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Abstract

The loading of hybrid cores with Mixed Uranium Plutonium Oxide (MOX)
and Low Enriched Uranium (LEU) fuels in commercial nuclear reactors
requires well validated computational methods and codes capable to provide
reliable predictions of the neutronics characteristics of such fuels in terms
of reactivity conditions (k-inf), nuclide inventory and pin power generation
over the entire fuel cycle length. Within the framework of Joint United
States/Russian Fissile Materials Disposition Program an important task is to
verify and validate neutronics codes for the use of MOX fuel in VVER-1000
reactors. Benchmark analyses are being performed for both computational
benchmarks and experimental benchmarks.

In this thesis new solutions for the (UO,+Gd) and (UO4,+PuO,+Gd) fuel
assemblies proposed within the “OECD VVER-1000 Burnup Computational
Benchmark” are presented, these being representative of the designs that are
expected to be used in the plutonium disposition mission. The objective is to
test the SERPENT and SCALE codes against previously obtained solutions
and to provide new reference solutions to the benchmark with modern nuclear
data libraries.

The OECD UAM Benchmark was launched in 2005 with the objective of
determining the uncertainty in the simulation of Light Water Reactors (LWRs)
system calculations at all the stages of the coupled reactor physics—thermal
hydraulics modelling. Within the framework of the “Neutronics Phase” of
the Benchmark the solutions of some selected test cases at the cell physics
and lattice physics levels are presented. The SCALE 6.2b3 code package has
been used for the neutronics modelling of the selected exercises. Sensitivity
and Uncertainty analysis (S/U) based on both the generalized perturbation
theory and the statistical sampling methodology has been performed in order
to assess the uncertainty of the computation of some selected reactor integral
parameters due to the uncertainty in the basic nuclear data. These two
methodologies have been also applied to the two assemblies described in the
“OECD VVER-1000 Burnup Computational Benchmark” and to four different
unit cells with different loadings of Gd and Pu.

As a general trend, it has been found that the main sources of uncertainty
are the 238U (n,y) and the 239Pu nubar for the UOX- and the MOX-fuelled
test cases, respectively.
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Chapter 1

Introduction

Mixed oxide (MOX) fuel has only been used on a large scale in the nuclear
industry since the 1980’s and to a much smaller extent with respect to the
more conventional UO, fuel. In particular, the irradiation of MOX fuel in
existing commercial nuclear reactors (essentially light water reactors) as a
disposition method for surplus plutonium from the weapons programs is
being pursued by the United States and the Russian Federation within the
framework of a mutual agreement [Gehin 2004]. Due to the relatively scarce
experience with MOX fuel in these two countries, particularly if compared
with the one accumulated in Europe and Japan, an international Expert
Group has been established at the OECD/NEA to facilitate the sharing of
existing information and experience in the physics and fuel behaviour of MOX
fuel as it relates to the disposition of weapons-grade (WG) plutonium. The
Russian federation is being pursuing the deployment of WG MOX fuel in the
VVER-1000 reactors and R&D activities are needed for the certification of
the calculation codes which are envisioned to be used. As part of the efforts
performed by the OECD/NEA Expert Group to support this certification
process, a burnup computational benchmark exercise has been launched in
2000 [Kalugin et al. 2002] based on the prevailing concept that utilizes U-Gd
fuel pins to provide an effective means of introducing burnable absorbers into
the MOX assemblies. This is a standard problem for VVER-1000 core physics
in which two assemblies are considered, namely a Low Enriched Uranium
(LEU) fuel assembly and a MOX fuel assembly, and which will provide a
good indication of the current computational methods.

In recent years there has been an increasing demand from nuclear research,
industry, safety, and regulation bodies for best estimate predictions of Light
Water Reactors (LWRs) performances to be provided with their confidence
bounds. In addition to the establishment of LWRs best-estimate calculations
for design and safety analysis, understanding uncertainties of evaluated
reactor parameters is important for introducing appropriate design margins
and deciding where additional efforts should be undertaken to reduce those



uncertainties. In order to address those issues, an in-depth discussion on
“Uncertainty Analysis in Modelling” started to take place in 2005 within
the OECD/NEA Nuclear Science Committee, which led to the creation of
a dedicated Expert Group and to the launching of a Benchmark exercise,
the OECD UAM (Uncertainty Analysis in Modelling) LWR Benchmark
[K. Ivanov, Avramova, et al. 2013|. The proposed technical approach is to
establish a benchmark for uncertainty analysis in best-estimate modelling
and coupled multiphysics and multiscale LWR, analysis, using as bases a
series of well-defined problems with complete sets of input specifications and
reference experimental data. The objective is to determine the uncertainty
in LWR system calculations at all stages of coupled reactor physics/thermal
hydraulics calculation. The UAM benchmark has been conceived to be
structured in three different phases, being Phase I the “Neutronics Phase,”
Phase II the “Core Phase,” and Phase III the “System Phase.” Additionally,
each benchmark phase is subdivided in a number of different Exercises in
order to propagate the full chain of uncertainty in the modelling across
different scales (multi-scale) and physics phenomena (multi-physics).

The work presented in this thesis was carried out in the “Reaktorphysik
und -dynamik” Group at the “Institut fiir Neutronenphysik und Reaktortech-
nik” in Karlsruhe Institute of Technology (KIT).

This work is devoted to an assessment of VVER-type fuel assemblies
neutronics by means of both Monte-Carlo and deterministic techniques with
emphasis on burnup studies and sensitivity and uncertainty (S/U) analysis.
More specifically, it provides new solutions (not available in literature) for
the OECD VVER-1000 burnup computational benchmark [Kalugin et al.
2002] with the SCALE and SERPENT codes assessing the impact on the
solutions of the use of modern nuclear data libraries (NDLs) and different
depletion Monte-Carlo algorithms. The application of perturbation and
statistical methodologies for evaluating the uncertainties associated to the
computation of integral reactor parameters typical of VVER (and generally
LWRs) reactors was also a significant part of this work. To this, the test cases
of the VVER-1000 and UAM [K. Ivanov, Avramova, et al. [2013] benchmarks
has been used.

This work allows, or even suggests, a division of the discussed subjects.
For this reason, since the beginning of this thesis, its two main phases, namely
the burnup calculation phase and the uncertainty analysis, will be presented
separately.

In the present work the VVER-1000 benchmark test cases have been solved
by means of the SCALE [ORNL/TM-2005/39[2011] and SERPENT |Leppénen
2008| codes. The SCALE (Standardized Computer Analyses for Licensing
Evaluation) code is a software package developed at Oak Ridge National
Laboratory (ORNL) that provides a comprehensive, verified and validated tool
set, for criticality safety, reactor physics, radiation shielding and sensitivity and
uncertainty analysis. The SERPENT code is a three-dimensional continuous-
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1.1 Organization of the thesis

energy Monte Carlo reactor physics burnup calculation code, developed at
VTT Technical Research Centre of Finland since 2004. The objective of
our study is to provide new solutions with modern Nuclear Data Libraries
(NDLs) for the VVER-1000 MOX and LEU computational benchmark. This
study allows us to validate the SCALE calculation schemes for VVER-type
reactors and to compare deterministic solutions with Monte Carlo reference
ones at steady state.

In this work the solutions of some selected test cases at the cell physics and
lattice physics levels are presented. The TSUNAMI [Rearden, M. Williams,
et al. 2011] and the SAMPLER modules included in the SCALE6.2b3 code
package has been used for the neutronics modelling of the selected exer-
cises. Sensitivity and Uncertainty analysis (S/U) based on the generalized
perturbation theory has been performed in order to assess the uncertainty
of the computation of some selected reactor integral parameters due to the
uncertainty in the basic nuclear data. The sampling methodology has also
been tested by means of the reference solution provided by the application of
the perturbation theory. As a general trend, it has been found that the main
sources of uncertainty are the 238U (n,7) and the ?*Pu nubar for the UOX-
and the MOX-fuelled test cases, respectively.

1.1 Organization of the thesis

The thesis is arranged in seven chapters, with this introduction as Chapter 1.

Chapter 2 provides an overview about the VVER-type reactors, describing
the general aspects and peculiarities of VVER-1000 to contextualize the rest
of the work. Several differences in the behaviour of LEU and MOX fuels are
highlighted in the last part of the chapter.

Chapter 3 presents a detailed description of the theory which constitutes
the basis for all the performed burnup calculations. The focus is on the
deterministic and Monte Carlo methodologies and on the differences between
them. The codes and the algorithms used to perform the calculations are
also described, together with some theoretical problem encountered during
the work.

Chapter 4 focuses on the results of the burnup calculations. The results
obtained with SCALE are compared with the SERPENT reference ones at
steady state. Then the SERPENT results at the following depletion steps
are validated with the SCALE ones and with those calculated by the other
participants to the OECD VVER-1000 burnup computational benchmark.

Chapter 5 covers the theoretical background for sensitivity and uncertainty
analysis, describing the perturbation theory, together with the concept of
adjoint flux, and the statistical sampling methodology, introducing also
the Wilk’s formula and the GRS (Gesellschaft fiir Anlagen- und Reaktor-
sicherheit) method.
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Chapter 6 presents the results of the sensitivity and uncertainty analysis.
In its first part the solutions to the OECD UAM LWR Benchmark are
illustrated, while in its second part some additional infomation about the fuel
assemblies and the unit cells of the OECD VVER-1000 burnup computational
benchmark are given.

In Chapter 7 the work presented herein is summarized and some conclu-
sions are drawn.



Chapter 2

VVER-1000 reactor

2.1 General overview

The Vodo-Vodyanoi Energetichesky Reaktor (VVER), or WWER (Water-
Water Energy Reactor), is a type of pressurised water reactor developed in
the Soviet Union, and now Russia, by OKB Gidropress, a subsidiary of the
state atomic energy corporation ROSATOM. Power output ranges from 300
MWe to 1700 MWe with the latest Russian development of the design. A
total of 67 VVER reactors have been constructed since the 1960s by Armenia,
Bulgaria, China, Czech Republic, Finland, Hungary, India, Iran, Slovakia,
Ukraine and the Russian Federation |VVER page on Wikipedia2014).

The first VVER unit was commissioned in 1964, at Novovoronezh nuclear
power plant, in the Voronezh region, Russia, 7 years after the first western
PWR reactor (Shippingport, 1957). The first unit was called the V-210,
the second the V-365 (the numbers were initially corresponding to electrical
output). From that time the Novovoronezh nuclear power plant has been
a testing ground for new VVER units. Today, ROSATOM continues the
commitment to such an approach — export only the technology which has
been thoroughly tested at home [Skoda 2010).

The development of more powerful reactors was encouraged by the suc-
cessful commissioning and operation of these early units. The VVER-440,
built initially at the Novovoronezh site, was the first type of the VVERs
which was constructed on a serial basis. The V230 employed six primary
coolant loops each with a horizontal steam generator, for better heat transfer.
Together they provided a large volume of coolant. Moreover it had isolation
valves that allowed the reparation of one or more of the six coolant loops
while the plant continues to operate. The principal deficiencies were the
absence of emergency core-cooling systems or auxiliary feedwater systems
and the design of the Accident Localization System, which served as a reactor
confinement: it could handle only one four-inch pipe rupture. If a larger
rupture happened, this system vented directly to the atmosphere through
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nine large vent valves |International nuclear society website|[2014].

Model V213, a modified version of VVER-440, was the first VVER
reactor designed to comply with the nuclear safety standard adopted by
Soviet designers. Emergency core cooling and auxiliary feedwater systems
were added by the designers and the Accident Localization Systems was
upgraded. The vessel embrittlement represented a great concern in the earlier
V230 design: the V213 had a reactor pressure vessel with stainless-steel
internal lining to alleviate this concern [ROSATOM 2013].

The VVER-1000 was a milestone both in terms of generating capacity
and for the innovative safety systems it incorporated. The VVER- 1000 is
the most common VVER design worldwide, 31 units are in operation, and
have amassed about 500 reactor-years of operation.

In the early 1980s the design of the VVER-~1000 V-320 reactors was
completed. Eight sites in Russia, Ukraine, Bulgaria (Kozloduy 5-6) and
Czech Replubic (Temelin 1-2) were chosen to host this type of plants. VVER-
1000/V320 is a heterogeneous thermal neutrons water-water energy reactor
with an electrical output of about 1000 MWe and an efficiency factor of about
34%. Demineralized water with diluted boric acid is used as coolant and as
moderator in the primary circuit, with a changing concentration of boric acid
during operation. The water is always in a liquid state and this causes the
adoption of an indirect cycle with steam generators. To allow the water not
to evaporate the primary system pressure must always be higher than the
equilibrium vapor pressure at the water highest allowable temperature. For
this reason the plant is equipped with a pressurizer, whose main task is to
keep pressure within the bounds that were set for the correct functioning of
the system.

The V-320 used four coolant loops and horizontal steam generators and
adopted a steel-lined, pre-stressed, large-volume concrete containment struc-
ture, similar in function to Western nuclear plants. The fuel assemblies
have been redesigned and allowed better flow of coolant. Plant worker ra-
diation levels were lower than in many western plants, apparently due to
selection of materials, high-capacity system for purifying primary coolant,
and water-chemistry control. |Gidropress website|[2014]

The heat generated in the reactor core is transferred through four cooling
loops, which surround the reactor. In each cooling loop, water heated to
321 °C is piped to the steam generator. The steam generator is similar in
scale to that of a PWR, but its configuration is different: the cylinder in the
VVER is horizontal, whereas in a PWR it is vertical. In the steam generator
the radioactive primary circuit water flows through 10978 heating pipes, each
of 16 mm in diameter, resulting in the boiling of secondary side water. The
cooled water returns to the reactor in the primary circuit at a temperature of
288 °C. Water in the primary side is circulated by the main circulating pump.
Each coolant loop can be isolated using a valve. The pressurizer keeps the
pressure at the constant value of 15.7 MPa.
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2.2 Reactor core and fuel assembly

Table 2.1: General VVER-1000 parameters

Parameter Value
Total power [M W] 3000
Capacity factor 0.78
Inter refueling period [months| 12
Time of fuel presence in core |years| 4
Service life [years| 30

The primary water, which circulates in small tubes at a temperature of
321°C, causes the feedwater that enters the steam generator at 6.27 MPa
and 220°C to boil. The moisture content of the generated steam must be
lowered, otherwise the turbine blades would be damaged. This is obtained by
moisture separator shutters put into the way of steam. Thanks to the use of
these plates, the moisture content of the outgoing steam will only be 0.25%.
The steam leaves the steam generator at a flow rate of 1470 t/h and heads
towards the turbine. Further data about VVER-1000 reactor may be found
in [Table [2.1].

In the following paragraphs the main features of a VVER-1000 will be
described and, in particular, the V-320 "Kozloduy 6" Nuclear Power Plant
(NPP) in Bulgaria will be used as a reference.

2.2 Reactor core and fuel assembly

VVER fuel is held in a hexagonal grid. Light water used as both moderator
and coolant is passed at very high pressure trough the core, in a reactor
pressure vessel around 14 m high and 4 m in diameter. The reactor core
[Figure includes in total 211 assemblies: 163 uncased fuel assemblies,
identical in design, but different in fuel enrichment, and 48 reflector assemblies.
Axially, the core is divided into 10 layers with a height of 35.5 cm, adding up
to a total active core height of 355 cm. Both upper and lower axial reflectors
have a thickness of 23.6 cm. Radially, the core is divided into hexagonal
cells with a pitch of 23.6 cm, each corresponding to one fuel assembly, plus a
radial reflector of the same size.

The VVER-1000 fuel assembly [Figure is a hexagon and contains
312 fuel rods. The fuel enrichment can be 3.7 or 4.4wt.% [NationalRegula-
toryAgency [2011]. A frame consisting of 18 guide tubes and 1 central tube
bears the load to fuel assembly. The tubes are also useful to support the
cellular grid which guarantees the correct spacement between the fuel rods.
The fuel assembly head and lower grid hold the the guide tubes. The central
tubes house the control rods and neutron and temperature control sensors
in them. To improve physical characteristics and safety some fuel rods are
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filled with pellets with a content of gadolinium oxide Gd,O4 of 4.0wt.%.
Fuel assembly design |Figure

S /\J\” A consists of the following components:

| L top nozzle, bundles of fuel rods, bot-
tom nozzle. The top nozzle provides
necessary force of fuel assembly com-
pression in the core. The bottom noz-
zle provides conjugation of the lower
part with the support of the reactor
core barrel and presents a guiding de-
vice for coolant supply into bundles

¢ J’\ j of fuel rods. Bundles of fuel rods,

both standard fuel rods and gadolin-
o \/ ium fuel rods, consist of a skeleton
\r\f\fj T T i that houses the 312 fuel rods. The
skeleton is composed of guiding chan-
nels and spacing grids. It provides
the assemblies and fuel rods strength
and geometry and the fuel rods spacing throughout the entire fuel assembly
service life. Besides fuel rods, the fuel assembly has a number of structural
elements: cap, tailpiece, spacing grids and in some cases — a shroud tube.
A cap is designed for gripping during load — unloading operations, and a
tailpiece ensures the fuel assembly placement into the reactor and provides
channel for coolant for fuel rods. The fuel of the VVER reactor is uranium
dioxide (UO,), which is compacted to cylindrical pellets of about 9 mm
height and 7.7 mm diameter. In the centerline of the pellets there is an
inner cylindrical hole of 1.4 mm to allow the gaseous fission products escape,
reducing the pressure, but also to reduce the fuel temperature. The uranium
pellets are inserted in a 3.5 m long and 9.1 mm diameter tube made of
zirconium alloy, which is sealed hermetically. The cladding prevents the
fission products and other radioactive materials from getting into the cooling
water. There is a thick gap (0.08 mm) between the pellets and cladding in
order that sufficient space is available for the pellets’ heat expansion at the
high operational temperatures. Further parameters are shown in [Table .
The VVER-1000/V320 reactor is equipped with 61 control assemblies,
grouped into ten groups. They are full-length control rods except group
number 10, which consists of part-length control rods. The part-length
control rods have neutron absorber only in its lower half and they are used to
damp the xenon oscillations. The full-length control rods contain the strong
neutron absorber over a length that spans most of the active core region.
In addition to the radial arrangement, the position of control rod insertion
in units of cm is given from the bottom of the lower reflector. The total
control assembly length, which coincides with the absorber length, is 371 cm.
The position of the lower control assembly absorber edge from the bottom

Figure 2.1: Core configuration
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2.2 Reactor core and fuel assembly

§§i iﬁ

Figure 2.2: Fuel assembly configuration. Cell types: 1- Central tube, 2- Fuel
cell, 3- Guide tube, 4- Fuel cell with gadolinium

Figure 2.3: General view of fuel assembly 1 - Head, 2 - Guide channel, 3 -
Central tube, 4 - Fuel element, 5 - Spacer grid, 6 - Lower grid, 7 - Nozzle



2.3 Reactor vessel and internals

Table 2.2: General core parameters

Parameter Value
Max fuel enrichment [%)] 4.4
Uranium dioxide load [t] 80
Average specific power |[kW/I| 110
Power density [W/cm3| 107
Max linear heat flow |[W/em| 448
Minimal DNBR 1.73

of the lower reflector is 23.6 cm for a completely inserted control assembly,
and 378.6 cm for a completely withdrawn control assembly. The definition
“completely withdrawn” means withdrawn from the active core, i.e. out of the
core. The control rods are inserted into the reactor from the top. [Nikolay
2013|

The control rod cluster assembly is made of 18 absorbing elements, the
grip head and springs of an individual suspender. The absorbing element
is a tube with outer diameter 8.2 - 10~2 m and wall thickness 0.5- 1073 m
filled with absorbing material and sealed by means of welding. Boron carbide
(B,C) and dysprosium titanate (Dy,04TiO,) are used as absorbing material.
Dysprosium titanate in the absorbing element lower part enables to extend
rod control cluster assembly service life under maintenance of sufficient worth
of emergency protection.

2.3 Reactor vessel and internals

The VVER-1000 reactor vessel [Figure is a vertical cylinder used for
generation of heat within the NPP nuclear steam supply system. A chemically
purified water with boric acid serves as coolant and moderator. Two systems
based on different principles allow the regulation of reactor power and the
suppression of the fission chain reaction:

e Introducing solid absorbers - control rods system (control & protection
system — CPS);

e Injection of liquid absorber - boron regulating system.

These two systems have been designed for different purposes: the former is
used for reactor shutdown in normal and emergency operation conditions and
to change the reactivity during the maneuvering regimes; the latter is used
only to compensate the slow changes in reactivity. As a consequence, the
concentration of boron in the water continuously changes during the life cycle.
The coolant is heated while it flows around fuel assemblies due to the energy
of nuclear fission in the fuel. The coolant enters the vessel through four input

10



2.3 Reactor vessel and internals

Table 2.3: Reactor vessel design data

Parameter Value
Overall height |[m] 10.9
Total volume [m3] 110
Inlet nozzle ID [m)| 850
Outlet nozzle ID |m] 850
Coolant flow |kg/s| 17611
Outer diameter [m] 4.535
Inner diameter |m)| 4.136
Height of elliptical bottom [m] 0.967

Elliptical bottom wall thickness [m| 0.237

nozzles, passes a ring gap between the reactor vessel wall and the core barrel,
and, through a perforated bottom plate, reaches the fuel assemblies installed
in the reactor core. After the heating across the fuel assemblies, the water
exits the reactor vessel through outlet nozzles to the so called “hot leg”. The
reactor pressure vessel has a total height of 13.75 m and an outer diameter of
3.84 m, its thickness at the height of the reactor core is 14 cm and there is an
inner 9 mm-thick stainless steel plating as corrosion prevention. There are
four outlet and four inlet pipe connections located at two different heights
on the vessel. [Table highlights some geometrical data about the vessel.
The VVER-1000 reactor vessel design is based on the following principles:

e proven manufacturing process and structural materials;

e complete in-shop manufacture of the vessel, tests included;
e possibility of vessel transportation by rail and by sea;

e possibility of periodic in-service inspection of the vessel.

To build the reactor vessel several forged shells are welded to each other
and to an elliptic bottom head and a flange. The flange is sealed with
solid ring sealing gaskets and is tightened with 54 M170 studs. |Internation-
alAtomicEnergyAgency [2011]

The vessel has two nozzle shells. Each of them has four nozzles with an
internal diameter of 850 mm, that are connected to the main coolant pipeline
of reactor coolant system. The inlet and outlet chambers are kept separated
by means of the ring welded to the vessel internal surface clad with austenitic
steel. The ring is also used to keep the core barrel from radial displacement
and as an housing for the surveillance specimens.

The reactor vessel is made of heat-resistant steel, grade 15X2H M P A.
The principles used to choose the reactor vessel steel and the welding materials

11



2.4 Steam generator

were the analysis of mechanical properties, the stability during irradiation,
the lack of susceptibility to brittle fracture and the durability.

The vertical pressurized vessel houses core barrel with the baffle, protective
tube unit, fuel assemblies, control rod cluster assembly, in-core instrumenta-
tion detectors. The vessel shoulder supports a welded cylindrical shell with
a supporting bottom and a flange, called the core barrel. The core barrel
has a perforated elliptical bottom to space and support the fuel assemblies.
The same purpose is achieved by means of the spacer grids and 163 support
tubes.

Inside the core barrel, at the core level, there is the core baffle. It protects
the fuel assemblies and separates them from the core barrel. The distance
between the core baffle and the fuel assembly periphery is a structural gap.
Several big rings are mechanically attached to form the core baffle. The load
of the core baffle is supported by the core barrel bottom. The cooling of the
core baffle metal is made possible thanks to several longitudinal channels
that allow the passage of the water.

A corrosion-resistant steel of austenitic grade has been chosen as structural
material for all the internals.

