
Universitá di Pisa

Laurea Magistrale in Computer Engineering

Dipartimento di Ingegneria dell’Informazione

Jarvis: Bridging the Semantic
Gap between Android APIs and

System Calls

Supervisors:

Chiar.mo Prof. Gianluca Dini
Chiar.ma Prof.ssa Cinzia Bernardeschi
Chiar.mo Prof. Giovanni Vigna

Candidate:

Tommaso Latini

University Year 2013-2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79615967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Android is an open-source operating system, based on the Linux kernel.
Developed by Google, it is currently the most widespread mobile operating
system, used by more than one billion users.

Different solutions have been proposed to analyze the behavior of An-
droid’s applications. Most of this approaches analyze applications at a
high-level (e.g., they focus on the executed Java code) and they may miss
operations performed by applications’ components natively written. For
this reason, other approaches analyze applications’ behavior at the system-
call level. However, given the complexity of the Android runtime library,
using this low-level information to infer high-level behaviors is problematic.

To bridge the semantic gap between high-level Android APIs and low-
level system calls, we have developed Jarvis. Jarvis operates in two phases:
an online data collection phase, and an offline data analysis phase.

Specifically, during the online data collection phase, Jarvis records all
the system calls executed by an application. In this phase, particular care
is given to system calls used to communicate with Binder. Binder is an
Android kernel module that manages most of the Inter-Process Commu-
nication among installed applications and system components. Since, in
Android, Binder is extensively used by every application to communicate
with the operating system, analyzing data exchanged using it is crucial to
understand the behavior of an application. For this reason, Jarvis auto-
matically parses data sent and received by an application using Binder. In
particular, Jarvis is able to understand the origin and the end-point of every
Binder-mediated transaction and reconstruct the high-level representation
of the exchanged data.

During the data collection phase ad-hoc filters can be specified to pre-
cisely define when Jarvis should record the execution of a specific system
call. In this way, the performance impact of Jarvis is substantially reduced.

Finally, in the data analysis phase, Jarvis maps how different APIs pro-
duce specific lists of system calls.

We performed different experiments to evaluate Jarvis. Results show
the effectiveness of our approach, but also reveal some issues in the current
implementation. For this reason, we conclude this work by suggesting
different ways to address these issues and improve the capabilities of Jarvis.

1

Contents

1 Introduction 6
1.1 Background and Context . 6

1.1.1 Malware Analysis . 6
1.1.2 System Call Monitoring 8

1.2 Objectives . 9
1.2.1 Related Work . 10
1.2.2 Approach . 10

1.3 Work Organization . 10

I Android Operating System and Binder IPC 12

2 Android Overview 13
2.1 Android Architecture . 13
2.2 Structure of Application . 14

2.2.1 Intent . 16
2.3 Security principles . 17

2.3.1 Permissions mechanism 18

3 Binder Framework 20
3.1 Binder Objects . 20
3.2 Service Manager . 21
3.3 Communication Model . 22

3.3.1 AIDL . 22
3.4 Binder Transaction and Parcel 23
3.5 Other Features . 24

3.5.1 Death Notification . 24
3.5.2 Reference Counting 25

3.6 Architecture Overview . 25
3.7 Java APIs . 26
3.8 C++ Middleware . 27

3.8.1 Remote Method Invocation 29
3.9 Kernel Module . 30

2

3.9.1 Binder Protocol . 30

4 Implementation Details 33
4.1 Service Registration and Lookup 33
4.2 The AIDL Interface . 35
4.3 Proxy and Stub . 35
4.4 Kernel Module Components 36

4.4.1 Nodes and References 36
4.4.2 Processes and Threads 37
4.4.3 Transaction . 39
4.4.4 Buffer . 40
4.4.5 Binder Object . 41
4.4.6 Binder Transaction Data 41

5 Communication Protocol 43
5.1 Binder Driver Commands . 43
5.2 Binder Communication Protocol for Data Transaction 44

5.2.1 Command Protocol . 46
5.2.2 Return Protocol . 48

5.3 Binder Object Exchange . 50
5.4 Internal Bug . 50

II Presentation of Jarvis 54

6 Description 55
6.1 General Information . 55
6.2 Kernel Module . 57

6.2.1 General Overview . 57
6.2.2 System Call Interception 57
6.2.3 List of Tracked System Calls 59
6.2.4 I/O Control on Binder Device 60
6.2.5 Filtering . 60
6.2.6 Logging . 61

6.3 Android Applications . 62
6.3.1 High-Level Schema . 62
6.3.2 Data Interpretation . 64
6.3.3 Mapping . 64
6.3.4 Re-Building . 65

6.4 Scripts and Utilities . 65

7 Implementation 67
7.1 Kernel Module . 67

7.1.1 Load and Unload Function 68

3

7.1.2 Global and System Call libraries 69
7.1.3 SeqFile library . 69
7.1.4 Filter library . 71

7.2 I/O Control Log . 72
7.2.1 Common Functions 73
7.2.2 Assembly Routine . 73
7.2.3 Log data . 74
7.2.4 Filter Syntax . 74

7.3 Java Applications . 75
7.3.1 Driver Handler . 76
7.3.2 Logger . 77
7.3.3 Rebuilder . 77
7.3.4 Caller . 78
7.3.5 System Call Log and Object Deserialization 79

7.4 Stimulation and Mapping . 79

8 User Guide 82
8.1 Setup . 82

8.1.1 Building phase . 82
8.1.2 Installation phase . 83
8.1.3 Usage phase . 83

8.2 Adding System Call Logging Library 84
8.2.1 Header file . 84
8.2.2 Source file . 85
8.2.3 Modifications in global files 87
8.2.4 Working to the log and filter lists 88

8.3 Template . 88
8.4 Java Module . 89

III Mapping API - System Call 91

9 Binding High and Low Level Behavior 92
9.1 Objectives . 92
9.2 Experiment Planning . 93
9.3 Testing Environment . 94

9.3.1 Filter Settings . 95
9.4 Mapping API in System Call 95
9.5 Toy Sample . 98

9.5.1 Rebuilding Process . 99
9.5.2 Filter Benchmark . 99

Conclusion 100

4

Appendix Binder Terminology 103

Bibliography 104

5

Chapter 1

Introduction

Android managed to grab around 84.6% smartphone share in the second
quarter of 2014 (corresponding to 295.2 million units), up from the 80.2% of
the previous year (around 249.6 million units). Rounding out the top four
smartphone operating systems were iOS at 11.9%, Windows Phone at 3.6%,
and BlackBerry at 1.7%.

1.1 Background and Context

The Figure 1.1 shows an indisputable leadership that motivated malware
authors to work on Android. Indeed the US Department of Homeland
Security and FBI [6] shows that almost the 80% of the known malware
threats to mobile operating system in 2012 concerns Android.

Moreover, according to recent research a percentage between 0.02 and
0.2 of applications in official and unofficial marketplaces are malicious [22].
Corporations and Researchers needs tools as powerful as possible to analyse
the behavior of the operating system both in presence and in absence of
malware to test the safeness and the robustness.

1.1.1 Malware Analysis

We can roughly define a Malware - short for Malicious software - any
program (executable or script) designed and built to damage a computer
or a network, to gather sensitive information or to gain access to private
computer systems. The malware category comprehends computer viruses,
worms, trojan horses, spyware and other malicious program.

"Malware Analysis is the art of dissecting malware to understand how it
works, how to identify it, and how to defeat or eliminate it" [15]. It can be
done using two complementary techniques:

• Static Analysis, which studies a program without executing it.

6

Figure 1.1: Smartphone Sales compared with Last Two Years

Static analysis exploits disassemblers, decompilers, source code an-
alyzers and other similar tools. It has the advantage to reveal the
behavior of the program also in unusual condition, but the results
could be imprecise, especially for big programs. Moreover, Obfusca-
tion 1 makes it really arduous.

• Dynamic Analysis, which examines the behavior of a program during
its execution.

Dynamic analysis is often faster and more accurate and allows a real-
istic simulation of the programs. It’s necessary for a precise diagnosis
of runtime information. The main problem is that you only see op-
erations that the program did during execution or rather you don’t
know "all the possible things that the program could do".

It is useful because of two features mainly:

– Precision of Information: tool used for dynamic analysis can in
general collect precisely data needed to address the problem;

– Dependence on Input: changes in program input are directly
observable in terms of output and internal behavior [1].

Doing dynamic analysis in a safe way (it is a matter of executing potential
malicious code) requires the program to be confined in a safe environment

1Obfuscation is a process that transforms the source code in an "intermediate" code to
make it more difficult to be decompiled and disassembled using classical reverse engineering
techniques.

7

generally provided by a virtual machine 2. Other techniques isolate the
program at process-level so the interface of kernel is shared between the
"target" program and the other ones. An example of jail technique is the
UNIX chroot() utility.

1.1.2 System Call Monitoring

System Calls Monitoring is a widely used technique for program analysis
and consists in looking at information that crosses the boundary between
user and kernel space. This edge can be traverse only by system calls,
characterized firstly for a names, some arguments, and a possible result
values. In between system calls what happens within a process is com-
pletely ignored. The entire process is treated as a black box. This approach
makes sense in operating environments where even simple and common
operations requires assistance by the kernel [3].

Android falls in the previous case because of common requirements of
mobile operating system. For example, every data exchange between two
applications and every request of a system service exploits an Inter-Process
Communication mechanism whose name is Binder, which in turn implies
one or more ioctl() call on the corresponding driver. Android kernel is
based on Linux: most of the functions are the same excepts for some mobile
system specific features as Power Management or Low Memory Killer.

Figure 1.2: Control flow with a System Call Monitor

Modern UNIX-like operating systems provide tools for monitoring sys-

2A virtual machine creates a complete system platform that supports the execution of an
operating system.

8

tem calls in real time like strace and now there exists also a version for
Android. The underlying mechanism is based on the /proc file system
or the ptrace() system call. Figure 1.2 briefly summarizes the general
behavior of this kind of tool:

• A process invokes a system call;

• The monitor inspects the state of the system and then returns the
control to the kernel;

• The kernel executes the system call;

• The monitor inspects newly the state of the system;

• The kernel passes control back to the monitored process.

The monitoring process generally resides in the user space and uses
ptrace to control the flow the monitored one.

1.2 Objectives

This dissertation exhibits the results of the work done at Computer Security
Lab (SECLAB) - University of California, Santa Barbara (UCSB), between
August and October 2013. The goal of the project was to build a tool al-
lowing to bridge the semantic gap between high-level Android APIs 3 and
low-level System Calls. It required a strong analysis of Android specific
mechanisms like the Binder - the component used to exchange data be-
tween application - and the design, implementation and use of a tool that
compounded a System Call Monitor with Filtering and Data Interpretation
mechanisms.

To summarize, the project encompassed the documentation and for-
malization of low-level features of Android Binder and a tool for logging of
Binder request/response at low-level and rebuilding of structured data then
enlarged to track general system calls in order to create a tool that allowed
an automatic mapping between Android APIs and System Calls.

This kind of mapping can be used to associate a "signature" in terms
of system calls to an API and to use it to analyse high-level behavior of
application.

This is the first work that tries to understand if it is possible to automat-
ically reconstruct the high-level behavior of an Android application.

3API, an abbreviation of Application Programming Interface, refers either to a set of
routines, protocols, and tools for building software applications or to a single available
pre-defined function. A good API makes it easier to develop a program by providing all
the building blocks. A programmer then puts the blocks together.

9

1.2.1 Related Work

Tracking system call invocations is at the basis of virtually all the dynamic
malware behavioral analysis systems [2]. The reconstruction of high level
behavior from system calls is widely used in computer security for intrusion
detection [4], [13], [19]. Nevertheless, standard tools implement virtual
environment based on x86 CPU and cannot be used on Android because
it runs on ARM processors. Moreover, some peculiar characteristics (an
improved Linux Kernel, a particular version of Java Virtual Machine) makes
this operating system different from those of the UNIX-like family. The
nature of Android applications makes it hard if not impossible to rely on
existing VM-based dynamic malware analysis systems as is, because it can
be implemented either in Java, at the top of DVM, or in C++, using JNI.

Some tools has been implemented to fill this gap. For instance, Copper-
Droid - an approach built on top of QEMU - performs dynamic behavioral
analysis of Android malware [7]. It presents a unified analysis to charac-
terize low-level OS-specific and high-level Android-specific behaviors.

However, none of the previous tools provides a well-defined mapping
between Android APIs and Sytem Calls. This is the key point of our thesis:
verifying the possibility to bridge the semantic gap between high-level and
low-level world in Android.

1.2.2 Approach

We decided not to use or modify strace tool because our research was
initially focused on Binder, so we started creating an ioctl() interceptor
that was well-integrate with Java to perform unmarshalling on logged data,
then we enlarged the tool for logging other system calls. Moreover, some
peculiar features of Android applications and framework forced us to build
a tool that resides into the kernel.

We firstly focused on system calls related to process control (fork(),
execve(), clone()), networking (socket(), bind(), connect()) and file-
system management (open() access(), mkdir()). We implemented also a
filter to clean the log by the noise (i.e. system calls not directly related to a
specific behavior).

1.3 Work Organization

This document is organized into three parts and ten Chapters (including
this introduction):

Part I :

We briefly introduce the main characteristics of Android operating
systems, such as the architecture, the basic structure of the applica-

10

tion and the security mechanisms. Then we focus our attention on
the Binder, describing how this IPC mechanism works from the Java
utilities (the highest level) to the kernel module (the lowest level), and
showing all the facilities provided by the framework. Eventually, we
explain the low-level communication protocol used by Binder frame-
work to interact with the driver and we deepen some implementation
details concerning key aspects of Binder.

Part II :

We describe the tool Jarvis, the main components, the working princi-
ples and the design choices, then we deepen in the implementation of
Jarvis, focusing on the modules and on some peculiar programming
aspects, at last we explain how to exploit the tool and how to improve
it by means of ready-to-use template.

Part III :

We show an initial attempt of mapping APIs and system calls in order
to prove the right behavior of the tool, drawing some conclusions
specifying where and how our tool can be useful in future researches
and which possible improvements can be easily implemented.

11

Part I

Android Operating System and
Binder IPC

12

Chapter 2

Android Overview

In this Chapter we make a brief presentation of Android. We show the
architecture of the whole system, then the basic structure of applications
with their main components and the way they communicate each other.
Eventually we describe the most important security mechanisms.

