
Facoltà di Scienze

Matematiche Fisiche e Naturali

Corso di Laurea Magistrale
in Informatica

Tesi di Laurea

Fast arbitrary geodesic computation on
triangular meshes.

Candidato:

Rosario Aiello

Relatori:

Dott. Paolo Cignoni

Dott. Nico Pietroni

Controrelatore:

Prof. Francesco Romani

Anno Accademico 2013/14

Alla mia famiglia

Acknowledgements

First of all, I would like to thank Nico, Paolo and Francesco, who wisely

guided me during the development of this project, always providing insight-

ful advices and ideas. Indeed, I would like to thank all the people at the

Visual Computing Laboratory for making me feel welcome from the very

start. In particular, a big thank goes to Luigi and Andrea for having me in

their office and for providing good company, which always makes the work

a lot easier. A big thank goes to Marco Di B. for not firing me and to

Federico, Giorgio and Marco P. for the always entertaining evening football

matches.

I also want to thank Christian, Roberto, Lorenzo, Matteo and Luca, with

whom I shared most of my time while following my studies, for being always

available for a constructive discussion about any kind of problem. Thanks

to Emanuele for the most needed coffee-breaks and chats.

Last but not least, I would like to thank my family, who always supported

me and encouraged me; my friends, who I consider as part of my family:

Antonio, Benigno and Davide, always present when it is time to party.

Thanks to Valentina, for supporting and “sopporting” me during the last

weeks of work.

2

Abstract

We propose a method to accelerate the computation of geodesic over trian-

gular meshes. The method is based on a precomputation step that allows to

store arbitrary complex distance metrics and a query step where we employ

a modified version of the bidirectional A* algorithm. We show how this

method is significantly faster then the classical Dijkstra algorithm for the

computation of point to point distance. Moreover, as we precompute the

exact geodesic, it achieves better accuracy.

i

Contents

1 Introduction 1

1.1 What is a geodesic? . 1

1.2 Manifold meshes . 3

1.3 Geodesic domain . 5

1.4 Geodesic: applications . 7

1.5 Outline . 10

2 State of The Art 11

2.1 Exact geodesic computation 12

2.2 Approximate algorithm . 18

2.3 Fast Marching Method . 19

2.4 Defect tolerant algorithm . 22

2.5 Geodesic in Heat . 25

2.6 Short Term Vector Dijkstra 29

2.7 SVG algorithm . 33

2.8 GTU method . 39

2.9 Comparisons . 45

3 VoroGeo 49

3.1 Idea . 49

3.2 Voronoi diagrams . 53

ii

CONTENTS iii

3.3 Patch subdivision . 54

3.4 Geodesic precomputation . 56

3.5 Graph pruning . 59

3.6 Graph Pruning: details . 61

3.7 Query step . 65

3.7.1 SSSD distance computation 65

3.7.2 MSAD distance computation 68

3.8 Enhanced Voronoi partitioning 70

4 Results 72

4.1 Parameters tuning . 72

4.1.1 Tweaking n1 and n2 73

4.1.2 Tweaking δ . 74

4.2 Speedup and accuracy . 77

5 Conclusions 83

5.1 Future work . 84

Bibliography 86

Chapter 1

Introduction

Figure 1.1: A geodesic path between two points on the Bunny model is shown in

blue. Euclidean distance would measure the norm of the vector connecting the points.

1.1 What is a geodesic?

The term “geodesic” comes from geodesy, the science of measuring the size

and shape of Earth; in the original sense, a geodesic was the shortest route

between two points on the Earth’s surface, namely, a segment of a great

1

CHAPTER 1. INTRODUCTION 2

circle. The term has been generalized to include measurements in much

more general mathematical spaces; for example, in graph theory, one might

consider a geodesic between two vertices/nodes of a graph. We can give a

general definition of a geodesic to be a curve describing the locally shortest

path (under a specific metric) between to points of a particular space. A

metric on a set M is generally defined as a function d : M ×M → R, called

distance function. For all x, y and z in M , d is required to follow these four

conditions:

1. d(x, y) ≥ 0 ∀x, y ∈ M (non-negativity)

2. d(x, y) = 0 ⇐⇒ x = y (identity)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality)

These conditions express intuitive notions about the concept of distance:

for example, that the distance between distinct points is positive and the

distance from x to y is the same as the distance from y to x. The triangle

inequality means that the distance from x to z via y is at least as great as

from x to z directly. A metric space is an ordered pair (M,d).

In geometry processing we are interested in defining an intrinsic metric,

that takes measurements by “walking only on the surface”. Considering

figure 1.1, we are not interested in the extrinsic measurement, i.e. the Eu-

clidean distance given by the norm of the vector shown in red. Instead we

are looking for the intrinsic measurement of the geodesic path (lying on the

surface) connecting the two points, which is in blue. The distance between

two points of a metric space relative to the intrinsic metric can be defined

as the infimum of the length of all paths connecting them. We will give a

more precise definition of an intrinsic metric in section 2.6. As we know,

the shortest path between two points on a plane is a straight line. However,

things get more complicated when we switch to e.g. manifold surfaces or

triangular meshes.

For some applications, extrinsic distances may still yield an “adequate ap-

proximation” of the real intrinsic distance. For example, if we want to

CHAPTER 1. INTRODUCTION 3

compute distances in a very small neighborhood of a point, the surface

could be considered to be planar in that neighborhood. Thus, depending

on the degree of approximation required by the application, the above def-

inition given for the planar case can be acceptable. If this is not the case,

an algorithm to compute the exact (or approximate) geodesic distance can

be mandatory, with the consequence of increasing the overall computation

complexity.

1.2 Manifold meshes

We will assume our surface to be a manifold triangular mesh. Triangular

meshes are widely used in Computer Graphics to model 3D objects. This

is due to the fact that they are simpler to handle, both in terms of the data

structures necessary to implement them and in terms of the graphic hard-

ware, which is specifically thought to handle triangles. Moreover, there exist

many different types of meshes like for example quad, surface or volumetric

meshes. In general, a polygonal mesh consists of three kinds of elements:

vertices, edges and faces. In the case of a triangle mesh, the faces consist of

triangles. There are two kinds of information associated to mesh elements:

• Topology, which describes the incidence relations among mesh ele-

ments (e.g., adjacent vertices and edges of a face, etc).

• Geometry, which specifies the position and other geometric character-

istics of a vertex

A mesh is manifold if these two properties hold:

1) Each edge is incident to only one or two faces

2) The faces incident to a vertex form an open or a closed fan (see fig-

ure 1.2).

The orientation of a face is a cyclic ordering of its incident vertices and

we define the orientation of two adjacent faces to be “compatible” if the

two vertices in the common edge are in opposite order. Therefore a man-

ifold mesh is always orientable, meaning that any two adjacent faces have

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Faces incident on the green vertex form a closed fan (left) and an open

fan (right).

a) b)

Figure 1.3: a) Non-manifold edge, property 1) is violated; b) Non-manifold vertex,

property 2) is violated.

CHAPTER 1. INTRODUCTION 5

compatible orientation. Figure 1.3 shows two situations of non-manifold

meshes.

1.3 Geodesic domain

The discretization of the underlying surface could be of great help in com-

puting geodesic: after all, a mesh can be thought as a graph with its vertices

and edges. Hence, a trivial approach to compute geodesic could be to em-

ploy one of the well-known shortest paths algorithms designed for graphs,

such as Dijkstra’s, weighting edges proportionally to their lengths. However

this trivial solution, aside from producing results that are very triangulation

dependent, is quickly limited by the underlying surface discretization. In

fact, consider figure 1.4: we get different results for the same vertices de-

pending on the meshing. Dijkstra will produce geodesic distance d =
√

2 for

the gray pair (which is actually the exact distance) while for the yellow pair

it will return d = 2, as the computed path must follow the edges defined

by the triangulation. Moreover, in the specific case of Dijkstra’s algorithm,

there would be no information reuse. That is, if we applied Dijkstra’s algo-

rithm to computed the distance between a source point and any other vertex

of the mesh, this information cannot be reused if we need to compute the

distance between another pair of points.

As pointed out in [1] [2], the algorithms for computing geodesics on manifold

surfaces can be divided into two major categories:

• The “computational geometry” approach, which is oriented on com-

puting the exact geodesic distances with respect to the piecewise linear

approximation of the surface.

• The Partial Differential Equation (PDE) [3] [4] [5] approaches, which

are oriented on solving the the Eikonal equation. This equation states

that every distance function d must satisfy the condition

‖∇d‖ = 1

Where ∇ (“nabla”) indicates the gradient of d. To see why this is a

reasonable condition let us consider the example depicted in figure 1.5

CHAPTER 1. INTRODUCTION 6

L = 1

L = 1

Figure 1.4: Dijkstra’s computed distance is triangulation dependent. The green

path is actually exact while the blue one is forced to follow the triangulation.

left, where we see a planar convex region Ω. The distance function

in this case is trivially d(x) = ‖x − x0‖. If we compute its gradient

we obtain ∇d = x − x0/‖x − x0‖ and hence it holds that ‖∇d‖ = 1.

For the concave shape on the right of figure 1.5 the Eikonal equation

defines a local constraint on the gradient of the function that is used

to compute the function globally on the domain Ω.

x0 x

d(x) = || x - x ||0

x0

x

Ω
Ω

d = ?

Figure 1.5: (Left) Distance between two points inside a region Ω on a plane is a

straight line. (Right) If the path is constrained to stay inside Ω, this is not true

anymore.

When we consider triangular meshes, we are handling a discretization of

some 3D surface S. Since discrete surfaces cannot be explicitly differenti-

ated, methods from differential geometry to compute geodesic paths and

distances cannot be applied in this case. However, algorithms from differ-

ential geometry can be discretized and extended (see chapter 2). Moreover,

CHAPTER 1. INTRODUCTION 7

while the general problem of computing a shortest path between polyhedral

obstacles in 3D has been shown to be NP-hard by [6], computing a geodesic

path on a triangular surface is an easier problem and it is solvable in poly-

nomial time.

As we will see in the next chapter, the “one-source/multiple, all-destinations”

problem has been very widely studied whereas the results available for the

“all-pairs” geodesic problem are much less. The discrete geodesic problem

has attracted a great deal of attention since Mitchell, Mount and Papadim-

itriou [7] published their seminal paper in 1987. They presented an al-

gorithm for computing single-source exact geodesic distance in O(n2 log n)

where n is the number of vertices in the input mesh. Later, practical im-

plementations and performance improvements have been provided for the

original algorithm by Chen and Han [8] and Surazhsky et al. [9]. Different

approaches to the problem have been proposed: Campen and Kobbelt [10]

focused on the geodesic problem applied to meshes containing defects like

holes and gaps extending Sethian’s Fast Marching Method [11] [4] to de-

fected meshes. Crane [12] proposed a novel approach based on the heat

method while Campen et al. generalized and extended well-known methods

to the anisotropic case and proposed an ad hoc method called Short-Term

Vector Dijkstra [13]. Ying et al. [1] recently proposed a novel approach

called Saddle Vertex Graph, from which the idea for our work was first in-

spired. Finally, we must cite the work from Xin et al. [14] who proposed an

approach similar to the one we developed.

1.4 Geodesic: applications

The computation of intrinsic geodesic distances and geodesic paths on sur-

faces is a fundamental low-level building block in countless Computer Graph-

ics and Geometry Processing applications which require the query of geodesic

distance between pairs of points on the mesh [2] [15]. An example of a

geodesic Voronoi diagram computed on the FERTILITY model is shown

in figure 1.6. Campen et al. [16] employ geodesic computation to imple-

ment a all-quadriteral patch layouts on manifold surfaces, guided by a field

CHAPTER 1. INTRODUCTION 8

of curvature directions (see figure 1.7). Moreover, parameterizing a mesh

often involves cutting the mesh into one or more charts [17] [18], and the

result generally has less distortion and better packing efficiency if the cuts

are geodesic.

Campen and Kobbelt [10] employ their defect-tolerant geodesic computa-

tion algorithm to texture mapping on defected models (see figure 1.8). Mesh

editing systems such as [19] use geodesics to delineate the extents of editing

operations.

Geodesic paths are also used in segmenting a mesh into subparts, as done

in [20] [21]. Moreover, since geodesic paths establish a surface distance met-

ric, they are an essential building block for applications like skinning [22],

mesh watermarking [23] and the definition of surface vector fields [24]. Pa-

rameterization metrics based on isomaps are also based on geodesics [25] [26].

Morse analysis of a geodesic distance field has been used in [27] for a shape

classification algorithm.

Figure 1.6: Geodesic Voronoi diagram computed on the FERTILITY model.

CHAPTER 1. INTRODUCTION 9

Figure 1.7: Dual Loops Meshing approach that constructs coarse all-quadrilateral

patch layouts with high geometric fidelity.

Figure 1.8: Texture mapping on a FACE model containing holes due to occlusion

effects.

CHAPTER 1. INTRODUCTION 10

1.5 Outline

In Chapter 2 we will review the current state of the art regarding geodesic

computation. More in depth, we will analyze the various approaches starting

from the algorithm proposed by Mitchell et al. in 1987 through the more

recent ones. At the end of the chapter we will make some comparisons and

analyze the advantages and flaws of the discussed methods.

In Chapter 3 we will describe the VoroGeo algorithm, a new approach for

the all-pairs geodesic computation problem. We will show which problems

were faced during the design of this approach and how they have been solved

during implementation.

In Chapter 4 we will describe which tests have been made for parameters

tweaking and we will show some results and statistics about our algorithm’s

speed and accuracy.

In Chapter 5 we will draw our final conclusions on our work. We will

then briefly propose some possible future extension and improvements to

our method.

Chapter 2

State of The Art

In this chapter, we will discuss the state of the art regarding methods for

the geodesic computation. We will procede to describe:

• The exact geodesic algorithm proposed by Mitchell et al. [7], which

has led to a deep interest in this field.

