
Università di Pisa

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Matematica

Decoding Reed Solomon and BCH
Codes beyond their Error-Correcting

Radius:
an Euclidean Approach

Tesi di Laurea Magistrale

Candidato
Alessandro Neri

Relatore
Prof.ssa Patrizia Gianni
Università di Pisa

Controrelatore
Prof. Roberto Dvornicich

Università di Pisa

Anno Accademico 2013/2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79616279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction iii

1 Coding Theory 1
1.1 What is a code . 2
1.2 Detection and correction of the errors 4
1.3 Linear codes . 5
1.4 Cyclic codes . 5
1.5 BCH codes . 8
1.6 Reed-Solomon codes . 9
1.7 Decoding BCH codes . 9

2 The linear division problem 14
2.1 Formalization of the problem 15
2.2 The study of the divisibility ideal 18
2.3 Bound on the cardinality of V(IF ,H) 22

2.3.1 A conjecture on the bound 26

3 List Decoding 28
3.1 Decoding BCH codes . 29
3.2 Unique decoding . 30
3.3 The decoding function . 31
3.4 Fundamental Theorems for list decoding 35
3.5 Decoding binary BCH codes 38
3.6 Decoding up to a certain error-threshold 44

4 Bounds on list decoding 49
4.1 General bounds . 50
4.2 Madhu Sudan bound . 52
4.3 Reduction to a packing set problem 54
4.4 Bounds for some special cases 57

i

CONTENTS ii

5 Computational aspects of list decoding 60
5.1 Calculation of the divisibility ideal 60
5.2 Computing the divisibility set 63
5.3 Some special cases . 63

5.3.1 Binary BCH codes with e = t+ 1 63
5.3.2 RS and binary BCH codes with e = t+ 1 64

5.4 Sudan and Guruswami-Sudan algorithms 73
5.5 Comparison between the algorithms 76

6 Examples 77
6.1 Binary BCH code with n = 31 and δ = 11 77
6.2 [15, 7, 9] RS code . 78
6.3 [15, 7, 9] RS code . 81
6.4 [12, 7, 6] RS code . 83
6.5 [10, 2, 9] RS code . 84

Introduction

Coding theory and error-correcting codes naturally arise as a consquence of
tha practical problem of data transmission. Data can be corrupted during
the transmission, so that the information received can present some errors.
Therefore the aim of error correcting codes is both detecting and correcting
errors that occur after the transmission of data.

Formally, given a finite set Q, called alphabet, a code is a subset C of
Qn, whose elements are called codewords. At the beginning, coding theory
developed in the direction of unique decoding, in which an algorithm is ex-
pected to output a single codeword. However it was realized early on that
unambiguous decoding is not the only useful notion of recovery from error.
In the 1950’s Elias [4] proposed the notion of list decoding. List decoding
generalizes the notion of error-correction, when the number of errors is po-
tentially very large, and main idea behind it is that the decoding algorithm
instead of outputting a single possible message outputs a list of possibilities
one of which is correct.
Algorithmically, this problem is stated as follows:

Definition. The list decoding problem for a code C is a process that takes
as input a received word x ∈ Qn and an error bound e, and then outputs a
list of all codewords c(1), . . . , c(s) ∈ C that differ from x in at most e places.

From 1995 to 2007, more efficient list-decoding algorithms were progres-
sivly developed. In particular there are two relevant algorithms. The first
known polynomial time list decoding algorithm for Reed–Solomon codes was
developed by Madhu Sudan in 1995. An improvement on it was made by
Madhu Sudan and his then doctoral student Venkatesan Guruswami in 1999,
and it corrects up to (1−

√
R)n errors, where R is the code rate.

In this work we present a different algorithm for list decoding of Reed
Solomon and BCH codes, based on the Euclidean division algorithm. For
both BCH and Reed Solomon codes the decoding procedure involves the
computation of the so-called error-locator polynomial. When we try to correct
a number of errors which does not exceed the error-correction radius the
error-locator polynomial is the unique (up to scalar) kernel generator of the

iii

INTRODUCTION iv

syndrome matrix.
If we try to correct more errors than the error-correcting radius, such a

kernel will have dimension greater than 1. Another property of the error-
locator polynomial is that it divides the polynomial xn − 1. Hence, given
a basis {f0, . . . , fk} of such a kernel, the problem that naturally arises is
the problem of determining all the linear combinations of the fis that divide
xn − 1.

For this purpose, after a first introductory chapter about general notions
on algebraic coding theory, the second chapter is about the linear division
problem. Given a set of univariate polynomials f0, f1, . . . , fk and H, with
coefficients in a finite field Fq, we would like to find all the linear combinations
of the fis that divide H. This problem can be reduced to the problem of
finding the variety of a particular ideal of the ring Fq[a1, . . . , ak], the so-called
divisibility ideal.

In the third chapter we deal with the list decoding problem by using the
results of linear division. Given a received word r and an integer e greater
than the error correcting radius, we try to find all the codewords with distance
at most e from r. Hence we define a decoding function Dr,e which takes a
zero of the divisibility ideal, and it outputs another word c. We show that for
binary BCH codes and for Reed Solomon codes such a word c is a codeword
with distance at most e from r. Moreover such a function is surjective onto
the set L(r, e) = {c ∈ C | d(c, r) ≤ e}. In particular the algorithm developed
here permits to solve the list decoding problem.

In the fourth chapter we find some bounds on the number of codewords
the algorithm outputs, i.e. on the cardinality of the set L(r, e). Some of
those bounds are well-known in coding theory, others are obtained by using
algebraic and combinatorial techniques. The motivation is that we need the
combinatorial guarantee that any Hamming ball of radius e around a received
word r has a small number of codewords. This is because the list size itself
is clearly a lower bound on the running time of the algorithm, and we want
to be sure that the problem of list decoding is treatable.

The algorithm that we propose, unlike Guruswami-Sudan algorithm, works
for every kind of Reed Solomon code and for every binary BCH code, without
any condition on the rate and on the number of errors that we would like
to recover. However, in the general case, this algorithm has a high compu-
tational cost, due to the fact that it involves the computation of a Gröbner
basis. In the fifth chapter we indeed analyze the main computational aspects
of this approach, and we propose an alternative way to solve the problem
without involving Gröbner basis, that works only for some special cases. In
these cases it seems that the algorithm is very efficient, especially for binary
BCH codes.

INTRODUCTION v

In the last chapter we present some examples that show how the algorithm
works step by step. Some of these examples follows by introducing random
errors in a transmitted codeword, while some others are constructed ad hoc,
in order to find as many codewords as possible in a Hamming ball of radius
e, as shown in [9].

Chapter 1

Coding Theory

Information passes from a source to a sink via a conduit or channel. In our
view of communication we are allowed to choose exactly the way information
is structured at the source and the way it is handled at the sink, but the
behaviour of the channel is not in general under our control. The unreliable
channel may take many forms. We may communicate through space, such as
talking across a noisy room, or through time, such as writing a book to be
read many years later. The uncertainties of the channel, whatever it is, allow
the possibility that the information will be damaged or distorted in passage.

Communication across space has taken various sophisticated forms in
which coding has been used successfully. Indeed Shannon, Hamming, and
many of the other originators of mathematical communication theory worked
for Bell Telephone Laboratories. They were specifically interested in dealing
with errors that occur as messages pass across long telephone lines.

The usual way to represent, manipulate, and transmit information is to
use bit strings, that is, sequences of zeros and ones. It is extremely diffi-
cult, and often impossible, to prevent errors when data are stored, retrieved,
operated on, or transmitted. Errors may occur from noisy communication
channels, electrical interference, human error, or equipment error. Similarly,
errors are introduced into data stored over a long period of time on magnetic
tape as the tape deteriorates.

The objective of error-correcting codes is to protect a message going
through a noisy channel by introducing redundancy to the message. In a
nutshell, an error-correcting code is just a pair of (encoding/decoding) map-
pings that convert a message to and from a codeword.

1

CHAPTER 1. CODING THEORY 2

1.1 What is a code

Coding theory, the study of codes, including error detecting and error cor-
recting codes, has been studied extensively for the past sixty years. It has
become increasingly important with the development of new technologies for
data communications and data storage. In this chapter we will study both
error detecting and error correcting codes.

We are concerned here with block coding. That is, we transmit blocks of
symbols block coding of fixed length n from a fixed alphabet Q. These blocks
are the codewords, and that codeword transmitted at any given moment
depends only upon the present message, not upon any previous messages
or codewords. Our encoder has no memory. We also assume that each
codeword from the code, that is the set of all possible codewords, is as likely
to be transmitted as any other.

Let us formalize the concept of error-correcting codes. From now on we
assume that information is coded using an alphabet Q, with |Q| = q.

Definition 1.1.1. A q-ary code C is a non-empty subset ofQn. The elements
c ∈ C are the codewords and n is called the block length or just length.
If |C| = 1 we call the code trivial.
If q = 2 the code is called binary.

Definition 1.1.2. If x ∈ Qn, y ∈ Qn, then the Hamming distance d(x, y) of
x and y is a function

d : Qn ×Qn −→ N

defined by
d(x, y) := |{i|1 ≤ i ≤ n, xi 6= yi}| .

The weight w(x) of x is a function

w : Qn −→ N

defined by
w(x) := d(x, 0).

Theorem 1.1.3. Let d(x, y) represent the Hamming distance between the
strings x and y of length n. Then:

1. d(x, y) ≥ 0 far all x, y ∈ Qn;

2. d(x, y) = 0 if and only if x = y;

3. d(x, y) = d(y, x) for all x, y ∈ Qn;

CHAPTER 1. CODING THEORY 3

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Qn.

�
The Hamming distance is indeed a metric on Qn. If we are using a

channel with the property that an error in position i does not influence other
positions and a symbol in error can be each of the remaining q − 1 symbols
with equal probability, then Hamming distance is a good way to measure the
error content of a received message.

Suppose that when a codeword x from a code C is sent, the string r is
received. If the transmission was error-free, then r would be the same as x.
But if errors were introduced by the transmission, for instance by a noisy
line, then r is not the same as x. How can we detect errors? And how can
we correct errors, that is, how can we recover x?

One approach would be to compute the Hamming distance between r and
each of the codewords in C. Then to decode r, we take the codeword of mini-
mum Hamming distance from r, if such a codeword is unique. If the distance
between the closest codewords in C is large enough and if sufficiently few
errors were made in transmission, this codeword should be x, the codeword
sent. This type of decoding is called nearest neighbour decoding, or minimum
distance decoding.

Now we introduce some concepts that play an essential role in coding
theory.

Definition 1.1.4. The minimum distance d of a nontrivial code C is

d := min {d(x, y)|x ∈ C, y ∈ C, x 6= y} .

The minimum weight w of C is given by

w := min {w(x, 0)|x ∈ C, x 6= 0} .

Sometimes we shall be interested in knowing how far a received word can
be from the closest codeword. For this purpose we introduce a counterpart
of minimum distance.

Definition 1.1.5. If C ⊂ Qn is a code, then the covering radius ρ(C) of C
is defined by

ρ(C) := max {min {d(x, c)|c ∈ C} |x ∈ Qn} .

Remark 1.1.6. We denote the sphere with radius ρ and center x by Bρ(x),
i.e. the set {y ∈ Qn|d(x, y) ≤ ρ}.
We can see that if ρ̄ := ρ̄(C) is the largest integer such that the spheres Bρ̄(c)

CHAPTER 1. CODING THEORY 4

with c ∈ C are disjoint, then d = 2ρ̄+ 1 or d = 2ρ̄+ 2.
The covering radius is the smallest number ρ := ρ(C) such that the spheres
Bρ(c) with c ∈ C cover the set Qn.
If ρ̄ = ρ, then the code C is called perfect.

1.2 Detection and correction of the errors

We now turn our attention to the problem of error-detecting and error-
correcting codes.

Theorem 1.2.1. A q-ary code C can detect up to k errors in any codeword
if and only if d ≥ k + 1, where d denotes the minimum distance of the code
C.

Proof. Suppose that C is a q-ary code with minimum distance d ≥ k + 1.
Suppose that a codeword x is transmitted and is received with k or fewer
errors. Since the minimum distance between codewords is at least k+ 1, the
vector received cannot be another codeword. Hence, the receiver can detect
these errors.

Now suppose that C can detect up to k errors and that d ≤ k. Then
there are two codewords in C that differ in no more than k positions. It is
then possible for k errors to be introduced when one of these codewords is
transmitted so that the other codeword is received, contradicting the fact
that C can detect up to k errors.

When errors are detected, all we can do to obtain the correct codeword
is to ask for retransmission and hope that no errors will occur when this is
done. However, there are codes that can not only detect but can also correct
errors. We now turn our attention to these codes, called error correcting
codes.

Theorem 1.2.2. A q-ary code C can correct up to k errors in any codeword
if and only if d ≥ 2k + 1, where d denotes the minimum distance of the code
C.

Proof. Suppose that C is a q-ary code with d ≥ 2k + 1. Suppose that a
codeword x is transmitted and received with k or fewer errors as the vector
r, so that d(x, r) ≤ k. To see that C can correct these errors, note that if y is
a codeword other than x, then d(r, y) ≥ k+ 1. In fact, if d(r, y) ≤ k, then by
the triangle inequality d(x, y) ≤ d(x, r) + d(r, y) ≤ k+k = 2k, contradicting
the assumption that d ≥ 2k + 1.

CHAPTER 1. CODING THEORY 5

Conversely, suppose that C can correct up to k errors. If d ≤ 2k, then
there are two codewords that differ in 2k positions. Changing k of the bits in
one of these codewords produces a bit string that differs from each of these
two codewords in exactly k positions, thus making it impossible to correct
these k errors.

1.3 Linear codes

We now turn to the problem of constructing codes which have some algebraic
structure. The first idea is to take a group Q as alphabet and to take a
subgroup C of Qn as code. But it is not enough; we require more structure.
In the following Q is the finite field Fq, with q = pr and p is a prime. Then
Qn is an n-dimensional vector space, namely Fnq .

Definition 1.3.1. A q-ary linear code C is a linear subspace of Fnq . If C has
dimension k then C is called [n, k] code.

From now on we shall use [n, k, d] code as the notation for a k-dimensional
linear code of length n and minimum distance d.

Definition 1.3.2. A generator matrix G for a linear code C is a k×n matrix
for which the rows are a basis of C.

If G is a generator matrix for C, then C = {aG | a ∈ Qk}.
If we want to know how many errors a code C corrects, we have to

calculate the minimum distance. If C has minimum distance d = 2e + 1,
then it corrects up to e errors in a received word.

In general if C has M words one must check
(
M
2

)
pairs of codewords to

find d. For linear codes the work is easier.

Theorem 1.3.3. For a linear code C the minimum distance is equal to the
minimum weight.

Proof. d(x, y) = d(x − y, 0) = w(x − y) and if x ∈ C, y ∈ C then x − y
∈ C.

1.4 Cyclic codes

Now we study a special class of linear codes, the so-called cyclic codes.

Definition 1.4.1. A linear code C is called cyclic if

∀ (c0, c1, . . . , cn−1) ∈ C ⇒ (cn−1, c0, c1, . . . , cn−2) ∈ C.

CHAPTER 1. CODING THEORY 6

Here we present the theory for cyclic codes.
The most important tool in the description of the cyclic codes is the

following group isomorphism between Fnq and a group of polynomials.
The multiples of xn − 1 form a principal ideal in the polynomial ring Fq[x].
The residue class ring Fq[x]/(xn − 1) has the set of polynomials{

a0 + a1x+ ...+ an−1x
n−1|ai ∈ Fq, 0 ≤ i < n

}
as a system of representatives. If we consider Fnq only as an additive group,
clearly it is isomorphic to this ring. From now on we make the following
identification

Fnq
∼←→ Fq[x]�(xn − 1)

(a0, a1, . . . , an−1)←→ a0 + a1x+ · · ·+ an−1x
n−1

In the following we shall also use the multiplicative structure which we
have introduced, namely the multiplication of polynomials modulo (xn − 1).

Theorem 1.4.2. A linear code C in Fq is cyclic if and only if C is an ideal
in Fq[x]/(xn − 1).

Proof. If C is an ideal in Fq[x]/(xn−1) and c(x) = c0 + c1x+ ...+ cn−1x
n−1 is

any codeword, then xc(x) is also a codeword, i.e. (cn−1, c0, c1, . . . , cn−2) ∈ C.
Conversely, if C is cyclic, then for every codeword c(x) the word xc(x) is

also in C. Therefore xic(x) is in C for every i, and since C is linear a(x)c(x)
is in C for every polynomial a(x). Hence C is an ideal.

From now we only consider cyclic codes of length n over Fq with (n, q) = 1.
Since Fq[x]/(xn − 1) is a principal ideal ring, every cyclic code C consists of
the multiple of a polynomial g(x) which is the monic polynomial of lowest
degree in the ideal (not the zero polynomial).

Definition 1.4.3. This polynomial g(x) is called the generator polynomial
of the cyclic code.

Remark 1.4.4. The generator polynomial is a divisor of xn−1, since otherwise
the g.c.d. of xn − 1 and g(x) would be a polynomial in C of degree lower
than the degree of g(x).

Let xn − 1 = f1(x)f2(x) · · · ft(x) be the decomposition of xn − 1 into
irreducible factors. Because of (n, q) = 1 these factors are different. We can
now find all cyclic codes of length n by picking up one of the 2t factors of
xn − 1 as generator polynomial g(x) and defining the corrispondent code to
be the ideal (g(x)) in Fq[x]/(xn − 1).

CHAPTER 1. CODING THEORY 7

Let g(x) be the generator polynomial of a cyclic code C of length n. If
g(x) has degree n−k, then C is an [n, k] code and the codewords g(x), xg(x),
. . . , xk−1g(x) form a basis for C. Hence, if g(x) = g0 + g1x+ · · ·+ gn−kx

n−k,
then

G =


g0 g1 · · · gn−k 0 0 · · · 0
0 g0 · · · gn−k−1 gn−k 0 · · · 0
0 0 · · · · · · 0
0 0 · · · g0 g1 · · · gn−k


is a generator matrix for C. This means that we encode an information
sequence (a0, a1, . . . , ak−1) as aG which is the polynomial

(a0 + a1x+ · · ·+ ak−1x
k−1)g(x).

A more convenient form of the generator matrix is obtained by writing,
for i ≥ n − k, xi = g(x)qi(x) + ri(x), where ri(x) is a polynomial of degree
< n − k. The polynomials xi − ri(x) are codewords of C and form a basis
for the code, which yields a generator matrix of C in standard form, with
G = (P Ik). In this case (a0, a1, . . . , ak−1) is encoded as follows: divide
(a0 + a1x + · · · + ak−1x

k−1)xn−k by g(x) and subtract the remainder from
(a0 + a1x+ · · ·+ ak−1x

k−1)xn−k, thus obtaining a codeword. Tecnically this
is a very easy way to encode information.

Remark 1.4.5. In general a cyclic code can be specified by requiring that all
codewords have certain prescribed zeros.
In fact, it is sufficent to take one zero βi of each irreducible factor fi of the
generator polynomial g(x) and require that all codewords have, in a suitable
extension field of Fq, these points as zeros.
If we start with any set α1, . . . , αs of zeros of xn − 1 and define a code C by

c(x) ∈ C ⇐⇒ c(αi) = 0 ∀i = 1, . . . , s

then C is cyclic and the generator polynomial of C is the least common
multiple of the minimal polynomials of α1, α2, . . . , αs.

We know that exists an integer m such that all these zeros lie in Fqm , an
extension field that we can represent as a vector space Fmq . For every i we can

consider them×nmatrix with the vector representations of 1, αi, α
2
i , . . . , α

n−1
i

as columns and put all these together to form the sm × n matrix H with
entries in Fq as follows

H =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
...

...
...

...
1 αs α2

s · · · αn−1
s

 .

CHAPTER 1. CODING THEORY 8

Clearly, if c = (c0, c1, . . . , cn−1), we have cHT = 0 iff c(αi) = 0 for i =
1, 2, . . . , s. Observe that the rows of H are not necessarily indipendent.

