UNIVERSITA DI PisA

Facolta di Scienze

Matematiche Fisiche e Naturali

CORSO DI LAUREA MAGISTRALE
IN INFORMATICA

Tesi di Laurea

Fast arbitrary geodesic computation on
triangular meshes.

Candidato:

Rosario Aiello

Relatori: Controrelatore:

Dott. Paolo Cignoni Prof. Francesco Romani

Dott. Nico Pietroni

Anno Accademico 2013/14

Alla mia famiglia

Acknowledgements

First of all, I would like to thank Nico, Paolo and Francesco, who wisely
guided me during the development of this project, always providing insight-
ful advices and ideas. Indeed, I would like to thank all the people at the
Visual Computing Laboratory for making me feel welcome from the very
start. In particular, a big thank goes to Luigi and Andrea for having me in
their office and for providing good company, which always makes the work
a lot easier. A big thank goes to Marco Di B. for not firing me and to
Federico, Giorgio and Marco P. for the always entertaining evening football
matches.

I also want to thank Christian, Roberto, Lorenzo, Matteo and Luca, with
whom I shared most of my time while following my studies, for being always
available for a constructive discussion about any kind of problem. Thanks
to Emanuele for the most needed coffee-breaks and chats.

Last but not least, I would like to thank my family, who always supported
me and encouraged me; my friends, who I consider as part of my family:
Antonio, Benigno and Davide, always present when it is time to party.
Thanks to Valentina, for supporting and “sopporting” me during the last

weeks of work.

Abstract

We propose a method to accelerate the computation of geodesic over trian-
gular meshes. The method is based on a precomputation step that allows to
store arbitrary complex distance metrics and a query step where we employ
a modified version of the bidirectional A* algorithm. We show how this
method is significantly faster then the classical Dijkstra algorithm for the
computation of point to point distance. Moreover, as we precompute the

exact geodesic, it achieves better accuracy.

Contents

1

3

Introduction

1.1 What is a geodesic?
1.2 Manifold mesheso
1.3 Geodesicdomain
1.4 Geodesic: applications
1.5 Outline.
State of The Art

2.1 Exact geodesic computation
2.2 Approximate algorithm
2.3 Fast Marching Method
2.4 Defect tolerant algorithm
25 Geodesicin Heat
2.6 Short Term Vector Dijkstra
2.7 SVG algorithmo
28 GTUmethod
2.9 Comparisons
VoroGeo

3.1 Idea
3.2 Voronoi diagramso

ii

B TS SR C TS

10

11
12
18
19
22
25
29
33
39
45

CONTENTS iii

3.3 Patch subdivisiono 54
3.4 Geodesic precomputation L. 56
3.5 Graph pruning 59
3.6 Graph Pruning: details 61
3.7 Querystep. 65
3.7.1 SSSD distance computation 65

3.7.2 MSAD distance computation 68

3.8 Enhanced Voronoi partitioning 70

4 Results 72
4.1 Parameters tuning oL oL 72
4.1.1 Tweakingny andny 73

4.1.2 Tweaking d L 74

4.2 Speedup and accuracy 7

5 Conclusions 83
5.1 Future worko 84

Bibliography 86

Chapter 1

Introduction

Figure 1.1: A geodesic path between two points on the Bunny model is shown in
blue. Euclidean distance would measure the norm of the vector connecting the points.

1.1 What is a geodesic?

The term “geodesic” comes from geodesy, the science of measuring the size
and shape of Earth; in the original sense, a geodesic was the shortest route

between two points on the Earth’s surface, namely, a segment of a great

CHAPTER 1. INTRODUCTION 2

circle. The term has been generalized to include measurements in much
more general mathematical spaces; for example, in graph theory, one might
consider a geodesic between two vertices/nodes of a graph. We can give a
general definition of a geodesic to be a curve describing the locally shortest
path (under a specific metric) between to points of a particular space. A
metric on a set M is generally defined as a function d : M x M — R, called
distance function. For all z, y and z in M, d is required to follow these four

conditions:
1. d(z,y) > 0Vz,y € M (non-negativity)
2. d(z,y) =0<= x =y (identity)
3. d(z,y) = d(y,x) (symmetry)
4. d(x,z) < d(z,y) +d(y,z) (triangular inequality)

These conditions express intuitive notions about the concept of distance:
for example, that the distance between distinct points is positive and the
distance from x to y is the same as the distance from y to x. The triangle
inequality means that the distance from x to z via y is at least as great as
from z to z directly. A metric space is an ordered pair (M, d).

