
Universit

`

a di Pisa

Dipartimento di Informatica
Corso di Laurea Specialistica in Tecnologie Informatiche

TESI DI LAUREA

A user-friendly authoring
language and development
environment for graphic

adventure games

Relatore: Candidato:
Prof. Antonio Cisternino Andrea Serreli

Correlatore:
Dott. Andrea Canciani

Controrelatore:
Prof.ssa Chiara Bodei

Anno Accademico 2013/2014

A mamma, papà e Silvia

Abstract

This thesis discusses the implementation of a Domain-Specific Language
(DSL) and a web IDE to visually create web applications focused on in-
teractive storytelling, with particular attention to those users with little or
no programming experience. The system has been implemented to validate
the reactive programming model proposed by the evReact framework and
its ability to easily represent control flow as a data structure. Moreover, we
have been able to persist the current state of the workflow by serializing the
networks underlying the evReact model. Being the whole system aimed to
non-programmers, it was necessary to define intuitive ways of letting users
bundle their resources and to carefully evaluate the minimal set of features
they would need to express interactions, reactions and complex behaviors.
This evaluation allowed to define a Domain-Specific Language that suits the
problem domain and that the users can use to define game scripts at a higher
level. Authored applications are compiled in JavaScript/HTML5/CSS3 and
wrapped into a web page, ready to be finally uploaded.

2

Contents

1 Introduction 7

2 Background 13
2.1 Interactive Storytelling . 13

2.1.1 Gamebooks . 14
2.1.2 Interactive Movies . 14
2.1.3 Text Adventures . 16
2.1.4 Graphic Adventures 17

2.2 Authoring systems and DSLs 21
2.3 Reactive programming . 23

3 State of the art 25
3.1 Dedicated authoring systems 25

3.1.1 SCUMM . 25
3.1.2 Adventure Game Studio 26
3.1.3 Wintermute Engine . 26
3.1.4 Visionaire Studio . 27

4 Platform and Tools 29
4.1 HTML5 . 29

4.1.1 Canvas . 30
4.1.2 Scalable Vector Graphics 31

4.2 jQuery . 33
4.2.1 jsTree . 35
4.2.2 inputfile.js . 35

3

4.3 Bootstrap . 37
4.3.1 X-editable . 38

4.4 evReact . 39
4.5 Other JavaScript libraries . 42

4.5.1 Snap.svg . 42
4.5.2 Paper.js . 42

5 Design 43
5.1 The Domain-Specific Language 43

5.1.1 Grammar . 44
5.1.2 Parsing . 46
5.1.3 Scripts and Run Time Support 46

5.2 The Editor . 50
5.2.1 The Rooms section . 50
5.2.2 The Characters section 53
5.2.3 The Scripts section . 55
5.2.4 The Anims section . 56
5.2.5 The Inventory Items section 57
5.2.6 The Game Variables section 57
5.2.7 The Test section . 58

5.3 Data Architecture . 59

6 Implementation 67
6.1 Primitive structures . 67

6.1.1 room-manager.js . 67
6.1.2 anims-manager.js . 72
6.1.3 inventory-manager.js 73
6.1.4 variables-manager.js 73

6.2 Pathfinding . 74
6.2.1 quadtree.js . 74
6.2.2 pathfinding.js . 79

6.3 Scripting and compilation . 82
6.3.1 From visual scripting to DSL scripts 82
6.3.2 From DSL scripts to evReact networks 86
6.3.3 Parsing and evaluating conditions 94

6.4 Run-time support . 98
6.5 Testing a game . 100
6.6 Editor canvas . 102

6.6.1 mouseclick event listener 103
6.6.2 mousedown event listener 104
6.6.3 mousemove event listener 104

4

6.6.4 other event listeners 104
6.7 Loading and saving projects 105
6.8 Exporting games . 107
6.9 HTML View . 108

6.9.1 Event listeners and handlers 108
6.9.2 Complex DOM nodes 109
6.9.3 Visual scripting . 111

7 Conclusions and future works 117

8 Acknowledgments 123

5

6

1
Introduction

Nowadays the worldwide di↵usion of Information Technology (IT) has heav-
ily influenced the way of practicing any job. It is not unusual to see a worker
being disoriented by the change of his traditional methods to exercise pro-
fession, or being forced to hire a team of computer scientists to develop ad
hoc assistance tools because of inadequate programming competence, thus
involving a significant expense.

Generally, there are two approaches aimed to facilitate the development of
very specific classes of software: the first consists in the definition of Domain-
Specific Languages (DSLs) which, in contrast to General Purpose Languages,
are specific for the treatment of the domain of a given problem; the sec-
ond consists in the implementation of authoring systems which provide pre-
programmed features for the creation of certain categories of applications.
These approaches are not discordant and in fact often converge into one
authoring software built on top of a DSL.

In parallel to the constant changes brought by the integration of IT in ev-
eryday life, many new programming paradigms have been introduced during
the years as candidates for replacing or enhancing the traditional ways of
thinking how to design software. Reactive programming has recently gained
popularity as a paradigm that is well-suited for developing event-driven and
interactive applications. It facilitates the development of such applications
by providing abstractions to express time-varying values and automatically
managing dependencies between such values [1].

The evReact framework, developed by Andrea Canciani at the University
of Pisa, proposes a reactive programming model based on Petri nets. Inter-
estingly the decision to create an authoring system, which will be exposed

7

in the following subsection, turned out to be a very good testing ground for
the validation of the model proposed by evReact. When developing an appli-
cation belonging to a well-known problem domain, the use of DSLs and/or
authoring systems created for such domain can dramatically cut the costs of
production. Graphic and interactive development environments for the cre-
ation of applications are consequently very popular because they have proven
useful both for experts and non-programmers.

The aim of this work is dual:

i. to provide an authoring system for the creation of web applications
focused on interactive storytelling (IS) that is really portable to the
highest possible amount of platforms, including mobile platforms as
smartphones and tablets, bypassing the additional intermediate work
just described;

ii. to exploit and validate the reactive programming model proposed by
the evReact framework.

The authoring system will primarily be addressed to non-programmers and
will adopt the approach of visual programming.

Authored applications will belong to a particular videogame genre known
as graphic adventure, which not only is a general manifesto for IS, but also
abounds with complex control flows and a structure which naturally fits
very well the reactive programming paradigm and therefore can validate the
evReact model.

The structure of this thesis is briefly described as follows:

In Chapter 2 (Background), we will focus on the fundamental aspects of
the problem. The main concepts of IS will be explained in detail, proceeding
shortly after to a general analysis of the various approaches that have been
adopted for it. We will see how rudimentary forms of IS were achieved long
before technological progress, as well as how the interactivity degree in sto-
ries has gradually increased as technology and computer science advanced.
Indeed, gamebooks and interactive movies will introduce the part of the chap-
ter that describes di↵erent typologies of IS. Then, we will talk about a later
form of IS, born thanks to the increasing popularity of computer games dur-
ing late 70s / early 80s. More importantly, we will go on with a close and
more detailed examination of a particular branch of IS, that is the branch
of the so-called graphic adventures, which have been the main inspiration for
this work and were hugely popular during the 90s. In particular, we will de-
fine what they actually are, what is their structure, why they were so hugely

8

popular and what caused their decline. The analysis will then explain why
they are making a comeback and why they are still interesting nowadays.
Finally, a brief explanation of authoring systems and DSLs will be provided,
as well as their advantages, their disadvantages and the trade-o↵s that are
often necessary to exploit them.

Chapter 3 (State of the Art) will study, under di↵erent points of view,
several authoring systems for the creation of highly interactive applications.
We will see that some of them are inherently dedicated to IS, while others
can exploit it with a greater e↵ort. We will also consider a milestone of
the field, which is the SCUMM engine: while almost 30 years old and not
“modern”, it is widely considered as the main basis for comparison for modern
engines that aim to o↵er similar features. The Chapter ends describing the
main, most popular modern tools that are now used to facilitate the creation
of graphic adventures: Adventure Game Studio, Wintermute Engine and
Visionaire Studio. Considerations regarding their portability and the several
features o↵ered by these engines will be done.

Chapter 4 (Tools) overviews the tools and frameworks that have been used
to implement the authoring system. The chapter is subdivided into five sec-
tions, each one introducing a particular family of tools. The first section is
dedicated to the recent HTML5 standard, and describes thoroughly the main
features that have been essential for our work, that is the canvas element and
the SVG support. Of course, we will see advantages and drawbacks of both,
and the reason why both of them have been adopted.
The following section describes one of the most popular JavaScript frame-
works, called jQuery. In this section, we will understand what jQuery does,
why it is so powerful and how it can be convenient and can shorten one’s
work by thousands of code lines. Later in this section, we will see two jQuery
plugins that have been heavily utilized: jsTree and inputfile.js.
The third section focuses on the Twitter Bootstrap framework and its X-
editable plugin. Particular attention will be given to Bootstrap’s graphic
widgets and its grid-based layout system.
The fourth section presents the evReact framework and many fundamental
aspects of its approach to reactive programming. We will consider many dif-
ferent types of evReact’s expressions, describing both primitive expressions
and complex expressions obtained by their composition. We will also debate
about the formalism of Petri nets, precisely why they are a popular formalism
and what is its connection with evReact.
In the last section, there will be a brief description of two JavaScript frame-
works that have been helpful for the realization of the system: the first is
Snap.svg and facilitates the utilization of SVG resources within a web page,

9

the second is Paper.js, which provides many geometry classes and support
for canvas drawing.

In Chapter 5 (Design) the design of the application will be explained in
detail, starting from the problem’s domain analysis that led to the design of
the DSL. Indeed, the first section describes the considerations that have been
done about the general problem domain, and the conclusions that have been
drawn which led to the real design of the language. The section goes on de-
scribing the phases of such design: the definition of a context-free grammar,
its parsing, and the semantics of the various language constructs. Further-
more, we will understand the subdivision of generic valid scripts into a header
part and a body part.
The second section of the chapter describes how the editor appears and be-
haves, as well as the functions performed by its many sections. For each
section of the editor, we will find instructions and descriptions of what each
field does, and how a section can communicate with the others, if possible.
The last section provides highly detailed explanations of the conceptual struc-
ture of the entire system, with the addition of UML class diagrams to clarify
the hierarchy of the system entities, the communication between them and
the role of single entities and groups of entities that cooperate together. Par-
ticular attention has been given to the description of the scripting part of
the system. We will indeed see how the system manages three di↵erent rep-
resentations of the DSL: a purely graphical representation inside the DOM
view, a syntactic representation and a semantic representation. Starting
from a visual representation, we are going to follow the process that obtains
an intermediate syntactic representation of the language and a final semantic
representation by exploiting the evReact framework and other core functions.

In Chapter 6 (Implementation) we will see the implementation of the sev-
eral parts of the system. Each part is implemented by a JavaScript module
that provides both the needed data structures and the functions that allow
to manipulate them properly and to make them cooperate. The classes are
described more minutely than in the previous chapter, without omitting any
method or member: for each method and for each member, there is a de-
scription of its role inside the class instances and, more extensively, inside
the system. The primitive classes of the system will be described in the first
section. The second section explains the implementation of the pathfinding
by means of spacial partitioning with quadtrees and the application of a well
known heuristic algorithm for shortest paths known as A*. A description
of the general theory and the benefits of quadtree-based spacial partitioning
and applied to A* will be provided.
The subsequent section explains the most important part of the system, that

10

is the part that manages the DSL and its various representations. Firstly,
we are going to see the how the visual script is compiled into its syntactic
counterpart and vice versa. Secondly, we are going to consider the compi-
lation from syntactic representations of the scripts to evReact expressions,
understanding how evReact is a substantial part of the run-time support of
the exported games. The section finally explains how the script conditions
are parsed by a recursive descent parser, factorizing the original context-free
grammar into an LL(1) grammar, obtaining an abstract parse tree that is
then passed as a function that evaluates the conditions.
The following section depicts the part of the run-time support that is not
directly provided by evReact but, instead, by system core-functions that can
only be called by evReact expressions. In particular we will see that, for each
language construct that represents a game side e↵ect, there is a core function
that implements its semantics, possibly exploiting JavaScript closures when
the side e↵ect can be interrupted before reaching its completion.
The chapter proceeds with a section that is dedicated to the testing of the
games from within the system, i.e. before their final exportation, with a
WYSIWYG (What You See Is What You Get) approach.
Another section is fully dedicated to the canvas utilization, particularly to its
event listeners and to their di↵erent event handling depending on the canvas
state.
Two more brief sections illustrate the process of loading/saving scripts with
the help of the well known JSON format and the process of exporting the
games as stand-alone independent web pages. The last section of the chap-
ter describes some parts of the DOM manipulation with the help of the
jQuery framework: first of all we will consider the attachment of listeners
and handlers of input events to the DOM elements. Then, we will describe
the creation of complex DOM nodes as panels for game entities, including
details about our usage of the Bootstrap features as well as the utilization of
jQuery’s selectors.
Lastly, a detailed description of the visual programming part of the IDE will
be given from di↵erent points of view: what the visual constructs are and how
they are implemented, how the jsTree framework was essential to develop the
visual programming feature, and how we have guaranteed to always obtain
certainly well-formed scripts by means of other specific event listeners and
handlers for the trees that visually represent a script.

Chapter 7 (Conclusions and future works) will firstly present a brief sum-
mary of the obtained system and its most meaningful features, proceeding
to drawing conclusions about the results that have been obtained and com-
paring the final product and its features to other common, similar products.

11

The last part of this chapter will explain how this work can be improved
and what more features could be useful but could not be provided because
of time constraints.

12

2
Background

2.1 Interactive Storytelling

Thanks to the aforementioned spread of IT, even teaching and learning meth-
ods have gone through a great transformation, becoming more and more in-
teractive and less traditional. For example, e-learning for kids has proven
astonishingly successful because it actually engages the subjects to actively
participate to the educational process, often presented to the kids as a game
they can play together. Moreover personality tests, either in the field of
education or employment, have proven particularly e�cient in the form of
interactive programs where the candidates can make choices and have virtual
conversations.

The field of interactive storytelling (IS) is a relatively new discipline and
wraps both of these spheres of application. While it is impossible to unan-
imously give a definition to IS that would not result being trivial, it is sure
its fulcrum is to merge the classic approach of narrative books with more
modern, generally technological aspects that allow those who follow a story
to interfere with it in some way. The degree of such interference is what
makes the di↵erence between di↵erent IS-focused applications. Interestingly,
the type of interaction and its emphasis can result in totally di↵erent final
products. It is important noticing that not any application with interactive
components and a general plot belongs to the set of IS-based applications. In
other words, a game of the type“Aliens have invaded the Earth, so kill’em all
to save mankind” does not make IS: instead, every IS-based application has
storytelling as its main objective. The following subsections describe several
approaches of interactivity applied to storytelling throughout the years.

13

2.1.1 Gamebooks

For historical purposes, though not exploiting any type of computer technol-
ogy, it is important to tell about the so-called gamebooks. Gamebooks are
traditional printed books, with the peculiarity that they give readers the pos-
sibility to make choices and decisions during their reading. This is granted
by explicitly asking readers to go to a specific page of the book or to another
one in result to one or more choices they have to take at certain points of
the narration. The plot follows a tree structure as it branches in di↵erent
progressions, often having di↵erent endings based on the choices made. Even
if this is a rudimentary way of including readers’ participation, such interac-
tivity is indeed what makes gamebooks the precursors and first example of
IS. Moreover, apart from the interactivity itself, gamebooks were a good in-
strument to teach morality to young readers, as endings could also be “good
endings” or “bad endings” according to the ethics of their decisions. It is
not a case that gamebooks, during the 1970s, were very popular especially
among kids. More modern examples of interactivity in books is the use of
hyperlinks to switch between paths, with traditional pages being replaced by
HTML pages.

2.1.2 Interactive Movies

Interactive movies are another notable branch in the field of IS. The approach
they adopt is similar to that used in gamebooks, with a very reduced interac-
tivity degree, but with the substantial di↵erence that it is applied to movies.
Such di↵erence is significant since it involves a director, cameramen and real
actors acting as in a traditional movie, with pre-filmed sequences that can
be watched by the audience, again by means of interactive mechanics.
The first interactive movie was Kinoautomat (1967), and its interactivity
consisted in a live moderator that appeared on stage at certain points to ask
the audience to choose between two scenes. The chosen scene would play fol-
lowing an audience vote. The interactive element was achieved by switching
a lens cap between two synchronized projectors, each with a di↵erent cut of
the film.

Years later, the interactivity of these movies exploited less primitive methods
thanks to technological progress. When laserdiscs were invented, the real
innovation they brought was the fact that they allowed a direct access to
their data, instead of the classic sequential access. This important property
was immediately exploited to enhance interactive movies, resulting in the

14

birth of laserdisc games. Laserdisc games presented pre-filmed sequences,
sometimes featuring real actors and sometimes animated cartoons. The most
famous laserdisc game is Dragon’s Lair (1983), originally released for arcade
machines.

Figure 2.1: Screenshot from Cinematronic’s Dragon’s Lair, 1983

It featured animated sequences drawn by ex-Disney animator Don Bluth
and allowed users to interact with the movie by a few buttons installed on
the machine, to be pressed at the right time. Considering the very limited
computational and graphic resources that “normal” videogames could count
on at that time, it is easy to understand why Dragon’s Lair had such a huge
success, as it indeed had graphics ahead of its time of at least 15 years and
players did not care about them being pre-rendered. However, as computers
became more powerful later on, laserdiscs games began losing ground because
of costs and limitations. The production of a laserdisc game actually required
a very high budget compared to the one needed for developing a state-of-the-
art videogame in the middle of the 1990s. Furthermore, the expressivity and
the complexity of videogames was rapidly growing up and outclassed the very
reduced interactivity o↵ered by laserdisc games. The last nail in the co�n
of laserdisc games was put when videogames could count on enough power
to actually o↵er the same graphic quality and more entertaining and intense
interaction mechanics.

15

2.1.3 Text Adventures

Text adventures are videogames in which the entire interface is, as the name
suggests, textual, and the player can interact with the world by giving text
commands as input. Text adventures brought IS further, basically adopting
a diametrically opposite approach in comparison to laserdisc games: instead
of reducing interaction to a minimum and relying on cutting edge graphics,
they kept their appearance limited to simple text as in a book and relied
on a level of interaction that was only limited by the programmers’ fantasy.
In fact, though the gameplay simply consisted in typing in commands, such
commands could give players the illusion of actually being part of a complex
story, to spatially move inside environments and even to feel in danger thanks
to the well-known phenomenon of the suspension of disbelief. Obviously, even
the players had an unlimited set of commands to type in, and this could
stimulate their imagination much more than a gamebook or an interactive
movie, where their choices were generally limited to a small set. Because of
this reason, text adventures used a parser that analyzed the input strings
and informed the player of the parsing result, that is if the command was
unexpected or unrecognized or if it originated a transition of the game state.
Text adventures quickly lost popularity as soon as similar applications with
the addition of graphics were born.

Figure 2.2: Screenshot from Colossal Cave Adventure, 1976

16

2.1.4 Graphic Adventures

In the following subsections, we will dive into the analysis of the cornerstone
of the whole thesis and understand what graphic adventures are, what made
them popular, what later made them unpopular, why they are making a
comeback and why they are an interesting case of study.

