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Introduction

A circuit is a set of (logic or arithmetic) gates connected by wires. Its purpose
is to implement a function in a way that can be easily realized in the physical
world (by means of electronic components like transistors and capacitors).

Suppose that we have a specific function in mind and we want to build a
circuit which is able to compute it. We ask a logic designer who gives us the
description of the logic gates and their connections. How can we be sure that the
circuit does actually do what we want it to do? That is the verification problem,
that is to say, the problem of finding a formal proof of the correctness of a circuit.

In this thesis we want to describe some of the algebraic techniques used to
solve the verification problem. In particular, we will focus on two main types of
methods:

• the Commutative Algebra approach, which reduces the problem to the well-
known Ideal Membership Problem;

• the Difference Equations approach, which obtains a system of difference
equations from the circuit, thus allowing a systematic study from that point
of view.

Our starting point is a concrete circuit: a combined Reed-Solomon encod-
er/syndrome generator proposed by Fettweis and Hassner in [2]. An encoder is
a device capable of converting a message into a codeword. Coding theory is a
branch of mathematics which develops particular algebraic structures (the codes)
which are suitable for transmitting or storing information, because they are able
to detect and/or correct possible errors.

In the first chapter we describe briefly how the encoding and the decoding
of an RS code work, as well as the circuits to perform those operations. We also
introduce the combined encoder/syndrome generator of which we want to prove
the correctness.

The second chapter deals with the verification techniques based on commuta-
tive algebra. In particular, we follow an article by Lv, Kalla and Enescu [7] which
uses the Nullstellensatz for Finite Fields to reduce the verification of a circuit to

xi



xii Introduction

an Ideal Membership Problem. They developed this method for combinational
circuits only; we generalize it to include also sequential ones. Moreover, we
show another method, based on the vector space structures in play, which is less
expensive but works only with linear circuits (whose output depends linearly on
the input).

The difference equations are introduced in the third chapter. After a brief
description of them, we explain how to translate a circuit into a system of
difference equations and illustrate some of the main tools used to study these
equations.

In the fourth chapter we employ all these techniques to verify the encoder
proposed by Fettweis and Hassner. We begin with particular instances of the
circuit, for which we may use the commutative algebra approach. Then we
will prove the correctness of the circuit structure, translating it into a system of
difference equations, which are more suitable for this kind of proof. We will
actually prove that a generalized version of the circuit works.

We conclude hinting at possible further developments of these topics, which
may take different paths: we may look for some improvements of the efficiency
of the methods shown, or we could analyse the combined circuit more in depth
in order to have a better understanding of its functioning, in case that the ideas
behind it could be applied in other situations.



Chapter 1

Reed-Solomon Encoding and
Decoding

In this chapter we are going to describe how a Reed-Solomon (RS) code works.
In particular, we will see how to encode a word, turning it into a codeword, and
how to perform the actual error correction.

RS codes are usually implemented in technologies which rely on fast infor-
mation retrieval, such as CD/DVD units and digital television broadcasting.
Because of this, researchers and engineers have focused their attention on a
hardware implementation rather than a software one. We will present the classi-
cal circuits used in encoding/decoding of a RS code, as well as one combined
encoder/syndrome calculator presented by Fettweis and Hassner in [2], which
reduces the global amount of hardware complexity. A proof of the correctness of
this circuit is the main task of this thesis work.

We will assume some basic knowledge of error-correcting codes and logic
circuits. A brief summary of these topics can be found respectively in Appendix
A and B.

Notational Remark. The expression n-word will denote (not so surprisingly) a
word of length n.

1.1 How to Encode a Word

Let Fq be a finite field with characteristic 2 and let n, k and t be integers such
that n = q − 1 and k = n − 2t. Let C be an RS code defined on Fq of length n,
with an error-correction capacity of t symbols. Thus the encoder takes a word
w ∈ (Fq)

k and gives a codeword c ∈ C ⊆ (Fq)
n. We suppose that C is generated

1



2 Chapter 1. Reed-Solomon Encoding and Decoding

by the polynomial

g(X) :=

2t∏
i=1

(X− αi)

where α is a fixed primitive element of Fq.
The Mattson-Solomon polynomial (see Appendix A) defines a method to

encode a k-word into an n-codeword, but unfortunately this method isn’t sys-
tematic.

Definition 1.1. An encoding method is systematic if the n-codeword is obtained
by concatenating the k-word to be encoded with n− k parity-check symbols.

Obviously a systematic method is preferable to a non-systematic one, because
it is possible to retrieve the message by truncating the n−k parity-check symbols
after the error-correction step, thus avoiding a decoding passage which may be
both time- and resources-costing.

In order to systematically encode a k-wordw(X) = w0+w1X+· · ·+wk−1Xk−1,
we just need a well-known algorithm: the Euclidean division of polynomials.
In fact, the 2t parity-check symbols are just the coefficient of the remainder
r(X) = r0 + r1X + · · · + r2t−1X2t−1 obtained from dividing X2tw(X) by the
generator polynomial g(X), and the codeword is c(X) = X2tw(X) + r(X). To see
that c belongs to the RS code, notice that X2tw(X) = g(X)h(X) + r(X) for some h
and that c(X) = g(X)h(X) because char(Fq) = 2.

Example 1.1. Let us define a 2-error-correcting RS code over F8, which we obtain
as F2[α] with α3 +α+ 1 = 0. It is a code of length 7 with 3 message symbols and
4 parity-check digits, with generator polynomial

g(X) := (X− α)(X− α2)(X− α3)(X− α4)

A word (β2, β1, β0) is seen as m(X) := β2X
2 + β1X+ β0 and its encoding is

m(X)X4 + r(X) = β2X
6 + β1X

5 + β0X
4 + γ3X

3 + γ2X
2 + γ1X+ γ0,

where r(X) := γ3X3+γ2X2+γ1X+γ0 is the remainder of the Euclidean division
of m(X)X4 by g(X). For example, the polynomial X2 + (α + 1)X + (α2 + α) is
encoded as

X6 + (α+ 1)X5 + (α2 + α)X4 + (α2)X2 + (α2 + 1)X+ α. (1.1)

At hardware level, an RS systematic encoder is a division circuit, as shown in

Figure 1.1. In that figure, the symbols + and ·
β

represent respectively
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+ + + +

0

·
g1

·
g2

·
g2t−1

·
g0

Input message

Output
message

. . .

. . .

Figure 1.1: A standard RS encoder. The gi’s are the coefficients of the generator
polynomial.

an adder and a multiplier for a fixed β, which operate on elements of Fq. The
symbol is a register capable of storing an element of Fq, initialized to 0.

At first, and for k clock cycles, the two switches are both in the lower position:
the first k symbols of the output word are just the input symbols. After k
clock cycles, the registers contain the parity-check symbols, and the switches
are activated in order to cut off the input wire and concatenate the parity-check
symbols to the output.

1.2 How to Decode a Word

After having received an n-word v(X), we have to decode it, i.e. we have to find
the most likely codeword that has been transmitted. This requires a number of
steps.

1. First of all, we have to compute the syndrome of the word. The 2t symbols
of the syndrome are in fact the values si := v(αi), for i = 1, . . . , 2t.

2. Then we solve the key equation and retrieve the error locator polynomial
σ(Z) and the error evaluator polynomial ω(Z).

3. We use σ(Z) and ω(Z) to reconstruct the error pattern e(X).

4. Finally, we compute the codeword c(X) = v(X) + e(X).

For further information about steps 2. and 3., see Appendix A; we are going
to focus our attention just on the first step. Computing syndromes is in fact
quite simple; it is a polynomial evaluation, which means that it can be done
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by Horner’s Algorithm, that is to say, by iterated multiplication and addition,
having written

v0 + v1X+ · · ·+ vn−1Xn−1 = v0 + X(v1 + X(v2 + · · ·+ X(vn−2 + vn−1X) . . . )).

The circuit shown in Figure 1.2 perform this task—the coefficients of v(X), starting

+

·
αi

Received
word

Figure 1.2: Computation of the syndrome si = v(αi).

from the leading coefficient, are entered one by one at each clock cycle; when the
last one is input, the register stores the value si. A set of 2t units of this circuit
allows to compute the values si for i = 1, . . . , 2t.

Received
word

+ + + +

·
α1

·
α2

·
α3

·
α2t

. . .

Figure 1.3: A set of circuit units for syndrome computation.

Example 1.2. Continuing from Example 1.1, let’s compute the syndrome for the
codeword (1.1), which we call w(X). That is not difficult and the result is

(w(α), w(α2), w(α3), w(α4)) = (0, 0, 0, 0).

Suppose that an error occurred and we received the word

w̃(X) = X6 + (α+ 1)X5 + (α2 + 1)X4 + (α2)X2 + (α2 + 1)X+ α

(where the only difference is the coefficient of X4: in w(X) it was α2 + α). The
syndrome is

(w̃(α), w̃(α2), w̃(α3), w̃(α4)) = (1, α2 + α,α, α2 + α+ 1).
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From this information we solve the key equation, obtaining

σ(Z) = 1+ (α2 + α)Z;

ω(Z) = Z.

Now, α2 + α = α4, i.e. there have been a single error in the fourth coefficient;
from Equation (A.1) we obtain the error pattern

e(X) = (α+ 1)X4

and finally w̃(X) + e(X) = w(X), successfully correcting the error.

1.3 The Combined RS Encoder/Syndrome Generator

One of the disadvantages of the circuit described in Section 1.1 is that it re-
quires the coefficients of the generator polynomial. Suppose that a change of
the code specification is needed, for example because we have to increase the
error-correcting capacity. It suffices to add some powers of α, but this means
more multiplier/adder loops in the circuit of Figure 1.1 and, above all, a new
computation of the gi’s. In other words, we have to rebuild the circuit.

In their article [2], Fettweis and Hassner notice that the encoder and the
decoder are rarely active at the same time, thus it is possible to imagine a circuit
in which hardware resources are shared between them. By manipulating the
standard circuit of Figure 1.1, they managed to describe a combined encoder and
syndrome generator for an RS code.

+ + + +

·
g1

·
g2

·
g2t−1

·
g0

Input message

Output
message

. . .

. . .

Figure 1.4: The modified RS encoder with a linear feedback loop.

Their main problem was the switch in the feedback loop, which is a non-
linearity that prevented them from applying linear system transformation of the
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loop itself. However, they realized that, since the characteristic of the coefficient
field is 2, the same result could be achieved by assuring that the two inputs of
the last adder in the chain were the same, therefore forcing the output of the
adder to be 0, as shown in Figure 1.4. The feedback loop is now linear and can
be studied by means of linear transformations.

Input
message

Output
message

+ + + +

·
α1

·
α2

·
α3

·
α2t

+ + +. . .

. . .

Figure 1.5: The final version of the RS encoder.

Figure 1.5 represents the resulting RS encoder. Notice that the multipliers use
the roots of the generator polynomial (i.e. the αi’s), and not the coefficients. In
fact, there is a strong resemblance between this circuit and the one of Figure 1.3:
the only difference is the lower adder chain.

In
pu

t

O
ut

pu
t

+ + + +

·
α1

·
α2

·
α3

·
α2t

+ + +. . .

. . .

En
co

de
/D

ec
od

e

Figure 1.6: The combined encoder/syndrome generator.
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The encoder of Figure 1.5 and the syndrome generator of Figure 1.3 can
now be combined as shown in Figure 1.6. The “Encode/Decode” wire carries a
stream of 1’s (for encoding) or 0’s (for decoding) of the suitable bandwidth, so
that the AND gates let the information pass through the lower adder chain (in
case of encoding) or break the chain (in case of decoding). When computing the
syndrome, the switch is constantly in the upper position and the output end can
be ignored, as the syndrome values will appear in the registers.