In geometry processing we are interested in defining an intrinsic metric,
that takes measurements by “walking only on the surface”. Considering
figure 1.1, we are not interested in the extrinsic measurement, i.e. the Eu-
clidean distance given by the norm of the vector shown in red. Instead we
are looking for the intrinsic measurement of the geodesic path (lying on the
surface) connecting the two points, which is in blue. The distance between
two points of a metric space relative to the intrinsic metric can be defined
as the infimum of the length of all paths connecting them. We will give a
more precise definition of an intrinsic metric in section 2.6. As we know,
the shortest path between two points on a plane is a straight line. However,
things get more complicated when we switch to e.g. manifold surfaces or
triangular meshes.

For some applications, extrinsic distances may still yield an “adequate ap-

proximation” of the real intrinsic distance. For example, if we want to

CHAPTER 1. INTRODUCTION 3

compute distances in a very small neighborhood of a point, the surface
could be considered to be planar in that neighborhood. Thus, depending
on the degree of approximation required by the application, the above def-
inition given for the planar case can be acceptable. If this is not the case,
an algorithm to compute the exact (or approximate) geodesic distance can
be mandatory, with the consequence of increasing the overall computation

complexity.

1.2 Manifold meshes

We will assume our surface to be a manifold triangular mesh. Triangular
meshes are widely used in Computer Graphics to model 3D objects. This
is due to the fact that they are simpler to handle, both in terms of the data
structures necessary to implement them and in terms of the graphic hard-
ware, which is specifically thought to handle triangles. Moreover, there exist
many different types of meshes like for example quad, surface or volumetric
meshes. In general, a polygonal mesh consists of three kinds of elements:
vertices, edges and faces. In the case of a triangle mesh, the faces consist of

triangles. There are two kinds of information associated to mesh elements:

e Topology, which describes the incidence relations among mesh ele-

ments (e.g., adjacent vertices and edges of a face, etc).

e Geometry, which specifies the position and other geometric character-

istics of a vertex
A mesh is manifold if these two properties hold:

1) Each edge is incident to only one or two faces

2) The faces incident to a vertex form an open or a closed fan (see fig-
ure 1.2).

The orientation of a face is a cyclic ordering of its incident vertices and
we define the orientation of two adjacent faces to be “compatible” if the
two vertices in the common edge are in opposite order. Therefore a man-

ifold mesh is always orientable, meaning that any two adjacent faces have

CHAPTER 1. INTRODUCTION 4

FasNE,

Figure 1.2: Faces incident on the green vertex form a closed fan (left) and an open
fan (right).

bovsT

Figure 1.3: a) Non-manifold edge, property 1) is violated; b) Non-manifold vertex,
property 2) is violated.

CHAPTER 1. INTRODUCTION 5

compatible orientation. Figure 1.3 shows two situations of non-manifold

meshes.

1.3 Geodesic domain

The discretization of the underlying surface could be of great help in com-
puting geodesic: after all, a mesh can be thought as a graph with its vertices
and edges. Hence, a trivial approach to compute geodesic could be to em-
ploy one of the well-known shortest paths algorithms designed for graphs,
such as Dijkstra’s, weighting edges proportionally to their lengths. However
this trivial solution, aside from producing results that are very triangulation
dependent, is quickly limited by the underlying surface discretization. In
fact, consider figure 1.4: we get different results for the same vertices de-
pending on the meshing. Dijkstra will produce geodesic distance d = /2 for
the gray pair (which is actually the exact distance) while for the yellow pair
it will return d = 2, as the computed path must follow the edges defined
by the triangulation. Moreover, in the specific case of Dijkstra’s algorithm,
there would be no information reuse. That is, if we applied Dijkstra’s algo-
rithm to computed the distance between a source point and any other vertex
of the mesh, this information cannot be reused if we need to compute the
distance between another pair of points.

As pointed out in [1] [2], the algorithms for computing geodesics on manifold

surfaces can be divided into two major categories:

Y

e The “computational geometry” approach, which is oriented on com-
puting the exact geodesic distances with respect to the piecewise linear

approximation of the surface.

e The Partial Differential Equation (PDE) [3] [4] [5] approaches, which
are oriented on solving the the Eikonal equation. This equation states

that every distance function d must satisfy the condition
V|| =1

Where V (“nabla”) indicates the gradient of d. To see why this is a

reasonable condition let us consider the example depicted in figure 1.5

CHAPTER 1. INTRODUCTION

O

Figure 1.4: Dijkstra’s computed distance is triangulation dependent.