2.1.4.1 What is a graphic adventure?

Graphic adventures belong to a category of videogames which puts a strong
emphasis on narrative and storytelling. Generally there is a main, predefined
plot, and a set of puzzles that the player has to solve to progress with the
story; the player can explore places, talk to characters and combine objects
in order to solve the puzzles.

In most cases, no quick reflexes or particular abilities are required to play
through a graphic adventure: on the contrary, the game is all about parallel
thinking and the player has usually unlimited time to think about possible
solutions to the puzzles. At a given moment, the player may have di↵erent
puzzles still to be solved which are independent to each other. Furthermore,
solving a puzzle results in a transition of the game state, often unblocking a
new puzzle to be solved: therefore some puzzles have a dependency relation
on other puzzles, while others do not, guaranteeing a certain non-linearity of
the story unfolding, despite it following a fixed plot. This particular structure
can be clearly described by means of a Puzzle Dependency Graph (PDG)
[2], where each node represents a puzzle and each arc a dependency relation,
as shown in figure.

Figure 2.3: A puzzle dependency graph

17

The figure shows two independent puzzles, “Find key”and“Oil hinges”: when
both of them are solved, a third puzzle can be solved, that is “Open door”.
This puzzle depends on the resolution of both the two independent puzzles.
Once the door has been opened, the puzzle “Enter room” can be solved, as it
depends on the “Open door” puzzle. PDGs are essential not only for describ-
ing the flow of the game and the plot, but also to guarantee that the player
won’t fall into dead states of the game (e.g. to reach b the player needs to
take a, but he forgot to do so and now a is unreachable). Graphic adventures
are the natural evolution of the aforementioned text adventures, and initially
almost coincided with them in every aspect but the presence of small, static
illustrations that enhanced the overall experience by giving players a visual
representation of the situation described by the text. The real advancement
came with the employment of animated graphics that really “gave life” to
the story. The characters could actually move within the environments and
the situations once described by text could also be displayed in real time. In
early graphic adventures, exactly as in text adventures, the commands had
to be typed in by the user, then a parser evaluated them and, if they matched
an expected sentence, the game flow would have proceeded in some way, or
else the parser would have informed the user that there was no match. One
of the biggest critics to this type of interaction was the rigidity of the parser:
it was very common to type in an appropriate command and to have it re-
jected by the parser because it expected a synonym of a word, so the player
had to face the frustration to try to guess synonyms and alternative ways of
expressing the same command.

Figure 2.4: Screenshot from King’s Quest by Sierra On-Line, 1983

A great innovation to the genre was brought by Maniac Mansion by Lucas-

18

Film Games (later LucasArts), which is universally considered as the ancestor
of modern graphic adventures: the parser was put away in favor of a point and
click interface, so that the player could explore the world by simply hovering
the mouse over the scenery to get brief descriptions of the objects he could
interact with and, by clicking the mouse, select from a fixed set of possible
actions to be performed on the objects and characters which populated the
environment. Such actions were contained inside a minimal GUI together
with a textual inventory, as shown in figure:

Figure 2.5: Screenshot from Maniac Mansion by LucasFilm Games, 1987

2.1.4.2 The rise and fall of graphic adventures

Graphic adventures had their hayday from the end of the 80s up to the end
of the 90s, when the notable advances in the field of computer graphics and
the advent of GPUs led to a deep change in the way of making games. The
rise of the third dimension in videogames is often considered to be the main
reason of the decline of the graphic adventure genre, which had the two
American companies LucasArts and Sierra On-Line as their main producers
and undisputed leaders. Firstly, because the genre was tightly bounded to
cartoon graphics which were impossible to achieve with the early 3D tech-
nology, since the amount of polygons a GPU could handle at that time was
very limited. Secondly, because 3D graphics opened the door to improve
other genres that couldn’t be very popular before because of 2-dimensional
limits as, for example, football simulators, and to create genres that didn’t
even exist before, as free roaming games. Furthermore, adventure games in

19

general have a common and inherent low replay value, that is the property
of the game to be played more than once by players and to still entertain
them. Unfortunately, once a story has been told, it is very di�cult to gain
the audience’s attention by telling the same story once again and even if
they can change some decisions the main plot will basically remain the same.
Graphic adventures rapidly ended up exiled out of the mainstream market
and became a niche product, kept alive by small groups of nostalgics [3].

Apart from a few software houses that later managed to adapt to 3D and
to renew their way of making graphic adventures, the genre was completely
buried by the game industry and “betrayed” by those companies which made
it famous and popular. This situation remained stationary for the following
decade, but something has changed since the di↵usion of social networks and
the appearance and spreading of mobile devices: social networks, as well
as smartphone and tablets, have led to a massive comeback of 2D games.
The former contributed to the birth of the so-called “social” games, in which
the users are supposed to cooperate and share things together to progress
in the game, while the latter started a huge wave of “casual” games, that is
simple games in which interactivity is very limited and the e↵orts to play
are minimal, in order to allow players to relax and have fun without the
frustration of losing or getting stuck.

This second youth of 2D games, and the fact that the traditional point and
click approach adopted by most adventure games inherently fits very well
the touch gestures of mobile devices, brought back the interest in graphic
adventures. Of course, their popularity cannot be comparable to their golden
age’s and it is very likely it will never be, but the genre has surely found a
reason to exist again and to guarantee a financial return.

It is also important to consider that graphic adventures are not only limited
to “videogamers”, but have also proven very successful as learning methods
for kids and as tools for developing negotiating capabilities and life skills,
thanks to the massive presence of interactive dialogues.
For example, Zapdramatic was founded in July 2000 by filmmaker Michael
Gibson and Negotiation and Alternative Dispute Resolution experts Allan
Stitt, Frank Handy and Lisa Feld. This company claims its goal is to “popu-
larize the art and science of negotiation to a world audience using interactive
simulated adventure games” [4].

20

2.2 Authoring systems and DSLs

While traditional storytelling is all about the story, IS requires some confi-
dence with computer science and programming, as said above. Psychologists,
school teachers and alike don’t generally have this kind of background to im-
plement computer programs with the goal of interactive storytelling. As a
consequence, they have to choose either to hire professionals or to use au-
thoring systems to build the programs themselves.

Several authoring systems focused on IS exist, but most of them su↵er from
portability issues, because they have a fixed target platform and, being not
cross-platform, omit the others. This bad choice of design is generally due
to the presence of virtual machines that allow to emulate di↵erent computer
systems, thus permitting to run a program that is not compatible with the
original machine. A similar approach is not admissible for several reasons:

• it forces users to have machines with enough computational power to
emulate a di↵erent machine, thus it takes for granted they have enough
funds to buy one

• it presumes users have enough confidence with computers to properly
set up a virtual machine

• it presumes the program executed on a virtualized machine will run
exactly as it would in the original machine, which instead is rarely true

The few authoring systems that are e↵ectively cross-platform follow two dif-
ferent trains of thought for achieving platform independence. One consists
in building and compiling the software separately for each target platform,
resulting in a bigger amount of work, possible code duplication and an overall
greater expense. The other approach exploits the use of interpreted languages
or the compilation of the source program into an intermediate bytecode that
will be interpreted by a di↵erent interpreter for each target platform. Again,
the amount of work needed to implement an interpreter for each platform is
not negligible at all.

Often authoring systems are built on top of a DSL. A common design issue
when creating a DSL regards its expressivity: it is perfectly normal that this
kind of language, while treating complex problems belonging to its domain
with ease, may have serious di�culties to solve simpler problems that do
not belong to it. This is natural because DSLs can generally treat complex
data types as native types, but at the same time they are created to resolve
a particular pool of problems and can hardly handle di↵erent problems, re-

21

gardless of their actual di�culty. This phenomenon often misleads designers
to grant the language more expressivity than actually needed, losing the fo-
cus on the simplicity that a DSL should have and ending up with something
much closer to a general-purpose language. The key to avoid falling into this
“trap” is to accept making compromises after having carefully analyzed the
problem’s domain. This trade-o↵ between simple and expressive is often the
main challenge during the design phase of the language and plays a big role
on its final e�ciency.

22

2.3 Reactive programming

Reactive programming is a programming paradigm whose definition is still
vague and, nowadays, is being formalized. The Reactive Manifesto [5] de-
fines reactive systems as message-driven, elastic, responsive and resilient.
The reactive programming paradigm has recently gained popularity, as it
suits very well the development of highly interactive and event-driven appli-
cations. Generally, the traditional sequential programming approach forces
the developers to manually manage data dependencies and changes of the
application state, often resorting to function callbacks and event handling.
Such management is very error-prone and requires great e↵orts from the
programmers. Without losing generality, let us consider a simple case of ex-
pression dependency. Let a = 3, b = a + 1 and c = 2*b - a. In the classic
sequential approach, a change of the value of a to, e.g. 5, must be explicitly
managed by assigning the value 6 to b and 7 to c. With reactive program-
ming, it is possible to automatically manage data dependencies so that each
change of a will immediately reflect to the values of b and c. A similar ap-
proach can be found in spreadsheet systems like Microsoft Excel. Reactive
programming provides abstractions to express programs as reactions to ex-
ternal events and having the language automatically manage the flow of time
(by conceptually supporting simultaneity), and data and computation de-
pendencies. This relieves programmers from having to care about the order
of events and computation dependencies, thus allowing dynamic dataflows.
Hence, reactive programming languages abstract over time management, just
as garbage collectors abstract over memory management [1].

23

24

3
State of the art

Throughout the years many di↵erent engines, both free and commercial,
have been released to allow aspiring developers of graphic adventures to con-
centrate on the story, the puzzles, the dialogues and the graphics, (almost)
without having to consider the low-level aspects of the implementation. The
development of this work could not exclude an examination of the state of
the art of authoring system for the creation of graphic adventures. In the
following sections, we will consider the most popular of them.

3.1 Dedicated authoring systems

3.1.1 SCUMM

One of the most famous and beloved engines is SCUMM, which was property
of LucasArts and was developed by Ron Gilbert and Aric Wilmunder some
time during 1986 to aid with the development of Maniac Mansion. The
reason why it was included in this Chapter is that, even if it is almost 30
years old, it still is the term of comparison par excellence. SCUMM, acronym
for Script Creation Utilities for Maniac Mansion, was both a domain-specific
language and a set of tools to define locations, animations, puzzles, objects
and their interaction with the player.

One of the main strengths of SCUMM was it relieved programmers of writing
the game in the final target language in which the scripts would have been
later compiled, and this was particularly convenient, especially considering

25

C64 versions of the first two games would have required them to program in
pure Assembly.

Every script ran on a separate thread, with each thread cooperating with each
other [6][7]. This was a very powerful approach since it allowed programmers
to define a script for any game entity and then forget about it: every game
entity lived on its own.

SCUMM games were sold as a set of game resources coupled with an exe-
cutable file, which merely was the SCUMM interpreter. This approach made
it possible, many years later, to run the games in an amazing variety of plat-
forms with the ScummVM project, that is an interpreter for SCUMM-based
games that replaces the original one, leaving the original game resources
exactly as they were before.

3.1.2 Adventure Game Studio

Adventure Game Studio (AGS), by Chris Jordan, is a popular adventure game
engine for Windows systems, free and open-source. It boasts a big and active
community and can be somehow considered one of the main contributors to
keeping the genre alive even through the darkest years. Countless games
have been created with AGS, some have even been commercially released.

AGS comes up as an IDE with multiple features for defining environments,
objects, characters, animations, sprites, pathfinding and GUIs; it also pro-
vides a Java/C# -styled scripting language with built-in editor and debugger,
as well as a compiler [8]. The engine also supports a template mechanism
for various aspects of the generated games, such as in-game GUIs, in order
to have high flexibility and customization and to easily obtain the look and
feel of old classics.

There are currently projects of porting the engine in more platforms.

3.1.3 Wintermute Engine

Wintermute Engine (WME) is another popular development kit dedicated
to graphic adventures. Its features are very similar to AGS’, but its approach
is a bit less nostalgic and takes into account that years have passed and while
some features were not essential during the 1990s, they are now common
and desirable in a modern application. This can be noticed by its ability

26

to support real-time rendering of 3D models, modern resolutions, parallax
scrolling, antialiasing and other up-to-date functions.

WME provides a graphic environment and an object-oriented scripting lan-
guage with a C-like syntax, with the possibility to override and customize
built-in methods [9].

It only works on Windows-based platforms.

3.1.4 Visionaire Studio

Visionaire Studio (VS) is a commercial engine, with which a lot of successful
modern adventures have been programmed and sold in stores. It supports
HD graphics, integrated LUA scripting language, particle systems and a va-
riety of audio formats. Di↵erently from AGS, VS does not look like a tool for
nostalgic fans, but instead it seems to keep in mind the current market real-
ities and to aim at being adopted not only by small groups of fans, but also
by real software houses that want to have an economic return. This can also
been noticed by the choice of a LUA scripting system, which is very popular
in the professional game industry; moreover, this choice also suggests that
a certain degree of programming knowledge is required to fully exploit VS’s
features.

Just like AGS and WME, VS comes as an IDE with various editors for game
resources, game scripts and so on [10]. It also su↵ers from common portability
issues, as the generated games are only playable by Windows systems.

27

28

4
Platform and Tools

The decision to adopt the web browser as the target platform for both the au-
thoring system and the authored games has derived from two considerations.
Firstly, as said before, the will of creating a tool which is really portable
and cross-platform: since browsers are one of the most (if not the most)
supported platforms by any device, it was easy to locate them as a the best
possible choice. Secondly, because users tend to prefer applications that are
ready to use over software that need to be installed locally on their machine,
as they require time to be installed and properly set up. Of course, a direct
consequence of said choice was to adopt JavaScript as the programming lan-
guage to give life to the entire system. In this chapter, we will describe the
tools that have been used for the implementation of the system, as well as
the reasons behind their adoption.

4.1 HTML5

The recent introduction of HTML5 made this work possible. Without it,
the implementation of the system would not have been possible in a reason-
able time. HTML5 has added native support for modern webpages, with
new DOM elements/attributes and with new APIs that can be used with
JavaScript. The most notable new features include the support for can-
vases, video and audio files, drag&drop and the integration of Scalable Vector
Graphics (SVG). In the next pages, we will see what parts of HTML5 have
been used.

29

4.1.1 Canvas

The <canvas> element allows to dynamically render images, lines and other
primitive shapes [canvas]. It was largely used within the editor to show
the rooms’ backgrounds and sprites and to let users define the vertices of
polygons that mark up certain areas of interest within the environments
they are creating. While a canvas is a data structure that suits very well the
quick drawing and erasing of geometric primitives and images without even
a↵ecting the DOM, it also has some drawbacks.

First of all, it is raster-based, i.e. there’s no direct correlation between the
object sprites printed on the canvas and the object to which a sprite belongs :
a canvas does not keep trace of anything but the blocks of pixels it receives. In
other words, graphic elements printed on the canvas don’t have a counterpart
object of a scene-graph or the DOM, as a canvas is just a pixel-based drawing
surface that stores pixel information. For this reason, object indexing by
sprite is not native and it is necessary to obtain the object that“owns”a given
sprite by checking its spacial coordinates inside a canvas and comparing it
to the object position or bounding box. On the other hand, its raster-based
nature allows direct pixel indexing and manipulation, which is not possible
in vector-based images. In fact, we will later see that the pixel manipulation
of a canvas has been used in the project for the spacial partitioning of game
environments in order to implement pathfinding in a highly e�cient way.
Precisely, the color of a pixel has been used as information to distinguish
zones where walking was allowed and where it was not.

Another problem is given by the layering of objects: z-ordering is also not
native in canvas structures and can only be achieved by applying the Painter’s
algorithm or priority fill, that is drawing figures in order of distance from the
observer, starting from the farthest up to the nearest and simply drawing the
latter over the former. Consequently, a data structure for representing the
z-order of the objects must be explicitly maintained. In addition, changing
the position of an object implies the redrawing of the entire canvas or chunks
of it.

One more drawback is that raster images are not resolution-independent,
which means that scaling a raster image can give results that are not ac-
ceptable or that seriously damage its overall appearance. There are many
scaling algorithms for raster images, some of which have surprisingly good
results, but in fact, when using raster images, it is not possible to guaran-
tee an acceptable final result without having the same image available in
di↵erent native resolutions. On the contrary, vector images are inherently

30

multi-resolution and do not need any image processing but, as said, do not
allow pixel manipulation, and this is potentially a drawback. Anyway, using
raster images naturally means less reuse and more work for graphic designers.
The figure below shows the larger scaling of two versions of the same image,
one vector and one raster.

Figure 4.1: Zooming a vector image (left) and a raster image(right)

All considered, while the canvas element suits very well the editing phase, it
implies several problems in the actual game. For this reason, as we will see
later, it was decided to rely on the SVG technology for the run-time rendering
of the game. In fact, our application uses a hybrid approach to exploit both
data structures and their advantages.

4.1.2 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is an XML-based markup language for the
description of graphic objects. Graphic objects can be vector graphic shapes,
raster images and text [11]. It provides support for interactive, dynamic
images and animations.

SVG is supported by all major web browsers and is the core tool we have used
for the rendering of every graphic entity of the games. Every SVG element
belongs to the DOM, therefore any on-screen graphic element can be imme-
diately indexed without further calculations on their bounding boxes and,
furthermore, a modification to an element is immediately reflected graphi-
cally by the re-rendering of the browser.

Among the basic shapes o↵ered by SVG, the <polygon> element has been

31

very convenient to the project, as it provides native support for the resolu-
tion of the PIP (Point-inativelyn-Polygon) problem. That is, event listeners
attached to <polygon> elements can react at inputs, such as mouse events,
that occurr inside the polygon, thus calculating if it contains a given point
p. This feature has been exploited by representing hotspots as <polygon>
elements. An hotspot H

I

is defined as the fraction of space associated to an
item I that defines its interactive zone, i.e. the zone that must react to user
inputs.

Moreover, z-ordering is native, as it only requires the manipulation of the
z-index CSS property and does not need explicit redrawing like a <canvas>
element would.

32

4.2 jQuery

jQuery is a JavaScript library that provides countless features to help JavaScript
programmers with the DOM manipulation, event handling and animations
[12]. Nowadays it has become a standard de facto and is almost unavoidable
for programmers of web applications and complex, modern websites. jQuery’s
motto is Write less, do more and it perfectly describes why this tool has be-
come so important. It is o�cially supported by companies like Microsoft
and Nokia, which bundle it on their platforms. Precisely, Microsoft includes
jQuery in Visual Studio for the development with the ASP.NET Ajax and
MVC frameworks. Google, which provides a hosting service for popular ex-
ternal open-source libraries, hosts jQuery and allows developers to include it
by simply adding a snippet on their webpages. MediaWiki as well has been
using jQuery since version 1.16.

Basically, the jQuery core function ($) acts as a wrapper for any DOM el-
ement and provides utility functions for the access and the manipulation of
attributes and properties, appending and prepending of child nodes, modifi-
cation of CSS style and so on. The wrapping occurs by simply passing an ele-
ment as parameter to $, which will return the wrapped element. For example,
$(node) will return a wrapper of the original node. Many jQuery functions
work as getters and as setters, and this sensibly reduces the amount of meth-
ods that developers should remember to work conveniently. For example,
$(elem).text() will return the element’s inner text, but $(elem).text(’Hello,
world!’) will set the element’s inner text as the string “Hello, world!”.