1.5 BCH codes

An important class of cyclic codes, still used a lot in practice, was discovered
by R. C. Bose and D. K. Ray-Chaudhuri (1960) and independently by A.
Hocquenghem (1959). The codes are known as BCH codes.

Definition 1.5.1. A cyclic code of length n over Fq is called a BCH code of
designed distance δ if its generator g(x) is the least common multiple of the
minimal polynomials of βl, βl+1, . . . , βl+δ−2 for some l, where β is a primitive
nth root of unity. Usually we shall take l = 1. If n = qm − 1, i.e. β is a
primitive element of Fqm , then the BCH code is called primitive.

The terminology “designed distance”is explained by the following

Theorem 1.5.2. The minimum distance of a BCH code with designed dis-
tance d is at least d.

Proof. In the same way as in the previous section we form the m(d− 1)× n
matrix H:

H :=


1 βl β2l · · · β(n−1)l

1 βl+1 β2(l+1) · · · β(n−1)(l+1)

...
...

...
...

1 βl+d−2 β2(l+d−2) · · · β(n−1)(l+d−2)


where eache entry is interpreted as a column vector of length m over Fq. A
word c is in the BCH code iff cHT = 0. The m(d−1) rows of H are not nec-
essarily independent. Consider any d−1 columns of H and let βi1l, . . . , βid−1l

be the top elements in these columns. The determinant of the submatrix of
H obtained in this way is a Vandermonde determinant and it is equal to

β(i1+···+id−1)l
∏
r>s

(βir − βis) 6= 0.

This determinant is clearly not zero, because β is a primitive nth root of
unity. Therefore any d− 1 columns of H are linearly independent and hence
a codeword c 6= 0 has weight ≥ d.

Remark 1.5.3. This theorem is usually called BCH bound. From now we only
consider BCH codes with l = 1.

CHAPTER 1. CODING THEORY 9

1.6 Reed-Solomon codes

One of the simplest examples of BCH codes, namely the case n = q−1, turns
out to have many important applications.

Definition 1.6.1. A Reed-Solomon code (RS code) is a primitive BCH code
of length n = q − 1 over Fq The generator of such a code has the form

g(x) =
∏d−1

i=1 (x− αi) where α is a primitive element in Fq.

By the BCH bound we know that the minimum distance of an RS code
with this generator g(x) is at least d. Moreover in this special case we have
the following theorem proved in [13].

Theorem 1.6.2. A Reed-Solomon code over Fq with designed distance d has
minimum distance exactly d.

�
A Reed-Solomon code can be represented in another way. This represen-

tation is very useful because it gives a very efficient encoding procedure for
the code. The proof of the following theorem can be found in [13].

Theorem 1.6.3. Let C be a Reed-Solomon code of length n = q− 1 over Fq
and designed distance d, and let k := n− d. Then

C =
{

(c0, . . . , cn−1) | ci = p(αi), 0 ≤ i < n, p ∈ Fq[x]≤k
}
,

where α is a primitive element in Fq.

�

1.7 Decoding BCH codes

Once again consider a primitive BCH code of length n = qm−1 over Fq with
designed distance δ = 2t + 1 and let β be a primitive nth root of unity in
Fqm . We consider a codeword c(x) and assume that the received word is

r(x) = r0 + r1x+ · · ·+ rn−1x
n−1.

Let ε(x) := r(x)− c(x) = ε0 + ε1x+ · · ·+ εn−1x
n−1 be the error vector. We

denote with
M := {i|εi 6= 0},

the set of the positions where an error occur, and with

e := |M |

the number of errors that occur in r(x).

CHAPTER 1. CODING THEORY 10

Definition 1.7.1. The polynomial σ(z) ∈ Fqm [z] defined by

σ(z) :=
∏
i∈M

(1− βiz)

is called error-locator polynomial for the received word r.

Definition 1.7.2. The polynomial ω(z) ∈ Fqm [z] defined by

ω(z) :=
∑
i∈M

εiβ
i
∏

j∈Mr{i}

(1− βjz)

is called error-evaluator polynomial for the received word r. Observe that
degω < deg σ = e.

Definition 1.7.3. Let r(x) = c(x) + ε(x) be a received word. We define the
syndrome si for i = 1, . . . , 2t by

si = r(βi).

Remark 1.7.4. Since r(x) = c(x) + ε(x) and c(x) is a codeword, c(βi) = 0 for
i = 1, . . . , 2t, hence

si = r(βi) = ε(βi) =
n−1∑
i=0

εj(β
i)j.

Suppose that, for a received word r(x), the e errors occur in location
corresponding to indexes i1, . . . , ie. for ease of notation we reformulate the
syndromes as

si =
e∑
j=1

Eja
i
j, (1.1)

for i = 1, . . . , 2t, where we have put Ej := εij and aj := βij .
With this notation we can also reformulate the error-locator and the

error-evaluator polynomial as

σ(z) :=
e∏
i=1

(1− aiz) (1.2)

ω(z) :=
e∑
i=1

Eiai
∏
j 6=i

(1− ajz) (1.3)

CHAPTER 1. CODING THEORY 11

Definition 1.7.5. Let r(x) be a received word with syndromes si for i =
1, . . . , 2t. Then the polynomial

S(z) :=
2t∑
i=1

siz
i−1 =

2t∑
i=1

zi−1

e∑
j=1

Eja
i
j

is called syndrome polynomial of the received word r.
The syndrome series of r is the formal power series defined by

Ŝ(z) :=
+∞∑
i=1

zi−1

e∑
j=1

Eja
i
j

Proposition 1.7.6. Let r(x) be a received word and let σ(z), ω(z) be respec-
tively the error-locator and the error-evaluator polynomial for the received
word r. Then an error occurs in position i if and only if σ(β−i) = 0, and in
that case the error is

εi = − ω(β−i)

σ′(β−i)
.

Proof. It is an easy calculation.

Thus if we can find σ(z) and ω(z), then the errors can be corrected.
From now on we assume that e ≤ t, because if e > t we do not expect to

be able to correct the errors.

Theorem 1.7.7. Let r(x) be a received word and let σ(z), ω(z) be respectively
the error-locator and the error-evaluator polynomial for the received word r.
Then

ω(z)

σ(z)
= Ŝ(z),

where Ŝ(z) is the syndrome series of r.

Proof. It is sufficient to observe that

ω(z)

σ(z)
=

e∑
i=1

Eiai
1− aiz

=
e∑
i=1

Eiai

∞∑
l=0

(aiz)l

=
∞∑
l=0

zl
e∑
i=1

Eia
l+1
i = Ŝ(z),

where all calculations are with formal power series over Fqm .

CHAPTER 1. CODING THEORY 12

Corollary 1.7.8. Let r(x) be a received word and let σ(z), ω(z) be respec-
tively the error-locator and the error-evaluator polynomial for the received
word r. Then

ω(z) ≡ S(z)σ(z) mod (z2t), (1.4)

where S(z) is the syndrome polynomial of r.

Theorem 1.7.9. The polynomials σ(z) and ω(z) coincide with the polyno-
mials σ̄(z) and ω̄(z) such that deg ω̄(z) < deg σ̄(z) and deg σ̄(z) is as small
as possible under the condition

ω̄(z)

σ̄(z)
≡ S(z) mod (z2t)

Proof. Let σ(z) =
∑e

i=0 σiz
i. Then

ω(z) ≡

(
2t−1∑
l=0

sl+1z
l

)(
e∑
i=0

σiz
i

)
≡

2t−1∑
k=0

(∑
i+l=k

sl+1σi

)
zk mod (z2t).

Beacuse degω(z) < e we have∑
i+l=k

sl+1σi = 0, for e ≤ k ≤ 2t− 1.

This is a system of 2t − e linear equations for the unknows σ1, . . . , σe (be-
cause we know that σ0 = 1). Let σ̄(z) =

∑e
i=0 σ̄iz

i (where σ̄0 = 1) be the
polynomial of lowest degree found by solving these equations (we know there
is at least the solution σ(z)). For e ≤ k ≤ 2t− 1 we have

0 =
∑
l

sk−l+1σ̄l =
∑
i∈M

∑
l

εiβ
(k−l+1)iσ̄l =

∑
i∈M

εiβ
i(k+1)σ̄(β−i).

We can interpret the right-hand side as a system of linear equations for
εiσ̄(β−i) with coefficients βi(k+1). So the determinant of coefficients is a
Vandermonde determinant, hence it is 6= 0. So εiσ̄(β−i) = 0 for i ∈ M .
Since εi 6= 0 for i ∈ M we have σ̄(β−i) = 0 for i ∈ M and then σ(z) divides
σ̄(z), i.e. σ̄(z) = σ(z). So indeed, the solution σ̄(z) of lowest degree solves
our problem and we have seen that finding it amounts to solving a system of
linear equations.

The advantage of this approach is that the decoder has an algorithm
that does not depend on e. Of course, in practice it is even more important
to find a fast algorithm that actually does what we have only considered

CHAPTER 1. CODING THEORY 13

form a theoretical point of view. Such an algorithm was designed by E. R.
Berlekamp and is often referred to as the Berlekamp-decoder.

Now, given a received word r(x), suppose we know that in r occur exactly
e errors, with e ≤ t. We have seen in the previous proof that the coefficients
of the error-locator polynomial satisfy some linear conditions. We can state
this fact with the following result.

Theorem 1.7.10. The vector (σe, . . . , σ0)T given by the coefficients of the
error locator polynomial σ(z) is the unique, non-trivial solution of the linear
system


s1 s2 · · · se+1

s2 s3 · · · se+2
...

...
...

s2t−e s2t−e+1 · · · s2t




xe
xe−1

...
x1

x0

 =


0
0
...
0

 ,
with x0 = 1.

Chapter 2

The linear division problem

In the prevoius chapter we have seen that, when the number of errors e that
occur in a received word is less or equal to the error-correcting bound t, the
error-locator polynomial is given by the unique non-trivial solution of the
linear system


s1 s2 · · · se+1

s2 s3 · · · se+2
...

...
...

s2t−e s2t−e+1 · · · s2t




xe
xe−1

...
x1

x0

 =


0
0
...
0

 , (2.1)

with x0 = 1.
We would like to investigate in what happens when we try to correct more

than t errors. If we suppose that the received word is affected by e errors
with e > t we still have that the error-locator polynomial is a solution of the
linear system 2.1. In this case we lose the unicity of the solution. In fact the
matrix Se is a (2t− e)× (e+ 1) with e > t, so if we put s := e− t, we have
that Se ∈M(t+ s, t− s+ 1,Fqm), and dim kerSe ≥ 2s+ 1.

Therefore, given a basis for kerSe, the error-locator polynomial will be a
linear combination of the elements of such a basis. Since one of the properties
of the error-locator polynomial is that it divides xq

m−1−1, from this research
a new problem naturally arises. It is the more general linear division problem.
In the following we accurately formulate this problem and we try to develop
a theory for trying to solve it.

So, in this chapter we deal with the problem of divisibility of a polynomial
H(x) with coefficients in a finite field Fq. Let k, e be positive integers with
k ≤ e and suppose we have k+ 1 polynomials f0(x), f1(x), . . . , fk(x) ∈ Fq[x],
and a polynomial H(x) ∈ Fq[x]. We would like to find all the polynomials

14

CHAPTER 2. THE LINEAR DIVISION PROBLEM 15

F (x) of the form

F (x) =
k∑
i=0

αifi(x)

such that αi ∈ Fq for i = 0, . . . , k, degF = e and F (x) divides H(x). Clearly
we can suppose deg fi ≤ e.

Let V be the set of all polynomials in Fq[x] with degree at most e, i.e.

V = {p(x) ∈ Fq[x] | deg p ≤ e} = Fq[x]≤e.

Clearly V is a vector space over Fq of dimension e+ 1. Let W = 〈f0, . . . , fk〉
be the linear subspace of V generated by the fis. Observe that one of the
fi is necessarily of degree e, otherwise such polynomial F does not exist.
Moreover we can choose the fi(x) such that

e = deg f0 > deg f1 > · · · > deg fk

and lc(fi) = 1 for all i = 0, 1, . . . , k, where lc(fi) denotes the leading coeffi-
cient of fi. So we can look for all the polynomials of the form

F (x) := f0(x) +
k∑
i=1

αifi(x) αi ∈ Fq.

2.1 Formalization of the problem

Now we want develop a theory that permit us to deal with such a problem.
Let us introduce some instruments that will be useful to formalize and solve
the linear division problem.

Definition 2.1.1. Given a finite dimensional subspace W of Fq[x], the degree
of W is defined as

degW := max
p(x)∈W

deg p(x)

Clearly, since W is finite dimensional, degW < +∞.

Remark 2.1.2. Such definition is extended also to the subspaces W ov V .

Definition 2.1.3. A basis F = {f0, . . . , fk} of a subspace W of degree e of
Fq[x] is called leading basis iff e = deg f0 and deg fi < e for all i = 1, . . . , k.

From now on we work with the polynomials f0(x), f1(x), . . . fk(x), that
are linearly independent over Fq, and where F := {f0(x), f1(x), . . . fk(x)} is
a leading basis for the subspace W generated by the fis.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 16

Definition 2.1.4. A basis F = {f0, . . . , fk} of a subspace W of degree e of
Fq[x] is called escalier basis iff

e = deg f0 > deg f1 > · · · > deg fk

and lc(fi) = 1 for all i = 0, 1, . . . , k.

The following is a very easy result of linear algebra.

Theorem 2.1.5. Every finite dimensional subspace W of Fq[x] admit an
escalier basis.

�
From now on suppose that gcd(H(x), H ′(x)) = 1, i.e. that all the roots

of H(x) are distinct.
Consider the multivariate polynomial

F (a1, . . . , ak, x) := f0(x) +
k∑
i=1

aifi(x) ∈ Fq[a1, . . . , ak, x] =: Fq[a, x]

where a = (a1, . . . , ak). Consider F (a, x) embedded in the ring Fq(a)[x],
where Fq(a) denotes the fraction field of Fq[a]. This ring is an euclidean
domain, so there exist unique polynomials q(a, x), r(a, x) ∈ Fq(a)[x] such
that

H(x) = F (a, x)q(a, x) + r(a, x)

with degx r < degx F = e.

Proposition 2.1.6. Let H(x) ∈ Fq[x], F (a, x) ∈ Fq[a, x] be two polynomials
with degx F = e < n = degxH, and lcx(F) ∈ F∗q. Then, the quotient q(a, x)
and the remainder r(a, x) of the division between H and F lie in Fq[a, x]

Proof. The proof is very easy. In fact in the division algorithm at each step
the only division that is needed is the division by the leading coefficient of
F (a, x) in seen as a polynomial in x. Since by hypothesis lcx(F) ∈ F∗q, we
trivially obtain that q(a, x) and r(a, x) belong to Fq[a, x].

Lemma 2.1.7. Let H(x) ∈ Fq[x], F (a, x) ∈ Fq[a, x] be two polynomials with
degx F = e < n = degxH, and lcx(F) ∈ F∗q. Suppose that

F (a, x) = f0(x) +
k∑
i=1

aifi(x)

Then dega q(a, x) ≤ n − e and dega r(a, x) ≤ n − e + 1, where q(a, x) and
r(a, x) are the quotient and the remainder of the division between H(x) and
F (a, x), and dega is the total degree with respect to the variables (a1, . . . , ak).

CHAPTER 2. THE LINEAR DIVISION PROBLEM 17

Proof. Perform the division algorithm step by step. At each step the degrees
in a of provisional remainder and provisional quotient increase at most by 1.
At the first step dega q = 0 and dega r ≤ 1. Since the algorithm terminates
after n− e+ 1 steps we easily conclude.

Let α ∈ Fkq . The polynomial F (α, x) divides H(x) if and only if r(α, x) =
0. So, if we write

r(a, x) =
e−1∑
i=0

ri(a)xi

and we define the ideal IF ,H of Fq[a]

IF ,H := (r0(a), . . . , re−1(a)) ,

where F = {f0(x), . . . , fk(x)}, our goal is equivalent to finding the variety

V(IF ,H) =
{
α ∈ Fkq | p(α) = 0 ∀ p ∈ IF ,H

}
.

In fact
α ∈ V(IF ,H)⇐⇒ F (α, x) divides H(x).

Definition 2.1.8. The ideal IF ,H defined above is called divisibility ideal of
H by F .

Definition 2.1.9. Let F = {f0, . . . , fk} be a leading basis of a subspace W
of degree e of V . Then the set

ΣF ,H :=

{
F (α, x) = f0(x) +

k∑
i=1

αifi(x)
∣∣∣ α ∈ V(IF ,H)

}

is called divisibility set of H by F .

Proposition 2.1.10. Let F = {f0, . . . , fk} be a leading basis of a subspace
W of degree e of V . Then

ΣF ,H =
{
p(x) ∈ W

∣∣∣ deg p = e, lc(p) = 1, p(x)|H(x)
}
.

Proof. It easily follows by the definition of the set ΣF ,H .

Corollary 2.1.11.

|V(IF ,H)| = |ΣF ,H | =
∣∣∣{p(x) ∈ W

∣∣∣ deg p = e, lc(p) = 1, p(x)|H(x)
}∣∣∣

CHAPTER 2. THE LINEAR DIVISION PROBLEM 18

Proof. It is an immediate consequence of the previous proposition.

What happens if we choose another leading basis G of the subspace W?
Clearly V(IG,H) 6= V(IF ,H). But how are they related? The answers to those
questions are given by the following result.

Proposition 2.1.12. Let G = {g0, . . . , gk} and F = {f0, . . . , fk} be two
leading basis of a subspace W of degree e with g0(x) = λf0(x) +

∑k
i=1 c

0
i fi(x)

and gj(x) =
∑k

i=1 c
j
ifi(x) for j = 1, . . . k. Let C be the change-of-basis matrix

from G r {g0} to F r {f0}, and let b ∈ Fkq be the vector defined by bi = c0
i .

Then α ∈ V(IG,H) if and only if 1
λ

(
CTα + b

)
∈ V(IF ,H).

Proof. It is an easy calculation. We can rewrite the polynomial G(a, x) in
terms of the fi(x).

G(a, x) = g0(x) +
k∑
i=1

aigi(x) = f0(x) +
k∑
i=1

c0
i fi(x) +

k∑
j=1

aj

k∑
i=1

cjifi(x) =

= λf0(x) +
k∑
i=1

c0
i fi(x) +

k∑
i=1

(
k∑
j=1

ajc
j
i

)
fi(x) =

= λf0(x) +
k∑
i=1

[(
k∑
j=1

ajc
j
i

)
+ c0

i

]
fi(x) = λF (y, x).

where yi = 1
λ

[(∑k
j=1 ajc

j
i

)
+ c0

i

]
. Observing that the vector y = 1

λ

(
CTa+ b

)
we conclude the proof.

Corollary 2.1.13. Let F and G are two leading basis of a subspace W of
degree e of V . Then there exists a bijection between V (IF ,H) and V (IG,H).
In particular |V (IF ,H)| = |V (IG,H)|, even if they are not finite set. However
in the next section we show that actually V (IF ,H) is a finite set.

Remark 2.1.14. If F and G are two leading basis of W then ΣF ,H = ΣG,H .

2.2 The study of the divisibility ideal

In this section we are going to study some properties of the divisibility ideal.
The first of these properties is the Krull dimension of IF ,H .

Theorem 2.2.1. Let W be a subspace of degree e of V = Fq[x]≤e with leading
basis G = {g0, . . . , gk} and let H(x) a polynomial of degree n greater than e.
Then the Krull dimension of the divisibility ideal IG,H is 0.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 19

Proof. For a polynomial ring, we have that

dim IG,H = 0⇐⇒ |V (IG,H)| < +∞,

where
V (IG,H) =

{
α ∈ Fkq | p(α) = 0 ∀ p(a) ∈ IG,H

}
.