• Improvements and modifications to the original exact algorithm, pro-

posed by Chen [8] and Surazhsky [9]. Bommes [28] proposed a gener-

alization of Surazhsky’s implementation to handle arbitrary, possibly

open, polygons on the mesh to define the zero set of the distance field.

Xin [29] improved Chen and Han (CH) [8] algorithm proposing a more

efficient version know as ICH.

• Sethian and Kimmel [11] [4] Fast Marching Method (FMM) for com-

puting distance fields by solving the Eikonal equation through numer-

ical techniques for computing the position of propagating fronts.

• The method by Campen and Kobbelt [13], who focused on computing

geodesics on defected models.

• The innovative adoption of the Heat Method (HM) proposed by Crane [12],

who relates Varadhan’s formula to distance computation.

11

CHAPTER 2. STATE OF THE ART 12

• The Short Term Vector Dijkstra (STVD) proposed by Campen et

al. [30] that is specifically thought to handle intrinsic anisotropic met-

rics.

• The Saddle Vertex Graph (SVG) [1] approach recently proposed by

Ying, and The GTU method by Xin [14] which will be left for last to

be thoroughly analyzed as they were the main source of inspiration

for our work.

Finally, in section 2.9, we will briefly compare the presented methods and

highlight their individual advantages and limitations.

2.1 Exact geodesic computation

Given a piecewise planar surface S, Mitchell, Mount and Papadimitriou’s

(MMP) algorith [7] [9] computes an explicit representation of the geodesic

distance function D : S � R. This function maps each point p ∈ S to the

length of its geodesic path to the source vs. The basic idea behind the MMP

algorithm is to partition each mesh edge into a set of windows that encode

all the shortest paths passing within it. The shortest path is governed by

three basic properties:

• interior to a triangle, it must be a straight line;

• when crossing over an edge, a shortest path must correspond to a

straight line when the two adjacent triangles are unfolded onto the

same plane.

• finally, as proven in [7], the only vertices1 a shortest path can pass

through are boundary vertices, saddle vertices and parabolic vertices.

We call saddle vertex a vertex with a total angle greater than 2π, while a

parabolic vertex (also known as Euclidean) is a vertex with an angle equal

to 2π. A window w on and edge e is defined as a 6-tuple <b0, b1, d0, d1, σ, τ>,

where: b0, b1 ∈ [0, ‖e‖] encode the windows endpoints, d0 and d1 encode the

1Other from source and destination vertices.

CHAPTER 2. STATE OF THE ART 13

distance of the source vertex from the endpoints (relative to the window in

the planar unfolding), τ gives the side of the edge on which the source lies.

As shown by 2.1a, the shortest paths are depicted as a pencil of rays em-

anating from the source s through the unfolded triangles. As it is shown,

it is possible to express the position of the source s in terms of b0, b1, d0, d1

by intersecting two circles. This situation represents a shortest path that

does not pass through any saddle vertex. To understand what is encoded by

parameter σ of the window definition consider figure 2.1 b): s is a so called

pseudosource (a saddle vertex), and all the paths passing within w also pass

through s, hence w will encode the position of s with respect to the edge

and σ = D(s), will hold the distance from the pseudosource s to the source

vs; b0, b1 and d0, d1 will still have the same meanings as before, just this

time they are referring to the pseudosource s and not the original source vs.

This particularity in handling saddle vertices is due to the unfolding of the

(a) (b)

Figure 2.1: (a) Pencil of rays emanating from the source (left) and parametrization

of the source position (right). (b) A pseudosouorce s and its distance σ from the

source.

neighborhood of a saddle vertex: we have a red saddle vertex in figure 2.2.

Unfolding the adjacent triangles into the plane of the upper triangle will

result in two different “images” of vs because the total angle is greater than

2π.

CHAPTER 2. STATE OF THE ART 14

Figure 2.2: Unfolding of a saddle vertex neighborhood. All shortest paths from vs

to the red window w pass through the saddle vertex s.

Figure 2.3: Window propagation results in one new window (left). Window prop-

agation results in two new windows (center). Window propagation results of one

window plus two additional windows (right).

CHAPTER 2. STATE OF THE ART 15

The MMP algorithm propagates the distance field encoded into a win-

dow w across an adjacent face f by computing how the rays would extend on

the opposite edges. However, the opposite edges could already contain pre-

viously propagated windows, so the information has to be merged in order

to minimize the distance field. Three examples of window propagation are

depicted in figure 2.3: considering the case on the right, we can notice that a

ray passing through the saddle vertex p0 will result into two additional win-

dows, that cover the parts of the edges that lie to the left of the ray (s, p0),

and are not already “illuminated” by s through w. Therefore, p0 will act

as a new pseudosource for the two red windows with σ = D(p0). When two

Figure 2.4: Two overlapping windows with pseudosources s0, s1 and intersection

δ = [b0, b1], case σ0 = σ1 is assumed (left). Resulting disjoint windows (right).

windows w0 and w1 overlap on edge e two main situation could arise: in the

simpler case one window defines a larger distance function everywhere on

δ, so to resolve the conflict δ is simply cut away. A more interesting case

is when one window (e.g. w0) is minimal on part of δ while the other one

is minimal on the remaining part of δ. Figure 2.4 shows the formation of

two disjoint windows obtained finding the point p ∈ δ where the distance

function defined by w0 and w1 are equal; i.e. ‖s0− p‖+ σ0 = ‖s1− p‖+ σ1.

This issue can be reduced by solving a quadratic equation with a single so-

lution if the planar coordinate system is defined to align e with the x axis,

as shown in figure 2.4.

In the implementation of the MMP algorithm given by Surazhsky [9], a

priority queue is used to propagate the windows through the whole mesh.

The queue is initialized with a window for each edge adjacent to the source

CHAPTER 2. STATE OF THE ART 16

Figure 2.5: Isolines computed on the 400k-triangles David model.

vs, the distance field defined by these initial windows is trivially given by

the edge lengths. Then, windows are propagated as a wavefront by keeping

the order of the queue according to its distance to the source vertex.

Theoretically, during propagation, each edge may haveO(n) windows. There-

fore, in the worst case, the total number of windows can be O(n2). Hence,

the theoretical worst case complexity of the MMP algorithm is O(n2) space

and O(n2 log n) time, where the log n factor is due to management of the pri-

ority queue and to the resolution of conflicts between overlapping windows.

However, through a series of experiments on typical meshes, Surazhsky has

shown in [9] that the average number of windows per edge is O(
√
n), low-

ering the algorithm complexity for practical cases. Moreover, he showed

that the window complexity surprisingly decreases when the mesh surface

has a rough texture. As explained in [9], this is intuitively due to the fact

that bumpy features in a surface cause adjacent windows to overlap and

annihilate each other.

Chen and Han (CH) [8] improved the time complexity to O(n2) which re-

CHAPTER 2. STATE OF THE ART 17

mains the best-known complexity. However, extensive experiments have

shown that this algorithm often runs much slower than the MMP algo-

rithm’s implementation given by Surazhsky. An improved version of the

CH algorithm (known as ICH) was proposed by Xin and Wang which de-

spite having still O(n2 log n) time complexity outperforms both the MMP

and CH algorithm in practice.

In figure reffig:david400k, we can see the isolines computed by the exact

geodesic algorithm on a 400k-triangles David model. This result took 75

seconds as reported in [9].

CHAPTER 2. STATE OF THE ART 18

2.2 Approximate algorithm

The method proposed by [9] works just like the exact algorithm, except

for one key difference: before propagating a window, it tries to merge it

with an adjacent window on the same edge. The algorithm computes an

approximationD of the geodesic distance function D which is a lower bound,

namely D(p) ≤ D(p),∀p ∈ S. The merging of two windows, w0 and w1, is

only performed when some constraints are satisfied. These checks are on

directionality, visibility, continuity, monotonicity and of course on bounding

the error.

As reported in [9], the main bottleneck during the exact algorithm execution

is the memory space required to store all the windows, providing strong

motivation for the approximate algorithm. Experimental results have shown

that with a 0.1% relative error bound, the algorithm runs significantly faster

and uses less memory than the exact algorithm. On the David model shown

in figure 2.5, the computation takes 11 seconds and the reported average

relative error (i.e. |D(v) − D(v)|/D(v)) is 0.05% of the object diameter.

More comparisons are available in [9].

Figure 2.6: An intrinsic distance field and a geodesic path computed on an defected

mesh.

CHAPTER 2. STATE OF THE ART 19

2.3 Fast Marching Method

The Fast Marching Method (FMM) has been proposed by Sethian [11] for

regular grids, and then extended by Kimmel and Sethian [4] to compute ap-

proximate geodesic distances on triangular surfaces. Further extensions and

modifications to the original algorithm have been proposed also in [5] [31]

and [32]. The FMM is a special case of the Level Set Method [33] for solv-

Figure 2.7: Front approximation.

x

x

x

n

3

2

1

s

Figure 2.8: Advancing front passed vertices x1 and x2 moving towards x3.

ing the so called boundary value problems of the Eikonal equation. Level

set methods are numerical techniques for computing the position of prop-

agating fronts. The FMM is strongly reminiscent of Dijkstra’s algorithm

being based on a marching front that is controlled through a heap struc-

ture. However as we discussed in section 1.3 the big problem of Dijkstra’s

algorithm is that it is unable to “cut through triangles” as the path must

follow the mesh triangulation. The observation behind the FMM regards

CHAPTER 2. STATE OF THE ART 20

acute angle x3

x2x1

n

n

x2x1

x3 obtuse angle

Figure 2.9: Front normal vector making an acute (left) and obtuse (right) angle

passing through x3.

what happens to the information wave-front while it moves away from the

originating source point: we can think of this front as a circle getting bigger

and bigger stepping away from the source.

As we know the curvature of a circle of radius r is defined as 1/r, hence

as the radius gets bigger the curvature decreases. At a local scale, the ap-

proximation made by the FMM is the one depicted in figure 2.7 where the

circle-like front is approximated with a straight line.

Now let’s consider the advancing front depicted in figure 2.8: assuming we

know the distances d1, d2 of x1 and x2, we want to compute the distance

d3 relative to x3, by exploiting the front approximation idea, working with

planar coordinates (for simplicity, x3 is assumed to be at the origin). In

this coordinate system, since the wave-font is a straight line, we can always

take a unit1 normal vector ~n to this line and express d1 = ~n> ~x1 + p and

d2 = ~n> ~x2 + p, that is projecting ~x1 (resp. ~x2) over ~n and measuring how

far away from the source those points are. Moreover since we put x3 to be

on the origin we can write d3 = ~n> ~x3 +p = p. The factor p is relative to the

fact that the position of the source in the planar unfolding is unknown. We

can combine the two equations for d1 and d2 into ~d = ~n>X + pI2×1. Solving

1We want the normal vector to be of unit norm because intuitively we are interested

in measuring distance d and not ‖n‖d. This can be related to what is stated by the

Eikonal equation: the Eikonal equation states that if φ is the distance function, then the

magnitude of its gradient ∇φ should be equal to 1 everywhere; hence, |∇φ| = 1 can be

thought as of saying that “distance changes at one meter per meter”[12].

CHAPTER 2. STATE OF THE ART 21

this matrix equation in terms of ~n results in

~n = X−1(~d− pI2×1)

exploiting the fact that ~n>~n = 1 we get a quadratic equation where the only

unknown variable is p:

1 = p2I>2×1QI2×1 − 2pI>2×1Q
~d+ ~d>Q~d (2.1)

where Q = (X>X)−1 and I2×1 is the 2 × 1 identity matrix. Equation 2.1

admits two solutions, one relative to the case of the normal vector making

an acute angle passing through x3 and the other one relative to the case

of the normal vector making an obtuse angle at x3. Which of the two

solutions should be taken? Since we are trying to extend the already known

distances d1 and d2 to compute d3, this cannot be smaller than any of the

other two distances. Hence we need to choose the solution that gives us a

value larger than d1 and d2. As reported in [4] [12] [1] and [30] the update

step of this method is not entirely stable since it requires an underlying

non-obtuse triangulation which is a very strong assumption in most real

cases. In figure 2.10 we depicted one of the issues that could arise in the

update step, for more details the reader can refer to [11] [4]. The situation

illustrates the issue of the front advancing towards an obtuse triangle, where

the “causality” property is violated: this property assures that the computed

distance for a triangle vertex can only be extended from the other two

vertices know distances.

CHAPTER 2. STATE OF THE ART 22

x3

x2
x1

rect. triangle
obtuse triangle

Figure 2.10: In the case of an obtuse triangle, the front could reach x3 before x2

2.4 Defect tolerant algorithm

Campen and Kobbelt proposed in [10] a method for computing intrinsic

geodesic distances and geodesic paths on raw meshes in contrast with most

of the available methods, which usually make some implicit or explicit as-

sumption on the underlying structure of the mesh. Unfortunately some re-

quirements are not always met in practice: real-world meshes often exhibit

several kinds of defects depending on their origin holes, gaps (see figure 2.6),

non-manifold configurations with singular edges and vertices, or they might

even be just a soup of polygons, completely lacking any connectivity infor-

mation.

A defect-tolerant method is convenient considering the fact that some of the

mesh-repairing techniques are ill-posed and often exhibit various geometri-

cal and topological ambiguities if no additional prior knowledge is available.

In some cases, the application at hand does not actually require the mesh

to be repaired anyway, spending these efforts solely in order to facilitate the

requisite geodesic distance computations seems to be immoderate. As ex-

posed in [10], the basic idea is to abstract from the mesh structure (and all

its potential defects) and to perform all computations discretely in a crust

volume tightly restricted to the spatial regions occupied by elements of the

input. Due to the abstraction from the input, applicability of this method

is not limited to polygon meshes; other representations such as point sets,

CHAPTER 2. STATE OF THE ART 23

Figure 2.11: a) Input mesh with defects. b) Initial cubical complex. c) Complex

after applying topology-sensitive morphological operators; the hole is now bridged.

d) Visualization of a geodesic distance field (with isolines) emanating from a point

source, computed on the complex, and mapped to the input mesh by interpolation.

implicit functions, or NURBS patches can be handled as well.

