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Chapter 1

Introduction

Image registration is a fundamental task in image processing, concerned with

the establishment of correspondence between two or more pictures taken, for

example, at different times, from different sensors, or from different view-

points. Many are the systems manipulating images which at a certain point

of their computation require the registration of images or some similar op-

eration. Specific examples of such systems are target recognition, where

a specifical target is matched with a real-time image of a scene or a set of

images, satellite image matching for maps reconstruction or global land mon-

itoring, alignment of medical images such as X-rays or biological images such

as neural images for neural reconstruction, or 3D modeling of artworks in

cultural heritage using several pictures of the object to model. When refer-

ring to the problem to solve in order to perform image registration we talk

about the correspondence problem.

A notable particular case, which takes the name of (computer) stereo

vision or stereo matching, is the registration of pairs of images used to extract

3D information from a scene. Its analogy with the stereopsis in the Human

Visual System makes this problem of interest for researchers in many fields

such as biology and neuroscience, besides of course computer science. This

analogy affects the problem in two ways, as on one hand the problem is

actually born with the purpose of emulating the Human Visual System, while
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on the other hand researches in biology and neuroscience of how the Human

Visual System actually works helped or guided computer scientists to obtain

better and better algorithms during the years.

The objective of this thesis is the study of the implementation of real time

stereo matching algorithms, with a particular attention for the accuracy of

the results, since usually less accurate algorithms can already achieve real

time performances, and often do not show particular features that make

their parallel implementation challenging.

We will discuss some stereo matching algorithms, with the purpose of

showing in our small way their evolution and refinement in the course of

time. Then we choose one to implement it, firstly studying the aspects of

a classic sequential implementation and secondly studying its parallelization

from both data parallel and stream parallel viewpoints.

In chapter 2 we show some background notions used in this thesis, specif-

ically we will show some computer vision concepts and an overview of the

FastFlow framework used during the implementation of our parallel code. A

brief and focused set of stereo matching algorithms is showed in chapter 3,

explaining briefly the history behind the algorithm we chose to implement.

In chapter 4 we show an analysis of the ADCensus algorithm from a paral-

lel point of view. Then we show implementation details both of sequential

and parallel implementations of fastADCensus in chapter 5. In chapter 6 we

show details about execution times of fastADCensus, both in its sequential

and parallel implementations, and perform a comparison with stereo match-

ing algorithms provided by the OpenCV library. Finally in chapter 7 we

discuss some ideas for future development.
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Chapter 2

Background

2.1 Stereo vision background

2.1.1 Formal definition

Definition 1. An image I is a function

I : Nw × Nh → Nn
i

where

Nx =
{
i ∈ N≥0 | i < x

}
w is the image width in pixels, h the image height in pixels, n the number of

channels and i the maximum intensity value for each channel.

Definition 2. Given an image I : Nw × Nh → Nn
i , a pixel p is an element

of Nw × Nh.

The use of a functional definition for images comes useful because it

makes simpler the explanation of further notions, and for that reason is

the usual formuation used in literature. Another viable definition can be

given in terms of matrices or tensors and its definition can be easily guessed,

and even though it makes mathematically harder, or better, uselessly more

sophisticated to explain further concepts, it is the way we will think during
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the actual implementation. For this reason it is worth specify that while

the “access” to intensity values of an image in the functional formulation

is done by cartesian coordinates, specifiying firstly the column and then the

row, usually mathematical matrices, and even more frequently 2-dimensional

arrays are accessed specifying firstly the row and then the column.

Definition 3. Given two images I1 : Nw1 × Nh1 → Nn1
i1

and I2 : Nw2 ×
Nh2 → Nn2

i2
, the general problem of stereo matching can be defined as the

determination of a function Ψ : Nw1 × Nh1 → Nw2 × Nh2 such that:

I1(x, y) = I2(Ψ(x, y)) (2.1)

Ψ is often referred as disparity function or disparity map. Usually some

constraints on wi, hi, ii and ni are given, and in many actual image formats

such values are fixed or can not take many values, specifically i is usually

256 and n can be 1 or 3.

In real photo pairs often we could not and very often do not have a

correspondence for some pixels, as for example when one of the two cameras

can’t physically see the point that the other is trying to match (occlusion).

This formulation of the problem becomes then unsuitable, since actually

the function Ψ could not exist. To circumvent this problem, as happens

often when a perfect solution can not be obtained, we try to obtain the best

possible solution by means of optimization problems. In this particular case,

a variational formulation can be given by defining the problem as the search

of a solution for a minimization problem with an objective functional E, in

formulas

min
f

(E(f, I1, I2)) (2.2)

Usually E is referred as energy functional, and split in two components

E = Edata + Esmooth

where Edata relates intensity values in the two images, and its value decreases

with better pixelwise matchings, whereas Esmooth is a smoothness term and
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usually is relative to approximate gradients in the disparity map. An example

could be

Edata(f, I1, I2) =
∑
(x,y)

S (I1(x, y), I2(f(x, y)))

Esmooth(f, I1, I2) =
∑
(x,y)

T (f(x, y)− f(x+ 1, y), f(x, y)− f(x, y + 1))

where S is a function determining similarity between pixels, and T a func-

tion penalizing high gradient values, corresponding to sudden changes in the

disparity map.

2.1.2 Pinhole camera model

The pinhole camera model describes the relationship between 3D points, in

our case associated with objects in the real world, and the corresponding 2D

projection onto the image plane.

Let us consider an “upright” camera, or in mathematical terms a camera

whose optical axis1 is collinear to one axis, let’s say z 2.

Our camera consists of a cubic box with a pinhole at point OC , in the

middle of a face, the opposite face of the cube is called the image plane since

there the light is projected resulting a reversed planar representation of the

scene. We call the distance between the image plane and the pinhole face

focal length, and denote it with f . In addition, we define the virtual image

plane as the plane with distance f from the pinhole face in the opposite

direction and the principal point as the point on the virtual image plane

perpendicular to the optical axis. The projection on the virtual image plane

is the same of the image plane turned upside down. By cropping such plane

we obtain the actual image from the camera.

1The center of an optical system
2The choice of collinearity and of the axis is done without loss of generality, every other

choice is possible after a rotation
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The correspondence between a point (XC , YC , ZC) in the 3D scene thus

correspond to the point

u =
XCf

ZC
, v =

YCf

ZC

on the virtual image plane, where XC , YC and ZC coordinates are given w.r.t.

OC . An example of a pinhole camera is shown in figure 2.1.

When taking in account multiple cameras, using just the coordinate sys-

tem of a camera as a reference would result in a difficulty in the mathematical

description of a scene w.r.t. the other cameras. To avoid that, we associate

some extrinsic paramethers to every camera, which is a set of parameters

that allow us pass from a camera’s coordinate system to the world coordi-

nate system. This, in mathematical terms, can be accomplished by providing

a translation vector ~t and a rotation matrix R, so a point in the world co-

ordinate system and a point in the camera coordinate system are related by

the following formula:

PW = R(PC − ~t)

Some other parameters are intrinsic to the camera and often considered,

some of them are:

• The focal length f , or in other camera models the parameters needed

for the projective transformation.

• The parameters needed to map the image coordinate system to the

projective coordinate system of the camera. In this model, given the

origin point of the image o = (ox, oy) and the width and height of

a pixel hx and hy, we have the following relations between projective

coordinates (x, y) and image coordinates (xu, yu):

x = (xu − ox)hx
y = (yu − oy)hy

• Geometric distortions due to the physical parameters of the optical

elements of the camera. These parameters are absent in the pinhole
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model but when working with actual cameras they must be taken in

account.

Figure 2.1: Pinhole camera

2.1.3 Epipolar geometry

When observing the same scene with two cameras from two different points

of view, epipolar geometry allows us given a point in one image, limit the

search of the corresponding point (if any) on the second just to one line

instead of the whole image.

Let us consider two pinhole cameras at different positions acquiring the

same scene. This configuration is also called stereoscopic image acquisition

system. The cameras are composed of center points O1, O2 and virtual image

planes Π1 and Π2 respectively. We call the line O1O2 the baseline and the

intersection of the baseline with Π1 and Π2 left and right epipoles respectively,

and denote them with e1 and e2. Given a 3D point P , we call epipolar plane
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ΠE the plane determined by O1, O2 and P . The lines where ΠE intersect

with Π1 and Π2 are called epipolar lines. This example is shown in figure 2.2

The key fact about epipolar lines, which make them so important in stereo

vision, is that the projection of a point P on Π1 and Π2 can occur only on the

epipolar lines of the corresponding epipolar plane. This fact becomes useful

when resolving the correspondence problem, since if we take a point on the

image and know the displacement of the cameras, it is enough to search

on the epipolar line associated to the point on the other image, instead of

scanning the whole image. Two matrices can be built, namely the essential

matrix E and the fundamental matrix F that satisfy the following formulas:

P1EP2 = 0

p1Fp2 = 0

for every point P from the two points of view and the corresponding projec-

tions on the virtual image planes pi.

The knowledge of E in case of calibrated cameras, and F otherwise,

is necessary for image rectification, since they encode the transformation

between image planes, and thus can be used to align epipolar lines in pairs

of images.

2.1.4 Algorithm categorization

The stereo matching problem has been approached with many methods which

sometimes are deeply different in terms of concepts and implementations.

Scharstein and Szeliski [1] give a taxonomy that fits for actual algorithms.

They distinguish between global methods and local methods, and decompose

the computation of a disparity map in four possible steps:

• Matching cost computation: for a pair of images I1, I2 a cost is assigned

to every pair (I1(x1, y1), I2(x2, y2)) of pixels, a list of costs is showed

later. Algorithms in this step decide how much two pixels are different.
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Figure 2.2: Epipolar geometry

• Cost (support) aggregation: costs in a given support region associated

to the pixel pair are aggregated. They could for example be summed

or correlated. In this step we need to choose a reasonable support re-

gion in order to give enough context in the decision of the match. Too

small support regions give not enough context to decide the match ac-

curately, too big and/or wrong shaped support instead can compromise

the matching for taking in account too much and/or unrelated pixels.

Note that exceeding pixels and unrelated pixels are two different cate-

gories: for example, when matching a generic scene, if we take a pixel

corresponding to one object in one image and try to match it in the

other, taking a too big or wrong shaped support region could introduce

in the computation pixels belonging to some other object that in the

other image is occluded (or viceversa). Pixels of this kind we say are

unrelated, while exceeding pixels are pixels that belong to the same

object but instead of helping in the matching process can compromise
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it, as can happen when the object is rotated in a particular way.

• Disparity computation / optimization: in local methods, usually this

step is performed computing the cost for pairs (I1(~x), I2(~x+ ~d)) in the

first two steps described and taking the minimizer d as the disparity

value for I1(~x). Global methods instead concentrate most of their work

on this step, usually resolving a variational problem for a given energy

functional like the one seen in section 2.1.1.

• Disparity refinement: Usually the disparity maps resulting from the

three steps above is discretized, and can contain outliers in occlusion

regions and depth discontinuity. If we are interested for example in

3D model reconstruction of a scene, discrete output would result in

a scattered model. This could be resolved for exemple by smoothing

the disparity map. Disparity outliers instead can be detected and filled

with the nearest reliable disparities. This can be done for example using

a technique called cross-checking, which compares the left-to-right and

right-to left disparity maps to find inconsistencies.

It is worth noting that this “taxonomy” is not suitable for all stereo

matching algorithms existing so far. It excludes for example multi-scale

methods that use many subsamplings of the original image in coarse to fine

approaches to determine disparity values. Most accurate methods so far are

global, this is reasonable because global algorithms use “more information”

to compute the results. However, global methods are usually time expensive,

and so local methods are better suited for low latency / real time implemen-

tations. In the years, there is been a fair amount of improvements for local

methods, that keep the execution time reasonably low with better accuracy

in the results. We will see in chapter 3 how such methods have been im-

proved and then in chapter 4 how to implement the best local method so

far, referring to the ranking available on the Middlebury Stereo Evaluation

webpage [2].
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2.2 FastFlow

FastFlow [3] is a skeleton [4] oriented parallel programming framework. It

provides efficient implementations of the most used basic configurations for

the parallel computation (parallel patterns), such as farm, pipeline, divide &

conquer, etc., and does not require the users to implement low level paral-

lel code such as thread instantiation and synchronization / communication

handling.

Writing a program with FastFlow requires the following steps:

• Creating the computation nodes by instantiating the class ff node and

implementing the svc method. The code written inside of the svc

method is totally sequential, and can be easily adapted from possibly

existing sequential code.

• Explicitly building the computation network by using a composition of

parallel patterns provided, or possibly implementing a custom parallel

pattern exploiting the building blocks (queues, nodes, . . . ).

Parallel patterns in FastFlow are not actually skeletons in a strict sense,

but more exactly building blocks / templates for skeleton creation, and are

less limiting than actual skeletons because they allow to create ad-hoc struc-

tures for computations.

Communication between nodes in FastFlow are implemented in a lockless

fashion, by means of SPSC, SPMC and MPSC queues, and many common

presets, such as emitter and collector policies in a farm, are provided, but

can be customized if necessary.

FastFlow provides its own implementation of a memory allocator and

deallocator with C style signatures, with ff malloc(), ff realloc(), ff free().

Its advantages are twofolds, it is faster than the standard C allocator and

implemented in a lockless fashion, resulting in better performances during

parallel computations.
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2.2.1 Examples

We show two simple examples of a pipeline and of a farm implemented with

FastFlow. To implement a pipeline computation we just need to embed the

code we want to compute in each stage of the pipeline inside a ff node imple-

menting the svc method, and then put them together using the ff pipeline

pattern. Table 2.1 shows a pipeline for the computation of two subsequent

manipulations on an image, a gaussian filter followed by an image scaling.

1 #include <ff/node.hpp>

2 #include <ff/pipeline.hpp>

3

4 using namespace ff;

5

6 class GaussFilter : public ff_node {

7 public:

8 void* svc(void* task) {

9 // There is no input in FastFlow patterns, so the first stage

10 // must take care of the task initialization too.

11 image* i = load_image();

12 image* i2 = compute_gauss(i);

13 ff_send_out(i2);

14 return GO_ON; // Keeps the node working waiting for other tasks

15 }

16 }

17

18 class ImageScale : public ff_node {

19 public:

20 void* svc(void* task) {

21 image* i = (image*)task;

22 image_scale(i, 0.5);

23 return GO_ON;

24 }

25 }

26

27 int main(int argc, char* argv[]) {

28 ff_pipe pipe;

15



29

30 pipe.add_stage(new GaussianFilter);

31 pipe.add_stage(new ImageScale);

32 pipe.run_and_wait_end();

33

34 return 0;

35 }

Table 2.1: FastFlow pipeline example

For the farm pattern we need to do almost the same, but this time we need

to implement emitter, worker and collector nodes. Table 2.2 shows a stream

parallel farm for the application of a gaussian filter to a stream of images.

1 #include <ff/node.hpp>

2 #include <ff/farm.hpp>

3 #include <vector>

4

5 using namespace ff;

6 using namespace std;

7

8 class Emitter : public ff_node {

9 public:

10 void* svc(void* task) {

11 image** stream = load_stream();

12 for (int i = 0; i < stream_size; ++i) {

13 ff_send_out(stream[i]);

14 }

15 // Ends the execution of the node and forward the end of stream

16 // signaling to all subsequent nodes

17 return NULL;

18 }

19 }

20

21 class Worker : public ff_node {

22 public:

23 void* svc(void* task) {

24 image* i = (image*)task;

16



25 gaussian_filter(i);

26 return GO_ON;

27 }

28 }

29

30 int main(int argc, char* argv[]) {

31 ff_farm<> farm;

32 vector<ff_node*> workers;

33

34 farm.add_emitter(new Emitter);

35 for (int i = 0; i < nworkers; ++i) {

36 vector.push_back(new Worker);

37 }

38 farm.add_workers(workers);

39 farm.run_and_wait_end();

40

41 return 0;

42 }

Table 2.2: FastFlow farm example

It is worth noting that the farm parallel pattern provides also scheduling

and gathering policies, as for example the ordering policy for gathering, that

could be useful for example when processing a stream of ordered tasks that

take different times to be computed and such an order is relevant in the

output as well.

Other interesting features are the possibility to compose patterns, so for

example a worker of a farm could be a pipeline or viceversa, and the feedback

channel for farm and pipelines, such that task output by the collector of a

farm or the last stage of a pipeline are processed again by the emitter or the

first stage of the pipeline respectively.
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Chapter 3

Stereo matching algorithms

In this section we present a simple example of a local method with a pseu-

docode, then we introduce some actual algorithms describing their imple-

mentation of the steps described in section 2.1.4.

As we saw in section 2.1.3, given a point P and its projection p on the virtual

image plane Π1 of the first camera, its projection p′ on Π2 must lie on the

right epipolar line. Local methods exploit this fact by limiting the pair of

pixels for which they compute the cost. In fact, there is no need to compute

the cost (p, p′) if p′ is not on the epipolar line. This useful semplification

is not enough though, since epipolar lines does not correspond to horizontal

lines, and due to the discrete nature of the images, this results in imprecise

traversing of the epipolar line and likely in mismatches due to roundings.

For this reason local methods usually assume that pair of images are pre-

processed with a rectification algorithm, that transforms the image pair in

such a way that epipolar lines correspond to image rows. In this section we

will keep this assunction.

3.1 Simple algorithm

The example algorithm presented is very simple, and makes some additional

assumptions:
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• We will refer to I1 as the left image and to I2 as the right image, as we

assume that the two images are taken from a slight distance one from

the other with two horizontal aligned cameras.

• The two images are expressed in grayscale in a single channel.

• The disparity is represented as a scalar non-negative value, this is be-

cause the second coordinate of a disparity in a pair opf rectified images

is always null. We fix also an upper bound for the disparity value dmax.

