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Introduction

It is known that Kähler structures merge together Riemannian, symplectic
and complex structures. Their odd dimensional companions, Sasakian struc-
tures, do the analogue for Riemannian, contact and CR structures. These
even and odd dimensional realms are closely related. Indeed a Sasakian man-
ifold is sandwiched between its Kähler cone and its transverse Riemannian
structure and, given a compact Hodge Kähler manifold one can construct a
Sasakian structure on the principal circle bundle associated to the integral
Kähler form.

A prominent role is played by Sasaki-Einstein manifolds, also due to their
application in physics in the so-called AdS/CFT correspondence. There is a
large number of examples and techniques to build Sasaki-Einstein manifolds,
see e.g. [11, Chap. 5] and [71] and the references therein. As an example of
interrelation between the Sasakian structure and the two Kähler structures,
we mention that a manifold is Sasaki-Einstein if and only if its transverse
Kähler structure is Kähler-Einstein if and only if the Riemannian cone is
Ricci-flat.

Among these techniques we mention the application of deformations of
known Sasakian manifolds, for which we refer to Chapter 3, in particular of
the standard Sasakian spheres and and some of their Sasakian submanifolds
given by the zero set of complex polynomials. These manifolds provide a large
number of odd-dimensional Einstein structures on, among others, homology
spheres and exotic spheres.

In this thesis we deal with four different problems that touch both the
Kähler and the Sasakian setting. As there is such close correlation between
Sasakian and Kähler structures, one possible line of work can be to prove
for the transverse Kähler metric results known to hold for general Kähler
metrics.

The first two problems are about the possible generalization of Sasaki-
Einstein metrics and we follow this line of work for the first. Two possible
generalizations are Sasaki-Ricci solitons (see e.g. [36] and also [69] for an
introduction to the Sasaki-Ricci flow) and Sasaki-extremal metrics [13]. In
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vi INTRODUCTION

the Kähler case, the presence of such metric gives information about the
Lie algebra of infinitesimal transformations of the ambient manifold, due to
the known results of Tian and Zhu [75] and Calabi [14]. For the Sasakian
case, it has been proved by Boyer and Galicki [13] that the presence of a
Sasaki-extremal metric gives a splitting of a quotient of the Lie algebra of
the transversally holomorphic fields. Our work of Chapter 4, see also [63], is
the solitonic analogue of this as we provide a result about the decomposition
of the same quotient algebra in the case of a Sasaki-Ricci soliton.

Moreover, in the Sasaki-extremal case, van Coevering [77] has proved that
a starting Sasaki-extremal metric, under certain assumptions of the relative
Futaki invariant, is stable under known types of deformations of Sasakian
structures. We provide also the solitonic analogue of this result by prov-
ing that starting from a Sasaki-Ricci soliton there exists a neighborhood of
zero in the parameter space in which lies a generalized Sasaki-Ricci soliton.
Our techniques, as van Coevering’s, make use of an infinite dimensional im-
plicit function argument. This generalizes a result of Li [56] for Kähler-Ricci
solitons.

The second problem we treat is also related to generalization of Einstein
metrics. For simplicity we state and prove the result for compact Kähler
manifolds and the argument goes verbatim for Sasakian manifolds. We focus
on the existence of Kähler metric which generalize a Kähler-Einstein metric
in both ways, namely it is what we call an extremal Kähler-Ricci soliton. This
is a natural question and it appears to be absent in the literature. We prove
that, under the assumption of the positivity of the holomorphic sectional
curvature, these metrics are Einstein. We do not know whether we can drop
this assumption nor whether there are examples of such metrics. For a more
detailed introduction to the problem we refer to the one of Chapter 5 or [17].

Then we move to the third problem that deals with Legendrian subman-
ifolds of Sasaki-Einstein manifolds. Legendrian submanifolds are submani-
folds of maximal dimension whose tangent space at each point is contained
in the contact distribution at that point, see e.g. [64]. They can be defined
in the contact setting and are of interest, for instance, in contact topology.

In the case of a compact regular Sasakian manifold M , that is a circle
bundle and a Riemannian submersion onto a compact Kähler base B, to every
Legendrian L of M one can take its projection in B which is a Lagrangian
submanifold. Moreover, Riemannian properties such as minimality, being
totally geodesic or umbilical hold for L if and only if hold for its projection,
this due to the relation between the two mean curvature vectors.

The most standard example of Sasaki-Einstein manifold is the round odd
dimensional sphere with its standard contact structure. Given a minimal
submanifold Ln of S2n+1, Lê and Wang [54] proved a characterization of L
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being Legendrian in terms of the existence of a certain family of eigenfunc-
tions of eigenvalue 2n + 2 for the induced Laplacian on L. Moreover they
provide a lower bound for the multiplicity of 2n + 2 and prove that if this
lower bound is attained then L is totally geodesic.

Their functions are exactly the contact moment map of the contacto-
morphic action of the Sasaki transformation group of the sphere and their
technique makes use of the theory of minimal submanifolds in Euclidean
spheres and the computation of the Laplacian by means of a local coframe.

In Chapter 6, see also [18], we construct two families of functions on the
Legendrian that we prove to be eigenfunctions of eigenvalue 2n + 2. One of
them is a direct generalization of the ones of Lê-Wang, indeed we take the
moment map up to a constant and with different techniques we prove it to
define a family of (2n + 2)-eigenfunctions. Our techniques use the theory
of deformations of minimal Legendrian submanifolds and the fact that the
moduli space of such submanifolds are identified with an eigenspace of the
Laplacian of a fixed base minimal Legendrian.

By means of a dimensional count, we generalize also the result about the
lower bound obtaining exactly the one of Lê-Wang in the case of the sphere.
If the lower bound is attained we prove, in the regular case, that L is totally
geodesic in M together with a rigidity result about M which turns out to be
a Sasaki-Einstein circle bundle over a complex projective space. This also
proves that the converse does not hold, namely there can be totally geodesic
Legendrian submanifolds that do not attain this lower bound as one can take
it in an ambient manifold which is not a sphere.

We then construct another family of eigenfunctions on L, this time ex-
ploiting the embedding of M in a Ricci-flat Kähler cone C(M). The family
is parameterized by the Lie algebra of infinitesimal Kähler automorphisms
of C(M) and is defined by means of the Nomizu operator. The computa-
tions are made locally in terms of a local frame and exploits properties of the
Nomizu operator together with the Ricci-flatness of C(M).

The last problem we treat deals with the space of Kähler and Sasakian
metrics. The idea of defining a weak Riemannian structure on the moduli
space of Riemannian structures on a fixed compact Riemannian (M, g) goes
back to the 1950s with the work of Ebin [32]. It the case when a compact M
has a Kähler structure ω, an analogous construction has been made on the
space of Kähler metrics H cohomologous to ω. By means of the ∂∂-Lemma
this space is parameterized by smooth functions on M , namely

H = {ϕ ∈ C∞(M) : ω + i∂∂ϕ > 0}.

The first definition of a weak Riemannian structure on H is due to Mabuchi
[57] and then revisited by Semmes and Donaldson [67, 30] and is known as
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the Mabuchi metric. The pairing of two tangent vectors at u ∈ H is defined
to be

(ψ1, ψ2)u =

ˆ
M

ψ1ψ2dµu

where dµu is the volume form of the Kähler metric ω + i∂∂u. It has been
proved that it gives H formally the structure of a locally symmetric space
of nonpositive curvature. Being H infinite dimensional, the Cauchy and
Dirichlet problems need not have solution and if they do, it needs not be
smooth. Indeed it has been proved by X.X. Chen [24] that the Cauchy
problem does not always have solution and that the Dirichlet problem always
have a C1,1 solution and this is the best regularity possible.

Other choices of Riemannian structures on H are possible. The first is
known as the Calabi metric and is defined by

(ψ1, ψ2)u =

ˆ
M

∆uψ1∆uψ2dµu

where ∆u is the Laplacian induced by the metric ω + i∂∂u.
Its study was suggested by Calabi in the 1950s and completed by Calamai

[16] in the 2010s. He proved that it gives H constant sectional curvature
and that the Cauchy and Dirichlet problems have smooth explicit solutions.
Another possible choice, also introduced by Calabi, is known as the gradient
metric and is defined by

(ψ1, ψ2)u =

ˆ
M

(dψ1, dψ2)dµu

that is the L2 product of the gradients of ψ1 and ψ2. It was studied for Rie-
mann surfaces by Calamai [16] and the curvature was computed by Calamai
and Zheng [20]. In complex dimension greater than one, the gradient metric
was not known to have solutions for the Cauchy or Dirichlet problem.

Being Sasakian structures transversally Kähler, one can consider the
space of smooth Sasakian metrics transversally cohomologous to a given one.
The definition of the space H is analogous with the slight change that one
takes basic functions. The definitions of Mabuchi, Calabi and gradient met-
rics are done analogously with the use of the canonical Sasakian volume form.
The Mabuchi metric was proved by Guan and Zhang [45, 48] to behave anal-
ogously as the Kähler case, together with the existence of C1,1 Dirichlet
geodesics [46].

Clarke and Rubinstein [29] proved that the restriction of the Ebin metric
to the space of Kähler metric is exactly twice the Calabi metric. In Chapter
7, see also [19], we compute the restriction of the Ebin metric on the space
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of Sasakian metrics. Being the latter metrics on M and not only transverse
metrics, the presence of the extra direction along the leaves gives rise to more
terms. Indeed we find the following.

Theorem 0.1. The restriction is twice the sum of the Calabi and the gradient
metric that we call the sum metric.

We explicitly compute its covariant derivative and write down the geodesic
equation. By using a fixed point technique we prove the short time existence,
for any chosen Hölder regularity, of a Ck,α geodesic starting from an assigned
point with an assigned velocity. We prove it for the Kähler setting and the
argument works verbatim for the Sasakian one. With the same technique we
are able to prove also a short time existence result for the gradient metric, in
any dimension and for any chosen Hölder regularity. The existence of smooth
geodesics is still an open problem.
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Chapter 1

Preliminaries

In this chapter we recall the definition and main facts of Kähler and contact
geometry, mainly to fix notation. We refer to [11] and the references therein.

1.1 Kähler manifolds

Definition 1.1. A complex chart on a real manifold M2n is a pair (U,ϕ)
where U ⊂ M is an open set and ϕ : U → ϕ(U) ⊂ Cn is a diffeomorphism.
The manifold M is complex if there an atlas of complex charts {(Uj, ϕj)}j
whose transition functions ϕj ◦ ϕk : ϕk(Uj ∩ Uk) → ϕj(Uj ∩ Uk) are biholo-
morphisms.

On a real manifold M , a section J ∈ Γ(End(TM)) such that J2 = − id
is called an almost complex structure on M and the pair (M,J) an almost
complex manifold. Such J has complex eigenvalues ±i and allows the com-
plexified tangent bundle TMC to split as T 1,0M ⊕ T 0,1M , the i- (resp −i-)
eigenspaces of J . An almost complex structure can be always defined on a
complex manifold by mapping ∂

∂zj
7→ i ∂

∂zj
where (z1, . . . , zn) are local holo-

morphic coordinates. Conversely, when an almost complex structure admits
local holomorphic coordinates that express it as the multiplication by i on
TMC it is said to be integrable. There is the well known theorem of Newlan-
der and Nirenberg that gives a characterization of integrability.

Theorem 1.2. Let J be an almost complex structure on M . Its Nijenhuis
tensor NJ , defined by

NJ(X, Y ) = [X, Y ] + J([JX, Y ] + [X, JY ]) + [JX, JY ] X, Y ∈ Γ(TM),

vanishes if, and only if, J is integrable, making M an complex manifold.

1



2 CHAPTER 1. PRELIMINARIES

So a manifold with an integrable complex structure can be defined to be
a complex manifold. Let us now consider its transformations.

Definition 1.3. A map f : (M1, J1)→ (M2, J2) between two (almost) com-
plex manifolds is said to be (pseudo)holomorphic if df ◦ J1 = J2 ◦ df .

In particular when M1 = M2 = M and f is bijective, we call it an auto-
morphism of M . We can now introduce the group of such automorphisms.

Proposition 1.4. The group Aut(M,J) of biholomorphisms of a compact
complex manifold (M,J)is a complex Lie group whose Lie algebra aut(M,J)
is given by the (real) holomorphic vector fields, that is X ∈ Γ(TM) such that
LXJ = 0.

For any almost complex structure J , its action on the complexified tan-
gent bundle can be extended to the complexified cotangent bundle, giving a
splitting TM∗C = T 1,0M∗ ⊕ T 0,1M∗ which in turn defines a splitting of the
bundle of complex valued forms of degree k∧k

(M,C) =
⊕
p+q=k

∧p,q
(M,C)

where
∧p,q(M,C) :=

∧p T 1,0M∗ ⊗
∧q T 0,1M∗. We denote by Ωp,q(M,C)

the space of sections of such bundle and call its elements (p, q)-forms or
forms of bidegree (p, q). Let us now focus on integrable complex structures
and consider the action of the exterior derivative d. It can be proved, see
[51, Chap. IX], that the exterior derivative of a (p, q)-form has exactly a
(p + 1, q)- and a (p, q + 1)-component if, and only if, J is integrable. This
allows to split d|Ωp,q(M,C) in two parts, namely d = ∂+∂, where ∂ := πp+1,q ◦d
and ∂ := πp,q+1, where πa,b denotes the projection onto Ωa,b(M,C). In this
case it follows from d2 = 0, considering bidegrees, the well known relations

∂2 = ∂
2

= 0 and ∂∂+∂∂ = 0. We can then define, from the complex (Ωp,q, ∂)
the cohomology groups by

Hp,q

∂
(M) =

ker ∂|Ωp,q(M)

Im ∂|Ωp,q−1(M)

called the Dolbeault cohomology groups.
We introduce now a notion of compatibility between an (almost) complex

structure and a Riemannian metric.

Definition 1.5. Given (M,J) an (almost) complex manifold. A Riemannian
metric g is called Hermitian if g(JX, JY ) = g(X, Y ) for all X, Y ∈ Γ(TM).
Define the 2-form ω by ω(X, Y ) = g(JX, Y ), which is called the Kähler form
of (J, g). The triple (g, J, ω) is called an (almost) Hermitian manifold.
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It is enough to give two pieces of such data to determine uniquely the
third one, yet sometimes we give all three of them for more emphasis. We
can now give the main definition.

Definition 1.6. A Hermitian metric g on a complex manifold (M,J) is called
a Kähler metric if its Kähler form is closed, i.e. dω = 0.

It is immediate to verify that ω has bidegree (1, 1) and, being ∂-closed, its
class defines an element of H1,1

∂
(M). On a Kähler manifold it turns out that

we can find, locally, a function that generates the Kähler form, i.e. ω = i∂∂f
for a Kähler potential f unique up to a constant. This is due to the following
well known lemma.

Lemma 1.7 (Local ∂∂-Lemma). Let α be a real closed (1, 1)-form on the
unit disc U ⊂ Cn. Then there exist a smooth function f ∈ C∞(U) such that
α = i∂∂f .

1.2 Hodge Theory and Kähler identities

On a compact Hermitian manifold (M2n, g, J, ω) one can define the Hodge-∗
as the map Ωp,q(M,C)→ Ωn−p,n−q(M,C) defined by

ϕ ∧ ∗ψ = g(ϕ, ψ) volg

for all forms ϕ, ψ ∈ Ωp,q(M,C) and where volg is the volume form of (M, g).
By the compactness of M and using integration we can consctuct a L2 Her-
mitian inner product on forms, namely

〈ϕ, ψ〉 :=

ˆ
M

ϕ ∧ ∗ψ for ϕ, ψ ∈ Ωp,q(M,C)

with respect to which ∗ is an isometry.
We can define the following operators

∂∗ = − ∗ ∂∗ : Ωp,q(M,C)→ Ωp−1,q(M,C)

∂
∗

= − ∗ ∂∗ : Ωp,q(M,C)→ Ωp,q−1(M,C),

which turn out to be formal adjoints of ∂ and ∂, i.e. such that 〈∂ϕ, ψ〉 =
〈ϕ, ∂∗ψ〉 and 〈∂ϕ, ψ〉 = 〈ϕ, ∂∗ψ〉. Let d∗ = − ∗ d∗ be the adjoint of d with
respect to the L2 product. We can construct three differential operators
acting on forms out of these six, namely

∆d = dd∗ + d∗d
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∆∂ = ∂∂∗ + ∂∗∂

∆∂ = ∂ ∂
∗

+ ∂
∗
∂

called d- (resp ∂-, ∂-) Laplacian.
Consider now the kernels of these operators. Let

Hp,q(M) = {α ∈ Ωp,q(M)|∆∂α = 0}

and call its elements ∂-harmonic (p, q)-forms. The integers hp,q(M) :=
dimHp,q(M) are called the Hodge numbers of M . We can now state the
following important theorem even in a more general setting than the Kähler
one.

Theorem 1.8 (Hodge). On a compact Hermitian manifold the numbers
dimHp,q(M) are finite. Moreover we have the orthogonal decomposition

Ωp,q = Hp,q(M)⊕ ∂Ωp,q−1(M)⊕ ∂∗Ωp,q+1(M).

In particular any Dolbeault class in Hp,q

∂
(M) has a unique harmonic repre-

sentative, that is we have the isomorphism Hp,q

∂
(M) ' Hp,q

∂
(M)

A consequence of the Hodge Theorem is the following lemma, a key of
many arguments in complex geometry.

Lemma 1.9 (Global ∂∂-Lemma). Let (M,J) a compact complex manifold
and β a d-exact real (1, 1) form. Then there exist a smooth real function
f ∈ C∞(M) such that β = i∂∂f .

In the Kähler case with Kähler form ω we consider another operator
L : Ωp,q(M,C)→ Ωp+1,q+1(M,C) defined by wedging with ω, i.e. Lα = α∧ω.
Its adjoint with respect to the L2 product is denoted by L∗ and can be
computed to be L∗ = (−1)p+q ∗ L∗ on Ωp,q. We have the following well
known identities.

Proposition 1.10 (Kähler identities). On a compact Kähler manifold we
have

[L, ∂∗] = i∂, [L, ∂
∗
] = −i∂

[L, ∂] = i∂
∗
, [L∗, ∂] = −i∂∗.

Moreover ∆d = 2∆∂ = 2∆∂.

A consequence of the Kähler identities is the well known Hodge decom-
position. Define Hp,q(M,C) to be the space of complex d-closed (p, q)-forms
modulo complex d-exact (p, q)-forms. We then have
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Theorem 1.11. On a compact Kähler manifold we have the following

Hr(M,C) =
⊕
p+q=r

Hp,q(M,C)

and that Hp,q(M,C) = Hq,p(M,C).

With the additional fact given by the Serre duality ∗ : Hp,q(M)
'→

Hn−p,n−q(M) we have the following corollary about Hodge numbers.

Corollary 1.12. Let M2n be a compact Kähler manifold with Hodge numbers
hp,q and Betti numbers hk =

∑
p+q=k h

p,q. For 0 ≤ p, q ≤ n we have

1. hp,q is finite;

2. hp,p ≥ 1 and hn,n = h0,0 = 1;

3. hp,q = hq,p = hn−p,n−q;

4. The odd Betti numbers are even.

1.3 Chern classes and the Calabi-Yau theo-

rem

We briefly recall here the notion of Chern class associated to complex vector
bundles. Let E → M be a complex vector bundle of rank r on the complex
manifold M . Let ∇ be a connection on E with curvature form Ω. We define
the following functions fk on the space of complex r × r matrices given by

det(A+ λI) = fr(A) + λfr−1(A) + . . .+ λr−1f1(A) + λr.

The map fi is a polynomial of degree i and is GL(r,C)-invariant. In particular
fr = det and f1 = tr.

Back to the vector bundle with connection (E,∇), for each i = 1, . . . , r
consider, for the 2i-form

ci(E,∇) := fi

(√
−1

2π
Ω

)
called the i-th Chern form. The following fact holds.

Proposition 1.13. The form ci(E,∇) is d-closed hence it defines a deRham

class in H2i(M). If ∇̃ is another connection on E then ci(E, ∇̃) and ci(E,∇)
are cohomologous.
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This allows to give the following definition.

Definition 1.14. The cohomology class of ci(E,∇), denoted by ci(E) is
called the i-th Chern class of the vector bundle E.

If E = TMC is the complexified tangent bundle of a complex manifold
M , then the i-th Chern class is called the i-th Chern classes of M and is
denoted by ci(M).

We will focus only on the first Chern class of vector bundles and complex
manifolds.

Definition 1.15. A compact complex manifold is said to be Fano or positive
(resp. anti-Fano or negative) if its first Chern class can be represented by
a real positive (resp. negative) (1, 1)-form. Recall that a (1, 1)-form α is
positive if iα(X,X) > 0 for all (1, 0)-fields X 6= 0.

The following proposition relates the first Chern class of a manifold with
its Ricci form ρ = Ric(J ·, ·).

Proposition 1.16. On a Kähler manifold M with Ricci form ρ the first
Chern class c1(M) is represented by 1

2π
ρ.

One can ask whether the converse of Proposition 1.16 holds. That is,
on a Kähler manifold M and for any real closed (1, 1) form α representing
2πc1(M), in other words whether there exist a Kähler metric on M whose
Ricci form equals α.

The following theorem states the celebrated Calabi conjecture proved by
Yau.

Theorem 1.17. Let (M, g, ω) be a compact Kähler manifold. Then any
real (1, 1)-form ρ representing 2πc1(M) is the Ricci form of a unique Kähler
metric h whose Kähler form is cohomologous to ω.

There is the following corollary.

Corollary 1.18. Let M be a compact Kähler manifold. If c1(M) = 0 then
it admits a Ricci-flat Kähler metric. If it is Fano then it admits a Kähler
metric with positive Ricci curvature.

Combining this corollary with an argument of Bochner (see e.g. [35]) one
can prove the following.

Proposition 1.19. A compact Kähler manifold with positive first Chern
class has vanishing first Betti number. In particular it has no nonzero har-
monic 1-forms.
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1.4 Contact structures

We now move to odd dimensional manifolds and we recall some definition
and facts about (almost) contact manifolds. We follow [9, 11].

Definition 1.20. A smooth odd-dimensional manifold M2n+1 is said to be a
(strict) contact manifold or to carry a contact structure if it admits a global
differential form η ∈ Ω1(M), called contact form, such that

η ∧ (dη)n 6= 0 (1.1)

everywhere on M .

Such a form defines on M a distribution of hyperplanes and clearly for any
nowhere zero function f , the form fη is also a contact form defining the same
distribution of hyperplanes. Conversely every distribution of hyperplanes
D ⊂ TM on M is locally defined by the kernel of a local 1-form. It is
globally defined if, and only if, the real line bundle TM/D is trivial. In some
references, e.g. [40], what we call a contact structure is called coorientable
contact structure.

Such hyperplane distribution D is called the contact distribution. By
Frobenius theorem, condition (1.1) implies that D is not integrable. From
now on, a contact manifold will be as in Definition 1.20 unless otherwise
specified. We have the following Proposition/Definition.

Proposition 1.21. On a contact manifold (M, η) there exist a unique vector
field ξ such that

η(ξ) = 1, ιξdη = 0 (1.2)

which is called the Reeb vector field of the contact structure.

1.5 Almost contact structures

The following is a known fact about contact manifolds. We refer to [9] for
its proof.

Theorem 1.22. Let M2n+1 be a contact manifold. Then its structure group
can be reduced from GL(2n+ 1,R) to U(n)× 1.

This result leads to the definition of an almost contact structure. Namely,

Definition 1.23. A manifold of dimension 2n+1 whose structure group can
be reduced from GL(2n+ 1,R) to U(n)× 1 is said to be almost contact.



8 CHAPTER 1. PRELIMINARIES

However, for our purpose, another structure is more convenient. We
provisionally call it (ξ, η,Φ)-structure.

Definition 1.24. A (ξ, η,Φ)-structure on a differentiable manifold M2n+1 is
a triple formed by a vector field ξ, a 1-form η and a (1, 1)-tensor field Φ on
M satisfying

η(ξ) = 1 and Φ2 = − id +η ⊗ ξ. (1.3)

The following properties, sometimes inserted in the definition, actually
follow.

Lemma 1.25. On a (ξ, η,Φ)-structure the tensor fields are such that Φξ = 0
and η ◦ Φ = 0.

Now we introduce a compatibility notion for a Riemannian metric on M .

Definition 1.26. A Riemannian metric g on M is said to be compatible with
the (ξ, η,Φ)-structure if

g(Φ·,Φ·) = g − η ⊗ η. (1.4)

Setting one of the arguments of (1.4) equal to ξ, we immediately see that
η and ξ are the Riemannian dual of each other with respect to g.

We now have the following fact.

Proposition 1.27. Compatible metrics always exists and are not unique.

Proof sketch. Start with any Riemannian metric h′ and let h = h′(Φ2·,Φ2·)+
η ⊗ η, that is still a Riemannian metric. Finally define

g =
1

2

(
h+ h(Φ·,Φ·) + η ⊗ η

)
(1.5)

that is still Riemannian and satisfies (1.4). The uniqueness obviously does
not hold since one can start with any metric h′.

The relation (1.4) and the fact that η] = ξ allow to construct the so called
Φ-bases namely local orthonormal frames of the form {X0 = ξ,X1,ΦX1, . . . Xn,ΦXn}.

The following theorem explains why we introduced the (ξ, η,Φ)-structures.

Theorem 1.28. Every (2n+1)-manifold admitting a (ξ, η,Φ)-structure also
admits a reduction of its structure group to U(n)×1. Conversely every almost
contact manifold admits a (ξ, η,Φ)-structure.
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So it makes sense to say that (ξ, η,Φ) is an almost contact structure and
we will say so in the following.

Let us now see how almost contact metric structures and contact structure
relate. Given an almost contact metric structure, consider the bilinear form
given by

F (X, Y ) = g(ΦX, Y )

which is easily seen to be a 2-form by definition of the almost contact metric
condition.

Definition 1.29. An almost contact structure (ξ, η′,Φ) is compatible with
the contact structure (M, η) if η′ = η, ξ is the Reeb vector field of η and
F = dη.

We now have the following proposition that links the contact structures
with the almost contact ones.

Proposition 1.30 ([9, p. 25]). If (M, η), then there exists an almost contact
metric structure (η, ξ,Φ, g) (with same η) such that the fundamental 2-form
equals dη.

Definition 1.31. We call (η, ξ,Φ, g) the associated almost contact structure
to the contact structure η or more simply we shall call (η, ξ,Φ, g) a contact
metric structure.

1.6 Normality and Sasakian structures

Consider the manifold C(M) = M × R+ which is called the cone of M . Let
r > 0 be the coordinate on the second factor. We see M identified with the
submanifold M × {1} ⊂ C(M). We define on it a tensor field of type (1, 1)
by

J(X, f∂r) = (ΦX − fξ, η(X)∂r) (1.6)

which is easily seen to be an almost complex structure, that is J2 = − id.
We use this to give the following notion.

Definition 1.32. An almost contact manifold (M,Φ, η, ξ) is said to be nor-
mal if the endomorphism J defined above has vanishing Nijenhuis tensor
NJ = 0.

The vanishing NJ can be related to the vanishing of the Nijenhuis tensor
NΦ of Φ on M . Namely, one can compute1 that the vanishing of NJ is

1Using the convention dη(X,Y ) = Xη(Y ) − Y η(X) − η([X,Y ]), that is without the
one-half coefficient.
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equivalent to the vanishing of the following tensor fields on M

N (1) = NΦ + dη ⊗ ξ
N (2)(X, Y ) = (LΦXη)Y − (LΦY η)X

N (3) = LξΦ
N (4) = Lξη.

These tensor fields have the following properties.

