to a shift towards higher temperature.   

This phenomenum can be explained as the stabilization of the negative charges that TusA 

bears in the side chains. Indeed the presence of negative charges leads to a diffuse 

repulsion that can be stabilized by the presence of the cation Na
+
 in solution. 

 

                                                                                    

 

 

 

 

 

 

Figure 23 Fitting curve of CD data for TusA: left) NaF 20 mM, right) NaF 150 mM  
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    3.3.2 Nuclear Magnetic Resonance 

Deep knowledge about protein conformation is a prerequisite to study its folding 

proprieties and stability. The use of NMR spectroscopy in the study of protein biophysical 

parameters was proved to be highly valuable.  

The individual amino acids in a protein structure are affected for the particular chemical 

environmental which is different from the random coil situation. This means that for an 

unfolded protein the spectrum resembles the sum of random amino acids. Instead for a 

folded protein the signals are more often than not shifted from the random coil values.  

The 1D 
1
H spectrum of TusA shown in figure 24 reports  the protein in its folding state as  

there is a significant degree of chemical shift dispersion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 
1
H-NMR spectrum of TusA at 298 K 

 

TusA was also expressed 
15

N-labelled in order to register a 2D-NMR spectrum, by 

growing E.Coli cells in M9 minimal medium with (
15

NH4)2SO4. 

A 
1
H-

15
N HSQC spectrum with TusA uniformly labelled with 

15
N was obtained at 25°C 

and 35°C and it shows (figure 25) dispersed signals indicating a well-defined protein 

structure. 

No differences were found from the spectrum  registered at 25°C and 35°C how it was 

already stated by CD analysis in which TusA showed high stability. 
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Figure 25 
1
H 

15
N-HSQC spectrum of TusA at 298 K (red spots) and 308 K (blue spots)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Zoom of 
1
H 

15
N-HSQC spectrum of TusA at 298 K (red spots) and 308 K (blue spots) 
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4. CONCLUSION 

TusA is a small protein involved in sulfur trafficking in prokaryotes. Its roles inside the 

cells is still under investigation; even though many functions were already confirmed, 

nothing is known about its stability and its biophysical parameters. 

In this study TusA was expressed and many parameters were tested in order to obtain the 

best profile for its expression in E. Coli. Its stability in cells was proved by the easiness of 

its bio-production, though some degradation processes occur if the expression is 

maintained for long time. 

TusA was also expressed in 
15

N-medium in order to register 2D-NMR spectra for an 

additional prove of its folded state that was deeply studied by CD analysis. 

CD spectra confirmed that TusA, as previous found out, present a well-defined secondary 

structure with an abundance for the β-sheet configuration. 

Moreover, thermal-induced unfolding experiments were carried out so as to calculate many 

thermodynamic  parameters. To extract these parameters two assumption were made: 

(i)TusA is present during the entire range of temperature under consideration only in two 

conformations, (ii) ΔCp is temperature-independent under the experimental condition. The 

process of folding and refolding is reversible and this feature allowed to calculate the 

thermodynamic parameters Tm, ΔHm, ΔCp and  ΔSm, and the results suggested that TusA 

has a high melting temperature and it is quite stable till the Tm value.  

This work presents the first study about TusA stability. However a more broad study in 

which more parameters are under study is critical for a complete comprehension of TusA 

behaviour in physiological condition since it plays a very important role in sulfur sorting.  
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5. MATERIALS AND METHODS 

Solutions and buffers 

 

- Luria Broth (LB): for 1l of LB 10g of triptone (Sigma), 5g of yeast extract (Sigma), 5g 

NaCl (Sigma) and 1ml NaOH (Sigma) were solubilised in H2O. The solution was then 

sterilised using an autoclave. 

- LB for plates: to prepare 200ml, 2g of triptone, 1g of yeast extract, 1g NaCl, 0,2ml 

NaOH and 3g of agar (Sigma) were solubilised in H2O. The solution was then 

sterilised using an autoclave. When necessary, ampicillin or kanamycin (Euroclone) 

1000X was added.  