The protective tube unit has two tasks: it houses the control rods and
the in-core instrumentation detectors and it makes a rigid support structure
that spaces the fuel assemblies and keeps them from lifting. The protective
tube unit is installed on the top of the barrel. An elastic element is used
to connect the protective tube unit and the core barrel flange. The elastic
element is installed between the protective tube unit shoulder and the upper
unit top head.

The upper unit structure includes control rod drives and the elliptic top
head with a flange and nozzles. A pitch electromagnet drive is used as control
rod drive that provides motion of control rods with the velocity of 2 cm/s.

2.4 Steam generator

The steam generator used in VVER reactors |Figure is named PGV-
1000MK. It is an horizontal single-vessel recuperative heat-exchanger with
submerged horizontal heat exchanging surface. The steam is dried at the top
of the housing by gravitational separation. Forged shells, stamped elliptic
bottoms and forged nozzles connected by welding form the external body of
the steam generator. The steam generator is designed to house the internals
and to provide an easy access to the secondary side. In this way it is possible
to examine and possibly to repair the internals.

The heat exchanging surface comprises 10978 U-tubes with a diameter of
16 mm. The tubes are positioned horizontally in corridor arrangement. The
steam generator nominal characteristics are shown in [Table . The steam
generator can produce 1470 t/h of steam with a steam quality not below
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Figure 2.5: General view of steam generator. 1- vessel, 2- heat exchanging
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2.4 Steam generator

Table 2.4: Steam generator nominal characteristics

Parameter Value
Height of a head [m] 4
Lenght of cylindrical part [m] 11.34
Primary side volume [m?] 20.5
Tube OD [mm)] 16
Tube ID [mm]| 13
Average lenght of tubes [m] 11.1
Steam flow [kg/s] 437
Steam temperature [°C]| 278.5
Steam pressure [MPa| 6.28 £0.2
Feedwater temperature [°C] 220£5

99.8%.

The steam generator’s tubes are connected to primary-side collectors. The
tubes are made of austenitic steel. Their edges are hydraulically expanded
over the entire collector wall thickness and welded on the inside surface of
the collectors by argon-arc welding. The coolant is distributed in the heat
exchanging tubes by the primary-side collectors. The collectors are designed
also for coolant collection and removal. A two-layer internal cladding is
provided to enhance tubes corrosion resistance. The steam is distributed by
means of a plate that is collocated in the top section of the steam generator.
The equalization of steam load is performed by a perforated plate, arranged
under the water level.

Water with high content of salt and other impurities can be found in the
salt cell, that is a zone of the steam generator usually located near one of the
bottoms. The impurities accumulation is due to the arrangement of supply
of feedwater and blowdown of steam generator.

One of the main advantage of PGV-1000MK steam generator is the large
water inventory inside the vessel. This fact is the cause of the good dynamic
characteristics of the entire reactor in case of loss of feedwater.

A characteristic and distinguishing feature from the steam generator in
VVER reactors is that inconel 600 and 690 alloys or incalloy 800 with high
nickel content — 75, 60, and 32%, respectively — are used for the tubes in the
heat-exchange bank. The tubes of the new steam generators are manufactured
from heat-treated inconel 690 alloy. The tube sheet is made of 08 Kh18N10T
corrosion-resistant steel with 10% nickel content.

The horizontal design is considered to be less susceptible to degradation
than the vertical U-tube one. More specifically, the orientation of a tube has
effects on boiling and on occurrence of boiling crisis causing differences on
their behaviour to stress conditions. On the basis of operating experience

14



2.4 Steam generator

gained over many years, horizontal steam generators have advantages over
vertical steam generators. The main ones are:

moderate steam load (steam outflow rate from the evaporation surface
0.2-0.3 m/s);

simple gravity-based separation scheme;

moderate velocity of the medium in the second loop (up to 0.5 m/s),
preventing any danger of vibrations of the heat-exchange tubes and
damage from foreign objects;

validated serviceability of the 08Kh18N10T austenitic steel tubes (the
maximum operational age is 38 years for PGV-440 and 423 years for
PGV-1000);

vertical arrangement of the first-loop collectors, preventing accumulation
of sludge deposits on their surfaces, thereby decreasing the danger of
corrosion damage to the heat-exchange tubes in the region where the
tubes are built into the tube sheet;

larger store of water in the second loop, enabling cool-down of the
reactor through the steam generator in the case where normal and
emergency water feeding has stopped;

the principle of stepped evaporation, making it possible to maintain
an admissible concentration of dissolved impurities in the critical zones
and increasing the reliability from the standpoint of corrosion effects;

horizontal arrangement of the heat-exchange surface, enabling reliable
natural circulation of the first-loop coolant even with a massive water
level below the top rows of the heat-exchange tubes;

convenient access to the tube sheet for servicing and checking from the
first and second loop sides; there are no heat-exchange tubes at the
bottom of the housing, so that sludge is more easily removed through
the purge system;

presence of equipment for disconnecting the collectors from the main
circulation pipelines, making it possible to decrease the time required
to perform scheduled— preventive maintenance work and to increase the
installed capacity utilization factor by performing work simultaneously
on several steam generators and refueling the reactor.

One of the main problems of horizontal steam generators is corrosion damage
to the heat-exchange tubes, resulting in a large number of plugs due to defects
being formed. Vertical steam generators have an irremovable conceptual
drawback — the presence of a horizontal tube above which sludge collects, and
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corrosion of the tubes in this zone can be prevented only if there is no sludge.
It is extremely difficult to accomplish this: regular and careful mechanical or
chemical cleaning is needed. As already mentioned, in horizontal collectors
sludge settles at the bottom of the housing outside the tube bank and can be
easily removed. Nonetheless, the heat-exchange tubes must be washed also
in horizontal steam generators. [Bonavigo and De Salve 2011, Trunov et al.
2008|

2.5 Neutronic differences between LEU and MOX
fuels

The purpose of this section is to quantify the differences in the neutronic
behaviour between mixed oxide (MOX) and low—enriched uranium (LEU)
fuels. For this reason the nuclear properties, the flux spectrum, the power
distribution, the kinetics parameter and the reactivity coefficients of LEU
and MOX fuel assemblies are compared and their effects on the adsorber
effectiveness and on the lifetime of the pressure vessel are briefly explained.
Further informations on this topic can be found in [Gehin and Ellis 2004].

2.5.1 Nuclear properties

The differences between the two types of assemblies arise from the different
fissile material, which is 23°U in LEU while are 23°Pu and, to a lesser extent,
241py in MOX. The fuel used in the MOX assemblies is characterized by
a reduced enrichment in uranium, which is depleted to the 0.2% and by a
content of weapons-grade and other reactor-grade plutonium. Tables [2.5
[2.6] and [2.7] shows the three plutonium vectors used in the burnup phase of
this thesis work. Table shows instead the nuclear properties of 23U and
239Pu.

The higher values of thermal fission and absorption cross-sections of 23Pu
have two important effects:

e the thermal flux in MOX assemblies is lower than in LEU assemblies;

e the pins located at the MOX/UO,, interfaces present a severe power
peaking.

The first effect deserves a better description. The thermal neutron flux in
the MOX assemblies is substantially lower than in LEU ones and also the
fast flux is slightly smaller. The fast-to-thermal ratio in the MOX is almost
twice that of the UO,. [Table

These facts lead to some particular phenomena. One of the most important
is the reduction in reactivity worth of neutron-adsorbing materials. The
effectiveness of boric acid (H;BO,), that is used to offset the burnup of the
fuel and of the burnable adsorber, is reduced since it is a thermal adsorber.
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2.5 Neutronic differences between LEU and MOX fuels

Table 2.5: Plutonium isotopic compositions in the 4.2% pins

Isotope 29py  240py  2lpy

Content, wt% 93.00 5.99 1.01

Table 2.6: Plutonium isotopic compositions in the 3.0% pins

Isotope 29py  240py  24py

Content, wt% 93.10 5.90  1.00

Table 2.7: Plutonium isotopic compositions in the the 2.0% pins

Isotope 29py  240py  2lpy

Content, wt% 92.90 6.10  1.00

Table 2.8: Nuclear properties of 239Pu and 2%°U

Parameter 235y 239py
Thermal fission cross-section [barns| 577 741
Thermal absorption cross-section [barns| 678 1015
Average number of neutrons per fission 2.43 2.87
Delayed neutron fraction 0.0065 0.0020
Energy per fission [MeV]| 192.9 1985

Table 2.9: Thermal and fast neutron flux in MOX and LEU assemblies

UO, assembly MOX assembly

Fast flux (> 0.625 eV) 8.31-10'3 8.08 - 1013
Thermal flux (< 0.625 eV)  9.95-10'2 4.67-10'2
Fast/thermal flux ratio 8.35 17.29
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2.5 Neutronic differences between LEU and MOX fuels

To cope with this problem the boron concentration or, as an alternative,
the enrichment of the boron in the '°B isotope have to be increased. Each
of these ways has a drawback: an increase of the concentration can lead
to difficulties in the adjustment of the boron levels and can increase the
water and chemical volume which have to be processed; on the other hand
the enrichment of the boron, that can solve these operational issues, is very
expensive and can require plant modifications to recover the boron.

With regard to the control rods, their worth is fundamental in the eval-
uation of the shutdown margins, as well as the reactivity insertion rates in
response to a reactor scram. The MOX loading causes the shutdown margin
and the scram efficiency to decrease, therefore the boron enrichment has to
be raised.

The second of the effects listed above, i.e. the power peaking, that is due
mostly to the larger fission cross-section of plutonium, can be handled with
a careful design of the assemblies. Usually the pins in MOX assemblies are
arranged in concentric rings with different plutonium loadings and this trick
minimizes the peaking effect. In the MOX assembly of the OECD benchmark
there are three rings and, starting from the innermost, they have a fissile
plutonium concentration of 4.2wt.%, 3.0wt.% and 2.0wt.%. Also the use of
burnable adsorber can be useful to control this problem.

2.5.2 Assembly reactivity

Figure [2.6] shows a comparison of the infinite multiplication factor of the
two types of assembly, without burnable adsorbers. The MOX assembly
reactivity decreases more slowly than that of uranium fuel. Therefore, the
matching of the MOX and uranium core designs must consider this difference
to obtain fuel cycle lengths that are similar. In general this requires that the
lifetime-averaged reactivities must match, but this is not necessary when a
burnable absorber is used or the MOX and UO, assemblies have different
residence times in the core.

2.5.3 Kinetics parameters and reactivity coefficients

Kinetic parameters The kinetics parameters affect the time response of
the reactor to reactivity changes. Two of the most important are:

e (3, the effective delayed neutron fraction;
e A, the prompt neutron lifetime.

If B has a smaller value, more neutrons appear as prompt neutron. Therefore
the kinetic response of the reactor is quicker. ?**Pu has a delayed neutron
fraction significantly smaller than 23°U and so MOX cores respond more
quickly than the UO, cores. The results of studies as [A. Pavlovitchev et al.
2001,A. e. a. Pavlovitchev 2004] show a 10 — 15% reduction of /3, depending
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Figure 2.6: Comparison of infinite multiplication factor

of the MOX core fraction. The lowest values of 8 occur at the end of cicle,
because the fraction of fissions from plutonium is highest at that time.

A is related to neutron generation time. A bigger prompt neutron lifetime
means that the changes in neutron multiplication factor need more time
to effect the prompt neutron population. MOX fuels have a shorter A,
since the slower neutrons are preferentially absorbed. This is caused by
the larger thermal absorption cross-section of 23°Pu. Like the value of the
effective delayed neutron fraction, also A exhibits a 15% reduction. [A. e. a.
Pavlovitchev 2000, Alioshin [2001]

These values of 5 and A must be considered in the safety analysis and in
the evaluation of the core protection system.

Reactivity coefficients The reactivity coefficients relates the change in
thermal-hydraulics conditions to the core neutronics through changes in
reactivity. As indicated by some previous works, as [A. Pavlovitchev et
al. 2001], MOX fuel results in a slightly larger Doppler coefficient and a
significantly larger moderator temperature coefficient. This condition can
be a concern in accident scenarios characterized by an overcooling of the
core. In fact, the overcooling in MOX fuel will result in a larger increase in
reactivity than that of UO, fuel.
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2.5 Neutronic differences between LEU and MOX fuels

2.5.4 Pressure vessel fluence

As a consequence of the harder spectrum and of the increase in fast flux,
there is a potential of a larger fast fluence of the pressure vessel. A bigger
fluence can cause a larger embrittlement. The results of a study on this topic

[Zaritsky [2004] are given in figures and while tables and

shows a summary of the results and the fluxes in the surveillance specimens.
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Figure 2.7: Results of pressure vessel fluence calculations (red line is UO,;
blue line is MOX).
In PV: inner surface; 1/4 PV: one fourth of thickness; Out PV: outer surface.

The neutron flux for the MOX core is insignificantly larger than with the UO,
core. Even the specimens revealed almost the same neutron fluxes for both
types of fuel. This minimal changes in neutron flux on the pressure vessel
are the results of careful design of the core loading patterns. The outer ring
in the MOX core is constituted by uranium assemblies and by the highest
burned assemblies. This ring is the closest to the pressure vessel and has the
maximum impact on it, but the assemblies occupying this ring are the same
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2.5 Neutronic differences between LEU and MOX fuels

Table 2.10: Results of fast neutron flux at the pressure vessel (109n/cm?s)

Inner surface 1/4 of Thickness Outer surface
U0, MOX UO, MOX U0, MOX

Maximum 31.1 31.7 22.7 23.1 3.90 3.98
Minimum 16.4 16.8 12.3 12.6 2.67 2.73

Table 2.11: Results of fast neutron flux at the surveillance
assembly(10°n/cm?s)

Lower level  Upper level
Uvo, MOX UO, MOX

Maximum 287 285 104 104
Minimum 164 163 64.6 64.2

for both types of core. The tables and the figure above demonstrate that a

careful design is sufficient to avoid concerns about the high fluence on the
pressure vessel.
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Chapter 3

Burnup theory

This chapter presents a brief theoretical overview of the subjects studied to
solve the OECD benchmark with the SCALE6.1 and SERPENT code.
3.1 Neutron transport equation

Neutron transport has roots in the Boltzmann equation, which was used in
the 1800s to study the kinetic theory of gas. Its big development was caused
by the studies about chain-reaction nuclear reactors in the 1940s.

The neutron transport equation is an equation of conservation of neutrons.
Each term represents a gain or a loss of neutrons, and the balance, in essence,
claims that neutrons gained equals neutrons lost. It is formulated as follows:

igf(?,E,ﬁ,t) +ﬁ.v¢<7,E,ﬁ,t> > (7,E>¢<7,E,ﬁ,t> _
- /Oo /1 2 <7>7E/ — E, Mo>¢<77E',§>’,t>duodE’
0o Jo
oo pdm
O A AT G A P
o Jo
+S€$<?7E’§>> = Q<77Eu§>>a
(3.1)

where

° gb(?,E,ﬁ),t) = oN (?,E,ﬁ,t), is the angular flux distribution,
with:

- N <7, E, ﬁ, t), number of neutrons per unit volume around 7,

%
per unit energy around E and per unit solid angle around €2;
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3.2 Monte Carlo method

— v, neutron speed;

Y, Ysand Xy are, respectively, the total, scattering and fission macro-
scopic cross-sections;

e 1 is the average number of neutrons produced per fission;

_>
Sex (7, E, Q) is an external source;

q<7, E, 6) is the emission density;

o 1o = Q.

The first term of the left hand side represents the change rate of neutrons in
the system during the time. The second terms describes the entry or the exit
of neutrons from the volume of space of interest. The third term enumerates
the collisions in that phase space. The first term on the right hand side
accounts for the in-scattering, i.e. neutrons that have a scattering interaction
in a different phase space and so enters in the considered space. The second
term is the production of neutrons in this phase space due to fission and the
third is self explanatory. The spatial, angular, energy, and time variables
must be discretized to make possible the numerical solution.

e Spatial variables are typically discretized with a mesh and then the
finite difference method can be use to solve the balance equation;

e angular variables can be discretized by discrete ordinates and weighting
quadrature sets or with the spherical harmonics, giving rise, in the first
case, to the S, methods, and in the second to the P, methods;

e energy variables are discretized by the multi-group method;
e the time is usually subdivided into discrete time steps.

These methodologies are just outlined here; a more complete description can
be found in textbooks and articles, for example [Stacey 2001] or |[Lewis and
Miller [1984].

3.2 Monte Carlo method

A different way to solve the transport equation without resorting to deter-
ministic methods is represented by the Monte Carlo method. According to
Emilio Segre, the Monte Carlo method was invented by Enrico Fermi during
the thirties, when he was studying the neutron diffusion in Rome. He used
this method with small mechanical adding machine to solve many problems,
but he never published anything about this.[Metropolis [1987|
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3.2 Monte Carlo method

The spark that led to Monte Carlo method was triggered by Stanislaw
Ulam and John von Neumann, Professor of Mathematics at the Institute for
Advanced Study and consultant to Los Alamos National Laboratories. Ulam’s
background in mathematics and the development of ENIAC (Electronic
Numerical Integrator and Computer) allowed for the creation and for the
tests of the code.

Nowadays the Monte Carlo method is used in criticality safety analyses,
validation of deterministic codes, dosimetry calculations and medical appli-
cations. The common need is the will to reach the maximum accuracy in
modelling the geometry and in the interaction physics. Burnup calculation is
a relatively new application for this method. This type of calculation is very
computing-intensive, since the time-consuming transport calculation has to
be repeated for a large number of depletion steps.

In Monte Carlo calculations the neutrons paths are followed one at time
from the birth to the neutron death by capture or leakage.The randomization
of the time, of the type and of the results of neutron interaction is based on
distributions, which are different for each nuclide and depend on the neutron
energy. |Leppénen [2007]

The attractiveness of Monte Carlo comes from the simplicity and the
potential to produce very accurate results, but also from the possibility of
using all the the best available knowledge on neutron interactions with matter,
without any need of approximations. This knowledge is provided by several
organization, which create and update nuclear data libraries. Examples of
these organizations and libraries are:

e OECD NEA with JEFF (Joint Evaluated Fission and Fusion) libraries;

e U.S. Cross-Section Evaluation Working Group with the ENDF-B (Eval-
uated Nuclear Data Files) libraries;

e Japan Atomic Energy Agency with JENDL (Japanese Evaluated Nu-
clear Data Library).

In addition to nuclear data, problem geometry, temperatures, densities and
material compositions are needed for transport calculations. Moreover, since
one simulated neutron corresponds to several real neutrons, a normalization
condition, such as total power, is also required to discover the correlation
among these two quantities.

More details about Monte Carlo can be found in [Lux and Koblinger
1991], [Spanier and Gelbard [2008] or, to a lesser extent, [Reuss [2008].

3.2.1 Statistics

The statistical uncertainties are always present in Monte Carlo calculations
and, in accordance with the central limit theorem, they are proportional to
1/4/n, where n is the numbers of the events that contribute to the estimate.
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This number depends linearly on the number of neutron histories. Instead, the
computational cost of the simulation is directly proportional to the number of
histories and so, if a halving of statistical uncertainty is required, the running
time will quadruply. Running times can vary widely for different calculations,
also in similar geometries and using the same code. [Isotalo [2013]

A little number of neutron contributes to the averages over small volumes
and energy ranges, if compared with larger ones. In the former cases it is
mandatory to simulate more neutrons to reach the same level of accuracy
of the latter cases. Burnup calculations often require to estimate flux or
cross-sections for small material regions and so a relatively large statistical
variation in the estimated reaction rates occurs. However, since the statistical
errors tend to cancel out when the entire geometry is considered, the accuracy
of the global results is preserved.

3.3 Comparison between deterministic and Monte
Carlo codes

Deterministic neutron transport methods and Monte Carlo are two alterna-
tives to solve burnup calculations. In this paragraph strenghts and weakness
of these two families of methods are listed.

All deterministic methods are faster than Monte Carlo and have not
the statistical uncertainty associated with Monte Carlo method. Since the
efficency of Monte Carlo is low in calculating local quantities and multidi-
mensional distributions, deterministic methods have higher performances and
can be several order of magnitude faster in those cases.

On the other hand, the Monte Carlo method can use all the available
knowledge to handle the transport calculation and neutron interaction physics,
without any need of approximations. Moreover the Monte Carlo methods can
model any type of complex geometry consisting of discrete material regions.
These features make the method more accurate and problem independent.
The latter is a great advantage of Monte Carlo methods, as they can be used
for many different problems, while different deterministic methods are needed
for problems with different neutron energy, e.g. fast and thermal systems,
or with different geometry, e.g. hexagonal and square assemblies. As an
alternative the same code needs to be validated separately. The calculation
is slowed down by the complexity and the size of geometry, but much lesser
than with deterministic methods.
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3.4 Codes used for burnup calculations

3.4.1 SCALE

SCAL (Standardized Computer Analysis for Licensing Evaluations) is a
comprehensive modelling and simulation suite for nuclear safety analysis and
design developed and maintained by Oak Ridge National Laboratory under
contract with the U.S. Nuclear Regulatory Commission, U.S. Department of
Energy, and the National Nuclear Security Administration to perform reactor
physics, criticality safety, radiation shielding, and spent fuel characterization
for nuclear facilities and transportation/storage package designs |SCALE
website|2014].

The SCALE system was developed for the Nuclear Regulatory Commission
to satisfy a need for a standardized method of analysis for the evaluation of
nuclear fuel facility and package designs. In its present form, the system has
the capability to perform criticality, shielding, radiation source term, spent
fuel depletion/decay, reactor physics, and sensitivity /uncertainty analyses
using well-established functional modules tailored to the SCALE system.

The SCALE system consists of analytical sequences which are automated
to perform the necessary data processing and manipulation of well-established
computer codes required by the sequence. Thus the user is able to select an
analytical sequence characterized by the type of analysis (criticality, shielding,
or heat transfer) to be performed and the geometric complexity of the system
being analyzed. The user then prepares a single set of input data for the
control module corresponding to this analytical sequence. The control module
input is in terms of easily visualized engineering parameters specified in a
simplified, free-form format. The control modules use this information to
derive additional parameters and prepare the input for each of the functional
modules in the analytical sequence. Provisions have also been made to allow
the user to execute the functional modules on a stand-alone basis [NEA
website|2014].

Among these sequences TRITON module has been used for the solution
of the OECD benchmark.

TRITON (Transport Rigor Implemented for Transient Depletion with
ORIGEN) is a SCALE control module that can be used for problem-dependent
cross-section weighting, 2-D transport calculations with NEWT (New ESC-
based Weighting Transport code), 2-D depletion calculations through a
coupling of NEWT and ORIGEN, and 3-D Monte Carlo depletion calculations
coupling KENO and ORIGEN.

Given mixtures and lattice cell structures defined in input, TRITON
controls cross-section processing operations using BONAMI to perform Bon-
darenko calculations for resonance self-shielding in the unresolved resonance
range and using CENTRM /PMC for resolved resonance evaluation. The

*For further information about SCALE code see http://scale.ornl.gov/index.shtml
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problem-dependent cross-section library and mixing table produced by the
sequence are automatically used in the NEWT or KENO calculation so that
no mixing table needs to be specified.

The transport solution is followed by COUPLE and ORIGEN calculations.
In depletion mode, NEW'T creates a three-group weighted library based on
calculated and volume-averaged fluxes for each mixture. COUPLE updates
the ORIGEN-S cross-section library with cross-section data read from the
weighted library. Three-group fluxes calculated by NEWT or KENO are
supplied to ORIGEN for depletion calculations. COUPLE/ORIGEN calcula-
tions are repeated for each mixture being depleted, as specified by the user,
using mixture-specific cross-section data and fluxes. Used in conjunction with
TRITON, NEWT also can generate a library of cross-sections as a function of
burnup, with a branch capability that provides cross-sections at each burnup
step for perturbations in moderator density, fuel and moderator temperatures,
boron concentration, and control rod insertion or removal.

Reactor physics problems are solved by the sequential application of the
codes described above. Given the sequence for which a calculation is to be
performed, TRITON is responsible for processing input, converting the input
description to appropriate forms, and executing each module in sequence,
with preparation and exchange of required data between modules.