Proposition 1.33. On any almost contact structure (η, ξ,Φ) the vanishing
of N (1) implies the vanishing of all others. Moreover, on a contact metric
structure (η, ξ,Φ, g) the fields N (2) and N (4) vanish and N (3) vanishes if, and
only if, ξ is Killing for g.

We consider now the case of a contact metric manifold (η, ξ,Φ, g) where
the field ξ is Killing for g. In this case we say the manifold has a K-contact
structure. We have just seen, in Proposition 1.33, a characterization of this
property.

Such property gives quite a rigidity for curvature. Namely

Proposition 1.34. On a K-contact manifold (M2n+1, η, ξ,Φ, g), every plane
containing ξ has sectional curvature equal to 1. In particular Ric(ξ, ξ) = 2n.

The converse of the statement about the Ricci curvature also holds, giving
a further characterization of the K-contact condition.

Theorem 1.35. A contact metric manifold M2n+1 is K-contact if, and only
if, Ric(ξ, ξ) = 2n.

We now state the contact-geometric definition of the main object of this
thesis.

Definition 1.36. If a contact metric structure (η, ξ,Φ, g) is normal (i.e. if
its associated almost contact metric structure is) then (η, ξ,Φ, g) is called
Sasakian.

We prefer to state the main properties of such structures in the next
chapter where a more direct definition will be given.

1.7 Foliations

In this section we briefly recall the definition and main facts about folia-
tions. We shall follow [58] for the definition in terms of foliated atlases and
distributions, then we will talk about transverse structures.
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Let q ≥ 1 be an integer. The object we will model on foliations of
codimension q is Rn together with the family of affine subspaces parallel to
Rn−q. Consider the second projection π : Rn−q×Rq → Rq and we call vertical
leaves the inverse images by π of points of Rq.

A local diffeomorphism ϕ : U → U ′ of Rn is said to be a local automor-
phism of the model foliation if in components it is such that

ϕ(x, y) = (ϕ1(x, y), . . . , ϕn−q(x, y), ϕn−q+1(y), . . . , ϕn(y)).

If x ∈ U , the connected component of x of the trace in the vertical leaves is
called the vertical plaque. The family of all such local diffeomorphisms is a
pseudogroup denoted by Γn,q. We are ready now for the main definition.

Definition 1.37. Let M be a n-dimensional manifold. A foliated atlas of
codimension q is an atlas on M whose transition maps belong to Γn,q.

A foliation of codimension q on M is a foliated maximal atlas Â.

An element ϕ : U → Rn of Â is called foliated chart and its domain is
called a distinguished open set. The inverse image of the vertical plaque of
ϕ(x) for any x ∈ U is called plaque of x in U . It depends only on x and U
as the coordinate changes respect the vertical plaques. The local coordinates
(x, y) ∈ Rn−q × Rq in a foliated chart are called foliated or distinguished.
In distinguished coordinates, the plaques are given by the equations yi =
const, i = 1, . . . , q.

Let us now see how a codimension q foliation on a n-dimensional manifold
determines a distribution of the same codimension. Let x be a point of a
foliated manifold and U a distinguished open set around it with foliated
coordinates (x, y). Then define a distribution by taking the subspace Ex ⊂
TxM spanned by the derivatives ∂

∂x1

∣∣
x
, . . . , ∂

∂xp

∣∣
x

where p = n− q.
This does not depend on the choice of the foliated chart and by construc-

tion the distribution E is smooth.
A smooth distribution is completely integrable if it is the distribution

associated to a foliation in the way just defined. By the well known Frobenius
theorem, a distribution is completely integrable if, and only if, it is involutive.

Let us now introduce the concept of leaf. We have defined it directly for
the model foliation, now we introduce a definition that allows the general-
ization of it to any foliation.

Definition 1.38. Let x0 be a point on a foliated manifold M . The leaf Lx0
passing through the point x0 is the set of points that can be reached from x0

via piecewise differentiable paths whose tangent vector at any point belong
to the correspondent subspace in the associated distribution.
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One can show that any leaf admits a natural structure of p-dimensional
submanifold of M .

We now introduce the concept of transverse structure. We follow [11]
which in turn follows [58]. Let now M be a foliated manifold with a foliation
F . We denote by TF the subalgebra of Γ(TM) of vector fields tangent to
the leaves of F .

Definition 1.39. A vector field X on a M is called foliate if for every field
V tangent to the leaves the Lie bracket [V,X] is still tangent to the leaves.
The Lie algebra of such fields is denoted by fol(M,F).

We have an exact sequence of vector bundles

0 −→ E −→ TM
πQ−→ Q −→ 0 (1.7)

where E is the integrable distribution given by the foliation and Q is the
quotient called normal bundle of the foliation. Any foliate vector field X
defines, by projection, a section X of Q and it follows from the definition
of foliate that this is independent of the coordinates along the leaves. The
set of such sections is a Lie algebra trans(M,F) called the Lie algebra of
transverse vector fields which fits into the following exact sequence

0 −→ TF −→ fol(M,F) −→ trans(M,F) −→ 0.

On trans(M,F) the Lie bracket is defined by [X,Y ] = [X, Y ].
A transverse frame at x ∈M is a q-ple of sections (Y1, . . . , Yq) that gives

a basis of the fiber Qx at x. One can collect all transverse frames at all points
of M and obtain a principal GL(q,R)-bundle over M which we denote by
LT (M,F).

If G is a subgroup of GL(q,R) we denote by πT : PT (M,G,F)→ M the
corresponding principal G-subbundle. As in the classical case, we see a point
z ∈ LT (M,F) lying on the fiber over x ∈M as an isomorphism z : Rq → Qx.
The bundle LT (M,F) and its G-subbundles have a 1-form given by

〈θ,X〉 = z−1πQπT ∗X

which we use to define a foliation on LT (M,F) by means of the distribution

ET z = {v ∈ TzLT (M,F) : ιvθ = ιvdθ = 0}. (1.8)

It can be proved that the distribution (1.8) is integrable, so it defines a
foliation FT on LT (M,F) which is called the lifted foliation.
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Definition 1.40. Let G ⊂ GL(q,R) be a Lie subgroup and PT (M,G,F) a
principal G-subbundle of LT (M,F). We say that PT (M,G,F) is a transverse
G-structure if for all z ∈ PT (M,G,F), it is ET z ⊆ TzPT (M,G,F).

Examples of transverse G-structures are when G = O(q), giving rise to
Riemannian foliations or, when q = 2m and G = GL(m,C) (resp. U(m))
giving rise to transverse almost complex structures (resp. transverse Hermi-
tian structures).

Let us now focus on Riemannian foliations. We can define the tensor on
M given by

gT (X, Y ) = 〈z−1πQX, z
−1πQY 〉 forX, Y ∈ TπT (z)M

which defines a nonnegative symmetric bilinear form and has kernel E ⊗
TM + TM ⊗ E. Thus it defines a Riemannian metric on Q and it is called
a transverse Riemannian metric.

Transverse Riemannian metrics on a foliated manifold are in correspon-
dence with transverse O(q)-structures.

1.8 Fundamentals of orbifolds

In this section we recall a structure that arises when one deals with foliation
and their leaf spaces, the notion of orbifold. These were first introduced
by Satake [65] under the name of V-manifolds in 1956 and he immediately
developed Riemannian geometry on them in [66]. The complex counterpart
was introduced at the same time by Baily [3, 4] where he develops a Hodge
theory on complex V-manifolds and proves an analogue of the Kodaira em-
bedding theorem. The concept was retaken by Thurston in 1980 in [74] where
these object, called orbifolds, were used in the study of 3-manifolds. For this
treatment we follow [11]. See also [10].

Let us now state the definition. Let X be a Hausdorff paracompact space.

Definition 1.41. A smooth local uniformizing system or smooth orbifold
chart (resp. complex ) is a triple (Ũ ,Γ, ϕ) where Ũ is an open subset of Rn

(resp. Cn) containing the origin, Γ is a finite group of diffeomorphisms (resp.

biholomorphisms) acting effectively on Ũ and ϕ : Ũ → U is a continuous
map onto an open set U ⊂ X such that ϕ ◦ γ = ϕ for all γ ∈ Γ and induces
a homeomorphism Ũ/Γ ' U .

An injection between orbifold charts (Ũ ,Γ, ϕ) and (Ũ ′,Γ′, ϕ′) is a smooth

(resp. holomorphic) embedding λ : Ũ → Ũ ′ such that ϕ′ ◦λ = ϕ and Γ′ ≤ Γ.

An smooth orbifold atlas (resp. complex ) is a family {Ũi,Γi, ϕi} of local
uniformizing systems such that
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(i) X =
⋃
i Ui where Ui := ϕi(Ũi);

(ii) Given two local uniformizing systems (Ũi,Γi, ϕi) and (Ũj,Γj, ϕj) and
a point x ∈ Ui ∩ Uj there exist an open neighborhood Uk of x and a

chart (Ũk,Γk, ϕk) such that there are injections λik : (Ũk,Γk, ϕk) →
(Ũi,Γi, ϕi) and λjk : (Ũk,Γk, ϕk)→ (Ũj,Γj, ϕj).

An atlas is said to be a refinement of another if any chart of the latter
inject into some chart of the former. Two atlases are equivalent if they admit
a common refinement. We have now finally the following.

Definition 1.42. A smooth orbifold (resp. complex ) is a paracompact Haus-
dorff space together with an equivalence class of smooth (resp. complex)
orbifold atlases.

Let X be an orbifold and fix an orbifold chart (Ũ ,Γ, ϕ). For any x ∈ ϕ(Ũ)
we choose a point p ∈ ϕ−1(x) and consider the isotropy subgroup Γp ⊆ Γ. Its
conjugacy class depends only on x so we define this class to be the isotropy
subgroup at x and denote it by Γx. We call regular the points x ∈ X that
have trivial Γx or singular otherwise. The subset of regular points form a
dense subset of X. If all points are regular we have a smooth manifold, which
are trivial examples of orbifold by taking Γi = 1 in the local uniformizing
systems.

One of the notions from the differential geometry of manifolds that holds
also for orbifolds is the one of vector and principal bundles.

Let X be an orbifold with atlas {Ũi,Γi, ϕi}.

Definition 1.43. An orbibundle or V-bundle with structure group G and
fiber a G-manifold F is a fiber bundle BŨi

over Ũi with fiber F and structure
group G together with homomorphisms hŨi : Γi → G such that

(i) if b lies in the fiber over x̃i ∈ Ũi then bhŨi(γ) lies in the fiber over γ−1x̃i
for all γ ∈ Γi;

(ii) if λji : Ũi → Ũj is an injection, then there is a bundle map λ∗ji :
BŨj
|λji(Ũi) → BŨi

such that if γ ∈ Γi and γ′ ∈ Γj is the unique element

such that λji ◦ γ = γ′ ◦ λji then hŨi(γ) ◦ λ∗ji = λ∗ji ◦ hŨj(γ
′); and if λkj

is another such injection then (λkj ◦ λji)∗ = λ∗ji ◦ λ∗kj.

Analogously to the manifold case we define the rank of an orbibundle and
a principal orbibundle.

Let us now consider the total space of an orbibundle. By taking small
enough orbifold charts on X we can assume that BŨi

= Ũi × F . The action
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of Γi extends to Ũi×F by γ · (x̃i, b) = (γ−1x̃i, bhŨi(γ)) and we define Γ∗ to be
the stabilizer of (xi, b). The total space E of the orbibundle will then admit
an orbifold structure with local uniformizing systems (BŨi

,Γ∗i , ϕ
∗
i ).

In the case of a principal orbibundle we have the following fact.

Proposition 1.44. Let P be the total space of a principal orbibundle on an
orbifold X. Then P is a smooth manifold if, and only if, the hŨi are injective
for all i.

At last, we mention the link between foliations and orbifolds, that is the
reason why we are interested in them.

Theorem 1.45 ([58, Prop. 3.7]). The leaf space of a Riemannian foliation of
codimension q with compact leaves admits a q-dimensional orbifold structure
that makes the natural projection an orbifold submersion.

Let us now conclude with examples of orbifolds. We have remarked ear-
lier that a smooth (or complex) manifold is trivially a smooth (or complex)
orbifold. Let us now explore a less trivial example that will come up again
later.

Example 1.46 (Weighted projective space). Fix an array w = (w0, . . . , wn)
of positive integers and consider the action of C∗ on Cn+1 given by

λ · (z0, . . . , zn) = (λw0z0, . . . , λ
wnzn). (1.9)

We consider the orbit space CP(w) of Cn+1 \ {0} and we call it weighted
projective space with weights w.

We now describe a family local uniformizing systems on it that makes it
a complex orbifold. Cover CP(w) with open sets

Ui = {[z0 : . . . : zn] ∈ CP(w) : zi 6= 0}

and consider the sets Ũi = {(z0, . . . , zn) ∈ Cn+1 : zi = 1} and let Γi be the

cyclic group of wi
th roots of unity acting on Ũi by restricting (1.9) and leaving

the origin fixed. It is Ũi/Γi ' Ui and the map ϕi is given by ϕi(yi) = [ywi ]

where we call yi = (yi0, . . . , ŷii, . . . , yin) ∈ Ũi to be a generic element and
[ywi ] = [ywii0 , . . . , ŷ

wi
ii , . . . , y

wi
in ].

An orbifold atlas is then given by these orbifold charts plus their non-
trivial intersections, namely the ones of the form (Ũi0∩. . .∩Ũik ,Γi1...ik , ϕi1...ik)
where Γi1...ik = Zgcd(wi1 ,...,wik ). The maps are given by ϕi1...ik(y) = [ygcd(wi1 ,...,wik )]
in the same notations introduced earlier.

Let us now describe the injection maps on double intersections Ũi ∩ Ũj.
There exist a local uniformizing system (Ũij,Γij, ϕij). The injections are
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λij,i : Ũij → Ũi given by λij,i(y) = ygcd(wi,wj)/wi , choosing the principal

branch, and analogously λij,j : Ũij → Ũj and any other injection satisfying
ϕi ◦ λij,i = ϕij differs by a different choice of branch.



Chapter 2

Sasakian manifolds and
examples

2.1 Direct definition and main facts

Sasakian geometry can be seen as the intersection of Riemannian, Contact
and CR geometry, just like Kähler geometry is the intersection of complex,
Riemannian and symplectic.

One could start with a Riemannian manifold (M, g) and consider its Rie-
mannian cone (C(M) = M × R+, g = r2g + dr2) where R+ is the open half
line (0,+∞) and r a coordinate on it.

Definition 2.1. (M, g) is said to be Sasakian if and only if its Riemannian
cone is Kähler (of complex dimension n+ 1).

So M has dimension 2n + 1. We have an integrable almost complex
structure J ∈ End(TC(M)). Notice that the field R = r∂r on the cone has
norm g(R,R) = r2. We can use it to define the vector field ξ = J(r∂r) which
is tangent to M . Indeed it is g-orthogonal to R due to the fact that g is
J-Hermitian, so it does not have a component along ∂r (which is on its own
orthogonal to TM). The g-norm of ξ is g(ξ, ξ) = 1

r2
g(R,R) = 1. A first

useful set of properties that follow from O’Neill’s computations for warped
products are the following.

Lemma 2.2. The Levi-Civita connection ∇ of (C(M), g) has the following
properties, for any X, Y vector fields on CM tangent to M .

∇RR = R (2.1)

∇RX = ∇XR = X (2.2)

∇X , Y = ∇XY − g(X, Y )R (2.3)

17
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where ∇ is the Levi-Civita connection of (M, g). In particular [R, TM ] = 0.

Proposition 2.3. The fields R and ξ are real holomorphic. That can be
usefully rewritten as

∇Aξ = ∇JAR = JA; ∇JAξ = ∇AR = A. (2.4)

Proof. Compute, using that ∇J = 0 and Lemma 2.2

(LRJ)Y = [R, JY ]− J [R, Y ]

= ∇RJY −∇JYR− J(∇RY −∇YR)

= −∇JYR + J∇YR

= −JY + JY = 0.

and (LRJ)R = [R, ξ]− J [R,R] = 0. Moreover, using again that J is parallel
and (2.4)

(LξJ)(Y ) = [ξ, JY ]− J [ξ, Y ]

= ∇ξJY −∇JY ξ − J(∇ξY −∇Y ξ)

= −∇JY ξ −∇YR

= ∇YR−∇YR = 0

and we conclude.

Let us consider the 1-form η = dc log r on the cone.1

Proposition 2.4. The function f = 1
2
r2 is a global Kähler potential of

C(M), i.e. the Kähler form is ω = ddcf = d(r2η).

Remark 2.5. The cone C(M) is what is known as the symplectization of
(M, η).

Proposition 2.6. The function f = 1
2
r2 is a Kähler potential for the cone

metric, i.e. ddcf = 2i∂∂f = ω.

Proposition 2.7. The field ξ is tangent to M , has unit length and is Killing,
i.e. Lξg = 0.

Proof. ξ is obviously tangent to M being orthogonal to R. As g is J-
Hermitian we have

g(ξ, ξ) =
1

r2
g(JR, JR) = 1.

1We use the convention dcf = Jdf = −df ◦ J .
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We note en passant that Lξg = 0. Indeed for vector fields A,B on the cone
we have

g(∇Aξ, B) = g(J∇Ar∂r, B) = ω(A,B)

which is skew-symmetric, hence ∇ξ is g-skewsymmetric so ξ is Killing for g.
Now, using that g(X,R) = 0 for all X tangent to M ,

(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X)

=
1

r2

(
g(JX, Y ) + g(JY,X)

)
=

1

r2

(
ω(X, Y ) + ω(Y,X)

)
= 0.

Consider the distribution D = ker η on M . It will give a splitting

TM = D ⊕ Lξ (2.5)

where Lξ is the trivial line bundle tangent to ξ. This is an orthogonal split-
ting, indeed if X ∈ ker η we have 0 = η(X) = g(ξ,X).

Let us now define an endomorphism Φ of TM by Φξ = 0 and Φ|D = J |D.

Proposition 2.8. The endomorphism Φ has the properties

(i) Φ2 = − id +η ⊗ ξ;

(ii) g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y );

making (D, J |D) a pseudoconvex almost CR structure.

Proof. Property (i) follows from the fact thet J2 = − id and that η ⊗ ξ(Z)
gives the component along ξ of the vector field Z and (ii) follows from the
fact that g is Hermitian. The fact that the CR structure is pseudo convex
follows from the fact that its Levi form can be taken to be ω(J ·, ·) which is
positive definite by definition.

Remark 2.9. The triple (Φ, η, ξ) satisfying the property (i) of Proposition 2.8
is an almost contact structure in the sense of the previous chapter. Being
endowed with a metric g that satisfies also (ii), then it is a metric almost
contact structure.

Let us now prove some other equivalent facts for (M, η,Φ, ξ) to be a
Sasakian manifold.

Proposition 2.10. The endomorphism Φ is such that (so could be defined
as) ΦX = ∇Xξ. Moreover

(∇XΦ)Y = g(ξ, Y )X − g(X, Y )ξ. (2.6)
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Proof. Using that JX = ∇Xξ = ∇Xξ− g(X, ξ)R we can infer that if X ∈ D
then ∇Xξ = JX and also ∇ξξ = 0 since g(∇ξξ, Y ) = −g(ξ,∇Y ξ) = 0 for
all Y being ξ unitary and Killing. So, on TM , the tensors Φ and ∇ξ agree.
Finally, (2.6) is proved in [11, Theorem 7.3.16].

Theorem 2.11. The following are equivalent on a Riemannian manifold
(M, g).

1. There exist a Killing unitary vector field ξ so that the tensor Φ = ∇ξ
satisfies (∇XΦ)Y = g(ξ, Y )X − g(X, Y )ξ;

2. There exist a Killing unitary vector field ξ such that the Riemann cur-
vature tensor satisfies R(X, ξ)Y = g(ξ, Y )X − g(X, Y )ξ;

3. The Riemannian cone of (M, g) is Kähler.

Proof. Let (∇XΦ)Y = ∇XΦY − Φ∇XY . So one can compute, using that
ξ is Killing (see e.g. [11, Lemma 7.3.8]), that R(X, ξ)Y = (∇XΦ)Y so this
establishes the equivalence of the first two conditions.

Define an endomorphism J on TC(M) by

JR = ξ JX = ΦX − η(X)R. (2.7)

It is easy to see it is a complex structure and we compute ∇J . For X, Y
fields on M it is (∇XJ)R = ∇XJR − J∇XR = ∇Xξ − η(X)R − JX = 0.
Also,

(∇XJ)Y = ∇X(ΦY − η(Y )R)− J(∇XY − g(X, Y )R)

= ∇XΦY − g(X,ΦY )R− η(Y )X −Xη(Y )R− Φ∇XY

+ η(∇XY )R + g(X, Y )ξ

= (∇XΦ)Y − (∇Xη)(Y )R− g(X,ΦY )R− η(Y )X + g(X, Y )ξ

= 0.

using (i) and Lemma 2.2. Also (∇RJ)R = (∇RJ)X = 0 hold good, so we
conclude that the cone is Kähler. Finally, it has been proved above that the
Kähler assumption on the cone implies (i), so the proof is complete.

2.2 Characteristic foliation and transverse ge-

ometry

The integral curves of ξ are geodesics, i.e. ∇ξξ = 0. They define a folia-
tion on M called the Reeb foliation. The shape of such leaves gives a first
classification of Sasakian manifolds.
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Indeed if the leaves are closed, they have to be circles. A theorem of
Wadsley says that if the leaves are circles and are geodesics, then M admits
a locally free S1 action (finite isotropy). If there are non closed leaves, their
closure is diffeomorphic to a k-dimensional torus.

Definition 2.12. If the circle action above is (locally) free, the Sasakian
manifold is said to be (quasi-)regular. If the leaves are not circles, the mani-
fold is then irregular.

Moreover, a general foliation theoretic result of Molino stated in the pre-
vious chapter, asserts that in the case the leaves are compact, then the leaf
space carries an orbifold structure and the standard projection from the man-
ifold is an orbifold Riemannian submersion. This fact plus the circle action
will allow us to give a structure theorem for (quasi)regular Sasakian mani-
folds in terms of Kähler leaf spaces, Riemannian submersions and principal
circle bundles.

Let F be the characteristic foliation on M2n+1. As said earlier it is non-
singular and of codimension 2n. Let us now build some geometry on the
normal bundle of the foliation, νF := TM/TF .

Our aim is to give the foliation a transverse Riemannian structure, that
is a metric on the normal bundle identified with (D, J, dη). This is a con-
struction that can be done starting from any foliation on M , that will
split TM = E ⊕ E⊥, where E is an integrable distribution. In our case
E = L and E⊥ = D, that is the splitting (2.5). We write every vector field
X = XD + η(X)ξ. We then define, for X, Y fields on M ,

gT (X, Y ) = g(XD, Y D) (2.8)

Computations give the following.

Proposition 2.13. The following relations occur

(i) g = gT + η ⊗ η;

(ii) gT (X, Y ) = 1
2
dη(X,ΦY ).

Proof. By definition of gT , the D-component of a vector field X is X−η(X)ξ
so by bilinearity we obtain (i). For (ii) we compute

1

2
dη(X,ΦY ) =

1

2

(
Xη(ΦY )− ΦY η(X)− η([X,ΦY ])

)
=

1

2

(
g(∇Xξ,ΦY )− g(∇ΦY ξ,X)

)
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=
1

2

(
g(ΦX,ΦY )− g(Φ2Y, ξ)

)
=

1

2

(
(g − η ⊗ η)(X, Y ) + g(X, Y )− g(η ⊗ ξ(Y ), X)

)
= gT (X, Y )

Let us now say something about the curvature of the metric gT .

Proposition 2.14. The Levi-Civita connection associated to gT is

∇T
XY =

{
(∇XY )D if X ∈ D
[X, Y ]D if X ∈ L

Proof. One checks that ∇T is indeed a torsion free connection compatible
with gT .

We can now define the O’Neill tensors A and T in the following way

TE1E2 =
(
∇EL1

ED
2

)L
+
(
∇EL1

EL
2

)D
AE1E2 =

(
∇ED1

ED
2

)L
+
(
∇ED1

EL
2

)D
By the same computations that are done in the case of Riemannian submer-
sions ([8]) we can compute the relation between curvatures and transverse
curvatures. In particular we will need it for the Ricci curvatures, namely

Ric = RicT −2g. (2.9)

2.2.1 Basic cohomology and transverse Hodge theory

Let us now describe basic cohomology, a tool that can be defined for any
foliation and, in the Sasakian setting, can be used to describe deformations
of Sasakian structures and to give invariants.

Definition 2.15. Let F be a p-dimensional foliation on M . A k-form α ∈
Ωk(M) is basic if

iξα = 0 and Lξα = 0

for all vector fields ξ tangent to the leaves. Let Ω∗B be the space of basic
forms on M .
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On a foliated chart (U, x1, . . . , xp, y1, . . . , yn−p) of Mn these two conditions
say that a basic k-form ω locally looks like

ω|U =
∑

ωi1,...,ikdy
i1 ∧ . . . ∧ dyik (2.10)

with no dxj’s (contraction property) and where the coefficients do not depend
on xj (Lie derivative property).

Just writing down the Cartan formula for Lie derivatives we can infer
that if α is basic, then dα also is. So we can consider the restriction of the
exterior differential

dB = d|ΩpB : Ωp
B → Ωp+1

B .

The complex (Ω∗B, dB) is called basic DeRham complex and its cohomology
ring H∗B(F) the basic cohomology ring of the foliation F . A crucial property
of the basic DeRham cohomology is the existence of the following exact
sequence that relates it with the usual DeRham cohomology

Theorem 2.16. The following sequence, called the Gysin sequence,

. . .→ Hp
B(M)→ Hp(M,R)→ Hp−1

B (M)→ Hp+1
B (M)→ . . . (2.11)

is exact.

This follows from the exact sequence of complexes

0→ Ωp
B(M)→ Ωp(M)T → Ωp−1

B (M)→ 0 (2.12)

where T is the compact Abelian subgroup (hence torus) of the isometry group
of M given by the closure of the leaves of the characteristic foliation.

We use now the fact that the transverse geometry is Kähler to define the
basic (p, q)-forms.

As it is done in classical complex geometry, the transverse complex struc-
ture splits the normal bundle as

ν(F) = ν(F)1,0 ⊕ ν(F)0,1

and similarly its dual. This induces a splitting of the bundle of r-forms and
consequently a splitting

Ωr
B =

⊕
p+q=r

Ωp,q
B .

We can also construct the basic Dolbeault operators ∂B and ∂B that will share
the properties of the usual ones on complex manifolds, namely dB = ∂B +∂B
and dcB = i(∂B − ∂B).
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The cohomology of the complex (Ω•,•B , ∂B) is called basic Dolbeault coho-
mology. Both the basic deRham and the basic Dolbeault cohomologies share
some of the properties of their classical counterparts. There is a transversal
Hodge theory, mainly developed by El-Kacimi Alaoui and others [33]. There
is a transverse Hodge star operator that we can define on a basic r-form by

∗Bα := ∗(η ∧ α) = (−1)rιξ ∗ α.

It allows to construct the adjoint of dB defining δB = − ∗B dB∗B which
together define the basic d-laplacian

∆B = δBdB + dBδB

on basic r-forms allowing us to define the basic harmonic forms by taking
its kernel. A first result in transversal Hodge theory states that every basic
cohomology class has a unique harmonic representative, just like the in the
classical setting. We recall a couple of results, holding in the wider K-contact
setting.

Theorem 2.17. Let (M, g, ξ, η) be a compact K-contact manifold and let
H•B(M) be its basic cohomology. Then the following hold.

(i) The basic deRham groups Hk
B(M) are finite dimensional and vanish for

r > 2n;

(ii) H2n
B (M) ' R;

(iii) The class [dη]B is a nontrivial element of H2
B(M);

(iv) H1
B(M) ' H1

dR(M)

(v) There is a transverse Poincaré duality Hr
B(M) ' H2n−r

B .