The four phases are implemented as follows:

• Matching cost computation: we choose to use the square intensity dif-

ference (SD) cost measure for pairs of pixels. Namely for a pair of

pixels p1 = I1(x1, y1) and p2 = I2(x2, y2) we have:

C(p1, p2) = ||p1 − p2||2

• Cost aggregation: The support window of a pixel is assumed to be

square, the size of the square is a parameter of the algorithm. The

aggregation is performed with a sum of the costs in the support window.

• Disparity computation: Reformulating what we said in 2.1.4, this phase

is performend taking the minimizer d of the function C(I1(x, y), I2(x−
d, y)).

• Disparity refinement: both cross-checking and smoothing of the dis-

parity maps are performed.

The main algorithm consists in four phases: left-right disparity computa-

tion, right-left disparity computation, cross-checking and smoothing. A pseu-

docode is shown in table 3.3.

1 double compute_sd(scimage_t im1, scimage_t im2, int i1, int j1, int i2, int j2) {

2 double result = 0;
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1 typedef struct {

2 int rows, cols;

3 double ** data;

4 } scimage_t;

Table 3.1: Image representation

1 scimage_t simple_disparity(scimage_t left, scimage_t right, int disp_max) {

2 scimage_t lr = disparity(left, right, disp_max, LEFT_RIGHT);

3 scimage_t rl = disparity(left, right, disp_max, RIGHT_LEFT);

4 cross_check(lr, rl);

5 return lr;

6 }

Table 3.2: Main function

3 for (int i = -WIN_RADIUS; i <= WIN_RADIUS; ++i) {

4 for (int j = -WIN_RADIUS; j < WIN_RADIUS; ++j) {

5 result += std::pow(im1.data[i1+i][j1+j] - im2.data[i2+i][j2+j], 2);

6 }

7 }

8 return result;

9 }

10

11 scimage_t disparity(scimage_t left, scimage_t right, int disp_max, int mode) {

12 scimage_t result;

13 // We assume same size input images

14 result.cols = left.cols; result.rows = left.rows;

15 result.data = allocate_matrix(left.rows, left.cols);

16

17 for (int i = 0; i < i1.rows; ++i) {

18 for (int j = 0; j < i1.cols; ++j) {

19 double min, argmin;

20 for (int d = 0; d <= disp_max; ++d) {

21 double tmp;

22
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23 if (mode == LEFT_RIGHT) tmp = compute_sd(left, right, i, j, i-d, j);

24 else tmp = compute_sd(left, right, i+d, j, i, j);

25

26 if (tmp < min || d == 0) { min = tmp; argmin = d; }

27 }

28 result.data[i][j] = d;

29 }

30 }

31

32 return result;

33 }

34

35 void cross_check(scimage_t& lr, scimage_t rl) {

36 for (int i = 0; i < lr.rows; ++i) {

37 for (int j = 0; j < lr.cols; ++j) {

38 int d = (int)lr.data[i][j];

39 if (std::abs(d - rl.data[i-d][j]) > threshold) lr.data[i][j] = -1;

40 }

41 }

42 }

Table 3.3: Simple local matching algorithm

Notice that in this pseudocode we don’t discuss what should happen in the

boundaries, and treat boundary pixels like the others. An actual implementa-

tion must worry about this and for performance reasons should do it without

abuse of conditional instructions, which come natural when doing interval

checking for variables.

3.2 Adaptive window with bruteforce ap-
proach
Kanade, Okutomi (1991)

The method described by Kanade and Okutomi [5] is one of the first of his

kind. They use statistical arguments in order to find a way to estimate

the uncertainity of a support window, given an initial disparity estimate,
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and to compute a disparity increment (w.r.t. the initial disparity estimate)

for an arbitrary support window. Such functions are used in an iterative

procedure to find pixelwise the best support region, namely the one with

the least uncertainty. Since the statistical formulation is extremely generic,

theoretically the window computed in the algorithm could be of any shape,

but for simplicity reasons the authors use rectangular windows, updated one

side at a time.

A pseudocode in C++ is shown in table 3.4.

This method has been cited for historical reason, since the idea of adaptive

windows has been reused in many fashions. It is not comparable to modern

algorithms in accuracy or efficiency mainly because of the following facts:

• The very first step of this algorithm is to use another algorithm to

obtain a disparity estimate. In this way not only we pay the compu-

tational cost of such algorithm, but also its accuracy can affect the

accuracy of the final result. We will see that this idea will be used

again in other algorithms.

• The number of operations to be performed on a single pixel is too big,

we need to compute many times the effect of 4 changes in the support

window, and those temporary window need to be traversed entirely

to obtain the uncertainity estimate. Moreover, there is no particular

reason to choose a rectangular window, except the fact that checking

all the possible windows would be too difficult. This results inevitably

in loss of accuracy.

1 typedef struct r {

2 int x, y, w, h;

3 struct r (int xx, int yy, int ww, int tt): x = xx, y = yy, w = ww, h = hh {}

4 } rect_win_t;

5

6 scimage_t kanade_okutomi(scimage_t im1, scimage_t im2) {

7 // Here we could have used simple_disparity(im1, im2, dmax)

8 scimage_t disp_estimate = other_disparity_method(im1, im2, other_params);
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9 scimage_t result;

10 result.cols = im1.cols; result.row = im1.rows;

11 result.data = allocate_matrix(im1.rows, im1.cols);

12

13 for (int i = 0; i <= im1.rows; ++i) {

14 for (int j = 0; j < im1.cols; ++j) {

15 // A 3x3 window centered on the pixel, considered at (0, 0)

16 rect_win_t win(-1, -1, 3, 3);

17 bool limit_reached = false;

18 while (!limit_reached) {

19 rect_win_t wxn(win.x-1, win.y, win.w+1, win.h);

20 rect_win_t wxp(win.x, win.y, win.w+1, win.h);

21 rect_win_t wyn(win.x, win.y-1, win.w, win.h+1);

22 rect_win_t wyp(win.x, win.y, win.w, win.h+1)

23

24 // Computes uncertainity in the four windows and returns the best

25 rect_win_t best = win_arg_min(im1, wxn, wxp, wyn, wyp);

26

27 // Here we do something to check if the limit is reached.

28 // This could be window too big or local minimum reached

29 // or an iteration number reached.

30 if (best == win) limit_reached = true;

31 else win = best;

32 }

33 result.data[i][j] += delta_disparity(im1, win);

34 }

35 }

36 return result;

37 }

Table 3.4: Kanade Okutomi pseudocode
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3.3 Adaptive window through pixel weight-
ing
Yoon, Kweon (2006)

Yoon and Kweon [6] propose another adaptive window approach. Their

main argument is that given a pixel p the weight that must be given to a

neighboring pixel q in the aggregation phase should be higher the higher is

the probability that they share the same disparity value. In formulas:

w(p, q) ∝ Pr(dp = dq)

Instead of relying on a initial disparity estimate, they compute support-

weights for a fixed window exploiting gestalt principles. Namely, the weight

for a pixel q in the neighborhood of a pixel p should decrease proportionally

to both the distance (proximity) and the color “diversity” (similarity) from

p.

Calling ∆cpq the color difference and ∆gpq the spatial distance, they propose

to express the weight as

w(p, q) = k · fs(∆cpq) · fp(∆gpq)

where ∆gpq is the euclidean distance between pixels and ∆cpq the euclidean

distance between pixel colors expressed in the CIELab color space, whereas

fs and fp are defined as:

fs(∆cpq) = exp
(
−∆cpq
γc

)
fp(∆gpq) = exp

(
−∆gpq
γp

)
where γc and γp are paramethers. Thus the weight becomes:

w(p, q) = k · exp

(
−
(

∆cpq
γc

+
∆gpq
γp

))
Referring to the steps in section 2.1.4 they propose the following choices:

• As matching cost between pixels, e(q, q̄d) =
∑

c∈{r,g,b} |Ic(q) − Ic(q̄d)|,
where q̄d is the pixel at disparity d from q in the right image.
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• As cost aggregation, a normalized weighted sum of matching costs.

Since we want pixel comparison to be significant, both weights in the

left image and in the right image are taken in account. Specifically, they

are multiplied in order to obtain the final weight for a single matching

cost. In formulas:

E(p, p̄d) =

∑
q∈Np,q̄d∈Np̄d

w(p, q)w(p̄d, q̄d)e0(q, q̄d)∑
q∈Np,q̄d∈Np̄d

w(p, q)w(p̄d, q̄d)
(3.1)

• WTA selection for disparity: dp = argmind∈{dmin,...,dmax}E(p, p̄d)

• No disparity refinement is discussed

From a computational point of view, implementing this algorithm using

straightforwardly the formulas would result in some redundant computations.

It can be observed immediately that w(p, q) = w(q, p) so we can already say

that we do at least the double of operations that we actually need. Moreover

the complexity increases with the window size.

The computational problem has been firstly considered by Ju and Kang

in 2009 [7], who propose an O(1) aggregation method based on integral his-

tograms.

They simplify the work of Yoon and Kweon dropping the proximity compo-

nent in weight computation and observing that

e(q, q̄d) ∝ Pr(dq 6= dq̄d)

namely the error component already tells us about the significance of a pixel

in the target image, so there is no need to consider the weight in the target

image during the computation of E(p, p̄d).

Then they define an auxiliary structure, the integral histogram of intensity

differences, inspired by [8], defined by the function

H(x, y, b)d =
x∑
i=0

y∑
j=0

B (|I1(x, y)− I2(x− d, y)| , b)
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where B is defined as follows:

B(v, b) =

{
1 if v belongs to bin b

0 otherwise

and in case of multichannel image an histogram for each channel is computed.

Assuming constant domain weights, that is giving the same weight to pixels

in the window independently from their distance from the centre, the error

formulation would become

E(p, p̄d) = κ(p)−1
∑

q∈Wp,q̄d∈Wp̄d

wI(p, q)e(q, q̄d)

where κ(p)−1 =
∑

q∈Wp
wI(p, q) is a normalizing factor corrseponding to the

denominator in 3.1.

Using histograms comes useful because if we precompute them for any given

window Wp the previous formula can be rewritten as

E(p, p̄d) = κ′(p)−1

N∑
b=0

w′I(p, b)h(b)d

where N is the number of bins in the histogram h, κ′ =
∑N

b=0 w
′
I(p, b) and

w
′
I is a variant of wI whose second argument is an intensity value instead of

a pixel, namely:

w′I(p, b) = |I1(p)− b|

Precomputing the histogram requires a number of operations proportional

only to the image dimension and number of channels, since

H(x, y, b)d = H(x− 1, y, b)d +H(x, y − 1, b)d −H(x− 1, y − 1, b)d

+B(|I1(x, y)− I2(x, y)| , b)

whereas from a pixel’s point of view, this operation time complexity is O(1)

for every disparity value.
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This integral histogram is then exploited by observing that given a neigh-

borhood Np delimited by points (x−, y−) and (x+, y+), we have

h(b)d = H(x+, y+, b)d −H(x+, y−, b)d −H(x−, y+, b)d +H(x−, y−, b)d

which complexity is O(1) for any chosen rectangular window.

3.4 Adaptive window with geodesic distance
Hosni et al. (2009)

The work of Hosni et al. [9] can be categorized in the “adaptive window”

branch, as their main proposal results in a weight of contributes of pixels in

a window.

They introduce the concept of geodesic distance between pixels in a win-

dow, which lies on a color continuity constraint. Geodesic distance does not

depend only on the intensity values of the pixel pair taken in account, but

instead it searches all possible paths between them looking for the one with

less color changes.

If we call c the center of our window, p the pixel considered and Pp,c all paths

between c and p, we have that geodesic distance is given by:

D(p, c) = min
P∈Pp,c

d(P )

where d(P ) give us the cost of a path. As 1−paths from a pixel all his 8

neighbours are considered, and paths can be defined as a composition of

them. Their definition for costs of such paths is given by

d (P = (p1, . . . , pn)) =
n∑
i=2

dC(pi, pi−1)

and

dC(p, q) =
√

(pr − qr)2 + (pg − qg)2 + (pb − qb)2

In order to give high support weight to low distance pixels they use a para-

metric negative exponential

w(p, q) = exp

(
−D(p, q)

γ

)
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and the aggregation is the same as in other weighted methods, namely, for a

window centered in c and disparity d:

m(c, d) =
∑
p∈Wc

w(p, c) · f(p, p̄− d)

where f could be dC but a slightly more complex measure is chosen. The

disparity value is then selected with a WTA approach. In order to avoid

an expensive bruteforce approach to compute actual geodesic distances, the

authors propose a way to approximate their values, using the following steps:

• Cost initialization: initially, every pixel in the support is given a cost,

0 for the center pixel and for all other pixels a large costant value.

• Forward zig-zag update: the support window is traversed from top

to bottom, from right to left in a zig-zag fashion, updating the costs

according to the formula

C(p) := min
q∈Kp

C(q) + dC(p, q)

where Kp is the kernel composed by p itself and its left, upper-left, up

and upper-right neighbours.

• Backward zig-zag update: the same operation is performed traversing

the support window from right to left and from bottom to top using a

different K ′p composed by p and the immediate neighbours not consid-

ered in the previous step.

Forward and backward updates are iterate a number of times to obtain better

approximations of the actual geodesic distance, the authors propose to run

the update process three times.

3.5 AD-Census
Mei et al. (2011)

Mei et al. [10] propose another local method with their own alternatives for

all four steps described in 2.1.4.
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Census and Rank transform Census and Rank are two nonparametric

cost measures, introduced by Zabih and Woodfill [11] in 1994, lying on the

corresponding transforms. They are said nonparametric because they depend

only on the mutual relations between pixels in a neighbourhood.

Given a pixel p and a neighbourhood Np the rank transform can be defined

as

rank(p) = # {q|q ∈ Np ∧ I(q) ≥ I(p)}

The census transform instead consists in considering a matrix M with the

same dimensions of the neighbourhood and filling with the following rule:

M(i, j) =

0 if Np(i, j) ≤ I(p)

1 otherwise

then building a bit string reading from left to right, from top to bottom the

values in M , except for the position corresponding to p.

Actual matching costs are obtained by taking the difference of two rank

values for the rank cost. On the other hand, to compute the census cost we

need a string distance between strings of the same length, as for example the

Hamming distance.

Note that both for rank and for census we need the size of all neighbourhoods

to be the same in order to compute the cost consistently.

The matching cost proposed is a combination between absolute difference

(AD) and census costs. They propose the following variant of AD

CAD(p, d) =
1

3

∑
c∈R,G,B

|I1(p)c − I2(p− (d, 0))c|

and the overall cost is given by

C(p, d) = ρ (Ccensus(p, d), λcensus) + ρ (CAD(p, d), λAD)

where ρ is a robust function in c:

ρ(c, λ) = 1− exp
(

1− c

λ

)
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The aggregation phase is based on the one in [12] and consists in two steps.

In the first step a “cross” is constructed for every pixel p = (px, py) consisting

in four pixels px+, px−, py+, py−. We explain the procedure for px− as for

the others is the same. We obtain px− by moving left from p until one of the

following conditions is violated:

• Dc(p
x−, p) < τ1 and Dc(p

x−, px− + (1, 0)) < τ1

• Ds(p
x−, p) < L1

• Dc(p
x−, p) < τ2, if L2 < Ds(p

x−, p) < L1

where
Ds(p, q) = |p− q|
Dc(p, q) = maxi=R,G,B |I(p)i − I(q)i|

are the spatial and color distance respectively and L1, L2, τ1, τ2 are given

constants. The support region for p is then obtained by merging all horizon-

tal arms of the pixels on the vertical arm of p (p included). In the second step

we compute the actual aggregation. The costs in a support area are accumu-

lated for horizontal stripes, and then the intermediate results are summed.

This particular choice is important because a simple implementation with in-

tegral images both avoids redundant computations and reduces the per-pixel

operations to a constant amount.

For what concerns disparity selection, instead of the classical WTA ap-

proach, they suggest a scanline optimization inspired by [13]. The scanline

optimization technique consists in the creation of a new cost function Cr,

where r is a scanline direction. Cr(p, d) is updated taking in account the

aggregation cost C1(p, d) and the costs alongside r Cr(p− r, ·) in this way:

Cr(p, d) = C1(p, d)

+ min (Cr(p− r, d), Cr(p− r, d± 1) + P1,mink Cr(p− r, k) + P2)

−mink Cr(p− r, k)

(3.2)
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where P1 and P2 (P1 ≤ P2) are two parameters penalizing disparity changes

between neighbouring pixels. They are set according to color changes D1 =

Dc(p, p−r) in the left image and D2 = Dc(p−d, p−d−r) in the right image

with the following rule:

• P1 = Π1, P2 = Π2, if D1 < τSO, D2 < τSO.

• P1 = Π1/4, P2 = Π2/4, if D1 < τSO, D2 ≥ τSO.

• P1 = Π1/4, P2 = Π2/4, if D1 ≥ τSO, D2 < τSO.

• P1 = Π1/10, P2 = Π2/10, if D1 ≥ τSO, D2 ≥ τSO.

with Π1, Π2 constants and τSO a threshole for color difference. After perform-

ing scanline optimization in four directions, two horizontal and two vertical,

the disparity value chosen is the one minimizing

C2(p, d) =
1

4

∑
r

Cr(p, d)

Disparity refinement in this algorithm consists in a multi-step process:

• Outlier detection: outliers are first detected in the left-right dispar-

ity map DL with consistency check. A pixel p is said outlier if

DL(p) = DR(p− (DL(p), 0)) does not hold. Outliers are then classified

in occlusion and mismatches using a method proposed by Hirschmüller:

for outlier p at disparity DL(p) we check the intersection of the epipo-

lar line with DR, if such intersection does not exist p is labelled as

“occlusion” otherwise as “mismatch”.