Methods used by TRITON

The use of cross-section data libraries that correctly define nuclear reaction
rates during irradiation is necessary to obtain accurate calculations. The cross-
sections change as a function of burnup, enrichment, and operating conditions
and depend on the fuel assembly design. ORIGEN (Oak Ridge Isotope
Generation and Depletion) can provide burnup-dependent cross-sections
produced via problem-specific transport calculations and simultaneously
track every activation, fission, and decay event for which data are available.
ORIGEN currently tracks 1119 individual fission products generated in
the fuel during irradiation, 129 actinides, and 698 isotopes associated with
structural and/or activation components. [DeHart and S.M. 2011] ORIGEN
reads a set of cross-sections from a library created for a generic LWR, fuel
assembly. Since mixture cross-sections and spatial fluxes change with burnup,
the TRITON depletion sequence is made up of two updates of cross-sections.
A TRITON iteration is divided in two phases:

e transport calculation for cross-section processing and transport solution;
e depletion calculation with COUPLE and ORIGEN.

COUPLE collapses the multigroup cross-sections from NEWT or KENO
for use in ORIGEN. Transport calculations are used to calculate fluxes and
prepare weighted cross-sections; depletion calculations are used to update
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Figure 3.1: The TRITON/NEWT depletion sequence
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Figure 3.2: The predictor-corrector approach

28



3.4 Codes used for burnup calculations

nuclide concentrations, which are used in the following transport calculation.
The TRITON/NEWT depletion sequence was used in our calculations and is
illustrated in [Figure (3.1].

TRITON uses a predictor-corrector approach to process the user-defined
depletion scheme. This method is better described in The predictor-
corrector approach updates the cross-sections by performing a transport
solution based on anticipated concentrations at a time halfway through a
given depletion period. Depletion calculations are then performed over a
constant-power burn period using fluxes and cross-sections predicted for mid-
cycle. Depletion calculations are then extended to a point halfway through
the next cycle, followed by another mid-cycle transport calculation. This
process is repeated until depletion calculations are completed for all cycles in
a depletion case. This process results in cross-sections representative of the
predicted mid-cycle burnup, which are applied in the second-pass depletion
over all fuel cycles. In order to start the calculation, a “bootstrap case”
is required using initial isotope concentrations for the initial cross-section
processing and transport calculation. This process is illustrated in [Figure
. In this figure, transport and depletion calculations are represented by
the labels “T” and “D”, respectively.

By default, TRITON creates a single library at the midpoint of each
cycle used to approximate cross-sections over the full cycle. In practice, it is
often the case that a cycle is long enough that significant isotopic changes
do occur and a one-step approach gives inadequate temporal discretization.
The TRITON depletion sequence allows for refinement of the cross-section
update time interval by allowing more intermediate steps within each cycle.

Cross-section libraries are created at the midpoint of each subinterval;
because the accumulated burnup is reduced within each interval, the use
of an average cross-section for each interval is an improved approximation.
Obviously, in the limit, as the number of intervals goes to infinity, the
approximation goes to the exact solution. However, because changes in
multigroup cross-sections occur relatively slowly with burnup, only a minimal
set of cross-section updates are generally required within a depletion cycle.

ORIGEN solves the Bateman equations, introduced in by means of
matrix exponential method . For a more comprehensive explanation of
how ORIGEN works and of its use of Bateman equations see |Gauld et al.
2011].

3.4.2 SERPENT

SERPENTE is a continuous energy Monte Carlo reactor physics code. The
development of SERPENT started at VI'T Technical Research Centre of
Finland in 2004, with the title "Probabilistic Scattering Game", or PSG. The

TFor further information about SERPENT code see http://montecarlo.vtt.fi
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name was later changed to SERPENT, due to the various ambiguities related
to the acronym. The code was submitted for public distribution to the NEA
Data Bank in April 2009 and released one month later. Since the public
release of SERPENT 1.1.7 in May 2009, the user community has grown to
300 users in 111 universities and research organizations in 29 countries around
the world. [SERPENT website|2014]

SERPENT is distributed through OEDC/NEA Data Bank. [OECD/NEA
Data Bank Computer Program Services|2014]

SERPENT is divided in two separate branches: SERPENT 1 is the official
released version and SERPENT 2 is a complete rewrite still in beta-testing.
The main goal of SERPENT 2 was to extend the burnup capability from
2D assembly-level calculations to full-core problems consisting of hundreds
of thousands of depletion zones, without any limitations in parallelization.
The new features of SERPENT 2 are a multi-physics interface for efficient
coupling with thermal hydraulics codes and a complete redesign of memory
management, which lends itself to memory efficient OpenMP-MPT hybrid par-
allelization and allows the memory hungry optimization features of SERPENT
1 to be turned off if needed.

The transport routines of SERPENT have numerous performance improv-
ing features. Between these there are the mixed use of ray tracing and delta
tracking methods during neutron transport, a uniform energy grid for all neu-
tron interaction data, pre-calculated energy dependent total cross-sections for
various reaction types, and calculation of one-group cross-sections from high
resolution spectra rather than tallying them directly. The burnup capability
in SERPENT is entirely based on built-in calculation routines, without any
external coupling. The number of depletion zones is not restricted, although
memory usage becomes a limiting factor for SERPENT 1 when the number
of burnable materials is large.

Methods used by SERPENT

Burnup calculation The burnup capability in Serpent is entirely based on
built-in calculation routines, without any external coupling. The number of
depletion zones is not restricted, although memory usage becomes a limiting
factor for Serpent 1 when the number of burnable materials is large. Predictor-
corrector calculation is optional and used by default for each burnup step.
In addition to the conventional predictor-corrector method based on linear
interpolation, Serpent 2 offers various higher-order methods and sub-step
solutions for burnup calculation.[Isotalo and Aarnio 2011a; Isotalo and Aarnio
2011b|

Radioactive decay and fission yield data used in the calculation are read
from standard ENDF format data libraries. The decay libraries may contain
data for almost 4000 nuclides and meta-stable states, all of which is available
for the calculation. The total number of different nuclides produced from
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fission, transmutation and decay reactions is generally lower, in the order of
1500. The concentrations of all included nuclides with decay data are tracked
in the burnup calculation and the number of nuclides with cross-sections
typically ranges from 200 to 300. Energy-dependent fission yields are available
for all main actinides (31 nuclides in ENDF/B-VII data).

Integral one-group transmutation cross-sections are calculated either
within the transport cycle or by collapsing the continuous-energy reaction
cross-sections after the cycle using a flux spectrum collected on the unionized
energy grid. The spectrum collapse method speeds up the calculation by a
factor of 3-4 and, due to the high energy resolution of the flux spectrum, the
errors in the results are practically negligible.

Serpent has two fundamentally different options for solving the Bateman
depletion equations. The first method is the Transmutation Trajectory Anal-
ysis method (described in , based on the analytical solution of linearized
depletion chains. The second option is the Chebyshev Rational Approxima-
tion Method , an advanced matrix exponential solution developed for
Serpent at VI'T. The two methods have shown to yield consistent results,
both when used with Serpent [Leppinen and Pusa [2009| and in separate
methodological studies [Isotalo [2011].

Fission product poison 3*Xe can be handled separately from the other
nuclides and iterated to its equilibrium concentration during the transport
simulation. The equilibrium calculation is independent of the depletion
routine, and the iteration can also be performed in transport mode without
burnup calculation.

Woodcock delta-tracking method The Monte Carlo simulation can be
run either in k-eigenvalue criticality source or external source mode (for the
differences between these two modes see |Leppanen 2007, pages 112-116]).
Neutron transport is based on a combination of conventional surface-to-
surface ray-tracing and the Woodcock delta-tracking method (to further
deepen Woodcock delta-tracking method [Lux and Koblinger 1991} pages 222-
226|). The tracking routine has proven efficient and well suited for geometries
where the neutron mean-free-path is long compared to the dimensions, which
is typically the case in fuel assemblies. The combination of two tracking
methods overcomes the efficiency problems normally encountered with delta-
tracking in the presence of localized heavy absorbers.

The main drawback of delta-tracking is that the track-length estimate of
neutron flux is not available and reaction rates have to be calculated using the
potentially less-efficient collision estimator. This is usually not a problem in
reactor calculations when reaction rates are scored in regions of high collision
density.
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Interaction physics and geometry Serpent reads continuous-energy
cross-sections from ACE format data libraries. The interaction physics is
based on classical collision kinematics, ENDF reaction laws and probability
table sampling in the unresolved resonance region.

Serpent includes ACE format cross-section libraries based on JEF-2.2,
JEFF-3.1, JEFF-3.1.1, ENDF/B-VI.8 and ENDFB/B-VII evaluated data
files. Interaction data are available for 432 nuclides at 6 temperatures between
300 and 1800K. A built-in Doppler-broadening preprocessor routine allows
the conversion of ACE format cross-sections into a higher temperature. This
capability results in a more accurate description of the interaction physics in
temperature-sensitive applications, as the data in the cross-section libraries
are available only in 300K intervals.

Serpent has also thermal bound-atom scattering data for light and heavy
water and graphite. Since the data format is shared with MCNP, any
continuous-energy ACE format data library generated for MCNP can be used
with Serpent as well.

SERPENT uses a universe-based combinatorial solid geometry (CSG)
model, also implemented by MCNP and KENO-VI, to build the geometry.
This model allows the description of practically any two- or three-dimensional
fuel or reactor configuration. The geometry consists of material cells, defined
by elementary quadratic and derived macrobody surface types.

Unionized energy grid format To speed up the calculations with a great
reduction of the number of CPU time consuming grid search iterations a
unionized energy grid is used for all reaction modes. Continuous-energy
cross-sections in the library files are reconstructed on this single energy grid.
Macroscopic cross-sections for each material are pre-generated before the
transport simulation. Instead of calculating the cross-sections by summing
over the constituent nuclides during tracking, the values are read from pre-
generated tables, which is another effective way of improving the performance.

The drawback of the unionized energy grid approach is that there is a
wasting of computer memory to allow the redundant data points to be stored.
In burnup calculations, in which over 250 actinide and fission product nuclides
may be involved, the grid size may become prohibitively large.

3.5 Bateman equations

Some nuclides are naturally radioactive and decay to other nuclides over
time. The product might still be unstable, causing it to decay further and
so on, creating a chain of decays. Some nuclides can undergo different types
of decays leading to different daughter nuclides. Decay chain can thus have
branches, which might or might not unite later on.

Moreover nuclides can react with neutrons in different ways and transmute
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themselves into other nuclides. Also interactions with gamma rays and
other particles can cause similar reactions but they are ignored in burnup
calculations for their little significance. |Isotalo 2013]

Decay always proceeds towards less energetic states, while transmutation
reactions can also produce nuclides in more energetic states, thanks to the
kinetic and binding energy of the incident particle. So, in theory, any nuclides
can become any other nuclide with an unrealistic number of decay and
transmutations.

The nuclear fuel changes its properties because of changes in composition
due to fuel burnup. During the operation the fuel nuclei are transmuted by
neutron capture and subsequent decay.

The equations governing decay and transmutation of an arbitrary mixture
of N different nuclides in a homogenized material region can be written as

av;

N
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where )\; is the decay constant of nuclide i , ¢ the one-group neutron flux,
o;; the microscopic one-group cross-section for transmutation of nuclide i
to nuclide j and b; ; the branching ratio from nuclide i to nuclide j, i.e. the
fraction of natural decays of nuclide i that produce nuclide j.

[Isotalo 2011] These equations are known as Bateman equation after
Harry Bateman, who first solved them analytically for a linear chain of decay
reactions. |Bateman 1910] The equations formulated by Ernest Rutherford
[Rutherford [1905| didn’t include branching or transmutation, which had not
yet been discovered.

There are two difficulties in solving the Bateman equations. First material
compositions and neutron flux affect each other leading to a complex combined
problem. This problem can be handled by sequentially solving neutronics
and material compositions, while assuming the other to remain constant.

Second the system is large and stiff, with thousands of nuclides with half-
lives varying from seconds to millions of years. However most of the nuclides
are unimportant and can be lumped together in a single pseudo-nuclide that
has averaged properties. Furthermore it is possible to remove some short-lived
nuclides assuming their instantaneous decay. The great majority of nuclides
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can be removed without significantly affecting the neutronics, but which
approximations are valid for which nuclides varies from case to case, so the
approximations may lead to a degree of problem dependence.

3.6 Methods to solve Bateman equations

There are several ways to solve the system of linear first order differential
equations with constant coefficients, represented by the Bateman equations
with the assumption of constant reaction rates during the time step. Nev-
ertheless the size and stiffness of the system reduce the number of methods
that can be used.

3.6.1 Matrix exponential method

The Bateman equations can be written in a matrix form dN Jdt = Aﬁ, where
Aij == 5, +b§£f)\§ff. The solution of this equation is N}(t) = eAtﬁ(O),
which employs the matrix exponential notation

[e.e]
1
M= —(An™. (3.5)
m=0
Different approximations are used to evaluate the matrix exponential in the
matrix exponential method. There are numerous algorithms for computing
the matrix exponential, but many of them are not applicable in burnup
calculations, due to their computational expense or their dubious numerical
quality. The approximation of the matrix exponential is difficult, because
of great variability of the decay constants and reaction rates of the nuclides
that induce the burnup matrix to have a wide spectrum of eigenvalues. One
of the most challenging problems is represented by the short-lived nuclides
because they can induce eigenvalues of arbitrarily large magnitude. These
difficulties have traditionally been solved by simplifying burnup chains or by
treating the most short-lived nuclides separately when computing a matrix
exponential solution. The characteristics of the problem are substantially one
of the main criteria of the selection of a suitable matrix exponential method.
When choosing the matrix exponential method, the key aspects that should
be taken into consideration are the norm and eigenvalue spectrum of the
burnup matrix as well as the length of the time step. [Pusa and Leppénen
2010]
Hereafter the Chebyshev rational approximation method (CRAM) is
described, because of its use in the SERPENT code.

Chebyshev rational approximation method

CRAM method is based on the observation that the eigenvalues of the
depletion coefficient matrix A appear to be clustered around the negative real
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axis. This can be exploited by making a Chebyshev rational approximation
of the exponential function for the interval (—oo, 0]. The resulting rational
function is then decomposed into a pole-residue form to avoid numerical
instability. When the denominator and numerator orders are selected equal
and even in the Chebyshev approximation, the poles form conjugate pairs
and the imaginary parts cancel out for a real valued variable. Thus, an order
(k, k) approximation becomes

Py(z) oa 52 a
k 7 7
% = = 21 —_— 3.6
Qe T Z“ cre 0T Zil 240, (3:6)

where P, and ) are polynomials of order k, whose coefficients have been
selected to minimize absolute deviation from exponential function on the
negative real axis, ag is the limiting value of the approximation at infinity,
and a; and 6; are the residues and poles.

When this approximation is applied to the matrix exponential it becomes

k)2

Zai(At + 9,-1)—1] ﬁ(o), (3.7)

i=1

N(t) = agN (0) + 2%

where the matrix inversions can be calculated efficiently thanks to the sparse
structure of the matrix A. There is no reason to select any particular value
of k as long as it is even.

3.6.2 Transmutation Trajectory Analysis

In this section the Transmutation trajectory analysis (T'TA) is described.
Then, only for the sake of completeness, the Bateman solution is outlined.

Transmutation trajectory analysis, also known as the linear chains method,
is an alternative method for solving the decay and transmutation equations
analytically, if the complicated transmutation chains are first resolved into
a set of linear sub-chains, or trajectories. [Leppénen and Pusa 2009]| Since
the Bateman equation is a set of first-order linear differential equations, the
general solution can be obtained as a linear superposition of the solutions in
simpler cases.

A transmutation trajectory is a sequence of direct nuclide to nuclide
transitions, from the first to the last nuclide with all the possible reaction
modes. After the assumption that only the first nuclide of the chain has non-
zero initial atomic density, the method proceeds calculating the concentrations
of nuclides of each chain. Doing this for each nuclide in the initial composition
and superposing the results, the solution of the original problem is obtained.
Constructing and solving the decay and transmutation chains individually
provides TTA with an additional advantage over the matrix exponential
method in being able to extract detailed data about the individual chains.
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In a transmutation rich environment, such as a nuclear reactor, is impossi-
ble to consider all chains since the web of decay and transmutation reactions
is too complicated. Because most of the chains are passed through by an
insignificant amount of nuclides, these chains are practically meaningless and
S0 it is possible to terminate the construction of a chain when the significance
of the rest of it falls below a certain limit.

Now a recent general analytic solution by Cetnar |[Cetnar 2006| is intro-
duced, which allows an arbitrary number of repeated effective decay constants.
When this solution is used, the only approximation left is the termination of
chains of low importance.

For a chain of n nuclides that has d distinct effective decay constants ,
each repeated m; times (Z‘Ll m; = n), the general solution is

By <& oy Aef "t
Nat) = Ni(0) 25 > A e Vigpm:  (38)
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where p; = m; — 1 is used to simplify notation,
n—1
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where § is the Kronecker delta.
The Bateman solution
A linear chain with n distinct effective decay constants, A/, i=1,..., n and

branching ratios bE{L can be solved analytically. Assuming that only the

first nuclide has a nonzero initial atomic density, N1(0), the atomic density
of the nt" nuclide after time ¢ is

Ny (t) = Za” -t (3.12)
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where -
o = Hj_lef; TR (3.13)
Hj:l,j;éi()‘j A7)

If the effective decay constants in the chain are not distinct, the Bateman
solution cannot be applied. This is the case of cyclic chains, but might also
happen in other cases if identical decay constants are input for separate
nuclides. By relying on the weakness of cyclic chains and terminating the
chain when a loop is encountered, the problem is avoided. A more accurate
approximation is to introduce small variations to the repeated constants to
make them distinct, after which the [3.8| can be used. Since the effective decay
constants are usually only known to a few decimal places these variations are
easily kept below the level of uncertainty in initial data.

When there are no repeats, i.e., m; = 1 for all 4, reduces to the
Bateman solution

3.7 Burnup algorithms

Burnup algorithms, also called coupling schemes, are used to select the
constant values of cross-sections and flux for the depletion calculations.
Depletion calculations have the purpose to follow the time development of
the material compositions and dependent neutronics parameters of a nuclear
reactor core, i.e., they focus on long-term changes. Instead the development
of the neutronics is essentially quasi-static. This complex combined problem
can be modeled by sequentially solving the neutronics and changes in material
compositions while assuming the other to remain constant.

Various methods exist for performing these calculations, but they can be
divided in two groups.

The first group uses the cross-sections and flux obtained from solving the
neutronics to calculate the momentary derivatives of the atomic densities
and uses them in a numerical integration with a general purpose ordinary
differential equation (ODE) solver. These methods are fast but require
short-lived nuclides to be removed from the system to reduce stiffness.

The second group solves changes in the material compositions at each
step by evaluating explicit solutions to the Bateman equations with constant
microscopic reaction rates. A depletion step with a Bateman solver takes
much more CPU time than one with an ODE solver, but some of the available
algorithms are accurate, robust and able to handle the full range of half-
lives, which simplifies result handling and makes the algorithms problem
independent as all nuclides can be modeled explicitly. Such methods are
particularly popular with Monte Carlo neutronics as they can be made
problem independent and allow for longer steps. [Isotalo and Aarnio |2011b)
Longer steps mean that less time is needed to have the Monte Carlo solution.
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When a method from the second group is used, one has first to predict
the development of the reaction rates during the step and then further
approximate these predictions with their averages in the depletion calculation.

The steady state neutronics and Bateman solutions are combined with a
wrapper algorithm that uses one or more neutronics solutions to predict the
development of the cross-sections and flux, or reaction rates, over a single
step and selects constant reaction rates to represent these predictions in the
Bateman solutions. Despite their seeming simplicity, or perhaps because of
it, the wrapper algorithms have received very limited attention and seem
to be lagging behind the neutronics and depletion solvers in development.
Usually the behaviour of the cross-sections and flux is predicted with some
predictor—corrector method using zeroth and first order predictions or other
comparable approximations.

3.7.1 Predictor-corrector algorithms

One way to perform burnup calculations is to proceed in steps: first neutronics
is solved with the beginning of step (BOS) material composition and then are
solved the changes in material compositions with the reaction rates that stay
constant at their initial values. The obtained end of step (EOS) compositions
then become the BOS compositions for the next step. This method is called
the explicit Euler method even if the real Euler method would calculate
BOS derivatives and assume them constant at each step, instead of the
microscopic reaction rates. For instance, below is described the Euler method
[Algorithm . This method is also known as the beginning-of-step constant
flux approximation. [Dufek and Hoogenboom [2009] Instead of using the BOS

Algorithm 1 The Euler method
input: Ny

for n=20,1,... do
¢n < solution of B(N,)¢, =0
Npt1 < Ny expM(¢,)At,

end for

reaction rates for the entire step, that is a coarse approximation unless short
steps are used, a predictor-corrector method can be applied. The requirement
of two rather than one neutronics solution per step and the consequent greater
running time are compensated by improved accuracy. Moreover the bigger
accuracy allows the use of twice longer steps.

The predictor-corrector approach performs cross-section processing and
transport calculations based on anticipated isotope concentrations at the
midpoint of a depletion subinterval. Depletion calculations are then performed
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over the full subinterval using cross-sections and flux distributions predicted at
the midpoint. Depletion calculations are then extended to the midpoint of the
next subinterval (possibly through a decay interval and into a new depletion
interval), followed by cross-section processing and transport calculations
at the new midpoint. The iterative process is repeated until all depletion
subintervals are processed. In order to start the calculations, a “bootstrap
case” is required using initial isotope concentration for the initial cross-section
processing and transport calculation. The bootstrap calculation is used to
determine the anticipated isotope concentrations at the midpoint of the first
depletion subinterval. [Jesse and DeHart 2011]

For instance, below is described the predictor-corrector algorithm [Algo-

rithm [2] used by SERPENT code.

Algorithm 2 The predictor-corrector method
Input: Ny

for n=20,1,... do
¢n, + fundamental mode of B(N,,)
N N, expM(¢,) At

¢£5r)1 + fundamental mode of B( Nfli)l)

on ) (dn+dnn)/2
Npy1 < Ny expM(¢S)At,

end for

The predictor step of the method presented above uses the BOS cross-
sections and flux for the entire step, which can be seen as using a constant
extrapolation to predict their behaviour. The corrector steps can in turn
be interpreted as linearly interpolating between the BOS and predicted
EOS values, and using the average from this interpolation for the depletion
calculations.

If it is wanted, higher order estimates can be used by using the BOS
values from the previous step and the EOS values of the current step. In this
way it will be possible to substitute the constant and linear interpolations
with the linear and quadratic ones respectively. The running time won’t be
affected by this action because no additional neutronics solutions will be
needed.

As shown by A.E. Isotalo and P.A. Aarnio, |Isotalo and Aarnio 2011al
using linear extrapolation on the predictor steps improve the results for
long-lived nuclides compared with the ones using the constant extrapolation.

The results from the use of the second order predictions on the corrector
steps are not so positive; on the contrary they are quite negative. On the
authors’ opinion the reason is that linear corrector results in systematic can-
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3.8 Xenon oscillations in Monte Carlo calculations

cellation of errors which improves the results past those from a quadratic one,
unless very short steps are used. Quadratic interpolation should clearly not
be used if the predictor uses constant extrapolation, but when combined with
linear extrapolation, the difference between quadratic and linear interpolation
is not as conclusive. The predictor and corrector orders had little direct effect
on short-lived nuclides.

3.8 Xenon oscillations in Monte Carlo calculations

Xenon driven oscillations have been found in many burnup algorithms. These
oscillations differ from physical xenon oscillations because of the time dis-
cretization |Isotalo, Leppénen, and Dufek 2013).