O

The green

path is actually exact while the blue one is forced to follow the triangulation.

left, where we see a planar convex region). The distance function

in this case is trivially d(x) = ||z — z¢||. If we compute its gradient
we obtain Vd = x — zo/||x — zo|| and hence it holds that [|Vd| = 1.
For the concave shape on the right of figure 1.5 the Eikonal equation

defines a local constraint on the gradient of the function that is used

to compute the function globally on the domain).

d(x) =1 x - xll

Figure 1.5: (Left) Distance between two points inside a region §2 on a plane is a

straight line. (Right) If the path is constrained to stay inside (), this is not true

anymore.

When we consider triangular meshes, we are handling a discretization of

some 3D surface S. Since discrete surfaces cannot be explicitly differenti-

ated, methods from differential geometry to compute geodesic paths and

distances cannot be applied in this case. However, algorithms from differ-

ential geometry can be discretized and extended (see chapter 2). Moreover,

CHAPTER 1. INTRODUCTION 7

while the general problem of computing a shortest path between polyhedral
obstacles in 3D has been shown to be NP-hard by [6], computing a geodesic
path on a triangular surface is an easier problem and it is solvable in poly-
nomial time.

As we will see in the next chapter, the “one-source/multiple, all-destinations”
problem has been very widely studied whereas the results available for the
“all-pairs” geodesic problem are much less. The discrete geodesic problem
has attracted a great deal of attention since Mitchell, Mount and Papadim-
itriou [7] published their seminal paper in 1987. They presented an al-
gorithm for computing single-source exact geodesic distance in O(n?logn)
where n is the number of vertices in the input mesh. Later, practical im-
plementations and performance improvements have been provided for the
original algorithm by Chen and Han [8] and Surazhsky et al. [9]. Different
approaches to the problem have been proposed: Campen and Kobbelt [10]
focused on the geodesic problem applied to meshes containing defects like
holes and gaps extending Sethian’s Fast Marching Method [11] [4] to de-
fected meshes. Crane [12] proposed a novel approach based on the heat
method while Campen et al. generalized and extended well-known methods
to the anisotropic case and proposed an ad hoc method called Short-Term
Vector Dijkstra [13]. Ying et al. [1] recently proposed a novel approach
called Saddle Vertex Graph, from which the idea for our work was first in-
spired. Finally, we must cite the work from Xin et al. [14] who proposed an

approach similar to the one we developed.

1.4 (Geodesic: applications

The computation of intrinsic geodesic distances and geodesic paths on sur-
faces is a fundamental low-level building block in countless Computer Graph-
ics and Geometry Processing applications which require the query of geodesic
distance between pairs of points on the mesh [2] [15]. An example of a
geodesic Voronoi diagram computed on the FERTILITY model is shown
in figure 1.6. Campen et al. [16] employ geodesic computation to imple-

ment a all-quadriteral patch layouts on manifold surfaces, guided by a field

CHAPTER 1. INTRODUCTION 8

of curvature directions (see figure 1.7). Moreover, parameterizing a mesh
often involves cutting the mesh into one or more charts [17] [18], and the
result generally has less distortion and better packing efficiency if the cuts
are geodesic.

Campen and Kobbelt [10] employ their defect-tolerant geodesic computa-
tion algorithm to texture mapping on defected models (see figure 1.8). Mesh
editing systems such as [19] use geodesics to delineate the extents of editing
operations.

Geodesic paths are also used in segmenting a mesh into subparts, as done
in [20] [21]. Moreover, since geodesic paths establish a surface distance met-
ric, they are an essential building block for applications like skinning [22],
mesh watermarking [23] and the definition of surface vector fields [24]. Pa-
rameterization metrics based on isomaps are also based on geodesics [25] [26].
Morse analysis of a geodesic distance field has been used in [27] for a shape

classification algorithm.

Figure 1.6: Geodesic Voronoi diagram computed on the FERTILITY model.

CHAPTER 1. INTRODUCTION 9

Figure 1.7: Dual Loops Meshing approach that constructs coarse all-quadrilateral
patch layouts with high geometric fidelity.

Figure 1.8: Texture mapping on a FACE model containing holes due to occlusion

effects.

CHAPTER 1. INTRODUCTION 10

1.5 Outline

In Chapter 2 we will review the current state of the art regarding geodesic
computation. More in depth, we will analyze the various approaches starting
from the algorithm proposed by Mitchell et al. in 1987 through the more
recent ones. At the end of the chapter we will make some comparisons and
analyze the advantages and flaws of the discussed methods.