• Iterative Region Voting: for every outlier, all disparity values of reliable

pixels in the support are are collected in a histogram Hp with dmax + 1

bins. Calling d∗p the index of the bin with the higher value and Sp =
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∑dmax

i=0 Hp(i) the number of reliable pixels in the support region, we

choose d∗p as disparity for p if:

Sp > τS ∧
Hp(d

∗
p)

Sp
> τH

with τS and τH threshold values. In order to consent the propagation of

new disparity values the author suggest to iterate this process 5 times.

• Proper Interpolation: outliers that could not be corrected by the previ-

ous phase are interpolated. For every outlier, the nearest reliable pixels

in 16 directions are considered. If the outlier is an occlusion, we take

the minimum disparity between disparities of reliable pixels, otherwise

we take the disparity of the most color-similar.

• Depth discontinuity adjustment: for every pixel on a disparity edge p

two pixels p1 and p2 are collected from both sides of the edge. DL(p)

is replaced by DL(p1) or DL(p2) if one of the two has smaller matching

cost than C2(p,DL(p)).

• Sub-pixel enhancement: disparity values are interpolated pixelwise. In-

tepolation is computed as follows:

d∗ = d− C2(p, d+)− C2(p, d−)

2 (C2(p, d+) + C2(p, d−)− 2C2(p, d))

where d = DL(p), d+ = d + 1, d− = d − 1. In mathematical terms,

this interpolation corresponds to the search of the minimum point of a

quadratic polynomial. Namely, for every pixel p at estimated disparity

d we fit C2 with a parabola interpolating the points

(−1, C2(p, d−)) , (0, C2(p, d)) , (1, C2(p, d+))

The minimum at this point must be between −1 and 1 excluded as

we already know that C2(p, d−) > C2(p, d) and C2(p, d+) > C2(p, d) by

construction, but could not be exactly at 0, which would correspond

to use d as disparity estimation. Since values of d correspond to pixels,

this is why this is called sub pixel enhancement.
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• Median filtering: the final disparity results are obtained by smoothing

the interpolated disparities with a 3× 3 median filter.
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Chapter 4

Parallelism

In this chapter we will see how the ADCensus algorithm described in Chapter

3 can benefit of parallelism techniques. ADcensus, as all the other methods

described and many other existing local algorithms, at a certain point the

computation perform the same operations on every pixel (SIMD), this makes

it well suitable for data parallelism techniques. However, both in data and

stream parallelism we need to treat properly the Cross building stage as only

source of possible load unbalancing.

4.1 Activity Graph

Considering the algorithm description in section 3.5 we can immediately split

the computation in five subsequent phases: cost initialization, cross building,

cost aggregation, scanline optimization and disparity refinement, as shown in

figure 4.1

The cost initialization phase can be computed without data dependencies

between pixels, so we have w × h independent activities, where w and h

are the image width and the image height respectively. The same holds for

the cross building phase. When computing the census cost between pairs of

pixels p and p − d as described in 3.5, we need previously to compute the

census transform of such pixels. In order to avoid redundant computations,
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Cost initialization

Cross building

Aggregation

Scanline optimization

Disparity refinement

Figure 4.1: AD-Census activity graph overview.

we add an additional stage for census trasforming both images.

The aggregation step in the original algorithm is optimized using four inter-

mediate histogram images, so this single phase also can be split as is shown

in 4.2. The horizontal-vertical and vertical-horizontal normalization steps re-

quire the size in pixels of the support region of every pixel. Support regions

computed merging vertically horizontal arms and viceversa have different

sizes, so we need the value of one or the other depending on the current

iteration. The computation can be performed with integral images similarly

to the proper aggregation, for instance in HV size computation we first com-

pute vertical integral of left-right arm sizes, and then take for every pixel its

up-down interval with just a single difference. To compute VH support sizes

we switch the directions.

Cost updating is iterated four times, alternating the directions of the inte-

gral images, and each iteration uses the results of the previous one, so the

overall stage consists of 22 sequential phases, 2 for HV and VH support size

computation and 5 for each iteration.

In the scanline optimization we need to fill 4(dmax + 1) matrices with the

values of C2(·, ·), and as we can see in equation 3.2 they are not independent.

Focusing for example on the left-to-right scanline optimization, to compute

C2 for a pixel p at any disparity d we need all dmax + 1 costs for the pixel at

the left of p. The same holds for the other three directions. This results in
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Horizontal integral

Left-Right cross aggregation

Vertical integral

Up-Down cross aggregation

Horizontal-vertical normalization

Vertical integral

Up-Down cross aggregation

Horizontal integral

Left-Right cross aggregation

Vertical-horizontal normalization

Figure 4.2: AD-Census aggregation phases: the aggregation phase is iterated

four times, iterations 1 and 3 follow the chart on the left, iterations 2 and 4

the one on the right.

an activity graph locally organized as in figure 4.3.

C2(p− r, 0) C2(p− r, 1) C2(p− r, dmax)

C2(p, 0) C2(p, 1) C2(p, dmax)

Figure 4.3: Local data dependencies in disparity computation.

An additional disparity estimation stage, can be identified, whose task is

to find the minimizer of C2 described in eq.3.5. This stage has no data

dependencies between pixels.

The disparity refinement multi-step phase suggests control dependencies be-

tween the steps, as every step after outlier detection tries to correct what

could not be corrected in the previous one.

All five steps can be performed pixelwise without data dependencies between

pixels. For iterative region voting, in particular, we can use integral images

to compute Hp and Sp.
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The Depth discontinuity adjustment step requires the computation of edges

in the disparity image. This can be obtained by a Sobel filter applied to the

disparity image, followed by a threshold filter. Filtering phases identify two

additional stages, and can be computed pixelwise without dependencies.

Balancing considerations Even though many of the phases described

could be implemented in an embarassingly parallel fashion, some of them

hide load balancing criticities.

• In the cross building phase, every pixel in principle could require a

different amount of iterations, since we don’t know when (neither if)

we’ll stop for a change in color intensity.

• Scanline optimization is balanced only because we choose left-right and

up-down directions. A different choice would have resulted in an un-

balancing in the beginning and the end of the C2 computation.

The overall logical stages are then

• Census transform

• Cost initialization

• Cross building

• HV and VH support size computation

• Aggregation: logically we can choose to split this stage in the 4 itera-

tions or in the 20 single steps as shown in figure 4.2.

• Scanline optimization: this stage too can be splitted in the 4 substages

computed for different directions. If necessary, the 4 substages could

be completed concurrently since they are independent.

• Disparity estimation

• Outlier detection
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• Iterative region voting: logically divisible in its 5 iterations

• Proper interpolation

• Edge detection

• Depth discontinuity adjustment

• Sub-pixel enhancement

4.2 Data parallelism

The parallelism exploitation in the disparity computation of a single pair

of images does not leave many alternatives. Since every single stage in the

list is basically a loop which iterate through one or more support structures,

we can then implement every stage parallelizing properly such loops.

Unbalancing in the Cross building phase can be resolved by observing that

the average cost per pixel is given by

C(Cross building) ∼ 8 C(Dc)µarm length

where µarm length is the average length of a single arm of the crosses in the

areas of the images over we are computing. Splitting the image in n equal

parts using column ranges or row ranges would result in a significant change

of the value of µarm length in the loop portions since there are image areas, as

for instance uniform backgrounds, who generate larger crosses. This can be

solved using row or column interleaving, corresponding actually to vertical

and horizontal subsampling. As a result the parallel portions of the loop

correspond to loops in subsampled (and thus similar enough) versions of the

original images, and the difference in µarm length does not vary too much.

The only unbalanced stage is resolved and theoretically the computing

load is actually split between the execution units, but the algorithm has

38



an intrinsic parallelization problem, as orthogonal integral images used in

the O(1) implementation of the aggregation step and orthogonal histograms

used similarly in the iterative region voting turn out to be a double-edged

sword. When computing integral images we use two support matrices S1, S2,

and during every horizontal or vertical aggregation we accumulate values in

one and write actual aggregations in the other. Taking as an example a

HV parallel aggregation phase, accumulation in the horizontal phase is done

left to right, and then the computation can be split in horizontal stripes

of the support matrix S1 (Fig. 4.4a). The left-right aggregation then can

exploit locality by writing on S2 in the same horizontal stripe (Fig. 4.4b).

Specifically, for each pixel (x, y) in the stripe, during aggregation we read

values in the row y of the stripe, which we have processed in the accumulation

phase. At this point we start computing the vertical accumulation that this

time must be done top to bottom, and we need to split S2 in vertical stripes

(Fig. 4.4d), so we need to discard most of the part of S2 processed during

horizontal aggregation (∼ nw−1
nw

) and then proceed similarly to the horizontal

stage.

Continuous memory discarding per se would not be a big concern, but adding

the fact that we perform 1-2 operations on each element makes us pay mainly

the memory manipulation. Low operation count is again an intrinsic feature

of the orthogonal integral images approach, so suboptimal results can be

attributed to the use of such approach.

4.3 Stream parallelism

In order to exploit parallelism in a stream of pair of images, as could be

for example a pair of video streams taken from a fixed pair of cameras, we

can choose between the following alternatives:

• Instantiate a farm with as many workers as needed (or as possible) and

make them compute the sequential algorithm, thus reducing the aver-
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(a) (b)

(c) (d)

Figure 4.4: Detail of the implementation of the aggregation of costs over

support regions. Colors represent different support structures, and colored

arrows mean that we read data from the support structure denoted with such

color.

age service time almost linearly on the number of workers, but losing

the order of the processed images. In order to avoid load unbalanc-

ing on the workers we can compute an estimation of µarm length in the

emitter, by computing crosses in a subset of the image pair, and choose
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a proper policy for the assignment of tasks to the workers, as for ex-

ample keeping an accumulator for each worker and summing there all

the values of µarm length for the tasks assigned to that worker, and then

when a new task arrives assigning it to the worker with least value.

This choice depends of course on the nature of the streaming.

• Instantiate a farm with data parallel workers, that is workers that are

themselves farms, implementing any data parallel choice possible. This

approach is a generalization to the previous one, and can be considered

when the sequential code is too slow to achieve a target latency. Using

this approach in fact a latency reduction can be achieved, limited only

by the data parallel implementation used as a worker.

• Exploit the intrinsic pipeline structure of the algorithm to implement

a low latency pipeline, as good as possible with the available hardware.

Such a solution would keep the order of the images processed and thus

would be suitable for example for video processing. Depending on the

target architecture we can choose to proceed with a combination of the

following steps:

– Stage balancing: since the logical stages are many and have dif-

ferent costs, we can need to group them in order to obtain bigger

stages with similar costs, or split them in substages for the same

reason.

– Stage parallelization: we split the computation of a

stage/substage/stage group using farms in order to lower

the latency.

We can immediately see in table 6.7 that time elapsed during Support

size computation, Outlier detection and all the stages remaining after Itera-

tive region voting is negligible, thus in order to balance service times in our

pipeline we can merge them with their previous stage obtaining the stages
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showed in figure 4.5.

Census transform

Cost initialization

Cross building & Support size computation

Aggregation

Scanline optimization

Disparity estimation & Outlier detection

Outlier handling

Figure 4.5: Stream parallel implementation pipeline stages.

In Census transform, Cost initialization, Cross building & Support size

computation and Scanline optimization stages we can reduce the service time

and latency almost linearly (view table 6.7) by implementing them with a

farm.

Aggregation and Outlier handling stages must be treated differently, because

as we already discussed in section 4.2, the integral basedO(1) implementation

of the aggregation phase scales badly, and the same holds for Outlier handling

because it spends most of its time in the Iterative voting substage, which has a

similar O(1) implementation and consequently the same issues. Even though

a very slight improvement both in latency and service time can be obtained

with an embarassingly parallel approach, if we are interested only in service

time reduction only we can achieve significant improvement by exploiting the

algorithm structure. Both Aggregation and Iterative voting stages in fact are

iteration of a given substage for a number of times (four for Aggregation and

five for Iterative voting), and thus we can think to reduce their service time by

implementing explicitly every iteration as an independent stage. Aggregation
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can be split further by exploiting the fact that both left-right and right-left

aggregation are computed, and they are mutually independent.

Explicit structures for the aggregation steps are:

• Use a single execution unit, in this case we have

TS = Taggr L = Taggr

• Use two execution units, splitting aggregation LR and aggregation RL,

thus actually halving times, obtaining

TS =
Taggr

2
L =

Taggr
2

• Use more than two execution units, in this case we can’t hope to re-

duce both latency and service time significantly, as we already said that

splitting horizontal and vertical integrals computation between execu-

tion units does not give us an optimal performance. However we can

split the aggregation step in its substeps and aggregating them in order

to obtain a balanced time service. This allow us to reduce the service

time 2 − 4 times leaving the latency almost unaltered. Notice that to

have a balanced result we need to add two execution units at a time.

whereas for Outlier handling as we said we can only split the computation

of Iterative voting in the single iterations, this way we expect to obtain a

service time reduction almost linear in the number of the execution units

used.

Aggregation and Scanline optimization are the most time expensive stages

in the algorithm so when implementing a stream parallel algorithm we must

firstly think to spend extra available execution units to lower their service

time and when possible their latency. Moreover, since the latency of these

stages can be considerably high with respect to the others, we may think

to merge other stages in order to free execution units to make possible a
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reduction of the overall service time, especially when the number of cores of

the target architecture is low.

Suppose for example that the algorithm stops just after the aggregation stage,

and that we have the following times for Census transform, Cost initializa-

tion, Cross building & Support size computation and Aggregation

Tcensus = 150 Tcost = 550 Tcross = 400 Taggr = 1500

and only 4 execution units available. Implementing every stage on a different

execution unit would result in the following values for latency and service

time:
TS = max{Tcensus, Tcost, Tcross, Taggr} = Taggr = 1500

L = Tcensus + Tcost + Tcross + Taggr = 2600

this would allow us to process images at less than 1 frame per second with an

overall latency of more than 2 seconds. Merging Census transform and Cost

initialization in a single execution unit and using the exceeding execution

unit to halve both latency and time service of Aggregation we obtain:

TS = max

{
Tcensus + Tcost, Tcross,

Taggr
2

}
= max {700, 400, 750} = 750

L = Tcensus + Tcost +
Taggr

2
= 1850

doubling the number of frame per second we can process and reducing also

the overall latency significantly.
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Chapter 5

Implementation details

The code for the ADCensus algorithm has been written in C++, using the

FastFlow framework described in section 2.2 for parallel implementations

exploiting different features depending on the type of performance needed in

the single implementations.

5.1 Phase-wise considerations

5.1.1 Census transform

Census transform is computed on 9×7 windows around every pixel, in order

to both give enough information about the neighbourhood and store the

transformed value of a pixel efficiently in a 64 bit wide variable.

5.1.2 Cost initialization

In this phase we need to compute the cost of pairs of pixels at disparity

d for the whole (fixed) disparity range. The census cost component in the

cost value is obtained by computing the Hamming distance between pairs of

census values c1, c2 corresponding to the pixel pair considered. Hamming

distance can be computed by counting the 1 bits of c1 xor c2, but looping

through all 64 bits of c1 xor c2 for every reference pixel and every possible
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disparity value can become rather time expensive. The GNU C++ compiler

provides the builtin function builtin popcountll that exploits lookup

tables in order to compute the number of 1 bits in a 64 bits variable, and thus

resulting in a faster computation. Another critical computation in this phase

is the exponentiation, which is rather time expensive. Since best precision

exponentiation values are no better than opportunely approximated ones

in order to obtain more accurate disparity estimations, we use a less time-

expensive approximated exponential.

5.1.3 Aggregation

The aggregation phase is computed using the integral histogram approach

described in chapter 3 and specifically the implementation proposed by [12].

We use two support structures, each one w × h × (DMAX + 1) wide, the

first one being initialized during cost initialization, specifically

aggr[0][i][j][d] = cost (I1(x, y), I2(x− d, y))

Then for every iteration five steps are performed:

• Every element in aggr[0] is summed with the one at its left, for every

value of d, visiting left to right and resulting in an horizontal integral,

namely

aggr[0][i][j][d]+ = aggr[0][i][j− 1][d]

• Horizontal integrals are exploited to compute the cost of each horizontal

arm of every cross of every pixel, and such results are saved in the

second support structure

aggr[1][i][j][d] = aggr[0][i][crs→ x+][d]−∆aggr

where

∆aggr =

0 if crs→ x− = 0

aggr[0][i][crs→ x−−1][d] otherwise
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• We treat in a similar way the other support structure, this way summing

up to down to obtain a vertical integral image.

aggr[1][i][j][d]+ = aggr[1][i− 1][j][d]

• And write finally on the first support structure the results of vertical

aggregation:

aggr[0][i][j][d] = aggr[1][crs→ y+][j][d]−∆aggr

where

∆aggr =

0 if crs→ y− = 0

aggr[1][crs→ y−−1][j][d] otherwise

• Since support regions can have different dimensions for different pixels,

in order to keep the cost value significative we normalize the overall

cost obtained in the first support structure by dividing by the number

of pixels in the support region, that is computed in a previous step

with an analogous approach.

since the algorithm proposes to iterate four times the aggregation procedure

switching between HV and VH support region every time, steps 1 and 2

become steps 3 and 4 and viceversa in the second and fourth iterations,

taking care to keep alternating the support structures used (read 0, write 1,

read 1, write 0, normalize).

5.1.4 Iterative voting

During this stage we need to build disparity histograms for outliers in their

support region. Mei et. al explicitly specify that only non-outlier dispar-

ity must be collected in such histogram. The implementation is performed

using integral images similarly to the ones used in the aggregation phase.
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Specifically, we initialize the first support structure as follows:

hist[i][j][d] =

1 if I1(j, i) is not an outlier

0 otherwise

In this case we only perform HV aggregation of these disparity contributes.