- Ampicillin: the powder (Euroclone) was solubilised in H2O. The solution was 

sterilised with a filter syringe (Millipore). 

- Kanamycin: the powder (Euroclone) was solubilised in H2O in order to reach the final 

concentration of 30μl/ml. The solution was filtered with a filter syringe (Millipore). 

- Tris 1M pH 8: the powder (Sigma) was solubilised in H2O. The pH was lowered to 8 

with HCl 1M. 

- NaCl 5M: the powder (Sigma) was solubilised in H2O. 

- IPTG: the powder (Sigma) was solubilised in H2O. 

- DTT: the powder (Sigma) was solubilised in H2O. 

- EDTA 0,5M pH 8: the powder (Sigma) was solubilised in H2O and around 5g of solid 

NaOH (Sigma) were added to reach the proper pH. Finally the solution was sterilised 

using an autoclave. 

- TBE: in order to prepare a 5X stock solution 54g of Tris (Sigma), 27.5g of boric acid 

(Sigma) and 20ml of 0.5M EDTA pH 8 were mixed together and H2O was added in 

order to reach a final volume of 1l. 

- PBS (Phosphate-Buffered Saline): 8g NaCl, 0.2g KCl (Sigma), 1.44g Na2HPO4 

(Sigma), 0.24g KH2PO4 (Sigma). To prepare 1l of solution, the reagents were 

dissolved in 800ml of H2O. The pH was adjusted to 7.4 with HCl and then H2O was 

added to reach the final volume of 1l. 

- Equilibrium buffer: 20mM Tris pH 8, 150mM NaCl, 10mM Imidazole, 0.2% v/v Igepal 

(Sigma), 1mM reducing agent (β-mercaptoethanol or TCEP, Sigma). 
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- Wash buffer 1: 20mM Tris pH 8, 150mM NaCl, 10mM Imidazole, 1mM reducing 

agent. 

- Wash buffer 2: 20mM Tris pH 8, 1M NaCl, 10mM Imidazole, 1mM reducing agent. 

- Elution buffer: 300mM Imidazole, 1mM reducing agent. 

- Dialysis buffer: 20mM Tris pH 8, 150mM NaCl, 2mM DTT. 

- Cells were purchased from Novagen. 

- Enzymes were purchased from New England Biolab, where not differently indicated. 

- Reagents were purchased from Sigma, if not differently specified. 

- Kits used during gene synthesis and cloning were purchase from Zymo Research 

Corporation. 

- NanoDrop 2000c Spectrophotometer is from Thermo Scientific. 

- FPLC system and Ultrospec300 spectrophotometer are from Pharmacia Biotech. 

- PBS: 8g NaCl, 0.2g KCl,1.44g Na2HPO4, 0.24g KH2PO4 were dissolved in 800ml of 

H2O. The pH was adjusted to 7.4 with HCl and then H2O was added to reach the final 

volume of 1l.  

- Lysis Buffer: 20mM Tris pH 8, 150mM NaCl, 10mM Imidazole, 2mM TCEP, 0.2% 

v/v Igepal, Lysozyme, DNAse I (Roche), complete Proteinase inhibitor (Roche), H2O 

up to the final volume. Stock solutions were prepared; TCEP, lysozyme, DNAse and 

Protein inhibitor were added fresh each time. 

- Low-salt column buffer: 20mM Tris pH 8, 150mM NaCl, 10mM Imidazole, 0.2% v/v 

Igepal, 2mM TCEP. Stock solutions were prepared; TCEP was added fresh each time. 

- Low-salt column buffer pH 8.8: in the above recipe, before reaching the final volume 

with water, pH was brought to 8.8 by adding NaOH. 

- High-salt column buffer: 20mM Tris pH 8, 1M NaCl, 10mM Imidazole, 2mM TCEP. 

Stock solutions were prepared; TCEP was added fresh each time. 

- High-salt column buffer pH 8.8: in the above recipe, before reaching the final volume 

with water, pH was brought to 8.8 by adding NaOH. 