In real reactors the xenon oscillations are prevented by active control.
Due to various approximations, oscillations in numerical calculations can be
much worse than they would in real reactors. A way to handle this problem
could be modelling explicitly the control system. This solution would be
extremely effortful or even not feasible in Monte Carlo calculations. Therefore
a simpler alternative is necessary.

The spatial oscillations that happen in deterministic codes are usually
solved by forcing equilibrium at each time step. To do this, special wrapper
algorithms can be used. These algorithms perform multiple neutronics
solutions to find the equilibrium distributions and the corresponding flux,
which is then used for depletion. This approach has also been used in Monte
Carlo burnup calculations [Dufek and Gudowski [2006|.

Another way that is feasible in Monte Carlo neutronics is to calculate the
equilibrium xenon distributions inside the criticality source simulation.

3.8.1 Xenon physical properties

135X e is produced directly from fission, but the combined direct yield of 135Xe
and 13°mXe (T} /2 = 15min) from thermal fissions is only around 0.2%, and
by the decay of 35Te, through ¥°I. These two precursors, together with
1358b, have a combined yield of 6%. 13°Te decays to '3°I in about 19 seconds,
while '35 has a half-life of 6.7 hours. 13°Xe (Th/2 = 9.2 h) decays to 135Cs,
which in turn decays to the stable nuclide '**Ba with a half-life of about 2.3
millions of years. ?°Xe has a very large thermal absorption cross-section
(2.6 - 10° barns): this causes its disappearance for transmutation and gives
it a deep effect on neutronics. |Guerrini and Paci [1998| Because of these
phenomena, changes in the flux affect xenon production rate with a delay,
whereas is removal rate, which is dominated by absorption, changes instantly.

If it is assumed that 31 is produced directly from fission with yield v,
the equations that govern the xenon and iodine concentration may be written
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3.8 Xenon oscillations in Monte Carlo calculations

as:
dI
(1) = yres, — A1 (3.14a)
dX X 1 X X
E(t):’y Sro+ AT — (A +070)X, (3.14b)

where X is the macroscopic fission cross-section, XX and A are the xenon
and iodine decay constants, ¢ and 4X are the tellurium and xenon fission
yields, ¢ is the neutron flux, oX
the iodine concentration and X is the xenon concentration. When the flux
tilts, reactivity increases in the areas of high flux as xenon is depleted, while
in the areas of low flux reactivity decreases as xenon builds up. The flux tilt
is reinforced by these changes in reactivity, leading to even larger changes.
Over the time the '3°I concentration stabilizes and the xenon concentration
starts to increase in high flux areas while decreases in the low flux areas.
Because of this the flux can begin to tilt in the opposite way and so the cycle
repeats. These physical oscillations are prevented by the use of the control
system because their time period (some hours) is much longer than the time
required for the control rods movement (few seconds).

is the xenon absorption cross-section, I is

3.8.2 Xenon numerical effects

The physical xenon oscillation mechanism is not possible in burnup calcu-
lations due to the time steps shorter than the timescale involved in xenon
oscillations. This allows that I and 3%Xe reach the saturation level corre-
sponding to the flux at each step.

However an unphysical oscillation is possible: if the flux is tilted, during
the depletion step there will be high xenon concentration in the areas with
high flux and low xenon concentration in the areas with low flux. So in the
following neutronics solution the flux will tilt in the opposite way.

The predictor-corrector algorithm performs two neutronics solutions per
step and so the behaviour can be more complex. Moreover it is not easy
to detect instability. In fact the results of the calculations are the material
compositions and the related neutronics, which are calculated at the beginning
of step. Because they come from the same phase of the oscillation, they may
seem stable, but the materials were depleted with flux that might not at
all represent the ones in the output. The material compositions can also
be completely off as the averaged flux used to calculate them is in no way
guaranteed to represent the correct one.

The results may seem stable and so the comparison of the results of
following burnup steps is not sufficient to assure that a calculation is stable.
A straightforward method to discover the oscillations is to measure the
difference between the local fluxes in the predictor and corrector steps. These
differences are a normal part of predictor-corrector methods and it is not
possible to fix a threshold for the width that implies instability.
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3.8 Xenon oscillations in Monte Carlo calculations

Some studies [Dufek, Kotlyar, et al. [2013] demonstrate that numerical
xenon oscillations occur even with relatively short steps and in higher order
methods. In Isotalo [2013| the author concludes that the simplified compu-
tational models, with no feedbacks and control mechanisms, do not even
describe the stable state we are trying to simulate.

3.8.3 Equilibrium xenon calculations

Since we want stable solutions and the problem of oscillations derives from
the model, the model itself has to be changed. The simplest way to achieve
this is to directly require that the flux and saturated xenon concentrations
must remain in a mutual equilibrium.

As already said, some deterministic codes use wrapper algorithms to
obtain the equilibrium xenon distribution and the corresponding flux, which
is then used for depletion. The problem to use this method also in Monte
Carlo calculations is that the equilibrium has to be iterated every time
the neutronics is solved. In Monte Carlo burnup calculations this is made
impossible by the high computational cost of the neutronics.

An alternative is to calculate the equilibrium xenon distributions and
the neutron flux during the normal transport calculation. In this way the
transport simulation becomes slightly longer than a normal one. The al-
gorithm used by SERPENT forces the xenon concentrations and neutron
flux to remain in equilibrium and prevents all xenon driven oscillations: the
equilibrium calculation is performed during a criticality source simulation
by recalculating the concentrations of 13°T and !3°Xe after each source cycle
using the flux and cross-sections tallied during that cycle. The concentrations
obtained in that way are used during the next source cycle. Thus a continuous
iteration between neutronics and the equilibrium concentration of 3°I and
135X e is performed as the transport simulation is run. For this reason the
concentrations of these two nuclides change through all inactive and active
cycles. This algorithm causes a ~ 10% increase in the running time per
neutron history, as demonstrated in Isotalo, Leppénen, and Dufek 2013

Even with the use of this equilibrium method, strong oscillations can occur
with too long steps. So the equilibrium xenon does not provide complete
stability, but it allows to perform calculations with reasonable step lengths.
Geometry, material compositions and power density affect the step length at
which oscillations start.

The results obtained after having forced equilibrium are only as accurate
as the model they have been calculated for. Forcing equilibrium without
modelling the feedback and control systems that would stabilize a real reactor
means that their effects on the equilibrium distributions are ignored.
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3.8 Xenon oscillations in Monte Carlo calculations

3.8.4 Stochastic Implicit Euler Method

Another method for stabilizing Monte Carlo burnup calculations is the
Stochastic Implicit Euler (SIE). This method is a wrapper algorithm, but
merges the equilibrium and burnup algorithms to ensure that, while multiple
transport solutions are required, they all contribute to the final estimates.
The SIE method is presented in algorithm [3] where ¢ denotes the number
of iterations, IV is the nuclide concentration and ® is the neutron flux. The
abbreviation EOS means “end of step”, as in the previous chapters.

Algorithm 3 The Stochastic Implicit Euler method

fori=0,1,...,1 —1do % Loops over steps
N{, « N; % Initial guess
for j =0,1,...,c—1do % Tteration
!, ®(N,) % EOS neutronics
@gﬂ “— ]ﬁ S F, % Average over iterations
Ngfll — A Tip1=T0) g, % Recalculated EOS compositions
end for
Niy1 < Nf % Final results for step i+1
(I)z‘—f—l — (I)f_,'_l
end for

The greatest advantage of this method is that it is not xenon specific and
should also prevent the oscillations that arise when using longer steps with
the equilibrium xenon method. SIE has also two disadvantages

e it uses constant backwards extrapolation for predicting the behaviour
of the cross-sections and flux;

e the overhead associated with initializing the transport simulation, con-
verging source distribution, storing results, depleting materials and
calculating averages is multiplied.

The former causes that the SIE method could become no more accurate
than the constant forward extrapolation of the explicit Euler method. Thus
short steps are required to produce accurate results, which renders the main
advantage useless. The latter is due to the fact that, even when running the
same number of active neutron histories, they are spreaded over multiple
transport calculations with different materials.

The fact that the initial unconverged iterations are used for in the final
results might also make the results worse than the number of contributing
histories would suggest.
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3.9 Validity of a Monte Carlo simulation

3.9 Validity of a Monte Carlo simulation

The use of Monte Carlo methods allows the modelling of complex geometries
with minimal approximations. However, it is difficult and time consuming
to obtain good statistics for localized tallies in eigenvalue calculations. To
minimize the errors it is important to comprehend the issues that can induce
these errors.

The convergence of the fission source is the first issue to deal with in
assessing the validity of a Monte Carlo calculation. The combined observation
of the k-eff and the Shannon entropy, defined in the following paragraph
as a function of cycles, is the fundamental method to find when the fission
source is converged [Mervin and Maldonado [2011]. Several Monte Carlo
codes, including SERPENT, give the values of k-eff and Shannon entropy
and this makes possible to understand when the fission source has reached a
stationary distribution.

Another important problem is how the cycle-to-cycle correlations affect
the statistical estimates. In cases with a dominance ratio, i.e. the ratio of
the second largest eigenvalue to the maximum eigenvalue, close to one, these
correlations can originate under predictions in the uncertainty of the k-eff by
a factor of five or higher [Team 2005).

In the next paragraphs the power iteration procedure to solve the transport
equation will be shown and some considerations about the convergence of
k-eff and the Shannon entropy will be drawn.

3.9.1 Power iteration procedure in Monte Carlo

The k-eigenvalue transport equation in standard form
[Q-V+20(7,E)|¥(7,E,Q) =
= / xp(?, E ONSs(7,E — E,Q-Q)dYdE'

(3.15)
/ / V(T ENU(7,E,Q)dY dE
kegr 47T
can be written [Brown 2009] as
(L+T)U =SV + MY (3.16)
keys
and then rearranged to
U = (L+T—8)"'MV = FU (3.17)

kegy kers

Equation may be solved numerically using the standard power iteration
method 1

Ut = — F9" n-01,... (3.18)

kery
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3.9 Validity of a Monte Carlo simulation

given k:gf  and 0y, . Concerning the relative convergence of k-eff and the fission
source distribution during the power iteration process, if ¥y is expanded in
terms of the eigenvectors u; of Eq.

1
7“TJ} = ?FU])7 (3'19)
J

with kg > k1 > ko > ... substituted into Eq. and rearranged with some
straightforward algebra, then

V) = W)+ T (3.20)
EHL = o 1_ﬂpn(1—p)gl+...} (3.21)
eff ap

where ko and 176 are the fundamental mode eigenvalue (exact k-eff) and eigen-
function, k1 and @ are the first higher mode eigenvalue and eigenfunction, p
is the dominance ratio (k1/ko) and ag, a1 and g; are constants determined by
the expansion of the initial fission distribution. Eq. [3:21] shows that higher-
mode noise in the fission distribution dies off as p"*!, while higher-mode
noise in k-eff dies off as p"(1 — p). When the dominance ratio is close to
1, k-eff will converge sooner than the fission distribution due to the extra
damping factor (1 — p) which is close to 0. Thus, it is essential to monitor
the convergence of both the fission source distribution and k-eff, not just that
of k-eff.

3.9.2 Convergence of k-eff

The power iteration method is at the basis of eigenvalue Monte Carlo calcula-
tions, where single-generation random walks are carried out for a “batch” of
neutrons to estimate k-eff and the next-generation fission distribution [Brown
2006].

The initial batches have to be divided into two groups:

e inactive, when the stationarity has not been reached;
e active, when the distribution is converged.

To have good results only the tallies that correspond to the active batches
must be accumulated. Thus it is important to know when the convergence
is reached and how many batches must be discarded. For this reason many
codes perform a preliminary calculation and then examinate the trends of
k-eff estimators to assess convergence. In this way it is possible to choose the
correct number of active and inactive cycles and to start the real calculations.
The convergence must be verified for the k-eff and also for the fission source
distribution, since it will converge more slowly.
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3.9 Validity of a Monte Carlo simulation

3.9.3 Use of Shannon entropy

The Shannon entropy, Hg,., is useful to assess the behaviour of the fission
source distribution. This parameter has its roots in the information theory
and gives a single value for each batch. The Shannon entropy has a single
stationary value when the source distribution reaches the convergence. The
main advantage of dealing with this quantity is that it allows to avoid the plots
of single-cycle k-eff or the multi dimensional plots of the source distribution
versus cycle, given that these are more difficult to study than the plots
Shannon entropy vs. batch [Brown 2006]|.

Hereafter the method to calculate the Shannon entropy is explained. A
three dimensional grid must be imposed on all the fissionable regions: all
the fission sites that fall into one of the grid boxes have to be counted. The
resulting number is then used to form a discretized estimate of the source
distribution, {P;,j = 1,..., Ns}, where N, is the number of grid boxes in
the imposed mesh, and P; is the number of source sites in j-th grid box
divided by the total number of source sites. Then, the Shannon entropy of
the discretized source distribution for that batch is given by:

N
Hpye ==Y Pjlny P;. (3.22)
j=1

Hg,c is 0 for a point distribution and Ins Ny for a uniform distribution.
Moreover, when P; is close to 0, also P;Ing P; approaches 0.

It is important to point out that both k-eff and Shannon entropy con-
vergence must be assessed before starting a criticality calculation. If one of
these two parameters doesn’t converge before the start of the active cycles,
the calculation will produce wrong results.
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Chapter 4

Submission of the OECD
benchmark results

SCALE6.1 and SERPENT Monte Carlo code were tested on the OECD
VVER-1000 LEU and MOX assembly computational benchmark [Kalugin
et al. 2002]. The benchmark model will be presented in the first section of this
chapter. In the following sections the results of this work will be presented.

For the purpose of this thesis, the results obtained with SCALEG6.1 and
SERPENT were compared with solutions from the OECD benchmark report.
Six different solutions were provided by the six participants of this benchmark.
Because of the computational nature of the benchmark itself, the average
value of the solutions represents a reference and will be used to show the
level of agreement among the values obtained in this work.

The solutions of the six participants were obtained with JEFF2.2 [The
JEFF2.2 Nuclear Data Library 2000] or ENDF-B/VI.8 [Rose 1991] nuclear
data. In this thesis work mainly the ENDF-B/VII [Chadwick et al. 2006|
library was adopted, but also JEFF2.2 and JEFF3.1 [The JEFF3.1 Nuclear
Data Library 2006| were used to compare the results of SERPENT with those
of MCNP4B, used by one of the six benchmark participants, and TRIPOLI4
[Petrov, Todorova, and Kolev 2013|. This comparison is necessary to validate
our reference solution with the Monte Carlo code SERPENT. ENDF-B/VI.8
was also tested with SCALEG6.1 but no significant differences with respect to
ENDEF-B/VII have been noticed.

4.1 Benchmark models

The benchmark provides two different configurations that are representative
of the advanced assemblies under active development in Russia for the VVER-
1000 reactors. The purpose of these designs is to comply with the plutonium
disposition mission. The assemblies of the benchmark exercise are:

e uniform LEU fuel assembly with 12 U/Gd rods (UGD variant);
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4.1 Benchmark models

e profiled MOX fuel assembly with 12 U/Gd rods (MOXGD variant).

As said in chapter 2, VVER-1000 fuel assemblies have a hexagonal geometry.
One central tube, 312 fuel pin locations and 18 guide tubes are the components
of the assembly. Zr-Nb alloys are utilized as clad and structural materials.

The UGD assembly [Figure [4.1] consists of low enriched fuel rods with
3.7wt.% of uranium. These rods are named Ul. The 12 rods poisoned with
4.0wt.% of gadolinium (GD1) have a 23U enrichment of 3.6wt.%.

The MOXGD assembly [Figure contains fuel rods with three different
plutonium loadings. The outermost ring of fuel rods (PU1) has a 2.0wt.% of
fissile plutonium (consisting of 93wt.% of 23?Pu), while the two inner rings
the 3.0wt.% (PU2). The MOX pins located in the central region (PU3) have
the hightest content of plutonium (4.2wt.%). The U/Gd rods are the same
of the UGD case and have the same location in the assembly.

Three different moderator materials are used in the benchmark, namely
MOD1, MOD2 and MOD3, these representing light water with different
densities (0.7235g/cm?® in MOD1 and MOD2, 1.0033g/cm? in MOD3), tem-
peratures (see table and boron concentrations (600 ppm in MOD1, 0 in
MOD2 and MOD3).

The benchmark exercise comprises five calculation states, which cover
both operational and cold conditions. These states are listed in [Table [{.1].
The five states were chosen to make possible to calculate some effects on
reactivity. In fact, between step S1 and step S2 it is possible to see how xenon
affects the calculation, between steps S2 and S3 it is possible to estimate
the Doppler coefficient, between S3 and S4 the boron effect on reactivity is
shown and finally between S4 and S5 the moderator temperature coeflicient
is calculated. The benchmark requires to perform depletion calculations for
State S1 up to 40 MWd/kgHM with a power density of 108 MW /m? along
with several branch calculations at specific burnup points for states S2-S5
using the isotopic compositions from the burnup calculations of state S1. The
requested results include k-inf values, pin-by-pin fission rate distributions and
nuclide concentrations for the 235U, 236U, 238U, 239py, 240py, 24Py, 242Py,
155Gd, 157Gd, *9Sm and '3°Xe isotopes in cell 1 and 24 according to the
cell numeration indicated in Figure 4.3| as well as averaged over the whole
assemblies. To provide accurate results a sufficient number of burnup steps
were provided, with a particular attention during the burnout of gadolinium
absorber. For further informations see [Kalugin et al. 2002, Appendix A

Several solutions of the benchmark are available in literature, each of one
using different methods and combinations of nuclear data libraries [Kalugin
et al. [2002,Petrov, Todorova, and Kolev |2013, Thilagam 2009|. Three of the
solutions have been obtained by means of Monte-Carlo methods, while the
remaining ones are based on collision probability (or similar) methodologies.
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Figure 4.1: UGD assembly configuration.

Cell types:
1- Central tube;
2- Fuel cell (with Ul);
3- Guide tube;
4- Fuel cell (with GD1).
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Figure 4.2: MOXGD assembly configuration.

Cell types:
1- Central tube;

- Fuel cell (with PU3);
- Guide tube;

- Fuel cell (with PU2);
- Fuel cell (with PU1);
- Fuel cell (with GD1).
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Table 4.1: Reactor state parameters

State Description Fuel Non-fuel ~Moderator 3%Xe
temp. [K] temp. [K] type 1499m
S1 Operating pois. 1027 575 MOD1 Eq.
S2 Oper. non-pois. 1027 575 MOD1 0.0
S3 Hot state 575 575 MOD1 0.0
S4  Hot state w/o B 575 575 MOD2 0.0
S5 Cold state 300 300 MOD3 0.0

4.2 Codes, data and methods

The deterministic calculations presented in this work have been performed
with the lattice physics capabilities of the SCALE 6.1 code system. In
particular the TRITON sequence has been used, that couples the discrete-
ordinates code NEWT (New ESC-based Weighting Transport code) to the
depletion code ORIGEN. Cross-section self-shielding is carried out by the
BONAMI and CENTRM solvers in the unresolved and resolved resonance
regions respectively. The CENTRM module performs transport calculation
using data on an ultrafine energy grid to generate effectively continuous
energy neutron flux solutions in the resonance and thermal ranges. This is
used to weight the multi-group cross-sections to be used in the subsequent
transport calculations which are performed with the NEWT code.

NEWT’s solution grid is based on arbitrary polygons. The curved surfaces
of a cylinder are approximated as an N-sided regular polygon. By default,
N=12 is used. The adopted order of S,, level symmetric quadrature set is 6.
Both spatial and eigenvalue convergence criteria have been set to 1-1073.
In our analysis the 238 energy groups structure implemented in the SCALE
system has been used and a TRITON model of the hexagonal fuel assemblies
described by the benchmark specifications have been built.

All the Monte Carlo calculations have been performed using the version
2.1 of the SERPENT code and results have been obtained by simulating
4 - 107 neutrons distributed over 400 cycles and by skipping the first 100
cycles. The correspondent statistical errors are in the order of 8 - 107 and
21073 for k-inf and pin power respectively. The Shannon entropy criterion
has also been applied for the correct convergence of the fission source.

As far as the burnup calculations are concerned, in both SCALE and
SERPENT the fuel has been depleted at a constant power density of 108
MW /m? and a 20 depletion steps over the irradiation time have been consid-
ered, this consisting in fifteen steps of 1 MWd/kgHM up to 15 MWd /kgHM
followed by five steps of 5 MWd /kgHM up to 40 MWd /kgHM. The predictor-
corrector algorithm has been used for the solution of the Bateman equations.
Furthermore, in order to account for the spatial and mutual self-shielding
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Figure 4.3: Cell numeration

effect of the main gadolinium isotopes the fuel pins containing gadolinium
have been divided into ten annular sub-regions of equal area.

In our study different NDLs have also been used. While the SCALE and
SERPENT solutions have been compared using the ENDF /B-VII library
[Chadwick et al. 2006], SERPENT calculations have also been performed
with JEFF2.2 [The JEFF2.2 Nuclear Data Library 2000] and JEFF3.1 [The
JEFF3.1 Nuclear Data Library [2006] data in order to assess the consistency
of our models with previously obtained solutions.

4.3 Results

4.3.1 Reference states

The SERPENT solutions for k-inf in the states S2-S5 obtained with JEFF2.2
data are provided in Table This comparison allows to assess the validity
of our model with respect to the reference MCNP4B solutions [Kalugin et al.
2002]. An overall good and consistent agreement between the two codes
for all the calculated states can be observed. The small deviations on the
computed reactivities are mainly due to the different data library used by
MCNP4B for the 60, 192Gd, "**Zr and 'H isotopes and also partially to the
different statistics adopted in the two codes.
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Table 4.2: SERPENT and MCNP4B results for kinf at zero burnup with
JEFF2.2 data

. SERPENT MCNP4B Ak

) o) (MS)10°
S2 1.17987 + 8.9E-05 1.1800 4+ 6E-05 13
S3 119365 + 8.6E-05 1.1925 + 6E-05  -115
S4 1.25387 + 8.5E-05 1.2531 4+ 7TE-05 =77
S5 1.32394 + 7.6E-05 1.3235 4+ 6E-05 -44
SERPENT MCNP4B Ak

MOX (S) (M) (M-S)-10-5
S2 1.19258 + 8.6E-05 1.1922 4+ 7TE-05 -38
S3 1.20919 + 8.4E-05 1.2091 4+ 6E-05 -9
S4 1.24408 + 8.5E-05 1.2430 4+ 6E-05 -108
S5 1.32487 + 7.6E-05 1.3256 4+ 7TE-05 73

In Table 3] the new SERPENT reference solutions for k-inf obtained
with JEFF3.1 and ENDF/B-VII nuclear data are presented together with
the SCALE results obtained with ENDF/B-VII data.

When comparing the reactivity values computed with the SERPENT
code and JEFF libraries, a systematic under-prediction when using JEFF3.1
with respect to JEFF2.2 can be outlined for the LEU assemblies. For the
MOX assembly, however, the JEFF3.1 yields larger values than JEFF2.2.
Furthermore, the k-inf computed with the ENDF /B-VII library are larger by
100-200 pcm with respect to ones evaluated with the JEFF3.1 library. All
these highlighted trends are consistent with the expected values as given in
literature [The JEFF3.1 Nuclear Data Library [2006, Mahlers 2009]. Moreover,
when comparing reactivity values for states S2-S5 computed with SERPENT
and SCALE with the ENDF/B-VII nuclear data library one can observe a
systematic overestimation of the SERPENT results in the order of 400 - 500
pcm. This difference is due to the multi-group approximation used in the
deterministic simulations with SCALE.