2.1 Android Architecture

Android is a mobile operating system based on the Linux kernel, with
middleware, libraries and APIs written in C++ and application software
running on a framework that includes a non standard register-based Java
virtual machine specific for ARM hardware - called DVM 1 - with limited
implementation of Java libraries. It utilizes just-in-time compilation to run
dex 2 code, which is usually obtained from Java bytecode. In Figure 2.1, it’s
easy to distinguish three main parts:

• The application level [Blue];

• The middleware [Green];

• The kernel [Red].

The application level invokes Java APIs, which rely on the C++ mid-
dleware by means of binding libraries. Dalvik Virtual Machine executes its
own bytecode so the application cannot directly invokes native code unless
using the JNI 3, which is a wrapper for the underlain C++ functions and
allows applications to call the methods of the various frameworks without
using android runtime environment. This feature of Android provides lots

1Dalvik Virtual Machine.
2Dalvik executable.
3Java Native Interface.

13

Figure 2.1: Android Architecture

of different design choices to the developer, which can directly interact with
low-level APIs.

The middleware uses directly the Linux System Call Interface (SCI)
to interact with the kernel. The peculiar features of Android kernel are
implemented as device drivers and are reachable by ioctl() system call,
so the structure and the general organization of the kernel is preserved and
does not differ a lot with respect to normal distributions.

2.2 Structure of Application

The structure of a genericAndroid application is shown in Figure 2.2. We
can identify four main components [8]:

• Activities

An activity represents a single screen with a user interface. Each
application is independent of the others, hence another application
can start any one of these activities (if it has the permissions). For
example, an email application might have one activity that shows a
list of new emails, another activity to compose an email, and another
activity for reading emails.

14

Figure 2.2: Main Components of an Android Application

• Services

A service is a component that runs in the background to perform
long-running operations or to perform work for remote processes.
A service does not provide a user interface. For example, a service
might play music in the background while the user is in a different
application.

• Content Providers

A content provider manages a shared set of application data. You can
store the data in the file system - an SQLite database - on the web,
or any other persistent storage location your application can access.
Through the content provider, other applications can query or even
modify the data (if the content provider allows it). For example, the
Android system provides a content provider that manages the users’

15

contact information.

• Broadcast Receivers

A broadcast receiver is a component that responds to system-wide
broadcast announcements. For example, a broadcast announcing that
the screen has turned off, the battery is low, or a picture is captured.

By default, all components of the same application run in a single process
and thread (called the "main" thread). If an application component starts
and there already exists a process for that application, then the component is
started within that process and uses the same thread of execution. However,
different components of the same application can run in separate processes,
and there can be additional threads for any process.

2.2.1 Intent

If two components belonging to different processes or applications have to
exchange data, then they have to use Intents.

An Intent is an high-level abstraction - underlying on Binder Frame-
work - that hides all low-level inter-process communication mechanisms
providing a simple interface for process communication. It is a data struc-
ture whose main fields are [8]:

• A Component Name, which declares the component to start. It is
the critical piece of information that makes an Intent either explicit,
meaning that it should be delivered only to the component defined
by the name, or implicit, that is the system decides which component
should receive the intent based on the other intent information (such
as the action, data, and category—described below).

• An URI, which refers the data to be acted on and their MIME type of
that data;

• An Action, which explains the operation to be done;

• A Category, which holds additional information about the kind of
component that should handle the intent. Any number of Category
descriptions can be placed in an intent, but most intents do not require
a category;

• Some Extras (key-value pairs), which carry additional information
required to do the requested action;

• A bunch of Flags, which act as a meta-data for the intent.

This Intent is submitted by the interprocess communication system. We can
list four kinds of intents:

16

1. Starting an activity to get a result;

2. Communicating with a service (call-back mechanism);

3. Querying a content provider;

4. Receiving an intent broadcast (request of contents).

Figure 2.3: Android Security Overview

2.3 Security principles

Android implements lots of traditional security controls in order to:

17

• Protect user data;

• Protect resources and network;

• Provide application isolation.

Android’s Applications runs on its own instances of the Dalvik Virtual
Machine. Each instance represents a process completely isolated from the
other application and memory. Each application of Android has a unique
UID 4 and particular permissions to access the database and file on the
phone. The UID is assigned also to any data stored by the application itself.
Normally, other packages cannot access to these data.

This sets up a kernel-level Application Sandbox. The Kernel enforces
security between applications and the system at the process level through
standard Linux facilities, such as user and group IDs that are assigned to
applications. By default, applications cannot interact with each other and
applications have limited access to the operating system [11].

Android security features at the OS 5 level ensure that even native code
is constrained by the sandbox. This mechanism is not heavy in overload
because the Dalvik virtual machine is launched once at boot, and each
instance is cloned by the first. No memory pages are copied till the ap-
plication writes data on the heap. These functionalities are provided by
a service called Zygote. Hence, Android platform provides the security of
the Linux Kernel, as well as IPC6 facility to enable secure communication
among applications.

Moreover, each application must be signed by the author. The signature
does not need to be of a certification authority. It’s a simple private key
that allow to the system to distinguish application authors to grant/deny
permissions at signature-level and to answer to shareUserId requests.

2.3.1 Permissions mechanism

By default, an application has not any particular permission. If it wants to
access to any service or data on the device, then it must require a special
permission in the AndroidManifest.xml file.

All the requests are checking by the package installer - based on the
application’s signature - and by the interaction with the user. In general a
permission failure launches a SecurityException. Once granted at instal-
lation time, a permission can never be removed except by uninstalling the
application.

For example, if an application wants to receive an sms, it must write the
following line on their manifest:

4User Identifier.
5Operating System.
6Inter-Process Communication.

18

<manifest xmlns:android="http://schemas.android.com/apk/res
/android"
package="com.android.app.myapp" >
<uses-permission android:name="android.permission.

RECEIVE_SMS" />
...

</manifest>

The user explicitly accepts during installing phase whether to give or
not that particular permission to the application.

19

Chapter 3

Binder Framework

In this Chapter we focus our attention on Binder Framework: the standard
IPC mechanism in Android.

This operating system uses an exchange messages communication model
and the Binder Framework takes care to create the abstraction of a channel
among processes. It is important to understand how this Android-specific
framework works because it’s responsible for any data exchange among
applications. The main usage is to call remote methods exposed by system
Services.

Binder is an adapted version of Open Binder: a software developed by
PalmSource Inc. as a system-level component whose purpose was to provide
a powerful IPC mechanism able to work in the most important operating
system like Linux, Windows, BeOS.

Although the Android Binder presents some peculiar features, a good
initial reading to have an overview of the whole framework is the Open-
Binder documentation [14], which describes the set of facilities provided by
the framework.

3.1 Binder Objects

Binder is used both for data exchange and for methods invocation as a
classical RPC1 mechanism.

A Binder Object is the fundamental unit of the Framework. It is a
generic implementation of a Binder Interface (IBinder), which contains
the list of the functions provided by a service. According to standard
terminology, in the following we refers to a Binder Object simply as "binder".

An application can invoke a service only if it owns the respective binder,
which is uniquely identify by means of a Binder Token. From a process
point of view, a binder is either local, if the process itself created the object,
or remote, otherwise.

1Remote Procedure Call

20

3.2 Service Manager

Figure 3.1: Sequence Diagram of Registration and Lookup Processes

For security issues, a process knows only the address of its local binders,
so it needs some mechanism to search and recover remote binder addresses.

In OpenBinder terminology, Context Manager is the name of a special
binder that have 0 as token- It is the only one to know a priori the addresses
of all the binders in the system. In Android, the Context Manager takes the
name of Service Manager. Its implementation is not part of Binder Frame-
work [18], but it equally plays a key role in the Android IPC mechanism

21

because every process has to demand to Service Manager the binder of the
service it wants to invoke.

Every application that provides services in Android must register itself
(i.e. publish its name and its Binder Token) to the Service Manager. It
can exploit the method addService() defined both as JAVA API and both
C++ utility. The client must only know the name of a service to require the
Binder address to the Service Manager (getService()).

3.3 Communication Model

Figure 3.2: Binder Proxy-Stub model

Binder Framework uses a proxy-stub model (Figure 3.2) in which a proxy
class creates the abstraction of a local binder, delegating to the stub the real
execution of the method. In this way, an application does not need to know
whether a service, a method or a file is local or remote.

3.3.1 AIDL

AIDL is the acronym of Android Interface Definition Language. Its purpose
is to make easier the implementation of the service, because it automates
the creation of Proxy and Stub classes. Its syntax is very close to a Java
Interface - with importing library and methods signature statements - but
it handles only basic types.

In a certain way, the AIDL can be equalized to Java RMI2 in the sense

2The Remote Method Invocation is a mechanism that performs the object-oriented equiv-
alent of Remote Procedure Calls (RPC), with support for direct transfer of serialized classes

22

that they equally automate the creation of proxy and stub classes starting
from a common interface. An example of AIDL is the following [8]:

/** IRemoteService.aidl */
package com.example.android;

/** Declare any non-default types here with import
statements */

/** Example service interface */

interface IRemoteService {

/** Request the process ID of this service. */

int getPid();

/**
* Demonstrates some basic types that you can use
* as parameters and return values in AIDL.
*/

void basicTypes(int anInt, long aLong, boolean aBoolean
, float aFloat, double aDouble, String aString);

}

In the building phase, Android SDK tools generate a .java interface
file from AIDL. The generated interface includes a subclass named Stub
that is an abstract implementation of its parent interface and defines all the
methods declared in the .aidl file [8]. Service developer has to take care of
the implementation.

3.4 Binder Transaction and Parcel

Binder Framework provides the RMI services using Binder Transaction.
Communication is synchronous, hence a transaction implies two messages:
request and reply. Binder supports both one-way and two-way calls. On
the server side, a thread pool exists for working on requests. The most
important elements of a transaction are:

• the target binder;

• the method required by the client;

and distributed garbage collection. The Java original implementation depends on JVM class
representation mechanisms and it thus only supports making calls from one JVM to another.

23

Figure 3.3: Data Transaction Schema

• the pid and the euid of sending process;

• the pointer and the size in bytes of the data buffer;

The Parcel is the data struture that manages transaction data. Any object
that can be transmitted remotely must provide methods that serialize it on
sender side and restore it on receiver side. All information must be reduced
to simple data types like integer and String that can be easily written in
a serial way to a buffer.

The procedure of building a Parcel is called marshaling or flattening.
In reverse, the procedure of rebuilding objects from a Parcel is called un-
marshaling or unflattening [18].

3.5 Other Features

Binder Framework provides other facilities that are not strictly related with
our project, so we mention them briefly.

3.5.1 Death Notification

The "link to death" facility is a mechanism that allows a process to get
a notification when another process that owns a binder object dies. The
classic example are the window manager links to the death of a window’s
call-back interface. Generally services send a binder object token just to be

24

able to find out when client process dies. The driver notifies a process about
the death of any objects it is watching.

3.5.2 Reference Counting

Binder implements a complex reference counting mechanism. Indeed, it
uses two different kind of reference for a binder object:

• strong reference, which is a normal reference that protects the ob-
jectsfrom garbage collector;

• weak reference, which permits to keep trace of an object without
prevent its deallocation. Java does not implement weak references
hence this way to manage object lifetime is used only in the C++
middleware;

3.6 Architecture Overview

Figure 3.4: Overview of Binder Framework Architecture

Binder is organized along all the levels of Android:

25

• Java;

• Middleware;

• Kernel.

It uses a client-server model, in which a process (the client) initiates a
communication and - in case - waits for the response, and another one (the
server) that receives the request and provide to fill it. Generally, the server
is a system or custom Service and the client is a user Activity.

As Figure 3.4 shows, all data exchanges between an Activity and a
Service must cross the driver.

3.7 Java APIs

Figure 3.5: UML Diagram of the Main Components of Binder APIs

26

The Figure 3.5 shows an high-level summary of the Java part of Binder
framework. The main components are Binder, Intent and Parcel.

All classes related to Binder are simply the Java correspondance to
underlying C++ objects. Indeed, the memory sharing facilities of Binder
can not be used by Java [18], only native C++ libraries can have access to
shared object representations in memory.

Intent contains a specific field (mAction) that refers to a method defined
in the programming interface that both the client and service agree upon in
order to communicate each other. Intent utilizes Bundle container to collect
heterogeneous values. It is organized as a key-value pairs table for data
identification between processes.

// Client
intent.putExtra("key", new MyObj(...));
// Server
Bundle data = getIntent().getExtras();
MyObj mObj = data.getParcelable("key");

Parcel is the java interface for data serializazion. A process cannot
access the memory of another one, so the client needs a mechanism to act
a "serialization" of its objects into raw data that Android can easily move
to the memory space of the server, which on its side has perform the dual
operation called "deserialization". Android have standard mechanism to
transfer basic types and provides a simple interface (Parcelable) that an
object must implement to be sent to another application. They constitute a
high-performance IPC transport and use an extremely efficiency (but low-
level) protocol for objects to write or read.

The module android_util_binder.cpp belongs to JNI and maps JAVA
APIs to the corresponding C++ functions.

3.8 C++ Middleware

The Figure 3.6 shows an high-level summary of the C++ middleware. This
part is the core of the Binder framework and provides:

• an implementation of stub (Binder.h(.cpp)) and proxy BpBinder.h
(.cpp)), both derived from the common interface (IBinder.h).

• an interface (Parcel.h(.cpp)) responsible for objects marshalling and
unmarshalling.

This module provides several methods to read and write basic type
elements, objects, binder, file descriptor, and so on. It handles an
array (uint8_t* mData) of variable size and performs the conversion
between high-level objects to raw data and viceversa.

27

Figure 3.6: UML Diagram of the Main Components of Binder Framework

These components have a direct correspondence with the Java ones.

• an efficient mechanism to implement a pool of threads to serve client
requests (ProcessState.h, IPCThreadState.h).

The former module is responsible for:

– opening the device driver;

– mapping the binder memory;

– providing a chunk of virtual address space to send and receive
transaction data;

– initializing and handling the pool of threads in order to speed-up
response time.

28

The latter takes care of:

– writing and sending data;

– waiting for responses;

– interacting with the driver.

After the end of a transaction, the thread can be re-used.

These components are at the lowest level of user space.

3.8.1 Remote Method Invocation

Figure 3.7: Binder Stack for Remote Method Invocation

The Binder Interface - automatically generated by the .aidl file - con-
tains the key APIs IBinder.transact() and Binder.onTransact(), re-
spectively for the client and for the server, which are directly responsible
for transaction data execution.