The numbers hrB(M) := dimHr
B(M) are called basic Betti numbers. One

can also define the basic Euler characteristic out of them.
Let us now consider the basic Dolbeault cohomology. It also has analog

properties with its complex geometry counterpart.

Theorem 2.18. Let M be a compact Sasakian manifold. Then

(i) Hn,n
B (M) ' R;

(ii) The class [dη]B is nonzero and lies in H1,1
B (M);

(iii) Hp,p
B (M) has positive dimension for p ≥ 1.
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(iv) There is a transverse Hodge Decomposition

Hr
B(M) =

⊕
p+q=r

Hp,q
B (M);

(v) There is a transverse Serre duality Hp,q
B (M) ' Hn−p,n−q

B (M)

The numbers hp,qB (M) = dimHp,q
B (M) are called basic Hodge numbers.

One can define also the operator L : ωkB(M)→ ωk+2
B (M) by Lα = α∧dη,

and its adjoint Λ = − ∗B L∗B. We also have the operators ∂∗ = − ∗B ∂∗B
and ∂

∗
= − ∗B ∂∗B and their corresponding Laplacians.

Lemma 2.19. For these operators the usual Kähler identities hold.

There also is a transverse ∂∂-Lemma, due to El Kacimi-Alaoui [33].

Lemma 2.20. Let M be a compact Sasakian manifold, and let ω, ω′ be basic
real closed (1, 1)-forms in the same basic cohomology class. Then there exists
a smooth basic function f such that ω′ = ω + i∂B∂Bf .

Finally we consider the transverse Ricci form ρT = RicT (J ·, ·) which is
of Hodge type (1, 1), real valued and dB-closed. The basic cohomology class
cB1 = [ρT/2π] ∈ H1,1

B (Fξ) is called first basic Chern class. If cB1 admits a
positive (resp. negative)2 representative, then M is said to be transverse
Fano (resp. transverse anti-Fano).

2.3 General structure theorems

In the regular (resp. quasi-regular) case, the leaf space Z = M/F = M/S1

has the structure of a compact manifold (resp. orbifold). The transverse
Kähler structure pushes down to a Kähler structure on Z that makes it in a
Kähler manifold or orbifold and gives a Riemannian submersion. Precisely
we have the following.

Theorem 2.21. Let Z be the space of leaves of a compact regular (or quasi-
regular) Sasakian manifold (M, g). Then Z admits the structure of a Kähler
manifold (or orbifold) and the projection π : (M, g) → (Z, h, ωh) is a Rie-
mannian (orbifold) submersion with totally geodesic fibers. Moreover the
class [ωh] is (proportional to) an integral class in the (orbifold) cohomology
group H2

(orb)(Z,Z).

2In the sense of real valued (1, 1)-forms.
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A few words of explanation. The manifold M is a principal circle (orbi)-
bundle on Z in which the splitting TM = D⊕Lξ together with the Lie(S1)-
valued, that is real valued 1-form η define a connection. The form ωZ is the
transverse Kähler form ωT = 1

2
dη, so ωZ is proportional to the curvature

form of such bundle. Since 2π times the first Chern class is represented by
the curvature form, it follows that the class of ω is proportional to an integral
class in H2(Z,Z). A Kähler (orbi)fold whose Kähler form has such property
is called Hodge (orbi)fold.

There is a converse of the previous theorem.

Theorem 2.22. Let (Z, h, ωZ) be a compact Hodge manifold or orbifold and
let M be the principal circle (orbi)bundle defined by [ωZ ] and let η be a 1-
form on M such that dη = 2π∗ωZ. Then the metric π∗h + η ⊗ η makes M
a Sasakian manifold or orbifold. The total space M is a smooth manifold if
the local uniformizing group inject into the structure group S1.

2.4 Examples

The first example, right from the definitions, is the (2n+ 1)-sphere.

Example 2.23. View S2n+1 ⊂ R2n+2 and consider its standard contact struc-
ture

η =

( n∑
j=0

(yjdxj − xjdyj)
)∣∣∣∣

S2n+1

whose Reeb vector field is well known to be
∑

j Hj where Hj = yj∂xj −xj∂yj .
Moreover the standard complex structure of R2n+2 is

J =
∑
j

(yjdxj ⊗ ∂yj − xjdyj ⊗ ∂xj).

After restricting it to the sphere and extending it to be zero on ξ we get a
tensor Φ that makes (S2n+1, ground, η, ξ,Φ) a Sasakian manifold. The Reeb
flow is, after switching to complex coordinates,

ϕt(z0, . . . , zn) = e2πit(z0, . . . , zn). (2.13)

The leaves are circles and the leaf space is CPn with the Fubini-Study metric.

Definition 2.24. A Sasaki transformation on (M, g, η,Φ) is a diffeomor-
phism belonging to

Aut(M, g, η, ξ,Φ) := {f ∈ Iso(M, g) : f∗ξ = ξ}.
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From this, it follows that f ∗η = η from the properties of the Reeb field
and contact form and f∗Φ = Φf∗ from the equation g(X, Y ) = dη(X,ΦY ) +
η(X)η(Y ).

Example 2.25. Continuing the sphere example, one sees that the its auto-
morphism group is O(2n+ 2) ∩ Sp(n+ 1) = U(n+ 1).

Theorem 2.26. Every complete homogeneous Sasaki (M, g′) manifold with
Ricg′ ≥ δ > −2 is regular and compact and admits a Sasaki-Einstein metric
g compatible with the contact structure. Moreover M it is the total space of
a principal circle bundle over a generalized flag manifold with its standard
Kähler-Einstein metric. By means of the previous theorem, the converse is
also true.

The regularity follows from a general well-known result of Boothby and
Wang in the contact setting, namely that any homogeneous contact manifold
must be regular. The compactness follows from the Ricci curvature assump-
tion with a slight generalization of Myers’ theorem for Sasaki manifolds due
to Hasegawa and Seino. The generalized flag manifolds come up because
there is a transitive group of isometries that preserves the Kähler structure
on the leaf space, so there is a homogeneous Kähler manifold and by known
results it has to be a generalized flag. Some other Sasakian manifolds can be
embedded in weighted Sasakian spheres. First a definition.

Definition 2.27. Let M be a Sasakian manifold with tensors Φ and ξ and
N be a submanifold. If Φp(TpN) ⊂ TpN and ξp ∈ TpN for every p ∈ N then
N is said to be a Sasakian submanifold of M .

Consider a polynomial F : Cn+1 → C such that, with respect to the
action of C∗ defined earlier, F (λ · z) = λdF (z) for some integer d. The zero
locus of F has only one singularity in the origin, so the intersection LF :=
{F = 0}∩S2n+1 is a submanifold called link. Using the real notation and the
Cauchy-Riemann equation, one can verify by computation that ξw · F = 0
and Φw(ker dF ) ⊂ ker dF , so LF is a Sasakian submanifold of the weighted
Sasakian sphere. The leaf space ZF of LF is just the zero locus of F seen in
the weighted projective space P(w). There is a characterization of the Fano
property of ZF , namely

Proposition 2.28. ZF is Fano if and only if
∑
wj =: |w| > d.

A particular example is when the polynomial is of the form

F (z) =
n∑
j=0

z
aj
j
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for some array a of positive integers. In this case the link is denoted by
the simpler notation L(a) and the polynomial and link are called Brieskorn-
Pham.

There is a result of Brieskorn that gives necessary and sufficient condition
on the array a for the link to be an integral or rational homology sphere.
Moreover Boyer, Galicki and Kollár gave sufficient conditions by means of
inequalities on the aj for the link to be admit a quasi-regular Sasaki-Einstein
metric.

Moreover, Ghigi and Kollár [41] proved that if the ai are pairwise coprime
then the link is homeomorphic to a sphere and a characterization for the
existence of Sasaki-Einstein metrics.

In particular the link L(2, 3, 7, 43, 1333) is diffeomorphic to the standard
S7 admits a 41 complex dimensional family of Sasaki-Einstein deformations.
The other oriented diffeomorphism classes of S7 also admit several hundred
of inequivalent families of structures.

We now describe an example of family of Sasaki-Einstein 5-folds exhibited
by Gauntlett, Martelli, Sparks and Waldram [39]. These can be both quasi-
regular and irregular and besides they are the first example of irregular Sasaki
metrics that up to that time (2004) were conjectured not to exist [22]. They
are explicitly given locally and then it is proved that can be extended to
a complete compact 5-fold which turns out to be S2 × S3. Moreover the
isometry group of these manifolds acts with cohomogeneity one. It has been
proved later that they can be the only 5-folds whose isometry group acts in
cohomogeneity one.

2.5 Einstein and η-Einstein metrics

In this section we consider Sasaki-Einstein metrics, we introduce the notion
of η-Sasaki-Einstein metric and we prove a result that interrelates this notion
about the metric on a manifold with other properties of the cone metric and
of the transverse metric.

From Theorem 2.11 it follows that R(X, ξ)ξ = X − g(X, ξ)ξ. So we infer
that the Ricci tensor3 of M2n+1 is such that

Ric(ξ, ξ) = 2n. (2.14)

Definition 2.29. A Sasakian manifold (M, g, η, ξ,Φ) is said to be η-Sasaki-

3Ric(X,Y ) := tr(Z 7→ R(X,Z)Y ) i.e. contracting the second and forth indices and
without dividing by dimM − 1.
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Einstein if there exist constants4 λ, ν ∈ R such that

Ricg = λg + νη ⊗ η. (2.15)

By the computation at the beginning of the section, it follows that λ+ν =
2n. So in particular, if g is Einstein, the Einstein constant has to be 2n hence
the Ricci curvature is positive and the scalar curvature is constant equal to
2n(2n+ 1). As a corollary of Myers’ theorem we get.

Corollary 2.30. A complete Sasaki-Einstein manifold is compact with finite
fundamental group.

Proposition 2.31. A Sasakian metric on M2n+1 is η-Einstein if, and only
if, the transverse metric is Kähler-Einstein.

Proof. Let M be η-Sasaki-Einstein with constant λ, i.e.

Ric = λg + (2n− λ)η ⊗ η.

Then by the relation (2.9) we can easily infer that

RicT = Ric +2g = (λ+ 2)g + (2n− λ)η ⊗ η
= (λ+ 2)gT + (2n+ 2)η ⊗ η
= (λ+ 2)gT

where the last equality holds because η ⊗ η vanishes on the subbundle D.
Conversely if the transverse metric is Einstein, i.e. RicT = τgT , then on D
it will hold that Ric +2g = τ(g − η ⊗ η) that is

Ric |D = (τ − 2)g|D (2.16)

If X ∈ D then

Ric(X, ξ) = 2nη(X) = 0 = (τ − 2)g(ξ,X) + (2n− τ + 2)η ⊗ η(X, ξ) (2.17)

and finally

Ric(ξ, ξ) = 2n = (τ − 2)g(ξ, ξ) + (2n− τ + 2)η ⊗ η(ξ, ξ). (2.18)

Equations (2.16), (2.17) and (2.18) together prove that

Ric = (τ − 2)g + (2n− τ + 2)η ⊗ η

and we are done.

4If they are functions, they are necessarily constant if dimM > 3.
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We can now prove the property that relates the three metrics for a
Sasakian structure.

Proposition 2.32. The following are equivalent.

(i) The metric g is Sasaki-Einstein, i.e. Ricg = 2ng;

(ii) The cone metric is Ricci flat, i.e. Ricg = 0.

(iii) The transverse metric is Kähler-Einstein RicT = 2(n+ 1)gT .

Proof. The equivalence between (i) and (ii) follows from the expression of
the Ricci tensor for a warped metric. Indeed this is (see [8])

Ricg(R,R) = 0

Ricg(X,R) = 0

Ricg(X, Y ) = Ricg(X, Y )− 2n

r2
g(X, Y ) = Ricg(X, Y )− 2ng(X, Y ).

The equivalence between (i) and (iii) is the case λ = 2n and τ = 2(n+ 1) of
Proposition 2.31.



Chapter 3

Deformations of Sasakian
structures and applications

The study of deformations of a Sasakian structure (η, ξ,Φ, g) is feasible when
one keeps some of the tensors or structures fixed and varies others.

3.1 Fixed CR structure (Type I)

We start considering deformations of a Sasakian structure (η, ξ,Φ, g) with
underlying CR structure (D = ker η, J = Φ|D) that keep the CR structure
fixed but deform the Reeb foliation. So the contact subbundle has to be the
same and also the restriction of Φ to it. The new tensors are of the form

η̃ = fη, ξ̃ = ξ + ρ (3.1)

where f is a positive function and ρ is an infinitesimal transformation of
(D, J), that is it lies in cr(D, J) := {X ∈ aut(D) : LXJ = 0}. The Lie
derivative of J makes sense as [X,D] ⊆ D.

The Reeb condition forces the relation

f =
1

1 + η(ρ)
.

As long as η(ξ̃) > 0, the form η̃ is still contact, its kernel D is unchanged

and we require Φ|D = Φ̃|D. We define also the fields

Φ̃ = Φ− Φξ̃ ⊗ η̃
g̃ = dη̃ ◦ (Φ̃× id) + η̃ ⊗ η̃.

(3.2)

They both will satisfy the compatibility conditions in the definition of an
almost contact structure with compatible metric.

31
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The normality of the deformed almost contact structure obtained follows
from the fact that the almost CR structure is still integrable since it was not
changed and the relation Lξ̃Φ̃ = 0 holds since it is trivial on ξ̃ and on D is

equivalent to LρΦ = 0. It is not automatic that ξ̃ is Killing with respect to
g̃, so we assume it and the following fact follows.

Proposition 3.1. If the deformation (3.1) applied to a Sasakian structure
is through K-contact structures, then it is through Sasakian structures.

For any strictly pseudoconvex almost CR structure (D, J) on a manifold
M , we denote by F(D, J) the set of all K-contact structures having (D, J)
as underlying almost CR structure.

Definition 3.2. A deformation defined by (3.1) within F(D, J) is said to be
of type I.

Let us now relate such space with the Lie algebra of infinitesimal CR
automorphisms. Fix an almost CR structure (D, J) and assume it is what
is called of Sasaki type, i.e. there exist a Sasakian structure that admits it
as underlying almost CR structure. This means that the set F(D, J) is not
empty. Fix a structure S0 = (η0, ξ0,Φ0, g0) in it.

Proposition 3.3. A contact metric structure S lies in F(D, J) if and only
if its Reeb field ξ ∈ cr(D, J).

We now identify the set F(D, J) with a cone of cr(D, J). Namely, after
fixing a Sasaki structure S0 ∈ F(D, J) with contact form η0, define

cr+(D, J) = {ξ ∈ cr(D, J) : η0(ξ) > 0}.

Let us state some first properties of this set. Recall that a subset C of a
vector space such that if v ∈ C then λv ∈ C for all λ > 0 is called a cone.

Proposition 3.4. The set cr+(D, J) is a convex cone in the Lie algebra
cr(D, J) and moreover it is invariant by the adjoint action of the group of
CR transformations.

This helps to give the following description of F(D, J).

Proposition 3.5. The map (ξ, η,Φ, g) 7→ ξ defines a bijection ι : F(D, J)→
cr+(D, J).

Proof. Let S ′ and S ′′ two Sasakian structures in the same type I deformation
class that have the same Reeb vector field ξ, that is ρ = 0 hence f = 1. So also
η′ = η′′ and Φ′ = Φ′′ being the CR structure fixed. Fix now ξ ∈ cr+(D, J).
Define η = 1

η0(ξ)
η0. Then η(ξ) = 1 and iξdη = 0 because ξ fixes D. Let

Φ = Φ0 − Φ0ξ ⊗ η and g in a compatible way. This contact metric structure
belongs to F(D, J) by the preceding proposition.
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It is proved in [13] that the Lie algebra cr(D, J) decomposes as tk⊕p where
tk is the algebra of a maximal torus Tk of dimension 1 ≤ k ≤ n + 1 and p
is a completely reducible Tk-module. Moreover every element of cr+(D, J) is
conjugate to an element in t+k := tk ∩ cr+(D, J).

This allows to identify t+k with cr+(D, J) modulo the action of the group
of CR transformations. It can then be thought as the moduli space of the
Sasakian structures compatible with the fixed CR structure (D, J).

We conclude mentioning that there is a very special case of type I de-
formation, namely when k = 1. In this case the above moduli space is one
dimensional so ρ of definition (3.1) is a multiple of ξ. This is the case of
D-homothetic deformations, defined for real a > 0 as

η′ = aη

ξ′ =
1

a
ξ

g′ = ag + a(a− 1)η ⊗ η
Φ′ = Φ.

They were first introduced by Tanno (see [73] and references therein) and we
shall see some of their applications below.

3.2 Fixed Reeb field (Type II)

We now wish to keep the Reeb field fixed and change the other pieces of data.
Fix a Sasakian structure S = (η, ξ,Φ, g) on a closed manifold M and let

F(ξ) = {(η′, ξ,Φ′, g′) : is a Sasakian structure on M}.
The 1-form ζ = η−η′ is basic so dη and dη′ define the same basic cohomology
class in H2

B(M).1 Fixing an almost complex structure J on the normal bundle
of Fξ, we define F(ξ, J) to be the set of Sasakian structures in F(ξ) that have
the same transverse complex structure, that is

F(ξ, J) = {Sasakian structures (η′, ξ,Φ′, g′) : πνΦ
′ = Jπν}

where πν : TM → ν(Fξ) is the projection onto the normal bundle of the
characteristic foliation ν(F) = TM/Lξ where as above Lξ is the line bundle
singled out by the characteristic foliation.

We now state a result that tells us about a parameterization of such
space. We denote by C∞B (M)/R the space of basic smooth functions up to
constants. More precisely we have

1Of course the basic cohomology does not change since the Reeb foliation is the same.
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Proposition 3.6 ([11, 13]). The space F(ξ, J) is modeled on C∞B (M)/R ×
C∞B (M)/R × H1(M,Z). That is, if (η, ξ,Φ, g) ∈ F(ξ, J) then any other

structure (η̃, ξ̃, Φ̃, g̃) is determined by two basic functions ϕ, ψ and an integral
form α in the following way

η̃ = dcϕ+ dψ + α

Φ̃ = Φ− (ξ ⊗ (η̃ − η)) ◦ Φ

g̃ = dη̃ ◦ (id⊗Φ̃) + η̃ ⊗ η̃,
(3.3)

where the dc is done with respect to the fixed J and of course we see α ∈
H1(M,R).

Moreover, if endowed with the compact-open topology as sections of vec-
tor bundles, the group H1(M,Z) labels its connected components. We can
now define a second kind of Sasakian deformations.

Definition 3.7. A deformation within a connected component of F(ξ, J) of
the form η 7→ η + ζ is said to be of type II.

Remark 3.8. The corresponding transverse Kähler forms are related by ω′T =
ωT + i∂B∂Bϕ so the deformation takes place in the same basic Kähler class.

More generally we can consider the set of Sasakian structure that share
the same Reeb foliation Fξ, clearly a superset F(Fξ) ⊃ F(ξ). Consider now
the set

F+(Fξ) =
⋃
a∈R+

F(a−1ξ)

and its image F−(Fξ) under the conjugation of Sasakian structure that has
a sign changed to all tensor fields except of course the metric. We have then

Proposition 3.9. There is a disjoint decomposition

F(Fξ) = F+(Fξ) ∪ F−(Fξ).

Proof. For the not obvious inclusion, let S ′ ∈ F(Fξ). Being the Reeb foliation
unchanged, it has to be ξ′ = 1

f
ξ for some smooth function f and also η′ = fη.

Then

0 = iξ′dη
′ =

1

f
(ξ · f)η − df

so df is zero on any vector in the contact subbundle hence f only depends
on the leaf coordinates. Our aim is to prove that f has to be constant.
Differentiating we get

d(ξ · f) ∧ η + ξ · fdη = 0.

It is enough to show that the first term vanishes. It is equal to dh(ξf) ∧ η
and every horizontal vector field kills ξf so we conclude.
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Definition 3.10. Two Sasakian structures are a-homologous if there exist
some a > 0 such that ξ′ = 1

a
ξ and [dη′]B = a[dη]B.

We report here a result about the variation formulas occurring when a
type II deformation is performed. They are proved like the ones in the Kähler
case (see e.g. [8, p. 93]) and we will need in Chapter 4 the variation of the
scalar curvature under type II deformations.

Proposition 3.11 ([11, 13]). Let ϕ be a basic function on a Sasakian man-
ifold (M, η, ξ,Φ, g) defining the type II deformation ηϕ = η + 1

2
dcϕ. Let

dµϕ, ρ
T
ϕ , s

T
ϕ be the volume element, transverse Ricci form and transverse scalar

curvature of the deformed structure, respectively. Then the following varia-
tional formulas occur.

Dϕdµϕ|ϕ=0 = −1

2
∆Bϕdµ

Dϕρ
T
ϕ |ϕ=0 = −i∂∂

(
1

2
∆Bϕ

)
Dϕs

t
ϕ|ϕ=0 = −1

2
∆2
Bϕ+ 2(ρT , i∂∂ϕ).

3.3 Deformations of the transverse complex

structure

Here we introduce a third type of deformation one can perform on Sasakian
structures. Actually they are defined as deformations of a one dimensional
foliation and we shall discuss the existence of compatible Sasakian metrics.
We shall follow [60].

It is known from the deformation theory of Kodaira and Spencer [52]
small deformations of the complex structure of a Kähler manifold still admit
compatible Kähler metrics. This is not the case for deformations of the
characteristic foliation of a Sasakian manifold and we shall introduce an
obstruction to the existence of compatible Sasakian structures.

We start by introducing what we mean by a deformation of a one dimen-
sional foliation, which we shall call a flow. Let M be a closed manifold and
V ⊆ R` an open set.

Definition 3.12. A smooth family of flows on M over V is a flow F̃ on
M × V such that every level Mt := M × {t} is saturated by the leaves of

F̃ for each t ∈ V . We shall call the restricted foliation Ft and denote the
family by {Ft}t∈V .
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It is easy to see that by the saturation property, if a vector field on
M × V is tangent to the leaves then it has no component tangent to V .
So the second projection pr2 : T (M × V ) → TV factors through a map

T (M × V )/T F̃ → TV , whose kernel we call the family of normal bundles of
{Ft}t∈V .

A family of Riemannian flows is a family of flows {Ft}t∈V as above to-
gether with a Riemannian metric g̃ν on the family of normal bundles such
that (Ft, g̃ν |Mt) is a Riemannian flow for each t ∈ V .

Analogously we define a family of transversely holomorphic flows by in-
troducing a complex structure J̃ on the family of the normal bundles such
that (Ft, J̃ |Mt) is a transversely holomorphic flow for each t ∈ V .

Given two such structure, it is easy to define a family of Kähler structures
by introducing a Kähler form and imposing its closedness as a form on M×V .

Definition 3.13. A Riemannian flow on M is called isometric if there exist
a metric g on M and a vector field ξ never vanishing and tangent to the
leaves such that Lξg = 0. The pair (g, ξ) is then called a Killing pair.

We now start to define the obstruction we said above.
Given a Killing pair (g, ξ) we consider the dual form η = ξ[ with respect

to g. Then dη is a basic 2-form.

Definition 3.14. The basic Euler class of the foliation is defined to be, up
to constants, R∗[dη]B ∈ H2

B(M).

We now consider the (0, 2)-component of dη. It is ∂-closed since a com-
putation shows that ∂(dη0,2) = (ddη)0,3 = 0.

Definition 3.15. The (0, 2)-component of the basic Euler class is defined
to be R∗[dη0,2]B ⊆ H2

B(M). If it vanishes we say that the Euler class is of
(1, 1)-type.

It must be proved that this definitions do not depend on the choice of the
Killing pair, as it is done in [60, Lemma 3.18] where it is proved that two
Killing pairs give rise to the same (0, 2)-components of the basic Euler forms
up to multiplication of a nonzero real number.

As an example of basic Euler class of type (1, 1) there are of course
Sasakian structures, because dη is a transversal Kähler form. So we have
the following.

Lemma 3.16. The basic Euler class of the transversally holomorphic flow
of a Sasakian manifold is of type (1, 1).

We are now ready to state one of the main results of Nozawa’s paper.
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Theorem 3.17. Let V be an open neighborhood of the origin in R` that pa-
rameterizes a smooth family of transversally holomorphic Riemannian flows
(Ft, gt, Jt) on a closed manifold M . Assume that (F0, g0, J0) is the underly-
ing transversally Kähler structure of a Sasakian metric (g, η). If the basic
Euler class of the family is of type (1, 1) for each t ∈ V then there exist an
open neighborhood V1 of 0 in V and a smooth family of Sasakian metrics
{(gt, ηt)}t∈V1 such that (g0, η0) = (g, η) and that the Reeb foliation of (gt, ηt)
is (Ft, Jt) for every t ∈ V1.

The following corollary will be useful to us.

Corollary 3.18. A deformation of a positive Sasakian structure is of (1, 1)-
type, in particular when the original Sasakian metric is Einstein or more
generally when it is transversally Fano.

3.4 Applications to Betti numbers and pinch-

ing results

3.4.1 Vanishing results for Betti numbers

The earliest application of deformations may be dated back in the 60s by
Tanno in [73]. He applied the D-homothetic deformations to infer the van-
ishing of the first two Betti numbers of a Sasakian manifold under some
curvature assumptions. He does that by proving the non existence of har-
monic 1-forms or 2-forms on Sasakian manifolds that have some positivity
requirements, exploiting the fact that if a form is harmonic with respect to
some metric, then it is still harmonic with respect to a D-homothetically
deformed one. More precisely the key result for the first Betti number is the
following.

Theorem 3.19. On a compact K-contact manifold M there is no harmonic
1-form w such that Ric(w], w]) + 2g(w], w]) ≥ 0 everywhere and with strict
inequality at some point. In particular if Ric +2g is positive definite then
b1(M) = 0.

From which it follows the corollary

Corollary 3.20. If a compact K-contact manifold M2n+1 has sectional cur-
vature > − 3

2n−1
then b1(M) = 0.

This is true because if we assume the sectional curvature to be > −K for
some positive K then we can compute, with respect to an orthonormal basis



38 CHAPTER 3. DEFORMATIONS OF SASAKIAN STRUCTURES

(ξ = e0, e1, . . . , e2n) with respect to which the Ricci tensor is diagonal and
using that the sectional curvature of any plane containing ξ is 1

Rii =
2n∑
k=0

g(R(ei, ek)ei, ek) =
2n∑
k=1

Kik + 1 > 1− (2n− 1)K;

and from this one can estimate Ric(w,w)+2g(w,w) > 3(1−(2n−1)K)g(w,w)
and apply the Theorem.

Then to study the second Betti number he uses the splitting of harmonic
2-forms in harmonic forms of pure and hybrid type.

Definition 3.21. A 2-form α on a Sasakian manifold is said to be of pure
type if α(Φ·,Φ·) = α and of hybrid type if α(Φ·,Φ·) = −α.

Every harmonic 2-form can be written as a sum of a pure and a hybrid
one, that is w = wp + wh where

wp(X, Y ) =
1

2

(
w(X, Y ) + w(ΦX,ΦY )

)
wh(X, Y ) =

1

2

(
w(X, Y )− w(ΦX,ΦY )

)
.

This uses that for any harmonic form w of any degree on a Sasakian manifold
it is iξw = 0. A first result is

Theorem 3.22. A compact Sasakian manifold M2n+1 with strictly positive
sectional curvature has no harmonic 2-forms of hybrid type. Moreover if
n ≥ 2 and the sectional curvature is > − 3

2n−1
then there are no harmonic

2-forms of pure type either.

So we have

Corollary 3.23. If a Sasakian manifold of dimension ≥ 5 has positive Rie-
mannian pinching, then has vanishing second Betti number.

The methods of proof still involve some expression similar to Ric(w,w) +
2g(w,w) for forms of higher degree.

