

UNIVERSITÀ DEGLI STUDI DI PISA

Corso di Laurea Magistrale in

Biologia Molecolare e Cellulare

Tesi sperimentale di Laurea

CREATION AND OPTIMISATION OF A

YEAST WHOLE-CELL NETWORK

Relatore Interno:

Dr. Roberto Marangoni Candidato:

 Lorenzo Ficorella

Relatore esterno:

Dr. Giorgio Favrin

Anno Accademico 2013/2014

INDEX

1. INTRODUCTION .. 1

1.1. GENERAL BACKGROUND... 1

1.1.1. Biological networks ... 1
Pathways, maps and networks .. 1
Executable networks (with predictive power)... 2

1.1.2. Biological background .. 3
Saccharomyces cerevisiae... 3
Yeast as a model organism.. 4
Protein processing in endoplasmic reticulum ... 5

1.1.3. Reporters ... 6
Growth phenotype ... 6
Green Fluorescent Protein ... 7

1.2. COMPUTATIONAL BACKGROUND ... 10

1.2.1. Petri Nets .. 10
General description ... 10
Arcs ... 11
Nodes .. 12
The firing rule ... 13
The outcome .. 13

1.2.2. Algorithms ... 14
Totally stochastic simulation algorithm .. 14
Gillespie algorithm .. 15
Optimization algorithms ... 17

2. MATERIALS AND METHODS ... 19

2.1. COMPUTATIONAL PART .. 19

2.1.1. Snoopy .. 19
2.1.2. esyN .. 21
2.1.3. R programming language and software .. 22
2.1.4. Web sites .. 24

2.2. EXPERIMENTAL PART ... 25

2.2.1. Yeast culturing .. 25
Yeast media ... 25
Yeast deletion strains library... 26

2.2.2. Plasmids ... 27
2.2.3. Spectrophotometric measurements ... 29

3. RESULTS .. 30

3.1. NETWORK MODELLING .. 30

3.1.1. Drawing the network .. 30
First step: general layers ... 30
Second step: detailed layers .. 31
Third step: reporters in the network .. 33

3.1.2. Focus on: modelling problems ... 34
Choice of the parameters... 34
Logic gates .. 36

3.1.3. The final network .. 37

3.2. CODING THE SCRIPTS .. 40

3.2.1. Simulation script ... 40
Input files .. 40
Other inputs ... 41
Totally stochastic core .. 42
Gillespie core .. 43
Iterating the simulation ... 44

3.2.2. Optimization script ... 46
The starting point 1 ... 46
The starting point 2 ... 47
The workflow .. 48
Possible extensions of the script ... 49

3.3. NETWORK OPTIMIZATION .. 51

3.3.1. First experiment: growth rate as reporter .. 51
General explanation .. 51
The workflow .. 52

3.3.2. Second experiment: GFP as reporter .. 53
General explanation .. 53
The workflow .. 54
Final step ... 55
Other considerations ... 56

3.3.3. Second experiment: data .. 57
Cytoplasmic-processed GFP ... 57
ER-processed GFP .. 58

3.3.4. Testing the optimization script .. 60
Initialization .. 60
Testing and results .. 61

3.3.5. Training and testing the network .. 63
Initialization .. 63
Running the process .. 64
Further possibilities ... 65

4. CONCLUSIONS ... 67

4.1. WHOLE-CELL YEAST NETWORK ... 67

4.1.1. The network ... 67
4.1.2. Future expansions ... 68
4.1.3. Web repositories .. 68

4.2. SCRIPTS FOR PETRI NETS ... 69

4.2.1. Simulation script ... 69
4.2.2. Optimization script ... 70

4.3. PREDICTIVE POWER .. 71

4.3.1. Possible uses ... 71
4.3.2. Increasing the predictive power ... 72

5. BIBLIOGRAPHY ... 73

Brief Summary

My Master’s thesis work has been conducted in the Department of Biochemistry at the University of

Cambridge, in the laboratory of Professor Steve Oliver, under the supervision of Dr Giorgio Favrin.

The subject of my work has been the creation and optimization of a yeast network, using data from

literature and experiments and therefore it has required both a computational and an experimental part.

The purpose of this work has been the creation of a network model that can be employed to predict the

results of real experiments regarding the few pathways I have focused on. Its purpose has also been the

demonstration of the validity of this approach, i.e. that this approach can be extended to other sections

in order to obtain more detailed networks with an ever increasing predictive power.