The former serves to invoke a service, the latter makes the service
waiting for requests. The transaction is synchronous, such that a call to
transact() does not return until the target has returned from Binder.
onTransact(). This is the expected behavior when calling an object that
exists in the local process, and the underlying inter-process communication
mechanism ensures that the same semantics stands also among processes.

The pairs of function [IBinder.transact() - Binder.onTransact()]
and the Parcel class exist both in Java and in the middleware. The only

29

relevant difference is that on the server side there is a pool of threads that
are blocked on the onTransact() method, hence the Binder process has to
manage awakenings.

3.9 Kernel Module

The Kernel module constitutes the lowest level part of the Binder Frame-
work and it is the only component that have the awareness of the whole set
of binders in the systems 3.

Working inside the kernel, the verse of both write and read operation
are reversed. It means that when user calls a write operation, the driver
has to get data from user space; on the other way, when user calls a read
operation, the driver has to put data to user space.

The binder module ("/dev/binder") exploits the miscellaneous device
library of the Linux kernel in order to implement the basic file communica-
tion system calls (poll, ioctl, mmap, open, flush, release).

3.9.1 Binder Protocol

At the lowest level the Framework utilizes a ioctl()-based low-level pro-
tocol to communicate with the Binder driver: :

ioctl(int fd, unsigned int cmd, unsigned long arg)

To be more precise, the driver implements the unlocked version of the sys-
tem call: long ioctl(struct file *file, unsigned int cmd, unsigned
long arg)), where the first argument points to the file structure that rep-
resents the device. The operating system takes care of translation between
file index and descriptor. The arguments are:

• The file descriptor of ("/dev/binder"), which represents the device;

• The command passed to the kernel: Android Binder supports five
commands:

1. BINDER_WRITE_READ, deeply used for data transaction. It’s
the unique command that directly respond to an user request;

2. BINDER_SET_MAX_THREADS, used by the frameworks to
set the max number of threads;

3. BINDER_SET_CONTEXT_MGR, used by the service manager
during the initialization process;

3Processes knows only their own binders and those requested to and provided by the
Service Manager.

30

4. BINDER_THREAD_EXIT, called by the thread destructor to
warns the kernel to remove the data structures related to the
thread itself;

5. BINDER_VERSION, used to know the current version of the
protocol when the driver is opened.

• The pointer to a user buffer that is, for each command:

1. A binder_write_read data structure;

2. The maximum number of threads;

3. A dummy pointer;

4. A NULL pointer;

5. The number of version.

The commands listed above correspond to very simple operation except
for the first case - BINDER_WRITE_READ - which is the most important
command and is utilized both for data exchange and for remote method
invocation 4.

The protocol used by this command is structured in a quite complex
way that hereby we set about discussing. The third argument of the system
call points to a data structure containing two references to buffers: one for
reading and one for writing.

struct binder_write_read {
signed long write_size; // bytes to write
signed long write_consumed; // bytes consumed by driver
unsigned long write_buffer; // address of write buffer
signed long read_size; // bytes to read
signed long read_consumed; // bytes consumed by driver
unsigned long read_buffer; // address of read buffer

};

These two buffer contains a sequence of <commands-arguments_list>
pairs that the driver parses and executes. The command are coded using
the prefix BC (Binder Command) in the write buffer and BR (Binder Return)
in read one (Figure 3.8). A positive value of the size variable indicates to
the driver to start reading/writing procedures. Among all Binder protocol
subcommands, which will be described in the following Chapter, the most
important are BC(BR)_TRANSACTION and BC(BR)_REPLY because they
are related with data transactions.

4At this level these two operation are indistinguishable: a RMI is basically a transfer of
a code that identify the function and of a data buffer containg arguments.

31

void __user *ubuf = (void __user *)arg;
...
switch (cmd) {
case BINDER_WRITE_READ: {
struct binder_write_read bwr;
copy_from_user(&bwr, ubuf, sizeof(bwr));
...
if (bwr.write_size > 0) {

ret = binder_thread_write(...);
}
if (bwr.read_size > 0) {

ret = binder_thread_read(...);
}

copy_to_user(ubuf, &bwr, sizeof(bwr));
break;

}
}

Figure 3.8: Low-Level Execution of Binder Transaction

32

Chapter 4

Implementation Details

In this Chapter we focus on some fundamental implementation details and
on the low-level behavior of the system.

We deepen the mechanisms of Services Registration and Lookup and
Remote Method Invocation through Binder, afterwards we describe the
main components of the Kernel Module.

4.1 Service Registration and Lookup

Binder IPC can work only if these assumption are verified:

1. The server has registered the service;

2. The client knows the name of the service.

ServiceManager handles the registration process providing the method:

public void addService(String name, IBinder service, ...);

that publishes the name and the service 1. A client can bind2 itself with the
server using the getService() method:

public IBinder getService(String name);

that takes the name of the service as argument and returns the proper binder
interface3.

The client process has to open the driver and to map some virtual
addresses (8KB - 1MB of memory) for data transaction. When the client
obtains the requested binder, it only has to convert it in a service interface:

1It’s the interface - derived from IBinder that is automatically generated by AIDL.
2The client must have the right permissions to use the service.
3It is created once at initialization time

33

IRemoteService mIRemoteService;
mIRemoteService = IRemoteService.Stub.asInterface(service);

The method can be invoked normally by Java code. The framework
takes care of translate the method invocation in a binder transaction.

virtual status_t addService(const String16& name,
const sp<IBinder >& service, ...) {

Parcel data, reply;
data.writeInterfaceToken(IServiceManager::

getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service);
...
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION

, data, &reply);
return err == NO_ERROR ? reply.readExceptionCode() : err;

}

virtual sp<IBinder> getService (const String16& name) const
{

...
sp<IBinder> svc = checkService(name);
if (svc != NULL) return svc;
...
return NULL;

}

virtual sp<IBinder> checkService(const String16& name)
const {

Parcel data, reply;
data.writeInterfaceToken(IServiceManager::

getInterfaceDescriptor());
data.writeString16(name);
remote()->transact(CHECK_SERVICE_TRANSACTION , data, &

reply);
return reply.readStrongBinder();

}

The code of the native methods gives us an opportunity for some obser-
vations that will become more clear when we explain how driver manage
binder object:

• the target of transaction is the ServiceManager, the only binder whose
token (0) is known by all the system;

• the registration of a service consists in writing the corresponding
binder in a parcel and send it into the driver;

34

• the lookup consists in reading the binder of a service of which we
know the name.

4.2 The AIDL Interface

Once an Activity owns a binder of a service, it can invoke functions and
methods as it was local. Indeed, both the proxy and the stub class extends
Binder class 4, which hides all details on the service but the provided
methods. The steps an application should make to call the remote interface
are very simple 5:

1. declaration of a variable of the interface type defined in a .aidl file;

2. binding to the service calling Context.bindService();

3. at the end, disconnection calling Context.unbindService().

4.3 Proxy and Stub

A brief analysis of the native part of Binder cannot begin from anywhere
but IBinder.h, which is the common interface between proxy and stub. Its
main method are:

• localBinder(), which returns a reference to the local object;

• remoteBinder(), which returns a reference to the remote object;

• transact(), which is responsible to forward the transaction to the
driver.

class IBinder : public virtual RefBase {
public:

...
virtual status_t transact (uint32_t code,

const Parcel& data,
Parcel* reply,
uint32_t flags = 0) = 0;

...
virtual BBinder* localBinder();
virtual BpBinder* remoteBinder();

};

The Table 4.1 contains main difference between the implementation in
BBinder (the stub) and BpBinder (the proxy).

4 Binder class implements IBinder interface
5Generally these operations are supported by ServiceConnection: an interface for mon-

itoring the state of an application service [8]

35

Interface Stub Proxy
localBinder() {return this;} Not implemented
remoteBinder() Not implemented {return this;}

IPCThreadState::
{err = onTransact(code, self()->transact

transact() data, reply, flags);} (mHandle, code,
data, reply,
flags);

Table 4.1: Functions Comparison between Proxy and Stub

4.4 Kernel Module Components

In order to fully understand low-level Binder Protocol, we need to list and
to describe the key data structures used by the driver.

4.4.1 Nodes and References

The driver wraps all the useful information concerning Binder objects in a
binder_node. The main fields are:

• a pointer to the object in the owner process user space, so it identifies
uniquely the object itself;

• the process descriptor;

• the list of reference to the object.

There is a special instance with identifier 0 created at installation time and
reachable by all the processes in the system6.

struct binder_node {
...
struct binder_proc* proc;
struct hlist_head refs;
...
void __user *ptr;
...

};

The driver also manages the reference counting to these binder objects
using a thinner data structure containing:

6The other binders’ identifier is process-dependent. The driver takes care of translation
(i.e. the same binder may have different identifiers in different processes) during binder
transactions.

36

• a pointer to the descriptor of binder process;

• a reference to the binder object;

• a unique token;

• a counter for "strong" references;

• a counter for "weak" references.

The driver stores the references in a Red-Black tree.

struct binder_ref {
...
struct binder_proc *proc;
struct binder_node *node;
uint32_t desc;
int strong;
int weak;
...

}

While there is only one node per binder 7, there can be lots of references
per binder 8. A binder object exists in its process space till it has at least one
strong reference.

4.4.2 Processes and Threads

The binder driver holds the list of processes opened by the driver itself.
Each process has its own descriptor that is initialized when it opens the
driver. It contains all data structures associated with the process itself:

• The pool of threads that the process manage in order to perform
pending transactions;

• The set of binder owned by the process;

• The set of references to binder objects;

• The stack of pending transaction;

• The wait queue in which idle threads are blocked;

• Other stuff related to task, files and memory management.

7That is, a binder_node is a binder instance.
8That is, one for each process that has required that particular binder. All this references

points, inside the kernel, to the same binder object

37

Figure 4.1: Data Structure of Binder Process Descriptor

In the kernel space, local binders of a process are referenced directly by
binder_node pointers sorted in nodes r-b tree in the particular binder_proc
, while remote binders are primarily referenced indirectly via descriptors
(it is just driver’s word for the handle appearing in flat_binder_object)
sorted into refs_by_desc and refs_by_node trees in binder_proc [17].

static HLIST_HEAD(binder_procs);

struct binder_proc {
struct hlist_node proc_node;
struct rb_root threads;
struct rb_root nodes;
struct rb_root refs_by_desc;
struct rb_root refs_by_node;
...
struct list_head todo;
...

};

The Binder exploits a pool of threads for each binder process, in or-
der to rapidly handle user request. Each thread has its own descriptor
(binder_thread) containing:

• The thread identifier;

• The reference to the process;

• The stack of binder transaction to handle;

• The wait queue.

38

The driver provides a simple mechanism for a thread to register and
delete itself as a "service provider".

struct binder_thread {
...
int pid;
struct binder_proc *proc;
struct binder_transaction *transaction_stack;
wait_queue_head_t wait;
...

};

There is a maximum number of thread which is set by the user-level
when the binder is initialized. All binder threads in a pool are blocked
in the proc->wait queue waiting that the driver dispatches a transaction
to one of them. When the execution is finished, the thread returns in the
queue.

4.4.3 Transaction

The driver exchanges data between processes using binder a list of com-
mands. They are split into "command" if the direction is from the user to
the kernel (write operations) and "return" otherwise (read operations). The
paradigm is client-server (a simple request and reply 9). Each transact()
call will produce a binder_transaction object in the kernel, the object is
sent to the target process passing from the todo queue of handler thread, at
the end the thread waiting in onTransact() call is awaened and it finishes
the transaction.

struct binder_transaction {
...
struct binder_work work;
struct binder_thread *from;
struct binder_transaction *from_parent;
struct binder_proc *to_proc;
struct binder_thread *to_thread;
struct binder_transaction *to_parent;
unsigned need_reply:1;
struct binder_buffer *buffer;
...

};

The driver holds all information concerning transaction in a data struc-
ture, particularly:

9If needed.

39

• The type of work to do (e.g. a transaction, a completed transaction,
an operation on a binder, a dead binder notification, ...);

• The thread which requested the transaction10;

• The last binder_transaction for the client (from_parent) and for the
server (from_parent) 11;

• The target process;

• The target thread;

• The last binder_transaction for the server;

• The data buffer 12.

4.4.4 Buffer

Inter process communication allows to move data from one process’ address
space to another one. This operation usually need two copies 13.

Using binder_buffer data structure, the kernel performs only a single
copy to improve the efficiency of the Android Binder. It is possible because
the kernel address space of binder process is mapped to user space through
the mmap() system call, hence it can directly access the content without an
extra copy. The descriptor contains:

• The transaction that uses this buffer;

• The target object;

• The size in bytes of the data;

• The buffer (the data is in the form of Parcel).

struct binder_buffer {
...
struct binder_transaction *transaction;
struct binder_node *target_node;
size_t data_size;
...
uint8_t data[0];

};

10If BC_TRANSACTION, then the client thread, if it is BC_REPLY, then the server thread.
11Binder Transactions are organized in a stack
12The binder_buffer data structure is needed to wrap the memory buffer with manage-

ment information (linked transaction, flags and so on ...).
13Process A =⇒ Kernel, Kernel =⇒ Process B

40

4.4.5 Binder Object

A Binder Object can be shared among different processes. This fact permits
to register services 14) and to receive remote reference of an object.

Instead to send the whole interface, the driver uses a flattened represen-
tation of a Binder object. It takes care of re-writing the structure type and
data as it moves between processes to maintain token uniqueness and to
manage the transition from local to remote and viceversa.

The flattened data structure is only 16 bytes long and holds only:

• the type of binder (weak/strong, local/remote, file descriptor15);

• a 32-bit variable for flags;

• the id, which is a pointer if the binder is local (i.e. if it was created by
the process) or an integer if the binder is remote;

• the cookie, an object reference used for identification of death recep-
tors.

struct flat_binder_object {
unsigned long type;
unsigned long flags;
union {
void *binder;
signed long handle;

};
void *cookie;

};

4.4.6 Binder Transaction Data

The core functionality of Binder is data exchange between applications.
Among the big set of Binder commands, those really important takes care
of data transfer. They uses the descriptor shown below in order to handle
user data 16. It is used for both write and read operation: the driver takes
care of appropriate translation (e.g. memory addresses, binder identifier
and cookie).

14It’s sufficient that a Binder pass through the driver to create the node and the first
reference.

15Binder objects are used also to pass files. The flattened representation contains the file
descriptor.