The particular structure of this encoder, which uses the αi’s instead of the
gi’s, ensures an easy way to achieve different error-correcting capabilities with
the same circuit: it suffices to cut off some of the loops in order to remove the
relative αi from the generator polynomial, effectively obtaining an encoder for
the appropriate RS code.

In the next chapter we will develop a computational algebra method in order
to perform the verification of sequential circuits. In particular, we will employ
it to confirm that instances of the combined encoder/syndrome generator do
actually work.
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Chapter 2

The Commutative Algebra
Approach

One of the most important results in commutative algebra is the so-called Null-
stellensatz, which relates ideals in the polynomial ring with varieties in the affine
space. In this chapter we are going to see how that theorem can be used for the
verification of logic circuit.

In particular, we will introduce a verification technique developed by Lv,
Kalla and Enescu in [7] for combinational circuits. Starting from there, we will
define a generalization of that method in order to be able to deal with sequential
circuits. We will call it the polynomial method.

We will also show another approach (the module method) that is more efficient
than the polynomial one, but can be applied only to a specific class of circuits.

2.1 The Nullstellensatz for Finite Fields

Let us recall the basic facts of algebraic geometry. Let K be a field and K[X] :=

K[X1, . . . , Xn]. For any subset P ⊆ K[X] and any field extension L ⊇ K, we
denote by VL(P) the (affine) variety of P over L, that is

VL(P) := {a ∈ Ln | ∀p ∈ P, p(a) = 0}.

We will omit the subscript for L = K. It is easy to show that VL(P) = VL((P)), so
we can consider just ideals instead of generic sets of polynomial.

For any subset V ⊂ Kn, the set of polynomials that vanish on all the points
of V forms an ideal, called the vanishing ideal of V :

I(V) := {f ∈ K[X] | ∀a ∈ V, f(a) = 0}.

9



10 Chapter 2. The Commutative Algebra Approach

Theorem 2.1 (Weak Nullstellensatz). Let K be an algebraically closed field and
I ⊆ K[X] an ideal. Then V(I) = ∅ if and only if I = K[X].

Theorem 2.2 (Strong Nullstellensatz). Let K be an algebraically closed field and
I ⊆ K[X] an ideal. Then I(V(I)) =

√
I.

There is a little problem: we are going to use finite fields, which are never
algebraically closed. For, suppose K = {q1, . . . , q`}, the polynomial

(X− q1) · . . . · (X− q`) + 1

belongs to K[X] but has no root in K. This prevents us from applying the
Nullstellensatz directly.

What can we do? Actually, there is an elegant solution to our problem. All we
have to do is to identify which part of the variety in (Fq)

n lies in fact in (Fq)
n,

and there is a special polynomial that encodes the elements of Fq.

Proposition 2.3. All and only the fixed points of the Frobenius automorphism

ϕq : Fq −→ Fq
x 7−→ xq

are the elements of Fq. In other words, the roots of the polynomial Xq−X are the elements
of Fq.

As a consequence, we may hope that adding relations of the form X
q
i − Xi

(which we will call field equations) would help us solve the problem. In fact, that
is what happens, as stated in the following theorems.

Theorem 2.4 (Weak Nullstellensatz over Finite Fields). Let I ⊆ Fq[X] be an ideal,
and I0 := (Xq1 − X1, . . . , X

q
n − Xn). Then VFq(I) = ∅ if and only if (I, I0) = Fq[X].

Proof. Let Fq denote the algebraic closure of Fq and let V(I) be the variety of I
over Fq. We have VFq(I) = V(I) ∩ (Fq)

n. Now, (Fq)n is a finite set of points, so it
is V(I0) for some I0. It follows that

VFq(I) = V(I) ∩ (Fq)
n = V(I) ∩ V(I0) = V(I, I0). (2.1)

We have only to prove that I0 = (Xq1 − X1, . . . , X
q
n − Xn), but this is a straightfor-

ward consequence of Proposition 2.3.

Lemma 2.5. For any ideal I ⊆ Fq[X], the ideal (I, I0) is radical.
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Proof. Since any ideal is contained in its radical, we only have to prove that√
(I, I0) ⊆ (I, I0).

Let f ∈
√
(I, I0). This means there is an s ∈ N such that fs ∈ (I, I0). Now let [f]

and [I] be the classes of f and I in Fq[X]
/
I0. We have [f]s ∈ [I], and it suffices to

prove that [f] ∈ [I].
Firstly we show that, for any [g] ∈ Fq[X]

/
I0, [g]

q = [g]. This can be done by
induction on the number of terms in g.

1. If [g] = [cXα] is a monomial, then [g]q = [cqXqα] = [cXα] = [g].

2. Suppose [g] = [h1] + [h2]. By inductive hypothesis [h1]
q = [h1] and

[h2]
q = [h2]. Then

[g]q = ([h1] + [h2])
q =

q∑
i=0

(
q

i

)
[h1]

i[h2]
q−i =

= [h1]
q + [h2]

q = [h1] + [h2] = [g].

Since [f]q = [f], without loss of generality we may assume s < q. But now
[f]s ∈ [I] and also

[f]s[f]q−s = [f]q = [f] ∈ [I].

This ends the proof.

Theorem 2.6 (Strong Nullstellensatz over Finite Fields). Let I ⊆ Fq[X] be an ideal.
Then I(VFq(I)) = (I, I0).

Proof. By the Strong Nullstellensatz applied to the ideal (I, I0) and Lemma 2.5,
we have

I(V(I, I0)) = (I, I0).

The thesis follows by Relation (2.1).

2.2 Verification of Combinational Circuits

In this section we will describe the verification technique developed by Lv, Kalla
and Enescu in [7]. They use the results of the previous section to translate the
verification problem in an ideal membership problem, which can be effectively
solved using standard algebraic methods. They focus on combinational circuits
only, where the output is a polynomial function of the input.

We begin with what we want the circuit to do. For example, we may want
to build a multiplier over F4, i.e. a circuit that takes a, b ∈ F4 and gives ab ∈ F4.
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We encode the relation between input and output in a multivariate polynomial
(specification polynomial) f(Z,A1, . . . , Ak), where Z and A1, . . . , Ak are variables
representing the output and the inputs respectively. In our example, we have
f(Z,A, B) = Z−AB.

Then we have the implementation of the circuit, which is the information
about the number and the type of logic gates needed, and their disposition in
the circuit. The gates are modelled with the standard correspondence between
Boolean algebras and Boolean rings, which can be found in Table 2.1. In addition

Boolean expression Ring operation

¬a 1+ a

a^ b a · b
a_ b a · b+ a+ b

aY b a+ b

Table 2.1: Translation between Boolean expression and ring operation in a Boolean
algebra.

to these, we have to include any other relation between the variables appearing in
the specification polynomial and the variables which arise from the description
of the circuit.

An example of a multiplier over F4 is given in Figure 2.1.

f1

f2

f3

f4

f5

f6

f7

C0

C3

C2

C1

R0

Z0

Z1

A0

A1

B0

B1

Figure 2.1: A two-bit multiplier over F4.

All the variables in Figure 2.1 may assume a binary value. The result of the
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polynomial translation is shown in Table 2.2.

Gate Polynomial Expression

f1 C0 −A0B0
f2 C3 −A1B1
f3 C2 −A1B0
f4 C1 −A0B1
f5 Z0 − (C0 + C3)

f6 Z1 − (C3 + R0)

f7 R0 − (C2 + C1)

Table 2.2: Polynomial translation of the gates of Figure 2.1.

We also have to link the specification variables and the input/output of the
circuit. In this example, we assume that F4 is given as F2[α] where α2+α+1 = 0.
The relations between Z,A, B and the variables appearing in the circuit are

f8 : A− (A0 +A1α), f9 : B− (B0 + B1α), f10 : Z− (Z0 + Z1α).

Now, what does “the circuit works” mean? All the polynomial obtained from
the implementation generate an ideal I in a suitable polynomial ring. A point
of VFq(I) describes a way to assign values to the polynomial variables which
comply with the circuit constraints. To verify the correctness of the circuit, we
have to test whether these values also agree with the specification polynomial f,
that is to say, whether f vanishes on all points of VFq(I). By Theorem 2.6, this can
be done by checking if f ∈ (I, I0). Notice also that if there is a point p ∈ VFq(I)

such that f(p) 6= 0, we are sure that there is a bug in the design.
The steps of the verification algorithm are now clear:

1. deduce the set of polynomials I corresponding to the circuit instance;

2. append to these the suitable field equations I0;

3. compute a Gröbner basis G of I ∪ I0;

4. reduce the specification polynomial f with respect to G;

5. if the output is 0, the circuit is correct; otherwise, there is a bug in the
design.

In the rest of their article, Lv, Kalla and Enescu explain some techniques that
improve the efficiency of the algorithm. In particular,
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• they describe how to choose a monomial ordering such that the set of
polynomial obtained in step 1. above is already a Gröbner basis, thus
eliminating the need of computing one with Buchberger’s Algorithm;

• they use an improved reduction approach based on Faugère’s F4 Algorithm,
which has overall better performances.

2.3 Dealing with Time: the Polynomial Method

In the last section we focused our attention on combinational circuits, following
[7]. What we want to do now is try to take time into account, that is to say, we
want to generalize that method in order to obtain a way to verify sequential
circuits.

Let us consider a memory register. From Appendix B we know that it is a
device capable of storing data. It changes its state at every clock cycle, updating
its content according to its input terminal.

How can we represent a situation like this? It is not hard to imagine that
we may label each polynomial variable with an integer index, which states the
clock cycle at which we are considering the variable. In other words, we encode
the information in the i-th wire of the circuit at time j in a variable Xij of the
polynomial ring. Obviously this brings to polynomial rings with a huge number
of variables.

In this setting, every (combinational) logic gate f(X1, . . . , Xk) has to be re-
peated for each time: the ideal describing the circuit contains f(X1j, . . . , Xkj) for
all j. (Notice that we are assuming that the number of clock cycles required by
the circuit is known in advance.) A memory register with input D and output Q
is represented by the set of polynomials Qj+1 −Dj, meaning “the output at time
j+ 1 is equal to the input at time j”. The polynomial Q1 − β is added to the set,
representing the initial condition of the register (at time 1 the value β is stored).

A point in the variety VFq(I) now encodes the possible values for the variables
according not only to the circuit constraints but also to the evolution in time.
Correctness of the design is achieved by assuring that the specification polynomial
(also modelled taking time into account) vanishes on all the points of VFq(I).

Example 2.1. We want to build a circuit that takes one value ai ∈ Fq at each clock
cycle and, after n cycles, returns a1 · . . . · an. The circuit shown in Figure 2.2 is a

good candidate. The gate × multiplies two elements of Fq. The inputs are
given in the wire A and we expect the output from wire B. The register is set to
1 in the beginning.
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×A B

C

Figure 2.2: A recursive multiplier over Fq.

To have an instance of the circuit, let us set n = 5. The polynomial ring in
which we are working is

R := Fq[A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5].

The specification polynomial is f : B5 −A1A2A3A4A5. Let us model the gates.

The multiplier. The polynomials are Bi −AiCi for each i = 1, . . . , 5.

The register. At first the register contains 1, so we have C1 − 1; then, for i =
2, . . . , 5, we derive Ci − Bi−1.

To these we have to add the field equations `qi − `i for each ` ∈ {A,B,C} and
i = 1, . . . , 5.

