
UNIVERSITY OF PISA

COMPUTER SCIENCE DEPARTMENT

The Prosper runtime monitor:
design and formal verification

Candidate:

Hind Chfouka

hind.chf@gmail.com

Supervisors

Andrea Corradini

Roberto Guanciale

Examiner

Fabrizio Baiardi

Academic year 2013-2014

mailto:hind.chf@gmail.com

To my sister Ymane

Abstract

Runtime monitoring is a technique that can be used to guarantee a certain se-

curity property over a system resource. In computer systems, a common approach

is to deploy a runtime monitor as a security module of the Operating System’s

kernel. This approach suffers from some vulnerabilities that can compromise the

integrity of the security module. In a virtualized environment, an alternative ap-

proach is to exploit the isolation property to protect the security module. In this

thesis, a runtime monitor supported by the Prosper hypervisor is presented. This

is a fully verified Virtual Machine Monitor for embedded system targeting an ARM

CPU architecture. The runtime monitor presented is able to guarantee a security

property thanks to the monitoring of the hypercalls that are provided to the guest

Operating System by the hypervisor. Through a formal methodology, the thesis

discusses the enforceable security properties for the proposed monitor and identi-

fies a security property that permits the protection of the Operating System from

code injection attacks. The enforcement of this property is possible thanks to a

validation mechanism of the hypercalls that is formally identified in this work. The

thesis presents the proof of correctness of the validation mechanism that is fully

verified with the support of the HOL4 proof assistant.

Acknowledgements

I would like to thank my supervisors Andrea Corradini and Roberto Guanciale

for the academic support; I express my gratitude to Andrea Corradini for all

the feedbacks related to the thesis, for introducing me to the topic of the formal

verification and for being my academic tutor during the last two years of my master

studies. I am thankful to Roberto Guanciale for the valuable guidances during my

studies and research at the Royal Institute Of Technology, thank you for the time

spent to discuss the thesis and all my doubts. I would like to thank my examiner

Fabrizio Baiardi for the important feedback about the thesis. My thanks goes also

to Hamed Nemati and Oliver Schwarz for the technical help provided to me during

the project work.

My sincere thanks also goes to Mads Dam and Christian Gehrmann for ac-

cepting my Erasmus Placement proposal and letting me take part of the Prosper

project.

Besides the academic acknowledgements, I would like to thank Giulia and

Roberto, Andrea Azzarà, Christiane Baum for their friendship during the months

spent in Stockholm. Also, I would like to thank Aida and Bengt Nilsson for

supporting and orienting me in the Swedish society.

I am grateful to my uncle Ahmed thanks to whom my passion for the mathe-

matics started since an early age. My sincere thanks also goes to Maura Casella,

thank you for your presence and support throughout my years of studies.

Thanks to my friends and colleges Ilaria Ceppa, Lorenzo Vannucci, Alessandro

Bianchi, Laura Guidi, Annalisa Cipolli, Chiara Marcheschi and Marco Ponza for

the time spent together. Your friendship coloured my days at the Polo Fibonacci

for the last six years :-).

A special thanks goes to my parents. I am grateful for your unconditional love,

support and patient. Thank you Ymane for being my sister, my strength and my

1

inspiration in life. There are no words to express how I feel blessed for being part

of our splendid family.

A big thanks goes to Emilio, thank you for your love and support and for being

there for me.

Last but not least, I would like to thank my friend Giusi, thank you for being

my best friend in life.

2

Contents

1 Introduction 5

1.1 Structure of the thesis . 7

2 Background 8

2.1 Virtualization . 8

2.1.1 Overview on virtualization 9

2.1.2 Types of virtualization . 12

2.1.3 Advantanges of virtualization 15

2.2 The Prosper Hypervisor . 17

2.2.1 ARM architecture . 18

2.2.2 Formal Model of the ARM architecture 24

2.2.3 Hypervisor: design and isolation property 27

2.3 Automated Theorem Proving . 32

2.3.1 The HOL4 thorem prover 33

3 Runtime monitoring for Prosper 37

3.1 Motivations and Goals . 37

3.2 The Prosper runtime monitor . 40

3.2.1 Design choices . 42

3.2.2 Security properties . 46

3.2.3 Security policy and validation mechanism 50

3.3 Formal proof of correctness . 61

3.3.1 Top Level Specification . 62

3.3.2 Goals formalization and proof 63

4 Correctness of Prosper monitor with HOL4 74

4.1 General structure of the proof verification 74

3

4.2 Example of proof with the HOL4 76

5 Conclusions 79

5.1 Related works . 80

5.2 Future works . 81

Bibliography 82

4

Chapter 1

Introduction

Runtime monitoring [28] [15] [19] is a computing system analysis technique based

on the observation of a running system and the consequent reaction in case of

violation of certain security properties. A common application domain of this

analysis technique are Operating Systems. An OS has the task of managing and

protecting the system resources (memory, I/O devices, files, etc) from malicious

accesses, based on a security policy. An approach [33] for realizing the system re-

sources protection is to deploy a kernel security module that monitors and controls

all the accesses of the system’s subjects (processes, applications, users, etc) to the

resources. The security module intercepts all the access operations on the basis of

a security policy, and validates them using a suitable validation mechanism.

The approach of protecting the system resources with a kernel module suffers

from some vulnerabilities [9] that are a motivation for this thesis. The runtime

security module that protects the system resources is a security-critical compo-

nent of the system. Therefore, a malicious manipulation of the module itself can

compromise the system resources protection, and have undesirable consequences

for the whole system security. This kind of attacks are possible in practice since

commodity OS (Linux for instance) are not tamper-resistant [9], which means they

are vulnerable to malicious manipulations as shown by many case studies in the

literature on OS security.

A kernel security module should be part of the trusted computing base. There-

fore, it is desirable to be able to formally verify its correctness. Unfortunately, the

task of the formal verification of a software component becomes infeasible when it

comes to an Operating System’s module. In fact, it is well known that the com-

5

plexity and size of Operating Systems are an obstacle to their formal verification.

In this thesis, we present an alternative approach for the runtime monitoring

of a commodity OS that takes advantage of the virtualization [26] [31] technology.

The approach relies on the isolation property, that is one of the main benefits of

the virtualization, to provide a tamper-resistant runtime monitor. The runtime

monitor proposed is based on the Prosper hypervisor [3] [11] [12] [20]. This is a

fully verified Virtual Machine Monitor for embedded systems targeting the ARM

architecture [27] [29] and developed in the Prosper project1.

We present the general design choices for a runtime monitor supported by the

Prosper hypervisor. The goal of this monitor is to control the system running

as guest of the hypervisor, and to enforce a correct system state with respect

to a security property. The design choices exploit the infrastructure provided by

the hypervisor and allow the complete mediation of the runtime monitor in the

operations that are sensitive for the security property.

In this work, we present a general analysis that identifies what kind of security

properties can be enforced by the Prosper monitor. This analysis takes into account

the infrastructure provided by the Prosper hypervisor. Furthermore, since the

Prosper monitor belongs to the general class of Execution Monitors (EM) [28], the

thesis takes into account that the enforceable properties by an EM must satisfy a

necessary condition, that is formalized in [28], in order to be ensured.

A significant part of the thesis studies a particular application of the Prosper

monitor. This application has the goal of protecting the Linux kernel running as

guest of the hypervisor from code injection attacks. To this purpose, we identify

two security properties that need to be enforced. Through a formal methodology,

we define an appropriate validation mechanism for the Prosper monitor that is

able to guarantee the security properties. Therefore, we provide a complete proof

of correctness for the validation mechanism. This proof is fully verified with the

assistance of the HOL4 theorem prover [17].

An important part of the work described in this thesis has been realized at the

Theoretical Computer Science group of the Royal Institute of Technology (KTH),

where part of the Prosper project is developed.

1The Prosper project is a collaboration between the Security Lab of the Swedish In-

stitute of Computer Science, and the Theoretical Computer Science group at the Royal

Institute of Technology (KTH)

6

1.1 Structure of the thesis

This thesis is structured as follows:

• Chapter 2 introduces all the background needed to understand the follow-

ing chapters. Section 2.1 presents the virtualization describing the main

concepts behind this technology, the main types of virtualization and its

advantages. Section 2.2 presents the Prosper hypervisor and the formally

verified isolation properties. Section 2.3 presents Automated Theorem Prov-

ing as a formal method for software and hardware verification, introducing

the HOL4 theorem prover that is used to verify the proof of correctness of

the validation mechanism.

• Chapter 3 presents the Prosper monitor designed and formally verified in this

thesis. Section 3.1 discusses the main motivations of the approach proposed

for the Prosper monitor, and describes the goals of the thesis work. Section

3.2 presents the Prosper monitor discussing the principle design choices, the

enforceable security properties, and the application to the code injection at-

tacks. Section 3.2.3 discusses the validation mechanism for this application,

and Section 3.3 presents the proof of correctness of the validation mecha-

nism.

• Chapter 4 presents the verification of the formal proof with the HOL4. Sec-

tion 4.1 presents briefly the general structure of this verification. In order

to give an idea to the reader about a machine assisted verification with the

HOL4, in Section 4.2 we provide an example of proof for a lemma.

• Chapter 5 concludes the work presented in this thesis, mentioning some

related works in Section 5.1 and discussing the possible future developments

in Section 5.2

7

Chapter 2

Background

2.1 Virtualization

One of the most efficient approaches for managing complexity in computer systems

is their division into levels of abstraction [31] [26]. Each level is responsible of

managing a set of the system resources at a different level of details, providing a

well defined interface to the other levels. The levels of abstraction or layers are

organized in a hierarchy: lower layers are implemented in hardware and higher

layers in software. The use of an interface allows the task of a computer system

design to be divided into independent sub-tasks, so that the hardware design and

the software design can proceed independently. This is only possible if the design

of each part respects the specification of the same instruction set, that is a well

defined interface. An Operating System as well provides an abstraction to the

applications running on top of it. This is possible thanks to an interface defined

as a set of system calls that are used by the applications developers without the

need of hardware details knowledge.

The interface based approach has many advantages to manage computer sys-

tem complexity, but it can be restrictive: a component that is designed for a

specific interface will not work with other interfaces. There are different proces-

sors with different instruction sets, and there are different operating systems. For

example, a user application distributed as binary program is committed to a spe-

cific instruction set and operating system. Therefore, diversity in computer system

architecture reduces the portability of a computer software component. Another

8

restriction is related to system resources consideration. A traditional computer

systems design relies on the implicit assumption that there is a single operating

system responsible of managing the system resources. This assumption reduces

the system flexibility in case more operating systems would like to share a single

set of resources.

Virtualization is the technology that overcomes the restrictions of flexibility

and portability. When a computer system component is virtualized, its interface

and all resources visible through the interface are mapped into the interface and

the resources of the real system. Thus, with the virtualization a second (virtual)

version of the real component is created so that it appears to be different. Vir-

tualization can be applied to a computer system component, such as disks, I/O

devices, memory, etc, but also to the entire hardware machine. In this thesis, we

are interested in the last type of virtualization, that is in Virtual Machines.

2.1.1 Overview on virtualization

Virtualization [26] [31] [7] introduces an additional layer that creates a virtual

version of the real computer system or subsystem. The virtual version is different

from the real and physical subsystem, but thanks to the additional layer it is

possible to emulate the real subsystem behavior. Let’s consider the example of

a hard disk. In some applications, it may be desirable to partition a single large

disk into a number of small virtual disks. Having multiple virtual disks is more

flexible than having a single physical disk, for example during resource allocation

to user applications. The virtual disks are mapped to a real disk by implementing

each of the virtual disks as a single large file on the real disk. It is therefore

necessary to introduce an additional layer that provides a mapping between virtual

disk contents and real disk contents using the file abstraction as an intermediate

step. Furthermore, each read or write operation from the virtual disk (namely an

operation on the file) is emulated by the additional layer with a real disk operation,

thanks to the mapping created.

More formally, virtualization involves the construction of an homomorphism f

that maps a real host system to a virtual guest system [26]. This homomorphism

maps the real state to the guest state, and for each possible sequence of operations

that modify the state of the host from Si to Sj , there is a corresponding sequence of

operations that perform an equivalent modification to the guest state from S′i to S′j .

9

It’s worth to stress that virtualization is different from abstraction. Virtualization

does not necessarily hide details, and the level of detail in a virtual system is often

the same as the underlying real system.

The virtualization of interest in this thesis is the hardware virtualization.

Hardware virtualization

With hardware virtualization the intent is to create a Virtual Machine, that is an

efficient and isolated duplicate of the real machine. This virtualization is imple-

mented by adding a layer of software called Virtual Machine Monitor (VMM) to

the real machine, as illustrated in figure 2.1. The VMM creates a simulated ma-

chine environment (the virtual machine) for the software running on top of the real

machine. In general a VMM allows the execution of complete operating systems

reaching a high versatility of the computer hardware.

Figure 2.1: Hardware Virtualization

In hardware virtualization, the real machine plays the role of a host, the virtual

machine plays the role of the guest, whereas the VMM realizes the homomorphism

mentioned above.

The article [26] of Popek and Goldberg is often referred to as the original

source for the VMM criteria. Here the conditions for a computer architecture to

support virtualization are defined. They also state the conditions a virtual machine

monitor must satisfy. These conditions are referred to as VMM properties, and

they are:

• Equivalence: The guest software should exhibit a behaviour that is essen-

tially identical to the one demonstrated when running directly on the real

10

machine. This property is also referred to as fidelity.

• Resource Control: The VMM must have complete control of the system

resources. This property is referred to as Safety.

• Efficiency: A significant number of machine instructions must be executed

without the VMM intermediation or, in other words, by the real machine

itself. This is referred to as Performance.

In order to satisfy the fidelity property, the environment provided by the VMM

must be equivalent to the real machine. This is possible if and only if: for any

possible starting state S1 of the real machine such that f(S1) = S2, where f is the

homomorphism mentioned above, if the real machine reaches a consistent state

S′1, then the virtual machine reaches a state S′2 such that S′2 = f(S′1). To fulfil

the safety property, the VMM must be invoked for each attempt of affecting the

system resources configuration by any arbitrary guest software. Finally, the third

property depends on the ability of the VMM to provide a virtual environment in

an efficient and optimized way.

Based on [26], the problem to be addressed in the creation of a VMM, when

operating within the characteristics of the Instruction Set Architecture (ISA) of the

targeted host machine, is the satisfaction of the above properties. Assuming that

there are two possible execution modes in a computer system, user and privileged

mode, the ISA includes two groups of instructions:

• Privileged instructions: these are instructions that trap if the processor is

in user mode and do not trap if it is in a privileged mode. An instruction

traps when a fault is raised causing a synchronous interrupt that must be

handled by the appropriate handler.

• Sensitive instructions: these are instructions that change the configuration

of the system resources.

The main result in [26] states that the construction of VMM that satisfies the

three properties is possible only if each sensitive instruction is privileged. This

criterion is now known as classically virtualizable. Assuming that a computer

system is classically virtualizable, the VMM is supposed to work with each group

of instructions maintaining the conditions of equivalence, resource control and

11

efficiency. To satisfy the first two properties, a VMM manage the guest software

and the underlying real machine through emulation, isolation, allocation:

1. Emulation: emulation is important for all guest operating systems. The

VMM must present a complete real environment, or virtual machine, for

each software guest including operating system and user applications. Ide-

ally, the OS and application are completely unaware they are sharing system

resources with other applications. Emulation is the key to satisfy the equiv-

alence property. However, in some cases reaching this complete unawareness

is not possible. To overcome this problem a special virtualization has been

introduced that is called para-virtualization. This is explained more in detail

in section 2.1.2.

2. Isolation: isolation is important for a secure and reliable environment.

Each virtual machine should be sufficiently separated and independent from

the operations and activities of other virtual machines. Faults that occur in

a single virtual machine should not impact others. This property provides

high levels of security and availability in a virtualized system.

3. Allocation: the VMM must allocate the hardware resources to the vir-

tual machines that it manages. Through allocation, the VMM satisfies the

resource control property.

In a classically virtualizable system, a VMM must reside at a higher privilege

level than the guest operating system. This is a necessary assumption to fulfil the

complete resources control requirement. On the other hand, modern operating

systems are designed to run in the highest privilege level. This is a challenging

problem to be addressed when designing a hardware virtualization. In fact, with-

out any intervention, a guest operating system is not able to perform privileged

instructions to manage the system resources. This problem is solved differently

based on the type of virtualization adopted.

2.1.2 Types of virtualization

In the literature on virtualization [32] [31], we can find different macro classes of

virtualization. Server virtualization is basically another notation for the hardware

12

virtualization discussed in section 2.1.1, otherwise called system virtualization.

Another class of virtualization is the Storage virtualization that deals with the

virtualization of storage devices (hard disks, memory storage, etc..). Network

virtualization instead applies the general concept of virtualization to a computer

network architecture.