16target field (and the following cookie) are only used for BC_TRANSACTION and
BR_TRANSACTION, i.e the commands related to a request of something. They identify the
target and contents of the transaction.

41

struct binder_transaction_data {
union {
size_t handle; // command transaction
void *ptr; // return transaction

} target;
void *cookie; // target object cookie
unsigned int code; // transaction command
unsigned int flags; // transaction flags
pid_t sender_pid; // pid of sending process
uid_t sender_euid; // euid of sending process
size_t data_size; // number of bytes of data
size_t offsets_size; // number of bytes of offsets
union {
struct {
const void *buffer; // transaction data
const void *offsets; // offsets from buffer

} ptr; // to flat_binder_object
uint8_t buf[8];

} data;
};

42

Chapter 5

Communication Protocol

In this Chapter we examine in depth communication protocol between
user and kernel, particularly we describe BINDER_WRITE_READ transaction.
Our analysis runs through all levels, from user application to system calls
execution, but focuses on the low-level protocol.

5.1 Binder Driver Commands

BINDER_WRITE_READ command encapsulates a very large set of sub-
commands that can be divided firstly in two categoires: write with "BC"
as prefix (Binder Command) and read with "BR" as prefix (Binder Return).
The values are composed using conventional macros for ioctl command
number:

• IO(int type, int number) used for a simple ioctl that sends noth-
ing but the type and number, and receives back nothing but an integer;

• _IOR(int type, int number, data_type) used for an ioctl that
reads data from the device driver. The driver will be allowed to
return to the user the size in bytes of the data structure ;

• _IOW(int type, int number, data_type) similar to _IOR, but used
to write data to the driver;

where:

• type is an 8-bit integer selected to be specific to the device driver. It
should be chosen so as not to conflict with other drivers that might be
listening to the same file descriptor.

• number is an 8-bit integer command number. Within a driver, distinct
numbers should be chosen for each different kind of command that
the driver services.

43

• data_type is the name of a type used to compute how many bytes are
exchanged between the client and the driver. This argument is, for
example, the name of a structure.

There are some commands which we could define "dual", because they
are used both in writing and in reading operations. It means that the
direction of the command is from a process to another process or, better,
that for each writing operation by a process (the client) there is another
process (the server) waiting on a reading operation.

In the Table 5.1 and 5.2 we have summarized the commands grouped
by types that share data format.

A deep analysis of the execution of each single commands is outside of
the scope of this thesis. Moreover, we believe that a survey on the flow of
commands generated by a user request (i.e. an invocation of native method
transact(...) is more interesting and helpful to reach our goals. A carfeul
reading of source code ([10] and [9]) should make clear the behavior of at
least simple commands.

5.2 Binder Communication Protocol for Data Transac-
tion

Figure 5.1: Classical Format a Binder Data Transaction

For the sake of simplicity, we concentrate our analysis on the data trans-
action commands. We made this choice for mainly two reasons:

44

Figure 5.2: Sequence Diagram of a Method Invocation

45

1. They are the only commands to handle user buffer;

2. They are launched by application request, instead of reference count-
ing or thread management commands, which are directly handled by
the framework;

The diagram in the Figure 5.2 represents in details the sequence of
Binder driver calls behind a simple method invocation (or data exchange)
between two processes. There is not a bijective correspondence between
the diagram and the effective ioctl invocations because the communication
protocol allows BINDER_WRITE_READ command to embed more than
one subcommands.

If we ignore the commands related to thread management by the server,
to the synchronization and to the copy of data we obtain the skeleton (circled
in red) of a classic two way Binder transaction.

5.2.1 Command Protocol

The Command Protocol is managed by binder_transaction(...)method,
which:

BC_TRANSACTION

• searches the reference to the
target binder using its token
(if the target is the Service
Manager, it uses the default
one) ;

• recovers the node and pro-
cess descriptors using the
reference;

BC_REPLY

• recovers the transaction
from the stack of the thread;

• sets the target_proc, the
target_thread using trans-
action descriptor;

then the body of the method is common:

• Setting of the target_list (the schedule of the work to do1) and
the target_wait () with those of target_thread - if exists - or of
target_proc 2;

• Memory allocation for binder_transaction and binder_work 3 data
structures;

• Creation of a Binder buffer in the memory space of target process;

1For binder_thread_read(...)
2Generally, a target thread exists if the process offer a service, so implement a pool of

thread to speed-up providing.
3Serve per la binder_thred_read

46

Figure 5.3: Evolution of Thread Stack during data transaction

47

• Initialization of binder_transaction using user data4;

• Copy of user data (both the data buffer and the offsets one) in the
allocated buffer;

• Loop on the whole set of offsets:

– Recover the flatten representation of the binder object;

– Update some fields of flat binder object to make it consistent the
target process;

BINDER_WEAK_BINDER

• Take the node and the refer-
ence to the binder object;

• Set the handle with the ref-
erence’s descriptor;

• Increment the reference
counting;

BINDER_WEAK_HANDLE

• Take the reference using the
handle of the binder;

• If exists the binder, then it’s
initialized and incremented,
otherwise it’s created;

• Check the type of transaction:

REPLY

• Pop from the
stack

TWO_WAY

• Push in the stack

ONE_WAY

• Set one way flag;

• Adding of binder_transaction in the target_list with BINDER_
WORK_TRANSACTION as work type;

• Waiting on the target_wait queue5.

5.2.2 Return Protocol

The return protocol is managed directly inside binder_thread_read(...),
which is quite different from its dual because it has to manage synchro-
nization. Indeed, an application who invokes Binder driver in read mode
must block itself until data are not ready. It means that read operation can
temporally precede the write one.

4User data are in the binder_transaction_data data structure, which is passed as
argument to this function, and is recovered by the buffer of user command.

5It will be BR_TRANSACTION and BR_REPLY commands with the appropriate target
to wakeup the thread.

48

// Body of binder_thread_read: 1st part.
binder_unlock(__func__);
...
ret = wait_event_interruptible(thread->wait,

binder_has_thread_work(thread));
...
binder_lock(__func__);
...

binder_thread_read(...)distinguishes the operations to execute us-
ing the work type of the transaction in the stack instead of the user com-
mands. After the awakening of a thread, the method recovers the list of
pending work and loop on the whole collection:

// Body of binder_thread_read: 2nd part.
while (1) {

uint32_t cmd;
struct binder_transaction_data tr;
struct binder_work *w;
struct binder_transaction *t = NULL;
if (!list_empty(&thread->todo))

w = list_first_entry(&thread->todo, struct binder_work ,
entry);

...
switch (w->type) {
case BINDER_WORK_TRANSACTION: {

t = container_of(w, struct binder_transaction , work);
} break;
case BINDER_WORK_TRANSACTION_COMPLETE: {

cmd = BR_TRANSACTION_COMPLETE;
put_user(cmd, (uint32_t __user *)ptr))
...

} break;
}

}

As in the command protocol BC_TRANSACTION and BC_REPLY is
the main, in the return protocol the BINDER_WORK_TRANSACTION
is by far the most important because takes care of the second part of data
transaction, which consists in the building of a binder_transaction_data
in the read buffer. 6, which basically consists in creating and initializing
a binder_transaction_data and in copying it into the read buffer of the
user.

6Remember by the sequence diagram that a data transfer requires a system call on both
sides, the former in write mode, the latter in read mode.

49

// Body of binder_thread_read: 3rd part.
if (t->buffer->target_node) {
struct binder_node *target_node = t->buffer->target_node;
tr.target.ptr = target_node ->ptr;
tr.cookie = target_node ->cookie;
...
cmd = BR_TRANSACTION;

} else {
tr.target.ptr = NULL;
tr.cookie = NULL;
cmd = BR_REPLY;

}
tr.code = t->code;
tr.flags = t->flags;
...
tr.data_size = t->buffer->data_size;
tr.offsets_size = t->buffer->offsets_size;
tr.data.ptr.buffer = (void *)t->buffer->data + proc->

user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer

->data_size , sizeof(void *));
...
copy_to_user(ptr, &tr, sizeof(tr));

5.3 Binder Object Exchange

One key function of the driver is the transfer of Binder Object between
processes. It uses flat_binder_object representation in order to save
memory. The driver has to manage the consistency of Binder objects during
the change of memory space. In short - local binders are represented directly
by pointers to the user space objects, while remote binders are referred by
handles. In the kernel driver, there is a system-wide unique representation
of each single binder by binder_node structure instance. It consists in an
incremental counter for each process. It means that in different processes a
binder could have different handle, but the driver takes care of translation
and guarantees the correspondence.

5.4 Internal Bug

While studying the internals of Binder, we discovered a problem in its cur-
rent implementation. In particular, we found that, under specific circum-
stances, the kernel module does not properly sanitize transaction data. This
allows a malicious application to send invalid transaction data to any pro-
cess reachable by using Binder, making such process to crash. In addition,

50

Figure 5.4: Binder Encapsulation in Parcel Data Buffer

even though we were not able to produce this behavior in our experiments,
the same bug could also lead to arbitrary code execution in the context of
the reached process.

We communicated this problem to the Android security team, that ac-
knowledged it and released a specific patch to the Binder kernel module.
However, at the moment of the writing of this thesis, the latest release of An-
droid includes an unpatched version of the Binder kernel module. For this
reason, at this time, we do not disclose further details about this problem.

51

TYPE COMMAND LISTS DATA FORMAT
(Read from the user buffer)

BC_INCREFS
Reference BC_ACQUIRE |------cmd-----|
Counting BC_RELEASE |----target----|

BC_DECREFS

Reference BC_ACQUIRE_DONE |------cmd-----|
Counting BC_INCREFS_DONE |---node_ptr---|

|----cookie----|

Buffer BC_FREE_BUFFER |------cmd-----|
Management |---data_ptr---|

|------cmd-----|
|----target----|
|----cookie----|
|-----code-----|

Data BC_TRANSACTION |--sender_pid--|
Transaction BC_REPLY |--sender_euid-|

|---data_size--|
|-offsets_size-|
|-data_buffer--|
|offsets_buffer|

Thread BC_ENTER_LOOPER
management BC_REGISTER_LOOPER |-----cmd------|

BC_EXIT_LOOPER

BC_REQUEST_ |------cmd-----|
Death DEATH_NOTIFICATION |----target----|

Notification BC_DEAD_BINDER_DONE |----cookie----|

Death BC_CLEAR_ |-----cmd------|
Notification DEATH_NOTIFICATION |----cookie----|

Table 5.1: Binder write commands with data formats

52

WORK TYPE COMMAND LISTS DATA FORMAT
(Write to user buffer)

BR_INCREFS
NODE BR_ACQUIRE |-----cmd------|

BR_RELEASE |-----ptr------|
BR_DECREFS |----cookie----|

DEAD_BINDER

DEAD_BINDER_ BR_CLEAR_DEATH_
AND_CLEAR NOTIFICATION_DONE

CLEAR_DEATH_ BR_DEAD_BINDER |-----cmd------|

NOTIFICATION
TRANSACTION_ BR_TRANSACTION_
COMPLETE COMPLETE

|-----cmd------|
|----target----|
|----cookie----|
|-----code-----|

TRANSACTION BR_TRANSACTION |--sender_pid--|
BR_REPLY |--sender_euid-|

|---data_size--|
|-offsets_size-|
|-data_buffer--|
|offsets_buffer|

Table 5.2: Binder read commands with data formats

53

Part II

Presentation of Jarvis

54

Chapter 6

Description

In the first part we have briefly introduced some topics concerning Android
Operating System and Binder IPC that we retained fundamental in order to
understand the remaining portion of this dissertation. We took for granted
the knowledge of Linux kernel.

In this Chapter we describe the tool we have implemented: the main
features and capabilities, the high-level schema and the organization in
modules.

6.1 General Information

Jarvis is a tool committed to bridge the semantic gap between high-level
Android APIs and low-level System Calls by means of tracking, filtering
and logging system calls in a new, Android-specific way. The purpose of
Jarvis are:

1. mapping APIs and system calls, in order to understand the sequence
of kernel call associated to a particular high-level function, which
imply the implementation of a filter mechanism.

2. rebuilding high-level behavior from a System Calls’ log;

The main components are:

• A kernel module that takes care of sniffing, filtering, logging and
storing of a collection of the most invoked system calls;

• A simple Android application to exploit some high-level classes,
which are the Classloader and the Parcel, to provide elaborated
data;

• A tool to automatically invoke a list of APIs, in order to reconstruct
their "signature";

55

• Some configuration and parsing scripts.

The tool is available at [20] and is structured as in Figure 6.1.

androidbinder-{1.0}

apps/ JAVA application

Jarvis/

. . .

. . .

bug/ Binder Vulnerabilities
compiler/ ARM-eabi Cross Compiler

device/ Testing Environment

documentation/ Documentation for Users and Developers

driver/ Jarvis Kernel Module

jarvis/

. . .

kernel/ Goldfish Kernel
scripts/ Configuration and Installation Scripts

stimulation/ Filter and APIs list

filter

prova.api

. . .

tools/ Other Stuff and Junk

Figure 6.1: Project Repository

The Android application has been designed for Android 4.4.2 (version
19 of SDK). It requires a minimum API level of 8, corresponding to Android
2.2.

The Linux Kernel is taken by Goldfish project: "a family of similar virtual
hardware platforms that mostly differ in the virtual CPU they support.
Although it started as an ARM-specific platform, has now been ported to
x86 and MIPS virtual CPUs" [12].

The testing environment was a device emulator (WVGA800).

56

6.2 Kernel Module

The main component we developed is a KLM 1, written in C, whose objective
consists in sniffing system calls in an efficient and transparent way. The
module constitutes the core of Jarvis. It was the most difficult to implement
and required a good knowledge of the low-level features of Linux kernel
and Android Binder.

6.2.1 General Overview

For each system call to track, the driver declares:

• A wrapper, to embed the system call and perform logging operations;

• A filter, to decide whether to log or to ignore a system call;

• A parser, to construe the signature2 of the function and, in some case
(i.e. the ioctl on binder device), to recover the data passing through
the kernel.

In the Figure 6.2 we can appreciate the graphical description of driver
workflow. Every intercepted system call pass through the filter and can be
either accepted or discarded.

In the first case, the driver creates a log entry with some general infor-
mation - such as name, process and thread id - and other data related to
that particular system call, then inserts it into a log list that is periodically
flushes into a file.