In Chapter 3 we will describe the VoroGeo algorithm, a new approach for
the all-pairs geodesic computation problem. We will show which problems
were faced during the design of this approach and how they have been solved
during implementation.

In Chapter 4 we will describe which tests have been made for parameters
tweaking and we will show some results and statistics about our algorithm’s
speed and accuracy.

In Chapter 5 we will draw our final conclusions on our work. We will
then briefly propose some possible future extension and improvements to

our method.

Chapter 2

State of The Art

In this chapter, we will discuss the state of the art regarding methods for

the geodesic computation. We will procede to describe:

e The exact geodesic algorithm proposed by Mitchell et al. [7], which
has led to a deep interest in this field.

e Improvements and modifications to the original exact algorithm, pro-
posed by Chen [8] and Surazhsky [9]. Bommes [28] proposed a gener-
alization of Surazhsky’s implementation to handle arbitrary, possibly
open, polygons on the mesh to define the zero set of the distance field.
Xin [29] improved Chen and Han (CH) [8] algorithm proposing a more

efficient version know as ICH.

e Sethian and Kimmel [11] [4] Fast Marching Method (FMM) for com-
puting distance fields by solving the Eikonal equation through numer-

ical techniques for computing the position of propagating fronts.

e The method by Campen and Kobbelt [13], who focused on computing

geodesics on defected models.

e The innovative adoption of the Heat Method (HM) proposed by Crane [12],

who relates Varadhan’s formula to distance computation.

11

CHAPTER 2. STATE OF THE ART 12

e The Short Term Vector Dijkstra (STVD) proposed by Campen et
al. [30] that is specifically thought to handle intrinsic anisotropic met-

rics.

e The Saddle Vertex Graph (SVG) [1] approach recently proposed by
Ying, and The GTU method by Xin [14] which will be left for last to
be thoroughly analyzed as they were the main source of inspiration

for our work.

Finally, in section 2.9, we will briefly compare the presented methods and

highlight their individual advantages and limitations.

2.1 Exact geodesic computation

Given a piecewise planar surface &, Mitchell, Mount and Papadimitriou’s
(MMP) algorith [7] [9] computes an explicit representation of the geodesic
distance function D : S — R. This function maps each point p € S to the
length of its geodesic path to the source vs. The basic idea behind the MMP
algorithm is to partition each mesh edge into a set of windows that encode
all the shortest paths passing within it. The shortest path is governed by

three basic properties:
e interior to a triangle, it must be a straight line;

e when crossing over an edge, a shortest path must correspond to a
straight line when the two adjacent triangles are unfolded onto the

same plane.

e finally, as proven in [7], the only vertices® a shortest path can pass

through are boundary vertices, saddle vertices and parabolic vertices.

We call saddle vertex a vertex with a total angle greater than 27, while a
parabolic vertex (also known as Euclidean) is a vertex with an angle equal
to 2. A window w on and edge e is defined as a 6-tuple <by, by, dg, dy, o, 7>,

where: by, by € [0, ||e||] encode the windows endpoints, dy and d; encode the

1Other from source and destination vertices.

CHAPTER 2. STATE OF THE ART 13

distance of the source vertex from the endpoints (relative to the window in
the planar unfolding), 7 gives the side of the edge on which the source lies.
As shown by 2.1a, the shortest paths are depicted as a pencil of rays em-
anating from the source s through the unfolded triangles. As it is shown,
it is possible to express the position of the source s in terms of by, by, dg, di
by intersecting two circles. This situation represents a shortest path that
does not pass through any saddle vertex. To understand what is encoded by
parameter o of the window definition consider figure 2.1 b): s is a so called
pseudosource (a saddle vertex), and all the paths passing within w also pass
through s, hence w will encode the position of s with respect to the edge
and o = D(s), will hold the distance from the pseudosource s to the source
vs; bo, b1 and dy,d; will still have the same meanings as before, just this
time they are referring to the pseudosource s and not the original source v;.

This particularity in handling saddle vertices is due to the unfolding of the

(a) (b)

Figure 2.1: (a) Pencil of rays emanating from the source (left) and parametrization
of the source position (right). (b) A pseudosouorce s and its distance o from the

source.

neighborhood of a saddle vertex: we have a red saddle vertex in figure 2.2.
Unfolding the adjacent triangles into the plane of the upper triangle will
result in two different “smages” of v, because the total angle is greater than
2.