With restriction to the hardware architecture, there are different paradigms

of virtualization that are deeply discussed in [13] and [14]. Here a summary is

presented:

Full virtualization

As discussed in Section 2.1.1, one requirement for a classically virtualizable system

is that the Virtual Machine Monitor must execute in privileged level, while the

guest OS executes in a non-privileged level. In this way, the guest OS is not able

to perform the privileged operations needed for the resources management, but

it must rely on the VMM mediation. In other words, the execution of privileged

instructions are delegated to the VMM. In the full virtualization, each time the

guest OS tries to execute a privileged instruction this generates a trap to the

privileged mode. Since the VMM executes in a privileged mode, one possibility is

to have a trap handler that emulates the privileged instruction requested by the

guest OS. In this way, privileged instructions are handled by the VMM before their

real execution by the real machine, while non-privileged instructions performed by

the guest OS do not trigger the trap-and-emulate mechanism.

Advantages: the advantage with this type of virtualization is that the guest

OS can run without any modification. This is possible since the virtual interface

provided to the guest is identical to the real machine interface. Consequently,

binary code of the operating system and user applications can run without any

modification.

Disdvantages the trap-and-emulate mechanism introduces a significant over-

head for each privileged execution performed in the system. Moreover, full virtu-

alization can be applied only under the classically virtualizable assumption, since

if there is a sensitive operation that is not privileged, the trap-and-emulate mech-

anism is not sufficient to guarantee a complete resource control by the VMM.

13

Binary translation

This virtualization paradigm is presented as a solution in case the group of sensitive

operations is not a subset of the group of privileged operations. In this case,

the Popek and Goldberg requirement for a classically virtualizable system is not

satisfied, and full virtualization cannot be applied. With binary translation, the

idea is to perform a scan of the guest code (dynamically) identifying all sensitive

operations, that do not trap, before they are executed. The identified operations

are replaced an explicit invocation of the VMM. This approach increases the code

size of the guest software introducing more vulnerabilities from a security point

of view. In fact, it is desirable to have the amount of code running in privileged

mode as small as possible: this reduces the area of possible attacks that affect the

security of a computer system.

Advantages: The main advantage of binary translation is making possible

the virtualization in case the Popek and Goldberg requirement is not satisfied.

Disadvantages: The scanning and replacement technique introduces an

overhead that is larger than the overhead introduced in the full virtualization.

Para-virtualization

Para-virtualization eliminates much of the trap-and-emulate overhead introduced

with the VMM implementing the virtualization. But to achieve this improvement

the guest operating system must be modified. In para-virtualization, all privileged

instructions in OS kernel must be modified to perform the appropriate invocation

to the VMM. The guest OS communicates directly with the VMM through an

interface provided by the VMM as illustred in figure 2.2. This direct communica-

tion eliminates the overhead introduced by the emulation mechanism of the full

virtualization paradigm. The calls provided by the VMM interface are invoked

by the sensitive operations that manage the system resources (calls for memory

configuration and management, for interrupt handling, etc).

Advantages: The VMM interface offers an abstraction that is better than

the trap-and-emulate mechanism. In addition, a VMM call performs operations

14

Figure 2.2: Paravirtualization

more efficiently than the emulation of a sensitive instruction. This introduces a

significant improvement of efficiency.

Disadvantages: The inconvenient with para-virtualization is that a guest

OS must be adapted to use the VMM’s interface. This porting can require a lot

of work. Besides, a closed-source operating systems cannot be ported to use the

VMM interface without a knowledge of its design.

2.1.3 Advantanges of virtualization

Thanks to hardware virtualization it’s possible to enable entire virtual machines to

be logically separated by the VMM from the hardware they run on. This flexibility

creates interesting possibilities for a system design and allows software designers

to be independent from the machine architecture characteristics. Virtualization

technology enhances other positive features highly required in a computer system,

some of them are discussed in the following paragraphs.

15

Isolation

An important benefit of virtualization is isolation. The VMM is able to manage

all guests enforcing the isolation property. Each guest is allocated into a partition

that is protected from the other partitions. A software guest can run on a dedi-

cated virtual machine, without being aware of the presence of other guests. The

isolation property enhances the system reliability. In fact, thanks to the isolation,

a fault caused by a guest do not affect other partitions hosting other guests of the

same machine.

It is worth mentioning that nowadays, instead of pure isolation, virtualization

is used in architectures where guests want to communicate. It is then impor-

tant for a VMM to provide a communication infrastructure to support inter-guest

cooperation. This must be done preventing interferences between guests.

Minimized trusted computing base

The trusted computing base (TCB) of a system is the set of all hardware and

software components that are critical to its security, in the sense that bugs or

vulnerabilities occurring inside the TCB might compromise the security properties

of the entire system. A given piece of hardware or software is part of the TCB if

and only if it is designed to be part of the mechanism that provides security to

the system. In operating systems, TCB consists of those functionalities that run

under a privileged mode and manage the system resources. Therefore, having a

large TCB increases the attack surface of the whole system.

With hardware virtualization, the problem of attacking the TCB is addressed

minimizing the TCB itself. In fact, VMM code is the only one running in privileged

mode, while the guest code executes with a non-privileged mode. Consequently,

the TCB of a virtualized system is only the VMM code. With a minimal TCB,

the attack surface of the system is minimal. Besides, since it is is security-critical

for the whole system, having a minimal code for the TCB open more chances to a

formal verification if compared with an OS kernel.

16

Security

Virtualization enhances the security of a system. This is thanks to the isolation

and the minimized trusting computing base that characterize a virtualized system.

In fact, with the isolation property an untrusted guest can execute on the same

machine without compromising the other trusted parts of the system. Whereas

a minimal TCB reduces the surface attack and allows a formal verification and

analysis.

More in general, a VMM satisfying the VMM properties stated by Popek

and Goldberg has a complete control over the system resources. This property

enables possibilities for additional security services that a VMM can provide to

their guests. These services can exploit the isolation property bringing benefit for a

guest OS without its modification. The improved security offered by the hardware

virtualization is one of the basic motivations leading this thesis work as it will be

clear from Chapter 3.

2.2 The Prosper Hypervisor

Today the use of embedded systems in every day life is increasing dramatically. For

example, a mobile phone is one of the most common embedded systems used for

digital communication. More in general, embedded systems are being used more

and more for several purposes and in different domains: entertainment, media

and finance, control systems in industry and health. Consequently, given their

employment in many areas, security in embedded systems is becoming a relevant

research topic [22].

Security issues in embedded systems include different aspects related to relia-

bility (low failure probability, robustness during execution, etc), but also related

to protection from malicious software attacks. The second aspect is particularly

critical considering that open source software is often used for embedded system.

The use of open source software brings several benefits and open possibilities for

improvements by a large community. However, source code and documentation

availability might introduce some vulnerabilities in embedded system security, giv-

ing more chances for malicious attacks. One of the main focus of the Prosper

project [3] is on addressing software attacks in embedded systems.

Virtualization can be a valid approach to enhance the security level in the realm

17

of embedded systems. A Virtual Machine Monitor runs at the most privileged ex-

ecution level of the system providing isolation and security services to a software

guest (see Section 2.1.1). Thanks to this benefits, trusted and untrusted applica-

tions can coexist sharing the same hardware without interferences, and relying on

the security services provided by the VMM. In addition, with a tamper-resistant,

minimal and formally verifiable trusted computing base (TCB), the embedded sys-

tem security is enhanced. TCB can also provide the infrastructure for a security

service such as monitoring or access control.

The Prosper project [3] has the goal of building a framework for fully veri-

fied and secure Virtual Machine Monitors for embedded systems, also denoted as

hypervisors. The main result [11] [20] [10] [12] achieved so far is the design and

the implementation of a fully verified tiny hypervisor targeting ARMv7 architec-

ture [27] [29]. The Prosper hypervisor exploits the MMU (Memory Management

Unit) security separation to embedded systems security. Thanks to the sepa-

ration property, the Prosper hypervisor supports parallel execution of multiple

para-virtualized guests running in user mode.

2.2.1 ARM architecture

A good overview about ARM architecture can be found in [27] . The article

describes in a synthetic and readable way the architecture and suits perfectly with

the knowledge requested for this thesis work.

Advanced RISC Machine (ARM) is a family of instruction set architectures

(ISA) for computer processors based on a reduced instruction set computer (RISC)

architecture developed by the British company ARM holdings. An instruction set,

or instruction set architecture (ISA), is the part of the computer architecture

related to programming, including the native data types, instructions, registers,

addressing modes, memory architecture, interrupt and exception handling, and ex-

ternal I/O. An instruction set architecture provides a specification of the machine,

and the native commands implemented by a particular processor.

The ARM ISA is a reduced instruction set, that is a particular CPU design

strategy based on a small and simple set of instructions. The idea behind a RISC

ISA is that simple instructions are highly-optimized, therefore a high level of per-

formance can be achieved. On the other hand with a RISC ISA more responsibility

is put on the compiler. Complex instruction set computer (CISC) is the alternative

18

design strategy for CPUs. A CISC ISA consists of a set of complex instructions

that rely more on functionalities provided at hardware level.

Today, ARM is the commonest ISA for embedded systems architecture, and

this is mainly thanks to a combination of features that makes it particularly suit-

able for this kind of systems. First, ARM cores are very simple compared to most

other general-purpose processors, which means that they can be manufactured us-

ing a comparatively small number of transistors. Second, both the ARM ISA and

the pipeline design are aimed to minimize energy consumption, that is a critical re-

quirement in mobile embedded systems. Third, the ARM architecture is modular:

the only mandatory component of an ARM processor is the integer pipeline; all

other components, including caches, MMU, floating point and other co-processors

are optional, which gives a lot of flexibility in building system ARM-based CPUs.

The ARM ISA is a load-store architecture, that is, instructions that process

data operate directly on registers and are separated from instructions that access

memory. All ARM instructions are 32-bit long and most of them have a three-

operand encoding. There is also an ARM extension that introduces a subset of

16-bits instructions called Thumb instructions. This extension is introduced to

achieve a higher code density for embedded applications, and considers a com-

pressed version of the most commonly used 32-bit instructions. The ARM archi-

tecture specifies 16 general-purpose registers and provides support for coprocessors

allowing the architecture to be extensible in case of specific applications.

Registers

The ARM ISA provides 16 general-purpose registers in the user mode. Register 15

is the program counter, but can be manipulated as a general-purpose register. The

general-purpose register number 14 is used as a link register by the branch-and-

link instruction, that is provided by the ARM architecture to support conditional

execution of arbitrary instructions. Register 13 is typically used as stack pointer,

although this is not mandated by the architecture.

The current program status register (CPSR) contains four boolean condition

flags (Negative, Zero, Carry, and oVerflow) and four fields containing the

execution mode of the processor. The T field is used to switch between ARM

and Thumb instruction sets. The I and F flags enable normal and fast inter-

rupts respectively. Finally, the mode field selects one of seven execution modes

19

that include a single non-privileged mode: user mode used for programs and

applications running on the operating system, and six privileged modes:

• Fast interrupt processing mode: is enabled if the processor receives an inter-

rupt request from a fast interrupt source.

• Normal interrupt processing request : is enabled when the processor receives

an interrupt signal from any other interrupt source.

• Software interrupt mode: is enabled when the processor encounters a soft-

ware interrupt instruction. Software interrupts are the standard way to

invoke operating system services on ARM.

• Undefined instruction mode: is entered if the processor tries to execute an

instruction that is not supported by the main integer core or some copro-

cessors.

• System mode: is used when privileged operating system tasks are running.

• Abort mode: is entered in correspondence of a memory fault.

Figure 2.3: ARM registers

Except of the boolean conditions field, CPSR is accessed only in a privileged

mode. In addition to the 16 registers accessible in user mode,there are several

20

registers accessible in privileged modes only. For example, each SPSR (Saved Pro-

gram Status Register) is used to store a copy of the value of the CPSR register

when an exception is raised. Privileged modes that are activated in response to

exceptions have their own R13 and R14 registers, which allows to avoid saving the

corresponding user registers on every exception. For the quick handling of a fast

interrupt request (FIQ), ARM provides 5 additional registers available only in the

fast interrupt processing mode.

Exceptions

The ARM architecture defines the following types of exceptions (listed in the order

of decreasing priority):

• Reset : starts the processor from a known state and makes all other pending

exceptions irrelevant.

• Data abort : is raised by the memory management unit when a load or store

instruction violates memory access permissions.

• Fast interrupt : is raised whenever the processor receives an interrupt signal

from the designated fast interrupt source

• Normal interrupt : is raised whenever the processor receives an interrupt

signal from any non-fast interrupt source.

• Prefetch abort : is raised by the memory management unit when access per-

missions are violated during an instruction prefetch.

• Software interrupt : is raised by a special instruction, typically for an oper-

ating system functionality request.

• Undefined instruction: is generated when trying to decode an instruction

that is not supported by the main integer core nor by one of the coprocessors.

All exceptions, except from the reset exception, are handled in a similar way:

the processor switches to the corresponding execution mode presented in the pre-

vious section, saves the address of the instruction following the exception entry

instruction in R14 of the new mode, saves the old value of CPSR to SPSR of the new

mode, disables IRQ (in case of a fast interrupt, FIQ is also disabled), and starts

execution from the relevant exception vector.

21

Coprocessors

A coprocessor is a computer processor used to supplement the functions of the

primary processor (the CPU). The ARM architecture supports a mechanism for

extending the instruction set with additional coprocessors. For example, the ARM

floating point unit is implemented as a coprocessor. Of more interest for this the-

sis is the system control coprocessor that is for the Memory Management Unit

(MMU) and translation lookaside buffer (TLB).

Memory Management Unit The Memory Management Unit (MMU) is a

computer hardware unit which has the role of controlling all memory references.

An MMU is the unit that effectively performs the virtual memory management,

handling at the same time memory protection and cache control. General-purpose

ARM-based systems are equipped with the MMU that provides a virtual memory

model similar to conventional desktop and server processors. Through coprocessor

15 1 of the ARM architecture, the MMU can be enabled. In case the MMU is

disabled, when the CPU accesses memory, the virtual memory address is mapped

to the same physical address (no translation is performed). If the MMU is enabled,

the virtual address is translated to a physical address and the memory access is

checked according to access permissions. This is done based on the mechanism of

page tables that is discussed in the next paragraphs.

In order to improve virtual addresses translation, the MMU uses a cache called

Translation lookaside buffer (TLB). TLB contains the recently accessed mappings

to speed-up the translations phase.

Page tables The MMU ARM architecture supports a two-level hierarchy

for its page table structure, with page sizes of 1MB, 64KB, 4KB, and 1KB. For

The Prosper hypervisor, we consider a page size of 1MB that are also called sec-

tions. A first-level page table (also called master page table) contains 4096 entries

allowing up to 4GB of virtual memory. Each entry (also called page table de-

scriptor), can be either unmapped, or it contains a pointer to a second-level table

1The coprocessor 15 of an ARM chip is used to configure and control the ARM core

modules including the caches and the MMU.

22

or a base address for a section of 1MB (in this case we have a section entry). A

second-level page table has 256 entries each mapping 4KB of contiguous virtual

memory. Figure 2.4 shows an overview of the first and second level page table.

Figure 2.4: 2-level page tables

Each page table descriptor is composed by three fields: the first one contains

the physical address of the region where the virtual address is mapped, the second

and third fields contain access permission bits and the domain of the mapped

region respectively, that are needed for the memory protection mechanism.

When a mapping is needed, the TLB is searched first, if the mapping is not

found the MMU performs the translation through a page table walk. That is the

current master page table is used for the translation of the virtual address. If

the mapping searched is section-mapped, the physical address is returned and the

translation is finished. If the mapping is page-mapped (through a second-level

page table), an additional level of translation is required. This translation is based

on the second-level page table that is pointed by the master table descriptor. In

both cases, the retrieved mapping is inserted into the TLB, possibly after the

invalidation of an old entry if the cache is full.

23

Memory protection mechanisms There are basically two mechanisms

used by the MMU for memory protection. The first one is based on access permis-

sions. Each page table descriptor contains access permission bits stating whether

the mapped physical region can be accessed in readable and/or writable mode.

A particular bit called execute never (XN) states if the mapped region can be

executable. In this thesis we consider that the XN field is an access permission

as well. A memory access is allowed only if it satisfies the access permissions re-

trieved during the translation phase, otherwise an exception is raised. The second

protection mechanism consists of a domain based memory access. Every virtual

memory page or section belongs to one protection domains. The current domain

is contained in the domain access register of coprocessor 15. A running process

can be either a manager of the domain, which means that it can access all pages

belonging to this domain bypassing access permissions, a client of the domain,

which means that it can access pages belonging to the domain according to their

page table access permission bits, or can have no access to the domain at all.

2.2.2 Formal Model of the ARM architecture

In this section we present the formalization of the ARMv7 architecture (described

in Section 2.2.1). This formal model is used in this thesis report as a building block

to describe the behaviour of a system running on top of the Prosper hypervisor.

In particular, this formalization will be used to describe a top level specification

of the system behaviour running on top of hypervisor and monitored by the Pros-

per monitor. The formalization is also used to describe the formal verification

performed in this work.

Execution modes

The execution modes of an ARM CPU are formalized by the set mode:

mode
def
== {usr , svc, abort , undef , irq ,fiq , sys}

The non-privileged mode usr is used by the application processes, while all

other modes are privileged and they are used to execute kernel activities. We

24

define privileged and non-privileged modes as sub-sets of mode:

usrmode
def
== {usr}

privmode
def
== mode \ {usr}.

