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Abbreviations: 

 

ARDS: Acute Respiratory Distress Syndrome 

ARI: Acute Respiratory Illness 

ARTIs: Acute Respiratory Tract Infections 

BAL: Broncho-Alveolar Lavage 

COPD: Chronic Obstructive Pulmonary Disease 

CoV: Coronavirus 

DAD: Diffuse Alveolar Damage 

EBV: Epstein-Barr Virus 

EVs: Enteroviruses 

HA: Hemagglutinin 

HAdvs: Human Adenoviruses 

HBoV: Human Bocavirus 

HCMV: Human Cytomegalovirus 

HE: Hemagglutinin-Esterase 

hMPV: Human Metapneumovirus 

HPIVs: Human Parainfluenza Viruses  

HRVs: Human Rhinoviruses 

HSV1: Herpes Simplex Virus Type 1 

ICU: Intensive Care Unit 

IGV: Integrative Genomic Viewer 

LRTIs: Lower Respiratory Tract Infections 

MERS: Middle East Respiratory Syndrome 

NA: Neuraminidase 

NGS: Next Generation Sequencing 

NK: Natural Killer 

RSV: Respiratory Syncytial Virus 

RTIs: Respiratory Tract Infections 

SARS: Severe Acute Respiratory Syndrome   

TS: Throat Swab 

URTIs: Upper Respiratory Tract Infections 
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Abstract: 

 

Respiratory viruses cause many diseases, from mild to severe illnesses, and 

contribute significantly to morbidity and mortality worldwide. Different 

viruses can establish respiratory tract infections, they belong to the 

Orthomyxoviridae, Coronaviridae, Picornaviridae, Paramyxoviridae, 

Adenoviridae, Parvoviridae and in immunocompromised patients 

Herpesviridae families. Altogether, the etiologic diagnosis of respiratory viral 

infections has been underestimated so far. In patients with predisposing 

conditions the outcome of these infections can be more severe, sometimes 

requiring hospitalization, even in intensive care units (ICU), because of the 

development of pneumonia and acute respiratory distress syndrome (ARDS). 

For these patients, in particular,  rapid diagnosis is essential. In addition, in 

ICU patients the significance of the detection of some members of 

Herpesviridae family, like HSV1, CMV and EBV, is controversial. The aim of 

this study was to clarify the prevalence of respiratory viruses and 

herpesviruses, and their role in ICU patients. Large part of this study was 

devoted to the development of diagnostic assays able to accurately characterise 

respiratory viruses quickly and at the lowest costs. Viral detection was 

performed in both upper and lower respiratory samples in order to compare the 

viral populations in these two compartments and, possibly, to draw 

informations concerning the role of the infection in severe cases.  

 

Four duplex RT real-time PCRs, using EvaGreen fluorescent dye, were 

developed to identify and characterize the main respiratory RNA viruses 

directly from clinical samples. A duplex was performed to detect influenza A 

and influenza B viruses; a second duplex was performed to detect PIVs 

belonging to Respirovirus genera (PIV1 and PIV3) and RSV; the viruses target 

for the third duplex PCR were PIV type 2 and hMPV; and a fourth duplex was 

performed to detect CoV I and EV/RV. 

The results of the duplex real-time PCRs were confirmed by sequencing 

positive samples and by comparison with other assays, including commercial, 

validated, assays, which gave similar results. A total of 156 clinical samples 

from upper and lower respiratory tract of 58 adult patients hospitalized in ICU 
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were analysed. In 80% of positive adult patients influenza A viruses were 

detected, in 8% influenza B viruses and rhinovirus/enterovirus and in 4% 

metapneumoviruses. In particular in all ICU adult patients positive for 

influenza A or B viruses, the virus was demonstrated in both upper or lower 

respiratory tract samples. For an adult patient positive for RV/EV, the virus 

was detected in both samples; while for another only the upper respiratory tract 

sample was positive. Only one upper respiratory tract sample from one patient 

was positive for hMPV. The results obtained in this study were in agreement 

with other published studies that showed influenza virus as the most common 

virus detected in ICU patients, followed by rhinoviruses. 

 

Furthermore, three nested PCRs were developed to detect herpesviruses (CMV, 

EBV and HSV1). To understand better the  role of these viruses in ICU 

patients all herpesviruses positive clinical samples obtained by nested-PCRs 

were further analyzed by quantitative real-time PCRs.  

Altogether, 37 of 58 (about 64%) patients were positive for one or more 

herpesviruses. 

EBV was detected in 25 patients of 58, either as single or mixed infection; 

CMV and HSV1 were detected in 15 patients either as single or mixed 

infection. Mixed infections were not rare. 

In general, for EBV viral load in TS samples was higher than in BAL samples. 

These results could suggest a possible viral contamination of the lower 

respiratory tract from mouth or throat or both. In one case EBV DNA was 

detected in the BAL only in two successive specimens at a low viral load (10
3
-

10
4
). Further monitoring should be performed to better understand these data.  

In this study CMV was detected as single infection only in two patients. 

Regarding CMV association with pneumonia, the average values of viral load 

reported in literature vary; however a viral load in BAL samples, between 

4,6x10
4
 and 5x10

5 
copies number/ml, has been proposed as a threshold for the 

diagnosis of pneumonia. None of the patients analysed in this study had a viral 

load within this range only in BAL sample. 

HSV1 was detected in 15 patients of 58 as single or mixed infection. In 

general, all patients HSV1 positive had high viral load in TS and in BAL 

samples (average value 10
6
). In one patient only the detection of a high viral 
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load in the BAL in absence of viral DNA in the TS could suggest an 

involvement of this virus in the lower respiratory tract disease. 

 

The assays described could be particularly useful to screen a large number of 

patients for epidemiological studies and to assess the prevalence in the lower 

and upper respiratory tract of ICU patients with, regarding CMV, EBV and 

HSV1, the ultimate goal to understand the clinical significance of this 

phenomenon.  

 

The possible contribute of the use of the NGS to the knowledges of the viruses 

involved in upper and lower respiratory tract infections was also studied 

preliminary in a small number of ICU patients. Nextera-XT protocol to MiSeq 

platform has been used.  
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1. Introduction 

 

1.1. Human viral respiratory infections   

 

Respiratory viruses cause many diseases and contribute significantly to 

morbidity and mortality worldwide [1]. Respiratory tract infections (RTIs) are 

divided into two categories, lower respiratory tract infections (LRTIs) and 

upper respiratory tract infections (URTIs) according to the localization of the 

infection. URTIs refer to infections of the nasopharynx, larynx, tonsils, sinuses, 

ears, including rhinosinusitis, tonsillitis, pharyngitis, 

laryngitis/laryngotracheitis and otitis media.  

LRTIs refer to infections of the trachea, bronchus, and alveolus, including 

tracheitis, bronchitis, bronchiolitis, and pneumonia.  

Respiratory infections are caused by various pathogens, but approximately 

80% of cases are viral [2]. Different viruses can establish respiratory tract 

infections, most belong to the Orthomyxoviridae, Coronaviridae, 

Picornaviridae, Paramyxoviridae, Adenoviridae, Parvoviridae and 

Herpesviridae families.  

Several respiratory viruses, previously unknown, have been discovered during 

the last years [3, 4], like human metapneumovirus [5], SARS coronavirus [6], 

HKU1 coronavirus [7], NL63 coronavirus [8], MERS coronavirus [9], 

bocavirus [10] and mimivirus [11].  Other viruses, like rhinoviruses, emerged 

as cause of lower respiratory tract infections. The identification of new viruses 

allowed to better define the viral aetiology in many respiratory diseases. The 

prevalence of respiratory viruses in adults is largely under explored, as most 

studies focus on children, while in severely ill or immunocompromised adults 

respiratory viruses can also lead to severe complications. The prevalence, 

clinical profile, and epidemiology of respiratory virus in adults are different 

from those in children. The prevalence of mixed respiratory viruses in adults is 

lower than that in children. However, the clinical significance of mixed 

respiratory virus remains unclear. Also, the relationship between geographical 

distribution, season, prevalence year, and respiratory viruses is not fully 

understood in adults. 
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In patients with predisposing conditions the outcome of these infections can be 

more severe, sometimes requiring hospitalization, even in intensive care units 

(ICU), because of the development of pneumonia and acute respiratory distress 

syndrome (ARDS). They frequently cause pneumonia in children, especially 

those younger than 2 years [12, 13]. For adult patients hospitalized in ICU, 

respiratory viruses account for about 30% of pneumonia cases, with mortality 

rates comparable to those of bacterial pneumonia [14].  So far, there are few 

studies concerning the detection of a large number of respiratory viruses in 

ICU patients [15-18]. Influenza A is the virus most frequently detected in these 

patients [18-20].  

 

 

 

1.2. Influenza viruses  

 

Influenza viruses belong to the Orthomyxoviridae family. Three types of 

influenza viruses have been recognized (types A, B, and C), on the basis of 

their type-specific nucleoprotein and matrix protein antigens. Influenza type A 

viruses can infect humans, birds, pigs, horses and other animals, but wild birds 

are their natural hosts [21]. However, the recent identification of two influenza-

like virus genomes (designated H17N10 and H18N11) from bats has 

challenged this notion [22-26].  

Influenza A viruses are classified into subtypes according to the antigenic 

properties of the hemagglutinin (HA) and neuraminidase (NA) glycoproteins. 

Until 2012, 16 HA subtypes and 9 NA subtypes were recognized. 

In 2012, a new influenza virus genome (H17N10) was demonstrated in bats by 

next-generation sequencing (NGS). Studies on the two surface envelope 

proteins, HA and NA (NA-like) [22-27], demonstrate that neither protein has 

the corresponding canonical influenza virus functions or structures [25]. 

Therefore the new genome does not represent a ‘true’ influenza virus. Recently 

a similar virus genome, H18N11, was again identified by NGS, and neither HA 

nor NA have canonical structures or functions [26]. 

The genome of influenza virus type A and B consists of eight single-stranded 

negative-sense RNA segments, while influenza C virus has seven genome 
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segments. The three largest RNA segments of influenza A virus code for the 

polymerase proteins (PB2, PB1, PA), the fourth, fifth and sixth RNAs 

segments code for HA, NP and NA, respectively. The seventh RNA codes for 

the M1 and M2 proteins and the eighth RNA codes for NS1 protein. The 

influenza B virus genome is similar to that of influenza A virus. The HA, NA 

and M2 proteins are inserted into the host-derived lipid envelope. HA 

glycoprotein has the major antigenic determinants of influenza virus and plays 

an essential role in the initiation of infection. It is a trimer, composed of two 

structurally distinct regions: a triple-stranded, coiled-coil and a globular region 

that contains the receptors binding site. The HA is synthesized as a single 

polypeptide chain, which undergoes cleavage at three places. The N-terminal 

signal sequence is removed and, depending on the host cell and virus strain, the 

molecule is cleaved to give two polypeptide chains: HA1 and HA2. Cleavage 

of HA is essential for the fusing capacity and for the infectivity of the virus. 

The HA mediates attachment and entry of the virus on the cell surface by 

binding to sialic acid receptors. The binding affinity of the HA to the host sialic 

acid allows for the host specificity of influenza virus. In particular, avian 

influenza subtypes prefer to bind to sialic acid linked to galactose by -2,3 

linkages, frequent in avian respiratory and intestinal epithelium. On the 

contrary, human virus subtypes bind to -2,6 linkages frequent in human 

respiratory epithelium. Swine has both -2,3 and -2,6 linkages in his 

respiratory epithelium, allowing for easy coinfection with both human and 

avian subtypes. Humans have been found to contain both -2,3 and -2,6 

linkages in their lower respiratory tract and conjunctivae, which allows for 

human infections by avian subtypes [28]. 

The second antigenic determinant is NA protein. This protein is a sialidase  

responsible for cleavage of sialic acid from glycans on the host cell surface to 

release the emerging progeny virus, prevent virus aggregation, and help virus 

migration [29, 30]. 

The epidemiology of human influenza virus reflects the peculiar characteristics 

of the virus genome, segmented single-stranded RNA. The human influenza 

virus is able to elude host immunity and cause recurrent annual epidemics and, 

sometimes, major worldwide pandemics due to the introduction of 

antigenically novel viruses into an immunologically naïve human population. 
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Influenza viruses have two different mechanisms that allow them to change 

and evade the immune response: antigenic drift (small changes in antigenicity) 

and antigenic shift (complete change in antigenic properties). Antigenic shift is 

derived from reassortment of gene segments between viruses, and occur only in 

influenza A viruses. In the twentieth century, there were three pandemics: in 

1918 caused by H1N1 subtype (Spanish flu), in 1957 caused by H2N2 subtype 

(Asian flu) and in 1968 caused by H3N2 subtype (Hong Kong flu). The first 

pandemic of twenty-first century was caused by a new H1N1 subtype named 

swine flu because of its origin. The new reassortant influenza strain H1N1 was 

discovered in Mexico in March 2009 [31]. 

In adults, influenza A virus is the most common viral pathogen [18-20]. 

Influenza virus is the leading pathogen detected in adults with ARTIs (positive 

rate of 20.81) [18].  

