
A dynamical systems approach to systemic risk

Piero Mazzarisi

UNIVERSITÀ DI PISA
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Introduction

In financial markets, systemic risk can be defined as financial system instability typically caused

by a stochastic shock and exacerbated by relations between financial intermediaries. By def-

inition, systemic risk involves the financial system, a collection of interconnected institutions

that have mutually beneficial business relationships through which illiquidity, insolvency, and

losses can quickly propagate during periods of financial distress. In fact, a systemic financial

instability is related to the market structure created by financial institutions operating in the

market and systemic risk refers to the possibility that a negative shock affecting a micro region

of the financial system, has bad consequences at the macro level. As a consequence, the initial

shock propagates throughout the whole financial system and the risk becomes systemic.

Systemic risk in financial markets is a problem of renewed interest after the financial crises

that have affected recently the USA economy (2007-2009) and the eurozone economy (2009+).

These events have highlighted the limitations of existing economic and financial models based

on the assumption of intrinsic stability of efficient financial markets. These models are based on

the hypothesis that a financial market is a stable system which reaches always the equilibrium,

at most in the long run. The occurrence of recent financial crises breaks this hypothesis and

these events have made evident the necessity of a new scientific approach, based on complex

dynamical systems, in order to describe the problem of systemic risk and systemic financial

stability in a more general framework [1].

Financial markets exhibit several of the properties that characterize complex systems [2].

They are open systems in which many subunits, financial institutions, interact nonlinearly in the

presence of feedbacks. In this framework, systemic risk can be seen as an emergent phenomenon

[3], and it can be interpreted as a phase transition from stability to instability.

Many scientific works have tried to describe systemic risk in financial markets, using the

methodology of networks theory, dynamical systems theory, and statistical physics. They have

shown that the (in)stability of financial markets can be associated with the network properties

[4, 5] of the financial system, its dynamical properties [6], and in particular feedback effects [7, 8]

arising from the impact of the trading strategy adopted by financial institutions. The recent

work of Corsi et al. [9] combines these evidences to show how financial innovations1, reducing

the cost of diversification, increase the strength and coordination of feedback effects and as a

1Financial innovations refer to the creating and marketing of new types of financial tools, such as new securities,
in order to reduce costs. For example, through the securitization of asset investments, financial institutions
may reduce the risk associated with their portfolio. This practice is equivalent to create a diversified portfolio
characterized by low risks without incurring costs of diversification.
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consequence, they increase systemic risk in financial markets. A challenging issue concerns the

fact that financial markets are complex systems characterized by a behavioral component, which

describes the forecasting strategies of financial institutions. The behavioral component of the

financial market dynamics reflects the fact that, differently from the weather forecasting which

will not influence the future state of the atmosphere, the forecasting of future prices and risks

will influence today the choices of financial agents, and as a consequence it will define the future

state of financial market dynamics.

This behavioral component is defined through the expectations scheme adopted by financial

agents to forecast prices and risks of assets. At the micro level, the expectations scheme adopted

by a financial agent, defines its portfolio choices, and as a consequence its dynamical state during

the evolution of financial market dynamics. At the macro level, the aggregate behavior of all

financial agents influences the systemic financial stability, and systemic risk can be seen as the

breaking of stability due to a collective phenomenon arising from the aggregate behavior of all

financial agents.

Typically financial agents populating a financial market, are boundedly rational. They don’t

know exactly the future realization of prices and risks but they forecast it, looking at the

historical time series of past realizations [1]. The forecasting of future risks is found by a

financial agent according to an expectations scheme, that is a rule which uses the values of past

realizations of risks in order to obtain a forecast. This rule is not fixed and a financial agent

may change it in order to improve its forecasting strategy.

Hommes et al. [10, 11] have theoretically and experimentally studied how the expectations

of financial agents follow statistical laws, and for this reason they can be described through

mathematical models. The main point is that the today expectations of financial institutions

about the future prices and risks, influence today the dynamics of financial markets. Hence,

in financial markets the expectation feedbacks play a crucial role in defining the dynamical

properties of the financial system.

In this thesis, we propose a dynamical systems approach to systemic risk, in order to an-

swer the following question: What is the relationship between the role of expectation feedbacks

defining the dynamical behavior of financial institutions at the micro level and the emerging

macro consequences on systemic financial stability? Specifically, we propose a dynamical model

to study the dynamics of a financial market when feedback effects are accounted for. We focus

on the possible dynamical outcomes displayed by financial markets due to feedback effects and,

through our dynamical approach, we study systemic risk as an emergent phenomenon charac-

terized by the breaking of dynamical stability of the financial system.

In our model, the financial market is stylized through two different sets. From one side there

are the investment assets whose prices are described by stochastic processes. In quantitative

finance, the interesting quantity is not the price but it is the return, i.e. the increment of

price divided by the price itself. In our approach, the return of an asset is a Gaussian stochastic

variable whose variance can be considered as a measure of the risk associated with the investment

asset. The stochastic process associated with the return of an asset is formed by two components.

The first component is described by a discrete Wiener process and it is related to the intrinsic

2
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randomness of financial time series. It is called exogenous component because it represents a

variable which does not depend on other variables. On the contrary, the second component of the

stochastic process depends on the demand or supply for the investment asset. Typically, financial

markets are illiquid, i.e. the buying (the selling) of an asset tends to put upward (downward)

pressure on its price. Hence, this second component depends on the trading strategies adopted

by financial institutions operating in the market. It is called endogenous component because it

depends on other variables which characterize the dynamics of the financial market. When the

return processes are stationary, the endogenous component of the returns has a deterministic

nature because it is related to the past realizations of these variables.

All assets are assumed to be equivalent and characterized by the same values of expected

return and risk.

From another side there is a collection of financial institutions which create their portfolio2

selecting a linear combination with equal weights of investment assets. In the model, financial

institutions define the values of two variables: the number of assets and the value of total

investment. The number of assets in a portfolio is called diversification. The value of total

investment of a financial institution is the total asset position of the institution, and it is related

to another variable called leverage. The money invested in assets by a financial institution is

the sum of its equity (its own capital) and its debt. The leverage of a financial institution is the

ratio between the total asset position and the value of its equity. Hence, the adopted leverage

by a financial institution can be interpreted also as the degree of the debt associated with the

financial institution.

In real financial markets, the largest investors operating in the market typically adopt a

trading strategy called target leverage strategy. In our model, we consider that all financial

institutions adopt target leverage.

In fact, the value of leverage changes stochastically in time because the actual value of the

total asset position of a financial institutions depends on the stochastic evolution of asset prices.

The target leverage strategy adopted by financial institutions consists in maintaining a fixed

leverage by buying or selling assets.

The optimal values of the diversification and the target leverage are chosen by financial

institutions solving an optimization problem in the presence of diversification cost and the Value

at Risk (VaR) constraint.

The cost of diversification is related to the fact that a portfolio with a larger number of

assets incurs larger expenses in terms of qualified staff, physical locations, etc. When the cost

of diversification decreases, financial institutions increase the diversification of their portfolios

in order to reduce the portfolio risk3.

2A portfolio is defined by a stochastic variable, the portfolio return, that is the sum of m stochastic variables,
the asset returns, weighted by a factor 1

m
3It is exactly true when the returns of assets are independent stochastic variables. In the model, the return of an

asset is described by the sum of the exogenous component and the endogenous one. By neglecting the endogenous
component, exogenous components of asset returns are independent and identically distributed Gaussian noises.
In this case, a linear combination of m asset returns weighted by the factor 1

m
, is characterized by a value of

the variance that is reduced by 1
m

compared with the variance of only one asset return. When the endogenous
component is present, in general diversification does not reduce the portfolio risk for two reason. The first one is
related to the fact that the hypothesis of independence is not valid anymore. The second reason refers to the fact

3
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The VaR constraint represents a debt limit for financial institutions. Hence, the VaR con-

straint imposes an upper bound to the leverage. This constraint depends on the risk of portfolio

and specifically, when the risk associated to the portfolio of a financial institution is high, the

financial market policy imposes to reduce the debt level, reducing so the value of the leverage.

In defining leverage and diversification, financial institutions try to maximize the expected

return of their portfolio minimizing the risk associated with the portfolio. The values of di-

versification and leverage strictly depend on the risk of assets. In the model, we assume that

financial institutions solve the same optimization problem in order to find the optimal values of

leverage and diversification.

In illiquid financial markets, the target leverage strategy has the potential for a positive feed-

back effect. In fact, if the prices of assets in the portfolio increase, it follows that the leverage

decreases. As a consequence, a financial institution buys in order to bring back the leverage to

its optimal value, the target. This trading strategy is said portfolio rebalancing. By buying, the

prices of assets increase further. The same mechanism works in reverse. The strength of this

positive feedback effect is proportional to the value of the adopted target leverage. The larger is

the leverage, the larger is the impact of the positive feedback. At the same time, also the coordi-

nation of these feedback effects affecting different assets plays a crucial role. When the number

of assets in the portfolios of financial institutions is large, feedback effects create a correlation

between initially uncorrelated assets. In fact, the larger is the diversification of portfolios, the

larger is the overlap between the portfolios owned by different financial institutions. According

to the movements of asset prices, financial institutions buy or sell in a similar way when they

own similar portfolios. Hence, the impact of positive feedback effects increases due to the coor-

dination of financial institutions. In this sense, the aggregate behavior of financial institutions

operating in the market may have crucial consequences on systemic financial stability.

In this thesis, the endogenous component of the return describes the impact of this positive

feedback due to the portfolio rebalancing made by financial institutions. The endogenous com-

ponent describes the impact of feedback effects at a specific time depending on the choices of

leverage and diversification made by financial institutions at a previous time. Hence, when the

stochastic processes governing the returns of assets are stationary, the positive feedback has a

deterministic nature. In fact, the previous choice about leverage and diversification made by

financial institutions defines the future impact of feedback effects due to the collective behav-

ior of all financial institutions. Looking at the averaged values, the dynamical properties of

the financial market at a specific time depend on the portfolio optimization problem solved by

financial institutions at the past time.

A important point of this thesis is that feedback effects increase also the risk of assets because

typically the positive feedback due to the portfolio rebalancing amplifies the oscillations around

the mean return, increasing so the variance associated with each asset. Since the portfolio

choices strictly depend on the risk of assets, feedback effects will influence importantly the

dynamical evolution of portfolios. For this reason, the strength (due to higher leverage) and the

that the value of the endogenous component depends on the values of other variables, such as diversification and
leverage.

4
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coordination (due to similarity of the portfolios of financial institutions) of feedback effects may

lead to a collective phenomenon characterized by the breaking of systemic financial stability and

we refer to it as systemic risk.

In this thesis, we investigate the dynamics of the typical portfolio of a financial institution as

a consequence of the impact on risk of the feedback effects arising from the aggregate behavior

of all financial institutions operating in the market. At each time, a financial institution has to

solve its portfolio optimization problem in order to satisfy the VaR constraint. This constraint

strictly depends on the risk of portfolio. The larger is the portfolio risk, the smaller has to be

the value of total asset position, and so the leverage. On the contrary, during less risky periods,

a financial institutions may choose a larger value of its total asset position.

Hence, at each time, a financial institution makes expectations of the risk associated with its

portfolio and according to this it has to define the optimal values of leverage and diversification.

The crucial point is related to the fact that a financial market is an expectation feedback

system, that is a system in which financial institutions know all past history of the financial

market dynamics and they make choices at the present time trying to anticipate what will be

the future realizations of prices and risks related to investment assets. In this thesis, we study

how boundedly rational financial institutions may form their expectations about future risks

using the time series of the past realizations of risk. According to the risk expectations they

optimize their portfolios, defining the values of target leverage and diversification. The portfolio

dynamics is strictly related to systemic risk. In fact, in financial markets systemic financial

stability strictly depends on the adopted values of leverage and diversification.

We study two different schemes through which financial institutions form the risk expecta-

tions: naive expectations and adaptive expectations.

Financial institutions have naive expectations of risk when the forecast is equal to the last

observed risk. In this case, when the cost of diversification is high and as a consequence, financial

institutions optimize their portfolios choosing small values of leverage and diversification, the

dynamics of the financial market is stable and converges asymptotically to a steady state. If

diversification costs decrease, financial institutions may create a more diversified portfolio. When

the impact on risk of the positive feedback is small, a more diversified portfolio is less risky and as

a consequence, a financial institution may increase its investment, and so the leverage, fulfilling

still the VaR constraint. The dynamics of the financial market remains stable. At a given

threshold of the cost of diversification, the strength and the coordination of feedback effects

trigger the breaking of financial stability of whole system. After the threshold, the dynamics of

the financial system oscillates between highly risky periods and less risky periods. During these

financial cycles, we can notice how the financial leverage switches from aggressive configurations

(speculative periods) to cautious ones (non-speculative periods). The financial leverage cycles

reflect the occurrence of periods characterized by a macro-component of risk, due to an higher

impact of positive feedback effects, followed by periods in which feedback effects do not affect

importantly the risk of assets. Mathematically, the breaking of systemic financial stability occurs

in a very specific way through a period-doubling bifurcation. Hence, from a dynamical point

of view, systemic risk refers to the occurrence of bifurcations that break the stability of the

5
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Figure 1: Bifurcation diagrams of the leverage, λ, as a function of the cost of diversification, c. A bifurcation
diagram shows the asymptotic dynamics of the system when the initial transient period is passed, for each value
of the bifurcation parameter, in this case the cost of diversification. Figure shows the dynamics associated with
a portfolio variable, the leverage. Panel (a) shows the case of naive expectations of risk. At the right, we can
see a stable dynamics characterized by a steady state. At a given threshold c2, a period-doubling bifurcation
occurs and after the bifurcation point, the dynamical behavior of the financial system is cyclical with period 2.
Panel (b) shows the case of adaptive expectations of risk. Like the naive case, at the right the dynamics is stable.
At a given threshold, a period-doubling bifurcation occurs and the dynamical behavior is cyclical with period 2,
again. But differently from the naive case, a period-doubling cascade occurs. There exist values of the bifurcation
parameter at which the period of the cycles doubles, and finally the dynamical system becomes chaotic.

financial system. When financial cycles appear, the amplitude of cycles can be interpreted as a

measure of systemic risk in the financial market.

By approaching the bifurcation, the convergence time, necessary to the system in order

to reach the steady state after a perturbation, increases. In dynamical systems theory, this

phenomenon is known as the critical slowing down. One important consequence is that the

slowing down leads to an increase in autocorrelation related to the portfolio variables before

approaching the criticality. The increased autocorrelation can be interpreted as a early-warning

signal that the dynamics of the system is approaching a bifurcation. Therefore, in the model, it

is a early-warning signal of systemic risk.

After the bifurcation point, the dynamical behavior of the system is cyclical. The amplitude

of these cycles is strictly related to the value of the bifurcation parameter, in this case the cost of

diversification. Close to the bifurcation point, the amplitude of the cycle is a square-root function

of the cost of diversification. During financial cycles, financial institutions make systematic

mistakes in forecasting the risk associated with the investment assets. In this situation, clear

information appears, for example, in the autocorrelation function of the forecasting errors. This

information may be used by financial institutions in order to improve the expectations scheme

adopted in forecasting the risk.

Subsequently, we investigate a more realistic scenario in which financial institutions adopt

adaptive expectations of risk. In forecasting the risk of an asset, financial institutions know all

past realizations of the asset risk and the forecast is equal to the sum of all past observations

weighted by exponentially decreasing factors over time. These factors are defined univocally by

a parameter that can be interpreted as the memory of the expectation scheme. An adaptive

expectations scheme characterized by a larger memory, gives more weight to the older realizations

6
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of risk in respect to the recent ones. On the contrary, less memory means to consider mostly the

last observations. Once the memory is fixed, when the cost of diversification is high, the dynamics

of the financial market is stable. Decreasing the cost of diversification, at a given threshold

a breaking of systemic financial stability occurs by means of a period-doubling bifurcation.

Decreasing further the cost of diversification, a cascade of period-doubling bifurcations leads the

financial system towards (physical) chaos. Hence, under adaptive expectations, the financial

system exhibits a dynamical transition from a periodic cyclical behavior to deterministic chaos.

In the chaotic regime, in addition to the occurrence of highly risky periods identified by a

very large macro-component of risk due to feedback effects, the chaotic dynamical behavior of

financial system is characterized by positive entropy, suggesting how much an improvement of

expectations scheme by financial institutions may be hard due to missing information about

financial market dynamics. In fact, the positive entropy reflects the sensitive dependence on

initial conditions, that is the signature of the chaotic evolution of a dynamical system. This

phenomenon has the effect of reducing autocorrelation of forecasting errors, for example, and

as a consequence less information is available to financial institutions in order to improve their

expectations scheme.

In the case of adaptive expectations, the memory of the expectation scheme plays an im-

portant role. When the memory increases, it follows that the financial market dynamics moves

towards stability.

Financial institutions operating in the market look at the time series of forecasting errors

and they try to improve their forecasting strategy using the available information coming from

past financial performances. Hence, we analyze the case in which the memory of the adaptive

expectation scheme is a time-varying parameter during the evolution of financial market dynam-

ics. We assume that financial institutions modify the value of the memory parameter looking

at the autocorrelation function of the forecasting errors. This represents a simple case of how a

financial agent can take information about the goodness of its forecasting strategy and use this

information to improve its expectation scheme. In this thesis, a procedure of adaptive learning

adopted by financial institutions has stabilizing effects on financial market dynamics because it

leads the financial system towards systemic stability.

Finally, from the point of view of financial market policy, the results of this thesis high-

light how the dynamical properties of financial markets may drastically change when market

conditions change. In fact, once the memory of the expectations scheme adopted by financial

institutions is fixed, a decrease of diversification costs in the presence of strong feedback effects

may lead to the breaking of systemic financial stability. Similarly to diversification costs, also

relaxing the VaR constraint will have the same consequences. In fact, the relaxing of the con-

straint allows to financial institutions to adopt a larger value of target leverage. This leads to

an increase of the strength of feedback effects and, as a consequence, the financial system moves

towards systemic instability.

The thesis is divided into five Chapters:

1. Financial systemic risk: we give a definition of systemic risk in financial markets and

we highlight the most important and universal aspects related to the study of systemic

7



CONTENTS

financial stability, from the point of view of network theory and dynamical systems theory.

2. Dynamical systems theory: we recall some basic elements of dynamical systems theory,

in preparation for our dynamical systems approach to systemic risk.

3. A model of systemic risk in financial markets: we review robust empirical evidences

of the presence of feedback effects in financial markets, and we introduce the model of

Corsi et al. [9]. Specifically, in the model feedback effects are the consequence of the

impact on the price and risk of assets due to the trading strategy adopted by financial

institutions.

4. The role of expectation feedbacks in systemic financial stability: we introduce our

original dynamical model in which feedback effects are considered through expectations of

risk. In this Chapter we discuss in detail the dynamical behavior of the model and the

role of expectation feedbacks in systemic financial stability. We describe the case of naive

expectations. All the material of this Chapter is original.

5. Adaptive expectations and adaptive learning: we describe the case of adaptive

expectations, highlighting how universal nonlinear aspects related to the feedback may

trigger the dynamical transition to chaos. Finally, we discuss a possible generalization

of our dynamical model, in which financial institutions may improve their expectations

scheme according to a learning procedure. Hence, we discuss the case of adaptive learning.

All the material of this Chapter is original.

8



Chapter 1

Financial systemic risk

What is Systemic Risk? Focusing on the case of financial markets, the answer to this question

is not trivial. By definition, systemic risk involves the financial system, a collection of financial

institutions investing in economic resources, the investment assets, whose price evolves stochas-

tically in time. Financial markets exhibit several of the properties that characterize complex

systems [2]. They are open systems in which many subunits, financial institutions, such as banks,

hedge funds, pension funds etc. , interact nonlinearly in the presence of feedback. Systemic risk

in financial markets refers to collective phenomena describing how in certain conditions the

perturbations affect significantly the entire financial market, thus becoming systemic.1

Systemic risk is in effect an emergent phenomenon. Systemic risk occurs in the field of social

sciences, and in particular finance, but there is a very interesting analogy with the visionary idea

of P. W. Anderson, explained in his paper “More Is Different” [3]. The key point is that in the

passage from the reductionist analysis, focused on the study of the elementary unit of a system,

to the constructionist one, focused on the study of an extensive system, entirely new properties

appear. In physics, this is essentially due to the fact that the state of a really big system has

less symmetry with respect to the elementary units, which compose it. The phenomenon of

superconductivity [12] is one of the most spectacular examples of the broken symmetry which

ordinary macroscopic systems undergo. The essential idea is that in the N → ∞ limit, the

system will undergo a phase transition in which the microscopic symmetry is broken, and the

macroscopic consequences are completely new. “In this case we can see how the whole becomes

not only more than but very different from the sum of its parts” [3]. The physical idea of

emergence describes very well the underlying aspects of systemic risk. In fact, systemic risk

in financial markets can be seen as a phase transition from stability to instability. Making a

parallelism with physics, the financial stability of a subunit of the financial system takes the

role that symmetry has in a physical system. When we look at an aggregate of interacting

subunits, which form the financial system, the stability of the entire system may be broken,

similarly to what happens through a phase transition. In order to make clear how a mechanism

1A clarification is necessary in order to avoid confusion about the word “risk”. In quantitative finance, risk
refers also to an investment asset, which is described by a stochastic process that defines the price dynamics.
Hence, the risk of an asset is the diffusion rate of the price. Instead, systemic risk is related to collective
phenomena inducing potentially the collapse of a financial market.

9



of this type works in a financial system, the following example is useful: in financial markets, all

subunits, financial institutions, try to maintain a stable financial state through the diversification

of risk, that is a strategy based on investing in a large number of assets. Looking at only one

financial subunit, the diversification of risk should lead to minimize the probability of a loss,

maximizing the probability of profit. However, looking at the entire system, financial subunits

interact strongly because they have several investments in common. These strong interactions in

financial markets can be described as feedback effects that may induce the breaking of financial

stability of whole system. This example represents the underlying intuition at the base of our

dynamical systems approach.

In this thesis, we study the problem of systemic risk and systemic financial stability through

a dynamical systems approach. Hence, in our case, the systemic financial stability corresponds

in effect to the dynamical stability of the system.

In general, there are many definitions of systemic risk, each of these refers to a particular

point of view of approaching the problem. A common factor in the various definitions of systemic

risk is that a triggering event, such as a stochastic shock or an institutional failure, causes a chain

of bad economic consequences involving a significant fraction of the system. For this reason,

systemic risk refers to a a scenario in which the financial system moves from a stable state to

an unstable one. In the latter state, a shock may trigger a collapse. In our case, we associate

systemic risk with a dynamical phase transition, that is a bifurcation.

Many scientific works have tried to describe systemic risk in financial markets, using the

methodology of networks theory, dynamical systems theory, and statistical physics. Important

contributions come from the recent works of Gai and Kapadia [5], Douady and Choi [6] [13],

and Cont and Wagalath [8].

In this Chapter, we describe three mechanisms that are the most important reasons behind

the occurrence of systemic risk in financial markets. In describing these mechanisms, we refer

to the three recent papers [5, 6, 8], which give a clear and complete description of the concerned

arguments.

Before presenting the most important and universal aspects related to systemic risk of these

papers, we give a schematic and simplified representation of crucial ideas behind the approach

to the problem of systemic financial stability.

Assuming there are Alice, Bob, and Carol, as financial agents. Through the flow of money

between them and the investments they make, Alice, Bob, and Carol form a financial system.

A breakdown of financial stability may occur in different ways:

• Alice borrows money from Bob, who in turn borrows money from Carol. If Alice ex-

periences accidentally a loss, she becomes insolvent with Bob. As a consequence, Bob

is insolvent with Carol. Hence, an initial shock triggers a cascade of insolvencies. The

financial system loses its stability. We can refer to this situation as direct contagion of

risk.

• Alice borrows money from Bob, who in turn borrows money from Carol, who in turn

borrows money from Alice (closed loop). If a perturbation affects the economic state of

10



1. Financial systemic risk

Alice, she does not pay all debt, but she gives to Bob less money than she should. A

perturbation affects the economic state of Bob and, as a consequence, a perturbation will

affect the economic state of Carol, and so on. A situation of this type can be approached

through a dynamical model that describes the dynamics of perturbations affecting the

financial system identified by Alice, Bob, and Carol. The financial system loses its stability

if perturbations within the system grow in time, causing the successive defaults of Alice,

Bob, and Carol. This situation can be again represented as a direct contagion due to

perturbations, which spread within financial systems.

• Alice, Bob, and Carol invest in initially uncorrelated assets of a financial market. If Alice’s

asset suffers a negative shock of price, Alice liquidates her asset position, that is she sells

everything. In financial markets, when an investor sells (or buys), he moves downward

(upward) the price of the traded assets, through a mechanism said price impact. When

Alice liquidates the investment assets in common with Bob and Carol, the price impact of

trading creates a positive feedback, which induces the falling of prices of these assets. As a

consequence of price falling, the initially uncorrelated assets display a positive correlation,

because the price movements occur simultaneously in the same direction. Finally, the

positive feedback contributes to increase the risk of assets, because it induces large price

movements. As a consequence, risk associated with the assets of Bob and Carol increases.

We can refer to this situation as indirect contagion due to feedback effects.

The previous situations represent three mechanisms that may lead to the breakdown of stabil-

ity of financial markets dynamics. Obviously, when the systemic stability is lost, both direct

contagions and indirect ones may lead to a financial crisis.

By exploiting different models or different assumptions, the recent scientific literature about

systemic risk in financial markets refers to one of these mechanisms. Our work combines a

dynamical systems approach together with the role of feedback effects in financial markets,

providing so a new and original contribution to the problem of systemic risk.

In the next Sections, we review the scientific works of Gai et Kapadia [5], Douady and Choi

[6], and Cont and Wagalath [8], illustrating how the previous mechanisms of contagion of risk

can be mathematically described. These three recent works explain clearly the ideas behind

the problem of systemic risk in financial markets and we review them in order to make evident

analogies and differences between our model and the state of the art.

1.1 Direct contagion of risk

In this Section we present some results of Gai et Kapadia [5] as an example highlighting a

crucial aspect of the study of systemic risk in financial markets, that is the connectivity between

financial counterparties. Many recent works [14, 15, 16, 17, 18, 4, 19] have studied extensively the

problem of systemic risk through direct contagion. All these works stress the fact that the direct

contagion of risk is related first of all to the topological features of the network describing the

financial system, and in particular systemic risk depends strictly on the measure of connectivity

introduced in these papers.

11



1.1 Direct contagion of risk

Figure 1.1: Network of large exposures between UK banks, 2008. Source: FSA returns. The exposure is an
investment from a bank to another counterpart. A large exposure is one that exceeds 10% of a lending bank’s
capital. The data are correspond to the first quarter (three-month period) of 2008. Each node represents a bank
in the United Kingdom. The size of each node represents the value of the total exposure of a bank. The darkness
of a line is proportionate to the value of a single bilateral exposure. Figure is taken from Gai et al. [15].

In this thesis, differently from the approach of Gai and Kapadia [5], we focus on indirect

contagion of risk due to feedback effects in financial markets. But, at the same time, the network

structure of our model, represented by a bipartite graph, is always characterized by a measure of

connectivity. In our approach, the connectivity will be defined by the degree of portfolio overlap

between financial institutions investing in financial markets. This measure of connectivity has

received great attention in recent works about the contagion of risk, see for example [18].

The advantage of the model [5] of Gai and Kapadia is the capacity of explaining very clearly

the role of the network structure in direct contagion of risk, simplifying at most the economic

framework.

In recent years, financial systems became more complex and interconnected, and as a con-

sequence, they became more susceptible to systemic collapse. In Figure (1.1), the network of

exposures between the major UK banks in the first quarter of 2008 is shown. The nodes repre-

sent banks, their size represents each bank’s overall asset position in the interbank network, and

the thickness of the links reflects the value of interbank exposures between institutions. The

exposure represents simply an interbank lending or an investment of a bank in a financial asset

owned by an other bank. For a quantitative analysis of the degree of interconnectedness in a

typical banking system see [20].

The authors use network techniques developed in epidemiology and statistical physics to

identify the point of instability in a financial system modeled by a random network in which

individual banks are randomly linked together by their interbank exposures. They refer to the

point of instability as the system condition in which a shock (liquidity default of a bank) triggers

the system collapse (liquidity defaults of all banks).

The financial network consists of n financial intermediaries, banks, which are linked together
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1. Financial systemic risk
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Figure 1.2: Stylized balance sheet defining the bank economic state in the model of Gai and Kapadia [5].

randomly by their mutual investments. Each bank is represented by a node of the network,

and the interbank exposures of bank i define the links with other banks. These links are

directed, reflecting the fact that interbank connections comprise both assets and liabilities. We

suppose that each bank i has ki incoming links representing its interbank assets (i.e. money

owed to the bank by a counterparty) and ji outgoing links representing its interbank liabilities

(i.e. payments of debts). Since every interbank outgoing link for one bank is a incoming

link for another bank, in the limit n → ∞, the average number of outgoing links across all

banks in the network must equal the average number of incoming links. The authors refer to

this quantity as the average degree or connectivity of the system, and they denote it by z.

The number of incoming links (asset investments) for each bank is randomly (according to the

Poisson distribution) determined. As a consequence, the outgoing links (interbank liabilities)

for each bank are automatically determined. From a mathematical point of view, the financial

network just described, is a Erdös-Rényi graph [21].

The economic state of each bank of the financial network is defined by its balance sheet,

see Figure (1.2). The total asset position of each bank consists of interbank assets, AIBi , and

illiquid external assets, AMi , such as mortgages. The latter ones are called illiquid because when

banks sell this type of assets in order to get cash, they obtain typically a cash value smaller than

original asset value. This happens because the resale price does not coincide with the actual

price before the trading. In fact, the selling of an illiquid asset lets down the price of the asset

itself during the trading, as we will see subsequently. In this way, the obtained cash at the end

of the trading is always smaller than the value of the illiquid asset before the trading.

In the model, the total interbank asset position of every bank is evenly distributed across its

incoming links and it is independent of the number of links the bank has. Since, each interbank

asset is a liability for another bank, interbank liabilities, LIBi , are automatically determined.

Interbank liabilities represent for example the debts level of a bank in respect to a lender (another

bank). In addition to interbank liabilities, the authors assume that the only other component
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1.1 Direct contagion of risk

of a bank’s liabilities is given by deposits, Di. Deposits represent money placed into a banking

institution for safekeeping. A deposit is a liability owed by the bank to the depositor (the person

or entity that made the deposit). Finally, capital, Ki, of a bank is simply the difference between

the value of asset position (AIBi + AMi ) and the value of total liabilities (LIBi +Di). Typically,

regulatory policies in financial markets require banks of maintaining capital above a specific

level.

These assumptions on bank’s balance sheet are stylized, but at the same time they provide

a useful benchmark to investigate how the contagion of risk may spread within the financial

system, and in particular the role of diversification in systemic risk. Diversification refers to

the number of investments made by a bank, that is the connectivity characterizing the financial

network.

In the financial system just described, systemic risk refers to a collapse of a macro-component

of the financial network triggered by a random shock affecting only one bank (removal of a node

of the network). In fact, the authors assume that initially all banks are solvent, that is the

balance sheet of each bank is in equilibrium. At time t = 1, a bank j suffers a liquidity shock

that leads the bank to default. As a consequence, bank j can not pay its debts, i.e. its liabilities

are set equal to zero, LIBj = 0. Since a liability of the bank j corresponds to an interbank asset

for a counterparty i and interbank assets of bank i are evenly distributed across its incoming

links ki, at time t = 2, bank i suffers a liquidity shortfall equal to
AIBi
ki

.

The condition for bank i to remain solvent is(
1− 1

ki

)
AIBi + q AMi − LIBi −Di > 0 (1.1)

where q is the resale price of the illiquid asset, as we have explained before. The value of q

may be less than 1 in the event of asset sales by banks in default. The solvency condition (1.1)

is simply a constraint on capital. On the contrary, the shock propagates within the financial

network if there is at least a neighbouring bank i for which(
1− 1

ki

)
AIBi + q AMi − LIBi −Di < 0 −→ Ki − (1− q)AMi

AIBi
<

1

ki
(1.2)

If the condition (1.2) holds, then contagion starts to spread. In particular, a second bank

is forced to default. In turn, this second default may create liquidity shortfalls inducing other

banks to default, and so on. The authors define banks that are exposed in this sense to the

default of a single neighbour as vulnerable and other banks as safe. The vulnerability of a bank

clearly depends on the number of its incoming links, that is a random variable. Hence, a bank

i with k incoming links is vulnerable with probability

Pk = P

[
Ki − (1− q)AMi

AIBi
<

1

k

]
∀k ≥ 1

In principle, in sufficient large networks, the problem of contagion can be solved analytically us-

ing an approach based on generating functions [21], and in particular on the generating function
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1. Financial systemic risk

Figure 1.3: Direct contagion of liquidity shortfall in the financial network. The Figure is obtained with 1000
numerical simulations of the model. Grey circle represents the average extent of contagion as a function of the
connectivity. For example, when the average connectivity is equal to 2, in the case of systemic event, after the
initial liquidity shock affecting a bank randomly chosen, the direct contagion of liquidity shortfall propagates to
700 banks. Since the authors consider a financial network formed by 1000 banks, the fraction of the financial
network affected by a liquidity shock is equal to 0.7, as reported in the y-axis. Cross represents the frequency of
contagion as a function of connectivity. The frequency represents simply the ratio between the times in which at
least the contagion is equal to 0.1 and the total number of simulations. For example, when the average connectivity
is equal to 3, over a number of 1000 simulations, there are approximately 800 systemic events in which the 90%
of the entire financial network suffers a liquidity shortfall. Hence, in this framework the frequency measures the
probability of systemic risk due to an initial stochastic shock, as a function of the connectivity. Figure is taken
from Gai and Kapadia [5].

for the probability distribution of vertex degrees k, see [5]. We show the most intuitive result

based on numerical simulations of the model just described.

Figure (1.3) summarizes the numerical results obtained by simulating the model of financial

contagion in financial networks. The randomness affects only the structure of financial network

(links are created randomly according to the Poisson distribution) and the initial liquidity shock

(at time t = 1, a randomly chosen bank suffers a liquidity shortfall). The contagion mechanism

is a deterministic process according to (1.2). The authors consider a network of n = 1000

banks and they assume the asset side of the balance sheet, see Figure (1.2), of all banks to be

identically composed: AMi = 80% of total asset position, AIBI = 20% of total asset position. As

a consequence, the interbank liabilities are determined automatically once the interbank assets

(AIBi ) have been fixed. The liability side is composed of: Ki = 4% of total asset position, and

deposit, Di, are chosen so that initially the balance sheet is topped up by deposits until the

total liability position equals the total asset position2.

Figure (1.3) is obtained through 1000 simulations of the model for each value of connectivity.

2Notice that bank’s capital Ki is listed in the liability side in order to stress that Ki = assets − liabilities

15



1.2 Perturbations and financial crisis dynamics

The extent of contagion (number of banks suffering a liquidity shock with respect to the total

number of banks, n = 1000) as a function of connectivity is shown (grey circles). Also the

frequency of contagion as a function of connectivity is shown (crosses). The frequency of systemic

liquidity crises refers to the systemic events in which at least 10% of banks are forced to default

in consequence of the (stochastic) default of the first bank.

This result highlights that financial system is characterized by two transitions. The first one

occurs for a small value of connectivity (in Figure (1.3) z ≈ 1). This first transition point refers to

a network property, that is the appearing of connected components of increasing size according

to the increase of connectivity. The spread of contagion depends strictly on the presence of

network patterns from one node to the other ones. In this model, the direct contagion of risk is

essentially a percolation process [22, 23, 24, 25] in which the resilience of the financial network

is related to the connectivity, which defines the average size of the connected components of the

network.

When a bank of one of these components, suffers a liquidity default, the contagion spreads

to the whole connected component. When the connectivity increases further, there is only a

macro-component (giant component), that is a component whose size is approximately equal to

the size of network. In this case, when the initial shock propagates, the contagion spreads to

the entire financial network.