- FPLC Buffer: 20mM Tris pH 8, 150mM NaCl, 2mM TCEP. The solution was filtered 

using 0.22μM filters (Millipore). Stock solutions were prepared; TCEP was added 

fresh each time. 

- FPLC Buffer pH 8.8: in the above recipe, before reaching the final volume with water, 

pH was brought to 8.8 by adding NaOH. 

- GST-Resuspension/Wash Buffer: 1X PBS pH 8 
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- GST-Elution Buffer: 50mM Tris pH 8, 10mM reduced Glutathione 

- Minimal growth medium: M9 salt:  KH2PO4 15.0g, Na2HPO4•7H2O 64.0g, NaCl 2.5g, 

(
15

NH4)2SO4   

 

 

   5.1 TusA gene synthesis 

      5.1.1 Primers design 

The genomic sequence of TusA was obtained through a whole cell PCR protocol. Primers 

were designed  based on genomic sequence of E. Coli F11. 

 

 Gene symbol: tusA (yhhP) 

..5’_TAAACTAGCGCCGTTTTTTTAAGTGATGAGAAGAAAATGACCGATCTCTTT

TCCAGCCCTGACCACACACTCGACGCGCTTGGCCTGCGCTGCCCGGAACCGGT

GATGATGGTGCGCAAAACCGTGCGCAATATGCAGCCTGGCGAAACGTTGCTGA

TTATCGCCGACGATCCGGCCACTACCCGCGATATTCCTGGGTTTTGTACCTTT 

ATGGAACACGAACTGGTTGCTAAAGAGACGGATGGACTGCCTTATCGTTATTT

GATTCGTAAAGGCGGTTGATAGGGGCTGATTGGCTTCGATGCCGCCTTTTCCCC

TCA_3'... 

 

Translation: 

TSAVFLSDEKK-MTDLFSSPDHTLDALGLRCPEPVMMVRKTVRNMQPGETLLIIA 

DDPATTRDIPGFCTFMEHELVAKETDGLPYRYLIRKGG--GLIGFDAAFSP 

 

pETM11 that bears kanamycin as antibiotic resistance and NcoI and NotI as restriction 

sites was chose as vector.  

Primers were designed so as to have NcoI and NotI as restriction sites and parameters such 

as melting temperature, GC content, hairpins and loops formation were optimized. 

 

FW: 5’- TAGCCATGGCGACCGATCTCTTTTCCAGCCCTGACC 

REV: 5’- TAGGCGGCCGCCTATCAACCGCCTTTACGAATCAAATAACG 
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      5.1.2 TusA Cloning 

Primers were bought  from Sigma Aldrich and dissolved in nuclese-free H2O to yield 

equimolar stock solutions (100μM) and finally used for PCR.  

The genomic sequence of TusA was obteined through a whole cell PCR protocol. 

PCR experiment was carried out using one colony of DH5α has whole cell,  10μl of 10X 

Termopol Buffer NEB, 2μl DMSO, 1 μl of MgSO4, 2μl of PCR dNTP mix, 1μl forward 

primer, 1μl reverse primer, 1.5μl of deep VENT DNA polymerase and 82μl of nuclese-free 

H2O in order to reach a final volume of 100μl, under the following conditions: 

-1 cycle: 94°C 5min 

-25 cycles: 95°C 1min 

                     55°C 1min 

                     72°C 1min 

-1 cycle:       72°C 5min 

The samples were frozen. 

PCR products were analysed  by agarose gel electrophoresis, 1% agarose gel in TBE 

buffer, 2 μl of invitrogen (5% BR Safa DNA gel stain 10000% concentrated in DMSO). 

Samples were prepared adding 2 μl of loading buffer(gel Loading Dye 6x from BioLabs) 

in 10 μl 100bp PCR Molecular Ruler was used as reference. The samples were extracted 

from the gel through Zymoclean Gel DNA Recovery Kit. 

DNA purity and concentration were assessed via a NanoDrop 2000c Spectrophotometer 

(Thermo Scientific). 