Influenza B viruses in circulation belong to two lineages distinct by their 

genetic and antigenic characteristics, which are referred to as the Yamagata and 

Victoria lineages, designated after their original isolates, B/Yamagata/16/88 

and B/Victoria/2/87 [32, 33]. These two lineages have co-circulated since the 

late 1980s [33]. Since 2008, most B/Victoria/2/87 lineage viruses belong to the 

B/Brisbane/60/2008 genetic clade (Group 1) [34] based on the hemagglutinin 

(HA) gene sequences. Instead, since 2007, the majority of B/Yamagata lineage 

viruses have been distributed into two main groups, with distinct genetic and 

antigenic characteristics, Group 2, represented by B/Brisbane/3/2007, and 

Group 3, represented by B/Bangladesh/3333/2007 [35]. 

The characterization of influenza B viruses, and not only of influenza A viruses 

in circulation, is important, in order to select the virus to be included in 

influenza vaccines and to evaluate the efficacy of vaccination. 

 

 

 

1.3. Coronaviruses 

 

Coronaviruses (CoVs) belong to the Coronaviridae family. Coronaviruses are 

enveloped, single-stranded, positive-sense RNA. 



 12 

CoVs are divided into three serological groups based on their natural hosts, 

nucleotide sequences and serological relationship. Group I and II viruses 

mainly infect mammals, while group III viruses are found in birds. The human 

coronaviruses are: 229E, OC43, NL63, HKU1, SARS, MERS, belonging to 

group I and group II. The first two human coronaviruses identified are CoV-

229E (group I) and CoV-OC43 (group II). In 2003 it was identified SARS-

CoV (group IIb) [6], and subsequently two other CoVs, CoV-NL63 (group I) 

[8] and CoV-HKU1 (group II) [7]. CoV-NL63 was first detected in 2004 in the 

Netherlands from a child with bronchiolitis by using a new method for virus 

discovery based on the cDNA-amplified restriction fragment-length 

polymorphism technique (cDNA-AFLP) [8], while CoV-HKU1 was first 

detected in Hong Kong in 2005 from an adult patient with chronic pulmonary 

disease [7]. In 2012 a new coronavirus, MERS-CoV, was identified in a 60-

year-old Saudi man in Jeddah, Saudi Arabia [9].  

CoV infections cause traditionally a low percentage of annual upper and lower 

respiratory infections, including severe disease outcomes in the elderly, 

immunocompromised and in infants [36]. CoV-229E, OC43, NL63 and HKU1 

usually cause acute infection of the upper respiratory tract and less frequently 

are associated with lower respiratory tract diseases [37, 38]. Unlike, SARS-

CoV caused an acute, atypical pneumonia and diffuse alveolar damage (DAD) 

in roughly 8,000 patients [39]. Those over 65 years of age often developed 

ARDS, resulting in mortality rates that exceeded 50%. Overall, SARS-CoV 

infection caused nearly 800 fatalities, representing a nearly 10% mortality rate 

[40]. Since 2003 no further cases of SARS-CoV infection occurred. It was a 

zoonosis, but the natural host of the virus was not identified. A palm civets was 

suggested [41]. 

Also MERS-CoV is associated with severe respiratory disease and with high 

lethality with over 857 official cases and 334 deaths, representing an 

approximately 35% case fatality rate to date in humans [42, 43]. MERS-CoV 

induced disease is particularly severe in patients with pre-existing co-

morbidities. The occurrence of the majority of cases seems to follow a seasonal 

distribution: April 2012 (Zarqa public health hospital, Jordan) [44], April–May 

2013 (Al-Hasa outbreak) [45], and April–May 2014 (Jeddah and United Arab 

Emirates outbreak) [46].  
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The initial cases of MERS-CoV were detected among patients admitted with 

severe community-acquired pneumonia and the majority of them required 

intensive care unit admission [45, 47]. Subsequently, individuals with mild or 

no symptoms were reported [47, 48]. Also MERS-CoV infection is zoonotic. 

Camels and bats have been hypothesized as viral reservoir. 

All coronaviruses contain three main structural proteins, spike (S), membrane 

(M) and envelope (E) proteins in the viral envelope. S proteins are the major 

antigenic determinants of coronavirus and are highly glycosylated. The S 

protein mediate receptor attachment, viral-host cell membrane fusion, cell-

mediated immunity, and pathogenesis of coronavirus infection. This protein is 

a type I membrane protein that contains N-terminal receptor-binding (S1) and 

C-terminal membrane fusion (S2) domain. The S1 subunit contains a receptor 

binding domain (RBD). S2 is the transmembrane subunit containing two 

amphipathic heptad repeats (HR1 and HR2) and the transmembrane domain. 

The binding of S1 protein to the receptor induces the S2 domain to reorganize 

into coiled-coil formation during cell-virus fusion. The M protein is the most 

abundant constituent of coronaviruses, it is conserved within each group but 

divergent across the three groups. The E protein is a small integral membrane 

protein with a short hydrophilic N-terminal domain, followed by a hydrophobic 

region, then a hydrophilic C-terminal domain. It is extremely divergent across 

the three groups and in some cases among members in the same group. For 

group II coronaviruses, with the exception of SARS-CoV, an additional 

hemagglutinin-esterase glycoprotein (HE) is present. HE protein of 

coronaviruses is related to influenza C HA, this suggests that there was a 

recombination between influenza C virus and the genomic RNA of an ancestral 

coronavirus.  Inside the virion, a coronavirus possesses a helically symmetric 

ribonucleocapsids core formed by the association of nucleocapsid (N) protein 

with genomic RNA. The ribonucleoprotein core is enclosed by a lipoprotein 

envelope composed of membrane (M) glycoprotein.  

CoV-229E, OC43, NL63 and HKU1 can be detected in individuals of all ages, 

including elderly patients with fatal outcome [49] and those with underlying 

diseases of the respiratory tract [7]. CoV-NL63 and OC43 are less common 

then other coronaviruses. 
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The most common symptoms due to coronavirus infection are rhinorrhea, 

fever, and abdominal breath sounds [50]. Coinfection of coronaviruses with 

RSV has been described in children [51, 52]. 

In a study conducted in UK in patients of all age, both dual and single 

infections associated with respiratory outcomes were observed for HKU1 as 

well as for NL63 and OC43 coronaviruses [53]. 

In this study a high number of coinfections was observed for HKU1, NL63 as 

well as for OC43, mostly with RSV. Similar rates of lower and upper 

infections were observed in single HKU1 or OC43 infection compared with 

coinfection, whereas both URTI and LRTI were observed more frequently in 

single compared to mixed infection with NL63. No differences in clinical 

outcome were observed between single and dual infections with RSV and 

Coronaviruses NL63, HKU1 or OC43 indicating that RSV may presumably 

facilitate coronavirus infection without increasing disease severity. 

 

 

 

1.4. Enteroviruses 

 

Enteroviruses (EVs) are a common cause of respiratory tract infections and are 

classified into seven species (EVA-D and rhinoviruses [HRVs] A-C) with more 

than 200 different serotypes. 

EVs of the family Picornaviridae, genus Enterovirus are small, non-enveloped, 

and possess a single-stranded positive (messenger)-sense RNA genome of ~7.4 

kb. 

The genome is organized into a long noncoding region, designed the 5’ 

untranslated region (5’UTR), which precedes a single open reading frame 

(ORF). The ORF is subdivided into three regions, P1 to P3. The P1 region 

codes for the 4 structural proteins (VP1-VP4) that comprise the viral capsid. 

These are organized from 5’ to 3’ as VP4 (1A), VP2, (1B), VP3 (1C) and VP1 

(1D). The P2 and P3 regions code for 7 non-structural proteins (2A, 2B, 2C, 

3A, 3B, 3C and 3D) that are essential for the viral life cycle. Downstream of 

the ORF is a short noncoding region  (3’UTR) and a terminal polyadenylated 

tail.  
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As already mentioned, HEVs are currently divided into four species (HEV-A to 

HEV-D) depending on their sequence similarities and biological properties. 

HEVs typing is based on comparing the sequences encoding the VP1 capsid 

protein: viruses of different genotypes have 75% nucleotide identity and 85% 

amino acid identity [54, 55]. New HEV genotypes have been described in the 

last few years and associated with respiratory diseases, other have been 

reclassified. Individual serotypes have different temporal pattern of circulation 

and can be associated with different clinical manifestations. HEVs are 

responsible for a wide range URTIs and LRTIs occurring in adults and 

children. Although the majority of HEVs infections remains asymptomatic. 

More than 100 serotypes have been identified. Twenty-three types of HEV-C 

have so far been identified.  In 2010 in Switzerland a new genotype of EV, EV-

C104, was identified from respiratory samples collected during 2004-2007 in 8 

children with respiratory signs and symptoms and acute otitis media [56]. In a 

following epidemiologic study conducted in Italy, five strains of the new 

EV104 genotype were detected in patients (age 2 to 62) with respiratory 

diseases [57]. Recently EV104 has been associated with LRTIs. EV-C109 was 

identified in Nicaragua in September 2010 [58]. In 2010, EV-C105 and EV-

C116 were detected in patients with gastroenteritis in Congo and Sakhalin 

Island [59], and other EV-C105 strain was detected in subjects with respiratory 

disease in Peru [60]. In Italy, during the course of the Community-Acquired 

Pneumonia Pediatric Research Initiative (CAP-PRI) study in winter 2010-

2011, two HEV-C strains, EV-C117 and EV-C118 were detected [61-64]. 

Several clinical case studies reported the etiological role of CoxA16, the HEV-

71 and, as already mentioned, a newly discovered genotypes HEV-C104 in the 

development of acute or fatal pneumonia indicating the HEVs belonging to 

species A to C can be responsible for severe LRTIs. 

 

HRVs include 3 species, HRV-A, HRV-B, and HRV-C, containing over 100 

serotypes. HRV-C has been identified using molecular methods and it was first 

associated with severe clinical presentations in infants and 

immunocompromised adults [65].  

HRVs are well known for causing the common cold, although they have been 

implicated also in bronchitis and asthma attacks. 
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Several recent epidemiological studies suggest that HRV-A and HRV-C are the 

predominant species associated with acute respiratory illnesses in hospitalized 

children and adults [65, 66].  

HRV-C could be associated with more severe clinical illnesses, including 

lower respiratory tract infections and asthmatic exacerbations, than HRV-A 

and HRV-B [67, 68]. HRV-B was detected in a relatively small number of 

patients with ARIs [69-71]. However the association between HRV type and 

disease severity is not fully understood. There may be important differences in 

the susceptibility of individuals to the replication of HRV in lower airway 

tissues. 

Some studies suggested that HRVs can propagate in lower airway tissues and 

this may be an important factor in the development of airway obstruction, 

coughing, and wheezing that can lead to bronchiolitis and pneumonia [72].  

Many studies showed that HRV was the most prevalent pathogen in upper 

respiratory tract, both in children than in adults [73]. HRV was, also, the most 

common co-infecting virus  [74].  

Some reports have associated co-infection with a second respiratory virus with 

a more severe disease [75, 76], whereas others have not [77, 78]. 

 

 

 

1.5. Metapneumoviruses  

 

Human metapneumovirus (hMPV) was discovered in the Netherlands in 2001 

from nasopharyngeal aspirates collected during a 20-year period from 

hospitalized children and infants with acute respiratory tract infection (RTI) 

having signs and symptoms similar to that of RSV infection [5]. The virus 

genomic sequence was identified by using a randomly primed PCR protocol 

[5]. 

hMPV belongs to the Pneumovirinae subfamily (genus Metapneumovirus) and 

Paramyxoviridae family. It is an enveloped, non segmented, negative-stranded 

RNA virus. There are two genotypes of hMPV (A and B) and subsequent 

genetic analysis of these viruses, based upon the sequence variability of the 

attachment (G) and fusion (F) surface glycoproteins, have subdivided the 
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genotypes into the subgroups A1, A2, B1 and B2. Subgroup A2 is again 

subdivided into A2a and A2b.  

The hMPV genome contains eight genes that code for nine proteins. The order 

of the genes in the genome (from 3’ to 5’ end) is N–P–M–F–M2–SH–G–L. 

The proteins are: the nucleoprotein (N protein), the phosphoprotein (P protein), 

the matrix protein (M protein), the fusion glycoprotein (F protein), the putative 

transcription factor (M2-1 protein), the RNA synthesis regulatory factor (the 

M2-2 protein), the small hydrophobic glycoprotein (SH protein), the 

attachment glycoprotein (G protein), and the viral polymerase (L protein) [5].  

The RNA core is surrounded by M protein and covered by a lipid envelope. 

This envelope contains the three surface glycoproteins (F, SH, and G), in the 

form of spikes of approximately 13–17 nm. 

The core nucleic acids are associated with the P, N, L, M2-1, and M2-2 

proteins and form a nucleocapsid 17 nm in diameter. With the help of the G 

and F proteins, hMPV attaches and fuses to heparan sulphate receptors on the 

cell surface. 

Comparing all the subgroups (A1, A2, B1, and B2), the N gene is found to be 

most conserved at both the nucleotide and the amino acid levels (91.2% and 

98.4%, respectively), while the G gene is the least conserved (79% and 59.2%, 

respectively) [79]. 

hMPV is commonly found in children, with high susceptibility rates in children 

less than 2 years old. hMPV infection in adults normally shows only mild flu-

like symptoms. However, in some adult cases (especially elderly adults), 

hMPV acts as enhancer of chronic obstructive pulmonary disease (COPD), and 

patients with COPD are more prone to hMPV infection [80]. hMPV infection 

has also been reported in several immunocompromised patients, such as lung 

transplant recipients, patients with haematological malignancies, and 

hematopoietic stem cell transplant recipients [81, 82]. No significant 

correlation was found between genotype and disease severity [83]. There are 

conflicting reports on the association between RSV–hMPV co-infection and 

disease severity; some studies found that co-infection leads to an increased rate 

of ICU admission and hospital stay [84, 85], but others found no association 

between co-infection and disease severity [86, 87]. 
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1.6. Respiratory Syncytial viruses 

 

Respiratory syncytial virus (RSV) is a Pneumovirus belonging to the 

Paramyxoviridae family. It is an enveloped RNA virus that expresses 11 

proteins. Its genome is a non-segmented single-stranded negative sense RNA 

[88]. 