CHAPTER 2. STATE OF THE ART 14

,US IUS 7.)5

Figure 2.2: Unfolding of a saddle vertex neighborhood. All shortest paths from vy
to the red window w pass through the saddle vertex s.

Po D1 p P1
0 bo bl xz 0 bl T

2 D2

Figure 2.3: Window propagation results in one new window (left). Window prop-
agation results in two new windows (center). Window propagation results of one
window plus two additional windows (right).

CHAPTER 2. STATE OF THE ART 15

The MMP algorithm propagates the distance field encoded into a win-
dow w across an adjacent face f by computing how the rays would extend on
the opposite edges. However, the opposite edges could already contain pre-
viously propagated windows, so the information has to be merged in order
to minimize the distance field. Three examples of window propagation are
depicted in figure 2.3: considering the case on the right, we can notice that a
ray passing through the saddle vertex py will result into two additional win-
dows, that cover the parts of the edges that lie to the left of the ray (s, po),
and are not already “illuminated” by s through w. Therefore, p, will act

as a new pseudosource for the two red windows with o = D(py). When two

bo b1 0 b

Figure 2.4: Two overlapping windows with pseudosources sy, s1 and intersection
0 = [bo, b1], case o9 = o1 is assumed (left). Resulting disjoint windows (right).

windows wy and w; overlap on edge e two main situation could arise: in the
simpler case one window defines a larger distance function everywhere on
0, so to resolve the conflict ¢ is simply cut away. A more interesting case
is when one window (e.g. wp) is minimal on part of ¢ while the other one
is minimal on the remaining part of . Figure 2.4 shows the formation of
two disjoint windows obtained finding the point p € § where the distance
function defined by wg and w; are equal; i.e. ||so — p|| + 00 = ||s1 — p|| + 01.
This issue can be reduced by solving a quadratic equation with a single so-
lution if the planar coordinate system is defined to align e with the x axis,
as shown in figure 2.4.

In the implementation of the MMP algorithm given by Surazhsky [9], a
priority queue is used to propagate the windows through the whole mesh.

The queue is initialized with a window for each edge adjacent to the source

CHAPTER 2. STATE OF THE ART 16

Figure 2.5: /solines computed on the 400k-triangles David model.

vs, the distance field defined by these initial windows is trivially given by
the edge lengths. Then, windows are propagated as a wavefront by keeping
the order of the queue according to its distance to the source vertex.
Theoretically, during propagation, each edge may have O(n) windows. There-
fore, in the worst case, the total number of windows can be O(n?). Hence,
the theoretical worst case complexity of the MMP algorithm is O(n?) space
and O(n? logn) time, where the log n factor is due to management of the pri-
ority queue and to the resolution of conflicts between overlapping windows.
However, through a series of experiments on typical meshes, Surazhsky has
shown in [9] that the average number of windows per edge is O(y/n), low-
ering the algorithm complexity for practical cases. Moreover, he showed
that the window complexity surprisingly decreases when the mesh surface
has a rough texture. As explained in [9], this is intuitively due to the fact
that bumpy features in a surface cause adjacent windows to overlap and
annihilate each other.

Chen and Han (CH) [8] improved the time complexity to O(n?) which re-

CHAPTER 2. STATE OF THE ART 17

mains the best-known complexity. However, extensive experiments have
shown that this algorithm often runs much slower than the MMP algo-
rithm’s implementation given by Surazhsky. An improved version of the
CH algorithm (known as ICH) was proposed by Xin and Wang which de-
spite having still O(n?*logn) time complexity outperforms both the MMP
and CH algorithm in practice.

In figure reffig:david400k, we can see the isolines computed by the exact
geodesic algorithm on a 400k-triangles David model. This result took 75

seconds as reported in [9].

CHAPTER 2. STATE OF THE ART 18

2.2 Approximate algorithm

The method proposed by [9] works just like the exact algorithm, except
for one key difference: before propagating a window, it tries to merge it
with an adjacent window on the same edge. The algorithm computes an
approximation D of the geodesic distance function D which is a lower bound,
namely D(p) < D(p),Vp € S. The merging of two windows, wg and wy, is
only performed when some constraints are satisfied. These checks are on
directionality, visibility, continuity, monotonicity and of course on bounding
the error.

Asreported in [9], the main bottleneck during the exact algorithm execution
is the memory space required to store all the windows, providing strong
motivation for the approximate algorithm. Experimental results have shown
that with a 0.1% relative error bound, the algorithm runs significantly faster
and uses less memory than the exact algorithm. On the David model shown
in figure 2.5, the computation takes 11 seconds and the reported average
relative error (i.e. |D(v) — D(v)|/D(v)) is 0.05% of the object diameter.