We choose F8 for a test with the software Sage. At first we define F8 and R
with

K.<a>=FiniteField(8);

R=PolynomialRing(K,"A1,A2,A3,A4,A5,B1,B2,B3,B4,B5,C1,C2,

C3,C4,C5");

R.inject_variables();

Then we define the ideal

I=Ideal(B1-A1*C1,B2-A2*C2,B3-A3*C3,B4-A4*C4,B5-A5*C5,C1-1,

C2-B1,C3-B2,C4-B3,C5-B4,A1^8-A1,A2^8-A2,A3^8-A3,A4^8-A4,

A5^8-A5,B1^8-B1,B2^8-B2,B3^8-B3,B4^8-B4,B5^8-B5,C1^8-C1,

C2^8-C2,C3^8-C3,C4^8-C4,C5^8-C5);

and the specification polynomial

f=B5-A1*A2*A3*A4*A5;

The result of f.reduce(I.groebner_basis()) is 0, thus we may conclude
that the circuit works.
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2.4 Dealing with Time: the Module Method

The polynomial method has a major drawback in the fact that it requires rings
with a lot of variables, which usually means high computational cost. In this
section we try to overcome this problem by choosing another mathematical
structure to represent the evolution of the circuit in time. Unfortunately, the price
we have to pay is a loss of generality—this other method can be used only for
a special class of circuits (which includes the combined RS encoder/syndrome
generator of Chapter 1).

At first we thought to employ modules instead of rings. The environment is
the module K[X]T = K[X1, . . . , Xn]

T , where X1, . . . , Xn represent wires and T
is the number of clock cycles. The j-th component represents the j-th cycle. In
other words, if (e1, . . . ,eT ) is the canonical basis of K[X]T (as a K[X]-module),
the term Xiej stores the information of the i-th wire at time j.

Now it is easy to understand why only particular circuits can be verified with
this method. For example, the recursive multiplier of Figure 2.2 can’t be tested:
the specification polynomial would contain expressions like (Ae1) · . . . · (Aek)
which have no meaning in this context. The suitable circuits for this method
are the linear ones, that is to say, their output is a K-linear combination of their
inputs.

This brought us to redefine the method: the underlying sets remain the same,
but now they are regarded as K-vector spaces instead of K[X]-modules.

The circuit is modelled as a K-vector subspace of K[X1, . . . , Xn]
T generated

by its constraints, which are derived with the following rules.

• Every combinatorial logic gate has to be repeated for each component (i.e.
we have f(X1, . . . , Xn)ej for all j = 1, . . . , T ). This means that for every logic
gate f(X1, . . . , Xn) the columns of f(X1, . . . , Xk)IT , where IT is the T × T
identity matrix, belong to the subspace defining the circuit.

• A memory register with input D and output Q is described by the T − 1

vectors Qej+1 − Dej (for j = 1, . . . , T − 1) and the initialization vector
(Q− β)e1 if the register stores β as its initial value.

The specification polynomial now becomes a specification vector, built in the same
way as in the polynomial method (with the obvious substitutions), and we have
to test its membership to the subspace defined by the circuit.

Theorem 2.7. Let M ⊆ K[X]T be the K-subspace generated by the circuit units (as well
as any other relation that is used by the polynomial method, such as the field equations),
and let f ∈ K[X]T be the specification vector. If f ∈M, the circuit works.
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Proof. In this proof, we will use the following notation:

• X = {X1, . . . , Xn} will denote the set of the wire variables, without any
reference to time;

• Xj := {Xij | i = 1, . . . , n} is the set of the wire variables with a (fixed) time
index j, which ranges from 1 to the number T of clock cycles required by
the circuit;

• X∗ := X1 ∪ · · · ∪ XT .

We define the K-linear map Ψ : K[X]T → K[X∗] as

K[X]T −→
T⊕
j=1

K[Xj] −→ K[X∗]f1(X)...
fT (X)

 7−→

f1(X1)...
fT (XT )

 7−→
T∑
j=1

fj(Xj).

In other words, the first map simply renames the variables of fj adding the time
index j, and the second map sums all the components.

Suppose that M is generated by the (finite) circuit relations v1, . . . , vm. Our
claims are that

1. Ψ(f) and Ψ(v1), . . . , Ψ(vm) are respectively the specification polynomial and
the polynomials representing the gates and registers for the polynomial
method;

2. if f ∈ M, then Ψ(f) belongs to the ideal generated by Ψ(v1), . . . , Ψ(vm),
thus proving the correctness of the circuit by the polynomial method of
Section 2.3.

For j = 1, . . . , T let ej be the vector with 1 in the j-th component and 0

elsewhere. The first claim follows directly by definition of Ψ. Here are some
examples:

• if g(X) represents a combinational logic gate, we have g(X)ej for each
j = 1, . . . , T , whose image under Ψ is g(Xj);

• a register with input D and output Q is modelled by Qej+1 −Dej, which
is sent to Qj+1 −Dj by Ψ.

The second claim is clear too, because of the linearity of Ψ: suppose that
f ∈M and write

f =

m∑
i=1

βivi
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for β1, . . . , βm ∈ K. Then

Ψ(f) =

m∑
i=1

βiΨ(vi) ∈ (Ψ(v1), . . . , Ψ(vm)).

This completes the proof.

Example 2.2. We slightly modify the circuit of Figure 2.2 so that now it recursively
adds instead of multiply.

+A B

C

Figure 2.3: A recursive adder over Fq.

This time the register is set to 0 at first. We choose for example n = 5 and
obtain the relations

A :=


B− (A+ C) 0 0 0 0

0 B− (A+ C) 0 0 0

0 0 B− (A+ C) 0 0

0 0 0 B− (A+ C) 0

0 0 0 0 B− (A+ C)


for the adder, and

R :=


C −B 0 0 0

0 C −B 0 0

0 0 C −B 0

0 0 0 C −B

0 0 0 0 C


for the register. (We should add also the field equations, but in this simple
example they are irrelevant.) The specification vector is

f :=


−A

−A

−A

−A

B−A

 .
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We have to check whether f belongs to the subspace of the K-linear combinations
of the columns of A and R. A quick computation, in fact, tells us that

f = a1 + a2 + a3 + a4 + a5 + r1 + r2 + r3 + r4 + r5

(where the ai’s and the ri’s are the columns of A and R), thus establishing the
correctness of the circuit.

2.5 A First Result: Arbitrariness of the Coefficient Field

In this section we are going to show that, if the circuit specification and the
constraints are modelled with linear polynomials, a correctness proof based
on the polynomial method will be valid independently of the underlying field
of coefficients—under the obvious assumption that the adders and the scalar
multipliers of a particular instance of the circuit are designed to operate with
elements of the suitable field.

Remember that the information about our working field is given by the field
equations, which are polynomials like Xqi − Xi. The field equations have to be
appended to the ideal generated by the circuit constraints in order to trigger
the Nullstellensatz over Finite Fields. The question is, do we really need them?
Generally speaking, the answer is yes: there are examples in which their absence
brings to wrong results. The situation is different when we are dealing with
linear polynomials.

Recall that there are some useful criteria that avoid some computation when
looking for a Gröbner basis. We will report here just one of them; its proof can
be found, for example, in [1].

Proposition 2.8 (Product Criterion). Let f, g ∈ K[X1, . . . , Xn] be polynomials such
that lt(f) and lt(g) are coprime. Then their S-polynomial S(f, g) reduces to 0.

Lemma 2.9. The S-polynomial between two linear polynomials either reduces to 0 or is
linear. Moreover, reducing a linear polynomial with other linear polynomials results in a
linear polynomial.

Proof. A linear polynomial f ∈ K[X1, . . . , Xn] may be written as

f(X) = α1X1 + · · ·+ αnXn + α0.

Let f and g be linear polynomials, with lt(f) = αiXi and lt(g) = βjXj.

• If i 6= j, the two leading terms are coprime, hence S(f, g) reduces to 0 by
the Product Criterion.
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• If i = j, suppose lt(f) = αiXi and lt(g) = βiXi, then S(f, g) = βif−αig is a
linear polynomial.

As far as reduction is concerned, a linear polynomial f can be reduced by
another linear polynomial g only if lm(g) appears among the monomials of f; in
that case, supposing that lt(g) = βiXi and that there is αiXi in f, reduction of f
by g results in f− (αi/βi)g, which is a linear polynomial.

Now, the polynomial method requires an ideal membership test in order to
prove the correctness of the circuit. In particular, for linear circuits we have to
check whether a linear specification polynomial belongs to an ideal generated by
other linear polynomials and the field equations. But the field equations are not
linear, which means they will never participate during the reduction step of the
algorithm, because of their high degree. Thus, it is possible to change them with
other field equations without affecting the passages of the membership test.

This proves that changing the field of the coefficients (i.e. changing the
field equations) doesn’t modify the outcome of the test. We conclude that
the polynomial method can be used for testing correctness of circuits whose
constraints are given by linear polynomials, without having to fix a field for the
coefficients.

However, we have to be very careful when applying the principle stated above.
The field equations, in fact, limit the values that the variables may take; they
don’t affect the coefficient field directly. This means that, if the circuit is designed
to work with specific constraints over the coefficients (e.g. only in characteristic
2), the field has to fulfil these requirements.



Chapter 3

The Difference Equations
Approach

The commutative algebra techniques analysed in Chapter 2 can be applied when
the number of clock cycles is known in advance. In this chapter we try to change
our point of view: we translate the behaviour of the circuit into a system of
difference equations. These equations relate the state and the output at time k
with the state and the input at time k− 1; as a consequence, it is not necessary to
know the number of steps in advance, because we can proceed one step at a time.

We will consider only linear difference equations, because the RS encoder we
are going to study is a linear circuit. Thus, the methods that we are going to
show are not suitable for other types of circuits.

3.1 Difference Equations

A difference equation may be seen as a sort of “discrete differential equation”,
that is to say, it is a relation that expresses the evolution in time of a discrete
function (i.e. a sequence).

Definition 3.1. A (linear) difference equation of order k with coefficients in K is a
relation of the form

k∑
j=0

hjai+j = 0, (3.1)

where i ∈ N, hj ∈ K, h0 6= 0, hk = 1 and the ai’s are unknowns. A solution of
the difference equation is a sequence (ai)i∈N ∈ KN whose terms satisfy (3.1).

It is not difficult to show that the set of all solutions of a difference equa-
tion of order k is a k-dimensional K-linear subspace of KN. In fact, for each

21
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(b0, . . . , bk−1) ∈ Kk there exists a unique solution (ai)i∈N such that a0 =

b0, . . . , ak−1 = bk−1.

Definition 3.2. Let
∑
hjai+j = 0 be a difference equation of order k. The

polynomial

h(T) :=

k∑
j=0

hjT
j

is called characteristic polynomial of the equation.

The roots of the characteristic polynomial play an important role in determin-
ing a so-called closed form of a solution, that is an expression of the n-th term an

that depends on n only, and not on the previous terms. Let α be a root of h(T)
in a suitable algebraic extension of K. Then the sequence (αn)n∈N obviously
satisfies the difference equation. Assuming that the roots of h(T) are distinct (let
them be α1, . . . , αk), linearity implies that for any K-linear combination

sn := y1α
n
1 + · · ·+ ykαnk , y1, . . . , yk ∈ K

the sequence (sn)n∈N is a solution of the equation.

Example 3.1. The Fibonacci numbers are generated by the second order difference
equation (with coefficients in R)

ai+2 = ai+1 + ai (3.2)

along with the initial conditions a0 = 0, a1 = 1. The characteristic polynomial is
h(T) = T2 − T − 1, whose roots are

1+
√
5

2
and

1−
√
5

2
.

The set of the solutions of Equation (3.2) is{(
y1

(
1+
√
5

2

)n
+ y2

(
1−
√
5

2

)n)
n∈N

∣∣∣∣∣ y1, y2 ∈ R
}
.