RSV is divided into two types, A and B [89, 90], based on antigenic 

differences in their glycoproteins G and F [91, 92]. RSV A and RSV B types 

are further divided into subtypes or genotypes based on the variable domain of 

the attachment G protein [93, 94]. The genotypes of subgroup A were 8 (GA1–

GA7 and SAA1), as those of subgroup B (BA, GB1–GB4, and SAB1–3) [95]. 

In 2013 a new RSV A genotype was described, NA1, genetically close to GA2 

genotype. GA2 genotype and BA genotype are the most common genotypes of 

RSV subgroups A and B around the world [96]. The attachment glycoprotein 

(G) is a major structural protein that may be associated with both infectivity 

and antigenicity [97]. The differences among the various RSV subtypes are 

located mainly in the ectodomain of the G protein, which share only 44% 

amino acid sequence identity between the two subgroups, as compared to 83% 

identity in the transmembrane and cytoplasmic domains [88, 92, 98].  

A number of studies were carried out to test whether RSV A or RSV B 

infections differ in their clinical outcome [99, 100], but no significant 

differences were found. 

RSV has been frequently identified as the most common virus and is associated 

with severe infections [101, 102]; it is the dominant cause of respiratory tract 

infection in children under 5 years [103, 104]. RSV is predominant in winter 

months and it represents the most common agent of severe airway disease in 

infants and young children. RSV infection may cause major problems in 

infants less than 1 year of age and can lead to bronchiolitis and 

bronchopneumonia [13, 50, 88]. For many years, RSV was  a well-known 

cause of lower respiratory tract infection in young children [50, 88], more 

recently it is recognized as an increasingly important cause of respiratory 

infection in adults [102, 104], in particular in older adults and in 

immunocompromised patients. Although the effects of  RSV infection in these 

patients are underestimated [101, 103]. 
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1.7. Parainfluenza viruses 

 

Human parainfluenza viruses (HPIVs) are enveloped,  non-segmented, 

negative- sense, sigle-stranded RNA viruses that are classified in the genera 

Respirovirus (HPIV-1 and HPIV-3) and Rubulavirus (HPIV-2, HPIV-4a, 

HPIV-4b), Paramyxovirinae subfamily, Paramixviridae family. 

Subgroups/genotypes of HPIV-1 and HPIV-3 have been reported. HPIV are the 

second most common cause of lower respiratory tract infections in young 

children. At least six common structural proteins in the order of 3’-N-P-C-M-

F-HN-L-5’ are encoded by HPIV genome. A non-structural protein (C), is 

found in HPIV-1, HPIV-2 and HPIV-3; an additional non-structural protein (V) 

is detected in HPIV-2 (and maybe HPIV-3) but not in HPIV-1; and a unique 

non structural protein (D) may also exist in HPIV-3. The N, P and L proteins 

together with viral RNA form the nucleocapsid core of HPIV. The HN protein 

is surface glycoprotein that is present in the lipid envelope of HPIV. 

HPIV are a common cause of both upper and lower respiratory tract infections, 

particularly in children, and they commonly re-infect both children and adults 

[105-109]. Most epidemiological and clinical research has been focused on 

parainfluenza serotypes 1–3. This has been primarily due to the poor growth 

characteristics in cell culture of parainfluenza 4 (PIV4), the lack of commercial 

diagnostic reagents, and historical exclusion from routine diagnostic testing 

[107].  

Although fewer HPIV strains have been detected compared with other 

respiratory viruses such as RSV, HRV, and HMPV, previous reports suggest 

that HPIV1 and 3 are the dominant viruses in children with acute respiratory 

illness (ARI)  [110]. 

HPIV1 and 3 show high prevalence and are associated with up to 12% of acute 

lower respiratory tract infections in adults [111, 112]. 

Several studies have reported that HPIV1 infections demonstrate clear 

outbreaks in autumn, mostly in September and November, every 2 years and 

HPIV3 causes yearly outbreaks around the globe, mainly in the spring-summer 

season [113-116]. A recent study suggested that four different types of HPIV 

cause similar clinical manifestations in patients, and the clinical presentation of 

HPIV infection may differ depending on patient’s age [117]. 
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1.8. Adenoviruses 

 

The human adenoviruses (HAdvs) belong to the genus Mastadenovirus in the 

family Adenoviridae and consist of 52 serotypes divided into seven subgenera, 

A-G. Each serotype is distinguished by its resistance to neutralization by 

antisera to other known adenovirus serotypes. Advs have a non-enveloped, 20 

faces icosahedral virion that consists of a core containing linear double-

stranded DNA enclosed by a capsid. The capsid is composed of 252 

capsomers, 240 of which are hexons and 12 are pentons. Advs are a common 

cause of respiratory and gastrointestinal illness in children and young adults. 

However, of the 52 recognized human serotype, only one-third are associated 

with a specific human disease; other infections remain asymptomatic. The 

human serotype associated with diseases can cause a variety of types of clinical 

illnesses involving almost every human organ system. Illnesses include upper 

and lower respiratory tract infections, conjunctivitis, cystitis and 

gastroenteritis. Several studies have found that the enteric adenoviruses are 

second only to rotaviruses as the causative agents of acute gastroenteritis in 

infants and young children [118]. Most illnesses caused by Advs are acute and 

self-limiting; Advs can remain latent in the body (in tonsils, lymphocytes, and 

adenoidal tissues) for years and be reactivated under certain conditions, such as 

a change in immune status. The long-term effect of such a latent infection is 

unknown. A large proportion of infections caused by subgenera A and D tend 

to be asymptomatic, whereas the species within subgenera B and E tend to 

result in higher rate of symptomatic respiratory illnesses. Immunity is specie-

specific. Over 5% of respiratory diseases in children younger then 5 years of 

age are due to Adv infections. The initial transmission of Advs is through the 

nasopharynx. Secondary transmission in households can be as high as 50% due 

to fecal-oral transmission from children shedding virus in the feces. Advs can 

be recovered from the throat or stool of an infected child for up to 3 weeks. 

Advs respiratory infections are also well documented in adults [119, 120]. In 

2007 a new variant of Adv 14 appeared among military recruits and general 

public which caused severe respiratory illness resulting in high rate of 

hospitalization and significant mortality [121, 122].  
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1.9. Bocaviruses   

 

Human Bocavirus (HBoV) was discovered in 2005, in Sweden in respiratory 

samples from children with suspected acute respiratory tract infection (ARTI) 

by using a large-scale molecular viral screening technique [10]. In 2009-2010 

other three human bocaviruses, HBoV2, HBoV3 and HBoV4, was identified in 

stool samples and associated with gastrointestinal diseases [123, 124]. HBoV1 

was detected in individuals of all ages, with a predilection for young children 

with respiratory symptoms. However, with molecular diagnostics of respiratory 

tract secretions, HBoV1 may often be seen also in asymptomatic children [125-

132].  

HBoVs belong to the Parvoviridae family, Parvovirinae subfamily. They are 

minute DNA viruses that for replication are highly dependent on cellular 

functions including the DNA polymerase. Their linear single-stranded genome 

is only ~5 kb in length with still unknown terminal sequences [133]. By 

electron microscopy, the structure of HBoV is typical of Parvoviridae, that is, 

non-enveloped capsid of icosahedral symmetry and diameter of ~25nm [134-

137]. The genome putatively encodes two forms of the nonstructural protein 

NS1 and for HBoVs unique, nuclear phosphoprotein NP1, as well as two major 

structural proteins, VP1 and VP2 [139-141]. VP1 and VP2 are capsid proteins 

and have in common the C-terminal part and they only differ in extension of 

the N-terminus of VP1, the VP1 unique region (VP1u). 

Since initial observations, several studies have reported the prevalence of 

HBoV infection all over the world ranging from 2 to 21.5%, mainly in children 

younger than 3 years of age where it has been associated with upper and with 

lower RTIs [141-146]. In a study from Norway, HBoV was detected in 12% of 

children with RTI and it was the fourth most common virus after RSV, HRV 

and hMPV [147]. HBoV infections tend to be associated with high rates of 

coinfections with other viral pathogens such as HRV, AdV, RSV, as well as 

with bacteria such as Streptococcus spp and Mycoplasma pneumoniae [145, 

147].  

In many studies a positive correlation was seen between respiratory illness and 

high copy numbers of HBoV1 DNA or the presence of HBoV1 monoinfection 

[145,148-152].  
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So far, HBoV infection in adults has only been recorded in a few papers [153-

155]. 
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In addition to the infections by the previously mentioned respiratory viruses, 

there may also be different members of the Herpesviridae family which may 

lead serious respiratory diseases in immunocompromised patients. 

 

 

 

1.10. Herpesviridae 

 

Members of the Herpesviridae family are enveloped double-strand DNA 

viruses. A typical herpesvirion consists of a core containing a linear double-

stranded DNA (the precise arrangement of the DNA within the core is not 

known); an icosahedral capsid approximately 125 nm in diameter containing 

162 capsomers (150 hexons and 12 pentons); an amorphous protein coat called 

the tegument; and an envelope containing viral glycoprotein spikes on its 

surface. These glycoproteins confer distinctive properties to each virus and 

provide unique antigens to which the host is capable of responding. 

The eight human-specific herpesviruses are denominated as human 

herpesviruses 1 to 8 (HHV 1-8), classified into three subfamilies (-

herpesviruses, -herpesviruses and -herpesviruses). 

The α-herpesviruses, herpes simplex virus types 1 and 2, and varicella-zoster 

virus, have a short replicative cycle, induce cytopathology in monolayer cell 

cultures, and have a broad host range; β-herpesviruses, cytomegalovirus, and 

human herpesviruses 6 and 7, with a long replicative cycle and restricted host 

range; and γ-herpesviruses, Epstein-Barr virus and human herpesvirus 8, with a 

very restricted host range. All herpesviruses code for unique enzymes involved 

in the biosynthesis of viral nucleic acids. These enzymes are structurally 

diverse and parenthetically provide unique sites for inhibition by antiviral 

agents. The synthesis and assembly of viral DNA is initiated in the nucleus. 

Assembly of the capsid is also initiated in the nucleus; release of progeny virus 

from the infected cell is accompanied by cell death. Furthermore all 

herpesviruses establish latent infection within tissues that are characteristic for 

each virus, reflecting the unique tissue trophism of each member of this family. 

Most herpesvirus genes contain a promoter/regulatory sequence spanning 50 to 

200 bp upstream of TATA box, a transcription initiation site 20 to 25 bp 
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downstream of the TATA box, 5’nontranslated leader sequence of 30 to 300 

bp, a single major open reading frame with a translation initiation codon that 

meets the host requirements for efficient initiation, 10 to 30 bp of 3’ 

nontraslated sequence, and a canonical polyadenylation signal with standard 

flanking sequences, but exist some exceptions. For example genes without a 

TATA box and initation from a second in frame methionine have been 

reported. Herpesviruses encode between 70 and 200 genes.  After primary 

infection, all of them remain latent in the organism and cause a lifelong 

persisting infection [156]. Their reactivation occurs more or less frequently, 

depending from the viruses and may be more severe in patients 

immunosuppressed [157-159]. 

DNA of herpesviruses such as Epstein-Barr virus (HHV 4, EBV), Herpes 

simplex virus (HHV 1/2, HSV-1/2) and Cytomegalovirus (HHV 5, CMV) is 

detectable frequently in respiratory tract samples of immunocompromised 

patients [160-163]. 

 

 

 

1.10.a. Herpes simplex virus type 1 

 

Herpes simplex virus (HSV) infections are very common in the human 

population [164]. After primary infection, which usually occurs during 

childhood (HSV type 1 or HSV-1) or adolescence (HSV type 2 or HSV-2), the 

virus remains latent for life in the ganglia of sensory neurons, resulting in a 

large carrier population among adults. 

HSV-1 primarily affects the oropharyngeal mucosa, whereas HSV-2 is mainly 

involved in genital infection. They belong to the -herpesvirus subfamily. 

The HSV virion consists of 4 elements: a core containing the viral DNA, an 

icosahedral capsid surrounding the core, a largely unstructured proteinaceous 

layer called the tegument that surrounds the capsid, and an outer lipid bilayer 

envelope exhibiting spikes on its surface. The HSV-1 genome is a single, linear 

molecule of double stranded DNA about 152 base pairs in length, but a small 

fraction of the virion DNA may be circular. It is divided into two segments 

called long (L) and short (S). Short regions of repeated sequence occur at the 
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genome ends and between the L and S segments. Each segment is composed of 

a unique sequence, UL and US, bounded by inverted repeats referred to as b 

and c, respectively. They are both flanked by the a inverted repeats, so that the 

final canonical structure is: ab-UL-b’a’c’-US-ca also designated as a-TRL-UL-

IRL-a’-IRS-US-TRS-a with TR and IR standing for terminal repeats and 

internal repeats, respectively [165, 166].  

