
UNIVERSITA' DI PISA

Facoltá di Ingegneria

Laurea Magistrale in Ingegneria Robotica e dell'Automazione

Tesi di Laurea

Development of a Visual Navigation System
for Multirotor Vehicles

Candidato:

Stefano Aringhieri

Relatori: Controrelatore:

Prof. Lorenzo Pollini Prof. Mario Innocenti

Anno accademico 2013/2014

"Un vincitore è solo un sognatore

che non si è arreso"

Nelson Mandela

2

Abstract

In this thesis it has been proposed a Visual Navigation System for Multirotor Vehicles,
such as UAV (Unmanned Aerial Vehicle) or MAV (Micro Air Vehicle), equipped with
a stereo camera and onboard IMU unit. The set of available sensors is determined by
the choice to partecipate at the European contest issued by EuRoC. Cameras have infact
the advantage that even small and lightweight versions can capture images of acceptable
quality. Furthermore, those images can be acquired at a high enough frequency, so that
the acquisition of data is surely never going to be the bottle neck of the control system.

From the IMU data has been realized a Navigagtion Inertial System, too. Finally, the
attitude estimation comes from the last one Navigation System is used to correct the Visual
Odometry and to implement a Integrated Visual Navigation System.

In order to test the visual navigation system proposed we have realized tests in a virtual
simulation environment, using the meta-operating system ROS and Gazebo and with real
data, which consist of a pair of stereo images and imu data, provided by EuRoC.

3

Contents

1 Introduction 6
1.1 Project Outline . 8
1.2 Notation . 8

I Prerequisities 10

2 Camera Geometry in Computer Vision 11
2.1 Ideal Pinhole Camera . 11
2.2 Extrinsic and Intrinsic Parameters 12
2.3 Stereo Camera : Epipolar Geometry 16
2.4 Recti�cation . 18

3 Robot Operating System(ROS) 21
3.1 Framework overwiew . 22

II Navigation System 24

4 Introduction 25
4.1 Frame of References . 26
4.2 Coordinate Trasformations 28

5 Attitude Estimation from IMU sensor 30
5.1 Three-axis attitude determination (TRIAD) Algorithm . . . 31

6 Pose Estimation With Stereo Vision 35
6.1 Introduction . 35
6.2 Visual Odometry Algorithm 36

6.2.1 Recti�cation . 38
6.2.2 Feature Detection : SIFT 39

4

6.2.3 Finding Correspondences and Doing Matches Re�ne-
ment . 45

6.2.4 Triangulation . 48
6.2.5 Pose Estimation: DLT 50
6.2.6 Direct Linear Transformation (DLT) Algorithm . . . 53
6.2.7 Validation of the Camera Pose Estimation 55
6.2.8 Update Keyframe 55

7 Integration of the Inertial System with Visual Odometry 64
7.1 Update Keyframe with inertial measurement 64
7.2 Evaluation of Pose Estimation Algorithm 66

8 Conclusion 75

5

1 Introduction

In the recent years a lot of research has been directed at the �eld of Un-
manned Aerial Vehicles (UAVs). The great success and interest for the
UAVs comes from they allowing easy access to places where, for some rea-
son or another, humans cannot go without a large e�ort or without ex-
posure to hazards, or even places a human cannot reach at all. One can
think of many scenarios such as search and rescue missions after a disaster
or �re, inspection of either very small and narrow tunnels or very large
rooms, surveillance and observation tasks and so on. Many of those tasks
are most easily accomplished by small �ying robots.
The UAV can either be teleoperated by a human operator, or operate

completely autonomous. While the latter is obviously still a lot more chal-
lenging, even teleoperated �ight poses many challenges. UAVs are highly
dynamical systems which are not easily controlled by a human operator
even if they are close by. Furthermore for many of the previously men-
tioned tasks, the operator might not be able to directly see the UAV, which
only makes controlling the helicopter more di�cult.

The task of this thesis results from an application where a UAV will be
used to plant servicing and inspection. The given task could include some
additional di�culties. For example, the surface of the industrial plant
might not o�er many distinctive features or patterns that can be used for
visual navigation, and the inspection task might require the MAV to hover
so perfectly still that a human operator will never be able to achieve this.
It will therefore be necessary to �nd suitable sensors to work in the given

environment and to control the UAV to at least provide stable hovering.
Controlling UAVs is a di�cult task, �rst and foremost because of the

characteristics of the vehicle itself. The most important di�erence to any
non-�ying robot is, that a UAV is always in motion. Unlike wheeled robots,
a helicopter cannot just stand still, wait, take some more measurements

6

and compute the best strategy, and only then move on. Instead, while
computing the next controller output, the UAV still moves and maybe
even renders the control action it is currently computing invalid.
As a second main problem, UAVs have a very limited power supply on

board, and most of this power is used to just keep the UAV in the air.
This makes it di�cult to add many sensors to the vehicle and provide
su�cient computational power to perform sophisticated calculations on
board. Instead, few and lightweight sensors have to be used, which usually
leads to lower quality of the measurements.
Thirdly UAVs are usually underactuated, which means that the six de-

grees of freedom (DOF) have to be controlled by less than six independent
actuators. For example, a helicopter has to pitch its nose downward in
order to move forward. This also in�uences the sensor readings such as the
�eld of view of cameras and therefore makes control more di�cult. Most
UAVs have extremely fast and underdamped dynamics, which quickly leads
to oscillations unless a suitable con- troller including a derivative part is
used. This however requires precise estimates of not only the current posi-
tion and attitude, but also the current velocity, with a high update rate.

Because of those constraints it is interesting to investigate the use of
cameras to control the UAV. Cameras have the advantage that even small
and lightweight versions can capture images of acceptable quality. Further-
more, those images can be acquired at a high enough frequency, so that the
acquisition of data is surely never going to be the bottle neck of the control
system. Acquiring images also yields a huge amount of data that can be
used to extract whatever information is needed for control. On the other
hand, images also include a lot of unnecessary or even unwanted pieces of
information. It may be di�cult to �nd the relevant information within the
images because of the lack of distinctive features or patterns on the walls.

7

1.1 Project Outline

The goal of this thesis was to investigate the usage of stereo vision to
control a UAV, equipped also with onboard IMU sensor, consisting of a
3-axis linear accelerometer and a 3-axis gyroscope. In addition in order
to test the visual navigation system proposed we have realized tests in a
virtual simulation environment, using the meta-operating system ROS and
Gazebo, and with real data, which consist of a pair of stereo images and
imu data, provided by EuRoC [8].

The work consisted of the following main tasks:

1. Choose a strategy to use the images to control the UAV.

2. Integrate the Visual Odometry with the Inertial Navigation System in
order to obtain a Integrated Visual Navigation System.

3. Evaluate the Navigation System proposed in the simulation enviroment
and with real data.

The framework was programmed using C++ on a computer running Ubuntu
linux 12.04. It makes extensive use of the meta-operating system ROS, the
open source computer vision library openCV, and the Eigen library for
linear algebra, matrix and vector operations, and numerical solvers.

This report is structured as follows:

• Chapter 1: prerequisities of the camera geometry, and overwiew about
ROS.

• Chapter 2: presentation and evaluation of the navigation system.

1.2 Notation

Throughout this report, the following notation is used:

8

• 2D point vector: x =
[
x y

]T
or
[
x y 1

]T
for homogeneous coor-

dinates.

• 3D point vector: X =
[
X Y Z

]T
or
[
X Y Z 1

]T
for homoge-

neous coordinates.

• Matrix: A.