The second transition (in Figure (1.3) z ≈ 8) is related to the balance sheet of banks, thus

it occurs for an economic reason. Beyond the transition point, the financial network is very

interconnected and as a consequence, total interbank assets, AIBi , of every bank are evenly

distributed over a large number of incoming links. Hence, even if a bank suffers a liquidity

shock, which induces it to default, the balance sheet of all counterparties of the bank is not

affected crucially, thus all other banks remain solvent. The initial shock does not propagate.

The two transition points define the contagion window in which a liquidity shock may trigger

a systemic direct contagion of risk. Hence, systemic risk in a financial network strictly depends

on the degree of connectivity of the network which describes financial system. The connectivity

is a measure of how much the financial network is interconnected and thus how much it is fragile.

1.2 Perturbations and financial crisis dynamics

Douady and Choi [6] [13] study the direct contagion of risk through a dynamical systems ap-

proach. In a dynamical framework, the key point is to investigate how a perturbation affecting

the financial market increases or decreases during the dynamical evolution of the system.

Douady and Choi describe a very general framework that is in good agreement with the

financial instability hypothesis of Minsky [26]. Indeed, the authors find through their analysis

that there are two regimes in financial markets, one stable and one unstable. In the stable

regime, a perturbation can be absorbed by the system, while in the unstable regime an initial

perturbation propagates within the system and its size increases during dynamical evolution,

finally leading to a financial crisis.

A dynamical systems approach may capture very well this feature through the study of
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1. Financial systemic risk

Figure 1.4: A financial system of five agents connected by flow of funds among them: consumers (C), firms
(F), banks (B), investors (I), and government (G). The cash flows from an agent to an other define the financial
network. For example, the connections can be represented as: C and C are connected through house investments,
C and B through debt investments, C and I through pension funds, C and F through salaries and consuptions,
F and F because companies invest in each other, F and B through loans and stocks, F and I through stocks and
bonds, B and B through coupons and interbank lending, B and I through bonds, stocks and loans, I and I through
derivatives coming from investments. Finally, G is connected to other agents through taxes, salaries, coupons of
bonds, and incentive actions in case of financial recession. Figure is taken from [13].

bifurcations, which refer to structural modification of the system behavior upon a continuous

change in the parameters of its equations.

Recent works of Castellacci and Choi [27, 28] exploit a dynamical systems approach to study

the contagion of financial instabilities between different economies. For example, these works

try to explain how the financial crisis that has affected the USA economy in 2007, propagated

within the eurozone, leading to the euro crisis in 2009.

However, Douady and Choi [6] [13] describe only a general framework in order to stress the

possibility of defining a market instability indicator as the largest eigenvalue of the Jacobian

matrix which defines at the first order the evolution of perturbations in financial markets. On

the contrary, in our thesis we present a dynamical model in which we can analyze the specific

market conditions corresponding to the breaking of systemic financial stability. Specifically, we

are able to describe what type of bifurcation is associated with the loss of stability and we can

quantify in some sense the degree of systemic risk in the considered financial system.

In the model [6], the authors define the financial system as a network formed by n financial

agents. Each agent represents the class of aggregates financial units operating in the market

with the same strategy. Each unit is connected to counterparties through the flow of funds

between them: investments and debts, as an example see Figure (1.4). As explained in the

previous Section, the financial network describing an economy is interconnected.

Here, the authors stress also another fact that is financial agents typically borrow money

(debts D) in order to invest in assets (A) a quantity larger than their initial equity (E). Let λ

be the financial leverage

λ =
A

E

Financial agents are leveraged in order to maximize their profits. This fact has also the opposite

consequence. When a liquidity shock occurs, for example triggered by the falling of asset prices,
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1.2 Perturbations and financial crisis dynamics

investors lose a large value of their initial investment, and as a consequence it may happen

that investors can not pay their debts. Hence, it follows that lenders suffer a liquidity shortfall.

In turn, lenders can not give new loans, and so on. In this way, shocks propagate within the

financial system.

In describing the dynamical framework in which to investigate financial crises, the authors

assume that the economy is based on limited material resources and market participants, there-

fore the wealth of each financial agent is bounded from above. The boundedness hypothesis has

the mathematical consequence that the dynamical system evolves in a compact space, allowing

the authors to use some results of dynamical systems theory (in Chapter 2, some elements of

dynamical systems theory are described).

The very general setting described by the authors is based on the assumption that the

economy at time t is defined by a wealth vector w(t) = (w1(t), ... , wn(t)) ∈ Rn, where wi(t) is

the wealth of agent i at time t. The wealth of agent i at time t is defined as the sum of the

equity, Ei(t) and debt, Di(t)

wi(t) = Ei(t) +Di(t)

At the same time, wealth can also be divided into liquid assets, ALi (t) (cash or assets can be

converted into cash), and invested assets, Ai(t)

wi(t) = ALi (t) +Ai(t)

Essentially, the wealth state of agent i evolves in time according to the dynamics for the debt,

Di(t), and the invested assets, Ai(t). The debt at time t+ 1,

Di(t+ 1) = (1 + rDi,t)Di(t) + ∆Di(t+ 1),

is equal to the previous debt level considering the average interest expense (rDi,t), plus the new

loans obtained at time t+ 1 (∆Di(t+ 1) ). Each agent i has a maximum level of debt,

Di(t) ≤ Di,max(t),

that depends on its equity, Ei(t), representing in another form the constraint on a minimum

capital requirement.

The invested assets at time t+ 1,

Ai(t+ 1) = (1 + rAi,t)Ai(t) + ∆Ai(t+ 1),

is equal to the assets value at time t considering the stochastic variations of asset prices (described

by a (stochastic) return rAi,t), plus the new investments at time t+ 1 (∆Ai(t+ 1) ).

The quantities ∆Di(t + 1) and ∆Ai(t + 1) depend on the flow of funds, Fi,j(t) and Fj,i(t).

Fi,j(t) is equal to funds transferred from agent j to agent i at time t. For agent i, it represents

new loans or profits from previous investments. Fj,i(t) is equal to funds transferred from agent

i to agent j. For agent i, it represents new investments or payments of previous debts.
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The flows of funds together with the dynamics of the debts and assets define the dynamics

of the liquidities. In fact, liquidities at time t+ 1 is equal to

Li(t+ 1) = Li(t) +

n∑
j=1,j 6=i

Fi,j(t)−
n∑

k=1,k 6=i
Fk,i(t)−∆Ai(t+ 1)

The flows of funds between financial agents are the solution of an optimization problem that

provides the optimal cash flows maximizing the profits of financial agents. The authors do not

describe explicitly how Fi,j(t) are found, because it is inessential to the aim of their paper. For

a discussion about this point, see [6].

According to the previous relations, the wealth dynamics of agent i is described by the

following difference equation

wi(t+ 1) = wi(t) +
n∑
j=1

Fi,j(t)−
n∑

k=1,k 6=i
Fk,i(t) (1.3)

where in the first sum, the diagonal component Fi,i(t) represents the assets return due to the

stochastic evolution of asset prices (Fi,i(t) = rAi,tAi(t)).

Through the n difference equations identified by (1.3), the economy is described by the

dynamics of wealth vector w(t). Symbolically, a dynamical system is

w(t+ 1) = f [w(t)] (1.4)

Mathematically, the n difference equations, (1.4), describe a n-dimensional dissipative3 dynami-

cal system, see Chapter 2. Specifically, f is characterized by nonlinear terms due to the presence

of constraints, like the debt constraint (Di(t) ≤ Di,max(t)). Finally, the dynamical system de-

scribed by f is random, due to stochastic evolution of asset returns described by the stochastic

variables rAi,t, i = 1, ... , n. Assuming that the return processes, which describe these stochastic

variables, are stationary, we can consider the average values of the stochastic variables. In this

way, we can identify a deterministic dynamical system described by f̄ :

w(t+ 1) = f̄ [w(t)] (1.5)

A perturbation affecting the wealth vector at time t, δw(t), reflects a liquidity shortfall affecting

a financial agent. In the dynamical approach established by the authors, the propagation of an

initial perturbation (direct contagion of risk) is described up to the first-order approximation

through the (local) Jacobian matrix of system f̄ , Dw(t)f̄ , calculated at the actual system state

w(t):

δw(t+ 1) =
[
Dw(t)f̄

]
· δw(t) (1.6)

The contagion spreads to the entire financial system if the size of initial perturbation increases in

3A financial system is typically an open system in which there is not a conserved quantity (“Hamiltonian”)
and there is a path dependence in the dynamical evolution. In general, this two aspects define a financial system
as a dissipative structure.
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1.2 Perturbations and financial crisis dynamics

time. From a mathematical point of view, the potential for a contagion is related to the largest

eigenvalue of the Jacobian matrix. When the modulus of the largest eigenvalue is smaller than 1,

the system absorbs the initial perturbation. On the contrary, when the modulus is larger than 1,

perturbations contain at least a component that will increasingly propagate within the system.

As a consequence, the contagion may lead to a system collapse. The modulus of the largest

eigenvalue implicitly depends on financial leverage λ adopted by financial agents operating in

the market, see [13]. Indeed, the larger is the leverage adopted by financial agents, the larger is

the variation of wealth. In fact, according to a stochastic variation of asset prices, the value of

earning or loss of a financial agent depends on the adopted leverage. For example, if a financial

market is populated by highly leveraged agents, after a stochastic shock of prices, financial

agents lose a lot of money due to their strategy based on the financial leverage. Hence, starting

from a stochastic variation of wealth, the following variations increase in time if financial agents

are highly leveraged, and this mechanism can be mathematically described through (1.6), where

the largest eigenvalue of the Jacobian matrix is larger than 1. Hence, from an economic point

of view, the larger is financial leverage, the larger is the probability of contagion.

A subtle mathematical aspect is related to the fact that the Jacobian matrix is a local quan-

tity because its entries are calculated at the actual system state, w(t). A potential advantage

of this approach is related to the possibility of estimating empirically the largest eigenvalue

through a regression analysis of flows of funds from an agent to one other, see [6].

Douady and Choi highlight that in a dynamical systems approach the stability of a financial

system is related to the eigenvalues of the Jacobian. Specifically, the systemic financial stability

is lost when a bifurcation occurs as consequence of changed market conditions, mathematically

described by a change of model parameters (see Chapter 2 for mathematical aspects). A bifur-

cation refers to a dynamical transition from a stable evolution (characterized by a stable fixed

point, also called a sink) to a more complex one.

In the explained setting, two possibilities occur, see [29] for a mathematical description of

bifurcations. When the largest eigenvalue crosses the critical value equal to 1, the equilibrium

becomes a saddle, that is a system state characterized by at least one unstable direction in phase

space, see panel (a) of Figure (1.5). The financial system moves away from the old equilibrium

and typically this situation describes a financial recession and in the worst scenario, a system

collapse.

When the largest eigenvalues are a pair of complex conjugate numbers and their modulus

crosses the critical value equal to 1, the equilibrium evolves from a sink to a cycle, see panel (b) of

Figure (1.5). In this case, the system circles along the new attracting cycle and financial agents

experience a sequence of growths and contractions in their wealth. In this scenario, systemic

risk can be measured as the amplitude of system cycles. In fact, the larger is the amplitude

of cycles, the larger is the probability that system exceeds the natural bounds of the economy

(boundedness hypothesis) in which any shock may trigger the system collapse.

The advantage of a dynamical systems approach to the problem of systemic financial stability

and systemic risk, as shown in this work, is that the study of system stability naturally appears

looking at the Jacobian matrix of the dynamical system. Furthermore, the distance from a
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(a) saddle-node bifurcation

(b) Andronov-Hopf bifurcation

Figure 1.5: Panel (a): Saddle-node bifurcation. Nearby points move away from the saddle in the horizontal
direction and drift toward another sink or an attractor. Panel (b): Andronov–Hopf bifurcation. As the equilibrium
goes from attracting to repelling with a pair of complex eigenvalues with modulus greater than 1, a periodic cycle
appears. Figures are taken from [6].

bifurcation, which represents the loss of systemic stability, can be “measured”, estimating the

eigenvalues of the Jacobian.

1.3 Feedback effects in financial markets

In the previous Sections, we have presented two approaches to systemic risk due to the direct

contagion between financial institutions operating in the market. Another point of view about

systemic risk in financial markets is related to feedback effects coming from distressed selling of

asset position or rebalancing of large financial portfolios. Feedback effects have been recognized

as a destabilizing factor in recent financial crises [30, 31, 32, 33, 7].

In this Section, we review recent empirical evidences about feedback effects in financial

markets and we describe how the contagion between institutions can be indirectly mediated by

these feedback effects, due to the overlapping investments and overlapping portfolios. For this

purpose, we refer to a model of Cont and Wagalath [8].

The model of Corsi et al [9], described in Chapter 3 and constituting the starting point for

work in this thesis, exploits an approach that is similar to the model of Cont and Wagalath, in

order to taking into account the feedback effects due to a particular strategy of trading, adopted

by financial institutions operating in financial markets. In the model of Corsi et al., feedback

effects play a crucial role in defining the stability of return processes and systemic risk measured
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1.3 Feedback effects in financial markets

Figure 1.6: EWMA estimator of correlation of daily returns between two sector indices of the S&P 500: SPDR
XLE (energy) and SPDR XLK (technology). Figure is taken from Cont and Wagalath [8].

as the probability of default of financial institutions.

The underlying fact is that in financial markets the selling (or the buying) of an asset moves

its price (price impact [34, 35, 36]). When, for example, a financial institution suffers a liquidity

shortfall, it sells assets, or in the worst case financial institutions may liquidate the whole asset

position. The price impact of the trading leads to a fall of asset prices. When prices fall, due

to the overlapping portfolios, other financial institutions begin to sell and as a consequence

the mechanism of falling prices becomes self-reinforcing. This mechanism is in effect a positive

feedback.

A mechanism of this type explains very well the empirical evidences associated with jumps

in correlations between assets (or asset classes) following the collapse of financial institutions,

as the case of Lehman Brothers on September 15, 2008, see Figure (1.6). Figure shows the

exponential weighted moving average (EWMA) estimator of realized correlation, CorrEWMA,

between two sector indices of the S&P 500: SPDR XLE (energy) and SPDR XLK (technology).

The latter ones can be seen as two investment assets traded in stock markets of USA economy.

Given the time series of prices {pt}, the return is simply equal to

rt =
pt+∆t − pt

pt

Returns are the percentage of gain or loss in a given time period ∆t.

The quantity CorrEWMA is an estimator of realized correlation at time t between the pair of

assets. It is similar to the sample correlation, in which however the centered returns are weighted

through a memory factor decreasing (backwards) in time according to a geometric series. The

weights are defined through a parameter, ω ∈ [0, 1]. This parameter is called the memory of

the estimator because the elements of the sum at each time step are weighted according to the

value of ω. Specifically, when ω → 1, the last realizations of returns are weighted largely. On

the contrary, when ω → 0, the past realizations have more weight in defining the actual value

of the estimator.
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1. Financial systemic risk

In Figure (1.6), ∆t corresponds to 1 day. The EWMA correlation, CorrEWMA, is equal to

CorrEWMA(rXLEt , rXLKt ) =
Covω(rXLEt , rXLKt )√
Vω(rXLEt ) Vω(rXLKt )

where

Covω(r1,t, r2,t) =
1− ω
ω

∞∑
i=1

ωi(r1,t−i − r̄1) (r2,t−i − r̄2)

and

Vω(rt) =
1− ω
ω

∞∑
i=1

ωi(rt−i − r̄)2

The marked quantities represent the sample averages. Hence, r̄1 is the sample mean of the time

series of returns associated with the investment asset 1. Similarly, r̄2. ω ∈ [0, 1] is the memory

factor.

At date 15/09/2008, the EWMA correlation displays a significative positive jump. The

common interpretation is the following: after the collapse of the Lehman Brothers institution

on September 15, 2008, the distressed liquidation of asset position has induced the falling of

prices of the assets in the portfolio. As a consequence, also slightly correlated returns have

showed a jump in the correlation function, due to feedback effects arising from distressed selling

[32].

This is only one empirical evidence of how a positive feedback may crucially affect the

systemic stability of financial markets. The positive feedback has three important consequences

on investment assets, affecting returns, volatilities, and correlations.

In order to explain feedback effects in financial markets, we focus on the most important

aspects of Cont and Wagalath model [8].

investors assets

1

2

A

B

Figure 1.7: Stylized financial market formed by two financial institutions, A and B, investing in two assets, 1
and 2. Each asset is described by a stochastic variable (the price, p1 and p2), which evolves in time according to
a discrete Wiener process. The right panels show qualitatively how the prices of investment assets may evolve in
time.
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1.3 Feedback effects in financial markets

Consider a market with two financial institutions, Alice (A) and Bob (B), investing in two

assets, see Figure (1.7). Each asset is described by a discrete Wiener process defining its price

at time t. Hence, the asset return is a normally distributed stochastic variable

rj,t = mj + εj,t , j = 1, 2 (1.7)

where εj,t is a Gaussian noise, N (0, σj), and mj represent the expected mean of return. Without

loss of generality, the authors assume mj = 0 for j = 1, 2. The two noises, ε1,t and ε2,t, are

uncorrelated, i.e. E[ε1,t , ε2,t] = 0. Each Gaussian noise is characterized by a standard deviation

σi. In Quantitative Finance, when the asset returns are assumed to be normally distributed

stochastic variables, the standard deviation σi can be considered a risk measure, and it is called

volatility.

Assuming for simplicity ∆t = 1, the price at time t is simply equal to

pi,t = pi,t−1 + pi,t−1 ri,t (1.8)

We consider Bob as an investor which has created initially his portfolio by investing in the

assets 1 and 2. However, during the stochastic evolution of asset prices he does not trade assets.

Hence, Bob does not influence the evolution of asset prices and he works as a spectator. Bob

represents all investors in financial market, except Alice. At initial time, t = 0, Alice invests in

the two assets and the initial investment V0 is equal to

V0 =
∑
i=1,2

ai · pi,0 =
∑
i=1,2

a · pi,0 (1.9)

where, for the sake of simplicity, the authors assume a1 = a2 = a. The value of Alice’s invest-

ment, Vt, evolves according to (1.8). If the investment value drops below a threshold β0V0 < V0,

Alice progressively may exit her position, generating a negative demand across two assets, pro-

portionally to the positions held by Alice. The authors purpose is to model the price impact

of this distressed selling and investigate its effect on realized volatility and correlations of two

assets held by Alice.

If at time t the value of Alice’s investment is Vt < β0V0, Alice progressively liquidates her

asset position. She sells her assets such that, at time t+1, the value of her investment decreases

to V ∗t+1 < Vt. To model the distressed selling, the authors introduce a concave function f : R→ R

which measures the rate at which Alice exits her position: when investment value drops from

Vt to V ∗t+1, Alice redeems a fraction f
(
Vt
V0

)
− f

(
V ∗t+1

V0

)
of her asset position, see [8] for the

mathematical properties of f . Thus, the net supply in two assets due to the distressed selling is

equal to

−a
(
f

(
V ∗t+1

V0

)
− f

(
Vt
V0

))
The assumptions on Alice’s behavior imply that f : R→ R is continuous, everywhere increasing,

except for [β0,+∞] where it is constant.

Finally, the authors assume that the price impact due to the trading, is linear in the supply of
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1. Financial systemic risk

assets. This means simply that the return of an asset at the future time is affected by a negative

contribution that is proportional to the net supply of the same asset due to the distressed selling.

The proportionality constant is indicated as 1
γj

. γj is called the market depth (or asset liquidity).

For a discussion about the assumption of linearity see [35].

As a consequence, the asset return at time t+ 1 is affected by the impact of trading

rj,t+1 = εj,t+1 +
a

γj

(
f

(
V ∗t+1

V0

)
− f

(
Vt
V0

))
(1.10)

The larger is γj , the smaller is the price impact on the asset j. The meaning of γj is the following:

a net supply (or demand) of
γj
100 shares (asset unities) moves the price of j by 1%. The authors

assume γ1 = γ2 = γ.

It is important to notice that in (1.10) the contribution of the second term is negative because

f is concave and increasing, and V ∗t+1 < Vt.

The successive selling of the assets induces feedback effects on asset returns. Once the value

of Alice’s investments suffers a negative shock (Vt < β0V0), the distressed selling induces a

cascade of negative realizations of asset returns due to the price impact of the trading (second

term in (1.10)). Feedback effects arising from the distressed selling, amplify the initial shock

and, as a consequence, increase systemic risk of financial markets.

In fact, in addition to trigger a cascade of negative returns, feedback effects increase correla-

tion and volatilities of the two assets. Indeed, feedback effects have the consequence of amplifying

the stochastic fluctuations of returns, specifically in this model when these fluctuations are neg-

ative. As a consequence, the amplitude of the fluctuations is larger and the volatility increases.

At the same time, feedback effects induce a positive correlation between initially uncorrelated

assets. In fact, when Alice’s portfolio suffers a negative stochastic shock, Alice sells the entire

asset position formed by the two investment assets, 1 and 2. Hence, during the cascade of neg-

ative returns, the return processes associated with the two investment assets are characterized

by the same negative contribution due to the distressed selling of Alice. Hence, the distressed

selling induces a positive correlation between the asset returns.

In Figure (1.8) the probability distributions of realized correlation and realized volatilities of

the two assets are obtained by performing a Monte Carlo simulation of the model. The authors

simulate the model just described, in a time window of 1 year. Hence, ∆t = 1 day means

that they consider daily returns. Finally, the standard deviations of Gaussian noises are equal

respectively to σ1 = 30% year−
1
2 and σ2 = 20% year−

1
2 . The other values of parameters are

reported in Figure (1.8).

Differently from the initial part of this Section where the EWMA estimator is used, the

authors focus on the sample covariance and the sample variance of the times series of returns, in

order to find realized correlations and volatilities. For each simulated path, the realized sample

covariance between asset 1 and asset 2, is

Cov1,2 =
1

T

T−1∑
t=0

(r1,t − r̄1)(r2,t − r̄2)
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1.3 Feedback effects in financial markets

(a) realized correlation (b) realized asset volatilities

Figure 1.8: Panel (a): Probability density function of realized correlation between two initially uncorrelated
assets, with and without feedback effects due to distressed selling. Panel (b): Probability density function
of realized volatilities for each asset, with (continuous lines) and without (dotted lines) feedback effects due
to distressed selling. In the x-axis, the values are considered in percentage. For example, a realized sample
correlation equal to 40% corresponds to 0.4. The probability density functions are obtained through a Monte

Carlo simulation of the model. The model parameters are fixed to: σ1 = 30% year−
1
2 , σ2 = 20% year−

1
2 , a

γ
= 1

10
,

a p1,0
V0

=
a p2,0
V0

= 1
2
, β0 = 0.95. The function f is chosen to be f(x) = −1

(βliq−β0)4
(x − β0)4, where βliq = 0.55.

Figures are taken from Cont and Wagalath [8].

and the realized sample variance of asset j, is

Vj =
1

T

T−1∑
t=0

(rj,t − r̄j)2

where r̄j = 1
T

∑T−1
t=0 rj,t is the sample mean of return of asset j. According to the previous

relations, the realized correlation between assets 1 and 2 is
Cov1,2

(V1V2)
1
2

, while the realized volatility

of asset j is V
1
2
j .

In Figure (1.8) the probability distributions of correlation and volatilities without feedback4

are shown using dotted lines, while the same distributions, when feedback effects are accounted

for, are shown using continuous lines. The latter ones display a heavy positive tail. This feature

suggests that feedback effects are associated with a larger probability that large correlations and

high volatilities occur.

The larger is the correlation between two assets, the larger is the probability that two negative

realizations of asset returns occur simultaneously. The larger is the volatility, the larger is the

probability of a loss. In fact, volatility gives an estimation of the amplitude of return’s oscillations

around the mean. Hence, a larger value of volatility is associated with more probable negative

realizations of asset return. In this sense, feedback effects increase systemic risk in financial

markets.

Finally, feedback effects are the cause of indirect contagion between financial institutions.

In fact, while Alice liquidates her asset position, Bob suffers the negative realizations cascade of

asset returns, and finally, when Alice is out from the trading, Bob’s investment is characterized

4Feedback effects are simply not considered assuming that Alice does not trade assets like Bob.
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1. Financial systemic risk

by high volatility and increased correlation between assets in the portfolio. In this sense, feedback

effects induce indirect contagion of risk between financial institutions.

In the model of Cont and Wagalath [8] an important aspect emerges, that is the difference

between exogenous and endogenous quantities. In quantitative finance, an exogenous quantity

refers to a variable coming from outside the system. For example, in (1.10) the Gaussian noise,

εi,t, is an exogenous variable in the sense that it is unexplained by the considered model. On

the contrary, an endogenous quantity refers to a variable that describes a particular effect which

is explained inside the model. The second term in (1.10) is the endogenous component of

return and it describes the impact of positive feedback. In particular, also the risk of assets is

characterized by an endogenous component describing the impact of feedback effects on risk. In

Figure (1.8) the heavy positive tail (excess risk) can be interpreted as the contribution of an

endogenous component.

1.4 Relation between the reviewed literature and our model

In our thesis, we propose a dynamical systems approach to systemic risk in financial markets.

However, differently from Douady and Choi [6], we describe a specific dynamical model, in which

we can analyze in detail the dynamical behavior of the financial system under investigation. In

our case, the dynamical system is based on a network model, described by a bipartite graph5.

Like the case of Gai and Kapadia [5], the connectivity of the financial network plays an impor-

tant role in the study of systemic financial stability. The degree of overlap between portfolios of

financial institutions represents the measure of connectivity (see Chapter 3). Finally, we inves-

tigate the case of indirect contagion of risk, mediated by feedback effects, similarly to the case

of Cont and Wagalath [8]. Specifically, we look at the impact of feedback effects on the risk of

assets. The strength (due to the financial leverage adopted by financial institutions) and the

coordination (due to connectivity of the financial network) of feedback effects define the dynam-

ical behavior of the financial system. In our case, systemic risk is related to the occurrence of

bifurcations that lead to the breaking of systemic financial stability.

5A bipartite graph is a network characterized by two types of nodes and links run only between nodes of unlike
types. In describing a financial system, financial institutions represent one kind of nodes. These link to the second
kind’s nodes that represent the investment assets.
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Chapter 2

Dynamical systems theory

In this Chapter, we describe some elements of dynamical systems theory. One of the most

interesting aspect related to dynamical systems is that they have led to successful results in

many fields of natural sciences. One famous example comes from the pioneering work of May

[37] about the logistic map. May highlighted the relevance of the nonlinearity in dynamical

systems. Also from simple nonlinear systems, a very complex dynamics may arise and sometimes

chaos may occurs. Furthermore, Feigenbaum [38] discovered that there are universal laws which

describe the dynamical behavior of a system, defining how the transition from stable to chaotic

behavior occurs. It was a surprising fact noticing how apparently different systems in natural

sciences display the same dynamical features.

We are interested in dynamical systems in order to approach the problem of systemic risk

in economy.

A dynamical system is simply a fixed rule which describes what future state follows from

a current state of the system. We are particularly interested in dissipative dynamical systems

described by difference equations, a map.

Generally, a dissipative dynamical system depends on different parameters. The dynamical

behavior of the system is defined by the values of these parameters. When the value of a

system parameter changes, a bifurcation may occur. A bifurcation occurs when a small smooth

change made to the parameter values (the bifurcation parameters) of the system causes a sudden

qualitative or topological change in its behavior. Specifically we are interested in the period-

doubling bifurcation that is a bifurcation in which the system switches to a new behavior with

twice the period of the original system. In the case of the period-doubling cascade to chaos,

successive period-doubling bifurcations lead the dynamical system towards deterministic chaos.

In Section 2.1, we give a mathematical definition of a dynamical system, particularly looking

at discrete dynamical systems.

In Section 2.2, we will focus on the local aspects of the dynamical systems theory high-

lighting the theory of bifurcations from equilibrium based on center-manifold reduction and

Poincaré-Birkhoff normal form. We will investigate the case of period-doubling bifurcations.

We particularly refer to [29] in this Section.

In Section 2.3, we will focus on the non-local aspects of dynamical systems exhibiting chaos.
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The characterization of a chaotic system requires an approach based on the ergodic theory of

dynamical systems. We will describe quantities related to dimension, entropy and characteristic

exponents of a dynamical system. We particularly refer to [39] in this Section.

2.1 Dynamical system

A dynamical system is the mathematical formalization of a rule which describes the time evo-

lution of a system in its phase space. Let f be a function defined in a manifold X, a dynamical

system is a 3-tuple (T, X, f)

f : T ×X → X

where (T, +) defines a semigroup with the identity, describing the time variable t. In order to

study our model, we focus on dynamical systems theory in R
n (X ⊆ R

n) and we consider t as a

discrete time variable. Hence, (T, +) is simply the set of natural numbers with the operation

of sum. Let be xt ∈ X ∀t, {xt|t∈T : xt+1 = f(xt)} is called the orbit determined by f , that

is the trajectory of the dynamical system. Since t is a discrete time variable, f is also called a

map. Generally, f can depend on different model parameters. We focus on the case in which

only one parameter may change while the other ones are fixed. We refer to these systems as

one-parameter ones. The one-dimensional case (X ⊂ R) is a trivial deduction of the general

theory in R
n.

When f is a nonlinear function in X and t is a discrete variable, generally the dynamical

system described by f is a dissipative non-Hamiltonian system. A dissipative system is a dy-

namical system for which there is not a Hamiltonian function, conserved along the system’s

trajectories. Particularly, a dissipative system is not invariant under time reversal. The main

aspect of a dissipative non-Hamiltonian system is related to the fact that the Liouville’s theorem

is not valid, that is, the volume of the phase-space is not conserved by the time evolution oper-

ator represented by the map describing the dynamical system. Finally, there are not conserved

quantities generally, i.e. functions of system variables that are constant along each trajectory.

We are particularly interested in dissipative dynamical systems.

2.2 Bifurcation Theory

The word bifurcation is used to describe a situation in which a small smooth change made to the

parameter values (the bifurcation parameters) of a dynamical system causes a sudden qualitative

or topological change in its behavior. Particularly, we are interested in the period-doubling (flip)

bifurcation.

Let t be the discrete time variable, the dynamical evolution of a system is described by a

map f

xt = f(c,xt−1) , x ∈ X ⊆ R
n , c ∈ R (2.1)

where t = 1, 2, ... is the index labeling successive points on the trajectory and c is a parameter

of the map. Generally, x is a vector of dimension n defined in X. The space of all possible states
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x ∈ X is called the phase space of the dynamical system. f is a function defined in R
n and in

many interesting cases it is a nonlinear function. We focus on f as a continuous function in X.

Finally, let X be invariant under the map f , that is x ∈ X −→ f(c,x) ∈ X , ∀x ∈ X.

First of all, it is important to study the conditions under which the dynamical behavior of a

system is asymptotically stable. The stability for a dynamical system means that the long-run

dynamics is attracted by one stable state represented by a point in the phase space. The time

evolution operator, represented by f , leads the system to converge asymptotically to this state,

also called an equilibrium point. An element (point) x∗ ∈ X is an stable state for the dynamical

system described by f if for any x close to x∗ the iterated function sequence

x, f(c,x), f(c, f(c,x)), f(c, f(c, f(c,x))), ...

converges to x∗. Hence, an equilibrium point is a state which attracts the asymptotic dynamics

of the system described by the time evolution operator f . This equilibrium point can be found

by solving f(x∗) = x∗. x∗ is said a stable fixed point.

The notion of equilibrium point for a dynamical system is mathematically described through

the definition of the hyperbolic stable fixed point.

2.2.1 Linear theory

x∗ is a fixed point for the dynamical system when

x∗ = f(c,x∗) (2.2)

The Brouwer theorem [40] ensures that a fixed point always exists for a dynamical system

described by a continuous function f defined in a compact set X. The theorem does not ensure

that the fixed point is an equilibrium point.

In order to define the stability of a fixed point, we can consider the expansion of (2.1) at the

fixed point x∗

x∗ + δxt = f(c,x∗) + (Dxt−1f(c,xt−1)|xt−1=x∗) δxt−1 +O(δx2
t−1) (2.3)

where δxt = xt−x∗ and Dxt−1f(c,xt−1)|xt−1=x∗ is the Jacobian matrix associated with f calcu-

lated at the fixed point. For the sake of notational simplicity, we refer to the Jacobian matrix as

Dx∗f . Since x∗ is a fixed point, see (2.2), neglecting the term of second order in δx, a linearized

system is defined

δxt = (Dx∗f) δxt−1 (2.4)

Generally, the Jacobian matrix of a dynamical system can be diagonalized through a linear

change of coordinates and the Jacobian matrix is characterized by its eigenvalues ξi, i = 1, 2, ..., n.

If |ξi| < 1 ∀i, then as t→∞ the perturbation from equilibrium, δxt, decays exponentially. On

the contrary, if |ξi| > 1, then the perturbation will grow.

For the linearized map (2.4) the eigenspace Eξi is the subspace spanned by the eigenvector
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associated with ξi (conveniently defined depending on the fact that ξi is real or complex).

By definition, these subspaces are invariant under the time evolution operator defined by the

Jacobian. Starting from these ones, we can define the so-called invariant linear subspaces Es,

Ec and Eu as
Es = span{x| x ∈ Eξi , |ξi| < 1}
Ec = span{x| x ∈ Eξi , |ξi| = 1}
Eu = span{x| x ∈ Eξi , |ξi| > 1}

Es is the stable invariant linear subspace, Ec is the center one and Eu is the unstable one. They

are invariant under the linearized map associated with f and Es ⊕ Ec ⊕ Eu = R
n. When the

center subspace and the unstable one are empty, the fixed point x∗ is an equilibrium point for

the linearized map (2.4), because any perturbation from equilibrium decays exponentially in

time.

The linear dynamics is asymptotically stable if and only if the spectrum of Jacobian matrix

of the dynamical system f lies within the unit circle in the complex plane. The latter condition

is verified depending on the value of the system parameter c.

The crucial point is to relate the linearized dynamics to the local nonlinear dynamics de-

scribed by f , so that the stability of the first one implies the stability of the second one. For

this purpose, we define a fixed point as hyperbolic if the center subspace Ec is empty. For the

sake of simplicity but without loss of generality, we assume also that the unstable subspace Eu

is empty. Even if Eu is not empty, in the linear theory, it is always possible to consider Eu as

a stable linear subspace for the same linearized system under a time reversal transformation.

This trick leads to the following theorem, due to Hartman and Grobman:

Hartman-Grobman theorem [41]: Let x∗ be an hyperbolic equilibrium for f at some

fixed value of c. Then there exists a homeomorphism1 Ψ : Rn → R
n and a neighborhood U of

x∗ where

f(c,x) = Ψ−1 (Dx∗f ·Ψ(x))

for x such that x ∈ U and f(c,x) ∈ U .

The Hartman-Grobman theorem provides a local relation between the nonlinear dynamics

and the linear one. Hence, the stability (in the sense of fixed point convergence) of the latter

implies the stability of the former.

We are interested in the situation in which there exist values of c such that the eigenvalues

of the Jacobian matrix are smaller than 1, in absolute value (Eu is empty).

If x∗ is an hyperbolic fixed point for f at c, then as c changes, the equilibrium point will shift

its location, but it will remain hyperbolic stable if the eigenvalues are within the unit circle. In

fact, all eigenvalues ξi are function of c. If an eigenvalue reaches the unit circle, then the fixed

1An homeomorphism is a continuous function between topological spaces (in this case Rn) that has a continuous
inverse function.
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point is no longer hyperbolic and a local bifurcation can occur.

There are many possibilities according to the values assumed by the eigenvalues which reach

the unit circle. We analyze the situation in which a simple real eigenvalue becomes equal to −1.

This case is generally called a period-doubling bifurcation, or flip bifurcation.

2.2.2 Nonlinear theory: center manifold reduction

A period-doubling bifurcation is characterized by a non degenerate eigenvalue of the Jacobian

matrix of f equal to −1, occurring at a fixed value of c = c∗. As a consequence, the center

invariant linear subspace Ec is one-dimensional. This suggests that the interesting dynamics

of a nonlinear system f near a period-doubling bifurcation occurs on a one-dimensional invari-

ance subset of phase space called the center manifold. A mathematically precise definition of

manifolds and related geometric ideas can be found in [42]. Intuitively, the center manifold cor-

responds to the invariant linear subspace Ec when we consider the nonlinear dynamical system

(2.1). A center manifold W c associated with Ec is the subspace tangent to Ec at the fixed point

x∗ for c = c∗. The tangency condition at fixed point together with the specific mathematical

shape of f univocally define the center manifold W c.