What really makes jQuery essential is one of its core features, that is the selec-
tor, which borrows its syntax from the CSS selectors and spares programmers
hundreds of lines of code. In fact, while retrieving a node of the DOM tree
might require at best several lines of code (depending on the property of in-
terest of the element and the number of matching elements), jQuery’s selector
makes it very fast and simple to obtain it. jQuery’s methods can be chained
in an arbitrarily long sequence, that is complex selections can be potentially
performed in one single command. Actually, the return value of a jQuery
selection will be an Array of elements, which may be empty. This is due to
the fact that a selection may match more than one element or no element
at all, depending on the property that acts as a filter for the selection. For
example, $(’#my id’) will return, if present, a one-sized array containing the
element with id my id, if present, or an empty array. Furthermore, $(’div’)
will return, if N � 0 <div> elements are contained in the DOM, an N -sized
array containing each one of them.

33

A notable feature, which has actually been very useful during the implemen-
tation of the project, is the each function. This method allows to apply a
function to every element of a given list of elements returned by a jQuery
selection and is indeed very powerful and time-sparing. Let us consider a
more complex example to illustrate jQuery’s benefits:
A webpage contains 2N <div> elements with class C

0

, N of which have also
class C

1

. Each <div> element contains a element, which in turn
contains a text string. The developer wants to set each string that is con-
tained inside a <div> element with class C

0

but not with class C
1

to the
value “Hello, world!”. In pure Javascript, he would write something similar
to:

1 var a = document.getElementByClassName(’c0’);
2 for(var i = 0; i < a.length; i++)
3 if(a[i]. className.match(/c1/) === null)
4 a[i]. childNodes [0]. innerText = ’Hello , world!’;

The following snippet of code has the same result, but exploits jQuery:

1 $(’.c0’).not(’.c1’).find(’span’).each(function () {
2 $(this).text(’Hello , world!’); });

As can be seen, chaining of method calls and selectors greatly simplify and
reduce the developer’s work. jQuery has also been used for quick CSS ma-
nipulation and for the attachment of all the event handlers of the project
and also in some cases where a certain degree of asynchrony was required.

One of the strengths of jQuery is its support for plugins: as by now, thousands
of useful plugins have been released by developers all over the world.

34

4.2.1 jsTree

jsTree is a jQuery plugin that provides features for the creation and the ma-
nipulation of tree data structures as a combination of native DOM elements
that visually look like trees. This tool has been created to o↵er a graphical
widget that has always been missing for web developers, often conventionally
called treeView or treeWidget. With treeViews, it is possible to graphically
represent data that inherently have a tree structure as, for example, a file
system or a family tree. The tool supports drag and drop of tree nodes onto
other tree nodes, node collapsing and expanding, customization of the look
and feel of nodes and their icons, as well as keyboard navigation [jsTree].
Furthermore, it is possible give nodes di↵erent types and constraints. For
example, one may decide that nodes of type T may not contain nodes of
type Q or that nodes of type X must contain at least a node of type Y.
This can be done by manually set handlers for native jsTree events, which
are triggered every time a node is modified, created or deleted.

Node labels can be edited, created and deleted inline. One huge drawback
of using this tool is the lack of a complete documentation, which is rather
inadequate, and of a large community. jsTree has been used for the visual
programming part of the project, that is for the graphic representation of
the DSL within the editor. In fact, as said before, scripts inherently have a
tree structure as they have a main root block that can contain an arbitrary
amount of other blocks. Moreover, the explicit support for node icons and
types has proven very appropriate to the project, as the DSL has di↵erent
types of expressions. We will see that some expressions of the DSL act as
containers for other expressions, while some other are terminal and cannot
be further expanded. This means that the graphical tree representation of
a script must consider that certain nodes have to be leaves, while others
may be leaves or subtrees. Thanks to jsTree’s support for node constraints,
this behavior was easily implemented in the editor, and the association of a
node type to a well-determined icon is an advantage to the users that can
intuitively understand the meaning of a node.

4.2.2 inputfile.js

Another simple jQuery plugin that provides, as its name clearly remarks,
replacement for the file input element of the DOM. The plugin has been used
because input fields for files are well known for being rendered di↵erently de-
pending on the system language and being impossible to customize. inputfile

35

hides the original input fields and replaces them with standard elements that
can be arbitrarily edited and that do not depend on the system language.

36

4.3 Bootstrap

Bootstrap, developed internally by Twitter, is an open source framework that
provides features for responsive web design, grid-based layout, a set of basic
HTML elements that have been styled to allow for easy enhancement via
classes and user styles, as well a set of modern layout components as drop-
down menus, button groups, navbars, panels, breadcrumbs and many others
[13]. Its simplicity to create animated interfaces and to manage layouts has
been extremely useful and has cut down on the time of realization of the
project.

Thanks to Bootstrap, web developers can actually count on GUI elements
that were normally present in local frameworks such as Qt, but that had
to be implemented from scratch for web pages, thus requiring much time.
Furthermore, web pages made with Bootstrap can adapt to the device with
which they are visualized. As every browser has its own renderer, web pages
generally appear di↵erent depending on which browser is viewing it. Pages
created with Bootstrap instead get equally rendered in di↵erent browser,
thanks to its heavy CSS utilization. Nonetheless, users can customize the
build to suit their own needs.

Bootstrap’s grid system for the page layout management has proven ex-
tremely e�cient and has a practically null learning curve. In general, sub-
dividing a page in rows and columns, possibly of di↵erent length and with
other nested rows and columns, has always been a time consuming task for
web developers which besides required a lot of knowledge and manipulation
of CSS styles, float attributes and so on. Moreover, the task had to be re-
peated several times to guarantee that smaller devices as smartphones and
tablets would correctly display the page, often with an ad hoc layout specific
for di↵erent classes of devices.

The grid system provided by Bootstrap manages to make this process ex-
tremely quick and adaptive to di↵erent devices. The system is based on two
di↵erent classes of <div> elements, that is the .row class and the .col class.
A <div> element with class row must be placed inside another <div> with
class .container or .container-fluid. A row can be subdivided into at most
twelve parts of the same size, and a column within the row may occupy from
one to twelve parts. The sum of the parts occupied by the columns must not
exceed twelve. A column is a <div> element with at least one class with the
following prefixes:

• .col-xs-, for extra-small devices such as smartphones

37

• .col-sm-, for small devices such as tablets

• .col-md-, for medium desktop devices

• .col-lg-, for large desktop devices

Prefixes are followed by an integer ranging from 1 to 9, which indicates how
many spaces the column occupies. Columns must be contained inside of rows
and rows can be nested inside of columns. When a <div> element has more
than one column class with di↵erent prefixes, the browser will properly render
the column for the device that is currently displaying the page. Bootstrap’s
grid system has been used for the layout of the static part of the editor’s
page.

Another nice component o↵ered by Bootstrap that has been used for this
work is the navbar component, which is a ready-to-use navigation bar, very
popular in modern web pages, especially in one-page web applications. Navbars
help users through the navigation of the pages and are generally fixed at one
side of the page. Bootstrap’s navbars are responsive and adaptive, thus can
collapse and expand.

Bootstrap comes with several jQuery plugins that add new components to the
already vast amount of provided services. Moreover it has a huge community
where developers can publish their projects, share information and require
support.

4.3.1 X-editable

X-editable is a library based on Bootstrap that provides interactive popups
that appear when editing certain strings as well as validation functions for
editable data. It has been used not only to give a fresh and modern look
to the web page, but also to validate some important text data contained
in the editor. Precisely, every string that represents a unique identifier of a
game entity can be modified by typing the new string inside of the popup. Of
course, the popup will prompt an error to the user if it receives as input an
already reserved identifier, an empty string or a string that contains illegal
characters.

38

4.4 evReact

evReact is a framework that provides features for the exploitation of the
reactive programming paradigm. It was developed by Andrea Canciani at
the University of Pisa, originally in F#, and then ported to JavaScript. In
evReact, expressions define event-driven systems. It is possible to define
event-driven systems of arbitrary complexity by composing evReact expres-
sions as sub-terms. Expressions can be active or inactive. Active expressions
can complete and/or terminate. When an active expression terminates, it
becomes inactive. Completion conceptually means that the expression has
successfully listened to all the events it was waiting for, while termination
means that the expression stops listening for events. In particular, evReact
provides the following constructs:

• SimpleExpr is an atomic expression to which is associated an event
and a predicate. This expression completes and terminates when the
associated event is triggered and the predicate is true.

• cat is an operator used to compose a sorted list of expressions. Each
subexpression is activated when the previous one completes. The whole
expression completes when the last expression of the list completes, and
terminates when every expression within the list is inactive.
Let A and B be two expressions: we will write A ; B to indicate
cat(A, B).

• any is an operator used to compose a list of expressions. This expres-
sion completes when at least one expression of the list completes, and
terminates when all of them become inactive.
Let A and B be two expressions: we will write A | B to indicate
any(A, B).

• all is an operator used to compose a list of expressions. This expression
completes when every expression of the list has completed, regardless
of the order of completion. It terminates when every expression within
the list becomes inactive.
Let A and B be two expressions: we will write A & B to indicate
all(A, B).

• iter is an operator that forces its subexpression to restart listening for
events once it has completed.
Let A be an expression: we will write +

(A) to indicate iter(A)

• react is an operator used to combine a subexpression and a callback

39

function. The expression completes and invokes the callback when the
subexpression completes. It terminates when the subexpression termi-
nates.
Let B be a subexpression and f a callback function. We will write
B |-> f to indicate react(B, f).

• finally is an operator very similar to react, with the only di↵erence that
the callback is invoked when the subexpression terminates (thus com-
pletion is not necessary). In this case, we use the annotationB |=> f .

• restrict is an operator that combines a subexpression and a list of
events. It is useful to force the termination of the subexpression when
at least one of the events of the list has been ignored.
Let A be an expression and L a list of events. We write A \ L to
indicate restrict(A, L).

• cond is an expression that combines a subexpression and a predicate.
It will complete when the subexpression completes and the predicate is
true.
Let A be a subexpression and let P be a predicate. We will write
A ? P to indicate cond(A, P).

4.4.0.1 Petri nets

evReact is based on Petri nets, a model to describe distributed systems that
are parallel and asynchronous. Petri nets are both a graphical model and
a mathematical model. A Petri net is a a collection of places, arcs and
transitions. Places are usually represented as circles, while transitions are
represented as a bar. Arcs are directed and may connect either places to
transitions or transitions to places, that is a Petri net is formally a bipar-
tite graph with places and transitions that alternate on a path made up of
consecutive arcs [14]. It is required that each arc has a node (a place or a
transition) at both of its ends.

In a Petri net, the state of the system is represented by means of tokens or
marks. Let P i be a generic place of a Petri net PN and let the place marking
mi � 0 indicate the amount of tokens contained in P i, with i = 0, . . . , n� 1.
The state of the system is, more precisely, the marking of the net m, that
is the vector of the place markings m = (m0, . . . ,mn-1). In case of ordinary
Petri nets, arcs are not weighted, thus mi 2 {0, 1} 8i = 0, . . . , n�1. evReact
is based on ordinary Petri nets. The state will evolve as transitions are
fired. Let the arc Aij connect the place P i to a transition T j, and let the

40

arc Ajk connect T j to the place P k. In this case P i is called input of T j

and P k is called output of T j . A transition with no input is called source
transition and a transition with no output is called sink transition. In order
to be fired, a transition needs to be enabled, that is all its input places must
contain a token (or n tokens in case of arcs of weight n). Of course, source
transitions are always enabled. When a transition is fired, every input place
of the transition will have its token removed and a token will be added to
every output place of the transition. More importantly, the process of firing
a transition is indivisible.

41

4.5 Other JavaScript libraries

This section includes other stand-alone JavaScript libraries that have been
useful to the project and which do not extend nor act as plugins for any other
famous framework.

4.5.1 Snap.svg

Snap.svg is a JavaScript library which provides APIs for the manipulation
and the animation of SVG content. It allows to work with already existing
SVG data, di↵erently from other similar frameworks which require that the
data they work with must be generated by them. Every SVG element (that
is, every graphic element) of the authored games has been treated with Snap.
In particular, its utilities for the fast definition of polygons by simply passing
an array of points as parameter, has been convenient and useful.

4.5.2 Paper.js

Paper.js is a framework for vector graphics scripting built on top of the
HTML5 canvas. It provides a scene graph and a lot of features for the
manipulation of geometric primitives. Actually, only a small part of Paper.js
was used for the project, that is the utilities for bounding box calculations.
Such utilities have been used for the pick correlation of the objects placed
inside the editor canvas.

42

5
Design

5.1 The Domain-Specific Language

The design of a DSL must be based on a previous analysis of several issues.
First of all, the purpose of the language must be very clear, so that the
problem’s domain can be well identified and problems outside of it can be
easily excluded from the set of problems that really are interesting. Moreover
it must be clear in advance to the designers, at least broadly, the kind of
syntax and notations used by the language, as well as the programming
paradigm (object-oriented, functional, etc.) that would best fit the treatment
of the problem.

The purpose, though apparently very clear, had to be refined in order to
restrict the generic term “graphic adventure” to a smaller set of existent
graphic adventures that would become the quality target for the features they
include and the approach they adopt. We chose to take LucasArts’ graphic
adventure games as reference model for their renowned quality, expressiveness
and complexity.

This choice led to the definition of the minimal set of features that, combined
to each other, would be able to emulate those games.
Some of these features are highly dynamic and must be easily treatable by
the DSL. On the other hand, some other features are static and don’t need
to be explicitly supported by the language.
The set allowed to define the following specifications.

The game is modeled as a finite-state automaton, onto which is defined a

43

transition function and an output function. Each user input may or may
not change the state of the game, and will surely result in some output.
State transitions may be triggered by user inputs or by timing: factorizing
this assumption, we decided that state transitions may only be triggered by
events, which in turn can be triggered by user inputs and timing. Therefore,
the language must provide easy ways to fire game events, to wait for them
and to react to them in some way. Outputs consist of computations of core
methods, that will be conventionally called side e↵ects. Side e↵ects can have
di↵erent types and can a↵ect graphics, properties or global variables.. These
properties of the game entities can arbitrarily change, such as their spacial
position, visibility, description and appearance. The language provides, as
we well see later on, proper support for the manipulation of these properties.
Game entities also have the ability to speak and to walk following a path.
Playing characters must have an inventory that stores the objects that can
be picked up during the game.

As for the programming paradigm, since the language is oriented to non-
programmers, it was decided to make it as simple as possible: imperative,
non-procedural and non-object-oriented. These considerations are the base
for the context-free grammar described in the next paragraph.

5.1.1 Grammar

The following context-free grammar describes the structure of the imple-
mented DSL:

hScripti ::= hStatementi

hStatementi ::= hAggregatori { hStatementi* }
| if(hBoolExpri) do hStatementi
| SideE↵ect

hSideE↵ecti ::= hAtomici
| hInterruptiblei

hAggregatori ::= Any
| All
| Seq

hAtomici ::= varSet(hIDi, hExpri)
| varIncr(hIDi, hNumberi)
| fireEvent(hStringi)
| waitEvent(hStringi)

44

| setPosition(hIDi, hNumberi, hNumberi)
| setDirection(hDiri)
| show(hIDi)
| hide(hIDi)
| inventoryAdd(hIDi)
| inventoryRemove(hIDi)

hInterruptiblei ::= sayLine(hIDi, hStingi)
| walktoPos(hIDi, hNumberi, hNumberi)
| walkToObj(hIDi, hIDi)

hDiri ::= Left
| Right
| Front
| Back
| FrontLeft
| BackLeft
| FrontRight
| BackRight

hExpri ::= BoolExpr
| NumExpr

hBoolExpri ::= (hBoolExpri)
| true
| false
| hIDi
| hBoolExpri and hBoolExpri
| hBoolExpri or hBoolExpri
| not hBoolExpri
| hNumExpri > hNumExpri
| hNumExpri = hNumExpri
| hNumExpri < hNumExpri

hNumExpri ::= (hNumExpri)
| hNumberi
| hIDi
| hNumExpri + hNumExpri
| hNumExpri � hNumExpri
| hNumExpri ⇤ hNumExpri
| hNumExpri / hNumExpri

45

5.1.2 Parsing

The scripts definition by the user follows the visual programming approach
and is performed by dragging and dropping valid blocks of code. More for-
mally, the user interface allows only to perform actions that correspond to
the production rules of the language, i.e. the above grammar is used as a
generative grammar for the definition of scripts. Whenever the productions
lead to one or more nonterminal symbols, the user interface provides an ap-
propriate default choice. This guarantees that users are allowed to only define
scripts that are syntactically correct. Actually, keyboard typing is needed for
the definition of boolean and numeric expressions: such decision was taken
out of time constraints, but it would be desirable, in the future, to extend
the graphical approach even to the guards. The parsing of the if guards
has been implemented by a recursive descent parser that, taken as input the
string representing the boolean expression to check, returns either a parse
tree of the valid expression or false in case of string rejected.

5.1.3 Scripts and Run Time Support

5.1.3.1 Header

Scripts consist of a header and a body. While the body is a valid program
written in the DSL just described, a header contains the event chains that
will trigger its execution. Such event chains, or triggerers, can conceptually
belong to three di↵erent types:

• user-interaction triggerers, that is chains of events fired in response of
user input

• event-occurrence triggerers, that is chains of events programmatically
fired by another user-defined script

• timer triggerers, that is chains of events fired at regular time intervals
defined by the user

The script compiler receives a valid script as input and builds up an evReact
expression that interprets its behavior. Headers are compiled as an any
expression, meaning any chain of events contained inside the expression itself
will be able to trigger the compiled body.

User-interaction triggerers are cat expressions: by design choice, the event
chain for each of these triggerers consists of at least one and no more than

46

three events. The first event can be a natural mouse event, like a simple click,
or an Action event belonging to the set of actions the player is allowed to
perform while playing. In the second case, the expression waits for a sequence
of one or two Object events, depending on the designer’s choice: for example,
cat([Push, Button]) or cat([Use, TV]) are perfectly legit triggerers, as well as
cat([Use, Batteries, Radio]), which implies a combination of one Action and
two Objects.

This pattern has been adopted for event-occurrence triggerers too, but as
said before, the nature of events for this kind of triggerer is slightly di↵erent,
since it does not depend on user input but on events explicitly fired by a
script’s body, for example to notify that a certain part of the plot has been
completed and that the game state has to be updated in some way.

Timer triggerers consist of a simple evReact event that is fired at a regular
time interval expressed in milliseconds by the user.

Another interesting and important aspect to consider is that a player might
possibly change his mind while firing an action event, consequently firing
two or more consecutive action events: it is clear that a coherent reaction
to this use case is to immediately terminate the expressions that did not
ignore events di↵erent from the last one triggered. As aforementioned, evRe-
act provides the restrict operator to force an expression to terminate. Said
considerations apply for the other two types of triggering as well.

Taking everything into account, the output for the headers’ compiler is an
evReact expression of the form:

any([restrict(cat([inputEv1, . . . , inputEvn]), [restr1, . . . , restrn]),
restrict(cat([scriptedEv1, . . . , scriptedEvn]), [restr1, . . . , restrn]),

restrict(any([timeEv1, . . . , timeEvn)], [restr1, . . . , restrn])])

5.1.3.2 Body

The script body consists of a single statement belonging to the DSL. The
statements have been categorized into two main classes, that is controllers,
which have statements as subterms, and side e↵ects. Statements have a
syntactically recursive structure, and their semantics is compositional: the
semantics of an expression can be obtained from the semantics of its subex-
pressions and the semantics of the operator that is used to compose them,
without any need to inspect their syntax. This kind of semantics is desirable
for many reasons, as it makes it easier to understand the behavior of complex

47

expressions. Moreover, it is easily evaluated recursively by computing it on
subexpressions and combining them as required depending on the operator.