As depicted in figure 2.11, the first step of this method is to abstract the

mesh to a cubical complex representation (“voxelization”), that is a cut-out

of a three-dimensional Cartesian grid such that all elements of the mesh are

contained in the union of its cells. This is obtained employing an octree

O mapping its root to the bounding box of the mesh. The elements of the

mesh are then “inserted” into O and intersected cells are refined up to a user

specified maximum level l. However, performing distance computations on

the resulting dilated complex would result in significantly lowered accuracy.

Hence, topology-sensitive dilation and erosion operators are applied to the

cubical representation to fill holes up to a specified size (see figure 2.12) ob-

taining the final cubical representation C. To perform approximate geodesic

Figure 2.12: 2D schematic example of the employed morphological operators dilation

(middle) and topology-preserving erosion (right), filling holes up to a specified size.

CHAPTER 2. STATE OF THE ART 24

distance computation, the Fast Marching Method (FMM) [11] [4] is applied.

The FMM performs a front propagation starting from a set of sources all

over the nodes of C, hence the set Cs ∈ C of nodes containing the source

points must be initialized. This means initializing the information about d

for all nodes n in Cs (N(Cs)) by setting d(n) = mins∈Sd(n, s). This dis-

tance can be approximated with the Euclidean distance or, if an average

normal vector is available at n, accuracy can be improved by calculating

d(n, s) as the distance between n and the orthogonal projection of s onto

the tangent plane Tn at n. Initialization for FM method is completed by

setting d(n) =∞∀n /∈ N(Cs).

As stated in [10], once rasterization, dilation, and erosion have been per-

Figure 2.13: Raw scanned model of a face containing holes due to occlusion ef-

fects. (left) Geodesic computation without morphological operations. (right) With

morphological operations for hole bridging.

formed the obtained cubical complex (resp. octree) can be used for the

quick computation of multiple distance fields; it does not have to be rebuilt

each time.

Naturally, this method has some limitations too. Due to the automatic na-

ture and generality of the method, it can not resolve ambiguities that are

inherent in the input due to large missing parts. Hence, computed distance

fields might be inconsistent with those of the object that is actually meant

to be represented by input and additional knowledge about the object would

be required to handle hole bridging more consistently in such cases.

In figure 2.13, we can see the results of a computation on a face model pre-

CHAPTER 2. STATE OF THE ART 25

senting some defects due to occlusion effects happened during the scan. On

the right side, we can see that by choosing dilation distance such that these

holes are bridged the computed intrinsic distance approximations tolerate

these defects.

In conclusion, we can say that the distances computed by this method usu-

ally deviate from actual intrinsic distances (on consistent models) to some

degree due to the finite resolution and the FM approach. At high resolu-

tions, the total runtime is dominated by the morphological operations since

these cause a large number of cell neighbor queries, cell splits, and collapses

[10].

2.5 Geodesic in Heat

Crane [12] proposed a totally new approach for computing geodesics, called

Heat Method. The main idea is to exploit the relationship between the heat

kernel function kt,x(y) and distance function. As depicted by Crane, the

intuition behind this method is imagining to touch a point x on the mesh

surface with a scorching hot needle. Heat diffusion can be modeled as a

large collection of hot particles taking random walks starting at x, hence

any particle that reaches a distant point y after a small time t has had little

time to deviate from the shortest possible path.

The heat kernel function kt,x(y) measures the heat transferred from a source

x to a destination y after time t. Varadhan’s formula relates the heat kernel

with distance saying that the geodesic distance φ between any pair of points

(x, y) on a Riemannian manifold can be recovered via a simple pointwise

transformation of the heat kernel: φ(x, y) = limt→0

√
−4t log kt,x(y). Crane

hypothesized that the reason why this kind of approach had not been con-

sidered so far is because it would require a precise reconstruction of the

heat kernel, which is difficult to obtain. Thus Crane’s intuition was that of

working with a broader class of function, namely all those that have gradi-

ent parallel to geodesics. If we take an approximation ut of the heat flow

for a fixed time t. Unless ut exhibits the same rate of decay, Varadhan’s

transformation will yield very poor results because it is very sensitive to

CHAPTER 2. STATE OF THE ART 26

Figure 2.14: Geodesic distance (bottom left) recovered from an exact reconstruction

of the heat kernel (top left). In presence of numerical error, results may be very far

from acceptable (middle, right).

errors in magnitude (see figure 2.14). The heat method only requires that

∇ut points in the right direction, that is, parallel to ∇φ. The heat method

Figure 2.15: Outline of heat method steps: 1) Heat u is allowed to diffuse for brief

period. 2) Temperature gradient is normalized and negated to obtain a unit vector

field X pointing along geodesics. 3) A function φ whose gradient follows X recovers

the right distance.

can be summed up in these three steps (see also figure 2.15):

1) Integrate the heat flow u̇ = ∆u for some fixed time t;

2) Evaluate the vector field X = −∇u/|∇u|;

3) Solve the Poisson equation ∆φ = ∇ ·X.

Function φ approximates geodesic distance, approaching true distance as t

goes to zero. In step 3), the method finds the closest scalar potential φ by

CHAPTER 2. STATE OF THE ART 27

minimizing
∫
M
|∇φ−X|2 which is equivalent to solving the Euler-Lagrange

equations ∆φ = ∇·X. In step 2) and 3) the gradient magnitude can be safely

ignored thanks to the Eikonal equation (see section 1.3). Several methods

for computing distances are based on solving such equation, by imposing the

condition φ|γ = 0 on some subset γ of the domain and solving the Eikonal

equation everywhere else. However, this formulation of the problem has

some issues related to the fact that it is nonlinear and difficult to solve

requiring some specialized solver. What the heat method does is a change

of variables moving from a nonlinear/hyperbolic problem to a linear/elliptic

one.

Moreover, this formulation of the problem does not depend on the choice

of spatial discretization, that is the HM can be applied to triangle meshes

as well as to point clouds or grids, as long as a Laplacian, a gradient and a

divergence can be evaluated. On the other hand, accuracy of the HM relies

in part on the choice of the time step t = mh2 where m is a constant and h

is the mean space in between nodes (e.g. average edge length). As shown

in [12], m = 1 yields very high accuracy on a wide variety of triangulated

meshes. Looking at the comparisons reported in [12] (see also figure 2.16),

maximum absolute error and mean error are relative to the mesh diameter.

On the Ramses model (1.6M-triangles), the precomputation step takes 63.4

seconds, plus 1.45 seconds to compute distances. This gives a speedup of

68x the time needed by Surazhsky’s algorithm [9] with respectively 0.49%

max error and 0.24% mean error as opposed to the 0.29% max error and

0.35% obtained by Surazhsky’s algorithm. Hence, HM performs better on

average while still having a larger maximum error. Although the HM works

quite well for smooth surfaces, the accuracy of the approximated distance

becomes low for models with rich details.

CHAPTER 2. STATE OF THE ART 28

Figure 2.16: Distances from a single point source on the Bimba (149k-faces),

Aphrodite (205k-faces), Lion (353k-faces) and Ramses (1.6M-faces).

CHAPTER 2. STATE OF THE ART 29

2.6 Short Term Vector Dijkstra

Most of the available methods to compute intrinsic geodesic distances are

designed according to the standard Riemannian metric induced by the sur-

face’s embedding in Euclidean space. Campen, Heistermann and Kobbelt [30]

investigate the possibilities for a generalization of well known algorithms

(i.e. the ones we take under consideration in this section) to anisotropic

metrics. They proposed a novel algorithm, called Short-Term Vector Di-

jkstra (STVD) which despite its simplicity provides practical accuracy at

higher speed than the generalized versions of existing methods.

Generally, anisotropy is referred as the condition of holding a property which

is dependent on the directions in which it is observed. Consider a 2-manifold

M equipped with smoothly varying norms ‖·‖gx on the tangent spaces TxM .

The total length of a continuously differentiable curve ζ : [0, 1] → M can

be defined as `(ζ) =
∫ 1

0
‖ζ ′(t)‖gζ(t)dt. Therefore we can define the intrin-

sic metric g measuring geodesic distances between two points p, q as the

infimum over the lengths of all curves ζ connecting p and q, that is

g(p, q) = inf
ζ
{`(ζ) : ζ(0) = p, ζ(1) = q}

In this way we obtain the length metric space (M, g). In the case of the

Riemannian metric, also called standard metric, we have ‖v‖gx =
√
〈v, v〉x.

In the standard metric it holds r(v, x) = ‖v‖gx/‖v‖x ≡ r(x) i.e. the quotient

is independent of v and the metric g is isotropic (have no directional de-

pendency). In the case of an anisotropic metric we have that r(v, x) 6≡ r(x)

and there is directional dependency. On a triangle mesh M , an anisotropic

norm ‖ · ‖g is specified in a sampled manner. The samples can be given per

vertex (‖ ·‖gv), or face (‖ ·‖gf) or edge (‖ ·‖ge). In figure. 2.17 an anisotropic

metric is visualized through curvature-related tensor ellipses: the resulting

intrinsic Delaunay triangulation (right) based on the isotropic input mesh

(middle) is depicted. To introduce the STVD idea, we briefly go back to

Dijkstra’s original algorithm as applied to the computation of the geodesic

distance between two points on a triangular mesh. Due to the graph-nature

of the algorithm, it will not compute the real path between the two points

but rather it will consider the lengths of the edge paths that meander over

CHAPTER 2. STATE OF THE ART 30

Figure 2.17: Inverse tensor ellipses are used to visualize an anisotropic metric. The

input (isotropic) mesh is shown in the middle while on the right it is shown the

corresponding intrinsic Delaunay triangulation.

Figure 2.18: (left) A geodesic path computed by Dijkstra’s algorithm is very tri-

angulation dependent. (middle) Computation using a vector-valued Dijkstra variant.

(right) Shortcomings of the vector-valued variant: oblivious to holes, obstacles and

geometric features.

CHAPTER 2. STATE OF THE ART 31

the surface (see figure 2.18 left). Thus the computed distances will be highly

inaccurate and very triangulation dependent. In the middle and on the right

of figure 2.18 we see the so called vector-valued Dijkstra algorithm employed

by Schmidt et al. [34] to obtain geodesic distances for the purpose of local

surface parameterization. This method is based on the idea of vectorially

summing the edges first and measuring the lengths afterwards, as opposed

to the original idea of measuring the edge lengths and then scalarly sum-

ming them. The situation depicted in the middle is the one favorable to the

vector-valued Dijkstra: in the planar case the distance computed is actually

exact. On the right we can clearly see the limitations and shortcomings of

this method when it is applied to 2-manifold meshes: it is oblivious to holes,

obstacles and geometric variations in the surface.

The idea behind STVD is to form an hybrid-method combining the positive

Figure 2.19: Unfolding of edge chain to the plane. Edge lengths and 1-ring angles

are preserved. The sampled norms ‖ · ‖ge are visualized as blue tensor ellipses.

aspects of the classical scalar-valued version and the vector-valued variant.

This is done by equipping the scalar-valued version with a short-term vector-

valued memory. In this way the meanders of the edge paths through the

triangulation can locally be smoothed without globally disregarding surface

geometry. The short-term vector-valued memory consists of a window of k

preceding edge vectors, and the STVD algorithm is obtained by changing

just the distance update function in the original scalar-valued version. In

the modified version of the distance update function update dist(v, w) the

window of k preceding vectors is exploited by computing

dist←
k

min
i=1

w.predi.dist+ `g(
i∑

j=1

(w.predj−1, w.predj))

CHAPTER 2. STATE OF THE ART 32

where w.predi+1 = w.predi.pred and w.pred0 = w. As we explained earlier

in this section the particularity of this method resides in the fact that the

edges ej = (w.predj−1, w.predj) are vectorially summed and their length `g

is computed with respect to g: in figure 2.19 we can see how the unfolded

edge chain is vectorially summed to obtain vector E. The length `g is

computed exploiting the edge-sampled norm ‖ · ‖ge (visualized through blue

tensor ellipses) as
∑

j êj where the êj are the unfolded edges. In practice,

the edges’ signed orthogonal projections (see figure 2.19) are used to obtain

`g(
∑
j

ej) =
∑
j

êTj Ē‖Ē‖gêj

where Ē = E/‖E‖.
Focusing on performance and accuracy, Campen et al. empirically observed

Figure 2.20: Comparing different methods in the case of a mesh containing bad

shaped elements. STVD obtains good accuracy w.r.t. exact [9] distances.

that while the depth k of the vector-valued memory needs to be increased

so as to increase the angular resolution of the distance propagation, the

lengths of the used vector sums need to be decreased so as to reduce the

approximation errors of the unfolding-based measurement. They achieved

both this seemingly contradicting goals by mesh refinement: using 1-to-4

splits the edge lengths are reduced by a factor of 2. The value of k need to

be increased by a factor <2. The results achieved by the STVD algorithm

are very interesting in the case of high anisotropy where other methods tend

to produce bad results. Moreover, also when dealing with meshes containing

CHAPTER 2. STATE OF THE ART 33

bad shaped elements the STVD is able to yield considerably better results

(see figure 2.20).

2.7 SVG algorithm

The Saddle Vertex Graph (SVG) approach proposed by Ying et al. [1] con-

sists of a sparse undirected graph that encodes complete geodesic infor-

mation so that every shortest path on the mesh corresponds to a shortest

path on the SVG. Most of the available algorithms for geodesic computa-

tion employ a ’global ’ approach by propagating distance information in a

wavefront order. The SVG method solves the problem from a local perspec-

tive, breaking down the problem into smaller sub-problems allowing to reuse

information. This is made possible by the local structure exhibited by the

SVG which gets stronger moving from smooth surfaces to more complicated

models with richer geometry details.

As already mentioned in section 2.1, a vertex v is called saddle if the total

Figure 2.21: SVG on a 9K-face Bimba model. S-S, N-S and N-N edges are displayed

only for a vertex.