 

      5.1.3 pETM11 Transformation and Amplification 

An aliquot(50 μl)  of  E. Coli DH5α cell (Novagen) was put on ice in order to unfreeze it, 

then 1μl of plasmid pETM11 was added and left on ice for 30 min; heat shock was 

performed putting it on a worm bath, 42° for 45 seconds, and then put on ice for further 2 

minutes. Finally, 250μl of LB were added and Eppendorf incubated for 1h at 37°C with 

220rpm constant shaking. 

After 1h on an LB-agar plate with kanamycin (30 μg/ml), 50 μl of transformed cells were 

plated and spread with a sterile spatula. The plates were incubated at 37° overnight. 

After overnight incubation, 5 ml of LB, 5 μl of kanamycin and one colony from the plate 

were mixed together  into a flask(ml?) and left overnight at 37°C with 220 rpm constant 

shaking. 
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Cells were centrifuged at 5000g for 10 minutes and  DNA was extracted using Zymo 

Miniprep Kit. According to instructions, pellet was resuspended in 600μl of DNase-free 

water and then 100μl of 7X Lysis Buffer were added. After soft shaking, solution  turned 

to intese blue, instantly, 350μl of cold Neutralisation Buffer were added and vigorously 

shaked,  solution turned to yellow with a white precipitate. It was centrifugated for 3 

minutes at 13000g, the supernatant was transferred into a small column and it was 

centrifuged again for 15 seconds. The column was washed with Endo Wash Buffer first 

and then with Zyppy Wash Buffer and finally it was transferred in a new eppendorf. The 

sample was eluted using 20-30μl DNase-free water.  

DNA purity and concentration were assessed via a NanoDrop 2000c Spectrophotometer 

(Thermo Scientific). 

 

      5.1.4 Plasmid Digestion 

Digestion was carried out for TusA and pETM11 respectively following the same protocol. 

TusA: 10 μl of TusA PCR product, 0,8 μl of Nco1 enzyme, 0,8 μl of Not1 enzyme, 2 μl of 

10xNEB 3.1, 6,4 μl of DNase-free water were mixed together.  

pETM11: 30 μl of pETM11 plasmid, 1,2 μl of Nco1, 1,2 μl of Not1, 4 μl of 10xNEB 3.1, 

3,6μl of DNase-free water were mixed together. 

The samples were placed into Eppendorf heat block for 1,5 h at 37°C and at a later stage 

purified through agarose gel. 

Two different agarose gel percentage were used; an 1%  agarose gel for digested pETM11 

plasmid and 2% for digested TusA. Samples were extracted from the gel through 

Zymoclean Gel DNA Recovery Kit. 

DNA purity and concentration were assessed via a NanoDrop 2000c Spectrophotometer 

(Thermo Scientific). 

 

      5.1.5 Ligation 

Digested TusA and pETM11 plasmid were ligated through T4 DNA Ligase. Two different 

protocol were used: 

Protocol 1: Ligation was carried out without further purification of digested product; 

An Eppendorf with 10 μl of digested TusA, 2 μl of digested  pETM11 was placed into an 

Eppendorf heat block at 80°C, after 20 minutes 2μl of T4 DNA Ligase Buffer, 1μl of 

enzyme, and DNase-free water till a total volume of 20 μl were added. . Reaction was 



48 
 

incubated overnight at 16°C and then inactivated at 65°C for 10 minutes, chilled on ice and 

transformed. 

Protocol 2: Ligation was performed setted up the following reaction in a microcentrifuge 

tube on ice: 2μl of T4 DNA Ligase Buffer, 1μl of enzyme, 2μl of digested plasmid and 

10μl of digested TusA, 5 μl of DNase-free water. Reaction was incubated overnight at 

16°C and then inactivated at 65°C for 10 minutes, chilled on ice and transformed. 

A control sample was prepared with digested  pETM11 plasmid and T4 DNA Ligase. 