Controllers are subclassed into Aggregator controllers and If controllers: Ag-
gregators can have Sequence, Any or All type and semantically correspond to
their aforementioned evReact counterparts. If controllers semantically cor-
respond to if expressions in JavaScript. An aggregator works as a container
of code and can be nested inside other aggregators.

Side e↵ects represent the core features o↵ered by the engine. Atomic side
e↵ects are fully executed instantly and their interpretation cannot be stopped
once it started. Every side e↵ect but walkToPos, walkToObj and sayLine
belong to this class of side e↵ects.

Interruptible side e↵ects require a certain amount of time to be fully inter-
preted, and their execution can be stopped before completion.

In detail, the explanation of the semantics of all the available side e↵ects is
the following:

• walkToPos(ID, xPos, yPos) makes the game entity univocally identified
by ID walk along the shortest path with starting point defined by its
actual screen position and destination point (xPos, yPos). The side
e↵ect reaches completion when the position of the game entity equals
the destination point.

• walkToObj(entityID, objID) makes the game entity univocally identified
by entityID walk along the shortest path with starting point defined by
its actual screen position and destination point defined by the property
walkingPoint (set manually by the user from the graphical editor) of
the game object univocally identified by objID. The side e↵ect reaches
completion when the position of the game entity equals the destination
point.

• sayLine(ID, sentence) draws the sentence string over the game entity
univocally identified by ID. The side e↵ect reaches completion after the
string has been on screen for a fixed time interval (150 ms).

• delay(time) delays the execution of the rest of the body of a lapse of
time in milliseconds specified by the time argument.

• waitEvent(eventID) blocks the execution of the rest of the body until
the event univocally identified by eventID is triggered.

• fireEvent(eventID) triggers the event univocally identified by eventID.

48

• setRoom(roomID) sets the location univocally identified by roomID as
the current game location.

• setDirection(characterID, dir) makes the character univocally identified
by characterID face the direction specified by the dir argument.

• setPosition(ID, xPos, yPos) places the game entity univocally identified
by ID onto the screen coordinates (xPos, yPos).

• show(ID) sets as visible the game entity univocally identified by ID and
its relative hotspot, if present.

• hide(ID) is dual to show(ID).

• inventoryAdd(invItemID) adds the inventory object univocally identi-
fied by invItemID to the player’s inventory.

• inventoryRemove(invItemID) is dual to inventoryAdd(invItemID).

• varSet(ID, val) sets the game variable univocally identified by ID to
the value specified by the val argument.

• varIncr(ID, amount) increments the numeric variable univocally iden-
tified by ID by the value specified by amount.

49

5.2 The Editor

The graphical editor is composed of di↵erent sections, each of them special-
ized in one particular aspect of the game. Each section is accessed by the
relative button within the navigation bar, fixed on top of the web page. In
turn, the navigation bar includes a dropdown menu for the management of
projects, as seen in figure:

Figure 5.1: The Anims section

5.2.1 The Rooms section

The rooms section allows users to define new game locations, conventionally
called rooms. Figure 5.2 shows the appearance of the section to the users.
The section contains a single graphic panel which acts as a container for
instantiated rooms, as well as a canvas that shows user-defined room proper-
ties and a canvas toolbar (2.) to choose which property to manipulate. The
canvas and its toolbar are initially hidden. A small toolbar (1.) on top of
the container panel permits to add, delete and clear all rooms.

When a user adds a new room, a subpanel associated to such room is added
to the main container panel. A subpanel can be expanded and collapsed
by a button located onto its header (3.) and, in case of multiple subpan-
els, the expansion of a subpanel triggers the collapsing of all of the others.
The generic click on a subpanel’s header sets such subpanel as active. A
subpanel’s header also contains a title (4.) which corresponds to the unique
identifier assigned to the room with which it is associated. The expansion
of a subpanel reveals its body, which in turn contains two graphical compo-
nents for the customization of the room. The first component (5.) is a simple
button which serves as a selector for the room’s background image. When a
local image is chosen for the room background, the canvas and its toolbar are

50

Figure 5.2: The Rooms section

shown and the background image is printed inside the canvas. The second
component (6.) is another toolbar to manage the addition and the removal
of objects to the room. Again, the addition of a room object by means of the
add button of this second toolbar, involves the addition of an object panel to
the current room subpanel.

Object panels behave the same way of room subpanels for what concerns ex-
panding, collapsing and the title/identifier correspondence. An object panel’s
body (7.) contains several input fields to define properties of the object it is
associated to. For a given room object, there are input fields for the definition
of, in order:

• its on-screen description;

• its graphic layer ;

• its “walking spot”, that is the screen position to reach when walking to
the object;

• its default Anim state (see the Anims section);

• an arbitrary set of (state, Anim) couples;

As aforementioned, the canvas and its toolbar (2.) become visible as soon
as the user chooses a background image for the currently selected room.
The canvas toolbar consists of five buttons, each one of which changes the
canvas state and its reaction to mouse events, in order to define more object
properties for which simple input fields would be inconvenient to users.

Starting from the left, the first button allows users to change the position

51

of objects by clicking on their placeholder image printed inside the canvas
over the background and dragging them around the room with the mouse,
dropping the image when the desired position has been reached.

The second button permits to define an object hotspot, described as a list
of vertices that form a polygon. A vertex is added to the polygon by clicking
inside the canvas. The polygon is closed by clicking a second time over the
first vertex added to the list. The polygon can be cleared and the process
started over by right-clicking inside the canvas. The figure below shows the
process of definition of a polygon around a figure:

Figure 5.3: Adding vertices (left) and the closed polygon (right)

By pushing the third button, users can define the room’s walkable path as a
polygon in the same way hotspots are defined. Once the polygon has been
created, it is possible to add holes to it, by keeping pressed the left shift key
and tracing other polygons which will be considered as holes. Right-clicking
on the canvas has the e↵ect of clearing every polygon, both the walkable path
and its holes, if any.

The fourth button is there for mere convenience, as it allows to save clicked
coordinates of the canvas into a string displayed under the canvas itself. The
fifth and last button allows to associate, for a given object, its walk-behind
line. This straight, horizontal line defines the y on-screen coordinate such
that, if a character’s bottom y coordinate is lower than this line, then the
character will be conceptually considered behind the object and thus will
have a lower z-order (right hand rule).

52

5.2.2 The Characters section

The characters section has a simple panel which acts as container for user-
defined characters. It contains another toolbar for creating and removing
game characters, in the same way described for rooms and room items.

Figure 5.4: The Characters section

A character panel contains several input fields for the definition of character
properties, which in turn are divided into general properties and animation
properties.

General properties consist of the character’s on-screen description, its parent
room’s identifier, its speech color (which defines the color of the sentences
possibly said by the character) and its initial on-screen position within its
parent room.

Animation properties are a list of (state, direction, Anim ID) triples, where
the default state s 2 { stand, talk, walk } and the generic direction d belongs
to the set of admissible directions already specified by the DSL grammar
in 5.1.1 while the third element of the triple is simply a unique identifier for
an Anim instance. In addition to the three default states, users can define

53

custom states to associate to Anim identifiers, with no limits on the amount
of states, by clicking the specific button on the panel bottom.

54

5.2.3 The Scripts section

The following figure shows how the Scripts page appears to the users:

Figure 5.5: The Scripts section

1. and 2. respectively contain all the controllers and all the side e↵ects
already described in 5.1.3.2. Each one of them can be added to the current
script by dragging and dropping it onto the script root contained inside 4 or
within a controller which is already present within the script. The toolbar in
3. allows to define new scripts, loading existing scripts, deleting and saving
them. Besides the script root, 4. contains a dedicated button to add new
triggerers and a dropdown menu to specify their type.

55

5.2.4 The Anims section

By the usual toolbar, users can create new Anims. An open Anim panel can
be seen in the figure below:

Figure 5.6: The Anims section

2. highlights the set of frames that compose the Anim. Each of these frames
is added by clicking 1. and can be removed by right clicking on it.

56

5.2.5 The Inventory Items section

As shown in the figure below, an Inventory Item’s panel consists of an input
field for specifying its on-screen description and another for associating it to
an existent Anim identifier.

Figure 5.7: The Inventory Items section

5.2.6 The Game Variables section

The next figure shows the Game Variables section:

Figure 5.8: The Game Variables section

The main panel contains two icons (1.) to add new variables and to clear
them all. Variables can be boolean, numeric and strings (2.). Each variable
added can be removed by its relative icon for deletion (3.).

57

5.2.7 The Test section

This section is a simple wrapper of the game, useful to test it before exporting
it as a simple HTML page. The WYSIWYG (what you see is what you get)
philosophy of the entire editor can be clearly seen here, as wrapped games
and exported games will be absolutely equivalent. The test can be started
by clicking (1.).

Figure 5.9: The Test section

58

5.3 Data Architecture

The editor just described is a mere way to graphically define properties of
the various game components, but the interactions and behaviors of such
components are yet to be described. In the following we will see a description
of the system architecture, starting with a very high abstraction level and
then proceeding to a more detailed illustration.

First of all, let us consider a game authored by the system: its high-level
structure is very simple, as it simply consists of a graphic manager and a
logic manager that interact with the rooms data, as can be seen in figure:

Figure 5.10: Abstract game architecture

Obviously, the graphic manager takes care of rendering the game entities on
screen, while the logic manager is delegated to manipulate their properties
and to call the graphics manager when necessary.

59

Let us now see the structure of these entities:

Figure 5.11: Logic game entities and their behavior

The Room class represents generic game locations, not necessarily in a strict
sense: for example, a Room instance can be a close-up of an object, an open
environment, a closed room. We can say that a Room represents a scene of
the game that has a fixed background image and may or may not contain
other game entities such as objects and characters. A Room instance may
contain several Item instances, which represent general game entities that
can conceptually behave as animated characters or as inanimate objects.

An Item class is an abstract representation of every logic entity in the game:
player characters are as well a special case of Item and are indeed instances of
the PlayerCharacter class, which extends Item. Since every player character
has an inventory, the PlayerCharacter class uses the Inventory class. In turn,
an Inventory instance acts as a container of InventoryItem instances.

The reason why generic items and inventory items are unrelated is that
they’re completely di↵erent from a conceptual point of view, that is the
first are explicitly contained inside of a room, have a position that can be
dynamically changed and can even be removed from their original room and
placed into another one, while the latter can only be stored inside of a char-
acter’s inventory, don’t have a screen position and are simply defined just by
a description and a graphic representation.

Any logic behavior is defined by scripts made within the editor. The scripts,
written in the DSL, are then compiled into evReact expressions. The follow-
ing figure illustrates the structure of the original scripts:

60

Figure 5.12: Structure of the DSL scripts

A script is represented by the DSLScript class, which in turn acts as a con-
tainer for the script header, defined by the ScriptTriggerer class, and the
script body, defined by the ScriptTree class. The latter describes the script
as a tree structure, with its root being an instance of the ScriptElement
class. This class represents a valid construct of the DSL, that is an aggrega-
tor or a side-e↵ect, and may contain other instances of itself in the first case.
A ScriptElement instance will make use of syntactic representations of the
game’s core data.
Syntactic representations refer to:

� side-e↵ects functions, both atomic and interruptible, the first repre-
sented by the AtomicE↵ects class and the latter by the Interruptible-
E↵ects class;

� every possible game event, represented by the GameEvents class;

� all the game variables, represented by the GameVars class.

The script header logically gathers ordered sequences of game events that
will trigger the body execution, that is the ScriptTriggerer class uses the
GameEvents class.

The scripts compiler, represented by the ScriptCompiler class, consists of two
sub-compilers, one delegated to compile headers, represented by the Script-
TriggererCompiler class, and the other delegated to compile bodies, repre-
sented by the ScriptTreeCompiler class. A script compiler creates instances

61

of the EvreactExpr class, which represents a valid evReact expression that
implements the behavior described by the DSL script, as shown in the figure
below:

Figure 5.13: Compilation of the scripts

This class coincides with the generic LogicManager class mentioned earlier
in this section. Its role is to handle every event that is fired throughout the
game. The evReact networks are the only logic entities that may actually
interact with the game core, which consists of the interpreters of the side-
e↵ects, both atomic and interruptible, the valid game events and the game
variables.

62

By construction, only atomic side-e↵ects may operate on the game variables,
while both types of side-e↵ects have access to the game events as they need
them for synchronization. Both interpreters can make calls to the graphics
manager to update the whole scene or parts of it. See the figure below:

Figure 5.14: Interaction between evReact and the game core

63

While evReact networks handle events, the way user inputs can fire events is
yet to be described. The most primitive event that can be fired by users is a
simple mouse click. Every interactive entity of the game provides a listener
for mouse events and, as it detects a click, it fires a more specific event, i.e.
a valid and unique evReact event whose name matches its identifier. Let us
now see how entities of very di↵erent nature can listen for click events and
fire another event in response:

Figure 5.15: Mouse listeners for rooms, items and the GUI

Interactive items use a polygon to define the portion of space that must
react to mouse inputs from users (hotspots). The Polygon, in turn, uses
a MouseListenerthat, in response to a mouse event, fires the game event
associated to the Item instance connected to the polygon.

A room’s background image also has a mouse listener. Mouse clicks over a
background will make its listener trigger a special event, i.e. a background
event, which is a unique game event that will be handled contextually to the
room where the click has occurred: if the room contains an area where the

64

player can walk, then the handler (precisely the walkToPos function) will
compute the shortest path from its current position and the clicked spot and
make him walk there. This computation will be described in Chapter 6.

As for the GUI, every cell that forms it has attached a mouse listener that
will react by firing an appropriate game event depending on the part of the
GUI that received the input, be it an action or an inventory object. Again,
details on the implementation of this behavior will be provided in the next
chapter.

65

66

6
Implementation

In this chapter, we will see in detail the implementation of the system. The
project has been divided in several JavaScript modules, each one delegated
to a particular part of the system.
The following sections conceptually divide the parts of the system and de-
scribe which modules contribute to each part.

6.1 Primitive structures

6.1.1 room-manager.js

The module called room-manager.js defines the most important entities of
the system, that is rooms and room items. In this module are declared the
global data structures that contain and map such entities, that is (variable
names are self-explicative):

• editorRoomsList[]

• editorMapIdRoom{}

• editorMapIdItem{}

• editorCharactersList{}

• editorMapIdCharacter{}

Rooms are defined by the class EditorRoom, which is structured as shown
below:

67

Figure 6.1

Each room has a unique identifier and the association between an Editor-
Room instance and its id is stored in the relative global hashmap mentioned
before. The setId method verifies that the new identifier for the room is
unique among every other instance of EditorRoom. The items member is a
heterogeneous Array such that items[i] stores, for i = 0, the base64 repre-
sentation of its background image and 8i > 0 an instance of the EditorItem
class, which represents a generic item contained inside a room.

The walkablePath member is an SVG polygon that defines the area of the
room where the playing character and the items are allowed to freely walk
into. Finally, the zOrderMap class member is a hashmap that associates in-
teger keys, representing a layer number, to Arrays of identifiers of EditorItem
instances. This class represents both inanimated objects and alive characters,
and has the following structure:

Figure 6.2

68

EditorItem instances are as well univocally identified by an id member and
the associations between identifiers and EditorItem instances are stored in
the relative global hashmap. As this is the standard behavior for most classes,
from now on, whenever a class has an id field, it must be clear that the iden-
tifier is unique and that there is a global Object which acts as an id/instance
hashmap. Therefore, only the name of the global Object will be specified.

It is important to notice that the uniqueness of identifiers is necessary and
guaranteed only among instances of the same class, while instances of di↵er-
ent classes may have the same identifier with no problem at all. The module
contains a global function, checkIdUniqueness(id, type), which checks for
id conflicts among instances of the class described by the type parameter.
Such parameter is a string belonging to the set { “room”, “item”, “action”,
“character”, “inventory-item” }.

The type class member can either be “object” or “character”. The walkspot
member specifies the spacial coordinates on which the playing character must
be to have conceptually “reached” the item. hotspot is a SVG polygon that
pinpoints the spacial area of the room that listens to the player’s mouse
events and thus allows interaction with the item.

The visible member specifies whether the graphical representation of the item
(and its hotspot) must be shown on screen or not. The layer member defines
the z-order of the item on the scene: we will later see what are the e↵ects of
the manipulation of a layer. As mentioned earlier, the description member
is a string that briefly describes the item and that will be printed inside the
apposite section of the GUI when the item detects a mouse event. As one
item can be contained inside at most a room at a given time, the member
parentRoomId contains the identifier of the room that currently contains the
item. The position member is a point with spacial coordinates that refer to
the top-left position of the current graphic representation of the item, if one
exists.

We will later see in the anim-manager.js section that every graphic compo-
nent but the rooms’ backgrounds is defined by a class called Anim. Avoiding
for now to dive into details, it is enough to know that the anims member
of the EditorItem class is a hashmap that associates possible states of the
item to unique identifiers of the existing instances of Anim. As seen in the
previous chapter, both inanimate objects and characters can have custom

states that are associated to Anim instances by <state, animId> couples.
Nonetheless, the default states of objects and characters are di↵erent: at
construction time, the type parameter will determine the default state(s) of
the item, which in turn will be keys of the anims class member. That is, if

69

type is “object” then the item will only have a default state precisely called
default, but if type is “character” then the default states will be more than
one and more specialized. Indeed, the item’s default states will be stand, walk
and talk, and each of these key states will have as value not an Anim iden-
tifier but an additional hashmap. Such additional hashmap contains eight
keys, one for each of the cardinal points, and will have as value the identifiers
of the Anim to which they are associated.

The anim state member stores the current state of the item, dir stores the
current direction (cardinal point) that the item is currently facing if the item
is a character, or else it will be null. When an item speaks, its sentences
will be displayed on screen as strings. The speechColor member stores the
hexadecimal representation of the color that these strings must have.

Let us now consider the methods provided by the EditorItem class. The
setLayer function takes as input an integer and has the following behavior:
first, it retrieves the room containing the item by referencing editorMapId-
Room[parentRoomId] and updates its zOrderMap member and, secondly, it
sets the layer member to the proper value. It is important to remember
that l is the function parameter while layer is a class member. Precisely, the
function acts as following:

1. delete from the Array referenced by zOrderMap[layer] the element con-
taining the item’s identifier

2. if such Array is now empty, then delete the entire zOrderMap[layer]
hashmap entry

3. multiply l by two

4. check for the existence of zOrderMap[l] : if such hashmap entry does
not exist, then create it

5. add the item’s identifier to the Array referenced by zOrderMap[l]

6. set layer to l.

The reason of step 3. is that items can dynamically change layer at game
execution time, thus it guarantees that any item can be set to a layer that
is intermediate to the layers of two other items. More formally, let item

i

indicate an item with layer i, with i > 0: if a character walks between item
i

and item
i+2

, a correct z-ordering of the scene must place the character at the
layer i+1. This would not be possible without this simple multiplication, at
least not as easily.

70

At editor level, users can visually drag and drop graphic representations of
room items onto the canvas displaying the room’s background. As already
explained, a room item can have many graphic representations depending on
its current state. For this reason, it was decided to define a placeholder for
every room item which makes use of graphics. The global method getItem-
PlaceHolder(item) takes as input a room item and returns its placeholder,
defined as the first frame of the Anim instance associated to its default state.
The last class method is getItemCurrentFrame(), which will retrieve the ani-
mation associated to the current item state and return the single frame it is
displaying at the moment.