The steps of this Master’s thesis work have been:

- Creating a virtual model of a yeast cell (S. cerevisiae), which has been drawn as a Petri Net so

that its behaviour over time could be simulated using the appropriate algorithms. The final

network has multiple levels; at the topmost level lays a simple whole-cell network while in the

lower layers pathways can be described in more detail, and some of them actually are (i.e. real

genes and gene interactions are displayed). In facts, the main purpose is not creating a network

that contains all yeast genes and their interaction, rather creating a network that can be expanded

in the following months and years, but that can be used even in this “unfinished” state. The

main pathway that has been chosen for further analysis is the protein folding in the ER. I have

chosen this area partly because it is relatively easy to model and to experiment with, partly

because I believe that it would be a useful attachment to the whole network.

- Writing scripts that are capable of acquiring data from the model, simulating its behaviour and

finally training and testing the network. The simulation script implements the general Petri Net

rules, to decide how the network can change at each step of the simulation, and the Gillespie

algorithm, to decide which action is taking place at each step and therefore how the network

actually changes. The training and testing part is carried out using the simulation script in a

broader framework that implements a Monte Carlo approach, aiming to reduce the difference

from the simulation and the experimental results. I have written those and other ancillary scripts

in the R language, partly because it would eventually be easier to perform other statistical

analysis on the results, partly because R is the most common language in biology and therefore

it would be easier for other users reading and using my scripts.

- Performing experiments to gather data that are needed for the training and testing stage of the

process. As data, I have decided to use the concentration of a reporter in several single mutant

strains; therefore, I had to choose a reporter, i.e. a measurable quantity whose values could be

simulated in the network and measured during experiments.

I have decided to use GFP as reporter because it is an extremely renowned reporter, namely

there are already many data available from the literature regarding both its usage and the

expected results: on 15/7/2014, there were 43764 results in PubMed Central and 5324 in

PubMed using "GFP+reporter" as key words.

I have employed the normal versions (which folds in the cytoplasm) and the ER-addressed

GFP; this latter has been created by fusing GFP and GPCR, which naturally goes through the

endoplasmic reticulum in order to be sent to the membrane; these GFP variants have been added

to the model as generic cytoplasmic-processed and ER-processed proteins, respectively.

In an interesting paper (Jonikas et al., 2009) GFP is used as a reporter of the Unfolded Protein

Response, being transcribed by a transcription factor activated during the UPR; I have decided

to use those data for the training of the model, therefore I have added this reporter (a generic

UPR-induced protein) in the network.

- Training and testing the network using experimental and literature data, thereby changing

network parameters. In facts, the first parameters of the network are made up with the sole

purpose of generating a stable model, i.e. a model in which the concentration of the molecular

species remain constant (or oscillate periodically) over time; this kind of network, though, is

far from behaving as a real cell. The training stage has aimed to change those parameters in

order to obtain a network that is stable in all the conditions (e.g. when deleting a node that

represents a mutated gene) and in which the ratio of the simulated concentrations of the reporter

in wild type and mutated conditions is equal to the actual ratio measured during the

experiments. This final trained and tested model is not a faithful representation of a real cell,

all the parameters still having no biological meaning, but it should behave as a real one;

therefore, it could be used to make prediction about the behaviour of real yeast cells in different

conditions such as mutations, oxidative stress, and changes in the culture conditions.

The network has been created using esyN (Bean et al., 2014), a web-based tool to build and share

stochastic Petri Nets and generic graphs. It has been developed in our laboratory and it is available at

www.esyn.org; I have contributed to its development by generally helping in designing the many

features on the website itself and creating some of the example networks. I have also provided all the

accessory tools to simulate and analyse Petri nets, i.e. the script that I have employed in my work, which

are now available at github.com/esyN/esyN-simulation.