A total of 75 genes for known proteins are encoded with 69 of these present in 

a single copy and three in two copies each. Among the genes encoded are 43 

ancestral or core genes present in all -, - and -herpesviruses. All 43 are 

located in UL and most are conserved genes involved in vital virus functions 

such as entry of the virus into a host cell, DNA replication, capsid assembly, 

packaging DNA into the capsid and exit of the capsid for the host cell nucleus. 

The non-core HSV-1 genes include all US genes and highly divergent genes 

found at the segment ends. Non-core genes encode proteins involved in 

lineage- or species-specific functions such as transcriptional transactivation, 

immune evasion and host cell recognition. 

HSV-1 contains more than 30 distinct proteins that are designed as virion 

polypeptides (VP) and given serial numbers.  

The tegument is largely unstructured except for some apparent icosahedral 

structure around the pentons and it is composed of at least 20 viral proteins. 

The most significant proteins associated with the tegument are the VP16 virion 

transactivator proteins, encoded by the UL48 ORF. The capsid is composed of 

162 capsomers. The outside of the capsid is composed of 4 proteins: VP5 

(UL19), VP26 (UL35), VP23 (UL18) and VP19C (UL38).  The major capsid 

protein is VP5, it is present in 5 copies in each penton capsomere and six 

copies in each hexon capsomere in icosahedral envelope. VP26 is present in six 

copies as a ring on top of the VP5 subunits on each hexon. The envelope 

consists of a lipid bilayer with about 11 different viral glycoprotein fixed in it.  

HSV has been associated with pulmonary disease, mostly in 

immunocompromised hosts. Some reports showed that HSV is frequently 

present in the respiratory tract of intensive-care unit (ICU) patients [167-169]. 

The mucosal damage associated with intubation and mechanical ventilation is a 

potential trigger for HSV reactivation, resulting in active secretion in the throat 

[160]. Aspiration from the URT is said to be the main source of LRT HSV 
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infections [170, 171], but there are also arguments in favour of the reactivation 

of the virus in the lungs or trachea [172]. The detection of HSV in the URT of 

ICU patients has recently been associated with a significantly longer ICU stay 

and increased mortality as compared with HSV DNA-negative patients [160]. 

 

 

 

1.10.b. Epstein-Barr virus 

 

Epstein-Barr virus (EBV) belongs to the -herpesvirus subfamily. Its genome is 

linear, double-stranded. EBV, the first isolated human tumour virus, was 

identified in 1964 by Epstein’s group in a cell line derived from Burkitt 

lymphoma [173]. Two major EBV types have been detected in humans: EBV-1 

and EBV-2 (also known as types A and B). EBV-1 and EBV-2 differ in 

geographic distributions. EBV-1 is observed more frequently in most 

populations. However, EBV-2 is nearly as prevalent as EBV-1 in New Guinea, 

as well as in equatorial Africa [174]. 

EBV-1 and EBV-2 differ in the sequence of the genes that code for the EBV 

nuclear antigens (EBNA-2, EBNA-3A/3, EBNA-3B/4, and EBNA-3C/6) 

[175]. These differences cause alterations in some biological properties, 

including transforming potential. Like other herpesviruses, EBV is a DNA 

virus with a toroid-shaped protein core that is wrapped with DNA, a 

nucleocapsid with 162 capsomers, a protein tegument between the 

nucleocapsid and the envelope, and an outer envelope with external virus-

encoded glycoprotein spikes [176]. Many EBV ORFs are divided into latent 

and lytic genes (further divided into immediate early genes, early genes and 

late genes). Most of these genes are translated into proteins. Several lytic genes 

encode for human homologues. In addition, some latent genes are non-

translated; this is the case for EBV-encoded RNA (EBER)-1 and -2 [177, 178]. 

Furthermore, EBV encodes at least 17 micro-RNAs, arranged in two clusters: 

ten are located in the introns of the viral BART gene, and three adjacent to 

BHRF1 [179]. The viral genome also contains a series of 0.5-kb terminal direct 

repeats at either end and internal repeat sequences that serve to divide into 
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short and long unique sequence domains that have most of the coding capacity 

[180].  

EBV establishes latent infection in lymphocytes and can induce proliferation of 

the latently infected cells [181]. EBV infection of B cells is mediated through 

the interaction of the viral envelope glycoprotein gp350/220 with the cellular 

receptor for the C3d complement component CR2 (CD21) [182-184].  

Humans are the only natural host for EBV. It is known that EBV infects > 90% 

of the world’s adult population. Upon infection, the individual remains a 

lifelong carrier of the virus. EBV is transmitted from host to host via saliva. 

Primary infection begins at the oropharyngeal epithelium. 

EBV is associated with a variety of tumors derived from B cells, T cells, 

natural killer (NK) cells, and epithelial cells. At present, tumors related to EBV 

infection include Burkitt’s lymphoma, nasopharyngeal carcinoma, Hodgkin’s 

and non-Hodgkin’s lymphomas, gastric cancer, breast cancer, leomyosarcomas 

arising in immunocompromised individuals, central nervous system 

lymphomas associated with HIV, post-transplant lymphoproliferative 

disorders. 

 

 

 

1.10.c. Human Cytomegalovirus 

 

Human cytomegalovirus (HCMV) is a ubiquitous virus infection with 

worldwide distribution. HCMV is associated with opportunistic disease that 

has been recognized in more highly developed areas of the world. HCMV has 

the largest genome of any known human virus, at 236 kbp in size [185]. The 

genome is a linear, double-stranded DNA molecule consisting of two unique 

regions (UL and US), that are flanked by direct repeats (TRL and IRL; TRS and 

IRS) [186, 187]. 

A copy of the terminal direct repeat of approximately 300–600 bp (the a 

sequence) is present in inverted orientation at the junction between IRL and IRS 

[188, 189].  

The structure is represented as ab-UL-b9a9c9-US-ca, where, as already 

mentioned, UL and US denote the long and short unique regions and ba/b9a9 
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and ca/c9a9 indicate the inverted repeats. It belongs to -herpesviruses 

subfamily. As all -herpesviruses, also HCMV, replicate slowly in cell culture 

and remain cell-associated. So far, 4 genera of -herpesviruses have been 

recognized; their genome has a capacity to encode about 166 gene products. 

Virions contain a 125 nm icosahedral nucleocapsid composed of 5 herpesvirus 

core proteins: major capsid protein (MCP, the UL86 gene product) composed 

of hexons and most pontons; triplexes composed of 2 subunits; the minor 

capsid protein (TRI1, the UL46 gene product) together with the minor capsid 

protein binding protein (TRI2, the UL86 gene product); the smallest capsid 

protein (SCP, the UL48A gene product) that decorates MCP tips; and a portal 

protein (PORT, the UL104 gene product) that constitutes one specialized 

penton used for encapsidation of viral DNA. 

CMV infection is a leading cause of morbidity and mortality in severely 

immunosuppressed patients, such as those undergoing allogeneic 

hematopoietic stem cell or solid organ transplantation [190]. Nevertheless, 

recent data suggest that CMV may also be a relevant cause of morbidity in 

patients lacking canonical immunosuppression and displaying various 

inflammatory processes, including cardiovascular, autoimmune, and chronic 

bowel diseases [191-193]. In these patients, active CMV infection is detected 

frequently in either the inflamed tissues or even the blood compartment. 

Furthermore, active CMV infection, either restricted to the lower respiratory 

tract or involving both the lower respiratory airways and the systemic 

compartment, has been shown to occur frequently during critical illness in 

adult CMV-seropositive patients [194], and has been associated with prolonged 

ICU hospitalization, extended periods of mechanical ventilation, higher rates of 

nosocomial infection, and overall mortality [195]. 
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1.11. Viral respiratory infections in intensive care unit adult patients 

 

As previously reported, for adult patients in ICUs viral respiratory infections 

account for about 30% of pneumonia cases [73]. Influenza A (H1N1) 2009 was 

an important cause of pneumonia and ARDS in these clinical settings and it 

was the most frequently virus detected in these patients [18]. However some 

cases of influenza A (H3N2) have been reported in ICU patients [196] and less 

frequently also influenza B virus [197]. Other respiratory viruses, like EV and 

RV, have been involved in severe cases of infections requiring hospitalization 

in ICU [65, 66, 75, 76]. Some studies found that RSV-hMPV co-infection leads 

to an increased rate of ICU admission [84, 85]. 

 

The significance of detection of herpes viruses in respiratory secretions of 

critically ill patients is controversial. Detection of HSV1, EBV and CMV is 

common in ICU patients. In patients requiring mechanical ventilation, herpes 

viruses are commonly detected from the respiratory tract. However, viral 

detection does not necessarily mean viral disease. HSV and CMV are the most 

frequent viruses detected among non-immunosuppressed ICU patients [171, 

172]. Patients infected with these viruses show increased morbidity and, 

especially for CMV, mortality. 

HSV has been isolated previously in cell culture from bronchoalveolar lavages  

from 47 (39%) of 121 critical care patients [167]. There are some data 

suggesting that HSV and CMV do not carry the same pathogenicity [198]. 

Lung is considered as the main site of CMV latency and reactivation [198], but 

not for HSV. HSV-1 can be isolated from the saliva of 1–5% of the general 

population. In the ICU, the frequency of viral reactivation is higher. Some 

studies found that high percentage of ICU patients had HSV in the throat [167, 

168]. Other studies demonstrated clearly that detection of HSV DNA in 

respiratory secretions is common and showed that duration of tracheal 

intubation is correlated with HSV detection [167, 169]. 

HSV can be detected in the lower respiratory tract of 5–64% of ICU patients, 

depending on the population and the diagnostic method used [167, 168, 199]. 

As already mentioned, HSV detection in the lower respiratory tract does not 

necessarily mean herpetic pulmonary disease [199]. It is not clear if HSV 



 30 

recovery from lower respiratory tract samples of non-immunocompromised 

ventilated patients corresponds to viral contamination of the lower respiratory 

tract from mouth or throat or both, a local tracheobronchial excretion of the 

virus due to its reactivation without parenchymal involvement, or real HSV 

bronchopneumonia. More studies showed that there was a significant 

association between an HSV1 viral load >100,000 copies/ml of BAL and 

admission to the ICU (p < 0.0001), mechanical ventilation (p < 0.001) and 

death (p < 0.01) [161, 200, 201]. Cytomegalovirus is known to be a cause of 

pneumonia or systemic disease in immunocompromised patients [202], but the 

exact significance of CMV recovery in respiratory samples from non 

immunocompromised patients is not clear. Many studies showed that 

reactivation of CMV could lead to an increased duration of ventilation or ICU 

stay in non-immunosuppressed patients [161, 162, 203, 204]. Regarding CMV 

associated with pneumonia, the average values of viral load reported in 

literature vary [205-207]; however a viral load in BAL samples, between 

4,6x10
4
 and 5x10

5
, was proposed as a threshold for the diagnosis of pneumonia 

[205, 206]. 

Regarding EBV, published reports reflect a high degree of variability 

concerning the prevalence of EBV in BAL samples from patients admitted in 

ICU [163, 208-210]. Lung et al. [211] detected EBV DNA in exfoliated cells in 

bronchial washing samples and concluded that the lower respiratory tract is a 

major reservoir for EBV. Friedrichs et al. [163], thus, concluded that  the 

detection of EBV DNA in BAL may be more a marker of viral persistence than 

a marker of active infection.  
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Rapid diagnosis is essential for prompt patient management. Diagnoses of viral 

respiratory tract infections have been made for many years, generally, by non-

molecular approaches such as direct immunofluorescence and viral culture. 

Although these methods are effective and often complementary, they are time-

consuming, labor-intensive, and often lack sensitivity or specificity [212-214]. 

However, now various nucleic acid amplification tests have been developed as 

an important tool for the accurate identification of pathogens causing 

respiratory syndromes [214-217]. 

 

 

 

1.12. Molecular assays to detect respiratory viruses 

 

Both commercial kits or in “house” methods, in some cases able to detect many 

respiratory viruses simultaneously, have been described [218-220]. 

The preference of one test over the other depends on its specificity, sensitivity 

and turnaround time as well as cost in resource limited settings. Molecular 

methods have significantly improved the diagnosis of acute respiratory tract 

infections. These techniques offer high sensitivity and provide specific results 

within a shorter period of time and for a larger number of pathogens compared 

to classical methods such as virus isolation or direct fluorescent antibody tests.  

Various kinds of commercial molecular systems have been developed for fast 

and more accurate detection of respiratory viruses.  

For example, the EraGen MultiCode-PLx Respiratory Virus Panel (Luminex, 

Austin, TX, USA) is one assay that couples multiplex PCR chemistry with 

high-throughput microsphere flow cytometry for simultaneous detection of 17 

viruses: influenza A and B; respiratory syncytial virus A and B; parainfluenza 

1, 2, 3, 4(a) and 4(b); metapneumovirus; adenovirus B, C, and E; coronovirus 

NL63, 229E, and OC43; and rhinovirus. 

Seegene developed many kits to detect simultaneously different types of 

respiratory viruses;  Anyplex II RV16 Detection kit is one of these, it is a 

multiplex real-time RT-PCR assay that can detect simultaneously 16 different 

types of viruses.   
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Moreover, the FilmArray Respiratory Panel (RP) (Idaho Technology, Inc., Salt 

Lake City, UT, USA), which consists of a pouch system with a multiplex PCR 

test, provides the detection of 18 viruses and 3 bacterial respiratory pathogens 

in about 1 hour.  