After the aggregation hist[i][j][d] represent exactly the number of non-

outlier pixels in the support region who are assigned a disparity d.

5.1.5 Proper interpolation

Interpolation consists in two steps: selection of the nearest significative neigh-

bours along 16 directions, and choice of the disparity value from one of such

neighbours following a different rule for mismatched and occlused outliers.

In the first step we initialize a vector with 16× 2 elements, namely

dirs[k] =

(
cos

(
2kπ

16

)
, sin

(
2kπ

16

))
0 ≤ k < 16

then for every pixel (i, j) we visit outliers as follows

outliers[i + r ∗ dirs[k][1]][j + r ∗ dirs[k][0]] 0 ≤ k < 16

where r is initially 1 and is increased until at least one visited direction

does not contain an outlier, and r * dirs[k][*] is rounded to the nearest

integer. In this way we simulate a visit of the image by concentric circles

at increasing radius r and thus the neighbours found are actually as close

as possible to the considered pixel. Disparity selection is then performed as

explained in chapter 3.

5.1.6 Edge detection

Edge detection is performed using a 3× 3 laplacian filter.
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5.2 Parallel implementations

5.2.1 Data parallel

The data parallel version of fastADCensus has been developed by imple-

menting a FastFlow farm. For convenience the overall code has been split

in functions whose inner code could be computed concurrently without any

need of synchronization. Specifically, a single function is of the form: where

1 void tiny_phase(...) {

2 for (int i = 0; i < image_rows; ++i) {

3 for (int j = 0; j < image_cols; ++j) {

4 // In some stages this loop is present as well

5 for (int d = 0; d <= max_disp_lv; ++d) {

6 // do something ...

7 }

8 }

9 }

10 }

sometimes, as for example during the scanline optimization phase, some in-

dex could begin from 1, go backwards or both. Then their signature has been

opportunely modified in order to implement actual concurrent code.

1 void tiny_phase(...) {}

2 // Becomes

3 void tiny_phase(int worker_id, ...) {}

The new parameter is then exploited in three alternative ways, showed in

table 5.1:

• Horizontal stripes, used for example for horizontal aggregation and left

to right or right to left scanline optimization.

• Vertical stripes, used for example for vertical aggregation.
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• Horizontal subsampling, used in cross building phase to avoid unbal-

ancing.

1 // Horizontal stripes

2 void tiny_phase(int worker_id, ...) {

3 for (int i = (image_rows * worker_id) / nworkers;

4 i < (image_rows * (worker_id + 1)) / nworkers; ++i) {

5 for (int j = 0; j < image_cols; ++j) {

6 // ...

7 }

8 }

9 }

10

11 // Vertical stripes

12 void tiny_phase(int worker_id, ...) {

13 for (int i = 0; i < image_rows; ++i) {

14 for (int j = (image_cols * worker_id) / nworkers;

15 j < (image_cols * (worker_id + 1)) / nworkers; ++j) {

16 // ...

17 }

18 }

19 }

20

21 // Horizontal subsampling

22 void tiny_phase(int worker_id, ...) {

23 for (int i = worker_id; i < image_rows; i += nworkers) {

24 for (int j = 0; j < image_cols; ++j) {

25 // ...

26 }

27 }

28 }

Table 5.1

Finally, everything described was inserted in a FastFlow context implement-

ing three class specializations for ff node, one for the emitter, one for the
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collector and one for all workers, and inserting them in a wrapped around

ff farm.

The emitter generates nworkers tasks for the first phase sending to the work-

ers the function to be computed together with the value of worker id (which

is different for every task generated) and any other possible paramether for

the phase function. Then every time that the collector signals him the end

of a task computation it generates nworkers tasks for the subsequent phase.

Any worker receives a task indicating a function to compute and its param-

eters and it executes it with the given parameters.

The collector waits for nworkers tasks to arrive and then signals the emitter

that the current phase is ended.

5.2.2 Stream parallel

In order to obtain a stream parallel implementation we kept the use of tiny

stage functions, further modified, and we used them with a different ap-

proach.

First of all, all support structures for the processing of a single image are

grouped in a single big support structure representing an element of our

stream. Every element in the stream need his copy of any support structure.

Then we add another parameter to all the functions modifying every access

1 void tiny_phase(stream_el* se, [int worker_id,] ...) {}

to any support structure inside every function in order to refer to the local

structure of the single stream element. The worker id parameter at this

point become useful only in case we want to perform some intermediate

stage in a data parallel fashion.

At this point we developed two alternative stream parallel implementations:

a pipeline version and a farm of farms version, parametric in the number of

data parallel workers and in their degree of parallelism.
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In the first implementation, stage functions are opportunely grouped in Fast-

Flow nodes and inserted in a FastFlow pipeline (ff pipeline). In order to

avoid initial latency due to memory allocations, support structures are allo-

cated in the node that first use them, and deallocated in the last node that

use them, using FastFlow allocators and deallocators.

In the second one instead, we initially allocate exactly ndatapar tasks and

then we proceed exactly as in the data parallel case, doing the following

modifications:

• The emitter uses a custom load balancer, assigning computations on

an element of the stream always to the same set of workers, in order

to guarantee locality and simulating an actual farm of farms solution,

which is not currently possible on FastFlow when the workers have

feedback as in our case. Once one image has been fully processed, its

corresponding task is overwritten with the first unprocessed element of

the stream without memory allocations, and thus the memory footprint

is constant during the whole stream processing.

• The collector uses ndatapar independent counters instead of one, one for

each data parallel worker, and update them consistently.
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Chapter 6

Experimental results

In this chapter we will show a comparison the execution time of our sequen-

tial code with respect to the times publieshed by Mei et al. Then we show

times and scalability results in the data parallel code, trying it both in a

multicore architecture and a many core one. From a stream parallel point of

view we show service time results for a simple pipeline implementation of fas-

tADCensus on a multicore architecture, more suitable for a low parallelism

degree setting like ours. Then we present another solution based on a farm

with data parallel workers, making a projection of the parallelism degree nec-

essary to achieve a given target frame rate by developing a model parametric

in the frame rate value and the data parallel latency. Firstly we use this

model projecting the parallelism degree necessary on the multicore architec-

ture, that cannot be tested for a physical limitation. Then we test the model

on the many core architecture, fixing a target frame rate and showing how

the execution behave in practice with respect to that target. Finally we give

a comparison with the existing implementation of stereo algorithms provided

by OpenCV both from an accuracy point of view and a time expensiveness

one.

The architectures used during the testing phase are:

• A CPU multicore architecture with 2 Intel Xeon E5-2650 @ 2.00GHz

(8 cores each), 32GB RAM memory and Linux 2.6.32 OS.
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• A many core architecture: an Intel Xeon Phi coprocessor 5100 with 60

cores, 8GB of RAM memory and Linux 2.6.38.8 mpss3.4.

6.1 Sequential

The sequential code was tested in the Middlebury evaluation dataset, with

the disparity range suggested there, that must be equal for every algorithm

in order to submit the evaluation.

Testing fastADCensus on the multicore architecture gave us better results

than the ones achieved by Mei et al. Execution times are shown in table 6.1

together with their execution times, the range of disparity levels used, and

the speedup achieved with fastADCensus.

Teddy Cones Venus Tsukuba

Disparity range 0-59 0-59 0-19 0-15

fastADCensus time (ms) 3578 3571 1716 927

ADCensus time (ms) 15000 15000 4200 2500

Speedup 4.19 4.20 2.45 2.70

Table 6.1: Detail of times on the sequential code for fastADCensus and the

original ADCensus

The better performance of our implementation is significative since the tests

of Mei et al. were executed on an Intel Core 2 Duo @ 2.20GHz, an older

CPU and thus slightly faster in sequential fragments of code.

6.2 Data parallel

The data parallel implementation descripted in sec. 4.2 on the multicore

achieves at best an execution time ∼ 44 times faster (∼ 3.5 times faster

with a single worker) with respect to the Mei et al.’s implementation on

CPU, and ∼ 3.6 slower with respect to their GPU implementation on the

Teddy image pair in the Middlebury data set. Table 6.7 shows a detail of

times and scalability for the Teddy image pair. Results obtained can reduce
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considerably the latency with respect to the original implementation, even

though it is not fast enough for real time processing. At best it can achieve

a frame rate of 2.93 frames per second with a latency of 341 ms. It can be

seen from the data that Aggregation and Iterative voting are the bottlenecks

for this algorithm (see sec. 4.2).

Testing the same code on the many core architecture gave us similar results

for scalability (see fig. 6.1). We have better scalability values initially for

Aggregation and Iterative voting, since we can exploit better the caches and

the computation is slower. These factors lead altogether to a better amor-

tization of the memory access costs, but at a certain point (4 for Iterative

voting, 16 for Aggregation) they begin to become inefficient exactly as in the

multicore case, for the same reasons. Scanline Optimization start to scale

suboptimally due to the branching inside the code. Census transform has

a similar behaviour, but its computation is more unbalanced because of an

heavy use of branches and thus starts scaling suboptimally earlier. Overall

scalability is better up to 60 nodes, as we are using just one context per

core, and keep improving with a worse efficiency up to 120, with a jump in

performances beetween 60 and 61 when we start using two contexts per core

and both the ALUs available.

Figure 6.1: Scalability on the Xeon Phi
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6.3 Stream parallel

The first stream parallel algorithm implemented is the pipeline version de-

scribed in section 4.3. Cost initialization and Cross building & Support size

computation stages are merged and computed with 2 nodes, one for the left

image and one for the right one, Aggregation stages too uses 2 nodes, one

for the LR costs and one for the LR costs, and Scanline optimization is com-

puted with 4 nodes, one for each scanline direction, for a total of 15 nodes. It

achieves a latency of ∼ 2.4s and service time of ∼ 510ms with a bottleneck

in the Aggregation stage.

The second implementation developed has been the “farm of farms” one, (see

sec. 4.3). This approach allow us to choose the best tradeoff between latency

and and service time, and in principle it can be used to reduce arbitrarily

the service time, and thus the frame rate.

Suppose we have a target number of frames per second f ∗, and a farm where

every worker is itself a data parallel skeleton. Its latency is parametric in its

parallelism degree:

Tw(nw) = T (nw)datapar

The service time TS of the main farm, considering negligible the cost of the

emitter and the collector, and using ndatapar data parallel workers, is given

by

TS = max{Te, Tc,
Tw

ndatapar
} =

Tw
ndatapar

In order to obtain the target frames per second value, we need to obtain a

target service time T ∗S , of

T ∗S =
1000

f ∗

where times are indicated in milliseconds. Finally, the target number of data

parallel workers n∗datapar can be calculated by setting TS = T ∗S obtaining

n∗datapar(nw) =

⌈
f ∗ × Tw(nw)

1000

⌉
=

⌈
f ∗ × T (nw)

1000

⌉
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nw = 1 2 3 4 5 6 7 8

ncores 102 104 105 108 110 114 112 112

Latency 4061 2058 1387 1049 854 723 639 555

nw = 9 10 11 12 13 14 15

ncores 117 120 121 120 130 126 135

Latency 499 457 417 395 366 342 325

Table 6.2: Projection of the number of cores necessary to implement a farm

of data parallel farms suitable to process a stream at 25fps on a Sandy Bridge

architecture, and corresponding latency of a single task.

The total number of execution units nnodes (for workers only) is then given

by

nnodes = nw × n∗datapar(nw)

Table 6.2 shows the overall number of cores that would be necessary in or-

der to process a stream at a frame rate of 25 frames per second and the

corresponding latency with different values for nw for the times in table 6.7.

These values are a purely theoretical projection, as at the current time we

only have available 48 cores on the Sandy Bridge architecture.

In order to have a confirmation of the theoretical model, even with lower

target frame rates, a many core architecture is more suitable due to his

higher core count. We thus tested this solution on the Xeon Phi many core

architecture with a stream of images. We used smaller images for accomplish

for memory limitations and targeting a frame rate of 10fps. We computed

the number of nodes and then tried to execute a farm with that number of

nodes and parallelism degree nw on a single worker, obtaining the results

shown in table 6.3. Note how the ceiling operation in our model allow us to

obtain actually higher frame rate values. This is easily explained: we use the

smallest number of data parallel workers that is enough to obtain a frame rate

of at least 10fps. The value of f∗×T (nw)
1000

decreases when the parallelism degree

is higher, since the target frame rate f ∗ is fixed. If the ceiling operation for

different nw result in the same value, as it happens in the range 9-12 and

again in the range 13-20, we obtain higher values for nnodes the higher is nw,
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and thus better performances. The only exception in our data is nw = 20,

but the anomaly is due to the fact that we use more than 60 threads overall

(60 for the data parallel workers + 2 for emitter and collector) and the Xeon

Phi have a jump in performances between 60 and 61 (see fig. 6.1 and sec.

6.2) and the model is unsuitable in case of such discontinuities.

nw = 1 2 3 4 5 6 7 8 9 10

ncores 31 32 33 36 35 36 35 40 36 40

Latency 3088 1584 1071 820 661 561 495 435 392 366

Frame rate 10.00 10.18 10.45 11.29 11.01 11.23 10.03 12.25 10.26 11.58

nw = 11 12 13 14 15 16 17 18 19 20

ncores 44 48 52 42 45 48 51 54 57 60

Latency 373 326 301 290 267 255 233 229 214 208

Frame rate 12.73 13.81 15.16 11.95 12.46 12.75 14.63 14.79 16.14 14.22

Table 6.3: Experimental results on the Xeon Phi of a stream parallel farm

obtained using the parallelism degree theorized with our model.

With the same image size, we can aim at a frame rate of 25 fps, requiring the

node count showed in table 6.4. These results were not tested because, as

discussed before, our model is not suitable for more than 60 threads overall.

nw = 1 2 3 4 5 6 7 8 9 10

ncores 78 80 81 84 85 90 91 88 90 100

nw = 11 12 13 14 15 16 17 18 19 20

ncores 110 108 104 112 105 112 102 108 114 120

Table 6.4: Projection with our model of the number of cores needed on the

Xeon Phi with a target frame rate of 25 fps. These values can not be tested

because of the worsening of performance for more than 60 nodes.
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6.4 Comparison with OpenCV

OpenCV provides different image matching algorithms based on known stereo

vision results. Their performance is notably better with respect to the imple-

mentation showed, but at a substantial price in terms of accuracy. Referring

again to the Teddy image pair, computing a dense disparity map for a dis-

parity range from 0 to 59 achieves the results showed in figure 6.2. As for

accuracy, the difference can be appreciated at a glance, and is confirmed by

the Middlebury test as shown in table 6.5

nonocc all disc Exec. time (ms)

OpenCV (bm) 28.4 35.8 45.6 22

OpenCV (sgbm) 11.4 20.5 25.9 150

OpenCV (hh) 11.8 20.9 27.2 196

OpenCV (var) 26.1 31.1 36.7 886

fastADCensus 7.57 14.7 16.5 3381

Table 6.5: Error percentage taken from the Middlebury evaluation system of

stereo matching algorithms
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(a) OpenCV (bm)

(b) OpenCV (sgbm)
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(c) OpenCV (hh)

(d) OpenCV (var)
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(e) fastADCensus

Figure 6.2: Results of OpenCV algorithms and our fastADCensus on the

Teddy image pair

6.5 Conclusions

FastADCensus is faster than the original ADCensus CPU implementation in

the Middlebury dataset, and can achieve reasonably good execution times

also compared to the GPU implementation, being less than 4 times slower

with respect to that implementation. It produces better results than similar

routines provided by OpenCV at a price of a higher time consumption. From

a data parallel point of view, good results have been achieved for scalability,

and latency can be reduced up to 341ms on the multi core architecture and

up to 672ms on the many core architecture for a 375× 450 image pair. This

corresponds respectively to 8.5 frames and 16.8 frames in a 25fps stream. The

same code has been tested on the many core architecture, obtaining similar

results for scalability, at an expected bigger latency. Stream parallelism
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is achieved with better results implementing a farm of data parallel farms

instead of a pipeline. On the multi core case, the best frame rate we can

achieve with the farm of farms implementation (at lowest latency) is 3.09fps,

with a latency of 660ms with full scale images. This is considerably better

than the pipeline implementation which achieves a latency of 4.2s and a frame

rate of 1.96fps. On the many core case we used 30% scaled images (135×113

pixels) and the best frame rate achievable is 16.14fps with a latency of 214ms.
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Time (ms)

T(1) T(2) T(3) T(4) T(5) T(6) T(7) T(8)

Census transform 127 67 47 36 29 25 22 20

Cost initialization 495 249 166 125 100 85 73 63

Cross building 261 130 87 66 52 44 36 32

Support size computation 6 6 6 6 6 4 5 6

Aggregation 1122 566 380 290 240 204 188 161

Scanline optimization 1440 731 487 367 295 246 212 186

Disparity estimation 64 34 23 16 14 10 10 8

Outlier detection & handling 546 275 191 143 118 105 93 79

TOT 4061 2058 1387 1049 854 723 639 555

Time (ms)

T(9) T(10) T(11) T(12) T(13) T(14) T(15)

Census transform 19 16 16 14 14 13 13

Cost initialization 56 51 47 43 39 37 34

Cross building 28 26 24 22 20 18 16

Support size computation 5 6 4 6 6 6 6

Aggregation 145 131 123 113 103 102 98

Scanline optimization 166 150 135 125 115 108 100

Disparity estimation 7 6 6 6 4 4 4

Outlier detection & handling 73 71 62 66 65 54 54

TOT 499 457 417 395 366 342 325
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Scalability

sc(2) sc(3) sc(4) sc(5) sc(6) sc(7) sc(8)

Census transform 1.9 2.7 3.53 4.38 5.08 5.77 6.35

Cost initialization 1.99 2.98 3.96 4.95 5.82 6.78 7.86

Cross building 2.01 3 3.95 5.02 5.93 7.25 8.16

Support size computation 1 1 1 1 1.5 1.2 1

Aggregation 1.98 2.95 3.87 4.68 5.5 5.97 6.97

Scanline optimization 1.97 2.96 3.92 4.88 5.85 6.79 7.74

Disparity estimation 1.88 2.78 4 4.57 6.4 6.4 8

Outlier detection & handling 1.99 2.86 3.82 4.63 5.2 5.87 6.91

TOT 1.97 2.93 3.87 4.76 5.62 6.36 7.32

Scalability

sc(9) sc(10) sc(11) sc(12) sc(13) sc(14) sc(15)

Census transform 6.68 7.94 7.94 9.07 9.07 9.77 9.77

Cost initialization 8.84 9.71 10.53 11.51 12.69 13.38 14.56

Cross building 9.32 10.04 10.88 11.86 13.05 14.5 16.31

Support size computation 1.2 1 1.5 1 1 1 1

Aggregation 7.74 8.56 9.12 9.93 10.89 11 11.45

Scanline optimization 8.67 9.6 10.67 11.52 12.52 13.33 14.4

Disparity estimation 9.14 10.67 10.67 10.67 16 16 16

Outlier detection & handling 7.48 7.69 8.81 8.27 8.4 10.11 10.11

TOT 8.14 8.89 9.74 10.28 11.1 11.87 12.5

Table 6.7: Details of time and scalability of the data parallel implementation

run on the multicore architechture
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Chapter 7

Conclusions

The thesis was aimed at studying state of the art stereo matching algo-

rithms, keeping an eye both at their accuracy as given by the Middlebury

ranking and their parallelization possibilities. The ADcensus algorithm has

been chosen and then implemented both sequentially and in parallel, ob-

taining perceptible improvements in performance with respect to the au-

thors’published results.