• Identity Matrix: I

It will always be noted if homogeneous coordinates are used.
The ^ operator denotes the 3x3 skew-symmetric matrix that represents

the cross- product:

X1 ×X2 = X̂1 ·X2 =

 0 −Z1 Y1
Z1 0 −X1

−Y1 X1 0

 ·X2

9

Part I

Prerequisities

10

2 Camera Geometry in Computer Vision

2.1 Ideal Pinhole Camera

In order to use the cameras for control, it will be necessary to reconstruct
3D points of the scene from the 2D images. Therefore a relation that maps
2D image pixel coordinates to the 3D real world coordinates is needed.
This relation can be approximated by starting at the ideal pinhole camera
model and then transforming the model to the needed form.
Let we see the following �gure.

Figure 1: The Pinhole camera model depicted with the image plane placed in front of the camera.

The Figure 1 shows the pinhole camera model. Note that the image
plane has been moved to the front because it is more convenient. This can
be done without loss of generality. Point P = [X Y Z]T in the real
world is projected to an image point x = [x y]T according to:

11

x =

[
x
y

]
=
f

Z

[
X
Y

]
(1)

where f is the focal lenght of the camera. In preparation for the following
transformations, the equation can be rewritten to include a camera matrix
Kf and a projection matrix P 0:

Z

 x

y

1

 =

 f 0 0
0 f 0
0 0 1

 ·
 1 0 0 0

0 1 0 0
0 0 1 0

 ·

X

Y
Z

1

 = Kf · P 0 ·


X

Y

Z
1

 (2)

2.2 Extrinsic and Intrinsic Parameters

In the previous camera model, the origin of the world was placed at
the camera center. This is often not the case for many real applications
including the one under investigation in this text. Since our cameras move
with the UAV, the camera coor- dinate frame will obviously not coincide
with the real world �xed frame at all times .

The point X0 in the �xed world coordinate frame is transformed to
the camera frame by the transformation T 0C . If the transformation TC
transformed the camera frame from the world frame to its current position,
then the transformation T 0C can be written as T 0C = T−1C , again using
homogeneous coordinates.
Therefore, the following equation shows the relation between the point

XC with respect to the camera frame and the point X0 w.r.t. the world
coordinate frame.

12

XC = T 0C ·X0 =

[
RT
C T

0 1

]
·X0 =

[
R T
0 1

]
·X0 (3)

The 3x3 matrix R and the 3x1 vector T are called the extrinsic camera
parameters. Inserting equation (2) into equation (3) leads to an equation
that maps image plane coordinates to 3D real world coordinates. In that
equation, the depth is often replaced by a constant factor λ because it is
usually unknown as the pinhole camera only allows reconstruction up to a
scaling factor.

λ

 x

y

1

 =

 f 0 0
0 f 0
0 0 1

 ·
 1 0 0 0

0 1 0 0
0 0 1 0

 · [R T
0 1

]
·


X0

Y0
Z0

1

 (4)

x′T2Fx
′

1 = 0

Using the abbreviations introduced above, equation (4) can be written
as :

λx = Kf · P 0 · T 0C ·X0 (5)

In order to get usable equations, the current image plane coordinates x
and y have to be mapped to image pixel coordinates, because the camera is
built up of many small photo sensors of a given size and shape, each yielding
the image brightness at the corresponding location. This compensation has
to account for three e�ects :

13

• Pixels might not be square. The coordinates in x-direction are scaled
by sx and the coordinates in y-direction are scaled by sy.

• Pixels might also not be rectangular, which is compensated by the
shearing factor sθ = cot(θ) .

• For cameras with chips that are read line by line from left to right,
the image principal point has to be shifted from the top left corner to
the image center. Other transformations might be possible for other

builds, but they can all be summarized by adding an o�set
[
ox oy

]T
in both x- and y-directions respectively.

Summarizing all of the above, one can write the mapping from image plane
coordinates to pixel coordinates as:

[
x′

y′

]
=

[
sx sθ
0 sy

]
·
[
x

y

]
+

[
ox
oy

]
(6)

With equation (6) and by using homogeneous coordinates again, the
camera matrix Kf can be extended to the intrinsic camera matrix K:

on

K =

 f 0 0
0 f 0
0 0 1

 ·
 sx sθ ox

0 sy oy
0 0 1

 =

 fsx fsθ ox
0 fsy oy
0 0 1

 (7)

Using the intrinsic camera matrix K, equation (5) can be updated to
map from pixel coordinates to 3D real world coordinates:

λx′ = K · P 0 · T 0C ·X0 (8)

14

which can be simpli�ed to

λx′ = P ·X0 (9)

with P = K · P 0 · T 0C = [KR KT]

Equation (9) fully describes the mapping from a 3D real world point to a
2D pixel coordinate point for the ideal pinhole camera model. However, in
a real camera, lenses have to be used. Depending on the design and quality
of the lenses, the resulting image will be more or less distorted. For exam-
ple, narrow �eld of view lenses tend to impose smaller distortions than wide
�eld of view lenses. In order to use the images for 3D reconstruction, it is
absolutely necessary to com- pensate for those distortions, because other-
wise �nding valid correspondences will be more of a gamble rather than a
well de�nes process. Therefore, the projected image plane coordinates of a
real world point have to be transformed before multiplying them with the
intrinsic camera matrix. Usually, a distortion model including radial and
tangential distortions is used, and the transformation from distorted image
plane coordinates x to undistorted image plane coordinates xd is given by
(see [1] page 392):

xd = x · (1 + d1r
2 + d2r

4[+d5r
6]) +

[
2d3xy + d4(r

2 + 2x2)
d3(r

2 + 2y2) + 2d4xy

]
(10)

with r2 = x2+y2. The �rst contrinute is teh radial distorsion, the second
one the tangential distorsion.
Usually, the distortion parameters are summarized to a vector D. d5 is

sometimes omitted, depending on how much accuracy is needed. In order

15

to use the model given in equation (10) to undistort an image, nonlin-
ear equations have to be solved. Typically, this cannot be done fast and
e�cient enough to run the undistortion at real time, however, it is pos-
sible to precompute a lookup table that can then be used to remap the
images in real time. Using equations (10) and (9) thus allows to go from
pixel coordinates to 3D real world coordinates while compensating for lens
distortions.

2.3 Stereo Camera : Epipolar Geometry

Geometrical relations between two camera views can be described by
epipolar geometry. Using epipolar relations will later help to �nd corre-
spondences, remove outliers and test for accuracy. The geometrical rela-
tions are true for either two di�erent views of one single camera, or for
two cameras of a stereo vision setup. For the following explanation, the
�rst view will be named camera1 and the second view camera2, with the
corresponding intrinsic camera matrices K1 and K2 respectively. In this
thesis, camera1 was the left camera and camera2 the right camera of the
stereo setup.

The �gure 2 shows the basic setup with two camera views. In both
views, the real world point P is captured in the image at positions x1 and
x2 respectively. From the drawing in the �gure it can be seen that the
projection x2of P in the second view can only lie on the line l2 if the points
x1 and x2 indeed are both projections of the same point P - and vice versa
for point x1 . The lines l1 and l2 are called the epipolar lines and the points
e1 and e2 are called epipoles. The epipoles are located at the two points
where the image plane intersects with the baseline between the two views.
Note that if the optical axes of the two views are parallel, this intersection

16

Figure 2: Setup of two camera views with epipolar geometry.

will lie at in�nity and the epipolar lines will be parallel.

The geometric constraints shown in the image lead, after some rewriting,
too the well known epipolar constraint, which must be satis�ed for all
corresponding x1 ,x2 and P:

xT2Ex1 = 0 (11)

with E = T̂R.