71

6.1.2 anims-manager.js

This module is delegated to the management of the game sprites. As ex-
plained in the previous chapter, the system does not handle single sprites
but entire animations. A sprite is just an animation with a single frame.
Animations are described by the Anim class, structured as shown in figure:

Figure 6.3

The global variables to contain and map animations are declared in this mod-
ule and are respectively editorAnimsList[] and editorMapIdAnim{}. Anim
instances store their frames into their frames property. Each element of the
Array is a string containing the base64 encoding of an image. The class mem-
bers start idx and current frame respectively indicate the index of the frames
Array that must be considered the first to display, and the one that must be
displayed the next time the animation is played. The members frame rate
and loop indicate, respectively, the time interval in milliseconds after which
displaying the next frame of the animation and whether the animation must
be looped or not.

The class methods are really simple. addFrame(idx, image) stores the base64
encoding of the image contained in the image parameter at position idx of
the frames Array. removeFrame(idx) will instead remove the string stored at
position idx, while incrCurrIdx() will increment by 1 module n the curr idx
member, where n is the length of the frames Array.

72

6.1.3 inventory-manager.js

This small module deals with a very particular type of game item, that is the
inventory items. Inventory items can only be located inside of the playing
character’s inventory, which is displayed within a section of the game’s GUI.
The state of an inventory item is much less complex than “normal” items:
indeed, they can either be in the inventory or not. Furthermore they do not
have a spacial position, nor they can talk or walk. Nevertheless, they do
have a graphic representation to be displayed within the GUI, so they are
associated to an Anim instance. The figure shows the very basic structure
of the class InventoryItem:

Figure 6.4

As usual, the module declares the global list and hashmap for the Anim in-
stances, called respectively editorAnimsList[] and editorMapIdAnim{}. The
anim class member contains the identifier of the Anim instance to which the
inventory item is associated. The description member is a string containing
a textual description of the inventory item, which will be displayed into the
GUI when the user interacts with it.

6.1.4 variables-manager.js

In this tiny module, we can find the declaration of the global editorGameVars{}
JavaScript Object, which maps the game variables names to their values.
Moreover, it provides two global functions: addGameVar(varName, var-
Value) and deleteGameVar(varName). The decision to create a dedicated
module for so few code was taken in order to have a clear modular structure
of the entire system.

73

6.2 Pathfinding

6.2.1 quadtree.js

As its name suggests, this module is delegated to the creation of quadtrees.
The Quadtree class is rather rich, as can be seen below:

Figure 6.5

In this module, several global variables are declared:

• walkableColor is a string representing the color that defines areas where
items can walk

• walkableColorRGBA is an Array of five elements, containing the nu-
meric values of the red, green, blue and alpha components of walkable-
Color

74

• pixels is a JavaScript Object that will contain all the pixel data of the
image that a quadtree will partition

From now on, pixels with a color matching walkableColor will be called valid
pixels, while all of the others will be marked as invalid.

Let us start by examining the class constructor: it receives eight parameters,
which will now be described. Parameter parent is a reference to the Quadtree
instance which has called the constructor, thus is the parent of the quadtree
that is being created. Obviously, the root quadtree will have this argument
set as null. The second parameter, path, is an Array of strings that contains
the entire path of the quadrants to traverse to reach the quadtree itself.
The root quadtree will receive an empty array as parameter. The strings
contained within the array are in the set { “NW”, “NE”, “SW”, “SE”}. The
quadrantType parameter is a string belonging to the same set, or is the string
“root” for the root quadtree. The depth parameter is there for debugging
purposes only, and describes the length of the quadtree being created, where
the length of the root quadtree is 0. The last four parameters, left, right, width
and height describe the bounding box of the spacial area that is wrapped by
the quadtree.

Having described the constructor’s parameters, we now know the purpose of
most of the Quadtree class members, which have identical names. An active
quadtree is a quadtree that:

a) does not have children, thus is a leaf

b) contains only valid pixels

If a quadtree is not active, its children will be stored inside the childrenNW,
childrenNE, childrenSW, childrenSE members, each one dedicated to their
relative quadrant. Finally, the neighborLeaves Array will contain, once the
entire quadtree has been fully created, all the active quadtrees (if any) that
are immediate neighbors of the Quadtree instance, at the four cardinal points.

The class methods have the following purpose: getNorthernNeighbor(), get-
SouthernNeighbor() , getWesternNeighbor() , getEasternNeighbor() will re-
turn the neighbor quadtree at the same depth (if present) and at the
corresponding direction. Let qt

d

be a quadtree of depth d > 0 and let us
denote as n

dir

(qtd) its neighbor at direction dir 2 { N, W, S, E } of depth
d.
The algorithm that retrieves n

dir

(qtd) is the following:

1. n
dir

(qtd) is a sibling if and only if:

75

• qt
d

is a NW or NE quadrant and dir = S

• qt
d

is a NE or SE quadrant and dir = W

• qt
d

is a NW or SW quadrant and dir = E

• qt
d

is a SW or SE quadrant and dir = N

2. otherwise, starting from qt
d

, traverse the tree backwards, keeping track
of the path that is being followed, until a quadtree T is found, such
that:

• for dir = N, T is a SW or SE child

• for dir = S, T is a NW or NE child

• for dir = W, T is a NE or SE child

• for dir = E, T is a NW or SW child

3. if T exists, climb upon its parent and then traverse the path followed
in step 2. in reverse order and inverting, for each element of the
path, the cardinal point described by dir

In the next figure, we can see an example of the northern neighbor (marked
in green) lookup of a SW quadrant (marked in red):

Figure 6.6: Simplest case of neighbor lookup

The same situation is represented as a clearer tree structure in figure 6.7.

As can be seen, this is the case in which the control in step 1. is successful,
thus the sought neighbor is a sibling. Let us now see a more complex case:

76

Figure 6.7: Tree representation of the previous quadtree

we are looking for the northern neighbor of a NW quadrant, marked in red
in the next figure:

Figure 6.8: More complex case of neighbor lookup

The same situation is represented in a more clearly by the tree in figure 6.9.
This time, the sought neighbor is not a sibling and steps 2. and 3. must
be executed. The path to reach T is <NW, SW>. Once it has been found,
we visit its parent, which in this case is the root. Starting from T ’s parent,
we traverse down the tree again, following the path in reverse order and
changing, for each element of the path, N with S and vice versa. Thus, the
path that must be followed is <NW, SW>, as arrows 3 and 4 describe in
figure 6.9.

Back to the description of the class methods, the getNeighborLeaves(dir)
method will instead return all of the active quadtrees, no matter at which
depth, that are adjacent to the quadtree at the direction described by the dir

77

Figure 6.9: Application of the neighbor lookup algorithm

parameter. This search is a special case of the neighbor lookup just described.
The method getQuadtreeContainingPoint(p, seekOnlyActive) will return a
quadtree containing the point described by the p parameter. The return value
will vary according to the value of the boolean parameter seekOnlyActive:
if it is true, then the returned quadtree will either be an active quadtree
containing the point or null if such quadtree does not exist. If it is false
instead, it will return the smallest quadtree that contains p, possibly the
root quadtree.

The containsChildren() method will tell whether the quadtree is a leaf or not:
it is worth repeating that being a leaf is a necessary condition for a quadtree
to be active, but is not su�cient, because its bounding box has to contain
only valid pixels.

The four methods copyActiveLeavesAtNorth(list), copyActiveLeavesAtSouth(list),
copyActiveLeavesAtWest(list), copyActiveLeavesAtEast(list) take an Array as
input and perform a depth-first visit of the quadtree at the direction speci-
fied by the method name, copying inside the Array all of the active quadtrees
that are visited throughout the process.

Finally, the getNearestActiveLeaf(p) method takes as input the point p and
returns the nearest active node to such point. The computed distance is the
distance between p and the node’s central point.

Once a user has traced a polygon that describes a room’s walking area,
a Quadtree instance is created to partition such area. The partitioning is
performed by color, using an invisible canvas to hide the process to the user.
After filling the canvas with white color, the polygon’s surface is drawn onto

78

it with the color described by walkableColor. Then, the polygon’s holes are
re-filled with white color. The next figure shows the originally traced polygon
and the content of the invisible canvas at the end of the process:

Figure 6.10: Original walking zone (left) and the invisible canvas (right)

The pixel data of the invisible canvas is stored inside the pixels global Object.
The resulting image, which uses only two colors, is used as a bitmask for the
generation of the quadtree. The generation starts with the creation of the
root quadtree, which will have a bounding box of the same size of the entire
background. For each quadtree qt, the construction process is the following:

1. examine the image pixels contained in the area of the bounding box:
if both valid and invalid pixels are found, go to next step, else qt is a
leaf, mark it as active node or inactive

2. if qt has a bounding box wide enough to be further subdivided, proceed
to next step, else qt is an inactive leaf

3. split qt in four quadrants and assign each quadrant to a new quadtree,
starting from 1. for each one of them

The resulting quadtree is shown in figure 6.11.

6.2.2 pathfinding.js

This module provides classes and functions for the implementation of the A*
(A star) algorithm. A* is a pathfinding algorithm based on best-first search
and heuristics which guarantees to find an optimal solution. Let S be the
path’s starting node and G the goal. Moreover, let f(n) = g(n) + h(n) be
the cost function of the generic node n, where g(n) indicates the cost of the

79

Figure 6.11: Spacial partitioning by quadtree

path to reach n and h(n) indicates the estimated cost of the path from n
to G. The following property holds:

h(S) = 0, h(G) = 1, h(n) = Euclidean distance(n, G) for n 6= S, n 6= G.

The algorithm uses two lists: Open is a priority list which will contain the
nodes yet not visited, and Closed is a list that will store the visited nodes. The
priority is given to the node with lowest cost function. Initially, Open = { S }
and Closed = { ; }. At each step, the algorithm pops the highest priority
node n from Open, puts it into Closed and adds to Open all the immediate
neighbors of n that have not been visited yet, that is that are not already
in the Open list. The algorithm will stop when the highest priority node of
Open is G.

Figure 6.12 shows the classes that implement such behavior.

The SearchGraphNode class represents a generic search node of the path,
with the relative g and h class members for the description of path cost and
heuristic. Obviously, each instance of SearchGraphNode describes an active
quadtree, i.e. has a one-to-one association with an active quadtree, whose
reference is stored in the quadtree member. The parentIdx member is there
to backtrack from G to S within the Closed list elements, once the goal has
been reached. The f() method simply computes the function cost already

80

Figure 6.12: Classes for the implementation of A* pathfinding

described and returns its value.

The actual implementation of the algorithm is provided in the Pathfinder
class. We already know the purpose of its members, so we will examine the
class methods. getHighestPriorityIndex() will return the index of the element
contained in the Open list with the lowest cost function. checkQuadtreeEqual-
ity(qt1, qt2) will compare the bounding boxes of the two quadtrees passed as
arguments, and will return a boolean. quadtreeIdxInsideList(qt, which) will
check whether a search node associated to qt is already present in the Open
or Closed list, depending on the value of the which parameter and will re-
turn its index within the list or -1 if it is not present. The aStar(start, goal)
method will return an Array of Points corresponding the the bounding box
centers of the quadtrees that form the shortest path found between start and
goal.

81

6.3 Scripting and compilation

6.3.1 From visual scripting to DSL scripts

The module script-manager.js defines the data structures needed to properly
manage scripting in the DSL, whose grammar has already been described in
Chapter 5. The class ScriptElement defines a syntactic representation of a
valid Statement of the DSL: that is, ScriptElement instances may syntacti-
cally represent DSL’s Aggregators, If-controllers and SideE↵ects. The class’
structure can be seen in figure:

Figure 6.13: Class for the syntactic representation of a Statement

As seen earlier, SideE↵ect constructs have the form Name(Params). Let
ValidFXNames be the set of strings containing all of the possible Name
parts of a SideE↵ect construct. The class constructor takes as input two
parameters: the first one, f, is a String belonging to the set

{ “Aggregator”, “If” } [ValidFXNames.

The second parameter is an Array of strings that describe, depending on the
value of f, the Aggregator type (that is Any, Sequence or All), the If-controller
guard, or the parameters of a SideE↵ect. The Array has a length ranging
from 1 to 3, which is the maximum cardinality of the parameters passed to
a SideE↵ect construct.

We know that the DSL is built in such a way that it is possible to nest any
type of Statement into Aggregators and If-controllers. The process can be
recursively repeated if the nested Statement is in turn of type Aggregator
or If-controller. This means that a valid DSL script has a tree structure
and that, of course, the ScriptElement class alone is not enough to express
the structure of a script. The class called ScriptTree indeed implements this
behavior:

As can be seen in figure, class instances will contain a ScriptElement in-
stance and may contain an arbitrary amount of other ScriptTree instances.

82

Figure 6.14: Class for the nesting of DSL Statements

This structure does not prevent a SideE↵ect from nesting other Statements,
and this would be an undesired behavior. However, we will see that the vi-
sual programming part of the editor solves this problem before it can arise.
Moreover, the type class member is a string that describes what is the type of
the ScriptElement instance stored inside the scriptElement member. There
are only two valid types: game-controllers, to which belong Aggregators and
If-controllers, and game-side-e↵ects, to which belong both interruptible and
atomic SideE↵ects.

The next class represents the sequences of game events that will cause the
execution of a script:

Figure 6.15: Class for representing script triggerers

The type member is a string belonging to the set { “user-trigger”, “event-
trigger”, “timer-trigger” } and obviously refers to the type of triggerer among
the three possible types described in Chapter 5. The params member is a
string Array, with each element being the unique identifier of a game event.
Its length ranges from 1 to 3, as for design choice a script can be triggered by
a sequence of at most three events (for example: Use, Key, Door). Now that
we have described all of its component, we may introduce the actual Script
class:

Every DSL script is syntactically represented by instances of this class, whose
members are in turn the syntactic representation of the script root and the
script triggerers. Every instance of this class is stored into a global JavaScript
Object declared in this module and called editorScriptList. This Object maps
script names (identifiers) to scripts. Script names are chosen by the users
when saving a script within the editor.

83

Figure 6.16: Class for the syntactic representation of a DSL script

Let us now see how the visual representation of a script, that is its jsTree
graphic tree structure inside the editor, is then compiled into its syntactic
counterpart with the jsTree2ScriptTree function:

1 var jsTree2ScriptTree = function(tree , parent)
2 {
3 var t = new ScriptTree(null);
4 t.type = parent == null?’game -controllers ’:tree.type;
5 t.id = tree.id;
6 t.parentId = parent;
7
8 var DOMnodes = tree.data.DOM;
9
10 if(DOMnodes)
11 {
12 var f = tree.text;
13 var params = new Array();
14 for(var i = 0; i < DOMnodes.length; i++)
15 params.push(DOMnodes[i].value);
16 t.scriptElement = new ScriptElement(f, params);
17 }
18 else t.scriptElement = new ScriptElement(
19 ’Aggregator ’,
20 new Array(’Sequence ’));
21 var children = tree.children;
22 for(var i = 0; i < children.length; i++)
23 t.children[i] = jsTree2ScriptTree(
24 editorScriptTree.get_node(tree.children[i]),
25 t.id);
26 return t;
27 };

This recursive function takes as parameters a jsTree object and its jsTree
parent’s identifier. At its first call, the function will receive the root of the
jsTree script and a null string. Each jsTree node will be compiled into a
ScriptTree instance. By convention, the jsTree root will be compiled into a
ScriptTree instance containing a Sequence aggregator ScriptElement object.

84

In order to allow the backwards process, i.e. the compilation from Script-
Tree to jsTree, each id of a jsTree is dynamically saved onto its ScriptTree
counterpart. This guarantees that the correspondence between graphic and
syntactic representation of scripts is bijective. This occurs also for the parent
id passed as second argument. The type of the jsTree node is either game-
controllers or game-side-e↵ects and will be stored as well into the relative
type field of the ScriptTree instance being created.

Every jsTree node but the root contains a label to represent Statement names
and at most three input fields to represent Statement params. This content
is stored within a data object within the node and is, in the code above,
temporarily stored into a DOMNodes variables. The content will be compiled
into a ScriptElement instance, whose f field will contain the label and whose
params field will contain the text data of the input fields. Finally, the function
is recursively called for each jsTree child.

The following function compiles a ScriptTree instance into its graphic jsTree
counterpart:

1 var scriptTree2jstree = function(tree , parentId)
2 {
3 if(parentId == null)
4 {
5 parentId = ’j1_1’;
6 for(var i=0; i<tree.scriptTree.children.length;i++)
7 scriptTree2jstree(tree.scriptTree.children[i],
8 parentId);
9 var scriptTriggerers = tree.scriptTriggerers;
10 for(var i = 0; i < scriptTriggerers.length; i++)
11 view_CreateNewScriptRunnerTuple(
12 scriptTriggerers[i].type ,
13 scriptTriggerers[i]. params);
14 return;
15 }
16 parentId = view_ScriptTreeAddNode(parentId ,
17 {text: tree.scriptElement.f,
18 type: tree.type ,
19 params : tree.scriptElement.params });
20 for(var i = 0; i < tree.children.length; i++)
21 scriptTree2jstree(tree.children[i], parentId);
22 };

The function scriptTree2jstree is somehow dual to jsTree2ScriptTree. The
input params are respectively a ScriptTree instance and the identifier of its
jsTree version. The first function call has the root ScriptTree and a null
string. This will cause the recursive call of the function for every root child,

85

with the string “j1 1” as second parameter, which in jsTree is conventionally
associated to the tree root. After every child has been set up, all of the
ScriptTriggerer instances will as well be added to the DOM view by calling
view CreateNewScriptRunnerTuple, a function not belonging to this module
that will later be explained in the proper section. Now, let us consider the
second code branch, executed when the ScriptTree instance is not the root:
the jsTree version of the tree node is added to the DOM by calling another
external function and, then, the function is recursively called for each of
the node’s children. Again, the behavior of view ScriptTreeAddNode will be
explained in the view.js section.

6.3.2 From DSL scripts to evReact networks

Once a well-formed DSL script has been obtained, it must be compiled into
a valid evReact expression to be properly interpreted during the game execu-
tion. The test-manager.js module is delegated to the creation and manage-
ment of the game for test purposes and provides all the features that handle
graphics, logic and inputs. A DSL script will be compiled at game creation
time, with several functions that cooperate for this purpose. The function
that actually returns compiled evReact networks is ScriptCompiler(script).
This function is implemented as follows:

1 var scriptCompiler = function(script)
2 {
3 ...
4
5 var scriptBody = scriptTreeCompiler(script.scriptTree);
6 var scriptHeader = scriptTriggerersCompiler(
7 script.scriptTriggerers);
8
9 var e = evreact.event.create(’Finally ’);
10
11 return evreact.expr.iter(evreact.expr.cat(
12 [evreact.expr.any([epsilon ,
13 evreact.expr.finallyDo(evreact.expr.cat

(
14 [scriptHeader , scriptBody]),
15 function () { e.trigger (); })]),
16 evreact.expr.simple(e)]));
17 };

As can be seen, the first part of the code will call two other separate functions
that compile, respectively, the script body and the script header. This is not a
simple wrapper function, far from it. On the contrary, it makes sure that the

86

compiled evReact expression will be reactivated after termination and after
completion. In other words, the game core will always be listening to the
sequence of events that would trigger the execution of the script body: if the
listened sequence matches, the script body will be executed until completion
and termination, otherwise the evReact expression will simply terminate. In
any case, the expression will be re-activated in order to repeat the process
from start.