Consider an escalier basis F = {f0, . . . , fk} of W . Then

V (IF ,H) =
1

λ

(
CTV (IG,H) + b

)
where C is the change-of-basis matrix between Gr {g0} and F r {f0}, and b
is the vector of the bi defined by f0 = g0 +

∑
i bigi. Then, since |V (IG,H)| =

|V (IF ,H)|, we can show that |V (IF ,H)| < +∞.
Let F = Fqm be the splitting field of H(x) over Fq. If we prove that

V (IF ,H) ⊆ Fk then it follows that |V (IF ,H)| ≤ qmk < +∞ and we conclude
the proof. Observe that, if α ∈ V (IF ,H) then F (α, x) divides H(x), that
splits into linear factors in F[x]. Hence F (α, x) ∈ F[x]. We put ni := deg fi.
Then

n0 > n1 > · · · > nk

and

fi(x) = xni +

ni−1∑
j=0

f ji x
j.

Since

F (α, x) = f0(x) +
k∑
i=0

αifi(x),

the coefficient of xn1 is fn1
0 +α1 and it is in F, then also α1 ∈ F. The coefficient

of xn2 is fn2
0 + α1f

n2
1 + α2 and it is in F, then also α2 ∈ F, and so on. Hence

αi ∈ F for every i = 1, . . . , k, and we conclude that α ∈ Fk.

Corollary 2.2.2. Let W be a subspace of degree e of V = Fq[x]≤e with
leading basis G = {g0, . . . , gk} and let H(x) a polynomial of degree n greater
than e, whose splitting field is Fqm. Then V(IG,H) ⊆ Fkqm.

Another property of the divisibility ideal is that it is a radical ideal. In
order to prove this we study first the case k = 1 and then the general case.
Before showing such a property we need the following lemma.

Lemma 2.2.3. Let F (a, x) = f0(x) + af1(x) be a polynomial in Fq[a, x] with
f0(x), f1(x) ∈ Fq[x] and deg f0 > deg f1. Let H(x) ∈ Fq[x] be a polynomial
with all distinct roots. If the polynomial F (a, x) divides H(x) modulo (a)
then it does not divide H(x) modulo (a2).

CHAPTER 2. THE LINEAR DIVISION PROBLEM 20

Proof. By hypothesis we know that there exists a polynomial q(a, x) such
that

H(x) ≡ σ(a, x)q(a, x) mod (a).

If we write
q(a, x) = q0(x) + aq1(x) + a2q2(a, x)

we obtain, modulo a,

H(x) ≡ (f0(x) + af1(x))
(
q0(x) + aq1(x) + a2q2(a, x)

)
≡ f0(x)q0(x).

So H(x) = f0(x)q0(x). Since the polynomial H has all distinct roots, hence
gcd(f0, q0) = 1.
Now suppose that F (a, x)divides H(x) modulo (a2), i.e.

H(x) ≡ (f0(x) + af1(x))
(
q0(x) + aq1(x) + a2q2(a, x)

)
≡ f0(x)q0(x) + a (f1(x)q0(x) + f0(x)q1(x)) .

Hence
a (f1(x)q0(x) + f0(x)q1(x)) ≡ 0 mod (a2)

that means
f1(x)q0(x) = −f0(x)q1(x).

Therefore f0(x) divides f1(x)q0(x), and gcd(f0, q0) = 1. So we obtain that
f0(x) divides f1(x) and, at the same time, by hypothesis deg f0 > deg f1,
contradicting our assumption.

Now we are ready to prove the following theorem.

Theorem 2.2.4. Suppose we have a leading basis F = {f0, f1} of a subspace
W of dimension 2, and let H(x) ∈ Fq[x] be a polynomial with all distinct
roots. Then the divisibility ideal IF ,H ⊆ Fq[a] is a radical ideal.

Proof. Observe that, in order to prove that the ideal IF ,H is radical, it is
sufficent to show that the variety V(IF ,H) does not contain points of multi-
plicity greater than one. We know that, if α ∈ V(I) then α ∈ Fq. Without
loss of generality we can suppose α = 0. In fact, if α 6= 0 it is sufficient to
change basis in G = {f0(x) + αf1(x), f1(x)}, that is a leading basis too. We
know that there exist two polynomials q(a, x), r(a, x) ∈ Fq[a][x] such that

H(x) = F (a, x)q(a, x) + r(a, x).

Since 0 ∈ V(IF ,H), we have

H(x) ≡ F (a, x)q(a, x) mod (a).

CHAPTER 2. THE LINEAR DIVISION PROBLEM 21

Now suppose that the multiplicity of 0 in V(IF ,H) is greater than 1. Then
a2 divides r(a, x), i.e. r(a, x) = a2r̃(a, x).
Hence, H(x) ≡ F (a, x)h(a, x) modulo (a2), in contradiction with the previous
lemma.

We are ready to generalize this result, in the case k > 1. We are working
in the ring

A := Fq[a1, . . . , ak] = Fq[a].

Lemma 2.2.5. Let q ⊂ A be a primary ideal such that
√
q = (a1, . . . , ak) =:

m and q 6= m. Let H(x) ∈ Fq[x] be a polynomial with all distinct roots and
let F be a leading basis for a subspace W of degree e of V . Put

F (a, x) = f0(x) +
k∑
i=1

aifi(x).

If F (a, x) divides H(x) modulo m, then F (a, x) does not divide H(x) modulo
q.

Proof. Without loss of generality we can suppose m2 ⊆ q (m. There exist
two polynomials q(a, x), r(a, x) ∈ Fq[a][x] such that

H(x) = F (a, x)q(a, x) + r(a, x)

with

q(a, x) = q0(x) + a1q1(x) + · · ·+ akqk(x) + q̄(a, x), q̄(a, x) ∈ m2.

By hypothesis H(x) ≡ f0(x)q0(x) modulo m. Hence

H(x) = f0(x)q0(x).

Now suppose that H(x) ≡ F (a, x)q(a, x) modulo q. Then

H(x) ≡ f0q0 + a1(f0q1 + f1q0) + · · ·+ ak(f0qk + fkq0) mod q

that is true if and only if

a1(f0q1 + f1q0) + · · ·+ ak(f0qk + fkq0) ≡ 0 mod q.

Since q 6= m, at least one of the ai is not in q. For this i f0qi + fiq0 = 0, i.e.

f0qi = −fiq0, deg f0 > deg fi

and we conclude in the same way as in the previous lemma.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 22

Finally we can generalize the Theorem 2.2.4, when k > 1.

Theorem 2.2.6. Let F = {f0, f1, . . . , fk} be a leading basis for a subspace
W of degree e and dimension k + 1, and let H(x) ∈ Fq[x] be a polynomial
with all distinct roots. Then the divisibility ideal IF ,H ⊆ Fq[a] is a radical
ideal.

Proof. Consider the splitting field Fqm of H(x) over Fq. We can see IF ,H as
an ideal of Fqm [a]. Let

IF ,H =
s⋂
j=1

qj

be the primary decomposition of the divisibility ideal IF ,H in Fqm [a]. Then
the radical of IF ,H satisfies √

IF ,H =
s⋂
j=1

√
qj.

The ideal IF ,H is 0−dimensional, so
√
qj = mj, with mj maximal ideal for

every j = 1, . . . , s. Furthermore, since V(IF ,H) ⊆ Fkqm , |V(mj)| = 1 for every
j.
Suppose that there exist j such that qj (mj and let α = (α1, . . . , αk) ∈ Fkq
be the unique point in V(mj). As in the Theorem 2.2.4, we can suppose
α = (0, . . . , 0). In fact, if α 6= 0, it is sufficient to change basis in

G = {f0(x) + α1f1(x) + . . .+ αkfk(x), f1(x), . . . , fk(x)}

that is a leading basis too. Hence mj = (a1, . . . , ak) and F (a, x) divides
H(x) modulo mj. So by definition of IF ,H , F (a, x) divides H(x) modulo
IF ,H . But IF ,H ⊆ qj (mj, hence F (a, x) should divide H(x) modulo qj, in
contradiction with the previous lemma.

2.3 Bound on the cardinality of V(IF ,H)
In this section we are interested in determining some bounds on the cardi-
nality of V(IF ,H) when H(x) = xq−1− 1 that depend only on q, k and e. So,
from now on, we work with

H(x) := xq−1 − 1.

By Corollary 2.2.2 V(IF ,H) ⊆ Fkq , so a first bound that we find is

|V(IF ,H)| ≤ qk. (2.2)

But we can do better.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 23

Lemma 2.3.1. If k = 1 then |V(IF ,H)| ≤ q − e.

Proof. By euclidean division in Fq(a)[x] there exist unique polynomials q(a, x),
r(a, x), that by Proposition 2.1.6 are in Fq[a][x], such that

xq−1 − 1 = F (a, x)q(a, x) + r(a, x)

with r(a, x) =
∑e−1

i=0 ri(a)xi. So

IF ,H = (r0(a), . . . , re−1(a)) = (p(a)),

where p(a) = gcd{r0(a), . . . , re−1(a)}. By Lemma 2.1.7 deg p ≤ deg ri ≤
q − 1− e+ 1 = q − e and we conclude the proof.

We can use this lemma to improve the bound (2.2) as follows.

Proposition 2.3.2. |V(IF ,H)| ≤ (q − e)qk−1.

Proof. It follows from the prevoius Lemma. For every possible choice of
a2 = α2, . . . , ak = αk we have

xq−1 − 1 = F (a1, α2, . . . , αk, x)q(a1, α2, . . . , αk, x) + r(a1, α2, . . . , αk, x)

and we conclude observing that, by the previous Lemma, we have only q− e
possible values for a1.

A result due to L. Caniglia, A. Galligo, and J. Heintz. ([3]) improves the
bound obtained again.

Theorem 2.3.3. (Caniglia, Galligo, Heintz 1989 [3]) Let F be a field and
I ⊆ F[a] := F[a1, . . . , ak] be a zero-dimensional ideal generated by polynomials
{r1, . . . , rs} of degrees d1 ≥ · · · ≥ ds. Then

dimF(F[a]/I) ≤ d1 · . . . · dk.

Corollary 2.3.4. |V(IF ,H)| ≤ (q − e)k.

Proof. The divisibility ideal IF ,H is generated by r0, . . . , re−1 that, by Lemma
2.1.7, are all of degree not greater than q − e. Then, since IF ,H is zero-
dimensional, by the previous theorem

dimFq(Fq[a]/IF ,H) ≤ (q − e)k.

Observing that |V(IF ,H)| ≤ dimFq(Fq[a]/IF ,H), we conclude the proof.

Another simple bound is the following.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 24

Lemma 2.3.5. |V(IF ,H)| ≤
(
q − 1

e

)
.

Proof. The number of all the polynomials of degree e that divide xq−1− 1 is
equal to the number of the subsets of F∗q of cardinality e, i.e. the ways

to choose the e roots, that is
(
q−1
e

)
. Furthermore, if F (α1, . . . , αk, x) =

F (β1, . . . , βk, x) then (α1, . . . , αk) = (β1, . . . , βk). In fact,

F (α, x)− F (β, x) = f0(x) +
k∑
i=1

αifi(x)− f0(x)−
k∑
i=1

βifi(x)

=
k∑
i=1

(αi − βi)fi(x) = 0

implies αi = βi for every i = 1, . . . , k because of the linear independence of
the fi.

So, for every polynomial G(x) of degree e that divides xq−1 − 1, there is
at most one α = (α1, . . . , αk) such that F (α, x) = G(x), and we conclude the
proof.

To improve the bound shown above we need the following Lemma.

Lemma 2.3.6. Let Te be the set defined by

Te :=
{
p(x) ∈ Fq[x] | deg p = e, lc(p) = 1, p(x)|xq−1 − 1

}
.

If e < q − 1, then Te is a set of generators for the vector space Fq[x]≤e.

Proof. We prove this lemma proceding by induction on e.
For e = 1 observe that q > 2. Then we can choose α1, α2 ∈ Fq such

that α1, α2 6= 0 and α1 6= α2. We have that (x − α1), (x − α2) ∈ Te and
so also (x − α1) − (x − α2) = α2 − α1 is in Te. But α2 − α1 6= 0, hence
{x− α1, α2 − α1} is a basis of Fq[x]≤1.

Suppose that Te−1 generates Fq[x]≤e−1 and let us show that Te−1 ⊂ 〈Te〉.
Let

p(x) =
e−1∏
i=1

(x− αi)

be a polynomial in Te−1. Since e < q − 1 we can take β, γ ∈ F∗q such that
β, γ /∈ {α1, . . . , αe−1}. So the two polynomials

p1(x) := (x− β)p(x), p2(x) := (x− γ)p(x)

CHAPTER 2. THE LINEAR DIVISION PROBLEM 25

are included in Te, and

p1(x)− p2(x) = (x− β)p(x)− (x− γ)p(x) = (γ − β)p(x),

with γ−β 6= 0, so p(x) ∈ 〈Te〉. Therefore Te−1 ⊂ 〈Te〉, whence 〈Te−1〉 ⊂ 〈Te〉.
By induction hypothesis 〈Te−1〉 = Fq[x]≤e−1 and so we can conclude that

〈Te〉 ⊇ 〈Te−1 ∪ {p1(x)}〉 = 〈Fq[x]≤e−1 ∪ {p1(x)}〉 = Fq[x]≤e

Theorem 2.3.7. If e > k then |V(IF ,H)| ≤
(
q − 1

e

)
− (e− k)

Proof. It follows from Lemma 2.3.5 and from the fact that dim〈f0, . . . , fk〉 =
k + 1 and dim〈Te〉 = e + 1. So we need at least e − k polynomials in Te to
complete 〈f0, . . . , fk〉 as a basis of Fq[x]≤e.

Let us try to investigate what happens in some particular cases.

Remark 2.3.8. If e = k, then the subspace W = 〈F〉 = Fq[x]≤e, and so

Te ⊂ W . But |Te| =
(
q−1
e

)
, hence |V(IF ,H)| =

(
q − 1

e

)
.

Remark 2.3.9. If e = q − 2, then |Te| = q − 1. By Lemma 2.3.6 Te generates
the whole vector space Fq[x]≤e, so the set Te must be a basis of Fq[x]≤e. Hence
in the subspace W = 〈F〉 we can find at most k + 1 polynomials that are
also in Te. So |V(IF ,H)| ≤ k + 1.

Proposition 2.3.10. If k = 1 there exist f0(x), f1(x) ∈ Fq[x] such that
|V(IF ,H)| = q − e.

Proof. We choose

f1(x) =
e−1∏
i=1

(x− αi),

where the αi are all distinct and are in F∗q, and

f0(x) = xf1(x).

Then

F (a, x) = f0(x) + af1(x) = (x− a)
e−1∏
i=1

(x− αi),

and F (β, x) divides xq−1 − 1 for every β ∈ F∗q r {α1, . . . , αe−1}. Hence
|V(IF ,H)| = q − e.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 26

Proposition 2.3.11. There exist k + 1 polynomials f0(x), . . . , fk(x) ∈ Fq[x]
such that

|V(IF ,H)| =
(
q − 1− e+ k

k

)
.

Proof. We choose

fk(x) =
e−k∏
i=1

(x− αi),

where αi ∈ F∗q for every i = 1, . . . , e−k and αi 6= αj for every i 6= j. Moreover
we can take, for j = 0, . . . , k − 1,

fj(x) = xk−jfk(x).

Then
F (a, x) = fk(x)(xk + a1x

k−1 + . . .+ ak),

and so F (a, x) divides xq−1 − 1 if and only if xk + a1x
k−1 + . . .+ ak divides

xq−1 − 1

fk(x)
=

∏
α∈F∗qr{α1,...αe−k}

(x− α) =: p(x).

The number of polynomials of degree k that divide p(x) is equal to the number
of ways to choose the k roots from the remaining q−1−e+k, i.e.

(
q−1−e+k

k

)
.

Since 〈xk, xk−1, . . . , 1〉 = Fq[x]≤k, we obtain every such a polynomial with a
suitable choice of a = α.

2.3.1 A conjecture on the bound

We have shown some bound on the cardinality of V(IF ,H) when H(x) =
xq−1 − 1. Now we try to formalize better this problem in order to find the
best possible bound.

Let Fq be a finite field and let e, k be positive integers with k ≤ e < q−1.
Let Te be the set

Te =
{
p(x) ∈ Fq[x] | deg p = e , lc(p) = 1, p(x)|xq−1 − 1

}
.

We would like to find the value

M(e, k, q) := max {|W ∩ Te| | W is a subspace of Fq[x]≤e, dimW = k + 1} .

By using the results proved in the previous section we can determine
exactly the value M(e, k, q) in three simple cases.

CHAPTER 2. THE LINEAR DIVISION PROBLEM 27

• When e = k then we have

M(e, e, q) =

(
q − 1

e

)
.

In fact, since e = k, we can take W = Fq[x]≤e and so we obtain
W ∩ Te = Te.

• When k = 1 then, by Lemma 2.3.1 and by Proposition 2.3.10, we have

M(e, 1, q) = q − e.

• If e = q − 2 then, as we have seen in Remark 2.3.9 we have

M(q − 2, k, q) = k + 1.

For the general case we conjecture that the maximum M(e, k, q) is ob-
tained by taking a polynomial p(x) of degree e− k that divides xq−1− 1 and
choosing the subspace

W = 〈p(x), xp(x), . . . , xkp(x)〉.

From this we would obtain the following conjecture.

Conjecture 1. Let q be a power of a prime, and let e, k positive integers
such that 0 < k ≤ e < q − 1. Then

M(e, k, q) =

(
q − 1− e+ k

k

)
.

Chapter 3

List Decoding

In this chapter we introduce the new notion for decoding error-correcting
codes called list decoding. List decoding generalizes the notion of error-
correction, when the number of errors is potentially very large.

Suppose that to transmit information over a noisy channel, the transmit-
ter sends a codeword of an error-correcting code. This transmitted word is
corrupted by the noisy channel, and the receiver gets some corrupted word,
the so-called received word. If the number of errors that occurs during trans-
mission is very large, then the received word may actually be closer to some
other codeword other than the transmitted one. Under the mandate of list
decoding, the receiver is required to compile a list of all codewords within
a reasonable size Hamming ball around the received word, and not just the
nearest one. The list decoding is declared to be succesful if this list includes
the transmitted word.

Let’s try to explain better what is list decoding. One of the first obser-
vations that can be made about a code C with minimum distance d = 2t+ 1
is that it can unambiguously correct t errors, i.e., given a any word x ∈ Qn,
there exists at most one codeword c ∈ C such that d(x, c) ≤ t. It is also easy
to find a word x such there exist two codewords at distance ≤ t+ 1 from it,
so one can not improve the error bound for unambiguous decoding. However
it was realized early on that unambiguous decoding is not the only useful
notion of recovery from error. In the 1950’s Elias [4] proposed the notion of
list decoding in which a decoding algorithm is expected to output a list of
all codewords within a given distance e from a received word x ∈ Qn. If the
list of words output is relatively small, then one could consider this to be
a reasonable recovery from error. Algorithmically, this problem is stated as
follows:

Definition. The list decoding problem for a code C is a process that takes

28

CHAPTER 3. LIST DECODING 29

as input a received word x ∈ Qn and an error bound e, and then outputs a
list of all codewords c(1), . . . , c(s) ∈ C that differ from x in at most e places.

As usual, the goal is to solve the list decoding problem efficiently, i.e. in
time polynomial in n.

3.1 Decoding BCH codes

In this section we are going to study a way to analize the problem of list
decoding for BCH codes. So, from now on we work with a primitive BCH
code C of length n = qm − 1 and designed distance δ = 2t+ 1 over Fq.

We observe that, in order to correct a received word, it is sufficient to find
the error-locator and the error-evaluator polynomials σ(z), ω(z). So we can
transform our goal in the research of all the possible couples of error-locator
and error-evaluator polynomials {(σi(z), ωi(z))}si=1 such that the corrispon-
dent list of codewords {c(i)}si=1 satisfies the list decoding problem.

For a BCH code we have seen in the previous chapter that, in order to
find the error-locator and the error-evaluator polynomials, using the so-called
key equation

ω(z) ≡ S(z)σ(z) mod (z2t),

it is sufficient to solve the linear system


s1 s2 · · · se+1

s2 s3 · · · se+2
...

...
...

s2t−e s2t−e+1 · · · s2t




σe
σe−1

...
σ1

σ0

 =


0
0
...
0

 .
Such a linear system is of the form

Seσ = 0

with Se ∈M(2t− e, e+ 1,Fqm) and σ ∈ Fe+1
qm .