CHAPTER 2. STATE OF THE ART 34

vertex angle is greater than 2π. A globally shortest geodesic path γ(p, q) is

called direct if it does not pass through any saddle vertices, indirect other-

wise. An indirect path can be partitioned into segments, each of which is a

direct path.

For each vertex v, two sets of neighbors are defined: S(v) is the set of saddle

vertices which can be reached from v via direct geodesic paths; N (v) is the

set of non-saddle vertices which can be reached from v via direct geodesic

paths. Let V be the set of vertices of the mesh; this can be split in two dis-

joint subsets VS (saddle vertices) and VN (non-saddle vertices). Therefore,

we can define three disjoint sets of edges (see figure 2.21):

ESS = { γ(p, q) | p, q ∈ S(v) and γ(p, q) is direct },
ENS = { γ(p, q) | p ∈ N (v), q ∈ S(v) and γ(p, q) is direct },

ENN = { γ(p, q) | p, q ∈ N (v) and γ(p, q) is direct }.

This allows us to define the SVG as a composition of three tiers S1, S2, S3:

S1 = (VS, ESS) is the core network consisting of all the S-S edges.

S2 = (VS
⋃
VN , ENS) connects non-saddle to saddle vertices.

S3 = (VN , ENN) contains the N-N edges connecting non-saddle vertices.

To explain the idea behind the SVG, we can directly quote [1]:

If the mesh is viewed as a planet, the vertices are cities, and

the geodesic path between two vertices is a flight route. So the

SVG is indeed a flight route map, which covers every city on the

planet. The saddle vertices are the hub cities and the non.saddle

vertices are the small cities. The S-S edges are the major route

connecting a small city to the nearest hub. Each N-N edge is a

local flight route between two nearby small cities.

The complexity (and density) of the SVG obviously depends on the number

of saddle vertices and their distribution. In the extreme case of a convex

polyhedron, there are no saddle vertices, so we have ENN =
(
n
2

)
with a

dense S3 and a dense SVG. Ying explains in [1] that after testing the saddle

vertex ratio r = |VS |
|V | on common models of various resolution the typical r

value ranged from 40% to 60% remaining fairly stable with respect to the

CHAPTER 2. STATE OF THE ART 35

Figure 2.22: Experimental results show that for bigger models, the saddle vertices

ratio remains fairly stable.

mesh resolution and tessellation (see figure 2.22). Moreover, the SVG ex-

hibits a strong local structure that - as empirical results have proven - gets

stronger when applied to more detailed models that have more complicated

geometry.

To build the SVG, the direct geodesic paths must be computed for each ver-

tex v. To do this, the approach described in section 2.1 is employed, with

the difference that being interested only in direct paths, there will be no

pseudosources and this means that the algorithm can stop when all “direct

windows” have been computed.

Computing all the direct geodesic paths is clearly the bottleneck of the SVG

construction algorithm, to have a faster computation without major loss in

accuracy, a user provided parameter K is employed. This parameter in-

dicates the maximal number of mesh vertices covered by a geodesic disk.

Given a vertex v and a geodesic disk �(v,R) centered in v and with radius

R that contains no more than K vertices, all direct geodesic paths within

�(v,R) are taken as SVG edges. The geodesic disks and the direct geodesic

paths for each vertex v are computed in parallel on the GPU, then the SVG

CHAPTER 2. STATE OF THE ART 36

is reassembled. Clearly, computing the complete SVG graph would require

much more time and memory space. Using the parameter K, the theoret-

ical complexity of computing direct geodesic paths with Chen and Han [8]

or MMP [7] algorithm is O(nK2 logK/N) time where n is the number of

vertices and N is the number of parallel threads used. The empirical com-

plexity is sub-quadratic (as exposed by [29]) and is O(nK1.5 logK/N). As

pointed out by Ying, a very important feature of the SVG approach is that

the computed distances form a metric, i.e. they maintain the symmetry

condition and triangle inequality. Hence, given an undirected connected

graph G, the set V of vertices of G forms a metric space by defining d(x, y)

to be the length of the shortest path connecting the vertices x and y. Since

the geodesic distance is computed using the shortest path distance on the

SVG, the resulting distance is guaranteed to be a metric. These conditions

do not hold for all of other approximate algorithms presented so far such as

the one by Surazhsky (sec. 2.2), the Heat Method (sec. 2.5) and the GTU

method which will be presented in the next section (see figure 2.1). To

Figure 2.23: A geodesic path is highlighted on the 263K-vertices Lucy model. The

vertices visited by Dijkstra’s algorithm are shown in blue, those visited by A* are in

red.

CHAPTER 2. STATE OF THE ART 37

compute a single-source single-destination geodesic distance (SSSD) d(s, t),

firstly a Bidirectional Dijkstra search is run directly on the mesh to compute

an upper bound Ust. Then, the A∗ search is run on the SVG exploiting the

upper bound Ust to prune the search by allowing only the point p satisfying

the condition ds(p)+‖pt‖ ≤ Ust. In figure 2.23, we can see the region visited

by Bidirectional Dijkstra in blue while the region visited by A∗ is shown in

red. If the SVG is exact, that is if all direct geodesic paths have been pre-

computed; A∗ has to be run only on tier 1 of the SVG (the core network).

Otherwise the search applies to S1

⋃
S2

⋃
S3. The single-source/multiple-

source all destinations geodesic distances can be computed running Dijkstra

on the SVG and updating the distances for all non-saddle vertices q with the

shortest distance from q’s saddle neighbors. If the exact SVG is available,

the overall time complexity is O(|ESS| log |VS| + |ENS|), where the |ENS|
factor is due to updating non-saddle vertices’ distances. If the SVG is ap-

proximate, Dijkstra has to be run on the entire SVG, hence the complexity

becomes O((|ESS|+ |ENS|+ |ENN |) log |V |). To retrieve the shortest path,

a backtrace procedure based on triangles unfolding is employed.

As we have already mentioned before, the SVG approach does not fit well

in case of convex polyhedrons where the SVG becomes very dense. More-

over, the computation of the exact geodesic paths is very time expensive so

its implementation was written in CUDA 5.0 to be executed on an Nvidia

Tesla K20 GPU with 2496 CUDA cores and 5GB of memory. As reported in

[1], the “CPU-version” of the SVG construction algorithm is from 10 to 40

times slower than the GPU version. In figure 2.24 we can see how the SVG

method is independent from mesh resolution and tessellation as the SVG

was computed with fixed K = 50 on a Buddah model from a low-resolution

mesh with many obtuse triangles to a high-resolution mesh with regular tri-

angulation producing consistently high quality results. In the same way, we

can see from figure 2.25 that on the Bimba model a value of 50 for parameter

K already produces results that are hardly distinguishable from the exact.

CHAPTER 2. STATE OF THE ART 38

Figure 2.24: SVG applied with fixed parameter K=50 to a 40K-face (left), 300K-

face (middle) and 600K-face Buddah model. Consistently high quality results are

produced.

Figure 2.25: FMM, HM and SVG applied to the Bimba model. From the third

column the SVG results are show reporting the tuple (K, ε) where ε is the mean

relative error.

CHAPTER 2. STATE OF THE ART 39

2.8 GTU method

The Geodesic Triangles Unfolding (GTU) method was proposed by Xin et

al. [14]. It is based on a precomputation of geodesic distances in order to

achieve fast queries for all-pairs geodesics. In the preprocessing step, a De-

launay triangulation of the mesh based on m uniformly distributed samples

is computed.

This triangulation is induced by the geodesic fields that have to be computed

starting from the random samples (figure 2.26). The surface is divided into

geodesic triangles, i.e. triangles obtained replacing each Delaunay edge with

a geodesic (see figure 2.27). The algorithm then computes for all geodesic

triangles the geodesic distance from any inside vertex to the three corners.

Distance between any pair of the m sample points is also computed. The

preprocessing step has O(mn2 log n) time and O(m2 +n) space complexity;

it takes O(mn2 log n) time to run the exact geodesic algorithm with each

sample as a source and O(n) time to replace each Delaunay edge with a

geodesic. Since there are O(m) edges, this has a O(mn) time and over-

all prepropcessing time complexity is O(mn2 log n). In the query step,

Figure 2.26: Geodesic fields computed taking the m randomly sampled points as

sources.

CHAPTER 2. STATE OF THE ART 40

Figure 2.27: On the left side, approximate Delaunay triangulation computed from

m randomly placed samples. On the right side, each Delaunay edge is replaced with

a geodesic, obtaining the so called “geodesic triangles”.

given two points q1 and q2 on the surface, the GTU method unfolds the

corresponding geodesic triangles containing q1 and q2 to R2 and then uses

Euclidean distance between their 2D images to approximate the geodesic

distance on the mesh. The query points q1 and q2 are also mapped to R2.

This unfolding process is completely local and has constant time complex-

ity.

Consider figure 2.28. Given two geodesic triangles 4psr and 4qrs, they

can be unfolded to R2 (with a minimum distortion) obtaining two triangles

4p′s′r′ and 4q′r′s′ where the corresponding Euclidean edge lengths are

equal to those of the geodesic edges. We denote this unfolding operation

with respect to edge rs as u(p, q|rs). As shown in figure 2.28, if p and q are

on the same side of rs a “one-side unfolding” takes place, otherwise we have

a “two-side unfolding”. It has to hold that d(r, s) = ‖r′s′‖, d(p, r) = ‖p′r′‖,
d(p, s) = ‖p′s′‖, d(q, r) = ‖q′r′‖ and d(q, s) = ‖q′s′‖. All possible cases that

could arise during the query step are described thoroughly in [14], here for

the sake of a concise exposition we will analyze only the most important

ones. First let us consider the situation depicted in figure 2.29 a). Let us

CHAPTER 2. STATE OF THE ART 41

Figure 2.28: Geodesic triangles unfolding.

assume that given two query point p and q, p is a sample point while q is

a vertex and they are in different geodesic triangles (let 4s1, s2, s3 be the

one containing q). Geodesic distances d(q, si)i = 1, 2, 3 are known as they

were precomputed. Then, a two-side unfolding operation u(p, q|si, s[i]+1) is

applied to 4s1, s2, s3. Finally, the approximate geodesic distance d̃(p, q)

is obtained as d̃(p, q) = min1≤i≤3 ‖piqi‖ where pi and qi are the unfoldings

of p and q. For the case depicted in figure 2.29 b) let us assume that

p, q ∈ 4s1s2s3. In this case, a one-sided unfolding with respect to each

geodesic edge is applied and d̃(p, q) = min1≤i≤3 ‖piqi‖. An upper bound for

the approximation error is given in [14]. This is true for a query regarding

two points in different triangles and states that |d(q1, q2)−d̃(q1, q2)| ≤ 2L+2l

where L (resp. l) is the maximum edge length of the geodesic (resp. mesh)

triangles containing q1 and q2.

The maximum geodesic triangles edge lengths are closely related to the

number m of samples. Therefore, the more samples are picked, the more

accurate the geodesic distances will be obtained, but in turn as the sam-

ples number gets bigger the preprocessing time needed rises hence a good

tradeoff must be found (see figure 2.30). In figure 2.31, we can see geodesic

distance field computed on the Lucy model (263K vertices) for increasing

values of m compared to the exact geodesic result shown on the right. In

CHAPTER 2. STATE OF THE ART 42

(a) p is a sample point, q is a vertex.

(b) Both p and q are vertices in the same

geodesic triangle.

Figure 2.29: a) Two-sided unfolding of geodesic triangle 4s1, s2, s3 with respect to

edge sisi+1 i = 1, 2, 3. b) One-sided unfolding.

Figure 2.30: On the left side, relative root-mean-square error VS number of sample

points. On the right side, preprocessing time (seconds) VS number of sample points.

CHAPTER 2. STATE OF THE ART 43

figure 2.32, we can see the results on a smaller model (Fertility, 30K ver-

tices). The error is given as a percentage of the model diameter. We can

see how for small values of m the method has some clearly visible issues in

recovering the right distance field and also for higher values of m this issues

are still distinguishable. This method presents some limitations: as we can

Figure 2.31: Distance fields computed on the Lucy model (263K vertices).

see from figure 2.33 (left) if two query points are close enough to be in the

same geodesic triangle, the approximation error could be higher. Moreover,

high approximation error could result from highly curved features contained

into a geodesic triangle. As proposed by Xin, a solution to these problems

(figure 2.33 (right)) could be to employ a finer geodesic triangulation; that is

splitting 4s1, s2, s3 such that the two features are in two separate geodesic

triangles.

Another limitation of this method arises from the memory space require-

ment which is O(m2 + n): this requirement does not scale well with model

dimension as m is inherently dependent on the model resolution and geom-

etry.

CHAPTER 2. STATE OF THE ART 44

Figure 2.32: Distance fields computed on the Fertility model (30K vertices).

Figure 2.33: (left) Query points located in the same geodesic triangle, unfolding

could lead to high approximation error. (right) Finer geodesic triangulation could be

employed to lower the approximation error.

CHAPTER 2. STATE OF THE ART 45

2.9 Comparisons

Method Domain MSAD Info. reuse Error bound Metric

AMMP meshes O(n1.5 log n) no yes no

FMM meshes

& grids

O(n log n) no no no

HM meshes

&

points

solve

∆φ = ∇·X
yes no no

SVG meshes O(Dn log n) yes yes yes

GTU meshes O(n) yes yes no

Table 2.1: Comparing different approximate algorithms: n is the number of vertices;

D is the SVG maximum degree;

Exact polyhedral distance:

• The seminal paper presented by Mount et al. [7] in 1987 gave birth

to all the further research on geodesic computation. Different im-

plementations of the original MMP algorithm exist, such as the one

from Surazhsky [9] or Chen and Han [8] which differentiate them-

selves for the data structure used to manage the windows propaga-

tion. The MMP algorithm computes the exact distance with respect

to the piecewise linear surface M , which in a geometry processing sce-

nario its already an approximation of a smooth manifold. As noted

in [30] the expense of employing a method like the MMP which has

high time complexity becomes even more excessive when facing non

standard metrics that are specified approximately (e.g. discretely per

mesh element).