Registers

The 16 ARM registers are formalized as a function regs that takes a register index,

an execution mode and returns the register value if it is accessible in the input

mode, otherwise it returns an undefined value. We formalize indexes and register

values as sets:

idx
def
== word8

regval
def
== word32 ∪ {⊥}

We denote with word8 and word32 an 8-bits and 32-bits values respectively.

We denote with ⊥ the undefined value. Therefore, the function regs can be for-

malized as follows:

regs : idx ×mode −→ regval

The Program status register is formalized as a function that takes a privileged

mode and returns as output the register content:

psrs : privmode −→ word32 .

Coprocessors

In this work, the only coprocessor of interest is the system control coprocessor 15

that controls the Memory Management Unit (MMU). We are interested in three

registers of 32-bits of the coprocessor 15: the c1 represents if the MMU is enabled

or not, the c2 gives the base physical address of the current master page table,

and the register c3 identifies the current status of the domains. These registers

are coregisters and we represent them as a tuple coregs:

coregs = 〈c1 , c2 , c3 〉

25

Machine states

We consider a physical memory of 4GB that is addressed by a physical address of

32-bits. We denote a physical address with phy addr and a value of memory with

memval . These are basically word32 and word4 values. The physical memory is

represented by a function mem:

mem : phy addr −→ memval

Finally, an ARM machine state σ is formalized as a tuple:

σ = 〈m, regs, psrs, coregs,mem〉 ∈ Σ

Where: Σ is the set of all machine states, m ∈ mode, regs, psrs, coregs and mem

are as described above.

ARM machine behavior

An ARM machine behaviour is modeled by a transition system. The state tran-

sition relation is →l ⊆ Σ × Σ, where l ∈ mode, and a transition is performed

by the execution of an ARM instruction. A non-privileged transition σ →l σ
′

with l ∈ usrmode starts and ends in non-privileged states. Namely, if σ =

〈m, regs, psrs, coregs,mem〉 and σ′ = 〈m′, regs′, psrs′, coregs′,mem′〉, thenm,m′ ∈
usrmode. A privileged transition σ →l σ

′ with l ∈ privmode involves at least one

state in privileged mode. The raising of an exception is modelled by a transition

that starts in user mode and enables a privileged level l ∈ privmode.

Memory Management Unit behavior

The main functionality provided by the MMU is to mediate all memory accesses,

therefore it is invoked whenever an instruction that requires a memory access is

performed. The MMU translates a virtual addresse to a physical address and

mediates all memory accesses based on the protection mechanisms discussed in

Section 2.2.1.

Given an ARM machine state and a virtual address of 32-bits, the MMU

returns the physical address and the retrieved access permissions. These access

permissions are represented as a 3-bits value and state whether the computed

physical address can be accessed in readable, writable or executable mode. Both

26

physical address and access permissions are computed using the master page table

pointed by the coprocessor register c2, and the domain status and the current

mode identified by the coprocessor register c3. The MMU behavior is formalized

by the function mmu:

mmu : Σ × virt addr −→ phy addr × access mode.

Where virt add is a word32 value, and access mode is a word3 value. For instance,

given a virtual address va and a machine state σ, we can apply mmu as follows:

mmu(σ, va) = 〈pa, (ex ,w , r)〉

The application of the mmu function returns a pair 〈pa, (ex,w, r)〉, where pa is

the physical address, (ex,w, r) are instead the access permissions: ex is 1 if and

only if the address pa can be executed, w is 1 if and only if the address pa can be

written and r is 1 if and only if the address pa can be read.

2.2.3 Hypervisor: design and isolation property

The Prosper hypervisor supports the ARMv7 architecture and is able to host a set

of trusted guests along with an untrusted Linux guest [10]. The Linux guest may

require a dynamic allocation of the memory, whereas all other guests have a static

memory configuration. The trusted guests can provide for example some support

services to the Linux kernel.

The Prosper hypervisor allows the execution and management of resources

by all guests without interferences [12] [10]. This is guaranteed by ensuring the

isolation property.

The hypervisor provides a virtualization mechanism of the memory subsystem

allowing each guest to manage dynamically its own memory hierarchy and to

enforce its own memory protection mechanisms.

The Linux kernel hosted by the hypervisor is a paravirtualized OS. Conse-

quently the Linux kernel is aware of the hypervisor mediation. The hypervisor

provides to Linux an API for a secure access to the hardware resources. This me-

diation allows the Prosper hypervisor to reach the requirement of resources control

discussed in Section 2.1.

One of the most important system resource is the system memory. Therefore,

the Prosper hypervisor has a complete control on the memory configuration. As

27

introduced in Section 2.2.1, the main functionality of the MMU is managing the

virtual memory mapping that is configured through a set of page tables residing

in physical memory. Since page tables state how physical memory can be ac-

cessed by guests, they are a security critical part of the system and must be not

directly manipulated by untrusted guests such as the Linux kernel. However, the

Linux kernel needs to access dynamically page tables to set the memory layout.

Therefore, page tables accesses are mediated by the hypervisor, thus providing an

appropriate secure access that is called MMU virtualization.

Virtualization mechanism

The virtualization mechanism implemented by the Prosper Hypervisor is based on

direct paging. This is a common approach for the memory subsystem virtualization

adopted for example in the Xen hypervisor [4] [8]. In this approach the page tables

are located inside the guest memory simplifying the OS adaptation required by

the paravirtualization. In order to guarantee the isolation, the hypervisor makes

the page tables read-only to the OS providing an API to manipulate them safely.

Direct paging allows a guest to manipulate directly a page table as long as it

is in passive state, that is not used by the MMU (also called active state). Once

a page table is activated, all OS accesses are performed invoking the hypervisor

through an appropriate API. This invocation is also called hypercall.

As presented in Section 2.2.1, the ARM MMU supports a two-level hierarchy

for its page table structure. First-level page tables contain 4096 entries each of 32

bits, while second-level page tables contain 256 entries. Therefore, a page table of

first-level is of 16KB, and the one of second-level is of 1KB. Physical memory is of

4GB and it is logically fragmented into blocks of 4KB, consequently a first-level

page table occupies 4 blocks, while a single physical block can contain up to 4

second-level page tables.

Since page tables are kept in the guest space, this simplifies the OS adapta-

tion. However, this implies that the hypervisor must protect the page tables from

accesses in writable mode. In particular, the hypervisor must prevent all modi-

fications of memory configuration that can be performed without the hypervisor

mediation. To allow the hypervisor to protect the page tables, the virtualization

mechanism types the physical blocks. Each physical block can have one of the

following types:

28

• data: the block does not contain sensitive data and can be written by a

guest.

• L1: the block contains a part of a first-level page table.

• L2: the block contains 4 second-level page tables.

Typing each physical block allows the hypervisor to write-protect active page

tables enforcing page type constraints. These constraints require that a guest might

write only physical blocks of type data. In order to fulfil this constraint, the

virtualization mechanism maintains reference counters that track:

• For each block typed L2 the number of L1 page tables entries that point to

one of the 4 L2 page tables residing in the physical block.

• For each block of type data, the number of entries (L1 or L2) that point to

the physical block and are writable in user mode.

A guest can change the type of a physical block (for example by allocating

or freeing a page table) only if the corresponding reference counter is zero. The

hypervisor enforces this policy in addition to the general isolation policies (e.g. a

guest may only modify a page within its assigned physical memory region) when-

ever the MMU configuration is updated. Since all MMU updates are performed

through a dedicated API, the hypervisor performs the necessary checks to enforce

security policies each time a hypercall is executed. The API offered by the hyper-

visor includes handlers for the manipulation of the MMU configuration, namely

for:

• Page tables creation.

• Page tables freeing.

• Mapping of a page table entry.

• Unmapping of a page table entry.

• Setting a master page table as the current page table.

29

Top Level Specification

The behaviour of the hypervisor is defined as a transition system. This specifica-

tion, called the Top Level Specification (TLS), models the behaviour of a system

in which an arbitrary guest is running on top of an ARMv7 CPU with MMU

support, in alternation with executions of abstract handler events. Handler events

are performed in correspondence to ARMv7 privileged instructions, in response to

a hypercall. These events imply invocations of the hypervisor handlers as atomic

transformations Ha operating on an abstract machine state. Abstract states are

concrete ARMv7 states extended by auxiliary data structures such as page types

or reference counters that reflect the internal state of the hypervisor. Auxiliary

data structures are called abstract hypervisor state.

Formally, the TLS state is represented as a tuple 〈σ, η〉, consisting of an

ARM state σ ∈ Σ and an abstract hypervisor state η = 〈pgtype, pgrefs〉. More

precisely,pgtype is a function for memory block typing and pgrefs is a function

tracking reference counters of memory blocks.

pgtype : [0 , 2 20) −→ {D ,L1 ,L2}

For each possible physical block of 4KB, pgtype returns the block type that can

be data (D), first-level page table (L1), or second-level page table (L2).

pgrefs : [0 , 2 20) −→ N.

For each possible physical block of 4KB, pgrefs returns the number of references

to it in the memory.

The TLS interleaves standard non-privileged transitions with abstract handler

invocations. The TLS transition relation 〈σ, η〉 →i∈{0,1} 〈σ′, η′〉 is defined as the

following:

σ
op−→l σ

′ l ∈ usrmode

〈σ, η〉 op−→0 〈σ′, η〉
usr

σ
op−→l σ

′ l ∈ privmode

〈σ, η〉 op−→1 Ha(〈σ′, η〉)
priv

The first inference rule usr states that an instruction op executed in non-

privileged mode that does not raise exceptions behave equivalently to the standard

ARMv7 semantics and does not affect the abstract hypervisor state. The second

inference rule priv states that whenever an exception is raised, the hypervisor is

invoked through a hypercall, and the reached state is resulting from the execution

of the handler Ha.

30

Isolation Property

Guaranteeing spatial isolation means confining each guest to manage only the

partition of memory assigned to its uses. All partitions assigned to guests are

statically defined. In general, no security property can be ensured if the starting

state of the TLS is inconsistent with the security property itself. Therefore, a

system invariant is defined I〈σ, η〉 to constrain the set of consistent initial states

of TLS. In addition, a set QI of all the TLS states satisfying the system invariant

is introduced.

The system invariant I〈σ, η〉, consists of two predicates: RC and TC. RC

ensures soundness of the reference counters tracked by pgrefs, and TC guarantees

that the state σ is well typed according to pgtype. The reference counter is sound

(RC(〈σ, η〉)), if for every physical block b, the reference counter pgrefs(b) is equal

to
∑

i∈{0...220} count(σ, η, b, i), where count is a function that counts the number of

references to the block b, according to the reference counter policy. A system state

is sound (TC(〈σ, η〉)), if the MMU is enabled, the current master L1 page table is

inside a physical block of type L1 and each physical block b of type different from

data (pgtybe(b) 6= D), contains a sound page table (sound(σ, η, b)). The predicate

sound ensures, among other things that: (1) the page table grants writable access

only to physical blocks of type data, (2) the page table forbids any writable access

in user mode to blocks outside the guest partition and (3) each page table entry

using a second-level page table points to a physical block typed L2 (See [12] for

more details).

The security properties that are ensured by the Prosper hypervisor are stated

by three theorems.

Theorem 1. Let 〈σ, η〉 ∈ QI and i ∈ {0, 1}. If 〈σ, η〉 →i 〈σ′, η′〉 then 〈σ′, η′〉 ∈ QI .

Theorem 1 states that, starting from a consistent state, an arbitrary TLS

transition ends in a consistent state.

The hypervisor guarantees also data separation properties. In order to intro-

duce theorems regarding these properties, some concepts related to state obser-

vations are needed. The observation of a guest in a state (〈σ, η〉) is represented

by the structure Og(〈σ, η〉) = 〈uregs, cpsr,memg, coregs〉 of user registers uregsg,

control register cpsr, guest memory memg and coprocessor registers coregs. The

31

register cpsr and the coprocessor registers are visible to the guest since they di-

rectly affect the guest behaviour, and do not contain any information the guest

should not be allowed to see, even if all writes to the coprocessor registers must

be mediated by the hypervisor. The remaining part of the state (i.e. the content

of the memory locations that are not part of the guest memory or the special

registers) and, again, the coprocessor registers constitute the secure observations

Os(〈σ, η〉) of the state, which guest transitions are not supposed to affect.

Data separation properties are expressed through the following two theorems:

Theorem 2. Let 〈σ, η〉 ∈ QI , If 〈σ, η〉 →0 〈σ′, η′〉, then Os(〈σ, η〉) = Os(〈σ′, η′〉)

Theorem 2 states the non-exfiltration property. This guarantees that a transi-

tion executed by the guest does not modify the secure resources.

Theorem 3. Let 〈σ1, η1〉, 〈σ2, η2〉 ∈ QI and assume that Og(〈σ1, η1〉) = Og(〈σ2, η2〉).
If 〈σ1, η1〉 →0 〈σ′1, η′1〉 and 〈σ2, η2〉 →0 〈σ′2, η′2〉, then Og(〈σ′1, η′1〉) = Og(〈σ′2, η′2〉)

Theorem 3 states the non-infiltration property that is a non-interference prop-

erty. Namely, a transition executed by the guest depends only on its observations.

All theorems 1, 2 and 3 are satisfied by the Prosper hypervisor. This is formally

proved in HOL4 theorem prover, based on the hypervisor TLS definition in the

HOL4, and on the HOL4 model of the ARM architecture that is developed at

Cambridge [16].

2.3 Automated Theorem Proving

The goal of Automated Theorem Proving (ATP) is to prove automatically that a

given statement expressed as a theorem follows logically from a set of hypothesis

expressed as axioms and inference rules. The ATP deals with the development of

computer programs that automatizes the process of proving that the theorem is a

logical consequence of the hypothesis.

ATP can be applied to several domains, for example in mathematics it helps

in proving a conjecture given a set of assumptions. In computer science ATP

is used in artificial intelligence as a tool for the automated reasoning. ATP is

also a formal method for the software and hardware verification. In the area

of formal verification, ATP deals with the development of formal models that

32

specify mathematically a given system, and the proof of correctness of these models

with respect to a specified requirement or property. The mathematical model is

expressed as formulae of a logic, and the property to verify is the theorem to be

proved as a logical consequence of these formulae.

There are many theorem provers that support the process of proving automat-

ically a theorem. A theorem prover provides a logical system with a set of axioms,

theorems and inference rules that supports a user in writing a theorem’s proof.

The logic provided by a theorem prover can be for example a simple propositional

logic, a temporal logic, a first-order logic or a higher-order logic.

A fundamental part of this work consists of the formal verification of a security

module that is run as a guest of the Prosper hypervisor. The formal verification

is assisted by the HOL4 theorem prover [17] that supports a higher-order logic.

2.3.1 The HOL4 thorem prover

The HOL4 is an ML-based environment supporting both specification and formal

proofs in higher order logic [17]. The interactive environment of HOL4 allows to

build new theories or to simply write personalized procedure of verification, using

an ensemble of automated reasoning tools that are freely available. In the following

paragraphs we introduce a few concepts related to the HOL4 logic, and we briefly

discuss how a proof can be supported by the HOL4 theorem prover, the reader if

interested can see [17] for more details.

The HOL4 Logic

The HOL4 system supports a higher order logic, that is a version of predicate

calculus extended by two additional aspects:

• Logical variables can also range over functions and predicate.

• The logic is typed

The HOL4 Logic is essentially Church’s Simple Type Theory [30]. It is based

on simple types ty, that are used to build typed-lambda calculus terms tm. The

HOL4 logic has a set-theoretic semantics. Types denote sets and terms denote

members of these sets.

There are four kinds of types in the HOL logic that can be described by the

following grammar:

33

ty := α | c | (ty1,, tyn)opn | ty1 → ty2

Where α denotes type variable, c denotes an atomic type (for example the

standard atomic type bool). A compound type is denoted with (ty1,, tyn)opn

where (ty1,, tyn) are the argument types and opn is a type operator of arity

n (for example prod is a type operator of arity two which denotes the cartesian

product operation). The function type ty1 → ty2 denotes the set of all functions

from the domain set of type ty1 to the codomain set of type ty2.

A term of the HOL4 logic is an expression that denotes an element of the set

denoted by the type associated to the term. There are four types of terms in the

HOL4 logic that can be described by the following grammar:

tm := x | c | tm1 tm2 | λx.tm

Where x denotes a variable term, c denotes a constant term, λx.tm denotes a

λ-abstraction term, and tm1 tm2 denotes the function application term.

The interface to the HOL4 logic is the functional programming language ML.

Terms of the HOL4 logic are represented in ML by an abstract data type called

term, and they are introduced between double back-quote marks. The ML parser

for HOL4’s terms include an inference type checker that is able to assign a type

to each well-formed term. A term is well-formed if it can be derived according to

the logic syntax.

The logic of HOL4 is implemented by a small kernel, that includes the initial

signature, the primitive rules of inference, the axioms and the primitive defini-

tion principles of the logic. These principles allow the extension of the logic in a

consistency-preserving way.

Proving with HOL4

A formal proof can be seen as a sequence of steps, each one consists of the applica-

tion of an axiom or an inference rule. The last element of the proof is the theorem.

In HOL4 theorems are represented as values of an abstract type thm. The only

way to create a theorem is by providing a proof. This follows from the application

of ML functions that represent inference rules to axioms or to previously computed

theorems.