Definition 3.1.1. The matrix Se ∈ M(2t − e, e + 1,Fqm) defined above is
called the e-th syndrome matrix of the received word r.

Now we would like to know what happens when e ≤ t, i.e. when we
can effectively correct the received word, and when e > t, i.e. when we are
beyond the error-correcting bound.

CHAPTER 3. LIST DECODING 30

3.2 Unique decoding

When the number of errors is not greater of the error-correction bound we
have Se ∈ M(2t − e, e + 1,Fq), with 2t − e ≥ e. In this case rk(Se) ≤ e,
because

e+ 1 = rk(Se) + dim ker(Se),

and we know that there exists σ ∈ ker(Se).
The following proposition shows that rk(Se) = e.

Proposition 3.2.1. Let e be the number of errors, with e ≤ t, and let S ′e be
the principal square submatrix of S of order e, i.e. the submatrix

S ′e =


s1 s2 · · · se
s2 s3 · · · se+1
...

...
se se+1 · · · s2e−1


of Se obtained taking the first e rows and the first e columns of Se. Thus S ′e
is invertible.

Proof. Consider the two matrices

V =


1 a1 · · · ae−1

1

1 a2 · · · ae−1
2

...
. . .

...
1 ae · · · ae−1

e

 , D =


E1a1 0

E2a2

. . .

0 Eeae

 .
V is a Vandermonde matrix with ai 6= aj for all i 6= j, so it is invertible. Also
D is invertible because it is a diagonal matrix with non-zero entries on the

CHAPTER 3. LIST DECODING 31

principal diagonal. Moreover we have

V TDV =


E1a1 E2a2 · · · Eeae
E1a

2
1 E2a

2
2 Eea

2
e

...
. . .

...
E1a

e
1 E2a

e
2 · · · Eea

e
e

V

=


∑
Eiai

∑
Eia

2
i · · ·

∑
Eia

e
i∑

Eia
2
i

∑
Eia

3
i

∑
Eia

e+1
i

...
. . .

...∑
Eia

e
i

∑
Eia

e+1
i · · ·

∑
Eia

2e−1
i



=


s1 s2 · · · se
s2 s3 · · · se+1
...

...
se se+1 · · · s2e−1

 = S ′e.

Then S ′e is invertible.

Therefore, when e ≤ t we have that rk(Se) = e and dim ker(Se) = 1,
so the error-locator polynomial σ is the unique (up to scalar) generator of
ker(Se).

3.3 The decoding function

Now suppose that the number of errors e that occur in the received word r
is greater than the error-correction bound t. We put e = t + s where s is
a positive integer smaller than t. So the e-th syndrome matrix Se has t − s
rows and t+ s+ 1 columns. For the rank-nullity theorem

t+ s+ 1 = rk(Se) + dim ker(Se)

and rk(Se) ≤ t−s, so dim ker(Se) ≥ 2s+1. Also in this case, by the following
proposition, we know exactly the rank of Se.

Proposition 3.3.1. Let e > t be the number of errors, with e = t + s and
s < t. Then the principal square submatrix S ′e of order t− s is invertible.

Proof. The proof is the same of the case e ≤ t. We have

S ′e = Ṽ T D̃Ṽ ,

CHAPTER 3. LIST DECODING 32

where

Ṽ =


1 a1 · · · at−s−1

1

1 a2 · · · at−s−1
2

...
. . .

...
1 at−s · · · at−s−1

t−s

 , D̃ =


E1a1 0

E2a2

. . .

0 Et−sat−s

 .
Since Ṽ and D̃ are both invertible, we conclude the proof.

Corollary 3.3.2. Let e > t be the number of errors, with e = t+s and s < t.
Then rk(Se) = t− s and dim ker(Se) = 2s+ 1.

In this case σ ∈ ker(Se), with dim ker(Se) = 2s + 1. So there exist
f0, f1, . . . , f2s ∈ Fqm [z] such that F = {f0, f1, . . . , f2s} is an escalier basis of
ker(S), i.e. ker(S) = 〈f0, f1, . . . , f2s〉,

e = deg f0 > deg f1 > · · · > deg f2s,

and lc(fi) = 1 ∀ i = 0, . . . , 2s.
What do we know about the error-locator polynomial σ(z)? We know

that:

- deg σ = e;
- all the roots of σ are in Fqm ;
- σ has not multiple roots;
- 0 is not a root of σ.

The last three conditions are equivalent to the following

• σ divides the polynomial zq
m−1 − 1.

So, what we can do is listing all the possible error-locator polynomials
in ker(Se) that satisfies the conditions above, i.e. all the polynomials of the
form

σ(a1, . . . , a2s, z) := f0(z) +
2s∑
i=1

aifi(z)

such that σ(a, z) divides zq
m−1 − 1.

Let H(z) = zq
m−1 − 1, our goal is finding the variety V (IF ,H) of the

divisibility ideal IF ,H .

Definition 3.3.3. In this case the divisibility set of H(z) = zq
m−1 − 1 by F

is called error-locator set of degree e of the received word r and is denoted by

Σ(r, e) := {σ(α, z) | α ∈ V (IF ,H)} .

CHAPTER 3. LIST DECODING 33

Remark 3.3.4. If we define the set

Te :=
{
p(z) ∈ Fqm [z] | deg p = e, p(z)|zqm−1 − 1, lc(p) = 1

}
,

then
Σ(r, e) = ker(Se) ∩ Te.

Before understanding if a σ ∈ Σ produces a word c that effectively is in
the code C, we would like to understand how we can obtain such c from a
polynomial σ ∈ Σ

Suppose we have a possible error-locator polynomial σ, how can we correct
the received word r? We know the positions of the errors, but to correct r
we also need the values Ei of the error vector E. Now we briefly present two
ways to find E.

The first is by the Forney’s equation. The key equation tells us that the
error-evaluator polynomial ω satisfies

σ(z)S(z) ≡ ω(z) mod
(
z2t
)
.

But degω < 2t, so ω(z) = (σ(z)S(z) mod (z2t)).
After calculating the polynomial ω, the Forney’s equation gives us the

values

Ei = − ω(a−1
i)

σ′(a−1
i)

.

The second method is based on the definition of the syndromes.

si =
e∑
j=1

Eja
i
j i = 1, . . . 2t.

If we take only the first e equations we obtain the linear system
a1 a2 · · · ae
a2

1 a2
2 · · · a2

e
...

...
ae1 ae2 · · · aee



E1

E2
...
Ee

 =


s1

s2
...
se

 (3.1)

Observe that the matrix A of the system is a quasi-Vandermonde matrix
with determinant

detA =
e∏
i=1

ai
∏
i<j

(ai − aj).

CHAPTER 3. LIST DECODING 34

Since ai 6= 0 for all i = 1, . . . , e and ai 6= aj for all i 6= j, such determinant is
not zero, so the linear system has a unique solution

E =


E1

E2
...
Ee

 ∈ (Fq)e .

Now we would like to know if the two methods are equivalent, i.e. if the
solutions obtained by using the two methods are the same.

Theorem 3.3.5. Let C be a BCH code of length n = qm − 1 and designed
distance δ = 2t + 1 over Fq. Let r ∈ Fnq be a received word and suppose
that in r occur e > t errors, with e = t + s and e-th syndrome matrix
Se ∈ M(t − s, t + s + 1,Fq). Let F = {f0, . . . , f2s}, with ker(Se) = 〈F〉
and let Σ(r, e) be the error-locator set of degree e for r. Then, for every

σ ∈ Σ(r, e), the vector Ẽ obtained by Forney’s equation is equal to the vector

Ê obtained solving the linear system 3.1.

Proof. Let Ê the error vector obtained by solving the linear system 3.1. Then
it satisfies the equations

si =
e∑
j=1

Êja
i
j i = 1, . . . , 2t.

Now let us define

ω̂(z) :=
e∑
i=1

Êiai
∏
j 6=i

(1− ajz).

Now observe that

ω̂(z)

σ(z)
=

e∑
i=1

Êiai
1− aiz

=
e∑
i=1

Êiai

∞∑
l=0

(aiz)l

=
∞∑
l=0

zl
e∑
i=1

Êia
l+1
i =

2t−1∑
l=0

sl+1z
l +

∞∑
l=2t

Blz
l,

where Bl =
∑e

i=1 Êia
l+1
i . So ω̂(z) satisfies the key equation

ω̂(z) ≡ σ(z)S(z) mod (z2t).

Since deg ω̂(z) < e < 2t, it must be ω̂ = (σ(z)S(z) mod (z2t)) = ω̃(z). So,
by Forney’s equation we obtain

Êi = − ω̂(a−1
i)

σ′(a−1
i)

= − ω̃(a−1
i)

σ′(a−1
i)

= Ẽi

and we conclude the proof.

CHAPTER 3. LIST DECODING 35

Therefore we can define the notion of decoding by a polynomial σ.

Definition 3.3.6. Let r be a received word and σ ∈ Σ(r, e) and let E be
the vector obtained by one of the two methods shown above. Then the word
obtained from r decoding by σ is the word c = r − ε, where ε is the error
vector defined by εji = Ei and εl = 0 for l /∈ {j1, . . . , je}. Moreover we can
define the e-decoding function of r to be the function

Dr,e : Σ(r, e) −→ Fnq
such that

Dr,e(σ) = c

Then, given the set Σ(r, e) of all the possible error-locator polynomials,
we would like to know if, decoding the received word r by some σ ∈ Σ(r, e),
we really obtain a word c of the code C, i.e. if the two conditions

1. deg σ = e,

2. σ(z) divides zq
m−1 − 1,

are also sufficient.

3.4 Fundamental Theorems for list decoding

We have two different answers for RS codes and BCH codes. In fact, while for
BCH codes the two conditions above are not sufficient, for a Reed-Solomon
code we have the following theorem.

Theorem 3.4.1 (Fundamental Theorem for RS list decoding). Let C be a
Reed-Solomon code of length n = q − 1 and dimension k + 1 over Fq, with
n−k = 2t+1. Let r ∈ Fnq be a received word and suppose that in r occur e > t
errors, with e = t+ s and e-th syndrome matrix Se ∈M(t− s, t+ s+ 1,Fq).
Let F = {f0, . . . , f2s} be an escalier basis for ker(Se) and let Σ(r, e) be the
error-locator set of degree e for r. Then, for every σ ∈ Σ(r, e), Dr,e(σ) ∈ C.

Proof. Since σ ∈ ker(Se), then σ satisfy the key equation

σ(z)S(z) ≡ ω(z) mod (z2t), (3.2)

with degω < e.
Let a1, . . . , ae be the roots of σ. Since σ ∈ Σ(r, e) then the roots are all

distinct and they are in F∗q. Then the set of polynomials {pi(z)}ei=1 defined
by

pi(z) := ai
∏
j 6=i

(1− ajz)

CHAPTER 3. LIST DECODING 36

is a basis of the vector space Fq[z]<e. Then we can write

ω(z) =
e∑
i=1

Eipi(z) =
e∑
i=1

Eiai
∏
j 6=i

(1− ajz).

By the Key equation we have

ω(z)

σ(z)
≡ S(z) mod (z2t) (3.3)

and by the definition of ω and σ

ω(z)

σ(z)
=

e∑
i=1

Eiai
1− aiz

=
e∑
i=1

Eiai

∞∑
`=0

a`iz
`

=
∞∑
`=0

z`
e∑
i=1

Eia
`+1
i .

Hence
Eia

`+1
i = s`+1 for ` = 0, 1, . . . , 2t− 1.

Let ε the error vector defined by εji = Ei and εl = 0 for l /∈ {j1, . . . , je},
where the ji are such that ai = βji and β is a primitive element of Fq.

We obtain that Dr,e(σ) = r − ε satisfies, for all i = 0, . . . , 2t− 1,

Dr,e(σ)(βi) = r(βi)− ε(βi) = si −
∑

Eja
i
j = si − si = 0,

so it belongs to the code C.

Remark 3.4.2. Consider the decoding function

Dr,e : Σ(r, e) −→ Fnq

with Dr,e(σ) = c, where c is the vector obtained decoding r by σ. The
Fundamental Theorem for RS List Decoding states that for every σ in the
error-locator set Σ(r, e), Dr,e(σ) is a codeword. Moreover observe that, even
if we imposed that the distance between r and the codeword c must have
distance e, we can not be sure that d (r,Dr,e(σ)) = e. But, by looking at how
the decoding function works, we can state that

d (r,Dr,e(σ)) ≤ e.

In particular the decoding function is defined

Dr,e : Σ(r, e) −→ B(r, e) ∩ C.

CHAPTER 3. LIST DECODING 37

Let C be a primitive BCH code of length qm − 1 and designed distance
δ = 2t+ 1, i.e. the BCH code over Fq generated by the polynomial

lcm(m1(x), . . . ,md(x)),

where mi(x) is the minimal polynomial of αi over Fq and α is a primitive
element of Fqm .

While in the case e ≤ t everything done for RS codes is valid also for
BCH codes, in the case e > t we have some problems. The Fundamental
Theorem for RS list decoding is not true for a BCH code. In fact, given a
σ ∈ Σ, decoding the received word by σ there is a problem with the linear
system 

a1 a2 · · · ae
a2

1 a2
2 · · · a2

e
...

. . .
...

ae1 ae2 · · · aee



e1

e2
...
ee

 =


s1

s2
...
se


AE = s.

This is a system of linear equations with coefficients in Fqm , but we need the
error vector E to be in (Fq)e. So we need other conditions, for example we
could require that

A−1s ∈ (Fq)e

or, equivalently, that

ω(a−1
i)

σ′(a−1
i)
∈ Fq ∀ i = 1, . . . , e.

One of these conditions is necessary, but it is also sufficient, as the following
theorem shows.

Theorem 3.4.3 (Fundamental Theorem for BCH list decoding). Let C be
a BCH code of length n = qm − 1 and designed distance δ = 2t + 1 over
Fq. Let r ∈ Fnq be a received word and suppose that in r occur e > t errors,
with e = t + s and e-th syndrome matrix Se ∈ M(t − s, t + s + 1,Fqm).
Let F = {f0, . . . , f2s} be an escalier basis for ker(Se) and let Σ(r, e) be the
error-locator set of degree e for r. Given σ(z) ∈ Σ(r, e), we put ω(z) :=
(σ(z)S(z) mod (z2t)). Then, Dr,e(σ) ∈ C if and only if

ω(a−1
i)

σ′(a−1
i)
∈ Fq ∀ i = 1, . . . , e. (3.4)

CHAPTER 3. LIST DECODING 38

Proof. Obviously the condition

ω(a−1
i)

σ′(a−1
i)
∈ Fq ∀ i = 1, . . . , e

is necessary, because otherwise Dr,e(σ) /∈ Fnq , and so it is not in C.
Moreover it is also sufficient. First of all observe that if (3.4) holds, then

Dr,e(σ) ∈ Fnq . Now, proceeding in the same way as in the proof of Theorem
3.4.1 we observe that

Dr,e(σ)(βi) = r(βi)− ε(βi) = si −
∑

Eja
i
j = si − si = 0.

From this we can conclude that Dr,e(σ) ∈ C.

3.5 Decoding binary BCH codes

For a binary BCH code, when we try to decode a received word r by σ, we
observe that, by the Forney’s equation, we have

ω(a−1
i)

σ′(a−1
i)

= Ei ∀ i = 1, . . . , e.

Assuming that the received word r contains exactly e errors we have that
Ei ∈ F∗2, i.e. Ei = 1 for every i = 1, . . . , e. So ω(ai) = σ′(ai) in e points.
Furthermore degω < e and deg σ′ < deg σ = e. Therefore

ω(z) = σ′(z).

We can put it in the key equation obtaining

σ′(z) ≡ S(z)σ(z) mod (z2t).

If we write

σ(z) = σe(z
2) + zσo(z

2)

then σ′(z) = σo(z
2), i.e. σ′(z) = σ′e−1z

e−1 + . . .+ σ′0, with

σ′k =

{
σk+1 if k is even
0 if k is odd

and the key equation holds for every coefficient of the two polynomials. So
we have, for every k = 0, . . . , e− 1,

CHAPTER 3. LIST DECODING 39

k∑
i=0

σisk−i+1 = (σS)k = σ′k =

{
σk+1 if k is even
0 if k is odd

.

Summarizing, we have, for k = 0, . . . , e− 1,

k∑
i=0

σisk−i+1 + σk+1 = 0 if k is even,

k∑
i=0

σisk−i+1 = 0 if k is odd,

and, for k = e, . . . , 2t− 1

k∑
i=0

σisk−i+1 = 0,

where σk := 0 if k > e.
Then we obtain the linear system

S̃eσ = 0

where S̃e ∈M(2t, e+ 1,F2m) is the matrix defined as follows:

S̃e =



0 · · · 0 1 s1

0 · · · 0 s1 s2

0 · · · 1 s1 s2 s3

0 · · · 0 s1 s2 s2 s4
...

...
δ s1 · · · se
s1 s2 · · · se+1

s2 s3 · · · se+2
...

...
...

s2t−e s2t−e+1 · · · s2t


, δ =

{
0 if e is even
1 if e is odd

Definition 3.5.1. The matrix S̃e ∈M(2t, e+ 1,F2m) defined above is called
the e-th extended syndrome matrix of the word r.

We are intereseted to understand what happens when t < e < 2t. Are
those new conditions useful, or they are dependent by the equations in Se?
Obviously, since Se is a submatrix of S̃e, dim ker(S̃e) ≤ dim ker(Se) = 2s+ 1.

Then we would like to know if dim ker(S̃e) < dim ker(Se) or if they are equal.

CHAPTER 3. LIST DECODING 40

Proposition 3.5.2. dim ker(S̃e) ≤ s+ 1

Proof. Consider the submatrix (t− s)× (t− s) obtained taking the first t− s
columns and the last t − s rows. This submatrix is exactly the principal
square submatrix S ′e of Se. Then we add the rows L2j−1 and the columns
Ct+s−2j for j = 0, 1, . . . , s− 1. We obtain the following submatrix:

T =



1
0 1 s2

0

1 s2

1 s2 s4 s2s

S ′e Λ


.

It is clear that det(T) = ± det(S ′e) 6= 0, so rk(S̃e) ≥ t. Hence dim ker(S̃e) ≤
s+ 1.

For a binary BCH code ther is a nice property that involves the syn-
dromes, and it is expressed by the following proposition.

Proposition 3.5.3. In a binary BCH code C the syndromes satisfy the re-
lation

s2j = s2
j ∀ j = 1, . . . , t.

Proof. Since C is a binary BCH code the errors Ei are all 1s. So the syn-
dromes can be rewritten as

sj =
e∑
i=1

Eia
j
i =

e∑
i=1

aji .

Then

s2j =
e∑
i=1

a2j
i

(∗)
=

(
e∑
i=1

aji

)2

= s2
j

where the identity (∗) holds because we are in characteristic 2.

CHAPTER 3. LIST DECODING 41

Theorem 3.5.4. Let Tk ∈M(2k, 2k,F2m) be the matrix defined as follows:

Tk =



0 · · · 0 1 s1

0 · · · 0 s1 s2

0 · · · 1 s1 s2 s3

0 · · · 0 s1 s2 s3 s4
...

...
1 s1 · · · s2k−1

s1 s2 · · · s2k


,

with the properties s2j = s2
j ∀ j = 1, . . . , k. Then the rank of Tk is exactly

k.

Proof. We proceed by induction on k.
For k = 1 we have the matrix

T1 =

[
1 s1

s1 s2

]
,

that has determinant s2
1 − s2 = 0, and so its rank is 1.

Now suppose that rk(Tk−1) = k− 1; let us transform the matrix through
the following series of row and column operations:

C2k ← C2k + s1C2k−1,

and, for all odd j such that 3 ≤ j ≤ 2k − 3,

Lh ← Lh + sh−jLj ∀ h ∈ {j + 1, j + 2, . . . , 2k}.

After those operations the matrix obtained from Tk is the following:

T ′k =

[
0 D
M ?

]
,

where D =

[
1 0
s1 0

]
, M is equivalent to Tk−1 and its odd columns are

0
0
...
0
0
1
0


,



0
0
...
1
0
0
0


, . . . ,



1
0
...
0
0
0
0


.