• Surazhsky use a priority queue while Chen employs a tree hierarchical

structure. Their time performances are comparable in practice, while

Chen’s implementation tend to have e lower space complexity.

CHAPTER 2. STATE OF THE ART 46

Approximated distance:

• Surazhsky et al. observed that the worst-case running time of the

MMP algorithm is overly pessimistic and in practice the algorithm

runs in sub-quadratic time. They proposed an effective way to reduce

the window complexity by merging the adjacent windows without re-

ducing the visibility region. This idea is employed in an approximated

version of the MMP algorithm that applies window merging under cer-

tain conditions to improve time and space complexity.

• Chen and Han [8] (CH) adopt a different strategy, which organizes

the windows in a hierarchical structure and stores only the branch

nodes, leading to linear space complexity O(n). Furthermore, the

time complexity of their algorithm is O(n2). Later, through extensive

experiments Xin and Wang [29] discovered that 99% of the propagated

windows in CH algorithm do not contribute to shortest distance, and

proposed an improved version of the CH algorithm (ICH).

• Campen and Kobbelt [10] proposed an extension of the FMM [11]

able to deal with defected meshes obtaining some good results while

still having some issues regarding undesired hole bridging that could

change the model topology and result in high approximation error.

The FMM is a numerical algorithm for solving the Eikonal equation

on triangular meshes [4], it is widely used in the graphics community

due to its simplicity and optimal time complexity. However, it requires

non-obtuse triangulation to preserve the monotonicity of the wavefront

propagation; otherwise, a complicated unfolding procedure must be

applied.

• The Heat Method [12] represented a novel approach to the geodesic

problem, using Varadhan’s formula which reveals the relationship be-

tween the geodesic distance and the heat kernel. It certainly has

some positive aspects, taking advantage of the well-established dis-

crete Laplacian easily adaptable to a variety of geometric domains.

Moreover, it is very easy to implement and with the pre-factored

Laplacian matrix the distance can be solved in near-linear time, which

CHAPTER 2. STATE OF THE ART 47

significantly outperforms the FMM in terms of speed. Visual checking

of the results obtained from the HM show that it tends to smooth the

sharp cusps of the isolines. This issue comes from the smooth nature

of the heat kernel, however, the geodesic distance is not smooth due to

the existence of the ridge points1. Both the HM and SVG algorithm

require some precomputation: the HM pre-factors the Laplacian ma-

trix into a lower triangular matrix and a upper triangular matrix,

making it possible to solve the Laplacian and Poisson equations by

backward substitution.

• The SVG algorithm precomputes a graph encoding approximate geodesic

information. As exposed in [1], HM and SVG are comparable in speed

when the value of the SVG’s parameter K is between 100 and 500

while the HM outperforms the SVG algorithm for K > 500. However,

for those values of K, the SVG achieves higher accuracy. Moreover,

another positive aspect of the SVG method is that it resolves distance

queries using Dijkstra’s algorithm which does not involve any numer-

ical computation. Finally, the HM works better on smooth surfaces

since it tends to produce smooth distances, while it shows some limi-

tations when dealing with models having richer geometric details. The

SVG has the opposite limitation, producing better results on complex

models.

• Compared to the GTU method, the SVG still has some advantages

due to the poor-scalability of the GTU method and the lack of parallel

implementations for the geodesic Delaunay triangulation on surfaces

while the SVG can exploit the parallel and high computational power

offered by the GPU.

• With regard to the possibilities of an extension of the presented al-

gorithms to the anisotropic case, we have that more or less every

approach has its shortcomings. Methods based on a straight Dijk-

stra algorithm implementation could rely on appropriate edge weights;

1A ridge point is a point p on the surface for which there exist at least two equal-length

geodesic paths from the source s to p.

CHAPTER 2. STATE OF THE ART 48

Fast Marching Methods rely on an acute triangulation of M , and

this is hardly the case for practical models. An intrinsic Delaunay

re-triangulation of the mesh could be applied, which is based on an

intrinsic discrete metric. However this procedure and has some draw-

backs such as numerical inaccuracies and a worst case quadratic time

complexity. The Heat Method can be adapted to non-standard met-

rics by formulating it in terms of the discrete metric, i.e. based on

the intrinsic edge lengths. This amounts to calculating the cotangent

weights, element areas, and divergence values involved in the Lapla-

cian and the Poisson system accordingly. The low intrinsic element

roundness, however, does negatively affect robustness. The resulting

distance fields then often show distortions and degeneracies like local

minima.

Chapter 3

VoroGeo

In this chapter we will present our method for computing fast approximate

all-pairs geodesic distances called VoroGeo. Our method is composed of two

steps:

• A preprocessing step, outlined in figure 3.1

• A query step, where precomputed information is exploited to achieve

fast and highly accurate reply to distance queries.

We will start our description by explaining which was the inspiration and

the idea behind our work and then we will dive more into design and im-

plementation issues that we faced during development.

3.1 Idea

As we have seen in the previous chapter, after Mitchell, Mount and Pa-

padimitrou first exposed their algorithm in 1987, the geodesic computation

problem has been tackled from various points of view and numerous ap-

proaches have been proposed over the years. After Chen and Han proved

the empirical complexity of the exact solution to be O(n1.5 log n), a lot of the

research interest has moved onto finding a good tradeoff for an approximate

solution capable of achieving good time performance while producing highly

accurate results. For what concerns accuracy, we have already pointed out

49

CHAPTER 3. VOROGEO 50

generate
n1 random
samples
over M

Input:
M

partition M into
n1 Voronoi

regions

for each region:
- generate n2

random samples,
- partition into n2
Voronoi regions

precompute and store
geodesic information

1 2

3

4

build
adjacency

graph

5

...

apply
pruning

6

Figure 3.1: Outline of our method’s preprocessing step.

CHAPTER 3. VOROGEO 51

in 2.9 that the Heat Method [12] has a limitation related to the fact that no

bound is available for the approximation error while for the GTU method

the upper bound for error closely relates to number m of samples chosen by

the user to build the geodesic Delaunay triangulation. On the other hand,

the SVG approach has a lot of advantages over the last two cited methods,

but requires increasing the value of its parameter K to achieve high accu-

racy, which leads to a much higher precomputation time. Moreover, the

SVG is not well fitted for developable surfaces or convex polyhedra as in

those cases the SVG would become a complete graph.

The VoroGeo approach takes its inspiration from the same idea employed

in the SVG: relating a geodesic path on the mesh to a shortest path on a

graph allow us to solve the problem using a simple modification of the A*

algorithm. Our goal was to design an approach for the all-pairs geodesics

that could include the positive aspects of the SVG while overcoming some

of its issues. Just like in the SVG or GTU methods, some precomputation is

needed to be able to achieve fast reply to Single-Source-Single-Destination

(SSSD) distance queries. Our approach consists of two steps: the prepro-

cessing step and the query step:

• In the preprocessing step (see figure 3.1) we subdivide the initial prob-

lem of finding a global shortest geodesic path into smaller local sub-

problems. To achieve this, we employ a double layer partitioning of

the mesh M into Voronoi regions computed from an initial set of point

samples (step 1, 2 and 3).

On each region, geodesic information is precomputed and stored for

future use (step 4). We then build a pruned version of the complete

graph which encodes approximate geodesic information (step 5 and

6). The pruning procedure is based on a threshold that bounds the

relative average error introduced by node-pruning.

• In the query step, we reply to distance queries for any pair of ver-

tices (p, q) by executing a modified version of the Bidirectional-A*

algorithm which exploits the hierarchical partitioning applied to the

mesh. The Bidirectional-A* expands two distance wave-fronts: one

starting p toward q and one in the opposite direction. Intuitively, the

CHAPTER 3. VOROGEO 52

two fronts will meet “in the middle” of the shortest path connecting

p and q.

The preprocessing step pseudocode is available in Algorithm 1 and 2. In the

next sections we will dive more into the details behind those procedures.

Algorithm 1: Preprocessing step

Input: M , n1, n2, δ

Output: G = (Gfl ∪Gsl)

Generate n1 randomly placed samples on M

Compute first level partitioning: split M into n1 patches

Parallel ← forall the f.l. patch pf do

Compute Bv×Bv geodesics

Build local Bv×Bv graph fgbb

Compute second level partitioning: forall the f.l. patch pf do

Generate n2 randomly placed samples on pf

Partition pf into n2 patches

Parallel ← forall the s.l. patch ps do

Compute local Bv×Bv geodesics

Build local Bv×Bv graph sgbb

Compute local Bv×Iv and Iv×Bv geodesics

Build local Bv×Iv and Iv×Bv graph sgib

Compute local Iv×Iv geodesics

Build local Iv×Iv graph sgii

Prune(Gfl, δ)

δsl := δ/γ Prune(∪sgbb, δsl)

Gfl =

n1⋃
i=0

fgbb Gsl =

n2⋃
i=0

(sgbb ∪ sgib ∪ sgii)

CHAPTER 3. VOROGEO 53

Algorithm 2: Pruning procedure

Input: G = (E, V), δ

forall the (v, w) ∈ E where ‖P(v)‖ < 3 and ‖P(w)‖ < 3

and ∀p ∈ P(v) : p ∈ P(w) do

e← ComputeAverageError(v, w);

heap← (v, w, e);

while !heap.empty() do

(i, j, c)← heap.back();

heap.pop back();

if c < δ then

Merge(i, j);

heap← NewPossiblePairs();

3.2 Voronoi diagrams

Since we divide the initial problem into smaller sub-problems employing a

Voronoi partitioning of the input mesh M into patches, we introduce here

the basic concept of subdividing an initial domain into Voronoi regions [35].

To compute this subdivision, a set of points called seeds is provided as

input. For each seed s there will be a corresponding region containing all

the points that are closer to s than any other seed. So it is needed that the

initial domain is endowed with a distance function d. In figure 3.2 we can

see an example of a Voronoi diagram computed on an Euclidean plane where

the density of the seeds is bigger toward the center. This produces long and

skinny regions where the seed density is higher. The dual of the Voronoi

diagram, the Delaunay triangulation, is the unique triangulation so that

the circumsphere of every triangle contains no sites in its interior. Voronoi

diagrams and Delaunay triangulations have been rediscovered or applied in

many areas of mathematics and the natural sciences they are central topics

in computational geometry with hundreds of papers discussing algorithms

and extensions [36].

CHAPTER 3. VOROGEO 54

Figure 3.2: An example of a Voronoi diagram computed on the Euclidean plane.

3.3 Patch subdivision

From now on, we will refer to a Voronoi region as computed in the pre-

processing step with the term patch, specifying when needed if the patch

belongs to the first or second layer partitioning. On each patch we divide

the vertices into two categories: border vertices (Bv) and internal vertices

(Iv). In figure 3.3 is reported an example of a patch: boder vertices are

colored in gray while internal vertices are in yellow. Border edges are high-

lighted in red.

For all patches (first and second layer), our algorithm needs to be able to es-

tablish an ordering of the so-called border vertices and internal vertices (see

figure 3.3). Moreover, we shall not consider in any of these two categories

those vertices that are adjacent to a hole in the mesh (see figure 3.4). We

will refer to these vertices as “hole-adjacent vertices”. All the hole-adjacent

vertices are labeled at the start of the preprocessing step, so that they will

be ignored by further computations. We classify border and internal ver-

tices iterating over the vertices of a patch and as we find a border vertex,

we label all border vertices by “walking on the border” of the patch. This

border walk (i.e., walking on the red the border edges of figure 3.3) is very

easy to implement using the Pos mechanism provided by the VCG library.

Therefore, it is fundamental for our algorithm that each patch has a unique

border ring. For example, a situation like the one shown in figure 3.5 is not

CHAPTER 3. VOROGEO 55

2
7

4

3

5

0

1

2

3

4
5

6

7

8 1

0

6

8

Figure 3.3: An example of a triangulated patch. Boder vertices (Bv) are in gray,

internal vertices (Iv) are in yellow.

acceptable: we see a possible patching of the right ear of the ARMADILLO

model where the yellow patch is adjacent to two other patches, colored in

light green and pink. The yellow patch (shown in particular on the right of

figure 3.5), will have two border rings. In general, this situation can happen

when the model presents some sharp features (i.e. the ear of figure 3.5 or a

tail which is also present in the ARMADILLO model). To overcome the

issue, after subdividing the initial mesh into n1 patches we check them to

verify that the number n1 of samples is enough to yield a set of patches

having one border ring. If a patch with more than one border ring is found,

we generate two more random samples on the faulty patch, then we split

it and check if the issue is solved. Now we can easily define an ordering

between the border and internal vertices (see figure 3.3).

The user-defined parameter n1 is used to set the number of samples that

will be randomly placed on the mesh to compute the first layer of Voronoi

regions. Then, for each first layer patch pf , we use another user-provided

parameter n2 to randomly place samples and partition each first layer patch

pf into smaller Voronoi regions and obtain the second layer of patches ps.

CHAPTER 3. VOROGEO 56

An example of a first layer partitioning (n1 = 4000) of the NEPTUNE

model (n = 268K) is shown in figure 3.8, where first layer border vertices

are visualized in green.

Figure 3.4: A hole in the BUNNY model: vertices adjacent to the hole are shown

in red.

Figure 3.5: A possible patching of the right ear of the ARMADILLO model. This

partitioning creates a patch with two border rings.

3.4 Geodesic precomputation

To precompute geodesic distances we employ Surazhsky [9] implementa-

tion of the MMP [7] algorithm, but in theory any other of the algorithms

described in chapter 2 could be used in this step. We decided to use Surazh-

sky’s algorithm because of two important reasons:

CHAPTER 3. VOROGEO 57

Iv x Iv
Iv x Bv

Bv x BV

Bv x Bv

Figure 3.6: First (left) and second (right) layer patches on the BUNNY model

(70K-faces) computed for n1 = 70 and n2 = 5. Precomputed distances are stored as

images.

• The code was publicly available and easily integrable in our project1.