By imposing the initial condition
y1 + y2 = 0

y1

(
1+
√
5

2

)
+ y2

(
1−
√
5

2

)
= 1

and solving the system, we obtain the well-known formula for the Fibonacci
numbers

an =
1√
5

(
1+
√
5

2

)n
−
1√
5

(
1−
√
5

2

)n
.
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So, how can a sequential circuit be translated into a difference equation?
There are three important sequences related to a generic sequential circuit:

• the input sequence (u(t))t∈N;

• the state sequence (x(t))t∈N;

• the output sequence (y(t))t∈N.

Each sequence contains information about the input, state and output of the
circuit at every clock cycle t. The behaviour of a linear circuit is encoded in two
difference equations: {

x(t+ 1) = Ax(t) + Bu(t) (3.3a)

y(t) = Cx(t) +Du(t) (3.3b)

where A,B,C,D are constants determined by the circuit constraints. Equa-
tion (3.3a) tells us how the state changes in function of the current state and
input; Equation (3.3b) express the output in terms of the state and the input.
Notice that both equations are linear.

All the objects in Equations (3.3) may be scalars, vectors or matrices, de-
pending on the particular circuit, if those representations are more suitable.
The dimensions of the constants are chosen in order to preserve the equations’
consistency.

Once translated into a system of difference equations, a circuit can be studied
from that point of view. For example, we may know a priori how the output y(t)
is related to the input u(t), so that we just have to check if these sequences satisfy
Equations (3.3). In the following sections we will describe some tools used to
analyse difference equations.

3.2 The Z-Transform

A difference equation talks about sequences; we may enter the realm of Algebra
turning those sequences into algebraic objects.

Definition 3.3. Let a = (an)n∈N ∈ KN be a sequence. The Z-transform of a,
denoted by Z[a], is the formal power series

Z[a] :=

∞∑
n=0

anZ
−n ∈ KvZ−1w.

Table 3.1 shows some Z-transforms for some of the basic sequences. Besides
the definition, there are some tools that allow to compute Z-transforms from
other known ones.
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Name Definition Z-transform

Discrete impulse δ0(n) =

{
1 if n = 0

0 otherwise
Z[δ0] = 1

Discrete step hn = 1 ∀n ∈ N Z[h] =
Z

Z− 1

Geometric sequence gn = αn Z[g] =
Z

Z− α

Table 3.1: Some common sequences with their Z-transforms.

Proposition 3.4 (Linearity of Z-Transform). For any a,b ∈ KN and α,β ∈ K, we
have

Z[αa+ βb] = αZ[a] + βZ[b].

Proof. It follows immediately from the K-vector space structure of KN and
KvX−1w.

Proposition 3.5 (Forward Shift Operator). Let a = (an)n∈N be a sequence. Define
the forward shift operator F : KN → KN as

(F(a))n := an+1 ∀n ∈ N.

Then

Z[F(a)] = ZZ[a] − Za0.

Proof. This is a straightforward computation, isolating the first term of the series
ZZ[a].

Proposition 3.6 (Backward Shift Operator). Let a = (an)n∈N be a sequence. Define
the backward shift operator B : KN → KN as

(B(a))n :=

{
an−1 for n 6= 0,
0 for n = 0.

Then

Z[B(a)] = Z−1 Z[a].

Proof. It suffices to collect a Z−1 from Z[B(a)].
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3.3 Transfer Functions

Let us consider a system of difference equations associated to a circuit{
x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)

with x(0) = x0. We compute the Z-transforms of all the sequences appearing
in those equations. Let X(Z) := Z[x(t)], Y(Z) := Z[y(t)] and U(Z) := Z[u(t)].
Linearity and forward shift rule lead to{

ZX(Z) − Zx0 = AX(Z) + BU(Z)

Y(Z) = CX(Z) +DU(Z)

and a simple manipulation gives{
X(Z) = Z(ZI−A)−1x0 + (ZI−A)−1BU(Z)

Y(Z) = ZC(ZI−A)−1x0 + (C(ZI−A)−1B+D)U(Z)

where I is an identity matrix of appropriate dimension.

Definition 3.7. The transfer function of a circuit is the ratio

G(Z) := C(ZI−A)−1B+D

between the Z-transform of the output and the Z-transform of the input for the
initial state x0 = 0.

Notice that the transfer function does not depend on the particular input, but
only on the linear system that we are studying.

Example 3.2. Let’s compute the transfer function of a single unit of the syndrome
generator, like the one of Figure 1.2. In this case, input and output symbols are

+

·
α

Input Output

Figure 3.1: The same of Figure 1.2.

managed one at a time, and there is just one register, so the sequences x(t), y(t)
and u(t) are all 1-dimensional.
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Now, let’s follow the wires. The content of the register is multiplied by α,
then added to the input, and the result is given as output; the difference equation
that models this behaviour is

y(t) = αx(t) + u(t).

The same output wire is also the one which updates the register, so we have

x(t+ 1) = αx(t) + u(t).

In other words, this circuit has A = C = α and B = D = 1. The transfer function
is then

G(Z) = 1+
α

Z− α
=

Z

Z− α
.

3.4 Circuit Equivalence

Besides verifying a circuit correctness, the difference equations may also test the
equivalence of two linear circuits.

Definition 3.8. Two circuits described by the systems{
x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)
and

{
w(t+ 1) = Ãw(t) + B̃u(t)

y(t) = C̃w(t) + D̃u(t)

are algebraically equivalent if there exists an invertible linear transformation T such
that x(t) = Tw(t) for all t and

Ã = T−1AT, B̃ = T−1B,

C̃ = CT, D̃ = D.

It is easy to show that two algebraically equivalent circuits are “equivalent”
in the sense that they produce the same outputs if their input is the same. In fact,
from the second circuit we have{

w(t+ 1) = T−1ATw(t) + T−1Bu(t)

y(t) = CTw(t) +Du(t)

and, multiplying by T on the left the first equation and writing x(t) = Tw(t), we
obtain the equations of the first circuit.

As we may expect, since the transfer function depends on the behaviour of a
circuit, two algebraically equivalent circuits have also the same transfer function:

G̃(Z) = C̃(ZI− Ã)−1B̃+ D̃ =

= CT(ZT−1IT − T−1AT)T−1B+D =

= CTT−1(ZI−A)−1TT−1B+D =

= C(ZI−A)−1B+D = G(Z).



Chapter 4

Correctness of the Combined RS
Encoder/Syndrome Generator

In this chapter we will apply the methods described in the previous chapters in
order to prove that the combined RS encoder/syndrome generator of Chapter 1
is correct. In the “decode” mode, the circuit reduces to the standard syndrome
generator of Figure 1.3, so we will consider the “encode” mode only.

At first we will fix a length and an error capability of the RS code and we
will verify an instance of the circuit with those parameters using the polynomial
method. Then we will translate the general circuit into a system of difference
equations and will work on them, in order to prove that the encoder is correct
for any choice of the parameters.

4.1 Particular Instances of the Circuit

The polynomial method requires all the circuit parameters to be known in
advance. It is useful when we have a particular instance of the circuit and
we want to test its correctness. Unfortunately, it relies on actual computations,
which means we can’t leave a literal parameter (such as 2t, the number of check
symbols). In other words, this method is unable to prove the correctness of the
circuit structure—it verifies single instances.

4.1.1 2-Error-Correcting RS over F8

Let us begin with the 2-error-correcting RS code over F8 of Example 1.1. Recall
that the encoder takes a word of (F8)3 and ensures a codeword of (F8)7, adding
4 parity-check symbols of F8.

27



28 Chapter 4. Correctness of the Combined RS Encoder/Syndrome Generator

Input
message A B
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·
α1

·
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Figure 4.1: The encoder of Figure 1.5 with t = 2. Each wire is labelled with a
polynomial indeterminate.

The actual circuit is shown in Figure 4.1. The seventeen wires are each labelled
with a letter from

L := {A,B,D, E,G,H, J, K,M,N, P,Q, S, T, V,W,Z}.

The circuit requires seven clock cycles, so there is a total of 119 polynomial
variables

L∗ := {`i | ` ∈ L, i = 1, . . . , 7},

that is to say, our environment ring will be F8[L∗].
We have now to translate the design of the circuit into an ideal. Table 4.1 lists

the polynomials which arise from the various gates, as well as the field equations.
After that we define the specification polynomials. This encoding method is

systematic, so the first three outputs have to be equal to the inputs:

f1 := B1 −A1

f2 := B2 −A2

f3 := B3 −A3.

Recall that, for a message m(X), the parity-check symbols are obtained by divid-
ing m(X) · X2t by g(X) and taking the coefficients of the remainder, where t is
the error-correcting capability of the code and g is the generator polynomial. In
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Type of gate Polynomials Ranges #

First row
of adders

Bi +Gi −Di, Bi +Mi −Hi,

Bi + Si −Ni, Bi + Zi − Ti
i = 1, . . . , 7 28

Registers
initialization

E1, J1, P1, V1 4

Registers
Ei+1 −Di, Ji+1 −Hi,

Pi+1 −Ni, Vi+1 − Ti
i = 1, . . . , 6 24

Multipliers
Gi − αEi, Ki − α

2Hi,

Qi − α
3Pi, Wi − α

4Vi
i = 1, . . . , 7 28

Second row
of adders

Gi + Ki −Mi, Mi +Qi − Si,

Si +Wi − Zi
i = 1, . . . , 7 21

Switch
Bi −Ai
Bi − Zi

i = 1, . . . , 3

i = 4, . . . , 7
7

Field equations `i
8 − `i `i ∈ L∗ 119

Total number of polynomials 231

Table 4.1: List of the polynomials associated to the circuit in Figure 4.1.

our case (t = 2, m(X) = (A1)X
2 + (A2)X+ (A3))

m(X) · X2t = (A1)X
6 + (A2)X

5 + (A3)X
4,

g(X) = X4 + (α+ 1)X3 + X2 + αX+ (α+ 1),

and a quick computation gives us

f4 := B4 −
(
(α2 + α)A1 + α

2A2 + (α+ 1)A3
)

f5 := B5 −
(
A1 +A2 +A3

)
f6 := B6 −

(
(α2 + α)A1 + (α2 + 1)A2 + αA3

)
f7 := B7 −

(
(α2 + α+ 1)A1 + (α2 + 1)A2 + (α+ 1)A3

)
.

Let I ⊆ F8[L∗] the ideal generated by the 231 polynomials of Table 4.1. Correct-
ness of the circuit is established if fi ∈ I for i = 1, . . . , 7.

We tested our method with the Sage software on a Intelr AtomTM N550
processor @1.50GHz with 2GB RAM @667MHz. First of all we have to set up
the environment.