3.4.2 Relations with pinching

On a Sasakian manifold we consider

H = sup{K(ΦX,X)|X ∈ Dx, x ∈M}
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L = inf{K(ΦX,X)|X ∈ Dx, x ∈M}.

IfH+3 > 0 we set µ = L+3
H+3

and we say that the manifold is µ-holomorphically
pinched. This means that the transverse curvature is µ-holomorphically
pinched, being K(X,ΦX) = KT (X,ΦX) − 3 for a unit section X of D.
This is invariant under D-homothetic deformations.

We say that a Sasakian manifold has µ-holomorphic pinching if there
exist positive constants µ,K such that µ ≤ K(ΦX,X) ≤ K for all x on the
manifold and X in the tangent space at x. The following facts are proved

Theorem 3.24. Let M be a Sasakian manifold. Then the following hold.

1. If M is µ-holomorphically pinched with µ > 1
2
, then b2(M) = 0.

2. If M is µ-holomorphically pinched with µ > 2
3
, then it is D-homothetically

related to a metric with has strictly positive sectional curvature.

3. If M is 4
5
-holomorphically pinched, then it is D-homothetically related

to a metric with Riemannian pinching 1
4
. Hence, M is homeomorphic

with a sphere if simply connected and complete.

4. If M is µ-holomorphically pinched with µ > 1
2
, and has constant scalar

curvature, then there is a D-homothetically related metric having cur-
vature constantly 1.

These follow from the fact that a µ-holomorphically pinched Sasakian
metric is D-homothetically related to one of Riemannian pinching δ̃ ≥ 3µ−2

4−3µ
.

3.5 Weighted Sasaki spheres and links

We go back to type I deformations in their full generality. and we apply
them to the standard Sasaki sphere. This dates back to Takahashi’s work
[72]. Fix an array w = (w0, . . . , wn) of positive real numbers and deform the
Reeb vector field of the standard Sasaki sphere by adding the vector

ρw =
n∑
j=0

(wj − 1)
(
yj∂xj − xj∂yj

)
∈ aut(S2n+1)

which belongs to the algebra of infinitesimal automorphisms of the standard
Sasaki sphere (isomorphic on its own to u(n + 1)). So the new Reeb field
becomes ξw = ξ + ρw and the other tensors are defined by (3.2). If the
weights are positive integers then the Sasaki structure will be quasi regular
and has a weighted projective space P(w) as leaf space.
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Now consider the weighted action of C∗ on Cn+1 defined by λ · z =
(λw0z0, . . . λ

wnzn). Let F be a complex polynomial of weighted degree d,
namely that F (λ · z) = λdF (z) and such that its only singularity is in the
origin. Consider Lw,F = {F = 0}∩S2n+1 called the link of F with weights w.
This can be given the Sasakian structure as a submanifold of the weighted
sphere, being ξw tangent to it and its tangent space invariant under Φw.

Now consider the particular case of a polynomial of the form Fa(z) =∑
z
aj
j for a vector of positive integers a. This will be of weighted degree

d = lcm(aj) with respect to the weighted action with weights wj = d/aj. Its
link, denoted more conveniently by L(a) is called Brieskorn-Pham link.

The following theorem holds

Theorem 3.25. Let |w| =
∑
wj. Then the link Lw,F of the polynomial F

of w-degree d is

1. Fano if and only if |w| > d;

2. antiFano if and only if |w| < d;

3. of vanishing first Chern class if and only if |w| = d.

So in particular we have the following.

Corollary 3.26. The Brieskorn-Pham link L(a) is

1. Fano iff
∑

1
aj
> 1;

2. antiFano iff
∑

1
aj
< 1;

3. of vanishing first Chern class iff
∑

1
aj

= 1.

Some of these manifolds provide examples of non-round Einstein met-
rics on spheres, Einstein metrics for other odd-dimensional manifolds among
which homology and exotic spheres. For more details see [71] and references
therein.

3.6 Transverse Calabi problem

El Kacimi-Alaoui [33] proved that several typical results in complex and
Kähler geometry also hold for the transverse geometry of a Riemannian fo-
liation, other than the transverse ∂∂-Lemma 2.20 we have also a transverse
Yau theorem.



3.6. TRANSVERSE CALABI PROBLEM 41

Theorem 3.27 (Transverse Yau theorem). If cB1 is represented by a real
basic (1, 1)-form, then it is 1

2π
times the Ricci form of a unique transverse

Kähler metric ωT in the same basic cohomology class.

Now recall that the Ricci form for a Sasakian manifold is defined as
ρg(X, Y ) = Ricg(X,ΦY ) and is related to the transverse one by ρg = ρT−2dη.
Then the Sasakian setting the transverse Yau theorem reads as follows.

Theorem 3.28. Let (M, η, ξ,Φ, g) be a Sasakian structure whose first basic
Chern class is represented by the real basic (1, 1)-form ρ

2π
. Then there exist

a unique Sasakian structure in F(ξ) cohomologous to the old one such that
ρ − 2dη1 is its Ricci form and η1 = η + dcϕ for some basic function ϕ and
the other tensor fields are given by (7.5).

Indeed, by the transverse Yau theorem and the transverse ∂∂-Lemma,
there exist a transverse metric with Kähler form ωT1 and a smooth basic
function ϕ such that ωT1 = dη + ddcϕ. So, since a contact form η is related
to its transverse Kähler form by ωT = dη, we see that a choice that works is
η1 = η + dcϕ.

Boyer, Galicki and Matzeu [12] apply it to find η-Sasaki-Einstein metrics
on certain manifolds, starting from their transverse Kähler-Einstein metric
found as solution, when exists, of a transverse Calabi problem. They pose
the following.

Problem. Given a manifold M with Sasakian structure (ξ, η,Φ, g) and with
a basic first Chern class cB1 that is represented by either a positive definite,
negative definite real basic (1, 1) form ρT , or if cB1 vanishes, does there exist
a Sasakian structure in F(Fξ) with an η-Einstein metric g′?

This boils down to solving a transverse Monge-Ampère equation for a
basic ϕ

det
(
gTi + ∂i∂ϕ

)
= det(gTi) exp(−kϕ+ F ) (3.4)

which admits solutions in the k < 0 and k = 0 case. Recalling that a metric is
η-S-E with constant λ if and only if its transverse metric is KE with constant
λ+ 2 we have an analogue of the Aubin and Yau theorem.

Theorem 3.29. If the class cB1 is zero or can be represented by a negative
definite (1, 1)- form, then there exists a Sasakian structure in F(Fξ) on M
with an η-Sasaki-Einstein metric g with constant λ = −2 in the first case
and λ < −2 in the second.

So the case cB1 ≤ 0 is unobstructed. The analogue of the theorem in
Kähler geometry stating that every Fano manifold admits a metric with
positive Ricci curvature reads as follows in the Sasakian setting.
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Theorem 3.30. Let S = (g, η) be a positive Sasakian structure on M2n+1.
Then M admits a Sasakian structure S ′ which is a-homologous to S and has
positive Ricci curvature.

Proof. Let ρ/2π be a positive (1, 1)-form that represents cB1 (M). Applying
the transverse Yau theorem we can find a metric g1 whose Ricci form is
ρ− 2dη and whose transverse Ricci curvature is positive. Now perform a D-
homothetic deformation for some a > 0 and get (gT2 , η2) = ( 1

a
gT1 ,

1
a
η1). Now

the Ricci tensor of g2 satisfies

Ricg2 |D2 = RicTg2 −2gT2

= RicTg1 −
2

a
gT1

that is positive for large enough a, being M compact and RicTg1 positive. We
are set on D. Now from known curvature properties of Sasaki metrics we have
Ric2(X, ξ2) = 2nη2(X) which proves that Ric2 is positive. By construction
g2 is a-homologous to g.

The Sasakian structure also lets us have a variation of Myers’ theorem,
namely.

Theorem 3.31. Let g be a complete Sasakian metric on M2n+1 with cB1 >
δ > 0. Then M is compact with finite fundamental group.

Proof. Apply the transverse Yau theorem and a D-homothetic deformation
like in the proof of the previous theorem, to get a Sasakian structure (g2, η2)
and estimate

Ricg2 |D2 = RicTg2 −2gT2

= RicTg1 −
2

a
gT1

> δ − 2

a
> 0

for large enough a. Moreover from Ric2(X, ξ2) = 2nη2(X) we obtain that
Ric2 > δ and we can apply the classical Myers theorem to conclude.
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Sasaki-Ricci solitons and their
deformations

4.1 Definitions and examples

Definition 4.1. A Sasakian metric g on M is a Sasaki-Ricci soliton if there
exist c ∈ R and a transversely holomorphic complex vector field X commut-
ing with ξ such that

RicT +cgT = LXgT . (4.1)

As in the Riemannian case we call it steady if c = 0, shrinking if c < 0 and
expanding if c > 0.

The requirement for X to commute with ξ comes from being consistent
with [36] which requires the function η(X) to be basic and with the require-
ment for a soliton to be a self similar solution of the Sasaki-Ricci flow, that
is for X to be integrated to an automorphism of the foliation. So both X
foliate and [ξ,X] ∈ D imply [ξ,X] = 0.

As in the Kähler case we see that the assumption for X to be transversally
holomorphic is redundant. Taking the imaginary part of (4.1) we see that
ImX is transversally Killing. We then apply the following result holding in
the more general setting of transversally Kähler harmonic foliations on closed
manifolds.

Theorem 4.2 ([49, 59]). Let Y be a foliate vector field of a foliation as
above. Then Y it is transversally Killing if, and only if, it is transversally
holomorphic and transversally divergence-free.

The definition of [36] forces X to be also Hamiltonian to force the exis-
tence of a function whose gradient has (1, 0)-part equal to the D-component
of X.

43
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Let us now see how it is straightforward to construct examples from
Kähler-Ricci solitons by applying the typical construction of circle bundles
in Sasakian geometry.

Proposition 4.3. Let (W,h, ω) a compact Kähler-Ricci soliton with gradient
function f such that [ω] is integral. Then there exist a principal circle bundle
M on W that admits a Sasaki-Ricci soliton.

Proof. Being ω a Hodge form, we can perform the standard construction
in Sasakian geometry and obtain the Sasakian principal circle bundle p :
(M, g, η, ξ)→ W . By definition we have that

RicT = p∗Rich, p∗h = gT , LX̃g
T = p∗

(
LXh

)
(4.2)

where in the last equation p∗X̃ = X and because gT is a basic tensor.
Let us also define f̃ = f ◦p, basic by construction. The complex field ∂]f̃

is then the horizontal lift of ∂]f .
Up to normalization, we take the complex Hamiltonian holomorphic field

X̃ = −if̃ξ + ∂]f̃ , that commutes with ξ and satisfies the SRS equation
because of (4.2).

In some cases this can be done also in the non-compact and not necessarily
Hodge situation.

Example 4.4 (Riemannian submersion onto the Hamilton cigar soliton). There
exist a steady Sasaki-Ricci soliton on R3 which is a Riemannian submersion of
the steady gradient Kähler-Ricci soliton given by the Hamilton cigar metric
on R2 (see e.g. [21]).

Let (x, y, z) be coordinates on R3 and p : R3 → R2 be the projection onto
the first two coordinates. The Kähler form of the cigar is ω = 2

1+x2+y2
dx∧dy.

Let us start by finding a contact form η on R3 such that 1
2
dη = p∗ω. A

possible η is found by assuming it to be of the form

η = adx+B(x, y)dy + λdz (4.3)

for an appropriate function B and λ 6= 0. By solving the PDE obtained by
imposing 1

2
dη = p∗ω one can take

B(x, y) =
4√

1 + y2
arctan

(
x√

1 + y2

)
.

Since λ 6= 0 and ∂B
∂x

we have that dη∧η 6= 0. The Reeb vector field is ξ = 1
λ
∂z.

We take the metric to be g = p∗g0 + η ⊗ η where g0 is the cigar metric. We
then define

1

2
Φ =

(
∂x −

a

λ
∂z

)
⊗ dy +

(
B(x, y)

λ
∂z − ∂y

)
⊗ dx
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which satisfies all compatibility conditions with (g, η) to have a contact metric
structure. Its torsion tensor is

NΦ = − 8

λ(1 + x2 + y2)
∂z ⊗ (dx ∧ dy)

which equals −ξ ⊗ dη, so the tensor NΦ + ξ ⊗ dη vanishes and the contact
metric structure is normal, hence g is Sasakian. The gradient function on
the cigar soliton is f = log(1 + x2 + y2) which we lift to a basic function on
R3 and call f such lift as well. The Hamiltonian holomorphic field on R3 will
be, in transverse complex coordinates,

X = −ifξ + z
∂

∂z

as z ∂
∂z

= ∂]f is the horizontal lift of the (1, 0)-part of grad f . It is such that

[ξ,X] = 0 and RicT = 1
2
LXgT , so that g is a steady Sasaki-Ricci soliton.

4.2 Normalized Hamiltonian holomorphic vec-

tor fields

We make the same assumption as in [36]. Namely we start with a positive
compact Sasakian manifold (M2n+1, g, η, ξ,Φ). If we assume c1(D) = 0 and
normalize, we have 2πcB1 = (2n+ 2)[1

2
dη]B.

Let h be a Ricci potential, that is a real basic function such that ρT −
(2n+2)1

2
dη = i∂B∂Bh and consider the operator ∆h acting on basic functions

as
∆hu = ∆∂B

u− (∂u, ∂h).

Here we have dropped the B subscript and we will do the same in the fol-
lowing as it will be clear from the context.

Remark 4.5. This is the ∂-Laplacian on functions, with respect to the weighted
product 〈f, g〉h =

´
M
fgehµ. Indeed

〈∂∗∂u, v〉h = 〈∂u, ∂v〉h

=

ˆ
M

∂au∂bvg
abehµ

= −
ˆ
M

(
∇b∇bu · v +∇bu∇bh · v

)
ehµ

=

ˆ
M

∆hu · vehµ

with volume form µ = (1
2
dη)n ∧ η.



46 CHAPTER 4. SASAKI-RICCI SOLITONS

We now consider a class of vector fields introduced in [27, 36].

Definition 4.6. A complex vector field X on M commuting with ξ is
called Hamiltonian holomorphic if its projection onto the normal bundle X is
transversally holomorphic and the basic function, sometimes called potential,
u = iη(X) is such that

ιXω
T = i∂Bu.

It is normalized if
´
M
uehµ = 0.

It must then have the form

X = −iuξ + ∂]u = −iuξ +∇juej,

where ej = ∂
∂zi
− ηiξ generate D1,0 ' ν(Fξ)1,0.

We recall a widely known fact.

Lemma 4.7. The subset h = {X : is Hamiltonian holomorphic} is a Lie
subalgebra of the algebra of the algebra of vector fields on M .

Proof. Let X, Y be Hamiltonian holomorphic with potentials u, v.
Their bracket is

[X, Y ] = −i(Xv − Y u)ξ + [∂]u, ∂]v] (4.4)

using the facts that u, v are basic, that the ej’s commute among each other
and with ξ and that dη has basic type (1, 1) so it must vanish when evaluated
on two (1, 0) fields. If we let w := Xv − Y u it is (dropping the B’s and the
T’s for simplicity)

ι[X,Y ]ω = LXιY ω − ιYLXω
= LX(i∂v)− ιY (i∂∂u)

= ιX(i∂∂u)− ιY (i∂∂u)

= i∂(Xv − Y u)

= i∂w.

So [X, Y ] is Hamiltonian holomorphic with potential w.

Let Λ1 be the first eigenspace of ∆h with eigenvalue λ1.

Theorem 4.8 ([36]). We have

1. λ1 ≥ 2m+ 2.
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2. Equality holds if and only if there exists a nonzero Hamiltonian nor-
malized holomorphic vector field.

3. The correspondence Λ1 → hN given by

u 7→ −iuξ + ∂]u

where hN denotes the space of normalized Hamiltonian holomorphic
fields, is an isomorphism.

Proof. 1. We can replicate the computation made in Futaki’s book [35] to
conclude that

(λ− (2m+ 2))‖∂u‖2
h = ‖Dgu‖2

h ≥ 0

for every u in the eigenspace of eigenvalue λ and the norms are taken
using the weighted L2 product and Dg : C∞B (M)C → Γ(ν(Fξ)1,0 ⊗
Ω0,1
B (M)) is the operator such that kerDg = Hg.

2. It means that the map in item 3 is surjective. Let X be a Hamiltonian
holomorphic vector field with potential function u. Then the gT -dual
of the (1, 0)-part of X is a ∂-closed form α such that α = ∂u, which
is the same as ιXω

T = i∂u. This acts as a function u in the Hodge
decomposition α = αH + ∂u would in the Kähler setting. The same
computation in Futaki’s book shows that

∇(−∆hu+ (2m+ 2)u) = 0

which means that the function ∆hu− (2m+ 2)u equals some constant
c. Integrating this equality it we get

ˆ
M

∆hu · ehµ− (2m+ 2)

ˆ
M

uehµ = c volh(M)

which implies c = 0 if we start with a normalized vector field.

3. Being eigenspaces finite dimensional, we have also injectivity, hence
isomorphism.

We can use this correspondence to prove the following.

Proposition 4.9. The subspace hN is a Lie subalgebra of h.
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Proof. Let X, Y ∈ hN be the image of functions u, v via the correspondence.
Then from the proof of Lemma 4.7 we have that the potential of [X, Y ] is
w = Xv − Y u. Its integral is

ˆ
M

wehµ =

ˆ
M

(∂v, ∂u)ehµ−
ˆ
M

(∂u, ∂v)ehµ

=

ˆ
M

∆hv · uehµ−
ˆ
M

∆hu · vehµ

= 0

where in the last equality we use that u and v are eigenfunctions of ∆h with
the same eigenvalue 2n+ 2 and in the penultimate the self-adjointness of ∆h

(see e.g. [36, Eq. (33)]).

4.3 A Lie algebra of infinitesimal transforma-

tions and its decomposition

Let there exist a Sasaki-Ricci soliton (SRS for short) as in [36], i.e. a Sasakian
metric such that

ρT − (2n+ 2)1
2
dη = LX 1

2
dη (4.5)

with Hamiltonian holomorphic normalized vector field X and potential θX
which, by an easy computation (e.g. [36]), is equal to the Ricci potential h
up to a constant. The field X can be written as

X = −iθXξ + ∂]h (4.6)

with
´
M
θXe

hµ = 0. Let the section of D1,0 given by ∂]h = ∂]θX decompose

as X̃ − iJX̃, where J is the transverse complex structure.
Consider the following operators L and L acting on basic functions.

Lu = ∆u− (∂u, ∂h)− (2n+ 2)u = ∆u−X · u− (2n+ 2)u

Lu = ∆u− (∂h, ∂u)− (2n+ 2)u = ∆u−X · u− (2n+ 2)u.

Lemma 4.10. The operators L and L have the following properties.

1. Lu = Lu;

2. Each of them is self-adjoint with respect to the weighted L2-product on
the space of basic functions.

3. L and L commute, so L maps kerL into itself.
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Proof. The first item is just a computation using that the pairing (, ) is
Hermitian and that the Laplacian is a real operator.

For the second, notice that L+ (2n+ 2) id = ∆h is self-adjoint because it
is the ∂-Laplacian of the weighted metric as shown in Remark 4.5.

For the commutativity, it is enough to show [L− L,L] = 0. We have

(L− L)u = (X −X)u = 2i Im(X)u = −2iJX̃u.

This operator commutes with L if and only if JX̃ commutes with the Lapla-
cian (it is a general fact that Killing fields commute with Laplacians) and

that [JX̃,X] = 0 being X̃ transversally real holomorphic.

Let Eλ be the eigenspace of L|kerL of eigenvalue −λ. If u ∈ Eλ ⊂ kerL
then it lies in the (2n+ 2)-eigenspace of ∆h so u defines a normalized Hamil-
tonian vector field Y = −iuξ + ∂]u by the correspondence in Theorem 4.8.

Now we compute the adjoint action of X on hN .

Proposition 4.11. For Y in the image of Eλ it is [X, Y ] = λY .

Proof. The action of X is given by (4.4), namely

[X, Y ] = −i(Xu− Y h)ξ + [∂]h, ∂]u]. (4.7)

Consider the two summands separately. Compute, for u ∈ kerL,

∂](Lu) = 2i∂](JX̃ · u)

= 2i[JX̃, ∂]u]

= 2iJ [X̃, ∂]u]

where the second equality is due to the fact that grad(Kf) = [K, grad f ] for
any Riemannian manifold, Killing vector field K and function f on it. So we
obtain, if u ∈ Eλ,

[∂]h, ∂]u] = [X̃, ∂]u]− i[JX̃, ∂]u]

= − 1

2i
J∂](Lu)− 1

2
∂](Lu)

= −∂](Lu) (4.8)

= λ∂]u.

Now note that Y h = ∂]u · h = ∇iu∇ih = Xu. So

−i(Xu− Y h) = −i(X −X)u = −i(L− L)u = −iλu.

Hence [X, Y ] = λY .
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Consider now the zero eigenspace E0 = kerL∩kerL of L|kerL. Mimicking
Tian and Zhu’s argument [75] we get that for u ∈ kerL∩kerL it is L(Reu) =
L(Imu) = 0, so E0 splits as E ′0 ⊕ E ′′0 , the space of real valued and purely
imaginary functions in kerL ∩ kerL. This corresponds to a splitting of the
image of E0 as h0 = k0 ⊕ k′0. We have

From now on, if p ⊆ h is a Lie subalgebra containing ξ, we let p denote
the quotient p/ξ. The following lemma is basically [77, Lemma 2.11].

Lemma 4.12. The space k0 is formed by the fields whose real part is transver-
sally Killing.

Our goal now is to write a decomposition of some algebra of transversally
holomorphic vector fields, analogously to the case of extremal Sasakian met-
rics. A natural Lie algebra to consider would be fol(M, ξ, J). This is infinite
dimensional as it contains the space of sections of the foliation distribution.
So its projection onto the normal space of the foliation has been considered
in [13, 77]. On the other hand, in analogy of the Kähler-Ricci soliton case,
we are interested only in Hamiltonian fields which in particular are transver-
sally holomorphic, that is h ⊂ fol(M, ξ, J). More precisely, we consider the
projection h onto the normal space, which also is finite dimensional.

As it is said in [36], given a Hamiltonian holomorphic vector field, one
can obtain a normalized one by adding a constant multiple of ξ, so the space
of normalized fields is a set of representatives for the classes of h.

We have already computed the action of X on normalized vector fields,
so we can get also the adjoint action of its class X ∈ h. Recall that the Lie
algebra of infinitesimal Sasaki transformations is defined by

aut(S) = {X ∈ Γ(TM) : LXg = 0,LXη = 0}.

Of course ξ is central in it, so it makes sense to consider the quotient aut(S)/ξ.
Finally, let autT = {Y : LY J = 0,LY gT = 0}. We have the following result.

Theorem 4.13. On a compact Sasaki-Ricci soliton S, the finite dimensional
Lie algebra h admits the decomposition

h = k0 ⊕ Jk0 ⊕
⊕
λ>0

hλ

where k0 is the space in Lemma 4.12 and hλ = {Y ∈ h : [X,Y ] = λY }.
Moreover k0 ⊕ Jk0 is the centralizer in h of X and the space k0 can be

identified with aut(S)/ξ and with autT .
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Remark 4.14. In contrast with the similar decomposition in the case of ex-
tremal Sasakian metrics, here we do not have any summand corresponding
to transversally parallel fields. In fact, SRS are Fano and therefore there are
no basic harmonic 1-forms, hence no transversally parallel fields.

Proof of the theorem. The eigenspace decomposition follows from the adjoint
action of X on hN computed above.

For the last statement, on one hand it is clear that a function in E0 induces
a field that commutes with X in hN so its class belongs to the centralizer
of X. On the other, a class Y induced by a normalized function u ∈ kerL
centralizes X if and only if [∂]h, ∂]u] = 0. From (4.8) we see that in this case
we need to have

Lu = Lu = ∆hu− (2n+ 2)u = const .

Integrating it with the weighted measure we see that the constant has to be
zero, so u ∈ E0.

Let us now prove the statement about the Lie algebra of infinitesimal
Sasaki transformations. In [77, Lemma 2.11] it is proved that for a purely

imaginary basic function f the field V = Re ∂]f lifts to a vector field Ṽ ∈
aut(S) and conversely a vector field Ṽ ∈ aut(S) is such that its projection

is the real part of ∂]f for the purely imaginary function f = iη(Ṽ ). The
∂]-image of purely imaginary functions, followed by the projection onto the
normal bundle is exactly k0 of Lemma 4.12.

There is a well known exact sequence, see e.g. [11],

0→ {ξ} → g′ → autT → H1
B(M) ' H1(M,R).

that means that the first (basic) cohomology group is an obstruction to the
identification aut(S)/ξ ' autT and in the transversal Fano case there is no
such obstruction.

Remark 4.15. In order to be consistent with analogue results in the liter-
ature for the Sasaki extremal case [13, 77] or more generally transversely
Kähler harmonic foliations as in [59] we have stated Theorem 4.13 for the
quotient algebra h/ξ. The computation of the adjoint action together with
Lemma 4.12 prove that a similar decomposition holds for the finite dimen-
sional Lie algebra hN as well although the Lie algebra of infinitesimal Sasaki
transformations cannot fit in the picture since it is not contained in hN .
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4.4 Deformations of Sasaki-Ricci solitons

4.4.1 Generalized Sasaki-Ricci solitons

Here we extend to the Sasakian setting the result obtained for Kähler-Ricci
solitons by Li in [56].

There is a wider class of metric that includes Sasaki-Ricci solitons. In
the following let θX be the potential (up to constant) of a Hamiltonian holo-
morphic vector field and let ∆B denote the dB-Laplacian acting on basic
functions.

Definition 4.16. A generalized Sasaki-Ricci soliton (generalized SRS for
short) on compact M2n+1 is a Sasakian metric whose transverse scalar cur-
vature satisfies

sT − sT0 = −∆BθX (4.9)

for a Hamiltonian holomorphic vector field X and where sT0 = 1
vol(M)

´
M
sTµ

is the average transverse scalar curvature of g and µ = (1
2
dη)n ∧ η is the

volume form as before.

This is of course a generalization of Sasaki-Ricci solitons.
An “imaginary” version of Lemma 4.12 can be stated as follows. See [55]

for the Kählerian counterpart.

Lemma 4.17. Let (M,S) be a Sasakian manifold. The transverse field X
can be expressed as X = ∂]f for a real basic function f if, and only if,
V = Im ∂]f is Killing for gT . In this case V lifts to Ṽ ∈ aut(S). Conversely,

if Ṽ ∈ aut(S) then its projection is Im ∂]f for the real function f = −η(Ṽ ).

Proof. Let X = ∂]f with f real and let V = ImX. Then we notice, since ωT

real, that V has f/2 as Hamiltonian function with respect to the transverse
symplectic form. Indeed

ιV ω
T =

1

2i
(ι∂]f − ι∂]f )ω

T =
1

2
(∂f + ∂f) =

1

2
df.

So LV ωT = 0. Conversely, let X = ∂]f = iV + JV with V transversally
Killing and f = u + iv. Then taking the imaginary part of the equation
ι∂]fω

T = i(∂u+ i∂v) we have ιV ω
T = ∂u and hence ∂∂u = 0 so u is constant.

In this case, to extend V to a Ṽ ∈ aut(S) we need to find a function a such

that Ṽ = aξ + V is contact. This means

LṼ η = da+ ιV dη = da+ df = 0

so we see that we can lift V to Ṽ if, a = −f . Conversely Ṽ = −fξ+V being
contact means that 0 = d(η(Ṽ ))+ ιV dη = −df + ιV dη hence V = Im ∂]f .
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4.4.2 Main result

As in [77], let us now fix a compact connected G ⊆ Aut(S)0 with Lie algebra
g with center z and such that ξ ∈ z ⊆ g. Then it makes sense to consider
z, whose elements are transversally Killing and imaginary parts of projected
Hamiltonian holomorphic fields whose potentials are G-invariant.