E is called the essential matrix, and it encodes the relative pose of the
camera(s) from one view to the other. The previous equation (11) uses
image plane coordintes, but it can be transformed to use pixel coordinates
by using the previously introduced intrinsic camera matrices K1and K2:

17

x′T2Fx
′

1 = 0 (12)

with F = K−T2 T̂RK−11 = K−T2 EK−11 .

F is called the fundamental matrix and it contains the intrinsic camera
properties.

2.4 Recti�cation

tereo image recti�cation refers to a process where the two images of a stereo
camera pair are undistorted, projected to the same plane and transformed
such that their epipolar lines are parallel and exactly row-aligned. Mathe-
matical details about the process can be found in [1] starting at page 430.
Figure 3 shows the four steps needed to rectify a stereo image pair:

1. Two images of the scene are taken by the right and left cameras.

2. The images are undistorted using the distortion approximation de-
scribed above in section 2.2.

3. Now the transformation (R, T) that describes the relative pose of one
camera to the other, is used to rectify the images. That is of course, if
that relation is known. In this thesis, we use calibrated cameras, and
therefore it is indeed known. There is also a solution to the problem
in case this transformation is unknown.

4. The image is cropped because the warping creates curved edges that
might interfere with image segmentation. After the cropping, only the
parts of the image remain where no artifacts of the warping process
are visible.

18

Figure 3: Schematic of the stereo recti�cation process: a) take images b) undistort the images c) rectify
to row-aligned images projected to the same plane d) crop .

19

Now we have all the prerequisites for implementing a pose estimation
using a stereo camera.

20

3 Robot Operating System(ROS)

One of the key components of the framework is the meta-operating sys-
tem ROS [5]. ROS is, in the words of its developers, �an open-source,
meta-operating system for your robot. It provides the services you would
expect from an operating system, including hardware abstraction, low-level
device control, implementation of commonly-used functionality, message-
passing between processes, and package management.�

The main advantage of using ROS is the much improved modularity.
ROS allows the user to write so-called nodes, which are programs written
in either C/C++ or Python. Those nodes can send and receive messages,
and thereby communicate with one another. One key advantage is, that
a node can be coded to receive mes- sages, but it will also run when no
such message is there to be received. On the other hand, a node can send
messages without the need to know if another node is actually receiving
them. This allows the user to add and remove nodes to the current setup
at will, which makes testing, plotting, visualizing and verifying data a lot
more comfortable and fast.

A second advantage of using ROS are the many built-in nodes that come
with the basic installation. A lot of very useful tools for robotics have been
created by the ROS community, which can signi�cantly speed up testing
and/or developing new ideas. For example, the framework currently uses
the ROS package �stereo image proc� to modify the camera images. The
same thing can of course be achieved by writing code oneself - in this case
using openCV functionality - but the implementation is already available
in high quality.

21

3.1 Framework overwiew

In this thesis we use ROS to test the visual estimation algorithm on a
dataset provided by EuRoC Project, and to realize a simulation enviro-
ment using Gazebo too. Robot simulation is an essential tool in every
roboticist's toolbox. A well-designed simulator makes it possible to rapidly
test algorithms, design robots, and perform regression testing using real-
istic scenarios. Gazebo o�ers the ability to accurately and e�ciently sim-
ulate populations of robots in complex indoor and outdoor environments.
At your �ngertips is a robust physics engine, high-quality graphics, and
convenient programmatic and graphical interfaces.

Figure 4: Framework: using ROS to connect the necessary and mandatory components depending on
the current task

Figure 4 shows how ROS is used to connect two or more nodes. This
connection is called the framework in this thesis, because this is the main
structure that allows modular testing. It will always include one node
which feeds images into the ROS 'universe' and the node running the main
pose estimation algorithm. In addition, there are many helper nodes to
save images, feed saved images back to simulate the cameras, visualize

22

data by either plotting it, saving it to �les . For testing, in the simulation
enviroment a node running a program to determine ground truth can be
added, so that the performance of the pose estimation can be veri�ed.

23

Part II

Navigation System

24

4 Introduction

Navigation systems are used for land, sea, airborne, and space vehicles.
These systems provide an operator and/or control system with the neces-
sary information to e�ect some action in response to data provided by these
systems. For example, this action can be a course correction indication for
an aircraft pilot or a feedback control signal to guide an autonomous vehi-
cle. These systems incorporate onboard sensors coupled with a computer,
permitting self-contained operations with little or no assistance required
from sources external to the vehicle.
The core of the navigation system is a set of sensors combined with a

computer that can provide a relatively stable and accurate source of navi-
gation. These systems output navigation state data, which usually include
position, velocity, and attitude. As a result of imperfections in navigation
sensors and computational errors, errors develop in the navigation state
data and grow in time. Tht: host vehicle's operating environment also
in�uences the error growth rate. Long-term error growth is minimized by
including other sensors that provide independent redun- dant navigation
data, i.e., position, in an integrated system that optimally combines this
independent data source with the core navigation system. These indepen-
dent sensors, referred to as navigation aids, are characterized by long-term
error stability, which can compliment the short-term error stability of the
navigation system's sensors. When combined within a computer algorithm,
such as a Kalman �lter, errors from both the core sensors and navigation
aids can be estimated to reduce the integrated navigation system's errors.
The resulting navigation system will exhibit improved performance, even
if independent data are used intermittently or are not available for a short
timespan.
The majority of navigation systems are mechanized with accelerometer

and gyro inertial sensors. These inertial sensors provide sensed accelera-

25

tions (velocity changes over a time interval) and rates (attitude changes
over a time interval). Accelerometers and gyros are mounted in orthogonal
triad clusters and enclosed within an inertial measurement unit (IMU) to
provide three components of acceleration and rate outputs. These outputs
are provided to a computer-implemented numerical integration process that
computes a navigation solution yielding a complete set of navigation state
data, i.e., position, velocity, and attitude. These mechanizations are gen-
erally referred to as an inertial navigation unit when enclosed within a case
that can be easily removed and replaced. Implementations that include
the inertial sensors, computer, and navigation aids are referred to as an
inertial navigation system (INS).

4.1 Frame of References

The navigation system's core sensors provide information as a result of
movement. These sensors are �xed to the vehicle, i.e., a strapdown IMU.
Therefore, these sensors provide information about the movement of the
vehicle as reference to the vehicle's frame of reference, called body frame
Fb. The information in this reference frame may not be useful to a pilot
or guidance system. Therefore, a navigation solution is established in a
reference frame, the navigation frame Fn , that allows its data to be used
conveniently and allows data from other sources, i.e., navigation aids, to
be easily incorporated. This is accomplished by establishing a navigation
frame that is relatively �xed.
The literature indicates a variety of navigation system reference frames

that have been used in integrated navigation systems. Examples include
inertial (stellar referenced), Earth-referenced (north-referenced azimuth),
and wander azimuth (free azimuth movement). Even within these exam-
ples, there are additional levels of de�nition, e.g., which axis is aligned with

26

what direction and what order one axis is rotated with respect to another.
The navigation frame selection can be arbitrary, at the discretion of the
designer, or the frame's de�nition may be speci�ed.

In this thesis we introduce the following reference systems:

• A Local Geodetic Frame, or Navigation frame Fn.

• A body frame, Fb

• A frame associated with the IMU sensor, Fimu.

• A camera frame, Fcam.

Figure 5: Schematic rapresentations of reference systems used (NED frame, IMU frame, Camera
Frame).