A theoretical model for determining the parallelism degree of a stream par-

allel farm capable to process a stream at any given frame rate has been

developed. The goal of our thesis was to obtain a low latency / real time

stream parallel implementation for fastADCensus, so we tested the model on

a many core architecture in order to have a higher parallelism degree avail-

able. The model has been proved to be correct up to physical parallelism

limitations, allowing us to achieve a frame rate of 16fps for 135× 113 image

pairs.

During this thesis, the implementation effort was dedicated to fill all the

details left unsaid in the work of Mei et al. in order to obtain an actual

implementation, and to all the modifications necessary to properly exploit

parallelism on multi and many core architectures keeping the original code.

This approach brought us to obtain a code for fastADCensus which is scalable
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but does not exploit explicitly vectorization. When compiled with icc, the

code is slightly vectorized without appreciable differences (< 2%) in terms

of execution times with respect to the same code compiled with g++. In the

future, we will study how and if some stages can be reformulated in order to

obtain a vectorizable code, or to avoid memory dependencies or branches.
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Appendix A

Source code

In this appendix we list the full implementation of fastADCensus. Section

A.1 contains the code for the business logic, almost identical to the sequential

code. The core is split in 14 files, each implementing a single phase. Section

A.2 contains the code used to implement the parallel version. Since the

skeleton adopted is a farm, we have one file for the emitter code, one for

the worker code and one for the collector code. The other files not discussed

contain support structures, common values and common definitions.

A.1 Business logic

A.1.1 main.cpp

1 #include <iostream>

2 #include <cmath>

3 #include <string>

4

5 #include "common.hpp"

6

7 #include "farm/emitter.hpp"

8 #include "farm/worker.hpp"

9 #include "farm/collector.hpp"

10
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11 #include <vector>

12

13 using namespace std;

14 using namespace ff;

15

16 void __usage() {

17 cout

18 << "Usage: adcensus nodes nworkersDP streamsize left_image right_image"

19 << endl;

20 }

21

22 void deserialize(const char* path, int* rows, int* cols, int* chans, uint8_t* t) {

23 FILE* fd = fopen(path, "r");

24

25 fread(rows, sizeof(int), 1, fd);

26 fread(cols, sizeof(int), 1, fd);

27 fread(chans, sizeof(int), 1, fd);

28

29 for (int i = 0; i < *rows; ++i) {

30 for (int j = 0 ; j < *cols; ++j) {

31 fread(&t[__idx1(0, i, j)], (*chans)*sizeof(uint8_t), 1, fd);

32 }

33 }

34 fclose(fd);

35 }

36

37 int main(int argc, char* argv[]) {

38 if (argc != 6) {

39 __usage();

40 return 1;

41 }

42

43 __nnodes = atoi(argv[1]);

44 __nworkers = atoi(argv[2]);

45 __streamsz = atoi(argv[3]);

46

47 __ndatapar = __nnodes / __nworkers;
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48

49 // Initializing image data

50 int __rows, __cols, __chans;

51 fdata = new uint8_t[2*ROWS*COLS*3];

52 fdataG = new uint8_t[2*ROWS*COLS];

53 deserialize(argv[4], &__rows, &__cols, &__chans, &fdata[__idx1(0, 0, 0)]);

54 deserialize(argv[5], &__rows, &__cols, &__chans, &fdata[__idx1(1, 0, 0)]);

55

56 // Converting images to grayscale

57 for (int i = 0; i < __rows; ++i) {

58 for (int j = 0; j < __cols; ++j) {

59 uint8_t* pxl = &fdata[__idx1(0, i, j)];

60 fdataG[__idx2(0, i, j)] =

61 pxl[0] * 0.2126 + pxl[1] * 0.7152 + pxl[2] * 0.0722;

62 pxl = &fdata[__idx1(1, i, j)];

63 fdataG[__idx2(1, i, j)] =

64 pxl[0] * 0.2126 + pxl[1] * 0.7152 + pxl[2] * 0.0722;

65 }

66 }

67

68 // Allocating space __ndatapar tasks, every time data will be overwritten

69 // in the right location

70 __counters = new int[__ndatapar];

71 for (int i = 0; i < __ndatapar; ++i) __counters[i] = __nworkers;

72 __stream = new bigtask_t[__ndatapar];

73

74 ff_farm<MyLoadBalancer> farm;

75 SVEmitter e(farm.getlb());

76 SVCollector c;

77

78 vector<ff_node*> w;

79 for (int q = 0; q < __ndatapar; ++q) {

80 for (int i = 0; i < __nworkers; ++i) {

81 w.push_back(new SVWorker);

82 }

83 }

84
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85 farm.add_emitter(&e);

86 farm.add_workers(w);

87 farm.add_collector(&c);

88

89 farm.wrap_around();

90 farm.run_and_wait_end();

91

92 return 0;

93 }

A.1.2 common.hpp

1 #ifndef ADCENSUS_COMMON_HPP

2 #define ADCENSUS_COMMON_HPP

3

4 #include <cstdint>

5 #include <algorithm>

6

7 const float L_CENSUS = 30.0;

8 const float L_AD = 10.0;

9

10 const uint8_t CROSS_L1 = 34;

11 const uint8_t CROSS_L2 = 17;

12 const uint8_t CROSS_TAU1 = 20;

13 const uint8_t CROSS_TAU2 = 6;

14

15 const float OPT_PI1 = 1.0;

16 const float OPT_PI2 = 3.0;

17 const uint8_t OPT_TAUSO = 15;

18

19 const float ITER_TAUH = 0.4;

20 const uint8_t ITER_TAUS = 20;

21

22 #ifdef SMALL

23 const int ROWS = 113, COLS = 135;

24 #endif

25
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26 #ifdef BIG

27 const int ROWS = 375, COLS = 450;

28 #endif

29

30 const int DMAX = 59;

31 const int DSCALE = 4;

32

33 inline static int __idx1(int lr, int r, int c, int ch = 0) {

34 return (lr * (ROWS * COLS * 3) + r * (COLS * 3) + c * 3 + ch);

35 }

36

37 inline static int __idx1b(int lr, int r, int c, int ch) {

38 return (lr * (ROWS * COLS * 3) + r * (COLS * 3) + c * 3 + ch);

39 }

40

41 inline static int __idx2(int lr, int r, int c) {

42 return (lr * (ROWS * COLS) + r * COLS + c);

43 }

44

45 inline static int __idx3(int q, int lr, int r, int c, int d) {

46 return (q * (2 * ROWS * COLS * (DMAX+1)) + lr *(ROWS * COLS * (DMAX+1))

47 + r * (COLS * (DMAX+1)) + c * (DMAX + 1) + d);

48 }

49

50 inline static int __idx4(int q, int lr, int r, int c) {

51 return (q * (2 * ROWS * COLS) + lr * (ROWS * COLS) + r * COLS + c);

52 }

53

54 inline static int __idx5(int lr, int dir, int r, int c, int d) {

55 return (lr * (4 * ROWS * COLS * (DMAX+1)) + dir * (ROWS * COLS * (DMAX+1))

56 + r * (COLS * (DMAX+1)) + c * (DMAX+1) + d);

57 }

58

59 inline static int __idx6(int lr, int r, int c, int d) {

60 return (lr *(ROWS * COLS * (DMAX+1)) + r * (COLS * (DMAX+1))

61 + c * (DMAX + 1) + d);

62 }
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63

64 inline static int __idx7(int r, int c) {

65 return r * COLS + c;

66 }

67

68 typedef struct cross_t {

69 int8_t xm, xp, ym, yp;

70 } cross_t;

71

72 typedef enum outlier_t {

73 OUT_OCCL, OUT_MISM, OUT_NONE

74 } outlier_t;

75

76 int __color_diff(uint8_t* p1, uint8_t* p2) {

77 int r = std::abs(p1[0] - p2[0]);

78 int g = std::abs(p1[1] - p2[1]);

79 int b = std::abs(p1[2] - p2[2]);

80

81 return std::max(std::max(r, g), b);

82 }

83

84 int __nworkers, __nnodes, __ndatapar, __streamsz;

85 uint8_t* fdata, * fdataG;

86 #endif

A.1.3 00 census transform.hpp

1 #ifndef __00_CENSUS_HPP

2 #define __00_CENSUS_HPP

3

4 #include "../common.hpp"

5

6 void __census_init(bigtask_t* t, int worker_id, int lr) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {
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11 t->__census_data[__idx2(lr, i, j)] = 0;

12 int qfrom = std::max(-i, -4);

13 int qto = std::min(4, (t->__rows - i) - 1);

14 int rfrom = std::max(-j, -3);

15 int rto = std::min(3, (t->__cols - j) - 1);

16 for (int q = qfrom; q <= qto; ++q) {

17 for (int r = rfrom; r <= rto; ++r) {

18 uint8_t ig0 = t->__img_grey[__idx2(lr, i+q, j+r)];

19 uint8_t ig1 = t->__img_grey[__idx2(lr, i, j)]

20 if (ig0 > ig1)

21 t->__census_data[__idx2(lr, i, j)] |= (1 << ((q+4)*7 + (r+3)));

22 }

23 }

24 }

25 }

26 }

27

28 #endif

A.1.4 01 cost initialization.hpp

1 #ifndef __01_COSTINIT_HPP

2 #define __01_COSTINIT_HPP

3

4 #include "../common.hpp"

5

6 float __absolute_distance(bigtask_t* t, int i1, int j1, int i2, int j2) {

7 float result = 0;

8 for (int x = 0; x < 3; ++x) {

9 result += std::abs(

10 t->__img_data[__idx1b(0, i1, j1, x)] - t->__img_data[__idx1b(1, i2, j2, x)]

11 );

12 }

13 result /= 3;

14 return result;

15 }

16
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17 static inline float

18 fasterpow2 (float p)

19 {

20 float clipp = (p < -126) ? -126.0f : p;

21 union { uint32_t i; float f; } v = {

22 static_cast<uint32_t> ( (1 << 23) * (clipp + 126.94269504f) )

23 };

24 return v.f;

25 }

26

27 static inline float

28 fasterexp (float p)

29 {

30 return fasterpow2 (1.442695040f * p);

31 }

32

33 void __cost_initialization(bigtask_t* t, int worker_id) {

34 uint8_t cost_census;

35 float cost_ad, cost_tot;

36

37 int ifrom = (worker_id * t->__rows) / __nworkers;;

38 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

39 for (int i = ifrom; i < ito; ++i) {

40 for (int j = 0; j < t->__cols; ++j) {

41 for (int d = 0; d <= DMAX; ++d) {

42 t->__aggregation[__idx3(0, 0, i, j, d)] = 2:

43 t->__aggregation[__idx3(1, 0, i, j, d)] = 2;

44 }

45 }

46

47 for (int j = 0; j < t->__cols; ++j) {

48 int d;

49 for (d = 0; d <= std::min(DMAX, j); ++d) {

50 uint64_t census_string =

51 t->__census_data[__idx2(0, i, j)]

52 ^ t->__census_data[__idx2(1, i, j-d)];

53 cost_census = __builtin_popcountll(census_string);
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54 cost_ad = __absolute_distance(t, i, j, i, j-d);

55 cost_tot = (float)(2 - fasterexp((float)(-(float)cost_ad/L_AD))

56 - fasterexp((float)(-(float)cost_census/L_CENSUS)));

57 t->__aggregation[__idx3(0, 0, i, j, d)] = cost_tot;

58 t->__aggregation[__idx3(1, 0, i, j-d, d)] = cost_tot;

59 }

60 }

61 }

62 }

63

64 #endif

A.1.5 02 cross building.hpp

1 #ifndef __02_CROSS_BUILD_HPP

2 #define __02_CROSS_BUILD_HPP

3

4 #include "../common.hpp"

5

6 void __cross_building(bigtask_t* t, int worker_id, int lr) {

7 int8_t* vals[4];

8 // Expressed as (rows, cols)

9 int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

10

11 for (int i = worker_id; i < t->__rows; i += __nworkers) {

12 for (int j = 0; j < t->__cols; ++j) {

13 vals[0] = &t->__crosses[__idx2(lr, i, j)].ym;

14 vals[1] = &t->__crosses[__idx2(lr, i, j)].yp;

15 vals[2] = &t->__crosses[__idx2(lr, i, j)].xm;

16 vals[3] = &t->__crosses[__idx2(lr, i, j)].xp;

17 for (int x = 0; x < 4; ++x) {

18 bool go_on = true;

19 int val = 0;

20 while(go_on) {

21 ++val;

22 switch (x) {

23 case 0:
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24 if (i-val == -1) { --val; go_on = false; }

25 break;

26 case 1:

27 if (i+val == t->__rows) { --val; go_on = false; }

28 break;

29 case 2:

30 if (j-val == -1) { --val; go_on = false; }

31 break;

32 case 3:

33 if (j+val == t->__cols) { --val; go_on = false; }

34 break;

35 default:

36 break;

37 }

38

39 if (!go_on) break;

40

41 int i0 = __idx1(lr, i, j);

42 int i1 = __idx1(lr, i+dirs[x][0]*val, j+dirs[x][1]*val);

43 int cd1 = __color_diff(

44 &(t->__img_data[i0]), &(t->__img_data[i1])

45 );

46 go_on = val < CROSS_L1;

47

48 if (val > CROSS_L2 && val < CROSS_L1) go_on &= cd1 < CROSS_TAU2;

49 else go_on &= cd1 < CROSS_TAU1;

50 if (val >= 1) {

51 int i0 = __idx1(lr, (i+dirs[x][0]*(val-1)), (j+dirs[x][1]*(val-1)));

52 int i1 = __idx1(lr, i+dirs[x][0]*val, j+dirs[x][1]*val);

53 int cd2 = __color_diff(&(t->__img_data[i0]), &(t->__img_data[i1]));

54

55 go_on &= cd2 < CROSS_TAU1;

56 }

57

58 if (!go_on) --val;

59 }

60
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61 *vals[x] = (x % 2) ? val : -val;

62 }

63 }

64 }

65 }

66

67 #endif

A.1.6 03 support size computation.hpp

1 #ifndef __03_SUPPSIZE_COMP_HPP

2 #define __03_SUPPSIZE_COMP_HPP

3

4 #include "../common.hpp"

5

6 void __HV_supp_compute(bigtask_t* t, int worker_id, int lr) {

7 if (worker_id != 0) return; // This is better computed sequentially

8

9 for (int i = 0; i < t->__rows; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 cross_t* c = &t->__crosses[__idx2(lr, i, j)];

12 t->__supp_sizes[__idx4(lr, 0, i, j)] = (c->xp - c->xm) + 1;

13 }

14 }

15

16 for (int j = 0; j < t->__cols; ++j) {

17 t->__supp_sizes[__idx4(lr, 1, 0, j)] =

18 t->__supp_sizes[__idx4(lr, 0, 0, j)];

19 }

20 for (int i = 1; i < t->__rows; ++i) {

21 for (int j = 0; j < t->__cols; ++j) {

22 t->__supp_sizes[__idx4(lr, 1, i, j)] =

23 t->__supp_sizes[__idx4(lr, 1, i-1, j)]

24 + t->__supp_sizes[__idx4(lr, 0, i, j)];

25 }

26 }

27

80



28 for (int i = 0; i < t->__rows; ++i) {

29 for (int j = 0; j < t->__cols; ++j) {

30 cross_t* c = &t->__crosses[__idx2(lr, i, j)];

31 if (i+c->ym == 0)

32 t->__supp_size_HV[__idx2(lr, i, j)] =

33 t->__supp_sizes[__idx4(lr, 1, i+c->yp, j)];

34 else

35 t->__supp_size_HV[__idx2(lr, i, j)] =

36 t->__supp_sizes[__idx4(lr, 1, i+c->yp, j)]

37 - t->__supp_sizes[__idx4(lr, 1, i+c->ym-1, j)];