We want to apply to S a deformation parameterized by (t, α, ϕ) ∈ B×z×
C∞B (M). That is, a combination of type I, type II and Nozawa deformations.

Start with a basis {v0 = ξ, v1, . . . , vd} of z and let Xj = ivj + Jvj in a
way that ImXj = vj. Consider the functions (depending on the Sasakian
structure)

p0
t,α,ϕ = 1 and pjt,α,ϕ = −ηt,α,ϕ(vj). (4.10)

Let Yj = −ipjgξ + ∂]pjg. It is Hamiltonian holomorphic and the functions pjg
acts as a holomorphy potential as in the Kähler case.

Let Hp
g be, for any Lie algebra ξ ∈ p ⊆ aut(S), the space of functions u

such that ∂]u lies in the complexified quotient pC.

A metric defines an orthogonal splitting of Hk(M)G as

Hk(M)G = Hz
g ⊕Wg

Let Π⊥g be the projection onto Wg. We will consider the function

S(t, α, ϕ) := Π⊥g Π⊥t,α,ϕGt,α,ϕ(sTt,α,ϕ − s0
t,α,ϕ) (4.11)

where Gt,α,ϕ is the Green operator of dB with respect to the metric gt,α,ϕ.
For the metric gt,α,ϕ to be a generalized SRS we need Gt,α,ϕ(sTt,α,ϕ− s0

t,α,ϕ) to
lie in Hz

t,α,ϕ := Hz
gt,α,ϕ , so S(t, α, ϕ) = 0. Since ker(Π⊥g ◦Π⊥t,α,ϕ) = ker Π⊥t,α,ϕ if

the deformation is small enough, we have

S : V ⊆ B × z×Hk(M)G → Wg

for V a neighborhood of (0, 0, 0). Let us compute the derivatives of S. The
derivative along ϕ behaves as in the Kähler case.

Lemma 4.18 ([13, 36]). As in the Kähler case, the variation of the scalar
curvature under type II deformations is

Dϕs
T
ϕ |ϕ=0(ψ) = −1

2
∆2
Bψ − 2(ρT , i∂B∂Bψ). (4.12)

Moreover, the average scalar curvature is constant.
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The derivative of S along ϕ is

DϕS|(0,0,0) = Π⊥g (DϕΠt,α,ϕ)|(0,0,0)θX + Π⊥g DϕAt,α,ϕ|(0,0,0) (4.13)

where At,α,ϕ = Gt,α,ϕ(sTt,α,ϕ − s0
t,α,ϕ).

Let {f jt,α,ϕ} be obtained from (4.10) via the Gram-Schmidt procedure
with respect to the weighted L2 product

〈f, h〉t,α,ϕ =

ˆ
M

fheθXµt,α,ϕ.

In particular it is f 0
t,α,ϕ = vol

−1/2
t,α,ϕ and

f 1
t,α,ϕ =

p1
t,α,ϕ − 〈p1

t,α,ϕ, 1〉t,α,ϕ 1
volt,α,ϕ

‖p1
t,α,ϕ − 〈p1

t,α,ϕ, 1〉t,α,ϕ 1
volt,α,ϕ

‖t,α,ϕ
. (4.14)

Now we have

(DϕΠt,α,ϕ)|(0,0,0)θX =
d∑
j=0

〈f j0,0, θX〉gDϕf
j
t,α,ϕ|(0,0,0) (mod ker Π⊥g )

= Dϕf
1
t,α,ϕ|(0,0,0) (mod ker Π⊥g )

as 〈f j0,0, θX〉g = δ1,j. Deriving (4.14) we have

Dϕf
1
t,α,ϕ|(0,0,0)(ψ) = Dϕp

1
t,α,ϕ|(0,0,0)(ψ) = Xψ (mod ker Π⊥g ) (4.15)

because Π⊥g kills the constants.

Now, deriving the relation (−2i∂∂At,α,ϕ,
1
2
dηt,α,ϕ) = sTt,α,ϕ− s0

t,α,ϕ we have

(−2i∂∂DϕAt,α,ϕ|(0,0,0)(ψ),
1

2
dη)+(−2i∂∂At,α,ϕ,

1

2
ddcψ) = −1

2
∆2ψ−2(ρT , i∂∂ψ).

So we have

∆gDϕAt,α,ϕ|(0,0,0)(ψ) = 2(i∂∂θX , i∂∂ψ)− 1

2
∆2
gψ − 2(ρT , i∂∂ψ)

= (2n+ 2)∆gψ −
1

2
∆2
gψ (4.16)

where we have used that 2(i∂∂θX , i∂∂ψ) = 2(ρT , i∂∂ψ) + (2n+ 2)∆gψ from
the SRS equation. So we get

DϕAt,α,ϕ|(0,0,0)(ψ) = Gg

(
−1

2
∆2
gψ + (2n+ 2)ψ

)
. (4.17)
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Using (4.17) in (4.13) becomes

DϕS|(0,0,0)(ψ) = −Π⊥g

(
1

2
∆gψ −Xψ − (2n+ 2)ψ

)
= −Π⊥g (Lψ) (4.18)

where L is the operator defined in Section 4.3. The derivative with respect
to α can be computed similarly for the first summand but the computation
(4.17) cannot be repeated as the foliation changes. We then have

(DαΠt,α,ϕ)|(0,0,0)(β) = Π⊥g

(
η(β)θX +DαAt,α,ϕ|(0,0,0)(β)

)
. (4.19)

Remark 4.19. A case where we can compute also the second term is given
when dim z = 1, that is when there is room only for Tanno D-homothetic
deformations [73]. In this case α = aξ, so

ξa = (a+ 1)ξ

ηa =
1

a+ 1
η

gTa =
1

a+ 1
gT

Φa = Φ.

We have µa = (a+ 1)−(n+1)µ and so sTa − s0
a = (a+ 1)(sT − s0).

Being the characteristic foliation unchanged it makes sense to replicate
the computation (4.17) and we get ∆aAa = (a+1)(sT−s0) so ∆g(DaAa)|(0,0,0)−
∆gθX = sT−s0. Using the generalized SRS equation we have that (DaAa)|(0,0,0)

is a constant and hence killed by Π⊥g . So finally

(DαS)|(0,0,0)(β) = Π⊥g

(
η(β)θX

)
.

In any case the derivative will assume the form

DS|(0,0,0)(β, ψ) = −Π⊥g

(
Lψ − η(β)θX −DαAt,α,ϕ|(0,0,0)(β)

)
. (4.20)

Proposition 4.20. The map DS|(0,0,0)(0, 0, ·) : Hk(M)G → Wg is surjective.

Proof. Let ψ′, orthogonal to the image of DS|(0,0,0), be a representative of
a class in the cokernel. It must be then 〈ψ′,Π⊥g Lψ〉 = 〈ψ′, Lψ〉 = 0 for all
ψ ∈ Hk(M)G and the scalar product is the weighted one. It follows that
L
∗
ψ′ = Lψ′ = 0.
This means that ∂]gψ

′ is a transversally holomorphic G-invariant vector
field, so it belongs to zC, a contradiction.
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Let now K = kerDS|(0,0,0) ⊆ B × z × Hk(M)G, let π be the projection
onto it and consider the map

G := S × π : V → Wg ×K (4.21)

which is such that DG|(0,0,0)(0, ·) is invertible. We can now state the SRS
analogue of [77, Thm. 4.7].

Theorem 4.21. Let S = (η, ξ,Φ, g) be a Sasaki-Ricci soliton, G ⊆ Aut(S)0

be a fixed compact connected subgroup of Sasaki transformations of (M,S)
and such that ξ ∈ z ⊆ g. Let (Fξ, Jt)t∈B be a G-equivariant deformation.

Then there is a neighborhood V of (0, 0, 0) ∈ B × z× C∞B (M)G such that

E =

{
(t, α, ϕ) ∈ V : gt,α,ϕ is a generalized SRS

}
is a smooth manifold of dimension dimB + dim z.

Proof. We start with a SRS so M is positive and the deformation is of (1, 1)-
type.

The map G of (4.21) is under the assumptions of [43, Thm. 17.6] so we
have a neighborhood N of zero in B × z and a function f : N → C∞B (M)G

such that S(t, α, f(t, α)) = 0 for all (t, α) ∈ N . So the space of solutions of
S = 0 is parameterized by (t, α) and hence it has dimension dimB+dim z.



Chapter 5

Extremal Kähler-Ricci solitons

We pointed out that our work in Chapter 4 is the solitonic counterpart of the
Sasaki-extremal metrics and that Sasaki-Ricci solitons and Sasaki-extremal
metrics are two different generalizations of Sasaki-Einstein metrics. In this
appendix we discuss the results obtained in [17] jointly with S. Calamai. For
simplicity we work in the Kähler setting and we assume that a Kähler metric
is both a Ricci soliton and an extremal metric. Under a curvature assumption
we prove that it must be Einstein.

5.1 Introduction to the problem

Let M2n be a compact complex manifold. A Kähler metric g on M is said
to be Kähler-Einstein if it is Einstein as a Riemannian metric, i.e. it is
proportional to its Ricci tensor or, equivalently, if there exists c ∈ R such
that

ρg = cωg (5.1)

where ρg (resp. ωg) denotes the Ricci form (resp. Kähler form) of g.
There are two possible generalizations of this notion. The first is the

notion of extremal metric introduced by Calabi in [14, 15] (see also [38])
in the attempt to find a canonical representative in a given Kähler class
Ω ∈ H1,1(M)∩H2(M,R). These metrics are defined to be the critical points
of the Riemannian functional MΩ → R defined by

g 7−→
ˆ
M

s2
gω

n

whereMΩ is the space of the Kähler metrics on M in the class Ω and sg is the
scalar curvature of g. He also showed that a metric is extremal if, and only
if, the gradient of sg is a holomorphic vector field. Constant scalar curvature
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Kähler metrics (cscK), hence in particular Kähler-Einstein, are examples
of extremal metrics, but there are extremal metrics of non constant scalar
curvature (see again [14]).

Another direction to generalize the Einstein condition (5.1) is the follow-
ing. A Kähler metric g is called a Kähler-Ricci soliton (KRS) if there exist
c ∈ R and a holomorphic vector field X such that

ρg + cωg = LXωg.

These metrics give rise to special solutions of the Kähler-Ricci flow (see e.g.
[28]), namely they evolve under biholomorphisms. It is known that on a
compact manifold, if c ≥ 0 then g is Einstein (see e.g. again [28]), so in the
compact Kähler case one only considers the so-called shrinking Kähler-Ricci
solitons (c < 0) whose equation, after a scaling, can be written as

ρg − ωg = LXωg. (5.2)

The Hodge decomposition for the dual of X allows us to introduce a holo-
morphy potential with respect to g, i.e. a complex-valued function θX such
that ιXωg = i∂θX . By means of this function we can infer that the Kähler
form ωg belongs to 2πc1(M), making M a Fano manifold.

The first examples of non-Einstein compact Kähler-Ricci solitons go back
to the constructions of Koiso [53] and independently Cao [21] of Kähler
metrics on certain CP1-bundles over CPn. Koiso himself remarks that this
Kähler-Ricci soliton metric is not Calabi extremal and proves that if it were,
it would be Einstein.

There is a class of manifolds for which there are existence results for
both kinds of metrics, namely toric manifolds (see e.g. [1]). For extremal
metrics we mention for instance the existence result of Donaldson [31] for toric
surfaces. For the KRS we refer to the existence result, in all dimensions, of
Wang and Zhu [78]. Finally, the existence of a Kähler-Einstein metric on a
compact Fano manifold is equivalent to the notion of K-stability stated by
Chen, Donaldson and Sun in [25] and subsequent papers.

It is then natural to ask, and it appears to be absent in the literature,
what happens when a metric generalizes a Kähler-Einstein metric in both
these ways. In Theorem 5.15 we prove, under the assumption of positivity of
the holomorphic sectional curvature, that an extremal KRS is in fact Kähler-
Einstein.

It would be interesting to prove or disprove this result without the as-
sumption on the holomorphic sectional curvature, i.e. to solve the following.

Problem 1. Prove that every extremal Kähler-Ricci soliton is Einstein or
find a counterexample.
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Going back to our result, it is not too restrictive to assume positive holo-
morphic sectional curvature provided it does not exceed a certain numerical
bound. Indeed it has been proved by Futaki and Sano [37] that if the diam-
eter of a Ricci soliton is < 10

13
π then the soliton is trivial. On the other hand,

Tsukamoto [76] proved that if a Kähler metric g has holomorphic sectional
curvature > ε, then the diameter of the manifold is bounded from above by
π√
ε
.

From these results we can infer that if the holomorphic sectional curva-
ture is greater than (13

10
)2 then the KRS must be Einstein, so our result is non

trivial when the holomorphic sectional curvature does not exceed this num-
ber. The authors do not know whether there are any connections between
positive holomorphic sectional curvature and the extremality condition or
whether the extremality gives conditions on the diameter .

The paper is organized as follows. We start recalling some notation and
conventions of Kähler geometry. This level of detail seems necessary in order
to avoid confusion among different conventions. We then go on proving, for
a Kähler-Ricci soliton, the characterization of being extremal in terms of the
length of the complex Hessian of its potential function and in terms of certain
contractions of the Riemann curvature tensor. We then use this to prove our
main result in Theorem 5.15 and we also give a condition about the isometry
group of a non-Einstein extremal KRS. We finally make a remark about the
replicability of the argument in the Sasakian setting.

5.2 Definitions and preliminary results

Notation. Let (M, g, J) be a smooth, compact, without boundary Kähler
manifold of real dimension 2n, with its Riemannian metric g and compatible
integrable complex structure J . The corresponding Kähler form is ω(·, ·) =
g(J ·, ·). We also denote as Ric the Riemannian Ricci tensor corresponding to
the Riemannian metric g; and its Ricci form as ρ(·, ·) = Ric(J ·, ·). We label
s the Riemannian scalar curvature of the metric g. We let δ be adjoint of the
exterior differential d with respect to g and ∆d = δd+ dδ be the d-Laplacian
acting on differential forms.

We let ] and [ denote the musical isomorphisms between fields and 1-
forms. For a 1-form α we denote as |α|2 = (α, α) = (α], α]), and as well as
|Z|2 = (Z, Z) = (Z[, Z[) the metric pairing on by means of the Riemannian
metric g. Similarly, if a real (1, 1)-form β and a 2-tensor B correspond each
other via β(·, ·) = B(J ·, ·), then we have for the metric pairings |B|2 =
(B, B) = 2|β|2 = 2(β, β). For example, |Ric |2 = (Ric, Ric) = 2|ρ|2 =
2(ρ, ρ). Notice also that for any smooth real valued function on M there
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holds (ω, ddcu) = −∆du.
Given any tensor T and any vector field V on a smooth manifold, we

label as LV T the Lie derivative of T along V .
For any smooth, real valued function u on M , we label as ∇u the Rie-

mannian gradient of u; namely, ∇u = (du)]. We also denote its (1, 0)-part
as ∂]f = 1

2
(∇f − iJ∇f). We let Hessu = 1

2
L∇ug be the real Hessian of u.

We also label as h(M) the algebra of (complex) holomorphic vector fields
of M .

The first definition is very classical and tracks back Hamilton [47].

Definition 5.1. Let (M, g, J) and Ric be as above; let f be a smooth, real
valued function on M . We say that (g, f) is a Kähler-Ricci soliton when the
following equation is satisfied

Ric−g =
1

2
L∇fg. (5.3)

Remark 5.2. It is a general fact that ∇f is real holomorphic, although this is
often stated in the definition. Indeed, equation (5.3) implies that ∇i∇jf = 0
for all i, j ∈ {1, · · · , n}.

The next definition is due to Calabi [14].

Definition 5.3. Let (M, g, J) and s be as above. We say that the metric g
is Calabi extremal, or simply extremal, when the Riemannian gradient of s
is holomorphic, i.e. if ∂∂]s = 0.

In this paper we consider metrics which satisfy both these definitions.

Definition 5.4. Let (M, g, J) be as above and let (g, f) be a Kähler-Ricci
soliton as in Definition 5.1. Moreover, let g be Calabi extremal as in Defini-
tion 5.3. Then, we call (g, f) an extremal Kähler-Ricci soliton.

Remark 5.5. We chose to label the pairs (g, f) in Definition 5.4 as extremal
Kähler-Ricci solitons although a similar name was given by Guan in [44] to
different objects.

Not all complex valued smooth functions v on M give rise to holomorphic
vector fields. The ones which do are solutions of the equation ∂∂]v = 0, they
lie in the kernel of the fourth order differential operator Lg = (∂∂])∗∂∂] (see
[35]).

The presence of an extremal metric gives information about the algebra
of holomorphic vector fields h(M). Namely the following theorems hold.
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Theorem 5.6 ([15, 35]). Let g be an extremal Kähler metric on M with
scalar curvature s. Then the Lie algebra h(M) has a semidirect sum decom-
position

h(M) = a(M)⊕ h′(M), (5.4)

where a(M) is the complex Lie subalgebra of h(M) consisting of all parallel
holomorphic vector fields of M , and h′(M) is an ideal of h(M) consisting of
the image under ∂] of the kernel of Lg.

Moreover h′(M) has a decomposition

h′(M) =
⊕
λ≥0

hλ(M)

where [∂]s, Y ] = λY for any Y ∈ h(M). Furthermore the centralizer h0(M)
of ∂]s is the complexification of the Lie algebra consisting of Killing vector
fields of M .

In the case of a Kähler-Ricci soliton a similar theorem holds.

Theorem 5.7 ([75]). If g is a Kähler-Ricci soliton with (1, 0)-vector field X.
Then h(M) admits the decomposition

h(M) = k0(M)⊕
⊕
λ>0

kλ(M) , (5.5)

where kλ(M) = {Y ∈ h(M) : [X, Y ] = λY }. Moreover the centralizer k0(M)
of X splits as k′0 ⊕ k′′0 where k′0 is the ∂]-image of real functions and k′′0 is the
∂]-image of purely imaginary functions.

The following result is due to Lichnerowicz (see [8, Proposition 2.140]).

Proposition 5.8. On a compact Kähler manifold a (real) vector field X is
holomorphic if and only if

∆dX
[ − 2 Ric(X, ·) = 0 . (5.6)

5.3 Statements and proofs

The function f in Definition 5.1 has, by means of Remark 5.2, holomorphic
gradient so it satisfies, applying δ on both sides of (5.6) (cf. [38, (1.17.5)])

1

2
∆2
df + (ddcf, ω +

1

2
ddcf) +

1

2
(ds, df) = 0 . (5.7)
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Tracing the KRS equation (5.3) we get 2n − s = ∆df , we substitute it into
(5.7) to get

1

2
∆d(2n− s)−∆df +

1

2
|ddcf |2 +

1

2
(ds, df) = 0 .

So
−∆ds+ 2(s− 2n) + |ddcf |2 + (ds, df) = 0 . (5.8)

Differentiating we get

−∆dds+ 2ds+ d|ddcf |2 + d(ds, df) = 0 . (5.9)

The last term in (5.9) can be substituted with the following two lemmas.

Lemma 5.9. On an extremal Kähler-Ricci soliton (g, f) the holomorphic
fields ∇f and ∇s commute.

Proof. Since (g, f) is an extremal Kähler-Ricci soliton, then both ∂]s and
∂]f are holomorphic vector fields, i.e. ∂]s, ∂]f ∈ h(M). Also, by means of
Theorem 5.6, h(M) splits as h(M) = a(M) ⊕

⊕
λ≥0 hλ(M). The summand

h0(M), the centralizer of ∂]s in h(M), contains ∂]f . Hence we have

0 = [∂]s, ∂]f ] =
1

4
([∇s, ∇f ]− [J∇s, J∇f ]− i[∇s, J∇f ]− i[J∇s, ∇f ])

=
1

2
([∇s, ∇f ]− iJ [∇s, ∇f ]) ,

and we take its real part to conclude.

Lemma 5.10. Whenever two real functions u, v satisfy [∇u ,∇v] = 0, then
there holds

d(g(∇u,∇v)) = (∇∇u∇v +∇∇v∇u)[ = 2(∇∇u∇v)[ .

Proof. For any vector field Y we have

Y · g(∇v,∇u) = g(∇Y∇v,∇u) + g(∇v,∇Y∇u)

= g(∇∇u∇v +∇∇v∇u, Y )

= g(2∇∇u∇v, Y ) .

This completes the proof of the lemma.

For a (Kähler-)Ricci soliton there are some quantities that are constant,
see e.g. [28]. One of them is, in our notation,

s+ |∇f |2 + 2f = const . (5.10)

From this together with Lemma 5.10 it is easy to infer the following.
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Lemma 5.11. Let g be a KRS with real holomorphic field X and let Z =
X1,0. Then g is extremal if, and only if, ∇XX is real holomorphic (or ∇ZZ
is holomorphic or ∇ZZ is antiholomorphic).

At this point it is worth noticing the following.

Proposition 5.12. For an extremal KRS g with field X and scalar curvature
s, if X = c∇s then g is Einstein.

Proof. We first notice that c has to be constant on M . Indeed if it were a
function on M it would be holomorphic since the two fields are. Consider
the function p 7→ |Xp|2 and a local maximum q ∈M . At q we would have

gq(∇XX|q, Xq) = 0.

Under the proportionality assumption (5.10) becomes

(c+ 2)X + 2∇XX = 0. (5.11)

At q we would have then c+2
2
gq(X,X) = 0 which implies X = 0 if c 6= −2.

If c = −2 we have from (5.11) and Lemma 5.10 that ∇XX = ∇|X|2 = 0
implying X = 0 as well.

By means of the decomposition theorems 5.6 and 5.7, the fields JX and
J∇s belong to the center of the isometry algebra and are linearly independent
for a non-Einstein extremal KRS. This gives us the following corollary.

Corollary 5.13. If g is a non-Einstein extremal KRS, then the center of the
isometry group of g has dimension at least 2.

We now present a characterization of extremal Kähler-Ricci solitons.

Proposition 5.14. Let (M2n, g, ω, f) be a compact Kähler-Ricci soliton with
Riemannian scalar curvature s. Let X = ∇f . Then the following are equiv-
alent.

1. the function |ddcf |2 is constant and [∇f,∇s] = 0;

2. g is extremal;

3. Rm(·, ∂]f)∂]f = 0;

4. The tensor
TX := Rm(·, X)X

commutes with J and α : (A,B) 7→ Rm(A, JX,X,B) is a (1, 1)-form.
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Proof. Let us first prove the equivalence between (1) and (2). By means of
Proposition 5.8, the condition on g being extremal is equivalent to require the
Riemannian scalar curvature s to satisfy the tensorial Lichnerowicz equation
(see [8, Proposition 2.140])

∆dds− 2 Ric(∇s, ·) = 0 . (5.12)

Let us assume g to be extremal. Equation (5.12), together with the Kähler-
Ricci soliton assumption Ric = g + Hess f , reads

0 = ∆dds− 2ds− 2 Hessf (∇s, ·)
= ∆dds− 2ds− 2g(∇∇s∇f, ·) . (5.13)

By means of Lemma 5.10, formula (5.13) differs from (5.9) by the term
d|ddcf |2 which has to be zero.

Conversely, assuming [∇s, ∇f ] = 0, then Lemma 5.10 holds. Also, in
(5.9) the term d|ddcf |2 vanishes and then (5.9) is simply (5.12), which says,
by means of Proposition 5.8, that s has holomorphic gradient. This completes
the equivalence between (1) and (2).

Let g be extremal, then by means of the previous Lemma, the field ∇ZZ
where Z = ∂]f is holomorphic. Then compute for any (1, 0)-field A,

Rm(A,Z)Z = ∇A∇ZZ −∇Z∇AZ −∇[Z,A]Z

= 0

by using the fact that Z and ∇ZZ are antiholomorphic (hence killed by ∇A)
that kills the first two terms and that [Z,A] is (1, 0) that kills the last.

Conversely, the generic form of the Riemann tensor for A of type (1, 0) is

Rm(A,Z)Z = ∇A∇ZZ.

If this is zero, it means that the field ∇ZZ is killed by ∇A for any A of type
(1, 0) implying that it is antiholomorphic. Indeed, for any W we have

0 = ∇Y−iJY (W + iJW ) = ∇YW + J∇JYW + i(J∇YW −∇JYW )

that is, W satisfies ∇JYW = J∇YW for all Y , that is W is real holomorphic.
Hence we conclude g is extremal by means of the previous Lemma.
Let us now assume (3). We notice that its real formulation is given by

the system {
Rm(A,X)JX = −Rm(A, JX)X

Rm(A,X)X = Rm(JA,X)JX.
(5.14)
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and the second equation means exactly that [TX , J ] = 0. We have now,
using (5.14) for the second equality,

α(B,A) = Rm(B, JX,X,A)

= −Rm(B,X, JX,A)

= −Rm(JX,A,B,X)

= −α(A,B).

To prove that α is (1, 1) is equivalent to prove that it is J-invariant. This
follows again from (5.14) since

α(JA, JB) = Rm(JA, JX,X, JB)

= −Rm(A,X, JX,B)

= Rm(A, JX,X,B)

= α(A,B).

Conversely let [TX , J ] = 0 and let α be J-invariant. These assumption
are exactly (5.14).

We can use this to prove our main result.

Theorem 5.15. Any extremal Kähler-Ricci soliton with positive holomorphic
sectional curvature is Einstein.

Proof. Let f be the soliton function. Assume it is not a constant and Z be
the normalized ∂]f .

By assumption we have, in the direction Z, that the holomorphic sectional
curvature is

K(Z) := Rm(Z,Z, Z, Z) > 0.

By means of the previous proposition we are lead to the contradictionK(Z) =
0 as the above Riemann tensor vanishes.

Remark 5.16. There is no loss of generality to assume the positivity of the
holomorphic sectional curvature instead of just requiring it to have a sign.
Indeed, by a theorem of Berger [6, Lemme (7.4) pag. 50] prescribing the
sign of the holomorphic sectional curvature gives the same sign to the scalar
curvature, which in case of Ricci solitons is always positive by means of
general results (see e.g. again [28]).

The argument exposed in this paper can be replicated verbatim to prove
the following result about Sasaki manifolds. We refer to [36, 13] for the no-
tions of Sasaki-Ricci solitons, to and Sasaki-extremal metrics and for trans-
verse curvature. Recall that, for a Sasaki manifold, being transversally
Kähler-Einstein is equivalent to being η-Sasaki-Einstein.
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Theorem 5.17. Any extremal Sasaki-Ricci soliton with positive transverse
holomorphic sectional curvature is η-Sasaki-Einstein.

Indeed there are Sasakian analogues of Theorem 5.4 done by Boyer and
Galicki and an extension of Theorem 5.7 discussed in Chapter 4. Moreover,
the Lichnerowicz equations hold as well for the transverse quantities, see
again [13].



Chapter 6

Legendrian submanifolds

In this chapter we discuss minimal Legendrian submanifolds in Sasaki-Einstein
manifolds and a generalization of a theorem of Lê-Wang about minimal Leg-
endrian submanifolds of the standard Sasakian sphere. This is an exposition
of the results obtained in [18] jointly with S. Calamai.

6.1 Introduction to the problem

Let (M, η, g) be a Sasakian manifold of dimension 2n+ 1. A minimal Legen-
drian submanifold is an n-dimensional submanifold i : L→M on which the
contact form vanishes, i∗η = 0 and is minimal in the sense of Riemannian
geometry with respect to the metric induced from g.

In the case where the minimal Legendrian L is embedded in the stan-
dard Sasakian round (2n+ 1)-sphere, Lê and Wang [54] constructed a family
of functions on L which are eigenfunctions of the Laplacian on L of the
induced metric. They give also a lower bound of the dimension of the rela-
tive eigenspace and if it is attained then the submanifold is totally geodesic.
Conversely they prove that a minimal submanifold of the standard sphere
admitting that certain family of functions as Laplacian eigenfunctions is nec-
essarily Legendrian.