For the Navigation system, we use the NED (North-East-Down) Frame.
The body frame is rigidly attached to and de�ned within the vehicle

carrying the navigation system. In this thesis, in particular, the body
frame is chosen coincident with the IMU-frame Fimu, so we have C

imu
b = I

.

27

The rotation matrix between the IMU-frame and the Camera-frame
,Ccam

imu , comes from the calibration tests.
The following �gure shows the reference systems used in this thesis, and

the vectors between the origin of a reference system and the next one.

4.2 Coordinate Trasformations

The coordinate transformations, used to express the navigation vector
variables in one reference system or another , chosen in this thesis is the
DCM (director cosines matrix) based on Euler angles. Here we use the
standard aerospace (and SNAME) standard for Roll Pitch and Yaw angles.

Figure 6: Standard SNAME.

In particular, if we de�ne the frame Fcam0 as the stereo camera frame
taken in the initializazion (see section 6.2), and the frame Fcam attached
to tehe camera, the visual navigation system estimates the rotation matrix
between these frames, Ccam0

cam . Starting from this matrix we must compute
the pose of the quadrotor in the navigation frame Fn, Cv

b
n, where v stands

for navigation.

28

So we have:

Ccam
n = Ccam

cam0 · Ccam0
n (13)

Cv
b
n = Cb

imu · C imu
cam · Ccam

n = Cb
cam · Ccam

n (14)

where Ccam0
n , is the rotation matrix between the frame Fcam0and the

navigation frame Fn. This rotation matrix is de�ned at the inizialization,
when the �rst keyframe is taken, and the TRIAD algorithm is computed
(see section 5.1) as:

Ccam0
n = Ccam

imu · C imu
b · C0

b
n (15)

the matrix C0
b
n comes from the TRIAD algorithm, it is the inizial atti-

tude of the vehicle respect to the navigazion frame.

29

5 Attitude Estimation from IMU sensor

The quadrotor used for �ight testing in an industrial plant has a stereo
camera and an IMU sensor, consisting of a 3-axis linear accelerometer and
3-axis gyroscope.

Figure 7: An example of IMU unit.

The algorithm implemented consists of two parts:

1. inizialiation, and we compute the TRIAD algorithm.

2. main loop, executed each time a new measurement is available from
the IMU (accelerometers and gyroscopes).

The main loop is executed each time a new measurement is available from
the IMU (accelerometers and gyroscopes) and it provides a 3D orientation
by integrating a gyroscope inertial, so the rotation matrix Cb

n. It is ob-
tained implementing a version of the AHRS �lter proposed by Mahony in
[7], although it is not available the measurements of the magnetometer to
correct heading error. In general a AHRS (Attitude Heading Reference
System) is a system for the measurement of attitude and heading, which

30

calculates the 3D orientation with the aid of gyroscopes and reference sen-
sors (such as magnetometers and accelerometers). Using accelerometers
and magnetometers, the drift of integration is compensated by reference
vectors, namely gravity and earth magnetic �eld. This results is a drift-free
orientation. However in this thesis the UAV does not have the magnetome-
ter, and it will not be possible to calculate corrections for heading.

5.1 Three-axis attitude determination (TRIAD) Algorithm

When the �rst meseaurement from accelerometers and gyroscopes is
available, the �rst problem is the attitude determination. Determining
the attitude of a vehicle is equivalent to determining the rotation matrix
describing the orientation of the vehicle-�xed reference frame (called body
frame), Fb , with respect to a known reference frame, say navigation frame,
Fn . That is, attitude determination is equivalent to determining Cn

b . Al-
though there are nine numbers in this direction cosine matrix, it only takes
three numbers to determine the matrix completely . So it takes at least
two d�erent measurements to determine the attitude.

We begin with two measurement vectors, such as in this case the UAV's
acceleration and the direction of the Earth's magnetic �eld. We denote the
actual vectors by â and m̂ , respectively . The measured components of the
vectors, with respect to the body frame, are denoted ab andmb, respectively
. The known components of the vectors in the navigation frame are an and
mn . Ideally , the rotation matrix, or attitude matrix, Cn

b , satis�es:

ab = Cb
nan and mb = Cb

nsb (16)

Unfortunately , since the problem is overdetermined, it is not generally

31

possible to �nd suc an Cn
b . The simplest deterministic attitude deter-

mination algorithm is based on discarding one piece of this information;
however, this approach does not simply amount to throwing away one of
the components of one of the measured directions.
The algorithm is known as the Triad algorithm (Three-axis attitude

determination).
It is based on constructing two triads of orthonormal unit vectors using

the vector information that we have. The two triads are the components of
the same reference frame , denoted Ft, expressed in the body and inertial
frames.
This reference frame is constructed by assuming that one of the body/inertial

vector pairs is correct. For example, we could assume that the acceleration
vector measurement is exact, so that when we �nd the attitude matrix, the
�rst of the equation (13) is satis�ed exactly. We use this direction as the
�rst base vector of Ft. That is,

t̂1 = â (17)

t1b = ab (18)

t1n = an (19)

We then construct the second base vector of Ft as a unit vector in the
direction perpendicular to the two observations. That is,

t̂2 = â× m̂ (20)

32

t2b =
ab ×mb

|ab ×mb|
(21)

t2n =
an ×mn

|an ×mn|
(22)

The third base vector of Ft is chosen to complete the triad:

t̂3 = t̂1 × t̂2 (23)

t3b = t1b × t2b (24)

t3n = t1n × t2n (25)

Now, we construct two rotation matrices by putting the t vector com-
ponents in to the columns of two 3 x 3 matrices. The two matrices are:

[
t1b t2b t3b

]
and

[
t1n t2n t3n

]
(26)

It is evident that the two matrices are Cb
t and C

t
n, respectively . Now,

to obtain the desired attitude matrix, Cb
n , we simply form:

Cb
n = Cb

tC
t
n =

[
t1b t2b t3b

] [
t1n t2n t3n

]T
(27)

So, in this thesis the TRIAD algorithm is used at the inizialization to
de�ned the inizial attitude of the vehicle, the rotation matrix C0

b
n and

33

the navigation frame Fn with the gravity aligned with the Z-axis, and the
X-axis pointing the North.

34

6 Pose Estimation With Stereo Vision

In literature there is no a single optimal algorithm to calculate the cam-
era pose estimation of the quadrotor. In this section will therefore be
presented the algorithm chosen and implemented in this thesis for this
purpose.

6.1 Introduction

The use of stereo vision is not the only possible choice. In general, it
is possible to estimate motion with monocular vision. The advantage of
this kind of setup is primarily the potential to save weight and power by
having only one camera. Using monocular vision, it is possible to compute
translation and rotation of the camera pose, though the translation can
only be found up to a scaling factor. In general, a unique solution can be
found, but in order to get a robust recovery algorithm, the baseline between
consecutive images has to be su�ciently large and the images have to be
taken with two distinctive vantage points. Both conditions are usually not
achievable for cameras mounted on a UAV, because UAVs have very fast
dynamics and require control algorithm with high update rates. Therefore,
compared to the update rate, the UAV moves rather slowly and the baseline
remains relatively short. It would be possible to simply skip frames until
the baseline is large enough, but this would again violate the constraint of
a high update rate.
Because of the drawbacks listed above a stereo vision setup was chosen

for this thesis. Using two cameras allows to recover accurate estimates of
depth and motion. Futhermore the recovery is done in only one timestep,
instead of having to use two consecutive images. However there are some
drawbacks of using stereo vision as well, in addition to the increased weight
and power consumption, the computational burden is also increased signif-

35

icantly. Additionally, the cameras have to be synchronized, which is not a
trivial task given the required accuracy.