Recently, AdvanSure™ kit based on multiplex real-time PCR has been 

developed for simultaneous detection of 14 respiratory viruses. In addition to 

these, many other kits are available. 

 

 

 

1.13. Next-generation sequencing (NGS) to detect respiratory viruses 

 

Next-generation sequencing (NGS), provides high speed and throughput that 

can produce an enormous volume of sequences. The most important advantage 

provided by these platforms is the determination of the sequence data from 

single DNA fragments of a library that are segregated in chips, avoiding the 

need for cloning in vectors prior to sequence acquisition.  

The first next-generation high-throughput sequencing technology was 

developed in 2005 by Roche, the platform was the 454 FLX pyrosequencing.  

In 2007, Illumina released the Genome Analyzer developed by Solexa GA, and 

subsequently, SOLiD was released by Applied Biosystems. These platforms 

represent the “second generation” systems, able to sequence populations of 

amplified template-DNA molecules with a typical “wash-and-scan” technique. 

More recently, Life Technologies has developed new sequencing platform 

named Ion Torrent; this platform, together Heliscope by Helicos and a real-

time sequencing platform by Pacific Biosciences, represents the “third-

generation”. These platforms allow us to sequence single large DNA molecules 

without the need to halt between read steps [221]. 

NGS methods have different underlying biochemistries and differ in 

sequencing protocol (sequencing by synthesis for 454 pyrosequencing, 

Illumina GA, Ion Torrent PGM and Heliscope, sequencing by ligation for 

SOLiD), throughput, and for sequence length. 

Typical applications of NGS methods in microbiology and virology are 

discovery of new microorganisms and viruses by using metagenomic 
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approaches, investigation of microbial communities in the environment and in 

human body niches in healthy and disease conditions, analysis of viral genome 

variability within the host (i.e., quasispecies), detection of low-abundance 

antiviral drug-resistance mutations in patients with human immunodeficiency 

virus (HIV) infection or viral hepatitis [222, 223].  

NGS also led to the detection of viral pathogens in nasopharyngeal aspirate 

samples from patients with acute lower respiratory tract infections [224], such 

as a new HEVs [225]. 

More recently, two influenza-like viruses genome (H17N10 and H18N11) have 

been demonstrated in bats by NGS [24, 27]. 

Analysis of full-length viral genome and quasispecies was applied, for 

example, on total RNAs extracted from the lung of a patient who died for viral 

pneumonia due to pandemic 2009 influenza A virus (A/H1N1/2009). This 

analysis revealed nucleotide heterogeneity on hemagglutinin as quasispecies, 

leading to amino acid changes on antigenic sites which could be relevant for 

antigenic drift [226]. Furthermore, mutations of  HRV genome were explored 

in a lung transplant recipient infected with the same HRV strain for more than 

two years [227].  

NGS high throughput sequencing technologies have become available in the 

last few years and are in continuous development and improvement.  
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2. Aim of the study 

 

Respiratory viruses cause many diseases, from mild to severe illnesses, and 

contribute significantly to morbidity and mortality worldwide [1]. Different 

viruses can establish respiratory tract infections, they belong to the 

Orthomyxoviridae, Coronaviridae, Picornaviridae, Paramyxoviridae, 

Adenoviridae, Parvoviridae and in immunocompromised patients 

Herpesviridae families. Altogether, the etiologic diagnosis of respiratory viral 

infections has been underestimated so far. In patients with predisposing 

conditions the outcome of these infections can be more severe, sometimes 

requiring hospitalization, even in intensive care units (ICU), because of the 

development of pneumonia and acute respiratory distress syndrome (ARDS). 

For these patients, in particular,  rapid diagnosis is essential. In addition, in 

ICU patients the significance of the detection of some members of 

Herpesviridae family, like HSV1, CMV and EBV, is controversial. 

The aim of this study was to clarify the prevalence of respiratory viruses and 

herpesviruses, and their role in ICU patients.  

Viral detection was performed in both upper and lower respiratory samples in 

order to compare the viral populations in these two compartments and, 

possibly, to draw informations concerning the role of the infection in severe 

cases. As in these patients in particular there is the need of a rapid diagnostics 

response, large part of this study was devoted to the development of diagnostic 

assays able to accurately characterise respiratory viruses quickly and at the 

lowest costs. 

These assays could be particularly useful to screen  a large number of patients 

for epidemiological studies and to asses the prevalence in the lower and upper 

respiratory tract of ICU patients with, regarding CMV, EBV and HSV1, the 

ultimate goal to understand the clinical significance of this phenomenon.  

In addition, for this study a protocol for NGS was developed, able to detect and 

to characterize one or more viruses in the same clinical samples.  
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3. Materials and Methods 

 

3.1. Detection  of target viruses and primers design 

 

The targets for this study were the more common viruses involved in 

respiratory disease, in particular in ICU patients. The viruses included in this 

study were: influenza viruses type A and type B, rhinoviruses, enteroviruses, 

respiratory syncytial viruses, human metapneumoviruses, coronaviruses group 

I and II, parainfluenza viruses type 1, 2 and 3, human adenoviruses and some 

viruses belonging to Herpesviridae family (cytomegalovirus, Epstein-Barr 

virus and herpes simplex type 1 virus).  

For each virus about 100 sequences  have been downloaded from GenBank 

(NCBI), in order to identify a conserved and specific region in the genome of 

each virus able to identify and in case to typify the viruses directly from the 

clinical sample. These sequences were aligned using ClustalW v1.4 included in 

BioEdit v7.0.0. For each virus two sets of primers were designed; for influenza 

A viruses 6 sets of primers were designed. All the primers were designed using 

Primer3. 

The sequence of primers chosen, the gene targets, the lenght of fragments and 

annealing temperatures are reported in table 1, table 2 and table 3. 

 

Table 1. Primers used to perform RT duplex real time PCRs.  

 

Virus Gene Primers Size Annealing 

PIV 1,3 L 5’gAgACTCTgAgCTgTTTTTTAAC’3 

5’gCTgTACTTTCAAATCTCCA’3 

71 bp 55°C 

PIV 2 L 5’TgCATgTTTTATAACTACTgATCTTgCTAA’3 

5’gTTCgAgCAAAATggATTATggT’3 

77 bp 55°C 

RSV L 5’ AATACAgCCAAATCTAACCAACTTTA’3 

5’gCCAAggAAgCATgCAATAAA’3 

94 bp 55°C 

hMPV F 5’gAgAgCTgAAAgAATTTgTgAgC’3 

5’ggTCCAATgATATTgCTggTgTTA’3 

174 bp 55°C 

CoV I polymerase 5’CAACgTATgTgTgCTATAggC’3 

5’gTATTAACTATTTCAgCAggAC’3 

74 bp 55°C 

RV/EV 5’UTR 5’AgTCCTCCggCCCCTgAA’3 

5’gAAACACggCACCCCAAAgT’3 

120 bp 55°C 
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Flu A M 5’TCAggCCCCCTCAAAgCC’3 

5’ gggCACggTgAgCgTRAA’3 

158 bp 55°C 

Flu B M 5’ TagCAgAAggCCATgAAAgCTC’3 

5’ CgTTCCTAgTTTTACTTgCATTgAAT’3 

94 bp 55°C 

 

 

Table 2. Outer and inner primers for herpesviruses. 

 

Virus Gene Primers Size Annealing 

EBV polymerase 5’TgCAACAATggACACgCAA’3 

5’CTCCAACgCCATACCCAAgT’3 

505 bp 55°C 

  5’TCCgTCAATgCAACggAAgA’3 

5’AgCCAgACATCCATTCggTg’3 

 

158 bp 55°C 

CMV polymerase 

UL54 

5’ AATCggCgAgTATCTgCTgg’3 

5’ TCgTAAACgTCCACgTCTgg’3 

480 bp 55°C 

  5’CCCgTgTACgAggTCCgTgTg’3 

5’ggTCggAgACATCgCAgTCg’3 

 

154 bp 55°C 

HSV1 polymerase 

UL30 

5’gCgTCATCTACgggggTAAg’3 

5’TACgggATCCggTCCTTgAT’3 

394 bp 55°C 

  5’gggTAAgATgCTCATCAAgggC’3 

5’CgTCgTAAAACAgCAggTCg’3 

101 bp 55°C 

 

 

Table 3. Primers used to perform PCRs and RT-PCRs for Nextera XT protocol. 

 

Virus Gene Primers Size Annealing 

Flu A M 5’gAgTCTTCTAACMgAggTCgAAACgTA’3 

5’gCTgCCTgTCACTCgATCC’3 

597 bp 55°C 

Flu A H1 5’AACAAAggTgTAACggCAgC’3 

5’TgCgAATgCATATCTCggTA’3 

383 bp 55°C 

Flu A N1 5’TCCCCCTTggAATgCAgAAC’3 

5’AAgACACCCACgGTCgATTC’3 

544 bp 55°C 

Flu A H3 5’AATgACAACAgCACggCAAC’3 

5’TTggTCCTTgTCCgTAACCg’3 

588 bp 55°C 

Flu A N2 5’ATTggTCAAAgCCgCAATgT’3 

5’TCTgggTgTgTCTCCAACAAg’3 

725 bp 55°C 

Flu B M 5’CACTgTTggTTCggTgggAA’3 367 bp 55°C 
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5’ACAAAgCACAgAgCgTTCCT’3 

RV/EV 5’UTR 5’gCACTTCTgTTTCCCCg’3 

5’gAAACACggACACCCAAAgT’3 

389 bp 55°C 

RSV L 5’TAAgRATTgCWAATTCTgAATTAgA’3 

5’TMCCWgCTCCTTCACCTATgA’3 

501 bp 55°C 

HMPV F 5’AACCATMCgRCTTgAgAgTg’3 

5’gCTYCCgTAgACCCCTATCAg’3 

418 bp 55°C 

CoVI polymerase 5’gCYCAYgCTgCTgTTgATTC’3 

5’ACTRgARCCATTgTCWACCTg’3 

534 bp 55°C 

CoVII polymerase 5’gAggAACAgRATgAAATTTAYg’3 

5’AAgCAgTAgTTgCATCACCAC’3 

502 bp 55°C 

PIV 1,3 L 5’CAAgARggTMgACTCTTTgC’3 

5’AgCTgCWAgATgKATTgCAC’3 

633 bp 55°C 

PIV 2 L 5’TCTCgCAAATCATgCAggTACT’3 

5’gCCTTCAATACCTCCCTTggA’3 

496 bp 55°C 

AdV exon 6 5’CAACACCTAYgASTACATgAA’3 

5’KATggggTARAgCATgTT’3 

474 bp 55°C 

 

 

 

3.2. Clinical samples 

 

Pediatric patients: A total of 72 clinical samples from upper respiratory tract 

of children with respiratory infections collected during the years 2012 and 

2013 were analyzed for the detection of respiratory viruses.  

 

Intensive Care Unit patients: A total of 156 clinical samples from upper and 

lower respiratory tract from 58 patients, hospitalized in ICU, were analyzed to 

detect the respiratory viruses and herpesviruses. The clinical samples were 

collected between September 2011 and May 2014. 

 

 

 

3.3. Viral nucleic acids extraction 

 

Extraction of viral RNAs and DNAs from clinical samples was carried out 

using a commercially available kit (QIAamp MinElute Virus, Valencia, CA, 
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USA) for the simultaneous purification of viral RNA and DNA from body 

fluids. 

This protocol is for purification of viral nucleic acids from 200 μl of body 

fluids. The elution was carried out in a final volume of 150 μl. 

 

 

 

3.4. RT duplex real time PCRs 

 

After RT with random examers (Qiagen, Valencia, CA, USA), four duplex 

real-time PCR, using EVAGreen fluorescent dye, were developed. A duplex 

was performed to detect influenza A and influenza B viruses; a second duplex 

was performed to detect PIVs belonging to Respirovirus genera (PIV1 and 

PIV3) and RSV; the viruses target for the third duplex PCR were PIV type 2 

and hMPV; and a fourth duplex was performed to detect CoV I and EV/RV. In 

particular, after retrotranscription of 10 µl of RNA with random examers, 2X 

HRM PCR master mix (Qiagen, Valencia, CA, USA) was used. The reaction 

volume was 25 µl (12,5 µl of master mix, 1,75 µl of each primer [10µM], 5 µl 

of cDNA and H2O to reach the final volume).  After initial activation step, 30 

cycles of amplification (95°C for 10 sec, 55°C for 30 sec, 72°C for 10 sec 

(acquiring Green)) were performed. For Melting analysis, ramp from 65°C to 

95°C was used, rising by 0.1°C each step. The reaction was performed on 

Rotor Gene 6000 (Qiagen, Valencia, CA, USA).  The primers  specific for each 

virus were listed in table 1. 