4.3.2 Reactivity effects

By definition of the operational states to be calculated within the benchmark
exercise (Table , the reactivity values corresponding to these states allow
for the estimation and comparison of some reactivity coefficients related
to the two fuel assemblies. In particular, the differences in k-inf for the
cases (S2-S1), (S2-S3), (S3-S4) and (S4-S5) provide information about the
poisons (Xe and Sm) effects, the fuel Doppler coefficient, the boron effect
and the moderator temperature coefficient respectively. As requested by the
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Table 4.3: SERPENT and SCALE results for k-inf at zero-burnup with

different data library

[gu  SERPENT(SJ)  SERPENT(SE) Ak
[JEFF3.1] [ENDF/B-VII]  (SE-SJ)-10~°
S2 117399 + 8.9E-05 1.17587 + 8.8E-05 188
S3 118787 & 8.7E-05 1.18996 =+ 8.6E-05 209
S4  1.24808 + 8.5E-05 1.24993 + 8.7E-05 185
S5 1.32088 & 7.6E-05 1.32305 + 7.7E-05 217
vox  SERPENT(S])  SERPENT(SE) Ak
[JEFF3.1] [ENDF/B-VII]  (SE-$J)-10~°
S2 119596 + 8.5E-05 1.19762 =+ 8.6E-05 166
S3 1.21259 + 8.4E-05 121419 + 8.4E-05 160
S4  1.24765 + 8.4E-05 1.24923 + 8.4E-05 158
S5 1.32908 & 7.6E-05 1.33013 £ 7.6E-05 105
gy SERPENT(SE) SCALE(SCE) Ak
[ENDF /B-VII]| [ENDF/B-VII]  (SE-SCE)-10~°
S2 117587 + 8.8E-05 1.17068 519
S3 1.18996 + 8.6E-05 1.18557 439
S4  1.24993 + 8.7E-05 1.24538 455
S5 1.32305 + 7.7E-05 1.31770 535
viox  SERPENT(SE) SCALE(SCE) Ak
[ENDF /B-VII] [ENDF/B-VII]  (SE-SCE)-10~°
S2 119762 + 8.6E-05 1.19178 584
S3  1.21419 + 8.4E-05 1.21005 414
S4  1.24923 + 8.4E-05 1.24491 432
S5 1.33013 & 7.6E-05 1.32652 361

benchmark specifications, these reactivity effects have been computed for
the LEU and MOX assemblies at 0 MWD /kgHM, 20 MWD /kgHM and 40
MWD /kgHM using the isotopic compositions from the burnup calculations
of state S1.

To accurately perform this evaluation, each single pin in the model have
to be treated separately in order to properly consider the actual value of the
fuel compositions depending on the actual flux level in each pins. In our work,
we have only considered the detailed pin-by-pin model in the SERPENT
evaluations and consequently only these results for the reactivity effects at
the different burnup branches are provided. The results are summarized in
Tables [£.4] and .5

As far as the poison effects are concerned, since in the SERPENT code
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Table 4.4: LEU — Reactivity effects, 100-(kinit. — Kfin.)

Initial Final Burnup SERPENT SCALE Benchmark

state  state (MWd/kgHM) mean
0 -3.58 - -4.03

S1 S2 20 -2.91 - -3.96
40 -2.37 - -3.29

0 -6.00 -5.98 -5.99

S3 S4 20 -5.40 - -5.48
40 -4.81 - -4.91

0 -1.41 -1.48 -1.36

S2 S3 20 -1.48 - -1.52
40 -1.35 - -1.40

0 -7.28 -6.98 -6.90

S4 S5 20 -6.87 - -6.72
40 -4.35 - -5.33

it is not possible to impose the equilibrium of samarium at beginning of
irradiation, only the xenon effect has been considered in our analysis. The
effect on the system reactivity due to 3*Xe was found to be lower in the case
of MOX fuel due to its harder neutron spectrum with respect to the LEU
fuel. The calculated difference in k-inf between S2 and S1 are ~ 358pcm and
~ 263pcm in the case of LEU and MOX respectively. The soluble boron effect
has been evaluated for a boron change of 600 ppm between the isothermal
reactor states S3 and S4. As expected, also in this case because of the harder
spectrum, the boron worth is reduced in the MOX assembly with respect
to the LEU assembly. The difference is ~ 71% at the beginning of life and
decreases with the burnup, being ~ 24% at the end of the depletion steps.

The Doppler coefficient has been estimated for a fuel temperature change
from 575K to 1027K. It was found to be slightly larger in the case of MOX
fuel at beginning of irradiation; however, as plutonium is bred in it, the UO,
fuel experiences a decrease of its Doppler coefficient which becomes almost
equal to the one of MOX already at 20 MWd /kgHM. The isothermal effect on
reactivity has been evaluated for a moderator temperature change from 575K
to 300K and was found to be more negative in the case of MOX fuel. These
more negative fuel and moderator temperature coefficients are of concern in
accident scenarios characterized by an overcooling of the core because MOX
fuel would result in a larger increase in reactivity with respect to standard
LEU fuel.

From Tables [4.4] and [A.5] one can also observe a general good agreement
between our SERPENT solutions and the average of the benchmark solutions
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Table 4.5: MOX — Reactivity effects, 100-(Kinit. — kfin.)

Initial Final Burnup SERPENT SCALE Benchmark

state  state (MWd/kgHM) mean
0 -2.63 - -3.33

S1 S2 20 -2.44 - -3.44
40 -2.16 - -3.08

0 -3.50 -3.49 -3.46

S3 S4 20 -3.76 - -3.83
40 -3.86 - -3.98

0 -1.66 -1.83 -1.74

S2 S3 20 -1.48 - -1.55
40 -1.33 - -1.40

0 -8.09 -8.16 -7.93

S4 S5 20 -6.98 - -7.03
40 -5.49 - -5.41

available in literature.
The SCALE values are missing in the first row of both tables due to the
impossibility to model the Xe equilibrium at 0 MWd/kgHM (state S1).

4.3.3 Burnup

The variation of the infinite multiplication factor in state S1 during the burnup
for the LEU and the MOX assemblies is provided in Figure The reactivity
decrease was found to be slower in the MOX case. Furthermore, because of
the neutron spectrum differences, different shapes in the reactivity swings can
be observed. While for the LEU assembly the burning of gadolinium leads
to a slightly increase of reactivity until it burns out, in the MOX assembly
the gadolinium isotopes burn slower. Consequently the reactivity does not
increase, but rather decreases slowly with burnup up to the point at which
the burnable absorber is nearly depleted (at ~ 12 MWd/kgHM) and after
that it linearly decreases faster up to 40 MWd /kgHM.

The comparison of the SCALE and SERPENT burnup calculations indi-
cates that SERPENT computed reactivities are generally and systematically
higher with respect to the ones obtained with SCALE. The agreement be-
tween the two codes to predict kinf values stands within 0.39% and 0.33%
over the 40 MWd /kgHM depletion for the LEU and MOX cases respectively.
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Figure 4.4: Variation of k-inf with burnup for the LEU and MOX FAs

4.3.4 Nuclide concentrations

Assembly averaged isotopic compositions versus burnup as well as isotopic
compositions in the corner cell 1 and fuel gadolinium cell 24 (see Figure
for the LEU and MOX variants are presented in Figures A generally
good agreement over the entire irradiation period between our solutions and
the benchmark mean values can be outlined for the nuclides 2°U, 236U, 238U,
239pyy, 240py, 241py, 242py, 155Gd, 1P7Gd, 9Sm and ¥°Xe. For the uranium
isotopes the agreement is excellent, however some slight discrepancies that
are increasing with the burnup can be observed for the plutonium isotopes,
particularly in the case of 2'Pu build-up.

As far as the fission product poisons are concerned, while for the 13°Xe
the SERPENT and SCALE solutions are close to each other and they are
systematically slightly underestimating the benchmark mean values, in the
case of 14°Sm the SERPENT values are closer to the mean ones but system-
atically higher with respect to the SCALE results. The SERPENT results
seem to reproduce also better the mean solutions for the gadolinium isotopes
with respect to the SCALE results, particularly for the LEU case.

In Tables [£.6] and [£.7] the deviations of the SERPENT calculated isotopic
compositions with respect to the ones obtained with the SCALE code at
given burnup steps for the cells 1 and 24 are provided. The very large
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discrepancies for the '%°Gd and %7Gd at 10 MWd/kgHM can be explained
by the numerical errors of the predictor corrector algorithms when dealing
with very low concentration levels of such isotopes at a depletion level close
to burn out. Furthermore, since previous studies [Mahlers 2009,Pusa and
Leppénen 2010] have underlined the good performance of the SERPENT
burnup calculation models in such “extreme” conditions, one can probably
consider the SERPENT solutions for gadolinium the more accurate ones.

Table 4.6: LEU Assembly - Deviations (%) between SCALE and SERPENT
calculated isotopic compositions: (SCALE-SERPENT)/(SCALE)

Burnup steps [MWd /kgHM]|
. 10 20 30 40
Nuclide

Cell no. 1 24 1 24 1 24 1 24

25y 010 -0.84 0.22 -1.04 0.89 -0.76 2.19 -0.26
26y 040 235 0.13 1.02 -0.05 0.38 -0.05 0.02
28U -0.03 0.00 -0.01 -0.03 -0.02 -0.09 0.00 -0.08
29py 241 4.33 243 427 237 407 271 4.00
20py 219 610 273 5.13 213 530 1.89 5.15
24lpy 177 390 0.12 242 133 210 1.71 2.22
22py 149 465 -0.81 1.67 -1.39 0.15 -1.69 -0.05
35%e 058 016 1.07 075 1.15 1.16 1.65 1.24
499m 052 -0.26  -6.28 -6.29 -5.26 -5.67 -4.71 -5.31
155Gd - -198.27 - -1.82 - -097 - -0.69
157Gd - -10.29 - -5.95 - -4.72 - -5.88

4.3.5 Pin power distributions

The computed pin-by-pin fission rates with the SCALE and SERPENT codes
normalized on the average values are presented in Figures [{.11)[4.172] and (.13
and the results of the inter comparison between the two codes are given in
Table A systematic slight over prediction of the SERPENT (SE) fission
rates with respect to SCALE (SC) can be outlined, with the exception of the
values at beginning of irradiation. Furthermore, the deviation between the
two codes are higher for the MOX case. As far as it concerns the comparison
of our solutions with the mean of the solutions available in literature, the
maximum deviation on the pin-by-pin fission rates was found to be —4.2%
(pin 35) and —1.6% (pin 63) in the case of SCALE and SERPENT respectively.
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Figure 4.11: Fission rate distributions
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Figure 4.12: Fission rate distributions
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Figure 4.13: Fission rate distributions
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4.4 Comparison between different depletion algorithms

Table 4.7: MOX Assembly - Deviations (%) between SCALE and SERPENT
calculated isotopic compositions: (SCALE-SERPENT)/(SCALE)

Burnup steps [MWd /kgHM]|
Nuclide 10 20 30 40

Cell no. 1 24 1 24 1 24 1 24

2357 0.14 012 080 -0.37 183 -0.13 3.36 0.41
2367y 0.12 -1.13 -0.29 0.23 -0.09 -0.03 0.13 -0.03
28U -0.03 0.00 -0.03 -0.03 -0.02 -0.06 -0.01 -0.03
29py 143 394 305 3.33 348 3.81 394 4.16
20py - -0.35 331 020 350 158 3.34 276 3.65
24lpy - 061 204 -0.09 232 056 145 1.68 1.70
242py 2.01  -249 -3.33 1.19 -3.16 -0.86 -3.58 -2.12
135Xe 049 -1.71  1.73 -0.65 1.87 0.26 1.72 1.04
499m  0.17  -1543 -6.19 -7.96 -5.53 -6.24 -5.38 -6.06
15534 - -29.32 - -30.94 - -0.65 - 0.16
157Gd - 275055 - -9.70 - 2460 - 572

4.4 Comparison between different depletion algo-
rithms

Two different depletion algorithms have been tested with the SERPENT
code: the Predictor-corrector (see and the Stochastic Implicit Euler
(see . The differences between these two algorithms may be seen in
Figure In this figure the two algorithms are compared with the mean
solution of the six participants to the benchmark.

In predicting the k-inf of the LEU fuel assembly, the Stochastic Implicit
Euler algorithm greatly overestimates (up to ~ 1800 pcm) the results of both
Predictor-corrector and benchmark participants in the first 8 MWd/kgHM,
while after that point its prediction is in good agreement with the other two,
even if a slightly underprediction (~ 200 — 300 pcm) can be observed at the
end of the depletion period (from 25 to 40 MWd /kgHM).

In the MOX fuel assembly the opposite situation occurs. In fact, the
SIE algorithm have good performances in the first steps with a maximum
difference of 292 pcm at 9 MWd /kgHM, while it starts to underestimate
the value of k-inf after 20 MWd /kgHM (686 pcm) and until the end of the
depletion steps (1278 pcm).

4.5 Effects of the substeps and mesh refinements

The first steps of the 20 depletion steps over the irradiation time (fifteen
steps of 1 MWd/kgHM up to 15 MWd/kgHM followed by five steps of 5
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4.5 Effects of the substeps and mesh refinements

Table 4.8: Comparison of pin-by-pin fission rates computed by SCALE (SC)
and SERPENT ()

Burnup [MWd /kgHM]|
0 20 40

Max § |%] (SC-SE) -0.78 2.14 3.22
Average d |%] (SC-SE) 0.25 0.69 1.45
Pin number 21 55 1

Burnup [MWd/kgHM]|
0 20 40

Max § |%] (SC-SE) -1.26 3.97 5.04
Average d |%] (SC-SE) 0.48 1.08 1.44
Pin number 10 4 46

LEU Assembly

MOX Assembly

MWd /kgHM up to 40 MWd /kgHM) have been further subdivided because
of some concerns about the gadolinium burnout. In fact the huge absorption
cross-sections of 1%°Gd and '"Gd cause strong spatial shielding effects in
gadolinium bearing pins. This effect often requires the use of smaller depletion
steps (up to a factor of 10) to avoid errors in the predicted value of the k-inf.
Table [£.9] taken from Lee, Rhodes, and Smith [2013] shows this effect for the
GE14 10x10 BWR fuel assembly.

Table 4.9: Impact of Gd Pins on Accuracy of GE14 Assembly Burnup
Calculation (18.0 MWd/kgU)

No Gd 17 Gd Pins
Step size k-inf Difference  k-inf  Difference
[MWd/kgU] [pem] [pem]
0.0625 1.200939 - 1.18231 -
0.125 1.200938 -1 1.18218 -9
0.25 1.200935 -3 1.18174 -41
0.5 1.200930 -6 1.18000 -166
0.0625 1.200921 -12 1.17283 -684

For this reason two types of subdivision have been tested:

e 0.5 MWd/kgHM up to 15 MWd /kgHM and then 2.5 MWd/kgHM up
to 40 MWd,/kgHM;

e 0.25 MWd/kgHM up to 5 MWd/kgHM and then the “normal” steps

are used.
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Figure 4.14: Reactivity swings for LEU and MOX fuel assemblies with
Predictor-corrector and SIE algorithms

The second discretization has been stopped to the first 5 MWd /kgHM to limit
the computational time, since the negative effect of gadolinium is important
only in the initial depletion steps.

Figure [A.15] shows the differences between these two discretizations and
the benchmark one in the first 5 MWd/kgHM. The k-inf values with the
two subdivisions are similar and maximum difference between those and the
value obtained with the benchmark steps is ~ 100 pcm at 5 MWd /kgHM.
This error doesn’t propagate in the following steps, being ~ 150 pcm at 40
MWd/kgHM.

The SERPENT code adopts a mesh refinement for the fuel pins containing
gadolinium which are divided into ten annular sub-regions of equal area. This
idea has been tested also in the SCALE code, dividing the gadolinium pins
into four annular sub-regions. The effects of this refinement has been found
to be negligible, with a maximum difference of about 20 pcm.
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4.5 Effects of the substeps and mesh refinements
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Figure 4.15: Effects of the substeps
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Chapter 5

Uncertainty theory

The results of a computer code, no matter if the code simulates thermal
hydraulics phenomena or reactor parameters, are subject to uncertainties.
These uncertainties come from many sources, which can be divided in four
groups:

e code uncertainties;

representation uncertainties;

plant uncertainties;

user effect.

The code uses aprroximations to solve the equations and to represent the
material properties and their changes during plant operations. The code
can also have some deficiencies that affect the results. The representation
uncertainties refer to the nodalization effect. An imperfect knowledge of
boundary and initial conditions and the scatter of measured values are called
the plant uncertainties. Finally an user effect exists. Two different users with
the same code do not always achieve the same results, due to nodalization
differences, to the planning of the sensitivity studies and to the interpretation
of supplied information, that are often incomplete. [D’Auria |[2012]

The influence of the uncertainties on the calculation has to be studied
carefully. The reason for this need is to be found in the increase of the costs
of nuclear power plants design, due to the use of conservative assumptions.
These conservative assumptions were adopted to guarantee the safety and the
correct operation of the plant. The uncertainty analysis can reduce the cost
of the design, but also increase the safety level, thanks to a better knowledge
of phenomena and parameters and to the possibility to establish realiable
safety margins. The use of best estimate code plus uncertainty approach
(BEPU) is allowed by some national rules, like the USA Code of Federal
Regulation 10CFR50.46. [Glaeser 2008|
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Solving the differential-integral Boltzmann equation for neutron transport
requires to handle seven variables, three in space, two in angle, one in energy
and the time. For this reason reactor physics calculations can be complex
and it can be difficult to obtain an accurate solution. The main source of
uncertainty is represented by the measurements of nuclear cross-sections. In
the past the uncertainties were reduced by means of informations deriving
from integral experiments. The problem was how to change the design by
taking advantage on these informations. For this purpose the use of sensitivity
coefficients has been mostly successfull. Sensitivity coefficients have many
applications:

e uncertainty estimates;

e design optimization;

e determination of target accuracy requirements;
e adjustment of input parameters;

e evaluation of the representativity of an experiment with respect to a
reference design configuration.

In uncertainty evaluation these coefficients are multiplied by the variation
of the input parameter to quantify the impact on the targeted quantities.
[Palmiotti and Salvatores 2012]

The uncertainty data of the input can be provided by the expert judgment
of a designer or can be originated by experiments, as in the case of the neutron
cross-sections. These experimental data are gathered in covariance libraries,
that are put together with the nuclear data libraries. There are two main
methods to assess the magnitude of uncertainties in neutronics:

e the statistical sampling method;
e the use of adjoint fluxes in the framework of the perturbation theory.

The former is used primarily when few input parameters are considered and
many outputs are requested. The latter, that is the one mainly adotped in
reactor physics, is good in the opposite situation, i.e. many considered input
parameters and few requested outputs. Since in reactor physics calculations
the uncertainties come from the cross-section libraries (several thousand of
values), it’s easily understood the choice of the adjoint method for this kind
of problem. The adjoint method takes also advantage of the linear property
of the Boltzmann equation. However the perturbation methodology is not
adequate or is inefficient in some cases, that can be divided in two groups:

e cases with a large number of responses, since it would be necessary to
perform adjoint transport calculations for each of them;
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e cases with discontinuities or bifurcations, since the first-order perturba-
tion method is not applicable.

There is a third case, which applies to the code SCALE and its module
TSUNAMI (Tools for Sensitivity and Uncertainty Analysis Methodology
Implementation): the perturbation theory cannot be used when it is required
a code for which this theory has not been developed. For example, it is
impossible to perform calculations with coupled neutronics and thermal
hydraulics, since the generalized adjoint calculations has been implemented
only in XSDRN and NEWT transport codes within SCALE. [M. Williams,
Ilas, et al. 2013|

Before to briefly explain the two methods listed above, some definitions
have to be introduced. One of the important consequences of quantum
mechanics is the realization that in the way we describe nature an inher-
ent uncertainty exists. The inherent uncertainty of quantum mechanics is
expressed in the so-called “uncertainty principle”.

Definition 1 (Heisenberg uncertainty principle). It is impossible to specify,
accurately and simultaneously, the values of both members of physical variable
pairs that describe the behaviour of a physical system.

Two important pairs are the system momentum and its space coordinate
and the system energy and the time at which it is measured. The uncertainty
principle states that the product of the uncertainty in the knowledge of
two such variables must be larger than Planck’s constant i divided by 27
(reduced Planck’s constant, h = h/27 = 1.054 - 10734.J - 5). The uncertainty
of a variable A is defined as :

AA= (< A2 > — < A>HY2 (5.1)

where <A> is the expectation value of A. Systematic and statistical uncer-
taities have to be distinguished. The systematic uncertainty arises due to
some negligence in the experiment or in the theory on which the experiment
is based. The statistical uncertainty is considered to arise from the finiteness
of the input data ensemble.

Definition 2 (Sensitivity). A sensitivity is a measure of the effect of a given
input parameter on a required response.

Usually the sensitivity is defined as the first order derivative of the response
R with respect to an input parameter «;, OR/J«;. For certain non-linear
problems, high order sensitivities are required (0" R/0c;").

It is customary to define the sensitivity in relative terms as OR/0a; - i / R.
This definition demonstrates the meaning of the sensitivity as the measure
of the importance of an input parameter. Sensitivity analysis is used in
combination with uncertainty analysis to easily identify the most important
input parameters.
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5.1 Perturbation theory

Definition 3 (Covariance). The covariance between two random variables
X and Y is defined as the expected value of the product of their distances
from the mean:

Cou(X,Y) =E[(X —E[X]) (Y - E[Y])]. (5.2)

The covariance measures the propensivity of two random variables to
change together. The covariance is positive if the X increases as Y increases,
and is negative when to a decrease of X corresponds a increase of Y. The
covariance matrix extends the concept of covariance to multiple dimensions.
Its element in the (n,m) position represents the covariance between the nth
and m!" elements of a vector of random variables.

For more informations about the fundamentals about uncertainty and
sensitivity calculations see |Cacuci 2003)|.

5.1 Perturbation theory

The perturbation theory is used in many branches of physics, such as astron-
omy, and, in the nuclear field, is not limited to reactor physics, since there are
some applications in thermal-hydraulics and safety problems. An example of
adjoint sensitivity and uncertainty analysis extended to thermal-hydraulics
may be found in [Cacuci, Ionescu-Bujor, and Navon 2005]. The reactor
physics version of the perturbation theory was born in the 50s, thanks to the
work of Usachev. This theory was applied to the evaluation of the k-eff of the
critical reactor [Usachev |1955] and makes use of the adjoint flux, a function
whose physical meaning was investigated by Lewins [Lewins 1960]. Usachev
also extended the theory to variations of any neutron flux functional during
the 70s and the 80s. This development allowed the use of the theory also for
sensitivity studies. [Usachev |1963|

The generalization to the case of linear and bilinear functions of the flux,
both real and adjoint, was reached by Gandini [Gandini |1967|. During the
70s the perturbation method, developed in Europe, began to be used also
in some Japanese and U.S. laboratories. Some theoretical improvements
extended the theory to the nuclide concentrations and allowed the study of
irradiation.

The perturbation theory is used to solve problems with small and nonuni-
form perturbations, like fuel burnup or poison accumulation, in the reactor
core. When a perturbation is uniform throughout the entire core, the problem
can be handled by other methods, performing multigroup diffusion calcula-
tions. This approach cannot be reliable for small perturbations since the
effect of perturbation can be lost in the calculations due to the round-off
errors. The main purpose of perturbation theory is to evaluate the changes
in the multiplication factor, but also in other parameters of interest (power
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5.1 Perturbation theory

distribution, changes of composition, ...) [Lamarsh |[1966]. Small perturba-
tions allow to use the first order formulation for the perturbation method,
that is the most used world wide, and to neglect the second order terms.

The multiplication factor of a uniform, bare, thermal reactor is expressed
as

X
k=nfpePr = 1/( ! fpaPL>, (5.3)
EaF

where ¢ is the fast fission factor, p is the resonance escape probability, f is the
thermal utilization factor, P, is the non-leakage probability, n is the thermal
fission factor, v is the average number of neutrons produced per fission, 3, r
is the macroscopic absorption cross section in fuel and ¥ is the macroscopic
fission cross section. If the parameters in the parentheses are denoted by g,
it is possible to write k = vg. In case of criticality vg = 1.