• It provided us a strong comparison to evaluate the accuracy achieved

by our algorithm since it computes the exact polyhedral distance.

a) b) c) e)d)

Figure 3.7: a) A patch. b) Bv×Bv edges for a vertex are highlighted. c) Iv×Bv
edges for a vertex are highlighted. d) Bv × Iv edges for a vertex are highlighted. e)

Iv × Iv edges for a vertex are highlighted.

For each first layer patch we precompute the distance from every border

vertex to any other border vertex in the same patch. These edges are

1This cannot be said for other very interesting methods like the Heat Method, the

SVG method and the GTU method. In fact, as of the time this thesis is being written,

the code for those algorithms is still not publicly available

CHAPTER 3. VOROGEO 58

denoted as Bv × Bv (see figure 3.7 b)). Moreover, for each second layer

patch we also precompute the distance from each internal vertex toward

any border vertex of the same patch (hence, also the reverse path distance

is obtained) and the distance from any internal vertex to any other internal

vertex in the same patch. These edges are denoted as Iv × Bv (figure 3.7

c)), Bv×Iv edges (figure 3.7 d)) and Iv×Iv edges (figure 3.7 e)). As shown

in figure 3.6, this globally results in:

• One k × k matrix for each first layer patch pf (where k = |Bv| for

patch pf),

• Three matrices for each second layer patch ps:

a) The h×h matrix containing Bv×Bv distances (where h = |Bv|
for patch ps),

b) The h × l matrix containing Bv × Iv distances (where l = |Iv|
for patch ps) and

c) The l × l matrix containing Iv × Iv distances

Of course k, h and l vary from patch to patch, depending both on which

values we choose for n1 and n2 and how these samples are distributed over

the mesh. These matrices implicitly encode the complete shortest path

graph for the initial mesh M . We decided to store each of these matrix as

an “.png” image, so that they can be easily saved to disk. Each pixel (i, j)

of a certain image encodes the length of the shortest path between vertex

i and j, therefore the images will be symmetric (see figure 3.6). We use

floats to maintain distance values and the RGBA8888 format to encode each

float value into a pixel. Intuitively, assuming 32bit (4 bytes) floats, we map

each of the 4 bytes of the float value into each channel of the RGBA image

format. As we said before, the index of the row/column associated to each

vertex is given by its position in the ordering we previously established. As

pointed out in algorithm 1, we employ parallel computations to speed up

the preprocessing step. Several threads are launched to fully exploit the

parallelism degree of the underlying machine. However, referring to what

stated in [1], also our algorithm would benefit from a GPU implementation

CHAPTER 3. VOROGEO 59

of the preprocessing step since this would produce an even higher speedup.

The precomputation process has some accuracy limitations due to the non-

convex nature that some patches may assume. In the case of a non-convex

patch the “locally computed shortest path”1 between two border vertices

could be different from the real one. That is, it is possible that the “real

shortest path”2 could meander outside of the patch. Thus, some inaccuracy

could be introduced. However, our experiments (see chapter 4) show that

this is negligible compared to the cost of running the MMP algorithm over

the entire mesh. In fact, this would imply in turn both an “explosion”

concerning the space requirement (having a separate copy of the initial

mesh for each thread) and the time complexity of the preprocessing step.

3.5 Graph pruning

The pruning procedure (see algorithm 2) is employed to lower the density

of the complete graph, that is, the graph composed by all the adjacency

matrices computed as described in the previous section. While theoretically

we could use the complete version of the graph in the query step, this would

lead to slower reply time due to the huge number of edges contained in the

complete graph.

The pruning procedure is outlined in figure 3.9: we see an example of a

patch3 and the two nodes highlighted in red have been selected for pruning.

In figure 3.9 a) their Bv × Bv edges are colored in blue and green respec-

tively. The output of the pruning (figure 3.9 b)) of two nodes is a dummy

node that will have the same Bv ×Bv edges.

This pruning procedure is based on the idea that if two vertices are geo-

metrically close, their Bv × Bv edge weights will be “similar” (that is, the

1With the expression “locally computed shortest path” we refer to the computation

of the shortest path between the two points made considering only the current patch

vertices.
2With the term “real shortest path” we refer to the computation of the shortest path

between the two vertices made considering the whole mesh.
3Since only border vertices are involved in pruning, just the border vertices/edges of

the patch are depicted.

CHAPTER 3. VOROGEO 60

Figure 3.8: First level partitioning on the NEPTUNE model (4M-faces). First

level patches border vertices are depicted in green.

CHAPTER 3. VOROGEO 61

a) b)

Figure 3.9: Pruning of two nodes: a) Two red vertices are selected for pruning. b)

Pruning produces a new dummy node.

absolute value of their difference will be near to zero). Therefore it makes

sense to simplify the complexity of the graph introducing a new dummy

node that acts as a placeholder for the pruned nodes and has as weights the

averages of the pruned nodes’ weights.

Results have shown that thanks to the ad hoc version of the bidirectional

A* search algorithm we designed (see section 3.7), the average query time is

still quite low (see results in chapter 4) for small meshes (70K-200K faces)

even if pruning is not applied. However, for bigger models, the pruning

procedure is mandatory to obtain fast query replies.

3.6 Graph Pruning: details

We apply pruning to the first and second layer Bv×Bv graphs: this is done

by

• Pruning the graph composed by all the local first layer Bv×Bv graphs

(we will refer to this graph as the “global” Bv ×Bv graph),

• Then the same pruning procedure is applied to the graph composed

by all the local second layer Bv ×Bv graphs.

As we said before, the pruning procedure is driven by a threshold value that

we will indicate with δ. For readability reasons, we will describe the pruning

CHAPTER 3. VOROGEO 62

p1

p2
p3

...

...

...

...

...
...

...

v

p1

p2

p3

a)

b)

q

r

Figure 3.10: a) Example of a pair of nodes eligible for pruning (green) and two pairs

not eligible (blue and red). b) Example of a border vertex and its Bv ×Bv edges in

both the patches it is contained. For visibility reasons, edges are only sketched.

procedure as applied to the first layer global Bv ×Bv graph, but the same

reasoning can be applied to the case of pruning the global Bv ×Bv second

layer graph. The only difference being that the threshold value δsl used, is

obtained as

δsl = δ/γ (3.1)

where γ is the average number of second layer patches created for each

first layer patch. Moreover, in this section we will use the term ’vertex’ and

’node’ in an interchangeable way, referring in the first case to a patch border

vertex: clearly, both terms refer to the same entity since there is a precise

correspondence between a mesh vertex and a graph node. The pruning

procedure uses a global heap filled with tuples of the form 〈u, v, e〉, where

u and v are two different nodes and e encodes the mean average error we

would introduce by merging those two nodes together into a new one that we

will refer to as “average node”. To compute e for a pair of nodes (u, v), we

iterate over their outgoing edges and we evaluate the mean average error e as

CHAPTER 3. VOROGEO 63

e =

k∑
i=0

|wu,i − wv,i|

edges num
(3.2)

where wu,i (resp. wv,i) is the weight associated to edge i at node u (resp.

v). We indicate with k the total number of edges in the outgoing star

S(u) or S(v)1, while edges num indicates the number of edges that are

still “active”. To better explain how the pruning procedure works, let us

consider figure 3.10 a): in this figure we see depicted the case of two nodes

that are eligible for pruning. In fact, nodes u and v both belong to patches

p1 and p2, and they both belong to only two patches. This condition is

expressed in algorithm 2 as

‖P(v)‖ < 3 and ‖P(w)‖ < 3 and ∀p ∈ P(v) : p ∈ P(w)

where P indicates the set of patches that contain that vertex. Thanks to

the Voronoi partitioning we employ, a certain vertex can only be contained

in the border of a maximum of three patches. Moreover, we exploit the

previously established ordering between the nodes of a patch to define an

ordering between the edges in the outgoing star of a node. To initialize

the heap with all (initial) possible pairs of nodes that could be simplified,

we iterate over all the first layer patches considering only pairs of eligible

neighbors nodes (that is, border vertices that are connected by an edge on

the patch). As shown in figure 3.10 b), when we evaluate the mean average

error, we consider also the Bv × Bv edges that are not from the currently

considered patch. For example, if we are adding to the heap all possible

initial pairs from patch p1, both yellow and green edges will be considered.

In figure 3.10 a) we also picked two cases of node pairs that are not eligible

for pruning: the pair highlighted in red is composed by node v and a so-

called “intersection node”, that is, a node that is belongs to the border of

three different patches (p1, p2, and p3); the pair highlighted in blue is made

1As will be clear later in this section, the size of the outgoing star is always equal

for every pair of nodes added to the heap. That is, it always holds that |S(u)| = |S(v)|
∀〈u, v, e〉 added to the heap.

CHAPTER 3. VOROGEO 64

of two nodes that are contained in different patches: in fact we have

P(q) = {p1, p3} P(r) = {p3, p2}

Therefore it would have no sense to try and evaluate the error using equa-

tion 3.2. When a tuple 〈u, v, e〉 extracted from the heap is such that the

average mean error e < t, we generate a dummy vertex u1 that will replace

u in the ordering of all patches where u is present, then we initialize its

edges. This is implemented by overwriting u’s row in the relative image

with the new values. We also update v’s row assigning +∞ to each edge,

marking those edges as “non active”. Finally, we update distances toward u

and v in order to maintain symmetry in the image which will in turn assure

that the metric symmetry property (that is, d(x, y) = d(y, x)) holds. Edge

weights for the average node u1 are set using equation 3.3a while weights

for the remaining nodes are updated iterating on the relative image row and

applying equation 3.3b:

wu1k =

0 if k = i or k = j

+∞ if wuk = +∞ or wvk = +∞
wuk+wvk

2
otherwise

(3.3a)

wxl =

wu1i if l = i

+∞ if l = j

wxl otherwise

(3.3b)

where i (resp. j) is the index of vertex u (resp v) in the vertex ordering.

When an average node u1 is generated and after all edge weights have been

updated, we add to the heap two new possible pairs 〈q, u1, e′〉 and 〈u1, p, e′′〉,
where p and q where respectively u’s and v’s neighbors. This is the reason

why we use the edges num counter in equation 3.2: we need not to consider

edges having weight w = +∞: those edges have been marked as non active

from a previous pruning and they should not be considered anymore.

In practice, we express the threshold δ used during pruning as a percentage

of the mesh bounding box diagonal. Results have shown that on small

CHAPTER 3. VOROGEO 65

meshes (such as the 70K-faces BUNNY model), very small values of δ

such as δ = 0, 01%, while producing very low edge pruning (around the

2% of edges are pruned), are already enough to obtain fast and accurate

result in the query step. For high resolution meshes, higher values of δ are

necessary to achieve faster query reply. We refer the reader to chapter 4 for

a more ample discussion on how varying the value for threshold δ affects

our algorithm’s time performance and accuracy.

3.7 Query step

In the query step we exploit all the geodesic information gathered during the

preprocessing step to perform Single-Source-Single-Destination (SSSD) or

Multiple-Source-All-Destinations (MSAD) fast distance computations that

can be used (as exposed in section 3.8) for example to compute a geodesic

Voronoi partitioning of the initial mesh.

• The SSSD geodesic computation is based on a modified version of the

Bidirectional-A* search algorithm, outlined in algorithm 3.

• The MSAD geodesic computation is based on a generalization of algo-

rithm 3 that computes distance values, from a set of source vertices,

for all other mesh vertices.

3.7.1 SSSD distance computation

The crucial point of algorithm 3 resides in how we expand the information

front from a certain vertex extracted from the heap. The main goal is to try

to examine the minimum number of edges necessary to be able to find the

shortest path. To do this, we exploit the hierarchical structure we defined

in the preprocessing step. Given two random vertices v1 and v2, we retrieve

the first and second layer patches in which they are contained. If the two

points are in the same second layer patch, the distance is returned with

one access to the relative image pixel. Otherwise, we start bidirectional

searching, that is from v1 toward v2 and from v2 toward v1. We use two

priority queues to implement the fronts. The key point of the A* algorithm

CHAPTER 3. VOROGEO 66

is that it uses a knowledge-plus-heuristic cost function of node v (denoted

with f(v)) to determine the order in which the search visits nodes in the

graph. The cost function f(v) is a sum of two functions:

• the past path-cost function, which is the known distance from the

starting node to the current node v (denoted with g(v))

• a future path-cost function, which is an admissible “heuristic estimate”

of the distance from v to the goal (denoted with h(v)).

The h(v) part of the f(v) function must be an admissible heuristic; that is,

it must not overestimate the distance to the goal. In our case, it is the Eu-

clidean distance to the destination vertex. Therefore we obtain an heuristic

that is monotone (i.e. satisfies h(v) ≤ d(v, u) + h(u) for every edge (v, y))

and moreover it is a lower bound. Indeed, the length of the shortest path be-

tween two points cannot be shorter than the norm of the vector connecting

them. This allow us to implement the algorithm in a more efficient way since

no node has to be considered more than once. As exposed in [37] [38] A*

algorithm achieves better time performances when using admissible mono-

tone heuristics. To describe our implementation, let us consider two ar-

bitrary vertices v1 and v2. For the non-trivial cases we will consider the

front expansion only in one direction, that is from v1 toward v2, the same

reasoning can be applied to the front expanding in the opposite direction.

p1 p2 a) b) c)

Figure 3.11: Vertices in the same second layer patch.

• If v1 and v2 are in the same second layer patch psl, we immediately

return their distance (only one access to a distance matrix is needed).

In fact, this is contained in

a) the Iv × Iv matrix, if both v1 and v2 are internal vertices for psl

(figure 3.11 a),

CHAPTER 3. VOROGEO 67

b) in the Iv × Bv matrix, if one of them is a border vertex for psl

(figure 3.11 b),

c) in the Bv ×Bv matrix, if if both of them are border vertices for

psl (figure 3.11 c).

p1

Figure 3.12: Vertices in the same first layer patch.