38 }

39 }

40 }

41

42 void __VH_supp_compute(bigtask_t* t, int worker_id, int lr) {

43 if (worker_id != 0) return; // This is better computed sequentially

44

45 for (int i = 0; i < t->__rows; ++i) {

46 for (int j = 0; j < t->__cols; ++j) {

47 cross_t* c = &t->__crosses[__idx2(lr, i, j)];

48 t->__supp_sizes[__idx4(lr, 0, i, j)] = (c->yp - c->ym) + 1;

49 }

50 }

51

52 for (int i = 0; i < t->__rows; ++i) {

53 t->__supp_sizes[__idx4(lr, 1, i, 0)] =

54 t->__supp_sizes[__idx4(lr, 0, i, 0)];

55 for (int j = 1; j < t->__cols; ++j) {

56 t->__supp_sizes[__idx4(lr, 1, i, j)] =

57 t->__supp_sizes[__idx4(lr, 1, i, j-1)]

58 + t->__supp_sizes[__idx4(lr, 0, i, j)];

59 }

60 }

61

62 for (int i = 0; i < t->__rows; ++i) {

63 for (int j = 0; j < t->__cols; ++j) {

64 cross_t* c = &t->__crosses[__idx2(lr, i, j)];
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65 if (j+c->xm == 0)

66 t->__supp_size_VH[__idx2(lr, i, j)] =

67 t->__supp_sizes[__idx4(lr, 1, i, j+c->xp)];

68 else

69 t->__supp_size_VH[__idx2(lr, i, j)] =

70 t->__supp_sizes[__idx4(lr, 1, i, j+c->xp)]

71 - t->__supp_sizes[__idx4(lr, 1, i, j+c->xm-1)];

72 }

73 }

74

75 }

76

77 #endif

A.1.7 04 aggregation.hpp

1 #ifndef __04_AGGREGATION_HPP

2 #define __04_AGGREGATION_HPP

3

4 #include "../common.hpp"

5

6 void __horizontal(bigtask_t* t, int worker_id, int q) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int lr = 0; lr < 2; ++lr) {

10 // Computing horizontal integral

11 for (int i = ifrom; i < ito; ++i) {

12 for (int j = 1; j < t->__cols; ++j) {

13 for (int d = 0; d <= DMAX; ++d) {

14 t->__aggregation[__idx3(lr, q, i, j, d)] +=

15 t->__aggregation[__idx3(lr, q, i, j-1, d)];

16 }

17 }

18 }

19

20

21 // Aggregating on horizontal arms
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22 for (int i = ifrom; i < ito; ++i) {

23 for (int j = 0; j < t->__cols; ++j) {

24 for (int d = 0; d <= DMAX; ++d) {

25 cross_t* c = &t->__crosses[__idx2(lr, i, j)];

26 if (j+c->xm == 0)

27 t->__aggregation[__idx3(lr, 1-q, i, j, d)] =

28 t->__aggregation[__idx3(lr, q, i, j+c->xp, d)];

29 else

30 t->__aggregation[__idx3(lr, 1-q, i, j, d)] =

31 t->__aggregation[__idx3(lr, q, i, j+c->xp, d)]

32 - t->__aggregation[__idx3(lr, q, i, (j+c->xm)-1, d)];

33 }

34 }

35 }

36 }

37 }

38

39 void __vertical(bigtask_t* t, int worker_id, int q) {

40 int jfrom = (worker_id * t->__cols) / __nworkers;

41 int jto = ((worker_id + 1) * t->__cols) / __nworkers;

42 for (int lr = 0; lr < 2; ++lr) {

43 // Computing vertical integral

44 for (int i = 1; i < t->__rows; ++i) {

45 for (int j = jfrom; j < jto; ++j) {

46 for (int d = 0; d <= DMAX; ++d) {

47 t->__aggregation[__idx3(lr, q, i, j, d)] +=

48 t->__aggregation[__idx3(lr, q, i-1, j, d)];

49 }

50 }

51 }

52

53 // Aggregating on vertical arms

54 for (int i = 0; i < t->__rows; ++i) {

55 for (int j = jfrom; j < jto; ++j) {

56 for (int d = 0; d <= DMAX; ++d) {

57 cross_t* c = &t->__crosses[__idx2(lr, i, j)];

58 if (i+c->ym == 0)
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59 t->__aggregation[__idx3(lr, 1-q, i, j, d)] =

60 t->__aggregation[__idx3(lr, q, i+c->yp, j, d)];

61 else

62 t->__aggregation[__idx3(lr, 1-q, i, j, d)] =

63 t->__aggregation[__idx3(lr, q, i+c->yp, j, d)]

64 - t->__aggregation[__idx3(lr, q, i+c->ym-1, j, d)];

65 }

66 }

67 }

68 }

69 }

70

71 void __HV_supp_normalize(bigtask_t* t, int worker_id, int q) {

72 int ifrom = (worker_id * t->__rows) / __nworkers;

73 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

74 for (int lr = 0; lr < 2; ++lr) {

75 for (int i = ifrom; i < ito; ++i) {

76 for (int j = 0; j < t->__cols; ++j) {

77 for (int d = 0; d <= DMAX; ++d) {

78 t->__aggregation[__idx3(lr, q, i, j, d)] /=

79 t->__supp_size_HV[__idx2(lr, i, j)];

80 }

81 }

82 }

83 }

84 }

85

86 void __VH_supp_normalize(bigtask_t* t, int worker_id, int q) {

87 int ifrom = (worker_id * t->__rows) / __nworkers;

88 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

89 for (int lr = 0; lr < 2; ++lr) {

90 for (int i = ifrom; i < ito; ++i) {

91 for (int j = 0; j < t->__cols; ++j) {

92 for (int d = 0; d <= DMAX; ++d) {

93 t->__aggregation[__idx3(lr, q, i, j, d)] /=

94 t->__supp_size_VH[__idx2(lr, i, j)];

95 }
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96 }

97 }

98 }

99 }

100

101 void __aggregation_finalization(bigtask_t* t, int worker_id) {

102 int ifrom = (worker_id * t->__rows) / __nworkers;

103 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

104 for (int lr = 0; lr < 2; ++lr) {

105 for (int x = 0; x < 4; ++x) {

106 for (int i = ifrom; i < ito; ++i) {

107 for (int j = 0; j < t->__cols; ++j) {

108 for (int d = 0; d <= DMAX; ++d) {

109 t->__scanline_opt[__idx5(lr, x, i, j, d)] =

110 t->__aggregation[__idx3(lr, 0, i, j, d)];

111 }

112 }

113 }

114 }

115 }

116 }

117

118 #endif

A.1.8 05 scanline optimization.hpp

1 #ifndef __05_SCANLINE_HPP

2 #define __05_SCANLINE_HPP

3

4 #include "../common.hpp"

5

6 void __scanline_optimization(bigtask_t* t, int worker_id, int lr) {

7 float p1, p2;

8 float d1, d2;

9

10 int ifrom = (worker_id * t->__rows) / __nworkers;

11 int ito = ((worker_id + 1) * t->__rows) / __nworkers;
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12

13 // Moving right

14 for (int i = ifrom; i < ito; ++i) {

15 for (int j = 1; j < t->__cols; ++j) {

16 // Computing min_d{C(p-r, d)}

17 float mink = t->__scanline_opt[__idx5(lr, 0, i, j-1, 0)];

18 for (int d = 1; d <= DMAX; ++d) {

19 if (mink > t->__scanline_opt[__idx5(lr, 0, i, j-1, d)])

20 mink = t->__scanline_opt[__idx5(lr, 0, i, j-1, d)];

21 }

22

23 d1 = d2 = OPT_TAUSO + 1;

24 if (lr == 0)

25 d1 = __color_diff(

26 &(t->__img_data[__idx1(0, i, j)]),

27 &(t->__img_data[__idx1(0, i, j-1)])

28 );

29 else if (lr == 1)

30 d2 = __color_diff(

31 &(t->__img_data[__idx1(1, i, j)]),

32 &(t->__img_data[__idx1(1, i, j-1)])

33 );

34

35 for (int d = 0; d <= DMAX; d++) {

36 // Computing p1, p2

37 if (lr == 1 && j < t->__cols - d)

38 d1 = __color_diff(

39 &(t->__img_data[__idx1(0, i, j+d)]),

40 &(t->__img_data[__idx1(0, i, (j+d)-1)])

41 );

42 else if (lr == 0 && j > d)

43 d2 = __color_diff(

44 &(t->__img_data[__idx1(1, i, j-d)]),

45 &(t->__img_data[__idx1(1, i, (j-d)-1)])

46 );

47

48 if (d1 <= OPT_TAUSO && d2 <= OPT_TAUSO) {
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49 p1 = OPT_PI1; p2 = OPT_PI2;

50 }

51 else if ((d1 <= OPT_TAUSO && d2 > OPT_TAUSO)

52 || (d1 > OPT_TAUSO && d2 <= OPT_TAUSO)) {

53 p1 = OPT_PI1/4; p2 = OPT_PI2/4;

54 }

55 else {

56 p1 = OPT_PI1/10; p2 = OPT_PI2/10;

57 }

58 // END

59

60 float toadd = 0;

61 if (d == 0) {

62 toadd = std::min(

63 t->__scanline_opt[__idx5(lr, 0, i, j-1, d)], std::min(

64 t->__scanline_opt[__idx5(lr, 0, i, j-1, d+1)] + p1,

65 mink + p2));

66 } else if (d == DMAX) {

67 toadd = std::min(

68 t->__scanline_opt[__idx5(lr, 0, i, j-1, d)], std::min(

69 t->__scanline_opt[__idx5(lr, 0, i, j-1, d-1)] + p1,

70 mink + p2));

71 } else {

72 toadd = std::min(

73 t->__scanline_opt[__idx5(lr, 0, i, j-1, d)], std::min(

74 t->__scanline_opt[__idx5(lr, 0, i, j-1, d+1)] + p1, std::min(

75 t->__scanline_opt[__idx5(lr, 0, i, j-1, d-1)] + p1,

76 mink + p2)));

77 }

78

79 t->__scanline_opt[__idx5(lr, 0, i, j, d)] += toadd - mink;

80 t->__c2_values[__idx6(lr, i, j, d)] =

81 t->__scanline_opt[__idx5(lr, 0, i, j, d)] / 4;

82 }

83 }

84 }

85
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86 // Moving left

87 for (int i = ifrom; i < ito; ++i) {

88 for (int j = t->__cols - 2; j >= 0; --j) {

89 // Computing min_d{C(p-r, d)}

90 float mink = t->__scanline_opt[__idx5(lr, 1, i, j+1, 0)];

91 for (int d = 1; d <= DMAX; ++d) {

92 if (mink > t->__scanline_opt[__idx5(lr, 1, i, j+1, d)])

93 mink = t->__scanline_opt[__idx5(lr, 1, i, j+1, d)];

94 }

95

96 d1 = d2 = OPT_TAUSO + 1;

97 if (lr == 0)

98 d1 = __color_diff(

99 &(t->__img_data[__idx1(0, i, j)]),

100 &(t->__img_data[__idx1(0, i, j+1)])

101 );

102 else if (lr == 1)

103 d2 = __color_diff(

104 &(t->__img_data[__idx1(1, i, j)]),

105 &(t->__img_data[__idx1(1, i, j+1)])

106 );

107

108 for (int d = 0; d <= DMAX; ++d) {

109 if (lr == 1 && j < t->__cols - d - 1)

110 d1 = __color_diff(

111 &(t->__img_data[__idx1(0, i, j+d)]),

112 &(t->__img_data[__idx1(0, i, (j+d)+1)])

113 );

114 else if (lr == 0 && j > d)

115 d2 = __color_diff(

116 &(t->__img_data[__idx1(1, i, j-d)]),

117 &(t->__img_data[__idx1(1, i, (j-d)+1)])

118 );

119

120 // Computing p1, p2

121 if (d1 <= OPT_TAUSO && d2 <= OPT_TAUSO) {

122 p1 = OPT_PI1; p2 = OPT_PI2;
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123 }

124 else if ((d1 <= OPT_TAUSO && d2 > OPT_TAUSO)

125 || (d1 > OPT_TAUSO && d2 <= OPT_TAUSO)) {

126 p1 = OPT_PI1/4; p2 = OPT_PI2/4;

127 }

128 else {

129 p1 = OPT_PI1/10; p2 = OPT_PI2/10;

130 }

131 // END

132

133 float toadd = 0;

134 if (d == 0) {

135 toadd = std::min(

136 t->__scanline_opt[__idx5(lr, 1, i, j+1, d)], std::min(

137 t->__scanline_opt[__idx5(lr, 1, i, j+1, d+1)] + p1,

138 mink + p2));

139 } else if (d == DMAX) {

140 toadd = std::min(

141 t->__scanline_opt[__idx5(lr, 1, i, j+1, d)], std::min(

142 t->__scanline_opt[__idx5(lr, 1, i, j+1, d-1)] + p1,

143 mink + p2));

144 } else {

145 toadd = std::min(

146 t->__scanline_opt[__idx5(lr, 1, i, j+1, d)], std::min(

147 t->__scanline_opt[__idx5(lr, 1, i, j+1, d+1)] + p1, std::min(

148 t->__scanline_opt[__idx5(lr, 1, i, j+1, d-1)] + p1,

149 mink + p2)));

150 }

151

152 t->__scanline_opt[__idx5(lr, 1, i, j, d)] += toadd - mink;

153 t->__c2_values[__idx6(lr, i, j, d)] +=

154 t->__scanline_opt[__idx5(lr, 1, i, j, d)] / 4;

155 }

156 }

157 }

158

159 int jfrom = (worker_id * t->__cols) / __nworkers;
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160 int jto = ((worker_id + 1) * t->__cols) / __nworkers;

161

162 // Moving down

163 for (int i = 1; i < t->__rows; ++i) {

164 for (int j = jfrom; j < jto; ++j) {

165 float mink = t->__scanline_opt[__idx5(lr, 2, i-1, j, 0)];

166 for (int d = 1; d <= DMAX; ++d) {

167 if (mink > t->__scanline_opt[__idx5(lr, 2, i-1, j, d)])

168 mink = t->__scanline_opt[__idx5(lr, 2, i-1, j, d)];

169 }

170

171 d1 = d2 = OPT_TAUSO + 1;

172 if (lr == 0)

173 d1 = __color_diff(

174 &(t->__img_data[__idx1(0, i, j)]),

175 &(t->__img_data[__idx1(0, i-1, j)])

176 );

177 else if (lr == 1)

178 d2 = __color_diff(

179 &(t->__img_data[__idx1(1, i, j)]),

180 &(t->__img_data[__idx1(1, i-1, j)])

181 );

182

183 for (int d = 0; d <= DMAX; ++d) {

184 if (lr == 1 && j < t->__cols - d)

185 d1 = __color_diff(

186 &(t->__img_data[__idx1(0, i, j+d)]),

187 &(t->__img_data[__idx1(0, i-1, j+d)])

188 );

189 else if (lr == 0 && j > d)

190 d2 = __color_diff(

191 &(t->__img_data[__idx1(1, i, j-d)]),

192 &(t->__img_data[__idx1(1, i-1, j-d)])

193 );

194

195 // Computing p1, p2

196 if (d1 <= OPT_TAUSO && d2 <= OPT_TAUSO) {
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197 p1 = OPT_PI1; p2 = OPT_PI2;

198 }

199 else if ((d1 <= OPT_TAUSO && d2 > OPT_TAUSO)

200 || (d1 > OPT_TAUSO && d2 <= OPT_TAUSO)) {

201 p1 = OPT_PI1/4; p2 = OPT_PI2/4;

202 }

203 else {

204 p1 = OPT_PI1/10; p2 = OPT_PI2/10;

205 }

206 // END

207

208 float toadd = 0;

209 if (d == 0) {

210 toadd = std::min(

211 t->__scanline_opt[__idx5(lr, 2, i-1, j, d)], std::min(

212 t->__scanline_opt[__idx5(lr, 2, i-1, j, d+1)] + p1,

213 mink + p2));

214

215 } else if (d == DMAX) {

216 toadd = std::min(

217 t->__scanline_opt[__idx5(lr, 2, i-1, j, d)], std::min(

218 t->__scanline_opt[__idx5(lr, 2, i-1, j, d-1)] + p1,

219 mink + p2));

220 } else {

221 toadd = std::min(

222 t->__scanline_opt[__idx5(lr, 2, i-1, j, d)], std::min(

223 t->__scanline_opt[__idx5(lr, 2, i-1, j, d+1)] + p1, std::min(

224 t->__scanline_opt[__idx5(lr, 2, i-1, j, d-1)] + p1,

225 mink + p2)));

226 }

227

228 t->__scanline_opt[__idx5(lr, 2, i, j, d)] += toadd - mink;

229 t->__c2_values[__idx6(lr, i, j, d)] +=

230 t->__scanline_opt[__idx5(lr, 2, i, j, d)] / 4;

231 }

232 }

233 }
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234

235 // Moving up

236 for (int i = t->__rows - 2; i >= 0; --i) {

237 for (int j = jfrom; j < jto; ++j) {

238 float mink = t->__scanline_opt[__idx5(lr, 3, i+1, j, 0)];

239 for (int d = 1; d <= DMAX; ++d) {

240 if (mink > t->__scanline_opt[__idx5(lr, 3, i+1, j, d)])

241 mink = t->__scanline_opt[__idx5(lr, 3, i+1, j, d)];

242 }

243

244 d1 = d2 = OPT_TAUSO + 1;

245 if (lr == 0)

246 d1 = __color_diff(

247 &(t->__img_data[__idx1(0, i, j)]),

248 &(t->__img_data[__idx1(0, i+1, j)])

249 );

250 else if (lr == 1)

251 d2 = __color_diff(

252 &(t->__img_data[__idx1(1, i, j)]),

253 &(t->__img_data[__idx1(1, i+1, j)])