As a result of a uniform change in the entire reactor, some of the pa-
rameters will change and the reactor will become supercritical or subcritical.
Either way it will be ¥ = vg # 1 and the reactivity will be

p:k'—k:g’—g
k/ g/

(5.4)

To restore the criticality it can be assumed to modify the value of v in such a
way that with the new value v/ the product v/¢’ is again equal to one. This
is obviously impossible in reality but is useful to describe the effects of the
perturbation. So the reactivity of the perturbed reactor can be written as

vV —v Av

p:— =
v 14

(5.5)

These equations can be generalized to reactors that are not bare, thermal
and homogeneous and to nonuniform perturbations. Regardless of the nature
of the perturbation, an appropriate change in v can take back the reactor to
criticality and Av/v can be used to describe how the reactor is affected by
the perturbation.

A more exhaustive and classical presentation of the perturbation theory
may be found in the book by [Weinberg and Wigner [1958§].

5.1.1 Adjoint flux

The notation < ¥, ® > indicates the scalar product of two functions ¥ and
®, whatever the functions ® and ¥ might be. The adjoint operator A™ of
any linear operator A is defined by the following property:

<Y, AP >=< ATV, & > . (5.6)

This operation of permutation is, in neutronic, the equivalent of travelling
the opposite path of true neutrons. Denoting with H the time-independent
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Boltzmann operator, the “direct” flux solves the equation:

10d
Hb=——. 5.7
v Ot (57)
In critical conditions, the equation H® = 0 has a non-trivial solution. This
solution is the eigenfunction of H associated with a zero eigenvalue. It is
possible to showf] that an operator and its adjoint have the same eigenvalues.

Therefore the adjoint flux can be defined as the solution of
HT®T =0. (5.8)

This mathematical definition has an interesting physical meaning, since the
adjoint flux represents the neutron importance. To better understand this
concept, consider a two group energy discretization in a reactor core with
reflector. The thermal adjoint flux is greater than the fast one in the core,
but is smaller into the reflector. This fact can be easily explained:

e in the core, the slow neutrons are adsorbed more than the fast neutrons
and therefore the chain reaction has a greater contribution from the
former ones;

e in the reflector, the fast neutrons have a greater probability to come
back into the core after some scattering reactions, while the thermal
neutrons are captured.

More generally the importance of a neutron is related to its influence on
the reactor. So a neutron placed at the centre of a reactor would be more
important than a neutron placed at the surface, since the former has a chance
to cause fission, while the latter would probably escape. Likewise a neutron
in the thermal zone of the energy spectrum is more important than a neutron
near the 238U capture resonance energy. [Reuss 2008] It can be useful to note
that the adjoint fluxes have a reverse behaviour than the “direct” fluxes (e.g.,
in the two-group approximation the fast adjoint flux is less than the thermal
one in the core although the fast “direct” flux is greater than the slow flux in
the same region).

Another important physical interpretation of the adjoint flux is related
to reactivity. It can be shown that «the group adjoint function lbn(?) is
proportional to the gain or loss in reactivity of a reactor due to the insertion
or removal of one neutron per second in the group at that point Ty (Lamarsh
1966)).

A more heuristic point of view about the adjoint flux can be found in
[Gandini 2014].

*For instance a demonstration may be found in [Lamarsh (1966, chapter 15]
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5.1 Perturbation theory

5.1.2 One-group perturbation theory

In this section some concepts of the perturbation theory will be discussed
with the approximation of a one-group energy discretization. For a critical
reactor the flux can be calculated by solving the equation

divDgrade + (vEf — 34)¢ = 0. (5.9)

This equation can be written also as M¢ = 0, where M- = divDgrad- +
IDIFTEED IS

Consider a perturbation of the macroscopic cross-sections, that are now
denoted by ¥ and ¥, with

S =3p + 0% (5.10)

and
¥, =24+ 0%, (5.11)

where 0%, and 0% represent little changes of the values of the macroscopic
absorption and fission cross-sections. After the perturbation the reactor is in
a subcritical or supercritical condition, but it could be returned critical if a
change of v were possible, as explained in [5.1] Then the diffusion equation is:

divDgrad¢ + (V'S; —¥,)¢ = M ¢ =0. (5.12)

Inserting Eq. and Eq. into Eq. writing V' = v+ Av and
ignoring the term AvdX, since the theory is applied with small perturbations,
the operator M becomes

M =M +vdS; + AvSy — 85, = M + P. (5.13)

P is known as perturbation operator. The equation becomes (M +P)d>/ =
0.

By wisely handling the equations aboveﬂ it is possible to get the reactivity
introduced by the perturbation as:

[ (wOS; — 65,)6%dV
T v, SV

This equation shows that the effect of a perturbation in X or ¥, is obtained
by weighting the perturbation by the square of the flux. The quantity ¢2(7)
is therefore called statistical weighting function of the point 7.

Until now only changes in ¥ and/or 3, have been assumed. If it is
considered also a perturbation of D, following a similar procedure, it can be
found that changes in D are weighted by (V¢)? instead of ¢2.

(5.14)

TFor those who are interested to the complete procedure see [Lamarsh [1966]
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5.1 Perturbation theory

These formulas may be used only when and where the one-group theory
gives accurate values of the flux. For example, the one-group theory cannot
predict the peaking of the thermal flux in the reflector. Informations about
the two-group perturbation theory and also about higher order formulas may
be found in several articles and text books, for instance [Reuss 2008|, [Cacuci
2003| and [Lamarsh [1966].

5.1.3 Sensitivity and perturbation theory

A generic integral parameter Q, like a reactivity coefficient or k-eff, can be
represented as a function of cross-sections:

Q= f(o1,09,...,07). (5.15)

To evaluate the sensitivity coefficients in the perturbation theory, the relative
variation of an integral parameter Q due to the variation of the cross-section
values can be used:

0Q 0o
— = —= 5.16
@ Zj:S] aj’ (5.16)
where S; is the sensitivity coefficient, given by
0Q oj
S;=——--2 5.17
J 80']' Q ( )

The dependence of the parameter Q on the cross-sections can be divided
in two parts: an explicit one, of, and an implicit one, o;™. From this
consideration it follows:

?:Zsj5“3m+<3¢9."e>.w:1+p. (5.18)
;

oé-m do¢ @ o¢

The terms I and D represent the indirect and the direct effect. The direct
effect reflects the dependence of the integral parameter Q on the energy
dependent detector cross-section o€. Instead, the indirect effect represents
the response perturbation due to flux perturbations. This last term can
be subdivided into an implicit and an explicit component. The implicit
component reflects the fact that the flux can be perturbated also by the
change of the self-shielded cross-section of a nuclide, due to a perturbation of
the cross-section of another nuclide. The explicit component is related to flux
perturbations caused by the perturbation of any multi-group cross-section
which appears explicitly in the transport equation. [Mercatali 2013]

It is convenient to represent the uncertainties associated to the cross-
sections in the form of a variance-covariance matrix:

din diz ... diy

d12 d22 P d2J
DO’ = . . . .

dij doy ... dyjy,
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5.1 Perturbation theory

where the elements d;; represent the variances and covariances of the nuclear
data [Palmiotti and Salvatores [2012]. Using the variance-covariance matrix
and the sensitivities coeflicients, it is possible to calculate the variance of the
generic integral parameter Q as

J
UGT(Q): E SJSZdU (519)
5%

5.1.4 TSUNAMI module

Sensitivity and uncertainty (S/U) analysis capabilities for criticality safety
are included in SCALE. Both 1-D and 3-D sequences plus several auxiliary
codes have been developed into a suite of sensitivity and uncertainty analysis
codes called TSUNAMI (Tools for Sensitivity and Uncertainty Analysis
Methodology Implementation). TSUNAMI contains a number of codes that
were developed primarily to assess the degree of applicability of benchmark
experiments for use in criticality code validations. However, the sensitivity
and uncertainty data produced by these codes can be used in a wide range
of studies. Sensitivity coefficients produced by the TSUNAMI sensitivity
analysis sequences predict the relative changes in a system’s calculated k-eff
value due to changes in the neutron cross-section data. Both TSUNAMI-1D
and TSUNAMI-3D fold the sensitivity data with cross-section covariance data
to calculate the uncertainty in the calculated k-eff value due to tabulated
uncertainties in the cross-section data. The applicability of benchmark
experiments to the criticality safety validation of a given application can be
assessed using S/U-based integral indices. The TSUNAMI-IP (Indices and
Parameters) code utilizes sensitivity data and cross-section covariance data
to produce a number of relational integral indices that can be used to assess
system similarity.

SCALE is equipped with a library of nuclear data covariance. This library
has been created by means of the covariances from ENDF /B and JENDL
libraries [M. Williams and Rearden [2008]. These data are combined with the
response sensitivity coefficients, calculated by SCALE using the first-order
perturbation theory. For this methodology an adjoint transport calculation
is necessary for each desired response. When all the adjoint and forward
calculations have been done, the sensitivity coefficients can be very efficiently
calculated for each input parameter. These parameters include also the
material concentrations and the nuclear data [M. Williams, Ilas, et al. 2013].
The main drawback of this method is that it is not applicable in the situations
examined in the first part of the chapter.

Figure [5.1] shows the flow diagram of the TSUNAMI-1D sequence. Reso-
nance self-shielding calculations in SCALE consist of two steps. First, the
generic infinitely dilute multi-group cross-sections are initially shielded by
the Bondarenko method with BONAMI, using tabulated shielding factors
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SCALE Driver
(TSUNAMI-1D)

Pointwise Cross-section Preparation
(notcalled for NITAWLor NITAWLST
sequences)

Unresolved Resonance Cross-section Processor

Resolved Resonance Cross-section
Processor

Cross-section Cell Weighting (optional)

Forward Transport Calculation

Adjoint Transport Calculation

Sensitivity and Uncertainty Calculation

Repeat for each system response
inaddition tok,y

Figure 5.1: The TSUNAMI sequence
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on the multi-group libraries. Next, a transport calculation is performed
with the one-dimensional discrete ordinates code CENTRM using point-wise
cross-sections for the energy range of 0 to 20keV, which encompasses the
resolved resonance ranges of all actinide materials in ENDF/B-VII. The
point-wise cross-section data of all nuclides are tabulated on a fine energy
grid (e.g., ~ 200000 points for 233U) so that resolved resonances are repre-
sented accurately. The point-wise flux spectra computed by CENTRM are
used as weight functions in the PMC code to process problem-dependent MG
data “on the fly.” The shielded cross sections computed by CENTRM /PMC
replace the values produced by BONAMI in the resolved range, while the
shielded cross sections computed by BONAMI for the unresolved and fast
ranges are retained.

After the cross-sections are processed, the TSUNAMI-1D sequence per-
forms two criticality calculations, solving the forward and adjoint forms of
the Boltzmann equation, respectively, using the XSDRNPM discrete ordinate
code |Greene, Petrie, and M. Williams 2011]. In this step an energy dis-
cretization based on a 238-group structure is adopted.The sequence then calls
the SAMS module, specifically SAMS5 [Rearden, Petrie, and Jessee 2011], in
order to compute the sensitivity coefficients. Once sensitivities are available,
the uncertainty on the integral parameters of interest due to the uncertainty
in the basic nuclear data are evaluated according to [5.19 using the so-called
44GROUPCOV covariance matrix [M. Williams, Wiarda, et al. 2011|.The
44GROUPCOV matrix comprehends a total of 401 materials in a 44-group
energy structure.The library includes evaluated covariances obtained from
ENDF/B-VII, ENDF/B-VI, and JENDL3.3 for more than 50 materials.

If additional system responses are requested in the input, TSUNAMI-1D
executes additional generalized adjoint XSDRNPM and SAMS calculations
for each system response. [Rearden, Jesse, and L. Williams [2011]

A similar flow diagram of TSUNAMI-3D sequence can be drawn.The
only difference would be the use of NEWT or KENO module to perform
forward and adjoint calculations, instead of the XSDRN module. Additional
informations can be found in [Rearden 2011].

5.2 The statistical sampling method

In the statistical sampling method all the uncertain parameters are handled
as random dependent variables by a sampling procedure. This sampling is
performed by using a multi-variate PDF (probabilistic density function). For
each randomly sampled set of inputs, a corresponding set of outputs exists:
they are the solution to the lattice physics equations acting on the input
sample. Inputs can be randomly sampled either one at a time, in groups, or
all at once. The dependence of some variables implies that they cannot be
sampled without regard to the way they depend on the other variables.
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5.2 The statistical sampling method

The mean and variance/covariance must be known in order to perform
the statistical sampling uncertainty propagation, while the higher order
statistical moments can be assumed when not given. The input vector of
length n, consisting of all the input variables for a particular system, has a
corresponding nxn variance-covariance matrix that describes the uncertainty
associated with each element of the input vector, as well as the correlations
that exists between elements. The variance-covariance matrix is filled with
the second statistical moments of the random variables, so the first statistical
moments are put together in the input vector. This vector is used to calculate
the best-estimate lattice solution and, for this purpose, is saved in the
unperturbed nuclear data library. An example of a part of input vector is
showed in figure . In this figure the cross-sections are discretized into
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Figure 5.2: An example of input vector

N energy groups. Input vectors usually contain additional parameters, such
as tables for the group to group scattering and resonance data. The input
vector contains a large number of nuclear data, even for simple systems. In
fact, during the sampling procedure, each reaction parameter or cross-section
for every nuclide and in every energy group has to be sampled. The number
of random variables can amount to tens of thousands also in the analysis of
a pin cell. [Ball 2011]

All the problem independent parameters are stored in the multi-group nu-
clear data libraries, while the problem dependent ones, such as temperatures,
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geometry and compositions, are supplied by the user in the input deck.

5.2.1 Theoretical background

The probability of a random variable which corresponds to the individual
values assumed by the random variable equals the sum of the probability
associated with the values of the set which is:

Pla<X <b= > PX=ux) (5.20)
a<X<b

The random variable is described by the probability density function (PDF)
in this way

(5.21)

f(x)_{P(X:x), {r€Z|— 00 <z < +oo}

Plx—dr <X <z+dz), {reR|—oc0<z<+00}

The PDF is the derivative of the cumulative distribution function which is
the probability that a random variable X is less or equal to any integer or
real number x. The cumulative distribution function is given by

> f(), {teZ|l—oco<z<a}

t<z

Flz)=P(X <z) = (5.22)

[ f@®)dt, {teR|-oo<ax<a}

Furthermore, the expected value of the population mean (u), the population
variance (02 = E[(X — p)?]) and the standard deviation (o) can be expressed
by means of the PDF.

(S 2 f(a), {r €Z| — 00 <z <400}
p=EX)= s (5.23a)
_f x- f(z)de, {xreR|—oc0<x< +o0}

D(@—p? fl@), {z€Zl-o0<a< +o0}

o? = . (5.23b)
_f (x —p)?- f(z)dr, {r€R|—o00<z< +oo}
(JEE T T@, {z€Zl- o <a < too)
c=Vo? = (5.23¢)
+oo
} (x—p)?- f(z)dr, {x€R|—oco <z < +o0}
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The above given formulas express statistical parameters of the input parame-
ters with infinite boundary conditions but are identical for the analysis of
output parameter with limited variation.

As the previous formulations indicate, the number of code calculations
needs to be defined. The number of code runs is equal to the number of
samples which will be generated for each input parameter and is a function
of the statistical fidelity. Besides the number of samplings, the distribution
of the N values between the minimum and the maximum must be specified.
Usually, the distribution, the probability density function (PDF), is not known.
By means of empirical distribution function and estimators like quantiles,
information about the PDF can be obtained. For a random variable, the
quantile is a point in the sample space of the distribution of the considered
random variable and can be defined as:

b, {X < xp}
pP< (5.24)

1—p, {X >z}

With that definition the tolerance interval can be introduced. The tolerance
interval, with L as lower and U as upper interval limit is an estimate of a
random variable which contains a fraction of the variables probability, p,
with a specified level of confidence, 5. That means that the probability of
having a sample of the random variable between the lower and upper interval
is exactly p and 8 expresses how sure one is about this. The confidence
level accounts for the limited number of samples (or experimental data). For
practical reasons, it is possible to write for the first one-sided tolerance limit:

P(ﬂjp < XN—H—l)

A\

p (5.25a)
N—m

=0

) > pte (1 —p)N L (5.25b)

Rewriting the left side of the previous equation [5.25D] which is possible
since the sum of the binomial probabilities yield unity, and changing the
index, j = N — i, will result to the following equation:

E()r v B Q)0

which yields
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-1

-2 (JJV) PN (1—p) > B. (5.27)

=0

The second one-sided tolerance limit can be written as follows:

1 uzl <N> PN (1) > B (5.28)

- 1
=0

After the aid of the calculus, the two-sided tolerance limit can be written:

l+u—1
-y <N> PN (- p) 2 B (5.20)

. 1
=0

Solving the binomial equation yields the following two equations, known
as the Wilk’s formula for one-side tolerance limit and two-sided tolerance
limit:

B<1—pN (5.30a)
B<1—pN =N-(1-p)-pN " (5.30b)
As it can be seen from the equations [5.30a] and [5.30D] the number of samples

depends only on the probability content and on the level of confidence but

not on the number of input and source code parameters. [Wilks 1941, Wilks
1942]

5.2.2 GRS method

In this section the method developed by Gesellschaft fiir Anlagen- und
Reaktor-sicherheit (GRS) for uncertainty determination will be presented.
The main steps of the GRS method are:

e Identification of potentially relevant uncertainties;

e Definition of uncertainty ranges;

e Specification of subjective probability distributions over these ranges;
e Identification and quantification of dependencies between parameters;

e Generation of a random sample of size N for input parameters from
their probability distribution by Monte Carlo method;

e Performing the corresponding simulation runs with the codes;

e Calculation of quantitative uncertainty statements;
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5.2 The statistical sampling method

e Calculation of quantitative sensitivity measures to identify those un-
certain parameters which contribute most to the uncertainty of the
results.;

e Interpretation and documentation of results.

A software developed by GRS supports all the steps of uncertainty analysis
and is known as SUSA (Software system for Uncertainty and Sensitivity
Analyses). Figure shows the ranges and probability distributions that are
used in the GRS method instead of the parameters’ discrete values.

"/®| '®|

i
\C System model —C'IIJ

Parameter Model
values | I~ results

g

~ |

I i

Submodels

s ﬁnperature
( | \ |
\,

\__‘/ XT[nle/
N G
Parameter = System model O

value o—| Model
distributions | l —) result
oO—

Submodels distributions

Figure 5.3: Ranges and probability distribution have replaced the discrete
values

This method is based on the use of statistical techniques. The main
advantage of this approach is that the number of code runs is independent
of the number of uncertain parameters. As a consequence, there’s no need
to create an a priori ranking of input parameters in order to reduce the
calculation computational cost.

The number of code runs is a consequence of the requested confidence level
and probability content, as predicted by the Wilks’ formula (Eqgs. 5.30Db|).
The minimum number of calculations can be found in tables [(.1] and for
one-sided and two-sided tolerance limits respectively.

Each of the N code calculations is obtained by a simultaneous variation
of all input parameters. This variation is performed by means of uncertainty
ranges and probability distributions, which represent the state of knowledge
of the uncertainties. The choice of a probability distribution for the input
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Table 5.1: Minimum number of calculations for one-sided tolerance limits

One-sided statistical tolerance limits

B/p 0.90 0.95 0.99
0.90 22 45 230
0.95 29 59 299
0.99 44 90 459

Table 5.2: Minimum number of calculations for two-sided tolerance limits

Two-sided statistical tolerance limits

B/p 0.90 0.95 0.99
0.90 38 7 388
0.95 46 93 473
0.99 64 130 662

parameters has the consequence that the calculation results show an own
probability distribution, from which uncertainty limits or intervals are derived.

The order statistics is used to process the output parameters. The N
output values have to be ordered: X (1) < X(2) <--- < X(N —1) < X(N).
For example, in the case of one-sided tolerance limit with a 95% confidence
limit, the 95" percentile is obtained by selecting X(59). For the two-sided
tolerance limit X(1) and X(93) have to be chosen, if the same confidence
limit and probability content are imposed |Glaeser [2008].

The GRS method has another important characteristic: the possibility
to estabilish a ranking of input parameters by means of an evaluation of
sensitivity measures of the importance of parameter uncertainties for the
global uncertainty of the results. This ranking helps the user to reduce the
uncertainty improving the state of knowledge or the modelling of computer
codes. It is important to highlight that the ranking is a result of the calcula-
tions and not a consequence of a priori judgements or estimates, as in other
methods.

The ranking is possible thanks to sensitivity measures, like standardised
rank regression coefficients, rank correlation coefficients, and correlation
ratios. One of the most used sensitivity measure, as in the present work, is
the product momentum correlation coefficient (PCC) of Pearson (r)|Bevington
and Robinson 2002] which is defined as

o8

(zi — pz) - (i — piy)
=1

r= 7 (5.31)

1(931' — pa)? - ; (yi — py)?

N

—_

(2
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Another advantage of this method is that it doesn’t make use of any
approximations, relying only on actual code calculations.

5.2.3 SAMPLER module

SCALEG6.2 has three modules to perform sensitivity and uncertainty anal-
ysis: KENO, which is not described here since it was not used to perform
calculations, TSUNAMI, described in section [5.1.4] and the new SAMPLER,
which allows for statistical sampling of any SCALE sequence. SAMPLER is
a “super-sequence”’ that perturbs the input parameters and then use them to
solve reactor physics calculations with any SCALE sequence, such as NEWT
or KENO.

SAMPLER perturbs multigroup cross-sections, fission yields, decay data
and model parameters (temperatures, dimensions, nuclide concentrations)
[Rearden, Dunn, et al. [2013]. To do that, SAMPLER uses libraries of
perturbation factors previously computed by code such as XSUSA (see .
The cross-sections perturbations are sampled from the covariance library
of SCALE and the decay ones come from the ENDF/B-VII uncertainties.
Moreover the Oak Ridge National Laboratory (ORNL) has developed a library
of yield covariances.

Figure [5.4] shows the calculations performed by SAMPLER.

The following list shows the types of responses produced by SAMPLER
and the sequences used to obtain the requested output:

k eigenvalue - XSDRN, NEWT, KENO;

e microscopic reaction rates by nuclide - NEWT and OPUS;

homogenized /collapsed macro cross sections - NEWT;

nuclide concentrations, activities - ORIGEN;

decay heat, radiotoxicity, photon sources - ORIGEN;
e shield responses: doses, radiation damage, etc. - MAVRIC.

For each of these responses at every time-step frequency distributions, mean
values and standard deviations, results of chi-squared normality test, covari-
ance and correlation coefficients between responses are printed in the output
folder [M. Williams, Havluj, et al. 2013].

The computational time is reduced by the use of parallel computations
with MPI or OpenMP.

5.2.4 XSUSA method
The XSUSA code extends the SUSA code package developed by GRS to

applications with nuclear data covariances. XSUSA randomly selects nuclear
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Figure 5.4: Scheme of SAMPLER calculations
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Figure 5.5: Generation of perturbed data libraries

data values with the sampling module MEDUSA and applies the samples to
the reference nuclear data. |[Krzykacz, Hofer, and Kloos

XSUSA is used to produce random multi-group (MG) data values by
sampling covariances in the SCALE library. The typical approach is to
assume that the MG data probability density function is a multivariate
normal distribution, which is completely defined by the expected values and
covariance matrices for the data. An XSUSA statistical sample consists of
a full set of perturbed, infinitely dilute MG data for all groups, reactions,
and materials. The SCALE MG covariance data are given as relative values
of the infinitely dilute cross-sections, so a random perturbation sample for
cross-sections, 0, 4(00), corresponds to Aoy 4(00)/04 4(00). XSUSA converts
these values to a set of multiplicative perturbation factors @), , that are
applied to the reference data to obtain the altered values:

i

Opg= QugOug (5.32)
where A (0)
Og.q(00
Qug=1+—28—~ (5.33)
I a];,g(oo)

The multiplicative perturbation factors for all data are preprocessed and
stored in a data file for subsequent SCALE calculations. In this manner the
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XSUSA data sampling must be done only once. The perturbation library
currently consists of 1000 random values for each infinitely dilute MG data
parameter.