• If v1 and v2 are in the same first layer patch, but in different second

layer patches (figure 3.12):

a) if v1 is an internal vertex for its second layer patch psl1 we first

expand the front using Iv ×Bv edges “to get out” of psl1 .

b) otherwise we expand the front from v1’s second layer patch psl1
considering only second layer Bv × Bv edges until we reach v2’s

second layer patch psl2 . If v2 is a border vertex for psl2 then we

will reach v2 using Bv×Bv edges, otherwise when psl2 is reached

we will start “going down” into psl2 considering only Bv × Iv

edges for psl2 .

pfl1 pfl2

psl1 psl2

Figure 3.13: Vertices in different first layer patches.

CHAPTER 3. VOROGEO 68

• The most general case is represented in figure 3.13: v1 and v2 belong

to different first level patches pfl1 and pfl2 (and of course different

second layer patches psl1 and psl2): the key idea is always to expand

the front on edges “going up” to exit psl1 , then move using second

layer Bv × Bv edges to reach the border of pfl1 . Then we speed up

the search by considering first layer Bv×Bv edges until we reach pfl2 .

Intuitively, first layer edges allow to perform “bigger jumps” on the

graph, speeding up the search. We can then start “going down” using

second layer Bv × Bv edges until we get to psl2 where we will reach

v2 directly by a Bv ×Bv edge of by psl2 ’s Bv × Iv edges.

The two parallel fronts expanding from both the source and the destination

will meet “in the middle” of their path, but this event does not give us

the certainty that we have found the shortest path. Let us consider the

situation where we are expanding the front originated at the source1 and

we are examining a vertex u that has already been visited by the opposite

moving front: we can update the estimated length of path v1 → v2 as

est := dfw(v1, u) + dbw(u, v2)

where dfw(v1, u) (resp. dbw(u, v1)) is the current length of the shortest path

for u as computed by the expanding front moving forward (resp. backward)

from the source (resp. destination). In this way est will keep track of the

length of the currently best-known path from v1 to v2. Since we defined

an admissible lower bound monotone heuristic d̂(x, y), we can exploit the

halting condition expressed in algorithm 3: that is, we stop searching for

a shorter path when the nodes x and y at the top of the priority queues

implementing the fronts have current distance d(v1, x) + d(y, v2) ≥ est.

Finally, the current value of est is returned.

3.7.2 MSAD distance computation

The Multiple-Source-All-Destinations distance computation algorithm is a

generalization of the approach described in the previous section. Naturally,

1Without losing generality, the same reasoning can be symmetrically applied to the

front expanding from the destination.

CHAPTER 3. VOROGEO 69

Algorithm 3: Ad-hoc Bidirectional A*

Input: v1, v2

Output: d(v1, v2)

pstart := v1.SLPatch(); qstart := v1.FLPatch();

pend := v2.SLPatch(); qend := v2.FLPatch();

if (pstart = pend) then

return pstart.Distance(v1, v2);

else

estimate := +∞;

heapfw.Insert(v1,0);

heapbw.Insert(v2,0);

while (!front1.empty() and !front2.empty()) do

if (front1.top() + front2.top() ≥ estimate) then

break;

curr := min(heapfw.top(), heapbw.top());

Expand distance front from curr

if (better estimate found) then

estimate := new estimate;

return estimate;

CHAPTER 3. VOROGEO 70

it tries to take advantage of the precomputed information to speed up the

computation. Given a set S of sources, we retrieve their second layer patch

psls , s ∈ S. Without loss of generality, let us assume that all psls are different.

For each s ∈ S we compute distances for all the internal vertices of all psls
using

• Bv × Iv edges if s is a border vertex for psls ,

• otherwise we exploit the Iv × Iv edges.

For implementing the front expansion we use a priority queue. The front

is initialized with all the border vertices of all the patches psls (for which

distance can be trivially computed from the relative source s by using either

Iv × Bv edges or Bv × Bv edges). The rest of the algorithm consists of

expanding the front by considering first and second layer Bv×Bv edges. All

the internal vertices of all the second layer patches are reached using Bv×Iv
edges and are not added to the heap for further expansion. Examples of a

MSAD distance computation are reported in chapter 4.

3.8 Enhanced Voronoi partitioning

In this section we propose an application of our method to speedup the

geodesic Voronoi partitioning of a mesh. The method is driven by a param-

eter k provided by the user, setting the number of seeds to be placed on the

mesh. Our method is very easy to implement and employs the generation

of a sphere centered in each seed. Then we try to assign each point to a

specific seed. We iterate increasing the sphere radius until each vertex has

been assigned to its seed. We use a Poisson distribution to generate random

points over the mesh. This distribution guarantees that for each seed s no

other seed is present inside a certain radius r of a disk centered in s. The

Poisson distribution implemented in the VCG library produces as output a

set of points on the mesh surface. For each point, we pick the vertex that is

closer to that point. Initially we set the radius of the spheres to r/2. More-

over, we mark all vertices as “not-assigned”. We generate the spheres and

loop over the unassigned vertices keeping track, for each vertex v, of the list

CHAPTER 3. VOROGEO 71

of “candidates” (that is, seeds) to which it may belong. Three situations

could take place:

i) v is included in only one sphere: there is only one candidate c, we

compute d(v, c) using our SSSD distance algorithm. Remove v from

the “not-assigned” list.

ii) v is included in more than one sphere: there is a list C = c0, c1, . . . cl of

candidates. We check di(v, ci) for i = 0 . . . l using our SSSD distance

search. For candidate c0 we use the SSSD distance search normally.

When we have to compute di+1(v, ci+1) we use di as a maximum dis-

tance threshold for the expansion of the A* front. Hence, we stop

the search as soon as we find that di+1 > di, without completing the

computation. Remove v from the “not-assigned” list.

iii) v is not included in any sphere: v remains in the “not-assigned” list.

If the list of “not-assigned” vertices is not empty, we increase the the sphere

radius by a factor which can be set by the user (during our tests, we used

0.25 as value for the increment) and proceed to check again iterating on the

vertices that were left unassigned from the past attempt.

Chapter 4

Results

In this chapter we will present some statistics about time performance and

accuracy of our method. First we will describe which parameters can be

provided by the user and how these can affect our algorithm’s behavior and

performances.

We developed our algorithm in C++ [39] using the Qt [40] framework and

exploiting the functionalities exposed by the Visualization and Computer

Graphics (VCG) library. The VCG library is a open source portable C++

templated library for manipulation, processing and displaying of triangle

and tetrahedral meshes. It is the base of most of the software tools of the

Visual Computing Lab of the Italian National Research Council Institute

(ISTI). All the tests where performed on a machine equipped with a 2.6GHz

i7 8cores processor.

4.1 Parameters tuning

We made various experiments trying to investigate how the performances

of our algorithm change with respect to variations in the method’s input

parameters. Our method does not have a lot of parameters, but a proper

tweaking of n1, n2 and δ is very important to get the best results. Hence,

we first tried tweaking n1 and n2 which are the parameters that regulate the

72

CHAPTER 4. RESULTS 73

number of regions created. Then, after we found values for n1 and n2 that

yield good reply time and accuracy, we made some tests oriented on tweak-

ing the pruning threshold parameter δ. We found that for small models (in

the range of 50K to 100K-faces) δ ∈ [0.0001, 0.0005] is enough to obtain fast

query reply. For bigger models (i.e. with more than 500K faces) an higher

pruning threshold needs to be used to produce an high percentage of nodes

pruning while still obtaining fairly accurate results.

4.1.1 Tweaking n1 and n2

Some statistics relative to the tests we performed for tweaking the n1 and n2

parameters values for the ARMADILLO (350K-faces), BUSTO (500K-

faces) and RAMESSES (1.6M-faces) models are reported in table 4.1, 4.2

and 4.3. Different values for n1 and n2 result in a different number of regions

with different sizes and shapes. Thus, other than the time complexity of the

preprocessing step, n1 and n2 also influence our pruning procedure capacity

to simplify the graph. Analyzing the results we can see that, on average:

• For models like the ARMADILLO, which presents rich geometrical

features, an higher density of first layer samples is required. Faster

and more accurate queries are achieved setting n1 = 100, n2 = 5.

• For models that do not present sharp features (i.e. BUSTO and

RAMESSES models), a lower density of first layer samples yields

faster and more accurate results: our tests proved that the best trade-

off between speed and accuracy is achieved by setting n1 = 150, n2 = 5

and n1 = 1000, n2 = 5 respectively.

Moreover, in table 4.4 and 4.5, we reported the preprocessing statistics

relative to the previous tests performed for different values of n1 and n2. We

can notice that, thanks to our parallel implementation of all the geodesics

precomputations made on each patch, the preprocessing time decreases as

we increase the total number of first and second layer regions. On the

other hand, as we have seen, this does not imply a consequent decrease in

CHAPTER 4. RESULTS 74

n1

n2 100 200 300

5 0.01126s 0.01128s 0.01145s

10 0.01134s 0.01137s 0.01176s

15 0.01166s 0.01164s 0.01215s

n1

n2 100 200 300

5 0.00089 0.00099 0.00187

10 0.00105 0.00169 0.00209

15 0.00136 0.00204 0.00251

Table 4.1: Average query time (left) and mean average error (right) statistics for

different n1 and n2 values on the ARMADILLO model (n = 173K).

n1

n2 100 150 200

5 0.01989s 0.01979s 0.01978s

10 0.01983s 0.01983s 0.01986s

15 0.01986s 0.01990s 0.01991s

n1

n2 100 150 200

5 0.00807 0.00143 0.00275

10 0.00773 0.00160 0.00293

15 0.007359 0.00177 0.00313

Table 4.2: Average query time (left) and mean average error (right) statistics for

different n1 and n2 values on the BUSTO model (n = 255K).

query time. Notice that, as proven by our tests, the increase in first layer

regions forces the A* search algorithm (see section 3.7.1) to spend more

time expanding the front through second layer patches before propagating

across first layer edges.

4.1.2 Tweaking δ

In table 4.6, 4.7 and 4.8 we report statistics relative to different tests where

we set the values for n1 and n2 (choosing those that lead to the most sat-

isfying results, as explained in the previous section) and tried varying the

pruning threshold δ in the range [0, 0.002]. We express δ as a percentage of

the mesh bounding box diagonal. We report both the average query time

T (in seconds) and the mean average error ε. Moreover, we also report

the percentage of first and second layer nodes pruned, denoted by σfl and

σsl. For testing our algorithm time performance and accuracy, we picked

n = 10K random pairs of vertices (u, v) on each model and proceeded to

CHAPTER 4. RESULTS 75

n1

n2 950 1000 1200

5 0.06295s 0.06088s 0.06112s

10 0.06335s 0.06027s 0.06202s

15 0.65986s 0.06077s 0.06243s

n1

n2 950 1000 1200

5 0.00763 0.00760 0.00829

10 0.00774 0.00786 0.00843

15 0.007989 0.00781 0.00856

Table 4.3: Average query time (left) and mean average error (right) statistics for

different n1 and n2 values on the RAMESSES model (n = 826K).

n1

n2 100 200 300

5 333.4s 218.7s 182.2s

10 287.3s 197.5s 202.1s

15 264.2s 191.1s 171.5s

Table 4.4: Preprocessing time for different values of n1 and n2 on the AR-

MADILLO model.

estimate the mean average error as:

ε = (
n∑
i=0

|d̂(u, v)− d(u, v)|
d̂(u, v)

)/n

Where d̂(u, v) is the exact polyhedral distance as computed by the MMP

algorithm.

As shown in figure 4.1, the average query time quickly decreases as we

increase the value of δ. Intuitively, as δ increases, more nodes will be se-

lected for pruning by our procedure, therefore also the number of edges that

our Bidirectional-A* has to consider while expanding the fronts decreases.

Moreover, in figure 4.2, we report the growth of the mean average error

ε with respect to an increasing value for δ. We can see that, while for

δ ≤ 0.0005 it remains quite stable and low around 10−3, for δ > 0.0005 it

grows with exponential speed. This is also due to the approximation intro-

duced by merging two nodes and producing “average edges” as exposed in

section 3.6.

CHAPTER 4. RESULTS 76

0 0.5 1 1.5 2

·10−3

10−2.5

10−2

10−1.5

δ

T
(s
)

Armadillo
Busto

Ramesses

Figure 4.1: Average query time T (s) plotted for variable pruning threshold δ.

10−4 10−3

10−3

10−2

δ

E
rr
o
r

Armadillo
Busto

Ramesses

Figure 4.2: Average mean error ε plotted for variable pruning threshold δ.

CHAPTER 4. RESULTS 77

n1

n2 100 150 300

5 1062.2s 794.3s 500.5s

10 855.1s 693.7s 484.1s

15 794.3s 602.5s 470.5s

n1

n2 950 1000 1200

5 1512s 1568s 1419s

10 1356s 1536s 1343s

15 1316s 1456s 1551s

Table 4.5: Preprocessing time for different values of n1 and n2 on the BUSTO

(left) and RAMESSES (right) models.

δ T (s) ε σfl σsl

0.0% 0.01126s 0.00089 0.0% 0.0%

0.0001% 0.01131s 0.00089 0.18% 0.005%

0.00025% 0.01132s 0.00089 0.18% 0.005%

0.0005% 0.01077s 0.00094 8.04% 0.005%

0.00075% 0.00710s 0.00174 53.14% 0.005%

0.001% 0.00554s 0.00266 69.3% 0.01%

0.002% 0.00396s 0.01584 84.38% 0.03%

Table 4.6: Average time T (s) and mean relative error ε for different pruning threshold

values on the ARMADILLO model (n = 173K).

4.2 Speedup and accuracy

We now present some results of the computation of MSAD distance on dif-

ferent models (distance isolines are visualized). Our results are compared

to those obtained by applying the MMP algorithm: in the top row of fig-

ure 4.3, 4.4 and 4.5 we reported the distances computed by our method.

Results from MMP algorithm are in the bottom row. We can see that our

method produces smooth distances. Moreover, checking the isolines, no

artifacts are visible. The accuracy achieved makes our results hardly dis-

tinguishable from those computed by the MMP algorithm.