The first thing to notice is the custom evReact event that is created before
actually manipulating the expressions returned by the two compilers (line
9). The e event will have, for debugging purposes, the string “Finally” as
identifier. Now let us see the returned expression in detail: the expression is
of the form

+

((" | A |=> f) ; B)

where

A = (scriptHeader ; scriptBody)
f = function() { e.trigger(); }

B = e

At the outermost level, it is an iter expression, which is the evReact con-
struct that re-activates an expression after its completion. The first nested
expression is a cat expression, which concatenates sorted sequences of (sub)
expressions. The first subexpression of the sequence is an any of " and A.
As can be seen, when A completes or terminates, the f callback function
will be called: such function simply triggers the event e. Back at the first
nested expression (cat), the second subexpression B is a simple expression:
as explained in section 4.4, asimple expression is atomic and is associated to
a predicate and an event, and will complete and terminate when the event
occurs and the predicate is true. In this case, its predicate is always true,
since when a predicate is not explicitly specified, evReact will make this
assumption.

Now, let us see the meaning of the whole expression. A is composed of
subexpressions that will be explained later: for now, it is enough to know that
it may terminate or complete, i.e. it may successfully listen to all the events it
expects or stop listening without success. Whatever is the case, A will finally
call f, thus it will trigger the event e. The " expression is very important,
as it makes sure that the expression is not deactivated if A terminates but
does not complete. Indeed, if this is the case, " completes, thus the first

87

subexpression of cat completes, and then B completes since the termination
of A has triggered e. Instead, if A completes, the first subexpression of
cat completes as well. When e is triggered, B completes, thus the whole
expression at the outermost level completes and becomes inactive, then it will
be immediately re-activated. The meaning of this expression is the following:
“Wait for the events contained in scriptHeader. If such events occur, execute
scriptBody and complete, else terminate. In any case, repeat the process.”.

Now let us see the compilation of a script header. The compilation starts by
calling the scriptTriggerersCompiler function, whose code is:

1 var scriptTriggerersCompiler = function(scriptTriggerers)
2 {
3 var exprs = [];
4 for(var i = 0; i < scriptTriggerers.length; i++)
5 exprs.push(scriptTriggererCompiler(
6 scriptTriggerers[i]));
7 return evreact.expr.any(exprs);
8 };

As the code demonstrates, this function calls the actual compiler function for
each script triggerer of the Array received as parameter, wraps the received
expressions into an any expression and returns it. Far more interesting is the
scriptTriggererCompiler function below:

1 var scriptTriggererCompiler = function(triggerer){
2 switch(triggerer.type){
3 case ’user -trigger ’:
4 var sequence = [];
5 sequence.push(evreact.expr.simple(
6 testMapIdEvent[triggerer.params [0]]));
7 sequence.push(evreact.expr.simple(
8 testMapIdEvent[triggerer.params [1]]));
9 if(triggerer.params [2])
10 sequence.push(evreact.expr.simple(
11 testMapIdEvent[triggerer.params [3]]));
12
13 var restrictions = [];
14 for(var key in testMapIdEvent)
15 restrictions.push(testMapIdEvent[key]);
16 return evreact.expr.restrict(
17 evreact.expr.cat(sequence),
18 restrictions);
19 case ’event -trigger ’:
20 ...
21 break;
22 case ’timer -trigger ’:
23 ...

88

24 break;
25 }
26 };

Firstly, the function will check for the type of triggerer that it is dealing with
(see 5.1.3.1, page 46). In case of triggerers depending on user input, we know
that a sorted sequence of two or three events must occur in order to fire
the execution of the script body. For this reason, the function will create a
simple expression for each event and put them into a sequence Array. This
is surely done for the first two events of the triggerer and possibly for a third
event (triggerer.params[2] is a boolean). It is worth noticing that a simple cat
expression containing the sorted sequence is not enough to obtain the desired
input handling. Indeed, we want the generic sequence of events e

i

, e
i + 1

to
be not only sorted but also consecutive: in other words, no other event
rather than e

i + 1

must occur after e
i

has occurred. The reason why this is
the desired behavior is that the user is allowed to activate only one script at
a time. Let us consider the following evReact expressions as compiled script
headers:

i A ; C

ii B ; C

Moreover, let A, B and C be expressions that recognize a user input. The
user might click on the GUI and trigger A, then click again on the GUI
and trigger B, then finally click upon the room object that triggers C. In
this case, the script body for i and for ii will both be executed, possibly
resulting in an inconsistent game state. For this reason it is necessary to force
an expression to be deactivated when an unexpected event of the sequence
occurs. Such conduct is achievable by evReact’s restrict expression. The
following expressions actually work as desired:

i (A \ B) ; C

ii (B \ A) ; C

The function uses a restrictions Array that contains every game event and
returns a restrict expression with cat([sequence]) and the restrictions Arrays
as parameters.

It is still to define how the script body is compiled by the function script-
TreeCompiler. Let us examinate its code in the next page.

89

1 var scriptTreeCompiler = function(scriptTree){
2 if(! scriptTree)
3 return epsilon;
4 if (scriptTree.type == ’game -controllers ’) {
5 if (scriptTree.scriptElement.f == ’Aggregator ’) {
6 var evreactExprParamList = [];
7
8 for (var i=0; i < scriptTree.children.length; i++)
9 evreactExprParamList.push(
10 scriptTreeCompiler(scriptTree.children[i]));
11
12 switch (scriptTree.scriptElement.params [0]) {
13 case ’Sequence ’:
14 return evreact.expr.cat(evreactExprParamList);
15 case ’All’:
16 return evreact.expr.all(evreactExprParamList);
17 case ’Any’:
18 return evreact.expr.any(evreactExprParamList); }}
19
20 else if (scriptTree.scriptElement.f == ’If’) {
21 var expr = new Parser ().parse(
22 scriptTree.scriptElement.params [0]).expr;
23 var exprEvaluationFun = evalExpr(expr , gameVars);
24 var negatedExprEvaluationFun = function () {
25 return !exprEvaluationFun (); };
26 var e = evreact.event.create(’ifEvent ’);
27 var cond = evreact.expr.restrict(
28 evreact.expr.cond(e, exprEvaluationFun), [e]);
29 var negatedCond = evreact.expr.restrict(
30 evreact.expr.cond(e, negatedExprEvaluationFun), [e]);
31 var body = [cond];
32 for (var i = 0; i < scriptTree.children.length; i++)
33 body.push(
34 scriptTreeCompiler(scriptTree.children[i]));
35 return evreact.expr.cat([evreact.expr.react(epsilon ,
36 function () { e.trigger (); }), evreact.expr.any([
37 negatedCond , evreact.expr.cat(body)])]); }}
38
39 else if (scriptTree.type == ’game -side -effects ’) {
40 if (scriptTree.scriptElement.f in atomicEffectsMap)
41 return atomicEffect(scriptTree.scriptElement.f,
42 scriptTree.scriptElement.params);
43 if (scriptTree.scriptElement.f in

interruptibleEffectsMap)
44 return interruptibleEffect(
45 scriptTree.scriptElement.f,
46 scriptTree.scriptElement.params);
47 return null; }};

90

The function is recursive and treats di↵erently Aggregators, If-conditions and
SideE↵ects. An Aggregator of type T is compiled into an evReact expression
Exp

T

such that:

• T = Sequence) Exp
T

= cat

• T = Any) Exp
T

= any

• T = All) Exp
T

= all

The subexpressions that are nested within Exp
T

are stored into a dedicated
Array called evReactExprParamList, where each expression of the Array is
obtained by recursively calling scriptTreeCompiler for each scriptTree child
of the aggregator. Each recursive call will return a proper evReact expression
that will then be stored into the Array.

Now, if the scriptTree instance to be compiled represents a SideE↵ect, the
function checks whether it is Atomic or Interruptible by checking if the name
of the side e↵ect is contained into one global map or into the other one.
These maps just associate a side e↵ect’s name to its interpreter function.
In the first case, it will delegate the compilation to the function atomic-
E↵ect(fId, params), while in the latter case it will call the interruptibleEf-
fect(fId, params) function. Let us see how these two functions are imple-
mented:

1 var atomicEffect = function(fId , params) {
2 var f = atomicEffects[fId];
3 var args = params.slice ();
4 var reaction = function () { f.apply(null , args); };
5 return evreact.expr.react(epsilon , reaction);
6 }

atomicE↵ect retrieves the function with name fId and stores its reference
into the f variable. Then it saves the params Array of function parameters
into the args variable. This is done in order to exploit JavaScript’s closures:
indeed, the reaction variable is a function that will call f(args), where f and
args are closed variables, thus it will be able to access them even outside of
their original scope.

The interesting part is the returned evReact expression: since evReact net-
works wait for events and react in some way as they occur, there is no native
support for calling functions independently of event occurrences. The prob-
lem here is that we simply want the interpreters of the side e↵ects to be called,
because the events that triggered the script’s body execution have already
occurred at this point and we are not really expecting any more events.

91

This problem is bypassed by exploiting "-transitions and the react expression.
The function will return the following evReact expression: " |-> f. The
semantics of this expression is very straightforward, as it waits for an " event
to occur and reacts to it by calling the f function. Since an " event always
occurs, this is equivalent to an imperative call of f.

The interruptibleE↵ect function behaves similarly and is implemented as fol-
lows:

1 var interruptibleEffect = function(fId , params) {
2 var completion = evreact.event.create(fId);
3 var f = interruptibleEffects[fId];
4 var args = params.slice();
5 args.push(function () { completion.trigger (); });
6 var reaction = function () { f.apply(null , args); };
7 return evreact.expr.cat(
8 [evreact.expr.react(epsilon , reaction),
9 evreact.expr.simple(completion)]);
10 };

This case is slightly di↵erent since, as the execution of the side e↵ect in-
terpreter is not atomic and might be interrupted before completion, it is
mandatory to define an expression that takes completion into account. The
function returns the evReact expression " |-> f ; C. C is a simple expression,
thus it waits for a single event to occur in order to complete. This time the
returned expression describes a sorted sequence of events that must occur
in order to reach completion: the first event is ", but the second is the com-
pletion event that is expected by the C expression. Semantically, this means
that the entire cat expression will complete when both subexpressions com-
plete. As explained earlier, " always occurs, so C is used as a “barrier” that
will be unlocked only after the completion event is fired. As can be seen, the
completion event is added to the arguments of the f function: interruptible
functions will trigger this event when every other computation is finished.
In this way, the C expression will complete and the entire expression will
complete as well.

The last possible case is that the scriptTree instance passed to scriptTreeCom-
piler is an If-condition. This is a very special case, since, in the editor, condi-
tions are manually typed in be the users and, therefore, there is no guarantee
that they are well-formed, as they are subject to syntax errors. For this
reason, the entire condition must be parsed before being processed and com-
piled. There is an entire module, called condition-parser.js, delegated to the
parsing of conditions and to their evaluation. The implementation details
will be treated in 6.3.3. At the moment being, it is enough to know that:

92

• the Parser class provides a method parse(condition) that will either
return the condition parse tree or null if the condition was rejected.

• the evalExpr(expr, gameVars) is a function that takes as parameters a
condition (parse tree) and a scope and returns another function that,
when called, evaluates the condition inside such scope.

The code from line 21 to line 25 shows how the parser is instantiated and
utilized in order to have two evaluation functions such that the first will
evaluate the condition inside the gameVars scope and the latter will evaluate
the same negated condition inside the same scope. The whole expression
returned by the compiler is of the following type:

" |-> e.trigger() ; (((e ? pos \ e) ; Body) | (e? neg \ e))

where pos = exprEvaluationFun, neg = negatedExprEvaluationFun and Body
is a sequence of evReact expressions corresponding to compiled scriptTree
instances that are children of the If-construct scriptTree itself. The semantics
of this expression is equivalent to an if-then-else construct. Let us consider
the any subexpression: we have two cond expressions that complete if and
only if the event e occurs and the associated predicate is true. The predicate
neg is the negated of the predicate pos. This guarantees that exactly one of
the two expressions will complete. In case pos is true the token passes to the
Body expression, otherwise the whole expression completes. It can be noticed
that the two cond expressions are put in restriction with the e event: this is
not strictly necessary as the whole expression will surely complete. However,
it would not terminate without using such restrictions, thus it would not
be deactivated and would uselessly go on listening for events.

93

6.3.3 Parsing and evaluating conditions

The module condition-parser.js provides all the features needed to parse and
evaluate the guards of the if constructs of the DSL. The Parser class defines
a recursive descent parser and has the following structure:

Figure 6.17: Class for recursive descent parsing of conditions

The parser is an LL(1) parser, which means that it will use only a token
of lookahead to parse the received string. A parser performs the syntax
analysis of strings, while the lexical analysis is done separately. The parser
will indeed make use of a lexical analyzer, or lexer, which is delegated to
read the characters that form the string and to split them into tokens. In
turn, a token is a string of at least one character, called lexeme, which has
an abstract type that represents a lexical unit. The classes that define lexers
and tokens are shown in figure 6.18.

Figure 6.18: Lexer and Token classes

As the lexer scans the string, it creates Token instances and returns them to

94

the parser, which checks if the received token matches the expected type and
proceeds or stops the parsing phase depending on the matching result.

The language grammar for expressing conditions has already been described
in 5.1.1 at page 45 by the BoolExpr nonterminal. However, it has been
factorized to obtain an equivalent LL(1) version, as follows:

hConditioni ::= hExpri
| "

hExpri ::= hExprHeadi hExprTaili

hExprHeadi ::= hIdi
| hNumberi
| not hExpri
| (hExpri)

hExprTaili ::= "
| and hExpri
| or hExpri
| > hExpri
| < hExpri
| = hExpri
| + hExpri
| � hExpri
| / hExpri
| ⇤ hExpri

Naturally, every nonterminal is represented by a class, called with the same
name for convenience. In the following we will use class names and nontermi-
nal names interchangeably, as it will be clear by the context to which one we
will be referring to. An Expr instance acts as a container of one ExprHead
instance and one ExprTail instance. Instances of ExprHead contain a type
member and a body member.

The type of an expression head is the type of the lexeme it contains, that is
one among { ‘Id’, ‘Number’, ‘not’, ‘(’ }, with corresponding expression types
{ID, NUM, OP NOT, OPEN BRACKET}. The body of an expression may
contain a variable name (Id), a number or another Expr instance.

The parse method receives a string as input and returns an instance of Expr
if the string belongs to the grammar, or null otherwise.

The evaluation of conditions is performed by a dedicated function, whose
code is as follows:

95

1 var evalExpr = function(expr , env)
2 {
3 if (expr === null)
4 return function () { return true; };
5
6 var funHead = (function(head) {
7 switch(head.type) {
8 case Type.NUM: return parseInt(head.body);
9 case Type.OPEN_BRACKET:
10 return evalExpr(head.body , env);
11 case Type.OP_NOT:
12 var funBody = evalExpr(head.body , env);
13 return function () { return !funBody (); };
14 case Type.ID:
15 return function () {
16 if (head.body in env)
17 return env[head.body];
18 else throw "Undefined variable."; };
19 default: throw "Syntax error , bad expression";
20 };
21 })(expr.head);
22
23 return (function(tail) {
24 var funTail = evalExpr(tail.body , env);
25 switch(tail.type) {
26 case Type.OP_AND: return function () {
27 return funHead () && funTail (); };
28 case Type.OP_OR: return function () {
29 return funHead () || funTail (); };
30 case Type.EPS: return funHead;
31 case Type.OP_GT: return function () {
32 return funHead () > funTail (); };
33 case Type.OP_LT: return function () {
34 return funHead () < funTail (); };
35 case Type.OP_EQ: return function () {
36 return funHead () === funTail (); };
37 case Type.OP_PLUS: return function () {
38 return funHead () + funTail (); };
39 case Type.OP_MINUS: return function () {
40 return funHead () - funTail (); };
41 case Type.OP_TIMES: return function () {
42 return funHead () * funTail (); };
43 case Type.OP_DIV: return function () {
44 return funHead () / funTail (); };
45 default: throw "Bad binary operator";
46 }
47 })(expr.tail);
48 };

96

The parameters expr and env are, respectively, an Expr instance and the
environment where it must be evaluated. By convention, an empty condition
is evaluated as true, as can be seen in lines 3-4. Let us examine the the
assignment in line 6: the right-hand value of the assignment is the result of
an anonymous recursive function that takes as input expr.head and returns a
function that, when called, will return its evaluation. It can be seen in lines
8, 10, 13, and 17 that:

• if the expression’s body is a number, the returned function returns its
numeric integer value

• if the expression’s body is an identifier, the returned function returns
its value inside the scope

• if the expression’s body is another expression, the function returns a
recursive call to the anonymous evaluation function with its head as
argument

The left-hand value of the assignment is a variable that will store the reference
to the result of the aforementioned anonymous function applied to expr.head.
In other words, funHead will contain a function returned by the call of the
anonymous function with parameter expr.head.

It can be seen that if an ExprTail instance is not of type EPS, then its body
will surely be another expression, thus an Expr instance. Otherwise, its body
will be set to null. In line 23, another anonymous function is declared (and
returned to the caller of the evalExpr function). This function takes as pa-
rameter an expression tail and returns a function which actually evaluates
the full expression (condition). Before checking the type of the tail, a recur-
sive call of the evalExpr function is performed, passing as parameter the tail
body: the result of the recursive call is stored within the funTail variable
(see line 24). After this step, the anonymous function is ready to return
a proper function, whose computation depends on the tail type. Precisely,
the returned function either applies the boolean operator to funHead() and
funTail() or simply calls funHead() in case the tail type is EPS. Naturally,
funHead and funTail are closed within the returned function’s scope.

97

6.4 Run-time support

The module sideE↵ects-manager.js provides the run-time support of both
atomic and interruptible game side e↵ects. In the following, we will use the
notation entity

entityId

to refer to the game entity with identifier entityId.

The following tables show the functions for the run-time support for game
side e↵ects, and their relative behavior.

function behavior
walkToObj Parameters: walkingItemId, destItemId, callback.

Retrieves the walking spot wSpot of item
destItemId

and then calls walkToPos(walkingItemId, wSpot.x,
wSpot.y, callback)

sayLine Parameters: itemId, sentence, callback.
1) creates a DOM element that wraps the text defined

by the sentence argument
2) if present, deletes the DOM element containing di-

alogue associated to item
itemId

3) adds the element created in 1) to the DOM
4) after 2.5 seconds, deletes the element added in 3)

and executes the callback function

walkToPos Parameters: itemId, xPos, yPos, callback.
1) if item

itemId

has a graphic representation then pro-
ceeds to next step, else stops

2) retrieves the quadtree leaf containing the current
position of item

itemId

and the nearest leaf to the
point (xPos, yPos).

3) uses the leaves in 2) as start and goal of the path,
passes them to the pathfinder and stores the re-
turned Array of points in path

4) pops a point p from path and sets the position of
item

itemId

to p
5) if path is empty then executes the callback func-

tion, else waits 30 milliseconds and repeats step
4)

Table 6.1: Run-time support for interruptible side e↵ects

98

function behavior
fireEvent Parameter: eventId.