There are two methodologies that are supported by HOL4 for performing an

interactive proof: the forward methodology and the goal oriented methodology.

34

The forward methodology Based on the forward methodology, the proof

starts from the appropriate axioms, and through the application of the right infer-

ence rules, the theorem to be proved is reached as result at the end of the proof.

A forward proof requires the selection of the axioms and the inference rules to

be used before starting the interactive proof. Also the order of the application of

axioms and rules must be decided. The knowledge requirement of all the proof

steps in advance makes the forward methodology not easy to conduct in many

cases.

The goal oriented methodology In the goal oriented methodology, a proof

is called backward proof and it is the the reverse of the forward proof. This

methodology is based on the concept of tactic, proposed by Robin Milner in 1970.

A tactic is a function that splits a goal into subgoals, recording at the same time the

reason that makes the goal solved once all subgoals are proved. A goal oriented

proof starts with the main theorem to be proved, and proceeds by specifying a

tactic that splits the main goal into subgolas. The intuition is that a subgoal

can be easier to solve compared with the main goal, for example by matching an

axiom, or with an automated reasoner provided by the HOL4 system.

A goal in HOL4 is a pair ([t1, ..., tn], t) where the first component contains

a term list representing the assumptions, whereas the second component contains

the term goal. The achievement of solving the goal results in a theorem. A tactic

is an ML function that applied to a goal generates subgoals and a validation that

is a justification function of why solving the subgoals is a solution of the goal

represented by t. The validation is basically an ML function representing the

inference rule that allows to derive the main goal from the subgoals.

The HOL4 theorem prover provides many automatic reasoners and proof as-

sistants that support the user during an interactive proof. These are organized

as tactics or as procedures. The user can also write personalized procedures and

tactic for its own proofs.

The HOL4 theories

A HOL4 theory is a collection of valid HOL4 term definition, axioms and theorems.

A theory can be loaded during an interactive session and used in a proof. Several

mathematical concepts and models are defined and provided to users as theories.

35

The Prosper hypervisor model is provided as a theory hypervisor modelTheory.

36

Chapter 3

Runtime monitoring for

Prosper

This chapter presents the main contribution of the thesis, namely the definition

of a validation mechanism for a security property guaranteeing protection against

code injection attacks, and the proof of correctness of the validation mechanism

based on assumptions on the underlying architecture, that exploits the Prosper

hypervisor and the isolation property that it guarantees in a virtualization context.

The next section describes more in details the motivations already sketched in

the Introduction, and provides an outline of the rest of the chapter.

3.1 Motivations and Goals

Runtime monitoring is a computing system analysis technique based on the ob-

servation of a running system and the consequent reaction in case of violation of

certain security properties. The main goal of a runtime monitor is to ensure a secu-

rity property preventing incorrect system states. Runtime monitoring is employed

whenever a static analysis of the system behaviour against a security property is

infeasible.

One of the most common applications of runtime monitoring, that is also in the

focus of this thesis, is on Operating Systems. An OS is responsible for managing

the computer system resources (files, memory, devices, etc). This management

includes the allocation of a resource to the different user applications and its pro-

37

tection from unauthorized accesses through an appropriate access control policy.

A common approach is to realize the access control policy with a runtime

monitor that controls all the accesses to the resource. This is achieved deploying

the runtime monitor as a kernel security module. The kernel is usually explicitly

developed to support this security module. In fact, whenever a critical operation

is going to be performed by the kernel, the security module is explicitly informed.

The Linux Security Module (LSM) [33] is an example of a runtime monitor for

the Linux kernel that supports and provides access control security policies. The

basic abstraction of the LSM interface is to mediate all the accesses to the internal

kernel objects. The LSM is invoked each time the Linux kernel would have access

to a system resource.

Vulnerabilities in LSM approach

The standard approach of deploying a runtime monitor to protect a system resource

as a kernel component has some vulnerabilities. This is mainly due to the kernel’s

complexity. In fact, the complexity of the kernels makes them susceptible to

attacks [25] [9] that can bypass the security policy of the monitor. The design

of the LSM allows the security module to mediate the accesses to a kernel object

by placing hooks at every point of the kernel code where a user system call is

about to result in an access to a kernel object. The hook is basically a call to

a function provided by the module that implements the protection mechanisms.

A malicious program, for example a rootkit that enables privileged access, can

disable the mediation of the LSM or even modify the function invoked by a hook.

Provably secure runtime monitor

In general, having a formal proof of correctness of a security critical component

enhances the security level of the whole computing system. An OS runtime monitor

that protects a system resource from malicious access is certainly a security critical

part of the system. Therefore, it is desirable to provide a tamper-resistant and

trustworthy runtime monitor. The trustworthiness can be significantly improved

if a formal verification of the monitor’s security policy against the desired security

property can be performed. The tamper-resistance is possible only if the runtime

monitor is itself protected from malicious manipulations.

38

The approach of including a runtime monitor as a kernel security module intro-

duces difficulties in achieving both the trustworthiness and the tamper-resistance

of a security module. In fact, it’s well known that the OS size and complexity make

a formal proof of a kernel module correctness very hard. Also, the OS vulnerability

against malicious intrusions prevents from providing a complete tamper-resistant

kernel module.

Exploiting virtualization

One of the advantages of the virtualization technology discussed in Section 2.1.3 is

the isolation. This property allows several software guests to execute in separated

and protected partitions without interferences. This property can be strongly

related to the tamper-resistance requirement of a runtime security module. For

example, a security module running as a guest of a Virtual Machine Monitor can

benefit from the isolation property provided by the VMM. Moreover, a direct

interaction between the VMM and the security module can allow the runtime

monitoring of the guests without affecting the security module integrity.

An additional advantage of the virtualization consists of a minimal trusted

computing base (TCB) of the virtualized system. This property is related to the

trustworthiness requirement of a runtime security module (that is part of the

TCB). In fact a minimal trusted computing base is more suitable for a formal

verification.

Goals

Given the motivations discussed above, a valuable idea for the Prosper project [3]

is to introduce a security module that monitors the system guest of the hypervisor

and that takes advantage from the virtualization benefits ensured by the hypervi-

sor. In the following, we will refer to this security module as the Prosper (runtime)

monitor or simply as the monitor.

The first goal consists of giving the general design choices for the Prosper run-

time monitor in order to meet the motivations stated above (the design choices

are discussed in Section 3.2.1). These choices take into account the infrastructure

provided by the Propser hypervisor (the hypervisor is presented in Section 2.2.3).

In particular, a desirable feature of the Prosper runtime monitor is to take advan-

tage from the isolation property and the virtualization mechanism provided by the

39

hypervisor. The second goal consists in analysing, in general, what kind of secu-

rity properties can be provided by the Prosper runtime monitor. The third goal is

the identification of an application for the Prosper runtime monitor. This is done

through the identification of a security property, and an appropriate policy, to be

enforced in order to protect the Linux kernel guest from code injection attacks (the

second and the third goals are treated by Sections 3.2.2 and 3.2.3). The fourth

goal consists in providing a formal proof of correctness for the Prosper runtime

monitor. In particular, we would like to formally prove that the policy identified

is able to ensure the desired security property. The formal proof is presented in

Section 3.3 and it has been verified with the support of the HOL4 proof assistant

as reported in Chapter 4.

3.2 The Prosper runtime monitor

The Prosper hypervisor [3] [11] [20] [12] [14] is a Virtual Machine Monitor and

it satisfies the three properties of a VMM discussed in 2.1.1. In particular, the

hypervisor has the complete control of the system resources. Therefore, a monitor

that needs to enforce a security property over a system resource can be designed

as a hypervisor module. This approach has the advantage of simplifying both

the detection of the security critical operations and the monitor mediation on

these operations. However, having an additional module of the hypervisor has

the inconvenience of increasing the complexity and size of the hypervisor. This

violates the requirement of keeping a minimal VMM and a minimized trusted

computing base (TCB). Therefore, the approach of deploying the runtime monitor

as a hypervisor module suffers from some vulnerabilities that are detected in the

LSM approach.

One possible alternative approach is to deploy the runtime monitor module as

a guest of the Prosper hypervisor. Using a dedicated module on top of the hy-

pervisor permits to decouple the enforcement of the security properties from the

other hypervisor functionalities. This choice has mainly two benefits: first, it is

possible to maintain a minimal trusted computing base. Second, having the secu-

rity policy wrapped inside a guest enhances both the tamper-resistance and the

trustworthiness of the monitor. In fact, if the monitor runs as a guest, it can take

advantage from the isolation properties provided by the hypervisor. This choice

40

Figure 3.1: System setting

permits to avoid malicious interferences coming from the other guests (for example

from a process of the OS running on a different partition of the same machine). In

addition, decoupling the runtime security policy from the other functionalities of

the hypervisor makes the formal specification and verification of the monitor more

affordable.

In this thesis, we consider the system setting shown in Figure 3.1. The system

considered has three components:

• The Prosper hypervisor: a virtual machine monitor targeting the ARMv7

architecture [27].

• The Linux kernel: a guest Operating System running in a separated parti-

tion. The Linux partition is considered untrusted.

• The Prosper monitor: a runtime monitor running as a guest of the hypervi-

sor and providing a security service for the system.

In the next section we will discuss the functional design choices for the Prosper

monitor.

41

3.2.1 Design choices

In the literature on Operating System security, a runtime monitor enforcing a

security policy over a system resource is referred to as reference monitor [19] [15]

[28]. We rely on this known concept to design the Prosper monitor.

“A reference monitor concept defines a set of design requirements on a reference

validation mechanism. This mechanism is a functionality provided by the reference

monitor. The validation mechanism enforces a security policy over subjects’ (i.e.

processes, users, etc) ability to perform access operations (i.e. read, write and

execute) on system resources (i.e. files, sockets, etc)” [19].

Definition 1 (validation mechanism).

A (reference) validation mechanism is the reference monitor functionality that en-

forces a security property over the system resources.

The Prosper monitor belongs the class of the Execution Monitoring (EM) [28]

since it is a reference monitor. In [28] it is stated that the monitors of this class are

able to ensure a security policy for the safety properties. This is a class of security

properties that are known and well studied by the literature of formal verification

(see [5] [6] [21] for more information about safety properties). In particular the

non-enforceable security policies principle discussed in [28] states a necessary (and

not sufficient) condition that a property P must satisfy in order to be enforced

by an Execution Monitor. We instantiate this principle to the Prosper runtime

monitor with the following assumption:

Assumption 1 (non-enforceable security properties for Prosper moni-

tor).

If P is not a safety property, then a validation mechanism for P from the Prosper

monitor does not exist

The Assumption 1 will be taken into account, when the application of the

Prosper monitor to the code injection attacks is discussed.

The design requirements established by a reference monitor for a validation

mechanism, as discussed in [15] and [19] are:

• Complete mediation: the validation mechanism must always be invoked on

the critical operations.

42

• Tamper-resistance: the validation mechanism must be tamper-resistant.

That is protected from malicious manipulations and cannot be sabotaged

or altered.

• Verifiability: the validation mechanism must be small enough to allow formal

verification and analysis.

The complete mediation requirement states that security-sensitive operations

must be mediated by the reference monitor. In fact, in order to maintain a correct

system state regarding a security property, these operations must be evaluated

through the validation mechanism in order to check whether they are safe or not.

Intuitively, an operation is safe if the system state resulting after its execution

satisfies the security property of interest. We express the complete mediation re-

quirement as a necessary condition to ensure a security property with Assumption

2.

Assumption 2 (complete mediation requirement).

A reference monitor is able to ensure a security property P only if it is able to

mediate and validate all security-sensitive operations for P .

The tamper-resistance requirement specifies that the validation mechanism

cannot be modified by untrusted parts of the system. In fact, a malicious ma-

nipulation of a reference monitor functionality can result in a modification of the

security policy allowing unsafe operations to be executed. the tamper-resistance

requirement gives a second necessary condition to a reference monitor ability of

enforcing a security property. This is expressed with Assumption 3.

Assumption 3 (tamper-resistance requirement).

A reference monitor is able to ensure a security property P only if it is tamper-

resistant.

The verifiability requirement states that the validation mechanism must be as

minimal as possible to allow a formal verification. The ability of formally verify if

the validation mechanism effectively ensures the desired security policy is funda-

mental when it comes to ensuring a security property, and this is achievable only if

the complexity and the size of the validation mechanism are reduced. Besides, the

validation mechanism is a security critical part of the system, therefore it must be

43

part of the trusted computing base. As discussed in the previous paragraphs, hav-

ing a minimal trusted computing base is a desirable feature. Therefore, requiring

a small validation mechanism is in agreement with maintaining a minimal trusted

computing base.

The idea of defining the above design requirements is that, a reference monitor

is able to guarantee a security property over all the system states only if it provides

a validation mechanism that satisfies the requirements. We summarize this idea

through Fact 1.

Fact 1 (validation mechanism requirements).

A reference monitor is able to ensure a security property over all the system states

only if the validation mechanism satisfies the requirements of complete mediation

and tamper-resistance.

The Prosper monitor and the tamper-resistance requirement

Given the system setting considered and shown in Figure 3.1, in order to have

a tamper-resistant validation mechanism, the Linux kernel and all the user pro-

cesses must not be able to manipulate the functionalities provided by the monitor.

Thanks to the isolation properties provided by the hypervisor, we assume that the

tamper-resistance requirement can be achieved and this is expressed through Fact

2. In fact, the validation mechanism is a functionality provided by the monitor

that is a hypervisor guest. Therefore, the validation mechanism is prevented from

all malicious interferences and manipulations of the untrusted parts of the system.

Fact 2 (Prosper monitor and the tamper-resistance).

The Prosper monitor satisfies the tamper-resistance requirement thanks to the iso-

lation properties ensured by the Prosper hypervisor.

The Prosper monitor and the complete mediation requirement

In order to satisfy the complete mediation requirement, the Prosper monitor must

be able to intercept all security-sensitive operations and to invoke the validation

mechanism. A security-sensitive operation is evaluated based on the validation

mechanism. The outcome of this evaluation states whether the operation can be

safely performed or not.

44

A reference monitor has the goal of enforcing a security property over a system

resource (memory, devices, etc). The complete system resources control is of the

hypervisor responsibility, according to the VMM properties discussed in Section

2.1.1. This control is possible since a guest is prevented from changing a resource

configuration without the hypervisor mediation and control. Therefore, one pos-

sibility is to include the monitor mediation each time the hypervisor mediation is

requested. This choice allows the enforcement of the monitor security policy over

a system resource.

The hypervisor’s control over the system resources is achieved providing guests

with an API accessible trough hypercalls. It is then reasonable to require that the

Prosper monitor must be informed about all the hypercalls that are performed by

a guest. For this purpose we identify an interaction protocol between the Prosper

hypervisor and the Prosper monitor that is shown in Figure 3.2.

1. For each hypercall invoked by a guest, the hypervisor forwards the

hypercall’s request to the monitor.

2. The monitor validates the request based on its validation mechanism.

3. The monitor reports to the hypervisor the result of the hypercall val-

idation.

Figure 3.2: The interaction protocol between the Prosper hypervisor and the

monitor

The Prosper monitor and the verifiability requirement

The design choice of decoupling the Prosper monitor security service from all the

other functionalities of the hypervisor is in agreement with the verifiability re-

quirement. In fact, the validation mechanism of the monitor is separated from

the hypervisor services. Therefore, a formal verification of the monitor can be

performed independently taking into exam the only validation mechanism. In ad-

dition, to meet the verifiability requirement, the checks that need to be performed

over a hypercall must be formally identified and be as small as possible.

In order to allow the formal verification of the validation mechanism, this must

be specified with a formal model. A desirable requirement for this model is to be

45

defined at a low level of abstraction. In fact, we would like to have a specification

that is as close as possible to a real implementation since all the formal verification

is performed over the validation mechanism’s model. This requirement makes the

work of the formal proof more challenging. In fact, it is not difficult to imagine

that a detailed model (i.e defined at low level of abstraction) requires more effort

to be formally verified, if compared with a more abstract and general model.

3.2.2 Security properties

In this section we report on the analysis and reasoning done to identify what kind

of security properties can be ensured in general by a runtime monitor in the setting

shown in Figure 3.1. Then, we discuss an application of the Prosper monitor to

protect the Linux kernel guest from code injection attacks through the enforcement

of an appropriate security property.

Based on the interaction protocol reported in Figure 3.2, the monitor is invoked

each time a guest raises a hypercall. From Section 2.2.3, we know that the API

provided by the hypervisor permits a guest to modify the memory configuration.

This configuration is managed by the MMU through page tables, as discussed

in Section 2.2.1. Consequently, in order to allow a guest to modify its memory

configuration, the hypervisor provides a set of hypercalls for creating a new page

table, freeing an existing page table, mapping and unmapping of a page table entry

and setting a master page table as the current one in the MMU. The Prosper

monitor is then able to intercept all the memory layout modifications that are

introduced through a page table modification, and this is thanks to the protocol

presented in Figure 3.2. Therefore, at this level of abstraction, the kind of security

properties that can be enforced by the monitor are those properties involving some

constraints over the memory layout. We formalize this with Fact 3 taking into

account the Assumption 1:

Fact 3 (enforceable properties for Prosper monitor).