 

All duplex real time PCRs were developed using standards prepared with 

reference strains obtained from the National Institute for Biological Standards 

and Controls (NIBSC) or already available in the laboratory. The standards 

were prepared by cloning according to the standard protocol of pGEM-T Easy 

Vector System (Promega, Madison, Wisconsin, USA). The plasmid DNA was 

purified by QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA, USA). To 

obtain the RNA standard for each virus, each product of the cloning was 

transcribed with T7 RNA polymerase (Promega, Madison, Wisconsin, USA). 
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3.5. PCRs and real time PCRs to detect herpes viruses 

 

To detect herpes viruses (CMV, EBV and HSV1) three nested PCRs were 

developed, using the primers listed in table 2. Applied Biosystems Master Mix 

was used for each nested PCRs; in particular, after denaturation, 35 cycles of 

amplification were performed (95°C for 30 sec, 55°C for 30, 72°C for 1 min), 

followed by a final extention at 72°C for 7 min. The reaction volume was 20 µl 

(2 µl of 10X master mix, 0,6 µl of 200 µM dNTPs, 1,6 µl of MgCl2 [25mM], 1 

µl of each primer [10µM], 0,2 µl of  Taq 100U,  5 µl of extracted DNA and 

H2O to reach the final volume).  

The second step was performed similarly (30 cycles of amplification and 2 µl 

of the products of the first step). 

 

The positive clinical samples obtained with these PCRs were analyzed by 

quantitative real-time PCRs. 

To perform the calibration curves, serial dilutions of  DNA calibrator for each 

virus were used.  

These calibrators consisted of DNA sequences obtained by the cloning of the 

template of the product of the PCR of each virus (using the inner primers, table 

2), cloned in the pGEM-T Easy Vector System (Promega, Madison, Wisconsin, 

USA). The plasmid DNA was purified by QIAprep Spin Miniprep Kit (Qiagen, 

Valencia, CA, USA). 

Quantitative real-time PCRs were performed using 2X HRM PCR master mix 

(Qiagen, Valencia, CA, USA) . The reaction volume for each amplification 

was 25 µl (12,5 µl of master mix, 1,75 µl of each primer [10µM], 5 µl of DNA 

and H2O to reach the final volume).   

After initial activation step, 40 cycles of amplification (95°C for 10 sec, 55°C 

for 30 sec, 72°C for 10 sec (acquiring Green)) were performed. For Melting 

analysis, ramp from 80°C to 90°C was used, rising by 0.1°C each step. The 

reaction was performed on Rotor Gene 6000 (Qiagen, Valencia, CA, USA). 
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3.6. PCRs and RT-PCRs for Nextera XT protocol (Illumina) 

 

To perform the PCRs to be used with Nextera XT protocol, Illumina 

recommends to amplify more than 300 bp to ensure even coverage across the 

length of the DNA fragment. This is because the tagmentation reaction cannot 

add an adapter right at the distal end of a fragment. It is important to design the 

PCR primers so that these amplify about 100 bp longer than the desired insert 

to be sequenced.  

Nextera XT use an enzymatic DNA fragmentation step and thus it can be more 

sensitive to DNA input compared to mechanical fragmentation methods. 

The sets of primers used to perform the PCRs and RT PCRs were reported in 

table 2 (outer primers for herpesviruses) and in table 3. 

Overall 17 sets of primers were used in order to detect and amplify in the same 

clinical samples one or more viruses. Applied Biosystems Master Mix was 

used to perform PCRs for adenovirus, CMV, EBV and HSV1. In particular, 

after denaturation, 35 cycles of amplification, for each amplification, were 

performed (95°C for 30 sec, 55°C for 30, 72°C for 1 min), followed by a final 

extention at 72°C for 7 min. The reaction volume was 20 µl (2 µl of 10X 

master mix, 0,6 µl of 200 µM dNTPs, 1,6 µl of MgCl2 [25mM], 1 µl of each 

primer [10µM], 0,2 µl of  Taq 100U,  5 µl of extracted DNA and H2O to reach 

the final volume).  

After RT with random examers (Qiagen, Valencia, CA, USA), the same 

protocol was applied to detect all RNA viruses. 

After each amplification, the PCR products were quantified by Qubit dsDNA 

BR Assay system (Invitrogen), Illumina recommends to use a fluorimetric 

method specific for duplex DNA. 

Five microliter of all positive and negative templates (17 overall) for each 

sample were pooled.  

Each pool was purified using QIAquick PCR Purification Kit (Qiagen, 

Valencia, CA, USA), in order to remove the contaminants. 

Finally, the purified pools were quantified using Qubit dsDNA BR Assay 

system (Invitrogen) and adjusted in order to add  1 ng of each pool to the next 

step, because the Nextera XT DNA Sample Preparation Kit protocol is 

optimized for 1 ng of input DNA total. 
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For sample quantification 2 μl of each DNA sample with 198 μl of the Qubit 

working solution were used. 

 

 

 

3.7. Nextera XT protocol to NGS (Illumina) 

 

The Nextera XT DNA Sample Preparation Kit uses an engineered transposome 

to simultaneously fragment and tag ("tagment") input DNA, adding unique 

adapter sequences in the process. A limited-cycle PCR reaction uses these 

adapter sequences to amplify the insert DNA. The PCR reaction also adds 

index sequences on both ends of the DNA. 

 

The Nextera XT protocol consists of 5 steps: 

 

Tagmentation of Input DNA: During this step input DNA is tagmented 

(tagged and fragmented) by the Nextera XT transposome. The Nextera XT 

transposome, as already mentioned, simultaneously fragments the input DNA 

and adds adapter sequences to the ends, allowing amplification by PCR in 

subsequent steps. 

 

The protocol for this step is as follows: 

Add 10 μl of TD Buffer (Tagment DNA Buffer) to each well of a plate and 

subsequently add 5 μl of input DNA at 0.2 ng/μl (1 ng total) to each sample 

well. Add 5 μl of ATM (Amplicon Tagment Mix) to the wells containing input 

DNA and TD Buffer. Now, cover the plate with Microseal 'B' and centrifuge at 

280 xg at 20°C for 1 minute. After, place the plate in a thermocycler and run 

the following program:  

 55°C for 5 minutes 

 Hold at 10°C 

Carefully remove the Microseal “B” seal and add 5 μl of NT Buffer ( 

Neutralize Tagment Buffer) to each well of the plate; gently pipette up and 

down 5 times to mix. Cover the plate with Microseal 'B', centrifuge at 280 xg at 

20°C for 1 minute. Place the plate at room temperature for 5 minutes. 
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PCR amplification: In this step, the tagmented DNA is amplified via a limited-

cycle PCR program. The PCR step also adds index 1 (i7) and index 2 (i5) 

(figure 1) and sequences required for cluster formation. 

 

 

Figure 1. TruSeq Index Plate Fixture (96 libraries).  

 

 

A  Index primer 1 (i7) 

B  Index primer 2 (i5) 

C  plate 

 

In this step it is critical to use the full amount of recommended input DNA and 

to use the right combination of the index. 

 

The protocol for this step is as follows:  

Add 15 μl of NPM (Nextera PCR Master Mix) to each well of the plate, 

previously incubated at room temperature for 5 minutes; add 5 μl of index 2 

primers to each column of the plate and add 5 μl of index 1 primers to each row 

of the plate. Now, gently pipette up and down 3 to 5 times to mix, cover the 

plate with Microseal 'A' and centrifuge at 280 xg at 20°C for 1 minute. 

After centrifugation it is possible to perform the PCR, using the following 

program: 

72°C for 3 minutes 

95°C for 30 seconds 
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12 cycles of: 

     95°C for 10 seconds 

     55°C for 30 seconds 

     72°C for 30 seconds 

72°C for 5 minutes 

Hold at 10°C 

 

PCR Clean-Up: This step uses AMPure XP beads to purify the library DNA, 

and provides a size selection step that removes very short library fragments 

from the population. 

 

After amplification, the plate has to be centrifuged at 280 xg for 1 min (20˚C) 

to collect condensation. A new plate is required to transfer 50 μl of the PCR 

product and to add 30 μl of AMPure XP beads to each well. Gently pipette mix 

up and down 10 times and incubate at room temperature without shaking for 5 

minutes. Subsequently, place the plate on a magnetic stand for 2 minutes or 

until the supernatant has cleared. With the plate on the magnetic stand remove 

and discard the supernatant. With the plate on the magnetic stand, wash the 

beads with freshly prepared 80% ethanol as follows: add 200 μl of freshly 

prepared 80% ethanol to each sample well; incubate the plate on the magnetic 

stand for 30 seconds; carefully remove and discard the supernatant. Repeat this 

step two times. With the plate still on the magnetic stand, allow the beads to 

air-dry for 15 minutes. After, remove the plate from the magnetic stand and 

add 52.5 μl of RSB (Resuspension Buffer) to each well of the plate. Gently 

pipette mix up and down 10 times and incubate at room temperature for 2 

minutes. 

Place the plate on the magnetic stand for 2 minutes or until the supernatant has 

cleared. Now, transfer 50 μl of the supernatant to the new plate. 

 

Library normalization: This process normalizes the quantity of each library to 

ensure more equal library representation in the pooled sample.  

 

For this step a new plate is required to transfer 20 μl of the supernatant. Add 45 

μl of the combined LNA1 (Library Normalization Additives 1)/LNB1 (Library 
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Normalization Beads 1) to each well of the plate. Seal the plate with Microseal 

'B' and shake the plate on a microplate shaker at 1,800 rpm for 30 minutes. 

Place the plate on a magnetic stand for 2 minutes and confirm that the 

supernatant has cleared. With the plate on the magnetic stand remove and 

discard the supernatant. 

Remove the plate from the magnetic stand and wash the beads with 45 μl of 

LNW1 (Library Normalization Wash 1), seal the plate with Microseal 'B' and 

shake the plate on a microplate shaker at 1,800 rpm for 5 minutes. Place the 

plate on a magnetic stand for 2 minutes and confirm that the supernatant has 

cleared, remove and discard the supernatant. Remove the plate from the 

magnetic stand and repeat the same wash with LNW1. 

Remove the plate from the magnetic stand and add 30 μl of 0.1 N NaOH to 

each well. Seal the plate with Microseal 'B' and shake the plate on a microplate 

shaker at 1,800 rpm for 5 minutes.  

 

During the 5 minute elution, apply the SGP (StoraGe Plate) barcode plate 

sticker to a new 96-well PCR plate and add 30 μl of LNS1 (Library 

Normalization Storage Buffer 1) to each well of this plate. 

 

After the 5 minute elution, place the plate on the magnetic stand for 2 minutes 

or until the supernatant  appears clear. Now, transfer the supernatant from this  

plate to the SGP plate. Seal the SGP plate with Microseal 'B' and then 

centrifuge at 1,000 xg for 1 minute. 

 

Library pooling: 

 

Centrifuge the SGP plate at 1,000 xg for 1 minute at 20°C to collect 

condensation. Transfer 5 μl of each library to be sequenced from the SGP plate 

to an Eppendorf tube. 

Add 576 μl of HT1 (Hybridization buffer) to the new Eppendorf  tube and 

transfer in this tube 24 μl of the library to be sequenced. Mix this tube by 

vortexing and incubate at 96°C for 2 minutes.  
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After the incubation, invert the tube 1-2 times to mix and immediately place in 

the ice-water bath for 5 minutes. In the end, load the tube into a thawed MiSeq 

reagent cartridge into the Load Samples reservoir. 

 

 

 

3.8. MiSeq sequencing (Illumina)  

 

Before starting the run in MiSeq it is fundamental to create the sample sheet. 

The sample sheet is used to record information about our samples for later use 

in data analysis. This step also identifies any incorrect index combinations, 

allowing re-design before the library prep starts. To create the sample sheet the 

Illumina Experiment Manager (IEM) was used.  

The run on the MiSeq was performed in paired-end, 2x250 cycles. 

During cluster generation, single DNA molecules are bound to the surface of 

the flow cell, and then bridge-amplified to form clusters. 

Following cluster generation, clusters are imaged using LED and filter 

combinations specific to each of the four fluorescently labeled 

dideoxynucleotides. After imaging of one tile of the flow cell is complete, the 

flow cell is moved into place to expose the next tile. The process is repeated for 

each cycle of sequencing. Following image analysis, the software performs 

primary analysis, which includes base calling, filtering, and quality scoring. 

 

 

 

3.9. Data analysis 

 

The quality of the sequence run was monitored by Sequencing Analysis 

Viewer (SAV) (Illumina).  

When the run is complete, the MiSeq Reporter analysis software launches 

automatically to perform secondary analysis, which includes alignment and 

variant calling. Subsequently, the reads were aligned with the reference 

genome previously create as FASTA format file. 
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4. Results 

 

Altogether, for this study 228 clinical samples from 130 patients, collected 

between September 2011 and May 2014, were analyzed in order to understand 

what are the most common viral populations in the two compartments, and 

which are potentially associated with severe respiratory disease. 

Out of the 130 patients, 58 were hospitalized adults in ICU and 72 were 

children both inpatients and outpatients. From 58 ICU patients a total of 156 

samples have been analyzed, from upper and lower respiratory tract.  

 

 

 

4.1. Detection of RNA viruses by RT real-time duplex PCR 

 

RT real-time duplex PCRs, using EvaGreen fluorescent dye, were used to 

identify and characterize the main respiratory RNA viruses directly from 

clinical samples. Each viral RNA sequence shows a characteristic Melting 

profile. (Figure 2)  

All duplex real-time PCRs were developed using standards prepared with 

reference strains obtained from the National Institute for Biological Standards 

and Controls (NIBSC) or already available in the laboratory. In order to assess 

the efficiency and sensitivity of each duplex real-time PCR seventy-two 

clinical samples from children were analysed in this study. Six children were 

positive for influenza A and 4 were positive for influenza B viruses; 10, 6 and 

2 children were positive for EV/RV, RSV and CoV I respectively. 