K.<a>=FiniteField(8);
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R=PolynomialRing(K,"A1,A2,A3,A4,A5,A6,A7,B1,B2,B3,B4,B5,B6,

B7,D1,D2,D3,D4,D5,D6,D7,E1,E2,E3,E4,E5,E6,E7,G1,G2,G3,

G4,G5,G6,G7,H1,H2,H3,H4,H5,H6,H7,J1,J2,J3,J4,J5,J6,J7,

K1,K2,K3,K4,K5,K6,K7,M1,M2,M3,M4,M5,M6,M7,N1,N2,N3,N4,

N5,N6,N7,P1,P2,P3,P4,P5,P6,P7,Q1,Q2,Q3,Q4,Q5,Q6,Q7,S1,

S2,S3,S4,S5,S6,S7,T1,T2,T3,T4,T5,T6,T7,V1,V2,V3,V4,V5,

V6,V7,W1,W2,W3,W4,W5,W6,W7,Z1,Z2,Z3,Z4,Z5,Z6,Z7");

R.inject_variables();

The next step is putting together all the equations into an ideal I:

I=Ideal(B1+G1-D1,B2+G2-D2,B3+G3-D3,B4+G4-D4,B5+G5-D5,

B6+G6-D6,B7+G7-D7,B1+M1-H1,B2+M2-H2,B3+M3-H3,B4+M4-H4,

B5+M5-H5,B6+M6-H6,B7+M7-H7,B1+S1-N1,B2+S2-N2,B3+S3-N3,

B4+S4-N4,B5+S5-N5,B6+S6-N6,B7+S7-N7,B1+Z1-T1,B2+Z2-T2,

B3+Z3-T3,B4+Z4-T4,B5+Z5-T5,B6+Z6-T6,B7+Z7-T7,E1,J1,P1,

V1,E2-D1,E3-D2,E4-D3,E5-D4,E6-D5,E7-D6,J2-H1,J3-H2,

J4-H3,J5-H4,J6-H5,J7-H6,P2-N1,P3-N2,P4-N3,P5-N4,P6-N5,

P7-N6,V2-T1,V3-T2,V4-T3,V5-T4,V6-T5,V7-T6,G1-a*E1,

G2-a*E2,G3-a*E3,G4-a*E4,G5-a*E5,G6-a*E6,G7-a*E7,

K1-(a^2)*J1,K2-(a^2)*J2,K3-(a^2)*J3,K4-(a^2)*J4,

K5-(a^2)*J5,K6-(a^2)*J6,K7-(a^2)*J7,Q1-(a^3)*P1,

Q2-(a^3)*P2,Q3-(a^3)*P3,Q4-(a^3)*P4,Q5-(a^3)*P5,

Q6-(a^3)*P6,Q7-(a^3)*P7,W1-(a^4)*V1,W2-(a^4)*V2,

W3-(a^4)*V3,W4-(a^4)*V4,W5-(a^4)*V5,W6-(a^4)*V6,

W7-(a^4)*V7,G1+K1-M1,G2+K2-M2,G3+K3-M3,G4+K4-M4,

G5+K5-M5,G6+K6-M6,G7+K7-M7,M1+Q1-S1,M2+Q2-S2,M3+Q3-S3,

M4+Q4-S4,M5+Q5-S5,M6+Q6-S6,M7+Q7-S7,S1+W1-Z1,S2+W2-Z2,

S3+W3-Z3,S4+W4-Z4,S5+W5-Z5,S6+W6-Z6,S7+W7-Z7,B1-A1,

B2-A2,B3-A3,B4-Z4,B5-Z5,B6-Z6,B7-Z7,A1^8-A1,A2^8-A2,

A3^8-A3,A4^8-A4,A5^8-A5,A6^8-A6,A7^8-A7,B1^8-B1,B2^8-B2,

B3^8-B3,B4^8-B4,B5^8-B5,B6^8-B6,B7^8-B7,D1^8-D1,D2^8-D2,

D3^8-D3,D4^8-D4,D5^8-D5,D6^8-D6,D7^8-D7,E1^8-E1,E2^8-E2,

E3^8-E3,E4^8-E4,E5^8-E5,E6^8-E6,E7^8-E7,G1^8-G1,G2^8-G2,

G3^8-G3,G4^8-G4,G5^8-G5,G6^8-G6,G7^8-G7,H1^8-H1,H2^8-H2,

H3^8-H3,H4^8-H4,H5^8-H5,H6^8-H6,H7^8-H7,J1^8-J1,J2^8-J2,

J3^8-J3,J4^8-J4,J5^8-J5,J6^8-J6,J7^8-J7,K1^8-K1,K2^8-K2,

K3^8-K3,K4^8-K4,K5^8-K5,K6^8-K6,K7^8-K7,M1^8-M1,M2^8-M2,

M3^8-M3,M4^8-M4,M5^8-M5,M6^8-M6,M7^8-M7,N1^8-N1,N2^8-N2,
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N3^8-N3,N4^8-N4,N5^8-N5,N6^8-N6,N7^8-N7,P1^8-P1,P2^8-P2,

P3^8-P3,P4^8-P4,P5^8-P5,P6^8-P6,P7^8-P7,Q1^8-Q1,Q2^8-Q2,

Q3^8-Q3,Q4^8-Q4,Q5^8-Q5,Q6^8-Q6,Q7^8-Q7,S1^8-S1,S2^8-S2,

S3^8-S3,S4^8-S4,S5^8-S5,S6^8-S6,S7^8-S7,T1^8-T1,T2^8-T2,

T3^8-T3,T4^8-T4,T5^8-T5,T6^8-T6,T7^8-T7,V1^8-V1,V2^8-V2,

V3^8-V3,V4^8-V4,V5^8-V5,V6^8-V6,V7^8-V7,W1^8-W1,W2^8-W2,

W3^8-W3,W4^8-W4,W5^8-W5,W6^8-W6,W7^8-W7,Z1^8-Z1,Z2^8-Z2,

Z3^8-Z3,Z4^8-Z4,Z5^8-Z5,Z6^8-Z6,Z7^8-Z7);

G=I.groebner_basis();

The Gröbner basis[1] of I has 119 polynomials and has been computed in 1.86 s.
Now we define the specification polynomials.

f1=B1-A1;

f2=B2-A2;

f3=B3-A3;

f4=B4-(a^2+a)*A1-(a^2)*A2-(a+1)*A3;

f5=B5-A1-A2-A3;

f6=B6-(a^2+a)*A1-(a^2+1)*A2-(a)*A3;

f7=B7-(a^2+a+1)*A1-(a^2+1)*A2-(a+1)*A3;

The correctness of the circuit is established once we have verified that

f1, . . . , f7 ∈ I,

for which we can ask Sage:

[f1.reduce(G),f2.reduce(G),f3.reduce(G),f4.reduce(G),

f5.reduce(G),f6.reduce(G),f7.reduce(G)];

The answer is

[0, 0, 0, 0, 0, 0, 0]

and we can conclude that the circuit works correctly.

4.1.2 2-Error-Correcting RS over F8 with a Bug

Now suppose that there is a bug in the circuit implementation. In this example,
we change one of the adders of the second row with a multiplier (see Figure 4.2).
The only difference in I is that the polynomials Mi +Qi − Si become MiQi − Si.

We tried to perform the computation, but after more than 6 hours both the
2GB RAM and the 1GB SWAP memories got saturated, and we didn’t manage
to obtain a Gröbner basis.

[1]Sage uses the degrevlex monomial ordering by default.
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+ ×

·
α2 α3

·

Figure 4.2: A bug in the circuit of Figure 4.1.

4.1.3 4-Error-Correcting RS over F32

For the last example we choose the field F32, implemented as F2[α] with minimal
polynomial α5 + α2 + 1, and t = 4, so that we have 23 message symbols and 8
check symbols. The generator polynomial is

g(X) := (X− α) · . . . · (X− α8).

There are 33 wires and 31 clock cycles are needed, for a total of 1023 polynomial
indeterminates. In particular, we will work in F32[L∗] with

L := {A,B,C,D, E, F,G,H, I, J, K, L,M,N,O, P,Q,

R, S, T,U, V,W,X, Y, Z, Γ, Θ,Λ, Ξ,Φ,Ψ,Ω}

and L∗ := {`i | ` ∈ L, i = 1, . . . , 31}. It is not difficult to write the polynomial
constraint of this circuit: they are similar to the ones seen before. We will
not report them here, mainly because they take too much space—there are 992
polynomials which arise from the gates and 1023 field equations, which means a
total of 2015 polynomials!

The first 23 specification polynomials are fi := Bi − Ai (for i = 1, . . . , 23),
because the encoding is systematic. These already belong to the ideal defined by
the circuit (they appear in the description of the switch), so we may ignore them.
A (not so) quick computation gives the formulas for the other outputs.

f24 := B24 + (α4 + α2 + α+ 1)A1 + (α3 + α2)A2 + (α3 + α2 + α+ 1)A3 +

+ (α4 + α3)A4 + (α4 + α2 + 1)A5 + (α4)A6 + (α4 + α3 + α2 + 1)A7 +

+ (α4 + α2 + α)A8 + (α4 + α3 + α2 + α)A9 + (α4 + α3 + α)A10 +

+ (α3 + α+ 1)A11 + (α)A12 + (α3 + α2 + α)A13 + (α3 + 1)A14 +

+ (α2)A15 + (α3 + α2 + 1)A16 + (α3)A17 + (α2 + α+ 1)A18 +

+ (α3 + α2 + α+ 1)A19 + (α)A20 + (α4 + α2 + 1)A21 +
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Figure 4.3: The encoder with t = 4.



34 Chapter 4. Correctness of the Combined RS Encoder/Syndrome Generator

+ (α4 + α3 + α2 + α+ 1)A22 + (α3)A23

f25 := B25 + (α3 + 1)A1 + (α4 + α3)A2 + (α4 + α3 + α+ 1)A3 + (α4 + 1)A4 +

+A5 +A6 + (α+ 1)A7 + (α4 + α3 + α2)A8 + (α4 + α3 + α2 + 1)A9 +

+ (α4)A10 + (α3)A11 + (α4 + α3 + α+ 1)A12 +

+ (α4 + α3 + α2 + 1)A13 + (α3 + α2)A14 + (α3 + α2)A15 +

+ (α+ 1)A16 + (α2 + α+ 1)A17 + (α4 + α2 + 1)A18 + (α4)A19 +

+ (α4 + α3 + α2 + α+ 1)A20 + (α4 + α3 + α+ 1)A21 +

+ (α4 + α2 + α)A22 + (α4 + α2 + 1)A23

f26 := B26 + (α4 + α+ 1)A1 + (α3 + α2 + α)A2 + (α2 + 1)A3 +

+ (α4 + α2 + 1)A4 + (α3 + α2 + 1)A5 + (α4 + α2 + α)A6 + (α2)A7 +

+ (α2 + 1)A8 + (α+ 1)A9 + (α4 + α3 + α2)A10 + (α4 + α+ 1)A11 +

+ (α2 + α+ 1)A12 + (α4 + α+ 1)A13 + (α4 + 1)A14 + (α4 + α)A15 +

+ (α4 + α3 + α2 + α)A16 + (α4 + α3 + α)A17 + (α+ 1)A18 +

+ (α3)A19 + (α4 + α3 + α2 + α+ 1)A20 + (α+ 1)A21 + (α4 + 1)A22 +

+ (α3 + α2 + α+ 1)A23

f27 := B27 + (α+ 1)A1 + (α4 + α3 + α2 + 1)A2 + (α4 + 1)A3 +

+ (α4 + α3 + 1)A4 + (α3)A5 + (α2 + α)A6 + (α4 + α3 + α2)A7 +

+ (α3)A8 + (α4 + α3 + α2 + α)A9 +A10 + (α4 + α3 + α)A11 +

+ (α3 + α2 + 1)A12 + (α4 + α2 + α+ 1)A13 + (α3 + α+ 1)A14 +

+ (α3)A15 + (α4 + α+ 1)A16 + (α3 + 1)A17 + (α4 + α)A18 +

+ (α4 + α3 + α2)A19 + (α4 + α2 + α)A20 + (α)A21 +

+ (α4 + α2 + α+ 1)A22 + (α2 + α)A23

f28 := B28 + (α4 + α3 + α2 + 1)A1 + (α3 + α2 + α)A2 + (α4 + α3 + α)A3 +

+ (α3 + α+ 1)A4 + (α3)A5 + (α2 + α+ 1)A6 + (α)A7 +

+ (α2 + α+ 1)A8 + (α2 + α)A9 + (α3)A10 + (α4 + α3 + α2 + α)A11 +

+ (α4 + α2 + α)A12 + (α3 + α2)A13 + (α2)A14 + (α4 + α+ 1)A15 +

+ (α+ 1)A16 + (α2 + α)A17 + (α4 + α3 + α+ 1)A18 +

+ (α4 + α2 + 1)A19 + (α4)A20 + (α2 + α+ 1)A21 +

+ (α3 + α)A22 + (α)A23

f29 := B29 + (α3 + α+ 1)A1 + (α2 + 1)A2 + (α4)A3 + (α3 + α2 + α+ 1)A4 +

+ (α2)A5 + (α3 + α2 + 1)A6 + (α4 + α3)A7 + (α3 + α+ 1)A8 +

+ (α4 + α3 + α2 + α)A9 + (α4 + α2 + α+ 1)A10 +

+ (α4 + α3 + α2 + α)A11 + (α4 + α3 + α)A12 + (α3 + α)A13 +
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+ (α4 + α3 + α2 + α)A14 + (α3 + α2)A15 + (α3 + 1)A16 +