CHAPTER 3. LIST DECODING 42

By the induction hypothesis M has rank k− 1 and hence its column space is
spanned by the above vectors. To conclude that Tk has rank k we then need
to prove that the even-labelled entries in the last column of T ′k are all zero.

Let p ∈ {2, 3, . . . , k}. By careful examination we find that the (2p, 2k)
entry of T ′k equals

s2p +
∑

(i1,...,i`)∈Ap

si1si2 · . . . · si` ,

where Ap is the set of all sequences (i1, . . . , il) of positive integers whose sum
is 2p and in which i1 and il are odd and the other ih are even. Our goal is
to show that this sum equals s2p

Observe that the map σ : (i1, i2 . . . , i`) 7→ (i`, i`−1, . . . , i1) is an involution
on Ap and si1si2 ·. . .·si` = si`si`−1

·. . .·si1 , so the sum is only on the symmetric
sequences in Ap, i.e.

∑
(i1,...,i`)∈Ap

si1si2 · . . . · si` =
∑

(i1,...,i`)∈Ap(i1,...,i`)=(i`,...,i1)

si1si2 · . . . · si`

Next, if we have a symmetric sequence (i1, . . . , i2j) = (i2j, . . . , i1) in Ap
with an even number of entries and j ≥ 2 we use the equality

sijsij+1
= s2

ij
= s2ij

to see that it defines the same product as the symmetric sequence with 2j−1
entries (i1, . . . , ij−1, 2ij, ij+2, . . . i2j). Pairing sequences in this manner and, if
p is odd, noting that s2

p = s2p, we find that

∑
(i1,...,i`)∈Ap

si1si2 · . . . · si` =

{
s2p +

∑
(i1,...,i`)∈Bp

si1si2 · . . . · si` if p is odd∑
(i1,...,i`)∈Bp

si1si2 · . . . · si` if p is even,

where Bp denotes the subset of Ap consisting of the symmetric sequences
(i1, . . . , i2j+1) in which ij+1 = 2t for some odd integer t. If p is odd then Bp

is empty and we are done.
Assume now that p = 2q for some integer q. Then,

θ : (i1, ..., i2j+1) 7→ (i1, ..., ij−1, ij, (ij+1)/2)

maps Bp bijectively onto Aq, and using sij+1
= s2

(ij+1/2) we deduce that

∑
(i1,...,i`)∈Bp

si1si2 · . . . · si` =

 ∑
(i1,...,i`)∈Aq

si1si2 · . . . · si`

2

.

CHAPTER 3. LIST DECODING 43

By induction, we conclude that∑
(i1,...,i`)∈Bp

si1si2 · . . . · si` = (s2q)
2 = s2p.

Corollary 3.5.5. dim ker(S̃e) = s+ 1

Proof. We have that dim ker(S̃e) ≤ s + 1, and we know by the previous

theorem that all the columns of S̃e are linear combinations of the t vectors

0
0
...
0
0
1
s1


,



0
0
...
1
s1

s2

s3


, . . . ,



1
s1
...

s2t−4

s2t−3

s2t−2

s2t−1


.

So rk(S̃e) ≤ t. Then dim ker(S̃e) = t+ s+ 1− rk(S̃e) ≥ t+ s+ 1− t = s+ 1,
and we conclude.

Now we know that in binary BCH codes the kernel of the extended syn-
drome matrix S̃e is s+ 1-dimensional. So there exist only s+ 1 polynomials
f0, f1, . . . , fs ∈ F2m [z] such that {f0, f1, . . . , fs} is an escalier basis for ker(S̃e),
and we put

F̃ := {f0, f1, . . . , fs}

Definition 3.5.6. In this case the divisibility set of H(z) = zq
m−1 − 1 by F̃

is called extended error-locator set of degree e of the received word r and is
denoted by

Σ̃(r, e) :=
{
σ(α, z) | α ∈ V (IF̃ ,H)

}
.

Also the decoding function is naturally extended as the function

D̃r,e : Σ̃(r, e) −→ Fn2 ,

where D̃r,e(σ) = r− ε, and the vector ε is obtained by Forney’s equations or
by solving the linear system (3.1).

We can state now a stronger form of the Fundamental Theorem for BCH
list decoding, that is valid only for binary BCH codes.

CHAPTER 3. LIST DECODING 44

Theorem 3.5.7 (Fundamental Theorem for binary BCH list decoding). Let
C be a binary BCH code of length n = 2m−1 and designed distance δ = 2t+1
over F2. Let r ∈ Fn2 be a received word and suppose that in r occur e > t

errors, with e = t+ s and e-th extended syndrome matrix S̃e ∈M(2t, t+ s+

1,Fm2). Let F̃ = {f0, . . . , fs} be an escalier basis for ker(S̃e) and let Σ̃(r, e) be

the extended error-locator set of degree e for r. Then, for every σ ∈ Σ̃(r, e),

D̃r,e(σ) ∈ C.

Proof. It follows by Fundamental Theorem for BCH list decoding. In fact
the extended syndrome matrix S̃e contains the conditions that σ′(z) = ω(z),
and therefore that

ω(a−1
i)

σ′(a−1
i)
∈ F2 ∀ i = 1, . . . , e,

3.6 Decoding up to a certain error-threshold

Let C be a primitive BCH code of length qm − 1 and designed distance
δ = 2t+ 1 over Fq, and let r be a received word.

Everything we have discussed before is true with the assumption that we
have exactly e errors in r. Now suppose that we don’t know how many errors
occur in r. We would like to correct up to κ errors and we just suppose that
t < κ < 2t.

Definition 3.6.1. We call such integer κ the error-threshold.

Definition 3.6.2. We define, for k = 1, . . . , n, the set

Tk := {p(z) ∈ Fq[z] | p(z)|zn − 1, deg p = k}

the set of all polynomials of a fixed degree that divide zq−1 − 1, and

T :=
n⋃
k=1

Tk = {p(z) ∈ Fq[z] | p(z)|zn − 1, } .

We would like to understand what happens when we try to correct up
to κ errors. In particular we want to understand if in Σ(r, κ) we find the
error-locator polynomials of all the codewords with distance at most κ from
r, and not only the codewords with distance exactly κ.

CHAPTER 3. LIST DECODING 45

Definition 3.6.3. Given an error threshold κ, we denote by

L(r, κ) = {c ∈ C | d(c, r) ≤ κ} = B(r, κ) ∩ C

the set of all codewords c ∈ C with distance at most κ from r.

We first prove the following important result.

Lemma 3.6.4. Let σ(z) ∈ Fqm [z]≤κ be a polynomial. Then

σ ∈ ker(Sκ)⇐⇒ σ(z)S(z) ≡ ω(z) mod (z2t), with degω < κ

Proof. Let ω(z) ∈ Fqm [z]<2t be the polynomial such that

σ(z)S(z) ≡ ω(z) mod (z2t).

Then degω < κ if and only if ω` = 0 for ` = κ, . . . , 2t− 1. But

ωκ+j−1 =
κ∑
i=0

σκ−iSi+j.

Hence degω < κ if and only if σ satisfies the linear system Sκσ = 0, i.e.
σ ∈ ker(Sκ).

Now we prove that every codeword c ∈ L(r, κ) has its error-locator poly-
nomial in ker(Sκ).

Theorem 3.6.5. Let c ∈ C be a codeword such that d(c, r) = e ≤ κ. Then
there is a polynomial σc ∈ ker(Sκ) ∩ Te such that Dr,κ(σc) = c.

Proof. Since d(c, r) = e, there exist a1, . . . , ae ∈ F∗qm such that

σc(z) =
e∏
i=1

(1− aiz)

is the error-locator polynomial, and

ωc(z) =
e∑
i=1

Eiai
∏
j 6=i

(1− ajz)

is the error-evaluator polynomial. The polynomials σc and ωc satisfy the key
equation

σc(z)S(z) ≡ ωc(z) mod (z2t),

so, by Lemma 3.6.4, σc ∈ ker(Sκ). Moreover by definition σc ∈ Te and
decoding r by σc we obtain c.

CHAPTER 3. LIST DECODING 46

Theorem 3.6.6. Let c ∈ C be a codeword such that d(c, r) = e ≤ κ. Then
there exist exactly

(
n−e
κ−e

)
polynomials σi for i = 1, . . . ,

(
n−e
κ−e

)
such that σi ∈

ker(Sκ) ∩ Tκ and Dr,κ(σi) = c.
Moreover the subspace W ⊂ Fqm [z]≤κ generated by the σis is equal to

〈σc, zσc, . . . zκ−eσc〉. and it contains all the polynomials σ ∈ T such that
Dr,κ(σ) = c.

Proof. Let σ̃ as in the previous theorem, i.e. such that deg σ̃ = e and it is
the error-locator polynomial of r. Put ` := κ − e, and let be a1, . . . , ae the
positions of the errors and E1, . . . , Ee the corresponding errors. Then the
polynomial

ω̃(z) :=
e∑
i=1

Eiai
∏
j 6=i

(1− ajz)

is such that
ω̃(z) ≡ S(z)σ̃(z) mod (z2t), (3.5)

and deg ω̃ < e.
Then we can choose ae+1, . . . , ae+` ∈ F∗qm r {a1, . . . , ae} all distinct, and

we put

σ̄(z) := σ̃(z)
e+∏̀
i=e+1

(1− aiz).

Moreover we put Ei := 0 for i = e+ 1, . . . , e+ `. Then, by (3.5), multiplying
both sides by

∏e+`
i=e+1(1− aiz), we obtain

ω̃(z)
e+∏̀
i=e+1

(1− aiz) ≡ S(z)σ̄(z)

But

ω̃(z)
e+∏̀
i=e+1

(1− aiz) =
e∑
i=1

Eiai
∏
j 6=i

(1− ajz)
e+∏̀
i=e+1

(1− aiz) =

=
e∑
i=1

Eiai
∏

j=1,...,κ
j 6=i

(1− ajz) =

(∗)
=

κ∑
i=1

Eiai
∏

j=1,...,κ
j 6=i

(1− ajz)

= ω̄(z)

CHAPTER 3. LIST DECODING 47

where the equality (∗) holds because

κ∑
i=e+1

Eiai
∏

j=1,...κ
j 6=i

(1− ajz) = 0.

The polynomials (σ̄, ω̄) satisfy the key equation, with deg σ̄ = κ and
deg ω̄ < κ, so σ̄ ∈ ker(Sκ).

Using Forney’s equations we obtain the error vector with entries Ei, i =
1, . . . , κ in the positions corresponding to a1, . . . , aκ, and hence Dr,κ(σ̄) =
c.

Remark 3.6.7. This theorem is a kind of inverse of the Fundamental Theorem
for RS List Decoding. It ensures that in the set Σ(r, κ) we find the error-
locator polynomials of all the codewords in the set L(r, κ). In particular,
if we fix the degree of the error-locator polynomial, we are not fixing the
number of errors that can occur, but only the maximum of such errors.

Formally, recall that the decoding function is defined as the function

Dr,κ : Σ(r, κ) −→ Fnq
with Dr,κ(σ) = c, where c is the vector obtained decoding r by σ. The
Fundamental Theorem for RS List Decoding states that c is a codeword and
the image of Dr,κ is contained in L(r, κ). Theorem (3.6.6) states that such a
function is surjective onto L(r, κ), i.e.

Dr,κ : Σ(r, κ) � L(r, κ).

Remark 3.6.8. For binary BCH codes we can similarly prove that in ker(S̃e)
we can find the error-locator polynomials of all the codewords with distance
exactly κ. Hence the extended decoding function

D̃r,κ : Σ̃(r, κ) � S(r, κ)

is surjective onto the set

S(r, κ) = {c ∈ C | d(c, r) = κ} .

Observe that in this situation we don’t know how many errors occur in r
so we don’t know a priori the rank of the syndrome matrix Sκ. In fact, if r
is itself a codeword, the κ-th syndrome matrix Sκ is the zero matrix.

Definition 3.6.9. We denote by

e := min{d(c, r) | c ∈ C}

the minimum weight of an error pattern.

CHAPTER 3. LIST DECODING 48

The following proposition tells us something about the rank of the syn-
drome matrix.

Proposition 3.6.10. Let r be a received word, and let e be the minimum
weight of an error pattern. Given an error threshold κ = t+s with 0 < s < t.
Then

rk(Sκ) = min{t− s, e}.

Proof. Let e be the minimum weight of an error pattern. Hence

si = r(βi) = ε(βi) =
e∑
j=1

Eja
i
j

We can rearrange the ai such that Ei 6= 0 for i = 1, . . . , e. As in the proof of
Proposition 3.3.1 we take the matrices

Ṽ =


1 a1 · · · at−s−1

1

1 a2 · · · at−s−1
2

...
. . .

...
1 at−s · · · at−s−1

t−s

 , D̃ =


E1a1 0

E2a2

. . .

0 Et−sat−s

 ,
and we observe that the principal minor S ′κ of Sκ with dimension (t−s)×(t−s)
satisfies

S ′e = Ṽ T D̃Ṽ .

The matrix Ṽ is invertible, so it has maximum rank. Since the rank of the
matrix D̃ is exactly min{t− s, e} we have that rk(S ′κ) = min{t− s, e}, and
hence rk(Sκ) ≥ min{t− s, e}.

Now we show the other inequality, i.e. rk(Sκ) ≤ min{t − s, e}. Since
Sκ ∈M(t− s, t+ s+ 1,Fqm) we have trivially that rk(Sκ) ≤ t− s. Moreover,
if c̄ is a codeword with distance e from r with error-locator polynomial σc̄,
by Theorem 3.6.6 we have that the subspace 〈σc̄, zσc̄, . . . zκ−eσc̄〉 is contained
in ker(Sκ). So dim ker(Sκ) ≥ κ− e+ 1 = t+ s− e+ 1. Therefore rk(Sκ) ≤ e.

Chapter 4

Bounds on list decoding

In this chapter, we state some combinatorial result concerning list decod-
ing. In particular we give some bounds on the size of list decoding for a
general code first, and then for the special cases of BCH and Reed-Solomon
codes. This is because in order to perform list decoding up to a certain er-
ror treshold κ efficiently, we need the guarantee that every ball of radius κ
has a “small”number of codewords. The motivation is that the list decoding
algorithm will have a runtime that obviously is at least the size of the list of
codewords it outputs, and we want the algorithm to be efficient even in the
worst case.

For a code C of length n and minimum distance d any Hamming ball
of radius less than d

2
can have at most one codeword, and we have unique

decoding. For list decoding we would like to have some “small ”upper bounds
on the number of codewords in a ball of radius κ for κ greater than d

2
.

We first state some results about bounds for a general code C over an
alphabet Q of q elements. One of this is based on a classical bound in
coding theory, called the Johnson bound [8]. Then we focus on BCH and
Reed-Solomon codes and we use their code structure to develope some other
bounds. For these kinds of codes we give different bounds by studing the
problem from different points of view. One is based on the study of the
cardinality of a variety in a polynomial ring over Fq, as we have seen in
the second Chapter. Another one is derived from a purely combinatorial
problem, that we observed is a general case of our problem: the uniform
packing set. The last one, proved by Madhu Sudan in [11] and in [5] is more
particular, and it works only for Reed-Solomon codes with rate ' 1

3
or less.

49

CHAPTER 4. BOUNDS ON LIST DECODING 50

4.1 General bounds

For a code C of length n over an alphabetQ of q elements, the classical bound
on the number of codeword in an Hamming ball is the Johnson Bound. There
are many different proofs of the Johnson bound in literature. The original
proof and some of its derivatives follow a linear algebra based argument [8],
while more recent proofsare more geometric.

In the following we work with a code C of length n over the alphabet
[q] = {1, . . . , q}. We use

Bq(r, e) = {x ∈ [q]n | d(r, x) ≤ e}

to denote the Hamming ball of radius e, where e is a positive integer. Most
of the results and the proofs of this section can be found in [6].

Definition 4.1.1. Let A be a finite set, and let j be a positive integer. We
denote by (

A

j

)
:= {B ⊆ A | |B| = j}

the set of all subsets of A with cardinality j.

Theorem 4.1.2. (Johnson Bound) Suppose r ∈ [q]n, and B ⊆ [q]n. Let

d = E
{x,y}∈(B

2)
[d(x, y)],

e = E
x∈B

[d(r, x)].

Then

|B| ≤
q
q−1
· d
n(

1− q
q−1
· e
n

)2

−
(

1− q
q−1
· d
n

) ,
provided the denominator is positive.

Corollary 4.1.3. Let C be any code of length n and minimum distance d
over the alphabet [q], with

d =

(
1− 1

q

)
(1− δ)n

for some δ ∈ (0, 1). Let

e =

(
1− 1

q

)
(1− γ)n

CHAPTER 4. BOUNDS ON LIST DECODING 51

for some γ ∈ (0, 1) be an integer. Suppse that γ2 > δ. Then, for all r ∈ [q]n,

|Bq(r, e) ∩ C| ≤
1− δ
γ2 − δ

.

Proof. Let B = Bq(r, e) ∩ C. Let

E
{x,y}∈(B

2)
[d(x, y)] =

(
1− 1

q

)
(1− δ′)n,

E
x∈B

[d(r, x)] =

(
1− 1

q

)
(1− γ′)n.

Then we have δ′ ≤ δ < γ2 ≤ γ′2, and by Theorem 4.1.2,

|Bq(r, e) ∩ C| ≤
1− δ′

γ′2 − δ′
= 1 +

1− γ′2

γ′2 − δ′
≤ 1 +

1− γ2

γ2 − δ
=

1− δ
γ2 − δ

.

We can also state an alphabet independent version of the Johnson Bound,
that is valide for large alphabet.

Corollary 4.1.4. Let C be a code of length n and minimum distance d over
the alphabet [q]. Suppose r ∈ [q]n and

(n− e)2 > n(n− d).

Then

|Bq(r, e) ∩ C| ≤
nd

(n− e)2 − n(n− d)
.

In particular, |Bq(r, e) ∩ C| ≤ n2.

Proof. The denominator in the upper bound in Theorem 4.1.2 equals

q

q − 1

(
q

q − 1

e2

n2
− 2e

n
+
d

n

)
≥ q

q − 1

((
1− e

n

)2

−
(

1− d

n

))
.

Therefore it follows that

|Bq(r, e) ∩ C| ≤
nd

(n− e)2 − n(n− d)
.

CHAPTER 4. BOUNDS ON LIST DECODING 52

One may wonder whether the Johnson Bound is tight, or whether it may
be possible to improve it and show that for every code with fixed distance
and length, Hamming balls of radius greater than the Johnson radius still
have polinomially many codewords, where the Johnson radius is defined to
be

eJ(n, d, q) :=

(
1− 1

q

)(
1−

√
1− q

q − 1
· d
n

)
n.

It turns out that the Johnson Bound is the best possible, that is there exist
codes which have super-polinomially many codewords in an Hamming ball
of radius slightly bigger than the Johnson radius. However, for most codes
with some additional structure, the Johnson Bound is not tight.

4.2 Madhu Sudan bound

With the approach used by Madhu Sudan that we will describe in the next
chapter, we can give an upper bound on the cardinality of the list of code-
words that have distance not greater than n − ` from a received word r.
This bound is based on Madhu Sudan work [11], and it works only for Reed-
Solomon codes, because it takes advantage of the structure of this kind of
codes given in Theorem 1.6.3. So, as usual suppose we have an [n, k+1, n−k]
Reed Solomon code over Fq, where n− k = 2t+ 1 is the minimum distance.
The result, proved by Madhu Sudan in [11] and in [5], is the following.

Lemma 4.2.1. Let r be a received word, and α be a primitive element of Fq.
If

`

n
≥

(√
2 +

k

4n
·
√
k

n

)
− k

2n
, (4.1)

then the number of polynomials f of degree at most k such that |{i | f(αi) =
ri}| ≥ ` is at most `

k
+

1

2
−

√(
`

k
+

1

2

)2

− 2n

k

 ≤ 2n

`+ k
2

This is a good bound for list decoding of a Reed-Solomon code, but it
works only with the condition 4.1, while the bounds given in the previous
section work without any condition on the error-treshold, and they work for
every kind of code, in particular also for BCH codes.