In the second case, the driver returns control immediately to the "right"
method. The functioning is not very different of other System Calls Monitor
excepts for two key features:

1. The filtering mechanism;

2. The quality of data, because the driver is able to go through the sig-
nature and to capture also the messages exchanged by the application
through the Binder.

6.2.2 System Call Interception

The System Call Table is an array in which Linux kernel stores the address
of the system calls. Hence, exchanging the address means basically inter-
cepting and deviating the system call invocation. In order to do this, the

1Kernel Loadable Module
2Parameters and return value.

57

Figure 6.2: Driver Workflow: General Overview

driver substitutes the value of the location corresponding to tracked system
call with the address of another function that we call generically wrapper.

The driver recovers the address of the table using a "magic" function. In
the Figure 6.3 there is a summary of the interception process:

1. Before the loading of the driver, the system call table contains the
"right" address. The driver stores wrappers addresses in an array of
function pointers;

2. During load() function takes place the exchange of the addresses :
the "right" one is put in a temporary buffer while the System Call Table
is filled with the function pointer to the corresponding wrapper3;

3. After the loading, the System Call Table points to the wrapper and
the address of the system call is stored internally by the driver;

4. Whenever an application invokes a system call, the kernel can launch
the wrapper, which provides to call the right system call and then
return to its caller.

The interception is completely transparent to the user because logging
functions recalls the original system call. Moreover, it allows to performs
some operations both before and after its execution. In other words, this
mechanism permits us to log both the parameters and the return value (and
all related data).

The substitution of addresses - as well as the creation of input and output
file in /proc file system - happens whenever the module is inserted into the
kernel.

3This operation is performed for each system call that has a re-definition inside the driver.

58

Figure 6.3: Interception of system calls

6.2.3 List of Tracked System Calls

The KLM is designed to be portable and expandable. A template (logtemplate
.c) is available int the repository. It can be used to speed-up the process
of adding new logging module. At now the tool deals with the following
system calls:

• File System;

– open;

– access;

– mkdir;

• Process Management;

– fork;

– clone;

– exec;

• Network Communication;

– socket;

– connect;

– bind;

59

• Special Android Device (Binder IPC);

– ioctl;

6.2.4 I/O Control on Binder Device

The first goal of our project is to understand and clarify all the questions
related to data binder transaction, particularly:

• The low-level protocol;

• The way in which process serializes and de-serializes objects;

• The link between ioctl calls on binder device and higher-level API.

For this reason, the tracking mechanism of ioctl system call is much
more elaborated than the others. It explores in depth binder data transaction
in order to log, among the system call’s signature:

• The code of high-level method;

• The binder used to perform the transaction;

• The data exchanged through the kernel4.

6.2.5 Filtering

In addition to the particular treatment of ioctl, the filter mechanism is the
functionality that makes Jarvis special.

The filter allows cleaning the log from system calls not directly related
with the APIs, like those of Graphical User Interface and of system log. The
driver starts to log when the filter file is pushed in.

The mechanism is very flexible: there is a general parser that takes care
of deciding whether to log a determined system call or not, and for each
one there is a user-defined parser.

Actually the filter syntax is firewall-based. In particular, it replicates the
rules of first generation firewalls based on packet filtering:

1. The firewall (filter) keeps no state. The filtering decision is made sep-
arately for every packet (system call), and does not take into account
any earlier decisions made on related packets (system calls).

2. The filtering decision is based only of the five basic fields such as
Source and Destination IP addresses, Protocol, and Source and Desti-
nation Port numbers (for protocols that have port numbers) [21]. In

4Data are serialized (i.e. flattened), so they need an interpreter.

60

our case the filter is based firstly on the system call name and on some
general parameters like the process id and the thread id, then on a
specific filter whose syntax is defined in the filter file.

Figure 6.4: Filter Creation Process

The Kernel module creates a list of entries during installation phase by
parsing the filter file. An entry has four data field containing:

• A flag (+ o -), which indicates the type of the entry: if the system call
matches with the entry content, then it is included (+) or discarded (-)
based on the content of this field;

• A code that contains the ID of the keyword or the system call;

• A pointer to a memory area containing data used by the filter;

• A function pointer to a method used to deallocate the previous buffer.

The actions that the filter can take if there is a match are:

• Pass: let the system call through;

• Drop: do not log the system call.

6.2.6 Logging

The logging mechanism is very simple: for each tracked system call the
driver inserts the data in a queue periodically flushed in the file system (i.e.
when a memory page is full).

To store data we use seqfile utility. It provides a safer interface to the
/proc 5 filesystem than other libraries because it protects against overflow

5It’s a virtual file-system that doesn’t contain ’real’ files but runtime system information
(e.g. system memory, devices mounted, hardware configuration, etc). For this reason it’s
can be regarded as a control and information center for the kernel. The reading/writing
operations are very fast.

61

of the output buffer and easily handles procfs files larger than one memory
page.

Moreover, it supplies methods for traversing a list of kernel items, iter-
ating on that list and also output facilities that are less error-prone than the
previous interfaces.

The log is stored in kernel memory for three precise reason:

1. the memory size is incredibly greater than that available to an appli-
cation;

2. storing data into user memory should require a new transition (Kernel
=⇒ User), that is new system calls with a greater overhead and the
problem of recursion;

3. performance (efficiency and speed).

6.3 Android Applications

The Java part of the tool is composed by a small Android application that
deal with some fundamental tasks regarding data interpretation, APIs in-
vocation and mapping. It is the other pillar on which Jarvis rests. Herein
lies the difference between this tool and others System Calls Monitors. The
Figure 7.1 shows the general structure. It exploits the same libraries to
provide:

• High-to-Low mapping;

• Low-to-High rebuilding;

6.3.1 High-Level Schema

The application presents a very simple MainActivity used for:

• Starting and Stopping the driver (DriverHandler);

• Invoking a a collection of APIs at runtime (Caller, Tester, ...);

• Building an high quality log, organized by APIs and System Calls
(Logger and derived modules);

• Inferring the high-level behavior given a log and the mapping (Rebuil
der, MappedAPI)

• Reconstructing complex objects from the raw stream captured by the
driver (IoctlBinder).

62

Figure 6.5: Main Components of Android Application

63

6.3.2 Data Interpretation

The Kernel module produce a bunch of raw data. At low-level we cannot
re-built byte streams that are significant only at high-level. Hence, we need
to exploit all the power of Java language and the facilities of Dalvik Virtual
Machine. In particular, we need to deserialize data passing through Binder
IPC and the way to do this is to recover API-specific Parcels by means of
Java reflection.

Reflection is commonly used by programs which require the ability to
examine or modify the runtime behavior of applications running in the JVM
(DVM maintains this feature). From the documentation ([16]): "This is a
relatively advanced feature and should be used only by developers who
have a strong grasp of the fundamentals of the language. With that caveat
in mind, reflection is a powerful technique and can enable applications to
perform operations which would otherwise be impossible".

We can exploit Java reflection because Binder Protocol set the callee
interface name as first parameter of a Binder Data Transaction. Starting
from it we can recover the class, the function, the arguments and return
values. If some data type is complex, we load them using Parcel.

Logging Capabilities

For application developers, the AIDL is a useful tool that avoids writing
all the code needed to decompose objects into primitive data types that
the operating system can understand, and "marshal" the object across that
boundary. Nevertheless, it’s not mandatory. Hence a programmer can
freely decide to implement its own IPC and interact directly with the Binder
driver using some customized native code in C++. In this case, it might
be possible that the content of the data buffer (i.e the content of the Parcel)
is different from the standard format. In this case, our application cannot
parse raw data logged by the driver.

Another open issue is obfuscated code. Obfuscation in Java limits the
use of the Reflection application programming interface and makes really
hard or at worst impossible to load classes, methods and Parcels.

In the Table 6.1 we summarize the Binder calls we can log.

6.3.3 Mapping

Dalvik Virtual Machine allows to perform custom class loading. Instead
loading Dalvik executable dex files from the default location, an application
can take them from alternative locations such as internal storage or over the
network. More in detail, Android dexCLassLoader can load classes from
.jar and .apk files containing a classes.dex entry. This can be used to
execute code not installed as part of an application.

64

Binder Call Type Logging Capability
Standard Binder calls to/from standard

Android libraries or Framework Services
X

Binder calls managed by automatically
generated code (AIDL)

X

Customized Binder calls (Stand-alone
Protocol)

X

Obfuscated Binder calls X

Table 6.1: Logging Capabilities of Jarvis

Jarvis contains a Python scripts that dynamically creates such java
archive parsing a file containing the list of APIs and push it into the system.
Once the .jar file is loaded, the application can recall the methods using
an ad-hoc interface.

6.3.4 Re-Building

The application can recognize APIs for which it has the mapping (i.e. the
list of corresponding system calls with parameters and return values).

Actually Jarvis utilizes a class to store the sequences of system calls
instead of a SQLlite database for ease of implementation, execution speed
and reduction of the size of available mapping.

The Re-Building process tries to match the logged system calls with
those contained in the mapping, emitting the API only if all the methods in
the sequence coincide in ordered succession.

6.4 Scripts and Utilities

The configuration scripts comprehends:

• a builder, which takes care of setup and compilation of Kernel module
and of building Android application;

• an installer, which is responsible of:

– Creation of the emulated device;

– System bootstrap with goldfish kernel;

– Making of a special directory where to put the driver module
and the filter file;

– Insertion of the module into the kernel;

– Parsing of APIs’ list file and realization of Java module for their
invocation;

65

– Insertion of the dex-complied .jar into the device emulator.

The choice of using Python is given by the greater power of this scripting
language with respect to Bash.

66

Chapter 7

Implementation

In this Chapter we go into implementation details of the tool, focusing on
the more delicate aspects such as log list, filter management and data de-
serialization by means of "dexLoaded" Parcels. The analysis of each part of
Jarvis will be done with a top-down approach, from the "main" function to
single modules and libraries.

7.1 Kernel Module

Figure 7.1: Main Components of Kernel Module

The driver provides some utilities to filter the data by the kernel and to

67

print them in a file. It uses the procfs library to exchange data at user level
and a seq_file to write the data on a file that can be read at user space,
and the normal write file system operation to read informations concerning
filtering.

7.1.1 Load and Unload Function

The loadmethod of the driver creates in the directory /proc/ the jarvisLog
file where it prints the data and the jarvisFilter where it recovers filter
directives. It takes care of the substitution of system calls addresses, keep-
ing the old ones in an array in order to re-call them inside the respective
wrapper:

const char* read_file_name = "jarvisLog";
const char* write_file_name = "jarvisFilter";
int num_syscalls;
void* old_syscalls[];
void* new_syscalls[];
unsigned long *sys_call_table;

static int __init load(void) {
struct proc_dir_entry *read_entry , *write_entry;
num_syscalls = length(tracked_syscalls);
read_entry = create_proc_entry(read_file_name , ...);
...
write_entry = create_proc_entry(write_file_name , ...);
...
sys_call_table = get_sys_call_table_addr();
for (i = 0; i < num_syscalls; i++) {

j = tracked_syscalls[i];
old_syscalls[i] = (void*) sys_call_table[j];
sys_call_table[j] = (unsigned long) new_syscalls[i];

}
return 0;

}

The unload method closes the proc file previously opened and restores
the "right" addresses on the System Call Table:

static void __exit unload(void) {
remove_proc_entry(read_file_name , ...);
remove_proc_entry(write_file_name , ...);
for(i = 0; i < num_syscalls ; i++) {

j = tracked_syscalls[i];
sys_call_table[j] = (unsigned long) old_syscalls[i];

}
}

68

7.1.2 Global and System Call libraries

The driver is self-contained and make a strong use of global variables and
C preprocessor macros. In particular, the drivers declares:

• the filter and the log list:

typedef struct safe_list {
struct list_head* list;
struct mutex* mutex;

} safe_list;
extern safe_list syslog;
extern safe_list sysfilter;

• the number of system calls and of general keywords:

extern int num_syscalls;
extern const int num_keywords;

• the arrays of addresses of the system calls and of the wrappers:

extern void* new_syscalls[];
extern void* old_syscalls[];

• the arrays of function pointers to filter and parser methods:

extern void (*keywords_parser[])(char*,int);
extern void (*syscalls_parser[])(char*,int);
extern bool (*syscalls_filter[])(void*,void*);

The syscall library contains the data structures containing that define
log information for each system call

7.1.3 SeqFile library

SeqFile is the output library of the Kernel module. In order to speed-up
logging process the driver manages a queue of entries, inserting in tail one
element for each logged system call and flushing it periodically starting
form the front to keep the order. The list is a shared resources so it is
protected by a mutex semaphore.

LIST_HEAD(log_list);
DEFINE_MUTEX(log_mutex);

The entry is designed to be flexible and to occupy less bytes as possible:

69

Figure 7.2: SeqFile Algorithm

typedef struct printable {
struct list_head list;
void *data;
void (*print)(struct seq_file*, void*);
void (*del)(void*);

} to_print;

The to_print data structure stores the memory buffer in which logged
data are contained and two function pointers:

• print, which specifies the way of printing data;

• del, which defines the way of deleting data after being flushed to the
file.

The methods above are specific for each system call, while the following
one serves to allocate and initialize to_print data structures.

70

void prtelem(void* data, void (*print)(struct seq_file*,
void*), void (*del)(void*)) {

to_print *p;
ALLOC(p,to_print,sizeof(*p),del(data);return);
p->data = data;
p->print = print;
p->del = del;
mutex_lock(syslog.mutex);
list_add_tail(&(p->list), syslog.list);
mutex_unlock(syslog.mutex);

}

Whenever a user tries to open the jarvisLog file, the Kernel executes
the algorithm shown in Figure 7.2, where start, next and stop are imple-
mented to handle the log list.

7.1.4 Filter library

The filtering unit contains the procedures to parse the related file and to
support this activity at runtime. The filter file has a very simple syntax:

@name{ ... }

The @ character indicates the starting of a new section, the name can be
either a system call or a particular keyword such as process, thread, fd
and the brackets {} wrap the content of the filter.