6.2 Visual Odometry Algorithm

In this section we present the algorithm used to compute a pose esti-
mation of the UAV from a pair of stereo images. With the image input
running, the main algorithm can be started too, and it will �rst go through
a keyframe initialization, and then enter loop where the pose estimation is
actually done.
It consists of following part:

• inizialiation, computed only when arrives the �rst couple of stereo im-
ages.

• the main loop, always performed except with the �rst pair of images.

The initializazion consist of the following steps:

1. Prepare all variables for storage.

2. Read in an image pair, and recti�ed the images.

3. Detect features in the image pair and match the features between the
left and the right pair.

4. Do a re�nement of the features' match, and their classi�cation in inilier
or outlier.

5. Triangulate the valid matches and get their 3D real world coordinates.
Save the matched features, their properties, and the resulting 3D point-
cloud. This will be the keyframe reference. Until a new keyframe is
taken, all movement is calculated with reference to this frame.

36

Figure 8: Schematic of the pose estimation algorithm. Top: Initialization to get a keyframe and store
the properties. Bottom: Loop to read images, �nd keypoints, �nd correspondences in the keyframe,
then estimate the pose .

37

After acquiring the keyframe and the reference data, the main loop runs
until a new set of image pair is available. It contains the followin steps:

1. Read in a new pair of images, and recti�ed the images.

2. Extract features and match features between the current left image
and the saved keypoints of the keyframe left image.

3. Do a re�nement of the features' match, and their classi�cation in inlier
or outlier.

4. If there is enough inlier, run the estimation routine to get the rotation
matrix R and the translation vector T which describe the current posi-
tion w.r.t. the keyframe, and then check if the current pose estimation
is valid. If there isn't enough inlier or the current pose estimation
w.r.t. the keyframe is not valid, the keyframe will be changed, and a
new pose estimation w.r.t. the new keyframe chosen is computed.

5. Update the current position with the new pose estimation, and insert
the current frame with its properties in a list, that contains all the
previous frame. This list is important because the new keyframe will
be chosen among the element of this list.

6. Finally start over with next frame.

In the following sections will present all details for each step in the in the
algorithm.

6.2.1 Recti�cation

When a new set of image pair is available, the images taken by the
cameras are each within their own camera coordinate frame and both are

38

distorted according to each cameras' distortion coe�cients. For this thesis,
the raw images are to be recti�ed in order to speed up the pose estimation
algorithm. This is not mandatory. All the following steps can be performed
on raw images. However, recti�cation not only leads to increased speed,
but also allows for a a good and very fast outlier removal step for the left
to right feature matching.
The open source library OpenCV [4] already o�ers a routine, stereoRec-

tify() , that computes the operations described in section 2.4. In particular,
given:

• the camera matrix K1and K2.

• The camera distortion parameters of the two cameras.

• The rotation matrix between the coordinate systems of the �rst and
the second cameras, R.

• The translation vector between coordinate systems of the cameras, T.

the function computes the rotation matrices for each camera that (virtu-
ally) make both camera image planes the same plane. Consequently, this
makes all the epipolar lines parallel and thus simpli�es the dense stereo
correspondence problem.
The output, as previously stated, are two images that have been trans-

formed into the same coordinate frame (only the baseline distance in x-
direction is still there), and have parallel epipolar lines.

6.2.2 Feature Detection : SIFT

The �rst thing to do after reading in a pair of images is to �nd points
of interest within them. This is a very important step as it will lay the

39

groundwork for all the computer vision steps later in the algorithm. While
a human eye can easily recognize objects in an image, even if they are par-
tially occluded, distorted, rotated or skewed, a computer is still incapable
of achieving much more than very simple object recognition. There exist
algorithms were a computer can learn the shape and characteristics of an
object and then �nd it within images, but science is nowhere near the goal
of being able to �nd whatever is considered 'relevant data' in arbitrary
images.

Feature detectors might have some or all of the following desirable prop-
erties though it is usually better to select those that are needed and not
generally include 'as many as possible'. It is also quite obvious the �rst
property of low computational cost might be in con�ict with the other
properties:

• Fast computation (low computational cost).

• Distinctiveness: Features should be unique and distinguishable.

• Repeatability: If the algorithm is applied to the same image twice, the
same features should be detected.

• Invariance to scale: if the image is viewed at di�erent scale, the same
features should be detected.

• Invariance to rotation: if the image is viewed in a rotated version, the
same features should be detected.

• Invariance to illumination: if the image is viewed under di�erent illumina-
tions, the same features should be detected.

In literarure exist much feature detectors, like SURF, FAST, Harris, with
some of the previous properties. In this thesis we have chosen to use the
Scale Invariant Features Transform (SIFT) as feature detector.

40

The main di�erence between the others feature detectors is that SIFT is
scale invariant. Some corner detectors, like Harris and so on, are rotation-
invariant, which means, even if the image is rotated, we can �nd the same
corners. It is obvious because corners remain corners in rotated image
also. But what about scaling? A corner may not be a corner if the image
is scaled. For example, check a simple image below (Figure 9). A corner in
a small image within a small window is �at when it is zoomed in the same
window. So Harris corner is not scale invariant.

Figure 9: Feature for corner at di�erent scale

So, in 2004, D.Lowe, University of British Columbia, came up with a
new algorithm, Scale Invariant Feature Transform (SIFT) in his paper [6],
which extract keypoints and compute its descriptors. There are mainly four
steps involved in SIFT algorithm, and we present just a short summary of
this paper.

Scale-space Extrema Detection

From the Figure 9, it is obvious that we can't use the same window to
detect keypoints with di�erent scale. It is OK with small corner. But to

41

detect larger corners we need larger windows. For this, scale-space �ltering
is used. In it, Laplacian of Gaussian is found for the image with various
σ values. LoG acts as a blob detector which detects blobs in various sizes
due to change in σ. In short,σ acts as a scaling parameter. For example,
in the above image, gaussian kernel with low σ gives high value for small
corner while guassian kernel with high σ �ts well for larger corner. So, we
can �nd the local maxima across the scale and space which gives us a list
of (x,y,σ) values which means there is a potential keypoint at (x,y) at σ
scale.

But this LoG is a little costly, so SIFT algorithm uses Di�erence of Gaus-
sians which is an approximation of LoG. Di�erence of Gaussian is obtained
as the di�erence of Gaussian blurring of an image with two di�erent σ, let
it beσ and k · σ. This process is done for di�erent octaves of the image in
Gaussian Pyramid. It is represented in below image:

Figure 10: The Gaussian Pyramid

Once this DoG are found, images are searched for local extrema over
scale and space. For eg, one pixel in an image is compared with its 8
neighbours as well as 9 pixels in next scale and 9 pixels in previous scales.
If it is a local extrema, it is a potential keypoint. It basically means that

42

keypoint is best represented in that scale. It is shown in below image:

Figure 11: Images are searched for local extrema over scale and space

Regarding di�erent parameters, the paper gives some empirical data
which can be summarized as, number of octaves = 4, number of scale
levels = 5, initial σ=1.6, k =

√
2 etc as optimal values.

Keypoint Localization

Once potential keypoints locations are found, they have to be re�ned
to get more accurate results. They used Taylor series expansion of scale
space to get more accurate location of extrema, and if the intensity at this
extrema is less than a threshold value (0.03 as per the paper), it is rejected.

DoG has higher response for edges, so edges also need to be removed.
For this, a concept similar to Harris corner detector is used. They used a

43

2x2 Hessian matrix (H) to compute the pricipal curvature.
If this ratio is greater than a threshold that keypoint is discarded. It is

given as 10 in paper.