The Prosper monitor is able to ensure a security property P , with a suitable val-

idation mechanism, only if P constrains the system memory layout and P is a

safety property.

46

Application to code injection attacks

Intercepting all the mappings of the page table entries allows to gain knowledge

about whether a physical block is readable, writable or executable. In fact, map-

ping an entry requires to specify all the information needed to form a page table

descriptor (a page table descriptor is shown in Figure 2.4). This information in-

cludes the access permissions. Therefore, the monitor can track all the physical

blocks in memory that are executable. This can allow the monitoring of the exe-

cutable code running in the system and eventually enforcing some constraints over

the memory layout to ensure some property over the running code. This obser-

vation motivates us to consider the application of the Prosper monitor to protect

the guest system from code injection attacks.

Code injection is a common attack in computer systems that exploits a software

vulnerability, for example a buffer overflow, to inject malicious executable code.

This attack, known as code injection, is normally performed by a malicious software

that is able to write code into a data storage area of another process, and then

to run its own code from within this section. In order to run the injected code,

this must become part of the executable code of the system. We observe that this

event can be intercepted by the Prosper monitor since it is able to track all the

executable blocks of the memory.

Informally speaking, we can identify the executable code of the system with all

the physical blocks that are accessible in executable mode. Therefore, a malicious

code injection can be seen as an event that “invalidates” the system code safety.

To be able to refer to code safety, we must distinguish between safe and unsafe

code. For this reason we rely on the concept of code signing.

Code signing is the process of signing a code or script to confirm the software

author and guarantee that the code has not been altered or corrupted since it was

signed, by use of a cryptographic hash. Many existing code signing systems (for

instance Microsoft Authenticode [2]) rely on a public key infrastructure (PKI) to

provide both code authenticity and integrity.

In this work we take inspiration from the concept of code signing to define

the system code safety. We consider that an executable physical block is safe

only if it has a valid signature. All valid signatures are known by the runtime

monitor. We refer to this information as golden image (GI) and it is held by the

monitor. Assuming that the golden image contains only signatures of trusted code,

47

an injected code can be detected since its signature is not part of the golden image.

More formally, we can identify a golden image GI as a set of signatures, where

a signature (for us) can be simply the result of a hash function computed over a

physical block content. We introduce more formally the concept of a physical block

and a physical block content with Definition 2. Definition 3 instead introduces the

concept of a golden image. Notice that all the following definitions use the formal

model of the ARM architecture that is presented in Section 2.2.2, where the MMU

behaviour and an ARM machine state are described.

Definition 2 (Physical block, content).

Given an ARM machine state σ = 〈m, regs, psrs, coregs,mem〉, each physical block

of σ is referenced by an identifier pb ∈ [0, 220) 1. Also, we assume the existence of

a function:

content : [0 , 2 20)× Σ −→ word4KB

that returns the content of a physical block in a system state as a value of word4KB.

Definition 3 (Golden Image, valid).

A golden image GI is a set of signatures that are computed over physical blocks

GI = {s1 , ..., sn}

Also, we assume the existence of a predicate valid such that, given a machine state

σ and a physical block reference pb:

valid(pb, σ,GI)⇔ signature(content(pb, σ)) ∈ GI

Where signature can be seen as a hash function computed over a value of word4KB.

We identify the system code given a machine state with the concept of working

set (WS) that is defined by Definition 4. In particular, the working set contains all

those physical blocks that can be accessed in executable mode. Namely, a physical

block belongs to the working set, if and only if there exists a virtual address

that is translated by the MMU into a physical address of the physical block with

executable access permission (see Section 2.2.2, where the MMU behaviour and

an ARM machine state are described).

1 Notice that we will use the notation pa ∈ pb to denote that the physical address pa

is inside the physical block referenced by pb

48

Definition 4 (Working set).

Given an ARM machine state σ = 〈m, regs, psrs, coregs,mem〉 the working set is

formally defined as:

WS(σ) ={〈pb, content(pb, σ)〉 | ∃va, pa, ex, w, r.

〈pa, (ex,w, r)〉 = mmu(σ, va) ∧ ex ∧ pa ∈ pb}

Where pb and content are as defined in Definition 2.

With Defintion 5 we formalize the concept of a machine state safety given a

golden image, stating that a system state is safe if and only if all the physical

blocks in the working set are valid according to the monitor golden image.

Definition 5 (System safety).

Given an ARM machine state σ = 〈m, regs, psrs, coregs,mem〉 and a golden im-

age GI:

safe(σ) ≡ ∀〈pb, c〉.〈pb, c〉 ∈WS(σ)⇒ valid(pb, σ,GI)

In order to formally define the security property to be ensured by the monitor,

we must introduce a top level specification that characterizes the computations of

the system shown in Figure 3.1. This is done only in Section 3.3.1 when we need to

present the formal proof. However in the meanwhile we give an intuition for this

property with Definition 6 to make the approach of identifying a security policy

and a validation mechanism more structured.

Definition 6 (Property SAFE).

The (top level specification of the) system depicted in Figure 3.1 satisfies the prop-

erty SAFE if and only if, given a machine state σ such that safe(σ) holds, if σ′ is

a reachable state from σ then safe(σ′) holds.

The security property SAFE belongs to the class of safety properties [5]. More-

over, SAFE constrains the system memory layout since safe(σ) states a condition

over the working set of the state σ. Therefore, the property SAFE identified sat-

isfies the necessary condition of enforceable properties for Prosper monitor stated

by Fact 3.

49

3.2.3 Security policy and validation mechanism

In this section we report all the reasoning performed to identify a security policy

and a validation mechanism needed to ensure the property SAFE .

Based on Assumption 2, the Prosper monitor is able to guarantee the prop-

erty SAFE only if it intercepts and validates all the security-sensitive operations

for SAFE . We identify the security-sensitive operations for SAFE as those that

change the system working set. Definition 7 defines a sensitive operation for the

property SAFE .

Definition 7 (Security-sensitive operations for SAFE).

Let op be an operation. Then, op is security-sensitive for SAFE if and only if there

exist system states σ and σ′ such that σ′ is reachable from σ by the operation op

and WS(σ) 6= WS(σ′).

A simple security policy consists of detecting all the security-sensitive opera-

tions of the requests received by the monitor from the hypervisor, and of invoking

the validation mechanism over these operations. The request is accepted if and

only if it is considered “secure” by the validation mechanism, otherwise it is re-

jected. The correctness of this policy depends on whether the Prosper monitor is

able to intercept all security-sensitive operations for SAFE . From the protocol in

figure 3.2, we know that the Prosper monitor intermediation is guaranteed only

when a hypercall is raised by a guest of the hypervisor. Therefore we can state

that:

Proposition 1 (complete mediation for SAFE).

The Prosper monitor is able to ensure the property SAFE only if a hypercall is

raised for each security-sensitive operation for SAFE.

Proof. Let op be a security-sensitive operation for SAFE and suppose that op

is performed without invoking any hypercall. Therefore, based on the protocol of

Figure 3.2, the mediation of Prosper monitor is not guaranteed. From Assumption

2 we know that the monitor is not able to ensure SAFE .

At this point the problem to be addressed is whether a hypercall is raised

whenever a sensitive-operation for SAFE is going to be performed. To answer to

this question, we analyse what are the security-sensitive operations. Two types of

operations can modify the working set:

50

1. Operations that change the memory layout setting a physical block as exe-

cutable.

2. Operations that modify the content of a physical block that is executable.

An operation that changes the memory layout raises a hypercall. This is due

to the complete control of the hypervisor over the system memory. Consequently,

all operations of the first type can be intercepted by the Prosper monitor and

validated.

The second type of operations, namely operations that modify the content of

an executable physical block, cannot be intercepted since they are not supposed

to raise any hypercall. In fact, a simple write operation does not require the hy-

pervisor intermediation since no modification of the memory layout is introduced.

Without the interception of the second type of operation the Prosper monitor is

not able to enforce the security property SAFE according to Proposition 1. In

fact, a code injection attack can be performed without any interception by the

monitor, only by writing malicious code in an executable area of the memory.

In order to address this problem a solution is to enforce an additional property

over the memory layout to avoid all operations of the second type. In particular

the property to be enforced is known in literature as executable space protection

[23] [24]. This property states that, given a memory layout, a physical block

cannot be both writable and executable. We formalize the concept of executable

space protection over a system state σ with Definition 8 whereas with Definition

9 we introduce the security property W ⊕Xsimilarly to how the property SAFE

is introduced in Definition 6.

Definition 8 (Property W ⊕X(σ)).

Given an ARM machine state σ = 〈m, regs, psrs, coregs,mem〉:

W ⊕X(σ) ≡∀(va, pa, ex, w, r)(va′, pa′, ex′, r′, w′).

(〈pa, (ex,w, r)〉 = mmu(σ, va) ∧ 〈pa′, (ex′, w′, r′)〉 = mmu(σ, va′))

⇒ ((∃pb. pa ∈ pb ∧ pa′ ∈ pb)⇒ ¬(w ∧ ex′))

where pb is a physical block reference.

Definition 9 (Property W ⊕X).

The (top level specification of the) system depicted in Figure 3.1 satisfies the prop-

erty W ⊕Xif and only if, given a machine state σ such that W ⊕X(σ) holds, if

σ′ is a reachable state from σ then W ⊕X(σ′) holds.

51

Assuming that the property W ⊕X holds, since the operations 2) are not pos-

sible, the security-sensitive operations for SAFE are only those operations that

change the memory layout by setting a physical block to executable. Since these

operations always raise a hypercall, the necessary condition for the complete me-

diation stated by Proposition 1 is satisfied.

The Prosper monitor and the W ⊕X property

The security property W ⊕X belongs to the class of safety properties [5]. We also

observe that W ⊕X constrains the system memory layout since W ⊕X (σ) states

a condition over the access permissions to the physical blocks of σ. Therefore, the

property W⊕X identified satisfies the necessary condition of enforceable properties

for Prosper monitor stated by Fact 3. We can try to identify a suitable validation

mechanism for the Prosper monitor to ensure this property.

A simple security policy to ensure W ⊕X is the validation of all the security-

sensitive operations for this property. The security sensitive operations for W ⊕X
can be identified as those that change the memory configuration. Since guests

can only modify the memory configuration through the hypercalls, we are able to

identify the security-sensitive operations for W ⊕Xwith the hypercalls, as stated

by Definition 10.

Definition 10 (security-sensitive operations for W ⊕X).

An operation op is security-sensitive for the property W ⊕X if and only if op is a

hypercall.

The interaction protocol presented in Figure 3.2 guarantees that the Prosper

monitor is informed about all the hypercalls. Consequently, the mediation of the

monitor is guaranteed for all the security-sensitive operations for both W ⊕X and

SAFE and the security policy simply consists of the validation of the hypercalls,

to ensure that the operation does not violate W ⊕X or SAFE .

Validation mechanism

In this subsection we report all the reasoning done to identify the checks to be

performed by the validation mechanism. The goal of these checks is the evaluation

of the security-sensitive operations for W ⊕ X and SAFE . These operations are

the hypercalls as concluded in the previous paragraph. We introduce in Table 3.1

52

a high level definition of the hypercalls provided by the hypervisor to the Linux

guest to manage the memory layout 2. Let us first describe more formally the

concept of mapping which is used extensively in the definition of the hypercalls.

Definition 11 (mapping).

Let m be a mapping described by a page table descriptor (see Figure 2.4). Then,

the physical address m.pa is accessible through the virtual address m.va with access

permissions m.ex, m.w and m.r that give the executable, writable and readable

rights.

From Table 3.1, we can identify four categories for the hypercalls. These

categories are taken into exam in order to identify the checks that the validation

mechanism must perform over the hypercalls. The categories are:

1. create: this category includes the hypercalls that create a page table, namely

createL1 (σ, base) and createL2 (σ, base). We denote by create (σ, base) a

general hypercall of this category.

2. map: this category includes the three hypercalls that map a page table entry,

these are mapL1Sec(σ, base,m), mapL1PT (σ, base,m) and mapL2 (σ, base,m.

We denote by map (σ, base,m) a general hypercall of this category.

3. unmap: this category includes those hypercalls that remove a mapping from

a page table entry, namely unmapL1 (σ, base,m) and unmapL2 (σ, base,m).

We denote by unmap (σ, base,m) a general hypercall of this category.

4. free: this category includes the two hypercalls freeL1 (σ, base) and freeL2 (σ, base).

We denote by free (σ, base) a general hypercall of this category.

The idea for the validation mechanism is that, given a hypercall h, this oper-

ation is validated and accepted if and only if it is “secure” for both the properties

SAFE and W ⊕X. Definition 12 introduces the concept of secure hypercall.

Definition 12 (secure hypercall).

Let h be a hypercall, and let σ and σ′ such that σ′ is the reachable state from σ by

2We would like to observe that a hypercall modifies one page table at a time. This

observation will be useful when the formal proof is discussed in Section 3.3

53

Hypecall Description

1) createL1(σ, base) Activates a first level page table (L1) starting from the

physical address base in the state σ

2) createL2(σ, base) Activates a second level page table (L2) starting from the

physical address base in the state σ

3) mapL1Sec(σ, base,m) Introduces a new mapping m in the L1 page table pointed

by base. The mapping is between the virtual address

m.va and the physical address m.pa, with access

permissions (m.ex,m.w,m.r)

4) mapL1PT (σ, base,m) Introduces a new mapping m in the L1 page table pointed

by base. The mapping is between the virtual address

m.va and the second level page table (L2) that starts

from the physical address m.pa

5) mapL2(σ, base,m) Introduces a new mapping m in the L2 page table pointed

by base. The mapping is between the virtual address m.va

and the physical address m.pa with access permissions

(m.w,m.r,m.ex)

6) unmapL1(σ, base,m) Removes the mapping of the virtual address m.va

from the L1 page table pointed by base

7) unmapL2(σ, base,m) removes the mapping of the virtual address m.va

from the L2 page table pointed by base

8) freeL1(σ, base) Deactivates the L1 page table pointed by base

9) freeL2(σ, base) Deactivates the L2 page table pointed by base

Table 3.1: Hypercalls descritpion

54

performing the hypercall h. Assume that safe(σ) and W ⊕X(σ) hold. Then:

secure(h, σ)⇔ secureW⊕X(h, σ) ∧ securesafe(h, σ) where:

secureW⊕X(h, σ)⇔W ⊕X(σ′)

securesafe(h, σ)⇔ safe(σ′)

Definition 12 states that a hypercall h is considered “secure” in a state if and

only if, the state σ′ that is reached after performing h satisfies the properties

safe(σ′) and W ⊕X(σ′).

Given a hypercall h and a machine state σ, the validation mechanism needs to

establish if secure(h, σ) holds. If it holds, h is accepted, otherwise it is rejected.

The approach adopted is the analysis of each category of hypercalls looking for

sufficient conditions to conclude secure(h, σ). We organize the discussion taking

into analysis first the property W ⊕X and then the property SAFE .

Validation mechanism for W ⊕X
In the following paragraphs we analyse how to establish the property secureW⊕X(h, σ)

given a hypercall h and a machine state σ. The goal is to identify a sufficient con-

dition to conclude secureW⊕X(h, σ). We examine each category of hypercall.

Category map: Let’s take a hypercall h of type map and let σ be a machine

state. To understand how to validate h, we try to establish when W ⊕X(σ′) holds.

Based on Definition 8, W ⊕ X(σ′) holds if and only if all the physical blocks of

σ′ are not both writable and executable. Clearly, the approach of checking all the

page tables to establish if a given physical block respects the above condition after

the mapping is not efficient. Moreover, each hypercall modifies only one page table

at a time.

We can restrict the checks only to the page table that is subject of the hypercall:

h introduces a mapping in the current master page table making a physical address

m.pa accessible with the permissions (m.ex,m.w,m.r). Therefore, a minimal check

to be performed over the access permissions is to ensure that the writable access

and the executable access are not granted contemporary. This is expressed with

the Fact 4.

55

Fact 4 (necessary condition for the map hypercall).

Let h = map (σ, base,m). Assume that W ⊕X(σ), then:

secureW⊕X(h, σ)⇒ ¬(m.w ∧m.ex)

However, the simple condition expressed by Fact 4 is only necessary and not

sufficient for secureW⊕X(h, σ). In fact, even if h specifies sound access permissions

to the physical address m.pa ∈ pb, the W ⊕ X property can be violated in σ′:

suppose that the mapping m specified by h is such that m.w = 1 , there might

exist a different mapping m′ (in some page table of σ) that grants an executable

access, so m ′.ex = 1 , to a physical address m ′.pa such that m ′.pa ∈ pb.

The solution identified to this problem exploits the infrastructure provided by

the hypervisor. From Section 2.2.3, we know that the hypervisor maintains refer-

ence counters that track, for each physical block, the number of page table entries

(L1 or L2) that point to that physical block and give the writable permission. This

is done by the virtualization mechanism (see the paragraph titled virtualization

mechanism of Section 2.2.3) of the hypervisor in order to write-protect the physi-

cal blocks containing page tables, and to constrain a guest to modify in user mode

only physical blocks of type data. We decide to extend the reference counters of

the hypervisor by counting also, for each physical block, the page table entries

that point to that physical block and give the executable permission. Therefore,

we distinguish two functions for the reference counting:

pgrefsw :[0, 220) −→ N

pgrefsex :[0, 220) −→ N

Thanks to this extension, we are able to formalize a sufficient condition for

secureW⊕X(h, σ) with Fact 5, but first we need to introduce the concept of sound

mapping :

Definition 13 (sound mapping for W ⊕X).