Although their techniques make a heavy use of the particular situation,
namely the theory of minimal immersion in spheres and the presence of an
ambient Euclidean space, we prove that some of their ideas can be generalized
to any Sasaki-Einstein manifold.

Let L be a minimal Legendrian submanifold of a Sasaki-Einstein M . The
aim of this paper is to prove that two certain families of functions on L, one
of which constructed in terms of the contact moment map of the action of
the Sasaki automorphism group, are eigenfunctions of the Laplacian of L and
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we give a lower bound for the dimension of the eigenspace.

Theorem 6.1. Let Ln be a minimal Legendrian submanifold of an η-Sasaki-
Einstein manifold (M2n+1, η, ξ, g,Φ) with algebra of infinitesimal Sasaki au-
tomorphisms g. Then, for each X ∈ g, the function

η(X)− 1

vol(L)

ˆ
L

η(X)dv,

where dv is the volume form of L of the induced metric, is an eigenfunction
of the Laplacian ∆L with eigenvalue 2n + 2. Moreover the dimension of the
(2n+ 2)-eigenspace is at least dim g− 1

2
n(n+ 1)− 1.

Moreover we prove, like in the sphere case although with totally different
techniques, that if the lower bound is attained then the submanifold is totally
geodesic together with a rigidity result about the ambient M , in the case of
a regular Sasaki-Einstein manifold over a base Kähler manifold.

Theorem 6.2. If M is a regular Sasaki-Einstein manifold and the multiplic-
ity of the eigenvalue 2n + 2 of ∆L is exactly dim g − 1

2
n(n + 1) − 1 then M

is a Sasaki-Einstein circle bundle over the complex projective space endowed
with the Fubini-Study metric. In particular if M is simply connected then
M = S2n+1.

Among the techniques we use we mention the theory of deformations of
minimal Legendrian submanifolds, for which we refer to [62, 61] and, in the
case of regular manifolds, the correspondence between Legendrian subman-
ifolds of Sasakian manifolds and Lagrangian submanifolds of Kähler mani-
folds, see [64].

This result makes use of the geometry of Legendrian submanifolds of the
Kähler-Einstein base, which exists by the regularity assumption. It would
be interesting to drop this assumption and prove the result for quasi-regular
or irregular Sasaki-Einstein manifolds.

Then in Theorem 6.13 we provide a generalization of the family of eigen-
functions by making use of the immersion of the Sasaki-Einstein manifold M
into its Ricci-flat Kähler cone C(M). This family is parameterized by the
Lie algebra of the infinitesimal Kähler automorphisms of C(M), which is in
general bigger than the Sasaki automorphism group of M . The family is de-
fined by means of the Nomizu operator on C(M). This time our arguments
are similar to the ones of Lê and Wang for the sphere and they rely on the
Ricci-flatness of C(M) and properties of the Nomizu operator.

It would be interesting to provide sufficient conditions for the Legendrian-
ity of a minimal submanifold by means of any of these families of functions.
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Problem 2. Let M2n+1 be a Sasaki-Einstein manifold with big enough au-
tomorphism group G, let Ln be a minimal submanifold such that for each
X ∈ g, the family of functions (6.2) or (6.8) are eigenfunctions of ∆L with
eigenvalue 2n+ 2. Can we conclude that L is Legendrian?

Also, it would be interesting to relate the second family with the moment
map of the symplectic action on C(M) of its Kähler automorphism group.

6.2 Legendrian immersions and their defor-

mations

We recall some notions about minimal Legendrian submanifolds and their
deformations. We will consider some special submanifolds of Sasakian man-
ifolds, known as Legendrian (or horizontal), see [64].

A Legendrian submanifold of a (2n + 1)-dimensional contact manifold
(M, η) is an n-dimensional submanifold i : L → M such that for all p ∈ L
we have i∗(TpL) ⊆ ker ηi(p).

We will consider Legendrian submanifolds which are also minimal in the
sense of Riemannian geometry, i.e. their mean curvature field vanishes.

If we have a Legendrian submanifold L in a Sasakian manifold we can
identify the space of sections of the normal bundle NL with C∞(L)⊕Ω1(L)
via the isomorphism

χ : Γ(NL) −→ C∞(L)⊕ Ω1(L)

V 7−→
(
η(V ),−1

2
i∗(ιV dη)

)
see [62].

In the case of a compact regular Sasakian manifold M with contact struc-
ture η that fibers over a compact Kähler manifold (B,ω) we can take the
projection π(L) ⊆ B of a Legendrian L. Following Reckziegel [64] we have
that π(L) is a Lagrangian submanifold of B, i.e. (π ◦ i)∗ω = 0 and is finitely
covered by L.

Conversely, given a Lagrangian submanifold j : N → B, a point q ∈ N ,
for any choice of p in the fiber of q there exists a neighborhood U of q and a
Legendrian immersion i : U →M such that π ◦ i = j|U .

Moreover, Riemannian properties of L hold as well for π(L) and con-
versely. Namely we have the following.

Proposition 6.3 ([64]). The Legendrian L is minimal, or totally geodesic,
if and only if the Lagrangian π(L) is.
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A smooth family of minimal Legendrian immersions it : L → M is a
family of maps F : [0, 1]×L→M such that for each t the map it = F (t, ·) :
L→M is a minimal Legendrian immersion. Every smooth family points out
a vector field Wt on L given at p by

Wt|p = F∗

(
∂

∂t

∣∣∣∣
(t,p)

)
.

It is known, e.g. [61, 62], that a family of immersions is Legendrian if and
only if the normal component Vt of Wt satisfies

Vt = χ−1

(
η(Vt),

1

2
dη(Vt)

)
, (6.1)

i.e. dη(Vt) = −i∗(ιVtdη). Normal fields satisfying (6.1) are called infinitesimal
Legendrian deformations.

We are interested in minimal Legendrian deformations of a Legendrian
i : L → M , that are smooth families it : L → M of minimal Legendrian
immersions such that i0 = i.

A trivial family of deformations of a minimal Legendrian submanifold is
given by one-parameter families of ambient transformations. We will denote
by Aut(M) the group of such transformations, i.e. diffeomorphisms M →M
which are isometric contactomorphisms.

If we let ϕt ∈ Aut(M) be one of such families. Then it = ϕt|i(L) : i(L)→
M is a minimal Legendrian deformation, see [61].

In particular, the normal component of every field in the Lie algebra
aut(M) of Aut(M) defines an infinitesimal Legendrian deformation. This is
also minimal as we are taking the normal component of a Killing vector field,
see [68, Sec. 3].

When we restrict ourselves to η-Sasaki-Einstein manifolds with constant
A, we have a characterization of the space of infinitesimal minimal Legendrian
deformations.

Proposition 6.4 ([61]). Let i : L→M be a minimal Legendrian submanifold
in an η-Sasaki-Einstein manifold with constant A. Then the vector space of
infinitesimal minimal Legendrian deformations is identified with

Def(L) = R⊕ {f ∈ C∞(L) : ∆Lf = (A+ 2)f}

where ∆L denotes the Laplacian of L with the induced metric.

This result is obtained by combining the copy of the space of infinitesimal
Legendrian deformations of L given by{(

f,
1

2
df

)
: f ∈ C∞(L)

}
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and the space of minimal deformation given by the kernel of the Jacobi
operator J , for which we refer to [68].

6.2.1 Contact moment maps

We finally recall the notion of contact moment map, we follow [11, Sec. 8.4.2].
In our setting the group G = Aut(M) is a compact group acting on M . We
can extend this action to the symplectic cone (C(M), d(r2η)) by requiring
that it leaves the {r = const} levels unchanged, i.e. the action is given by
g(p, r) = (gp, r). Being G a contactomorphism group it is easy to see that
the action on C(M) is by symplectomorphisms and, being the symplectic
form on the cone exact, this action is Hamiltonian. So there exists a map
ϕ : C(M)→ g∗, such that

d(ϕ(X)) = −ιXd(r2η) = d(r2η(X)).

Hence, up to a constant, one can take the map ϕ(p, r)(X) = r2ηp(X). Seeing
M as the {r = 1} level set, we consider the restriction µ : M → g∗ of ϕ
which we call the contact moment map for the G-action on M .

6.3 Eigenfunctions using the contact moment

map

In this section we construct one possible generalization of the functions given
by Lê-Wang [54]. We briefly recall their setting. They consider the standard
Sasakian sphere S2n+1 immersed in its Kähler cone Cn+1 \ {0} with respec-
tively the round metric g and the Euclidean metric 〈·, ·〉. It is known that
the both the Sasaki transformation group of the sphere and the Kähler au-
tomorphism group of the cone is G = U(n+ 1). Let M ∈ u(n+ 1). Then the
moment map for the G-action on the cone is given, up to a constant, by

ϕ(p, r)(M) = r2ηp(Mp) = r2g(ξp,Mp) = 〈ξp,Mp〉

We see an infinitesimal Sasaki automorphism M ∈ u(n + 1) as a linear
vector field whose value at x ∈ S2n+1 is Mx. Then, using that ξ at x is
Jx, where J is the standard complex structure, the contact moment map
µ : S2n+1 → u(n+ 1)∗ is given by

µ(x)(M) = 〈Mx, Jx〉

which is exactly the function of Lê-Wang.
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Back to the general setting of the Sasaki group G = Aut(M) with Lie
algebra g acting on the η-Sasaki-Einstein M , we have the contact moment
map that is given by µ(p)(X) = ηp(Xp).

We then consider for each X ∈ g the map p 7→ η(X) restricted to a
minimal Legendrian submanifold and up to a constant.

We prove the generalization of one of the implications of [54, Thm. 1.1].

Theorem 6.5. Let (M, g, η, ξ) be a (2n + 1)-dimensional η-Sasaki-Einstein
manifold with Ric = Ag + (2n − A)η ⊗ η and let Ln ⊂ M be a minimal
Legendrian submanifold. Then for all X ∈ aut(M) the function on L given
by

fX = η(X)− 1

vol(L)

ˆ
L

η(X)dv, (6.2)

where dv is the volume form on L of the induced metric, is en eigenfunction
of the Laplacian ∆L on L with eigenvalue A + 2. Moreover this eigenspace
has dimension ≥ dim aut(M)− 1

2
n(n+ 1)− 1.

Proof. We recalled above that the map χ : Γ(NL) → C∞(L)⊕ Ω1(L) given
by χ(V ) = (η(V ),−1

2
ιV dη) is an isomorphism if L is Legendrian and that

the space of infinitesimal deformations of a minimal Legendrian L is

Def(L) = R⊕ {f ∈ C∞(L) : ∆Lf = (A+ 2)f}.

Let X ∈ g = aut(M) and let X|L = X1 + X2 ∈ Γ(TL) ⊕ Γ(NL) be its
decomposition.

From [61] it follows thatX2 defines a Legendrian deformation of L and it is
known, e.g. [68], that the normal part of a Killing field defines an infinitesimal
minimal deformation. Hence χ(X2) ∈ χ(kerJ ), where J denotes the Jacobi
operator, and so, following Ohnita [61] we have

∆Lf − (A+ 2)f = const = C.

and the pair (C, f − f) ∈ R ⊕ {f ∈ C∞(L) : ∆Lf = (A + 2)f}, where
f = 1

vol(L)

´
L
η(X)dv. So the first claim follows.

Every X ∈ g = aut(M) defines a trivial deformation of L, hence there is
a linear map α : g→ Def(L) given by α(X) = χ(X2).

Its kernel is kerα = {X ∈ g : X|L ∈ Γ(TL)} ⊆ iso(L). So we have

1 + dimEA+2 ≥ dimα(g) (6.3)

= dim g− dim kerα

≥ dim g− dim so(n+ 1)
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= dim g− n(n+ 1)

2
.

So we have the second claim in the statement.

Let us specialize to Sasaki-Einstein manifolds and assume that M is reg-
ular, so it is a principal circle bundle π : M → B over a Kähler-Einstein base
manifold B and consider the case when the equality holds in the previous
theorem. We prove the following, generalizing [54, Thm. 1.2] together with
a rigidity result.

Theorem 6.6. If M is regular and the eigenvalue 2n + 2 of ∆L has multi-
plicity exactly dim aut(M) − 1

2
n(n + 1) − 1 then L is totally geodesic in M

and M is a principal circle bundle over the complex projective space.

Proof. The projection L̃ = π(L) ⊆ B is a Lagrangian submanifold of a

Kähler-Einstein manifold and it is known that L̃ is covered by L [64].
To have equality one needs to have equality in (6.3) so we conclude that

the isometry group of L̃ is the largest possible, i.e. its Lie algebra is so(n+1).
Let this isometry group be denoted by K. The group K, being a subgroup
of the Sasaki transformation group of M , sends leaves into leaves and thus
acts on B. We claim that the action has cohomogeneity one.

Indeed it is known, see [50], that if dimK = dim so(n + 1) then Ln is
either a n-sphere or RPn, written as SO(n+1)/H, where H = SO(n) or H =

Z2 ·SO(n) is the stabilizer of a q ∈ L̃. In any case the isotropy representation

of H acts transitively on the unit sphere TqL̃. Being L̃ Lagrangian, the action
is transitive also on the unit sphere in the normal space at q and this action
has cohomogeneity one, hence also the action of SO(n+ 1) on B does.

Let p ∈ L̃. Being L̃ homogeneous under K, it is also known from [5] that
the orbit Ω = KC · p is open dense in B and Stein, hence in particular affine,
and that B \ Ω has complex codimension 1.

Let x ∈ B be a principal point. Being Ω open dense, the KC-orbit through
x is open as well and intersects Ω, then they coincide. So B is a two-orbit
Kähler manifold, i.e. is acted on by a complex algebraic group admitting
exactly two orbits Ω and A.

They were classified, as complex manifolds, by Ahiezer [2, Table 2] in the
case of Ω affine and A of codimension 1. The occurrences of a group K with
Lie algebra so(n+ 1) can be one of the following:

1. L̃ = SO(n+ 1)/ SO(n) = Sn and B = Qn,

2. L̃ = SO(n+1)
center

/S(O(1)×O(n)) = RPn and B = CPn,
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3. L̃ = Spin(7)/G2 = S7 and B = Q7,

4. L̃ = SO(7)/G2 = RP7 and B = CP7;

where the projective spaces and the complex hyperquadrics are endowed with
the unique Kähler-Einstein metric of constant 2n + 2. This proves that the
possible B are only complex hyperquadrics or complex projective spaces and
M is a Sasaki-Einstein principal circle bundles over B.

Being the pairs in this list symmetric subspaces of B, we have that L̃ is
totally geodesic in B. By Proposition 6.3 of Reckziegel, this is equivalent to
say that L is totally geodesic in M .

We want now to exclude the case B = Qn. So far we have the following
diagram of immersions and submersions.

(Sn, g) (M, gSE) (S2n+3, gc) (Cn+2, 4
c
〈·, ·〉)

(Sn, g) (Qn, gQ) (CPn+1, gFS
c )

ı̃

π=

i j

p

For the metric point of view, we have the Fubini-Study metric gFS
c on

CPn+1 with constant holomorphic curvature c. This rescaling of the Fubini-
Study metric on CPn+1 is defined by the metric given by 4

c
times the round

metric on S2n+3, which we denote by gc [51, vol. II, p. 273]. The choice of c
in gFS

c is such that gQ = j∗gFS
c is Kähler Einstein of Einstein constant 2n+ 2

and this happens exactly for c = 4n+4
n

from [70].
By [23] the only totally geodesic spheres in the quadric are immersions

i : x 7→ [x] for x ∈ Sn ⊂ Rn+1. The restriction of the quadric metric on it is
n

2n+2
times the round metric. Being Sn simply connected for n > 1, we have

that the Legendrian L is isometric to its projection in Qn.
Let ∆ be the Laplacian on Sn associated to the metric n

2n+2
ground. An

eigenfunction of ∆ with eigenvalue 2n + 2 is an eigenfunction of the round
Laplacian with eigenvalue n.

It is known from [7] that the round sphere admits the eigenvalue n with
multiplicity n(n+ 1).

To compute the lower bound, we observe that, since every Sasaki auto-
morphisms induces by projection a Kähler automorphism of the base, that
dim aut(M) ≤ dim aut(B) + 1 = 1

2
(n+ 2)(n+ 1) + 1 since the automorphism

group of the hyperquadric is SO(n+ 2).
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In order not to attain the lower bound we need to have

dim aut(M) <
3

2
n(n+ 1) + 1

and this is always true since for n > 1 we have 1
2
(n + 2)(n + 1) + 1 <

3
2
n(n+ 1) + 1.

In the case n = 1 the quadric Q1 = CP1 is a complex projective space, so
we are left with the only case B = CPn.

6.4 Eigenfunctions using the Nomizu opera-

tor

In this section we define another family of eigenfunctions on a Legendrian
L of M by making use of the geometry of the Kähler cone and its group of
Kähler automorphisms.

Let (M, g) be a Sasakian manifold of dimension 2n+ 1 and let (C(M), g)
be its Kähler cone. We let eA for A ∈ {1, . . . , 2n+ 1} be a local orthonormal
frame at some point of M and let θA be its dual.

Then the set {1
r
e1, . . . ,

1
r
e2n+1, ∂r} is an orthonormal frame for the cone

metric g = r2g + dr2 and its dual is {rθ1, . . . , rθ2n+1, dr}.
Let ∇ be the Levi-Civita connection of the cone metric. From the well

known relations [71] we have

∇∂r =
1

r
eA ⊗ θA

∇eB =
1

r
eB ⊗ dr + θBC ⊗ eC − r∂r ⊗ θB.

Lemma 6.7. Let Ln → M be an immersion and let e1, . . . , en be an or-
thonormal frame of L. Let ∇ be the Levi Civita connection on M . Then, for
any smooth function f : M → R, we have

∆Lf |L = −
n∑
i=1

∇df(ei, ei)|L −H · f |L. (6.4)

where ∆L is the Hodge Laplacian and H is the mean curvature field of the
immersion.

In particular, when the immersion is minimal, we have

∆Lf |L = −
n∑
i=1

∇df(ei, ei)|L. (6.5)
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Proof. Label as ∇L the induced connection on L; by definition we have

n∑
i=1

∇df(ei, ei)|L =
∑
i

eieif |L −
n∑
i=1

∇eieif |L

=
n∑
i=1

eieif |L −
n∑
i=1

∇L
ei
eif |L −

n∑
i=1

(∇eieif |L −∇L
ei
eif |L)

= −∆Lf |L −H · f |L,

which is precisely the claimed (6.4). Since the assumption on minimality cor-
responds to the vanishing of H, we also get the claimed (6.5). This completes
the proof of the lemma.

Lemma 6.8. Let Ln → M be a minimal immersion in a Sasaki manifold.
Let f be a function on the Kähler cone C(M) which does not depend on r and
let ∆L be the Hodge Laplacian on L; finally, let e1, · · · , en be an orthonormal
frame of L. Then we have

∆Lf |L = −
n∑
i=1

∇df(ei, ei)|L.

Proof. In view of Lemma 6.7, it suffices to show that for any i, j ∈ {1, · · · , n},
then

∇df(ei, ej)|L = ∇df(ei, ej)|L, (6.6)

where as usual ∇ is the Levi Civita of the Sasaki metric g, while ∇ is the
Levi Civita connection of the metric g = r2g + dr2. By the very definition
we have

∇df(ei, ej)|L = eiejf |L −∇eiej · f |L
= eiejf |L −

(
∇eiej · f |L − δijr∂rf |L

)
= ∇df(ei, ej)|L,

where at the second equality we applied [71, (1.1)]. This completes the proof
of the lemma.

Let us now construct a family of operators. For an infinitesimal Kähler
automorphism K on the cone, i.e. Killing and holomorphic, we define the
operator on sections of TC(M) given by

MK = ∇K +
1

2n+ 2
div(JK)J. (6.7)
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Lemma 6.9. Let C(M) be the Kähler cone over a Sasaki-Einstein manifold
and let K as above. Then

(i) div(JK) = const;

(ii) MK is skew-symmetric and MKJ = JMK;

(iii) tr(JMK) = 0;

(iv) ∇MK = Rm(·, K) where Rm is the Riemann (3, 1)-tensor of g.

Proof. Let AK be the associated Nomizu operator, i.e. AK = ∇K. Then
since K is Killing, its covariant derivative is known to be ∇∇K = Rm(·, K).

(i) Fix p ∈ C(M) and let vi be a geodesic frame at p and let Y be any
vector field on C(M). Then

Y · div(JK)|p = g(∇Y∇viJK, vi)

= −g(∇Y∇viK, Jvi)

= −g((∇YAK)vi, Jvi)

= Rm(Y,K, Jvi, vi)

= 2Ric(Y,K)

= 0

since C(M) is Ricci-flat (see [71]), where we have used the well known
fact that Ric(X, Y ) = 1

2
tr(Rm(X, Y ) ◦ J).

(ii) Since K is holomorphic it is ∇J ·K = J∇·K so MKJ = JMK . Since K
is Killing, ∇K is skew-symmetric and also J , so (ii) follows.

(iii) Let vi be an orthonormal frame of C(M). Then

tr(JMK) = g(JMKvi, vi)

= g

(
∇viJK −

1

2n+ 2
(div(JK))vi, vi

)
= div(JK)− div(JK)

= 0.

(iv) By (i) and the fact that J is parallel, (iv) follows.

We will use the following lemma.
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Lemma 6.10. Let X be any field on M . Then Rm(r∂r, Jr∂r)K and Rm(r∂r, JX)K
vanish.

Proof. We notice that ∇r∂rK is holomorphic. Indeed, using that r∂r is holo-
morphic, it is

∇r∂rK = [r∂r, K] +∇Kr∂r

= [r∂r, K] +K

using that ∇r∂r = id. Hence ∇r∂rK is holomorphic being the sum of two
holomorphic fields. Then we compute

Rm(r∂r, Jr∂r)K = ∇r∂r∇Jr∂rK −∇Jr∂r∇r∂rK −∇[r∂r,Jr∂r]K

= J∇r∂r∇r∂rK − J∇r∂r∇r∂rK −∇J [r∂r,r∂r]K

= 0.

Similarly Rm(r∂r, JX)K = 0.

Now consider the family of functions on fK : C(M)→ R defined as

fK = g(MK∂r, J∂r). (6.8)

We exploit the fact that tr(JMK) = 0 for the following lemma, that also uses
that L is Legendrian.

Lemma 6.11. Let ei be a frame of the Legendrian L. Then

n∑
i=1

g(MKei, Jei) = −r2fK .

Proof. Since L is Legendrian, we can extend {ei} to an orthonormal frame
{1
r
ei, J

1
r
ei, ∂r,

1
r
ξ = J∂r} of C(M). Then

0 = tr(JMK) =
1

r2

n∑
i=1

[
g(JMKei, ei) + g(MKJei, Jei)

]
+ g(JMKJ∂r, J∂r) + g(JMK∂r, ∂r)

and from Lemma 6.9.(ii) we infer

2r2f +
n∑
i=1

2g(MKei, Jei) = 0.
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Lemma 6.12. For any Killing and holomorphic vector field K ∈ Γ(TC(M)),
the function fK is constant along the direction ∂r.

Proof. Since ∇∂r∂r = 0, we have

∂rfK = g((∇∂rMK)∂r, J∂r)

=
1

r3
Rm(r∂r, K, r∂r, Jr∂r)

= − 1

r3
Rm(r∂r, Jr∂r, K, r∂r)

= 0

by Lemma 6.10.

We prove the following.

Theorem 6.13. For any Legendrian minimal immersion Ln → M in a
Sasaki-Einstein manifold, and for any both holomorphic and Killing vector
field on the Kähler cone K ∈ Γ(TC(M)), then the functions fK defined by
(6.8) are eigenfunctions of ∆L with eigenvalue 2n+ 2.

Proof. We fix a vector field K as in the statement and we set f = fK . In
order to compute ∆Lf , we notice that Lemma 6.12 allows us to apply Lemma
6.8. Thus, let {e1, · · · , en} be a local frame of L.

We begin with observing that, for any such vector field ei, then there
holds

eif =
2

r
g(MK∂r, Jei). (6.9)

In fact,

eif = g((∇eiMK)∂r, J∂r) + g(MK∇ei∂r, J∂r) + g(MK∂r, J∇ei∂r)

= g(Rm(ei, K)∂r, J∂r) + 2g(MK∂r, J∇ei∂r)

=
2

r
g(MK∂r, Jei),

where at the second equality we applied Lemma 6.9.(ii) and (iv), at the third
equality we applied Lemma 6.10 and [71, (1.1)]. Similarly as for (6.9), we
also get

∇eieif =
2

r
g(MK∂r, J∇eiei). (6.10)
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Now we compute

eieif = ei

(
2

r
g(MK∂r, Jei)

)
=

2

r

(
g((∇eiMK)∂r, Jei) + g(MK∇ei∂r, Jei) + g(MK∂r, J∇eiei)

)
=

2

r

(
g(Rm(ei, K)∂r, Jei) +

1

r
g(MKei, Jei)

+ g(MK∂r, J∇eiei)− g(MK∂r, Jr∂r)

)
=

2

r2
g(MKei, Jei) +

2

r
g(MK∂r, J∇eiei)− 2g(MK∂r, J∂r),

where at the third equality we applied Lemma 6.9.iv and [71, (1.1)], at the
third equality we applied Lemma 6.10 and [71, (1.1)].

Finally we compute

∆Lf |L = −
n∑
i=1

∇df(ei, ei)|L

= −
n∑
i=1

(eieif −∇eieif)|L

= −
n∑
i=1

(eieif −∇eieif + r∂rf)|L

= −
n∑
i=1

(
2

r2
g(MKei, Jei) +

2

r
g(MK∂r, J∇eiei)

− 2g(MK∂r, J∂r)−
2

r
g(MK∂r, J∇eiei)

)∣∣∣∣
L

= (2n+ 2)f |L,

where at the third equality we applied [71, (1.1)], at the fourth equality we
applied Lemma 6.12 and (6.10), at the fifth equality we applied Lemma 6.11.
This completes the proof of the theorem.

Remark 6.14. Let us see how to recover the functions of Lê-Wang in this
setting. Let M ∈ su(n + 1) and consider it as a real (2n + 2) × (2n + 2)
matrix. It is skew-symmetric and such that tr(JM) = 0. Consider the vector
field on Cn+1 given at x by Kx = Mx, which is Killing and holomorphic. We
claim that the function fK is exactly the function 〈Mx, Jx〉. Indeed, if ∇
is the flat connection on Cn+1, it is ∇yK = My for y ∈ Cn+1. Moreover
div(JK) = tr(JU) = 0. So fK = 〈Mx, Jx〉 after identifying x with ∂r|(x,1).



6.4. EIGENFUNCTIONS USING THE NOMIZU OPERATOR 81

Let us now see the connection between our two different generalizations.
It is known that there is an inclusion aut(M) ⊆ aut(C(M)) of the algebra
of infinitesimal Sasaki automorphisms of M into the algebra of infinitesimal
Kähler automorphisms of the cone C(M). It consists in seeing a field V ∈
aut(M) trivially extended to the cone and it turns out to be holomorphic
and Killing with respect to the cone metric.

We proved in Theorem 6.5 that for X ∈ aut(M) the functions on L given
by η(X)− 1

vol(L)

´
L
η(X)dv are eigenfunctions of ∆L with eigenvalue 2n+ 2,

in the Sasaki-Einstein assumption. By seeing X as an infinitesimal Kähler
automorphism of C(M) we compute

MX∂r =
1

r

[
∇r∂rX +

1

2n+ 2
div(JX)ξ

]
and J∂r = 1

r
ξ. Taking their inner product we have

fX = g(MX∂r, J∂r) =
1

r2
g(X, ξ)+

1

2n+ 2
div(JX) = η(X)+

1

2n+ 2
div(JX).