It is important to notice that a reduction procedure exists in order to define the map f on

the center manifold and as a consequence also the center manifold is defined parametrically. In

principle, the reduction procedure is always possible due to the invariance of the center manifold.

In fact, due to the invariance, if x ∈ W c it follows that f(x) ∈ W c. Hence, since the center

manifold W c is one-dimensional, there exists a graph x = h(xc) which parameterizes locally W c

as a function of a variable xc. Once that h is found, we can find a one-dimensional function f

of the variable xc which corresponds to the projection of f on the center manifold W c.

In many cases, the procedure can be implemented only approximately. For a detailed dis-

cussion see [29].

The crucial aspect is related to the invariance of W c which implies that in a neighborhood U

of the fixed point x∗, a system state xt ∈ U ∩W c evolves in U ∩W c, that is f(c∗,xt) ∈ U ∩W c.

Hence, assuming without loss of generality that the unstable invariant linear subspace Eu is

empty, the phase space of the system is the direct sum of two subspaces, the center manifold W c

and the complement of W c. The invariance of W c implies the invariance of the complement.

x*x*

WcWc

EcEc

EsEs

¯̄

­­

UU

Figure 2.1: Graphical interpretation of the center manifold W c
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Figure (2.1) gives a graphical interpretation of the decomposition of the phase space into the

direct sum of W c and its complement (Es) in 2-dimensional case.

The main intuition is that perturbations from x∗ can be studied separately in W c and in

the complement of W c. In the latter, the results of the linear theory can be applied and the

Hartman-Grobman theorem defines that in the complement of W c the orbit of the dynamical

system is attracted by the fixed point x∗. On the contrary, the dynamics of the map f in W c is

not attracted by x∗ anymore and the nonlinearities of f define the asymptotic evolution of the

map.

We have introduced the problem of center manifold reduction in order to give a general

description of the period-doubling bifurcation. In fact, when a dynamical system is one-

dimensional, that is f : T × X → X, X ⊆ R, if ∂f
∂x |c∗,x∗ = ξ = −1, the whole phase

space X coincides with the center manifold. Hence, we can study the one-dimensional map f in

order to characterize the dynamics and to obtain its Poincaré-Birkhoff normal form.

Since a period-doubling bifurcation can be investigated in a one-dimensional center manifold,

from now on we refer to a dynamical system described by a one-dimensional continuous function

f defined in the appropriate one-dimensional space.

Finally, the results just explained are exactly valid for a specific value of c = c∗ for which the

critical eigenvalue is exactly equal to −1. Qualitatively, a period-doubling bifurcation refers to a

transition of the dynamical system from a stable dynamics characterized by an attracting fixed

point to a two-period dynamics characterized by an oscillating evolution between two states of

the phase space. We refer to (c∗, x∗) as the criticality at which the transition occurs. Unfor-

tunately, the two-period dynamics at the criticality has zero amplitude. The new bifurcating

solutions become distinct from the original equilibrium only when c 6= c∗. When c 6= c∗ there

is not a center linear subspace Ec and thus the center manifold is not defined. In principle, for

c 6= c∗ the study of the bifurcation on the center manifold through the Poincaré-Birkhoff normal

form is not justified. Ruelle and Takens [43] pointed out that the study of the map f on the

center manifold is approximately justified also in a neighborhood of criticality c∗.

In the next Section, we will deduce the Poincaré-Birkhoff normal form related to a period-

doubling bifurcation. This refers to a local representation of the dynamical system described by

f . This local representation has the advantage of making evident the symmetry of the original

dynamical system.

2.2.3 Nonlinear theory: Poincaré-Birkhoff normal form

The occurrence of a period-doubling bifurcation is related to a local reflection symmetry which

characterizes the dynamical system described by f . Without loss of generality, we assume that

f is a continuous function in X ⊆ R and for the sake of notational simplicity we consider that

criticality occurs in (c∗, x∗) = (0, 0). The variable x can be intended as x−x∗ = x− 0 = x, that

is a perturbation from criticality.

When the dynamical system is one-dimensional, the critical eigenvalue corresponds to the
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2. Dynamical systems theory

first derivative of the map f calculated at the criticality:

ξ =
∂f(c, x)

∂x
|(c=0,x=0) = −1

Generally, ξ ≡ ξ(c), where c represents a shift from the critical value 0 in the parameter interval.

Hence, the eigenvalue ξ(c) strictly depends on the system parameter c.

The aim is to obtain a new map N : T × X → X that reproduces locally the dynamical

behavior defined by f . N can be obtained through a nonlinear change of coordinate which

remove some inessential nonlinearities of f at the criticality. The value ξ = −1 determines

which nonlinear terms of f are essential or not. The local reflection symmetry of the system is

related to the eigenvalue equal to −1.

At the criticality (0, 0), the dynamical system can be written as the Taylor series of f

xt = f (1)(xt−1) + f (2)(xt−1) + ... (2.5)

where the value of zero-order term of the expansion is zero. Consider then the nonlinear change

of coordinate

z = Θ(x) = x+ ζk x
k (2.6)

with inverse

x = Θ−1(z) = z − ζk zk +O(z2k−1) (2.7)

where Θ is a near identity change of coordinate characterized by a nonlinear term of order k

times the parameter of the transformation, ζk. The main goal is to determine an appropriate ζk

to remove the k-order term of (2.5).

With the new variable z, we find

zt = f(Θ−1(zt−1)) + ζk
(
f(Θ−1(zt−1))

)k
= f(zt−1)− Lk(z) +O(zk+1) (2.8)

where L is defined as

Lk(z) =

(
∂f (1)(z)

∂z
|z=0

)
ζk z

k − ζk
(
f (1)(z)

)k
(2.9)

It is important to notice that Lk is an homogenous function of degree k of z. The crucial point

is that the solution of the following equation, if it exists,

fk(z)− Lk(z) = 0 (2.10)

allows to remove the k-order term of the map f at criticality. Notice that the term of order k

of the transformation Θ does not affect the terms of order smaller than k of f . In principle this

procedure can be iterated with successive nonlinear changes of coordinate in order to remove all

possible nonlinearities. In the specialist literature [29], (2.10) is called the homological equation,
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2.2 Bifurcation Theory

or Lie bracket.

For a period-doubling bifurcation, the first order of the Taylor series (2.5) is simply equal to

f (1)(z) = ξz (2.11)

with ξ = −1. We find that Lk(z) is

Lk(z) = −ζk zk (1− (−1)k−1) (2.12)

In this relation, the term (1 − (−1)k−1) will vanish when k is odd. As a consequence, the odd

terms of the Taylor series (2.5) can not be removed because the homological equation (2.10)

has no solution in this case. On the contrary, terms of even degree can be removed and the

Poincaré-Birkhoff normal form N of the map f becomes:

zt = N (zt−1) = ξ zt−1 (1 + φ3 z
2
t−1 + φ5 z

4
t−1 + ... ) (2.13)

where φ3 is related to the third-order term of the Taylor series (2.5) and it depends on the

solution of (2.10) with k = 2, φ3 is related to the term of order 5 of the Taylor series (2.5) and

it depends on the solutions of (2.10) with k = 2 and k = 4, and so on. As claimed before, the

Poincaré-Birkhoff normal form is characterized by a local reflection symmetry.

In principle, (2.13) is exactly valid at the criticality. According to Ruelle and Takens [43],

the normal form approximately describes the local behavior of the dynamical system f in a

neighborhood of c∗ = 0. As a consequence, the map N , found with the previous procedure and

calculated at c (c ≡ c− c∗ = c− 0), is

zt = N (c, zt−1) = ξ(c) zt−1 (1 + φ3(c) z2
t−1 + φ5(c) z4

t−1 + ... ) (2.14)

where ξ, φ3, φ5 are now estimated for a value of c different from zero.

After the criticality at which the period-doubling bifurcation occurs, the fixed point is not

attracting anymore. A mathematical characterization of the new solution can be found in [44].

Qualitatively, this solution identifies a two-period orbit oscillating between two states, x+ and

x−. Intuitively, the trick is to notice that the twice-iterated map f2(c, x) = f(c, f(c, x)) displays

new solutions which correspond to the states x+ and x−. In fact, the equation x = f2(c, x) has

three solutions. The first one corresponds to a shift in the phase space of the old fixed point

which is not stable anymore. There are two new solutions due to the fact that the criticality

corresponds to a pitchfork bifurcation [29] for f2 and a pitchfork bifurcation is characterized by

a branch of two new bifurcating solutions.

The problem of finding these states can be simplified looking at the normal form N in a

neighborhood of the criticality. In fact, solving the following equation

z = N (c,N (c, z)) (2.15)

we can find two states, z+ and z−, that describe approximately the states x+ and x−. Due to
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2. Dynamical systems theory

the reflection symmetry of the normal form, it follows that

z+ = N (c, z−) (2.16)

z− = N (c, z+) (2.17)

z+ = −z− (2.18)

As a consequence, in a opportune neighborhood of the criticality it is not necessary to consider

explicitly the second iterate of f . Indeed, the solution of

−z = N (c, z) (2.19)

represents the states z+ and z− describing approximately the two-period orbit of the original

map f .

2.2.4 Feigenbaum scenario

In the previous Sections we have described analytically how, changing the system parameter c,

a dynamical transition occurs from a stationary system state to a two-period orbit through a

period-doubling bifurcation. When the dynamical system is characterized by a stable hyper-

bolic fixed point, the long-run dynamics converges asymptotically to a steady state. After the

bifurcation, the long-run dynamics converges asymptotically to a two-period orbit, that is the

dynamical system oscillates between two configuration. The system parameter c triggers this

transition.

In many cases, if the parameter c changes in the same direction of the first bifurcation,

successive period-doubling bifurcations occur. After the first bifurcation, the states x+ and

x−, defining the two-period orbit, identify a branch of bifurcating solutions as function of the

parameter c. An example of this typical scenario is shown in Figure (2.2). It represents the

so-called bifurcation diagram in which the asymptotic states xt of the dynamical evolution are

plotted as a function of c.

It may happen that at some threshold for c a new period-doubling bifurcation can occur.

Hence, from the first branch, another two branches appear and so on. This scenario characterized

by a period-doubling cascade is the so-called Feigenbaum scenario [38] [45].

Typically, in an interval of c-values, the dynamical behavior is periodic and it is characterized

by a specific period n. When a period-doubling bifurcation occurs, there is another interval of

c-values in which the dynamical behavior is still periodic, but now the period is doubled (2n).

This cascade of period doublings proceeds until that chaos2 appears.

Feigenbaum showed for the first time [38] that this scenario is displayed by a large number

of very different dynamical systems. Indeed, its occurrence essentially bypasses the details of

the equations governing each specific system because the theory of this behavior is universal.

Particularly, when f is defined in a closed interval, it is related to a mathematical shape of

f characterized by a maximum and decreasing to zero at the extrema of interval. For further

2In the next Section, we will give the mathematical definition of deterministic chaos
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Figure 2.2: A Feigenbaum scenario. The Figure represents the bifurcation diagram of the logistic
map xt = c xt−1(1− xt−1), studied for the first time by May [37].

details see [45].

The Feigenbaum constant δ reflects this universal behavior which characterizes many dy-

namical systems. Suppose that we refer to the value of c, at which a period-doubling bifurcation

occurs, as cn. n represents the period of system’s orbit after the bifurcation. Hence, we have

a series of values (c2, c4, c8, c16, c32, c64, ... ), each one represents in the parameter interval the

value of c at which there is a period doubling.

The index series is the so-called Sharkovsky ordering [46] that is

1→ 2→ 22 → 23 → 24 → 25 → 26 → 27 → ...

Particularly the elements of latter series identify the indices of the series of cn values. Let i be

a index following the Sharkovsky ordering, if we define

δi =
ci+1 − ci
ci+2 − ci+1

δi (quickly) approaches the constant value δ

δ = 4.6692016...

Thus, this definite number appears naturally in the bifurcation diagram of all dynamical systems

exhibiting a period-doubling cascade to chaos.

2.3 Elements of Ergodic Theory of Chaos

In this Section we give a definition of deterministic chaos and we refer particularly to a dynamical

system with discrete time variable, exhibiting a period-doubling cascade to chaos. As claimed in

Section 4.2.2, a dynamical system of this type can be studied in one-dimensional space. Hence,
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2. Dynamical systems theory

we suppose that the map f is a continuous function in an interval X ⊆ R.

In a chaotic regime, see Figure (2.2), during the dynamical evolution, the system explores

many states defined in a phase space that is a subset of X. In this regime, the dynamical

behavior is aperiodic. For this reason, it is useful to look at the non local properties of the

dynamical system. Particularly, we will investigate non local quantities such as the Lyapunov

exponent, the information dimension, and the Kolmogorov-Sinai entropy.

2.3.1 Deterministic chaos

The period-doubling cascade to chaos is an example of the phenomenon according to which

nonlinear models exhibit very complex dynamics. This is called deterministic chaos. Non linear

models are deterministic (i.e. without noise) because, given an initial state with infinite preci-

sion, the entire future path is exactly determined. However, chaotic solutions exhibit sensitivity

to initial states. A small perturbation of the initial state leads to a completely different time

path. Initial state uncertainty in chaotic systems leads to unpredictability in the long run.

According to this notion of chaos3, we can define [47]

Definition The dynamics of a difference equation (map) xt = f(xt−1) is called chaotic if there

exists a set Λ of positive Lebesgue measure, such that f has sensitive dependence on initial

conditions with respect to Λ, that is, there exists a positive distance C such that for all initial

state x0 and any ε-neighborhood U of x0, there exists an initial state y0 ∈ Λ ∩ U and a time

T > 0 such that the distance d(xT , yT ) = d(fT (x0), fT (y0)) > C.

2.3.2 Dissipative systems and strange attractors

We are particularly interested in dissipative dynamical systems which exhibit chaos. We high-

light that a dynamical system is dissipative in order to stress the fact that during chaotic

evolution the concept of conserved quantity is replaced by the concept of attractor. Below we

will give the definition of attractor for the dynamics. In order to introduce the tools necessary to

characterize a system of this type in chaotic regime, we highlight briefly some typical properties.

A dissipative system is a dynamical system which is characterized by absence of a conserved

quantity along a trajectory. Particularly, Liouville’s theorem is not valid, i.e. a dissipative

dynamical system does not conserve the volume of phase space. In fact, for example, when the

dynamics converges to a steady state the determinant of Jacobian matrix (or the first derivative

in one-dimensional case) of the system is smaller than 1. This means that in the stationary

regime, the phase-space volume is contracted by the time evolution.

As we have seen in the previous Sections, when a stable equilibrium point exists, the study

of the linearized system through the Jacobian fully characterize the problem. Also when a

bifurcation occurs, a local study at the criticality leads to an approximate solution, such as the

case of period-doubling bifurcation.

3In principle, there are many interpretations which focus on different aspects of a chaotic system. Hence, an
exact mathematical definition of chaos is nontrivial and there exist a number of non-equivalent definitions in the
literature.
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However, according to the values of the parameters, if the dynamical behavior of the system

is chaotic, it has no sense anymore to describe the system through the linearization around an

equilibrium because there is not anymore a generalized equilibrium point (such as a stable fixed

point or a periodic orbit). On the contrary, the dynamical behavior of the system is aperiodic.

Hence, it is necessary that the approach moves from a local point of view to a non-local

one. Particularly, the tool in which we want to describe the chaos exhibited by a dissipative

dynamical system is ergodic theory [39].

The theory treats the time average of the system state during the dynamical evolution.

Typically, a dissipative dynamical system with initial condition x0 exhibits a transient behavior

followed by an asymptotic regime. Since, we are interested in time averages, transients become

irrelevant. Therefore, if f t is the t-iterated map, the point f t(x0) representing the system

state at a large time t eventually lies on an attracting compact set A ⊂ X, called attractor. The

operational definition of attractor is that it is a set on which the system states f t(x0) accumulate

for large t.

Let E be a subset of X and let f t(E) be the set obtained by evolving each of the points in

E forwards during time t. To give a mathematical definition of an attractor [48], we say that A

is an attracting set with fundamental neighborhood U if

1. for every open set V ⊃ A we have f t(U) ⊂ V when t is large enough

2. f t(A) = A for all t.

The mathematical intuition of this definition is related to the idea that a dynamical system

converges asymptotically to the attracting compact set A. Hence, if U is an open set in X,

and the closure of f t(U) is compact and contained in U for all sufficiently large t, then the set

A = ∩t>0f
t(U) is a compact attractor with fundamental neighborhood U .

When the dynamical behavior of a system is chaotic, the asymptotic motion of the system is

aperiodic within the attractor, that is an orbit of the system explores all points of the attractor

in a infinite time. Since the attractor is compact, any system’s orbit is aperiodic and bounded in

the chaotic regime. Furthermore, in the chaotic regime the dynamical system exhibits sensitive

dependence on initial conditions. Sensitivity to initial conditions implies divergence of nearby

trajectories on the attractor.

At the same time, when we consider dissipative dynamical system, dissipation implies at-

traction of trajectories on the attractor.

These two opposite aspects may coexist only in a geometric object that is an attractor

of great complexity characterized by a non-integer dimension. This object is called a strange

attractor [49].

The study of a system on an attractor, be it strange or not, gives a global picture of the long

run behavior of dynamics. Particularly, more detailed information about the system dynamics

is given by the invariant probability measure ρ on the attractor A.
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2.3.3 Invariant probability measure

Ergodic theory says that a time average equals a space average. As claimed before, the first one

refers to the time average of the system state during the dynamical evolution, or more generally

the time average of a function ϕ of system states

lim
T→∞

1

T

T∑
t=0

ϕ
[
f t(x0)

]
(2.20)

where x0 is the initial condition, f is the map describing the dynamical system and f t is the

t-iterated map.

The space average refers to the average of a function ϕ of system states weighted through

an invariant probability measure ρ, defined on the attractor A in which the dynamics evolves.

The space average of a function ϕ is ∫
A
ρ(dx) ϕ(x) (2.21)

where x ∈ A.

The probability measure ρ on A describes how frequently various parts of A are visited by

the orbit of the system. Operationally [39], ρ is defined as the time average of Dirac deltas at

the point xt

ρ(x) = lim
T→∞

1

T

T∑
t=0

δ(x− xt) (2.22)

The probability measure is invariant when it satisfies the following relation

ρ
(
f−t(E)

)
= ρ(E) , t > 0 (2.23)

where we consider E as a subset of A and f−t(E) as the set obtained by evolving each of the

points in E backwards during time t. Essentially, a measure describing a dissipative dynamical

system on an attractor is defined as invariant through (2.23) because in this way it is invariant

under the time evolution operator (f t) and this invariance may be expressed as: for all ϕ it

follows that

ρ(ϕ ◦ f t) = ρ(ϕ) (2.24)

where ρ(ϕ) is

ρ(ϕ) =

∫
ρ(dx)ϕ(x) (2.25)

If ρ satisfies (2.23), (2.24) can be proved trivially.

Finally, an invariant probability measure ρ may be decomposable into several different pieces,

each of which is again invariant in its support, that will be a subset of the attractor A. If not,

ρ is said to be indecomposable or ergodic. If ρ is ergodic, then the ergodic theorem [50] asserts
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that for every continuous function ϕ,

lim
T→∞

1

T

T∑
t=0

ϕ
[
f t(x0)

]
=

∫
A
ρ(dx)ϕ(x) (2.26)

for almost all initial conditions x0 with respect to the measure ρ.

This is a crucial result in ergodic theory of dynamical systems because studying some prop-

erties of system orbits, particularly in the chaotic regime, we can deduce non-local quantities,

related to the ergodic measure, as Lyapunov exponent, information dimension, and entropy,

which describe important non-local features of dynamical system.

Before introducing these quantities depending on the ergodic measure, we highlight two

important aspects about the existence and the uniqueness of the ergodic invariant measure.

Krylov-Bogoliubov Theorem [51]: If the compact attractor A is invariant under the

dynamical system (f t), then there is a probability measure ρ invariant under f t and with support

contained in A. One may choose ρ to be ergodic.

The important assumption is that A is compact. The theorem asserts that an ergodic

measure exists. Hence, operationally, this measure is defined by time averages through (2.22).

Unfortunately, when the dynamics becomes chaotic and the attractor is strange, there are

in general many invariant measures in a dynamical system, but not all of them are physically

relevant. For example, if x∗ is an unstable fixed point, then the δ-function at x∗ is an invariant

measure, but it is not observed because any small perturbation leads the system to leave the

unstable fixed point.

Therefore, the observed measure is only one, the so-called physical measure. From an ex-

perimental point of view, a reasonable physical measure is obtained according to the following

idea of Kolmogorov. Considering the dynamical system with an external noise term added

xt = f(xt−1) + εη(t) (2.27)

where η(t) is some noise and ε > 0 is a real parameter. For suitable noise and ε > 0, the

stochastic time evolution (2.27) has a unique stationary measure ρε. In this framework, the

physical measure is ρ = limε→0 ρε. Again, this is an operational definition which works very well

in many cases. Particularly, in a computer study, roundoff errors should play the role of small

random noise and due to the sensitive dependence on initial conditions, also a very small level

of noise has important effects in defining a unique physical measure.

Once that we can claim the existence of the physical measure for a dynamical system, we can

introduce some non-local quantities describing the sensitive dependence on initial conditions of

dynamical system, in particular in a chaotic regime.

What is the reason to define these non-local quantities? The answer to this question [52] is

related to the fact that a dynamical system, evolving chaotically, continually produces dynamical

information (with a rate of production called entropy), because it continually explores new states

on an strange attractor. Furthermore, two orbits that initially are very close, evolve in different

way after a time large enough, due to the sensitive dependence on initial conditions.

42



2. Dynamical systems theory

From an external point of view, an observer typically takes information about a dynamical

system looking at time correlations between functions which depend on system’s orbits. If an

orbit is periodic, time correlations display clear structures and as a consequence the observer

has complete information about the dynamical behavior. On the contrary, since the precision

of measuring is always finite, in the chaotic regime characterized by aperiodic evolution and

sensitive dependence on initial conditions, the observer loses information about system at some

rate (it is important to notice that here the point of view is external).

A time correlation function can be typically written as

Corrϕ,ψ(t) =

∫
A
ρ(dx)ϕ(x)ψ(f t(x))−

(∫
A
ρ(dx)ϕ(x)

)(∫
A
ρ(dx)ψ(x)

)
(2.28)

with ϕ and ψ as two functions whose one want to know the correlation. When the system is

chaotic, the correlation function (2.28) will be characterized by some decay properties, of course.

These decay properties are related to the rate of information production or information loss,

depending on the point of view, internal or external respectively.

This rate is related to some non-local quantities that we will introduce.

2.3.4 Largest Lyapunov Exponent (LLE)

If the initial state of a time evolution is slightly perturbed, the exponential rate at which the

perturbation changes with time is called a Lyapunov exponent. When the dynamical behavior

is periodic, the Lyapunov exponent is negative because the orbit with different initial conditions

are attracted by an asymptotic system state, so any perturbation decreases. On the contrary,

when dynamical behavior is chaotic, the Lyapunov exponent is positive and it describes the rate

at which the initial perturbation increases, that is the sensitive dependence on initial conditions.

There may be several Lyapunov exponents for a n-dimensional dynamical system. The most

important is obviously the largest one (LLE) which describes the transition from a periodic

behavior to a chaotic one.

To explain a theorem which relates the Lyapunov exponents to the ergodic measure, we

consider for a moment a n-dimensional dynamical system described by a map f defined in a

n-dimensional space X.

The exponential rate associated with a perturbation in a point of the trajectory is dictated

by the Jacobian matrix of the map calculated at the same point of the trajectory. Hence, in

principle, this rate may be different in different points of the attractor. When the dynamical

system is ergodic, the Oseledec theorem states that the linear transformations obtained by the

Jacobian matrix calculated at different points of the trajectory, are asymptotically equivalent

almost everywhere to a linear transformation associated with a constant matrix, whose eigen-

values are related to the Lyapunov exponents. Specifically, the logarithms of the eigenvalues are

the Lyapunov exponents associated with the dynamical system. Hence, a Lyapunov exponent

assumes the same value almost everywhere on the attractor.

Multiplicative ergodic theorem of Oseledec [53]: Let ρ be a probability measure on X

(eventually on an attractor A ⊂ X) and f : T ×X → X a measure preserving map such that ρ
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is ergodic. Let also T a linear map, T : X →M(n× n,R), the latter is space of matrices n× n
whose entries are real numbers. If T is defined such that∫

ρ(dx) ln+ ||T (x)|| <∞

where ln+ y = max(0, ln y), defining the matrix T t(x) = T (f t−1(x)) · · · T (f(x))T (x), then, for

ρ-almost all x, the following limit exists:

lim
t→∞

(
T t ∗(x) · T t(x)

) 1
2t = L(x)

where T t ∗(x) is the adjoint of T t(x) and we have taken the 2t-th root of the positive matrix

T t ∗(x) · T t(x).

The logarithms of the eigenvalues of L(x) are called Lyapunov exponents and they are

ρ-almost everywhere constant (as the consequence of the assumption that ρ is ergodic). Partic-

ularly, we refer to the largest Lyapunov exponent as LLE. In the one-dimensional case of period-

doubling cascade to chaos, there is only one Lyapunov exponent. Also in the one-dimensional

case, we refer to it as LLE.

If X ⊂ R
n, T can be considered also as the Jacobian matrix describing the linearized system

associated with f . In the one-dimensional case, X ⊂ R, T coincides with the first derivative in

x ∈ A of f : T ×X → X, where A is the attractor for the dynamics, that is

∂f t(x)

∂x
=
∂f(x)

∂x
|f t−1(x) ·

∂f(x)

∂x
|f t−2(x) · · ·

∂f(x)

∂x
|f(x) ·

∂f(x)

∂x
|x (2.29)

If ρ is ergodic and f is defined in a compact support (attractor A), LLE is well-defined and in

one-dimensional case it is simply

LLE = lim
t→∞

1

t
ln

(
∂f t(x)

∂x

)
(2.30)

for ρ-almost all x ∈ A.

In one-dimensional space and in a chaotic regime, LLE gives a measure of the rate of

exponential growth of an infinitesimal δx, which can be seen as the initial distance between two

orbits. Hence, LLE is a measure of the sensitive dependence on initial conditions of a dynamical

system.

Until now, we have considered a dynamical system described by f (or f) without focusing

on system’s parameters. For a dynamical problem depending on a bifurcation parameter c,

for example a period-doubling cascade to chaos, the aim would be to estimate LLE from an

experimental point of view as a function of the system’s parameter c. Indeed, an estimation

of LLE corresponds exactly to a measure of sensitive dependence on initial conditions of a

dynamical system.

However, the situation is unfortunate because the largest Lyapunov exponent is in general

a discontinuous function of the bifurcation parameter c, [54] [55]. This leads to a philosophical

problem about the sense of an experimental measure that is, in principle, discontinuous when c
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changes [39].

In the next Section, we define the entropy of a dynamical system. This quantity has the

advantage of being easily measurable. In fact, only the knowledge of one system’s orbit is

necessary in order to estimate it.

2.3.5 The Kolmogorov-Sinai invariant or entropy

The intuition behind the concept of entropy is defining a quantity which will measure, in some

sense, how much information is produced by a process, or better, at what rate the information

is produced [56]. In dynamical systems theory, the word information is related in some sense

to the number of asymptotic states that the dynamical system explores during the evolution.

For example, in chaotic regime a dynamical system, see Figure (2.2), explores a larger and

larger number of states when time increases, due to the aperiodic motion and the sensitive

dependence on initial conditions. In fact, two dynamical states that are initially different but

indistinguishable at a certain precision, will evolve into distinguishable states after a finite time.

We can define the positive rate at which the dynamical system produces information explor-

ing new states as the entropy.

In order to give a mathematical definition of entropy, the crucial point is to describe what

is the probability associated with these asymptotic states.

The ergodic measure of a dynamical system evolving asymptotically within an attractor A

can be used to define the probability of finding the system in a region Ai ⊂ A, as ρ(Ai). In

some sense, we can interpret ρ(Ai) as the probability associated with a dynamical state whose

position is within Ai.
Assuming that the attractor A is a compact set with a given metric (when a dynamical

system is defined in R
n, the metric can be considered as induced by a norm), we can consider a

finite partition of A, A = (A1, ... ,Aν). A partition of A is simply a division of A as a union of

non-overlapping and non-empty subsets Ai. Through the partition A, we can interpret exactly

ρ(Ai) as a probability. In fact, since ρ is a measure and the dynamical system is asymptotically

confined within the attractor A, it follows that

ν∑
i=1

ρ(Ai) = 1

Following the Shannon’s idea, a quantity H can be defined as

H(A) = −
ν∑
i=1

ρ(Ai) ln ρ(Ai) (2.31)

H(A) is the information content of the partition A with respect to the ergodic measure ρ. The

quantity H so defined is a good measure of information because it is additive [56]. If there are two

uncorrelated sources of information, the total H is simply the sum of two types of information

related to the two sources. The logarithm in (2.31) captures this additivity characteristic.

However, H described by (2.31) is not the entropy of a dissipative dynamical system. The
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reason comes from the fact that the subsets Ai contain more than one dynamical state when the

partition A is finite. Hence, ρ(Ai) is not the probability associated with only one state of the

dynamical evolution. In principle, it is necessary a finer and finer partition in order to find the

entropy of the dynamical system. This procedure may be avoided using a generating partition

[57].

The main reason is to find the specific partition of the phase space which allows to access

to all information related to the dynamics of the system. The main aim is the decomposition of

the phase space into the minimal elements which represent the dynamical states of the system.

Making a parallelism with statistical mechanics, this procedure is similar in some sense to the

decomposition of the phase space into cells whose dimension is ~. Since the main goal is obtaining

a partition related to the dynamical behavior of the system, the generating partition is defined

through the map f iterated backwards in time.

The procedure is the following. Starting from a finite partition A, let f−kAi be the set

of points within the attractor A mapped by fk to Ai. We then denote denote by f−kA the

partition (f−kA1, ... , f−kAν). Finally A(n) is defined as [39]

A(n) = A ∨ f−1A ∨ · · · ∨ f−n+1A (2.32)

which is the partition whose pieces are

Ai1 ∩ f−1Ai2 ∩ · · · ∩ f−n+1Ain (2.33)

with ij ∈ {1, 2, ... , ν}, i.e. (i1, ... , in) are opportune combinations of indices. What is the

significance of these partitions? The partition A(n) in (2.32) is formed by elements of the type

(2.33) that represents the smallest intersection between all elements of the partitions A, f−1A,

... , f−n+1A. These sets are of course disjoint and the union gives the attractor A.

The partition A(n) represents a refinement of the partition A through the map f iterated

backwards in time. It is important to notice that fkA is not in general a partition.

The following limits are asserted to exist [58], defining h(ρ,A) and h(ρ):

h(ρ,A) = lim
n→∞

[
H(A(n+1))−H(A(n))

]
(2.34)

h(ρ) = lim
diamA→0

h(ρ,A) (2.35)

where diamA = maxi{diameter of Ai}.
h(ρ,A) is the rate of expansion of information when we consider a finer partition (A(n+1))

with respect to the previous one (A(n)). h(ρ) is the limit for finer and finer partitions and it is

called Kolmogorov-Sinai invariant of a dissipative dynamical system or simply entropy.

The last limit may sometimes be avoided, i.e. h(ρ,A) = h(ρ). This hold in particular

if diamA(n) → 0 when n → ∞, or if f is invertible and diam fnA(2n) → 0 when n → ∞.

Mathematically, this happens when the σ-algebra in which the ergodic measure is defined,

contains all f−kAi ∀k = 1, ... ,∞. In this case A is called a generating partition. For a

deeper discussion about the generating partition see [57].
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As claimed before, from an external point of view, h(ρ) is also the rate of information loss

about the system dynamics, estimated by an observer.

The relationship between entropy and Lyapunov exponents is very interesting. Ruelle [59]

has proved that for a finite-dimensional dynamical system f

h(ρ) ≤
∑

positive Lyapunov exponents (2.36)

that is, for a one-dimensional system f

h(ρ) ≤ LLE (2.37)

Another quantity of interest is the order-2 Renyi entropy K2 defined as

H2(A) = − ln
ν∑
i=1

ρ(Ai)2 (2.38)

K2(A) = − lim
diamA→0

lim
n→∞

1

n
H2(A(n)) (2.39)

Grassberger and Procaccia [60] have proved that K2 is a lower bound to the entropy h(ρ):

K2(ρ) ≤ h(ρ) (2.40)

These various quantities can be measured from an experimental point of view, studying the

correlation integral, as Procaccia et al. [61] [62] suggest.

Given a long-time series of orbit’s points on the attractor A for a one-dimensional dynamical

system, {xt , t = 1, ... , N} (since that the time variable is discrete, the period time between a

point and the successive one is simply ∆t = 1), we can consider the vector ~xi = {xi+k·∆t}Nk=1,

with the opportune periodical boundary conditions. The definition of the correlation integral is

C(r) = lim
N→∞

1

N2

N∑
i,j=1

θ(r − d(~xi, ~xj)) (2.41)

where θ is the Heaviside function, d is a metric distance in R
N .

In Chapter 5 we will explain as a numerical approximation of (2.41) is useful to estimate

empirically quantities like the Kolmogorov-Sinai entropy, the order-2 Renyi entropy, and the

information dimension from the time series describing an orbit of the dynamical system.

2.3.6 The dimension of an attractor

Finally, another quantity of interest in defining as chaotic a dynamical system is the dimension

of attractor A. In chaotic regime, we have seen that the attractor A is strange when it displays

a non-integer dimension. Intuitively, the dimension of a set is the amount of information needed

to specify points on it accurately. In dynamical systems theory, the typical definition of the

dimension of a strange attractor is given through the metric induced by the norm of Rn, or R in
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one-dimensional case.

The Hausdorff dimension measures the local size of a space taking into account the distance

between points, the metric. Qualitatively, the main intuition about the Hausdorff dimension is

the following. Consider the number N(r) of balls of radius r required to cover A completely.

When r is very small, N(r) grows polynomially with 1
r . The Hausdorff dimension is the unique

number dimH A such that N(r) grows as 1
rdimH A as r approaches zero. More precisely, this

defines the box-counting dimension, which equals the Hausdorff dimension when the limit for

r ↓ 0 exists.

Hausdorff dimension [63]: Given the attractor A with a metric, and r > 0, σ is a covering

of A by a countable family of set σk with diameter dk = diam(σk) ≤ r. Given α ≥ 0, we can

write

µαr (A) = inf
σ

∑
k

(dk)
α

When r ↓ 0, µαr (A) increases to a (possible infinity) limit µα(A) called the Hausdorff measure of

A in dimension α. Hence,

dimH A = sup{α : µα(A) > 0}

is the Hausdorff dimension of A.

Generally, the Hausdorff dimension of an attractor is a quantity difficult to measure because

it is strictly related to the geometry of the attractor. Instead, a different definition can be given

in order to connect the dimension of the attractor with the probability measure defined on the

attractor itself.

Information dimension [64]: Given a probability measure ρ on an attractor A, the infor-

mation dimension dimI ρ is the smallest Hausdorff dimension of A of ρ measure 1.

It is important to notice that A is not closed in general, and therefore the Hausdorff dimension

dimH(supp ρ) of the support of ρ may be larger that dimI ρ. In any case, we have supp ρ ⊆ A

and therefore

dimI ρ ≤ dimH(supp ρ) ≤ dimH A

In many typical cases, when a dynamical system is defined in a metric space and the metric is

induced by the norm, if an attractor A is compact, it follows that it is also closed. Hence, the

Hausdorff dimension corresponds to the information dimension.

The advantage of using the information dimension is the fact that it can be also defined

through [65]

lim
r→0

ln ρ[Bx(r)]

ln r
= dimI ρ (2.42)

for ρ-almost all x, where Bx(r) is a ball of radius r centered at x. The existence of the limit

implies that it is constant, by the ergodicity of ρ.