The following proposition gives us precise conditions on the rate of the
code in order to make the bound of Lemma 4.2.1 work.

CHAPTER 4. BOUNDS ON LIST DECODING 53

Proposition 4.2.2. If

k >
2n+ 2−

√
n2 + 14n+ 1

3
,

then condition 4.1 does not hold for more than the error-correcting radius,

Proof. Observe that for all ` such that n− ` ≥ t+ 1, we have

`

n
≤ n− t− 1

n
.

Since t =
n− k − 1

2
, we can rewrite it as

`

n
≤ n+ k − 1

n
.

Now an easy calculation shows that the system of inequalities
n ≥ k + 1 ≥ 1

n+ k − 1

n
≥

(√
2 +

k

4n
·
√
k

n

)
− k

2n

(4.2)

is equivalent to the systemn ≥ 1

0 ≤ k ≤ 2n+ 2−
√
n2 + 14n+ 1

3
.

(4.3)

By hypothesis the system 4.3 is not satisfied, then also the system 4.2 is not
satisfied.

Hence for all ` such that n− ` ≥ t+ 1, we have

`

n
≤ n− t− 1

n
<

(√
2 +

k

4n
·
√
k

n

)
− k

2n
,

i.e. the condition 4.1 does not hold.

Remark 4.2.3. This proposition gives us a strong condition on the rate such
that the bound given in 4.2.1 holds. In fact

k + 1

n
≤ 2n+ 2−

√
n2 + 14n+ 1 + 3

3n
−→
n→+∞

1

3
.

This shows that Madhu Sudan bound does not work for Reed Solomon codes
with rate greater than 1

3
.

CHAPTER 4. BOUNDS ON LIST DECODING 54

4.3 Reduction to a packing set problem

As we have seen at the end of the previous section, the bound given in
Lemma 4.2.1 works only for low-rate codes. In order to find other bounds
that works also for high-rate codes, we try to turn our problem into a different
combinatoric problem. First we prove the following lemma

Lemma 4.3.1. Let C be a BCH code of length n = qm − 1 over Fq with
designed distance δ = 2t + 1, and let r be a received word. Let e = t + s be
the error-correcting threshold and suppose we have

σc1 , σc2 ∈ Σ(r, e).

If c1 6= c2 then deg gcd{σc1 , σc2} ≤ 2s− 1.

Proof. Let eci be the degree of σci(z) for i = 1, 2, and let p(z) := gcd(σc1 , σc2),
with deg p = l. Then, for h = 1, . . . , l there exist distinct jh ∈ {1, . . . , qm−1},
such that

p(z) =
l∏

h=1

(1− βjhz).

So σci(z) = p(z)gi(z) for i = 1, 2, for some polynomial gi(z) ∈ Fqm [z] such
that

gi(z) =

ec1∏
h=l+1

(1− βj
(i)
h z).

Hence c1 and r differ in the positions j1, j2, . . . , jl, j
(1)
l+1, . . . , j

(1)
ec1

. Similarly, c2

and r differ in the positions j1, j2, . . . , jl, j
(2)
l+1, . . . , j

(2)
ec2

. Therefore c1 and c2

can differ only in the positions j1, j2, . . . , jl, j
(1)
l+1, . . . , j

(1)
ec1
, j

(2)
l+1, . . . , j

(2)
ec2

, which
are ec1 + ec2 − deg gcd(σc1 , σc2). Since the minimum distance of the code C
is 2t+ 1 we have

2t+ 1 ≤ d(c1, c2) ≤ ec1 + ec2 − deg p ≤ e+ e− l = 2t+ 2s− l.

Hence it must be l ≤ 2s− 1.

Remark 4.3.2. Recall that the set

L(r, e) = {c ∈ C | d(c, r) ≤ e}

is defined to be the set of all codewords that have distance not greater than
e from r.
By Theorem 3.6.6 for every codeword c ∈ L(r, e) there exist a polynomial
τ ∈ Σ(r, e) such that decoding r by τ we obtain the codeword c.

CHAPTER 4. BOUNDS ON LIST DECODING 55

So for every codeword c ∈ L(r, e) we can fix a polynomial τc ∈ Σ(r, e)
such that decoding r by τ we obtain c, and we define the maps

i : L(r, e) −→ Σ(r, e)
c 7−→ τc

(4.4)

that is obviously injective.

Now, given a polynomial in Σ(r, e) we can identify it by its set of roots.
Formally we define the map

ν : Σ(r, e) −→
(
F∗qm
e

)
τ 7−→ Aτ

(4.5)

where
Aτ :=

{
α ∈ F∗qm | τ(α) = 0

}
is the set of all roots of the polynomial τ .

Now we introduce a new combinatoric problem, the uniform packing prob-
lem.

Definition 4.3.3. Given a finite set A of n elements, and two positive in-
tegers 0 < r ≤ j ≤ n, a j − (A, r) uniform packing is a collection A ⊂

(
A
j

)
such that for each r-subset T ∈

(
A
r

)
there exist at most one B ∈ A such that

T ⊂ B.

The following result permits to turn the problem of bounding the number
of codewords c ∈ C with distance at most e from a received word r into the
problem of finding the maximal cardinality of a particular uniform packing
of the set F∗qm .

Theorem 4.3.4. Let C be a BCH code of length n = qm − 1 over Fq with
designed distance δ = 2t+1, and let r be a received word. Let e = t+s be the
error-correcting threshold and let i and ν be the two maps defined in (4.4)
and (4.5). Then

ν ◦ i (L(r, e))

is a e− (F∗qm , 2s) uniform packing.

Proof. Let c1 and c2 two distinct elements in L(r, e) and put τ1 := i(c1),
τ2 := i(c2). By Lemma 4.3.1 we have

deg gcd{τ1, τ2} ≤ 2s− 1.

CHAPTER 4. BOUNDS ON LIST DECODING 56

This implies that they have at most 2s−1 common roots. So every 2s-subset
of F∗qm is contained in at most one Aτ for τ ∈ i(L(r, e)). Hence

ν ◦ i(L(r, e))

is a e− (F∗qm , 2s) uniform packing.

So, by this theorem, a bound for the number of polynomials can be ob-
tained by finding an upper bound on the maximal cardinality of a e-uniform
packing for

(F∗qm
2s

)
. Formally,

Definition 4.3.5. Let 0 < r ≤ j ≤ n be three positive integers. We denote
by D(n, j, r) the maximum cardinality of a j−([n], r) uniform packing, where
[n] = {1, . . . , n}.

Corollary 4.3.6. Let C be a BCH code of length n = qm − 1 over Fq with
designed distance δ = 2t + 1, and let r be a received word. Let e = t + s be
the error-correcting threshold. Then

|L(r, e)| ≤ D(qm − 1, e, 2s)

�
So we can try to find an upper bound for D(n, j, r) and use it for bounding

the cardinality of L(r, e).
There are two well-known bounds on the cardinality of a j − ([n], r) uniform
packing.

Theorem 4.3.7 (First Johnson Bound for set packing [8]). Every j− ([n], r)
uniform packing can not have more than U(n, j, r) elements, where U(n, j, r)
is the floor function defined by

U(n, j, r) :=

⌊
n

j

⌊
n− 1

j − 1

⌊
· · ·
⌊
n− r + 1

j − r + 1

⌋
· · ·
⌋⌋⌋

.

�
The First Johnson Bound is a good bound when n is big. But when n is

not so big it is less effective. In this case we have another bound

Theorem 4.3.8 (Second Johnson Bound for set packing [8]). If j2 > (r−1)n
then

D(n, j, r) ≤
⌊
n(j − r + 1)

j2 − (r − 1)n

⌋
. (4.6)

�

CHAPTER 4. BOUNDS ON LIST DECODING 57

4.4 Bounds for some special cases

We want to understand how the bounds given till now work when we try to
correct just one more error.

First we analize what Lemma 4.2.1 says when we try to find all the
codewords that have distance not greater than t + 1, where t is the error-
correcting radius of C.

So, with the notations of Lemma 4.2.1, n−` = t+1, and n−k = d = 2t+1.
From this two equations we can find t and ` in function of n and k, i.e.{

t = n−k−1
2

` = n+k−1
2

.
(4.7)

Theorem 4.4.1. Let C be an [n, k + 1, n − k] Reed Solomon code over Fq
that can correct up to t errors and let r be a received word. If

k ≤ 2n+ 2−
√
n2 + 14n+ 1

3

then the number of codewords with distance at most t + 1 from r is at most
3.
If moreover

k >
n+ 3

6

then the number of such codewords is at most 2.

Proof. We need just to apply Lemma 4.2.1 when n− ` = t+ 1. Substituting
the equations 4.7 in 4.1 we obtain

n+ k − 1

2n
≥

(√
2 +

k

4n
·
√
k

n

)
− k

2n

As we have seen in the proof of Proposition 4.2.2, the system
n ≥ k + 1 ≥ 1

n+ k − 1

n
≥

(√
2 +

k

4n
·
√
k

n

)
− k

2n

(4.8)

is equivalent to the systemn ≥ 1

0 ≤ k ≤ 2n+ 2−
√
n2 + 14n+ 1

3
.

(4.9)

CHAPTER 4. BOUNDS ON LIST DECODING 58

So, in this case Lemma 4.2.1 states that there exist at most

2n

`+ k
2

=
4n

n+ 2k − 1
< 4

codewords with distance at most t+ 1 from r.
If moreover

k >
n+ 3

6
then

4n

n+ 2k − 1
< 3

and we conclude.

Remark 4.4.2. Observe that the theorem above is true only for low-rate codes.
In fact

k

n
≤ 2n+ 2−

√
n2 + 14n+ 1

3n
−→
n→+∞

1

3
.

Now consider the more general case in which we are working with a BCH
code C, and we are trying to decoding up to t + 1 errors, where t is the
error-correcting radius. We are going to apply the two Johnson Bounds to
give new bounds on the cardinality of L(r, t+ 1).

Corollary 4.4.3. Let C be a BCH code of length n and designed distance
δ = 2t+ 1 over Fq. Then, for every possible received word r ∈ Fnq we have

|L(r, t+ 1)| ≤
⌊

n

t+ 1

⌊
n− 1

t

⌋⌋
.

�

Corollary 4.4.4. Let C be a BCH code of length n and designed distance
δ = 2t+ 1 over Fq. Then, for every possible received word r ∈ Fnq we have

|L(r, t+ 1)| ≤
⌊

tn

(t+ 1)2 − n

⌋
,

provided that (t+ 1)2 > n.

�
If we are in the situation that (t + 1)2 > n, it can be shown that the

Second Johnson Bound is almost always a stronger result than the First.
Now we prove a corollary of the Second Johnson Bound. We will see later
that it permits to show the existence of BCH code of arbitrary rate with a
“small”number of solution to the list decoding problem.

CHAPTER 4. BOUNDS ON LIST DECODING 59

Corollary 4.4.5. If n < (t+1)(t+2)
2

then

|L(r, t+ 1)| ≤ t

Proof. It trivially follows by substituting n by (t+1)(t+2)
2

− 1 in the Second
Johnson Bound.

Remark 4.4.6. If C is a Reed Solomon code, according to 4.7, the condition

n <
(t+ 1)(t+ 2)

2

can be rewritten as

(n− k + 1)(n− k + 3) > 8n,

from which we obtain the quadratic inequality in k given by

k2 − (2n+ 4)k + (n2 − 4n+ 3) > 0.

Now It is an easy calculation showing that the system{
n ≥ k + 1 ≥ 1

k2 − (2n+ 4)k + (n2 − 4n+ 3) > 0
(4.10)

is equivalent to the system{
n ≥ 1

0 ≤ k < n+ 2−
√

8n+ 1.
(4.11)

Hence, this bound is true also for some high rate code. In fact

k

n
≤ n+ 2−

√
8n+ 1

n
−→
n→+∞

1

From this remark we can observe that for every rate R ∈ (0, 1), there exist
a BCH code C with rate R such that the size of the list decoding problem for
one more error than the error-correcting radius is at most the error correcting
radius. Formally we can state the following result.

Theorem 4.4.7. For every ε > 0 there exist a BCH code C of rate R > 1−ε
and length nε such that for every r ∈ Fnε

qm∣∣∣∣L(r, 1−R
2

nε + 1

)∣∣∣∣ ≤ 1−R
2

nε <
ε

2
nε.

Chapter 5

Computational aspects of list
decoding

The Euclidean division approach proposed in the previous chapter has the
advantage of working for every Reed Solomon code and for every binary
BCH code. However in general the computational cost is very high because
it involves the use of Grobner Basis.

In this chapter we analize some computational aspects of the algorithm
for list decoding presented in Chapter 3. Moreover, we show that for some
special cases we can avoid the use of Grobner basis, reducing significantly
the cost of our approach.

At the end of the chapter we describe the most important algorithms for
list decoding of Reed-Solomon codes. The first one has been developed in
1995 by Madhu Sudan [11], and the second one is an improvement of such
an algorithm elaborated by Guruswami [7].

5.1 Calculation of the divisibility ideal

To seek irreducible polynomials or to factor reducible ones, it is useful to
have a criteria for the divisibility over a field F of a polynomial f(x) by a
polynomial g(x) of degree less than that of f(x). In particular, as we have
seen in the previous chapters, we are interested in such a criteria in the case
F = Fq(a), where q is a power of a prime p, and Fq(a) denotes the fraction
field of the polynomial ring Fq[a] := Fq[a1, . . . , ak].

Let f(x) ∈ F[x] and g(x) ∈ F[x] be two polynomials of arbitrary degree
n and e (e < n), respectively,

60

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 61

f(x) =
n∑
i=0

aix
i, an 6= 0, ai ∈ F,

g(x) = xe −
e−1∑
i=0

bix
i bi ∈ F.

(5.1)

Obviously, the polynomial f(x) is divisible by g(x) if and only if the
remainder of the division of f(x) by g(x) is identically zero.

In order to determine the criteria we are looking for, we introduce a
definition.

Definition 5.1.1. We call divisibility sequence of the two polynomials f(x),
g(x) ∈ F[x] defined as in (5.1), the sequence defined recursively as follows

Th+1 = be−1Th + be−2Th−1 + . . .+ b0Th−e+1, (5.2)

with initial conditions

T0 = 1, Th = 0 for − e+ 1 ≤ h ≤ −1.

or, equivalently,

T0 = 1,
T1 = be−1T0,
T2 = be−1T1 + be−2T0,
...
Te−1 = be−1Te−2 + be−2Te−3 + . . .+ b1T0.

Proposition 5.1.2 ([1]). The polynomial f(x) is divisible by the polynomial
g(x) if and only if their divisibility sequence satisfies the relations

n∑
h=e−j−1

ahTh−e+j+1 = 0 for j = 0, 1, . . . e− 1. (5.3)

�
From this result, choosing f(x) = xn − 1, we easily obtain the following

result.

Corollary 5.1.3. xn − 1 is divisible by g(x) if and only if{
Tn−e+1+j = 0 for j = 0, 1, . . . , e− 2,
Tn − 1 = 0.

(5.4)

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 62

�
We come back now to our problem. We would like to compute the ideal

IF ,H , where H(x) = xq−1 − 1. In fact this problem, as seen in the prevoius
chapter, is strictly related to our approach to the list decoding problem.

Suppose we have an escalier basis F = {f0, . . . , fk} for a subspace W of
degree e of Fq[x]≤e. We would like to know if the polynomial

F (a, x) = f0(x) +
k∑
i=1

aifi(x)

divides xq−1 − 1. We can write

F (a, x) = xe −
e−1∑
i=0

ci(a)xi,

where ci(a) is a polynomial in the variables a = (a1, . . . , ak) with dega ci ≤ 1.
Consider the polynomial sequence (Th(a))h with coefficients in Fq defined,

as in (5.2), by
Th+1(a) = ce−1(a)Th(a) + . . .+ c0(a)Th−e+1(a),
T0(a) = 1,
T`(a) = 0, for − e+ 1 ≤ ` ≤ −1.

By Corollary 5.1.3, the polynomial F (α, x) divides xq−1− 1 if and only if{
Tn−e+1+j(α) = 0 for j = 0, 1, . . . , e− 2,
Tn(α)− 1 = 0.

(5.5)

So, if we define the ideal

J := (Tn(a)− 1, Tn−1(a), Tn−2(a), . . . , Tn−e+1(a)) ,

we obtain that
V(J) = V(IF ,H).

Moreover, with an argument similar to that used in [1], it is easy to prove
that

J = IF ,H .

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 63

5.2 Computing the divisibility set

Let IF ,H the computed divisibility ideal. Now our goal is solving the system
of multivariate polynomial equations given by

r0(a1, . . . , ak) = 0,

r1(a1, . . . , ak) = 0,
...

re−1(a1, . . . , ak) = 0.

(5.6)

So our problem has turned into the problem of solving systems of multi-
variate polynomial equations.

In the general case this problem is NP-complete, even if all the equa-
tions are quadratic and the field is F2. The classical algorithm for solving
such a system is Buchberger’s algorithm for constructing Grobner bases, and
its many variants. The algorithm orders the monomials, typically in lexi-
cographic order, and eliminates the top monomial by combining two equa-
tions with appropriate polynomial coefficients. This process is repeated until
all but one of the variables are eliminated, and then solves the remaining
univariate polynomial equation. Unfortunately, the degrees of the remain-
ing monomials increase rapidly during the elimination process, and thus the
time complexity of the algorithm makes it often impractical even for a mod-
est number of variables. In the worst case Buchberger’s algorithm is known
to run in double exponential time, and on average its running time seems to
be single exponential.

However, in some special cases we can avoid the use of Grobner bases,
and we can use other simple techniques for solving a system of polynomial
equation. For example when the number of variables is 1 or 2,

5.3 Some special cases

5.3.1 Binary BCH codes with e = t+ 1

We come back to the list decoding problem. we observe that, when we try to
correct one more error than the error-correcting radius in a binary BCH code,
i.e. when the number of errors is e = t + 1, by Theorem 3.5.7 we have that
dim ker S̃e = 2. So, given an escalier basis F̃ = {f0, f1}, the divisibility ideal
IF̃ ,x2m−1−1 is an ideal in the ring F2m [a]. Hence we have to compute a system
of univariate polynomial equations. Let p(a) = gcd(r0(a), . . . , re−1(a)), then
IF̃ ,x2m−1−1 = (p(a)), so the time complexity for solving such a problem is

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 64

equal to the running time of a gcd plus the time for solving a univariate
polynomial equation.

In detail, let T (n, d) denotes the running time of a gcd between n poly-
nomials of degree at most d, then, observing that

gcd{p1, . . . , pn} = gcd{gcd{p1, p2}, p3, . . . , pn},

we have that

T (n, d) = T (2, d) + T (n− 1, d) = T (2, d) + T (2, d) + T (n− 2, d) =

= . . . = (n− 1)T (2, d) = O(nT (2, d)).

Since the cost of a polynomial greatest common divisor between two polyno-
mials of degree at most d can be taken as O(d log2(d)) operations in Fq using
fast methods, we have T (n, d) = O(nd log2(d)). In our case n = t + 1 and
d = q− t−1. So O((q− t−1)(t+1) log2(q− t−1)) operations occurs for this
step. Moreover, the polynomial obtained is a squarefree polynomial with all
the roots in F∗2m , so we can find the roots with an exhaustive search. This can
be done in O((q − 1)V (t+ 1)) operations, where V (t+ 1) denotes the num-
ber of operations that the evaluation of a polynomial of degree t + 1 needs.
This can be done using O((t+ 1) log−1(t+ 1)) additions and O(2

√
3(t+ 1))

multiplications, since we are in a field of characteristic 2. In total we have

O((q − t− 1)(t+ 1) log2(q − t− 1)) +O((q − 1)((t+ 1) log−1(t+ 1)))

field operations.

5.3.2 RS and binary BCH codes with e = t+ 1

As we have seen in Chapter 3, when we try to correct one more error than
the error-correcting radius in a Reed-Solomon code over Fq or when we try
to correct two more errors in a binary BCH code, by Theorems 3.4.1 and
3.5.7, we have that dim kerS = 3. So the divisibility ideal is an ideal in the
ring F[a1, a2], where F = Fq in the first case, and F = F2m in the second.
Here we can avoid the computation of a Grobner Basis, by using a technique
involving the resultant.