Let m be a mapping and let pb be the physical block reference such that m.pa ∈ pb.

Then:

soundW⊕X(m)⇔(m.w ⇒ ¬(m.ex) ∧ pgrefsex(pb) = 0)∧

(m.ex⇒ ¬(m.w) ∧ pgrefsw(pb) = 0)

56

A mapping m is sound if and only if, if the mapping m grants a writable

access to the physical address m.pa, then the executable access is not granted

and the physical block of m.pa has the executable reference counter equal to zero.

Similarly, if the mapping m grants an executable access to the physical address

m.pa, then the writable access is not granted and the physical block of m.pa has

the writable reference counter equal to zero.

Fact 5 (sufficient condition for the map hypercall).

Let h = map (σ, base,m). Assume that W ⊕X(σ), then:

soundW⊕X(m)⇒ secureW⊕X(h, σ)

Fact 5 states that, if the mapping introduced by the hypercall h is sound, then

secureW⊕X(h, σ) holds.

Category create: Let’s take a hypercall h of type create. This changes

the memory layout configuration by the activation of all the mappings of a page

table. Conceptually, a page table creation can be seen as a sequence of hypercalls

of type map. Therefore the validation mechanism can exploit Fact 5 to validate

the hypercall h. However this is not sufficient since pgrefsex and pgrefsw track

the reference counters in the system state σ 3. It is then necessary to make a

cross-checking over all the mappings of the created page table. For this purpose

we define the concept of mutually secure mappings with Definition 14.

Definition 14 (mutually-secure mappings).

Let m and m′ be two mappings. Then:

mutually secure(m,m′)⇔ (∃pb. m.pa ∈ pb ∧m′.pa ∈ pb)⇒

(m.ex⇒ ¬m′.w) ∧ (m′.ex⇒ ¬m.w)

where pb references a physical block.

Two mappings m and m′ are mutually-secure if and only if, if they grant an

access to the same physical block pb then, if m gives an executable right m′ does

3The pgrefsw and pgrefsex are part of the hypervisor state. They are managed only by

the hypervisor and updated only after that a hypercall has been accepted by the monitor

57

not give the writable access, and if m′ gives an executable access m does not give

the writable access.

The sufficient condition for secureW⊕X(h, σ) with h of type create is given

with Fact 6

Fact 6 (sufficient condition for the create hypercall).

Let h = create (σ, base) and let pt 4 be the page table pointed by base. Assume that

W ⊕X(σ), then:

(∀m,m′ ∈ pt. soundW⊕X(m) ∧mutually secure(m,m′))⇒ secureW⊕X(h, σ)

Fact 6 states that secureW⊕X(h) holds if for each mapping m of the page table

pt created by h, the mapping m is sound, and for each mapping m′ of pt, m and

m′ are mutually-secure.

Category unmap: Let’s take a hypercall h of type unmap. This hypercall

changes the memory layout removing a mapping between a virtual and a physical

address from the current master page table. Since this operation does not give any

additional right of access to any physical block, it is considered a secure hypercall.

Therefore, Fact 7 states that secureW⊕X(h) holds without any checks.

Fact 7 (sufficient condition for the unmap hypercall).

Let h = unmap (σ, base,m). Assume that W ⊕X(σ), then:

secureW⊕X(h, σ) holds

Category free: Let’s take a hypercall h of type free. This changes the

memory layout configuration deactivating all the mappings of a page table. Con-

ceptually, h can be seen as a sequence of hypercalls of type unmap. Therefore, a

hypercall of type free is considered secure as stated by Fact 8.

4A page table can be seen as a set of mappings, each one is given by a page table

descriptor of an entry: pt = {m1, ...,mn}

58

Fact 8 (sufficient condition for the free hypercall).

Let h = free (σ, base) . Assume that W ⊕X(σ), then:

secureW⊕X(h, σ) holds

Validation mechanism for SAFE

In the following paragraphs we analyse how to establish if securesafe(h, σ) holds

(see Definition 12 for securesafe(h, σ)) given a hypercall h and a machine state σ.

The goal is to identify a sufficient condition C to conclude securesafe(h, σ). We

analyse each category of hypercall.

Category map: Let h be a hypercall of type map and let σ be a machine

state. This hypercall introduces a mapping for the physical address m.pa. If

m grants an executable access to the physical block pb such that m.pa ∈ pb,

then h would change the system working set WS(σ) (see Definition 4 of WS(σ)).

Therefore the hypercall h is secure if the executable code in pb has a valid signature

according to the monitor golden image GI (see Definition 3 of golden image and

the predicate valid). Based on this analysis we formalize a sufficient condition

with Fact 9, but before that, we introduce the concept of sound mapping for the

property SAFE with Definition 15.

Definition 15 (sound mapping for SAFE).

Let m be a mapping and let pb be the physical block reference such that m.pa ∈ pb.

Let GI be the golden image. Then:

soundsafe(m,σ,GI)⇔(m.ex⇒ valid(pb, σ,GI))

Definition 15 states that a mapping m is sound for SAFE if and only if, when

granting an executable access to a physical block pb, then the physical block pb

has a valid signature according to the golden image GI

Fact 9 (sufficient condition for the map hypercall).

Let h = map (σ, base,m) and let GI be the golden image. Assume that safe(σ),

then:

soundsafe(m,σ,GI)⇒ securesafe(h, σ)

59

Fact 9 states that if the mapping m is sound according to Definition 15, then

securesafe(h, σ) holds.

Category create: Let h be a hypercall of type create. This can be seen as

a sequence of hypercalls of type map as explained in the previous paragraphs, when

h is analysed to establish secureW⊕X(h, σ). Consequently securesafe(h, σ) holds

if all the mappings activated by the hypercall h are sound according to Definition

15. This is stated by Fact 10.

Fact 10 (sufficient condition for the create hypercall).

Let h = create (σ, base) and let pt 5 be the page table pointed by base. Let GI be

the golden image. Assume that safe(σ), then:

(∀m ∈ pt. soundsafe(m,σ,GI))⇒ securesafe(h, σ)

Category unmap: Let’s take a hypercall h of type unmap. This hypercall

changes the memory layout removing a mapping between a virtual and a physical

address from the current master page table. Since this operation does not introduce

any new executable code in the working set, it is considered a secure hypercall.

Therefore, Fact 11 states that securesafe(h, σ) holds without any checks.

Fact 11 (sufficient condition for the unmap hypercall).

Let h = unmap (σ, base,m). Assume that safe(σ), then:

securesafe(h, σ) holds

Category free: Let’s take a hypercall h of type free. This changes the

memory layout configuration deactivating all the mappings of a page table. Con-

ceptually, h can be seen as a sequence of hypercalls of type unmap. Therefore, a

hypercall of type free is considered secure as stated by Fact 12.

5A page table can be seen as a set of mappings, each one is given by a page table

descriptor: pt = {m1, ...,mn}

60

Fact 12 (sufficient condition for the free hypercall).

Let h = free (σ, base). Assume that safe(σ), then:

securesafe(h, σ) holds

We are finally able to give a description of the Prosper monitor validation

mechanism.

Definition 16 (The Prosper runtime’s validation mechanism).

Let h be a hypercall, and let GI be the golden image. Then:

validation(h) ≡

(h = map (σ, base,m)⇒soundW⊕X(m) ∧ soundsafe(m,σ,GI))∧

(h = create (σ, base)⇒ ∀m,m′ ∈ pt6. soundW⊕X(m) ∧ soundsafe(m,σ,GI)∧

mutually secure(m,m′))∧

(h = unmap (σ, base)⇒ true) ∧

(h = free (σ, base)⇒ true)

The validation mechanism of a hypercall h is a predicate validate(h) that holds

if and only if h satisfies the sufficient conditions discussed in the previous para-

graphs (see Fact 5 - 11).

3.3 Formal proof of correctness

In this section we present the formal proof of correctness for the validation mecha-

nism discussed in Section 3.2.3. We would like to demonstrate that the validation

mechanism defined with Definition 16 guarantees the security properties SAFE

and W ⊕X.

First we present a top level specification of the behaviour of the system shown

in Figure 3.1, This is based on the specification described in Section 2.2.3, where

6pt is the page table pointed by base

61

the Prosper hypervisor is presented. Then, we formalize the goals of our proof

as theorems. For each theorem, we will discuss a possible proof presenting all the

intermediate lemmas. The proofs discussed has been verified in the HOL4 theorem

prover. In Chapter 4 we will discuss the proof verification with the HOL4.

3.3.1 Top Level Specification

In order to give a top level specification of the system shown in Figure 3.1, we

distinguish three components:

• An ARM machine with a state σ ∈ Σ such that σ = 〈m, regs, psrs, coregs,mem〉
(see Section 2.2.2 where the formal model of an ARM machine is defined).

• The hypervisor, with an abstract state η that represents the data structures

for the page typing and the reference counting: pgrefsex , pgrefsw and pgtype.

• The runtime monitor, with an abstract state GI that consists of the golden

image.

Similarly to the formalization introduced in Section 2.2.3 (see the paragraph

titled Top Level Specification), we define the behaviour of our system with a tran-

sition system that is described by a top level specification (TLS).

The system behaviour alternates executions in user mode, in which neither the

hypervisor nor the monitor intermediation is required, with executions in privileged

mode. The executions in privileged mode require the hypervisor intermediation as

stated by the inference rule priv of the TLS in Section 2.2.3. The intermediation

is invoked by a hypercall that triggers a hypervisor handler Ha. In these execu-

tions, based on the interaction protocol of Figure 3.2, the monitor invocation is

also guaranteed. The monitor validates the hypercall based on what stated with

Definition 16.

〈σ, η〉 op−→0 〈σ′, η′〉

〈σ, η,GI〉
op
↪→0 〈σ′, η′, GI〉

usr’
〈σ, η〉 op−→1 〈σ′, η′〉 validate(op)

〈σ, η,GI〉
op
↪→1 〈σ′, η′, GI〉

securepriv

〈σ, η〉 op−→1 〈σ′, η′〉 ¬validate(op)

〈σ, η,GI〉 err
↪→1 ξ(〈σ, η,GI〉)

insecurepriv

62

The inference rule usr′ states that, executions in user mode behave exactly as

specified by the inference rule usr of the TLS in section 2.2.3, without affecting the

monitor. The inference rule securepriv describes the system behaviour in case of a

secure privileged execution: if op is validated by the monitor and validate(h) holds,

the system behaves as described by the inference rule priv. In case the privileged

operation op is such that validate(h) does not hold, the system performs a special

operation err reaching a state that is returned by a function ξ. The function

ξ handles the case in which the operation requested op is not consistent with

the property SAFE or W ⊕ X. In this thesis, and for all the following proofs

we consider that ξ is the identity function and the operation err is the empty

operation denoted by τ . Therefore, the inference rule insecurepriv becomes:

〈σ, η〉 op−→1 〈σ′, η′〉 ¬validate(op)

〈σ, η,GI〉 τ
↪→1 〈σ, η,GI〉

insecurepriv

The top level specification presented fully describes the behaviour of our sys-

tem: the only transitions that our system performs are those described by the

rules usr, securepriv and insecurepriv.

3.3.2 Goals formalization and proof

The main goal of the Propsper monitor is to ensure the security property SAFE

in order to protect the Linux kernel guest from code injection attacks. We know

from the discussion of Section 3.2.3 that the property W ⊕Xmust be enforced as

well. To prove that the validation mechanism ensures the properties, we formalize

the goals with the Theorems 4 and 5 for the property SAFE , and Theorem 6 for

the property W ⊕X. Before that, first we introduce the following sets:

• Let Qsafe be the set of system states 〈σ, η,GI〉 such that safe(σ) holds (See

definition 5) .

• Let QW⊕X be the set of system states 〈σ, η,GI〉 such that W ⊕X(σ) holds

(See Definition 8) .

• Let QInv be the set of system states 〈σ, η,GI〉 such that Inv(〈σ, h,m〉) holds,

where Inv is a system state invariant discussed and presented in the next

paragraphs (see Definition 18).

63

• Let Q = Qsafe ∩QW⊕X ∩QInv be the intersection set. We refer to a system

state in Q as a consistent system state.

Theorem 4 (SAFE over privileged transitions).

Let 〈σ, η,GI〉 ∈ Q. Then, if 〈σ, η,GI〉
op
↪→1 〈σ′, η′, GI〉 then 〈σ′, η′, GI〉 ∈ Qsafe

Theorem 4 states that starting from a consistent system state, the property

safe is satisfied by the reached state after a privileged transition.

Proof. We must show that safe(σ′) holds. From the assumption we have that

〈σ, η,GI〉 ∈ Q, therefore 〈σ, η,GI〉 ∈ Qsafe. We can distinguish two cases:

1. op = τ : then, based on the inference rule insecurepriv , we have that 〈σ, η,GI〉 =

〈σ′, η′, GI〉. Since 〈σ, η,GI〉 ∈ Qsafe it follows that 〈σ′, η′, GI〉 ∈ Qsafe and

safe(σ′) holds.

2. op 6= τ : since the transition considered is privileged, op must be a hypercall.

Let h be such that op = h. Based on the inference rule securepriv, we know

that validate(h) holds and h satisfies the sufficient conditions identified in

Section 3.2.3 (see Definition 16 of validate(h)). To prove safe(σ′), we can

proceed by cases based on the category of the hypercall h and using the

sufficient conditions identified:

• h = map (σ, base,m): then, since validate(h) holds, we have that

soundsafe(m, σ,GI) (see Definition 15 for soundsafe). We distinguish

two cases based on whether m grants an executable access to a physical

block or not:

– m.ex = 0: in this case the hypercall h does not change the working

set, namely WS (σ) = WS (σ′). Therefore, since safe(σ) holds, it

follows that safe(σ′) holds as well (notice that safe(σ) states a

condition over the working set, if this set does not change, the

condition is still valid. See Definition 5 for safe(σ)).

– m.ex = 1: in this case, m is granting an executable access to the

physical block pb such that m.pa ∈ pb. Therefore, we have a new

element in the working set: WS(σ′) = WS(σ)∪{〈pb, content(pb, σ)〉}.
To prove that safe(σ′) holds, it is sufficient to prove that the new

64

element of the working set 〈pb, content(pb, σ)〉 has a valid signa-

ture according to the golden image GI. Since soundsafe(m, σ,GI),

it follows that valid(pb, σ,GI) holds. Therefore safe(σ′) holds.

• h = create (σ, base): then, since validate(h) holds, we have that:

∀m ∈ pt7.soundsafe(m, σ,GI). For each mapping m of the created page

table pt, we know that m is sound. We can proceed as in the previous

case showing that, if m grants an executable access to a physical block

pb, pb has a valid signature according to the golden imageGI. Therfore,

we can conclude that safe(σ′) holds.

• h = unmap (σ,m, base): we distinguish two cases to prove that safe(σ′)

holds:

– m.ex = 0 , then WS (σ) = WS (σ′). Since safe(σ) holds, it follows

that safe(σ′) holds.

– m.ex = 1 , we have that WS(σ′) = WS(σ)\{〈pb, content(pb, σ)〉},
where pb is such that m.pa ∈ pb. Since WS(σ′) ⊂ WS(σ), it

follows that safe(σ′) holds. In fact, each element of WS(σ′) is an

element of WS(σ) with a valid signature according to GI.

• h = free (σ, base): similarly to the previous case, we can state that

WS(σ′) ⊆ WS(σ). Consequently, from safe(σ) we can conclude that

safe(σ′) holds.

Important observation: It is worth to notice that, using the sufficient

conditions identified and formalized with Facts 9 - 12 we are able to prove the

Theorem 4. This observation allows us to conclude that our sufficient conditions

are effective and “strong” enough to ensure the property SAFE over the privileged

transitions.

Theorem 5 (SAFE over user transitions).

Let 〈σ, η,GI〉 ∈ Q. Then, if 〈σ, η,GI〉
op
↪→0 〈σ′, η′, GI〉 then 〈σ′, η′, GI〉 ∈ Qsafe

7pt is the page table pointed by base

65

Theorem 5 states that starting from a consistent system state, the property

safe is satisfied by the reached state after a user transition. Notice that a transition

in user mode is performed without the monitor intermediation. Therefore, giving

a proof for Theorem 5, implies that the validation mechanism of the monitor is

strong, and effective enough, to enforce a correct system state over all the possible

transitions of the system. The proof of Theorem 5 depends on the Lemma 1 and

the Corollary 1. Therefore, we suggest to read first the Corollary 1 and then the

Lemma 1 before reading the following proof.

Proof. Based on the hypothesis 〈σ, η,GI〉 ∈ Q, it follows that 〈σ, η,GI〉 ∈ Qsafe,
and safe(σ) holds. The Lemma 1 states that WS(σ) = WS(σ′). Therefore,

by Definition 5 of safe(σ), we conclude that safe(σ′) holds, and 〈σ, η,GI〉 ∈
Qsafe.