The fact that the definition of the information dimension is related to the ergodic measure

ρ, leads Grassberger and Procaccia [61] to find that the quantity

lim
r→0

lnC(r)

ln r
= ν (2.43)
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where C(r) is the correlation integral (2.41), is related to the information dimension. ν is called

the correlation dimension.

Specifically, Grassberger and Procaccia find that [66]

ν ≤ dimI ρ ≤ dimH A

In many cases, the three dimensions coincide. The relation (2.43) makes the correlation dimen-

sion an easily measurable quantity in order to define the degree of chaos of a dynamical system

evolving within a strange attractor.
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Chapter 3

A model of systemic risk in financial

markets

In this Chapter, an analytical dynamical model [9] is introduced to investigate systemic risk in

financial markets. The model provides a framework for studying the dynamics of an illiquid

financial market populated by financial institutions investing in risky assets.

An asset is a financial resource that can be described by a stochastic process associated with

a stochastic variable, that is the asset return. An asset is characterized by a risk. The variance of

the stochastic process is a risk measure when the asset return is a normally distributed variable.

A financial market can be seen as a bipartite network characterized by financial institutions

(representing one type of nodes) investing (i.e. creating links between nodes) in some risky assets

(other type of nodes). In the model, the number (diversification) of investment assets and the

invested capital correspond to the solution of an optimization problem which takes into account

costs of diversification and the Value at Risk constraint, that is a constraint on a minimum

capital requirement in order to cover a loss. The solution of this optimization problem defines

the portfolio of a financial institution. The portfolio is created according to a micro-prudential

strategy based on diversification in order to reduce exogenous risk.

In financial markets, financial institutions borrow from other financial institutions in order

to invest an amount of money which is the sum of their initial equity and their debt. The ratio

between the invested capital and the equity is called financial leverage. Financial institutions

try to maintain a fixed value of leverage, buying or selling assets.

The purchase or the sell of assets moves their prices in an illiquid financial market, that

is a market in which the trading affects the asset returns. Typically, when assets price grows,

financial institutions buy, putting upward pressure on assets price which continues to grow, and

vice-versa. This mechanism has the potential for a positive feedback. This positive feedback

depends strictly on the financial leverage and the portfolio diversification adopted by financial

institutions.

Once that the framework is established, the model highlights how in a financial market requir-

ing to investors a financial coverage in the form of VaR constraint, a micro-prudential strategy,

based on the portfolio diversification, may increase the systemic risk through the endogenous
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feedback effect induced by portfolio rebalancing in presence of assets illiquidity. Specifically,

the introduction of a financial innovation that allows reducing the cost of portfolio diversifica-

tion leads financial institutions to increase leverage and diversification. As a consequence, the

strength (due to higher leverage) and coordination (due to similarity of portfolios) of feedback

effects increase, affecting crucially the return and the risk of the investments assets and poten-

tially triggering a transition from a stationary dynamics of price returns to a non stationary one

characterized by steep growths (bubbles) and plunges (bursts) of market prices.

In Section 3.1 we describe the basic features of the dynamical model: the return process,

the economic network, and the portfolio optimization problem. In Section 3.2, we describe the

positive feedback and its impact on return and risk. Finally, in Section 3.3, we analyze the

systemic risk in financial markets and the probability of default of financial institutions.

3.1 Basic features

In this Section, we introduce basic features of the dynamical model: the typical returns process

for the risky investments, the network formed of the financial institutions and the asset classes,

the portfolio optimization problem in presence of costs of diversification and VaR constraint.

3.1.1 The asset’s return process

A very important field of study in economy is related to the dynamics of assets prices. The

result of more than half a century of empirical studies on financial time series indicates that all

investment assets share some quite non-trivial statistical properties [67]. First of all, the price

dynamics of each asset is seemingly random. Beyond the specific model in order to describe it,

the variations of prices exhibit shared qualitative properties, also called stylized empirical facts

in the field of quantitative finance.

It is important to notice that the scales used to measure prices are often given in units that

are fluctuating in time [2]. This aspect differentiates crucially the financial studies from physics.

In order to find the more appropriate variable, financial studies involve returns, instead of prices,

of assets. There are many definitions of the return. However, all of them are related to the time

variation of the price.

If pt is the price of an asset at time t, the commonly used definition of the return is the

following:

rt =
pt+∆t − pt

pt

The merit of this approach is that returns provide a direct percentage of gain or loss in a given

time period. This definition works very well until that the time period ∆t is not too large. The

collection of the time realizations of asset returns defines a financial series.

An underlying assumption made in the study of quantitative finance is the ergodicity of

time series. The ergodic property ensures that the time average of a quantity converges to its

expectation. Ergodicity is typically satisfied by a financial series.
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Some stylized empirical facts which are common to a wide set of financial series are

• Absence of autocorrelations [68]: linear autocorrelations of assets returns are often

insignificant (the linear autocorrelation is represented by the sample linear correlation

between a financial series with itself shifted by a specific time lag).

• Heavy tails [69]: the distribution of returns seems to display a power-law tail character-

ized by an excess kurtosis larger than zero (the sample kurtosis corresponds to the fourth

standardized moment of a distribution, the Gaussian distribution is characterized by a

value of the kurtosis equal to 3, the excess kurtosis is defined as the kurtosis in excess with

respect the Gaussian case).

• Aggregational Gaussianity [70]: when the time scale ∆t defining returns increases, the

returns distribution looks more and more like a normal distribution.

• Slow decay of autocorrelation in squared returns [2, 71]: the autocorrelation func-

tion of squared returns decays slowly as a function of the time lag, this is interpreted as a

sign of long-range dependence.

• Volatility clustering [72]: different measures of volatility display a positive autocorrela-

tion over several days, which quantifies the fact that high-volatility events tend to cluster

in time.

From an effective point of view, we can refer to an asset return as a stochastic variable. According

to the ergodicity hypothesis, the time average corresponds to the expected value of the return,

E[rt] = 〈rt〉. The sample variance corresponds to the following expected value:

E
[
(rt − E [rt])

2
]

= E
[
r2
t

]
− E [rt]

2 (3.1)

Assuming that the return rt is a Gaussian stochastic variable, (3.1) represents a measure of the

risk. Hence, through the assumption of Gaussianity:

• we refer to the expected value of the square of the standardized return as the risk of the

asset

• we refer to the standard deviation of the standardized return as the volatility of the asset.

A financial market is typically characterized by a large number of investments assets. The

aggregate dynamics of all assets plays an important role in the risk management of a portfolio

containing a large number of assets.

The main tool to analyze the interdependence of assets returns is the correlation matrix C

of returns

Corri,j = ρi,j

where ρi,j ∈ [−1, 1] is the linear correlation between the stochastic process characterizing assets

i and j.
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(a) (b)

Figure 3.1: Smoothed density ρ(λ) of the eigenvalues λj of the correlation matrix extracted from M = 406
assets of the S&P500 during the years 1991-1996 [73], panel (a). The theoretical density (solid line) is obtained
assuming that the matrix is purely random, according to the Random Matrix Theory (RMT). In the same plot it
is included an insert in order to show the largest eigenvalue corresponding to the market factor. The eigenvalue
distribution P (λ) [74] for the correlation matrix, constructed from 30-min returns for M = 1000 stocks of USA
markets for the 2-yr period 1994–95, is shown in the upper plot of panel (b). The solid curve shows the outcome
according to the Random Matrix Theory. The inset shows the largest eigenvalue. The lower plot shows P (λ)
for a random correlation matrix computed from N = 1000 computer-generated random uncorrelated time series
with length L = 6448. In this case, the theoretical density obtained through the RMT is in agreement with the
numerical simulation.

Two empirical studies [73, 74] about the correlation matrix Corr of returns of the assets

traded in the three major US stock exchanges (NYSE, AMEX and NASDAQ) showed that

almost all eigenvalues of Corr are distributed according to the eigenvalues distribution of a

correlation matrix defined by uncorrelated Wiener processes, see Figure (3.1). This latter distri-

bution can be analytically found through a Random Matrix Theory approach [75, 76]. Since the

properties of these eigenvalues are consistent with the properties of random correlation matrices,

it follows that a large part of matrix Corr does not contain information. On the contrary, the

few highest eigenvalues of Corr which deviate from randomness contain information about the

returns dynamics. These highest eigenvalues are associated to factors. In fact, the return as a

stochastic variable can be considered as a (linear) combination of different stochastic variables.

A factor can be seen as one of these stochastic variables and it is common to many assets.

Specifically, the highest one is the market factor. The market factor describes a common

component in the stochastic processes of assets returns that is related to the tendency of financial

market. Similarly, other factors are related to specific sectors of the economy.

In the model we present, the financial market is characterized by M investment assets fol-

lowing a multivariate factor model with one factor ft representing the market factor. The return

of each investment j is

rj,t = µj + bj ft + εj,t (3.2)

where from a mathematical point of view εj,t and ft are Gaussian random noises. The time

evolution of (3.2) is assumed to be discrete. In (3.2) µj is the drift of the asset j. The market

factor ft and εj,t are assumed to be uncorrelated and normally distributed with zero mean and
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constant standard deviation. In quantitative finance, εj,t is said a idiosyncratic noise. The drift

µj represents the expectation value of the return of the asset j. The idiosyncratic noise refers

to a component of the asset return that has no correlation with market factor.

For the sake of simplicity and for analytical tractability, let us assume that µj = µ, bj = 1

∀j = 1, ... , M and the standard deviation associated with εj,t is the same for all assets. These

assumptions reflect a hypothesis of homogeneity for investment assets.

Since the market factor and the idiosyncratic noise are normally distributed, the standard

deviations are measures of volatilities. Particularly, the market factor ft is characterized by a

systematic (undiversifiable) volatility component σs. This component of volatility is in common

to all assets and it can not be reduced through the portfolio diversification, it is systematic. The

idiosyncratic noise εj,t is characterized by an idiosyncratic (diversifiable) volatility component

σd. Thus, each risky investment entails both a diversifiable risk component and a undiversifiable

risk component, i.e. the variance of the investment risky asset j can be decomposed as

σ2
j = σ2

s + σ2
d (3.3)

The component εj,t is said idiosyncratic and as a consequence the volatility component σd is

said diversifiable because if we consider the following linear combination of m different random

variables εj,t
m∑
j=1

1

m
εj,t (3.4)

it follows that the variance of this linear combination is simply equal to

E

 m∑
j=1

1

m
εj,t

2 =
σ2
d

m
(3.5)

assuming that two different idiosyncratic noises εj,t and εk,t (j 6= k) are uncorrelated, that is

E[εj,t , εk,t] = 0.

From the financial point of view, it is clear that a selection of a linear combination of m

different stochastic processes reduces the idiosyncratic risk associated with this linear combina-

tion through a factor 1
m with respect to consider only one of these processes. We refer to m as

the diversification. Obviously, a linear combination of m stochastic processes described by (3.2)

reduces only the idiosyncratic component of the risk because ft is a component common to all

stochastic processes. As a consequence, the systematic component of the risk associated with a

linear combination can not be reduced and for this reason it is said undiversifiable.

From now on, we refer to ft and εj,t as exogenous variables and to σ2
d and σ2

s as exogenous

risks. In quantitative finance, there is a distinction between exogenous quantities and endogenous

quantities.

• An exogenous quantity refers to a variable coming from outside the system. In fact, ft

and εj,t are exogenous variables in the sense that they are unexplained by the model we

will describe. These variables are chosen in order to describe some stylized empirical facts
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about the statistical properties of returns explained before.

• An endogenous quantity refers to a variable that describes a particular effect which is ex-

plained inside the model. For example, we will see that an asset return is also affected by an

endogenous component coming from the balance sheet dynamics of financial institutions.

Finally, the return process (3.2) describes some stylized facts as the absence of autocor-

relations for returns, the aggregational gaussianity depending on the time scale adopted and

the aggregate dynamics of all assets characterized by a market factor. On the contrary, other

stylized facts as the heavy tails, the slow decay of autocorrelation in squared returns and the

volatility clustering can not be deduced by (3.2). A recent work of Thurner et al. [77] suggests

that these latter properties can be explained endogenously within a model of leveraged investors

borrowing from a bank in order to buy assets. An investor is said leveraged when it borrows

from a bank in order to invest in assets a value larger than its initial equity. Let E be the initial

equity of an investor and let A be the total asset position of the same investor, that is simply

the whole capital invested in assets, the leverage is the ratio

λ =
A

E

In the next Sections, we will clarify the consequences of a financial market populated by

leveraged investors. Thurner et al. suggest that as leverage increases price fluctuations become

heavy tailed and display clustered volatility.

3.1.2 The economic network

In the study of the systemic risk and the financial contagion, the modeling of a financial market

through a network emerges in natural way [14, 16, 78]. Once that M random processes describing

the dynamics of returns of M investments assets are defined, naturally N financial institutions

which create a portfolio investing in some selected assets can be introduced.

A portfolio represents a selection of some investments assets in which a financial institution

invests its available capital represented by A. In the next Section, we will describe an opti-

mization problem whose solution establishes how a financial institution selects the number of

investment assets, m, and the financial leverage, λ. Now, we will focus on the properties of an

economic network formed of N financial institutions and M risky investments.

Beyond the micro-economic foundations of models, a common recognized feature is related

to the network-based measure of connectivity between counterparties. In the model, the overlap

between portfolios plays the role of the connectivity between financial institutions operating in

the market.

In the model, the economy is composed by a group of N financial institutions investing in

the M risky investments. This scenario can be represented by a bipartite network. A bipartite

network [21] has two types of vertices and edges run only between vertices of unlike types. In

describing an economic system, financial institutions represent one kind of nodes. These link

to the second kind’s nodes that represent the M investment assets. Each financial institution
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chooses randomly and independently m investments across the set of M available ones. This

fact can be represented by m links connecting the bank with its investments.

For analytical tractability, the simplifying assumption of homogeneity across financial insti-

tutions is made. This hypothesis means that all financial institutions have the same initial equity

E and they choose the same number m of risky investments. m is the degree of diversification

of a portfolio. As a consequence of the random choose about investments, the portfolios of two

financial institutions are generally different. We will use also the word bank to refer to financial

institutions.

A specific risky investment is owned statistically by n banks, where n is a random variable

described by a binomial distribution. The mean value is clearly E[n] = mN
M .

The overlap, o, between two portfolios, defined as the number of risky investments in com-

mon, is a random variable and it is distributed as an hypergeometric distribution

P(o;M,m) =

(
m

o

)(
M −m
m− o

)
(
M

m

) 0 ≤ o ≤ m

Its mean value is E[o] = m2

M . Finally the fractional overlap of two portfolios is of = o
m is a

number between 0 and 1 describing the fraction of the portfolio that is in common between

two financial institutions. The mean fractional overlap is E[of ] = m
M . Therefore, the value

of the diversification m of a portfolio is also a measure of the degree of connectivity between

two financial institutions. In fact, a unipartite weighted network corresponds to the bipartite

network just explained. The unipartite network is a network in which nodes are represented by

financial institutions that are connected each other through weighted links describing the overlap

degree between two portfolios owned by two financial institutions. The overlap of measures

the connectivity between financial institutions. Ultimately, the diversification m defines the

overlapping portfolios. The diversification m plays a crucial role in the contagion of risk [18].

The reason is simple. When a bank liquidates an asset, it impacts negatively the market price of

the asset. When the portfolios of banks overlap each other, the asset liquidation affects the risk

which spreads to other banks. It will be investigated under which conditions the risk becomes

systemic.

3.1.3 The portfolio optimization problem

The model describes a scenario in which financial institutions adopt a simple investment strategy

consisting in forming an equally weighted portfolio composed on m randomly selected risky

investments from the whole collection of M available investment assets. If Ai is the value of

total asset position of a bank i, Ai is equally distributed on the m selected investment assets.

During the stochastic evolution of the market, the actual value of Ai depends on the returns

dynamics of the selected assets (3.2). The actual value of Ai is a stochastic variable.

Supposing that a financial institution i selects m risky investments described by (3.2),

57



3.1 Basic features

{rj1 , rj2 , ... , rjm}, the actual value at time t of Ai,t depends on the following linear combi-

nation of the m stochastic variables describing the asset returns

rpi,t =

m∑
i=1

1

m
(µ+ ft + εji,t) (3.6)

where rpi,t is the portfolio return, that is a stochastic variable formed of the stochastic variables

describing the asset returns. Hence, each portfolio is characterized by an expected return equal

to µ and, according to (3.5), an exogenous volatility equal to

σp =

√
σ2
s +

σ2
d

m
(3.7)

It is clear from (3.7) that a larger value of m reduces the portfolio volatility σp and as a

consequence the portfolio of a financial institution becomes less risky. However, in financial

markets the diversification of a portfolio requires some costs. Hence, a larger diversification m

reduces the exogenous risk and at the same time reduces the profit of a financial institution.

An investment is always associated with a transaction cost in a financial market. However

the latter represents a small value of the total cost necessary to diversify a portfolio. When a

financial institution decides to invest in a new asset, it must develop new resources as physical

structures, human capital, and financial knowledge, which may require also higher costs. We

refer to these as diversification costs.

These play an important role to prevent that all institutions operating in financial markets

diversify completely their portfolios. For this reason, the existence of diversification costs is

assumed in the definition of the portfolio optimization problem. A pioneering work [79] of

Cooper and Kaplanis has approached the problem of estimating the costs supported by foreign

financial agents investing in equity markets of other countries. These costs summarize the

transaction costs and other types of costs related to the allocation of money in foreign markets.

A more recent work [80] has improved the methodology for a better estimation. The outcomes

are summarized in Figure (3.2). The percentage cost for an equity investment is shown for nine

countries from year 1980 to year 2004.

It is evident that the values of costs have decreased through time for all countries. This

is a consequence of introduction and proliferation of financial instruments which reduce the

investment costs to allow the risk diversification.

Financial institutions seek to maximize returns from the risky investments under their Value

at Risk (VaR) constraints [81]. According to Basel III 1, financial institutions have to fulfill a

capital requirement in order to borrow money and to invest it. The VaR is the most probable

worst expected loss at a given level of confidence over a given time horizon [83]. In our case, the

time horizon is simply equal to ∆t = 1. Let f(rp) be the probability density for portfolio return

1Basel III [82] is an accord stipulated by the Basel Committee on Banking Supervision in order to give a
comprehensive set of reform measures designed to improve the regulation, supervision and risk management
within the banking sector.
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Figure 3.2: The estimated values of the percentage costs supported by investors in a foreign equity market. The
costs associated with each country are estimated through a methodology proposed by Cooper and Kaplanis [79]
and improved by Thapa and Poshakwale [80]. The data are taken by the more recent Thapa’s work [80]. Nine
different countries are identified by nine different colors. The data represent the time evolution of the investment
percentage costs from year 1980 to year 2004, with the exception of a time window from 1997 to 2001 in which
the values of costs are not reported because the empirical data are not available.

rp. The VaR ΛV aR associated with a certain probability of loss PV aR is defined implicitly by∫ −ΛV aR

−∞
f(rp) drp = PV aR

The capital requirement imposed to financial institutions is a consequence of the Value at Risk

calculated for a specific portfolio and it is equivalent to the following constraint

V aR = α σp A ≤ E (3.8)

where α is a scaling parameter, A is the level of total assets of a bank portfolio and E is the initial

equity of the bank. ασp represents in another form the value of the quantile ΛV aR associated

with the loss probability PV aR. In fact, since rp is a Gaussian stochastic variable, σp is the

standard deviation of the probability density function f(rp) and it represents the value at which

the cumulative distribution corresponds approximately to a probability equal to 13.6%. As a

consequence, α can be found in order that the cumulative distribution calculated at ασp is equal

to PV aR.

In making investments, financial institutions have to fulfill a capital requirement in the form

of the constraint (3.8).

Finally, to find the optimal portfolio, financial institutions must take into account the expense

coming from liabilities. Let rL be the average interest expense related to money borrowed by a

financial institution, then the Net Interest Margin (NIM) of the financial institution is µ− rL.

Summarizing, given their NIM and level of equity E, financial institutions, taking into ac-
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3.1 Basic features

count costs of diversification and VaR constraints, choose the level of total asset A and degree

of diversification m which maximize their returns from the risky investments. That is, assuming

costs of diversification proportional to m, financial institutions maximize

max
A,m

A(µ− rL)− c̃m s.t. αA

√
σ2
s +

σ2
d

m
≤ E (3.9)

where c̃ is the cost for investment (assumed to be the same across all investments according to

the homogeneity hypothesis). Dividing by E and defining c = c̃
E as the cost in unit of equity,

the maximization problem (3.9) is equivalent to

max
λ,m

λ(µ− rL)− cm s.t. αλ

√
σ2
s +

σ2
d

m
≤ 1 (3.10)

where λ = A
E is the leverage adopted by financial institutions.

The maximization problem (3.10) can be solved through the method of Lagrange multipliers.

Transforming the VaR constraint by squaring both sides, the Lagrangian can be written as

L = λ(µ− rL)− cm− 1

2
γ

(
α2λ2

(
σ2
s +

σ2
d

m

)
− 1

)
(3.11)

where γ is the Lagrangian multiplier for the VaR constraint. The solution of the portfolio

optimization problem can be found solving the following equations

m = λσd

√
α

2c

µ− rL
σp

(3.12)

λ =
1

ασp
(3.13)

The solution of (3.12) (3.13) defines the optimal diversification m∗ and the optimal leverage

λ∗. According to the previous assumptions, m∗ and λ∗ completely describe the portfolio of a

financial institution.

The optimal degree of diversification is inversely related to the cost of diversification c. Both

portfolio variables (diversification and leverage) are inversely related to the quantile depending

on α (in fact, replacing in (3.12) the value of λ given in (3.13), also the diversification m will be

inversely related to α).

Figure (3.3) shows the numerical solutions for the optimal degree of diversification m∗ and

the optimal leverage λ∗ as a function of different values of diversification costs c, panels (a)

and (b). Each line corresponds to different levels of systematic to idiosyncratic noise ratio

(σsσd = {0, 0.3, 0.6}). When diversification costs decrease, the degree of diversification increases

and as a consequence of relaxing the VaR constraint (because σp decreases through the risk

diversification) a larger value of the leverage is allowed. Below a specific value of costs, the

degree of diversification and the leverage become constant because a portfolio is fully diversified

across all the M available investment assets.
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Figure 3.3: The optimal degree of diversification m∗, panel (a), and the optimal financial leverage λ∗, panel
(b), as a function of the diversification cost c, obtained by solving numerically equation (3.12) (3.13). The mean
fractional overlap of = m

M
between two portfolios versus the diversification cost c, panel (c), and versus the α

parameter of the VaR constraint. The used parameters are: M = 30, µ− rL = 0.08, σd = 0.05
1.64

. In panels (a), (b)
and (c) α = 1.64, while in panel (d) c = 0.25. In all panels the solid line refers to σs

σd
= 0, the dashed line refers

to σs
σd

= 0.3 and the dotted line refers to σs
σd

= 0.6.

In fact, looking at the fractional overlap of between portfolios, panel (c) of Figure (3.3), of

increases after a reduction of diversification costs. When the latter become smaller and smaller,

of reaches the maximal value equal to 1 and this situation corresponds to a scenario in which

all financial institutions fully diversify their portfolios which become equivalent to the market

portfolio (the one containing all the M investments with equal weights).

Finally, panel (d) of Figure (3.3) shows the fractional overlap as a function of the α-value

defining the quantile in the VaR constraint. In this approach, it is important to notice that a

reduction of α is followed by increasing values of leverage and diversification and as a conse-

quence the value of the fractional overlap increases. Increasing α means requiring that financial

institutions have to cover negative returns associated with smaller probability. Larger values of

α correspond to a more safe economy.

As claimed before, a larger value of the mean overlap between portfolios induces more corre-

lation between financial institutions and as a consequence risk shocks can propagate from one of

them to the others. At the same time, also another effect can appear. Coordinated operations in

the financial market induced by the correlation between portfolios can impact the risk of assets.

Also when each financial institution adopts a micro-prudential strategy (risk diversification and
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3.2 Endogenous dynamics

VaR constraint), a systemic effect due to a financial strategy adopted by all banks may induce

a large impact on risk.

3.2 Endogenous dynamics

In this Section, we describe how the dynamics of balance sheet of financial institutions creates

feedback effects affecting the returns of investments and as a consequence an endogenous risk

component appears. These feedback effects can be described by introducing an endogenous

component in the return processes. Depending on the values of model parameters, the strength

(related to the value of leverage) and the coordination (due to similarity of bank portfolios) of

feedback effects may trigger a transition from a stationary dynamics of price returns to a non

stationary one.

3.2.1 Marked-to-market financial institutions

A financial market is composed by financial institutions adopting specific trading strategies in

order to realize an expected portfolio return through a risk management strategy. Typically,

large financial institutions operating in financial markets are

• highly leveraged: a large part of their investments comes from loans obtained by other

institutions. Neglecting the liquidities that are cash or cash assets producing no incomes,

the level of all investments A is equal to the initial equity E plus the level of debts. This

means that leverage λ = A
E is larger than 1, sometimes it is much larger than 1.

• marked-to-market: depending on adopted strategy, they modify their balance sheet

according to actual prices of owned assets.

Commonly, the adopted strategy by large financial institutions is to maintain a chosen value of

the leverage (target leverage). For this purpose, banks borrow from or lend to another banks in

order to adjust their balance sheet and maintain fixed the ratio A
E .

Adrian and Shin [7] have shown the relation between leverage and balance sheet size for

different types of financial institutions of USA economy. In order to make clear how a target

leverage strategy works, we refer to Figure (3.4). Let us consider the behavior of a bank that

manages its balance sheet actively to maintain a target leverage of 10. If initial equity is equal

to 10, the bank borrows 90 to reach a value of λ = A
E = 10, where A represents the total asset

position at initial time. Suppose the price of securities increases by 1% to 101. If we assume

that the value of the debt does not change approximately, leverage then falls to 101
11 = 9.18.

The bank targets leverage of 10. It takes on additional debt equal to 9 and with this money it

purchases assets for a value equal to 9. After the purchase, leverage is now back up to 10. The

mechanism of maintaining target leverage works in reverse when the assets price falls. We refer

to this mechanism as portfolio rebalancing.

Panel (a) of Figure (3.5) shows the leverage variations corresponding to the total assets

growth for major Commercial Banks of the USA economy from 1963 to 2006. The data are
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3. A model of systemic risk in financial markets

Figure 3.4: An illustrative example of a balance sheet dynamics which maintains the target leverage. At first
time, the target leverage is chosen equal to 10 (the ratio between assets and equity). At a second time, the price
of assets varies, we suppose that it increases by 1%. As a consequence, the value of the equity increases and the
ratio between assets and equity decreases, i.e. leverage decreases. In order to maintain fixed to 10 the value of
leverage, a financial institution increases the debt level, leaving unchanged the equity level, and it invests further
to reach a value of leverage equal to the target.

consistent with the target leverage mechanism just explained because no changes in the value of

leverage correspond to variations of total assets. Furthermore, panel (b) of Figure (3.5) shows

equivalent data related to Security Brokers and Dealers, that include the major Wall Street

investment banks. In this case, there is a strongly positive relationship between changes in total

assets and changes in leverage. The leverage is procyclical.

• Definition: a quantity is defined procyclical when it is positive related to the tendency

of the financial market, i.e. when the price of all assets increases, a procyclical quantity

increases and vice-versa.

• Definition: a financial market is illiquid when the buying (the selling) of an asset is

followed by a positive (negative) change of the asset price, i.e. when an agent operating in

the market purchases an asset, it creates a positive pressure which puts upward the asset

price, and vice-versa.

If financial markets are illiquid such that greater demand for the asset tends to put upward

pressure on its price, then there is the potential for a feedback effect in which stronger balance

sheets feed greater demand for the asset, which in turn raises the asset’s price and lead to

stronger balance sheets. The mechanism works exactly in reverse in downturns. If financial

markets are illiquid such that greater supply of the asset tends to put downward pressure on

its price, then there is the potential for a feedback effect in which weaker balance sheets lead

to greater sales of the asset, which depresses the asset’s price and lead to even weaker balance

sheets. In Figure (3.6) this potential feedback effect is graphically summarized.
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3.2 Endogenous dynamics

(a) Commercial Banks (b) Security Brokers and Dealers

Figure 3.5: The change of total assets versus the change in leverage for the largest commercial banks, left panel,
and the largest security brokers and dealers, right panel, of the United States economy. Both types of financial
institutions represent the main actors operating in a financial market. The plotted empirical data are obtained
by Adrian and Shin [7] through the flow of funds data (e.g data from the Federal Reserve) from 1963 to 2006.
The empirical outcomes can be interpreted as the result of active management of balance sheets by financial
intermediaries who respond to changes in prices and measured risk.

(a) raising of asset price (b) falling of asset price

Figure 3.6: A stylized scheme of the rebalancing feedback effects triggered by positive changes of asset price,
left panel, and negative changes of assets price, right panel.

The feedback effect coming from portfolio rebalancing affects crucially the risk of the assets.

Particularly, these feedback effects have larger impact on risk if they arise from coordinated

actions of financial institutions due to high correlation between them in consequence of portfolios

highly diversified.

In many recent papers [84, 85, 86, 87, 88, 89] the attention was been focused on this feedback

effect which can potentially trigger the contagion of risk between financial institutions and

eventually lead the economic system towards a financial crisis.

Below, we describe how the feedback effect is taken into account in the model [9].

3.2.2 Asset demand from portfolio rebalancing

Having identified their optimal portfolio choosing the values of leverage and diversification,

financial institutions periodically rebalance their portfolios in order to maintain the desired
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3. A model of systemic risk in financial markets

target leverage.

In fact, due to the stochastic evolution of the market , a bank i at time t holds an actual asset

position equal to Ai,t. In order to maintain λ fixed, the optimal value of the asset position will

be A∗i,t = λ Ei,t. As shown previously, the financial behavior of banks is to enlarge (reduce) the

asset position according to the increase (decrease) of assets prices without affecting the equity

level. The rebalancing of the portfolio of individual bank i at time t is given by the difference

between the desired asset position and the actual one, i.e. ∆Ri,t = A∗i,t − Ai,t. The latter can

be rewritten as [9]

∆Ri,t = (λ− 1) rpi,t A
∗
i,t−1 (3.14)

where rpi,t =
∑M

j=1 Ij∈i
rj,t
m is the portfolio return associated with bank i at time t. Ij∈i is the

indicator function which takes value 1 if investment j is in the portfolio of bank i and zero

otherwise.

∆Ri,t in (3.14) represents a change in the asset value amplified by the excess leverage (λ−1)

as a consequence of the profit or the loss from the investments in the chosen portfolio (rpi,tA
∗
i,t−1).

In fact, when rpi,t at time t is different from zero, its value multiplied to the previous optimal

choice of total assets, A∗i,t−1, gives the amount of profit (loss).

The relation (3.14) reflects exactly the balance sheet dynamics described in the previous

Section. Hence, VaR constrained financial institutions will have a positive feedback effect on

the prices of the assets in their portfolios.

In order to explain the positive feedback effect on the prices of the assets, it is necessary to

compute the total demand of a generic risky investment j at time t. This will be simply the sum

of the individual demand of the financial institutions who picked investment j in their portfolio.

Dj,t =
N∑
i=1

Ij∈i
1

m
∆Ri,t =

N∑
i=1

Ij∈i(λ− 1) rpi,t
A∗i,t−1

m
(3.15)

The total demand of investment j is proportional to the amount of portfolio rebalancing of

each bank i divided by the value of diversification m, according to the assumption that banks

distribute equally the value of total asset position among all selected investment assets.

Assuming that total assets are approximately the same for all the banks, i.e. A∗i,t−1 ' A∗t−1,

it follows that

Dj,t ≈ (λ− 1)
A∗t−1

m

(
N∑
i=1

Ij∈i r
p
i,t

)

Since rpi,t =
∑M

k=1 Ik∈i
rk,t
m , the sum in the above expression for Dj,t can be rewritten as

1

m

N∑
i=1

Ij∈i

M∑
k=1

Ik∈i rk,t

This term can be calculated considering all the banks which have investment j in their portfolio

and then, for each investment k (including j) it is necessary to count the number of them

having investment k in their portfolio. This is a random variable as seen before. On average
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there are Nm
M banks having investment j in the portfolio. All of them have (by definition)

investment j in the portfolio. On the other hand, for an investment k 6= j, we can consider the

restricted bipartite network of Nm
M banks, each having m − 1 investments among a universe of

M − 1. Therefore the number of banks having investment j in their portfolio and having also

investment k is Nm
M

m−1
M−1 . Thus, on the average, the term can be rewritten as

N

M

rj,t +
m− 1

M − 1

∑
k 6=j

rk,t


and an approximate form of the demand of asset j is

Dj,t ≈ (λ− 1)
A∗t−1

m

N

M

rj,t +
m− 1

M − 1

∑
k 6=j

rk,t

 (3.16)

Particularly, the demand of an asset j strictly depends on the excess leverage λ− 1. If financial

institutions are fully leveraged under VaR constraint, periodically there is a large demand of

assets. When the demand is large, there is a large impact on the prices of assets. In the next

Section, the price impact function is defined and the consequences on the assets returns and risk

are investigated.

3.2.3 The dynamics of asset returns with rebalancing feedback

As claimed before, the demand of an asset tends to put upward pressure on its price and vice-

versa. Some recent works [90, 35] suggest that the change of the price of an asset j due to

the demand impact is approximately proportional to the number of traded shares sj and the

asset volatility σj normalized by the average daily volume of asset j, Vj . In financial markets,

an investment asset is divided into portions which are offered for sale. Thus, a share is an

indivisible unit of an asset. According to [35], if pt corresponds to the price of asset j before the

trading and pt+∆t is the one after the trading, the price impact is approximately

pt+∆t − pt
pt

= ±σj
sj
Vj

(3.17)

where the sign ± depends on the direction of the order. A set of empirical studies [91, 36]

indicates that the price impact function is better described by a concave shape. Particularly a

square-root impact function
pt+∆t − pt

pt
= ±σj

√
sj
Vj

(3.18)

fits better the empirical data. The main point is that the price impact function depends on the

number of traded shares that is related to the asset demand. The variation of the price in (3.17)

or (3.18) induces an endogenous component in the asset return.

For the sake of analytical tractability, in the model [9] a linear price impact function (3.17) is

assumed. However, we replace
σj
Vj

with a different constant, that is the liquidity of the investment
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asset j. Furthermore, there are many definitions of liquidity. In this framework, the liquidity

of an asset is defined as the ability of the asset to sustain the demand (or the supply) without

moving the price. The liquidity of an asset j can be considered through a finite parameter γj .

The price impact function is inversely related to the liquidity γj . The larger is γj , the smaller

is the price impact of a trading on asset j. The limit γj → ∞ ∀j coincides with the ideal case

of a perfectly liquid market in which the trading does not move the price.

In rebalancing their portfolio at time t − 1, financial institutions induce an endogenous

component ej,t−1 of the return of investment j at time t that is

ej,t =
1

γj

Dj,t

Cj,t
(3.19)

where Dj,t−1 is defined in (3.16) and Cj,t−1 is the market capitalization of investment j. The

ratio
Dj,t
Cj,t

corresponds to the number of traded shares sj .

Again, assuming that A∗i,t−1 ' A∗t−1 the market capitalization of investment j is

Cj,t =

N∑
i=1

Ij∈i
A∗i,t−1

m
≈
A∗t−1

m

N∑
i=1

Ij∈i =
N

M
A∗t−1 (3.20)

because on average there are mN
M banks having investment j in their portfolio.

The endogenous component of the return of asset j, ej,t−1, defines the price impact function

due to the portfolio rebalancing. When the total demand of an asset j is large with respect to

the total capitalization of the asset, it follows that the portfolio rebalancing impacts largely the

price of the asset if the market is illiquid.