+ (α4 + α+ 1)A17 + (α3)A18 + (α2 + 1)A19 + (α4 + 1)A20 +

+ (α4 + α3 + α2 + α+ 1)A21 + (α4 + α3 + α2)A22 + (α4 + α3 + α)A23

f30 := B30 + (α4)A1 + (α)A2 + (α2 + α+ 1)A3 + (α)A4 + (α3 + α2 + α)A5 +

+ (α4 + α3)A6 + (α)A7 + (α4 + α)A8 + (α3 + α2 + α+ 1)A9 +

+ (α4 + α3 + α2 + 1)A10 + (α4 + α)A11 + (α3 + α2 + α+ 1)A12 +

+ (α)A13 + (α4 + α3 + α2 + α)A14 + (α4 + α3 + 1)A15 +

+ (α4 + α3 + α2 + α+ 1)A16 + (α2 + α+ 1)A17 +

+ (α4 + α3 + α2 + α+ 1)A18 + (α3 + α)A19 + (α4 + α2)A20 +

+ (α4)A21 +A22 + (α4 + α)A23

f31 := B31 + (α4 + α3 + 1)A1 + (α4 + α2 + α)A2 + (α4 + α2 + α+ 1)A3 +

+ (α3 + α+ 1)A4 + (α4 + α3 + α)A5 + (α2 + α)A6 + (α2)A7 +

+ (α3 + 1)A8 + (α4 + α3 + α2 + 1)A9 + (α)A10 + (α3 + α)A11 +

+ (α4 + α+ 1)A12 + (α3)A13 + (α4 + α2)A14 + (α4 + α3 + α2)A15 +

+ (α3 + α2 + 1)A16 + (α4 + α3 + α+ 1)A17 + (α4 + α2 + α)A18 +

+ (α3 + α)A19 + (α3 + α+ 1)A20 + (α3 + α2)A21 +

+ (α3 + α2 + 1)A22 + (α2 + 1)A23

Having in mind the failure in computing the Gröbner basis of the previous
example, we tried to bypass the problem. Remember that the circuit is linear,
and the biggest part of the computation is the reduction of the field equations.
Fortunately, we may apply the results of Section 2.5, so only the 992 polynomials
from the circuit are needed. Our PC took 30.1 s to compute the 992 polynomials
of the Gröbner basis G of this smaller ideal. All the fi’s reduce to zero with
respect to G, from which we may conclude that this instance of the circuit works.

4.2 General Case

In this section we describe the circuit with a system of difference equations and
try to deduce the correctness from these. Actually, there are two sets of equations
that control the behaviour of the circuit: before turning the switch and after.

Notational Remark. In order to not carry the 2 in the formulas, in this section we
will suppose that there are t check symbols (instead of 2t). Moreover, we suppose
that the switch is activated after k symbols, so that the time indexes from 0 to
k − 1 refer to the circuit before turning down the switch. The total number of
cycles required is n = k+ t (time indexes from 0 to n− 1).
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Figure 4.4: The same of Figure 1.5.

Figure 4.4 is the same of Figure 1.5, which we recall here for convenience. Let
u(s) (s ∈ Nr {0}) be the sequence of the inputs, y(s) the one of the outputs, and
x(s) = (x1(s), . . . , xt(s)) the content of the t registers, which will represent the
state of the circuit.

Let us begin from the first phase of the circuit, i.e. when the switch is in the
upper position. The equation for the output is easy:

y(s) = u(s)

because the encoding is systematic. Let us focus on the state; the i-th register at
time s+ 1 receives the result of the adder in the first row, which adds the input
and the result of

αx1(s) + α
2x2(s) + · · ·+ αixi(s). (4.1)

So we have
x(s+ 1) = Ax(s) + Bu(s),

where

A :=



α 0 · · · · · · 0

α α2 0
...

...
... α3

. . .
...

...
...

...
. . . 0

α α2 α3 · · · αt


and B :=



1

1
...
...
1


.

Then there is the second phase, when the switch is turned down. The input
u(s) is no more relevant; the output is computed from the content of the registers
with

y(s) = αx1(s) + α
2x2(s) + · · ·+ αtxt(s)
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which we may write as

y(s) = CTx(s), with C :=



α

α2

...

...
αt


.

The i-th register is updated with the sum of this output and again the result of
Equation (4.1), thus we have

x(s+ 1) = Ãx(s),

where (remember that we are working in fields with characteristic 2)

Ã := A+ BCT =



0 α2 α3 · · · αt

0 0 α3
...

...
...

. . . . . .
...

...
...

. . . αt

0 0 · · · · · · 0


.

In conclusion, the systems of difference equations that model our encoder are{
x(s+ 1) = Ax(s) + Bu(s)

y(s) = u(s)
and

{
x(s+ 1) = Ãx(s)

y(s) = CTx(s)
(4.2)

whereA, B, C and Ã are defined above. The first system is valid for s = 0, . . . , k−1
and the second from s = k onward.

4.2.1 Applying the Z-Transform

We will now try to manipulate the Z-transforms of Equations (4.2) in order to
reduce the circuit verification to an algebraic relation.

Remember that, if m(Z) = m0 + · · ·+mk−1Zk−1 is the message polynomial
and g(Z) is the generator polynomial of the code, the encoder computes m(Z) ·Zt

(mod g(Z)). How does m(Z) · Zt relate to the input sequence u(s)? If

U(Z) = u(0) + u(1)
1

Z
+ u(2)

1

Z2
+ . . .

is the Z-transform of u(s), in which we may suppose u(`) = 0 for ` > k (because
we are dealing with polynomials), then the polynomial U(Z) := Zn−1U(Z) is the
input polynomial, that is to say, the circuit computes U(Z) (mod g(Z)) if correct.
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Now, linearity allows us to verify only inputs of the form

δh(s) =

{
1 if s = h

0 otherwise

for h 6 k − 1; their Z-transform is 1/Zh and they represent the polynomial
Zn−1−h. A quick computation from Equations (4.2) tells us that, when the switch
is activated, the registers x(k− 1) contain

x(k− 1) = Ak−1−h

1...
1

 =: x0.

This is the starting point for the second system. The Z-transform of this system
(as seen in Section 3.3) is

Y(Z) = ZCT(ZI− Ã)−1x0.

The first t terms of the series Y(Z) represent the coefficients of the output
polynomial; we expect it to have degree t− 1, so we may say that the polynomial
Y(Z) := Zt−1Y(Z) (where the series Y(Z) is truncated at degree t − 1, but this
won’t be a problem, as we will see in a moment) is the output polynomial, that is
to say,

Y(Z) ≡ U(Z) (mod g(Z)) (4.3)

or, in other words, Y(αi) +U(αi) = 0 for all i = 1, . . . , t.
Let’s write Equation (4.3) more explicitly. First of all, det(ZI− Ã) = Zt, so we

may write

(ZI− Ã)−1 =
1

Zt
M̃(Z)

where M̃(Z) ∈Mt (K[Z]) is a suitable matrix with polynomial entries. Thus

Y(Z) = Zt−1Y(Z) =

= Zt−1ZCT 1

Zt
M̃(Z)Ak−1−h

1...
1

 =

= CTM̃(Z)Ak−1−h

1...
1

 .
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Notice that the last expression is polynomial—it doesn’t involve series. In
conclusion, the verification test reduces to check whether the polynomial

Zn−1−h + CTM̃(Z)Ak−1−h

1...
1


vanishes on all αi, for i = 1, . . . , t.

We performed some tests with the Sage software for fixed values of n, h
and t and they all gave the desired result. However, a general proof involves
manipulation of symbolic expressions, which is currently unavailable on the
computer algebra systems (as far as we know).

4.2.2 Equivalence to the Standard Encoder

One of the possible ways to verify a circuit is to check whether it is equivalent
to another circuit, whose correctness is established. In this case, we have the
standard encoder (see Figure 1.1). Let us write the difference equations for it.
We will use u(s) and y(s) as the input and output sequences respectively, and
w(s) = (w1(s), . . . , wt(s)) as the registers. Even in this circuit we distinguish
two phases: before and after activating the switch.

Before the switch, the output is linked to the input, so we have y(s) = u(s).
In the meantime, the registers are loaded. If the generator polynomial is g(X) =
g0 + g1X+ · · ·+ gt−1Xt−1 + Xt, then it is easy to show that

w(s+ 1) =Mgw(s) +Gu(s),

where

Mg :=



0 · · · · · · 0 g0

1 0
... g1

0 1
. . .

... g2
...

. . . . . . 0
...

0 · · · 0 1 gt−1


(4.4)

is the companion matrix of g, and

G :=

 g0
...

gt−1

 .
After the switch, the input is cut off, and the output is just a concatenation of

the content of the registers. In particular, we have

y(s) = wt(s) = D
Tw(s) and w(s+ 1) = Nw(s)
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where

N :=



0 · · · · · · · · · 0

1 0
...

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


and D :=



0
...
...
0

1


.

We want to prove that the combined encoder is equivalent to the standard
one. Notice that we can’t apply directly the results of Section 3.4, because of the
switch—our circuits are not purely linear. However, let us look at the behaviour
of the two encoders a little more in depth.

When the switch is activated, the standard encoder contains its output in
its registers (in fact, its phase two just concatenates the values in the registers).
Instead, the combined encoder requires its phase two in order to fully compute
its output.

One possible interpretation is that the combined encoder does its computa-
tions during phase one using the “wrong” basis and it needs the phase two in
order to change basis, whereas the standard encoder uses the “right” basis from
the beginning.

Translating the previous remarks in terms of the sequences of inputs, states
and outputs of the circuit, we have

wi(k− 1) = y(n− i), for i = 1, . . . , t

(there is an n− i because the standard encoder actually outputs the content of
wt as the first symbols and continues until w1). We are going to use the system
that describes phase two of the combined encoder in order to write the outputs
y(n − i) as functions of the states xj(k − 1), thus obtaining a candidate matrix
T for the equivalence test. From now on, we will write simply w = (wi)i=1,...,t
and x = (xj)j=1,...,t instead of w(k− 1) and x(k− 1) respectively.

By inspection, it is easy to show that

y(k+ `) = CTÃ`x

for all ` = 0, . . . , t− 1. So, defining S as the matrix whose i-th row is CTÃt−i, we
have that w = Sx, thus our candidate change of coordinates is T := S−1. What
we have to do now is to verify that

Mg = T−1AT and G = T−1B.

Actually, the structure of S is more easily exploited if we raise to a more
general point of view, that is to say, we will now suppose that the roots of g(Z)
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are r1, . . . , rt, not necessarily consecutive powers of α. For ` = 1, . . . , t let us call
S` the ` × ` matrix obtained using only the roots r1, . . . , r`. We want to find a
relation between St and St−1 in order to try an inductive proof. It is not difficult
to recognize the pattern:

St =


0T
t−1

rtSt−11t−1
St−1

rt


where 0t and 1t are the column vectors of t zeros and t ones respectively.