Retrieves event
eventId

from testMapIdEvent and then
trigger it

setDirection Parameters: itemId, dir.
Sets the direction of item

itemId

as the dir parameter.
Redraws the item on the scene.

show, Parameter: itemId.
hide Sets the visibility member of item

itemId

to true/false
and retrieves the DOM element (if present) containing
its graphic data, manipulating its attributes in order
to show/hide it.

inventoryAdd, Parameter: invItemId.
inventoryRemove Adds/removes invItemId to the player character’s in-

ventory. Redraws the inventory inside the GUI.
varSet Parameters: varName, varValue.

Checks for the existence of the variable with name
varName within the game scope, by accessing
gameVars[varName]. If it exists, the function converts
the string varValue (which is a string that represents
a boolean, numeric or string value) into a proper value
and assigns it to the variable.

varIncr Parameters: varName, incrAmount.
Checks for the existence of gameVars[varName] and
verifies that it is numeric. If such conditions hold, it
will try to parse incrAmount as a number: if the pars-
ing is successful, then the variable will be incremented
by the parsed value.

setPosition Parameters: itemId, xPos, yPos.
1) sets the position member of item

itemId

to the coor-
dinates (xPos, yPos)

2) if item
itemId

has a hotspot, translates each of its
vertices in order to keep the same position relative
to the item.

3) if item
itemId

is located inside the room being cur-
rently displayed, retrieves the DOM elements con-
taining its graphical representation (if any) and its
hotspot (if any) and manipulates their attributes
so that they match the positions defined in 1) and
2)

Table 6.2: Run-time support for atomic side e↵ects99

6.5 Testing a game

Once the game resources have been properly set and the scripts have been
defined, users can test the game before exporting it to a stand-alone HTML
page. The test section of the editor wraps the game preview and allows
to play it. An exported game will be completely equivalent to the game
preview, so it can be said that the exportation process just changes the game
wrapper and nothing else. The module test-manager.js contains all the core
functions that allow to draw scenes, characters, items, GUI and so on. Since
core functions are verbose and most of their code provides very common
features in videogames, we will concentrate on the most interesting parts for
our purposes, and will only briefly describe the least interesting functions.
In the following, we will say that when a DOM node containing graphics is
added to the DOM, it is “drawn” on screen. The term, although improper,
is only used for convenience in order to avoid useless repetitions.

When the user pushes the Play button in the test section, the game resources
will be initialized by calling the initGame() function. This function performs
the following operations in order:

1) makes copies of all the data created during the editing phase, in order not
to modify them while playing

2) calls the startNets() function, which is responsible for calling the scripts
compiler described in 6.3.2 and for starting the obtained nets

3) creates three SVG layers:

• svg, used to contain the current room’s background image

• svg-hotspots-container, used to contain the hotspots (polygons) of
every item of the current room

• svg-items-container, used to contain every other sprite of the room
items

4) draws the current room and every room item (calls drawScene()) and the
user interface (calls drawGUI()).

The function drawScene() acts as follows:

1) draws the character’s sprite (calls drawSprite(characterId)) and sets its
z-index properly (calls setItemZIndex(characterId));

2) for each room item in order of layer, draws onto the scene its sprite (calls
drawSprite(itemId) and its hotspot (calls drawHotspot(itemId));

100

The function drawHotspot is very important because it activates the listening
of basic mouse events by the polygons. In particular, the most important
mouse event to be handled is the mouseclick event, which triggers an evReact
event corresponding to the id of the item associated to the polygon. This
allows the underlying evReact nets to progress and trigger the execution of
scripts. This simple yet important task is carried out with the following line
of code:

1 $(poly).click(function(e){testMapIdEvent[id]. trigger ();});

It should be noticed that polygons are drawn with no opacity, thus they are
invisible to the users. It is mandatory to draw the polygons on screen, as their
event listeners can be enabled only if they are present (although invisible)
inside the web page.

The same applies for the drawGUI() function, which not only draws the user
interface on screen, but also adds a listener to every GUI button in order to
react to mouse events properly. A click on a table cell containing a game
action (left half of the GUI) will trigger the relative action event, while a
trigger on an inventory cell will trigger an object event with the same id of
the inventory object it contains. Naturally, if the clicked inventory cell is
empty, the click will be ignored.

The drawSprite(itemId) function instantly draws onto the scene the first
frame of the current Anim instance of the item, and then defines an anony-
mous function which draws the successive frame and removes the old one.
The anonymous function will be called at time intervals specified by the
frame rate property of the anim.

The remaining functions are setter functions:

• setCurrentRoom(roomId), will update the scene by emptying all the
graphic containers of the DOM and calling drawScene() again in order
to have the new environment displayed to the user;

• setItemLocation(itemId, roomId) sets the parentRoomId member of the
item to roomId ;

• setItemZIndex(itemId) is normally called to set the current layer of
characters or generic item rooms that can walk along the scene. The
function will set the z-index CSS property of the DOM node containing
the item sprite by checking the walk-behind lines (see page 52) associ-
ated to every other room item.

101

6.6 Editor canvas

In section 5.2.1 we described how the canvas and its toolbar can be utilized
by users to define polygons and other properties of rooms and items. In this
section we will see the module called canvas-manager.js, which provides the
implementation of the di↵erent behaviors of the canvas. In the first few lines
of code, some non-native members are added to the canvas and some global
variables are declared and defined:

1 var canvas = $(’canvas ’)[0];
2 canvas.state = ’idle’;
3 canvas.mouseDown = {’clicked ’ : ’false’, ’offset ’ : null};
4 canvas.selected = null;
5 var context = canvas.getContext(’2d’);
6 var MAX_WIDTH = 1000;
7 var MAX_HEIGHT = 600;

Code line 1 shows the result of a jQuery selector being assigned to the canvas
variable. This is done in order to have a reference to the canvas data structure
stored within a variable for all the duration of the session, thus reducing the
number of jQuery queries to only one (for what concerns the canvas).

The canvas.state member reflects the toolbar button that is currently pressed,
thus what kind of operation the user wishes to perform. Initially idle, the
possible canvas states belong to the set { idle, sprite, hotspot, pathfinding,
xy-pick, walk-behind}.

The canvas.mouseDown Object keeps track of whether the left mouse but-
ton is currently pressed and, in case the button has been pressed while hov-
ering over a room item, the (x, y) o↵set from its top left position. The
canvas.selected member stores the identifier of the room item the user has
selected by pressing the left mouse button.

When drawing on a canvas, the programmer must refer to its drawing context,
as the canvas itself is only a container for graphics that will be put over its
context member. Code line 5 shows how the context reference is stored into
a global context variable in order to have it available for all the duration of
the session.

Finally, MAX WIDTH andMAX HEIGHT refer to the canvas and not to its
drawing context: that is, the canvas will provide scrollers when its drawing
context exceeds these sizes, but the context itself has no restrictions on the
size of contained images.

102

The function updateCanvas(roomId) is called every time even a single pixel
of the drawing context is modified. Firstly, the function will draw the back-
ground image of the room and then it will proceed by drawing every room
item in order of layer, defined by the room’s zOrderMap hashmap. Once all
graphic data has been rendered onto the canvas, further context manipulation
depends on the canvas state:

• if the state is hotspot, the currently selected item’s hotspot polygon will
be drawn

• if the state is pathfinding, the walkable area polygon surface and its
holes will be drawn

• if the state is walk-behind, the “walk behind” line of the currently se-
lected item will be drawn

In the following, we will examine the canvas’ event listeners to user input.
For convenience, we will use the notation (x

mouse

, y
mouse

) to indicate the
coordinates of the mouse pointer at the time a mouse event is fired.

6.6.1 mouseclick event listener

The mouseclick event will be handled di↵erently, again depending on the
canvas state. If the user is defining a polygon, i.e. the canvas state is either
hotspot or pathfinding, then a new vertex will be added to the polygon, with
the same coordinates of the clicked point.

In case of pathfinding state, a mouse click might add a new vertex to the
surface or to the polygon holes, depending on whether the SHIFT key is
pressed while clicking. Every time a vertex is added, the canvas is redrawn,
with each vertex being visually represented by a small square handle. When
the user clicks on the handle associated to the first vertex, the polygon is
closed. When a polygon is closed, mouse clicks are ignored and the handles
are naturally not drawn anymore, replaced by the polygon edges.

When the canvas state is xy-pick, a mouse click shows the canvas’ clicked
coordinates onto the clipboard below the canvas.
Finally, when the state is walk-behind, clicking on the canvas will result in
drawing a line segment with endpoints (0, y

mouse

) and (context.width, y
mouse

).

103

6.6.2 mousedown event listener

The mousedown event listener is useful in order to support drag and drop
of items along the room. When this event is detected by the listener, the
first thing it does is to set canvas.mouseDown.clicked to true. After this, it
will check the canvas state and proceed only if it equals sprite. If this is the
case, then the listener verifies if the mouse button was pressed over an item’s
bounding box and, if so:

• draws the item’s bounding box onto the canvas in order to notify the
user that he has selected an item

• sets canvas.selected to the corresponding item and
canvas.mouseDown.o↵set to the x and y distance between the bounding
box’s top-left point and the mouse position

6.6.3 mousemove event listener

The mousemove event listener will react to events by updating the canvas
clipboard to display the current mouse coordinates relative to the canvas.
Moreover, if the canvas state is sprite or walk-behind, furhter operations are
performed.

In the first case, the listener will check whether canvas.mouseDown.clicked is
true and canvas.mouseDown.o↵set is not null. If such conditions hold, this
means that the user is dragging an item image throughout the canvas, thus
he is changing its position inside the room. Therefore, its position member
will be updated and the canvas will be redrawn to graphically reflect its new
position. Finally, for user convenience, the bounding box of the item will be
drawn.

In the second case, mousemove events are handled by drawing a dashed
segment line with endpoints (0, y

mouse

) and (MAX WIDTH, y
mouse

).

6.6.4 other event listeners

The mouseup event is handled, by simply resetting canvas.mouseDown to its
initial state, already shown in code line 3. The mouseout event is handled
the same way and, in addition, by updating the canvas clipboard mouse
coordinates to (- , -). Finally the drop event, which is handled when a user

104

drops an image onto the canvas from outside of it, updates the position of
the dropped item and redraws the canvas.

6.7 Loading and saving projects

A project is a JSON representation of all the global variables that users
manipulate through the editor. When a user saves a project, the function
saveProject() makes copies of the important project variables, such as room
lists, script lists, animation lists etc., and creates a project JavaScript Object
that is defined as follows:

1 var project = {
2 rooms : JSON.stringify(backupRooms),
3 actions: JSON.stringify(editorActionsList),
4 characters: JSON.stringify(backupCharacters),
5 scripts: JSON.stringify(backupScriptList),
6 vars : JSON.stringify(backupGameVars),
7 anims: JSON.stringify(backupAnims),
8 inv_items : JSON.stringify(backupInvItemList)
9 };

As can be seen, every Object property is the JSON stringification of a vari-
able copy. The project variable itself is then stringified in order to be ready
for download. That is, a project is univocally represented by a string that
the user may download. The download phase is managed by the down-
load(fileName, text) function:

1 var download = function (filename , text)
2 {
3 var pom = document.createElement(’a’);
4 pom.setAttribute(’href’, ’data:application/json;charset=

utf -8,’
5 + encodeURIComponent(text));
6 pom.setAttribute(’download ’, filename);
7 pom.click();
8 };

The function creates an hyperlink which directly points to the JSON string of
the project (line 4) and with download attribute equal to the name of the file
which will be containing it (by default project.json, but it can be manually
changed by the user before starting to download). Then, it fires the click
event onto the link (line 7) in order to open the download window.

105

A project is loaded when the user clicks the relative button onto the naviga-
tion bar: the button is linked to an invisible input DOM node with type file,
so that a click of the button triggers a click of the hidden node. The node is
attached to an event listener for events of type change that, when an event
is detected, calls the loadProject(event) function. This is necessary because
the only way to upload files onto a web page is by <input type=”file”> DOM
elements. The upload window only displays files with .json extension.

1 var loadProject = function(event)
2 {
3 var fileReader = new FileReader ();
4 fileReader.onload = function(event)
5 {
6 var project = JSON.parse(event.target.result);
7 // reset global vars
8 ...
9 /* for each project property , parse its JSON
10 content and assign the resul to the relative
11 global variable */
12 ...
13 }
14 fileReader.readAsText(event.target.files [0]);
15 };

As a file is chosen for upload, the change event is triggered and detected by
the listener, which passes it as argument to the loadProject function. This
function unwraps the file content from the event argument (line 14): the
resulting string is then parsed by the native JSON parser and stored into a
project variable (line 6). Consequently, every resource of the loaded project
is available as a JSON string in the relative property of the project variable.
Before proceeding with the parsing of every property, the global variables
are reset in order to clean them from manipulation previous to the project
loading. At this point, each property of the project variable is then parsed
and assigned to the relative global variable.

106

6.8 Exporting games

The exportation of games is performed by the functions defined in the ex-
porter.js module. As aforementioned, the approach of the system is WYSI-
WYG (What You See Is What You Get), i.e. an exported game will behave
under every point of view as the game that can be tested from within the
editor in the dedicated section. This means that, when a game is ready to be
tested, it is also ready to be exported. The function exportGame() creates
a very large string called program, that represents the whole source code of
the web page to be generated. This string is obtained by concatenating three
strings, each one containing a di↵erent part of the page:

• header, containing the page’s fixed HTML

• globalVars, containing the definition of all the game variables for graphic
resources, scripts etc.

• coreFunctions, containing the string representation of all the functions
that are needed to run the game properly (core functions)

Given a generic function f, a string representing its source code can be ob-
tained by calling f.toString(). For each core function cf, the exporter appends
cf.toString() to the coreFunctions variable. Once the program string is ob-
tained, the function lets the user download an HTML file containing such
string, by calling the download function described in 6.7. By default, the file
name will be game.html.

107

6.9 HTML View

The module view.js is delegated to the management of the DOM manipula-
tion: features for event handling, addition and removal of DOM nodes are
provided by this module. In this section, we will examine the creation of
non-trivial sets of nodes, the handling of user input and, more importantly,
the management of the visual programming part of the editor.

6.9.1 Event listeners and handlers

Event listeners for static input fields are initialized at page loading time, as
can be seen below:

1 <body onload="init()">

As soon as every DOM element of the page has been loaded, the init() func-
tion is called. The function contains a long list of event listener attachments,
such as:

1 $(’#project -uploader ’).change(loadProject);
2 $(’#project -downloader ’).click(saveProject);
3 $(’#export -game’).click(exportGame);
4 $(’.add.room’).click(function ()
5 {
6 var newRoomName = ’Room_’ + editorRoomsCount ++;
7 createNewEditorRoom(newRoomName);
8 view_CreateNewRoomPanel(newRoomName);
9 });
10 $(’#start -test’).click(initTest ());
11 ...

Without losing generality, we will now consider the part of the module that
handles the scripts from the perspective of the DOM view, i.e. the part that
invokes the compilation of visual scripts into their syntactic representation.
When a user decides to save its visual scripts, a listener attached to the Save
script button handles the mouse click event as follows:

1 $(’#save -script ’).click(function ()
2 {
3 var scriptId = $(’#script -name’)[0]. value;
4 var isValid = validateScriptId(scriptId);
5 if(! isValid)
6 return;
7 saveScript(scriptId);
8 });

108

Line 3 shows a typical jQuery selection, which retrieves the input element
with id script-name, unwraps it from jQuery’s $ object and obtains the input
string typed in by the user as the name for the script being saved. The id
is then validated and the script can finally be saved by calling the relative
function, whose code is as follows:

1 var saveScript = function(scriptId)
2 {
3 var scriptTree = jsTree2ScriptTree(
4 editorScriptTree.get_node(’j1_1’), null);
5
6 var triggerers = new Array();
7 $(’.tuple’).each(function ()
8 {
9 var tupleData = $(this).find(’input’);
10 var params = new Array();
11 for(var i = 0; i < tupleData.length; i++)
12 params.push(tupleData[i].value);
13 triggerers.push(new ScriptTriggerer(
14 $(this).attr(’class’).split(’ ’)[2], params));
15 });
16
17 editorScriptList[scriptId] = new Script(
18 scriptTree , triggerers);
19 };

In section 6.3.1 we have seen that the function jsTree2ScriptTree compiles a
script’s graphic representation within the DOM as its syntactic counterpart,
but we have not explained where the triggerers are taken from in order to
create a Script instance, which contains both a ScriptTree instance and an
Array of ScriptTriggerer instances. The code shows how each triggerer’s
graphic representation, which is of a list of input fields, is contained within
a DOM node with class .tuple. For each of these nodes (line 7), the value
of every input field is extracted and saved into an Array, then an instance
of ScriptTriggerer is created and added to a triggerers Array. When every
triggerer has been processed, a Script instance is added to the global scripts
hashmap (line 17).

6.9.2 Complex DOM nodes

The most complex functions of the module handle the creation of subpanels
(see section 5.2, page 50). Indeed, event listeners and handlers for non-static
DOM elements such as subpanels must be created and removed on the fly,

109

as soon as a user clicks the Add or Delete buttons. For completeness, we will
consider the creation of a Room subpanel:

1 var view_CreateNewRoomPanel = function(roomId){
2 var roomPanel = $(document.createElement(’div’));
3 var roomPanelHeading = $(document.createElement(’div’));
4 var roomPanelTitle = $(document.createElement(’h4’));
5 var roomPanelToggler = $(document.createElement(’a’));
6 var roomPanelCollapse = $(document.createElement(’div’));
7 var roomPanelBody = $(document.createElement(’div’));
8 var bgSelector = $(document.createElement(’input’));
9
10 roomPanelBody.append(bgSelector);
11 bgSelector.attr(
12 {
13 ’type’ : ’file’,
14 ’accept ’ : ’image/ *’,
15 ’id’ : roomId + ’-bg -selector ’
16 });
17 ...
18 roomPanelCollapse.attr(
19 {
20 ’id’ : roomId + ’-panel’,
21 ’class’ : ’panel -collapse collapse ’
22 });
23 roomPanelCollapse.append(roomPanelBody);
24
25 roomPanelToggler.attr(
26 {
27 ’data -toggle ’ : ’collapse ’,
28 ’data -parent ’ : ’#room -accordion ’,
29 ’href’ : ’#’ + roomId + ’-panel ’,
30 ’class’ : ’glyphicon glyphicon -collapse -down
31 pull -right’,
32 ’style’ : ’color: inherit; text -decoration: none’
33 });
34 ...
35 $(’#room -accordion ’).append(roomPanel);
36 ...
37 view_CreateEditorItemPanelGroup(roomPanelBody);
38 }

The function takes as parameter the id of a new room, which is guaranteed
to be automatically valid. Lines 3 to 9 show the declaration and definition
of the DOM nodes that form a subpanel to be added to the static Rooms
panel. As shown in line 11, some of these nodes are put inside the subpanel’s
body, in this case the input field that allows users to load a background
image for the room being created. Lines 26 to 33 show the exploitation

110

of Bootstrap’s accordions : given a hyperlink such as roomPanelToggler, it is
enough to manipulate its attributes in order to obtain an animated collapsible
element: precisely, it is necessary to specify the hyperlink’s destination (in
this case, the roomPanelCollapse element), and its data parent, which is the
main panel that acts as a container for all the defined rooms and is a static
DOM element, so its life cycle will endure for the entire session. Once the
subpanel has been created, it is appended to the main panel, as shown in
line 36. The creation of a room subpanel will trigger the creation of an item
panel to be added to its body, as the function call at line 38 shows.