Whenever a writing operation is invoked on the filter file, the driver
cleans the previous filter list and creates a new one by means of a simple
method that scans the file looking for the special character and then invokes
a function that recognizes the keyword and calls the name-specific parser.

void parser(char* file, int len) {
int i = 0, ret;
while(i < len) {

ret = findchar(file + i,len - i,’@’));
i += ret;
...
ret = check_and_call(file + i,len - i)) < 0)
i += ret;

}
}

Indeed, each keyword/system call defines its own parser, which takes
care of creating a set of entries of the following type:

71

typedef enum filtype { PLUS, MINUS } filtype;
struct filter {
struct list_head list;
filtype t; // PLUS = include, MINUS = discard
uint32_t keyword;
void* data;
void (*del)(void*);

};

and inserts it into the filter list. The library provides this method to automate
insertion process:

void fltrelem (filtype t, uint32_t k, void* data, void (*
del)(void*)) {
struct filter* elem;
...
elem->t = t;
elem->keyword = k;
elem->data = data;
elem->del = del;
...
list_add_tail(&(elem->list), sysfilter.list);

}

The choice of delegating to the specific parser the creation of the filter list
permits the definition of different syntaxes, calibrating the filter mechanism
based on keyword-specific data.

When the driver log a system call, it scans the list looking for the cor-
responding keyword (the system call name or a general one). If there is a
match, then the specific filter is recovered and it compares in such a way the
filter directives (parsed from a file) with the data pointed by the respective
field.

LIST_HEAD(filter_list);
DEFINE_MUTEX(filter_mutex);

The library contains also some utility to handle basic filtering operation.

7.2 I/O Control Log

A brief analysis of the module that handles ioctl allows us to describe
some general features of the system calls logging modules and to explain
how to completely wrap a system call using simple assembly program1.

1We have used this technique also for process-related system call such as fork(), clone
() and execve(), in which the forking required an ex-post evaluation.

72

7.2.1 Common Functions

As all other similar library, ioctl.c contains the declaration and the defi-
nition of five fundamental functions:

• void ioctl_parser(char* str, int len);

• bool ioctl_filter(void* data, void* own);

These two function are addressed by the function pointers arrays
declared in the global library.

• void print_ioctl(struct seq_file* s, void* ptr);

The address of this function is stored in a to_print data structure
whenever a ioctl system call passes the filter.

• void del_filter(void* data);

• void del_ioctl(void* ptr);

These functions takes care of de-allocation of the structures related to
respectively the filter and the log data.

7.2.2 Assembly Routine

The ioctl is a system call that requires a complete log for our purposes,
in the sense that the driver must wait the end of the procedure in order to
capture some important information like return value or, in this case, data
sent back to client in two way transaction 2.

In order to solve this kind of problem we had to create a small ARM
Assembly routine to:

• identify an ioctl call with "/dev/binder" as target;

• call the log for the write transaction, which could be called before the
ioctl;

• invoke the "real" system call, saving the return value;

• call the log for the read transaction, which could be done only at the
end of ioctl, when the data were available to the user;

• restore the return value of the "real" system call;

• pass the control to the system call handler.

2Data are available only at the end of the system call.

73

.global new_ioctl; old: ldr r7, =old_ioctl;

.set BINDER, 3; ldr r7, [r7];

.align 8; ldr r7, [r7];
blx r7;

new_ioctl: cmp r4,#BINDER;
push {r4-r7,lr}; bne end;
mov r4,r0;
cmp r4,#BINDER; mov r5, r0;
bne old; mov r0, r6;

bl post_ioctl;
push {r0-r3}; mov r0, r5;
bl pre_ioctl;
mov r6, r0; end: pop {r4-r7,pc};
pop {r0-r3};

Once created this routine, it was easy, knowing the articulate protocol
of the binder ioctl, to log all the key data.

7.2.3 Log data

Each tracked system call declares a container for the logged data. In this
case:

struct transaction {
uint32_t syscall;
uint32_t total;
pid_t pid;
pid_t tid;
uint32_t function;
int arg_size;
int reply_size;
unsigned char* arg_buf;
unsigned char* reply_buf;
uint32_t checksum;

};

Some fields like the system call code (syscall), the process and thread
id (pid, tid), the length of data (total) and the checksum (checksum) are
common while some others like the function code (function), the request
and reply buffer (arg_buf and reply_buf) and the respective size (arg_size
and reply_size).

7.2.4 Filter Syntax

Each system call can be filter in a specific way by means of the couple of
functions ## syscallname ## _parser and ## syscallname ## _filter.

74

The former is used to parse the content of filter file related to the specific
keyword, the latter is invoked runtime during filtering process to compare
the logged data with those obtained by parsing the filter file.

According to Binder Communication Protocol, the first argument of
each data transaction is the interface token or rather the package name,
hence we retained a good choice organizing the filter file as a list of pairs
<+/- | package_name>:

[+/-]interface_path1
[+/-]interface_path2
[+/-]
[+/-]interface_pathN

The interface_path specifies a package or a group of packages that has
to be included (excluded) by the log operations.

For example, the row:

-com.android

excludes all the interfaces whose name starts with the string com.
android, viceversa, the row:

+

includes all the interfaces by default.
The parser creates for each pair an entry in the filter list initialized as

following:

Field Data
type +/-

keyword ioctl

data interface_path

del del_filter

3

We use the same criteria of firewall engine, it means that the filter oper-
ations stop at first row that matches the name of the interface, so the order
is fundamental.

7.3 Java Applications

At the top-level the MainActivity manages two fundamental operations:

• High-To-Low

3The ioctl keyword is a code associated to the name of the system call.

75

while(apiTest.hasRemaining()) {
driver.start();
apiTest.execute(this);
driver.stop();
...
log.doLog();

}

• Low-To-High

Intent intent = new Intent(Intent.ACTION_MAIN , null);
ComponentName cn = new ComponentName("com.example.

toysample","com.example.toysample.MainActivity");
intent.setComponent(cn);
...
driver.start();
startActivity(intent);
... // On received intent
Intent i = getIntent();
int id = i.getIntExtra("ID", 0);
...
driver.stop();
reb = new Rebuilder(PROCDIR + LOG);
reb.doReb();

7.3.1 Driver Handler

Logging process does not begin till the filter file is empty. Therefore, the
driver needs to be managed by an handler, which takes care of starting and
stopping it.

public void start() {
...
String cmd = "cat " + filterFilePath + " > " +

filterDriverPath;
String[] args = new String[]{shell,"-c",cmd};
Process p = Runtime.getRuntime().exec(args);
...

}
public void stop() {

...
String cmd = "echo \" \" > " + filterDriverPath;
String[] args = new String[]{shell,"-c",cmd};
Process p = Runtime.getRuntime().exec(args);
...

}

76

7.3.2 Logger

The driver save the high-to-low mapping in its folder "/data/jarvis" using
different file for each API. The logger class takes care of withdrawing raw
data from the driver log file and print it in the appropriate output file.

The first four bytes of the log are used as discriminant of the type of the
system call, then the buffer is passed to the appropriate class that handles
the printing. We use the Abstract Factory method in order to generalize the
creation of specific system call printer. Going into detail, all system call
printers implement a common interface (Interface), which is returned by
a factory (Builder) that uses system call code to decide which is the class
to build.

private FileInputStream is;
private FileOutputStream os;
private String className;
public void doLog() {
if (is == null || os == null) {...}
byte[] buf = new byte[Base.SIZEOFINT];
...
while(is.read(buf)>0) {
int s = ByteBuffer.wrap(buf).....getInt();
SyscallIndex magic = SyscallIndex.fromValue(s);
Builder factory = new Builder(magic,is,os);
Interface syscall = factory.GetInstance();
...
syscall.print();

}

7.3.3 Rebuilder

The same utilities are used in the reverse process, which is divide in two
phases:

• checking the type of system call;

• comparison of the contents.

Passing both control allows handler to push forward into the sequence
till the API is matched. The first comparison checks only the type of system
call, in order to immediately discard different system calls. The second com-
parison happens using, for example, the interface name in case of Binder
call or the file path in case of open. As a general rule, the logged system call
and the next element of the API’s sequence must match for each data not
runtime-dependent.

77

for (MappedAPI api: apis) {
if (index == api.getSysIndex()) {

res = syscall.compare(api.getData());
if (res) {

api.incStatus();
if (api.match())

recognized.add(api.getName());
}

}
...

}

7.3.4 Caller

The most elaborated part of the application concerns APIs invocation. In
order to do high-to-low mapping, Jarvis loads runtime a "stimulation" .jar
file, in which all the APIs are embedded, by means of DexClassLoader:
the Android-specific class loader that can recover Java classes from .jar or
.apk file with a classes.dex entry.

The external archive must to be re-compiled using dx tool.
During the setup phase the driver loads .jar file and stores in a queue

the set of APIs to map.

public Caller(String dexFilePath , String dexDir,
ClassLoader loader) {

...
names = new ArrayList <String >();
apis = new ArrayList <Class<?>>();
Enumeration <String> en;
...
dexFile = DexFile.loadDex(dexFilePath , dexDir + "/

dexCache", 0);
dexLoader = new DexClassLoader(dexFilePath , .. , loader);
for (en = dexFile.entries(); en.hasMoreElements();) {

String className = en.nextElement();
Class<?> tmp = Class.forName(className ,true,dexLoader);
apis.add(tmp);
names.add(className);
...

}
}

During the execution phase, the method loaded using Reflection is in-
voked:

78

public void execute(Activity activity) {
inExecution = names.remove(FIRST);
Class<?> tmp = apis.remove(FIRST);
Class <?>[] params = new Class[] {Activity.class};
String method = "call";
Method m = tmp.getDeclaredMethod(method,params);
m.invoke(tmp.newInstance(),activity);

}

7.3.5 System Call Log and Object Deserialization

The code of Java classes that manages high-level data interpretation is very
simple: it takes the data from an input byte stream and print it in a more
elaborated way using an output stream. The most complex part concerns
the parsing of data buffer from Binder in BinderIoctl class. The following
function handles object type and data loading:

private Object loadObject(Class<?> type, Parcel parcel) {
Object myObj;
if(type.equals(Byte.TYPE) || type.equals(Byte.class))

myObj = parcel.readByte(); // Basic Types
...
else if(type.isArray()) { // Array
if(type.equals(String[].class))

myObj = parcel.createStringArray();
...

}
...
else { // Object

Field field = type.getDeclaredField("CREATOR");
field.setAccessible(true);
Parcelable.Creator CREATOR = (Parcelable.Creator) field

.get(null);
myObj = CREATOR.createFromParcel(parcel);
...

}
return myObj;

}

7.4 Stimulation and Mapping

Building and installation process are tedious, so we have automated it using
two bash scripts. The key component is a Python program who takes care
of the creation of APIs’ wrappers, their compilation and loading into the
device. The creation of wrappers starts from a template:

79

template =
""" package com.jarvis;
import android.app.Activity;
{0}
public class {1}Tester {{

public void call(Activity activity) throws Exception {{
{2}

}}
}}"""

The script parses the file in which APIs are listed and replaces {0}, {1},
{2} with, respectively:

• the package needed to invoke API;

• the name of the API, which is concatenated with "Tester" to form the
name of the testing class;

• the code.

These information have to reside in the.apifiles, inside thestimulation
folder. We pass as argument a reference to an activity in order to make

available an application context, which is fundamental, for instance, to look
for system services.

dir = "stimulation"
for f in os.listdir(dir):
if f.endswith(".api"):

tmp = open(os.path.join(dir,f))
api = tmp.read().split("\n")
tmp.close()
imports = "\n".join([i for i in api if i.startswith("

import ")])
code = "\n".join([i for i in api if not i.startswith("

import ")])
javacode = template.format(imports,f.replace(".api","")

,code)
javafile = open(os.path.join("src/com/jarvis",f.replace

(".api","Tester.java")),"w")
javafile.write(javacode)
javafile.close()

The compilation is split in two phase: the first using classical javac to
creates bytecode files, the second to adapt the archive for Android Class
Loader:

80

os.mkdir("obj")
cmd = "javac -verbose -d obj -classpath $ANDROID_SDK/

platforms/android -19/android.jar:obj -sourcepath src/
src/com/jarvis/*.java"

subprocess.call(cmd,shell=True);
cmd = "$ANDROID_SDK/build-tools/19.0.0/dx --dex --output=

stimapp.jar obj/"
subprocess.call(cmd,shell=True);
subprocess.call("rm -r src/ obj/",shell=True);

81

Chapter 8

User Guide

In this Chapter we describe the right way to use Jarvis: compilation and
setup process, configuration and syntax of filter file, building and installa-
tion. Jarvis is a newborn tool and has ample room of improvement. Some
design choices permits the implementation of new facilities quickly and
easily: we explain the way to implement new module using the library of
the tool and to define a different syntax for the filter.

8.1 Setup

Jarvis is available at the git repository [20] and can be downloaded upon
request to the authors using the clone command of git tool. The most
important folders are:

• apps, which contains the Android application;

• driver, which holds the Kernel module;

• scripts, which contains the configuration scripts.

Although the tool was designed to run on Android KitKat and "Gold-
fish", it can be ported on different Kernel and also on different emulators or
devices.

8.1.1 Building phase

The compilation of kernel module and Android application is completely
automatic. The user must only set the environment variable related to
kernel source code location in the building script, which must be launched
from the root of the project folder.

tom@Mappamondo:~$ cd $ROOT
tom@Mappamondo:~/Projects/androidbinder$./build

82

8.1.2 Installation phase

The installation of Jarvis into the emulator is completely automatic as well.
The script set the execution environment creating the device with the work-
ing directory and pushing in the kernel module, the filter file and the java
archive with with APIs to stimulate (used only in case of high-to-low map-
ping).

tom@Mappamondo:~/Projects/androidbinder$./install

8.1.3 Usage phase

Figure 8.1: Main Activity of Jarvis Application

The graphical interface is minimal, with two buttons to launch the map-
ping in both directions (high-to-low and low-to-high) and a view to print
the results:

83

• the list of tracked APIs, in case of high-to-low mapping (Figure 8.1);

• the list of recognized APIs, in case of low-to-high mapping.

8.2 Adding System Call Logging Library

To implement a log of a system call, the developer has to write a file in
which to implement the logging function. The convention for the name is:
log ## syscall_name ## .c. Each new file must be added to the Makefile
of the module.

8.2.1 Header file

The header file must include the main libraries:

• logglobal.h

• logseqfile.h

• logfilter.h

• logsyscall.h

Particularly, it should declare a data structure in the last library to define
the format of the data to print. From this point forward we refer to this
structure as container. Some fields are mandatory:

struct syscall_name {
...
uint32_t syscall;
uint32_t pid;
uint32_t tid;
...

};

where:

• syscall must be initialized with YOUR_SYSCALL_NAME;

• pid must be initialized with the identifier of the current process;

• tid must be initialized with the identifier of the current thread.