(6.11)
Using Theorem 6.5 together with Theorem 6.13 we have, after applying

the Laplacian to (6.11), that

fX = η(X)− 1

vol(L)

ˆ
L

η(X)dv. (6.12)

Hence our second generalization extends the first.
In the Lê-Wang setting, we reobtain the fact that

´
L
η(X)dv = 0, which

is a fortiori true being η(X) an eigenfunction of ∆L.
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Chapter 7

Space of Kähler and Sasakian
metrics

In this chapter we deal with spaces of Kähler and Sasakian metrics. We
answer a question by Calabi about the existence of geodesics of the gradient
metric for the space of Kähler potentials for any initial position and velocity.
Moreover we compute that the Ebin metric restricted to the space of type
II deformations of a fixed Sasakian manifold is the sum of the Calabi metric
and the gradient metric. We study its geometric properties and we prove the
existence of short time geodesics as well. This work was done jointly with
S. Calamai and K. Zheng [19].

7.1 Introduction to the problem

The idea of defining a Riemannian structure on the space of all metrics on
a fixed manifold goes back to the sixties with the work of Ebin [32]. His
work concerns the pure Riemannian setting and, among other things, defines
a weak Riemannian metric on the space M of all Riemannian metrics on a
fixed Riemannian manifold (M, g0). The geometry of the Hilbert manifold
M was later studied by Freed and Groisser in [34] and Gil-Medrano and
Michor in [42]. In particular the curvature and the geodesics of M were
computed.

When the underlying M has additional structure, some subsets ofM were
also studied. For instance when (M,ω) is Kähler of complex dimension n,
the space of all Kähler metrics cohomologous to ω is of interest. By the ddc-
Lemma it can be parameterized by Kähler potentials, namely one considers
the space HK of all smooth real-valued ϕ such that ωϕ := ω + ddcϕ > 0 and
satisfying a certain normalization condition. The tangent space of H at ϕ is

83
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then given by

TϕHK =

{
ψ ∈ C∞(M) :

ˆ
M

ψdµϕ = 0

}
where dµϕ = ωnϕ/n! is the Kähler volume form.

The first attempt to define a weak metric on H is first due to Mabuchi,
Semmes and Donaldson, in [57, 67, 30] and defines a pairing on the tangent
space of HK at ϕ given by

〈ψ1, ψ2〉ϕ =

ˆ
M

ψ1ψ2dµϕ.

We shall refer to this metric as the Mabuchi metric.
The geometry of the Mabuchi metric was studied in [30] where its curva-

ture was computed and it was proved that it gives, formally, HK the structure
of a locally symmetric space.

Unlike finite dimensional Riemannian geometry, the Cauchy problem for
the geodesics, i.e. the problem to find a geodesic leaving an assigned point
with assigned direction, is not always solvable and it was proved by X. X.
Chen [24] that there is C1,1 regularity for the Dirichlet problem, namely the
problem to find a geodesic joining two assigned points.

The space HK can also be endowed with two different other metrics,
known as the Calabi metric and the gradient (or Dirichlet) metric.

The former goes back to Calabi and it was later studied by Calamai in
[16] where its Levi-Civita covariant derivative is computed, it is proved that
it is of constant sectional curvature, that H is then isometric to a portion
of a sphere and that both the Cauchy and Dirichlet problems admit smooth
explicit solutions.

The latter was again proposed by Calabi and later worked again in [16]
and later in [20] by Calamai and Zheng. Its Levi-Civita connection and
curvature are known but the solvability of the geodesic equation was not,
except for Riemann surfaces.

SinceHK naturally embeds in the Ebin spaceM, it is natural to ask what
the restriction of the Ebin metric is. It was proved by Clarke and Rubinstein
[29] that such restriction is exactly twice the Calabi metric.

In this chapter we consider on HK the metric given by (twice) the sum of
the Calabi and the gradient metric and we will refer to it as the sum metric.
Its study is justified by the fact that it arises when restricting the Ebin metric
to the space of Sasakian metrics, introduced and endowed with the Sasakian
analogue of the Mabuchi metric, in [45, 46] (see also [48]).

One of our results is the following.
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Proposition 7.1. The restriction of the Ebin metric to the space of Sasakian
metrics is twice the sum metric.

Then we move on to the Cauchy problem for the geodesics of the sum
metric in the Riemann surfaces setting proving, after a Riemann surfaces
warmup, the following.

Theorem 7.2. On a Kähler manifold, for every initial smooth Kähler po-
tential ϕ0, smooth ψ0 ∈ Tϕ0HK, integer k ≥ 2 and α ∈ (0, 1) there exists, for
small enough time, a unique Ck,α geodesic for the sum metric, starting from
ϕ0 with initial velocity ψ0.

This result of local existence is achieved with a metric space contraction
technique. Such approach is also used to prove in the same way the short
time existence for geodesics of the Dirichlet metric.

Theorem 7.3. On a Kähler manifold, for any initial data (ϕ0, ψ0) and k, α
as above, there exists for small enough time a unique Ck,α geodesic for the
Dirichlet metric, starting from ϕ0 with initial velocity ψ0.

We stress that the existence of smooth geodesics for either the Dirichlet
metric or the sum metric is still an open problem.

These estimates done can be generalized to the Sasakian setting, leading
to the corresponding statements for the restriction of the Ebin metric to the
space of Sasakian metrics and for the Dirichlet metric on the same space.

7.2 Preliminaries

In this section we recall the definitions of space of metrics and we define
several weak Riemannian structures on them. As anticipated in the intro-
duction, the first one goes back to Ebin [32] and starts with a closed Rie-
mannian manifold (M, g). The spaceM is defined to be the space S2

+(T ∗M)
of all symmetric positive (0, 2)-tensors on M . The formal tangent space at
g0 ∈ M is then given by all symmetric (0, 2)-tensors S2(T ∗M). This makes
M parallelizable. For a, b ∈ Tg0M Ebin defined the pairing

〈a, b〉g0 =

ˆ
M

g0(a, b)dvg0

where g0(a, b) is the metric g0 extended to (0, 2)-tensors and dvg0 is the volume
form of g0.

Moving on to Kähler manifolds, let (M,ω0) be a closed Kähler manifold
of complex dimension n and let HK be the space defined in the introduction.
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We will consider on HK the following weak Riemannian structures, other
than the Mabuchi metric already introduced above.

Let ϕ ∈ HK and ψ1, ψ2 ∈ TϕHK . We define the pairing

gC(ψ1, ψ2)ϕ =

ˆ
M

∆ϕψ1∆ϕψ2dµϕ (7.1)

where, here and in the rest of the chapter, the laplacian is defined as ∆ϕf =
(ddcf, ωϕ)ϕ. This is the opposite of the Hodge-deRham laplacian.

This metric has been introduced by Calabi and hence known as the Calabi
metric. Its geometry has been studied by Calamai in [16]. In such paper the
author exploited the Calabi volume conjecture which establish a bijection
between HK and the space of conformal volume forms

C =

{
u ∈ C∞(M) :

ˆ
M

eudµ0 = vol

}
(7.2)

that is the space of positive smooth functions on M whose integral with
respect to the initial measure is equal to the volume of M (which is constant

for all metrics in HK). The map is given by HK 3 ϕ 7→ log
ωnϕ
ωn0

, where
ωnϕ
ωn0

represents the unique positive function f such that ωnϕ = fωn0 . The tangent
space TuC is then given by

TuC =

{
v ∈ C∞(M) :

ˆ
M

veudµ0 = 0

}
where the Calabi metric assumes the simpler form

gC(v1, v2)u =

ˆ
M

v1v2e
udµ0. (7.3)

The geometry studied in [16] is actually the one of C with the metric
(7.3). It is proved that it admits a Levi-Civita covariant derivative, that
its sectional curvature is constant equal to 1

4 vol
and that the Cauchy and

Dirichlet problems for its geodesics admit a smooth explicit solution.
Note that this space can be defined for all Riemannian M forgetting the

Kähler structure.
Another possible pairing on TϕHK is the following

gG(ψ1, ψ2)ϕ =

ˆ
M

(dψ1, dψ2)ϕdµϕ (7.4)

that is, the global L2(dµϕ)-product of the gradients of ψ1 and ψ2. This is
known as the gradient (or Dirichlet) metric. This was also introduced by
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Calabi and later studied for Riemann surfaces by Calamai in [16] and then
by Calamai and Zheng in [20] in more generality.

Recall from above that the sum metric is defined to be g = gC + gG.
Given an initial Sasakian manifold (M, η0, ξ0,Φ0, g0), as explained in Chap-

ter 3, basic functions parameterize a family of other Sasakian structures on M
which share the same characteristic foliation and are in the same transverse
Kähler class, in the following way.

Let ϕ ∈ C∞B (M) and define ηϕ = η0 + dcϕ. The space of all ϕ’s is

H̃ = {ϕ ∈ C∞B (M) : ηϕ ∧ dηϕ 6= 0}

and, in analogy of the Kähler case, we consider normalized “potentials”

H = {ϕ ∈ H̃ : I(ϕ) = 0}.

The equation I = 0 is a normalization condition, similar to the one in [30].
We refer to [45] for the definition of I in our case, which is such that

TϕH =

{
ψ ∈ C∞B (M) :

ˆ
M

ψ
1

n!
ηϕ ∧ dηnϕ = 0

}
.

Every ϕ ∈ H defines a new Sasakian structure where the Reeb field and
the transverse holomorphic structure are the same and, cf. Chapter 3,

ηϕ = η0 + dcϕ

Φϕ = Φ0 − (ξ ⊗ dcϕ) ◦ Φ0

gϕ = dηϕ ◦ (id⊗Φϕ) + ηϕ ⊗ ηϕ.
(7.5)

Note that one could write gϕ = dηϕ ◦ (id⊗Φ0) + ηϕ ⊗ ηϕ since the endomor-
phism Φϕ − Φ0 has values parallel to ξ and dηϕ is basic. Indeed, the range
of Φϕ is the one of Φ0 plus a component along ξ, so if we contract it with
dη the latter vanishes. As in the Kähler case, these deformations keep the
volume of M fixed, which will be denoted by vol throughout the chapter.

On the space H one can define the Calabi metric and the gradient metric
in the same ways as in formulae (7.1) and (7.4) by using the so called basic
laplacian which acts on basic functions in the same way as in the Kähler case
and by using the volume form 1

n!
ηϕ ∧ dηnϕ in the integrals.

In this setting, it is easy to see that the map H 3 ϕ 7→ log
ηϕ∧dηnϕ
η0∧dηn0

maps

basic functions to basic functions. The transverse Calabi-Yau theorem of
[12] allows to prove the surjectivity of this map as in the Kähler case, more
precisely between H and the space of basic conformal volume forms

CB =

{
u ∈ C∞B (M) :

ˆ
M

eu
1

n!
η0 ∧ dηn0 = vol

}
.
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As noted above, the space C can be defined also for Sasakian manifolds
by just taking the Sasakian volume form 1

n!
η0 ∧ dηn0 instead of the Kähler

one. One might ask how the spaces CB and C are related. Obviously CB ⊆ C
but we can say more.

Proposition 7.4. CB is totally geodesic in C.

Proof. It is straightforward to verify that for any curve in CB and section
along it, the covariant derivative defined in [16] is still basic, meaning that
the (formal) second fundamental form of CB vanishes.

7.3 The Ebin metric on the space of Sasakian

metrics

LetM be the Ebin space of all Riemannian metrics on (M, g0, ξ0, η0) Sasakian
of dimension 2n+ 1.

We define an immersion Γ : H → M that maps ϕ 7→ gϕ as defined in
(7.5).

As in the Kähler case, it is injective. Indeed if two basic function ϕ1, ϕ2 ∈
H give rise to the same Sasakian metric, taking the corresponding transverse
structures we would have ddc(ϕ1 − ϕ2) = 0 forcing ϕ1 − ϕ2 = const. The
normalization I(·) = 0 then implies ϕ1 = ϕ2.

Let us compute the differential of Γ. Let ϕ(t) be a curve in H with
ϕ(0) = ϕ and ϕ′(0) = ψ ∈ TϕH. Then

Γ∗ϕψ =
d

dt

∣∣∣∣
t=0

gϕ(t) = ddcψ(Φ0 ⊗ id) + 2dcψ � ηϕ (7.6)

with the convention a � b = 1
2
(a ⊗ b + b ⊗ a). For easier notation we call

βψ := ddcψ(Φ0 ⊗ 1).
The differential of Γ is also injective. Indeed if ψ is in its kernel, then

0 = Γ∗ϕψ(ξ, ·) = dcψ,

forcing ψ to be zero, as it has zero integral.
On TgM the Ebin metric is given by, for a, b ∈ TgM = Γ(S2M),

gE(a, b)g =

ˆ
M

g(a, b)dvg

where g is extended on (0, 2)-tensors.
We want to compute the restriction of the Ebin metric on the space H.
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Proposition 7.5. The restriction of the Ebin metric to H is twice the sum
of the Calabi metric with the gradient metric

1

2
Γ∗gE = gC + gG

which we call the sum metric.

Proof. Computing the length with respect to gϕ of the tensor in (7.6) we get

|βψ + 2dcψ � ηϕ|2gϕ = gϕ(βψ, βψ) + 2gϕ(dcψ ⊗ ηϕ, dcψ ⊗ ηϕ) + 2gϕ(βψ, 2d
cψ � ηϕ)

= gϕ(βψ, βψ) + 2gϕ(dcψ, dcψ)gϕ(ηϕ, ηϕ) + 2βψ((dcψ)], ξ)

= gϕ(βψ, βψ) + 2gϕ(dcψ, dcψ)

using the fact that the gϕ-dual of ηϕ is ξ, that the ] is done with respect to
gϕ and finally the fact that the tensor βψ is transverse, i.e. vanishes when
evaluated on ξ.

Integrating with respect to dµϕ we have

〈Γ∗ϕψ,Γ∗ϕψ〉ϕ = ‖βψ‖2
ϕ + 2‖dcψ‖2

ϕ

where the right hand side are L2 norms with respect to the metric gϕ. The
second summand is twice the gradient metric on H given by

gG(ψ, ψ) =

ˆ
M

gϕ(dψ, dψ)
1

n!
ηϕ ∧ dηnϕ.

(It does not make a difference to take the gradient of the transverse gradient
for basic functions).

We now want to establish a useful formula that we will need in a while.
Fix ϕ ∈ H and h ∈ TϕH we consider the curve ϕ(t) = ϕ + th which is in H
for small t. We then compute for every curve f(t) ∈ TϕH,

0 =
d

dt
|t=0

ˆ
M

∆ϕ(t)f
1

n!
ηϕ(t)∧dηnϕ(t) =

ˆ
M

(∆ϕf
′(t)−(ddcf, ddch)ϕ+∆ϕf∆ϕh)

1

n!
ηϕ∧dηnϕ.

which means that gC(f, h)ϕ =
´
M

(ddcf, ddch)ϕ
1
n!
ηϕ ∧ dηnϕ.

Then we have, since βψ is the (transverse) 2-tensor associated to the basic
form ddcψ, whose pointwise norms are related by |βψ|2 = 2|ddcψ|2,

gC(ψ, ψ) =

ˆ
M

(∆ϕψ)2 1

n!
ηϕ ∧ dηnϕ =

ˆ
M

(ddcψ, ddcψ)ωϕ
1

n!
ηϕ ∧ dηnϕ =

1

2
‖βψ‖2

ϕ.

where ∆ϕ was defined earlier.
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7.3.1 Metric space structure on H
Let g = Γ∗gE and consider the associated function for p, q ∈ H

d(p, q) = inf{lengthg(γ) : γ is a curve in H from p to q}

Let γ be a curve in H joining p and q. Its length with respect to our new
metric is, by concavity of the square root:

√
a+ b ≥

√
2

2
(
√
a+
√
b),

`(γ) =

ˆ 1

0

√
2gC(γ̇, γ̇) + 2gG(γ̇, γ̇)dt

≥
ˆ 1

0

√
gC(γ̇, γ̇)dt+

ˆ 1

0

√
gG(γ̇, γ̇)dt

≥ dC(p, q) + dG(p, q).

So dC(p, q) + dG(p, q) is a lower bound of the set of lengths of γ as γ varies
between the curves joining p to q. So we have

dC ≤ dC + dG ≤ d (7.7)

We have the following.

Proposition 7.6. (H, d) is a metric space and

dC + dG ≤ d (7.8)

Proof. We need to prove that d is a distance. The symmetry and the triangle
inequality are obvious from the definition. If p, q ∈ H are such that d(p, q) =
0 then by inequality (7.7) we would have dC(p, q) = 0 leading to p = q as dC

is a distance on H.

7.4 The sum metric and its Levi-Civita con-

nection

In this section we call ∆ϕ the d-laplacian acting as ∆ϕ = (ddcf, ωϕ)ϕ. Notice
that it has nonpositive eigenvalues. With this laplacian the integration by
parts reads ˆ

M

(df, dg)ϕ
1

n!
ηϕ ∧ dηnϕ = −

ˆ
M

f∆ϕg
1

n!
ηϕ ∧ dηnϕ.

Consider on H the metric 2gC + 2gG. It can be written, for ϕ ∈ H and
α, β ∈ TϕH,

g(α, β) = 2

ˆ
M

∆ϕα∆ϕβ
1

n!
ηϕ ∧ dηnϕ − 2

ˆ
M

α∆ϕβ
1

n!
ηϕ ∧ dηnϕ
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= 2

ˆ
M

∆ϕ(α−Gϕα)∆ϕβ
1

n!
ηϕ ∧ dηnϕ

= gC(Lϕα, β)

where Lϕ = 2(I −Gϕ) with Gϕ the Green operator associated to ∆ϕ.
Note that the Gϕ acting on functions with zero integral with respect

to dµϕ is the inverse of ∆ϕ, since the projection on the space of harmonic
functions is Hϕ : f 7→ 1

volϕ

´
M
f 1
n!
ηϕ ∧ dηnϕ = 0 and because of the known

relation I = Hϕ + ∆ϕGϕ.
We have the first property.

Lemma 7.7. For all ϕ ∈ C∞B , the operator Lϕ ∈ End(TϕH) is bijective.

Proof. Since Lϕ defines a metric, it must have no kernel. The solvability of
the problem u − Gϕu = f is equivalent to the solvability of ∆ϕu − u = h.
We then consider the operator ∆ϕ − I which is elliptic and self-adjoint with
respect to the L2 product. The space of smooth functions is then split as (by
the results of [33] about transversally elliptic operators)

C∞B (M) = ker(∆ϕ − I)⊕ Im(∆ϕ − I).

By the remark about eigenvalues done at the beginning we see that 1 does
not belong to the spectrum of ∆ϕ so in particular C∞B (M)∩TϕH = Im(∆ϕ−
I) ∩ TϕH.

We are now ready to write down the Levi-Civita covariant derivative of
g using the invertibility of Lϕ.

Theorem 7.8. For any curve ϕ in H and any section v on ϕ, the only
solution Dtv of

1

2
LϕDtv = DC

t v −GϕD
G
t v (7.9)

is the Levi-Civita covariant derivative of g, i.e. it is torsion free and

d

dt
g(v, v) = 2g(Dtv, v). (7.10)

Proof. The fact that this covariant derivative is torsion-free is evident from
its definition. To prove (7.10) we notice that the gradient metric satisfies
gG = −gC(Gϕ·, ·). We compute for a curve ϕ and a section v on it

d

dt
g(v, v) = 4gC(DC

t v, v) + 4gG(DG
t v, v)

= 4gC(DC
t v −GϕD

G
t v, v)

= 2gC(LϕDtv, v)

= 2g(Dtv, v)

by using the implicit definition of Dtv.
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7.4.1 The geodesic equation

The geodesic equation is then

∆2
ϕD

C
t ϕ
′ −∆ϕD

G
t ϕ
′ = 0 (7.11)

which is rewritten as

(∆ϕ − I)

(
(∆ϕϕ

′)′ +
1

2
(∆ϕϕ

′)2

)
− 1

2
|ddcϕ′|2ϕ = 0. (7.12)

Remark 7.9. It is important to notice here that if we consider the sum metric
gC +gG on the space of Kähler potentials HK (although we do not get that it
is the pull back of the Ebin metric) we find exactly the same equation (7.12)
for the geodesics. This is because the variation of volume form follows the
same rule in both cases and the basic Laplacian corresponds to the Laplacian
in the Kähler setting.

Remark 7.10. It is clear that a curve ϕ which is a geodesic for both the
Calabi and the gradient metric would be a geodesic for our metric as well.
Unfortunately there are no such nontrivial curves, indeed one of them would
satisfy {

(∆ϕϕ
′)′ + 1

2
(∆ϕϕ

′)2 − 1
2V
gC(ϕ′, ϕ′) = 0

(∆ϕϕ
′)′ + (∆ϕϕ

′)2 + ∆ϕϕ
′′ = 0

Subtracting the first to the second we get

1

2
(∆ϕϕ

′)2 + ∆ϕϕ
′′ +

1

2V
gC(ϕ′, ϕ′).

Integrating it we would infer gC(ϕ′, ϕ′) = 0 meaning that ϕ is the constant
curve.

7.5 The Cauchy problem for the geodesic equa-

tion of the sum metric

7.5.1 The case of Riemann surfaces

Let us recall some notation. Let (M,ω) be a smooth Riemann surface en-
dowed with a Kähler metric ω; letHK = {ϕ ∈ C∞(M) : ω+ddcϕ > 0, I(ϕ) =
0}, where the condition I(ϕ) = 0 is the Donaldson normalization (see [30]),
be the space of Kähler potentials and let us introduce also the following
function spaces Hk,α

K = {ϕ ∈ Ck,α(M) : ω + ddcϕ > 0,
´
M
ψdµϕ = 0} and
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Hk,α
K,δ = {ϕ ∈ Ck,α(M) : ω+ddcϕ ≥ δ, I(ϕ) = 0}, where k ≥ 2 and α ∈ (0, 1);

at the present stage we already proved that the geodesic equation for the
sum metric gC + gG, where the underlying manifold is n-dimensional Kähler,
is the following equation:

(∆ϕ − I)

(
(∆ϕϕ

′)′ +
1

2
(∆ϕϕ

′)2

)
− 1

2
|ddcϕ′|2ϕ = 0, (7.13)

where we recall here that the elliptic operator ∆ϕ has non-positive spectrum.
Our main result is the following

Theorem 7.11. For every ϕ0 ∈ HK, ψ0 ∈ Tϕ0HK and integer k ≥ 2 and

α ∈ (0, 1) there exists a positive ε and a curve ϕ ∈ C2([−ε, ε],Hk,α
K ) which is

the unique solution of (7.13) with initial data (ϕ0, ψ0).

Remark 7.12. It is an open question whether we can find geodesics which
solve the Cauchy problem and belong to the function space C2([−ε, ε],HK),
that is, at any time they are smooth Kähler potentials. We also ask whether
the long time existence of our geodesics holds.

The first remark that we want to make is about the simplification of the
equation (7.13) when the underlying manifold is a Riemann surface.

Lemma 7.13. When the underlying manifold is a Riemann surface (M,ω),
then the geodesic equation (7.13) simplifies into

ϕ′′ =
1

2
(∆ϕ − I)−1(∆ϕϕ

′)2 +
1

2V

ˆ
M

(∆ϕϕ
′)2dµϕ −

1

V

ˆ
M

ϕ′∆ϕϕ
′dµϕ = 0

(7.14)

where V is the volume of (M,ω).

Proof. For any Riemann surface and any Kähler potential ϕ, we have that

(∆ϕϕ
′)2 = |ddcϕ′|2ϕ, (7.15)

so that we can first rewrite (7.13) as

(∆ϕ − I)

(
∆ϕϕ

′′ − (∆ϕϕ
′)2 +

1

2
(∆ϕϕ

′)2

)
− 1

2
(∆ϕϕ

′)2 = 0,

which is

∆ϕ

(
∆ϕϕ

′′ − 1

2
(∆ϕϕ

′)2 − ϕ′′
)

= 0; (7.16)
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now, using that M is compact and without boundary, we get by integration
that

∆ϕϕ
′′ − 1

2
(∆ϕϕ

′)2 − ϕ′′ + 1

2V

ˆ
M

(∆ϕϕ
′)2dµϕ −

1

V

ˆ
M

ϕ′∆ϕϕ
′dµϕ = 0.

(7.17)

Finally, using that the elliptic operator ∆ϕ has non-positive spectrum, we
get that ∆ϕ − I is invertible and

ϕ′′ =
1

2
(∆ϕ − I)−1(∆ϕϕ

′)2 +
1

2V

ˆ
M

(∆ϕϕ
′)2dµϕ −

1

V

ˆ
M

ϕ′∆ϕϕ
′dµϕ.

(7.18)

In fact, since the integral terms do not depend upon spatial variables, we
have

(∆ϕ − I)−1

(
− 1

2V

ˆ
M

(∆ϕϕ
′)2dµϕ

)
=

1

2V

ˆ
M

(∆ϕϕ
′)2dµϕ

and similarly

(∆ϕ − I)−1

(
1

V

ˆ
M

ϕ′∆ϕϕ
′dµϕ

)
= − 1

V

ˆ
M

ϕ′∆ϕϕ
′dµϕ.

This completes the proof of the lemma.

Now that we have the geodesic equation in the form (7.14), we observe
that it can be written as a system of two PDE as follows{

ϕ′ = ψ;
ψ′ = 1

2
(∆ϕ − I)−1(∆ϕψ)2 + 1

2V

´
M

(∆ϕψ)2dµϕ − 1
V

´
M
ψ∆ϕψdµϕ.

(7.19)
In particular the integral form of the above system is telling us that a geodesic
(ϕ, ψ) with initial data (ϕ0, ψ0) has the property that

ϕ = ϕ0 +
´ t

0
ψ(s)ds;

ψ = ψ0 +
´ t

0

(
1
2
(∆ϕ − I)−1(∆ϕψ)2 + 1

2V

´
M

(∆ϕψ)2dµϕ − 1
V

´
M
ψ∆ϕψdµϕ

)
ds.

(7.20)
The structure of the system (7.20) suggests to consider the following complete
metric space

C0([−ε, ε],Hk,α
K,δ)× C

0([−ε, ε], Ck,α(M)) (7.21)
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as the function space where we are going to look for solutions of our system.
The norm that we consider is defined for ψ ∈ C0([−ε, ε], Ck,α) as

|ψ|k,α := sup
t∈[−ε,ε]

‖ψ(t, ·)‖Ck,α(M),

and in the product space, the norm of any element (ϕ, ψ) ∈ C0([−ε, ε],Hk,α
K,δ)×

C0([−ε, ε], Ck,α(M)) is

|(ϕ, ψ)|k,α := |ϕ|k,α + |ψ|k,α.

Before getting into more specific arguments about (7.20) we need some
lemmas.

Lemma 7.14. Let χ, ϕ, ϕ0 ∈ C0([−ε, ε],Hk,α
K ), with k ≥ 2, |ϕ − ϕ0|k,α < r

and |χ − ϕ0|k,α < r. Let ψ ∈ C0([−ε, ε], Ck,α(M)). Then there exists ν > 0
such that, if |ϕ− χ|k,α < ν, then

|∆ϕψ −∆χψ|k−2,α < C(ω, ϕ0, r,M, k, α) · |ϕ− χ|k,α · |ψ|k,α. (7.22)

In particularly,

|∆ϕψ|k−2,α < C(ω, ϕ0, r,M, k, α) · |ϕ|k,α · |ψ|k,α.