This effect reflects the feedback mechanism explained before. In fact, in presence of rebal-

ancing feedbacks, the return process of an asset j at time t will now be made of two components:

rj,t = ft + εj,t + ej,t−1 (3.21)

where µj = 0 for notational simplicity. The exogenous component ft + εj,t is related to the

stochastic evolution of the price of asset j. The endogenous component ej,t−1 describes the

feedback effect coming from the previous period portfolio rebalancing of the financial institutions.

It can affect critically the stability of the dynamics of returns. In order to make evident this

feature, substituting equations (3.16), (3.21) and (3.20) in (3.19) and using matrix notation, the

dynamics of the vector of the endogenous components follows a Vector Autoregressive (VAR)

process

et = Φrt = Φ(et−1 + εt) (3.22)

where εj,t = ft + εj,t, et = {ej,t}j=1,...,M and εt = {εj,t}j=1,...,M .

67



3.2 Endogenous dynamics

The linear operator Φ ≡ (λ− 1)Γ−1Ψ with

Γ =


γ1 0 · · · 0

0 γ2 · · · 0
...

. . .
...

0 0 · · · γM



Ψ =


1
m

1
m
m−1
M−1 · · · 1

m
m−1
M−1

1
m
m−1
M−1

1
m · · · 1

m
m−1
M−1

...
. . .

...
1
m
m−1
M−1

1
m
m−1
M−1 · · · 1

m


where Γ and Ψ are M ×M matrices.

Thus the endogenously determined component of returns follows a VAR process of order

one. The dynamics of such VAR(1) process is dictated by the eigenvalues of the matrix Φ ≡
(λ − 1)Γ−1Ψ. In particular, since the maximum eigenvalue of the matrix Ψ is always equal to

1 [9, 76], the maximum eigenvalue of the VAR(1) process becomes

Λmax ≈ (λ− 1)γ−1 (3.23)

where γ−1 is the average of γ−1. Hence, the maximum eigenvalue depends on the degree of

leverage and on the average illiquidity of the investments. When the maximum eigenvalue is

greater than one, the return processes become non-stationary and explosively accelerating. It

is important to remark that even a reduction in the liquidity of only one risky investment (by

changing the average illiquidity of the investments) impacts the dynamics of all the traded

investments and can potentially drive the whole financial system towards instability. In fact,

depending on the average of the 1
γj

the maximum eigenvalue (and thus the dynamical properties

of the whole system) will be highly sensitive to illiquid investments, i.e. to investment having a

small γ. For the sake of the analytical tractability, γj = γ ∀j is assumed, that is all investments

have the same liquidity.

Figure (3.7) shows the largest eigenvalue Λmax of the operator Φ as a function of the diver-

sification cost c (left panel) and as a function of the mean of the fractional portfolio overlap,

E[of ] = m
M , see Section 3.1.1.

A reduction of the diversification cost induces banks to choose a larger value of leverage,

see Figure (3.3). As a consequence, the larger leverage reinforces the feedback effect due to the

portfolio rebalancing which can lead to dynamics instability of the assets returns (for Λmax > 1)

when c decreases below a certain threshold (which is higher for smaller ratio of systematic to

idiosyncratic volatility). In this case, rebalancing feedback effects trigger a transition from a

stationary dynamics of price returns to a non-stationary one characterized by steep growths and

plunges of market prices. Of course, the instability of the economic system corresponds to the

instability of returns dynamics.

Together with the strength of feedback effects related to the value of leverage, an higher
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Figure 3.7: The largest eigenvalue Λmax of the linear operator Φ describing the dynamics of endogenous compo-
nents, under the assumption γj = γ ∀j. In the left panel, the relation between Λmax and the value of diversification
cost c. In the right panel, the relation between Λmax and the mean fractional overlap between portfolios, E[of ].
When Λmax reaches the critical value equal to 1, a transition from stationarity to non-stationarity occurs for the
dynamics of endogenous components and as a consequence for the dynamics of asset returns. The used parameters
are: M = 30, µ − rL = 0.08, σd = 0.05

1.64
and α = 1.64. The solid line refers to σs

σd
= 0, the dashed line refers to

σs
σd

= 0.3 and the dotted line refers to σs
σd

= 0.6.

level of coordination in portfolio rebalancing, due to similarities in the portfolio compositions,

also reinforces the feedback. This aspect is related to the coordination of the demands of

assets. When the overlap between portfolios increases, many financial institutions own the same

investment assets. Hence, according to the tendency of asset returns, they require to purchase

(to sell) the same assets.

According to this, the demand (3.16) of an asset will be the sum of similar contributions.

The feedback effect described by endogenous components will have a large impact on the asset

returns. Also the degree of diversification m plays a role in triggering a transition from stability

to instability of economic system.

Summarizing, larger values of leverage λ and diversification m increase the impact of rebal-

ancing feedback on asset prices and eventually they may put the system towards the region of

instability (Λmax > 1).

The endogenous components describing the rebalancing feedback in (3.21) affects also the risk

of the assets. This effect is a consequence of the balance sheet dynamics of financial institutions

which modify their asset position in order to maintain the target leverage but at the same

time the purchasing or the selling of assets makes them more volatile. In fact, in addition to the

exogenous risk component (3.3), the price impact function induces an endogenous risk component

that takes into account the excess volatility induced by trading. Under the hypothesis of assets

homogeneity, the endogenous risk component affects largely all investment assets when there is

coordination in portfolio rebalancing due to similar portfolios and when financial institutions are

over-leveraged. In the next Section, the variance-covariance matrix of returns will be computed

in a closed form.
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3.2 Endogenous dynamics

3.2.4 Endogenous feedbacks and endogenous risks

The homogeneity assumptions allow to give an exact description of the variance-covariance

matrix of returns. In fact, the linear operator mΨ can be written as

mΨ = (1− b)1 + b ı ı′ (3.24)

where the scalar b = m−1
M−1 , identity matrix 1 and the column vector of ones ı. According to

this decomposition, the VAR for the vector of endogenous components in equation (3.22) can

be rewritten as

et = (1− b)A(et−1 + εt) + bMA ı (ēt−1 + ε̄t) (3.25)

with matrix A ≡ λ−1
m Γ−1 and scalars ēt ≡ 1

M

∑M
k=1 ek,t and ε̄t ≡ 1

M

∑M
k=1 εk,t. The scalar ēt

can be interpreted as the endogenous return of the market portfolio. Thus, the endogenous

component of an individual investment becomes

ej,t = (1− b)aj(ej,t−1 + εj,t) + bMaj(ēt−1 + ε̄t) (3.26)

with scalar aj = λ−1
mγj

. Coherently with the assumption that all investments have the same

liquidity γj = γ, it follows that aj = λ−1
mγ ≡ a ∀j.

Therefore, the process for ej,t can be rewritten as a linear combination of a standard uni-

variate AR(1) process and a dynamic process depending on the averages of previous period

endogenous components and shocks. In this way, ej,t is a mixture of a perfectly idiosyncratic

process (i.e. uncorrelated with the others investment processes) receiving weight 1 − b and a

perfectly correlated process with weight b. Since b = m−1
M−1 , the higher is the overlap between

portfolios (related to the value of m), the the higher is the weight given to the perfectly cor-

related component of mixture and, hence, the higher the correlations among the endogenous

components of the different investments. As claimed before, a larger value of diversification m

induces a stronger correlation in portfolio rebalancing implemented by financial institutions and

as a consequence the impact of feedback effects is stronger.

Averaging over investments (that is summing over all j and dividing by M) in (3.26), the

process for ēt becomes

ēt = a(1− b+Mb)(ēt−1 + ε̄t) ≡ φ(ēt−1 + ε̄t) (3.27)

where φ ≡ a(1− b+Mb). Therefore, the dynamics of the average process ēt is also an autore-

gressive of order one.

Finally, defining the distance of the endogenous component of investment j from the average

as ∆ej,t ≡ ej,t− ēt, and similarly the distance of the exogenous component of investment j from

the average as ∆εj,t ≡ εj,t − ε̄t, it follows that

∆ej,t = (1− b)a(∆ej,t−1 + ∆εj,t) (3.28)

The dynamics of the individual distance of the endogenous component of investment j from the
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3. A model of systemic risk in financial markets

average value ēt is also an autoregressive process of order one.

Therefore, the return dynamics of the endogenous components of each individual investment

(3.26) can be interpreted as an autoregressive AR(1) process (3.28) around a common process for

the average value (3.27) also following an AR(1) and where the amplitude of (3.28) (∝ (1− b))
is decreasing when the portfolio diversification m increases.

This situation can be interpreted as a stochastic scenario corresponding to the decomposition

of a many-body physical system into the motion of the center of mass and the motion around

the center of mass.

Thanks to this representation, the computation of the variance and the covariances of the

process for the endogenous components ej,t can be obtained [9]. In particular, this computation

makes sense in the stationary regime, that is when the largest eigenvalue of the operator Φ

is smaller than 1 (Λmax < 1). When Λmax crosses the critical value equal to 1, the return

dynamics becomes non-stationary, and the feedback can trigger steep growths and plunges of

market prices.

Taking into account the feedback introduces a new endogenous component in the variance

of the investment asset given by the variance of the endogenous component

V (rj,t) = σ2
j + V (ej,t−1) (3.29)

where σ2
j = σ2

d +σ2
s can be interpreted as the “bare” level of the risk of asset j. On the contrary,

the endogenous risk component V (ej,t−1) can be interpreted as a variable component because it

depends on leverage λ and diversification m chosen by financial institutions in optimizing their

portfolio. Leverage and diversification can change through time in relation with the change of

market conditions (described by model parameters).

This risk component is due to the finite liquidity of the investments and it becomes equal to

zero when the liquidity γ →∞.

Analogously, the covariance between the returns of two investments increases due to a new

contribution coming from the covariance between the endogenous components.

Cov(rj,t, rk,t) = σ2
s + Cov(ej,t−1, ek,t−1) (3.30)

Defining the excess leverage as λ̃ = (λ − 1), the variance and the covariance of endogenous

components as a function of m and λ̃ are (see [9])

V (ej) = −λ̃2{
m2(σ2

d(λ̃
2 − γ2(M − 1)) + σ2

s(λ̃
2 − γ2(M − 1)2))

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
2m(M(σ2

d(γ
2 − λ̃2)− λ̃2σ2

s)− γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
M(M(σ2

d(λ̃
2 − γ2) + λ̃2σ2

s) + γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
} (3.31)
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3.2 Endogenous dynamics

Cov(ej , ek) = −λ̃2{
m2(σ2

s(λ̃
2 − γ2(M − 1)2)− γ2(M − 2)σ2

d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
−2m(λ̃2Mσ2

s + γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
M(λ̃2Mσ2

s + γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
} (3.32)

The return of the portfolio of bank i is

rpi,t =

M∑
j=1

Ij∈i
rj,t
m

(3.33)

with m the chosen value of diversification by bank i. As a consequence of (3.29) and (3.30),

the variance of the portfolio return of a typical financial institution i in presence of rebalancing

feedback effects becomes

V (rpi,t) = σ2
s +

σ2
d

m
+
V (ej,t−1)

m
+
m− 1

m
Cov(ej,t−1, ek,t−1) (3.34)

being σ2
d the variance of the exogenous idiosyncratic (diversifiable) noise and σ2

s the variance of

the exogenous (undiversifiable) common factor.

This means that the rebalancing feedback increases the volatility of portfolio due to the

illiquidity of investment assets through the third term and the fourth one in (3.34). Particularly,

it can be shown that a larger leverage increases both variance and covariances of ej,t−1, while an

higher degree of diversification reduces the variance and increase the covariances. Finally, the

correlations among the endogenous returns tend to one as m→M .

In Figure (3.8) the variance of returns divided by the exogenous diversifiable volatility (panel

(a)) and the correlation between the endogenous component of returns of two investments (panel

(b)) are shown as a function of diversification cost c. The panel (c) of Figure (3.8) shows the

variance of portfolio returns divided by the exogenous diversifiable volatility as a function of

c while panel (d) shows the correlation between the portfolio returns of two different financial

institutions as a function of c. The outcomes refer to different values of the ratio σs
σd

.

By decreasing cost, variance of returns increases as well as correlations. If the market factor

is not strong enough, there is a value of c for which variance diverges, corresponding to the case

where the maximum eigenvalue Λmax becomes equal to one. In this limit, correlations become

closer and closer to one. Since a reduction of diversification cost corresponds to an increase of

leverage and diversification, see Figure (3.3), it is evident that larger values of these reinforce

the rebalancing feedback which affects the risk of investment assets, V (rj,t).

Looking at panel (c), it is important to notice that by reducing diversification cost, the

variance of portfolio returns initially declines. This corresponds to a regime of the financial

market dynamics in which a diversified portfolio is less risky. However, after that the variance

of portfolio reaches a minimum for a given value of c, by reducing further diversification cost,

the variance of portfolio suddenly increases because the economic system is closer and closer to

72



3. A model of systemic risk in financial markets

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

c

V Ir j,tM

Σd
2

(a)

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

c

C
or

r@
e j

,e
kD

(b)

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

c

V Hrt
pL

Σd
2

(c)

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

c

C
or

r@
Hr

p L i,
t
,H

rp L l,
tD

(d)

Figure 3.8: The variance of investment returns, V (rj,t), divided by the value of the exogenous diversifiable
volatility component, σd, as a function of the diversification cost c, panel (a). The correlation of the endogenous
component of returns between two investments, Corr (ej,t, ek,t), as a function of c, panel (b). The variance
of portfolio return, V (rpt ), divided by the value of the exogenous diversifiable volatility component, σd, as a
function of the diversification cost c, panel (c). Finally, the correlation of portfolio returns between two financial
institutions, Corr (rpi,t, r

p
l,t), as a function of c. The used parameters are: M = 30, µ− rL = 0.08, σd = 0.05

1.64
and

α = 1.64. The solid line refers to σs
σd

= 0, the dashed line refers to σs
σd

= 0.3 and the dotted line refers to σs
σd

= 0.6.

the non-stationary condition Λmax = 1. In this last regime, even small variations of the cost

lead to large increases of the riskiness of the portfolios.

Finally, correlation between portfolios steadily increases by reducing diversification costs

essentially because the overlap between portfolios increases, see panel (d) of Figure (3.8). It is

important to notice that the condition of divergence of the variance does not imply a perfect

overlap between portfolio, see panel (c) of Figure (3.3). For example, with the given parameters

the transition to infinite variance and non stationary portfolios occurs at E[of ] = 0.21 when
σs
σd

= 0 and at E[of ] = 0.34 when σs
σd

= 0.3. Thus correlation between portfolios can become

very close to one even if the portfolio overlap is relatively small.

Below, we will propose a model in which the endogenous risk induced by rebalancing feed-

back effects is taken into account in solving the portfolio optimization problem by financial

institutions. We will investigate how the feedback effects stress the dynamical evolution of the

portfolio adjusted to the past measures of risk.
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3.3 Systemic Risk

3.3 Systemic Risk

In the model, the systemic risk can be measured as the probability of default of financial in-

stitutions. At the same time, the systemic risk can be approached from a dynamical point of

view.

3.3.1 The probability of default

From a static point of view and assuming for notational simplicity that the mean value of the

portfolio returns is zero, that is µ = 0, the portfolio return at time t of a bank i conditioned on

a systematic shock sshockt = ēshockt−1 + fshockt (exogenous or endogenous or both of them) is

rpi,t|sshockt
=

M∑
j=1

Ij∈i
sshockt + εj,t + ∆ej,t−1

m
(3.35)

Since εj,t are normally distributed, the portfolio return distribution conditioned on this system-

atic shock is

rpi,t|sshockt
∼ N

(
sshockt ,

σ̃2
d

m

)
(3.36)

where N indicates the normal distribution and σ̃d includes the endogenous diversifiable risk

contribution deriving from ∆ej,t in addition to the exogenous one.

A bank i is in default if it suffers a loss larger than the value of its equity. Consequently, the

probability of default of a financial institution i given a systematic shock sshockt is [9]

PDi = P

rpi,t|sshockt
≤ −α

√
σ̃2
s +

σ̃2
d

m

 (3.37)

= CDF

−α
√
σ̃2
s +

σ̃2
d
m − s

shock
t√

σ̃2
d
m

−−−−−−−−−−−−−−→m→M, M →∞ 1 ∀sshockt < −ασ̃s

where CDF is the standard normal cumulative distribution function and σ̃s contains the en-

dogenous systematic risk contribution deriving from ēt in addition to the exogenous one.

Therefore, for any negative shock larger than VaR, i.e. ασ̃s, the probability of default

increases with the degree of diversification m. Further, as claimed before, a large overlap between

portfolios of the financial institutions increases the systemic risk of whole economic system

because it will play a crucial role in the contagion of risk. In fact, from a dynamical point of

view, the endogenous feedback effects will trigger a sequence of portfolio rebalances causing the

falling of price of all risky assets, when the mean portfolio overlap is large.

Since et = Φrt, see equation (3.22), the vector of investments returns (3.21) at time t, after

a shock ft = sshockt occurring at time t, can be rewritten as

rt = Φrt−1 + ısshockt + εt (3.38)
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3. A model of systemic risk in financial markets

The total future impact of the shocks over the next h periods will be given by the sum of h

contribution, each of which is equal to the mean investment return conditioned on the systematic

shock sshockt that is approximately [9] (for h sufficiently large)

E[rt+h|sshockt ] = (Φ)h ısshockt −→ E

[(∑
h

rt+h

)
|sshockt

]
≈ (1−Φ)−1 ı sshockt (3.39)

Hence, the larger the maximum eigenvalue of Φ the larger will be the magnitude and persistence

of future adjustments leading to a larger cumulative impact that the financial system will have

to absorb. The relation (3.39) holds approximately when the return dynamics is stationary,

that is when the largest eigenvalue of Φ is smaller than 1. On the contrary, any perturbation

sshockt increases through time and the economic system can not be able to absorb it. The largest

eigenvalue strictly depends on the leverage λ. When financial institutions are over-leveraged,

any shock deeply propagates within the economic system.

3.3.2 Transition from stationarity to non-stationarity

In the last years, new financial instruments were introduced in financial markets apparently

allowing financial institutions to diversify the risk of the portfolio. In this sense, they permit to

reduce the cost of diversification c. Marsili et al. [92, 93] have investigated how the proliferation

of financial instruments can erode the stability of an economic system. In fact it can drive the

economic system towards a state characterized by strong fluctuations and strong correlations

among risks.

In the model [9] we have presented, the introduction of financial innovation has several crucial

consequences.

1. When a financial innovation reduces the cost c, financial institutions increases the optimal

degree of diversification m. At first time, the portfolio volatility is reduced and financial

institutions can fulfill the VaR constraint using a larger value of leverage λ. As seen in the

previous Section, the probability of default of a financial institution increases according to

larger values of diversification and leverage.

2. As a consequence of larger diversification m, the overlap between different portfolios in-

creases and the economic system is more interconnected. The correlations among portfolio

returns increase. Any shock can propagate easily within the system.

3. An increase in leverage will heavily affect the dynamics of the risky investments by increas-

ing both their variances, covariances and correlations, through the impact of rebalancing

feedback effects.

As a consequence of these effects, financial institutions operate in market in aggressive (due to

higher leverage) and coordinated (due to correlations among portfolio returns) way. Through

the rebalancing feedback, they can drive endogenously the asset return dynamics pushing up the

assets price. The same feedback mechanism works also in the opposite direction during market

crisis.
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Below a given threshold of the diversification cost c, a transition from a stationary dynamics

to a non-stationary one for the asset returns occurs. In this regime, the feedback mechanism

reinforces the fluctuation amplitudes of asset prices, leading to steep growth (bubble) and plunge

(burst) of market prices.

Figure 3.9: Numerical simulation of the dynamics of individual total asset of financial institutions before and
after a structural break (at simulation time 1000) on the diversification costs that induces an increase of leverage
and diversification. Leverage goes from 10 to 60 and fractional overlap from 0.1 to 0.8.

Figure (3.9) shows the impact on the dynamics of financial intermediaries total asset of a

shift in the degree of leverage and diversification induced by a reduction in the diversification

costs. The model is numerically simulated to show how the bank assets dynamics changes with

a structural break represented by a sudden increase (at simulation time 1000) in the degree of

leverage and diversification. The bank assets dynamics reflects the portfolio return dynamics. In

fact, the total asset return for a bank is simply the return of the portfolio times the chosen value

of leverage λ. After the reduction of diversification costs at time 1000, rebalancing feedback

effects trigger bubbles and bursts of assets price.

From a mathematical point of view, the transition from stationarity to non-stationarity for

the return dynamics occurs when the largest eigenvalue of the linear operator Φ, describing the

dynamics of endogenous components, becomes equal to 1.

Λmax = 1

Assuming that all assets have the same liquidity γ, the previous condition is equivalent to

Λmax =
λ− 1

γ
= 1 −→ λ = γ + 1

As a consequence, in the model, the stationarity of the return dynamics means an upper bound

for the leverage λ defined by the liquidity γ.
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Chapter 4

The role of expectation feedbacks in

systemic financial stability

In Chapter 3 we have introduced an analytical model to investigate the effects of micro-prudential

changes on macro-prudential outcomes. Specifically, the model investigates the consequence of

reducing the costs of portfolio diversification in a financial system populated by homogeneous

financial institutions having capital requirement in the form of VaR constraint and following

standard mark-to-market and risk management rules. In particular it highlights how the strategy

of maintaining a fixed target leverage ratio, through the portfolio rebalancing in presence of

asset illiquidity, induces a positive feedback which increases the assets volatility by its impact

on returns. This latter feature is modeled by the introduction of an endogenous component in

the return process which is proportional to the assets demand and it is inversely related to the

asset liquidity parameter γ. The feedback effects strongly affect the dynamics of traded assets.

In Chapter 3, the problem of the portfolio optimization is solved once that the exogenous

diversifiable volatility, σd, and the exogenous systematic volatility, σs, have been determined.

However, in the original formalization of the model, financial institutions optimize their portfolio

using the exogenous risk parameters without considering the endogenous component or learning

from past time series.

Here we present a dynamical systems approach to the problem of portfolio optimization

when endogenous feedback effects are accounted for. Specifically, we will focus on how financial

institutions respond to an increase of risk due to the portfolios rebalancing. In this scenario, the

expectations of financial institutions about the future realizations of the asset risk play a crucial

role in defining the dynamical outcomes. In particular, the adopted expectations scheme may

condition the financial stability of the economic system. We assume that all financial institutions

use the same expectations scheme. We consider two expectations scheme about the forecasting

of risk: naive expectations and adaptive expectations. The latter ones are described in the next

Chapter.

The key point is that the combined effect of portfolio choices, made by financial institutions,

drives endogenously the dynamics of financial market. Under naive expectations, at a given

threshold the endogenous feedback triggers the appearing of financial cycles characterized by
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a sequence of speculative periods and non-speculative ones. During financial cycles, we can

notice how the financial leverage of a bank portfolio switches from aggressive configurations

(speculative periods) to cautious ones (non-speculative periods). The financial leverage cycles

reflect the occurrence of periods characterized by a macro-component of risk, due to an higher

impact of the feedback, followed by periods in which feedback effects do not affect importantly

the asset risk.

When financial cycles appear, the risk can not be reduced through diversification. In fact,

although a diversified portfolio reduces the exogenous component of risk, a larger degree of

portfolios overlap increases the endogenous impact on volatility. During financial cycles there is

not an equilibrium between the latter effects.

All the material in this Chapter is original.

4.1 The dynamical model with expectations

At the end of Chapter 3, we have found an analytical expression for the variance of portfolio

return when the impact of the positive feedback is considered (see (3.34) in Section 3.2).

V (rp) = V (ep) + σ2
s +

σ2
d

m
(4.1)

where m is the number of assets in the portfolio, rp is the portfolio return, V (ep) is the endoge-

nous risk due to the feedback effects. Since for hypothesis the portfolio return rp is a normally

distributed stochastic variable, the variance of the portfolio, V (rp), can be considered as a risk

measure. In order to explain our outcomes from an economic point of view, we adopt the con-

vention of referring to the variance of the portfolio as the risk while, we refer to the square root

of the variance as the volatility.

Once that financial institutions optimize their portfolio choosing the optimal configuration

of m (diversification) and λ (leverage), the price impact of rebalancing strategy, in order to

maintain the target leverage λ, affects the risk of the portfolio through V (ep).

The analytical expression of V (ep) is (see (3.34) in Section 3.2)

V (ep) =
V (ej)

m
+
m− 1

m
Cov(ej , ek) (4.2)

where ej is the endogenous component describing the effect of rebalancing feedback on the

return of an asset j, V (ej) is the variance of the endogenous component ej and Cov(ej , ek) is

the covariance of ej and ek. Both the variance V (ej) and the covariance Cov(ej , ek) are functions

of the diversification m and the leverage λ. Defining the excess leverage as λ̃ = (λ − 1), the

variance and the covariance of endogenous components, see Section 3.2, are

V (ej) = −λ̃2{
m2(σ2

d(λ̃
2 − γ2(M − 1)) + σ2

s(λ̃
2 − γ2(M − 1)2))

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
2m(M(σ2

d(γ
2 − λ̃2)− λ̃2σ2

s)− γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+
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+
M(M(σ2

d(λ̃
2 − γ2) + λ̃2σ2

s) + γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
} (4.3)

Cov(ej , ek) = −λ̃2{
m2(σ2

s(λ̃
2 − γ2(M − 1)2)− γ2(M − 2)σ2

d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
−2m(λ̃2Mσ2

s + γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
+

+
M(λ̃2Mσ2

s + γ2σ2
d)

(γ2 − λ̃2)(m2(γ2(M − 1)2 − λ̃2) + 2λ̃2mM − λ̃2M2)
} (4.4)

When in a time interval ∆t all financial institutions are marked-to-market rebalancing contin-

uously their portfolios, they impact the risk of the portfolio through an endogenous feedback

effect that induces the endogenous risk component (4.2). As a consequence, constrained by VaR,

at the end of time interval ∆t, financial institutions have to solve their portfolio optimization

problem according to the observed value of the risk.

From now on, we assume that the exogenous systematic risk component σs is equal to zero.

As we will see, this assumption will lead to an important simplification.

Figure 4.1: A symbolic diagram describing the consecutive steps that characterize the evolution of the portfolio.
At time t − 1 financial institutions choose the diversification mt−1 and the leverage λt−1. In the time interval
[t − 1, t], financial institutions rebalance their portfolio in order to maintain fixed the value of leverage. This
mechanism induces a positive feedback which affects the risk, σ̃2

d,t, at time t. After a measure of the risk at time
t, financial institutions form an expectation, (σ̃ed,t)

2, about the future risk, and according to this forecasting, they
optimize their portfolio at time t choosing new values of diversification, mt, and leverage, λt.

In Figure (4.1) we show the consecutive steps occurring during the evolution of the portfolio,

in order to stress the rebalancing feedback effect.

We suppose that at time t−1 banks choose the optimal values of the diversification, mt−1, and

the financial leverage, λt−1. When banks maintain the optimal target leverage λt−1 rebalancing

their portfolio in the time period between t− 1 and t, the portfolio risk realized at time t is

(σ̃p,t)
2 =

σ2
d

mt−1
+
V (ej,t−1)

mt−1
+
mt−1 − 1

mt−1
Cov(ej,t−1, ek,t−1) (4.5)

where
σ2
d

mt−1
is the exogenous component of the risk. In fact, at the end of the time interval

[t−1, t], before a new portfolio optimization occurs, the actual degree of diversification is mt−1.

The quantity
V (ej,t−1)
mt−1

+ mt−1−1
mt−1

Cov(ej,t−1, ek,t−1) is the endogenous component of the risk
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4.1 The dynamical model with expectations

representing the impact of the rebalancing feedback. In fact, between t − 1 and t the target

leverage for financial institutions is λt−1, and as a consequence the endogenous risk component

strictly depends on mt−1 and λt−1. There is both an explicit dependence on mt−1 and an implicit

dependence on mt−1 and λt−1 (see (4.3) (4.4)).

The risk of the portfolio is the observable of our dynamical model. We use the convention to

mark with a tilde the risk that is the sum of an exogenous component and an endogenous one.

For the hypothesis of assets homogeneity, the risk of the portfolio is simply equal to the risk

associated with an asset divided by the actual degree of diversification. Hence the risk of the

portfolio, realized at time t, is

(σ̃p,t)
2 =

(σ̃d,t)
2

mt−1
(4.6)

where (σ̃d,t)
2 is the diversifiable risk of an asset as a consequence of the impact of rebalancing

feedback.

Then, from (4.5) and (4.6) we find

(σ̃d,t)
2 = σ2

d + V (ej,t−1) + (mt−1 − 1)Cov(ej,t−1, ek,t−1) (4.7)

At time t the realized risk associated with any asset j is the contribution of an exogenous

divesifiable component, σ2
d , plus an endogenous component equal to the sum of the variance,

V (ej,t−1), of the endogenous component ej of the asset j and the covariance, Cov(ej,t−1, ek,t−1),

of ej and ek, k 6= j . Both endogenous components depend on the choice of portfolio variables

made at time t− 1.

Thanks to the hypothesis of assets homogeneity, the asset diversifiable risk, (σ̃d,t)
2, can be

obtained by only one measure of portfolio risk, (σ̃p,t)
2, at time t.

Under bounded rationality hypothesis, financial agents know the realization of their portfolio

volatility at every past times but they do not know the exact “law of motion” of the financial

market. Instead, they form expectations about the future risk using statistical models of past

time series. In order to solve the problem of the portfolio optimization at time t, they measure

the actual risk position, (σ̃p,t)
2 , and they deduce the actual asset diversifiable risk, (σ̃d,t)

2,

from Eq. (4.6). Depending on their degree of rationality, financial agents form at time t an

expectation, (σ̃ed,t)
2, about the future (t+ 1) diversifiable asset risk, (σ̃d,t+1)2. Hence, at time t

a financial institution, constrained by VaR, solves the portfolio optimization problem according

to its forecast about the expected risk position.

Summarizing schematically, the consecutive steps, that define the portfolio dynamics between

t− 1 and t, are:

• at time t− 1, financial institutions choose mt−1 and λt−1

• between t−1 and t, financial institutions adopt a rebalancing strategy in order to maintain

the target leverage λt−1

• at time t, financial institutions estimate their actual risk position (σ̃p,t)
2
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4. The role of expectation feedbacks in systemic financial stability

• at time t, financial institutions deduce (σ̃d,t)
2 from Eq. (4.6) and they form the expectation

(σ̃ed,t)
2 about the future (t+ 1) risk

• at time t, according to their expectation (σ̃ed,t)
2, financial institutions solve the problem of

portfolio optimization choosing mt and λt

The difference equations (3.12) (3.13) fulfill the portfolio optimization problem at time t,

once the expectation about the future diversifiable risk, (σ̃ed,t)
2, is formed.

mt = λt σ̃
e
d,t

√√√√ α

2c

µ− rL√
(σ̃ed,t)

2

mt

(4.8)

λt =
1

α

√
(σ̃ed,t)

2

mt

(4.9)

σ̃ed,t ≡ σ̃ed (mt−1, λt−1) (4.10)

where µ−rL is the Net Interest Margin (NIM) and c = c̃
E is the cost for investment (assumed to

be the same across all investments) in unit of equity E. The relation (4.10) expresses in general

form the expected diversifiable volatility. mt and λt represent the new choice at time t made by

financial institutions about the portfolio diversification and the financial leverage.

Given the expectation at time t about future diversifiable risk, (σ̃ed,t)
2, financial institutions

expect the portfolio volatility, that it will be realized at time t+ 1, is

σ̃ep,t =

√
(σ̃ed,t)

2

mt
(4.11)

The difference equations (4.8) (4.9) (4.10) define a discrete dynamical system as a map. The

dynamics of the map describes how the portfolio of a typical financial institution evolves in time

in an ideal market modeled by a bipartite network of N financial institutions and M illiquid

risky investments. The dynamical aspect of our approach is related to the fact that the system

state at time t depends on the past state of the system at time t− 1, through (4.10).

The domain in which the portfolio variables can evolve is:

{m, λ, σ̃ed} ∈ [1,M ]⊗ [1, γ + 1)⊗ R+ (4.12)

By definition, m ∈ [1,M ] because M is the total number of investment assets and σ̃ed > 0. Most

importantly, λ is confined in the interval [1, γ + 1). In fact λ < γ + 1 expresses in another form

the condition Λmax < 1, see Section 3.3 of Chapter 3. When λ < γ + 1, the dynamics of the

return processes for the investment assets is stationary. λ = γ+1 represents the transition point

from stationarity to non-stationarity for the returns dynamics. When λ→ (γ+1)−, the variance

(4.3) and the covariance (4.4) of the endogenous components in the return processes become

larger and larger, since γ + 1 is an asymptote for these. If λ 6∈ [1, γ + 1], V (ej) (see (4.3)) is a

negative-valued function, and for this reason in non-stationary regimes it fails to describe the
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4.2 Expectations in financial markets

excess volatility due to the portfolio rebalancing. As a consequence, the map based on difference

equations (4.8) (4.9) (4.10) fails in describing the portfolio dynamics in the non-stationary regime

for the return processes.

From now on, we refer to (4.12) as the economic domain of the map. Only in this domain,

the dynamical behavior of the map has an economic interpretation.

Since σs = 0, the map based on difference equations (4.8) (4.9) (4.10) is equivalent to

mt =

(
µ− rL

2αc

)2 1

(σ̃ed(mt−1, λt−1))2
(4.13)

λt =

(
µ− rL
2α2c

)
1

(σ̃ed(mt−1, λt−1))2
(4.14)

In explicit form, it is evident that the degree of diversification and the leverage are not

independent variables. At any time, the following linear relation exists between them

mt =
µ− rL

2c
λt (4.15)

From a mathematical point of view, the map is a one-dimensional dynamical system. Never-

theless, we will consider separately the two variables, in order to make evident the economic

interpretation of the outcomes.

In the map there are two fundamental parameters, α and c. The parameter α summarizes

all the capital requirements imposed by regulatory institutions and standard market practice.

The parameter c represents the costs associated with the diversification of a portfolio. The

diversification costs have decreased in the last thirty years, as a consequence of the introduction

of financial innovations (see Figure 3.2). A reduction of diversification costs is followed by a

larger overlapping between different portfolios due to the fact that financial institutions prefer a

diversified portfolio in order to reduce the risk. In this scenario, the endogenous feedback plays

a crucial role in defining the portfolio dynamics.

We will investigate particularly the consequences of a reduction of diversification costs.

Furthermore, depending on the expectation strategies for σ̃ed, there could be another parame-

ter which characterizes the choice of a specific expectation scheme. It is the case of the adaptive

expectations.

Finally, it is useful to note that the map described by the equations (4.8) (4.9) (4.10) is the

(deterministic) skeleton [47] of the corresponded stochastic map in which an exogenous noise

added to V (ept−1) is present. This stochastic noise would be necessary to include the stochastic

fluctuations and the exogenous shocks of the assets volatility. A well-know property is that the

volatility itself must be described by processes containing a stochastic term. The randomness

characterize the financial market dynamics.

4.2 Expectations in financial markets

One of the most important difference between economics and natural sciences is that the dynam-

ics of an economic system is characterized by a behavioral component which reflects the capacity
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4. The role of expectation feedbacks in systemic financial stability

of financial agents operating in the system of making decisions which influence dynamics itself.

Because the procedure with which financial agents make decisions can change, as a consequence

the behavioral component of an economic system can not be considered as a fixed rule of the

dynamics.

The key point is to describe this behavioral component characterizing the dynamics of an

economic system into a mathematical framework. For this purpose it is important to notice

that decisions of economic agents today are based upon their expectations about the future. A

mathematical formalization of the concept of expectations plays a crucial role in describing the

dynamics of an economic system as a financial market.

The need for an empirically grounded behavioral theory of expectations for economic dy-

namics has been stressed for the first time by Herbert Simon [94] in 1984: “A very natural step

for economics is to maintain expectations in the strategic position they have come to occupy,

but to build an empirically validated theory of how attention is in fact directed within a social

system, and how expectations are, in fact, formed. Taking the next step requires that empirical

work in economics take a new direction, the direction of micro-level investigation proposed by

Behavioralism.”