 

      5.1.6 TusA Transformation 

The 7.1.3 protocol was followed for every transformation in E. Coli DH5α cells. Samples 

were extracted from the gel through Zymoclean Gel DNA Recovery Kit. 

DNA purity and concentration were assessed via a NanoDrop 2000c Spectrophotometer 

(Thermo Scientific). Concentrations between 100-110 ng/μl was obtained. 

 

      5.1.7 Glycerol Stock 

A 500 μl aliquot of overnight culture was mixed with 300μl of 80% glycerol, kept in liquid 

N2 or on dry ice until completely frozen (few minutes in the former, nearly 1h in the latter 

one) and then stored at -80°C. 

 

   5.2 TusA Protein Expression 

      5.2.1 Transformation in E. Coli BL21 (DE3) pLysS 

TusA plasmid, previously purified with concentration between 100 ng/μl and 110 ng/μl, 

was gently mixed, up and down, with an aliquot (20-50μl) of E. Coli BL21 (DE3) pLysS  

cells and left on ice for approximately 30 minutes. After,  a 45 seconds heat shock was 

carried out at 42°C in a worm bath and then  incubated after  2 further minutes on ice with 

250 μl of LB for 1h at 37°C under constant shaking. 

 

      5.2.2 Transformation in E. Coli BL21 (DE3)  

Transformation in E. Coli BL21 (DE3) was carried out in the same way of 7.2.1 

 

      5.2.3 Plating 

After 1h on an LB-agar plate with kanamycin (30 μg/ml), 50 μl of transformed cells were 

plated and spread with a sterile spatula. The plates were incubated at 37° overnight. 
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      5.2.4 Pre-inoculum 

One isolated colony, grown into plate, was picked up and inoculated  in 50 ml of  fresh LB 

with kanamycin (30 μl/ml) in a 250ml flask, previously sterilized, equipped with a 

breathable foam  stopper (20mm), and left at 37°C overnight under constant shaking at 220 

rpm. 

 

      5.2.5 Inoculum  

In 5L flask, previously sterilized, equipped with a breathable foam  stopper (60mm), 25 ml 

of pre-inoculum was mixed with 1L of sterilized LB, 1ml of 30 mM kanamycin under 

Bunsen’s flame and  left grown at 37°C 220 rpm, till a roughly OD600 value of  0.1 was 

reached. Cells growth was monitored following OD600 values measured with Ultrospec300 

spectrophotometer in a 1cm plastic cuvette. Reached a value between 0.6 and 0.8 (what?) 

IPTG (1M) was added, under flame, till  a final concentration of 0.5 mM. Cells were left 

grown at 37°C under constant shaking at 220rpm. 

After 2h cells were spun down by centrifugation (6000rpm 4°C for 20 minutes), 

supernatant was discarded and cells gather in 50ml centrifugation  tubes,  re-centrifuged 

(18000rpm  4°C 30 minutes) and collect in a 50 ml falcon tube and frozen at -80°C, or 

alternatively, solubilized in Lysis Buffer and then  frozen at -80°C. 

 

   5.3 Protein Purification  

      5.3.1 Purification of a His-tagged protein having a TEV cleavage site 

Cells were thawed on a worm bath, DNase I (Roche) EDTA free, Lysozyme, Proteinase 

inhibitor (Roche), v/v Igepal were added. Cells were sonicated on ice for 3 times for 3 

minutes at 50W, 50% pulse cycle, and centrifuged at 18000rpm at 4°C for  40 minutes. 

A 2ml solution of Ni-NTA agarose resin (Biorad) was put in a 10ml column, left sediment 

and washed with milliQ water, then pre-equilibrated with 10 ml of Equilibrium Buffer. 

After centrifugation, precipitate was discarded and supernatant was loaded into the column 

and left mixed in a rotatory mixer at 4°C for 1h. 