In table 4.9, we report the effective speedup achieved by our algorithm with

respect to the geodesic algorithm employed in the VCG-Library. This algo-

rithm implements an enhanced version of a basic Dijkstra’s search, over the

mesh. Despite its simplicity, our tests have proven that it achieves decent

accuracy, providing a strong comparison for our experiments.

Due to the huge speedup provided by our method, we tried applying the

CHAPTER 4. RESULTS 78

δ T (s) ε σfl σsl

0.0% 0.01979s 0.00143 0.0% 0.0%

0.0001% 0.01905s 0.00145 8.13% 0.54%

0.00025% 0.01658s 0.00145 21.33% 1.31%

0.0005% 0.01442s 0.00150 36.85% 2.59%

0.00075% 0.00982s 0.00225 60.79% 3.92%

0.001% 0.00711s 0.00326 74.05% 5.31%

0.002% 0.00444 0.01336 85.96% 10.86%

Table 4.7: Average time T (s) and mean relative error ε for different pruning threshold

values on the BUSTO model (n = 255K).

δ T (s) ε σfl σsl

0.0% 0.06088s 0.00760 0.0% 0.0%

0.0001% 0.06082s 0.00760 0.37% 0.0%

0.00025% 0.04754s 0.00773 27.13% 0.007%

0.0005% 0.02164s 0.00913 69.65% 0.01%

0.00075% 0.01304s 0.01209 80.79% 0.05%

0.001% 0.01s 0.01579 84.37% 0.13%

0.002% 0.00654s 0.02381 88.13% 4.55%

Table 4.8: Average time T (s) and mean relative error ε for different pruning threshold

values on the RAMESSES model (n = 826K).

same tests to a decimated versions of the models, to check the amount of

mesh simplification needed for the VCG geodesic algorithm to be as fast as

our method. Through several experiments we have seen that, applying the

VCG geodesic algorithm to a decimated1 version of the mesh, time perfor-

mances became comparable. However, there is an exponential decrease in

accuracy, which makes those results useless in practice.

1The number of faces of the mesh is reduced by a factor proportional to the original

speedup.

CHAPTER 4. RESULTS 79

Figure 4.3: All-destinations geodesic computation on the ARMADILLO model

(350K-faces) from two point sources. Top row: computed by our algorithm; Bottom

row: MMP algorithm.

CHAPTER 4. RESULTS 80

Figure 4.4: All-destinations geodesic computation on the BUSTO model (500K-

faces). Top row: computed by our algorithm; Bottom row: MMP algorithm.

CHAPTER 4. RESULTS 81

Figure 4.5: All-destinations geodesic computation on the RAMESSES model

(1.6M-faces). Top row: computed by our algorithm; Bottom row: MMP algorithm.

CHAPTER 4. RESULTS 82

Model MPP VCG VoroGeo Speedup

Armadillo 1.3s 0.57s 0.011s 51x

Busto 8.1s 0.82s 0.019s 44x

Ramesses 47.3s 2.73s 0.061s 45x

Table 4.9: Speedup with respect to the algorithm for computing geodesic included

in the VCG-Library.

Chapter 5

Conclusions

We have presented a new approach for fast arbitrary geodesic computation

on manifold triangular meshes based on a precomputation step and a query

step. In the first step we compute and store geodesic information enconding

it into a graph. This graph is then used in the successive query step to

achieve fast and accurate replies to all-pairs geodesic distance queries.

Our method exposes three main parameters for user control: n1, n2 and δ,

where n1 and n2 regulate the number of samples that are used to produce

first and second layer Voronoi regions, while δ encodes an error threshold

employed in the graph pruning procedure. In the precompuation step, our

method is not limited to store a particular kind of geodesic, since any avail-

able method (i.e. any of those presented in chapter 2) could be “plugged in”.

We decided to use Surazhsky [9] implementation of the MMP [7] algorithm

for precomputing geodesics because it computes exact polyhedral distances.

This is very important to have a strong comparison for the distances com-

puted by our algorithm and evaluate the accuracy achieved. Moreover, we

designed a parallel implementation for the precomputation of geodesic in-

formation, to reduce the time complexity of this step.

Finally, we reported some statistics regarding the tuning of the input pa-

rameters, where we have shown that for most models a low density of first

layer samples leads to faster and more accurate queries. An higher density

of first layer samples is required for models presenting rich geometric details.

83

CHAPTER 5. CONCLUSIONS 84

Through several experimental results and statistics we have shown that our

algorithm is time efficient and accurate, achieving a considerable speedup

against the geodesic algorithm employed in the VCG-Library, which consists

of an enhanced version of the classical Dijkstra’s search algorithm. More-

over, since we adopt an ad-hoc version of the Bidirectional-A* algorithm,

our method guarantees that the computed distance is a metric.

5.1 Future work

Our method would surely benefit from several extensions:

• A GPU implementation of the preprocessing step (as exposed by [1])

would exploit the computational power provided by the GPU and

speedup the precomputation of geodesic information by a reasonable

amount.

• Employing a faster implementation of the MMP [7] algorithm, like the

one proposed by Chen [8], would also improve both the time and the

space complexity of the preprocessing step.

• Another possible improvement to our algorithm would be that of

modifying the technique used for sampling. Introducing a curvature-

driven sampling the Voronoi partitioning algorithm could produce

more “well-posed” regions over which the geodesic precomputations

would introduce less inaccuracy.

• Due to the large diffusion of triangle meshes, our algorithm was specif-

ically designed to fit for manifold triangular meshes. Anyway, it could

be easily adapted to quad-meshes, which are also very common.

• Our pruning technique compares the mean average error that would

be introduced by pruning two nodes with a user-specified threshold,

expressed as a percentage of the mesh bounding box diagonal. We de-

cided to take this approach to have a measure that is indipendent from

mesh resolution and tessellation. However, different pruning criteria

CHAPTER 5. CONCLUSIONS 85

could be considered: for example, adapt the threshold for different

part of the mesh presenting different curvature.

Bibliography

[1] Xiang Ying, Xiaoning Wang, and Ying He. Saddle vertex graph (svg):

A novel solution to the discrete geodesic problem. ACM Trans. Graph.,

32(6):170:1–170:12, November 2013.

[2] A. Maheshwari and S. Wuhrer. Geodesic Paths On 3D Surfaces: Survey

and Open Problems. ArXiv e-prints, April 2009.

[3] G.B. Folland. Introduction to Partial Differential Equations. Princeton

University Press, 1995.

[4] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds.

In Proc. Natl. Acad. Sci. USA, pages 8431–8435, 1998.

[5] Danil Kirsanov. Minimal discrete curves and surfaces a thesis, 2004.

[6] John Canny and John Reif. New lower bound techniques for robot

motion planning problems. In Foundations of Computer Science, 1987.,

28th Annual Symposium on, pages 49–60, Oct 1987.

[7] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou.

The discrete geodesic problem. SIAM J. Comput., 16(4):647–668, Au-

gust 1987.

[8] Jindong Chen and Yijie Han. Shortest paths on a polyhedron. In Pro-

ceedings of the Sixth Annual Symposium on Computational Geometry,

SCG ’90, pages 360–369, New York, NY, USA, 1990. ACM.

86

BIBLIOGRAPHY 87

[9] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J.

Gortler, and Hugues Hoppe. Fast exact and approximate geodesics

on meshes. ACM Trans. Graph., 24(3):553–560, July 2005.

[10] Marcel Campen and Leif Kobbelt. Walking on broken mesh: Defect-

tolerant geodesic distances and parameterizations. Computer Graphics

Forum, 30(2):623–632, 2011.

[11] J. A. Sethian. A fast marching level set method for monotonically

advancing fronts. In Proc. Nat. Acad. Sci, pages 1591–1595, 1995.

[12] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in

heat: A new approach to computing distance based on heat flow. ACM

Trans. Graph., 32(5):152:1–152:11, October 2013.

[13] Marcel Campen, Martin Heistermann, and Leif Kobbelt. Practi-

cal anisotropic geodesy. In Proceedings of the Eleventh Eurograph-

ics/ACMSIGGRAPH Symposium on Geometry Processing, SGP ’13,

pages 63–71, Aire-la-Ville, Switzerland, Switzerland, 2013. Eurograph-

ics Association.

[14] Shi-Qing Xin, Xiang Ying, and Ying He. Constant-time all-pairs

geodesic distance query on triangle meshes. In Proceedings of the ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D

’12, pages 31–38, New York, NY, USA, 2012. ACM.

[15] Joseph S.B. Mitchell. Geometric shortest paths and network optimiza-

tion. In Handbook of Computational Geometry, pages 633–701. Elsevier

Science Publishers B.V. North-Holland, 1998.

[16] Marcel Campen, David Bommes, and Leif Kobbelt. Dual loops

meshing: Quality quad layouts on manifolds. ACM Trans. Graph.,

31(4):110:1–110:11, July 2012.

[17] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to

dense polygon meshes. In Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’96,

pages 313–324, New York, NY, USA, 1996. ACM.

BIBLIOGRAPHY 88

[18] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-

chart geometry images. In Proceedings of the 2003 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing, SGP ’03, pages 146–

155, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Asso-

ciation.

[19] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel.

Interactive multi-resolution modeling on arbitrary meshes. In Proceed-

ings of the 25th Annual Conference on Computer Graphics and Interac-

tive Techniques, SIGGRAPH ’98, pages 105–114, New York, NY, USA,

1998. ACM.

[20] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy

clustering and cuts. ACM Trans. Graph., 22(3):954–961, July 2003.

[21] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min,

William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin.

Modeling by example. ACM Trans. Graph., 23(3):652–663, August

2004.

[22] Peter-Pike J. Sloan, Charles F. Rose, III, and Michael F. Cohen. Shape

by example. In Proceedings of the 2001 Symposium on Interactive 3D

Graphics, I3D ’01, pages 135–143, New York, NY, USA, 2001. ACM.

[23] Emil Praun, Hugues Hoppe, and Adam Finkelstein. Robust mesh wa-

termarking. In Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’99, pages 49–56,

New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing

Co.

[24] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures.

In Proceedings of the 27th Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH ’00, pages 465–470, New York,

NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[25] G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using sur-

BIBLIOGRAPHY 89

face flattening via multidimensional scaling. IEEE Transactions on

Visualization and Computer Graphics, 8(2):198–207, April 2002.

[26] Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. Iso-

charts: Stretch-driven mesh parameterization using spectral analysis.

In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium

on Geometry Processing, SGP ’04, pages 45–54, New York, NY, USA,

2004. ACM.

[27] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L.

Kunii. Topology matching for fully automatic similarity estimation of

3d shapes. In Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’01, pages 203–212,

New York, NY, USA, 2001. ACM.

[28] David Bommes and Leif Kobbelt. Accurate computation of geodesic

distance fields for polygonal curves on triangle meshes. In VMV’07,

pages 151–160, 2007.

[29] Shi-Qing Xin and Guo-Jin Wang. Improving chen and han’s algorithm

on the discrete geodesic problem. ACM Trans. Graph., 28(4):104:1–

104:8, September 2009.

[30] Marcel Campen, Martin Heistermann, and Leif Kobbelt. Practical

anisotropic geodesy. Computer Graphics Forum, 32(5):63–71, 2013.

[31] Dimas Mart́ınez, Luiz Velho, and Paulo C. Carvalho. Computing

geodesics on triangular meshes. Comput. Graph., 29(5):667–675, Octo-

ber 2005.

[32] L. Bertelli, B. Sumengen, and B.S. Manjunath. Redundancy in all pairs

fast marching method. In Image Processing, 2006 IEEE International

Conference on, pages 3033–3036, Oct 2006.

[33] Stanley Osher and James A. Sethian. Fronts propagating with cur-

vature dependent speed: Algorithms based on hamilton-jacobi formu-

lations. JOURNAL OF COMPUTATIONAL PHYSICS, 79(1):12–49,

1988.

BIBLIOGRAPHY 90

[34] Ryan Schmidt, Cindy Grimm, and Brian Wyvill. Interactive decal

compositing with discrete exponential maps. ACM Trans. Graph.,

25(3):605–613, July 2006.

[35] Franz Aurenhammer. Voronoi diagrams—a survey of a funda-

mental geometric data structure. ACM Comput. Surv., 23(3):345–405,

September 1991.

[36] Steven Fortune. Handbook of discrete and computational geometry.

chapter Voronoi Diagrams and Delaunay Triangulations, pages 377–

388. CRC Press, Inc., Boca Raton, FL, USA, 1997.

[37] W. Zeng and R. L. Church. Finding shortest paths on real road net-

works: The case for a*. Int. J. Geogr. Inf. Sci., 23(4):531–543, April

2009.

[38] Rina Dechter and Judea Pearl. Generalized best-first search strategies

and the optimality of a*. J. ACM, 32(3):505–536, July 1985.

[39] B. Stroustrup. The C++ Programming Language. Always learning.

Addison-Wesley, 2013.

[40] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming

with Qt 4. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

	Abstract
	1 Introduction
	1.1 What is a geodesic?
	1.2 Manifold meshes
	1.3 Geodesic domain
	1.4 Geodesic: applications
	1.5 Outline

	2 State of The Art
	2.1 Exact geodesic computation
	2.2 Approximate algorithm
	2.3 Fast Marching Method
	2.4 Defect tolerant algorithm
	2.5 Geodesic in Heat
	2.6 Short Term Vector Dijkstra
	2.7 SVG algorithm
	2.8 GTU method
	2.9 Comparisons

	3 VoroGeo
	3.1 Idea
	3.2 Voronoi diagrams
	3.3 Patch subdivision
	3.4 Geodesic precomputation
	3.5 Graph pruning
	3.6 Graph Pruning: details
	3.7 Query step
	3.7.1 SSSD distance computation
	3.7.2 MSAD distance computation

	3.8 Enhanced Voronoi partitioning

	4 Results
	4.1 Parameters tuning
	4.1.1 Tweaking n1 and n2
	4.1.2 Tweaking

	4.2 Speedup and accuracy

	5 Conclusions
	5.1 Future work

	Bibliography