More comparisons are available in [9].

Figure 2.6: An intrinsic distance field and a geodesic path computed on an defected

mesh.

CHAPTER 2. STATE OF THE ART 19

2.3 Fast Marching Method

The Fast Marching Method (FMM) has been proposed by Sethian [11] for
regular grids, and then extended by Kimmel and Sethian [4] to compute ap-
proximate geodesic distances on triangular surfaces. Further extensions and
modifications to the original algorithm have been proposed also in [5] [31]
and [32]. The FMM is a special case of the Level Set Method [33] for solv-

™

<

Figure 2.7: Front approximation.

X,
3

>
.’CI

Figure 2.8: Advancing front passed vertices x1 and xo moving towards 3.

ing the so called boundary value problems of the Eikonal equation. Level
set methods are numerical techniques for computing the position of prop-
agating fronts. The FMM is strongly reminiscent of Dijkstra’s algorithm
being based on a marching front that is controlled through a heap struc-
ture. However as we discussed in section 1.3 the big problem of Dijkstra’s
algorithm is that it is unable to “cut through triangles” as the path must
follow the mesh triangulation. The observation behind the FMM regards

CHAPTER 2. STATE OF THE ART 20

ﬁ Il

acute angle X

\
v
v

I \

| obtuse angle |

R

SV
=
Y

Figure 2.9: Front normal vector making an acute (left) and obtuse (right) angle
passing through xs.

what happens to the information wave-front while it moves away from the

originating source point: we can think of this front as a circle getting bigger

and bigger stepping away from the source.

As we know the curvature of a circle of radius r is defined as 1/r, hence

as the radius gets bigger the curvature decreases. At a local scale, the ap-
proximation made by the FMM is the one depicted in figure 2.7 where the
circle-like front is approximated with a straight line.

Now let’s consider the advancing front depicted in figure 2.8: assuming we
know the distances di,ds of 1 and x5, we want to compute the distance
ds relative to x3, by exploiting the front approximation idea, working with
planar coordinates (for simplicity, x3 is assumed to be at the origin). In
this coordinate system, since the wave-font is a straight line, we can always
take a unit’ normal vector @ to this line and express d; = 7' 47 + p and
dy = 7' T3 + p, that is projecting 7] (resp. 23) over i and measuring how
far away from the source those points are. Moreover since we put x3 to be
on the origin we can write ds = 7' 3 +p = p. The factor p is relative to the
fact that the position of the source in the planar unfolding is unknown. We

can combine the two equations for d; and ds into d=iTX + ployi. Solving

'We want the normal vector to be of unit norm because intuitively we are interested
in measuring distance d and not ||n||d. This can be related to what is stated by the
Eikonal equation: the Eikonal equation states that if ¢ is the distance function, then the
magnitude of its gradient V¢ should be equal to 1 everywhere; hence, |[V¢| = 1 can be
thought as of saying that “distance changes at one meter per meter”[12].

CHAPTER 2. STATE OF THE ART 21

this matrix equation in terms of 7 results in
ﬁ = Xﬁl(d — p[le)

exploiting the fact that 777 = 1 we get a quadratic equation where the only

unknown variable is p:
1= p2I2T><1QIQ><1 - 2pI2T><1Qj+ CZTQJ (2'1)

where Q = (X"X)™! and I, is the 2 x 1 identity matrix. Equation 2.1
admits two solutions, one relative to the case of the normal vector making
an acute angle passing through z3 and the other one relative to the case
of the normal vector making an obtuse angle at x3. Which of the two
solutions should be taken? Since we are trying to extend the already known
distances d; and dy to compute d3, this cannot be smaller than any of the
other two distances. Hence we need to choose the solution that gives us a
value larger than d; and dy. As reported in [4] [12] [1] and [30] the update
step of this method is not entirely stable since it requires an underlying
non-obtuse triangulation which is a very strong assumption in most real
cases. In figure 2.10 we depicted one of the issues that could arise in the
update step, for more details the reader can refer to [11] [4]. The situation
illustrates the issue of the front advancing towards an obtuse triangle, where
the “causality” property is violated: this property assures that the computed
distance for a triangle vertex can only be extended from the other two

vertices know distances.