The mix was left sediment, then a gently flow was open and flow through (FT) collected; 

10 ml of Wash Buffer 1 were suddenly added, elute and collected (W1), 10 ml of Wash 

Buffer 2 were added, elute and collected (W2); after washes, 5 ml of Elution Buffer were 

added and the column left mixed in a rotatory mixer for 1h at 4°C. Column was left 

sediment, then was opened and eluate was collected (E). 
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In order to check protein in eluate,  5μl drops from column were mixed with 100μl of 

Bradford reagent (Biorad), intense blue indicated presence of proteins in the samples. 

Collected fractions (FT, W1, W2, W3 and E) were analysed by SDS-PAGE. 

 

      5.3.2 His-tag removal 

Two aliquot of TEV Protease per litre of cells culture were added to the protein eluate  put 

into a dialysis membrane with 3000 kDa MW cut-off and  dialysed at 4°C overnight in a 

5L beaker equipped with a magnetic stirrer bars filled with 4L of Dialysis Buffer under 

constant  rotation. 

 

      5.3.3 Affinity Chromatography 

Dialysis solution and solution E  were analysed by SDS-PAGE. A 2ml solution of Ni-NTA 

agarose resin (Biorad) was put in a 10ml column, left sediment and washed with milliQ 

water, then pre-equilibrated with 10 ml of Equilibrium Buffer; Dialysis solution was 

loaded and mixed in a rotatory mixer at 4°C for 30 minutes, then eluted an collected. 

The collect was concentrated till a final volume of 0.5 ml through by centrifugation at 

5000g at 4°C, using Vivaspin (Sartorius Stedim biotech) with a MW cut-off of 3000 kDa. 

 

      5.3.4 Gel Filtration 

Further purification was carried out by gel filtration. The sample was injected through a 0.5 

ml syringe in the Sephadex
TM

 (quale?) column equipped with a 0.5 ml loop. 

Flow rate was kept at 0.8ml/min, pressure under a maximum value of 0.6; 280nm, 260nm 

and 215nm were monitored. Eluate was collected in 1ml fractions. 

Fractions were checked by SDS-PAGE and subsequently concentrated by centrifugation at 

5500rpm. Flash freezing was carried out in order to avoid protein damage
[148]

 and then 

stored at -20°C.  

 

      5.3.5 Protein Concentration 

Protein concentration was measured through Bradford assay and by Absorbance assay as 

well: 

Bradford assay: Bradford assay was performed following the usual protocol,73 using BSA 

as standard protein. 
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Absorbance assay: UV  lamp was warmed up (about 15 minutes) and wavelength adjust at 

280nm, then zero absorbance was calibrate with buffer solution, protein solution 

absorbance was measured.    

Calculation of the molar absorption coefficient at 280nm (c280) of TusA was calculated 

using the following equation:  

 

ε280 = (5500xNTrp) + (1490xNTyr) + (125xNS-S) 

 

where the numbers are the molar absorbances for tryptophan (Trp), tyrosine (Tyr), and 

cystine (i.e., the disulfide bond, S-S), and NTrp =number of Trp residues, NTyr = number of 

Tyr residues, and NS-S = number of disulphide bonds in the protein, or alternatively ε was 

estimated using ExPASy ProtParam tool. 

The ratio A280/A260 was used as a criterion of the purity of protein. 

 

   5.4 Electrophoresis 

      5.4.1 Agarose gel electrophoresis 

A 2% agarose gel was prepared using agarose powder; xg was weighted and solubilized in 

50ml of TBE Buffer, microwave was used to help further solubilization process.  SYBR 

Safe DNA gel stain 50X (Invitrogen), 2,5μl, were added and the solution was slowly 

poured in a gel mould. After gel was let getting cold at room temperature, samples were 

prepared mixing them with Blue Loading Dye 6X (Promega) and were loaded. 

When run stopped,  gel was exposed to UV light on a transilluminator to detect DNA. 

 

      5.4.2 Polyacrylamide gel electrophoresis 

Polyacrylamide gels, NuPAGE Novex Bis-Tris 4-12% Gel, were purchased from Life 

Technologies. 10-15μl of each samples were added to the same volume of Novex Tris-

Glycine SDS sample Buffer 2X/ Laemmli SDS sample Buffer 2X, loaded in separate wells 

and run for 35 minutes at 200V. NuPAGE MES (Life Technologies) was used as marker. 