One hundred fifty-six clinical samples from upper and lower respiratory tract 

from ICU patients were analysed. Twenty patients were positive for influenza 

A viruses and 2 were positive for influenza B viruses. The other respiratory 

viruses detected were: RV/EV (2 adult patients) and hMPV (1 adult patient).  

The figure 3 shows the rate of respiratory viruses detected in all patients (adults 

and children).  

In particular for all adult patients positive for influenza A and B viruses, both 

upper and lower respiratory tract samples were positive. Also in one adult 

patient positive for EV/RV, the virus was detected in both samples; while for 



 47 

another one only the upper respiratory tract sample was positive for EV/RV. 

The hMPV was present only in the upper respiratory samples. The results 

obtained for clinical samples from ICU patients were shown in figure 4 and in 

table 4.         

The results of the duplex PCRs were confirmed by sequencing positive 

samples and by comparison with other assays, including commercial, validated, 

assays, (r-gene for respiratory viruses detection, Biomérieux) which gave 

similar results. 

 

 

Figure 2. Characteristic Melting profile of each viral RNA sequence. 

 

 

 

 

 



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49 

Figure 3. Rate of respiratory viruses detected in all patients. 

 

 

 

 

Figure 4. Respiratory viruses detected in positive ICU adult patients. 
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Table 4. Results obtained for clinical samples from ICU adult patients.  

 

Virus TS BAL TS/BAL 

Flu A - - 20 

Flu B - - 2 

RV/EV 1 - 1 

HMPV 1 - - 

                                           TS: throat swab 

                                                    BAL: broncho-alveolar lavage 

 

 

 

4.2. Detection of herpesviruses by nested-PCRs 

 

One hundred fifty-six clinical samples from upper and lower respiratory tract 

from 58 ICU patients were analysed to detect herpesviruses. For thirty-eight 

patients only one specimen (from upper and lower respiratory tract) collected 

the first day of hospitalization was available. For twenty patients, instead, 2 

specimens, collected at different time periods, were available. 

Altogether, 37 of 58 (about 64%) patients were positive for one or more 

herpesviruses in at least one sample. 

 

EBV was detected in 25 out of 58 patients, either as a single infection or as 

mixed infection. Ten patients with the specimen collected the first day of 

hospitalization were positive for EBV DNA only; EBV was present in upper 

respiratory tract samples from 7 of these patient, while it was present in lower 

respiratory tract samples from 1 patients and in both upper and lower 

respiratory tract samples from 2 patients. Moreover, 6 patients showed EBV in 

mixed infections. Regarding patients with 2 different specimens collected at 

different times, 3 were positive for EBV DNA. In particular, one patient 

showed EBV DNA in upper respiratory tract sample collected on the first day 

of hospitalization only, another one showed the EBV infection in lower 

respiratory tract sample collected the first day of hospitalization and also in the 

same clinical sample collected after 9 days of hospitalization. The third patient 

showed EBV infection in upper respiratory tract sample collected on the first 
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day of hospitalization and both in upper and lower respiratory tract sample 

collected after 8 days. Six patients, with the samples collected at different 

times, showed EBV DNA together with DNA from other herpesviruses. The 

results are summarized in the table 5. 

 

 

Table 5. EBV results. 

 

Patients First sample 

 TS   BAL   

Mix 

 Second sample 

TS   BAL   

Mix 

1 +      -      -  n.a.   n.a   n.a 

2 +      -      -  n.a.   n.a   n.a 

3 +      -      -  n.a.   n.a   n.a 

4 +      -      -  n.a.   n.a   n.a 

5 +      -      -  n.a.   n.a   n.a 

6 +     -      -  n.a.   n.a   n.a 

7 +      -      -  n.a.   n.a   n.a 

8 -      +      -  n.a.   n.a   n.a 

9 +      +      -  n.a.   n.a   n.a 
10 +      +     -  n.a.   n.a   n.a 
11 -      -      +  n.a.   n.a   n.a 
12 -      -      +  n.a.   n.a   n.a 
13 -      -      +  n.a.   n.a   n.a 
14 -      -     +  n.a.   n.a   n.a 
15 -      -     +  n.a.   n.a   n.a 
16 -      -     +  n.a.   n.a   n.a 
17 +      -      -  -      -     - 

18 -      +      -  -      +      - 

19 +      -      -  +      +      - 

20 -      -     -  -      -     + 

21 -      -     +  -      -     + 

22 -      -     +  -      -     - 

23 -      -     -  -      -     + 

24 -      -     +  -      -     - 

25 -      -     +  -      -     - 

 

 

In this study CMV was detected in 15 patients, either as single or mixed 

infection. Only 2 patients showed CMV single infection. In one of these cases, 

CMV was detected in upper and lower respiratory tract sample collected on the 

first day of hospitalization and was not present any more in the clinical sample 

collected after 5 days. The second patient showed CMV infection in the first 
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lower respiratory tract sample and in the upper and lower respiratory tract 

sample collected after 5 days. CMV results are reported in the table 6. 

 

 

Table 6. CMV results. 

 

Patients First sample 

 TS   BAL   

Mix 

 Second sample 

TS   BAL   

Mix 

1 -      -      +  n.a.   n.a   n.a 

2 -      -      +  n.a.   n.a   n.a 

3 -      -      +  n.a.   n.a   n.a 

4 -      -      +  n.a.   n.a   n.a 

5 -      -      +  n.a.   n.a   n.a 

6 -      -      +  n.a.   n.a   n.a 

7 +      +      -  -      -      - 

8 +      -      -  +      +      - 

9 -      -      -  -      -      + 
10 -      -      -  -      -      + 
11 -      -      +  -      -      - 
12 -      -      +  -      -      + 
13 -      -      +  -      -      - 
14 -      -      +  -      -      - 
15 -      -      +  -      -      - 

 

Also HSV1 was detected in 15 patients out of 58. Three patients with the 

specimen collected on the first day of hospitalization showed single HSV1 

infection; HSV1 was present in upper respiratory tract sample from one of 

these patients, as well as in lower respiratory tract sample from one of these 

patients and in both upper and lower respiratory tract sample from one of these 

patients. Moreover, 3 patients showed HSV1 in mixed infections. Regarding 

patients with 2 specimens collected in different time periods, 5 showed HSV1 

single infection and 4 showed HSV1 mixed infection. The results for HSV1 are 

showed in the table 7. The 7 patient showed HSV1 in the second lower 

respiratory tract sample, collected after 7 days of hospitalization. The 9, 10 and 

11 patients showed HSV1 in the first and in the second upper respiratory tract 

samples (collected after 5 days), both in the upper and lower respiratory tract 

sample collected after 20 days of hospitalization, in the first upper respiratory 

tract sample and in the second upper and lower respiratory tract sample 

collected after 6 days, respectively. 
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Table 7. HSV1 results. 

 

Patients First sample 

 TS   BAL   

Mix 

 Second sample 

TS   BAL   

Mix 

1 -      +      -  n.a.   n.a   n.a 

2 +      -      -  n.a.   n.a   n.a 

3 +      +      -  n.a.   n.a   n.a 

4 -      -      +  n.a.   n.a   n.a 

5 -      -      +  n.a.   n.a   n.a 

6 -      -      +  n.a.   n.a   n.a 

7 -      -      -  -      +      - 

8 -      +      -  -      -      - 

9 +      -      -  +      -      - 
10 -      -      -  +      +      - 
11 +      -     -  +      +      - 
12 -      -      -  -      -      + 
13 -      -      +  -      -      - 
14 -      -      +  -      -      + 
15 -      -      +  -      -      - 

 

Mixed herpesviruses infections were not rare, 14 of 58 patients showed mixed 

herpesviruses infections. The results are summarized in table 8. 

 

 

Table 8. Mixed herpesvirus infections detected in this study. 

 

Patients Mixed infection Clinical samples 

1 EBV/CMV TS/BAL 

2 EBV/CMV TS 

3 EBV/CMV/HSV1 TS 

4 EBV/CMV TS/BAL 

5 EBV/CMV TS/BAL 

6 CMV/HSV1 TS/BAL 

7 EBV/CMV TS 

8 EBV/ HSV1 TS 

9 EBV/CMV/HSV1 BAL 

10 EBV/CMV/HSV1 BAL 



 54 

11 EBV/CMV/HSV1 TS/BAL 

12 CMV/HSV1 BAL 

13 EBV/CMV TS/BAL 

14 EBV/CMV BAL 

 

 

 

4.3. Quantification of herpesviruses in upper and lower respiratory 

samples 

 

The exact significance of herpeviruses presence in respiratory samples from 

non immunocompromised ICU patients is not clear; to understand better their 

role all herpesviruses positive clinical samples obtained by the nested-PCRs 

were analyzed by quantitative real-time PCRs. 

EBV DNA viral load in TS samples was higher than in BAL samples; the 

range was between 1x10
3  

copies number/ml and 3x10
9 

copies number/ml. 

The range of CMV DNA load was between 1x10
3 

copies number/ml and 9x10
5 

copies number/ml. 

In general, all patients HSV1 positive had high viral load in TS and in BAL 

samples (between 10
3
 copies number/ml and 10

9 
copies number/ml). 

 

In the tables 9, 10 and 11 there are summarized the quantitative results 

expressed in copies number/ml for EBV, CMV and HSV1 virus respectively.  

 

 

Table 9. Quantitative results expressed in copies number/ml for EBV DNA. 

 

Patients First sample 

 TS   BAL    

 Second sample 

TS   BAL    

1 1x10
6
     9x10  n.a.   n.a. 

2 2x10
5
      neg  n.a.   n.a. 

4 5x10
6
      neg  n.a.   n.a. 

6 3x10
9
     1x10

6  n.a.   n.a. 

7 1x10
3
      n.q.  n.a.   n.a. 

8 neg     2x10
3  n.a.   n.a. 

9 1x10
6
      neg  n.a.    n.a. 
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11 3x10
5
     3x10

3  n.a.    n.a. 
12 1x10

5
     3x10

3  n.a.   n.a. 
13 3x10

3
      neg  n.a.   n.a. 

15 1x10
3
      neg  n.a.   n.a. 

16 4x10
3
      neg  n.a.   n.a. 

17 1x10
5
      neg  n.a.   n.a. 

18 n.q.      neg  n.a.   n.a. 
19 3x10

3
      neg  n.a.   n.a. 

20 7x10
3
      neg  n.a.   n.a. 

21 2x10
3
      neg  2x10

2
      neg 

23 1x10
2
      neg  6x10

3
     5x10

3
 

24 neg      1x10
3
  neg      4x10

3
 

26 3x10
3
      neg  neg      neg 

30 1x10
5
      neg  neg      neg 

32 neg    neg  1x10
5
     3x10

2
 

33 neg    n.q.  neg      1x10
3
 

36 1x10
3
      neg  6x10

2
      neg 

37 neg      2x10
3
  neg    neg 

 

n.a. not available  

n.q. not quantifiable 

 

In 14 patients, EBV DNA was demonstrated in the first sample only in TS, in 4 

it was present in TS in higher amount than in BAL, whereas in 4 patients it was 

present in BAL only. In patients 21 and 36 the EBV DNA load in the TS in the 

second sample decreased of about 1 log in comparison with the first TS 

sample. In patients 24 the EBV DNA was present only in the BAL in both the 

first and second sample at the same level. 

 

 

Table 10. Quantitative results expressed in copies number/ml for CMV DNA. 

 

Patients First sample 

 TS   BAL    

 Second sample 

TS   BAL    

1 4x10
5
     9x10

5
  n.a.   n.a. 

2 2x10
3
     5x10

3  n.a.   n.a. 

4 3x10
3
     2x10

3  n.a.   n.a. 

6 7x10
5
     2x10

5  n.a.   n.a. 

10 neg     8x10
3  n.a.   n.a. 

11 9x10
5
      neg  n.a.   n.a. 

21 neg      neg  1x10
3
      neg 

24 neg      neg  neg    2x10
3 

26 4x10
2
      neg  neg   neg 

27 6x10
3
     2x10

4  neg   neg 
31 neg      2x10

3  9x10
3
      8x10 
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32 2x10
2
      neg  neg   n.q. 

35 neg      5x10
3  neg   neg 

36 neg      4x10
3  neg   neg 

37 n.q.      neg  neg      6x10
3 

 

As regards CMV DNA, in 4 cases it was shown in the TS only, in 4 cases it 

was present at the same level in both TS and BAL, whereas in 5 cases it was 

detectable in the BAL only. In patients 27 the CMV DNA load was slightly 

higher in BAL than in TS. 

 

 

Table 11. Quantitative results expressed in copies number/ml for HSV1 DNA.  

 

Patients First sample 

 TS   BAL    

 Second sample 

TS   BAL    

3 2x10
5
     neg  n.a.   n.a. 

4 4x10
7
     neg  n.a.   n.a. 

5 neg     1x10
3  n.a.   n.a. 

10 3x10
6
      neg  n.a.   n.a. 

14 6x10
5
     3x10

6  n.a.   n.a. 

20 2x10
6
      neg  n.a.   n.a. 

21 neg      neg  4x10
5
      neg 

22 neg      neg  neg    4x10
6 

24 neg      3x10
5  neg   neg 

25 neg      2x10
6  neg   neg 

28 8x10
5
      neg  4x10

4
      neg 

29 neg      neg  4x10
6
     5x10

6 
32 2x10

8
     1x10

4  1x10
7
     1x10

8 
34 2x10

3
      neg  6x10

5
     1x10

9 
35 1x10

9
     7x10

5  1x10
9
     1x10

9 
 

As regards HSV1 DNA, in 6 cases it was shown in TS only, in 4 cases it was 

shown  in BAL only. 