So it eliminates any low-contrast keypoints and edge keypoints and what
remains is strong interest point.

Orientation Assignment

Now an orientation is assigned to each keypoint to achieve invariance
to image rotation. A neigbourhood is taken around the keypoint location
depending on the scale, and the gradient magnitude and direction is calcu-
lated in that region. An orientation histogram with 36 bins covering 360
degrees is created. (It is weighted by gradient magnitude and gaussian-
weighted circular window with σ equal to 1.5 times the scale of keypoint.
The highest peak in the histogram is taken and any peak above 80% of it
is also considered to calculate the orientation. It creates keypoints with
same location and scale, but di�erent directions. It contribute to stability
of matching.

Keypoint Descriptors and Matching

Now keypoint descriptor is created. A 16x16 neighbourhood around the
keypoint is taken. It is devided into 16 sub-blocks of 4x4 size. For each sub-
block, 8 bin orientation histogram is created. So a total of 128 bin values
are available. It is represented as a vector to form keypoint descriptor. In
addition to this, several measures are taken to achieve robustness against
illumination changes, rotation etc.

Keypoints between two images are matched by identifying their nearest

44

neighbours. But in some cases, the second closest-match may be very near
to the �rst. It may happen due to noise or some other reasons. In that case,
ratio of closest-distance to second-closest distance is taken. If it is greater
than 0.8, they are rejected. It eliminaters around 90% of false matches
while discards only 5% correct matches, as per the paper.

Figure 12: Example of feature extraction

So this is a summary of SIFT algorithm. For more details and un-
derstanding, reading the original paper is highly. The open source library
OpenCV o�ers some routines that compute the feature detection with SIFT
and then extract descriptors from the keypoints.

6.2.3 Finding Correspondences and Doing Matches Re�nement

45

After extracting features in the images, correspondences between two
sets of such features have to be detected. This has to be done between the
left image of the current frame and the keyframe. There are two main cat-
egories of algorithms to �nd correspondences: those relying on descriptors
(matching), and those that do no use any descriptors (tracking).

Figure 13: Correspondes between features in the left image and in the right one.

Regardless of which approach is used, �nding correspondences in this
thesis may consists of:

• when a new keyframe is taken, �nd correspondences between the left
and the right image of the new keyframe. The correspondences found
in this step are used then to get their 3D real world coordinates.

• when a new a set of pair image is available, �nd correspondences be-
tween the left image of the current frame and the left image of the
keyframe. The correspondences found in this step are later used in
the pose estimation step, where the estimator needs to know which 2D

46

point of the current frame belongs to which 3D point of the keyframe.
Only searching correspondences in the left frames is an arbitrary choice.
It would also be useful to do it for both the left and right images, but
the gain in performance would not justify the additional computational
e�ort.

In this thesis we choice to use descriptor based matching . It uses, as
its name suggests, descriptors in order to �nd the corresponding features
in two sets.

Figure 14: Schematic of descriptor based matching.

For every feature a descriptor is computed. This happens in both images
independently, which requires a feature detector with good repeatability.
The advantage of using descriptors is that choosing a smart descriptor
can have a positive e�ect on speed and accuracy of the matching process,
might allow to include invariances and can enable the use of smart match-
ing techniques. The drawbacks of using descriptors is, that it takes some
computational e�ort to compute them, in some cases this is way too much
for practical use on a UAV. Figure 14 shows the straightforward way of
matching four descriptors: just test them all in a brute-force approach and
select the best match for each. The open source library OpenCV o�ers
some routines that compute the feature detection with SIFT.

After the features matching, one of the main problem is the presence of

47

a certain percentage of outliers. In order to identify the valid match, given
the pixel coordinates of the corrispondences between the two frames, we
estimate the fundamental matrix (see section 2.3) and those points that
violate the equation (13) , the epipolar costraint, are classi�ed as outliers.
The fundamental matrix is estimate through an OpenCV routine, �nd-

FundamentalMat(). And then we stored only the matches that are classi-
�ed as inliers.

6.2.4 Triangulation

Once two corresponding points in the two images have been located, the
3D real world position of them can be reconstructed through triangulation.
This operation is computed when a keyframe is taken, with a set of fea-
tures in the left image and a set of features in the right image including a
correspondence map have been computed.
Given the pixel coordinates, xl and xr , of the projection , of a 3D real

world point, X ,in the left image and in the right one respectively, the
folowing equation holds:

xl = K lX (28)

xr = KrX (29)

xl −Rxr = T (30)

48

where R and T are the rotation matrix and the vector between camera
left and camera right.
From equations (25) and (26), we obtain:

X = K−1l xl =

 xl
zl
yl
zl

1

 = x′l · zl (31)

X = K−1r xr =

 xr
zr
yr
zr

1

 = x′r · zr (32)

where x′l and x′r are the pixel coordianates of the decalibrated points.
From equation (27) we obtain:

[x′l −Rx′r]
[
zl
zr

]
= H

[
zl
zr

]
= T (33)

So , �nally:

[
zl
zr

]
= H+T (34)

where H+is the pseudo-inversa of the matrix H.
Once obtained zl and zr the triangulated point is obtained by equation

(28) or (29):

49

X = x′l · zl (35)

After triangulating, some plausibility checks are usually useful to get rid
of outliers. It is often possible to de�ne rules to limit the 3D real world
space in which the features should be located. For example it is already
helpful to exclude every triangulated point with a negative z-coordinate,
since in reality all points need to lie in front of the camera. The acceptable
space for points can be further speci�ed if the setup allows it, for example
using knowledge about the cameras' �elds of view and the baseline between
them allows to de�ne an acceptable volume. Additional information about
the task can also help to further re�ne and minimize the volume. All points
triangulated to locations outside this volume are then considered outliers
and discarded.

In this this thesis we have implemented the previous equation in C++
code. The inputs of the triangulation function are the two vectors contain-
ing the features and the correspondence map specifying which features have
to be paired up, and the camera calibration data for both cameras. The
function simply outputs the 3D coordinates, w.r.t the left camera frame,
of all the pairs of features. The triangulate points are �nally saved in a
structure with the other properties of the keyframe.
Compared to the computationally very expensive feature extraction and

matching steps, triangulation is computationally cheap and is basically a
non-factor for the overall looptime.

6.2.5 Pose Estimation: DLT

50

The last step of the pose estimation algorithm is actually estimate the
current pose with respect to the keyframe pose. A large number of di�erent
markerless pose estimation algorithms already exist in literature. Usually
the camera pose for a given image is estimated solely using a set of cor-
respondence, a match of an object's natural feature (3D) detected on the
image (2D). In particular given an homogeneous representation Xi ∈ R4

of a 3D point in world coordinates, is mapped by the camera to the point
xi ∈ R3. xi itself is a homogeneous representation of the corresponding 2D
point on the image. This mapping is de�ned by:

xi = K · [R T]·Xi (36)

So estimation of the camera pose from correspondences then refers to
searching the camera pose [R T] which best relates a set of given corre-
spondences C = {Xi ↔ xi} using the previous equation.

In this thesis we'll use the Direct Linear Transformation (DLT) algo-
rithm. These algorithms intend to directly estimate the camera pose ig-
noring certain restrictions regarding the solution space. However the main
problem of this algorithm is the correspondences will also contain a cer-
tain percentage of outliers . These outliers are problematic because they
potentially can have a huge negative impact on the quality of the solution.
Therefore, methods such as RANSAC, used in this thesis, need to be used
to identify the inliers in order to perform the camera pose estimation only
using this set.

51

Figure 15: Correspondes between features of the keyframe and of the frame.