After the run, gels were stained with Instant Blue (Expedeon) 
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      5.5 TusA N
15

 labelling and expression in E. Coli 

Transformation, plating and pre-inoculum were carried out following procedures  7.2.1, 

7.2.3, 7.2.4 as previous described. In 5L flask, previously sterilized, equipped with a 

breathable foam  stopper (60mm), 25 ml of pre-inoculum was mixed with 1L of sterilized 

LB, 1ml of 30 mM kanamycin under Bunsen’s flame and  left grown at 37°C 220 rpm, till 

a roughly OD600 value of  0.1 was reached. Cells growth was monitored following OD600 

values measured with Ultrospec300 spectrophotometer in a 1cm plastic cuvette. As soon as 

an optical density of (OD600)~0.7 was reached, cells were pelleted for 30 minutes in a 

centrifuge at 5000rpm 4°C for 30 minutes. The cells were then washed with M9 salt and 

pelleted again. The pellet was re-suspended in isotopically labelled minimal media and 

incubated. After 1h, under flame, expression was induced. IPTG (1M) was added, till  a 

final concentration of 0.5 mM. Cells were left grown at 37°C under constant shaking at 

220rpm. 

After 2h cells were spun down by centrifugation (6000rpm 4°C for 20 minutes), 

supernatant was discarded and cells gather in 50ml centrifugation  tubes,  re-centrifuged 

(18000rpm  4°C 30 minutes) and collect in a 50 ml falcon tube and frozen at -80°C, or 

alternatively, solubilized in Lysis Buffer and then  frozen at -80°C. 

 

      5.6 NMR Spectroscopy 

NMR spectra were recorded on a Bruker Avance III spectrometer with TCI Cryoprobe 

operating at a 
1
H frequency of 600 MHz. 

1
H 

1
D, 

15
N

-
HSQC experiments were recorded at 

298 K and 308 K and pH 7, SOFAST experiments were recorded at 298 K and pH 7 or at 

298 K, after 1h at 308 K, and pH 7.  The protein concentration was 0.170mg/ml. 

 

      5.7 Circular Dichroism 

Samples for CD spectroscopy were got from FPLC and further purified so as to remove 

any  trace of chloride.   

The original samples with an initial concentration of 6mg/ml was diluted 4 times, in order 

to reach a final concentration of 1,5mg/ml, with a 20mM Tris•HCl 150 mM NaCl 0,5mM 

TCEP. Meanwhile a NAP column was equilibrated (care must be taken in order to avoid to 

dry it) with solution 1 (20mM Tris•HCl 20mM NaF) or with solution 2 (20mM Tris•HCl 

150mM NaF).  Once equilibrated 200μl of sample were loaded into the column and 

immediately collected. Concentrations were determined by Bradford’s assay.  
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The average values were 0.168 mg/ml for TusA (20 mM) and 0.402mg/ml for TusA (150 

mM).CD spectra were recorded at 20°C on a Jasco J-715 spectropolarimeter, using fused 

silica cuvettes of 0.1 cm path length (Hellma, Jena, Germany) in the wavelength range 

190-260 nm.  

Thermal unfolding curves were obtained by monitoring the ellipticity at 222 nm at a 

heating rate of 1°C/min from 10°C to 90°C and then back. The transition mid-point 

temperatures (Tm) were estimated by a sigmoidal least squares fitting of the data using the 

Boltzmann equation  y = (A1-A2/1+exp((x-x0)/dx))+A2. 

 

 

   5.8 Mass Spectroscopy 

ESI-MS spectra was recorded using single quadrupole mass spectrometer (Perkin Elmer 

API-150EX). Samples, in 0.1% TFA in MeCN, were analyzed in positive ion mode. The 

molecular mass of the protein was calculated by deconvolution of the multicharge ion 

spectra using the BioMultiview software (Applied Biosystems). 
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