6.9.3 Visual scripting

We have already seen that the Scripts section of the editor presents several
labels that visually represent game side e↵ects and aggregators from the DSL.
From the perspective of the DOM, there are two HTML unordered lists, one
dedicated to aggregators and one to game side e↵ects. Each label is actually
an HTML list element () contained inside one of the two lists, as shown
below:

1 <ul class="game -controllers">
2

Aggregator
3
4 If

Condition
5
6 Loop<

/span>
7
8
9 <ul class="game -side -effects">
10

fireEvent
11
12

setPosition
13
14 ...
15 <span class="label label -primary" value="inventoryAdd"

>inventoryAdd
16
17 <span class="label label -primary" value="

inventoryRemove">inventoryRemove
18
19

111

The init() function makes the labels draggable by attaching to each one a
proper handler for dragstart events:

1 $(’.game -side -effects li, .game -controllers li’)on(
2 ’dragstart ’, function(event) {
3 event.originalEvent.dataTransfer.setData(
4 ’data’, JSON.stringify ({
5 ’type’ : $(this).parent ()[0]. className ,
6 ’text’ : $(this).find(’span’).attr(’value’)
7 })
8);
9 }).attr({’draggable ’ : ’true’}).;

The jQuery selector retrieves each child of the DOM nodes with class
.game-side-e↵ects and .game-controllers (notice that the two unordered lists
are the only nodes of the DOM with these classes), and attaches to each one
a listener for dragstart events. The anonymous function that acts as event
handler, sets the data property of the input event as a JSON stringification
of an Object with two properties:

• type, corresponding to the class of the node that is parent of the
 element;

• the value attribute of the children of the element.

This manipulation of the event is essential in order to have trace of the
originally dragged label once it is be dropped.

Each jsTree node has class .jstree-node. The support for dropping labels onto
them is provided by the following code:

1 $(’.jstree -node’).on(’drop’, function (event) {
2 var data = JSON.parse(
3 event.originalEvent.dataTransfer.getData(’data’));
4 var thisType = editorScriptTree.get_node($(this)).type;
5 if(thisType == ’game -side -effects ’)
6 return;
7 if (data.text.length > 0) {
8 view_ScriptTreeAddNode($(this), data);
9 event.stopImmediatePropagation (); }});

As soon as a label is dropped over a jsTree node, the Object stringification
previously assigned to the event’s data property is parsed (line 2) and stored
into a variable. Then, the jsTree node checks its own type (line 5), in order
to verify whether it can contain nested children or not. If this is the case,
the function view ScriptTreeAddNode(parent, data) is called to add the new
jsTree node to the DOM. The importance of this function is critical, as it

112

visually represents every construct of the DSL, thus is the core of the visual
programming part of the system. Its implementation is the following:

1 var view_ScriptTreeAddNode = function(parent , data)
2 {
3 var newNode = editorScriptTree.get_node(
4 editorScriptTree.create_node(
5 parent , {’text’ : data.text}, ’last’);
6 editorScriptTree.open_node(parent);
7 newNode.type = data.type;
8 var icon;
9 switch(newNode.type) {
10 case ’game -controllers ’:
11 icon = ...
12 newNode.original.max_children = Infinity;
13 break;
14 case ’game -side -effects ’:
15 icon = ...
16 newNode.original.max_children = 0;
17 break;
18 }
19 editorScriptTree.set_icon(newNode , icon);
20
21
22 newNode.data = { DOM : []};
23 switch(newNode.text.toLowerCase ()) {
24 ...
25 case ’sayline ’:
26 newNode.data.DOM[0] = // datalist
27 newNode.data.DOM[1] = // input field
28 break;
29 ...
30 }
31 // add to the DOM all the elements of newNode.data.DOM
32 if(data.params) // if loading a script
33 view_PopulateTreeNodeDOM(
34 newNode.data.DOM , data.params);
35 }

The function takes as parameters the jsTree parent node of the node that is
going to be created, and a JavaScript Object containing information about
the type of node (aggregator or side e↵ect), its label (name of the aggregator
or side e↵ect) and possibly its parameters. In fact, as seen in 6.3.1, page 85,
code line 16, this function is also called when converting a scriptTree instance
to a jsTree node: this happens when a previously saved script is loaded and
shown into the editor. In this case, the data argument will also contain a
params property, which stores the parameters typed in by the user inside the

113

relative input fields. The function performs several operations:

1) creates the jsTree node, specifying its parent node and its label (line 3);

2) visually expands its parent node, in order to show the new node on the
page (line 6);

3) assigns data.type to the new node (line 7);

4) depending on the node type, assigns a di↵erent icon to the the node (lines
8-19);

5) adds an Array to the new node, intended to store its additional input
fields (line 22);

6) depending on the label of the node, assigns di↵erent input fields to the
Array (lines 23-30);

7) adds the input fields just created to the DOM;

8) if the parameters for this node have already been specified (i.e. the func-
tion has been called to load an already existing script), fill the input fields
with each parameter (lines 32-34).

The last part of the view.js module we are going to see is the function that
manages the visual representation of script headers. Under the part of the
page that contains the (visual representation of the) script body, there is a
small section with a dropdown menu that allows the user to specify the type
of script triggerer:

1 <div class="row">
2 Run this script on
3 <select id="script -runner">
4 <option value="user -trigger">User interaction </option >
5 <option value="event -trigger">Event occurrence </option >
6 <option value="timer -trigger">Timer</option >
7 </select >
8 <span id="add -execution -triggerer" class="glyphicon

glyphicon -plus">
9 </div>

The element is the plus icon that must be clicked in order to create
a new script triggerer. This is done by the usual attachment of an event
listener to the icon:

1 $(’#add -execution -triggerer ’).click(function () {
2 view_CreateNewScriptRunnerTuple(
3 $(’#script -runner ’)[0]. value), null });

114

When the user clicks the plus icon, the current option of the dropdown menu
is passed as first argument to the function
view CreateNewScriptRunnerTuple(type, data). Said function can also be
called when the user is loading a script that has already been created, and
in that case the second argument will contain the data that must fill the
triggerer’s input fields. In our case, the second argument is null since a
trigger is being created from scratch and not loaded, thus its input fields still
have to be filled in. Let us examine how the function is implemented:

1 var view_CreateNewScriptRunnerTuple = function(type , data) {
2 var row = $(document.createElement(’div’)).addClass(
3 ’row tuple ’ + type)
4 var eraser = $(document.createElement(’span’)).attr(
5 ’class’, ’glyphicon glyphicon -remove ’)
6 eraser.click(function () { row.remove ();});
7 row.append(eraser);
8
9 switch(type) {
10 case ’user -trigger ’:
11 /* append to the row:
12 1) a list of game actions
13 2) a list of game items
14 3) a checkbox
15 4) a list of game items */
16 row.append (...);
17 row.append (...);
18 row.append (...);
19 row.append (...);
20 break;
21 case ’event -trigger ’:
22 // append to the row an input field of type string
23 row.append (...);
24 break;
25 case ’timer -trigger ’:
26 /* append to the row:
27 1) an input type of type number
28 2) a checkbox */
29 row.append (...);
30 row.append (...);
31 }
32
33 $(’#script -container ’).append(row);
34 if(data)
35 view_PopulateTuple(type , row , data);
36 };

Firtsly, the function creates a row, that is a <div> container with class
.row .tuple (see Bootstrap’s layout system, section 4.3, page 37), as shown

115

in line 2. A responsive icon for the deletion of the entire row is created
and appended to the row itself (lines 4-7). After this preliminary phase, the
function determines which input fields it must add to the row by checking
the type parameter (lines 9-33). Such input fields visually represent the event
chain that will trigger a script’s body execution. In case of user-trigger, the
event chain consists of an action event, an item event (target object 1) and
possibly another item event (target object 2). The corresponding input fields
are:

• a <select> element, with <option> elements corresponding to the iden-
tifiers of the actions that the player can perform

• a <select> element, with <option;> elements corresponding to the
identifiers of all the items that the player can interact with (includ-
ing inventory items);

• a checkbox which specifies if the event chain contains a third event or
not;

• same as 1), but disabled if the checkbox is not checked.

In case of event-trigger, the event chain consists of a single event, that is
the event that, once fired, will provoke the execution of the script body.
The corresponding input field is a simple <input> element of type string,
intended to contain the identifier of the event.

Finally, if the triggerer is a timer-triggerer, there is no explicit chain of events,
as the event triggering the script is simply the passing of a time lapse. How-
ever, it is necessary to specify what is the time lapse and if, once it has passed,
the timer should start over in order to trigger the execution periodically. In-
deed, the input fields are an <input type=”number”> element that specifies
the time lapse in milliseconds, and a checkbox that, if checked, signals that
the timer must periodically restart.

Once every input field has been added to the row, it is appended to the part
of the scripts section that is intended to contain the script body and header
(line 35).
Finally, if the data parameter is not null (thus the function is loading a
previously created triggerer), another utility function will be called, which
will fill in the input fields of the row coherently with the triggerer parameters
specified by data (lines 36-37).

116

7
Conclusions and future works

We have been able to define and implement an authoring system for graphic
adventures. The system is highly portable since it has been built as a web
application compatible with the most popular cross-platform browsers. The
created scripting language is able to describe all the main typologies of in-
teractions and the typical situations that are generally found in graphic ad-
ventures, especially those made with the SCUMM engine, which was our
comparison term.

The visual programming environment greatly simplifies the work of scripters
with little programming experience. In addition, the underlying evReact
networks make their work much easier, managing the whole control flow and
the application state in such a way that the scripters only have to care about
firing (and waiting for) game events .

The obtained system demonstrates how the evReact approach for modeling
reactive programming suits very well the management of complex control
flows that are typically present in story-driven games. Furthermore, saving
the state of a given game by serializing the underlying evReact networks
has relieved us of explicitly creating data structures to represent a consistent
game state, which would have required much work and time.

The serialization of evReact networks potentially allows to simulate a full
replay of the game, from its start to the actual state, by firing all the events
that have been detected and stored as tokens within the evReact inner struc-
tures. Moreover we have been able to achieve almost full portability of the
generated games, with limited conflicts with some browsers that can anyway
be easily worked out.

117

The system performs all of the tasks that we considered interesting, but is
far for complete. Many features have been cut out during the early stages of
the work, as they were not essential and would have took away a lot of time
from the implementation of much more interesting and fundamental features.

The first enhancement for a possible future version is to extend the support
to other popular browsers, as Internet Explorer: at the moment being, the
system is fully compatible with Chrome and Firefox, and partially compatible
with Safari.
As explained earlier, the if-guards must be typed in manually by the scripters
because of time constraints. It would actually be natural to extend the visual
programming approach of the editor in order to also include such conditions.
On the other hand, another desirable feature is to also include a non-visual
programming environment, in such a way that expert programmers can be
able to write their own code without being forced to rely on the graphical
programming environment.

More importantly, the system handles graphical resources but does not sup-
port other forms of media, such as audio and video data. Including sounds
and other media would surely result in increasing the quality of interactivity
and storytelling, so their support by the system is surely enticing. Of course,
this would require a careful extension of the scripting language and of the
system classes, in order to have ad hoc supporting features.

Another nice addition would be the support of real-time scaling of moving
items and characters, in order to have a more coherent sense of perspective
of the environments, thus an overall higher suspension of disbelief from the
players.

Finally, it would be very interesting to distribute the game control flow be-
tween server side and client side. Indeed, this would have interesting implica-
tions, e.g. it would make possible to reduce the control flow of the client side
to a minimum by keeping locally the evReact networks that listen to input
events and storing on the server side all the other networks (that is, the net-
works that manage the plot unfolding and the game progress). Furthermore,
such distributed control flow would prevent users from “cheating”, as forcing
the game progress locally would not be possible thanks to the server side
control.

We have tested the distribution of the control flow between a server and a
client running an exported game. Precisely, the server stores its own evReact
networks that keep track of the game’s plot unfolding, while the client stores
the evReact networks that handle inputs from the user. In this setting, users

118

can play the game from a device, close their session and let the server serialize
its networks. Once they restart the game (from the same device or even from
another one), the server deserializes the networks that track their progress
and restores the game state that was reached during the previous session. In
other words, the game progress is preserved by serializing and deserializing
the server-side networks. This makes it very easy to keep the game state
coherent, without particular e↵orts even when it is modified from multiple
devices.

Figure 7.1: Control flow distributed between client and server

Figure 7.1 shows an example of distributed control flow, with di↵erent evRe-
act networks stored in the client and in the server. The evReact networks
are represented as clouds: the client contains two networks, while the server
only has one network. The plain circles represent evReact expressions and
the circles with handlers represent reactions. The Handler icons represent
the functions that are executed as reactions to events. As these functions can
contain arbitrary code, a handler can basically perform any kind of operation
as soon as it receives an expected event. This aspect is very important, as
it makes it possible to exploit communication between di↵erent networks,
even between client and server. In the figure, the Trigger icons describe the
situation in which a handler has actually triggered an evReact event. The
two triggers in figure have a slightly di↵erent behavior: the one on the left
activates a network local to the client, while the second one communicates
with the server. Indeed, the second handler performs a POST or GET re-
quest, which triggers an event on the server. When the server receives such
request, it triggers a local event and its evReact networks will possibly react
to it. This distribution of the control flow is very powerful, as the state of a
client-server application is implicit within the evReact networks. Normally,
keeping and ensuring consistency of the state of a client-server web applica-
tion is one of the aspects that requires most work and e↵orts. The possibility
of having an implicit state managed by evReact is one of the aspects that
make this framework particularly appealing.

119

120

Bibliography

[1] Engineer Bainomugisha et al. “A Survey on Reactive Programming”.
In: ACM Comput. Surv. 45.4 (Aug. 2013), 52:1–52:34. issn: 0360-0300.
doi: 10.1145/2501654.2501666.

[2] Puzzle Dependency Charts. Grumpy Gamer. url: http://grumpygamer.
com/puzzle_dependency_charts.

[3] Kurt Kalata et al. Hardcoregaming101.net Presents: The Guide to Clas-
sic Graphic Adventures. S.l.: CreateSpace Independent Publishing Plat-
form, May 17, 2011. 772 pp. isbn: 9781460955796.

[4] Zap Dramatic - Life Experience Through Simulations. Nov. 24, 2014.
url: http://www.zapdramatic.com/about.htm.

[5] The Reactive Manifesto. url: http://www.reactivemanifesto.org.
[6] The SCUMM Diary: Stories behind one of the greatest game engines

ever made. url: http : / / www . gamasutra . com / view / feature /

196009/the_scumm_diary_stories_behind_.php.
[7] Lloyd Rosen. SCUMM - The Infernal Machine. url: http://www.

mts.net/~kbagnall/commodore/scumm/scumm%20overview.txt.
[8] Adventure Game Studio | AGS. AGS is an Adventure Engine to create

graphical point-and-click adventure games - Adventure Game Studio.
url: http://www.adventuregamestudio.co.uk/site/ags/.

[9] Wintermute Engine features. url: http://dead-code.org/home/
index.php/features/.

[10] Visionaire Studio. Nov. 24, 2014. url: http://wiki.visionaire-
tracker.net/wiki/Main_Page.

[11] SVG 1.1 (Second Edition) – 16 August 2011. W3C. url: http://www.
w3.org/TR/SVG11/intro.html.

121

http://dx.doi.org/10.1145/2501654.2501666
http://grumpygamer.com/puzzle_dependency_charts
http://grumpygamer.com/puzzle_dependency_charts
http://www.zapdramatic.com/about.htm
http://www.reactivemanifesto.org
http://www.gamasutra.com/view/feature/196009/the_scumm_diary_stories_behind_.php
http://www.gamasutra.com/view/feature/196009/the_scumm_diary_stories_behind_.php
http://www.mts.net/~kbagnall/commodore/scumm/scumm%20overview.txt
http://www.mts.net/~kbagnall/commodore/scumm/scumm%20overview.txt
http://www.adventuregamestudio.co.uk/site/ags/
http://dead-code.org/home/index.php/features/
http://dead-code.org/home/index.php/features/
http://wiki.visionaire-tracker.net/wiki/Main_Page
http://wiki.visionaire-tracker.net/wiki/Main_Page
http://www.w3.org/TR/SVG11/intro.html
http://www.w3.org/TR/SVG11/intro.html

[12] jQuery. url: http://jquery.com/.
[13] Jake Spurlock. Bootstrap. 1 edition. Beijing: O’Reilly Media, May 22,

2013. 128 pp. isbn: 9781449343910.
[14] René David and Hassane Alla. “Bases of Petri Nets”. In: Discrete, Con-

tinuous, and Hybrid Petri Nets. Springer Berlin Heidelberg, Jan. 1,
2010, pp. 1–20. isbn: 978-3-642-10668-2, 978-3-642-10669-9. url: http:
//link.springer.com/chapter/10.1007/978-3-642-10669-9_1.

122

http://jquery.com/
http://link.springer.com/chapter/10.1007/978-3-642-10669-9_1
http://link.springer.com/chapter/10.1007/978-3-642-10669-9_1

8
Acknowledgments

Per prima cosa ringrazio di cuore la mia famiglia, per il supporto totale
in ogni momento della mia vita e in particolar modo durante questo lungo
percorso universitario. Grazie per essere la mia forza!

Ringrazio il Prof. Cisternino per avermi dato la possibilità di sviluppare
questo lavoro di tesi, per i consigli, la pazienza e le sonore risate riecheggianti
per tutto il dipartimento che mi hanno accompagnato in questi mesi.

Grazie a tutti i nerd del laboratorio 304, dai quali ho imparato un casino di
cose interessanti in mesi di sedute intensive di nerdaggine.

Ringrazio tutti i miei amici, non posso elencarli tutti perché vorrei tenere il
numero di pagine sotto il migliaio!

Un grazie speciale a Giovanna.

Beh, credo sia tutto, pare che alla fine anche io ce l’abbia fatta!
So long, and thanks for all the fish!

123

	Introduction
	Background
	Interactive Storytelling
	Gamebooks
	Interactive Movies
	Text Adventures
	Graphic Adventures

	Authoring systems and DSLs
	Reactive programming

	State of the art
	Dedicated authoring systems
	SCUMM
	Adventure Game Studio
	Wintermute Engine
	Visionaire Studio

	Platform and Tools
	HTML5
	Canvas
	Scalable Vector Graphics

	jQuery
	jsTree
	inputfile.js

	Bootstrap
	X-editable

	evReact
	Other JavaScript libraries
	Snap.svg
	Paper.js

	Design
	The Domain-Specific Language
	Grammar
	Parsing
	Scripts and Run Time Support

	The Editor
	The Rooms section
	The Characters section
	The Scripts section
	The Anims section
	The Inventory Items section
	The Game Variables section
	The Test section

	Data Architecture

	Implementation
	Primitive structures
	room-manager.js
	anims-manager.js
	inventory-manager.js
	variables-manager.js

	Pathfinding
	quadtree.js
	pathfinding.js

	Scripting and compilation
	From visual scripting to DSL scripts
	From DSL scripts to evReact networks
	Parsing and evaluating conditions

	Run-time support
	Testing a game
	Editor canvas
	mouseclick event listener
	mousedown event listener
	mousemove event listener
	other event listeners

	Loading and saving projects
	Exporting games
	HTML View
	Event listeners and handlers
	Complex DOM nodes
	Visual scripting

	Conclusions and future works
	Acknowledgments