In patients 14, 29, 32, 34 and 35 HSV1 DNA was detected both in TS and in 

BAL. In patient 29 only in the second sample HSV1 DNA was detected. 
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4.4. Development of a protocol to detect respiratory viruses by NGS 

(MiSeq, Illumina Platform) 

 

This protocol was developed with the aim to analyse a total of 60 clinical 

samples from the upper and lower samples (from 30 ICU patients) previously 

analyzed with RT duplex real-time PCRs and with nested PCRs to detect 

herpesviruses. To develop the protocol 30 standards have been prepared with 

reference strains obtained from the National Institute for Biological Standards 

and Controls (NIBSC) or already available in the laboratory from upper and 

lower respiratory tract.  

For influenza A virus, the following standards were prepared: for subtypes 

H1N1, H3N2, H5N1 and H7N7. Furthermore, one pool of DNA standards 

(Adv, CMV, HSV1) and one pool of RNA standards (Flu B, Flu A (H1N1), 

HMPV) were prepared.  

 

 

 

4.5. Preliminary results using Nextera-XT protocol to MiSeq, Illumina 

Platform 

 

Altogether Nextera-XT protocol to Miseq was applied to 24 clinical samples 

from 12 ICU patients, and to 6 reference strains obtained from the National 

Institute for Biological Standards and Controls (NIBSC) or already available in 

the laboratory. 

Before to applied Nextera-XT protocol all clinical samples and all standards 

were amplified using 17 sets of primers and subsequently all amplicons of each 

sample were pooled. 

 

Two experiments were performed: 

 

First experiment: only one patient (two clinical samples) and 4 reference 

strains were analysed in this experiment. The reference strains were AdV, 

CMV, a pool with DNA viruses (AdV, CMV, HSV1) and a pool with RNA 

viruses (hMPV, influenza A (H1N1) and influenza B). The clinical samples 
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previously analysed with nested PCRs were EBV and CMV positive. The 

standard protocol of Nextera-XT suggests to perform the reaction without 

purifying the amplicon pools. In this experiment, Nextera-XT protocol was 

applied to amplicon pools with and without purification and moreover it was 

applied to amplicon pools frozen at -20°C and to fresh amplicon pools. The 

preliminary results obtained suggest that the quality of experiment is better for 

the fresh amplicon pools than amplicon pools frozen. There wasn’t any 

difference in the quality between the fresh amplicon pools with and without 

purification, while the quality of experiment was improved with the 

purification of amplicon pools frozen. In the table 12 the results of reference 

strains AdV and CMV obtained with MiSeq sequencing after Nextera-XT 

protocol are reported. The fourth column reports the number of reads mapped 

in paired-end, this parameter shows the quality of experiments. The 1, 2 and 3 

samples in the table indicate AdV frozen reference strain with purification, 

fresh AdV without purification and fresh AdV with purification respectively. 

The 4, 5 and 6 samples indicate CMV frozen reference strain with purification, 

fresh CMV without purification and fresh CMV with purification respectively. 

 

 

Table 12. Results for reference strains AdV and CMV obtained with MiSeq 

sequencing. 

 

Sample Total reads Reads mapped 

Reads mapped in 

paired-end 

1 476376 313193 4358 

2 318933 176536 15067 

3 473754 243106 19336 

4 67043 30009 29415 

5 105344 92705 89617 

6 108757 94406 92691 

 

Second experiment: a total of 24 clinical samples from 12 patients were 

analysed. The analysed clinical samples included frozen amplicon pools with 

purification. The results obtained with MiSeq platform are in agreement with 
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results obtained with RT duplex real-time or nested PCRs. Nineteen clinical 

samples from 20 patients were negative for all viruses detected, only 5 clinical 

samples from 4 patients were positive for one or more viruses. The TS from 2 

patients was positive for EBV and CMV DNA. The BAL of one of this patients 

was positive for CMV DNA. The BAL of another patient was positive for 

CMV DNA and the TS of another one was positive for EBV DNA. 

To visualize the results of the date analysis, IGV (Integrative Genomic Viewer) 

software was used. The figure 5 shows an example of data generated in this 

study using IGV software. This software uses color and transparency to 

highlight interesting events in the data; positions with evident mismatches with 

respect to the reference are highlighted with color bars; doubtful base 

mismatches are displayed with transparency. An error in the reading is 

displayed with a colored line. 

 

 

Figure 5. Visualization of generated data for hMPV using IGV software 

(reference strain AY145296.1). 
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5. Discussion 

 

Respiratory viruses may cause many severe disease and contribute significantly 

to morbidity and mortality worldwide [1]. The aim of this study was a better 

knowledge of viral agents involved in respiratory infections in ICU patients.  

In patients with predisposing conditions the outcome of these infections can be 

more severe, sometimes requiring hospitalization, even in intensive care units 

(ICUs), because of the development of pneumonia and acute respiratory 

distress syndrome (ARDS). For adult patients in the ICUs, respiratory viruses 

account for about 30% of pneumonia cases, with mortality rates comparable to 

those of bacterial pneumonia [14] and thus rapid diagnosis is essential for the 

management of these patients to this aim. 

To achieve this goal, diagnostic assays able to accurately characterise 

respiratory viruses quickly and at the lowest costs were developed. 

Four duplex RT real-time PCRs were developed. These assays were previously 

evaluate on 72 upper respiratory samples from children. The results of the 

duplex real-time PCRs were confirmed by sequencing positive samples and by 

comparison with other assays, including commercial, validated, assays, which 

gave similar results. The sensitivity of these duplex real-time PCRs is about 1 

copy number/l. 

Then, a total of 156 clinical samples from upper and lower respiratory tract of 

58 adult patients hospitalized in ICU were analysed. In 80% of positive adult 

patients influenza A viruses were detected, in 8% influenza B viruses and 

rhinovirus/enterovirus and in 4% metapneumoviruses. In particular in all ICU 

adult patients positive for Influenza A or B viruses, the virus was demonstrated 

in both upper or lower respiratory tract samples. For an adult patient positive 

for RV/EV, the virus was detected in both samples; while for another only the 

upper respiratory tract sample was positive. Only one upper respiratory tract 

sample from one patient was positive for hMPV.  

The results obtained in this study were in agreement with other published 

studies that showed influenza virus as the most common virus detected in ICU 

patients, followed by rhinoviruses [18-20].  
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In ICU patients the detection of HSV1, EBV and CMV is common, but the 

significance of the detection of these viruses in respiratory secretions of 

critically ill patients is controversial. HSV and CMV are the most frequent 

herpesviruses detected in non-immunosuppressed ICU patients, requiring  

mechanical ventilation [171, 198]. 

In this study, three nested PCRs were developed to detect herpesviruses (CMV, 

EBV and HSV1). To understand better their role in ICU patients all 

herpesviruses positive clinical samples obtained by nested-PCRs were further 

analyzed by quantitative real-time PCRs.  

Altogether, 37 of 58 (about 64%) patients were positive for one or more 

herpesviruses. 

EBV was detected in 25 patients of 58, either as single or mixed infection; 

CMV and HSV1 were detected in 15 patients either as single or mixed 

infection. Mixed infections were not rare. 

In general, for EBV viral load in TS samples was higher than in BAL samples. 

These results could suggest a possible viral contamination of the lower 

respiratory tract from mouth or throat or both. 

The data published for this purpose reflect a high degree of variability 

concerning the prevalence of EBV in BAL samples from patients admitted in 

ICU [163, 208-210]. Lung et al. [211] detected EBV DNA in exfoliate cells in 

bronchial washing samples and concluded that the lower respiratory tract is a 

major reservoir for EBV. Friedrichs et al. [163] concluded that the detection of 

EBV DNA in BAL may be a marker of viral persistence more than a marker of 

active infection.   

In this study CMV was detected as single infection only in two patients. In one 

of these, CMV was detected in upper (6x10
3
 copies number/ml) and lower 

respiratory tract sample (2x10
4
 copies number/ml) collected on the first day of 

hospitalization and not in the clinical samples collected after 5 days. The 

second patient showed CMV DNA in the first lower respiratory tract sample 

only (2x10
3
 copies number/ml) whereas after 5 days it was detectable in both 

the upper (9x10
3
 copies number/ml) and lower respiratory tract sample (8x10 

copies number/ml). 

Regarding CMV association with pneumonia, the average values of viral load 

reported in literature vary [205-207]; however a viral load in BAL samples, 
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between 4,6x10
4
 and 5x10

5 
copies number/ml, has been proposed as a 

threshold for the diagnosis of pneumonia [205, 206]. None of the patients 

analysed in this study had a viral load within this range only in BAL sample. 

HSV1 was detected in 15 patients of 58 as single or mixed infection. Eight 

patients showed single HSV1 infection and 7 showed HSV1 in mixed 

infection. In general, all patients HSV1 positive had high viral load in TS and 

in BAL samples (avarage value 10
6
).  

It is not clear if HSV1 presence in lower respiratory tract samples of non-

immunocompromised ventilated patients corresponds to viral contamination of 

the lower respiratory tract from mouth or throat or both, a local 

tracheobronchial excretion of the virus due to its reactivation without 

parenchymal involvement, or real HSV bronchopneumonitis. Several studies 

showed that there was a significant association between an HSV1 viral load 

>100,000 copies/ml of BAL and admission to the ICU (p<0.0001), mechanical 

ventilation (p<0.001) and death (p<0.01) [160, 168, 200, 201]. In our study 3 

patients had an HSV1 DNA viral load in BAL > 100,000 copies/ml. 

Altogether, it can be hypothesized that the presence of the viral sequences in 

the upper respiratory samples only is not indicative of a lower respiratory tract 

infection. The contemporary detection of viral genome sequences in both upper 

and lower respiratory samples is not always indicative of a lower respiratory 

tract infection. It could be indicative of a lower respiratory tract infection if the 

viral load is higher in the lower respiratory tract in comparison with the upper 

respiratory tract. The detection of viral genome sequences in lower respiratory 

samples only seems to suggest a lower respiratory tract infection. Analysing 

our results, 4 patients were EBV DNA positive in BAL only; the patient 

number 8 (table 9) had a viral load of 2x10
3
 in BAL sample collected the first 

day of hospitalization, a second sample was not available. The patient 24 (table 

9) had a viral load of 10
3 

in BAL sample collected the first day of 

hospitalization as well as in the second sample collected after 9 days of 

hospitalization; also the patient 37 (table 9) showed a viral load in BAL of 

2x10
3 

collected the first day of hospitalization and not in the sample collected 

after few days. On these basis, EBV infection of the lower respiratory tract 

could be suspected  mainly in patient 24. 



 63 

As regards CMV DNA it was shown only in BAL in 5 cases concerning the 

patients 10, 24, 35, 36 and 37 (table 10) who showed a viral load of 

approximately 10
3
. Moreover in 3 cases the positivity showed to be transient. 

Altogether in these cases the role of CMV infetction in the respiratory disease 

could not be demonstrated. 

HSV1 DNA only in BAL was detected in patients 5, 22, 24 and 25 (table 11). 

The first sample collected from the patient 5 showed a viral load of 1x10
3
, a 

second sample was not available. The patients 24 and 25 showed  a viral load 

of 3x10
5 

and 2x10
6 

in the samples collected the first day of hospitalization and 

not in the samples collected after few days, 
 
respectively. This transient 

positivity is not suggestive of an infection of the lower respiratory tract by 

HSV1. 

It is important analyse the clinical samples collected at different times, in 

particular when the viral genome is detected in both upper and lower 

respiratory samples. In these cases, the analysis of the successive sample could 

help to understand better the role of viral infections in the lower respiratory 

tract diseases. 

 

The assays described could be particularly useful to screen a large number of 

patients for epidemiological studies and to assess the prevalence in the lower 

and upper respiratory tract of ICU patients with, regarding CMV, EBV and 

HSV1, the ultimate goal to understand the clinical significance of this 

phenomenon.  

 

The possible contribute of the use of the NGS to the knowledges of the viruses 

involved in upper and lower respiratory tract infections in ICU patients was 

also studied. 

First the protocol was developed using standard controls at different 

concentration.  

The results obtained with MiSeq platform were in agreement with those given 

by the traditional assays developed in this study. However it is not possible to 

do any conclusions because of the low number of samples examined. 

Nextera-XT protocol to MiSeq platform has been used. To perform this 

experiment and data analysis at least about one week is required.   
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NGSs may have some hurdles, as cost-effectiveness, high-throughput formats 

for clinical settings, turnaround time, the requirement for investments in 

bioinformatics tools, databases, and data management, training of personnel, 

and the reporting and interpretation of guidelines upon the identification of 

viruses of which the clinical relevance is not clear. Furthermore, this approach 

is difficult to apply for diagnostic routine, nevertheless it might be applied to 

samples that remain negative with routine diagnostics and it could be useful for 

epidemiological studies. 

To complete this study it might be useful to analyse a larger number of samples 

and design new sets of primers in regions less conserved of each virus in order 

to identify new possible viral variant or better characterize the virus present in 

the clinical samples. 

In fact, an advantage of using a NGS approach to detect viruses in clinical 

specimens is that it can also be used to obtain information regarding the virus 

species and/or type of virus that was identified.  
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