In addition to infinitely dilute MG data, also point-wise (PW) cross-
sections and shielding factors are contained in the computational data vector
(CDV) that will be used as an input by SCALE. These quantities are highly
correlated, since the PW cross-sections appear in the definitions of infinitely
dilute MG data and of the self-shielding factor f [see M. Williams, Ilas, et al.
2013]. For that reason, the three types of data appearing in the CDV cannot
be sampled independently. For example, an energy-dependent perturbation
in the PW cross-section o, (F) causes the infinitely dilute MG cross section
to be perturbed as follows:

o {ou(w))

Opg = Au, (5.34)
where u is the letargy and the angle brackets indicate lethargy integration
over group g.

The perturbed shielding factor can be obtained in a similar way, using the
definition of Bondarenko self-shielding factor (fy 4(c0) = 04,4(00)/02.4(20))
[M. Williams 2011, as:

7, (u)
Frglo0) = U;;oo) E”t‘“ﬁ‘“’ i

o (w)+00

(5.35)

where o, 4(00) is the self-shielded cross-section at og, represented with the
narrow-resonance approximation as:
oz (u)
ot(u)+oo

O2.9(00) = m
ot ()00

Since no covariance data are available for the energy-dependent PW
cross-sections, a simple approximation is used to obtain consistent, correlated
perturbations in o, (u), 04,4(00) and fz 4(c0). A comparison of the perturbed,
infinitely dilute data expressions in Egs. [5.32 and [5.34] shows that the two
expressions are equivalent if the PW data are perturbed in the following

(5.36)

manner:
/

0, (1) = Qu,g0z(u), (5.37)
i.e., the PW data are changed uniformly at all energy points within a group.
The perturbed MG shielding factor, defined in Eq. is evaluated in a

similar manner. Applying the approximation in Eq. Eq. can be

written as
< Qz,90x(u) >
f/ (O_ ) _ 1 ngot(u)%»ao
z,g\Y0 Qw,gaa:,g(oo) <%>,
)+oo

Qt,g0t(u

(5.38)
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After simplifying, Eq. becomes
f;,g(UO) A fw,g(aé))a (5.39)

where O'(l) = 00/Qt,g. Therefore the perturbed shielding factor is obtained by
simply evaluating the original f-factor tabulation at a modified background
cross-section value.

Fig. [5.5] shows an overview of the generation of perturbed data.
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Chapter 6

Submission of the uncertainty
analysis results

The uncertainty analysis performed in this thesis work is divided into two
parts. In the first part TSUNAMI and SAMPLER codes were tested on the
Benchmark for Uncertainty Analysis in Modelling (UAM) for the Design,
Operation and Safety Analysis of LWRs [K. Ivanov, Avramova, et al. 2013].
In the second part the two assemblies presented in the OECD VVER-1000
LEU and MOX assembly computational benchmark [Kalugin et al. 2002]
were analysed to understand how SAMPLER behaves with more complex
geometries. Moreover four unit cells taken from these two assemblies (one
with gadolinium and three with different loadings of plutonium) are modelled
and studied. The UAM benchmark model will be described in the first
section of this chapter. In the following sections the results of the work will
be presented.

6.1 UAM Benchmark model

In order to determine the uncertainty in the calculations of light water
reactors systems, both in the reactor physics calculation and in the thermal
hydraulics modelling, a dedicated Expert Group was created in 2005 within
the OECD/NEA Nuclear Science Committee and a Benchmark exercise
was launched. Several well-defined problems with complete sets of input
specifications and reference experimental data were used as bases to establish
a benchmark for uncertainty analysis in best estimate modelling and coupled
multiphysics and multiscale LWR analysis. This benchmark was created to
study the uncertainty in LWR system calculations at all stages of coupled
reactor physics/thermal hydraulics calculation.

The UAM benchmark has been structured in three different phases: the
“Neutronics Phase”, the “Core Phase” and the “System Phase”. Each of them
is subdivided in three or four exercises with the purpose of studying how the
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uncertainty propagates in the modelling across different scales (multi-scale)
and physics phenomena (multi-physics).

This work is devoted to the solutions of some selected test problems
within the Exercises I-1 (“Cell Physics”) and I-2 (“Lattice Physics”) of Phase
[. Phase I has been thought to understand the uncertainties related with
the most important reactor core parameters of LWRs. The sources of these
uncertainties are the modelling errors, the numerical approximations and the
input data uncertainties.

The “Cell Physics” exercise is focused on the derivation of the multi-group
microscopic cross-section libraries and their uncertainties. Its purpose is to
address the uncertainties due to the basic nuclear data as well as the impact of
processing the nuclear and covariance data, selection of multi-group structure,
and self-shielding treatment. Within Exercise I-1 the uncertainties in the
evaluated Nuclear Data Libraries (NDLs) are propagated into multigroup
microscopic cross-sections.

The “Lattice Physics” exercise is focused on the derivation of the few-group
macroscopic cross-section libraries and their uncertainties. The multi-group
cross-section uncertainties calculated in Exercise I-1 are input uncertainties
which are then propagated through the lattice physics calculations to few-
group cross-section uncertainties.

6.1.1 Exercise I-1 specifications

Within the framework of the “Cell Physics” exercise three pin-cell have been
considered: a BWR Peach Bottom-2 pin-cell [Solis et al. 2001], a PWR Three
Miles Island-1 pin-cell [K. Ivanov, Beam, et al. |1999] and a VVER-1000
Kozloduy-6 pin-cell [B. Ivanov et al.|2002]. The two types of basic geometries
for the unit cells are outlined in Figure [6.1

Moderator Cladding
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st ! e I Gap

P Gap : / :
e b I : |
o Fuel pin \ _Moderator | Fuel pin |
Ll . ] el Ly
< i | P J7
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. _- void : — :
i i e |

b-pitch T p-pitch of the unit cell

Figure 6.1: Types of geometries for the fuel pin-cell test cases within Exercise
I-1
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Table 6.1: Parameters of PB-2 BWR unit cell

Parameter value
Unit cell pitch [mm)] 18.75
Fuel pellet diameter [mm]| 12.1158
Fuel pellet material U0,
Fuel density [g/cm?] 10.42
Fuel enrichment [w/o| 2.93
Cladding outside diameter [mm|  14.3002
Cladding thickness [mm| 0.9398
Cladding material Zircaloy-2
Cladding density [g/cm3| 6.55
Gap material He
Moderator material H,O

Table 6.2: PB-2 BWR operating conditions

Operating conditions HZP HFP

Fuel temperature |K] 552.833 900
Cladding temperature [K] ~ 552.833 600
Moderator temperature [K] 552.833 557
Moderator density [kg/m3| 753.978 460.72
Reactor power [MW;] 3293 3293
Void fraction [%] - 40

Each pin-cell model should be analysed at Hot Full Power conditions
(HFP) as well as Hot Zero Power (HZP) conditions. The reflective boundary
condition should be applied on all surfaces of the VVER-1000, PWR and
BWR unit cells. Tables from to show the specifications of the three
test problems and the relative conditions at HFP and HZP.

To enhance the differences between the three pincells (PWR, BWR and
VVER) for the Exercise I-1, a 40% void fraction (with a corresponding
moderator density of 460.72 kg/m?) is set for the HFP case of the BWR,
instead of 0%. Hence the PWR and BWR cases are for square pitch but with
different spectra, while the VVER case is for triangular pitch.

The atom density for 24U is 0.0054 wt % for all the three cases. The
composition of the air for the central void of the Kozloduy-6 VVER-1000
unit cell is 79% nitrogen and 21% oxygen.

The requested results include k-eff and its uncertainties and the micro-
scopic absorption and fission cross-section and its uncertainties for 23°U and
2381. Moreover, the top five contributors of the uncertainty in k-eff are also
requested in order to identify neutron-nuclide reactions that contribute to
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Table 6.3: Parameters of TMI-1 PWR unit cell

Parameter value
Unit cell pitch [mm)] 14.427
Fuel pellet diameter [mm]| 9.391
Fuel pellet material U0,
Fuel density [g/cm?] 10.283
Fuel enrichment [w/o] 4.85
Cladding outside diameter [mm)] 10.928
Cladding thickness [mm)| 0.673
Cladding material Zircaloy-4
Cladding density [g/cm?] 6.55
Gap material He
Moderator material H,O

Table 6.4: TMI-1 PWR operating conditions

Operating conditions HZP HFP

Fuel temperature K| 551 900
Cladding temperature [K] 551 600
Moderator temperature [K| 551 562
Moderator density [kg/m3] 766  784.4
Reactor power [MW;] 2772 2772

Table 6.5: Parameters of Kozloduy-6 VVER-1000 unit cell

Parameter value
Unit cell pitch [mm)] 12.75
Fuel pellet diameter [mm)] 7.56
Fuel pellet material U0,
Fuel density [g/cm?] 104
Fuel enrichment [w/o| 3.3
Central void diameter [mm] 1.4
Central void material dry air
Cladding outside diameter [mm)| 9.1
Cladding thickness [mm| 0.69
Cladding material Zr + 1% Nb
Cladding density [g/cm?] 6.44
Gap material He
Moderator material H,O
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6.1 UAM Benchmark model

most of the uncertainties.

6.1.2 Exercise I-2 specifications

Within Exercise [-2, different stand-alone neutronics single fuel assembly and
minicore test problems have been proposed. In this work the solutions for the
Kozloduy-6 VVER-1000 fuel assembly will be presented. Figure [6.2] shows
the geometry of the analysed fuel assembly.
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Figure 6.2: Kozloduy-6 VVER-1000 fuel assembly

This problem should be analysed at Hot Zero Power conditions as well
as Hot Full Power conditions as defined for the Exercise I-1 and a reflective
boundary condition should be used. Both conditions with the control rods
completely inserted and with the control rods completely withdrawn should
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6.2 Results of the UAM benchmark

be studied. The parameter used for modelling this assembly are listed in
table

More informations about the benchmark specifications may be found in
K. Ivanov, Avramova, et al. [2013] especially in chapter 2.4 for the three unit
cells and in chapter 3.2 for the VVER-1000 fuel assembly.

6.2 Results of the UAM benchmark

The k-eff values and associated uncertainties calculated with TSUNAMI and
SAMPLER are presented in table for Exercise I-1 and in table for
Exercise I-2. Uncertainties are shown in terms of %WAR/R. It is possible
to notice that the reactivities calculated for all the cases at HFP conditions
are consistently lower than those at HZP conditions, because of the negative
fuel Doppler coefficient. The computed uncertainties of the k-eff show a
good agreement between the two codes. They have been evaluated to be
0.5%-0.6% for all the test cases.

Figure [6.3] shows the five cross-sections which contribute the most to the
k-eff uncertainty for the Exercise I-1. The data plotted in this chart have been
obtained only with the TSUNAMI code, because the SAMPLER code has
not a similar capability. For the three unit cells the five highest contributions
are the same. The first three are also in the same order: the 2%U(n,y) is
the most important, followed by the 23*Unubar (average number of neutrons
per fission reaction—v) and 23°U(n,y). The last two are 23¥U(n,n’) and the
235U (n,fission), but for the VVER-1000 unit cell they are in reverse order.

The reasons to justify these contributions to the uncertainties can be three:
the highest sensitivities associated to such reactions, the highest value of the
associated covariances, or a combination of both. In the case of 233U(n,y)
the k-eff is quite sensitive to its value (especially in the unresolved resonance
regions), but, on the other hand, its evaluation is still quite “uncertain”
and evaluated cross-sections from various sources differ by more than their
assigned uncertainties [Trkov, Molnar, and Révay 2005].

Table shows the explicit and implicit contributions to the total
sensitivity coefficient of the five cross-sections which contribute the most to
the k-eff uncertainty. Again, only with TSUNAMI it is possible to obtain
this kind of result. These contributions are shown only for the VVER-1000
unit cell for the sake of brevity.

In the framework of Exercise I-1, the UAM benchmark has requested
also the determination of the uncertainty associated to the calculation of the
one-group absorption and fission microscopic cross-sections for 23U and 23%U.
The results are given in tables and [6.12] The numbers in parenthesis
are the uncertainties of each cross-sections values. The uncertainty of the
microscopic cross-section values is around one order of magnitude higher than
the one of the k-eff cases, ranging in between ~ 1 % and ~ 4 %. The routine
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6.2 Results of the UAM benchmark

Table 6.6: Kozloduy-6 VVER-1000 operating conditions

Operating conditions HZP  HFP

Fuel temperature [K] 552.15 900
Cladding temperature [K| ~ 552.15 600
Moderator temperature [K| 552.15 562
Moderator density [kg/m?] 767 7525
Reactor power [MWy] 3000 3000
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Figure 6.3: The top five contributions to the uncertainty of the k-eff for the
BWR, PWR and VVER-1000 unit cells
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6.2 Results of the UAM benchmark

Table 6.7: Parameters of Kozloduy-6 VVER-1000 fuel assembly

Parameter value

Number of fuel rods 312
Number of fuel rods with 3.0 w/o enrichment 78
Number of fuel rods with 3.3 w/o enrichment 234

Number of water rods per FA 1
Number of guide tubes 18
Pellet diameter [mm)] 7.56
Central void diameter [mm] 14
Cladding outside diameter [mm)| 9.1
Cladding thickness [mm)| 0.69
Fuel rods pitch [mm] 12.75
Guide tube outside diameter [mm| 12.6
Guide tube inside diameter [mm]| 11.0
Absorber pellet diameter [mm| 7.0
Absorber cladding outside diameter [mm]| 8.2
Water rod outside diameter [mm]| 11.2
Water rod inside diameter [mm)| 9.6

to calculate the microscopic cross-section values is not yet implemented in
SAMPLER: at the moment only a beta version of this code is available. The
highest uncertainty value was systematically found for the fission cross-section
of 238U,

In Tables and it is possible to see that all the cross-sections
are almost the same for both the conditions (HZP and HFP) of each reactor
type, with the only exception of the BWR in which the cross-section values
double in the HFP conditions with respect of the HZP ones. This is due to
the harder spectrum of the BWR, HFP state, as a consequence of the imposed
40 % void fraction.

The benchmark requires for Exercise I-2 some homogenized macroscopic
cross-sections with the associated uncertainties. The results are given in tables
and for the HZP conditions and in table and for the HFP
conditions. A two group subdivision (cutoff energy 0.625 eV) has been used.

The first energy group (E>0.625 ¢V) has generally the highest associated
uncertainties. Moreover, as a general trend, the calculated uncertainties are
very consistent within all the test cases and within the two codes. These
tables highlight one of the most important capability of SAMPLER: in fact,
while in TSUNAMI it is not possible to evaluate the uncertainty related to
all the requested parameter, since each uncertainty evaluation requires an
additional adjoint transport calculation, in SAMPLER it is possible to gather
uncertainty informations about each of the requested parameter without any
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6.2 Results of the UAM benchmark

Table 6.8: Exercise I-1: k-eff results

TSUNAMI Uncertainty SAMPLER Uncertainty

Test cases 1%] 1%]
BWR
HZP 1.34050 5.23E-01 1.34249 5.17E-01
HFP 1.22270 6.16E-01 1.22533 6.23E-01
PWR
HZP 1.42290 4.82E-01 1.42635 4.79E-01
HFP 1.40424 4.89E-01 1.40670 4.88E-01
VVER-1000
HZP 1.34498 5.13E-01 1.34879 5.04E-01
HFP 1.32725 5.20E-01 1.32993 5.12E-01
Table 6.9: Exercise 1-2: k-eff results
TSUNAMI  Uncertainty SAMPLER  Uncertainty
Test cases
7] 2]
VVER-1000
HZPodded 0.94730 5.08E-01 0.94591 5.04E-01
HFP,odded 0.93199 5.12E-01 0.93328 5.12E-01
HZP unrodded 1.33818 5.03E-01 1.34050 4.83E-01
HFPunroddea  1.32299 5.15E-01 1.32741 4.88E-01

Table 6.10: Explicit and implicit contributions to the total sensitivity coeffi-
cient for the VVER-1000 unit cell

Reaction Explicit Implicit

HZP
28U (n,y)  -2.57E-01  1.01E-02
235U nubar  9.41E-01 0.00
25U (nyy)  -1.39E-01 -1.11E-04
28U (n,n’)  -5.51E-03 -2.57E-06
2390 fission  2.83E-01 -4.14E-04
HFP
28U (nyy)  -2.63E-01  1.05E-02
235U nubar  9.40E-01 0.00
25U (nyy)  -1.40E-01 -2.07E-04
28U (nn’)  -5.81E-03 -2.92E-06
235U fission  2.83E-01 -4.57E-04
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6.2 Results of the UAM benchmark

Table 6.11: Exercise I-1: microscopic absorption cross-sections

Test cases

235U absorption [barn]

238U absorption [barn]

BWR
HZP
HFP
PWR
HZP
HFP
VVER-1000
HZP
HFP

2.01E+01 (1.04E+00)
4.15E+01 (1.22E+00)

4.41E+01 (1.09E+00)
4.30E-01 (1.10E-+00)

5.98E+01 (1.02E+00)
5.84E-+01 (1.03E-+00)

3.10E-01 (9.80E-01)
8.80E-01 (9.70E-01)

9.42E-01 (9.65E-01)
9.64E-01 (9.71E-01)

1.02E+00 (9.88E-01)
1.04E+00 (9.90E-01)

Table 6.12: Exercise I-1: microscopic fission cross-sections

Test cases

2357 fission [barn]

238U fission [barn]

BWR

HZP

HFP
PWR

HZP

HFP
VVER-1000

HZP

HFP

1.65E+01 (1.06E-+00)
3.34E-+01 (1.22E+00)

3.57E-+01 (1.10E+00)
3.47E-+01 (1.11E+00)

4.90E+01 (1.04E+00)
4.78E+01 (1.05E-+00)

3.01E-02 (4.07E-+00)
8.57E-02 (4.79E+00)

9.91E-02 (3.92E+00)
9.91E-02 (3.94E+00)

9.26E-02 (3.86E-+00)
9.27E-02 (3.88E+00)

Table 6.13: Exercise I-2: macroscopic cross-sections for HZP conditions with
the control rods completely inserted

Reaction Energy gr. ~ TSUNAMI [cm™] SAMPLER [cm™]
Total 1 5.51E-01 (-) 5.50E-01 (8.95E-01)
2 1.37E-+00 (-) 1.37E-+00 (1.50E-01)
Fission 1 2.41E-03 (5.07E-01)  2.43E-03 (5.50E-01)
2 5.61E-02 (3.28E-01)  5.70E-02 (3.37E-01)
Absorption 1 1.41E-02 (1.34E400) 1.41E-02 (9.08E-01)
2 9.48E-02 (8.81E-01)  9.65E-02 (1.99E-01)
Scattering 1 5.37E-01 (8.43E-01)  5.36E-01 (8.99E-01)
2 1.27E+00 (1.59E-01) 1.27E+00 (1.61E-01)
Nufission 1 6.16E-03 (-) 6.22E-03 (8.42E-01)
2 1.37E-01 (-) 1.39E-01 (4.54E-01)
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6.2 Results of the UAM benchmark

Table 6.14: Exercise I-2: macroscopic cross-sections for HZP conditions with
the control rods completely withdrawn

Reaction ~ Energy gr.  TSUNAMI [cm™] SAMPLER [cm™]
Total 1 5.62E-01 (-) 5.62E-01 (8.58E-01)
2 1.37E+00 (-) 1.37E+00 (1.48E-01)
Fission 1 2.57E-03 (4.43E-01)  2.59E-03 (4.69E-01)
2 5.60E-02 (3.28E-01)  5.67E-02 (3.36E-01)
Absorption 1 9.25E-03 (1.28E+00)  9.23E-03 (8.48E-01)
2 8.21E-02 (8.68E-01)  8.31E-02 (2.28E-01)
Scattering 1 5.53E-01 (8.10E-01)  5.53E-01 (8.61E-01)
2 1.29E+00 (1.58E-01) 1.29E-+00 (1.56E-01)
Nufission 1 6.52E-03 (-) 6.58E-03 (7.30E-01)
2 1.36E-01 (-) 1.38 E-01 (4.53E-01)

Table 6.15: Exercise I-2: macroscopic cross-sections for HFP conditions with
the control rods completely inserted

Reaction Energy gr.  TSUNAMI [cm™] SAMPLER [cm™]
Total 1 5.43E-01 (-) 5.44E-01 (9.00E-01)
2 1.34E+00 (-) 1.35E+00 (1.51E-01)
Fission 1 2.40E-03 (5.13E-01)  2.42E-03 (5.55E-01)
2 5.56E-02 (3.29E-01)  5.65E-02 (3.37E-01)
Absorption 1 1.42E-02 (1.37E+00)  1.42E-02 (9.18E-01)
2 9.40E-02 (8.85E-01)  9.56E-02 (2.00E-01)
Seattering 1 5.20E-01 (8.47E-01)  5.29E-01 (9.03E-01)
2 1.25E+00 (1.60E-01) 1.25E-+00 (1.63E-01)
Nufission 1 6.12E-03 (-) 6.19E-03 (8.48E-01)
2 1.35E-01 (-) 1.38E-01 (4.54E-01)
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Table 6.16: Exercise I-2: macroscopic cross-sections for HFP conditions with
the control rods completely withdrawn

Reaction Energy gr. ~ TSUNAMI [cm™] SAMPLER [cm™]
Total 1 5.55B-01 (-) 5.55E-01 (8.62E-01)
2 1.34E+00 (-) 1.35E100 (1.49E-01)
Fission 1 2.55E-03 (4.47E-01)  2.58E-03 (4.72E-01)
2 5.54E-02 (3.28E-01)  5.62E-02 (3.36E-01)
Absorption 1 9.40E-03 (1.30E+00) 9.38E-03 (8.60E-01)
2 8.12E-02 (8.72E-01)  8.22E-02 (2.29E-01)
Scattering 1 5.45E-01 (8.14E-01)  5.45E-01 (8.65E-01)
2 1.26E+00 (1.59E-01) 1.26E+400 (1.57E-01)
Nufission 1 6.49E-03 (-) 6.56E-03 (7.33E-01)
2 1.35E-01 (-) 1.37E-01 (4.53E-01)

increase of the computational time (or with a meaningless one).

One of the other interesting features of SAMPLER is the possibility to
study the physics of the analysed system by means of the correlation matrix
printed by the code. An example of correlation matrix, and in particular that
for the VVER-1000 unit cell in the HFP conditions, is provided by figure
The figure represents only one half of the matrix, but all the informations are
preserved anyway, given the symmetry of the matrix. The coloured numbers
help in the understanding of this useful tool. The number in the cell between
the macroscopic total cross-section of the group 1 and the macroscopic
absorption cross-section of the group 1 is close to 1 (0.75) and this means
that there is a direct correlation between these two quantities. Physically,
if the absorption cross-section increased, also the total cross-section would
increase, since it is the sum of absorption and fission cross-sections. Vice
versa the red number (—0.61) is negative and quite close to —1: the fission
and absorption macroscopic cross-sections are anticorrelated. Nothing can be
said about those quantities with a number of correlation close to 0, whether
positive or negative.