Example 4.1. For t = 4, the matrix S4 is
0 0 0 r1r2r3r4

0 0 r1r2r3 r1r2r4 + r1r3r4 + r2r3r4
0 r1r2 r1r3 + r2r3 r1r4 + r2r4 + r3r4
r1 r2 r3 r4

 .
In fact, a way to build St is: for any non-empty subset J = {j1, . . . , ji} of {1, . . . , t}
(with #(J) = i and j1 < · · · < ji) consider the term

∏
j∈J rj. Add this term to the

i-th row from the bottom in the ji-th column, i.e. the i-th row from the bottom
contains all the subsets of cardinality i, and the j-th column contains all the
subsets whose maximum element is j.

Proposition 4.1. Let

g(t)(Z) := (Z− r1) · . . . · (Z− rt) = Z
t + g

(t)
t−1Z

t−1 + · · ·+ g(t)0

(we assume, as always, that we are working in a characteristic 2 field, so that we don’t
care about minus signs) and let

Gt =


g
(t)
0
...

g
(t)
t−1

 .
Then, for any t, Gt = St1t.

Proof. We prove the proposition by induction on t.
t = 1. In this case S1 = r1 and G1 = r1, so we have obviously

r1 = r1 · 1.
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t− 1⇒ t. A little computation with the elementary symmetric functions give
the following relations between the coefficients of g(t) and the ones of g(t−1):

g
(t)
t−1 = g

(t−1)
t−2 + rt

g
(t)
t−2 = g

(t−1)
t−3 + rtg

(t−1)
t−2

g
(t)
t−3 = g

(t−1)
t−4 + rtg

(t−1)
t−3

...

g
(t)
0 = rtg

(t−1)
0 .

(4.5)

Now, our inductive hypothesis allows us to write

St =


0T
t−1

rtGt−1

St−1

rt

 .
We will denote by G[i] the i-th component of the vector G (because there are
already too many sub- and superscripts). Let us compute St1t one component at
a time. The first row gives us

rtGt−1[1] = rtg
(t−1)
0 = g

(t)
0 = Gt[1].

Then, for i = 2, . . . , t− 1, we have

(St1t)[i] = (St−11t−1)[i− 1] + rtGt−1[i] =

= Gt−1[i− 1] + rtGt−1[i] =

= g
(t−1)
i−2 + rtg

(t−1)
i−1 = g

(t)
i−1 = Gt[i].

The last element is just

Gt−1[t− 1] + rt = g
(t−1)
t−2 + rt = g

(t)
t−1 = Gt[t]

and the proof is complete.

Proposition 4.2. Following the notation of the previous proposition, let (Mg)t be the
companion matrix of g(t), written as in (4.4). Let also

Ct :=

r1...
rt

 =

 Ct−1

rt

 , At :=

r1 0 · · · 0

r1 r2
. . .

...
...

...
. . . 0

r1 r2 · · · rt

 =

 At−1 0t−1

CT
t

 .
Then, for any t, StAt = (Mg)tSt.
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Proof. We have

(Mg)t =


0T
t−1

Gt
It−1


where It is the t× t identity matrix. We are going to use induction, so we have
to write (Mg)t in terms of (Mg)t−1. That is not difficult, remembering (4.5):

(Mg)t =


0T
t

1

0
(Mg)t−1...

0

+


rtGt−1

0t×(t−1)

rt

 . (4.6)

Now that we have all the ingredients, we may set up the inductive proof.
t = 1. We have S1 = (Mg)1 = A1 = r1, so the thesis reduces to

r1r1 = r1r1

which is trivially true.
t− 1⇒ t. A little computation gives us

StAt =


0T
t−1 0

St−1At−1 0t−1

+ rt

 Gt−1

1

CT
t . (4.7)

On the other hand, (Mg)tSt =: M1St +M2St where M1 and M2 are the two
terms of the sum in (4.6). Let’s analyse these terms one at a time.

M2St =

 0t×(t−1)
rtGt−1

rt




0T
t−1

rtGt−1

St−1

rt

 =

= rt

 Gt−1

1

CT
t

which is exactly the second term of (4.7). (Notice also that the last row of St is
CT
t .)
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The first term is a little more tricky. First of all, M1 can be rewritten as
0T
t

It−1 Gt−1

 .
With that in mind, we get

M1St =


0T
t

It−1 Gt−1




0T
t−1

rtGt−1

St−1

rt

 =

=


0T
t

(Mg)t−1St−1 (?)

 .
By inductive hypothesis (Mg)t−1St−1 = St−1At−1, so we’re done if we prove
that the column (?) is 0t−1. Who is the element (i, t) of M1St, for i = 2, . . . , t?
With the same notation of Proposition 4.1 we have

(M1St)[i, t] = rtGt−1[i− 1] + g
(t−1)
i−2 rt.

But Gt−1[i− 1] = g
(t−1)
i−2 , and we are working in characteristic 2, so

(M1St)[i, t] = 0

and that concludes the proof.

The previous propositions tell us that the circuit works not only for RS codes,
but with any polynomials with roots r1, . . . , rt—that is to say, both the standard
and the combined encoders compute the coefficients of the remainder modulo
the polynomial (Z− r1) · . . . · (Z− rt). Moreover, we never used the fact that the
roots r1, . . . , rt are distinct.

The only problem rises when at least one of the roots is 0: in that case the
matrix S is no longer invertible, and the proof of correctness doesn’t work. We
could try to find another way to prove that the circuit works also in this case;
however, there is an easier workaround. We can write the polynomial g(Z) as

g(Z) = Zsh(Z)

where s is the multiplicity of 0 as a root of g and h(0) 6= 0. Then

m(Z) · Zt (mod g(Z)) = Zs
(
m(Z) · Zt−s (mod h(Z))

)
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and we can use the circuit to compute m(Z) ·Zt−s (mod h(Z)). The Zs term just
shifts the output adding s zeros as the last symbols.

For our work, we are satisfied with a proof of correctness when none of the
ri’s is zero—after all, this is the case of the RS encoder, where ri = αi. In the
future we hope to extend our proof so that it will include the circuits whose g’s
could have 0 as one of their roots.
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Conclusions and Further
Developments

In this work we showed several algebraic techniques that can be used to perform
the formal verification of a circuit. We have seen different structures (polynomials,
difference equations) into which the information on the behaviour of the circuit
can be encoded in order to make it easier to manipulate.

The polynomial method, unlike the others described in this thesis, does not
need the circuit to be linear, thus allowing to prove correctness for general circuits.
Its major drawback is the high computational cost, because it requires a huge
number of polynomials in a lot of variables for complex circuits.

The module method is less expensive than the polynomial method, but it
works only for linear circuits. Moreover, in this thesis we proved that the module
method gives us a sufficient condition to verify the correctness of a circuit. It
would be interesting to investigate whether this condition is also necessary.

As we have already mentioned, Lv, Kalla and Enescu in [7] suggest some
improvements that cut the high cost of their method. They choose a suitable term
ordering in order to avoid the computation of a Gröbner basis and perform an
efficient F4-style polynomial reduction. Can these improvements be adapted for
our generalization of their method? We would like to answer to this question in
the future.

As far as the difference equations are concerned, we just showed the main
techniques that involve this mathematical tool. Actually, we never used the
fact that the equations arise from a circuit—these techniques may be used to
analyse problems which can be described by means of recursive relations. In
particular, we have seen that this kind of relations may be encoded into matrices,
and manipulating these matrices may lead to a formal proof of correctness.
Unfortunately, there’s no much we can do from a computational point of view,
because at the moment there is no tool that manages symbolic expression. Our
hope is that in the future new and more powerful computer algebra systems will
handle these expressions.

47



48 Conclusions and Further Developments

Throughout this work we focused on a specific circuit, which is the combined
RS encoder/syndrome generator proposed by Fettweis and Hassner in [2]. We
used it as a starting point for the development of the verification methods. We
showed that it still works if we use generic elements r1, . . . , rt instead of the roots
α, . . . , αt (of course it won’t encode an RS word anymore) and we even allowed
multiple roots. There is a lot more that can be studied of this circuit. For example,
can we slightly modify it in order to make it work for fields of characteristic
different from 2? We leave this as an open question for further analyses.



Appendix A

Error-Correcting Codes

In this appendix we recall some basic facts about the theory of error-correcting
codes. Our short exposition is not meant to be complete; there are plenty of
books for the interested reader.

In the last decades the importance of storing and transmitting information
has grown more and more, especially in digital form. Soon a problem arose:
environmental noises may corrupt data, even if sent by a most shielded channel;
damages of the storage device (such as scratches on a CD) may cause data loss.
The solution was to encode information in a way that allows to retrieve as much
as possible of the original data: this led to the idea of error-correcting codes.

A.1 Generality of Error-Correcting Codes

Let’s begin with the basic definition.

Definition A.1. An alphabet is a finite set which elements are called symbols. A
word is a finite sequence of symbols. A code is a (not necessarily finite) set of
words.

Our alphabet will always be a (finite) field K, unless otherwise stated. More-
over, we will deal only with block codes, that is to say, our words will always have
a finite and fixed length, say n. Thus, our codes will be subsets of Kn. We will
always assume that n and char(K) are coprime.

Definition A.2. The Hamming distance between two words v = (v1, . . . , vn) and
w = (w1, . . . , wn) is defined as

d(v,w) := #{i = 1, . . . , n | vi 6= wi}.
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The weight of a word w is its distance from the zero word, i.e. wt(w) := d(w, 0).
Given a code C, its distance is the minimum of the distances between its words:

d := min
v,w∈C
v6=w

d(v,w).

Definition A.3. Let C be a code, v the sent word and w the received word. The
error between v and w is defined as e = w − v. The code detects the error if
v+e /∈ C for all v ∈ C. The code corrects the error if d(w, v+e) > d(v, v+e) for
all v,w ∈ C with v 6= w, in other words, if v is the nearest word to v+ e among
all words in C.

Proposition A.4. Let C be a code with distance d.

• The code can detect at most d− 1 errors in a word. In other words, the code detects
all errors e with wt(e) 6 d− 1 and there exists an error e with wt(e) = d which
is not detected by the code.

• The code can correct
⌊
d−1
2

⌋
errors in a word. In other words, the code corrects all

errors e with wt(e) 6
⌊
d−1
2

⌋
.

A.2 Some Examples of Error-Correcting Codes

How can we actually perform the operations of error detection and error correc-
tion? The code would have some structure which allows us to decode properly
the received message. Algebraic structures, such as vector spaces or ideals in
suitable rings, have good properties in order to define codes with great capability
of error correction.

A.2.1 Linear Codes

The simplest structure that we are going to describe is that of vector space.

Definition A.5. A linear code of dimension k is a k-dimensional vector subspace
of Kn.

Let B := (v1, . . . , vn) be a basis of the linear code C. The matrix

G :=


v1

v2
...
vm

 ∈Mm×n (K) ,

whose rows are the elements of B, is called generator matrix of the code. In fact, G
defines an isomorphism between Km and C, sending u ∈ Km to w := u ·G ∈ C.
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Definition A.6. A parity-check matrix for a k-dimensional code C ⊆ Kn is a matrix
P ∈Mn×(n−k) (K) such that u ∈ Kn belongs to C if and only if u · P = 0.

We can always find a parity-check matrix for C: it suffices to consider a basis
(w1, . . . ,wn−k) of C⊥, the orthogonal complement of C, and let

P :=

w1 w2 . . . wn−k

 .
Definition A.7. Let P be a parity-check matrix for a code C. The syndrome of a
word u ∈ Kn is the vector s := u · P ∈ Kn−k.