254 );

255

256 for (int d = 0; d <= DMAX; ++d) {

257

258 if (lr == 1 && j < t->__cols - d)

259 d1 = __color_diff(

260 &(t->__img_data[__idx1(0, i, j+d)]),

261 &(t->__img_data[__idx1(0, i+1, j+d)])

262 );

263 else if (lr == 0 && j >= d)

264 d2 = __color_diff(

265 &(t->__img_data[__idx1(1, i, j-d)]),

266 &(t->__img_data[__idx1(1, i+1, j-d)])

267 );

268

269 // Computing p1, p2

270 if (d1 <= OPT_TAUSO && d2 <= OPT_TAUSO) {
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271 p1 = OPT_PI1; p2 = OPT_PI2;

272 }

273 else if ((d1 <= OPT_TAUSO && d2 > OPT_TAUSO)

274 || (d1 > OPT_TAUSO && d2 <= OPT_TAUSO)) {

275 p1 = OPT_PI1/4; p2 = OPT_PI2/4;

276 }

277 else {

278 p1 = OPT_PI1/10; p2 = OPT_PI2/10;

279 }

280 // END

281

282 float toadd = 0;

283 if (d == 0) {

284 toadd = std::min(

285 t->__scanline_opt[__idx5(lr, 3, i+1, j, d)], std::min(

286 t->__scanline_opt[__idx5(lr, 3, i+1, j, d+1)] + p1,

287 mink + p2));

288

289 } else if (d == DMAX) {

290 toadd = std::min(

291 t->__scanline_opt[__idx5(lr, 3, i+1, j, d)], std::min(

292 t->__scanline_opt[__idx5(lr, 3, i+1, j, d-1)] + p1,

293 mink + p2));

294 } else {

295 toadd = std::min(

296 t->__scanline_opt[__idx5(lr, 3, i+1, j, d)], std::min(

297 t->__scanline_opt[__idx5(lr, 3, i+1, j, d+1)] + p1, std::min(

298 t->__scanline_opt[__idx5(lr, 3, i+1, j, d-1)] + p1,

299 mink + p2)));

300 }

301

302 t->__scanline_opt[__idx5(lr, 3, i, j, d)] += toadd - mink;

303 t->__c2_values[__idx6(lr, i, j, d)] +=

304 t->__scanline_opt[__idx5(lr, 3, i, j, d)] / 4;

305 }

306 }

307 }
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308 }

309

310 #endif

A.1.9 06 disparity estimation.hpp

1 #ifndef __06_DISPEST_HPP

2 #define __06_DISPEST_HPP

3

4 #include "../common.hpp"

5

6 void __disparity_estimation(bigtask_t* t, int worker_id, int lr) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 t->__disparity_estimate[__idx2(lr, i, j)] = 0;

12 for (int d = 1; d <= DMAX; ++d) {

13 int i0 = __idx6(lr, i, j, d);

14 int i1 = __idx6(lr, i, j, t->__disparity_estimate[__idx2(lr, i, j)]);

15 if (t->__c2_values[i0] < t->__c2_values[i1])

16 t->__disparity_estimate[__idx2(lr, i, j)] = d;

17 }

18 }

19 }

20 }

21

22 #endif

A.1.10 07 outlier detection.hpp

1 #ifndef __07_OUTLDET_HPP

2 #define __07_OUTLDET_HPP

3

4 #include "../common.hpp"

5

6 void __outlier_detection(bigtask_t* t, int worker_id) {
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7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 int d1 = t->__disparity_estimate[__idx2(0, i, j)];

12 if (j < d1) t->__outliers[__idx7(i, j)] = OUT_OCCL;

13 else {

14 int d2 = t->__disparity_estimate[__idx2(1, i, j-d1)];

15 if (d1 != d2) {

16 t->__outliers[__idx7(i, j)] = OUT_OCCL;

17 for (int d = d1; d <= std::min(DMAX, j); ++d) {

18 if (t->__disparity_estimate[__idx2(1, i, j-d)] == d) {

19 t->__outliers[__idx7(i, j)] = OUT_MISM;

20 }

21 }

22 }

23 }

24 }

25 }

26 }

27

28 #endif

A.1.11 08 iterative voting.hpp

1 #ifndef __08_ITERVOTE_HPP

2 #define __08_ITERVOTE_HPP

3

4 #include "../common.hpp"

5

6 void __histogram_init(bigtask_t* t, int worker_id) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 for (int d = 0; d <= DMAX; ++d)

12 t->__voting_histograms[__idx6(0, i, j, d)] = 0;
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13 if (t->__outliers[__idx7(i, j)] == OUT_NONE) {

14 int idx = __idx6(0, i, j, t->__disparity_estimate[__idx2(0, i, j)]);

15 t->__voting_histograms[idx] = 1;

16 }

17 }

18 }

19 }

20

21 void __histogram_computation_H(bigtask_t* t, int worker_id) {

22 int ifrom = (worker_id * t->__rows) / __nworkers;

23 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

24 // Computing horizontal integral

25 for (int i = ifrom; i < ito; ++i) {

26 for (int j = 1; j < t->__cols; ++j) {

27 for (int d = 0; d <= DMAX; ++d) {

28 t->__voting_histograms[__idx6(0, i, j, d)] +=

29 t->__voting_histograms[__idx6(0, i, j-1, d)];

30 }

31 }

32 }

33

34 // Aggregating left-right

35 for (int i = ifrom; i < ito; ++i) {

36 for (int j = 0; j < t->__cols; ++j) {

37 cross_t* c = &t->__crosses[__idx2(0, i, j)];

38 for (int d = 0; d <= DMAX; ++d) {

39 if (j+c->xm == 0)

40 t->__voting_histograms[__idx6(1, i, j, d)] =

41 t->__voting_histograms[__idx6(0, i, j+c->xp, d)];

42 else

43 t->__voting_histograms[__idx6(1, i, j, d)] =

44 t->__voting_histograms[__idx6(0, i, j+c->xp, d)]

45 - t->__voting_histograms[__idx6(0, i, (j+c->xm)-1, d)];

46 }

47 }

48 }

49 }
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50

51 void __histogram_computation_V(bigtask_t* t, int worker_id) {

52 int jfrom = (worker_id * t->__cols) / __nworkers;

53 int jto = ((worker_id + 1) * t->__cols) / __nworkers;

54 // Computing vertical integral

55 for (int i = 1; i < t->__rows; ++i) {

56 for (int j = jfrom; j < jto; ++j) {

57 for (int d = 0; d <= DMAX; ++d) {

58 t->__voting_histograms[__idx6(1, i, j, d)] +=

59 t->__voting_histograms[__idx6(1, i-1, j, d)];

60 }

61 }

62 }

63

64 // Aggregating up-down

65 for (int i = 0; i < t->__rows; ++i) {

66 for (int j = jfrom; j < jto; ++j) {

67 cross_t* c = &t->__crosses[__idx2(0, i, j)];

68 for (int d = 0; d <= DMAX; ++d) {

69 if (i+c->ym == 0)

70 t->__voting_histograms[__idx6(0, i, j, d)] =

71 t->__voting_histograms[__idx6(1, i+c->yp, j, d)];

72 else

73 t->__voting_histograms[__idx6(0, i, j, d)] =

74 t->__voting_histograms[__idx6(1, i+c->yp, j, d)]

75 - t->__voting_histograms[__idx6(1, (i+c->ym)-1, j, d)];

76 }

77 }

78 }

79 }

80

81 void __iterative_voting(bigtask_t* t, int worker_id) {

82 int ifrom = (worker_id * t->__rows) / __nworkers;

83 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

84 for (int i = ifrom; i < ito; ++i) {

85 for (int j = 0; j < t->__cols; ++j) {

86 if (t->__outliers[__idx7(i, j)] != OUT_NONE) {
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87 int sp = t->__voting_histograms[__idx6(0, i, j, 0)], dmax = 0;

88 for (int d = 1; d <= DMAX; ++d) {

89 sp += t->__voting_histograms[__idx6(0, i, j, d)];

90 if (t->__voting_histograms[__idx6(0, i, j, d)] >

91 t->__voting_histograms[__idx6(0, i, j, dmax)]) dmax = d;

92 }

93 float th = (float)t->__voting_histograms[__idx6(0, i, j, dmax)]/(float)sp;

94 if (th > ITER_TAUH && sp > ITER_TAUS) {

95 t->__voting_disparities[__idx7(i, j)] = dmax;

96 }

97 else t->__voting_disparities[__idx7(i, j)] = -1;

98 }

99 }

100 }

101 }

102

103 void __vote_consolidation(bigtask_t* t, int worker_id) {

104 int ifrom = (worker_id * t->__rows) / __nworkers;

105 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

106 for (int i = ifrom; i < ito; ++i) {

107 for (int j = 0; j < t->__cols; ++j) {

108 if (t->__outliers[__idx7(i, j)] != OUT_NONE

109 && t->__voting_disparities[__idx7(i, j)] != -1) {

110 t->__disparity_estimate[__idx2(0, i, j)] =

111 t->__voting_disparities[__idx7(i, j)];

112 t->__outliers[__idx7(i, j)] = OUT_NONE;

113 }

114 }

115 }

116 }

117

118 #endif

A.1.12 09 proper interpolation.hpp

1 #ifndef __09_INTERPOLATION_HPP

2 #define __09_INTERPOLATION_HPP
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3

4 #include "../common.hpp"

5

6 void __proper_interpolation(bigtask_t* t, int worker_id) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 if (t->__outliers[__idx7(i, j)] != OUT_NONE) {

12 t->__interpolation_disparities[__idx7(i, j)] = -1;

13 int __reliables[16][2];

14

15 bool found = false;

16 for (int x = 0; x < 16; ++x) __reliables[x][0] = __reliables[x][1] = -1;

17

18 int cnt = 1;

19 while (!found) {

20 for (int x = 0; x < 16; ++x) {

21 int* rlb = &__reliables[x][0];

22 int ii = cnt*(t->__interpolation_dirs[x][0]);

23 int jj = cnt*(t->__interpolation_dirs[x][1]);

24 if (i + ii >= 0 && i + ii < t->__rows

25 && j + jj >= 0 && j + jj < t->__cols

26 && t->__outliers[__idx7(i+ii, j+jj)] == OUT_NONE) {

27 rlb[0] = i+ii;

28 rlb[1] = j+jj;

29 found = true;

30 }

31 }

32 cnt++;

33 }

34

35 if (t->__outliers[__idx7(i, j)] == OUT_MISM) {

36 int min = -1, cdiff = -1;

37 for (int x = 0; x < 16; ++x) {

38 int* rlb = &__reliables[x][0];

39 if (rlb[0] != -1) {
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40 int cdtemp = __color_diff(&(t->__img_data[__idx1(0, i, j)]),

41 &(t->__img_data[__idx1(0, rlb[0], rlb[1])]));

42 int de = t->__disparity_estimate[__idx2(0, rlb[0], rlb[1])];

43 if (min == -1 || cdtemp < cdiff) {

44 min = de;

45 cdiff = cdtemp;

46 }

47 }

48 }

49 t->__interpolation_disparities[__idx7(i, j)] = min;

50 }

51

52 else if (t->__outliers[__idx7(i, j)] == OUT_OCCL) {

53 int min = -1;

54 for (int x = 0; x < 16; ++x) {

55 int* rlb = &__reliables[x][0];

56 if (rlb[0] != -1) {

57 int de = t->__disparity_estimate[__idx2(0, rlb[0], rlb[1])];

58 if (min == -1 || de < min) min = de;

59 }

60 }

61 t->__interpolation_disparities[__idx7(i, j)] = min;

62 }

63 }

64 }

65 }

66 }

67

68 void __interpolation_consolidation(bigtask_t* t, int worker_id) {

69 int ifrom = (worker_id * t->__rows) / __nworkers;

70 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

71 for (int i = ifrom; i < ito; ++i) {

72 for (int j = 0; j < t->__cols; ++j) {

73 if (t->__outliers[__idx7(i, j)] != OUT_NONE

74 && t->__interpolation_disparities[__idx7(i, j)] != -1) {

75 t->__disparity_estimate[__idx2(0, i, j)] =

76 t->__interpolation_disparities[__idx7(i, j)];
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77 }

78 }

79 }

80 }

81

82 #endif

A.1.13 10 edge detection.hpp

1 #ifndef __10_EDGEDETECT_HPP

2 #define __10_EDGEDETECT_HPP

3

4 #include "../common.hpp"

5

6 static int __laplace[3][3] = {

7 {-1, -1, -1},

8 {-1, 8, -1},

9 {-1, -1, -1}

10 };

11

12 void __edge_detection(bigtask_t* t, int worker_id) {

13 int ifrom = (worker_id * t->__rows) / __nworkers;

14 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

15 for (int i = ifrom; i < ito; ++i) {

16 int iimin = std::max(-i, -1);

17 int iimax = std::min((t->__rows-i)-1, 1);

18 for (int j = 0; j < t->__cols; ++j) {

19 int lapl = 0;

20 int jjmin = std::max(-j, -1);

21 int jjmax = std::min((t->__cols-j)-1, 1);

22 for (int ii = iimin; ii <= iimax; ii++) {

23 for (int jj = jjmin; jj <= jjmax; jj++) {

24 lapl +=

25 t->__disparity_estimate[__idx2(0, i+ii, j+jj)]

26 * __laplace[ii+1][jj+1];

27 }

28 }
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29 if (lapl == 0) t->__disparity_edges[__idx7(i, j)] = 1;

30 else t->__disparity_edges[__idx7(i, j)] = 0;

31 }

32 }

33 }

34

35 #endif

A.1.14 11 discontinuity adjustment.hpp

1 #ifndef __11_DISCONTADJ_HPP

2 #define __11_DISCONTADJ_HPP

3

4 #include "../common.hpp"

5

6 void __discontinuity_adjustment(bigtask_t* t, int worker_id) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 if (t->__disparity_edges[__idx7(i, j)]) {

12 int j1 = j, j2 = j;

13 while (j1 >= 0 && t->__disparity_edges[__idx7(i, j1)]) j1--;

14 while (j2 < t->__cols && t->__disparity_edges[__idx7(i, j2)]) j2++;

15 int d = t->__disparity_estimate[__idx2(0, i, j)];

16 double c2 = t->__c2_values[__idx6(0, d, i, j)];

17

18 if (j1 >= 0) {

19 int d1 = t->__disparity_estimate[__idx2(0, i, j1)];

20 double c2a = t->__c2_values[__idx6(0, d1, i, j)];

21 if (c2a < c2) t->__disparity_estimate[__idx2(0, i, j)] = d1;

22 }

23

24 if (j2 < t->__cols) {

25 int d2 = t->__disparity_estimate[__idx2(0, i, j2)];

26 double c2b = t->__c2_values[__idx6(0, d2, i, j)];

27 if (c2b < c2) t->__disparity_estimate[__idx2(0, i, j)] = d2;
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28 }

29 }

30 }

31 }

32 }

33

34 #endif

A.1.15 12 sub pixel enhancement.hpp

1 #ifndef __12_SUBPIX_HPP

2 #define __12_SUBPIX_HPP

3

4 #include "../common.hpp"

5

6 void __sub_pixel_enhancement(bigtask_t* t, int worker_id) {

7 int ifrom = (worker_id * t->__rows) / __nworkers;

8 int ito = ((worker_id + 1) * t->__rows) / __nworkers;

9 for (int i = ifrom; i < ito; ++i) {

10 for (int j = 0; j < t->__cols; ++j) {

11 int d = t->__disparity_estimate[__idx2(0, i, j)];

12 float num, den;

13 if (d == 0 || d == DMAX) {

14 num = 0; den = 1;

15 }

16 else {

17 float c0 = t->__c2_values[__idx6(0, i, j, d-1)];

18 float c1 = t->__c2_values[__idx6(0, i, j, d)];

19 float c2 = t->__c2_values[__idx6(0, i, j, d+1)];

20 num = c2 - c0;

21 den = 2*(c0+c2-2*c1);

22 }

23

24 t->__disparity_subpix[__idx7(i, j)] =

25 std::max((float)0, std::min((float)d - num/den, (float)DMAX));

26 }

27 }
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28 }

29

30 #endif

A.1.16 13 median filter.hpp

1 #ifndef __13_MEDIAN_FILTER

2 #define __13_MEDIAN_FILTER

3

4 #include "../common.hpp"

5 #include <cstring>

6

7 void __median_filter(bigtask_t* t, int worker_id) {

8 uint8_t __median_bins[DMAX+1];

9 int ifrom = 1 + ((worker_id * (t->__rows - 2)) / __nworkers);

10 int ito = 1 + (((worker_id+1) * (t->__rows - 2)) / __nworkers);

11 for (int i = ifrom; i < ito; ++i) {

12 for (int j = 1; j < t->__cols - 1; ++j) {

13 std::memset(__median_bins, 0, (DMAX+1)*sizeof(uint8_t));

14 __median_bins[(uint)t->__disparity_subpix[__idx7(i-1, j-1)]]++;

15 __median_bins[(uint)t->__disparity_subpix[__idx7(i-1, j)]]++;

16 __median_bins[(uint)t->__disparity_subpix[__idx7(i-1, j+1)]]++;

17 __median_bins[(uint)t->__disparity_subpix[__idx7(i, j-1)]]++;

18 __median_bins[(uint)t->__disparity_subpix[__idx7(i, j)]]++;

19 __median_bins[(uint)t->__disparity_subpix[__idx7(i, j+1)]]++;

20 __median_bins[(uint)t->__disparity_subpix[__idx7(i+1, j-1)]]++;

21 __median_bins[(uint)t->__disparity_subpix[__idx7(i+1, j)]]++;