The main aspect of the expectations is the fact that they influence the dynamics of an

economic system, differently from what happens for a physical system [47]. To illustrate this

difference, weather forecasts for tomorrow will not affect today’s weather, but investors’ predic-

tions about future prices or risks may affect financial market dynamics today. The expectations

of financial agents about the future state of the economy are part of the “law of motion”.

In many recent works, Hommes et al. have experimentally studied [10, 95, 11] how groups

of financial agents form their expectations and have expressed mathematically [96, 97, 98, 99]

some aspects of the expectations themselves.

In describing a model of an economic system, typically two hypotheses about expectations

can be considered: the rational expectations hypothesis (REH) and the bounded rationality one

[47]. According to the first one, rational agents have perfect knowledge about underlying mar-

ket equations, as a consequence they do not make systematic mistakes and their expectations

coincide with the future realizations. A scenario of this type is characterized by a Rational

Expectation Equilibrium (REE) for the economic system.

In principle, this assumption may seem very strong, especially since the “law of motion”

of an economy depends on the expectations of all other agents. In fact, Hommes et al. have

highlighted through evidences from laboratory experiments with human subjects that a situation

in which financial agents know exactly the dynamics of an economic system is unrealistic. On

the contrary, from laboratory experiments strong evidences are in agreement with the bounded

rationality hypothesis.

According to this one, financial agents do not know the actual “law of motion” of the

economy, but instead they form their expectations using statistical models of observed past

time series, the so-called backward-looking expectations [100]. Looking at the past realizations

of risk, for example, and according to their degree of rationality, financial agents forecast the

future realization of the risk.
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4.3 Naive expectations

In principle, the bounded rationality hypothesis does not exclude the possibility of an equi-

librium point for the dynamics of an economic system [101]. In particular, financial agents can

adapt their forecasting strategy over time by updating the parameters of their statistical models

according to some learning scheme as additional observations become available (adaptive learn-

ing) [102, 103], in order to avoid systematic mistakes. When the expectations of financial agents

become in equilibrium with the future realizations, typically the economic system reaches an

equilibrium point.

4.2.1 Naive expectations and adaptive expectations

In a backward-looking expectations scenario, two types of expectations can be particularly

considered in studying financial markets dynamics: naive expectations and adaptive expectations.

The first ones refer to a situation in which the forecast of the financial agents is equal to the

last observation. Naive expectations describe in some sense irrational financial agents because

they may lead to systematic mistakes of forecasting.

Instead, adaptive expectations correspond to a more realistic scenario in which financial

agents forecasting is a weighted sum through a memory factor of the most recently observation

and the previous expectation, that is the actual expectation is adapted in the direction of the

last observation. In the adaptive scenario, the memory plays an important role in defining the

dynamical outcomes.

In this Chapter and in the next one, we assume that financial institutions are boundedly

rational and they use an expectations scheme to forecast risk. In this Chapter we analyze the

dynamical features of the model with naive expectations.

In the next Chapter, we will focus on the dynamical model with adaptive expectations. At

the end of the next Chapter, we describe an adaptive learning scheme that financial institutions

may use to improve their forecasting strategy.

4.3 Naive expectations

To close the model described by equations (4.8) (4.9) (4.10), it is necessary to specify how finan-

cial institutions form their expectation about the asset volatilities and as a consequence about

the portfolio volatility. Now we assume that financial institutions solve the portfolio optimiza-

tion problem assuming that the last period volatility of the risky investments will coincide to

the future one. They follow the so-called naive expectations scheme.

4.3.1 Dynamical portfolio optimization under naive expectations

We suppose that financial institutions at time t estimate the risk associated with an asset and

they find a value equal to (σ̃d,t)
2. (σ̃d,t)

2 is the risk measured at time t but it depends on

the choice about mt−1 and λt−1 that financial institutions have made at time t − 1 because of

the rebalancing feedback. The feedback effect induces the endogenous risk component. Naive

expectation strategy means that financial institutions, after an estimation of asset risk at time
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4. The role of expectation feedbacks in systemic financial stability

t, expect that the future realization of risk of the same asset will be coincide to the actual one.

We call this expected asset (diversifiable) risk as (σ̃ed,t)
2. The subscript t stresses the fact that

the risk expectation for the future time is matured at time t. Instead, the exponent e indicates

that the quantity (σ̃ed,t)
2 is the expectation of the future risk.

Financial institutions believing in naive expectations about their risk position, use the fol-

lowing relation to estimate the diversifiable risk of an asset

(σ̃ed,t)
2 = (σ̃d,t)

2 (4.16)

where (σ̃d,t)
2 is found through the relation (4.7).

Hence, financial institutions use the relation (4.16) in order to estimate their portfolio volatil-

ity. The estimated risk position of the portfolio allows financial institutions to calculate their

VaR constraint and as a consequence they can make the optimal choice of diversification mt

and leverage λt at time t. From now on we will consider the diversification m as a continuous

variable. In principle m is a discrete variable because it indicates the number of investment

assets in the portfolio of a financial institution. Hence, a choice of a fractional value for m has

no sense. But at the same time, the qualitative features of the portfolio dynamics does not

change when we use continuous values of m. For the sake of simplicity we make this assumption

to test numerically our model. This choice does not affect the typical dynamical behavior of the

map.

Figure (4.2) shows the dynamical behavior of the system (4.8) (4.9) (4.10) when financial

institutions adopt an expectation scheme about diversifiable risk described by (4.16), for two

different values of the diversification costs. The initial point is chosen randomly among all

possible configurations of the system in the economic domain.

When the costs of diversification are high, the impact of supply and demand generated by

financial institutions in rebalancing their portfolio does not affect critically the system stability.

The dynamics of the portfolio converges to a stable configuration (m∗, λ∗) which optimizes the

return under the VaR constraint without affecting criticality the future risk by the price impact.

In fact, when the costs are high a bank solves its optimization problem choosing a small value of

the optimal diversification, m∗. It follows that the overlap between portfolios is incomplete and

as a consequence the demands of an asset, which generate the price impact on the asset itself,

add together approximately to zero. There is not a significant endogenous risk component.

On the contrary when the diversification costs become lower than a threshold c2, 2-period

orbits appear for mt and λt. When c is smaller than c2, the mean overlap between the portfolios

spreads and the consequence is that during a period of high target leverage the coordinated

portfolios rebalancing produces a remarkable impact on the diversifiable volatility. Conditioned

by the VaR constraint, financial institutions will reduce their diversification and their financial

leverage. A period of small price impact will follow. Hence, all portfolios oscillate between two

configurations: an aggressive configuration characterized by high leverage and large diversifica-

tion and a cautious configuration characterized by small values of leverage and diversification.

Figure (4.3) shows the orbit diagrams. It plots the system’s attractor as function of c, that

is the asymptotic dynamics when the initial transient period is passed. In the Figure (4.3) (a)
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Figure 4.2: Dynamic evolution of the diversification mt and the financial leverage λt changing the value of
diversification cost c. In the panels (a) and (b) we set a higher value compared to the panels (c) and (d). The
other parameters are fixed at M = 30, α = 1.64, µ− rL = 0.08, the exogenous volatility σd = 0.05

1.64
, the liquidity

γ = 100.

(b) we show 2-period bifurcations for mt and λt. The amplitude of the 2-period orbits becomes

larger decreasing the parameter c. In Figure (4.3) (c) we report the ratio ∆(σ̃d)2

(σ̃d)2 = (σ̃d)2−(σd)2

(σ̃d)2

that is the fraction of squared volatility due to the endogenous feedback. When c is higher than

the threshold c2, this measure of the endogenous risk is of the order of 20% of the total risk

comes from the endogenous feedback. When the value of c decreases below the threshold it

begins to swing between high and small values following the swinging choices of the financial

institutions. In fact for small diversification costs, at the 2-period dynamics for mt corresponds

a Pearson correlation coefficient for two endogenous components, (see Figure (4.3) (d)) which

shows high linear correlation followed by smaller one (uncorrelation).

Under the hypothesis of assets homogeneity, the Pearson correlation coefficient realized at

time t is simply the ratio between the covariance (4.4) of two endogenous components, ej,t−1

and ek,t−1, and the variance (4.3):

ρt =
Cov(ej,t−1, ek,t−1)

V (ej,t−1)
(4.17)

In panel (d) of Figure (4.3), ρt depends on the values of diversification and leverage at time

t−1, mt−1 and λt−1. When ρt is close to 1, endogenous components are highly correlated due to
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Figure 4.3: Orbit plots as function of the continuous parameter c. The panels (a) and (b) show the Orbit Plots

for mt and λt. The panel (c) shows the normalized endogenous risk ∆(σ̃d)2

(σ̃d)2
= (σ̃d)2−(σd)2

(σ̃d)2
, i.e. the endogenous risk

component divided by the total risk for an investment j. The panel (d) shows the Pearson Correlation Coefficient
between two endogenous components, ej and ek. The used parameters are: M = 30, α = 1.64, µ − rL = 0.08,
σd = 0.05

1.64
, γ = 100 .

a large overlap of portfolios and the impact on risk due to the rebalancing feedback represents

a significative fraction of total risk. On the contrary, when ρt is smaller than 1, the impact of

feedback effects is not important. This fact is the underlying reason for the Figure (4.3) (c).

It is evident in Figure (4.3) that below the threshold c2, financial cycles appear. These are

characterized by cyclical orbits for the portfolio variables of time period equal to 2. Financial

cycles of the degree of diversification m and the leverage λ are due to the feedback effect induced

by the target leverage strategy adopted by financial institutions. Cycles of m and λ reflect the

cyclical realizations of the endogenous risk component, panel (c) of Figure (4.3).

There is also a second threshold c∗ (in Figure (4.3) c∗ ≈ 0.1589 ) at which the amplitude

of oscillations of leverage and diversification become comparable with the dimension of the

economic domain (in particular the oscillation amplitude of leverage is exactly equal to the length

of interval of possible values). This threshold corresponds to the transition from stationarity to

non-stationarity occurring for the return dynamics, see Section 3.3. The reason is simply related

to the fact that financial leverage reaches the critical value γ+1 for which the transition occurs.

In principle, in our dynamical system the endogenous risk component is not an observ-

able quantity. The observable quantity is the portfolio volatility which includes an exogenous

component. Hence, a financial institution can not estimate directly the impact on risk of the
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4.3 Naive expectations

rebalancing strategy of all financial institutions. On the contrary, a more appropriate quantity

which can be estimated in order to have informations about the cyclical behavior of endoge-

nous risk component, is the cycle amplitude of financial leverage λ (or similarly of degree of

diversification m).

Definition The cycle amplitude of financial leverage estimates the systemic risk of financial

market.

The cycle amplitude of financial leverage (or degree of diversification) depends on some model

parameters and there is not a universal scale of measure. However, the appearing of financial

cycles reflects the occurrence of periods characterized by a macro-component of risk. With macro

we refer to a large risk component due to the rebalancing feedback arising from a comprehensive

behavior of all agents operating in financial market. For this reason, it can be difficult to control

through a regulatory policy, although it is easy to recognize.

In panel (b) of Figure (4.4) we show the realizations of the asset diversifiable volatility,

σ̃d,t+1, at time t + 1 after that financial institutions optimize their portfolio at time t with an

expectation about asset volatility equal to (σ̃d,t)
e. The orbit plot for (σ̃d,t)

e is shown in panel (a)

of Figure (4.4). At the threshold c2, also a transition occurs for the returns dynamics associated

with the investment assets. For a value of c smaller than c2, we can noticed that in relation to

the two-period dynamics of portfolio variables, any investment asset is characterized by periods

of high risk followed by periods of small risk. When diversification costs c decrease further

and so the amplitude of financial leverage cycles increases, during the risky periods any asset is

characterized by a even larger value of diversifiable volatility.

Even before reaching the value of diversification cost whereby the investment return processes

become non-stationary (c∗: Λmax = λ∗−1
γ ≥ 1, in Figure (4.3) c∗ ≈ 0.1589), macro-risk outcomes

correspond to the appearing of financial cycles.

It is important to notice how the macro-component of assets risk affects the portfolio volatil-

ity. Panel (c) and panel (d) of Figure (4.4) show the orbit plot for the expected portfolio

volatility, σ̃ep,t, and the orbit plot for the realized portfolio volatility, σ̃p,t+1.

At the right of the dashed line, when an equilibrium asymptotic point exists, σ̃ep,t coincides

with σ̃p,t+1, i.e. the expectations about volatility by financial institutions are equal to their

future realizations. Also both of them decrease slightly reducing the diversification costs. A

reduction of c corresponds to a growth of the diversification m. This region represents a market

in which a bigger diversification carries away the idiosyncratic risk. However, for values of c

smaller than the threshold c2 (the dashed line) the two-period dynamics appears, as we can see in

the panel (a). The portfolio dynamics displays consecutive overestimations and underestimations

of the expected portfolio volatility. Counter-intuitively, always for the same fixed value of c, the

realized risk of the bank’s portfolio is constant in time and it does not oscillate between two

values, one larger than the other one. In fact, if the expected variance of a portfolio at time t is

(σ̃ep,t)
2 =

σ2
d

mt
+
Vej,t−1(mt−1, λt−1)

mt
+
mt−1 − 1

mt
Covej,t−1,ek,t−1

(mt−1, λt−1) (4.18)
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(a) expected diversifiable volatility
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(b) realized diversifiable volatility
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(c) expected portfolio volatility
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(d) realized portfolio volatility

Figure 4.4: Orbit plots of the diversifiable asset volatility (σ̃d,t)
e expected at time t and the realized one, σ̃d,t+1,

at time t + 1, panel (a) and panel (b). Orbit plots of the portfolio volatility (σ̃p,t)
e expected at time t and the

realized one, σ̃p,t+1, at time t+ 1, panel (c) and panel (d). The dashed line indicates the value of c at which the
two-period dynamics appears. The used parameters are: M = 30, α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
, γ = 100.

then, the realized one, after a transient ∆t = 1, is

(σ̃p,t+1)2 =
σ2
d

mt
+
Vej,t(mt, λt)

mt
+
mt − 1

mt
Covej,t,ek,t(mt, λt) (4.19)

If at time t, historical measures reveal large values for returns volatilities, due to the high

impact of endogenous feedback (related to time t− 1) then all financial institutions reduce the

diversification and the leverage choosing smaller values for mt and λt. These coordinated actions

restrict the impact of the portfolios rebalancing on risk, but after a time interval ∆t all banks’

portfolios are poorly diversified and therefore they are exposed to a high idiosyncratic risk
σ2
d

mt
.

On the contrary, if at time t the impact of feedback effects is not important, financial

institutions forecast low returns volatilities σ̃ed,t. According to their forecasting, they increase

mt and λt and a great impact of endogenous feedback (the second term and the third one of

(4.19)) follows. Anyway, during these economic 2-period cycles, the banks micro-prudencial

policy, characterized by naive expectations, does not reduce the portfolio risk. Moreover it

grows as c decreases.

By a mathematical point of view, it is important to note that for a fixed value of c smaller
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4.3 Naive expectations

than c2 the dynamical evolution of a portfolio is characterized by a realized risk constant in

time. The realized portfolio volatility, σ̃p,t , is a conserved quantity of the discrete dynamical

system.

From the previous analysis about the portfolio volatility, it is evident that financial institu-

tions make forecasting mistakes at every times. Hence, starting from the errors made, financial

institutions will try to improve their forecasting strategy. For this purpose, we will investigate

the dynamical information which can be extrapolated by past realizations of risk.

If we look at the errors of the naive expectations made by financial institutions, clear infor-

mations appear. Let us define the forecast error at time t as

Et = σ̃ep,t − σ̃p,t+1 (4.20)

The (4.20) can be estimated at each step of the discrete dynamical evolution of the system

providing to the bank a measure of the accuracy of its last performance. Histograms in Figure
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Figure 4.5: Histograms of the errors E for different values of diversification costs. In the panels (a) and (b), the
value of c is smaller than the threshold c2, in the other panels it is larger. The size of each bin is 1.25×10−4. The
Gaussian fluctuation introduced for the variance of the investment return is characterized by a standard deviation
equal to σnoise = σd

10
.The other parameters are: M = 30, α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
, γ = 100.

(4.5) show the errors committed by a financial institution during the evolution of the stochastic

system for different values of diversification costs. For stochastic system we mean the skeleton

map in which a Gaussian fluctuation is introduced for the variance of the investment return.

The fluctuation is of an order of magnitude smaller than the exogenous risk component.
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4. The role of expectation feedbacks in systemic financial stability

When the dynamics is asymptotical stable, see panels (a) and (b) of Figure (4.5), the distri-

bution of errors made by financial institutions is centered approximately around to zero. The

statistical moments are shown in the Table (4.1). The Jarque-Bera test rejects with a 0.05

degree of significance (see the p-values) the Null Hypothesis H0 that the sample data, obtained

with these values of c, come from a normal distribution.

In statistics, the Jarque-Bera test is a goodness-of-fit test of whether the sample data have

the skewness and kurtosis consistent with a normal distribution. The test statistics JB is defined

as

JB =
n

6

(
S2 +

1

4
(K − 3)2

)
where n is the number of observations, S is the sample skewness and K is the sample kurtosis

(K − 3 is the excess kurtosis). The Jarque-Bera test verifies simultaneously if the skewness and

the kurtosis of the sample data are statistical consistent with the Null Hypothesis of normality,

H0.

mean variance skewness S kurtosis K Jarque-Bera test p-value

c = 0.4 1.17× 10−6 2.68× 10−8 1.71 42.57 H0 rejected < 1× 10−3

c = 0.22 1.14× 10−6 2.08× 10−5 0.69 8.10 H0 rejected < 1× 10−3

c = 0.18 0.001 26.28 0.03 1.05 H0 rejected < 1× 10−3

c = 0.16 0.051 7.03× 103 0.51 1.65 H0 rejected < 1× 10−3

Table 4.1: Statistical moments of forecasting errors series shown in Figure (4.5). Table shows
the JB-test outcomes and the correspondent p-value associated with the Null Hypothesis of
normality.

In particular when the value of c is larger than c2, the JB-test rejects the normality hy-

pothesis, being that the sample kurtosis is statistically larger than 3 suggesting the existence

of heavy tails in the distribution of expectations errors. Furthermore, the positive values of

skewness, see Table (4.1), suggests that the overestimations are larger in absolute value than

the underestimations.

When the 2-period dynamics appears, the distribution of errors is characterized by the

existence of two maxima which highlights the consecutive overestimations and underestimations

of the portfolio volatility. Very close to the instability region, this distribution spreads over a

large interval of E-values.

If we look at the linear autocorrelation of error time series in Figure (4.6), it is evident this

aspect. If ρτ is the autocorrelation coefficient at time lag τ , ρ1 is negative significantly different

from zero for all values of diversification costs, suggesting that an overestimation is followed

by an underestimation, and vice versa. When the deterministic map’s evolution converges to

an equilibrium point, the forecasting errors are uncorrelated after few time lags, see the panels

(a) and (b) of Figure (4.6). In fact, when c = 0.4, ρ1 ≈ −0.5. This is due to the fact that

the eigenvalues of the map’s Jacobian suggest that the system converges to the steady state

swinging around it, as we can intuitively understand by Figure (4.2). This means that also the

time evolution of expectations about risk oscillates around to the realized risk. As consequence
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Figure 4.6: The linear autocorrelation function of the errors time series for different values of diversification

costs. To test the level of significance, the upper and lower bounds are equal to ±
z
1− β

2√
N

, N is the time series length,

z
1− β

2
is the quantile function of the normal distribution and β is the significance level. At 5% significance level

(the dashed lines) the bounds are 1.96 σdata√
N

, where σdata is the standard deviation of the data. The amplitude of

the gaussian noise is σnoise = σd
10

. The used parameters are: M = 30, α = 1.64, µ−rL = 0.08, σd = 0.05
1.64

, γ = 100.

of this, for all values of diversification costs the autocorrelation coefficient at first time lag is

negative.

When the 2-period orbits appear, the linear autocorrelation function shows jumps between

negative values at odd time lags and positive values at even time lags, as clearly appears in the

panels (c) and (d) of Figure (4.6). Two forecasting errors are correlated at any time scale. In the

pure deterministic evolution the linear autocorrelation function makes a zig-zag path jumping

between +1 and −1. The stochastic noise has the effect of decreasing the correlation between

the forecasting errors. In fact, the absolute amplitude of autocorrelation coefficients is a slowly

decaying function of time lags. The number of time lags necessary to reach 0, depends obviously

on the noise amplitude. A larger noise amplitude reduces the number of time lags. But at

the same time a larger noise amplitude could hide the information which can be extrapolated

by the portfolio dynamics. Anyway, financial institutions might recognize this structure in the

autocorrelation function and they might improve their forecast.
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4. The role of expectation feedbacks in systemic financial stability

4.4 Mathematical aspects of the naive expectations

In this Section, we will focus on the loss of hyperbolic equilibrium of the system and we will

investigate what type of bifurcation occurs. The main interest is a deeper understanding of the

2-period stationary state and in particular of the oscillations amplitude during the evolution of

the diversification m and the financial leverage λ. The amplitude of the two-period orbit can be

seen as a measure of market systemic risk. In fact, a growth of the amplitude means that the

system is closer to the region of instability when the returns dynamics becomes non-stationary

and any exogenous shock can trigger a plunge of market prices.

4.4.1 Linearized map

The system of equations (4.8) (4.9) (4.10) with naive expectation (4.16) can be symbolically

written in implicit form as

F(xt,xt−1, c) = 0 (4.21)

where x = (m,λ), c is the continuous diversification costs parameter.

If x∗ is a fixed point for (4.21), the linearized system in a neighborhood of x∗ is

δxt = −(DxtF |x∗)−1(Dxt−1F |x∗)δxt−1 (4.22)

where δx = x− x∗, −(DxtF |x∗)−1(Dxt−1F |x∗) is the Jacobian matrix of the map (4.21) at the

fixed point.

The fixed point x∗ will be asymptotically stable if and only if the eigenvalues of the Jacobian

lie within the unit circle in the complex plane. If ξ = (ξ1, ξ2) are the eigenvalues, the above

condition reads | ξi |< 1 for each eigenvalue.

When the center subspace (see Section 2.2 of Chapter 2) is empty, the fixed point is said

hyperbolic and for the Hartman-Grobman theorem then there exists a homeomorphism which

relates locally the linearized dynamics to the original map dynamics, and the stability of the

first one implies the stability of the second one.

In Figure (4.7) we report the fixed points x∗ = (m∗, λ∗) of the map (4.21) as function of

the continuous parameter c. When the asymptotic stability condition is satisfied we mark the

solution in blue, otherwise in red. It is evident that a threshold c2 in the range of c-values exists.

If c > c2, the equilibrium solution is hyperbolic. For c = c2 the invariant center subspace for

the linearized system is not empty and a loss of hyperbolicity follows. It occurs in one specific

way as we will see below. c2 is the value of control parameter c at which there is a transition

from an hyperbolic equilibrium to a stationary 2-period dynamics. When c < c2, the solution

of F (x∗, x∗, c) = 0 is not an attractor for the dynamics anymore.

As seen above, the endogenous feedback affects critically the features of the dynamics by its

impact on risk. To highlight the latter aspect, we show in Figure (4.7) the fixed points for two

different values of market liquidity γ. The set of fixed points, as a function of the parameter c,

defines a continuos curve in the domain of the map. In Figure (4.7) the upper curve is found

with an higher value of γ, equal to 100, compared to the lower curve which is related to a value

93



4.4 Mathematical aspects of the naive expectations

0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

c

m
*

(a)

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

c

Λ
*

(b)

Figure 4.7: The fixed points of the map as a function of the diversification cost c. A fixed point is marked
in blue if it is an asymptotic stable point, in red if it is not. The panels (a) and (b) show the solutions for the
diversification and the leverage, m∗ and λ∗ respectively. The upper curve corresponds to a value of the liquidity
parameter γ equal to 100, the lower one, instead, corresponds to γ = 40. The dotted lines represent the bounds
of the domain for m and λ. In the panel (b) the two dotted lines indicate two different bounds for λ being that
for the latter the domain interval depends on the value of the liquidity parameter. The other parameters are:
M = 30, α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
.
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Figure 4.8: The relation between the threshold c2, at which transition in dynamics occurs, and the impact
parameter γ−1, in panel (a). The Jacobian eigenvalues ξj as function of diversification costs, c, when the market
liquidity is γ = 100, in panel (b). The other parameters are: M = 30, α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
.

of γ equal to 40. The range of c-values, for which the dynamics has an attractor of period

1, changes for different values of market liquidity. In fact, since the endogenous feedback is

inversely related to the market liquidity, a larger value of the latter is related to a smaller value

of the threshold c2 at which the loss of hyperbolicity occurs. In Figure (4.7), the dotted lines

represent the bounds of the economic domain defines in the previous Section. In panel (a), the

dotted line establishes the bound for m at a value M = 30, that is the number of the available

investment assets. In panel (b), the domain of λ depends on the value of liquidity parameter,

as we have noticed previously. The upper dotted line defines the domain bounds for λ when

γ = 100. The lower dotted line defines the domain bounds for λ when γ = 40.

In the panel (a) of Figure (4.8) the relation between γ−1 and the threshold c2, at which the

transition in dynamics occurs, is shown. A financial market, characterized by a smaller value of

liquidity of the traded assets, loses the hyperbolic stability for an higher value of diversification
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4. The role of expectation feedbacks in systemic financial stability

costs.

Finally, when the diversification cost reaches the threshold value, at least one of the Jaco-

bian’s eigenvalue is on the unit circle and the hyperbolic equilibrium is lost. The eigenvalues

of the Jacobian as function of control parameter c, for the linearized map (4.21) in the case

γ = 100, are shown in Figure (4.8). At the threshold (the black dashed line), one eigenvalue

is equal to −1, i.e. a period-doubling (flip) bifurcation occurs. The other eigenvalue is always

equal to zero for all diversification costs. This suggests that from a mathematical point of view

the system of equation is redundant. In fact, in Section 4.1 we have noticed that the dynamical

system is one-dimensional. With an opportune linear change of variables, it can be reduced to

a single difference equation containing all the information about the portfolio variables.

4.4.2 One-dimensional map and qualitative aspects of the flip bifurcation

In the economic domain the map described by equations (4.8) (4.9) (4.10) with naive expectation

(4.16) is equivalent to the map in explicit form

mt =

(
µ− rL

2αc

)2 1

Σ(mt−1, λt−1)
(4.23)

λt =

(
µ− rL
2α2c

)
1

Σ(mt−1, λt−1)
(4.24)

where Σ(mt−1, λt−1) is the quadratic form of naive expected volatility σ̃d

Σ(mt−1, λt−1) = σ2
d + Vej,t−1(mt−1, λt−1) + (mt−1 − 1)Covej,t−1,ek,t−1

(mt−1, λt−1) (4.25)

being Vej,t−1 and Covej,t−1,ek,t−1
respectively the variance and the covariance of the endogenous

components.

In explicit form it is evident that the difference equations (4.23) and (4.24) have the same

functional dependence from Σ(mt−1, λt−1) up to a multiplicative constant. The panel (b) of

Figure (4.8) is the logical outcome. There exists an orthogonal transformation of variables, O,

which decomposes the phase space into the direct sum of the eigenspaces of linearized map

O =


1√

1+ 4c2

(µ−rL)2

1√
1+

(µ−rL)2

4c2

1√
1+

(µ−rL)2

4c2

−1√
1+ 4c2

(µ−rL)2


Notice that the transformation O is also symmetric, it depends on the control parameter c but

it does not depend on the parameter α. Since an eigenvalue of the 2-dimensional map is always

equal to zero, the orthogonal transformation O allows us to study an one-dimensional map

provided that an initial time transient is passed. The latter is the time step ∆t = 1 to let pass

so that any initial random chosen eigenvector associated with the null eigenvalue converges to

the invariant stable subspace Es (see Section 2.2 of Chapter 2). In other words, the eigenspace

associated with the null eigenvalue corresponds to the Ker of the 2-dimensional map. The Ker
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(or null space) is the subset of all elements of the economic domain for which the image coincides

with the null space of the codomain.

Furthermore, at criticality occurring at c = c2, due to the presence of the null eigenvalue,

the center manifold W c coincides with the eigenspace associated with the eigenvalue equal to

−1. The linear transformation O is equivalent to the center-manifold reduction procedure for

the 2-dimensional map.

We can change the original basis (m,λ) into the eigenbasis by the linear transformation O
and we can tune the initial conditions to project the system into the eigenspace associated with

the non-vanishing eigenvalue, without loss of generality.

Let u be the eigenvector associated with the non-vanishing eigenvalue, the one-dimensional

map containing all informations about dynamics is the following

ut = f(c, ut−1) =

 1√
1 + 4c2

(µ−rL)2

(
µ− rL

2αc

)2

+
1√

1 + (µ−rL)2

4c2

µ− rL
2α2c

 1

Σ(O−1xt−1)
(4.26)

where symbolically we write O−1xt−1 for the inverse transformation applied to x = (m,λ). In

principle Σ(O−1xt−1) depends on ut−1 and the eigenvector related to the null eigenvalue. When

we set the eigenvector related to the null eigenvalue equal to zero, we obtain

Σ(O−1xt−1) ≡ Σ(ut−1)

Since the eigenvector u is the linear combination of m and λ weighted by two positive

components of the orthogonal transformation O, the domain of the map (4.26) is simply the

interval

I =

 1
1√

1+ 4c2

(µ−rL)2

;
γ
1√

1+
(µ−rL)2

4c2

 (4.27)

for all values of the diversification costs c such that the return dynamics is stationary.

Figure (4.9) shows the analytical form of the map f , (4.26), and of the second-iterate map,

f2. A shifting and a rescaling of the variable u is made with the intent that the domain I
coincides with the unit interval. In this way, it is clear that the domain is positively invariant

under the map (4.26), i.e. f(c, ur) ⊆ (0, 1) ∀ur ∈ (0, 1), where ur is the rescaled variable. The

prefix “positively” is used to highlight that we are only considering forward iterations of f .

The panel (a) of Figure (4.9) shows the map’s mathematical shape in the unit interval for

a value of c larger than the threshold c2. The stable fixed point is graphically represented by

the black dot which is the intersection between the map f and the identity function (the dashed

line). The panel (b) shows the second-iterate map, f2, for the same value of the parameter. It

is clear that there are no new solutions other than the fixed point of the map f . The panels (c)

and (d) of the Figure (4.9) show the same results for a value of c smaller than the threshold.

For c < c2 the fixed point of f is not stable and a new attractor for dynamics appears. In

fact, the second-iterate map, f2, displays new stable solutions which are marked with other two
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Figure 4.9: The analytical shape of the one-dimensional map, f , and of its second-iterate map, f2, are shown
after the rescaling of the domain into the unit interval. In the panels (a) and (b) the value of the parameter c is
larger than the threshold c2, the fixed point is graphically displayed as the intersection between the map f (the
black line) and the identity function (the dashed line) and it is marked with a black point. In the panel (b), only
one solution exists for the second-iterate map which corresponds to the fixed point of the map f . In the panel (c)
and (d) the value of the parameter c is chosen smaller than the threshold c2, wherein the flip bifurcation occurs.
In the panel (c) the fixed point of the map f is always marked with a black point but it is no longer a stable
equilibrium point. In fact, the second-iterate map, f2, explains new stable asymptotic solutions (the another two
point marked in black) which correspond to the attractor of period 2 for the dynamics. The used parameters are:
M = 30, α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
, γ = 100.

black dots. These new solutions are stable fixed points for f2. They represent the attractor of

period 2 for the asymptotic swinging dynamics of the map f . To find analytically these ones,

in principle, we need to solve the equation f2(c, ur) = ur. This task is no trivial because of the

complex analytical form of the second-iterate map. Below we will give an approximate analytical

solution of the problem in the neighborhood of the critical point.

Finally, in this framework, the loss of invariance property of the unit interval reflects the

nonstationary dynamics of the endogenous component which takes place when c is smaller than

c∗. When c ∈ (c∗, c2), there are only 2-period orbits. If there was an orbit of period larger

than 2, there should be the orbit of period 4, due to the Sharkovsky ordering, see Chapter 2.

However for all values of the control parameter c such that the returns dynamics is stationary,

the solutions of the equation f4(ur) = ur are equivalent to those of the equation f2(ur) = ur.

Hence, in the domain I, the parameter c does not trigger any period-doubling cascade.

Finally, we look at the time period, in units of iteration steps, required for the convergence

of the dynamics to the fixed point, once the value of parameter c is determined. When c > c2,
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Figure 4.10: The ratio δt
δ0

in function of the iteration steps t, where δt is the absolute value of ut-values at
different time steps t minus the value of the fixed point u∗, found solving numerically the equation u∗ = f(c, u∗).
δ0 is the value of δt at the iteration step t = 100, after that the time transient has passed. The used values for
diversification costs c are all larger than the threshold c2. In decreasing order, the parameter c takes the values:
0.194 (green), 0.193 (blue), 0.1925 (red), 0.1923 (magenta), 0.19226 (black). The used parameters are: M = 30,
α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
, γ = 100.

the convergence time increases when approaching the criticality.

Figure (4.10) shows the ratio between δt and δ0:

δt = |ut − u∗| (4.28)

where u∗ is the value of the fixed point of the map for the determined value of c. u∗ is found

solving numerically the equation u∗ = f(c, u∗). δ0 is the value of δt at time t = 100. We consider

a time transient equal to 100 in order to remove possible initial fluctuations due to the random

choice of the initial condition. For all values of diversification costs larger than the threshold

c2, the dynamics exponentially converges with time to the equilibrium point. Approaching the

criticality, c→ c2, we observe an exceptionally slow convergence to the fixed point because the

time scale increases.

From an economic point of view, since the diversification and the financial leverage are

proportional to the eigenvector u, a slow decaying of the amplitude related to the oscillations

of the economic variables may suggest that a period-doubling bifurcation can occur in economic

system. In fact, the exceptionally slow convergence near a criticality is the signature of a

bifurcation as a consequence of one Jacobian’s eigenvalue on the unit circle [45]. It is evident in

(4.22) that, in the basin of attraction of the fixed point, the absolute value of increments decays

to zero very slowly due to the presence of the eigenvalue in modulus equal to one.

In our model, when we approach the criticality from above, the linear expansion in δc of the
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Figure 4.11: The normalized deviations δt
δ0

from the fixed point for the map f (the points marked in blue)
and the analytical approximation obtained with the linearized map (the black line). In the panel (a) the value
of c is chosen equal to c2 + δc where δc = 1 × 10−5, in the panel (b) δc = 1 × 10−4. The used parameters are:
M = 30, α = 1.64, µ− rL = 0.08, σd = 0.05

1.64
, γ = 100. For this choice of parameters, we find c2 = 0.19224554, the

numerical uncertainty is on the last digit.

first derivative of the map f calculated at the fixed point u∗ is

∆δcf
′(δc, u∗) = −1 + θδc (4.29)

where θ is larger than zero and its specific value can be determined once that the values of

all parameters are fixed. Hence in the basin of attraction of the fixed point we can study the

linearized map to find an approximate solution for δt = |ut − u∗|. Starting from u∗ + δ0 and

applying t-times the linearized map, we find for δt

δt = (−1 + θδc)tδ0 (4.30)

For the values of c close to c2, calculating the Taylor expansion in δc and summing the obtained

series, finally
δt
δ0

= e−
t
τ (4.31)

where τ = 1
θδc is the characteristic time scale for a specific value of the parameter c.

In Figure (4.11) the dynamical evolution of δt
δ0

(the points marked in blue) and the approx-

imate solution (4.31) (the black line) are shown for two different values of δc. It is evident

that when c approaches c2, the characteristic time scale τ becomes larger and larger because

the dynamics is dictated by the eigenvalue of f which is closer and closer to −1. Equivalently,

when δc → 0, it follows that τ → ∞. This divergence of τ is due to the fact that the linear

approximation fails in describing the convergence time at the criticality. In fact, when c = c2

the exponential law in (4.31) is replaced by a power law. The power law describing the time

evolution of the deviations from u∗ is the inverse of the square root of the number of iterations

[38].

In dynamical systems theory, this phenomenon is known as the critical slowing down [104].