The SAMPLER. outputs include the histogram of the frequency with
whom the results occur. The global shape of the columns of this histogram
should look like the gaussian curve, since this distribution has been assumed
as initial hypothesis for the samples. Figure [6.5[ shows two histograms for the
VVER-1000 unit cell in the HFP conditions, respectively using 93 and 662
samples. These numbers have been chosen because they coincide with the
number of samples predicted, respectivel, by the 95%/95% and the 99%/99%
criteria of the Wilk’s formula for the two-sided tolerance limit. Comparing
these two plots, we can see that the shape of the columns becomes more
similar to the gaussian distribution with the increase of the number of the
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kiw | 1,00

za,gr.l 0,01 1,00

2.2 | -0,27 | 0,17 | 1,00

21 | 0,44 | -0,61 | -0,09 | 1,00

g2 | 0,52 |09 0,32 | 0,17 | 1,00

%1 | 0,33 0,75 | 0,11 | 0,58 | -0,08 | 1,00
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Figure 6.4: The correlation matrix for the VVER-1000 unit cell in the HFP
conditions
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Figure 6.5: Frequency plots for VVER-1000 with 93 and 662 samples

6.3 Uncertainty results for the OECD benchmark

As said in the introduction of this chapter, the two assemblies presented in
the OECD VVER-1000 LEU and MOX assembly computational benchmark
and four different pincells have been analysed. In this section the four pincells
will be briefly described and the results of this study will be presented and
commented.

Table shows the k-eff values of both assemblies and the associated
uncertainties, while the five cross-sections which contribute the most to the
k-eff uncertainty are given in table The global uncertainty associated
to the k-eff of the MOX fuel assembly is almost twice that associated to
the k-eff of LEU assembly and this outcome can be explained with the
presence of plutonium. In fact, the predominant component to the total
uncertainty comes from the 23*Pu nubar for the high sensitivities associated
to it. It is followed by the #*Pu fission and 2*Pu(n,y). Particularly the
most important reaction in the MOX fuel assembly, the 2**Pu nubar, has
three times higher contribution than the corresponding reaction in the LEU
fuel assembly (233U (n,y)).

The macroscopic cross-sections for the two fuel assemblies are given in
tables [6.19] and [6.20] As it was done for the VVER-1000 fuel assembly of
the UAM benchmark, a two group division has been adopted with a cutoff
energy of 0.625 eV. The numbers in parenthesis represent the uncertainty
(%) associated to each value of cross-section. The results obtained with
TSUNAMI are in excellent agreement with those obtained with SAMPLER,
both for cross-sections and for associated uncertainties.

To better understand how the presence of gadolinium and an increasing
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Table 6.17: Values of the k-eff and its uncertainty for LEU and MOX fuel
assemblies

TSUNAMI  Uncertainty [%| SAMPLER Uncertainty |%]

LEU

1.16750 5.12E-01 1.17067 5.15E-01
MOX

1.19183 1.09E+00 1.19030 1.05E-+00

Table 6.18: Highest contributions to the k-eff uncertainty for LEU and MOX
assemblies

Covariance matrix

Uncertainty [%]
Nuclide-Reaction Nuclide-Reaction

LEU
238U (n,y) B8U (n,y) 3.01E-01
235U nubar 235U nubar 2.64E-01
25U (n,y) 25U (n,y) 1.67E-01
28U (n,n) 238U (n,n) 1.41E-01
235U chi 235U chi 1.17E-01
MOX
239Py nubar 239py nubar 9.10E-01
239py fission 239py fission 2.86E-01
239Pu (n,y) 9Py (n,y) 2.83E-01
239Py fission 9Pu (n,y) 2.66E-01
28U (n,y) B8U (n,y) 2.40E-01

Table 6.19: Macroscopic cross-sections for LEU fuel assembly

Reaction Energy gr.  TSUNAMI [em™] SAMPLER [cm™]
ot 1 5.36E-01 (-) 5.39E-01 (9.28E-01)
2 1.34E+00 (-) 1.31E+00 (1.61E-01)
Fission 1 2.94E-03 (4.20E-01)  2.96E-03 (4.23E-01)
2 6.29E-02 (3.26E-01)  6.32E-02 (3.34E-01)
Absorption 1 1.04E-02 (1.32E+00)  1.04E-02 (9.24E-01)
2 1.05E-01 (6.39E-01)  1.05E-01 (1.92E-01)
Scattering 1 5.26E-01 (7.23E-01)  5.29E-01 (9.32E-01)
2 1.23E100 (1.38E-01) 1.20E+00 (1.75E-01)
Nufission 1 7.45E-03 (-) 7.50E-03 (6.61E-01)
2 1.53E-01 (-) 1.54E-01 (4.52E-01)

108



6.3 Uncertainty results for the OECD benchmark

Table 6.20: Macroscopic cross-sections for MOX fuel assembly

Reaction Energy gr. TSUNAMI [cm™] SAMPLER [cm™]
Total 1 5.28E-01 (-) 5.28E-01 (9.35E-01)
2 1.42E+00 (-) 1.42E-+00 (1.41E-01)
Ficsion 1 2.67E-03 (6.50E-01)  2.66E-03 (6.40E-01)
2 1.11E-01 (7.30E-01) 1.11E-01 (7.81E-01)
Absorption 1 1.12E-02 (1.33E+00) 1.11E-02 (9.28E-01)
2 2.01E-01 (8.23E-01 )  2.01E-01 (3.00E-01)
Seattering 1 5.17E-01 (9.20E-01)  5.17E-01 (9.38E-01)
2 1.22E+00 (1.63E-01) 1.22E+400 (1.70E-01)
Nufission 1 7.58E-03 () 7.55E-03 (9.83E-01)
2 3.18E-01 (-) 3.17E-01 (1.22E+00)

content of plutonium may affect the results of an uncertainty analysis, four
unit cells have been studied. The pincell with gadolinium, named GD1, has
an enrichment of 3.6 wt% of 23U and an overall content of 4.0 wt % of
Gd,0O4. The gadolinium is composed by seven isotopes, but two of them
have a predominant significance: ">Gd and "Gd. The three pincells with
plutonium, namely PU1, PU2 and PU3, have respectively a 2.0 wt %, 3.0 wt
% and a 4.2 wt % of fissile plutonium (consisting of 93 wt % of 9Pu).

Table 6.21: Values of the k-eff and its uncertainty for gadolinium unit cell

TSUNAMI  Uncertainty (%] SAMPLER Uncertainty [%)]
0.36112 1.24 0.33372 1.36

Table 6.22: Values of the k-eff and its uncertainty for plutonium unit cells

TSUNAMI  Uncertainty [%| SAMPLER Uncertainty |%]

PU1

1.13092 1.11 1.17013 1.07
PU2

1.16638 1.10 1.20916 1.06
PU3

1.19461 1.09 1.23747 1.05

Tables [6.2]] and [6.22] show the values of k-eff for the gadolinium unit
cell and for the three plutonium unit cells, respectively. These tables show
also the uncertainties associated to the values of k-eff. By comparing the
uncertainties given in these tables with those of LWRs unit cells in table
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6.3 Uncertainty results for the OECD benchmark

it is possible to notice that the presence of plutonium or gadolinium in the
pin induces a doubling of the uncertainty.

The five cross-sections which contribute the most to the k-eff uncertainty
are given in table . It is interesting that the 23¥U(n,y) reaction, which
is the most important contribution to the uncertainty of uranium unit cells
(see figure , is no more present in the ranking of the gadolinium unit cell
and has an importance which descreases with the increase of the plutonium
content in the plutonium unit cells. Moreover the capture reactions of 5Gd
and of 7Gd, as expected, have a great relevance in pincells with gadolinium
and enter the ranking in fourth and fifth place.

As far as the plutonium pins are concerned, the most important contribu-
tion is given by 239Pu nubar, followed by the capture of 233U and 23°Pu, with
the exception of PU3 in which the capture of 23*Pu overcomes the capture of
238U.
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6.3 Uncertainty results for the OECD benchmark

Table 6.23: Highest contributions to the k-eff uncertainty for gadolinium and
MOX unit cells

Covariance matrix

Uncertainty [%)]
Nuclide-Reaction Nuclide-Reaction

GD1
238U (n,n’) 2387 (n,n’) 9.54E-01
235U chi 235U chi 5.10E-01
238U nubar 238U nubar 2.81E-01
157Gd (n,y) 157Gd (n,y) 2.37E-01
1%5Gd (n,y) 155Gd (n,y) 2.09E-01
PU1
Z39Pu nubar Z39Pu nubar 8.89E-01
28U (n,y) 28U (n,y) 3.11E-01
9Py (n,y) B9Pu (n,y) 2.86E-01
239Py fission 239Py fission 2.74E-01
239Py fission B9Pu (n,y) 2.66E-01
PU2
239Pu nubar 239Pu nubar 8.99E-01
28U (n,y) B8U (n,y) 2.84E-01
239Pu (n,y) 9Py (n,y) 2.84E-01
239Py fission 239Py fission 2.59E-01
239Py fission 9Py (n,y) 2.50E-01
PU3
239Pu nubar 239Pu nubar 9.04E-01
239Py (n,y) 9Py (n,y) 2.75E-01
28U (n,y) B8U (n,y) 2.65E-01
239Py fission 239Py fission 2.50E-01
28U (n,n) 238U (n,n) 2.33E-01
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Chapter 7

Conclusions

The burnup analysis phase of the work presented in this thesis covers several
aspects of the burnup calculations with both Monte Carlo and deterministic
codes. The OECD VVER-1000 LEU and MOX burnup computational
benchmark has been analyzed by means of the SERPENT and SCALE codes
and new solutions have been produced using ENDF/B-VII and JEFF3.1
nuclear data libraries. The comparison of our results with the ones available
in literature shows generally a good agreement over all the reactor states
considered in terms of reactivity values, pin-by-pin fission rates distributions
and nuclide concentration.

The SERPENT models for the LEU and MOX assemblies have also
been tested with JEFF2.2 data and the corresponding results show excellent
agreement with previously obtained MCNP4B/JEFF2.2 solutions making
of this work also a new Monte Carlo reference solution for the benchmark
exercise with modern NDLs.

The accuracies and performances of depletion algorithms for full systems
of nuclides have been evaluated in the SERPENT code. In particular, the
higher order Stochastic Implicit Euler (SIE) algorithm, implemented only in
the latest version of the code, has been compared with the more validated
Predictor-corrector algorithm. The results show that the former has still
some problem in the prediction of the k-inf values, both with LEU and MOX
assembly.

A sensitivity study on the division of the burnup steps into substeps has
been performed and the results have been described. This analysis states
that a small improvement (~ 100 pcm) in the results of calculations of k-inf
can be achieved in assemblies with gadolinium bearing pins. This outcome
confirms the results of Lee, Rhodes, and Smith 2013, even if our differences
in the k-inf values are less significant than those reported in that article.
This is probably due to the lower number of gadolinium bearing pins in our
assemblies (12) than that of the article (17).

The effects of a gadolinium pin mesh refinement in the SCALE code have
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been studied. The improvement in the reactivity values has been found to be
negligible (~ 20).

The neutronics modelling of some selected test cases within the “Neutronics
Phase” of the OECD UAM Benchmark and of the LEU and MOX assemblies of
the OECD VVER-1000 burnup computational benchmark has been presented.
A S/U analysis on the impact of the uncertainty in the basic nuclear data on
the calculation of the multiplication factor and microscopic and macroscopic
cross-sections have been performed using the perturbation methodologies and
the statistical sampling methodology.

The just released implementation of the GRS method within the SCALE
package has been used and compared against TSUNAMI over an extensive
number of test cases representative of LWRs configurations (and particularly
of VVER-type).

The values and the associated uncertainties of the k-eff computed for
the unit cells, both in Hot Full Power and in Hot Zero Power conditions,
show a good agreement between the two codes. The uncertainties have been
evaluated to be 0.5%-0.6% for all the test cases. The absorption and fission
microscopic cross-sections of 23°U and 233U have been calculated only with
the TSUNAMI code and the associated uncertainties have been found to be
higher (up to ~ 4%) than those for the k-eff.

Some homogenized macroscopic cross-sections (total, absorption, fission
and scattering) have been calculated with both codes and the associated
uncertainties have been estimated to be between ~ 1%-4%.

By analysing the unit cells with gadolinium and plutonium, we have
found that the presence of these elements cause a doubling of the uncertainty
related to the values of k-eff.

The explicit and implicit contributions to the total sensitivity coefficient
of the five cross-sections which contribute the most to the k-eff uncertainty
have been presented.

The 238U capture cross-section and the 23*Pu nubar were found to be
the highest contributors to the total uncertainty for the UOX and MOX
LWR’s representative test cases. Moreover, the 238U (n,n’) cross-section had
the most important contribution to the total uncertainty for the gadolinium
bearing pins. The capture reactions of the two most significant gadolinium
isotopes, 1??Gd and '®7Gd, also represented a relevant contribution to the
total uncertainty of this type of fuel pin.

We have shown some of the capabilities that make of the SAMPLER code
an interesting alternative to the TSUNAMI code, but more generally to all
those codes based on the perturbation theory. The correlation matrix allows to
have a better understanding of the physics of the problem, while the statistical
sampling methodology permits to gather informations about the uncertainty
of every desired parameter without any increase of the computational time
(or with a meaningless one).
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7.1 Future perspectives

7.1 Future perspectives

The results of the OECD VVER-1000 LEU and MOX burnup computational
benchmark are quite conclusive, while the S/U analysis did not include some
results requested by the OECD UAM benchmark and only some of the
proposed test cases have been studied.

The informations provided in Chapter 6 can be useful for a more extensive
analysis of the cases and to extend the study to the core level foreseen by
the Exercise I-3 of the benchmark.

Some of the functionalities described in the SAMPLER manual are not
yet implemented in the actual beta version of the code. The calculation
of the microscopic cross-sections with SAMPLER will be possible as soon
as the corresponding module will be implemented. The study, suggested
by the OECD UAM Benchmark, of the uncertainties associated to little
perturbations of geometrical parameters (e.g., radius of the fuel rod and of
the cladding) and material compositions will be also feasible with the next
versions of this code.
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Appendix A

TRITON input example

In this and in the following appendices some inputs for TRITON, TSUNAMI
and SAMPLER are presented as examples. The input for the SERPENT code
is not included in these appendices for its lenght (more than 5000 lines). This
appendix contains the input for the LEU assembly of the OECD VVER-1000
LEU and MOX burnup computational benchmark.

LEU assembly input with TRITON
=t—depl parm=(addnux=3,centrm)
LEU burnup
v7—238
read comp
'U rod
u—235 1 0 8.6264e—04 1027 end

u—238 1 0 2.2169e—02 1027 end
0o—16 1 0 4.6063e—02 1027 end
'U/Gd rod

u—235 11 0 7.2875e—04 1027 end
u—238 11 0 1.9268e—02 1027 end
0—16 11 0 4.1854e—02 1027 end
gd—152 11 0 2.5159e—06 1027 end
gd—154 11 0 2.7303e—05 1027 end
gd—155 11 0 1.8541e—04 1027 end
gd—156 11 0 2.5602e—04 1027 end
gd—157 11 0 1.9480e—04 1027 end
gd—158 11 0 3.0715e—04 1027 end
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gd—160 11 0 2.6706e—04 1027 end
"cladding

wtptzr—nb

wtptzr—nb

"moderator for fuel (with and without gadolinium)

h—1 3
o—16 3
b—10 3
b—11 3
h—-1 13
0o—16 13
b—10 13
b—11 13

end comp

0

o O O O o o O

O U RS S N O

2 6.44 3 40000 99 41000 0.98 72000

0.02 1 575 end

12 6.44 3 40000 99 41000 0.98 72000

.843E-2
A422E-2
.7T94E—6
.942E-5
.843E-2
A422E-2
.7T94E—6
.942E-5

read celldata

latticecell

latticecell

575
975
575
975
575
975
975
975

0.02 1 575 end

end
end
end
end
end
end
end

end

triangpitch hpitch=0.6375 3

fuelr =0.386 1 cladr=0.4582

triangpitch hpitch=0.6375 13
fuelr=0.386 11 cladr=0.4582 12 end

end celldata

read depletion
101 102 111 112 end
1 101 102 end
assign 11 111 112
end depletion

assign

read burndata
power =35.88399169
power=35.88399169

power=35.88399169
power=35.88399169
power=35.88399169
power =35.88399169

end burndata

end

burn=27.86757975 down—0

burn=0.1

down=0

burn=139.3378987 down—0

burn=0.1

down=0

burn=139.3378987 down—=0

burn=0.1

down=0
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2 end

nlib=1
nlib=1

nlib=1
nlib=1
nlib=1
nlib=1

end

end

end
end
end

end



read opus
matl=101 102 111 112 end
sort=no
units=atoms time=days typarms=nucl libtyp=all
title= Fuel concentrations of nuclides
symnuc=u—232 u—235 u—236 u—238
pu—236 pu—238 pu—239 pu—240 pu—241 pu—242
cm—244 ce—137 xe—135 sm—149 gd—155 gd—157 end
end opus
read model
Infinite lattice VVER pin cell
read parm
epsilon=1le—3 sn=6 converg=mix
drawit=yes echo=yes xnlib=4
run=yes clearint=no combine=yes
end parm
read materials
mix=101 pn=1 com="UO2 pin’ end
mix=102 pn=1 com="UO2 pin’ end
mix=111 pn=1 com="UO2/Gd pin’ end
mix=112 pn=1 com="UO2/Gd pin’ end
mix=2 pn=1 com="Zr—Nb’ end
mix=3 pn=2 com=’water’ end
end materials
read homog
500 all 101 102 111 112 2 3 end
end homog
read collapse
200r1 38r2
end collapse
read geom
unit 1
com="UO2 Fuel Rod’
cylinder 10 0.3860
cylinder 20 0.4582
hexprism 30 0.6375
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media 101 1
media 2 1
media 3 1
boundary 30

unit 7

10

20 —10

30 —20
4 4

com="UO2 Fuel Rod’

cylinder 10
cylinder 20
hexprism 30

media 102 1
media 2 1
media 3 1
boundary 30
unit 2

com="U02/Gd

cylinder 10
cylinder 20
hexprism 30
media 111 1
media 21
media 31
boundary 30
unit 8

com="U02/Gd
cylinder 10
cylinder 20
hexprism 30

media 112 1
media 21
media 31

boundary 30

unit 3

0.3860

0.4582

0.6375

10

20 —10

30 —20
4 4

Fuel Rod’
0.3860
0.4582
0.6375
10
20 —10
30 —20

4 4

Fuel Rod’
0.3860
0.4582
0.6375
10
20 —10
30 —20

4 4

com='Central tube’

cylinder 10
cylinder 20
hexprism 30

0.48
0.5626
0.6375
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media 3 1 10

media 2 1 20 —10

media 3 1 30 —20

boundary 30 4 4

unit 4

com="Guide tube’

cylinder 10 0.545

cylinder 20 0.6323

hexprism 30 0.6375

media 3 1 10

media 2 1 20 —10

media 3 1 30 —20

boundary 30 4 4

unit 9

com="water’

hexprism 30 0.6375

media 3 1 30

boundary 30 4 4

global unit 5

rhexprism 6 11.8

array 1 6 place 12 12 0 0

media 3 1 6

boundary 6 2 2

end geom

read array

ara=1 typ=shexagonal nux=23 nuy=23

fill
00000099999999999900000
0000091 1T1T11T1T1T1T1T1T1T900000
0000091111111 1111190000
000091 1T1T1T11211111190000
0000911111111 11111190°0°0
0009111111141 1111119000
0009111114111 141111190°0
009112111111 2111121190°0
0091111412141 111411119°090
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091111111111 14111111190§90
0911111114111 1121111119
91111141111311114111119
0911111121111 1411111119
0911111114111 111T111119069
0091111411114 121411119090
0091121111211 111121190°0
0009111114111 1411111900
0009111111141 1111119000
00009111 1T11T1T1T1T1T1T1T1T1T9000
0000911111181 1111190000
0000091 1T1T1T1T1T1T1T1T1T1T1T90000
0000097111111 1111900000
00000099999999999900000
end fill

end array

read bounds

all=white

end bounds

end model

end
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Appendix B

TSUNAMI input example

The input for the unit cell PU1 taken from OECD VVER-1000 LEU and
MOX burnup computational benchmark is presented below.
VVER-1000 assembly input with TSUNAMI

=tsunami—1d
LEU pincell with Gd

v7—238

read comp

"U/Gd rod

u—235 1 0 4.2672FE-5 1027 end
u—238 1 0 2.1025E—2 1027 end
0—16 1 0 4.3047E-2 1027 end
pu—239 1 0 4.2414E—4 1027 end
pu—240 1 0 2.7250E—5 1027 end
pu—241 1 0 4.5228FE—6 1027 end
"cladding

wtptzr—nb 2 6.44 3 40000 99 41000 0.98 72000 0.02 end
"moderator for fuel

h—1 3 0 4.843E—2 575 end

o—16 3 0 2.422E-2 575 end

b—10 3 0 4.794E—6 575 end

b—11 3 0 1.942E-5 575 end

end comp

read celldata

latticecell triangpitch hpitch=0.6375 3
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fuelr=0.386 1 cladr=0.4582
end celldata
read geometry
cylindrical white white end
1 0.386
2 0.4582
3 0.6375
end geometry
read definitions
response 1 nuclide=92235 reaction=102
mixture=1 micro end response
response 2 nuclide=92235 reaction=18
mixture=1 micro end response
response 3 nuclide=92238 reaction=102
mixture=1 micro end response
response 4 nuclide=92238 reaction=18
mixture=1 micro end response
response 5 unity multimix 1 end
end response
end definitions
read systemresponses
ratio 1 numer 1 2 end denom 5 end
title="U235—abs’ end ratio

ratio 2 numer 2 end denom 5 end
title="U235—fis’ end ratio
ratio 3 numer 1 end denom 5 end

title="U235—capt’ end ratio

ratio 4 numer 3 4 end denom 5 end
title="U238—abs’ end ratio
ratio 5 numer 4 end denom 5 end
title="U238—fis ’ end ratio

ratio 6 numer 3 end denom 5 end
title ="U238—capt’ end ratio

end systemresponses

read sams

prtgeom
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prtimp
end sams

end
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Appendix C

SAMPLER input example

The input for the VVER-1000 unit cell in the HFP conditions with 93 samples

is presented below.

VVER-1000 unit cell input with SAMPLER

=%sampler

read parameters

n_samples=93

library="xn238v7"

perturb xs = yes

perturb decay = yes

perturb yields = yes

csv=yes

print corr=yes

print cov=yes

end parameters

read case|cl|

sequence=t—depl parm=(bonami,addnux=0)

VVERpincell model

xn238v7

read composition

uo2 1 den=10.4 1 900 92234 0.0054 92235 3.3
92238 96.6946 end

wtptzr—nb 2 6.44 2 40000 99.0 41093 1.0 1 600 end

h20 3 den=0.7525 1 560 end

he 4 1 900 end
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wtptair 5 0.00129 2 7000 79.0 8016 21.0 1 900 end
end composition

read celldata

latticecell atriangpitch pitch=1.275 3 fuelr=0.378 1
gapr=0.386 4 cladd=0.9100 2 imodr=0.07 5 end

end celldata

read depletion —1 end depletion

read burndata

power=33.58179038 burn=7.4445 down=0 nlib=1 end
end burndata

read model

read materials

mix=1 com="fuel ’* end

mix=2 com=’'clad ’ end

mix=3 com='moderator’ end

mix=4 com="gap gas" end

="air" end

mix=>5 com
end materials
read geom

global unit 1
com="UO2 Fuel Rod’
cylinder 10 0.07
cylinder 20 0.378
cylinder 30 0.386
cylinder 40 0.455

hexprism 50 0.6375

media 5 1 10

media 1 1 20 —10
media 4 1 30 —20
media 2 1 40 —30
media 3 1 50 —40

boundary 50 4 4
end geom

read collapse
150r1 88r2

end collapse
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read homog

500 mini 1 2 3 4 5 end

end homog

read bounds

all=white

end bounds

end model

end sequence

end case

read response [hmgxs|

type = triton

mixture = 1

data = kinf sigma absorption sigma capture
sigma fission sigma total sigma elastic nu_fission
nu chi flux kappa fission end

end response

end
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