84

8.2.2 Source file

The source file should contain the following method:

• A function that log the data and insert them in the wrapper.

void print_ ## syscall_name(struct seq_file* s, void*
ptr);

This function should do the following key operations:

– Allocation of the memory needed by the following data structure
(defined in logseqfile.h):

typedef struct printable {
struct list_head list;
void *data;
void (*print)(struct seq_file*, void*);
void (*del)(void*);

} to_print;

that must be initialized in the following way:

∗ data = pointer to the wrapper (which must be dynamically
allocated)
∗ print = function pointer to the method that specifies the

way to print your data in the file read by the user.
The method must be composed by two arguments:
1. The first argument is the file;
2. The second is the pointer to the wrapper 1.

and can utilize this subroutine:

void inline print(struct seq_file* s, void* elem
, int len);

that print in the seq_file s the buffer pointed by elem of
length len.
∗ del = function pointer to the method that specifies the way

to delete the wrapper. If you do not allocate anything except
the wrapper, this function should not do anything, so it’s
sufficient to define it as the following:

void del_ ## syscall_name (void* ptr) {return;}

1This pointer is generic (void*, so it must be cast before executing any print operation

85

– Insertion of the structure in the tail of log list. It is reachable,
with the corresponding mutex by means of a global variable:

typedef struct safe_list {
struct list_head* list;
struct mutex* mutex;

} safe_list;
extern safe_list log;

• A function that parses the system-call related content of the filter file.

void syscall_name ## _parser(char* str, int len);

It takes care of:

– Scan each row/section of the specific part of the file;

– Create one of more entries of following type:

typedef enum filtype { PLUS, MINUS } filtype;
struct filter {
struct list_head list;
filtype t; // PLUS = include, MINUS = discard
uint32_t keyword;
void* data;
void (*del)(void*);

};

to insert in the filter list. The data fields must be initialized in the
following way:

∗ t = type of the filter element. It indicates the action to do if
there is a match between its content and that of the logged
data;
∗ keyword = the code of the special keyword or the system

call;
∗ data = the content of the filter element: it could be a string,

a number, a complex type;
∗ del = the function that deallocates the memory buffer pointed

by data. If there is not complex data structure to free, it can
be a simple return instruction.

void del_filter(void* data);

86

• A function that filter the data captured by the driver and decide
whether to print them into the log or discard them:

bool syscall_name ## _filter(void* data, void* own);

This function should perform some comparison between the content
of the filter and that of the logged data. There is an utility for string-
type filter:

bool fltrcmp(const char* name, const char* filter);

that returns true if the substring of name is equal to filter, false
value otherwise.

8.2.3 Modifications in global files

The user has to add few rows to a couple of files. Particularly:

1. logglobal.h

• In the macroFOREACH_SYSCALLSan entrySC(YOUR_SYSCALL_NAME
). The convention is to use uppercase letters.

• An entry MY_SYSCALL(name, args_type_list); with the fol-
lowing parameters:

name: the lowercase name of the system call;
args_type_list: the list of arguments type.

2. logprocfs.c

• An entry at the end of array tracked_syscalls with the value
__NR_ ## your_syscall_name. The __NR_macro is a kernel util-
ity which holds the index of the syscall inside the table;

• An entry at the end of array new_syscalls with the name of
your log function, that is defined by the macro MY_SYSCALL as
new_ ## your_syscall_name;

• An entry at the end of array syscalls_filter with the name of
your filter function, that is defined by the macro MY_SYSCALL as
your_syscall_name ## filter;

• An entry at the end of array syscalsl_parser with the name of
your parser function, that is defined by the macro MY_SYSCALL as
your_syscall_name ## filter.

87

8.2.4 Working to the log and filter lists

Our driver contains two global lists: one for the filter and one for the log.
They are implemented using Linux library list.h, so each entry contains
a field struct list_head and the code to handle insertion and extraction
is very simple.

• Whenever we want to insert an element (a log structure) in the log
list, we should use the following code:

prtelem(ptr, print_ ## syscall_name ,del_ ##
syscall_name);

• Whenever we want to insert an entry (a filter unit) in the filter list, we
should invoke the following method

fltrelem(type,SYS__ ## syscall_name ,data, del_filter);

We remember that the read file is used for the log (informations tracked)
and the write file is used for the filter (firewall syntax).

8.3 Template

The driver folder contains a file (logtemplate.c) that is not compiled during
build phase. It can be as starting point for a new module:

void print_ ## syscall_name(struct seq_file* s, void* ptr)
{

uint32_t checksum = 0;
struct your_syscall_name *x = ptr;
print(s,&(x->syscall),sizeof(uint32_t));
checksum += x->syscall;
print(s,&(x->total),sizeof(uint32_t));
checksum += x->total;
print(s,&(x->pid),sizeof(pid_t));
checksum += x->pid;
print(s,&(x->tid),sizeof(pid_t));
checksum += x->tid;
// ...
x->checksum = checksum;
print(s,&(x->checksum),sizeof(uint32_t));

}

88

void your_syscall_name_parser(char* str, int len) {
/*
* N.B. For each element
* Parsing
* Allocation and initialization of your filter data

structure.
*/
fltrelem(PLUS,SYS__## syscall_name ,/*filter data

structure*/, del_filter);
}

asmlinkage long new_## syscall_name(...) {
your_syscall_name old_your_syscall_name = old_syscalls[

SYS__ ## syscall_name];
pid_t pid = getpid();
pid_t tid = gettid();
int fd = NO_INFO;
// ...
struct global data = { pid, tid, fd };
struct your_syscall_name *x;
uint32_t total = 0;
void* to_cmp;

/*
* Allocation end initialization of your filter data

structure
*/
to_cmp = /* Pointer to your filter data structure */
if(!filter(to_cmp,data,SYS__## syscall_name)) goto end_##

syscall_name;
total += sizeof(uint32_t); // For the checksum
x->syscall = syscall(SYS__your_syscall_name); //

Translation of id
INS_VALUE(pid,x->pid,total,your_syscall_name ,%u);
INS_VALUE(tid,x->tid,total,your_syscall_name ,%u);
x->total = total;
prtelem(a,print_your_syscall_name ,del_your_syscall_name);
return res;

end_your_syscall_name:
return old_your_syscall_name(...);

}

8.4 Java Module

Jarvis high-level framework support the development of new log library in
a similar way. It makes the following assumptions:

89

• The expected log format for each system call contains firstly the iden-
tifier, then the length of the data structure, pid and tid;

• Checksum stands at the end of each log, and must be control using
little endian standard.

If they are consistent the Java class can assume the following structure:

public class MySyscall extends Base implements Interface {
private ... ; // Private Field
public MySyscall(FileInputStream is, FileOutputStream os)

throws IOException {
super(SyscallIndex.MY_SYSCALL ,is,os);
... // Initialize private fields from tmp buffer

}
public void print() throws IOException {

String s;
super.printHeader();
s = ... ; // Private data
os.write(s.concat("\n").getBytes(MODE));
...
super.printTail();

}
public boolean compare(Class<?> syscall) throws

IOException {
if (syscall == this.getClass()) {

...
}
return false;

}
}

Where the Interface contains the two methods used during the ex-
ecution either in High-to-Low direction (print) or in Low-To-High one
(compare), and the Base provides all the common data fields and the pro-
cedures for reading/writing by a stream.

90

Part III

Mapping API - System Call

91

Chapter 9

Binding High and Low Level
Behavior

In this Chapter we describe the results of some initial tests done to verify
the correct working of our tool, the goodness of the approach and the
effectiveness of the filter mechanism.

9.1 Objectives

The objective of this dissertation were:

• understanding the low-level protocol of Binder Framework

• implementing Jarvis, a tool constituing a first trial of bridge the se-
mantic gap between Android APIs and system calls;

• providing a description and a user guide for our tool;

• demonstrating that the rightness of approach, that is we can map some
APIs and use these mapping to rebuild high-level behavior from the
system calls;

• measuring the efficiency of some capability of the tool as the filter.

We proceeded in the following way:

1. we have a tool that given a set of APIs produces a detailed list of
system calls that can be considered a sort of "signature" of the API
itself;

2. we create the mapping for a number of APIs (that span over different
interesting/meaningful categories), and we show that even for the
binder-related ones the system gives useful information;

92

ID2 API Interface
1 sendTextMessage android.telephony.SmsManager
2 getLastKnownLocation android.location.LocationManager
3 openConnection java.net.URL
4 FileInputStream java.io.File
5 exec java.lang.Runtime

Table 9.1: List of APIs and Interfaces invoked in the test

3. we show how the output system calls are disjointed enough so that
it’s possible to "go back", from the system calls to the APIs.

The novelty would be that this is the first work that tries to understand
if it’s possible to automatically reconstruct the high-level behavior of an
Android application.

9.2 Experiment Planning

Jarvis is able to perform the following operations:

1. System Call logging;

2. High-level data interpretation and de-serialization of Binder mes-
sages;

3. Android APIs invocation and mapping;

4. Reconstruction of high-level behavior given a system calls log and a
collection of APIs⇔ System Calls mapping.

The experiment is divided in two phases:

1. Using Jarvis in high-to-low direction to map some APIs ??. The choices
were made based on two considerations:

• Logic relationship between APIs and tracked system calls 1;

• Chance to log Binder Calls (Table 6.1), that is maximum for sys-
tem services that fully utilize Binder Framework.

The stimulation phase consists in APIs invocation, system calls log-
ging, filtering and storing of the signature in terms of:

1If our tool comprehends network-related system calls, then we choose some APIs that
should use it reasonably.

93

• System Calls list;

• Arguments and return values;

• Data exchanged through the binder.

2. Using Jarvis in low-to-high direction, exploiting the previous map-
ping and a Toy Sample that calls sequentially a list of either mapped
or not Android APIs, looking for false positive or false negative.

Figure 9.1: Jarvis Usage in Bidirectional Way

In rebuilding phase, we measure the performance of the filter to analyze
the load on kernel depending on the number of APIs correctly recognized.

9.3 Testing Environment

All the tests have been made in an emulated environment because of:

• Difficulty to install a modified kernel in a real Android device (by
default it is not possible to load external module);

94

• Objectives of the work, which are focused to understand if the ap-
proach and the ideas behind Jarvis are correct, does not specifically
require a real environment.

9.3.1 Filter Settings

The filter is an important novelty of our tool. Despite the simplicity of the
syntax, it permits discarding lots of useless - in terms of reconstruction of
high-level behavior - system call, obtaining a substantial reduction of load
on the Kernel Module (Table 9.8).

We have adopted only few basic filter, centered on the main "waste" of
system calls, which regards in particular open and ioctl:

• ioctl:

– Discarding all requests/responses to android.gui.IGraphicBuf
ferProducer;

– Discarding all requests/responses toandroid.gui.DisplayEvent
Connection;

– Discarding all requests/responses toandroid.ui.ISurfaceCompo
ser;

– Discarding all requests/responses to android.os.PowerManager;

• open:

– Discarding all files whose path starts with /proc, because it con-
cerns mainly system and process log;

– Discarding all files whose path starts with either /vendor/lib
or /system/lib, indeed Android looks for system library (like
libc.so and libstdc++.so) in both these folder, and recover them
only from one;

• access:

– Discarding all access to file/.../gralloc.goldfish.so, becuase
it is related to GPU emulation.

9.4 Mapping API in System Call

The stimulation phase produced the mapping shown in Table 9.2, 9.3, 9.4,
9.5 and 9.6. We discovered that the number of system calls per APIs is
quite large (some dozens), in we put in the tables only the pattern we use
to re-build the high-level behavior.

95

System Parameters
Calls

Interface Code Argument
ioctl android.os. 1 isms

IService
Manager

Path Pid Tid Uid Gid Euid Egid
access /data/misc/ 564 881 1001 1001 1001 1001

sms/codes

Interface Code Argument
ioctl android.os. 1 phone

IService
Manager

Path Pid Tid Uid Gid Euid Egid
access /data/data/ 564 564 1001 1001 1001 1001

com.android.
providers.
telephony/
databases/
mmssms.db
-journal

Path Pid Tid
open /data/data/ 564 564

com.android.
providers.
telephony/
databases/
mmssms.db
-journal

Table 9.2: sendSMS(...) API mapping

System Parameters
Calls

Path Pid Tid
open /data/jarvis/ 1184 1184

text.txt

Table 9.3: new FileInputStream(...) API mapping

96

System Parameters
Calls

Pid Tid Child ID
fork 1084 1084 1105

Pid Tid Function
execve 1105 1105 /system/bin/sh

Pid Tid Path
open 1105 1105 /dev/__pro

perties__

Pid Tid Path
open 1105 1105 /dev/tty

Table 9.4: Runtime.exec() API mapping

System Parameters
Calls

Path Pid Tid
open /dev/urandom 1129 1151

Path Pid Tid
open /data/misc/ 1129 1151

keychain/
pinst

Family Pid Tid Type Protocol Fd
socket AF_LOCAL 1129 1151 SOCK_STREAM PF_UNSPEC 35

Pid Tid Child ID
clone 58 389 1153

Path Pid Tid
open /system/ 1129 1151

etc/hosts

Family Pid Tid Type Protocol Fd
socket AF_INET 58 1153 SOCK_DGRAM PF_PACKET 35

Family Pid Tid Fd
connect AF_INET 58 1153 35

Path Pid Tid
open /sys/ 1129 1151

class/net

Table 9.5: OpenHTTPConnection(...) API mapping

97

System Parameters
Calls

Interface Code Argument
ioctl android.os. 1 location

IService
Manager

Table 9.6: getLastKnownLocation(...) API mapping

9.5 Toy Sample

Given the filtered mapping, we have to verify if Jarvis is able to log the
system calls.

A Toy Sample is a software, an application, a tool that simulates the
real one in some particular aspects. It’s widely used in the first phase
of researches because it ease testing phase and allow to understand the
behavior it replicates. In our case, the ToySample simulates workflow of
real application that invokes some basic Android services such as sending
an SMS, recovering GPS position or open an HTTP connection. These
services utilizes the APIs that Jarvis can recognize.

In Figure 9.2 we describe the general structure of the ToySample3.

Figure 9.2: Toy Sample Structure

3We have not included all the classses that composes the application

98

ID Interface Recognized
1 android.telephony.SmsManager X
2 android.location.LocationManager X
3 java.net.URL X
4 java.io.File X
5 java.lang.Runtime X

Table 9.7: Rebuilding Process Result

System Call Counter
Total Logged Percentage

ioctl 3518 15 0.42
open 298 38 12.75
access 210 10 4.76
all 4084 121 2.96

Table 9.8: Effectiveness of Filter on Mapped APIs

It is launched directly by Jarvis and this consistitute the unique slightly
adaptation the original tool for integration with Toy Sample.