Here we present the general approach (see [2], ch. 3) with k polynomials
in n variables for computing the first elimination ideal. We first introduce
the following notations

Let F be a field, and let I ⊆ F[x1, . . . , xn] be an ideal, with

I = (f0(x1, . . . , xn), . . . , fk(x1, . . . , xn)).

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 65

Let u1, . . . , uk be algebrically indipendent over F. Consider the polynomials

G(u1, . . . , uk, x1, . . . , xn) :=
k∑
i=1

uifi(x1, . . . , xn),

p(u1, . . . , uk, x2, . . . , xn) = Resx1(f0(x1, . . . , xn), G(u1, . . . , uk, x1, . . . , xn)).

that lie in the ring F[u1, . . . , uk, x1, . . . , xn].
We can write p as a polynomial in F[x1, . . . , xn][u1, . . . , uk] as

p(u1, . . . , uk, x2, . . . , xn) =
∑
γ∈Nk

hγ(x2, . . . , xn)uγ.

Definition 5.3.1. The non zero polynomials hγ ∈ F[x2, . . . , xn] are called the
generalized resultants of the polynomials f0(x1, . . . , xn), . . . , fk(x1, . . . , xn).

Theorem 5.3.2. Suppose F is an algebrically closed field. Let J ⊆ F[x2, . . . , xn]
be the ideal generated by the polynomials {hγ(x2, . . . , xn)}γ∈Nk , and let I1 :=
I ∩ F[x2, . . . , xn] be the first elimination ideal. For each 0 ≤ i ≤ k, write fi
in the form

fi(x1, . . . , xn) = gi(x2, . . . , xn)xNi
1 + terms in which x1 has degree less than Ni,

where Ni ≥ 0 and gi is non zero. If V(I1) ∩ V(g0, . . . , gk) = ∅, then

J ⊆ I1 ⊆
√
J.

Proof. We first prove J ⊆ I1. Let hγ ∈ J . We know that there exist
A,B ∈ F[x1, . . . , xn, u1, . . . , uk] such that

Af0 +B(u1f1 + . . .+ ukfk) = Resx1(f0, G). (5.7)

We can write
A =

∑
α

Aαu
α

and
B =

∑
β

Bβu
β,

where Aα, Bβ ∈ F[x1, . . . , xn]. Now we show that hγ ∈ I.
We put e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ek = (0, 0, . . . , 0, 1). So
we can rewrite

G =
k∑
i=1

fiu
ei .

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 66

Hence the equation (5.7) can be written as

∑
γ∈Nk

hγ(x)uγ =

(∑
α

Aαu
α

)
f1 +

(∑
β

Bβu
β

)(
k∑
i=1

fiu
ei

)

=
∑
γ∈Nk

(
Aγf0 +

∑
i:β+ei=γ

Bβfi

)
uγ.

So hγ = Aγf0 +
∑

i:β+ei=γ
Bβfi, and hγ ∈ I. Moreover hγ ∈ F[x2, . . . , xn]

and we conclude that hγ ∈ I1.
Conversely, in order to show I1 ⊆

√
J , we prove that V(J) ⊆ V(I1) and

then by Nullstellensatz we conclude. Suppose α = (α2, . . . , αn) ∈ V(J).
Then

0 =
∑
γ∈Nk

hγ(α)uγ = p(u, α)
(∗)
= Resy(f0(x1, α), G(u, x1, α)),

where the identity (∗) holds because α /∈ V(g1, . . . , gk). Hence there exists a
polynomial q ∈ F[u][x1] such that q(u)(x1) divides f0(x1, α) and G(u, x1, α),
with degx1 q > 0. Since q(u)(x1) divides f0(x1, α), and f0(x1, α) belongs to
F[x1], then also q(u)(x1) is in F[x1] and we can write q(u)(x1) = q(x1).
Moreover q(x1) divides G(u, x1, α) =

∑
uifi(x1, α), so q(x1) divides each

fi(x1, α) for i = 1, . . . , k. Therefore, for every root δ of q(x1), we have that
fi(δ, α) = 0 for i = 0, 1, . . . , k, i.e. (δ, α) ∈ V(I). This implies that

V((x1 − δ, xi − αi)) ⊆ V(I).

Hence we have the following chain of inclusions
√
I = I(V(I)) ⊆ I(V((x1 − δ, xi − αi))) = (x1 − δ, xi − αi).

Therefore √
I1 ⊆ (x1 − δ, xi − αi) ∩ F[x2, . . . , xn] = (xi − αi),

and we obtain
α ∈ V(I1)

Corollary 5.3.3. With the hypothesis of Theorem (5.3.2) we have

V(I1) = V(J)

even if F is not algebrically closed, where V(I) is defined by

V(I) =
{
α ∈ F̄ | f(α) = 0 ∀ f ∈ I

}
.

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 67

We can use Corollary 5.3.3 to compute the variety of the first elimination
ideal of the divisibility ideal IF̃ ,xn−1 = (r0(a1, a2), . . . , re−1(a1, a2)). As in
Theorem 5.3.2 we call

G(u1, . . . , ue−1, a1, a2) :=
e−1∑
i=1

uiri(a1, a2),

and

p(u1, . . . , ue−1, a2) = Resa1(f0(a1, a2), G(u1, . . . , ue−1, a1, a2)).

By Corollary 5.3.3 we have that V(J) = V(IF̃ ,xn−1 ∩ F[a2]). However the
computation of the ideal J is quite expensive. We can avoid this computation
finding a different ideal J̃ such that “with high probability does not differ
so much from J”. The idea is computing this resultant specializing the
polynomial G in the variables u1, . . . , ue−1. Formally, if we write

G = g(u1 . . . , ue−1, a2)aN1 + terms in which a1 has degree less than N,

then, for all (λ1, . . . , λe−1) ∈ Fe−1 such that g(λ1, . . . , λe−1, a2) 6= 0, we have

p(λ1, . . . , λe−1, a2) = Resa1(f0(a1, a2), G(λ1, . . . , λe−1, a1, a2)),

and
(p(λ1, . . . , λe−1, a2)) ⊆ J.

If we pick randomly a point λ ∈ Fe−1 we can not expect that

pλ(a2) := p(λ, a2)

is exactly the generator of the ideal J . However we can repeat this compu-
tation. Choose another point γ = (γ1, . . . , γe−1) ∈ Fe−1 such that g(γ) 6= 0
and γ is not proportional to λ. If we call

pγ(a2) := p(γ, a2),

again we have that
(pγ) ⊆ J.

Now we denote by
h̃(a2) := gcd{pγ(a2), pλ(a2)}.

We would like to understand if (h̃) = J .

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 68

Let h(a2) ∈ F[a2] be the generator of the ideal J . Since (h̃(a2)) ⊆ (h(a2)),
the polynomial h̃(a2) is divisible by h(a2). Moreover (h̃(a2)) = (h(a2)) if and
only if (

h̃(a2)

h(a2)

)
= (1).

This is equivalent to say that

gcd

{
pλ(a2)

h(a2)
,
pγ(a2)

h(a2)

}
= 1.

Now we can rewrite this condition as a condition on the resultant, that is

Resa2

(
pλ(a2)

h(a2)
,
pγ(a2)

h(a2)

)
6= 0.

Now consider u1, . . . , ue−1, v1, . . . , ve−1, two sets of algebrically indipen-
dent elements over F, and let p̃ be the polynomial defined by

p̃(u1, . . . , ue−1, a2) =
p(u1, . . . , ue−1, a2)

h(a2)
.

Hence (h̃(a2)) = J if and only if

Resa2(p̃(λ1, . . . , λe−1, a2), p̃(γ1, . . . , γe−1, a2)) 6= 0.

Let H(u, v) be the polynomial defined by

H(u, v) := Resa2(p̃(u, a2), p̃(v, a2)), (5.8)

thus
(h̃) = J ⇐⇒ H(λ, γ) 6= 0. (5.9)

Here the following question naturally arises: choosing randomly λ and
γ what is the probability that H(λ, γ) 6= 0? The answer is given by the
following well-known result.

Theorem 5.3.4 (Schwartz-Zippel Lemma). Let H ∈ F[z1, . . . , zn] be a non-
zero polynomial of total degree d ≥ 0 over a field F. Let S ⊂ F be a finite
subset and let r1, . . . , rn be selected at random indipendently and uniformly
from S. Then

P[H(r1, . . . , rn) = 0] ≤ d

|S|
(5.10)

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 69

Proof. The proof is by induction on n. For n = 1, H can have at most d
roots. This gives us the base case.
Now suppose that the theorem holds for all polynomials in n − 1 variables.
We consider H as a polynomial in z1, and we can write it as

H(z1, . . . , zn) =
d∑
i=0

Hi(z2, . . . , zn)zi1.

Since H is not identically 0, there exists some i such that Hi is not identically
0. If we take the largest such i, then degHi ≤ d− i, since the degree of zi1Hi

is at most d. Now we randomly pick r2, . . . , rn from S. By the induction
hypothesis,

P[Hi(r2, . . . , rn) = 0] ≤ d− i
|S|

.

If Hi(r2, . . . , rn) 6= 0, then H(z1, r2, . . . , rn) is of degree i, and so

P
[
H(r1, r2, . . . , rn) = 0 | Hi(r2, . . . , rn) 6= 0

]
≤ i

|S|
.

If we denote the eventH(r1, r2, . . . , rn) = 0 byA and the eventHi(r2, . . . , rn) =
0 by B, we have

P[A] = P[A ∩B] + P[A ∩Bc]

= P[B]P[A|B] + P[Bc]P[A|Bc]

≤ P[B] + P[A|Bc]

≤ d− i
|S|

+
i

|S|
=

d

|S|
,

and this complete the proof.

Now we figure out a bound on the total degree of the polynomial H in
5.8.

Lemma 5.3.5. Let H ∈ F[u, v] be the polynomial defined in (5.8). Then

deg(u,v) H ≤ 4(q − e)3.

Proof. By definition of the polynomial H, we have

deg(u,v) H = deg(u,v) Resa2(p̃(u, a2), p̃(v, a2)) ≤
≤ (deg(u,v) p̃)(dega2 p̃) + (deg(u,v) p̃)(dega2 p̃) =

= 2(deg(u,v) p̃)(dega2 p̃) =

= 2(deg(u,v) p)(dega2 p− dega2 h) ≤
≤ 2(deg(u,v) p)(dega2 p).

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 70

Now we have to estimate deg(u,v) p and dega2 p.
For the first one we have

degu p = deguResa1 (r0, G) ≤
≤ (degu r0)(dega1 G) + (deguG)(dega1 r0) =

(∗)
= dega1 r0,

where the identity (∗) holds because degu r0 = 0 and deguG = 1.
For the second term we obtain

dega2 p = dega2 Resa1 (r0, G) ≤
≤ (dega2 r0)(dega1 G) + (dega2 G)(dega1 r0).

Moreover, by Lemma 2.1.7 we have
dega1 r0 ≤ q − e
dega1 G ≤ max

{
dega1 ri | i = 1, . . . , e− 1

}
≤ q − e

dega2 r0 ≤ q − e
dega2 G ≤ max

{
dega2 ri | i = 1, . . . , e− 1

}
≤ q − e.

(5.11)

So, remounting all the inequality obtained, we have

deg(u,v)H ≤ 2(deg(u,v) p)(dega2 p) ≤
≤ 2(dega1 r0)

[
(dega2 r0)(dega1 G) + (dega2 G)(dega1 r0)

]
≤

≤ 2(q − e)
[
2(q − e)2

]
= 4(q − e)3.

Howevere here we are working in a finite field F with q elements and so
at a first look the Schwartz-Zippel Lemma does not help us. In fact, using
the bound given in Lemma 5.3.5, we would obtain

P[H(λ, γ) 6= 0] = 1− P[H(λ, γ) = 0] ≥ 1− 4(q − e)3

q
,

that is almost always negative and it does not say anything about the prob-
ability.

We can avoid this problem with a little trick. We can embed the field
F into a finite extension K and use the Schwartz-Zippel Lemma here. This

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 71

embedding does not modify the structure of the ideal we are working on. In
fact consider the natural embedding

i : F[a2] ↪→ K[a2].

Here the inclusion i maps the ideal J = (h(a2)) into the ideal of Je =
(h(a2)) ⊂ K[a2]. In particular

V(J) = V(Je).

So we can work directly on K[a2].
In particular F = Fq and so K = Fqs for a certain positive integer s > 0.

If we choose the integer s quite large such that the quantity

4(q − e)3

qs

is small enough to make the probability that H(λ, γ) 6= 0 close to 1.
Formally we can sumarize everything said above in the following results.

Theorem 5.3.6. Let C be an [n, k, n − k + 1] Reed-Solomon code over Fq,
where n = q − 1 and n − k + 1 = 2t + 1 is the minimum distance of C.
Let r ∈ Fnq be a received word and suppose that the minimum error weight e
is greater or equal to t − 1. Consider an escalier basis F = {f0, f1, f2} for
kerSt+1, where St+1 is the (t+1)th syndrome matrix of r, and let IF ,xq−1−1 =
(r0, . . . , rt) ⊂ Fq[a1, a2] be the divisibility ideal.

Then ∀ ε > 0 ∃s ∈ N such that, choosing at random indipendently and
uniformly λ1, . . . , λt, γ1, . . . , γt ∈ Fqs, and defining

pλ = Resa1

(
r0,
∑

λiri

)
pγ = Resa1

(
r0,
∑

γiri

)
,

we have
P[Je = (pλ, pγ)] ≥ 1− ε.

�
An equivalent version of this result can be reformulate also for binary

BCH codes when we try to correct exactly two more errors. In fact we have
shown in Theorem 3.5.5 that, for a binary BCH code with minumum error
weight greater or equal to t− 2, dim kerSt+2 = 3.

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 72

Theorem 5.3.7. Let C be a binary BCH code of length n = 2m − 1 and
designed distance δ = 2t + 1 over F2. Let r ∈ Fn2 be a received word and
suppose that the minimum error weight e is greater or equal to t−2. Consider
an escalier basis F̃ = {f0, f1, f2} for ker S̃t+2, where S̃t+2 is the extended
(t+2)th syndrome matrix of r, and let IF̃ ,x2m−1−1 = (r0, . . . , rt+1) ⊂ Fq[a1, a2]
be the divisibility ideal.

Then ∀ ε > 0 ∃s ∈ N such that, choosing at random indipendently and
uniformly λ1, . . . , λt+1, γ1, . . . , γt+1 ∈ F2s, and defining

pλ = Resa1

(
r0,
∑

λiri

)
pγ = Resa1

(
r0,
∑

γiri

)
,

we have
P[Je = (pλ, pγ)] ≥ 1− ε.

�
Now we show that the unlucky case in which

(h̃) = (pλ, pγ) (J

is not so “unlucky ”. In fact, if (h̃) ((h) it means that

h̃ = hg

with deg r ≥ 1. Consider a root β of g. We have to distinguish two cases:

• β is a root of h. So it does not modify the computation of V(J).

• β is not a root of h. This means that we can not extend β to a point in
V(IF ,H) with second coordinate equal to β, and it does not affect the
computation of V(IF ,H).

However, since we know that IF ,H is radical and V(J) ⊆ Fq, we can
increase the accuracy of the computation by taking the ideal

J̃ = (pλ(a2), pγ(a2), aq2 − a2) = (gcd {pλ(a2), pγ(a2), aq2 − a2}) .

Hence we are able to remove all the exceeding roots that are not in Fq and all
the multiple roots (but we are not able to remove the exceeding roots that
lie in Fq). Moreover

P
[
J̃ = IF ,H ∩ Fq[a2]

]
≥ P [(pλ, pγ) = Je] .

The procedure described in this section let us significantly reduce the cost
of the computation of V(IF ,H) and it avoids the use of Grobner basis, whose
computational cost is exponential.

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 73

5.4 Sudan and Guruswami-Sudan algorithms

Here we briefly present the Madhu Sudan’s work on list decoding for Reed-
Solomon codes. This approach is based on the representation of an RS code
given by Theorem 1.6.3. The work is focused on the solution of the following
problem:

Problem 1. Given a finite field F, n distinct pairs of element {(xi, yi))}n−1
i=0

of F×F, and two integers k and `, determine a list of all functions f : F −→ F
satisfying the conditions

f(x) ∈ F[x]≤k,

|{i | f(xi) = yi}| ≥ `.
(5.12)

Suppose we are working with an RS code C of length n = q − 1 and
designed distance d over Fq. The dimension of the code is k + 1, where
k = n − d. Suppose we have a received word r = (r0, . . . , rn−1). Replacing
xi with αi and yi with ri, by Theorem 1.6.3, solving the problem 1 equals
to finding all the codewords c = (c0, . . . , cn−1) with ci = f(αi), such that
d(c, r) ≤ n − `, i.e. it equals to the list decoding problem with error bound
e = n− `.

Definition 5.4.1. For weight ωx, ωy ∈ N+, the (ωx, ωy)−weighted degree of
a monomial qijx

iyj is iωx + jωy. The (ωx, ωy)−weighted degree of a polyno-
mial Q(x, y) ∈ F[x, y] is the maximum, over the monomials with non-zero
coefficients, of the (ωx, ωy)−weighted degree of the monomials.

The algorithm is the following.

Algorithm 1. 1. Input: n, k, ` : {(x0, y0), . . . , (xn−1, yn−1)}.

2. Parameters s = d
√

2(n+ 1)/ke − 1,m = dk/2e − 1.

3. Find any polynomial function Q : F× F −→ F satisfying
Q(x, y) has (1, k)− weighted degree at most m+ sk,

∀ i = 0, . . . , n− 1, Q(xi, yi) = 0,

Q is not identically zero.

(5.13)

4. Factor the polynomial Q into irreducible factors.

5. Output all the polynomials f ∈ Fq[x] of degree at most k such that
(y − f(x)) is a factor of Q and f(xi) = yi for at least ` values of
i ∈ {0, . . . , n− 1}.

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 74

The correctnes of the algorithm stated above is guaranteed by the follow-
ing results. For the proofs see [11].

Proposition 5.4.2. If a polynomial function Q : F × F −→ F satisfying
(5.13) exists, then one can be found in polynomial time in n.

Proposition 5.4.3. If

(m+ 1)(s+ 1) + k

(
s+ 1

2

)
> n

then there exists a polynomial function Q(x, y) satisfying (5.13).

Proposition 5.4.4. If Q(x, y) is a polynomial function satisfying (5.13) and
f(x) is a polynomial function satisfying (5.12) and ` > m+sk, then (y−f(x))
divides Q(x, y).

Theorem 5.4.5. Given a sequence of n distinct pairs {(xi, yi)}n−1
i=0 , where

the xis and the yis are elements of a field F, and integer parameters ` and k
such that ` ≥ kd

√
2(n+ 1)/ke−bk/2c, there exists an algorithm, which runs

in polynomial time in n, that can find all the polynomial f of degree at most
k such that the number of points (xi, yi) that satisfy yi = f(xi) is at least `.

This algorithm can correct (in the sense of list-decoding) up to n−
√

2nk
errors.

In 1998 Sudan and his then doctoral student Guruswami presented an
improvement on the above algorithm for list decoding Reed–Solomon codes,
and it corrects up to n−

√
kn errors.

Algorithm 2. 1. Input: n, k, ` : {(x0, y0), . . . , (xn−1, yn−1)}.

2. Parameters r, s such that

r` > s, and n

(
r + 1

2

)
<
s(s+ 2)

2k
.

In particular set

r = 1 +

⌊
kn+

√
k2n2 + 4(`2 − kn)

2(`2 − kn)

⌋
,

s = r`− 1.