CHAPTER 2. STATE OF THE ART 22

X,
X3

obtuse triangle
rect. triangle

Nl

Figure 2.10: In the case of an obtuse triangle, the front could reach x5 before x-

2.4 Defect tolerant algorithm

Campen and Kobbelt proposed in [10] a method for computing intrinsic
geodesic distances and geodesic paths on raw meshes in contrast with most
of the available methods, which usually make some implicit or explicit as-
sumption on the underlying structure of the mesh. Unfortunately some re-
quirements are not always met in practice: real-world meshes often exhibit
several kinds of defects depending on their origin holes, gaps (see figure 2.6),
non-manifold configurations with singular edges and vertices, or they might
even be just a soup of polygons, completely lacking any connectivity infor-
mation.

A defect-tolerant method is convenient considering the fact that some of the
mesh-repairing techniques are ill-posed and often exhibit various geometri-
cal and topological ambiguities if no additional prior knowledge is available.
In some cases, the application at hand does not actually require the mesh
to be repaired anyway, spending these efforts solely in order to facilitate the
requisite geodesic distance computations seems to be immoderate. As ex-
posed in [10], the basic idea is to abstract from the mesh structure (and all
its potential defects) and to perform all computations discretely in a crust
volume tightly restricted to the spatial regions occupied by elements of the
input. Due to the abstraction from the input, applicability of this method

is not limited to polygon meshes; other representations such as point sets,

CHAPTER 2. STATE OF THE ART 23

c) d)

Figure 2.11: a) Input mesh with defects. b) Initial cubical complex. c) Complex
after applying topology-sensitive morphological operators; the hole is now bridged.
d) Visualization of a geodesic distance field (with isolines) emanating from a point

source, computed on the complex, and mapped to the input mesh by interpolation.

implicit functions, or NURBS patches can be handled as well.

As depicted in figure 2.11, the first step of this method is to abstract the
mesh to a cubical complex representation (“voxelization”), that is a cut-out
of a three-dimensional Cartesian grid such that all elements of the mesh are
contained in the union of its cells. This is obtained employing an octree
O mapping its root to the bounding box of the mesh. The elements of the
mesh are then “inserted” into O and intersected cells are refined up to a user
specified maximum level [. However, performing distance computations on
the resulting dilated complex would result in significantly lowered accuracy.
Hence, topology-sensitive dilation and erosion operators are applied to the
cubical representation to fill holes up to a specified size (see figure 2.12) ob-

taining the final cubical representation C. To perform approximate geodesic

Figure 2.12: 2D schematic example of the employed morphological operators dilation
(middle) and topology-preserving erosion (right), filling holes up to a specified size.

CHAPTER 2. STATE OF THE ART 24

distance computation, the Fast Marching Method (FMM) [11] [4] is applied.
The FMM performs a front propagation starting from a set of sources all
over the nodes of C, hence the set C's € C of nodes containing the source
points must be initialized. This means initializing the information about d
for all nodes n in Cy (N(Cs)) by setting d(n) = minsesd(n,s). This dis-
tance can be approximated with the Euclidean distance or, if an average
normal vector is available at n, accuracy can be improved by calculating
d(n, s) as the distance between n and the orthogonal projection of s onto
the tangent plane T, at n. Initialization for FM method is completed by
setting d(n) = ooVn ¢ N(Cs).

As stated in [10], once rasterization, dilation, and erosion have been per-

Figure 2.13: Raw scanned model of a face containing holes due to occlusion ef-
fects. (left) Geodesic computation without morphological operations. (right) With
morphological operations for hole bridging.

formed the obtained cubical complex (resp. octree) can be used for the
quick computation of multiple distance fields; it does not have to be rebuilt
each time.

Naturally, this method has some limitations too. Due to the automatic na-
ture and generality of the method, it can not resolve ambiguities that are
inherent in the input due to large missing parts. Hence, computed distance
fields might be inconsistent with those of the object that is actually meant
to be represented by input and additional knowledge about the object would
be required to handle hole bridging more consistently in such cases.

In figure 2.13, we can see the results of a computation on a face model pre-

CHAPTER 2. STATE OF THE ART 25

senting some defects due to occlusion effects happened during the scan. On
the right side, we can see that by choosing dilation distance such that these
holes are bridged the computed intrinsic distance approximations tolerate
these defects.

In conclusion, we can say that the distances computed by this method usu-
ally deviate from actual intrinsic distances (on consistent models) to some
degree due to the finite resolution and the FM approach. At high resolu-
tions, the total runtime is dominated by the morphological operations since
these cause a large number of cell neighbor queries, cell splits, and collapses
[10].