One important consequence is that the slowing down leads to an increase in autocorrelation
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4.4 Mathematical aspects of the naive expectations

related to the portfolio variables before approaching the criticality. For example, see panel (b)

of Figure (4.6). The increased autocorrelation can be interpreted as a early-warning signal that

the dynamics of the system is approaching a bifurcation. In real financial market, the crucial

point is to study if the increased correlation is above the noise level, just before a dynamical

transition like a financial crisis. Results from elaborate and relatively realistic climate models

[105] or from analysis of empirical data in physiology [106], suggest that some signals might be

robust in the sense that they arise despite high complexity and noisiness.

4.4.3 Poincaré-Birkhoff normal form and flip bifurcation’s amplitude

In a neighborhood of the criticality, it is possible to solve analytically the problem about how

the 2-period orbit’s amplitude changes as a function of the diversification cost c.

At the threshold c2, the interval I (see (4.27)) corresponds to the one-dimensional center

manifoldW c, defined in the previous Chapter. The spectrum at criticality determines which non-

linear terms of the map f are essential. These nonlinearities are unchanged after that inessential

nonlinearities can be removed by a smooth near-identity nonlinear change of coordinates. Since

the eigenvalue ξu is equal to −1, the normal form of the map (4.26) has a reflection symmetry

(see Section 2.2) and this is the underlying reason why we can find an analytical form, even if

approximate, for the 2-period orbit’s amplitude.

In order to solve this problem, we move the critical point (c2, u
∗) to the origin by a linear

change of coordinates so that

f̃(0, 0) = 0

Let us define the increments z = u− u∗ and δc = c− c2 and from now on we consider negative

increments δc. We refer to f̃ as the map f after the coordinate shift towards the origin:

zt+1 = f̃(δc, zt) (4.32)

Let us define ξz(δc) as

ξz(δc)
.
=
∂f̃(δc, z)

∂z
|z=0 (4.33)

From the pervious analysis about the eigenvalues of the Jacobian, it follows that

ξz(δc = 0) = −1 (4.34)

At criticality, it is possible to remove the second-order term of the Taylor expansion of f̃ by

performing a near-identity nonlinear coordinate change

z̃ = Ψ(z) = z + ζ2z
2 (4.35)

where ζ2 is the solution of homological equation (Lie bracket) (2.10) if the center manifold is
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4. The role of expectation feedbacks in systemic financial stability

one-dimensional, see Section 2.2

ζ2|δc=0 =

∂2f̃(δc,z)
∂2z

|(δc=0,z=0)

∂f̃(δc,z)
∂z |(δc=0,z=0) −

(
∂f̃(δc,z)
∂z |(δc=0,z=0)

)2 (4.36)

By performing the trasformation (4.35) in a neighborhood of the origin, the map f̃ assumes the

following form:

z̃t+1 = ξz(δc)z̃t
(
1 + φ3(δc)z̃2

)
+O(z̃4) (4.37)

where
∂ξz(δc)

∂(δc)
|δc=0 < 0 (4.38)

ξz(δc)φ3(δc) =
1

3!

∂3f̃(δc, z̃ − ζ2z̃
2)

∂z̃3
|z̃=0 (4.39)

The relation (4.38) refers to the fact that for negative values of δc the non-zero eigenvalue

of the Jacobian of f calculated at the fixed point, see Figure (4.8), decreases and it becomes

smaller than −1. In our model, the third-order term of the Taylor expansion (4.39) assumes

approximately a constant value Φ3
3! in the left neighborhood of δc, [−r, 0]. Generally, the radius

of the left neighborhood depends on all model parameters. The fact that (4.39) assumes a

constant value in a left neighborhood of the origin, is related to the analytical form of f . The

value of Φ3 can be find once that all model parameters are fixed.

In principle, we can perform further nonlinear coordinate changes and in iterative way we

can remove the even-degree expansion’s terms, see Chapter 2. As claimed before, removing all

even-degree terms, the normal form of the map f̃ will be invariant under reflection. If we drop

all terms from the fourth-order on, an approximate normal form is obtained in a neighborhood

of the origin:

z̃t+1 ≈ ξz(δc)z̃t
(
1 + φ3(δc)z̃2

t

)
(4.40)

The reflection symmetry allows us to find analytically the 2-period solutions of the map’s dy-

namics near the origin. In fact, when δc < 0 the fixed point of the map f is unstable and the new

attractor of the long run dynamics is represented by the solutions of the second-iterated map,

f2, as we have noticed before. Near the origin, an analytical approximation of these 2-period

solutions can be found solving the following equation

−z̃± = ξz(δc)z̃±
(
1 + φ3(δc)(z̃±)2

)
(4.41)

where z̃± = u±− u∗ and u± represent an analytical approximation of the stable solutions of f2.

We refer to N as the normal form of the map f at all orders and we refer to T as the

reflection operator, i.e the discrete operator which associates at every element of the domain of

N its opposite value in respect to the origin. The mathematical intuition of this approach is

related to the fact that at criticality δc = 0 the solutions of

z̃ = N (N (z̃))
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Figure 4.12: The log-log-plot of the amplitude of 2-period orbit of the map f̃ (red) and its analytical approx-
imation (blue), as a function of the variation of diversification cost, −δc. The analytical function is found by
the normal form truncated at the third order. The Figure is obtained with 2 × 105 iteration steps. The used
parameters are: M = 30, α = 1.64, µ − rL = 0.08, σd = 0.05

1.64
, γ = 100. With this choice of model parameters,

Φ3 ≈ 4.39× 10−3.

are equivalent to the solutions of

z̃ = T (N (z̃))

Let be z̃± the solutions of the first equation. We will have z̃+ = N (z̃−) and z̃− = N (z̃+), see

Section 2.2. Moreover, the reflection symmetry of N requires z̃− = −z̃+. Hence, the solution of

the second equation is equivalent to the solution of the first equation.

In principle, this analytical approach is exactly justified at criticality. Ruelle and Takens

[43] pointed out that the approach is approximately justified not only at δc = 0 but on a

neighborhood of criticality.

The absolute difference between z̃+ and z̃− gives an approximation of the 2-period orbit’s

amplitude

|z̃+ − z̃−| ≈ 2

√
3!∂(−ξz−1)

∂(δc) |δc=0

Φ3
δc ∝

√
−δc (4.42)

In a neighborhood of the origin, (4.40) describes in a approximate way the dynamical be-

havior of the center manifold variable u. In the asymptotic limit we will have

|u+ − u−| ≈ |z̃+ − z̃−| ∝
√
−δc (4.43)

The Figure (4.12) displays the outcome: very closely to the origin, the analytical result

(4.42) fits very well the amplitude of 2-period orbit of the center manifold map (4.26). Moving

away from the origin, other contributions of the Taylor expansion become non-negligible and

they generate significant corrections to the fitting curve. Very closely to the criticality, the

bifurcation’s amplitude is a square root function of the variation of diversification cost.

102



Chapter 5

Adaptive expectations and adaptive

learning

The expectations scheme adopted by financial institutions in the forecasting of the risk, may

condition the dynamical behavior of the economic system. In this Chapter we describe the case

of adaptive expectations.

Under adaptive expectations, the dynamical system exhibits a very complex dynamics char-

acterized by a period-doubling cascade to chaos. When financial institutions adopt an adaptive

expectations scheme, the positive feedback triggers successive dynamical transitions which in-

duce financial cycles increasingly complex. During financial cycles, financial market is charac-

terized by highly risky periods due to a macro-component of the risk induced by rebalancing

feedback effects.

Under particular conditions, the dynamical system is characterized by a dynamical transition

from a periodic behavior to a chaotic one. In the chaotic regime, the financial market dynamics

can show periods characterized by higher risk compared with the risky periods of financial cycles.

Furthermore, since the dynamical behavior is aperiodic, financial agents may not recognize how

the economic system evolves and the improvement of the forecasting strategy may be hard.

In some sense, a risky scenario occurs due to the missing information about the dynamics of

financial market.

When financial cycles or chaotic regimes appear, financial agents typically try to improve

their forecasting strategy in order to avoid systematic mistakes. They adapt the parameters of

their forecasting strategy according to some learning scheme (adaptive learning). One possible

scheme is the SAC learning scheme, which uses the autocorrelation function of forecasting errors

series in order to improve future financial performances of forecasting.

In Section 5.1, we will describe the dynamical system under adaptive expectations and we will

compare the two cases represented by adaptive and naive expectations. In Section 5.2, we will

particularly focus on the adaptive expectations scheme described by a parameter representing

the memory of the dynamical system. In Section 5.3 we will analyze some mathematical aspects

related to the map that describes the dynamical system. In this Section, we will apply some

results of the ergodic theory of dynamical systems in order to relate some dynamical features to
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5.1 Adaptive expectations

the entropy of the system. Finally, in Section 5.4, we will describe an adaptive learning procedure

(SAC learning) that financial institutions may use in order to improve their forecasting strategy.

All the material in this Chapter is original.

5.1 Adaptive expectations

An important aspect highlighted in the previous Chapter concerns the information observable

by a financial institution during the evolution of market dynamics. In case of naive expectations

two possibilities may essentially occur. When the dynamics has one-period orbits, the errors

of expectations are uncorrelated and they can be neglected. Financial institutions make no

substantial errors in forecasting the future volatility. If the flip bifurcation occurs after a change

of the parameters values which characterize the financial market (particularly after the costs of

diversification are reduced), naive expectations lead financial institutions to fail in forecasting

their portfolio volatilities, specifically with overestimates followed by underestimates. Looking

at the linear autocorrelation (ACF) of expectations errors, a clear information appears.

In fact, in case of two-period dynamics regarding the portfolio variables, the linear auto-

correlation of the errors can be naturally described by an autoregressive process of order one,

AR(1). Let us define Et = σ̃ep,t − σ̃p,t+1: the difference between the future portfolio volatility

expected at time t and the realized one, at time t+ 1. The ACF of the errors time series is well

approximated by the zero-mean AR(1) process

Et = ρ1 Et−1 + εt

where εt is a white noise and ρ1 is the autocorrelation coefficient at the first time lag. For

ρ1 ∈ (−1, 0), the AR(1) process exhibits a linear autocorrelation characterized by a zig-zag

pattern. If ρ1 = −1 and there is no noise, the autocorrelation coefficients, related to the AR(1)

process, match exactly those related to the deterministic two-period dynamics of the naive case.

Such pattern in the linear autocorrelation is evident to financial institutions which in this way

will try to improve their expectations about volatility. If the naive expectations conduce to

errors following an AR(1) process, the banks behavior will be to base the forecast upon longer

time observations. In fact, we could expect that during 2-period cycles, when the expected

portfolio volatility follows a swinging dynamics that assumes consecutive large and small values,

a forecasting scheme which looks at two past periods will have a stabilizing effect on the portfolio

dynamics.

The economic intuition is that the longer backward observations may avoid the systematic

mistakes of the naive expectations. Hence, we consider the case of adaptive expectations.

The following underlying assumptions are the same as the ones in the previous Chapter, par-

ticularly the exogenous systematic risk component is not considered, σs = 0. Taking advantage

of the assets homogeneity, from an estimate of the realized portfolio volatility we can find the

realized asset risk depending on the rebalancing feedback, as in (4.7).
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5. Adaptive expectations and adaptive learning

The adaptive expectation about the volatility of a typical asset is given by

(σ̃ed,t)
2 = (σ̃ed,t−1)2 + ω[ (σ̃d,t)

2 − (σ̃ed,t−1)2 ] (5.1)

where (σ̃ed,t)
2 is the expected diversifiable risk of the asset at time t, (σ̃d,t)

2 is the realized difersi-

fiable risk of the same asset at the same time and ω is the expectations weight factor, 0 ≤ ω ≤ 1.

The quantity (σ̃d,t)
2 is the sum of the exogenous diversifiable risk σ2

d plus the excess endogenous

component due to the rebalancing feedback which occurs in the time interval between t− 1 and

t but it depends on the choice of portfolio variables made at time t− 1, as in (4.7).

The expected risk of the investment asset is “adapted” in the direction of the most recently

observed risk (σ̃d,t)
2, with expectations weight factor ω.

The expectations weight factor ω defines the memory parameter characterizing the adaptive

expectations scheme. In fact, the larger is the value of ω, the larger is the contribution of the

most recently observation of risk. On the contrary, decreasing ω, it follows that the largest

contribution in the forecasting of the risk is given by the value of the previous expectation.

Indeed, an equivalent form for adaptive expectations is

(σ̃ed,t)
2 = (1− ω) (σ̃ed,t−1)2 + ω (σ̃d,t)

2 (5.2)

that is, expected risk at time t is a weighted average of the most recently observed risk and the

most recently expected one. Naive expectations are just a special case of adaptive expectations

with ω = 1. Using (5.2) repeatedly, adaptive expectations can be written as a weighted sum,

with geometrical declining weights, of all past observed risk:

(σ̃ed,t)
2 = ω (σ̃d,t)

2 + ω(1− ω) (σ̃d,t−1)2 + ω(1− ω)2 (σ̃d,t−2)2 + ... =
∞∑
i=0

ω(1− ω)i (σ̃d,t−i)
2 (5.3)

The version (5.3) of the (5.1) highlights that the adaptive expectation is equivalent to an Ex-

ponential Weighted Moving Average (EWMA) process for the expected asset risk as function

of all past observed values of the realized risk. The weights with which the past realizations of

risk are considered, depend on the memory parameter, ω.

It is important to notice that the introduction of adaptive expectations of risk is a very

realistic hypothesis to study the financial market dynamics because typically, in real financial

markets investors use extensions of the adaptive scheme in forecasting the risk.

The expected portfolio volatility (4.11) where (σ̃ed,t)
2 is found through (5.1), together with the

difference equations (4.8) (4.9) (4.10), determine the map which describes the typical dynamics

of the diversification m and the leverage λ. The general considerations about the domain of

definition explained in Section 4.1 and the conventions adopted in the previous Chapter remain

unchanged.

Taking advantage of the absence of exogenous systematic risk component (σs = 0), the map
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Figure 5.1: Dynamic evolution of the diversification mt and the financial leverage λt for a fixed value of ω
equal to 0.95 and for two “large” values of the diversification cost c. The other parameters are fixed at M = 30,
α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

can be rewritten in explicit form, like in the previous Chapter, and it becomes:

mt =

(
µ− rL

2αc

)2 1

(σ̃ed,t)
2

(5.4)

λt =
µ− rL
2α2c

1

(σ̃ed,t)
2

(5.5)

(σ̃ed,t)
2 = (σ̃ed,t−1)2 + ω[ (σ̃d,t)

2 − (σ̃ed,t−1)2 ] (5.6)

Like before, the difference equations (5.4) (5.5) may be reduced to only one equation containing

all information about m and λ, through a linear coordinate change. Under adaptive expectations

there are many possibilities concerning the portfolio dynamics, depending on the eigenvalues of

the map’s Jacobian.

• When the absolute values of all eigenvalues are smaller than one, from the Hartman-

Grobman theorem, an hyperbolic equilibrium point exists and as a consequence the port-

folio variables converge to a stable configuration (m∗ , λ∗), see the panels (a) and (b) of

Figure (5.1).

• When an eigenvalue crosses the critical value −1, a period-doubling bifurcation occurs. If
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Figure 5.2: Dynamic evolution of the diversification mt and the financial leverage λt for a fixed value of ω
equal to 0.95 and for two “small” values of the diversification cost c. The other parameters are fixed at M = 30,
α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

the diversification costs decrease, the stable 2-cycles are created, see the panels (c) and

(d) of Figure (5.1).

• When the diversification costs decrease further, the period-doubling cascade to chaos fol-

lows.

Figure (5.2) displays a 4-period orbit (panels (a) and (b)) and a chaotic one (panels (c) and

(d)). The second one is related to a smaller value of diversification costs when compared to the

first one. The period-doubling cascade takes place decreasing the parameter c. Both orbits are

obtained for a value of the expectations weight factor ω close to one.

Figure (5.3) shows the bifurcation diagrams for the diversification m and the leverage λ. The

bifurcation diagram illustrates the long run dynamics after that a time transient has passed.

The value of ω is fixed close to one and the model parameter c changes accordingly. All the

other parameters in Figure (5.3) are set equal to those used in Figure (4.3) in case of the naive

expectations.

Under adaptive expectations the portfolio dynamics is quantitatively more stable than under

naive expectations. Although, for a fixed value of diversification costs, oscillations of the portfolio

variables occur, adaptive expectations have a stabilizing effect upon portfolio in the sense that

the amplitude of oscillations decreases compared to the naive case. For example, we look at a
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Figure 5.3: Bifurcation diagrams of the diversification mt and the financial leverage λt as function of the
parameter c. We have fixed the value of ω equal to 0.95. The other parameters are fixed at M = 30, α = 1.64,
µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

value of c equal to 0.16. In panel (b) of Figure (4.3) the cycle amplitude of the financial leverage

is slightly smaller than the dimension of entire domain of λ (in the specific case the economic

domain of λ is [1, 101]). Instead, if we look at panel (b) of Figure (5.3) we can noticed that

under adaptive expectations the cycle amplitude of financial leverage at c = 0.16 is smaller than

the amplitude related to the naive case. This happens for all values of diversification costs.

Similarly for the degree of diversification m.

In the previous Chapter, we have defined c∗ as the value of diversification costs at which the

return dynamics become non-stationary. This is the consequence of exploring values outside the

economic domain. In fact, outside the domain of definition the endogenous component dynamics,

which describes the rebalancing feedback, is characterized by an eigenvalue larger than 1. Under

adaptive expectations a second stabilizing effect follows. The occurrence of non-stationarity of

return dynamics is verified for a c-value smaller than the naive case. In fact, in Figure (4.3) we
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5. Adaptive expectations and adaptive learning

have found c∗ ≈ 0.157, while in Figure (5.3) we find c∗ ≈ 0.137.

Finally, similarly to the latter stabilizing effect, a third one is present. In case of the adaptive

expectations, the occurrence of the first flip bifurcation takes place for a value of diversification

costs shifted toward smaller values compared to naive criticality. If we indicate as c2 the value

of the parameter c at which the first period-doubling bifurcation occurs, c2 strictly depends on

the adaptive strategy adopted by financial institutions which is identified by their choice about

the weight factor ω. In this Chapter, we adopt the convention of associating the subscripts

that follow the Sharkovsky ordering (see Section 2.2 of Chapter 2) to the model parameters, to

indicate the values of c and ω at which period-doubling bifurcations occur, e.g. see Figure (5.3).

The relation between c2 and ω is shown in Figure (5.4). It highlights the crucial aspect that

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10
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Ω

c2

Figure 5.4: The relation between the value of the parameter c at which the first period-doubling bifurcation
occurs, c2, and the expectations weight factor, ω. The other parameters are fixed at M = 30, α = 1.64,
µ− rL = 0.08, σd = 0.05

1.64
, γ = 100.

a cautious adapting (when the expectations weight factor is small) shifts away the criticalities

toward smaller values of diversification costs. Also when model parameters change values, a

numerical analysis suggests that the qualitative features of Figure (5.4) remain unchanged.

Especially, there exist values of ω different from zero for which the portfolio dynamics always

converges to an equilibrium state. Especially, there are always values of ω close to 0 for which

financial cycles never appear when diversification costs decrease (in Figure (5.4) this happens in

the interval (0, ∼ 0.25] of ω-values).

The limit ω → 0 corresponds to non-adapting the expected risk with the most recently

observed one, see (5.1). It can be interpreted as the specular case as opposed to the naive

expectations. We can refer to it as rational expectations. In this ideal limit, financial institutions

will not make errors about the volatility forecast and the financial system will have a unique

rational expectations equilibrium (REE), see Section 4.2. From a mathematical point of view,

ω = 0 indicates the transition from a dynamical system approach to an equilibrium model. In

fact, if ω = 0, the introduction of a new equation for σ̃ed is necessary to close the system of

equations (5.4) (5.4). The solution of the new equation defines the expected risk at time t. This

means that financial institutions know the law of motion of the complex market dynamics and
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5.2 The role of memory in systemic financial stability

they trivially realize a self-fulfilling prophecy making no systematic mistakes. This approach

provides the equilibrium solution (REE) but it excludes the bounded rationality evidences of

financial markets. Below, we will focus on the expectations weight factor ω, that is the memory

of adaptive expectations scheme, as the continuous parameter of the map and we will investigate

the dynamical features of the system. In fact, although the adaptive expectations have stabilizing

effects, at the same time the nature of the system dynamics is more complex and any information,

useful to financial institutions to improve their forecasts, can be more difficult to detect.

Finally, for adaptive expectations the qualitative features related to the linearized map re-

main unchanged. In fact, the Jacobian of the map described by the equations (5.4) (5.4) (5.6)

is characterized by two eigenvalues equal to zero and a negative one. The qualitative aspects

are exactly the same as shown in panel (b) of Figure (4.8). The new zero eigenvalue is related

to the equation (5.6). It is equal to zero because in principle knowing the orbits of m and λ, the

orbit of (σ̃d)
2 can be found through (5.3), once that the value of ω is know.

Also the qualitative features of the first period-doubling bifurcation remain the same as the

naive case, examined in the previous Chapter. We do not repeat the results about the topological

features of the flip bifurcations, the bifurcation amplitude and the convergence time.

5.2 The role of memory in systemic financial stability

In this Section we will investigate the consequences of adaptive expectations on financial market

dynamics when the weight factor ω, that is the memory of adaptive expectations scheme, varies

once that the value of diversification costs is fixed. In this framework, the degree of rationality

characterizing financial institutions is related to the weight factor ω. The latter univocally defines

the typical dynamical outcomes. As seen in the previous Section, chaotic orbits may arise. We

will focus especially on the period-doubling cascade to chaos. The latter is a true deterministic

chaos because the dynamical system displays sensitive dependence on initial conditions, see

Chapter 2. This latter property will be evident below when we will look at the Largest Lyapunov

Exponent (LLE) of the map.

In our model, through the endogenous feedback, due to the balance sheet dynamics char-

acterized by the portfolio rebalancing in order to maintain in a time period the desired target

leverage, financial institutions may affect the portfolio dynamics in very different ways depend-

ing on the adaptive scheme adopted. When they are cautious in updating their expectations

about risk through the most recently observed one, the portfolio dynamics converges to a steady

state which corresponds to the hyperbolic fixed point of the map described by difference equa-

tions (5.4) (5.5) (5.6). The convergence of the portfolio dynamics corresponds to the stability

of financial market dynamics because the portfolios of financial institutions are diversified and

leveraged without affecting crucially the risk of investment assets through the positive rebalanc-

ing feedback due to their target leverage strategy. The positive feedback is in equilibrium with

the portfolio dynamics.

Instead, increasing the value of the weight factor ω and adapting the expectations of risk

even more in the direction of the latest realized one, attractors of period n for the dynamics
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5. Adaptive expectations and adaptive learning

appear. As a consequence, the financial stability is lost.

The n index follows the Sharkovsky ordering, i.e. when the value of ω increases, the 2-period

orbit appears first, then the 4-period one and so on in a period-doubling way. In Figure (5.5)

the value of weight factor at which the nth period-doubling bifurcation occurs is indicated for

the first three criticalities.
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Figure 5.5: Bifurcation diagrams of the diversification mt and the financial leverage λt for a fixed value of c
equal to 0.14, varying the value of the expectations weight factor ω. The other parameters are fixed at M = 30,
α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

In principle, under adaptive expectations the rebalancing impact on volatility may trigger

a very complex portfolio dynamics due to the intrinsic non-linearity which characterizes the

procyclical feedback effects. Furthermore, beyond the specific model we consider, in some sense

we may expect that in a illiquid financial market, the combined effect of an endogenous positive

feedback together with the bounded rationality of agents in forming their expectations about the

risk, has intrinsically the potential to create financial cycles best described by period-doubling

bifurcations in a discrete dynamical approach. In this context, the appearance of a chaotic

region naturally emerges.

In the chaotic region shown in the bifurcation diagram of Figure (5.5), two different chaotic

attractors of the portfolio dynamics can be identified. We refer to ω∞ as the value of the weight

factor for which the period-doubling bifurcations have doubled the orbital period ad infinitum,

so that the dynamical behavior is not longer periodic. For a value of ω larger than ω∞, first of all

we notice a two-piece chaotic attractor, i.e. an attractor having as support two disjoint subsets of
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5.2 The role of memory in systemic financial stability

the economic domain. When ω increases further, the dynamical behavior is characterized by an

one-piece chaotic attractor, i.e. an attractors that is dense in one subset of the economic domain.

As we will see below, there is one important detectable dynamical feature which distinguishes

the first attractor from the second one. It is related to the fact that the aperiodic evolution of

the portfolio dynamics on the two-piece attractor is characterized by regular jumps from one

piece to the other. The same is not valid for the one-piece chaotic attractor.

When ω → 1 the dimension of the support for the one-piece chaotic attractor increases.

There exists a value of ω = ω∗ for which this dimension is equal to the dimension of the

economic domain. In Figure (5.5) ω∗ is equal to 0.96. Particularly, the portfolio variable λ

explores all possible states in the economic domain during the dynamical evolution. This means

that the economic system oscillations reach their maximal amplitude. If ω increases further

(ω > ω∗), the leverage λ can assume values larger than the upper bound of economic domain.

When λ > γ + 1, see (4.12), the return processes of investment assets are non-stationary.

In this case, there occurs a transition from stability to instability for the returns dynamics.

When it happens, the relations (4.3) (4.4) do not describe the variance and the covariance

of the endogenous components anymore, see Section 4.1. When ω > ω∗, our model fails in

describing the dynamical behavior of system. The value of ω∗ strictly depends on the value of

the diversification costs parameter c. Referring to Figure (5.4), if the parameter c is larger than

the value of criticality c2|ω=1, in Figure c2|ω=1 ≈ 0.19, period doubling bifurcations do not occur

for any values of ω. As a consequence, chaotic orbits do not occur too.

In previous Chapter, we have defined c∗ as the value of c at which the returns dynamics under

naive expectations becomes non-stationary. So, when c > c∗, under adaptive expectations only

two-period orbits can occur depending on the value of the weight factor ω. Furthermore, if

ω 6= 1, the amplitude of a two-period orbit is smaller than the naive case. Finally, if c < c∗ a

period-doubling cascade to chaos occurs when ω → 1 and there exists ω∗ close to one.

It is important to notice the role of noise in the dynamical evolution of portfolio variables.

The panels (c) and (d) of Figure (5.5) show the bifurcation diagrams for the portfolio variables

in the case that a Gaussian fluctuation is introduced as we have done in the previous Chap-

ter. Although the detailed bifurcation structure has disappeared in the presence of noise, the

regions of the stable steady state (for small values of ω), a stable 2-cycle and the one-piece

chaotic attractor, are clearly visible1. The dynamical features we have just highlighted, persist

approximately also in case of the stochastic map.

In the deterministic evolution, we can recognize a property arising from the universality of

the period-doubling bifurcations. We can notice, in Figure (5.5), the values of the weight factor

for which the doubling of the period occurs. We have marked only three transitions, ω2, ω4

and ω8. In principle and in absence of numerical computing problems, in the period-doubling

cascade to chaos, there is some interval of ω-values in which the system’s behavior is periodic.

Any interval of ω-values is characterized by the fact that the orbital period of the system is

fixed. In the direction of increasing ω, at the transition point from one interval to the following

1The noisy bifurcation diagram has been created by adding a normally distributed random noise term with
standard deviation σnoise = σd

10
to the realized variance of investment return at time t − 1, see (4.7), which is

equivalent to adding small shocks to the endogenous component of the risk.

112



5. Adaptive expectations and adaptive learning

0.75 0.80 0.85 0.90 0.95
0

10

20

30

40

50

60

Ω

n

(a)

∆∆

Ω4-Ω2

Ω8-Ω4

Ω8-Ω4

Ω16-Ω8

Ω16-Ω8

Ω32-Ω16

Ω32-Ω16

Ω64-Ω32

Ω64-Ω32

Ω128-Ω64

3.0

3.5

4.0

4.5

5.0

5.5

6.0

∆n

(b)

Figure 5.6: The windows of ω-values corresponding to a steady state of period n, panel (a). The values of the
ratio between two consecutive periodic windows, δn, panel (b). The red dashed line corresponds to the value of
the Feigenbaum constant. The error bar for any point, related to the numerical precision in defining periodic
windows, is on the order of 10−4 (in the plot the error bars are hidden by black points). The used parameters are
fixed at c = 0.14, M = 30, α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

one, the time period necessary to close a cyclical orbit is double compared with the precedent

orbital period. This mechanism recurs continuously until, at a certain value of the parameter

ω, the period has doubled ad infinitum. Hence, the dynamics becomes aperiodic and chaotic.

In the region of periodicity of the system’s behavior, it is interesting to know how large is the

ω-interval in which the system dynamics is characterized by a specific orbital period and what is

the ratio between two consecutive ω-intervals. Beyond the mathematical point of view, the last

information can be useful to recognize the conditions under which the dynamics of the economic

system evolves.

In the panel (a) of Figure (5.6) the index n associated with the orbit of nth-period is shown

as function of ω. In the interval of values of the weight factor for which the dynamics is chaotic,

we can recognize some periodic windows partially hidden in the noise. In the steady region this

outcome can be used to find the ratio between consecutive periodic windows. Let us define δn

as

δn =
ωn+1 − ωn
ωn+2 − ωn+1

(5.7)

where the sum for the index n is interpreted according to the Sharkovsky ordering. In the theory

of bifurcations, see Chapter 2, δn asymptotically approaches the constant value δ = 4.6692016... ,

the so-called Feigenbaum constant. In the panel (b) of Figure (5.6), we show the outcome for

our model computing δn up to the steady period 128. The results are consistent with the theory.

Knowing the amplitude of only one periodic window and knowing that δn ≈ δ, boundedly

rational agents might approximately reconstruct the structure of the bifurcations and then,

exploiting the latter, they may improve their forecast choosing the value of ω which allows the

convergence to the one-period steady state.

Obviously, this learning process is more theoretical than realistic. However it highlights a

crucial feature: in the periodic region this type of information can be extrapolated by the portfo-

lio dynamics while in the chaotic regime the learning procedure just explained loses importance
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Figure 5.7: Bifurcation diagrams, respectively, for the expected portfolio volatility and the realized one, the
expected asset volatility and the realized one. We have fixed the value of c equal to 1.4 and we change the value
of the expectations weight factor ω. The other parameters are fixed at M = 30, α = 1.64, µ − rL = 0.08, the
exogenous σd = 0.05

1.64
, the liquidity γ = 100.

and the information is lost. Now we will show a more realistic way to extract information about

dynamics from which financial institutions can really take advantage.

Figure (5.7) shows the bifurcation diagrams for the expected portfolio volatility and the

realized one, respectively σ̃ep and σ̃p, and for the expected asset diversifiable volatility and the

realized one, respectively σ̃ed and σ̃d. These bifurcations diagrams display the asymptotic dy-

namics of the four volatilities in correspondence to the deterministic dynamical evolution of

the diversification m and the leverage λ, see Figure (5.5). If we look at the realized portfolio

volatility and at the expected one, it is evident that when ω → 1 the chaotic σ̃p oscillations

have moderate amplitude compared to the large oscillations occurring for σ̃ep. From this we

can expect that financial institutions make mistakes in forecasting their portfolio volatility also

under adaptive expectations.

When the portfolio dynamics converges to the one-period steady state, ω < ω2, financial

institutions make no systematic mistakes and the forecasting errors are statistically equal to

zero and uncorrelated.

On the contrary, when the system behavior is periodic or chaotic, financial institutions make

systematic mistakes. We will investigate the features of the forecasting errors about the portfolio

volatility that financial institutions make when they adopt static adaptive expectations. With
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Figure 5.8: Sample autocorrelation function (ACF) of the forecasting errors about the portfolio volatility,
Et = σ̃ep,t − σ̃p,t+1, for different values of the expectations weight factor ω. To test the level of significance, the

upper and lower bounds are equal to ±
z1−α

2√
N

, N is the time series length, z1−α
2

is the quantile function of the

normal distribution and α is the significance level. At 5% significance level (the dashed lines) the bounds are
1.96 σdata√

N
, where σdata is the standard deviation of the data. The other parameters are fixed at c = 0.14, M = 30,

α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05
1.64

, the liquidity γ = 100.

static we mean the situation wherein banks maintain always the same adaptive scheme, i.e.

when the expectations weight factor ω is constant in time.

Figure (5.8) illustrates the ACF of forecasting errors about portfolio volatility, σ̃ep,t − σ̃p,t+1.

Four typical dynamical outcomes are been considered, each of these related to a different value

of ω: the two-period orbit (ω = 0.8), the four-period orbit (ω = 0.88), the dynamics on two-piece

chaotic attractor (ω = 0.92) and finally the dynamics on one-piece chaotic attractor (ω = 0.94).

For ω = 0.8 the portfolio dynamics converges asymptotically to a 2-period orbit and a similar

situation to the naive case is obtained. Consecutive underestimations and overestimations of the

risk associated with the portfolio are evident in the ACF function, exhibiting an exact zig-zag

pattern between −1 at odd time lags and +1 at even time lags. For ω = 0.88, in case of the

4-period orbit, an ordered structure appears in the ACF, which shows a pattern oscillating from

a value close to −1 to two other values close to +1. When the dynamical system evolves in

the two-piece chaotic attractor, the ACF function exhibits a significant zig-zag pattern. Even

when the volatility fluctuations are chaotic, we may find a clear regularity in historical data.

Financial institutions may use this information to avoid future mistakes. Instead, there are
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5.2 The role of memory in systemic financial stability

less regularities when the volatility fluctuations are on the one-piece chaotic attractor. Only

for the first lags there is a significative autocorrelation showing a zig-zag pattern even though

characterized by a smaller amplitude compared to the previous outcomes. If we consider that

in presence of noise, the information could be hidden, for boundedly rational agents it would be

hard to improve their forecasts using past errors.

It is important to notice that the period-doubling cascade to chaos corresponds to a pro-

gressive loss of the information which can be extracted from the past performances about risk

forecasting.
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5.3 Mathematical aspects of adaptive expectations

In this Section, we will focus on some mathematical aspects of the dynamical system describing

the portfolio evolution when financial institutions use adaptive expectations in the forecasting

of the risk.

From a mathematical point of view, the dynamical system with adaptive expectations is

one-dimensional. We will highlight some qualitative features of the map which describes the one-

dimensional system. Subsequently, we will focus on the chaotic behavior exhibited by dynamical

system and we will analyze some ergodic quantities which characterize the chaotic behavior.

5.3.1 The dynamical system with adaptive expectations

In the economic domain, the dynamical system is described by the difference equations (5.4)

(5.5) (5.6). A linear relation (4.15) relates mt and λt.

mt =
µ− rL

2c
λt

As a consequence, starting from difference equations (5.4) (5.5) we can obtain only one difference

equation substituting, for example, mt as a function of λt. Let us define st ≡
(σ̃ed,t)

2

σ2
d

, the map

based on difference equations (5.4) (5.5) (5.6) is mathematically equivalent to the following map
λt = µ−rL

2c α2 σ2
d

1
(1−ω)st−1+ω Σ(λt−1)

st = (1− ω)st−1 + ω Σ(λt−1)

(5.8)

where the mathematical shape of Σ(λ) is defined as

Σ(λ) =

1+
1(

M−1
M

)2 ( λ
λ−1

)2
γ2

( λ
M
− 1
A)

2 − 1

1 +
1

1− (λ−1)2

γ2

Aλ

M
(
A
M λ− 1

)2 (A2λ2

(
1− 2

M

)
+ 2

A

M
λ− 1

)
where for notational simplicity we have defined A = µ−rL

2c .

Finally, noticing that

λt =
A

α2σ2
d

1

st
−→ st−1 =

A

α2σ2
d

1

λt−1

we can substitute st−1 in the first difference equation of the map (5.8), thus obtaining an one-

dimensional dynamical system f which corresponds mathematically to the dynamical system

described by difference equations (5.4) (5.5) (5.6).