9.5.1 Rebuilding Process

The experiment showed a quite surprising results: Jarvis works better with
more elaborate signature with respect to simple APIs. Indeed, in the small
set of mapped APIs, Jarvis was capable to recognize those which has either
a more robust signature, in terms of variety and number of system calls, or
a direct interaction with the Service Manager.

9.5.2 Filter Benchmark

In Table 9.8 we measure the effectiveness of the filter for the system calls
ioctl and open and access. Data are related to the execution time of
ToySample, which is around 6 seconds.

Although we did not have filters for some system calls, and those im-
plemented are quite rudimentary, they substantially reduce the load on the
kernel.

99

Conclusion

In this final pages we try to take stock and draw conclusion of our work.
We describe the strong as well as the weak points of our tool, providing
some hints for future improvement and making some research proposal.
Our work has been a first trial to:

1. produce a robust documentation for Binder, focusing on the interac-
tions between the driver and the overlying framework;

2. implement a flexible and expandable tool that produce a rich log
tracking system calls in a smart way;

3. develop a filtering mechanism to reduce overload, which could allow
testing and using on real environment;

4. verify the goodness of approach.

The results show that:

• It’s impossible to recognize high-level APIs with a small signature, at
worst with only a system call, such as Runtime.exec and FileInput
Stream, because their low-level representation is not disjoint enough
to associate that pattern to a specific high-level behaviour.

• The key system calls are:

– ioctl, because is related to Binder so to data exchanged between
processes and to remote procedure call of key services by activi-
ties;

– open, because is related to file and permits to check how Android
use its storage;

– access, because is related to permissions and allows monitoring
the security control at low-level.

• Filtering mechanism is fundamental to clean the log from useless and
meaningless elements and it might constitues the chance to test Jarvis
into device devoted to real uses.

100

• Binder protocol makes really easy, for a tool like Jarvis, monitoring
the system manager because the name of required service is easily
recoverable by the data buffer.

Open Issues

Jarvis is designed to be flexible and expandable, leaving to future devel-
opers the faculty to log new system calls without modification to existent
code. We try to suggest some improvements that, for several reasons, have
not been implemented yet. These modifications concern both adding new
capabilities and refining upon testing environment:

APIs Database

Actually Jarvis saves the high-level log in a file. It is reasonable, increasing
the number of mapped APIs, to create a SQLlite Database that may be
easily and fast queried, and to better oranized the rebuilder component in
a hierarchical way adding, for instance, a cache mechanism.

Dynamic Filtering

The filter is externally provided to Jarvis by a file on which each system call
has its own syntax. Jarvis kernel module provides also other keyword-based
filter mechanism that use the process id, the thread id, and the file descriptor.
It could be implemented a filter that changes its behavior at runtime. For
instance, we might be interesting to monitor only the applications that
require a specific service to ServiceManager. Jarvis driver could record all
processes (by means of their IDs) that makes a determined operation, in this
case a request to ServiceManager, simply adding dynamically an element
to the filter list.

Real Devices

Filter mechanism turned out to be a good intuition, the overload for the
kernel in terms of memory space and time dedicated to logging operation
is drastically reduced. It could allow using the tool on rooted real devices,
in order to check the behavior of Jarvis during the normal utilization of the
mobile device.

101

Appendices

102

Binder Terminology

Summary of Binder terminology [5]:

Binder (Framework) : The overall IPC architecture;

Binder Driver: The kernel-level driver that manages the communication
across process boundaries;

Binder Protocol: Low-level protocol (ioctl-based) used to communicate
with the Binder driver;

Binder Interface (a.k.a iBinder): A well-defined behavior (i.e. methods)
that Binder Objects must implement;

AIDL: Android Interface Definition Language used to describe methods
signatures on a IBinder Interface;

Binder (Object): A generic implementation of the IBinder interface;

Binder Token: An abstract 32-bit integer value that uniquely identifies a
Binder object across all processes on the system;

Binder Service: An actual implementation of the Binder (Object) that im-
plements some methods;

Binder Client: An object exploiting the behavior offered by a binder ser-
vice;

Binder Transaction: An act of invoking an operation (i.e. a method) on
a remote Binder object, which may involve sending/receiving data,
over the Binder Protocol;

Parcel: Container serializing messages (data and object references) sent
using Binder. A unit of transactional data - one for the outbound
request, and another for the inbound reply;

Marshalling: A procedure for converting higher level applications data
structures (i.e. request/response parameters) into parcels for the pur-
poses of embedding them into Binder transactions;

103

Unmarshalling: A procedure for reconstructing higher-level application
data-structures (i.e. request/response parameters) from parcels re-
ceived through Binder transactions;

Proxy: An implementation of the AIDL interface that(un) marshals data
and maps method calls to transactions submitted via a wrapped
IBinder reference to the Binder object;

Stub: A partial implementation of the AIDL interface that maps transac-
tions to Binder Service method calls while (un)marshalling data

Context Manager (a.k.a. servicemanager): A special Binder Object that is
used as a registry/lookup service for other Binder Objects (name →
handle mapping).

104

Bibliography

[1] Thomas Ball. “The concept of Dynamic Analysis”. In: Bell Laboratories
(1999).

[2] T. Holz C. Willems and F. Freiling. “Toward automated dynamic mal-
ware analysis using cwsandbox.” In: Proc. of the IEEE Symposium on
Security and Privacy (2007).

[3] Wietse Venema Dan Farmer. Forensic Discovery. Ed. by Addison Wes-
ley. 2004.

[4] Christopher Kruegel Darren Mutz Fredrik Valeur and Giovanni Vi-
gna. “Anomalous System Call Detection”. In: Tissec (2006).

[5] Saketh Paranjape Dhinakaran Pandiyan. Android Architecture and Binder.
http://rts.lab.asu.edu/web_438/project_final/Talk8AndroidArc_
Binder.pdf. 2012.

[6] DHS and FBI. “Threats of Mobile Devices Using the Android Oper-
ating System”. In: Unclassified (2013).

[7] Aristide Fattori et al. “CopperDroid: On the Reconstruction of An-
droid Malware Behaviors”. In: MA-2014-01 (Feb. 2014).

[8] Google. Android Documentation. http://developer.android.com/
reference/packages.html. 2014.

[9] Google. Android Kernel 3.10 - Binder driver source code. https : / /
android.googlesource.com/kernel/common.git/+/android-
3.10/drivers/staging/android/binder.c. 2014.

[10] Google. Android Kernel 3.4 - Binder driver source code.https://android.
googlesource.com/kernel/common.git/+/android-3.4/drivers/
staging/android/binder.c. 2013.

[11] Google. Android Security Overview. https://source.android.com/
devices/tech/security/. 2014.

[12] Google. Goldfish Project: kernel sources for the emulated platform. https:
//android.googlesource.com/kernel/goldfish.git. 2011.

105

http://rts.lab.asu.edu/web_438/project_final/Talk 8 AndroidArc_Binder.pdf
http://rts.lab.asu.edu/web_438/project_final/Talk 8 AndroidArc_Binder.pdf
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
https://android.googlesource.com/kernel/common.git/+/android-3.10/drivers/staging/android/binder.c
https://android.googlesource.com/kernel/common.git/+/android-3.10/drivers/staging/android/binder.c
https://android.googlesource.com/kernel/common.git/+/android-3.10/drivers/staging/android/binder.c
https://android.googlesource.com/kernel/common.git/+/android-3.4/drivers/staging/android/binder.c
https://android.googlesource.com/kernel/common.git/+/android-3.4/drivers/staging/android/binder.c
https://android.googlesource.com/kernel/common.git/+/android-3.4/drivers/staging/android/binder.c
https://source.android.com/devices/tech/security/
https://source.android.com/devices/tech/security/
https://android.googlesource.com/kernel/goldfish.git
https://android.googlesource.com/kernel/goldfish.git

[13] P.R.L. Eswari Grandhi Jyostna Pareek Himanshu. “Detecting Anoma-
lous Application Behaviors using a System Call Method over Critical
Resources”. In: Advances in Network Security and Applications: 4th In-
ternational Conference (2011).

[14] Palmsource Inc. Open Binder documentation.http://www.angryredplanet.
com/~hackbod/openbinder/docs/html/BinderIPCMechanism.html.
2005.

[15] Andrew Honig Michael Sikorski. Practical Malware Analysis - The
Hands-On guide to Dissecting Malicious Software. Ed. by No Starch Press.
2012.

[16] Oracle. Java Platform Documentation - Standard Edition. http://docs.
oracle.com/javase/8/. 2014.

[17] T. Rosa. Android Binder Security Note: On Passing Binder Through An-
other Binder. 2011.

[18] Thorsten Schreiber. “Android Binder”. MA thesis. Rhus-Universitat
Bochum, 2011.

[19] Stephanie Forrest Steven A. Hofmeyr and Anil Somayaji. “Intrusion
Detection using Sequences of System Calls”. In: Journal of Computer
Security 6 (1998), pp. 151–180.

[20] Antonio Bianchi Tommaso Latini Yuri Iozzelli and Yanick Frantanto-
nio. Jarvis. https://git.seclab.cs.ucsb.edu/gitlab/antoniob/
androidbinder. 2014.

[21] Avishai Wool. Packet Filtering and Stateful Firewalls - Handbook of Infor-
mation Security, vol. III. Ed. by John Wiley Sons. 2006.

[22] Zhou W. Zhou Y. Wang Z. and Jiang X. “You get off of my market: De-
tecting Malicious App in official and Alternative Android Markets”.
In: Proceedings of the 19th Network and Distributed System Security Sym-
posium (2012).

106

http://www.angryredplanet.com/~hackbod/openbinder/docs/html/BinderIPCMechanism.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/BinderIPCMechanism.html
http://docs.oracle.com/javase/8/
http://docs.oracle.com/javase/8/
https://git.seclab.cs.ucsb.edu/gitlab/antoniob/androidbinder
https://git.seclab.cs.ucsb.edu/gitlab/antoniob/androidbinder

List of Figures

1.1 Smartphone Sales compared with Last Two Years 7
1.2 Control flow with a System Call Monitor 8

2.1 Android Architecture . 14
2.2 Main Components of an Android Application 15
2.3 Android Security Overview 17

3.1 Sequence Diagram of Registration and Lookup Processes . . 21
3.2 Binder Proxy-Stub model . 22
3.3 Data Transaction Schema . 24
3.4 Overview of Binder Framework Architecture 25
3.5 UML Diagram of the Main Components of Binder APIs . . . 26
3.6 UML Diagram of the Main Components of Binder Framework 28
3.7 Binder Stack for Remote Method Invocation 29
3.8 Low-Level Execution of Binder Transaction 32

4.1 Data Structure of Binder Process Descriptor 38

5.1 Classical Format a Binder Data Transaction 44
5.2 Sequence Diagram of a Method Invocation 45
5.3 Evolution of Thread Stack during data transaction 47
5.4 Binder Encapsulation in Parcel Data Buffer 51

6.1 Project Repository . 56
6.2 Driver Workflow: General Overview 58
6.3 Interception of system calls 59
6.4 Filter Creation Process . 61
6.5 Main Components of Android Application 63

7.1 Main Components of Kernel Module 67
7.2 SeqFile Algorithm . 70

8.1 Main Activity of Jarvis Application 83

9.1 Jarvis Usage in Bidirectional Way 94
9.2 Toy Sample Structure . 98

107

List of Tables

4.1 Functions Comparison between Proxy and Stub 36

5.1 Binder write commands with data formats 52
5.2 Binder read commands with data formats 53

6.1 Logging Capabilities of Jarvis 65

9.1 List of APIs and Interfaces invoked in the test 93
9.2 sendSMS(...) API mapping 96
9.3 new FileInputStream(...) API mapping 96
9.4 Runtime.exec() API mapping 97
9.5 OpenHTTPConnection(...) API mapping 97
9.6 getLastKnownLocation(...) API mapping 98
9.7 Rebuilding Process Result . 99
9.8 Effectiveness of Filter on Mapped APIs 99

108

	Introduction
	Background and Context
	Malware Analysis
	System Call Monitoring

	Objectives
	Related Work
	Approach

	Work Organization

	I Android Operating System and Binder IPC
	Android Overview
	Android Architecture
	Structure of Application
	Intent

	Security principles
	Permissions mechanism

	Binder Framework
	Binder Objects
	Service Manager
	Communication Model
	AIDL

	Binder Transaction and Parcel
	Other Features
	Death Notification
	Reference Counting

	Architecture Overview
	Java APIs
	C++ Middleware
	Remote Method Invocation

	Kernel Module
	Binder Protocol

	Implementation Details
	Service Registration and Lookup
	The AIDL Interface
	Proxy and Stub
	Kernel Module Components
	Nodes and References
	Processes and Threads
	Transaction
	Buffer
	Binder Object
	Binder Transaction Data

	Communication Protocol
	Binder Driver Commands
	Binder Communication Protocol for Data Transaction
	Command Protocol
	Return Protocol

	Binder Object Exchange
	Internal Bug

	II Presentation of Jarvis
	Description
	General Information
	Kernel Module
	General Overview
	System Call Interception
	List of Tracked System Calls
	I/O Control on Binder Device
	Filtering
	Logging

	Android Applications
	High-Level Schema
	Data Interpretation
	Mapping
	Re-Building

	Scripts and Utilities

	Implementation
	Kernel Module
	Load and Unload Function
	Global and System Call libraries
	SeqFile library
	Filter library

	I/O Control Log
	Common Functions
	Assembly Routine
	Log data
	Filter Syntax

	Java Applications
	Driver Handler
	Logger
	Rebuilder
	Caller
	System Call Log and Object Deserialization

	Stimulation and Mapping

	User Guide
	Setup
	Building phase
	Installation phase
	Usage phase

	Adding System Call Logging Library
	Header file
	Source file
	Modifications in global files
	Working to the log and filter lists

	Template
	Java Module

	III Mapping API - System Call
	Binding High and Low Level Behavior
	Objectives
	Experiment Planning
	Testing Environment
	Filter Settings

	Mapping API in System Call
	Toy Sample
	Rebuilding Process
	Filter Benchmark

	Conclusion
	Appendix Binder Terminology
	Bibliography