Proof. Let us fix an open coordinate chart on the Riemann surface. Then
we can express the Laplacians as

∆ϕψ −∆χψ

=

(
1

g11 + ϕ11

− 1

g11 + χ11

)
ψ11

=

(
χ11 − ϕ11

(g11 + ϕ11)(g11 + χ11)

)
ψ11,

where subscripts 1 and 1 stand for, respectively, ∂
∂z

and ∂
∂z

. Next we observe
that for a k− 2-differentiable function f , the directive of f−1 is combination
of the derivatives of f up to k − 2-orders, from which we infer that∣∣∣∣ 1

g11 + ϕ11

∣∣∣∣
k−2,α

≤ C(ω, |g11 + ϕ11|Ck−2,α)

= C(ω, |g11 + ϕ011|Ck−2,α + |ϕ011 − ϕ11|Ck−2,α)

= C(ω, ϕ0, r). (7.23)
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Now we conclude, by means of [43, (4.7) page 53], that∣∣∣∣∆ϕψ −∆χψ

∣∣∣∣
k−2,α

≤ |χ− ϕ|k,α ·
∣∣∣∣ 1

g11 + ϕ11

∣∣∣∣
k−2,α

·
∣∣∣∣ 1

g11 + χ11

∣∣∣∣
k−2,α

· |ψ|k,α,

which, arguing on an open covering of M and using (7.23), gives the claimed
formula (7.22). This completes the proof of the lemma.

The following preliminary result is a direct consequence of a well-known
result in elliptic operators theory.

Lemma 7.15. Let ϕ,∈ C0([−ε, ε],Hk,α
K ), with k ≥ 2. For a sufficiently small

r > 0 for which there holds |ϕ−ϕ0|k,α < r, then on any ψ ∈ C0([−ε, ε], Ck,α(M))
we have the following estimate

|(∆ϕ − I)−1ψ|k,α ≤ CS(ω, ϕ0, r)|ψ|k−2,α. (7.24)

Proof. The statement is a version of the Schauder estimates as stated in
[43, Theorem 6.19, page 111]. When r is sufficiently small, the condition
|ϕ−ϕ0|k,α < r guarantees that the smallest eigenvalue of the family of elliptic
operators ∆ϕ(t,·) for every t ∈ [−ε, ε] is bounded by a positive λ. Moreover,
all the coefficients of the whole operator ∆ϕ − I are bounded in the norm
Ck−2,α as required in [43, Theorem 6.19, page 111]. That theorem gives us
that

|(∆ϕ − I)−1ψ|k,α ≤ CS(ω, ϕ0, r) · (|(∆ϕ − I)−1ψ|L∞ + |ψ|k−2,α).

We can get rid of the term |(∆ϕ − I)−1ψ|k−2,α by means of [8, 27 Theorem,
page 463] and the normalisation condition of ψ i.e.

´
M
ψ 1
n!
ηϕ ∧ dηnϕ = 0; in

fact the operator ∆ϕ − I has zero kernel since the spectrum of ∆ϕ is non-
positive. Thus we find the claimed formula (7.24) and this completes the
proof of the lemma.

Let us isolate the next result

Proposition 7.16. For any (ϕ0, ψ0) ∈ Hk,α
K,δ × Ck,α(M) there exist positive

numbers ε > 0 and r > 0 such that the closed metric ball of center (ϕ0, ψ0)
and radius r

Br(ϕ0, ψ0) ⊆ C0([−ε, ε],Hk,α
K,δ)× C

0([−ε, ε], Ck,α(M)) (7.25)
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is mapped into itself by the application

T (ϕ, ψ) (7.26)

=

(
ϕ0 +

ˆ t

0

ψ(s)ds, ψ0 +

ˆ t

0

(
1

2
(∆ϕ − I)−1(∆ϕψ)2

+
1

2V

ˆ
M

(∆ϕψ)2dµϕ −
1

V

ˆ
M

ψ∆ϕψdµϕ

)
ds

)
.

Proof. Let us remark that we look at the functions ϕ0, ψ0 as constant in time
and being defined for any time-interval; in particular, it makes sense to write
|ϕ0|k,α, which is equal to ‖ϕ0‖Ck,α(M). Let us estimate∣∣∣∣ϕ0 +

ˆ t

0

ψ(s)ds− ϕ0

∣∣∣∣
k,α

= sup
t∈[−ε,ε]

∥∥∥∥ˆ t

0

ψ(s)ds

∥∥∥∥
Ck,α(M)

≤ sup
t∈[−ε,ε]

ˆ t

0

‖ψ(s)‖Ck,α(M)ds

≤ sup
t∈[−ε,ε]

ˆ t

0

sup
s∈[−ε,ε]

‖ψ(s)‖Ck,α(M)ds ≤ ε · (|ψ0|k,α + |ψ − ψ0|k,α) ≤ ε · (|ψ0|k,α + r).

We now move on to the estimate of the second component of the map T ; in
order to estimate the following∣∣∣∣ψ0 +

ˆ t

0

(
1

2
(∆ϕ − I)−1(∆ϕψ)2 +

1

2V

ˆ
M

(∆ϕψ)2dµϕ −
1

V

ˆ
M

ψ∆ϕψdµϕ

)
ds− ψ0

∣∣∣∣
k,α

,

(7.27)

and having in mind just to perform triangular inequalities, we specialize to
specific estimates of its addenda. Namely, we first estimate∣∣∣∣ˆ t

0

1

2V

ˆ
M

(∆ϕψ)2dµϕds

∣∣∣∣
k,α

=

ˆ t

0

1

2V

ˆ
M

(∆ϕψ)2dµϕds.

The above equality just means that being the quantity to estimate indepen-
dent from spatial variables, then its Ck,α norm is just its absolute value. This
is useful in what follows

1

2V

ˆ
M

(∆ϕψ)2dµϕ ≤
1

2V

ˆ
M

|(∆ϕψ)2|k−2,αdµϕ

≤ 1

2V

ˆ
M

|(∆ϕψ)|2k−2,αdµϕ =
1

2
|(∆ϕψ)|2k−2,α,

where at the second inequality we used the formula [43, (4.7) page 53]. Now,
by means of Lemma 7.14, we conclude∣∣∣∣ˆ t

0

1

2V

ˆ
M

(∆ϕψ)2dµϕds

∣∣∣∣
k,α

≤ ε · C(ω, ϕ0, r, ψ0, k)(|ψ0|k,α + r)2. (7.28)
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A similar argument works for the following addendum of (7.27)∣∣∣∣− 1

V

ˆ t

0

ˆ
M

ψ∆ϕψdµϕds

∣∣∣∣ ≤ ε · 1

V

ˆ
M

|ψ∆ϕψ|k−2,αdµϕ

≤ ε · |ψ|k−2,α|∆ϕψ|k−2,α ≤ ε · C(ω, ϕ0, r, ψ0, k)(|ψ0|k,α + r)2,

where again we used Lemma 7.14 and [43, (4.7) page 53]. Now, we establish
an estimate for the term of (7.27)∣∣∣∣ˆ t

0

1

2
(∆ϕ − I)−1(∆ϕψ)2ds

∣∣∣∣
k,α

≤ ε · CS(ω, ϕ0, r, k)|(∆ϕψ)2|k−2,α

≤ ε · CS(ω, ϕ0, r, k)|(∆ϕψ)|2k−2,α

≤ ε · CS(ω, ϕ0, r, k) · C(r, ω, ϕ0, ψ0, k)2 · (|ψ0|k,α + r)2,

where CS is the Schauder constant of Lemma 7.15. So, we can choose any r
such that the two constants CS(r, ω, ϕ0, k), C(r, ω, ϕ0, ψ0, k) are finite, and
then choose a suitable ε such that the estimates we provided bound the image
of T by r. This completes the proof of the proposition.

The next ingredient we need is the following.

Proposition 7.17. For any (ϕ0, ψ0) ∈ Hk,α
K,δ × Ck,α(M) there exist positive

numbers ε > 0 and r > 0 such that the closed metric ball Br(ϕ0, ψ0) as above
is mapped into itself by the application defined in (7.26) and moreover the
map T is a contraction.

Proof. By Proposition 7.16 we already have a radius r0 for which T maps
the ball of that radius in itself. Moreover, for any other r < r0 there is an ε
such that the pair r, ε still does the job. Let us now fix any two pairs (ϕ, ψ)
and (χ, ξ) in the ball centered at (ϕ0, ψ0), whose distance is, say, η, and let
us estimate the quantity

|T (ϕ, ψ)− T (χ, ξ)|k,α. (7.29)

The estimate for the first component of the above expression is∣∣∣∣ˆ t

0

(ψ − ξ)ds
∣∣∣∣
k,α

≤ ε · |ψ − ξ|k,α ≤ ε · η. (7.30)

The second component of |T (ϕ, ψ)− T (χ, ξ)|k,α is∣∣∣∣ˆ t

0

(
1

2
(∆ϕ − I)−1(∆ϕψ)2 +

1

2V

ˆ
M

(∆ϕψ)2dµϕ −
1

V

ˆ
M

ψ∆ϕψdµϕ (7.31)
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−1

2
(∆χ − I)−1(∆χξ)

2 − 1

2V

ˆ
M

(∆χξ)
2dµχ +

1

V

ˆ
M

ξ∆χξdµχ

)
ds

∣∣∣∣
k,α

.

The analysis of the estimates for (7.31) break into pairs of its addenda. We
begin with the following estimate∣∣∣∣ˆ t

0

1

2V

ˆ
M

((∆ϕψ)2dµϕ − (∆χξ)
2dµχ)ds

∣∣∣∣
≤
∣∣∣∣ˆ t

0

1

2V

ˆ
M

((∆ϕψ)2dµϕ − (∆ϕψ)2dµχ + (∆ϕψ)2dµχ − (∆χξ)
2dµχ)ds

∣∣∣∣
≤ ε

1

2V

∣∣ˆ
M

(∆ϕψ)2ddc(ϕ− χ)
∣∣

+ ε
1

2V

ˆ
M

|(∆ϕψ)2 − (∆χξ)
2|k−2,αdµχ

≤ εC(ω, ϕ0, r, ψ0, k)|ϕ− χ|k−2,α

+ ε
1

2V

ˆ
M

|(∆ϕψ)2 − (∆ϕξ)
2 + (∆ϕξ)

2 − (∆χξ)
2|k−2,αdµχ

≤ εC(ω, ϕ0, r, ψ0, k)|ϕ− χ|k,α

+ ε
1

2V

ˆ
M

(
|(∆ϕ(ψ − ξ))(∆ϕ(ψ + ξ))|k−2,α + |(∆ϕξ)

2 − (∆χξ)
2|k,α

)
dµχ

≤ εC(ω, ϕ0, r, ψ0, k)|ϕ− χ|k,α + εC(ω, ϕ0, r, ψ0, k)2|ψ − ξ|k,α

+ ε
1

2V

ˆ
M

|(∆ϕξ)
2 − (∆χξ)

2|k−2,α

)
dµχ

≤ εC(ω, ϕ0, r, ψ0, k)|ϕ− χ|k,α + εC(ω, ϕ0, r, ψ0, k)2|ψ − ξ|k,α

+ εC(r, ω, ϕ0, ψ0, k)
1

2V

ˆ
M

|(∆ϕξ)− (∆χξ)|k−2,α

)
dµχ

≤ εC(ω, ϕ0, r, ψ0, k)|ϕ− χ|k,α + εC(ω, ϕ0, r, ψ0, k)2|ψ − ξ|k,α

+ εC(ω, ϕ0, r, ψ0, k)2|ϕ− χ|k,α.

The next addendum to estimate behaves similarly. It is

∣∣∣∣ˆ t

0

(
− 1

V

ˆ
M

ψ∆ϕψdµϕ +
1

V

ˆ
M

ξ∆χξdµχ

)
ds

∣∣∣∣
≤ ε

V

∣∣∣∣ˆ
M

−ψ∆ϕψdµϕ + ξ∆ϕψdµϕ − ξ∆ϕψdµϕ + ξ∆χξdµϕ − ξ∆χξdµϕ + ξ∆χξdµχ

∣∣∣∣
≤ ε

V

(ˆ
M

| − ψ∆ϕψ + ξ∆ϕψ|k−2,αdµϕ
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+

ˆ
M

| − ξ∆ϕψ + ξ∆χξ|k−2,αdµϕ +

ˆ
M

| − ξ∆χξdd
c(ϕ− χ)|

)
≤ ε

V

(ˆ
M

| − ψ + ξ|k−2,α · |∆ϕψ|k−2,αdµϕ +

ˆ
M

|ξ|k−2,α·

| −∆ϕψ + ∆ϕχ−∆ϕχ+ ∆χξ|k−2,αdµϕ +

ˆ
M

| − ξ∆χξdd
c(ϕ− χ)|

)
The third pair of addenda of (7.31) to estimate is∣∣∣∣ˆ t

0

(
1

2
(∆ϕ − I)−1(∆ϕψ)2 − 1

2
(∆χ − I)−1(∆χξ)

2

)
ds

∣∣∣∣
k,α

≤ ε

2
·
∣∣∣∣(∆ϕ − I)−1(∆ϕψ)2 − (∆ϕ − I)−1(∆χξ)

2

+ (∆ϕ − I)−1(∆χξ)
2 − (∆χ − I)−1(∆χξ)

2

∣∣∣∣
k,α

≤ ε

2
·
∣∣∣∣(∆ϕ − I)−1

(
(∆ϕψ)2 − (∆χξ)

2
)∣∣∣∣
k,α

+
ε

2
·
∣∣∣∣((∆ϕ − I)−1 − (∆χ − I)−1

)
(∆χξ)

2

∣∣∣∣
k,α

≤ ε

2
CS(r, k, ω, ϕ0, ψ0) ·

∣∣∣∣(∆ϕψ)2 − (∆χξ)
2

∣∣∣∣
k−2,α

+
ε

2
·
∣∣∣∣((∆ϕ − I)−1 − (∆χ − I)−1

)
(∆χξ)

2

∣∣∣∣
k,α

≤ ε

2
CS(r, k, ω, ϕ0, ψ0)C(ω, ϕ0, r, k, ψ0) · (

∣∣ψ − ξ∣∣
k,α

+
∣∣ϕ− χ∣∣

k,α
)

+
ε

2
·
∣∣∣∣((∆ϕ − I)−1 − (∆χ − I)−1

)
(∆χξ)

2

∣∣∣∣
k,α

≤ ε

2
CS(ω, ϕ0, r, k, ψ0)C(r, k, ω, ϕ0, ψ0) · (

∣∣ψ − ξ∣∣
k,α

+
∣∣ϕ− χ∣∣

k,α
)

+
ε

2
· CS(ω, ϕ0, r, k, ψ0)

∣∣∣∣(∆χξ)
2 − (∆ϕ − I)(∆ϕ − I)−1(∆χξ)

2

∣∣∣∣
k−2,α

≤ ε

2
CS(ω, ϕ0, r, k, ψ0)C(r, k, ω, ϕ0, ψ0) · (

∣∣ψ − ξ∣∣
k,α

+
∣∣ϕ− χ∣∣

k,α
)

+
ε

2
· CS(r, k, ω, ϕ0, ψ0)

∣∣∣∣((∆χ − I)− (∆ϕ − I)

)
(∆ϕ − I)−1(∆χξ)

2

∣∣∣∣
k−2,α

≤ ε

2
CS(ω, ϕ0, r, k, ψ0)C(r, k, ω, ϕ0, ψ0) · (

∣∣ψ − ξ∣∣
k,α

+
∣∣ϕ− χ∣∣

k,α
)

+
ε

2
· CS(ω, ϕ0, r, k, ψ0) · C(r, k, ω, ϕ0, ψ0) ·

∣∣χ− ϕ∣∣
k,α
|(∆ϕ − I)−1(∆χξ)

2|k−2,α
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≤ ε

2
CS(ω, ϕ0, r, k, ψ0)C(r, k, ω, ϕ0, ψ0) · (

∣∣ψ − ξ∣∣
k,α

+
∣∣ϕ− χ∣∣

k,α
)

+
ε

2
· CS(r, k, ω, ϕ0, ψ0) · C(ω, ϕ0, r, k, ψ0) ·

∣∣χ− ϕ∣∣
k,α
.

Thus, when ε is sufficiently small, we can conclude that the norm of T (ϕ, ψ)−
T (χ, ξ) is smaller than the norm of (ϕ, ψ)− (χ, ξ). This concludes the proof
of the proposition.

Proof of Theorem 7.11. We fix a pair of initial conditions (ϕ0, ψ0) as in the
statement, then we have a δ corresponding to ϕ0 and thus we can make the
argument of Proposition 7.16 work; together with Proposition 7.17, it says
that we can apply the fixed point theorem for complete metric spaces. The
fixed point provided is precisely the unique wanted solution. By means of the
continuity of the solution, we can consider it as long as it is non-degenerate,
that is as long as ω + ddcϕ > 0.

Notice that we worked in the product space (7.25) while the space HK is
not parallelizable. Since our solution (ϕ, ψ) is a solution of the fixed point
problem (7.20) we get a posteriori that for any t, ψ(t) lies in Tϕ(t)HK .

7.5.2 The general case

In the present subsection let (M, g) be a smooth Kähler manifold with
dimCM = n. About all the other notation, we stick to the one already
introduced.

Our aim is to prove the following result, which corresponds to Theorem
7.11

Theorem 7.18. For every ϕ0 ∈ HK (respectively ϕ0 ∈ H), ψ0 ∈ Tϕ0HK

(resp. ψ0 ∈ Tϕ0H), integer k ≥ 2 and α ∈ (0, 1) there exists a positive ε

and a curve ϕ ∈ C2([−ε, ε],Hk,α
K ) (resp. ϕ ∈ C2([−ε, ε],Hk,α

K )) which is the
unique solution of (7.12) with initial data (ϕ0, ψ0).

Proof. We argue as in the case of a Riemann surface of the previous subsec-
tion, but we have to take care of some more details. Our first claim is that
(7.12) is equivalent to the following system ϕ′ = ψ;

ψ′ = Lϕψ := ∆−1
ϕ

[
1
2
(∆ϕ − I)−1|ddcψ|2ϕ + |ddcψ|2ϕ + 1

2
(∆ϕψ)2

]
.

(7.32)

This is achieved just by inverting the elliptic operators ∆ϕ − I first and ∆ϕ

then, and getting thus an PDE of the form ϕ′′ = Lϕϕ
′.
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The second step is to define a map T as in (7.26), and to find an ε and a
r such that the complete metric space (7.25) is mapped by T into itself. The
explicit expression of the map T in the present case is the following

T (ϕ, ψ) (7.33)

=

(
ϕ0 +

ˆ t

0

ψ(s)ds, ψ0 +

ˆ t

0

Lϕψds

)
.

The estimate on the first component is exactly the same as in the proof of
Proposition 7.16. About the estimate of the second component we compute∣∣∣∣ψ0 +

ˆ t

0

Lϕψds− ψ0

∣∣∣∣
k,α

=

∣∣∣∣ˆ t

0

Lϕψds

∣∣∣∣
k,α

(7.34)

≤ ε · CS(r, ϕ0, ω)

(∣∣(∆ϕ − I)−1|ddcψ|2ϕ
∣∣
k−2,α

+
∣∣|ddcψ|2ϕ∣∣k−2,α

+

∣∣∣∣12(∆ϕψ)2

∣∣∣∣
k−2,α

)
≤ ε · CS(r, ϕ0, ω)

(
CS(r, ϕ0, ω)

∣∣|ddcψ|2ϕ∣∣k−4,α
+
∣∣|ddcψ|2ϕ∣∣k−2,α

+

∣∣∣∣12(∆ϕψ)2

∣∣∣∣
k−2,α

)
≤ ε · C(r, ϕ0, ω) · |ψ|k,α,

where we used the Schauder estimates which generalized Lemma 7.15 twice,
and we estimated both

∣∣|ddcψ|2ϕ∣∣k−2,α
and |(∆ϕψ)2|k−2,α arguing in the same

vein of Lemma 7.14.
Then, we have to prove that the map T is a contraction for some ε

and some r. Again, the first component of T is estimated precisely as in
Proposition 7.17. So, sticking to the notation in Proposition 7.17, we have
to estimate

|Lϕψ − Lχξ|k,α ≤
∣∣(∆ϕ)−1

(
∆ϕLϕψ + ∆χLχξ −∆χLχξ −∆ϕLχξ

)∣∣
k,α

(7.35)

≤ CS(r, ϕ0, ω)
(∣∣∆ϕLϕψ −∆χLχξ

∣∣
k−2,α

+
∣∣∆χLχξ −∆ϕLχξ

∣∣
k−2,α

)
,

where we performed a Schauder estimate of the same fashion as Lemma
7.15. About the second addendum we argue as in Lemma 7.14 and moreover
noticing that by (7.34) we have |Lχξ|k−2,α ≤ C(r, ϕ0, ψ0, g); thus we can
estimate ∣∣∆χLχξ −∆ϕLχξ

∣∣
k−2,α

≤ C(r, ϕ0, ω, ψ0) · |χ− ϕ|k,α, (7.36)

while for the first addendum we start noticing∣∣∆ϕLϕψ −∆χLχξ
∣∣
k−2,α

(7.37)
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=

∣∣∣∣12(∆ϕ − I)−1|ddcψ|2ϕ −
1

2
(∆χ − I)−1|ddcξ|2χ

+ |ddcψ|2ϕ − |ddcξ|2χ +
1

2
(∆ϕψ)2 − 1

2
(∆χξ)

2

∣∣∣∣
k−2,α

.

In order to handle the above expression, we begin with the estimate∣∣∣∣(∆ϕ − I)−1|ddcψ|2ϕ − (∆χ − I)−1|ddcξ|2χ
∣∣∣∣
k−2,α

(7.38)

≤
∣∣∣∣(∆ϕ − I)−1

(
|ddcψ|2ϕ − |ddcξ|2χ + |ddcξ|2χ − (∆ϕ − I)(∆χ − I)−1|ddcξ|2χ

)∣∣∣∣
k−2,α

≤ CS(ϕ0, r, ω)

∣∣∣∣|ddcψ|2ϕ − |ddcξ|2χ + |ddcξ|2χ − (∆ϕ − I)(∆χ − I)−1|ddcξ|2χ
∣∣∣∣
k−4,α

.

Now we notice that∣∣∣∣|ddcξ|2χ − (∆ϕ − I)(∆χ − I)−1|ddcξ|2χ
∣∣∣∣
k−4,α

=

∣∣∣∣(∆ϕ −∆χ)(∆χ − I)−1|ddcξ|2χ
∣∣∣∣
k−4,α

(7.39)

≤ C(r, ϕ0, ω, ψ0) · |ϕ− χ|k,α

having in mind the arguments of Lemmata 7.14 and 7.15. Next we estimate
other addendum of (7.38), which is the same as the second addendum of
(7.37). We put ourselves in a coordinate chart, and we label the Riemannian
metrics corresponding to ϕ, χ as gϕ, gχ; we compute∣∣∣∣|ddcψ|2ϕ − |ddcξ|2χ∣∣∣∣

k−4,α

=

∣∣∣∣gijϕ gklϕ ψilψkj − gijχ gklχ ξilξkj∣∣∣∣
k−4,α

(7.40)

≤
∣∣∣∣(gijϕ − gijχ )gklϕ ψilψkj + gijχ (gklϕ − gklχ )ψilψkj

+ gijχ g
kl
χ (ψil − ξil)ψkj + gijχ g

kl
χ ξil(ψkj − ξkj)

∣∣∣∣
k−4,α

≤ C(r, ϕ0, ω, ψ0) ·
(
|ϕ− χ|k−2,α + |ψ − ξ|k−2,α

)
.

Finally we have to take care of the third addendum of (7.37). We compute∣∣∣∣(∆ϕψ)2 − (∆χξ)
2

∣∣∣∣
k−2,α

≤
∣∣∣∣(∆ϕψ −∆χξ

)
·
(
∆ϕψ + ∆χξ

)∣∣∣∣
k−2,α

(7.41)

≤ C(r, ϕ0, ω, ψ0)

∣∣∣∣∆ϕψ −∆χψ + ∆χψ −∆χξ

∣∣∣∣
k−2,α
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≤ C(r, ϕ0, ω, ψ0)
(
|ψ − ξ|k,α + |χ− ϕ|k,α

)
.

Putting together our estimates we find small enough ε and r which make T a
contraction. By means of the fixed point theorem, we find a unique solution
of our geodesic equation. This completes the proof of the theorem.

7.6 The Cauchy geodesics for the Dirichlet

metric

In the present section we answer a question by Calabi about the Rieman-
nian structure on the space of Kähler potentials of a closed manifold M
named after Dirichlet, and also present in the literature as the gradient met-
ric. Namely, we are able to show that for any Kähler potential ϕ of class
Ck,α(M), with k ≥ 2 and α ∈ (0, 1) and for any initial velocity ψ ∈ Ck,α(M)
there is a positive time existence ε > 0 and a geodesic curve of class C2 map-
ping the interval [−ε, ε] into the space Kähler potentials ϕ of class Ck,α(M),
which has (ϕ, ψ) as position and velocity at time zero.

The Dirichlet metric was studied by X. X. Chen, Calamai and Zheng
already in [16, 20, 26]. In [16] it was proved that for Riemann surfaces it has
zero sectional curvature and its geodesics are straight segments connecting
any two Kähler potentials.

In [26] it was proved that the pseudo-Calabi flow is a gradient flow of the
K-energy when the space of Kähler potentials is endowed with the Dirichlet
metric.

In [20] it was partially confirmed a conjecture of Calabi, stating that the
sectional curvature of the Dirichlet metric sits in between those of Mabuchi
and of Calabi. Moreover it was proved that in the space of Kähler metrics
equipped with the Dirichlet metric, the K-energy is convex at a cscK metric
(see [20, Proposition 3.23]).

We put ourselves in the Kähler environment; by the way our argument
runs as well in the case when the underlying manifold is Sasaki.

Let (M,ω) be a compact n-dimensional Kähler manifold without bound-
ary. The geodesic equation for the gradient metric is (see [16] page 400)

2∆ϕϕ
′′ − |ddcϕ′|2ϕ + (∆ϕϕ

′)2 = 0, (7.42)

where ϕ is a curve with values in HK .
Our result is

Theorem 7.19. For every ϕ0 ∈ HK and ψ0 ∈ Tϕ0HK, fixing k ≥ 2 and
α ∈ (0, 1) there exists a ε and a unique solution of (7.42) in the function
space C2([−ε, ε],Hk,α

K ), satisfying ϕ(t = 0) = ϕ0 and d
dt
ϕ(t = 0) = ψ0.
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Proof. We rewrite (7.42) as

ϕ′′ =
1

2
∆−1
ϕ

(
|ddcϕ′|2ϕ − (∆ϕϕ

′)2
)
.

From the above equation we get the first order PDE system{
ϕ′ = ψ
ψ′ = 1

2
∆−1
ϕ

(
|ddcψ|2ϕ − (∆ϕψ)2

)
.

(7.43)

The argument now follows closely the one of Theorem 7.18. Given ϕ0, ψ0,
we fix 0 < δ := 1

2
min(ω + ddcϕ0). We consider a complete metric space

Br(ϕ0, ψ0) ⊆ C0([−ε, ε],Hk,α
K,δ) × C0([−ε, ε], Ck,α(M)) centered at (ϕ0, ψ0)

seen as time-constant functions. for some r, ε > 0, k ≥ 2 and α ∈ (0, 1). (We
are sticking to the notation of Subsection 7.5.1.) Then we define a map T
having as domain of definition that ball of radius r and having as components
the integral of the system (7.43). Then we fix first a small r and then a small
ε such that the map T ranges in Br(ϕ0, ψ0) itself; notice that once r is fixed,
we have the freedom to move ε.

Then we find suitable r and ε, possibly smaller, such that the map T is
also a contraction.

Finally we apply the fixed point theorem and we get that by construction
T gives the wanted geodesic solution of (7.42), with initial conditions ϕ0, ψ0.
This completes the proof of the theorem.



106 CHAPTER 7. SPACE OF KÄHLER AND SASAKIAN METRICS
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