The following corollary is a consequence of Theorem 1 that is related to the hy-

pervisor isolation properties (see Section 2.2, the paragraph titled Isolation Prop-

erty). Theorem 1 states that the hypervisor invariant I is satisfied by all the states

reached by the system running on top of the hypervisor.

Corollary 1 (Isolation properties consequence).

Let 〈σ, η,GI〉 ∈ Q . Assume that 〈σ, η,GI〉
op
↪→0 〈σ′, η′, GI〉. Then, given a physical

block referenced by pb, if content(pb, σ) 6= content(pb, σ′) then η.pgtype(pb) = D.

The Corollary 1 states that, only the physical blocks of type data can change

their content when a user transition is performed by the system.

Proof. by Theorem 1 we know that the hypervisor invariant I is preserved over

all the system states 〈σ, η〉 of the TLS described in Section 2.2.3. The invariant I

states, among other things, that a page table descriptor grants a writable access

to a physical block pb if and only if pb is of type data (η.pgtype(pb) = D). Con-

sequently if a physical block has a different content after a user transition, this

block can only be of type data. Considering that the monitor is a guest of the

hypervisor (see Figure 3.1), we can conclude that the invariant I is preserved also

over all the system states 〈σ, η,GI〉. Therefore, only physical blocks of type data

can change their content after a user transition of our system.

Lemma 1 (Equal working sets over user transitions).

Let 〈σ, η,GI〉 ∈ Q. If 〈σ, η,GI〉
op
↪→0 〈σ′, η′, GI〉 then WS(σ) = WS(σ′)

66

Lemma 1 states that system working set does not change after a user transition.

Proof. To prove that WS(σ) = WS(σ′), first we prove that WS(σ) ⊆ WS(σ′),

then we prove that WS(σ′) ⊆WS(σ).

• Let 〈pb, c〉 ∈ WS(σ) and suppose that 〈pb, c〉 /∈ WS(σ′). Since 〈pb, c〉 ∈
WS(σ), there exists a mapping m in the state 〈σ, η,GI〉 such that m.ex = 1

and m.pa ∈ pb. If we assume that 〈pb, c〉 /∈ WS(σ′) we can identify two

possible cases (and they are the only possible cases):

– The mapping m has been removed from the system with the operation

op, which means that a page table descriptor has been modified. Let

pb′ be the reference to the physical block containing this page table. Re-

movingm from the page table implies that content(pb ′, σ) 6= content(pb′, σ′)

and η.pgtype(pb′) = L1 ∨ η.pgtype(pb′) = L2, namely η.pgtype(pb′) 6=
D. This is in contradiction with Corollary 1. Therefore, we can con-

clude that 〈pb, content(pb, σ)〉 ∈WS(σ′)

– The mapping m is still active in the system state 〈σ′, η′, GI〉. If

we assume that 〈pb, c〉 /∈ WS(σ′), it means that content(pb, σ) 6=
content(pb, σ′) (since the physical block pb is still executable thanks

to m, the only possibility is that the content of pb is different in σ′).

If the operation pb is able to change the content of pb, it means that

there exists a mapping m′ in the system state 〈σ, η,GI〉 such that

m′.w = 1 and m′.pa ∈ pb. But this means that pb is a physical block

both writable and executable. This is in contradiction with our as-

sumptions. In fact if 〈σ, η,GI〉 ∈ Q then 〈σ, η,GI〉 ∈ QW⊕X and a

physical block cannot be both writable and executable. Therefore, we

conclude that 〈pb, c〉 ∈WS(σ′).

• The proof WS(σ′) ⊆WS(σ) is similar to the previous case.

Theorem 6 (W ⊕X over the system transitions).

Let 〈σ, η,GI〉 ∈ Q and i ∈ {0, 1}. Then, if 〈σ, η,GI〉
op
↪→i 〈σ′, η′, GI〉, then

〈σ′, η′, GI〉 ∈ QW⊕X .

67

The Theorem 6 states that starting from a consistent system state, the prop-

erty W ⊕ X is satisfied by the reached state after a system transition (user and

privileged).

The proof of Theorem 6 is the most challenging in all this formal verification.

We adopt the following strategy for our proof:

1. We introduce a property Inv, that is defined with Definition 17

2. We show that Inv is an invariant property. This means that Inv holds over

all the system states. This is formalized and proved with the Lemmas 2 and

3.

3. We show that, if a system state satisfies Inv then it satisfies W ⊕X. This

is formalized and proved with Theorem 7.

Definition 17 (The monitor invariant Inv).

Let 〈σ, η,GI〉 be a system state. Then:

Inv(〈σ, η,GI〉) ≡∀pb. (η.pgtype(pb) = L1 ∨ η.pgtype(pb) = L2)⇒

∀m ∈ pb. soundW⊕X(m)

In order to simplify the reading of the next proofs, we give another formula-

tion of Definition 17 extending the definition of soundW⊕X (that is defined with

Definition 13).

Definition 18 (The monitor invariant Inv).

Let 〈σ, η,GI〉 be a system state. Then6 :

Inv(〈σ, η,GI〉) ≡∀pb.(η. pgtype(pb) = L1 ∨ η.pgtype(pb) = L2)⇒

∀m ∈ pb.((m.ex⇒ ¬m.w ∧ η.pgrefsw(m.pb) = 0)∧

(m.w ⇒ ¬m.ex ∧ η.pgrefsex(m.pb) = 0))

6In this definition, we use the notation m.pb to refer the physical block pb such that

m.pa ∈ pb

68

Definition 18 states that, the invariant Inv holds in a system state if and only

if, for each physical block pb, if pb is of type L1 or L2 (meaning that pb contains a

page table pt) then, for each mapping m of pt, if m grants an access to a physical

block m.pb, this access cannot be both writable and executable. Furthermore, if

m grants a writable access then the executable reference counter of m.pb must

be zero. Similarly, if m grants an executable access, then the writable reference

counter of m.pb must be zero.

Lemma 2 (Inv over user transitions).

Let 〈σ, η,GI〉 ∈ Q. Then, if 〈σ, η,GI〉
op
↪→0 〈σ′, η′, GI〉 then 〈σ′, η′, GI〉 ∈ QInv

Lemma 3 states that starting from a consistent system state, the invariant Inv

is satisfied by the reached state after a user transition.

Proof. From the hypothesis we know that 〈σ, η,GI〉 ∈ QInv. Suppose that 〈σ′, η′, GI〉 /∈
QInv. Then, there exists a physical block pb containing a page table pt with a map-

ping m (in the state 〈σ′, η′, GI〉) such that, soundW⊕X (m) does not hold. If m

is not sound, we can identify two possible cases (that arises from the negation of

soundW⊕X(m)):

1. m.ex = 1: m grants an executable access to a physical block m.pb that is

both writable and executable (in fact, if m is not sound, either m.w = 1,

or pgrefsw(m.pb) 6= 0). However, since m.pb cannot be both writable and

executable in the system state 〈σ, η,GI〉 ∈ QW⊕X , this means that, with the

operation op a new mapping is introduced. Therefore, there exists a physical

block pb′ such that content(pb ′, σ) 6= content(pb′, σ′) and (η.pgtype(pb′) =

L1∨η.pgtype(pb′) = L2), namely η.pgtype(pb′) 6= D. This is in contradiction

with Corollary 1.

2. m.w = 1: m grants a writable access to a physical block m.pb that is both

writable and executable (in fact, if m is not sound, either m.ex = 1, or

pgrefsex(m.pb) 6= 0). With a similar reasoning to the previous case, we can

conclude that a new mapping is introduced with the operation op which is

in contradiction with Corollary 1.

Since both cases are not possible, we conclude the proof stating that, a page

table such as pt with a mapping such as m is not possible in the state 〈σ′, η′, GI〉,
therefore 〈σ′, η′, GI〉 ∈ QInv.

69

Lemma 3 (Inv over privileged transitions).

Let 〈σ, η,GI〉 ∈ Q. Then, if 〈σ, η,GI〉
op
↪→1 〈σ′, η′, GI〉 then 〈σ′, η′, GI〉 ∈ QInv

Lemma 3 states that starting from a consistent system state, the invariant Inv

is satisfied by the reached state after a privileged transition.

Proof. We must show that Inv(〈σ′, η′, GI〉) holds. From the assumption we have

that 〈σ, η,GI〉 ∈ Q, therefore 〈σ, η,GI〉 ∈ QInv. We can distinguish two cases:

1. op = τ : then, based on the inference rule insecurepriv , we have that 〈σ, η,GI〉 =

〈σ′, η′, GI〉. Since 〈σ, η,GI〉 ∈ QInv it follows that 〈σ′, η′, GI〉 ∈ QInv and

Inv(〈σ′, η′, GI〉) holds.

2. op 6= τ : since the transition considered is privileged, op must be a hypercall.

Let h be such that op = h. Based on the inference rule securepriv, we know

that validate(h) holds and h satisfies the sufficient conditions identified in

Section 3.2.3 (see Definition 16 of validate(h)). To prove Inv(〈σ′, η′, GI〉),
we can proceed by cases based on the category of the hypercall h and using

the sufficient conditions identified for the validation mechanism:

• h = map (σ, base,m): we know that validate(h) holds, this means that

soundW⊕X (m) holds. Suppose that 〈σ′, η′, GI〉 /∈ QInv. Then, there

exists a physical block pb containing a page table pt with a mapping

m′ (in the state 〈σ′, η′, GI〉) such that, soundW⊕X (m ′) does not hold.

We distinguish two possible cases:

– m = m′: since m is sound and m′ is not sound, we have a contra-

diction. Therefore, this case is not possible.

– m 6= m′: since the operation h introduces only one mapping at a

time, we conclude that m′ is an active mapping in pt also in the

state 〈σ, η,GI〉. Therefore, pb is a physical block that violates the

invariant definition. This means that 〈σ, η,GI〉 /∈ QInv, which is

in contradiction with our hypothesis.

We conclude that a physical block such as pb containing a mapping such

as m′ is not possible in the state 〈σ′, η′, GI〉. Therefore, 〈σ′, η′, GI〉 ∈
QInv and Inv(〈σ′, η′, GI〉) holds.

70

• h = create (σ, base): let pt be the page table pointed by base and pb

the physical block containing pt. We know that validate(h) holds.

This means that all the mappings of pt are sound. Suppose that

〈σ′, η′, GI〉 /∈ QInv. Then, there exists a physical block pb′ contain-

ing a page table pt′ with a mapping m′ (in the state 〈σ′, η′, GI〉) such

that, soundW⊕X (m ′) does not hold. We distinguish two possible cases:

– pt = pt′: since all the mappings of pt are sound, a mapping such

as m′ is not possible.

– pt 6= pt′: since the operation h creates only one page table at

a time, we conclude that pt′ is an active page table also in the

state 〈σ, η,GI〉. Therefore, pb′ is a physical block that violates

the invariant definition. This means that 〈σ, η,GI〉 /∈ QInv, which

is in contradiction with our hypothesis.

We conclude that a physical block such as pb′ containing a mapping

such asm′ is not possible in the state 〈σ′, η′, GI〉. Therefore, 〈σ′, η′, GI〉 ∈
QInv and Inv(〈σ′, η′, GI〉) holds.

• h = unmap (σ,m, base): let pt be the page table pointed by base and

pb the physical block containing pt. Then, suppose that 〈σ′, η′, GI〉 /∈
QInv. This means that there exists a physical block pb′ containing a

page table pt′ with a mapping m′ (in the state 〈σ′, η′, GI〉) such that,

soundW⊕X (m ′) does not hold. We distinguish two possible cases:

– pt = pt′: since the operation h is not introducing any new map-

pings in pt, this means that m′ is an active mapping also in the

state 〈σ, η,GI〉, and that pb violates the invariant definition since

m′ is not sound. This means that 〈σ, η,GI〉 /∈ QInv, which is in

contradiction with our hypothesis.

– pt 6= pt′: since the operation h changes only one page table at a

time, we conclude that m′ is is an active mapping in pt′ in the

state 〈σ, η,GI〉. Therefore, pb′ is a physical block that violates

the invariant definition since m′ is not sound. This means that

〈σ, η,GI〉 /∈ QInv, which is in contradiction with our hypothesis.

We conclude that a physical block such as pb′ containing a mapping

such asm′ is not possible in the state 〈σ′, η′, GI〉. Therefore, 〈σ′, η′, GI〉 ∈
QInv and Inv(〈σ′, η′, GI〉) holds.

71

• h = free (σ, base): with exactly the same reasoning followed for the

hypercalls of type unmap, it is possible to conclude that 〈σ′, η′, GI〉 ∈
QInv and Inv(〈σ′, η′, GI〉) holds.

Theorem 7 (Inv implies W ⊕X).

If 〈σ, η,GI〉 ∈ QInv then 〈σ, η,GI〉 ∈ QW⊕X .

Theorem 7 states that, if a system state 〈σ, η,GI〉 satisfies the monitor invariant

(Inv(〈σ, η,GI〉) holds), then it satisfies also the W⊕X property (W⊕X(σ) holds).

Proof. Suppose that 〈σ, η,GI〉 ∈ QInv and 〈σ, η,GI〉 /∈ QW⊕X , namely W ⊕X(σ)

does not hold. This means that (see Definition 8 for W ⊕X(σ) definition):

¬W ⊕X(σ) ≡∃(va, pa, r, w, ex) (va′, pa′, r′, w′, ex′).

(〈pa, (r, w, ex)〉 = mmu(σ, va) ∧ 〈pa′, (r′, w′, ex′)〉 = mmu(σ, va′))∧

(∃pb.pa ∈ pb ∧ pa′ ∈ pb) ∧ (w ∧ ex′)

In other words (using the concept of mapping), there exist two mappings m

and m′ and a physical block referenced by pb such that:

• m.pa ∈ pb and m.w = 1

• m′.pa ∈ pb and m.ex = 1

Sincem′.ex = 1, this implies that pgrefsex (pb) 6= 0 (in particular, pgrefsex (pb) > 0).

Therefore, soundW⊕X(m) does not hold. Let pt be the page table such thatm ∈ pt,
and let pb′ be the physical block (of type L1 or L2) containing the page table pt.

Then pb′ violates the invariant definition. This means that 〈σ, η,GI〉 /∈ QInv which

is in contradiction with our hypothesis. We conclude then that W ⊕X(σ) holds

and 〈σ, h, g〉 ∈ QW⊕X .

Thanks to Theorem 7 the proof of Theorem 6 is trivial. In fact, starting

from a consistent system state 〈σ, η,GI〉 ∈ Q, if 〈σ, η,GI〉
op
↪→i 〈σ′, η′, GI〉, then

〈σ′, η′, GI〉 ∈ QInv (since Inv is an invariant). Therefore, based on Theorem 7, we

know that 〈σ′, η′, GI〉 ∈ QW⊕X .

72

Important observation: It is worth to notice that, using the sufficient

conditions identified and formalized with Facts 5 - 8 we have been able to prove

the Theorem 6 adopting the strategy discussed in the previous paragraphs. This

fact allows us to conclude that our sufficient conditions are effective and strong

enough to ensure the property W ⊕Xover all the system transitions. Therefore,

the monitor’s validation mechanism is able to ensure the security property W ⊕X.

Theorem 7 concludes the formal proof of correctness performed in this work.

All the theorems and lemmas have been verified in the HOL4 theorem prover. The

reader, if interested, can find an example of proof with the HOL4 in Section 4.2.

73

Chapter 4

Correctness of Prosper monitor

with HOL4

The formal proof of Section 3.3 has been verified with the help of the proof assistant

HOL4. Actually, the overall structure of the proof was developed in parallel with

its verification with the HOL4.

4.1 General structure of the proof verifica-

tion

The Prosper runtime monitor is formalized as a model named monitor model in

the HOL4 theorem prover (see Section 2.3 for an overview about Automated The-

orem Proving and the HOL4). The model implements the validation mechanism

described in Section 3.2.3 with Definition 16. The security properties SAFE and

W ⊕ Xare formally verified on this model following the approach presented in

Section 3.3 where the formal proof is sketched.

Many theories and libraries are used for the formal verification, here we mention

only some of them: the hypervisor modelTheory is a theory that includes the

Prosper hypervisor model and the theorems related to the isolation properties.

The theories wordLib and blastTheory [1] instead have been extensively used to

manage values and proofs over the data type word.

The proofs have been performed adopting the goal oriented methodology (see

Section 2.3) and using the interactive session of the HOL4 assistant. An interactive

74

session that assists in proving a theorem t holds a goal stack that arises from the

goal oriented methodology. The theorem t is proved if and only if all the goals of

the stack have been reduced. In our proofs the HOL4 structure Tactic has been

extensively used. This structure provides several tactics that implement automatic

reasoners. The GEN TAC, for example, is a tactic that strips the outermost universal

quantifier from the conclusion of a goal. When the GEN TAC is applied, this tactic

operates on the goal that is on top of the stack and the universally quantified

variable is arbitrarily instantiated1.

In the formal development we tried to factorize the code as much as possible. To

this purpose, all the proofs have been studied before any encoding, and a strategy

of demonstration has been identified for each theorem. Thanks to this approach,

we have been able to identify a set of helper theorems and lemmas that can be used

in several proofs. This is similar to what is normally done in a programming task,

when the identification of the most used (and common) functionalities is necessary

before the encoding.