2.5 Geodesic in Heat

Crane [12] proposed a totally new approach for computing geodesics, called
Heat Method. The main idea is to exploit the relationship between the heat
kernel function k:,(y) and distance function. As depicted by Crane, the
intuition behind this method is imagining to touch a point z on the mesh
surface with a scorching hot needle. Heat diffusion can be modeled as a
large collection of hot particles taking random walks starting at z, hence
any particle that reaches a distant point y after a small time ¢ has had little
time to deviate from the shortest possible path.

The heat kernel function k; ,(y) measures the heat transferred from a source
x to a destination y after time ¢. Varadhan’s formula relates the heat kernel
with distance saying that the geodesic distance ¢ between any pair of points
(z,y) on a Riemannian manifold can be recovered via a simple pointwise
transformation of the heat kernel: ¢(z,y) = lim, o \/—4tlog k. (y). Crane
hypothesized that the reason why this kind of approach had not been con-
sidered so far is because it would require a precise reconstruction of the
heat kernel, which is difficult to obtain. Thus Crane’s intuition was that of
working with a broader class of function, namely all those that have gradi-
ent parallel to geodesics. If we take an approximation u; of the heat flow
for a fixed time ¢. Unless u; exhibits the same rate of decay, Varadhan’s

transformation will yield very poor results because it is very sensitive to

CHAPTER 2. STATE OF THE ART 26

A A A
VaaY

Figure 2.14: Geodesic distance (bottom left) recovered from an exact reconstruction

Ut

—4t log uy

of the heat kernel (top left). In presence of numerical error, results may be very far

from acceptable (middle, right).

errors in magnitude (see figure 2.14). The heat method only requires that
Vu, points in the right direction, that is, parallel to V¢. The heat method

SERTEEE)
o N
NN | P \\\\\
SN PR RN NN
CeasmN PRI AL
R S .Y —— - Q)

¥

7%
NS =
ff/f?\\\ --—::;;?}'
AR RN I
St :://‘;é?’
""" 7222

U Vu X 0

Figure 2.15: Outline of heat method steps: 1) Heat u is allowed to diffuse for brief
period. 2) Temperature gradient is normalized and negated to obtain a unit vector
field X pointing along geodesics. 3) A function ¢ whose gradient follows X recovers
the right distance.

can be summed up in these three steps (see also figure 2.15):

1) Integrate the heat flow & = Au for some fixed time ¢;
2) Evaluate the vector field X = —Vu/|Vul;

3) Solve the Poisson equation A¢p =V - X.

Function ¢ approximates geodesic distance, approaching true distance as ¢
goes to zero. In step 3), the method finds the closest scalar potential ¢ by

CHAPTER 2. STATE OF THE ART 27

minimizing [, [V¢ — X|? which is equivalent to solving the Euler-Lagrange
equations A¢ = V-X. Instep 2) and 3) the gradient magnitude can be safely
ignored thanks to the Eikonal equation (see section 1.3). Several methods
for computing distances are based on solving such equation, by imposing the
condition ¢|, = 0 on some subset v of the domain and solving the Eikonal
equation everywhere else. However, this formulation of the problem has
some issues related to the fact that it is nonlinear and difficult to solve
requiring some specialized solver. What the heat method does is a change
of variables moving from a nonlinear /hyperbolic problem to a linear/elliptic
one.

Moreover, this formulation of the problem does not depend on the choice
of spatial discretization, that is the HM can be applied to triangle meshes
as well as to point clouds or grids, as long as a Laplacian, a gradient and a
divergence can be evaluated. On the other hand, accuracy of the HM relies
in part on the choice of the time step t = mh? where m is a constant and h
is the mean space in between nodes (e.g. average edge length). As shown
in [12], m = 1 yields very high accuracy on a wide variety of triangulated
meshes. Looking at the comparisons reported in [12] (see also figure 2.16),
maximum absolute error and mean error are relative to the mesh diameter.
On the Ramses model (1.6M-triangles), the precomputation step takes 63.4
seconds, plus 1.45 seconds to compute distances. This gives a speedup of
68x the time needed by Surazhsky’s algorithm [9] with respectively 0.49%
max error and 0.24% mean error as opposed to the 0.29% max error and
0.35% obtained by Surazhsky’s algorithm. Hence, HM performs better on
average while still having a larger maximum error. Although the HM works
quite well for smooth surfaces, the accuracy of the approximated distance

becomes low for models with rich details.

CHAPTER 2. STATE OF THE ART 28

Figure 2.16: Distances from a single point source on the Bimba (149k-faces),
Aphrodite (205k-faces), Lion (353k-fa