Given the following inputs :

• the 3D triangulate points of the keyframe.

• the 2D points in the left image of the current frame.

• the correspondences between the left image of the current frame and
the left image of the keyframe.

the algorithm, that provides an estimation of the current pose w.t.r. the
keyframe pose, consists of:

• exclusion of outliers.

• performing DLT with only inliers.

RANSAC uses a stochastic approach in order to identify the inliers.
Therefore this algorithm is of non-deterministic nature in the sense that it

52

produces a reasonable result only with a certain probability. This proba-
bility increases as more iterations are allowed. The algorithm operates as
follows:

• A random subset CS of the provided correspondences C is selected.
It contains only the minimal number of correspondences required for
camera pose estimation, chosen equal to six in this thesis.

• A camera pose Q is estimated using the DLT algorithm along with CS.

• All remaining correspondencesC\CS are then checked for integrity with
Q . Therefore the 3D points of the keyframe are projected using the
known camera matrix K and Q to the 2D points x,i . If ‖x

,
i− xi‖ 6 τ

, then the correspondence Xi ↔ xi �ts well to the estimated camera
pose and will therefore also be considered as a hypothetical inlier.

This procedure is repeated a �xed number of times, each time producing
either a camera pose which is rejected because too few points are classi�ed
as inliers or a re�ned pose together with a corresponding error measure.
In the second case the re�ned pose is kept if its error is lower than the last
saved pose.
Q is reasonably good if a su�cient number of correspondences has bg

(poor quality of the frame, not enough inlier, and son on). It's better delete
wrong estimations, because only one wrong estimation could a�ect the next
ones. It may happen, infact, that the frame een classi�ed as hypothetical
inliers.
Finally Q is then reestimated from all hypothetical inliers using DLT .

6.2.6 Direct Linear Transformation (DLT) Algorithm

For the Direct Linear Transformation (DLT) algorithm [3] it is assumed
that the set of points Xi spans a real 3D space which means that those
points are arbitrarily distributed in space an thus do not lie on a single

53

point, line or plane. Let Xi = (Xi Yi Zi Wi)T ↔ xi = (ui vi wi)T

be n correspondences. A DLT F ∈ R3x4 now is a linear function F :
R4 7−→ R3 which maps the points Xi to the points xi . This can be
expressed in the homogeneous context as

FXi ∼ xi ⇔ xi × FXi = 0 (37)

F has 12 unknows:

F =

 f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34

 =

 fT1
fT2
fT3

 (38)

Rewriting equation using the fact fTi Xi = XT
i fi that yields

xi×FXi =

 vif
T
3 Xi − wifT2 Xi

wif
T
3 Xi − uifT2 Xi

uif
T
3 Xi − vifT2 Xi

 =

 0T −wiXT
i viX

T
i

wiX
T
i 0T −uiXT

i

−viXT
i uiX

T
i 0T

 fT1
fT2
fT3


(39)

However each correspondence will only derive two linearly independent
equations. The linearly independent system now reads

[
0T −wiXT

i viX
T
i

wiX
T
i 0T −uiXT

i

]
f = 0 (40)

54

For n ≥ 6 the system is overdetermined and hence F can be estimated
by a Singular Value Decomposition (SVD). The camera pose can now be
extracted from F :

FXi ∼ xi ∼ K[R t]Xi ⇒ F ∼ K[R t]⇒ [R t] ∼ K−1F (41)

Since by the previous equation the pose is de�ned.

6.2.7 Validation of the Camera Pose Estimation

When new camera pose estimation is computed (see section 5.2.5) it
could be wrong (poor quality of the frame, not enough inlier, and son on).
It's better delete wrong estimations, because only one wrong estimation
could a�ect the next ones. It may happen, infact, that the frame that it is
associated to a wrong estimate, inserted in the list of old frame, is chosen
as the new keyframe. In this case all the next estimates will be a�ected by
mistake. So it's better not consider the current pose estimation.
In this thesis we chose to consider not valid a pose estimation if:

• the number of inlier used by the DLT is low.

• the projection error computed in the DLT algorithm is greater.

6.2.8 Update Keyframe

In the inizialization of the algorithm, when the �rst couple of image
is arrived, the �rst keyframe is taken. However it could be necessary to

55

update the keyframe. Note infact that all the camera pose estimation is
computetd respect the keyframe, through the correspondences between the
left image of the current frame, and the left one of the keyframe.
In this thesis we choose to update the keyframe when :

• if at the step 4 of the algorithm's loop, the the number of re�ned
matches between the left image of the current frame and the keyframe
is not enough large. In this case infact the inliers in the DLT algorithm
could be very small and the camera pose estimation pose could be
wrong.
There are multiple reasons why this happens, for examole if the frame
does not have enough features, or if the UAV has moved a lot w.r.t.
where it has been taken the last keyframe, and so there aren't enough
features in common. Note that it is not possible to know if it is,
therefore, the poor quality of the frame or the relative motion of the
UAV due to the few inlier. In this thesis regardless of what they are
owed the few re�ned matches, we decide to update the keyframe.

• the camera pose estimation using DLT is computed with a few number
of inliers or the projection error is greater than a certain threshold.

In both cases we chose a new keyframe.
The new keyframe is chosen searching in the list containing the old

frames and their properties (keypoints and descriptors) and solving this
problem of maximum:

NewKeyframe = argmax
i

(Matcher(xcurrentFrame, xframei)

So we make the match between these and the current frame. The the
frame with a number of match greater than the others becomes the new
keyframe.
Then we re-match the left image of the current frame with the left one

of the new keyframe, and a new camera pose estimation using DLT is

56

computed. Note that if the new camera estimation computed is considered
again not valid, the frame is deleted and not inserted in the list.
The list of old frames is also update when the keyframe is changed: we

chose to delete the oldest frame and to leave in the list no more than the
20 recent frames. This is the better choice respect to delete all the list, as
the following �gures shown, because choosing the new keyframe as written
before, allows to correct possible error in pose estimation.
For example suppose the current keyframe is the frame 9 and we'll chose

the frame 12 as new keyframe. If the the rotation matrix Ckey9
key12

is a�ected
by an error the current attitude estimation is also wrong :

Ccam0
cam = Ccam0

key9
· Ckey9

key12
· Ckey12

cam

However if in the next keyframe updating we choose the frame 11 , the
next attitude estimation is: Ccam0

cam = Ccam0
key9
·Ckey9

key11
·Ckey11

cam and the error on
the attiude estimation could be recovered.
The �gures 16,17,18,19,20,21 are obtained in the simulation enviroment

using ROS and Gazebo and they show the di�erence between three cases:

1. the new keyframe chosen as the last frame available .

2. the new keyframe chosen in a list of old frames and the list is deleted
when the keyframe is updated .

3. similar to the case 2 but the list is not deleted .

57

Figure 16: The Figures shows the di�erence between three cases about the pose estimation on x-axis:
the new keyframe chosen as the last frame available (case 1), the new keyframe chosen in a list of old
frames and the list is deleted when the keyframe is updated (case 2), similar to the case 2 but the list
is not deleted (case 3).

58

Figure 17: The Figures shows the di�erence between three cases about the attitude estimation on
x-axis: the new keyframe chosen as the last frame available (case 1), the new keyframe chosen in a list
of old frames and the list is deleted when the keyframe is updated (case 2), similar to the case 2 but
the list is not deleted (case 3).

59

Figure 18: The Figures shows the di�erence between three cases about the pose estimation on y-axis:
the new keyframe chosen as the last frame available (case 1), the new keyframe chosen in a list of old
frames and the list is deleted when the keyframe is updated (case 2), similar to the case 2 but the list
is not deleted (case 3).