So, a word v ∈ Kn belongs to the code if and only if its syndrome is 0.
Actually, syndromes are useful also to correct errors. Fix a syndrome s and
consider the word vs ∈ Kn which has the smallest weight among the ones whose
syndrome is s. Now suppose that the received word w has s as syndrome.
Linearity implies that w − vs ∈ C and this word is the closest to w among all
words of C, by definition of vs. Thus w − vs is the most likely word that has
been sent.

A.2.2 Cyclic Codes

In this subsection we add some extra algebraic structure to a linear code.

Definition A.8. A linear code C is called cyclic if

(c1, . . . , cn) ∈ C⇔ (cn, c1, . . . , cn−1) ∈ C

for all c = (c1, . . . , cn) ∈ Kn.

Where does the extra structure come from? Consider the K-vector space
isomorphism

Kn −→ K[X]
/
(Xn − 1)

(c0, . . . , cn−1) 7−→
[
c0 + c1X+ · · ·+ cn−1Xn−1

]
,

where as usual [p(X)] denotes the equivalence class modulo (Xn− 1). Notice that
(c0, . . . , cn−1) 7→ (cn−1, c0, . . . , cn−2) translates into multiplication by [X] when
read in K[X]

/
(Xn − 1).

Lemma A.9. A code C ⊆ Kn is cyclic if and only if it is an ideal of K[X]
/
(Xn − 1).

Definition A.10. Let C be a cyclic code. Notice that K[X]
/
(Xn − 1) is a principal

ideal ring, so there exists g(X) ∈ K[X] such that C = ([g(X)]) and we can choose
g such that deg(g) < n. The polynomial g(X) is called generator polynomial of C.
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Proposition A.11. The factors of Xn − 1 are exactly the possible generator polynomials
for a cyclic code in Kn.

It is easy to show that, for a cyclic code C generated by g(X), the matrix whose
rows are the coefficients of Xi (mod g(X)) (for i = 0, . . . , n− 1) is a parity-check
matrix for C. The syndrome for a word w(X) with respect to this matrix is simply
w(X) (mod g(X)).

Actually, there is another tool which we can use to detect errors. If g(X)
is the generator polynomial of a cyclic code C, there exists h(X) such that
g(X)h(X) = Xn − 1. In particular, c(X) ∈ C if and only if c(X)h(X) = 0 in
K[X]

/
(Xn − 1). The polynomial h(X) is called check polynomial for the code C.

The following proposition gives us another description of a cyclic code C.
Recall that if n = qr− 1 for some r (with q power of a prime), the roots of Xn− 1

are exactly the elements of Fqr (and are, therefore, distinct).

Proposition A.12. Let g(X) ∈ Fq[X] be the generator polynomial of a cyclic code C
such that the length of the codewords is n = qr − 1 for some r and let β1, . . . , βt ∈ Fqr
be its roots. Then

C = {c(X) ∈ Fq[X] | c(β1) = · · · = c(βt) = 0 in Fqr}.

It follows that syndromes may be computed by evaluation of the received
word.

A.2.3 BCH Codes

The last proposition leads us to the definition of a particular class of codes.

Definition A.13. A (primitive) BCH code[1] of designed distance δ is a cyclic code of
length n = qr − 1 over Fq (for some r) whose generator polynomial is the least
common multiple of the minimal polynomials of β`, β`+1, . . . , β`+δ−2 for some
`, where β is a primitive n-th root of unity in Fqr .

It is easy to show that a BCH code of designed distance δ has distance d > δ
(hence the name of designed distance).

Decoding of a BCH code requires the computation of two specific polynomials,
one that finds errors and the other that tells how to correct them. Consider a
BCH code of length n = qr − 1 over Fq with δ = 2t+ 1 and let β be a primitive
element of Fqr . Let c(X) be the transmitted codeword and w(X) the received one.
The error between them is

e(X) := w(X) − c(X) = e0 + e1X+ · · ·+ en−1Xn−1.
[1]BCH stands for Bose, Chaudhuri and Hocquenghem who defined this class of codes in the

late ’50.
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Let M := {i | ei 6= 0}, i.e. the positions where an error occurred, and let e := #(M)

be the number of errors (we are assuming e 6 t, otherwise we can’t correct the
error).

Definition A.14. The error locator polynomial is

σ(Z) :=
∏
i∈M

(1− βiZ).

The error evaluator polynomial is

ω(Z) :=
∑
i∈M

eiβiZ ∏
j∈Mr{i}

(1− βjZ)

 .
If we know the polynomials σ(Z) and ω(Z), we can detect and correct the

error. As a matter of fact, an error occurred at i if and only if σ(β−i) = 0 and, in
that case, we can compute

ei = −
ω(β−i)βi

σ ′(β−i)
. (A.1)

There seems to be a problem: σ(Z) and ω(Z) are defined in terms of the ei’s,
that is exactly what we are looking for. Notice that

ω(Z)

σ(Z)
=
∑
i∈M

eiβ
iZ

1− βiZ
=
∑
i∈M

ei

∞∑
k=1

(βiZ)k =

=

∞∑
k=1

Zk
∑
i∈M

eiβ
ki =

∞∑
k=1

Zke(βk)

(all passages are done in the ring of formal power series over Fqr). Now, for
i = 1, . . . , 2t we have e(βi) = w(βi), because c(X) is a codeword (thus c(βi) = 0).
We know the first 2t terms of the power series expansion of ω(Z)/σ(Z), that is to
say, we know that

ω(Z)

σ(Z)
≡

2t∑
k=1

w(βk)Zk (mod Z2t+1). (A.2)

If s(Z) :=
∑
w(βk)Zk is the syndrome polynomial, we may rewrite Equation (A.2)

as
s(Z)σ(Z) ≡ ω(Z) (mod Z2t+1).

This is called key equation for BCH codes. This can be solved by brute force
(writing the solution with unknown coefficients leads to a linear system), but
more efficient methods are preferred, in particular the Berlekamp-Massey Algorithm
or one based on the Extended Euclidean Algorithm.



54 Appendix A. Error-Correcting Codes

A.3 Reed-Solomon Codes

It turns out that the simplest BCH codes, i.e. the ones with n = q − 1, have
actually many useful applications.

Definition A.15. A Reed-Solomon code (or RS code) is a primitive BCH code of
length n = q− 1 over Fq.

The generator polynomial of an RS code with designed distance δ is

g(X) =

`+δ−2∏
i=`

(X− βi)

where β is a primitive element of Fq.

Proposition A.16. An RS code with designed distance δ has distance d = δ.

One of the key features of RS codes is that they can be viewed in two different
ways, linked by the discrete Fourier transform.

Definition A.17. Let R be a commutative ring with unity. An element α ∈ R is a
principal n-th root of unity if

1. αn = 1;

2.
n−1∑
j=0

αjk = 0 for all k = 1, . . . , n− 1.

If R is a domain, it suffices to consider a primitive n-th root of unity, replacing 2.
with

2’. αk 6= 1 for all k = 1, . . . , n− 1.

Definition A.18. Let R be a commutative ring with unity and let α ∈ R be a
principal n-root of unity. Consider an element v ∈ Rn, whose components are
labelled as (v0, . . . , vn−1) for simplicity of notation. The map

F : Rn−→Rn

v 7−→ f

such that, for k = 0, . . . , n− 1,

fk =

n−1∑
j=0

vjα
jk

is called discrete Fourier transform.
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Definition A.19. Let v(X) = v0 + v1X + · · · + vn−1Xn−1 ∈ K[X] and let α be a
primitive n-th root of unity in K. The Mattson-Solomon polynomial of v(X) is the
polynomial

v̂(X) :=

n−1∑
j=0

v(α−j)Xj =

n−1∑
j=0

v(αj)Xn−j (mod Xn − 1).

The discrete Fourier transform and the Mattson-Solomon polynomial are
obviously related, in fact, under the usual bijection between v = (v0, . . . , vn−1)

and v(X) = v0 + v1X + · · · + vn−1Xn−1, we may see that the n-tuple F(v) is
mapped to the polynomial v̂(X−1) (remember that X is invertible modulo Xn− 1).

The usual properties of the Fourier transform hold, as we can see in the next
propositions.

Proposition A.20. For a(X), b(X) ∈ K[X]
/
(Xn − 1), let ab be the standard polynomial

multiplication and a · b the component-wise multiplication, i.e.

(a · b)(X) :=
n−1∑
j=0

(ajbj)X
j.

Then âb = â · b̂.

Proposition A.21 (Inversion Formula). For all a(X) ∈ K[X]
/
(Xn − 1) we have

a(X) =
1

n
ˆ̂a(X−1)

where n = 1+ · · ·+ 1 (n times) in K (remember that n and char(K) are coprime).

The Mattson-Solomon polynomial exploits the double nature of RS codes. Let
n = k+ 2t and consider the set

D := {g(X) ∈ K[X] | deg(g) < k} .

Let g(X) = g0+g1X+ · · ·+gk−1Xk−1 ∈ D viewed as a polynomial of K[X]
/
(Xn − 1)

and let ĝ(X) its Mattson-Solomon polynomial. The Inversion Formula tells us
that ĝ(α−i) = ngn−i = 0 for all i = 1, . . . , 2t. In other words, the set

C := {ĝ(X) | g ∈ D}

is an RS code (it fits Definition A.13 of a BCH code with ` = 1 and β = α−1).
This description gives an efficient encoding procedure for an RS code, identifying
a codeword with a polynomial of degree less than k.
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Appendix B

Logic Circuits

There are many ways to represent a function, or more in general a complex
system, which is something that “has inputs and outputs and exhibits explicit
behaviour, characterized by functions that translate the inputs into new outputs”
([4, p. 1]). One of them is with a circuit.

Circuits are useful also because they have a double interpretation as abstract
objects which implement functions and actual devices which do the same in the
“real world”—there are physical components like transistors, capacitors, resistors,
that reproduce the behaviour of a circuit, thus allowing a concrete computation
of the function it implements.

Digital systems (i.e. system whose inputs and outputs are represented by
discrete values) have a rigorous formulation founded on the rules of mathematical
logic and Boolean algebra. In particular, it is possible to represent the basic logic
operations (AND, OR,. . . ) by means of single units (gates). A circuit can be
viewed as a collection of these gates linked by wires which carry the information.

B.1 Combinational Circuits

Combinational circuits are characterized by the fact that there is no feedback—
that is to say, there is no wire which serves both as an output and as an input.
They are the so-called “circuits without memory”: the outputs depend only on
the current inputs.

Arithmetic operators, such as adders, are examples of this kind of circuit. The
value of the output is clearly completely determined by the values of the inputs.

The basic building blocks for combinational circuits are the gates, which
represent single Boolean operations. More complex Boolean expression are
obtained by connecting gates in a suitable way; an example can be seen in
Figure B.1. The function implemented by the circuit is at first translated into
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a Boolean expression, then converted into an appropriate set of interconnected
gates.

a

b

c

output

Figure B.1: A combinational circuit that computes (a^ b) _ (¬c).

B.2 Sequential Circuits

In contrast with the combinational case, sequential circuits “have memory”—
their outputs depends not only on the current inputs but also on the history of
all previous inputs. In practice, such circuits have a small number of unique
configurations (states) such that an input can modify the state and the output is
based on both the current input and the current state.

For our purposes, the configuration changes in response to a special reference
signal, the clock. Such circuits are called synchronous.

Besides the logic gates, sequential circuits use particular devices called memory
registers, which are used to store information. A typical register is shown in
Figure B.2.

D Q

clock

Figure B.2: A typical memory register.

It outputs constantly its content on terminal Q. When the clock ticks, it
changes its stored value memorizing the one which is on the input data terminal
D.
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