A shifting and a rescaling of the variable λ → u = λ−1
γ can be made with the intent that

the economic domain for λ coincides with the unit interval.
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Figure 5.9: The mathematical shape of f (panel (a)), f2 (panel (b)), f4 (panel (c)), and f8 (panel (d)). The
values of ω are chosen such that the intersection points marked in black represent the periodic orbits of the
dynamical system, cfr Figure (5.5). The model parameters are fixed at c = 0.14, M = 30, α = 1.64, µ−rL = 0.08,
the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

Symbolically, the one-dimensional dynamical system described by the map f , is

ut = f(ut−1) (5.9)

where u ∈ [0, 1], that is the unit interval is positively invariant under f .

In Figure (5.9) we show the mathematical shape of map f , see panel (a). Particularly, f is

characterized by a maximum and it decreases to zero at the extrema of interval. In other words,

from a qualitative point of view, the mathematical shape of f is similar to the mathematical

shape of the logistic map [37]. In fact, both of them show the same universal features , like the

Feigenbaum scenario, see Figures (5.3) (5.5) (5.6).

The dynamics arising from the map has some universal aspects due to its analytical shape,

which is characterized by a maximum and it goes to zero at the extrema of interval, rather than

the specific values which it assumes in the domain. In fact, “the ability of f to have complex

behaviors is precisely the consequence of its double-valued inverse, which is in turn a reflection

of its possession of an extremum”, [45]. With “double-valued inverse” we mean the extrema of

f2 that can be find by constructing the inverse iterate of f at its maximum.

In other panels of Figure (5.9), we show the mathematical shape of the n-iterated map fn, in
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particular f2, f4, and f8, for different values of the parameter ω. We have chosen the ω-values

such that the intersection points marked in black between the identity function (the dotted line)

and the n-th iteration of the map, represent the orbits of period n that we have found in Figure

(5.5). Indeed, as we have noticed in the previous Chapter, a system’s orbit of period equal to n

is represented by the solution of the following equation

u∗ = fn(u∗)

where f depends on some model parameters as c and ω. The stability of the solution depends

on the values of these parameters.

5.3.2 Entropy of the dynamical system

The information taken from the performances of risk forecasting, for example through the auto-

correlation of errors time series, represents a way with which financial institutions can extrapo-

late information from system orbits. This type of information strictly depends on the periodicity

of the dynamical evolution. When the system repeats itself every orbital period, clear structures

appear in the correlation functions as the ACF. If we know the trajectory of one orbit in the long

run dynamical behavior, all information about system can be extracted. Instead, a system with

sensitive initial conditions produces dynamical information, see Section 2.3. With dynamical

information we mean the property of exploring always new states in phase space during the

dynamical evolution. In the chaotic regime all dynamical information is not accessible because

the knowledge of a trajectory in a past time window does not allow the extraction of all dynam-

ical features of the system. Since any type of correlation function (e.g. ACF) is characterized

by decay properties when the dynamical system has sensitive dependence on initial conditions,

during the chaotic evolution of the financial market dynamics, financial agents lose information

about the dynamical behavior of economic system. The best way to investigate this loss of

information is the study of the entropy of dynamical system.

In this section, we will focus on the chaotic regime of the dynamical system described by

map f (5.9). The latter is mathematically equivalent to the map based on difference equations

(5.4) (5.5) (5.6), as we have seen in the previous Section. The dynamical state of the system is

represented by the variable u defined in the unit interval [0, 1].

However, in Figure (5.10) we show the attractors of dynamics of u and (σ̃ed,t)
2, in order to

stress an economic aspect of dynamical system in the chaotic regime. An attractor is simply

the attracting set in which dynamical variables accumulate during the long-run evolution of

dynamical system. In the panel (a) of Figure (5.10) we show the attractor for the dynamical

variables ut and (σ̃ed,t)
2. It highlights that the values of ut near to 1 are associated with small

values of (σ̃ed,t)
2. Vice-versa when ut tends to zero, we find higher values of (σ̃ed,t)

2. This means

that also in the chaotic regime, aggressive configurations of portfolio (high leverage and large

diversification) correspond to forecasts of low risk, while cautious configurations of portfolio

(small leverage and small diversification) correspond to forecasts of high risk. The panel (b) of

Figure (5.10) shows the attractor for the realized portfolio volatility σ̃p. This attractor shows
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Figure 5.10: Attractors of dynamics. The attractor for the dynamical variables ut and σ̃ed in panel (a) while the
attractor for the realized portfolio volatility, σ̃p,t, in panel (b). Both of them are obtained with 5000 iterations.
The value of c is chosen equal to 0.14 and the value of ω is 0.94. For different values of c and ω the qualitative
aspects of attractors remain unchanged. The other parameters are fixed at M = 30, α = 1.64, µ− rL = 0.08, the
exogenous σd = 0.05

1.64
, the liquidity γ = 100.

the correspondence between realized portfolio volatilities in two successive times, t and t + 1.

When we have studied in the previous Chapter the dynamics of the realized portfolio volatility,

we have noticed that σ̃p,t is a conserved quantity for the map under naive expectations. Instead,

under adaptive expectations the portfolio volatility is not a conserved quantity anymore and its

dynamics is described by an attractor.

In the chaotic regime, the attractors of the dynamics of portfolio variables are strange (for

a definition see Section 2.3 of Chapter 2). The strangeness of an attractor is defined by its

fractal dimensionality, commonly named Hausdorff dimension. For computational reasons, we

use another measure of the dimensionality, the so-called correlation dimension, introduced by

Grassberger and Procaccia, see Section 2.3 . They[61] found that the correlation dimension is in

several cases very close to the Hausdorff dimension.

The underlying idea is the following. We start with a time series of the dynamical variable

u, {ut}t=0, ... ,N . We can obtain the vector xi = {ui+1, ... , ui+d}, it is a sample characterized

by a dimension equal to d. In this way, we obtain a series of samples, x0, x1, ... , xN−d. The

dynamical variable u is defined in the unit interval by definition, so every sample of data is

defined in [0, 1]d. Through this series of samples, we can obtained a numerical approximation

of the correlation integral (2.41):

Cd(r) =
1

N2

N−d∑
i,j=0

θ(r − ||xi − xj ||∞) (5.10)

where θ is the Heaviside function, ||...||∞ is the norm defined as

||x′ − x||∞ = Maxq|u′q − uq| , q = 1, ... , d

and r is simply a parameter defining the numerical approximation of the correlation integral,

(5.10).
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Figure 5.11: The relation between logCd(r) and log r when c = 0.14. In the panel (a) ω = 0.94 and in the
panel (b) ω = 0.8. The number of iterations is equal to 5000. Let be d the dimension of the vector xi, in panel
(a) the points marked in black are obtained with d = 4, those marked in red with d = 6, those marked in green
with d = 8, those marked in purple with d = 10 and those marked in blue with d = 12. In panel (b) the points

(marked in black) are obtained for a value of d equal to 4. When r → 0 the ratio logCd(r)
log r

gives a numerical

estimate of the correlation dimension for the chosen value of ω. A numerical estimate of the ratio logCd(r)
log r

means
to find the gradient of lines in panel (a) when r → 0 through the best fit to a series of data points. The other
parameters are fixed at M = 30, α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

When the dimension d of samples xi is sufficiently large, the limit

lim
r→0

lim
N→∞

log Cd(r)

log r

gives an appropriate estimate of the correlation dimension, see Section 2.3 of Chapter 2.

In our model, correlation dimension becomes independent from d also for d larger than 3, see

Figure (5.11). When N = 5000, numerical estimates of the mathematical limit limr→0 yield an

correlation dimension of 0.87 ± 0.02 for ω = 0.94 and c = 0.14 (values of parameters for which

the orbit is on the one-piece chaotic attractor). The fractional dimension defines, in some sense,

the strangeness of the attractor of dynamical system. When the dynamical behavior is periodic,

the same numerical estimates yield an correlation dimension equal to zero, e.g. see panel (b) of

Figure (5.11) that shows the relation between log C4(r) and log r for c = 0.14 and ω = 0.8.

So we can conclude that in chaotic regime the attractors of the system dynamics are strange.

But only the knowledge of this dynamical feature does not ensure that the system displays

a true deterministic chaos. The latter occurs when a system exhibits sensitive dependence on

initial conditions [47], see definition of deterministic chaos in Section 2.3. Quantitative measures

of this sensitive dependence can be found by studying some ergodic quantities like the Largest

Lyapunov Exponent (LLE), the order-two Renyi entropy (K2) and the Kolmogorov-Sinai entropy

(h, KS-invariant) [39].

A system is ergodic when the time average is equal to the space average. The weight

with which the space average has to be taken is an invariant measure. In principle there are

many invariant measures in a dynamical system, but only one of them is physically relevant

if the system is ergodic. Since the system evolves in a compact domain (in fact, u ∈ [0, 1]),

for the Krylov-Bogoliubov theorem an ergodic measure ρu exists and according to the idea of
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Figure 5.12: Panel (a): A numerical approximation of the physical invariant measure with a number of iterations
equal to 3 × 105. Panel (b): The numerical estimation of the order-two Renyi entropy as function of the length
of sample xi, d, panel (b). The parameters are fixed at c = 0.14, ω = 0.94, M = 30, α = 1.64, µ− rL = 0.08, the
exogenous σd = 0.05

1.64
, the liquidity γ = 100.

Kolmogorov, ρu can be considered as the physical measure of the dynamical system, see Section

2.3. A measure is said physical when space averages, obtained through the measure, coincide

with experimental time averages. An experiment can be also a numerical simulation.

In the panel (a) of Figure (5.12), we show a numerical approximation of the physical measure,

ρu, associated with the dynamical variable u of the map when c = 0.14, ω = 0.94 and the number

of iterations is 3×105. If the number of iterations grows, a better estimate of ρu can be obtained.

Ergodic quantities like the Largest Lyapunov Exponent LLE, the order-two Renyi entropy

K2, and the Kolmogorov-Sinai entropy h, are all related to the physical invariant measure ρu.

But at the same time a numerical estimate of these quantities is simpler through algorithms that

involve the numerical estimate of the correlation integral, see (5.10). An exhaustive dissertation

about the ergodic measure, the largest Lyapunov exponent, the order-two Renyi entropy and

the Kolmogorov-Sinai entropy can be found in Section 2.3 of Chapter 2.

The largest Lyapunov exponent gives a measure of the separation in time of two orbits that

are characterized by two infinitely close initial points. For one-dimensional dynamical systems,

LLE can be simply obtained through the numerical estimation of (2.30), see panel (a) of Figure

(5.13). We compute LLE also using the original definition which exploits the separation in time

of two orbits [49]. Let fω be the map describing the one-dimensional dynamical system with a

fixed value of ω and let u the dynamical variable defined in the unit interval [0, 1]. Considering

two different orbits whose initial conditions u1
0 and u2

0 differ by ε � 1, |u1
0 − u2

0| = ε. Iterating

once the map f , we find

u1
t=1 = f(u1

0) and u2
t=1 = f(u2

0)

we can describe how the absolute distance between orbits changes at the first time, computing

the absolute difference D1 at time t = 1 as

D1 = |u1
t=1 − u2

t=1|

The ratio D1
ε gives a measure of the rate of increasing (or decreasing) distance between orbits
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Figure 5.13: Largest Lyapunov Exponent (LLE) as function of the parameter ω. Panel (a) shows the outcome
obtained through the numerical estimation of (2.30). Panel (b) shows the same outcome obtained through the
algorithm based on the separation in time of orbits. The parameters are fixed at c = 0.14, M = 30, α = 1.64,
µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

at time t = 1. Since, the dynamical system evolves on a bounded interval, at time t = 1 we

make a shift u2
t=1 −→ ũ2

t=1 such that |u1
t=1 − ũ2

t=1| = ε again. The underlying idea is that the

Lyapunov exponent gives a measure of the rate of separation of two orbits at every point of

the map’s domain. Hence, for example in the chaotic regime, we explore the points of the unit

interval through the orbit described by u1, while we measure the rate of separation represented

by Dt
ε through the orbit described by u2.

In fact, at time t = 2

u1
t=2 = f(u1

t=1) and u2
t=2 = f(ũ2

t=1)

and it follows that D2 is equal to

D2 = |u1
t=2 − u2

t=2|

and so on. Using this algorithm, the Lyapunov exponent (LLE) is simply equal to

LLE = lim
t→∞

1

t

t∑
i=1

log
Di

ε
(5.11)

The outcome is shown in panel (b) of Figure (5.13). This is in good agreement with the classical

computation of LLE through the numerical estimation of (2.30). From the computational point

of view, the algorithm that exploits the orbits separation is faster than the other one.

A positive value of LLE describes the degree of sensitive dependence on initial conditions of

a dynamical system. Hence, positive values of LLE identify the chaotic regime. On the contrary,

a negative value of LLE is associated with a periodic behavior of the system. We find that also

in the chaotic regime there exist parameter values for which the dynamical behavior is periodic

and the correspondent value of LLE is negative. Since there are chaotic regions associated with

a positive value of LLE, the true deterministic chaos can be claimed for the map described by

difference equations (5.4) (5.5) (5.6) with adaptive expectations.

In principle, the computation of the LLE is an hard task in the laboratory experiments. In

fact, LLE is not accessible only by measuring the past realizations of a system trajectory. For

123
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this purpose, a more useful ergodic quantity is the entropy because also only the knowledge of

the past realizations of a system trajectory is sufficient in order to estimate it numerically.

The entropy h of dynamical systems is defined as the mean rate of creation of dynamical

information. It is related to the concept that in chaotic regime a dynamical system explores

always new states during the evolution. Because the dynamical behavior is aperiodic, only

a partial information about dynamics can be extrapolated from measures of past realizations

and so the dynamics is essentially unpredictable. The entropy h is also known as Kolmogorov-

Sinai invariant. For dissipative dynamical systems the Kolmogorov-Sinai entropy is the most

important invariant quantity.

In order to estimate numerically the entropy h, let us define Cdi as, cfr (5.10),

Cdi (r) =
1

N

N−d∑
j=0

θ(r − ||xi − xj ||∞) (5.12)

Given (5.12), we can define Hd(r) as

Hd(r) = − 1

N

N−d∑
i=0

log Cdi (r) (5.13)

Procaccia et al. [62] have numerically proved that the following quantity

lim
r→0

lim
d→∞

lim
N→∞

[Hd+1(r)−Hd(r)] = ∆t h (5.14)

gives a numerical estimation of the Eq. (2.35) which defines analytically the entropy h. ∆t is

the time step of dynamical evolution, in our case it is equal to 1.

The mathematical intuition is simple. When the length of a generic sample xi increases from

d to d+ 1, we collect more information about the dynamics. So the difference between Hd+1(r)

and Hd(r) gives a numerical estimate of the rate of creation of dynamical information.

We use in addition an entropy concept different from the KS-invariant. It is the order-two

Renyi entropy, K2 [39]. Grassberger and Procaccia [60] show that the K2 entropy is a lower

bound to the entropy h, K2 ≤ h. Its numerical estimation can be found through the following

limit

lim
r→0

lim
d→∞

lim
N→∞

log
Cd(r)

Cd+1(r)
= ∆t K2 (5.15)

Finally, the entropy h is related to the largest Lyapunov exponent (LLE) describing the sensitive

dependence on initial conditions of the one-dimensional dynamical system through the following

inequality (Ruelle [59], see Section 2.3)

h ≤ LLE (5.16)

By estimating numerically a positive-valued entropy (KS-invariant or order-two Renyi en-

tropy) we can conclude that there exists a positive Lyapunov exponent and the dynamical system

exhibits a true deterministic chaos.
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Figure 5.14: LLE (black circle), KS-entropy (red circle), K2-entropy (blue circle) as a function of the parameter
ω. The parameters are fixed at c = 0.14, M = 30, α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity

γ = 100.

The numerical estimates of these ergodic quantities are shown in Figure (5.14). The main

problem of the numerical computation is related to the convergence of mathematical limits in

(5.14) (5.15). While we have chosen a value of N reasonable large (N = 5000) and a value of

r reasonable small (r = 0.01), the crucial aspect is to find a value of the sample dimension, d,

for which the truncated limit approaches reasonably well the mathematical limit. Panel (b) of

Figure (5.12) shows that for ω = 0.94 and c = 0.14 the K2-entropy converges numerically to a

plateau for d > 10. We have therefore chosen a d-value equal to 12 in the numerical estimates

of entropies. In fact, numerical estimates of (5.14) as a function of d suggest that the truncated

limit reaches a plateau for values of d smaller than 10. As a consequence, the choice d = 12 for

the numerical computation of the entropies is reasonable.

In Figure (5.14) all the ergodic quantities are functions of the parameter ω. The largest

Lyapunov exponent is marked in black, the Kolmogorov-Sinai entropy is marked in red, and the

order-two Renyi entropy is marked in blue. It is important to notice that when the dynamical

behavior is periodic (negative-valued LLE), the KS-entropy (or the K2-entropy) is zero. In the

chaotic regime the KS-entropy is positive and it increases when the parameter ω increases. This

is in agreement with the profile of the LLE. The K2-entropy is smaller than the KS-entropy for

all the values of ω. Similarly the KS-entropy computed numerically is slightly smaller than the

LLE.

The Kolmogorov-Sinai invariant is defined as the rate of creation of dynamical information

which characterizes the system. At the same time, this entropy can be seen as the missing

information which can not be extrapolated by the past states of a trajectory. In fact, when the
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5.4 Adaptive learning

dynamical behavior is periodic, the knowledge of a closed orbit corresponds to the knowledge of

the system dynamics. This is not true anymore when the dynamical behavior is aperiodic. For

example, this is the underlying reason for Figure (5.8) in which autocorrelation functions (ACF)

of forecasting errors are shown for different value of ω: when the system dynamics is periodic

(panel (a) and (b)) the entropy is zero and there are periodic structures in the ACF; in chaotic

regimes (panel (c) and (d)) the periodic structures are lost, for ω = 0.94 after few time lags,

and the ACF coefficients are smaller than the bounds of significance. In other words, missing

information corresponds to non-zero entropy.

In the next Section we will investigate how financial agents can improve their expectations

strategy about risk using the available dynamical information.

5.4 Adaptive learning

In Section 5.2 we have described the dynamics of a typical portfolio when financial institutions

use a forecasting strategy characterized by adaptive expectations about risk. Through bifurca-

tion diagrams as a function of the expectations weight factor ω, we have found that the dynamics

can be characterized by a steady state when the adaptive strategy is cautious. Moving towards

naive expectations, i.e. ω → 1, first of all we find financial periodic cycles of the portfolio vari-

ables. Related to the value of ω, these cycles may have different orbital period. Then the chaotic

regime appears. Depending on the value of diversification costs c, there exists a threshold ω∗ for

which the largest amplitude of leverage cycles is equal to the dimension of the economic domain

of λ. In this condition, the dynamics of asset returns is non-stationary and the dynamical model

fails in describing the evolution of the financial market.

In our model, the portfolio dynamics defines the financial market stability through the pos-

itive rebalancing feedback. In fact, in Figure (5.7) we can see that the periodicity or the non-

periodicity of the portfolio dynamics affects the periodic or aperiodic realizations of the volatility

of assets.

In Section 5.2, the expectations weight factor ω is the parameter of the model defining the

strategy about the forecasting of risk. Particularly, ω represents the memory of the adaptive

expectations scheme. This parameter is fixed during the dynamical evolution. Here, we consider

a more flexible situation in which financial institutions modify their adaptive strategy after some

considerations about their past forecasting performances. We refer to this situation as adaptive

learning.

Adaptive learning thus means that the expectations weight factor ω is time varying, ωt.

During financial market evolution, financial institutions can estimate the quality of their adaptive

expectations scheme looking at the forecasting errors about the diversifiable risk

Ed,t = (σ̃ed,t)
2 − (σ̃d,t+1)2

In fact, at time t financial institutions expect that in the future time the risk associated with

an asset will be equal to (σ̃ed,t)
2. At time t + 1, the realized risk of the same asset is (σ̃d,t+1)2.

Therefore, Ed,t is the forecasting error about the diversifiable risk made at time t.
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In order to take information about the quality of past forecasting performances, financial

institutions can look at the autocorrelation function ACF of the time series of forecasting errors

Ed,t. The ACF for the forecasting errors about the diversifiable risk is qualitatively similar to

the ACF for the forecasting errors about the portfolio volatility, see Figure (5.8). Especially, the

autocorrelation coefficient at the first time lag is always negative when the dynamical behavior is

periodic or chaotic. This means that during financial cycles the agents operating in the market

make systematic overestimations following by underestimations of risk.

Our underlying assumption in adaptive learning scheme is that agents behave like statis-

ticians and they estimate the parameter of their forecast from past observations about their

performances. In particular we assume that they look at the first autocorrelation coefficient, ρ1,

of the ACF of the errors time series, {Ed,t}.

A natural and simple learning scheme is based upon the sample autocorrelation coefficient

ρ1. Suppose that financial institutions at time t′ use an adaptive strategy defined by ωt′ . For a

time period of length T , they adapt their expectations about risk with the weight factor ωt′ . If

at the end of the time period, t = t′ + T , financial institutions have made systematic mistakes

in forecasting the risk, they will try to improve their adaptive scheme. In order to improve the

forecasting strategy, financial institutions can estimate the autocorrelation coefficient at first

time lag, using the series of forecasting errors made during the previous time window. A value

(ρ1)tt′ is found. If financial institutions maintain the same strategy, they will make a forecasting

mistake at time t+ 1 statistically equal to the following expected value

E
[
Ed,t+1|{Ed,i}i=t′, ... ,t

]
= (ρ1)tt′ Ed,t (5.17)

In (5.17) we have assumed that the average of the forecasting errors series is equal to zero in

the time window [t′ , t]. This is consistent with the results of previous Sections.

In order to avoid future mistakes, the adaptive expectations about the risk of an asset (5.1)

can be (slowly) modified. Until the time t , (5.1) with the time-varying parameter ωt′ , defined

at time t′, is

(σ̃ed,t)
2 = (σ̃ed,t−1)2 + ωt′ [ (σ̃d,t)

2 − (σ̃ed,t−1)2 ] (5.18)

Forecasting a future forecasting mistake (5.17), financial institutions expect the diversifiable risk

at time t+ 1 will be

(σ̃d,t+1)2 = (σ̃ed,t)
2 + E

[
Ed,t+1|{Ed,i}i=t′, ... ,t

]
(5.19)

that is equal to the sum of two contributions: the expected risk using the past strategy, (σ̃ed,t)
2,

and the future error statistically forecasted.

So, (σ̃d,t+1)2 in (5.19) will be considered as the new expected diversifiable risk at time t,

(σ̃ed,t)
2, and coherently the adaptive scheme becomes

(σ̃ed,t)
2 = (σ̃ed,t−1)2 + (ωt′ + (ρ1)tt′)[ (σ̃d,t)

2 − (σ̃ed,t−1)2 ] (5.20)
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and we find that the expectations weight factor evolves in time according to

ωt = ωt′ + (ρ1)tt′ (5.21)

When the dynamical behavior is periodic or chaotic and as a consequence (ρ1)tt′ < 0, the relation

(5.21) suggests that financial institutions, adopting the Sample Autocorrelation (SAC) Learning

procedure, becomes more cautious in their forecast. Improving in this way the forecasting strat-

egy, the system dynamics could be shifted towards a steady state in which financial institutions

make no errors in forecasting the risk.

To avoid drastic and non-realistic changes in the expectations scheme of financial institutions,

in place of (5.21) we use

ωt = ωt′ + β (ρ1)tt′ (5.22)

where 0 < β < 1. β is a scale factor which describes a slow change of the forecasting strategy

adopted by financial institutions. Introducing the scale factor β, we assume for hypothesis that

the SAC learning procedure occurs slowly. There are two reason. The first one is related to a

more realistic scenario in which financial institutions are cautious in the upgrade of their past

strategy. The second one is a theoretical reason related to the meaning of decreasing ω. The limit

ω → 0 means increasing the memory of the adaptive expectations scheme, and as a consequence

the memory of the dynamical system. This corresponds to make financial institutions more and

more rational in forecasting the risk, see the previous Section for a comment about this aspect.

Hence, if at the beginning financial institutions are boundedly rational, the evolution towards

rationality can not be a fast process because it requires investments in terms of time and costs

[47].

The difference equations (5.4) (5.5) with the adaptive scheme (5.20) characterized by the

time varying parameter ωt, (5.22), describe the portfolio dynamics of financial institutions which

use adaptive expectations in forecasting the risk and the SAC learning procedure to improve

their forecasting strategy.

In Figure (5.15) we show a numerical simulation of the portfolio dynamics. In panel (a)

the dynamical evolution of the diversification mt is shown starting from an initial condition

characterized by a value of ω equal to 0.94. This initial value imposes that the initial dynamical

behavior is chaotic. Because the system is essentially one-dimensional, the orbit of the variable

λt can be found starting from the orbit of mt. It is clear that the SAC learning procedure drives

the portfolio dynamics towards a steady state. In fact, the time evolution of the expectation

weight factor ωt displays a convergence to a value of ω smaller than the value at which the first

flip bifurcation occurs, for the specific choice of model parameters we have made. In Figure (5.4)

we have shown the values of the parameters c2 and ω at which the first bifurcation occurs. In

Figure (5.15), where diversification costs are fixed at c = 0.14 and the assets liquidity is γ = 100,

the deterministic map shows the first dynamical transition for ω ≈ 0.69 (the dotted line). This

means that SAC learning procedure makes the portfolio dynamics stable.

The stability of the portfolio dynamics has a stabilizing effect on the financial market dy-

namics, that is the positive feedback effects are in equilibrium with the dynamical evolution of
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Figure 5.15: Panel (a): dynamical evolution of the degree of diversification mt. Panel (b): dynamical evolution
of the expectation weight factor ωt. The dotted line in panel (b) represents the value numerically estimated, see
Figure (5.4), at which the first period-doubling bifurcation occurs. Below the dotted line, the economic system
converges to a steady state. The length T of time period, between two different upgrades of the parameter ω, is
chosen equal to 20. β is equal to 1

T
. The value of the parameter ω at initial time is chosen to be equal to 0.94.

The value of diversification costs is c = 0.14. This means that initially dynamical behavior is chaotic. The other
parameters are fixed at M = 30, α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.

portfolios and as a consequence the macro-risk components (systemic risk) due to the rebalancing

feedback effects, disappear.

In Figure (5.16) we can see the dynamical evolution of the expected volatility, σ̃ed,t, and the

realized volatility, σ̃d,t, in correspondence to the portfolio dynamics shown in Figure (5.15).

It is important to notice that a correct forecasting of risk through the choice of the optimal

adaptive strategy plays a crucial role in order to make the market dynamics stable. In princi-

ple, also when financial institutions start with a non-optimal forecasting strategy, an adaptive

learning procedure (slowly) induces financial institutions to improve their expectations scheme

in order to use a better one. This situation, in our model, is always possible if changes in the

values of model parameters happen gradually. In fact, numerical estimations suggest that the

analysis made about the occurrence of the first criticality, produces always the qualitative out-

comes of Figure (5.4) for all possible values of the liquidity parameter γ. In fact, γ defines the

impact on risk of the rebalancing feedback effects. Especially, it can be numerically shown that

in all cases a finite value of the memory, ω 6= 0, exists in order to ensure that the portfolio dy-

namics converges to a steady state. In our approach, the convergence of the portfolio dynamics

to a steady state induces the stability of the financial market dynamics.

Summarizing, the systemic financial stability depends strictly on the memory of the adaptive

expectations scheme. In our case, more memory is always stabilizing: with more memory the

first bifurcation (as a function of the other model parameters) towards instability comes later.

Finally there always exists a finite value of the memory for which the financial market dynamics

is stable. This result is in agreement with a recent work [107] of Hommes et al. .

In conclusion, we investigate the effects of the randomness on the dynamical evolution of

portfolios. Similarly to the previous Sections, we introduce a stochastic Gaussian noise in the

realized diversifiable risk. This noise is characterized by a standard deviation σnoise smaller than

the value of exogenous diversifiable volatility σd.
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Figure 5.16: Panel (a): dynamical evolution of the expectation about diversifiable volatility of an asset. Panel
(b): the correspondent realized diversifiable volatility of the same asset. The length T of time period, between
two different upgrades of the parameter ω, is chosen equal to 20. β is equal to 1

T
. The value of the parameter

ω at initial time is chosen to be equal to 0.94. The value of diversification costs is c = 0.14. This means that
initially dynamical behavior is chaotic. The other parameters are fixed at M = 30, α = 1.64, µ− rL = 0.08, the
exogenous σd = 0.05

1.64
, the liquidity γ = 100.

Figure (5.17) shows the dynamical evolution of the weight factor ωt under SAC learning

procedure when the Gaussian noise is accounted for. The portfolio dynamics is associated

with the time evolution of ωt like in Figure (5.15). The points marked in black correspond

exactly to the deterministic evolution of ωt in Figure (5.15). The other points correspond to

different choices of σnoise values. The dotted line correspond to the value of ω at which the first

period-doubling bifurcation occurs. We can notice that in the stochastic dynamical evolution

the convergence to a steady state is slower compared with the deterministic evolution. This

agrees with what we have claimed before about the role of noise. In fact, dynamical information

(for example about the autocorrelation coefficient ρ1) can be partially hidden by noise. As a

consequence, the system converges more slowly. At the same time, the noise has a stabilizing

effect on portfolio dynamics because it induces financial institutions to become more cautious in

forecasting the risk. In fact, in presence of noise, in the asymptotic limit financial institutions

use an adaptive strategy identified by a value of ωt that is smaller than the asymptotic value

which characterizes the deterministic evolution.

However, in both cases the SAC learning strategy and adaptive expectations in forecasting

the risk can drive the dynamics of the portfolio of boundedly rational agents towards a stable

state. And so, they drive financial market dynamics towards stability.
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Figure 5.17: Dynamical evolution of the expectation weight factor ωt. The dotted line in panel (b) represents
the value numerically estimated, see Figure (5.4), at which the first period-doubling bifurcation occurs. Below
the dotted line, the economic system converges to a steady state. The black circles represents the deterministic
evolution of ωt. The other circles correspond to the stochastic evolution when a Gaussian noise in introduced. In
particular, red circles refer to σnoise = σd

20
, blue circles refer to σnoise = σd

30
, and purple circles refer to σnoise = σd

50
.

The length T of time period, between two different upgrades of the parameter ω, is chosen equal to 20. β is equal
to 1

T
. The value of the parameter ω at initial time is chosen to be equal to 0.94. The value of diversification

costs is c = 0.14. This means that initially dynamical behavior is chaotic. The parameters are fixed at M = 30,
α = 1.64, µ− rL = 0.08, the exogenous σd = 0.05

1.64
, the liquidity γ = 100.
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Conclusions and Perspectives

By exploiting a dynamical systems approach, we propose a dynamical model to describe the

dynamics of a financial market populated by financial institutions investing in risky assets, when

endogenous feedback effects are accounted for. Financial institutions optimize their portfolio

according to the value of diversification cost, having capital requirement in the form of VaR

constraint and they follow a trading strategy based on diversification and target leverage. In

particular, the strategy of maintaining a fixed target leverage, through the portfolio rebalancing

in presence of asset illiquidity, induces a positive feedback which increases the volatility of

assets by its impact on returns. Specifically, we investigate how financial institutions respond

to an increase of risk due to the positive feedback. Periodically, they estimate the actual risk

associated with their portfolio and they form expectations about future risk of assets through

estimates of observed past risks. According to the expectations scheme, they define the optimal

portfolio configuration. Due to the impact of rebalancing feedback, the dynamical evolution of

financial institution portfolios reflects the dynamical behavior of the whole financial system. In

our dynamical approach, the key point is that the portfolio choices based on the expectations

scheme adopted by financial institutions together with the impact on risk due to the target

leverage strategy, drive the dynamics of financial market.

In this dynamical framework, we find that systemic risk is in effect an emergent phenomenon.

While at a micro level, financial institutions adopt a strategy based on diversification and target

leverage, in order to minimize the risk and to maximize the profit respectively, the emerging

macro outcomes may be identified by the breakage of systemic financial stability. Specifically,

1. when financial institutions forecast future risk to be equal to the last observed one (naive

expectations), depending on diversification costs, at a given threshold the positive feedback

triggers a period doubling bifurcation and the consequent appearance of financial cycles

characterized by a sequence of speculative periods and non-speculative ones. During finan-

cial cycles, we can notice how the financial leverage switches from aggressive configurations

(speculative periods) to cautious ones (non-speculative periods). The financial leverage cy-

cles reflect the occurrence of periods characterized by a macro-component of risk, due to

an higher impact of feedback effects, followed by periods in which feedback effects do not

affect importantly the asset risk. When financial cycles appear, the amplitude of cycles

can be interpreted as a measure of systemic risk in financial market.

2. When financial institutions forecast future risk to be equal to a weighted average, with
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geometrically declining weights, of all past risks (adaptive expectations), a very complex

dynamics appears. When diversification costs decrease, the positive feedback triggers

successive period doubling bifurcations which induce financial cycles increasingly complex.

During financial cycles, the financial market is characterized by highly risky periods due

to a macro-component of the risk induced by rebalancing feedback effects. At a given

threshold, the dynamical system is characterized by a dynamical transition from a periodic

behavior to a chaotic one. In the chaotic regime, the financial market dynamics can show

periods characterized by higher risk compared with the risky periods of financial cycles.

3. Under adaptive expectations, the chaotic dynamical behavior of financial system is charac-

terized by positive entropy, suggesting how much an improvement of expectations scheme

by financial institutions may be hard due to missing information about the financial market

dynamics. In the case of adaptive expectations, the memory of the expectations scheme

plays a crucial role. In fact, we find that weighting mainly the past risks rather than the

last observed one, has a stabilizing effect on financial market dynamics.

4. Finally, a procedure of adaptive learning based on the autocorrelation function of fore-

casting errors, may have a stabilizing effect on the financial market dynamics. It induces

financial institutions to adopt an adaptive expectations scheme characterized by a larger

value of memory, driving thus financial market dynamics towards systemic stability.

5. From the point of view of financial market policy, we believe that our original results

deserve attention because they highlight how the dynamical properties of financial markets

may drastically change when market conditions change. In fact, once the memory of the

expectations scheme adopted by financial institutions is fixed, a decrease of diversification

costs in the presence of strong feedback effects may lead to the breaking of systemic

financial stability. Similarly to diversification costs, also a decrease of the quantile of VaR

constraint will have the same consequences. Decreasing the quantile of VaR constraint is

translated to allowing financial institutions to adopt a larger value of target leverage. This

leads to an increase of the strength of feedback effects and, as a consequence, the financial

system moves towards instability regimes. When feedback effects are strong, a decrease of

the value of the quantile may break systemic financial stability.

The obtained results naturally open two main lines of investigation.

1. From a theoretical point of view, many open questions remain. Specifically, an obvious

point is to consider the systematic component of risk different from zero. From a mathe-

matical point of view, this modification leads to study a two dimensional dynamical system

and, as a consequence, new dynamical effects may arise. Furthermore, a very challenging

issue is related to the introduction of a more realistic price impact function described by

a square-root function. This generalization introduces an extra source of nonlinearity in

the feedback effects due to the rebalancing strategy adopted by financial institutions. Last

but not least, relaxing some homogeneity assumptions regarding investment assets and/or

financial institutions, allows to approach the problem of heterogeneity in financial markets.
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2. From an empirical point of view, the necessity of testing the model on empirical bases

naturally appears. For this purpose, the main problem is related to identify the appropriate

time scale according to which, the dynamical effects, described by model, arise. Once

the time scale is determined, the comparison of our original results with the time series

of historical portfolio data, particularly before the occurrence of a financial crisis, may

validate our dynamical systems approach. Specifically, analyzing the historical portfolio

data, a measure of positive entropy may be a strong evidence of deterministic chaos in

financial markets.

In conclusion, although feedback effects have been recognized as an important source of

systemic risk in financial markets, this thesis represents an original dynamical systems approach

to the considered problem. Particularly, our work focuses on the possible dynamical outcomes

displayed by a financial system due to the positive feedback, and not only on the consequences

on asset prices and risks due to the feedback effects. We believe that our original results,

which especially suggest the possibility that chaos may occur in financial markets, indicate

that our model deserves attention. Furthermore, a result of this type bypasses the specific

dynamical model under consideration, since the occurrence of chaos in financial markets may be

the consequence of universal aspects related to the nonlinearity of the feedback effects.
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