3. Find a polynomial function Q : F×F −→ F whose (1, k)-weighted degree
is at most s, i.e. find the values for its coefficients {qj1,j2 | j1, j2 ≥
0, j1 + kj2 ≤ s} such that the following conditions hold:

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 75

• At least one qj1,j2 is non zero;

• For every i ∈ {0, . . . , n − 1} if Q(i) denotes the shift of Q to
(xi, yi), then all coefficients of Q(i) of total degree less than r are
0. Formally,

∀ i ∈ {0, . . . , n− 1}, ∀ j1, j2 ≥ 0 s.t. j1 + j2 < r,

q
(i)
j1,j2

:=
∑
j′1≥j1

∑
j′2≥j2

(
j′1
j1

)(
j′2
j2

)
qj′1,j′2x

j′1−j1
i y

j′2j2
i = 0.

4. Output all the polynomials f ∈ Fq[x] of degree at most k such that
(y − f(x)) is a factor of Q and f(xi) = yi for at least ` values of
i ∈ {0, . . . , n− 1}.

The correctness of this algorithm is guaranteed by the following results
(see [7]).

Lemma 5.4.6. If f(x) is a polynomial of degree at most k such that yi =
f(xi) for at least ` values of i ∈ {0, . . . , n − 1} and r` > s, then y − f(x)
divides Q(x, y).

�

Lemma 5.4.7. If

n

(
r + 1

2

)
<
s(s+ 2)

2k
,

then a polynomial Q with the properties sought in step 3 of algorithm 2 does
exist, and it can be found in polynomial time by solving a linear system.

�

Lemma 5.4.8. If n, k, ` satisfy `2 > kn, then for the choice of r and s made
in step 2 of algorithm 2,

n

(
r + 1

2

)
<
s(s+ 2)

2k
and r` > s

both hold.

�

Theorem 5.4.9. Algorithm 2 on inputs n, k, ` and the points {(xi, yi)}n−1
i=0 ,

correctly solves the polynomial reconstruction problem, provided ` >
√
kn.

�

CHAPTER 5. COMPUTATIONAL ASPECTS OF LIST DECODING 76

5.5 Comparison between the algorithms

Here we discuss pros and cons of our algorithm in comparison with Guruswami-
Sudan algorithm.

The Guruswami-Sudan algorithm is the most important list-decoding al-
gorithm developed for Reed-Solomon codes. As we have seen in the previous
section, it has the advantage of solving the list decoding problem in polyno-
mial time in the length of the code C. However it effectively works only for
low-rate codes, In fact the GS algorithms can correct up to n−

√
nk errors,

that in case of high-rate codes can be a value arbitrariarily small.
Consider the algorithm that we have discussed in this thesis. In compar-

ison of GS algorithm, it has the advantage of working for every kind of Reed
Solomon code, without any restriction on its rate. Moreover it works also
for binary BCH codes, while GS does not. The disadvantage is that in the
general case its running time is not polynomial in the length of C, because
it involves the computation of a Gröbner basis. However, as we have seen
in Section 5.3, in some special cases we can reduce the computationl cost of
the algorithm by making it polynomial in the length of C. In these cases our
algorithm is really competitive, especially because GS algorithm does not
always work.

Chapter 6

Examples

In this section we illustrate some examples in order to show how the al-
gorithm works step by step. Some of this examples follows by introducing
random errors, while some others are constructed ad hoc, in order to find
more codewords as possible in a Hamming ball of radius e, as shown in [9].

6.1 Binary BCH code with n = 31 and δ = 11

Here we show an example of how the algorithm works for binary BCH codes.
Let C be a primitive binary BCH code of length n = 31 and designed distance
δ = 11. Consider γ as a primitive element of F32 over F2, with γ satisfying

γ5 + γ2 + 1 = 0.

Suppose that the codeword c = (0, 0, . . . , 0) is transmitted, and 6 random
errors occur during the transmission, so that the received word, seen as a
polynomial, is

r = e8 + e14 + e21 + e24 + e27 + e30,

where we denoted by ei the vector whose i+ 1-th entry equals 1.
The syndrome vector is given by

(s1, s2, . . . , s10) =
(
γ23, γ15, γ9, γ30, γ, γ18, γ25, γ29, γ8, γ2

)
.

and we can remove the linearly dependent equations from the 6-th extended
syndrome matrix, obtaining the matrix

S̃ =


0 0 0 0 0 1 γ23

γ23 γ15 γ9 γ30 γ γ18 γ25

γ15 γ9 γ30 γ γ18 γ25 γ29

γ9 γ30 γ γ18 γ25 γ29 γ8

γ30 γ γ18 γ25 γ29 γ8 γ2

 ,

77

CHAPTER 6. EXAMPLES 78

with ker(S̃) = ker(S̃6).

Here the kernel of the matrix S̃ is generated by the polynomials

f0(x) = x6 + γx5 + γ23x4 + γ25x3 + γ2x2,

f1(x) = x5 + γ26x4 + γ2x3 + γ2x2 + γ25x+ γ2.

The Euclidean division between H(x) = x31 − 1 and

F (a, x) =x6 + (a+ z)x5 + (γ26a+ γ23)x4 + (γ2a+ γ25)x3+

(γ2a+ γ2)x2 + γ25ax+ γ2a

produces the divisibility ideal

I = (a2 + γ2a+ γ6),

whose variety is
V(I) =

{
γ8, γ29

}
.

So the divisibility set is Σ(r, 6) = {σ1(x), σ2(x)}, where

σ1(x) = x6 + γ23x5 + γ11x4 + γ3x3 + γ22x2 + γ2x+ γ10,

σ2(x) = x6 + γ27x5 + γ10x4 + γ21x3 + γ5x2 + γ23x+ 1.

From this divisibility set, by applying the decoding function on it, we have

Dr,6 (σ1(x)) = r + e7 + e16 + e17 + e22 + e23 + e29,

Dr,6 (σ2(x)) = r + e8 + e14 + e21 + e24 + e27 + e30 = (0, 0, . . . , 0) .

So there are two different codewords at distance 6 from r.

6.2 [15, 7, 9] RS code

Consider the finite field F16 with primitive element γ satisfying γ4 + γ + 1.
Let C be the [15, 7, 9] Reed Solomon code over F16. Here the error-correction
radius is t = 4, and we would like to correct up to e = 5 errors. Suppose that
c = (0, . . . , 0) is the transmitted word, and we generate 5 random errors, so
the received word is

r =
(
0, 0, γ11, 0, γ12, γ11, 0, 0, 0, 0, 0, 0, γ3, 0, γ7

)
.

The vector of the syndromes is given by

(s1, . . . , s8) =
(
0, γ, γ14, γ3, γ3, γ2, γ6, γ14

)
,

CHAPTER 6. EXAMPLES 79

and the 5-th syndrome matrix is

S5 =

 0 γ γ14 γ3 γ3 γ2

γ γ14 γ3 γ3 γ2 γ6

γ14 γ3 γ3 γ2 γ6 γ14

 .
Computing the kernel of S5 we obtain

ker(S5) = 〈f0, f1, f2〉 ,

where

f0(x) = x5 + γx4 + γ10x3 + γ8x2,

f1(x) = x4 + x3 + γ7x2 + γ3x,

f2(x) = x3 + γx2 + γ8x+ 1.

After the Euclidean division of the polynomialH(x) = x15−1 by F (a, b, x) =
f0(x) + af1(x) + bf2(x), we obtain that the divisibility ideal is given by

I = (r0(a, b), r1(a, b), r2(a, b), r3(a, b), r4(a, b)) ,

where the polynomial ri are defined by

CHAPTER 6. EXAMPLES 80

r0(a, b) = a10b+ a9b+ a8b2 + γ4a8b+ γ14a7b+ γ2a6b2 + γ12a6b+ a5b3+

a5b+ a4b4 + γ4a4b3 + a2b5 + γ7a2b2 + a2b+ ab5 + γ10ab3+

ab+ b6 + γ4b5 + γ5b4 + γ9b3 + γ7b2 + γ4b+ 1,

r1(a, b) = γ3a11 + γ8a10b+ γ3a10 + γ6a9b+ γ7a9 + γ8a8b2 + γ13a8b+

γ2a8 + γ10a7b+ a7 + γ13a6b2 + a6b+ γ3a6 + γ6a5b3 + γ7a5b2+

γ3a5b+ γ8a4b4 + γ13a4b3 + γ14a4b2 + γ14a4b+ γ3a3b4 + γ9a3b+

γ3a3 + γ8a2b5 + γ3a2b4 + γ9a2b2 + γ6a2b+ γ3a2 + γ6ab5+

γ7ab4 + γ5ab3 + γ12ab2 + γab+ γ7a+ γ8b6 + γ13b5 + γ2b4+

b3 + γ7b2 + γ12b,

r2(a, b) = γ7a11 + γa10b+ γ5a10 + γ6a9b+ γ3a9 + γa8b2 + γ3a8b+

γ6a8 + γ13a7b+ γ8a7 + γ2a6b+ γ12a6 + γ6a5b3 + γ3a5b2+

γ5a5b+ a5 + γa4b4 + γ3a4b3 + γ8a4b2 + γ4a4b+ γa4+

γ7a3b4 + γa3b+ γ12a3 + γa2b5 + γ5a2b4 + γ2a2b2 + γ2a2b+

γ11a2 + γ6ab5 + γ3ab4 + γ3ab3 + γ2ab2 + γ2ab+ γ7a+ γb6+

γ3b5 + γ14b4 + γ5b3 + γ14b2 + γ4b+ γ12,

r3(a, b) = a11 + a10b+ γ13a10 + γa9b+ γ6a9 + a8b2 + γ8a8b+ γ4a7b+

γ12a6b2 + γ7a6b+ γ11a6 + γa5b3 + γ6a5b2 + γ9a5b+ γ7a5+

a4b4 + γ8a4b3 + γ8a4b2 + γ14a4b+ γ11a4 + a3b4 + γ10a3b+

γ7a3 + a2b5 + γ13a2b4 + γ5a2b2 + γa2b+ γ13a2 + γab5+

γ6ab4 + γ5ab3 + γ8ab2 + γ13ab+ γa+ b6 + γ8b5 + γ4b4+

γ2b3 + γ9b2 + γ14b+ γ14,

r4(a, b) = a11 + γa10 + γ12a9 + γa8b+ γ13a8 + γ4a7 + γ4a6b+ γ5a6+

γ12a5b2 + γa5 + γa4b3 + γ13a4b2 + γ9a4b+ γ2a4 + a3b4+

γ14a3 + γa2b4 + γ10a2b+ a2 + γ12ab4 + γ5ab2 + γ14a+ γb5+

γ13b4 + γ5b3 + γ6b2 + γ13b+ 1.

In order to compute the variety of the ideal I, we use the probabilistic method
described in Section 5.3.2. Consider the extension field F4096, with δ primitive
element which satisfies the relation

δ12 + δ7 + δ6 + δ5 + δ3 + δ + 1

over F2. Here we have that γ = δ273 = δ10 + δ9 + δ8 + δ4 + δ3 + δ2. We can
choose randomly two 4-dimensional vector in F4096, e.g.(

δ3932, δ1964, δ1120, δ69
)
,

CHAPTER 6. EXAMPLES 81(
δ3435, δ1242, δ790, δ137

)
.

Now, we take

G1(a, b) = δ3932r1(a, b) + δ1964r2(a, b) + δ1120r3(a, b) + δ69r4(a, b),

G2(a, b) = δ3435r1(a, b) + δ1242r2(a, b) + δ790r3(a, b) + δ137r4(a, b).

If p(b) is the polynomial defined by

h̃(b) = gcd{Resa(r0(a, b), G1(a, b)), Resa(r0(a, b), G2(a, b)},

then we have

h̃(b) = b−
(
δ11 + δ9 + δ5 + δ4 + δ3 + δ2 + δ

)
= b− γ8.

Now, substituting b = γ8, we obtain that the variety of I is

V(I) =
{

(γ6, γ8)
}
,

and so
Σ(r, 5) =

{
x5 + γ11x4 + γ11x3 + γx2 + γ3x+ γ8

}
.

Therefore, by using the decoding function on the set Σ(r, 5),we have that the
only codeword with distance at most 5 from the received word r is

Dr,5
(
x5 + γ11x4 + γ11x3 + γx2 + γ3x+ γ8

)
= (0, 0, . . . , 0) .

6.3 [15, 7, 9] RS code

Here we present another example, suggested by J. Justesen [9]. The code C
is the same as before, i.e. the [15, 7, 9] Reed Solomon code over F16. As a
primitive element we consider again γ satisfying γ4 + γ + 1.

Suppose that c = (0, 0, . . . , 0) is the transmitted word and 5 errors occur
during the transmission, producing the received word

r = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0) .

The vector of the syndromes is given by

(s1, . . . , s8) = (0, 0, 0, 0, 1, 0, 0, 0) ,

and the 5-th syndrome matrix is

S5 =

 0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 .

CHAPTER 6. EXAMPLES 82

The kernel of S5 is given by

ker(S5) = 〈f0, f1, f2〉
where

f0(x) = x5,

f1(x) = x4,

f2(x) = 1.

The Euclidean division between H(x) = x15 − 1 and F (a, b, x) = x5 +
ax4 + b produces the divisibility ideal I generated by

r0(a, b) = a10b+ b3 + 1,

r1(a, b) = a9b+ a4b2,

r2(a, b) = a8b,

r3(a, b) = a7b+ a2b2,

r4(a, b) = a11 + a6b+ ab2.

Using the probabilistic method shown in Section 5.3.2, we obtain that the
first elimination ideal is given by

I ∩ F16[b] =
(
b3 − 1

)
,

and the variety of I is

V(I) =
{

(0, 1), (0, γ5), (0, γ10)
}
.

Thus the divisibility set is

Σ(r, e) =
{
x5 + 1, x5 + γ5, x5 + γ10

}
.

From this we obtain that

Dr,5
(
x5 + 1

)
= (0, 0, . . . , 0)

Dr,5
(
x5 + γ5

)
=
(
1, 0, γ5, 1, 0, γ5, 1, 0, γ5, 1, 0, γ5, 1, 0, γ5,

)
,

Dr,5
(
x5 + γ10

)
=
(
1, γ10, 0, 1, γ10, 0, 1, γ10, 0, 1, γ10, 0, 1, γ10, 0

)
.

Therefore the algorithm outputs the list

L(r, 5) =
{

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),(
1, 0, γ5, 1, 0, γ5, 1, 0, γ5, 1, 0, γ5, 1, 0, γ5,

)
,(

1, γ10, 0, 1, γ10, 0, 1, γ10, 0, 1, γ10, 0, 1, γ10, 0
)}
.

CHAPTER 6. EXAMPLES 83

6.4 [12, 7, 6] RS code

Another example that we can found in [9] is the following. Let C be the
[12, 7, 6] Reed Solomon code over F13. Consider 2 as a primitve element. Here
the minimum distance is 6 and the error-correcting radius is 2. Suppose that
we try to transmit the codeword c = (0, 0, . . . , 0), and the received word is

r = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) .

In this work we have always dealt with codes that have odd minimum dis-
tance, but the procedure is the same. The syndromes vector is given by

(s1, s2, s3, s4, s5) = (0, 0, 3, 0, 0),

and the 3-rd syndrome matrix is

S3 =

[
0 0 3 0
0 3 0 0

]
.

A basis for ker(S3) is given by

ker(S3) = 〈x3, 1〉.

By Euclidean division between H(x) = x12 − 1 and F (a, x) = x3 + a we
obtain that the polynomials r2 and r1 of the divisibility ideal I equal zero,
while r0(a) = a4 − 1. Hence

V(I) = {1, 5, 8, 12}

and
Σ(r, 3) =

{
x3 − 1, x3 − 5, x3 − 8, x3 − 12

}
.

Therefore

L(r, 3) =Dr,3 (Σ(r, 3)) =

= {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(1, 8, 0, 0, 1, 8, 0, 0, 1, 8, 0, 0) ,

(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) ,

(1, 0, 0, 5, 1, 0, 0, 5, 1, 0, 0, 5)} .

CHAPTER 6. EXAMPLES 84

6.5 [10, 2, 9] RS code

Here we present the third example that we can find in [9]. Let C be the
[10, 2, 9] Reed-Solomon code over F11, where we consider 2 as a primitive
element. Here the error-correcting radius is 4. Suppose that a codeword c is
transmitted and the received word is

r = (5, 3, 3, 4, 4, 9, 9, 1, 1, 5).

Suppose moreover that we don’t know how many errors occur in r and we
try to list all the codewords with distance at most 5 from it. Our first try
is to find all the codewords with distance at most 5 from r. The syndrome
vector of r is

(s1, s2, . . . , s8) = (0, 0, 2, 0, 0, 0, 0, 4) ,

and the 5-th syndrome matrix is

S5 =

 0 0 2 0 0 0
0 2 0 0 0 0
2 0 0 0 0 4

 .
A leading basis for ker(S5) is given by

ker(S5) = 〈x5 + 5, x2, x〉,

and the Euclidean division between x10 − 1 and x5 + ax2 + bx + 5 produces
the divisibility ideal

I = (2,−b,−a+ b2, 2ab, a2) = (1).

Hence the variety V(I) is empty and there are no codewords whose distance
is at most 5 from r.

Our second attempt is to find all the codewords with distance at most 6
from r. The 6-th syndrome matrix is

S6 =

[
0 0 2 0 0 0 0
0 2 0 0 0 0 4

]
,

and its kernel is given by

ker(S6) = 〈x6, x5 + 5, x3, x2, x〉.
Now we perform the Euclidean division between x10−1 and x6 +ax5 + bx3 +
cx2 + dx+ 5a. We obtain that the divisibility ideal is given by

I = (d+ 3, c2 + 2bd, ac− 1, b2 + 4a, ab− 2c, a2 − 5bc),

CHAPTER 6. EXAMPLES 85

whose variety is

V(I) = {(8, 2, 8, 6), (8, 10, 2, 10), (8, 8, 7, 7), (8, 7, 10, 8), (8, 6, 6, 2)} .

Since we are working in the polynmial ring F11[a, b, c, d], in this case we
computed a Gröbner basis for I in order to find its variety. This variety
yelds the following list of codewords

L(r, 6) =
{

(10, 3, 0, 5, 4, 2, 9, 1, 7, 8)

(5, 3, 10, 2, 8, 9, 0, 4, 1, 6)

(2, 7, 6, 4, 0, 3, 9, 10, 1, 5)

(5, 8, 3, 4, 6, 10, 7, 1, 0, 9)

(0, 1, 3, 7, 4, 9, 8, 6, 2, 5)
}
,

that are all the codewords with distance at most 6 from r.

Bibliography

[1] O. Brugia, and P. Filipponi, “Polynomial Divisibility in Finite Fields and
Recurring Sequences”, The Fibonacci Quarterly, Vol. 33:459–463, 1995.

[2] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Al-
gebra, Springer, New York, 1992.

[3] L. Caniglia, A. Galligo, and J. Heintz, “Some new effectivity bounds
in computational geometry”, Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, 6:131–151, 1989.

[4] P. Elias. “List decoding for noisy channels”, In 1957-IRE WESCON Con-
vention Record, 2:94-104, 1957.

[5] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning polynomials with
queries: The highly noisy case”, in Proc. 36th Annu. IEEE Symp. Foun-
dations of Computer Science, 294–303, 1995.

[6] V. Guruswami, List Decoding of Error-Correcting Codes, Lecture Notes
in Computer Science 3282, Springer, 2004.

[7] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon codes
and algebraic geometry codes”, IEEE Trans. Inform. Theory vol. 45, 6:
1757–1767, 1999.

[8] S. M. Johnson, “A new upper bound for error-correcting codes”, IRE
Trans. Inform. Theory, IT-8:203-207, 1962.

[9] J. Justesen and T. Høholdt, “Bounds on list decoding of MDS codes”,
IEEE Trans. Inform. Theory, vol. 47:1604–1609, 2001.

[10] J. Schwartz, “Fast probabilistic algorithms for verification of polynomial
identities”, J. ACM, 27(4):701-717, 1980.

86

BIBLIOGRAPHY 87

[11] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-correction
bound”, J. Compl., vol. 13:180–193, 1997.

[12] R. Zippel, “Probabilistic algorithms for sparse polynomials”, Proc. EU-
ROSAM ’79, Springer Lec. Notes Comp. Sci. 72:216–226, 1979.

[13] J.H. van Lint, Introduction to Coding Theory, Springer, New York, 1982.