22 __median_bins[(uint)t->__disparity_subpix[__idx7(i+1, j+1)]]++;

23

24 int tot = 0, d = 0;

25 while (tot < 5) tot += __median_bins[d++];

26

27 t->__disparity_final[__idx7(i, j)] = d-1;

28 }

29 }

30 }

31
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32 #endif

A.2 Skeleton code

A.2.1 emitter.hpp

1 #ifndef __FARM_EMIT_HPP

2 #define __FARM_EMIT_HPP

3

4 #include <ff/farm.hpp>

5 #include <chrono>

6 #include <cmath>

7 #include <string>

8 #include <ff/mapping_utils.hpp>

9

10 #include "../common.hpp"

11

12 #include "task.hpp"

13 #include "stages.hpp"

14

15 using namespace ff;

16

17 class MyLoadBalancer: public ff::ff_loadbalancer {

18 private:

19 inline size_t selectworker() { return victim; }

20 size_t victim;

21 public:

22 MyLoadBalancer(int max_num_workers):

23 ff::ff_loadbalancer(max_num_workers) {}

24

25 void set_victim(size_t v) { victim = v; }

26 };

27

28 class SVEmitter : public ff_node {

29 private:

30 bool first = true;
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31

32 MyLoadBalancer* lb;

33 int last_stream;

34

35 public:

36 SVEmitter(MyLoadBalancer* lb): lb(lb) {

37 last_stream = 0;

38 }

39

40 void* svc(void* task) {

41 if (task == NULL) {

42 int tcmax = std::min(__ndatapar, __streamsz);

43 for (int tcount = 0; tcount < tcmax; ++tcount) {

44 int wid = tcount * __nworkers;

45 for (int i = 0; i < __nworkers; ++i) {

46 lb->set_victim(wid++);

47 ff_send_out((void*)make_task(i, 0, last_stream, tcount));

48 }

49 last_stream++;

50 }

51 }

52

53 else {

54 uint8_t worker_id;

55 uint8_t stage_id;

56 uint16_t stream_id;

57 uint8_t datapar_id;

58

59 read_task((uint64_t)task, worker_id, stage_id, stream_id,

60 datapar_id);

61

62 if (stages[stage_id+1].name == nullptr) {

63 int newtask = last_stream + 1;

64 last_stream++;

65 if (newtask < __streamsz) {

66 int wid = datapar_id * __nworkers;

67 for (int i = 0; i < __nworkers; ++i) {
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68 lb->set_victim(wid++);

69 ff_send_out(

70 (void*)make_task(i, 0, newtask, datapar_id)

71 );

72 }

73 }

74

75 if (stream_id == __streamsz-1) return NULL;

76

77 return GO_ON;

78 } else {

79 int wid = datapar_id * __nworkers;

80 for (int i = 0; i < __nworkers; ++i) {

81 lb->set_victim(wid++);

82 ff_send_out(

83 (void*)make_task(i, stage_id+1, stream_id, datapar_id)

84 );

85 }

86 }

87 }

88

89 return GO_ON;

90 }

91 };

92

93 #endif

A.2.2 worker.hpp

1 #ifndef __FARM_WORK_HPP

2 #define __FRAM_WORK_HPP

3

4 #include "task.hpp"

5 #include "stages.hpp"

6

7 #include <ff/node.hpp>

8
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9 class SVWorker : public ff_node {

10 public:

11 void* svc(void* task) {

12 uint8_t worker_id;

13 uint8_t stage_id;

14 uint16_t stream_id;

15 uint8_t datapar_id;

16

17 read_task((uint64_t)task, worker_id, stage_id, stream_id, datapar_id);

18

19 const stage_t* s = &(stages[stage_id]);

20 if (s->tag == wtask_tag::TASK1)

21 (s->callback.callback1)(&__stream[datapar_id], worker_id);

22 else if (s->tag == wtask_tag::TASK2)

23 (s->callback.callback2)(&__stream[datapar_id], worker_id, s->lr);

24 else if (s->tag == wtask_tag::TASK3)

25 (s->callback.callback3)(&__stream[datapar_id], worker_id, s->lr, s->q);

26 ff_send_out(task);

27

28 return GO_ON;

29 }

30 };

31

32 #endif

A.2.3 collector.hpp

1 #ifndef __FARM_COLL_HPP

2 #define __FRAM_COLL_HPP

3

4 #include "task.hpp"

5 #include <ff/node.hpp>

6

7 using namespace ff;

8

9 class SVCollector : public ff_node {

10 public:

108



11 void* svc(void* task) {

12 uint8_t worker_id;

13 uint8_t stage_id;

14 uint16_t stream_id;

15 uint8_t datapar_id;

16

17 read_task((uint64_t)task, worker_id, stage_id, stream_id, datapar_id);

18

19 __counters[datapar_id]--;

20

21 if (__counters[datapar_id] == 0) {

22 __counters[datapar_id] = __nworkers;

23 ff_send_out(task);

24 }

25

26 return GO_ON;

27 }

28 };

29

30 #endif

A.2.4 task.hpp

1 #ifndef __FARM_TASK_HPP

2 #define __FARM_TASK_HPP

3

4 #include "../common.hpp"

5 #define PI 3.14159265358979323846264338327

6

7 typedef struct bigtask_t {

8 uint8_t* __img_data;

9 uint8_t* __img_grey;

10 uint64_t* __census_data;

11 cross_t* __crosses;

12 float* __aggregation;

13 int* __supp_sizes;

14 int* __supp_size_HV;
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15 int* __supp_size_VH;

16 float* __scanline_opt;

17 float* __c2_values;

18 int* __disparity_estimate;

19 float* __disparity_subpix;

20 float* __disparity_final;

21 outlier_t* __outliers;

22 int* __voting_histograms;

23 int* __voting_disparities;

24 float __interpolation_dirs[16][2];

25 int* __interpolation_disparities;

26 float* __disparity_edges;

27 const int __rows = ROWS, __cols = COLS;

28

29 bigtask_t() {

30 __img_data = fdata;

31 __img_grey = fdataG;

32 __census_data = new uint64_t[2*ROWS*COLS];

33 __crosses = new cross_t[2*ROWS*COLS];

34 __aggregation = new float[2*2*ROWS*COLS*(DMAX+1)];

35 __supp_sizes = new int[2*2*ROWS*COLS];

36 __supp_size_HV = new int[2*ROWS*COLS];

37 __supp_size_VH = new int[2*ROWS*COLS];

38 __scanline_opt = new float[2*4*ROWS*COLS*(DMAX+1)];

39 __c2_values = new float[2*ROWS*COLS*(DMAX+1)];

40 __disparity_estimate = new int[2*ROWS*COLS];

41 __disparity_subpix = new float[ROWS*COLS];

42 __disparity_final = new float[ROWS*COLS];

43 __outliers = new outlier_t[ROWS*COLS];

44 __voting_histograms = new int[2*ROWS*COLS*(DMAX+1)];

45 __voting_disparities = new int[ROWS*COLS];

46 __interpolation_disparities = new int[ROWS*COLS];

47 __disparity_edges = new float[ROWS*COLS];

48

49 for (int x = 0; x < 16; ++x) {

50 __interpolation_dirs[x][0] = std::sin((float)x * PI/8); // y -> rows

51 __interpolation_dirs[x][1] = std::cos((float)x * PI/8); // x -> cols
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52 }

53 }

54

55 ~bigtask_t() {

56 delete[] __census_data;

57 delete[] __crosses;

58 delete[] __aggregation;

59 delete[] __supp_sizes;

60 delete[] __supp_size_HV;

61 delete[] __supp_size_VH;

62 delete[] __scanline_opt;

63 delete[] __c2_values;

64 delete[] __disparity_estimate;

65 delete[] __disparity_subpix;

66 delete[] __disparity_final;

67 delete[] __outliers;

68 delete[] __voting_histograms;

69 delete[] __voting_disparities;

70 delete[] __interpolation_disparities;

71 delete[] __disparity_edges;

72 }

73

74 } bigtask_t;

75

76

77 typedef void (*callback1_t)(bigtask_t*, int);

78 typedef void (*callback2_t)(bigtask_t*, int, int);

79 typedef void (*callback3_t)(bigtask_t*, int, int, int);

80

81 typedef enum {TASK1, TASK2, TASK3} wtask_tag;

82 typedef union {

83 callback1_t callback1;

84 callback2_t callback2;

85 callback3_t callback3;

86 } callback_t;

87

88 callback_t __callback1(callback1_t c) {
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89 callback_t callback;

90 callback.callback1 = c;

91 return callback;

92 }

93

94 callback_t __callback2(callback2_t c) {

95 callback_t callback;

96 callback.callback2 = c;

97 return callback;

98 }

99

100 callback_t __callback3(callback3_t c) {

101 callback_t callback;

102 callback.callback3 = c;

103 return callback;

104 }

105

106 typedef struct stage_t {

107 wtask_tag tag;

108 const char* name;

109 callback_t callback;

110 int count;

111 int lr;

112 int q;

113

114 stage_t (wtask_tag tag, const char* name, callback_t callback, int lr, int q):

115 tag(tag), name(name), callback(callback), lr(lr), q(q) {};

116 } stage_t;

117

118

119 void inline read_task(uint64_t task, uint8_t& worker_id, uint8_t& stage_id,

120 uint16_t& stream_id, uint8_t& datapar_id) {

121 worker_id = task & 0xff;

122 stage_id = (task & 0xff00) >> 8;

123 stream_id = (task & 0xffff0000) >> 16;

124 datapar_id = (task &0xff00000000) >> 32;

125 }
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126

127 uint64_t inline make_task(uint8_t worker_id, uint8_t stage_id,

128 uint16_t stream_id, uint8_t datapar_id) {

129 uint64_t ret = 0x7000000000000000;

130 ret |= worker_id;

131 ret |= stage_id * (1 << 8);

132 ret |= stream_id * (1 << 16);

133 ret |= datapar_id * (1 << 32);

134 return ret;

135 }

136

137 bigtask_t* __stream;

138 int* __counters;

139 #endif

A.2.5 stages.hpp

1 #ifndef __STAGES_HPP

2 #define __STAGES_HPP

3

4 #include "task.hpp"

5 #include "../stages/00_census_transform.hpp"

6 #include "../stages/01_cost_initialization.hpp"

7 #include "../stages/02_cross_building.hpp"

8 #include "../stages/03_support_size_computation.hpp"

9 #include "../stages/04_aggregation.hpp"

10 #include "../stages/05_scanline_optimization.hpp"

11 #include "../stages/06_disparity_estimation.hpp"

12 #include "../stages/07_outlier_detection.hpp"

13 #include "../stages/08_iterative_voting.hpp"

14 #include "../stages/09_proper_interpolation.hpp"

15 #include "../stages/10_edge_detection.hpp"

16 #include "../stages/11_discontinuity_adjustment.hpp"

17 #include "../stages/12_sub_pixel_enhancement.hpp"

18 #include "../stages/13_median_filter.hpp"

19

20 void dummy(bigtask_t* b, int i){};
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21

22 const stage_t stages[] = {

23 stage_t(TASK2, "__census_init",

24 __callback2(__census_init), 0, -1),

25 stage_t(TASK2, "__census_init",

26 __callback2(__census_init), 1, -1),

27

28 stage_t(TASK2, "__cross_building",

29 __callback2(__cross_building), 0, -1),

30 stage_t(TASK2, "__cross_building",

31 __callback2(__cross_building), 1, -1),

32 stage_t(TASK2, "__HV_supp_compute",

33 __callback2(__HV_supp_compute), 0, -1),

34 stage_t(TASK2, "__HV_supp_compute",

35 __callback2(__HV_supp_compute), 1, -1),

36 stage_t(TASK2, "__VH_supp_compute",

37 __callback2(__VH_supp_compute), 0, -1),

38 stage_t(TASK2, "__VH_supp_compute",

39 __callback2(__VH_supp_compute), 1, -1),

40

41 stage_t(TASK1, "__cost_initialization",

42 __callback1(__cost_initialization), -1, -1),

43

44 // Aggregation

45 stage_t(TASK2, "__horizontal",

46 __callback3(__horizontal), 0, -1),

47 stage_t(TASK2, "__vertical",

48 __callback3(__vertical), 1, -1),

49 stage_t(TASK2, "__HV_supp_normalize",

50 __callback3(__HV_supp_normalize), 0, -1),

51

52 stage_t(TASK2, "__vertical",

53 __callback3(__vertical), 0, -1),

54 stage_t(TASK2, "__horizontal",

55 __callback3(__horizontal), 1, -1),

56 stage_t(TASK2, "__VH_supp_normalize",

57 __callback3(__VH_supp_normalize), 0, -1),
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58

59 stage_t(TASK2, "__horizontal",

60 __callback3(__horizontal), 0, -1),

61 stage_t(TASK2, "__vertical",

62 __callback3(__vertical), 1, -1),

63 stage_t(TASK2, "__HV_supp_normalize",

64 __callback3(__HV_supp_normalize), 0, -1),

65

66 stage_t(TASK2, "__vertical",

67 __callback3(__vertical), 0, -1),

68 stage_t(TASK2, "__horizontal",

69 __callback3(__horizontal), 1, -1),

70 stage_t(TASK2, "__VH_supp_normalize",

71 __callback3(__VH_supp_normalize), 0, -1),

72

73 stage_t(TASK2, "__aggregation_finalization",

74 __callback2(__aggregation_finalization), -1, -1),

75

76 // Scanline optimization

77 stage_t(TASK2, "__scanline_optimization",

78 __callback2(__scanline_optimization), 0, -1),

79 stage_t(TASK2, "__scanline_optimization",

80 __callback2(__scanline_optimization), 1, -1),

81 // END Scanline optimization

82

83 // Disparity estimation

84 stage_t(TASK2, "__disparity_estimation",

85 __callback2(__disparity_estimation), 0, -1),

86 stage_t(TASK2, "__disparity_estimation",

87 __callback2(__disparity_estimation), 1, -1),

88 // END Disparity estimation

89

90 stage_t(TASK1, "__outlier_detection",

91 __callback1(__outlier_detection), -1, -1),

92

93 // Iterative voting

94 stage_t(TASK1, "__histogram_init",
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95 __callback1(__histogram_init), -1, -1),

96 stage_t(TASK1, "__histogram_computation_H",

97 __callback1(__histogram_computation_H), -1, -1),

98 stage_t(TASK1, "__histogram_computation_V",

99 __callback1(__histogram_computation_V), -1, -1),

100 stage_t(TASK1, "__iterative_voting",

101 __callback1(__iterative_voting), -1, -1),

102 stage_t(TASK1, "__vote_consolidation",

103 __callback1(__vote_consolidation), -1, -1),

104

105 stage_t(TASK1, "__histogram_init",

106 __callback1(__histogram_init), -1, -1),

107 stage_t(TASK1, "__histogram_computation_H",

108 __callback1(__histogram_computation_H), -1, -1),

109 stage_t(TASK1, "__histogram_computation_V",

110 __callback1(__histogram_computation_V), -1, -1),

111 stage_t(TASK1, "__iterative_voting",

112 __callback1(__iterative_voting), -1, -1),

113 stage_t(TASK1, "__vote_consolidation",

114 __callback1(__vote_consolidation), -1, -1),

115

116 stage_t(TASK1, "__histogram_init",

117 __callback1(__histogram_init), -1, -1),

118 stage_t(TASK1, "__histogram_computation_H",

119 __callback1(__histogram_computation_H), -1, -1),

120 stage_t(TASK1, "__histogram_computation_V",

121 __callback1(__histogram_computation_V), -1, -1),

122 stage_t(TASK1, "__iterative_voting",

123 __callback1(__iterative_voting), -1, -1),

124 stage_t(TASK1, "__vote_consolidation",

125 __callback1(__vote_consolidation), -1, -1),

126

127 stage_t(TASK1, "__histogram_init",

128 __callback1(__histogram_init), -1, -1),

129 stage_t(TASK1, "__histogram_computation_H",

130 __callback1(__histogram_computation_H), -1, -1),

131 stage_t(TASK1, "__histogram_computation_V",
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132 __callback1(__histogram_computation_V), -1, -1),

133 stage_t(TASK1, "__iterative_voting",

134 __callback1(__iterative_voting), -1, -1),

135 stage_t(TASK1, "__vote_consolidation",

136 __callback1(__vote_consolidation), -1, -1),

137

138 stage_t(TASK1, "__histogram_init",

139 __callback1(__histogram_init), -1, -1),

140 stage_t(TASK1, "__histogram_computation_H",

141 __callback1(__histogram_computation_H), -1, -1),

142 stage_t(TASK1, "__histogram_computation_V",

143 __callback1(__histogram_computation_V), -1, -1),

144 stage_t(TASK1, "__iterative_voting",

145 __callback1(__iterative_voting), -1, -1),

146 stage_t(TASK1, "__vote_consolidation",

147 __callback1(__vote_consolidation), -1, -1),

148 // END Iterative voting

149

150 // Interpolation

151 stage_t(TASK1, "__proper_interpolation",

152 __callback1(__proper_interpolation), -1, -1),

153 stage_t(TASK1, "__interpolation_consolidation",

154 __callback1(__interpolation_consolidation), -1, -1),

155 // END Interpolation

156

157 stage_t(TASK1, "__edge_detection",

158 __callback1(__edge_detection), -1, -1),

159 stage_t(TASK1, "__discontinuity_adjustment",

160 __callback1(__discontinuity_adjustment), -1, -1),

161 stage_t(TASK1, "__sub_pixel_enhancement",

162 __callback1(__sub_pixel_enhancement), -1, -1),

163

164 stage_t(TASK1, "__median_filter",

165 __callback1(__median_filter), -1, -1),

166

167 stage_t(TASK1, nullptr, __callback1(dummy), -1, -1)

168 };
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169

170 #endif
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