60

Figure 19: The Figures shows the di�erence between three cases about the attitude estimation on
y-axis: the new keyframe chosen as the last frame available (case 1), the new keyframe chosen in a list
of old frames and the list is deleted when the keyframe is updated (case 2), similar to the case 2 but
the list is not deleted (case 3).

61

Figure 20: The Figures shows the di�erence between three cases about the pose estimation on z-axis:
the new keyframe chosen as the last frame available (case 1), the new keyframe chosen in a list of old
frames and the list is deleted when the keyframe is updated (case 2), similar to the case 2 but the list
is not deleted (case 3).

62

Figure 21: The Figures shows the di�erence between three cases about the attitude estimation on
z-axis: the new keyframe chosen as the last frame available (case 1), the new keyframe chosen in a list
of old frames and the list is deleted when the keyframe is updated (case 2), similar to the case 2 but
the list is not deleted (case 3).

63

7 Integration of the Inertial System with Visual Odometry

The UAV is equipped with a stereo camera, and an onboard IMU sen-
sor, in order to do pose estimation. However both the inertial navigation
system, obtained from the IMU, and the visual navigation system have im-
portant advantages but also serious limitations. The �rst type of systems
are a�ected by errors that increase over time, in particular on the estima-
tion of the position. In the second ones errors may occur on the estimation
of attitude or position.
Therefore it is evident the importance of an integration between the two

navigation systems. The goal is to obtain a navigation system, whose pri-
mary component is given by the visual, while the intervention of measure-
ments coming from the inertial system, able to follow with great accuracy
the short-term dynamics of the vehicle, allows to correct possibily errors
of camera pose estimation and ensuring accuracies higher than those that
would be achieved by using separate components.
In this thesis we proposed a algorithm where we realize the interation

between the systems when it is necessary to update the keyframe .In the
following section we explain in details how the integration is realised.

7.1 Update Keyframe with inertial measurement

When it is necessary to update the keyframe, the new keyframe is chosen
in a list of old frames, that are associated to a pose estimation w.r.t. the
�rst keyframe, taken in the inizialization Cv

keyi
cam0.

After the keyframe is updated, all the next pose estimations will be
computed respect to this one. In order to correct possible errors on the
attitude, and to avoid that these errors a�ects the next estimations, we
compute the camera attitude estimation at the i-th frame, chosen as new
keyframe, from the inertial system ,too C i

keyi
cam0.

Then we compute the di�erence between the two attitude estimations. If

64

the di�erence between the two estimates is greater than a certain threshold,
we set the attitude estimation of the vehicles at i-th frame equal to the one
coming from the inertial system, and then we compute the new camera
pose estimation.
However, the inertial system computes the attitude of the vehicles in-

tegrating the gyroscopes in the navigation frame. Then from the inertial
system we have the rotation matrix C i

n
b . The visual system computes the

attitude of the vehicle in the camera frame Fcam0, so we have the rota-
tion matrix Cv

keyi
cam0 , where Fkeyi is the camera frame, at the i-th frame,

rigidily attached with the stereo camera. So it's necessary the folowing
matrix transformations, where v stands for visual system, and i for inertial
system:

C i
n
keyi

= C i
n
b · Cb

imu · C imu
keyi

(42)

C i
keyi
cam0 = CT

i
n
keyi
· CT cam0

n (43)

where Cb
imu = I , Ccam0

n = Ccam0
imu · C imu

b · CT
0
n
b , C imu

keyi
come from the

calibration beacuse is equal to C imu
cam.

Now the di�erence between the two rotation matrices is computed.

∆Ckeyi
cam0 = CT

v
keyi
cam0 · C i

keyi
cam0 (44)

From the matrix ∆Ckeyi
cam0 we compute the euler parametrization and we

check if the euler angles are greater than a certain threshold. In this case
we set Cv

keyi
cam0 = C i

keyi
cam0.

65

7.2 Evaluation of Pose Estimation Algorithm

The goal of this thesis is to realized a Visual Navigation System for MAV
(Micro Air vehicle). In order to verify the performance of pose estimation
EuRoC provided a dataset with recorded real data. The quadrotor used
for �ight testingin in an industrial plant have a stereo camera and an a
onboard IMU unit. The cameras have a resolution of 752x480 pixel and a
fequency of 20Hz. The IMU unit has a frequency of 200Hz.

The Figures 22,23,24 shown the di�erence between the attitude estima-
tion from Inertial Navigation System , and from Visual Odometry without
attitude correction. The Figure 25 shows the di�erence between the groung
truth, provided by EuRoC, and the estimation of the translations comes
from Visual Odometry without attitude correction. The accuracy of the
pose estimation in this case is very low.
The Figure 26,27,28 shown the di�erence between the attitude estima-

tion from Inertial Navigation System , and from Visual Odometry with
attitude correction.The Figure 29 shows the di�erence between the groung
truth, provided by EuRoC, and the estimation of the translations comes
from Visual Odometry without attitude correction. The accuracy of the
pose estimation in this case is better than the previous case.

66

Figure 22: Estiamtion of roll angle from Inertial System (red) , and from Visual Odometry (blue)

67

Figure 23: Estiamtion of pitch angle from Inertial System (red) , and from Visual Odometry (blue)

68

Figure 24: Estiamtion of yaw angle from Inertial System (red) , and from Visual Odometry (blue).

69

Figure 25: Di�erence between the groung truth, provided by EuRoC, and the estimation of the trans-
lations comes from Visual Odometry without attitude correction

70

Figure 26: Estiamtion of roll angle from Inertial System (red) , and from Visual Odometry with
attitude correction (blue)

71

Figure 27: Estiamtion of pitch angle from Inertial System (red) , and from Visual Odometry with
attitude correction (blue)

72

Figure 28: Estiamtion of yaw angle from Inertial System (red) , and from Visual Odometry with
attitude correction (blue).

73

Figure 29: Di�erence between the groung truth, provided by EuRoC, and the estimation of the trans-
lations comes from Visual Odometry with attitude correction

74

8 Conclusion

The Visual Navigation System one provides good performance of pose es-
timation when lots of inliers are available. However the presence of outlier
may a�ect the next pose estimations. So it 's necessary to detect the
presence of outlier and use informations that can correct errors on pose
estimation. In this thesis we have used the Inertial Navigation System to
correct errors on attitude estimates.
The proposed Visual Navigation System integrated with the attitude

estimation from the Inertial System provides better performances respect
to the only use of the Visual Odometry as the tests with real data have,
and in the virtual enviroment realized using ROS and Gazebo shown.

75

References

[1] G. Bradsky and A. Kaehler: Learning OpenCV, Computer Vision with
the OpenCV Library. O'Reilly Media, 2008.

[2] Robert M. Rogers : Applied Mathematics in Integrated Navigation Sys-
tem. Third Edition (AIAA Education), Hardcover , 2007

[3] R. Hartley and A. Zisserman: Multiple view geometry in computer
vision . Cambridge University Press, New York, NY, USA, 2000

[4] http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html,
OpenCV , Camera Calibration and 3D Reconstruction

[5] http://www.ros.org/, ROS.

[6] David G. Lowe: Distinctive Image Features from Scale-Invariant Key-
point, Computer Science Department University of British Columbia
Vancouver, B.C., Canada 2004

[7] Mahony, R : �Nonlinear Complementary Filters on the Special Orthog-
onal Group�, Automatic Control, IEEE Transactions on (Volume:53 ,
Issue: 5), June 2008.

[8] http://www.euroc-project.eu/

76