Table 4.1, summarizes the size of the formal development that is about 5k LOC
2 in HOL4.

Prosper monitor model 710 LOC

Helper theorems 680 LOC

Invariant proof 3145 LOC

W ⊕X user transitions 433 LOC

W ⊕X privileged transitions 100 LOC

Table 4.1: LOC of HOL4 development

It is beyond the goal this thesis to present all the HOL4 code development of

the verification of the Prosper monitor validation mechanism. However, to give the

reader an idea of this activity, that is a significant part of the work on which this

thesis is based, in the next section we describe the HOL4 code for the verification

of a single lemma.

1The only purpose here is to give a general idea about the implementation work related

to the formal proof of correctness that is a consistent part of this thesis
2LOC denotes line of code

75

4.2 Example of proof with the HOL4

In this section we present a proof’s example in the HOL4 proof assistant for a

lemma. Fist we present the definition of the lemma, then we show the implemented

proof. The presented lemma has been used to proof the Theorem 7 discussed in

Section 3.3.

Algorithm 1: Definition of the lemma
val lemma_w_xor_ex_property_def = Define ‘

lemma_w_xor_ex_property = !(c1:sctlrT) (c2:word32) (c3:word32)

(mem:(word32 -> word8)) (pgtype:word20->word3)

(pgrefs_w:word20->word30) (pgrefs_ex:word20->word30).

monitor_invariant c1 c2 c3 mem pgtype pgrefs_w pgrefs_ex ==>

!phy_page:word20.

((~(pgrefs_w phy_page = 0w)) ==> (pgrefs_ex phy_page = 0w)) /\

((~(pgrefs_ex phy_page = 0w)) ==> (pgrefs_w phy_page = 0w))

‘;

The code3 of Algorithm 1 introduces a definition of the lemma in the HOL4 the-

orem prover. The evaluation of the definition adds the lemma named lemma w xor ex property

to the available concepts of the interactive session. The definition states that: for

each value of the system state (i.e. the registers c1 c2 and c3 of the coproces-

sor 15 that controls the MMU, the system memory mem, the page typing function

pgtype and the functions for the reference counting pgrefs w and pgrefs ex), if

the monitor invariant holds in the system state then, for each physical block if

it is writable (has the writable reference counter different from zero) it cannot be

executable (the executable reference counter is zero), and vice-versa.

3In the HOL4 code the operator ! represents the operator ∀

76

Algorithm 2: Proof of the lemma
0.val lemma_w_xor_ex_property_thm = prove(‘‘lemma_w_xor_ex_property‘‘,

1. FULL_SIMP_TAC(srw_ss())[lemma_w_xor_ex_property_def]

2. THEN (REPEAT(GEN_TAC))

3. THEN (STRIP_TAC)

4. THEN (GEN_TAC)

5. THEN (ASSUME_TAC (SPECL[‘‘c1:sctlrT‘‘,‘‘c2:word32‘‘,‘‘c3:word32‘‘,

6. ‘‘mem:word32->word8‘‘,‘‘pgtype:word20->word2‘‘,

7. ‘‘pgrefs_w:word20->word30‘‘, ‘‘pgrefs_ex:word20->word30‘‘]

8. pgrefs_thm))

9. THEN (FULL_SIMP_TAC(srw_ss())[invariant_ref_cnt_def])

10. THEN (SPEC_ASSUMPTION_TAC ‘‘!pg:word20.p‘‘ ‘‘phy_page:word20‘‘)

11. THEN (RW_TAC(srw_ss())[])

12. THENL[

13. ‘(((count_pages (mem:word32->word8) (pgtype:word20->word2)

14. phy_page (λ (ap:word3) (xn:bool). ¬xn):num) = 0))‘

15. by (count_refs_is_zero)

16. THEN (FULL_SIMP_TAC(srw_ss())[]),

17. ‘((count_pages (mem:word32->word8) (pgtype:word20->word2)

18. phy_page (λ (ap:word3) (xn:bool). ap = (3w:word3)):num) = 0)‘

19. by (count_refs_is_zero)

20. THEN (FULL_SIMP_TAC(srw_ss())[])

21.]

22.);

The code in Algorithm 2 presents a goal oriented proof to the lemma defined

in Algorithm 1. The interactive evaluation of the code returns a theorem that is

added to the available concepts of the interactive session.

The interactive session starts with the lemma on the top of the goal stack. The

Line 1 simply applies the automatic reasoner FULL SIMP TAC with a set of theo-

rems, definitions and axioms that are included in the simplification set srw ss()

of the HOL4. We give as input to the FULL SIMP TAC also the lemma’s definition:

lemma w xor ex property def in order to unfold its definition in the top goal.

The FULL SIMP TAC is a tactic that simplifies the goal on top of the stack applying

77

the logical rules defined in the simplification set srw ss(). With Line 2 the tactic

GEN TAC is repeatedly applied to instantiate all the universally quantified variables

of the lemma’s definition. The instantiation is done with arbitrary variables. With

Line 3, the application of the tactic STRIP TAC allows to move all the hypotheses

of the lemma’s definition to the assumption list of the goal stack. The Line 4

instantiates the universally quantified variable phy page of the lemma’s definition.

With the Line 5 we assume an available theorem pgrefs thm initializing all its

universally quantified variables by the current system state, and the current phys-

ical block phy page. The Line 9 applies a full simplification to the goal and to

the assumptions. This simplification takes as input the definition of the reference

counters invariant ref cnt def in order to unfold this definition in the top goal

an in the assumption list. The Line 10 specializes the definition of the reference

counter with the current physical block phy page. With Line 11 the automatic rea-

soner RW TAC is applied, this is a tactic that rewrites the goal and the assumptions

using the concepts of the simplification set srw ss(). The application of this tactic

generates 2 sub-goals. The first consists in proving that the executable reference

counter is zero in case the physical block phy page is writable. The second goal

consists in proving that the writable reference counter is zero in case the physical

block phy page is executable. The two sub-goals are solved using a personalized

tactic count refs is zero. With this tactic we are able to show that, under the

invariant assumption, it is impossible to find an entry of a page table granting an

access to phy page that is executable (for the first sub-goal) or writable (for the

second sub-goal).

78

Chapter 5

Conclusions

In this work a possible application of the runtime monitoring technique has been

analysed in the context of the Prosper project. The runtime monitor is considered

as a security module with the goal of ensuring a consistent state of the system

running on top of the Prosper hypervisor.

The first part of this work consists in studying the general design choices for

the Prosper monitor. This is done based on the concept of reference monitor. In

order to ensure a consistent system state, the Prosper monitor must provide a

validation mechanism that satisfies the requirements of the complete mediation,

the tamper-resitance, and the verifiability. The design choices adopted exploit the

benefits of the virtualization to satisfy the tamper-resistance requirement. In fact,

we consider that the runtime monitor is a guest of the Prosper hypervisor. In order

to fulfil the complete mediation requirement, an interaction protocol between the

hypervisor and the monitor has been established. The protocol states that, for

each hypercall that is invoked by a guest of the hypervisor, this must be validated

by the runtime monitor. Finally, in order to satisfy the verifiability requirement,

we made the choice of identifying small and minimal checks for the validation

mechanism.

The second part of this work consists in analysing, in general, what kind of

security properties can be enforced by the Prosper monitor. This is done taking

into analysis the hypercalls that are provided by the Prosper hypervisor to the

guests. Since a hypercall is invoked for each operation that changes the memory

layout of a guest, we conclude that the Prosper monitor is able to ensure a property,

with an appropriate validation mechanism, only if the property constrains the

79

system memory layout. Furthermore, the property must be a safety property.

This is concluded based on a general characterization of the enforceable properties

by the class of Execution Monitors, that includes also reference monitors.

The third part studies a possible application for the Prosper monitor. This

is done considering a system running on top of the Prosper hypervisor that is

composed by the Linux kernel and the runtime monitor. We identified a safety

property, denoted as SAFE , to be enforced by the monitor in order to protect the

Linux kernel from malicious attacks of type code-injection. Through an appropri-

ate analysis, and adopting a formal methodology, we showed that an additional

property (denoted as W ⊕ X) needs to be enforced. This property is known in

the literature as the executable space protection, and it is necessary to maintain a

consistent system state with the property SAFE .

An important part of this work is the identification of an appropriate vali-

dation mechanism that is able to ensure the properties SAFE and W ⊕ X. To

this purpose, first we identified the security-sensitive operations for these prop-

erties. Then, we formalized sufficient conditions that are used to validate each

security-sensitive operation. The last part of this thesis sketches a formal proof

of the validation mechanism’s correctness that has been fully verified using the

proof assistant HOL4. Thanks to this formal verification, we demonstrate that

the validation mechanism identified is able to ensure SAFE and W ⊕X over all

the system states.

5.1 Related works

In this section we refer to two works from the literature that are related to the

application of the Prosper monitor reported in this thesis. The first one proposes

a framework, that is hypervisor based, to avoid malicious code injection attacks.

This work differs from the Prosper monitor since it does not provide any formal

verification of correctness. The second work enforces the property of the executable

space protection to improve the Linux kernel security. This work differs from ours

since the virtualization technology is not exploited.

Patagonix [24] Patagonix is a hypervisor based security module that detects

and identifies executing binaries in order to avoid malicious code injection. The

80

Patagonix module depends only on the processor hardware to detect code execu-

tion and on the binary format specifications of executables to identify code and

verify code modifications. Similarly to our work, the Patagonix security module

relies on the executable space protection property that must be enforced by the

hypervisor on which Patagonix is based. In [24] the authors present and discuss

the Patagonix framework that is implemented as a prototype on the Xen 3.0.3

hypervisor [7].

Improving Linux kernel protection [23] This work addresses the problem

of malicious code injection attacks in a Linux based system. Also in this work the

authors rely on the enforcement of the executable space protection property to

protect the Linux kernel from this kind of attack. In [23] an analysis of the Linux

kernel memory management is presented along with an abstract model of this

management. Therefore, the model checking methodology is applied to the model

in order to verify whether the executable space protection property is satisfied.

Since the analysis’s results show that the Linux kernel does not guarantee this

property, the authors propose some improvements to the Linux kernel.

5.2 Future works

The main future work for this thesis is the real implementation of the Prosper

runtime monitor for protecting the Linux kernel from code injection. The main

issue to be addressed in this sense is that the Linux kernel guest might not respect

the property W ⊕X. All the Linux kernel’s requests of memory configuration that

make a physical block both writable and executable are not validated by the mon-

itor. Therefore, under this security property the Linux kernel guest might not be

able to execute. In our discussion and based on the top level specification pro-

posed in Section 3.3.1, the Linux kernel would execute the same request whenever

this is not validated by the runtime monitor, causing an infinite loop. In fact, the

inference rule insecurepriv of the transition system proposed states that the han-

dler ξ is simply the identity. To address this problem, one possibility could be the

addition of an emulation layer to the architecture. This emulator implements the

function ξ and it is invoked whenever a prefetch abort or data abort interrupts are

raised by the Linux kernel. The emulator must find an appropriate strategy that

81

allows the Linux kernel execution without by-passing the monitor intermediation

and control.

82

Bibliography

[1] HOL4 web page. http://hol.sourceforge.net/.

[2] Introduction to code signing. http://msdn.microsoft.com/en-us/

library/ie/ms537361(v=vs.85).aspx.

[3] Provably secure execution platforms for embedded systems (Prosper) web

page. http://prosper.sics.se/.

[4] The Xen project wiki web page. http://wiki.xen.org/wiki/Main_Page.

[5] Bowen Alpern and Fred B Schneider. Defining liveness. Information process-

ing letters, 21(4):181–185, 1985.

[6] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Dis-

tributed computing, 2(3):117–126, 1987.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art

of virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177,

2003.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the

art of virtualization. In Michael L. Scott and Larry L. Peterson, editors,

Proceedings of the 19th ACM Symposium on Operating Systems Principles

2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, pages

164–177. ACM, 2003.

[9] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and

M. Frans Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses

83

http://hol.sourceforge.net/
http://msdn.microsoft.com/en-us/library/ie/ms537361(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/ms537361(v=vs.85).aspx
http://prosper.sics.se/
http://wiki.xen.org/wiki/Main_Page

and open problems. In Proceedings of the Second Asia-Pacific Workshop on

Systems, APSys ’11, pages 5:1–5:5, New York, NY, USA, 2011. ACM.

[10] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and Oliver

Schwarz. Formal verification of information flow security for a simple arm-

based separation kernel. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti

Yung, editors, 2013 ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages

223–234. ACM, 2013.

[11] Mads Dam, Roberto Guanciale, and Hamed Nemati. Machine code verifica-

tion of a tiny ARM hypervisor. In Ahmad-Reza Sadeghi, Frederik Armknecht,

and Jean-Pierre Seifert, editors, TrustED’13, Proceedings of the 2013 ACM

Workshop on Trustworthy Embedded Devices, Co-located with CCS 2013,

November 4, 2013, Berlin, Germany, pages 3–12. ACM, 2013.

[12] Mads Dam, Roberto Guanciale, and Hamed Nemati. Trustworthy virtualiza-

tion of the ARMv7 memory subsystem. To appear in SOFSEM 2015, 2015.

[13] Victor Do. Security Services on an Optimized Thin Hypervisor for Embedded

Systems. Masters thesis, Faculty of Engineering LTH at Lund University,

2011.

[14] Heradon Douglas. Thin Hypervisor-Based Security Architectures for Embed-

ded Platform. Masters thesis, The Royal Institute of Technology, Stockholm,

Sweden, 2011.

[15] Úlfar Erlingsson. The inlined reference monitor approach to security policy

enforcement. Technical report, Cornell University, 2003.

[16] Anthony Fox and Magnus O Myreen. A trustworthy monadic formalization

of the ARMv7 instruction set architecture. In Interactive Theorem Proving,

pages 243–258. Springer, 2010.

[17] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem

Proving Environment for Higher Order Logic. Cambridge University Press,

New York, NY, USA, 1993.

[18] John Harrison. HOL light: A tutorial introduction. In Formal Methods in

Computer-Aided Design, pages 265–269. Springer, 1996.

84

[19] Trent Jaeger. Reference monitor. In Henk C. A. van Tilborg and Sushil

Jajodia, editors, Encyclopedia of Cryptography and Security (2nd Ed.), pages

1038–1040. Springer, 2011.

[20] Narges Khakpour, Oliver Schwarz, and Mads Dam. Machine assisted proof

of ARMv7 instruction level isolation properties. In Georges Gonthier and

Michael Norrish, editors, Certified Programs and Proofs - Third International

Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013,

Proceedings, volume 8307 of Lecture Notes in Computer Science, pages 276–

291. Springer, 2013.

[21] Ekkart Kindler. Safety and liveness properties: A survey. Bulletin of the

European Association for Theoretical Computer Science, 53:268–272, 1994.

[22] Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan, and Srivaths

Moderator-Ravi. Security as a new dimension in embedded system design. In

Proceedings of the 41st annual Design Automation Conference, pages 753–760.

ACM, 2004.

[23] Siarhei Liakh, Michael Grace, and Xuxian Jiang. Analyzing and improving

linux kernel memory protection: a model checking approach. In Proceedings of

the 26th Annual Computer Security Applications Conference, pages 271–280.

ACM, 2010.

[24] Lionel Litty, H Andrés Lagar-Cavilla, and David Lie. Hypervisor support

for identifying covertly executing binaries. In USENIX Security Symposium,

pages 243–258, 2008.

[25] T Ormandy and J Tinnes. Linux null pointer dereference due to incorrect

proto ops initializations, 2009.

[26] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtual-

izable third generation architectures. SIGOPS Oper. Syst. Rev., 7(4):121–,

January 1973.

[27] Leonid Ryzhyk. The ARM architecture. University of New South Wales,

2006.

[28] Fred B Schneider. Enforceable security policies. ACM Transactions on Infor-

mation and System Security (TISSEC), 3(1):30–50, 2000.

85

[29] David Seal. ARM architecture reference manual. Pearson Education, 2001.

[30] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Theorem

Proving in Higher Order Logics, pages 28–32. Springer, 2008.

[31] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems

and Processes (The Morgan Kaufmann Series in Computer Architecture and

Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[32] D.E. Williams. Virtualization with Xen(tm): Including XenEnterprise,

XenServer, and XenExpress: Including XenEnterprise, XenServer, and Xen-

Express. Elsevier Science, 2007.

[33] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley, and Greg

Kroah-Hartman. Linux security module framework. In Ottawa Linux Sym-

posium, volume 8032, 2002.

86

	Introduction
	Structure of the thesis

	Background
	Virtualization
	Overview on virtualization
	Types of virtualization
	Advantanges of virtualization

	The Prosper Hypervisor
	ARM architecture
	Formal Model of the ARM architecture
	Hypervisor: design and isolation property

	Automated Theorem Proving
	The HOL4 thorem prover

	Runtime monitoring for Prosper
	Motivations and Goals
	The Prosper runtime monitor
	Design choices
	Security properties
	Security policy and validation mechanism

	Formal proof of correctness
	Top Level Specification
	Goals formalization and proof

	Correctness of Prosper monitor with HOL4
	General structure of the proof verification
	Example of proof with the HOL4

	Conclusions
	Related works
	Future works

	Bibliography