The final network is available both on esyN.org and on eyeast.org, a web repository of yeast Petri Net

models, comprising all the yeast networks created using the esyN web-based tool.

http://www.esyn.org/
https://github.com/esyN/esyN-simulation
http://www.eyeast.org/

Breve Sommario

Il mio lavoro di tesi è stato condotto nel dipartimento di Biochimica dell’Università di Cambridge, nel

laboratorio del Professor Steve Oliver, sotto la supervisione del Dr Giorgio Favrin; il soggetto del lavoro

è consistito nella creazione ed ottimizzazione di una rete virtuale di lievito, usando dati ottenuti sia dalla

letteratura che da esperimenti, e pertanto ha richiesto sia una parte computazionale che una sperimentale

Lo scopo del lavoro è stato la creazione di un modello che possa essere impiegato per predire i risultati

di esperimenti riguardanti mutazioni di geni coinvolti nei processi cellulari su cui mi sono focalizzato.

Scopo più generale è stato la validazione dell’approccio impiegato, cosicché esso possa essere esteso

ad altre sezioni ed ottenere così reti ancora più dettagliate e con un crescente potere predittivo. I passi

seguiti nello svolgimento di questo lavoro di tesi sono stati i seguenti:

- Creazione di un modello virtuale di cellula di lievito (S. cerevisiae), impiegando il linguaggio

delle Petri Nets affinché il suo comportamento nel tempo possa essere simulato utilizzando

algoritmi appropriati. La rete definitiva è multilivello: nel livello più alto si trova una semplice

schematizzazione della cellula, mentre negli strati inferiori i singoli processi sono descritti in

maggiore dettaglio, sia utilizzando nodi generici sia utilizzando vere proteine ed interazioni.

Quest’ultimo livello di dettaglio è stato applicato solo per alcuni processi; infatti lo scopo non

è stato la creazione di una rete contenente tutti i geni e le loro interazioni, quanto piuttosto la

creazione di una rete che possa essere ingrandita ed integrata nei prossimi mesi ed anni, e che

comunque possa essere impiegata anche in questo stato di parziale incompletezza.

Il processo che è stato descritto in dettaglio è il ripiegamento ed la maturazione delle proteine

nel reticolo endoplasmatico; ho scelto quest’area perché ho ritenuto sia che fosse relativamente

facile da modellare ed investigare per via sperimentale, sia che potesse essere un’aggiunta

molto utile alla rete di lievito che è in via di costruzione.

- Creazione di scripts che siano capaci di acquisire dati dal modello, simularne il comportamento

ed anche effettuare procedure di “training and testing” su di esso. Tutti gli script sono stati

scritti nel linguaggio di R, sia perché in questo modo sarebbe stato più semplice condurre analisi

statistiche dei risultati, sia perché tale linguaggio è molto comune in area biologica e quindi

dovrebbe essere più semplice per altri utenti leggere, modificare ed usare i miei scripts.

Lo script di simulazione unisce le regole generali delle Petri Nets, per decidere come la rete

possa cambiare ad ogni passo della simulazione, e l’algoritmo di Gillespie, per decidere quale

azione stia effettivamente avvenendo e pertanto come la rete stia effettivamente cambiando.

Il “training and testing” sono svolti impiegando lo script di simulazione all’interno di una

cornice più ampia che, implementando un metodo Monte Carlo, mira a ridurre le differenze tra

i dati ottenuti dalla simulazione e i risultati sperimentali.

- Conduzione di esperimenti per acquisire i dati necessari per la fase di training della rete. Come

dati ho deciso di utilizzare la concentrazione di un osservabile in diversi ceppi mutanti, pertanto

ho dovuto scegliere tale osservabile, cioè una quantità misurabile i cui valori possano essere sia

simulati nella rete sia misurati negli esperimenti.

Ho scelto come osservabile la fluorescenza della GFP per via del suo grandissimo utilizzo nella

comunità scientifica. Ho impiegato sia la versione normale, che si ripiega nel citoplasma, sia

una versione che si ripiega nel reticolo endoplasmatico; quest’ultima è stata creata fondendo la

GFP ed la proteina GPCR, che naturalmente passa attraverso il RE per poter essere espresso in

membrana. Queste due varianti sono state aggiunte al modello come generiche proteine

processate rispettivamente nel citoplasma e nel reticolo endoplasmatico

In un articolo interessante (Jonikas et al, 2009), la GFP è utilizzata come reporter trascrizionale

della Unfolded Protein Response, essendo trascritta da fattori di trascrizioni attivati durante la

UPR stessa; avendo deciso di utilizzare anche questi dati per il training del modello, ho aggiunto

questo osservabile nella rete come una proteina generica indotta dalla UPR

- “Training and testing” della rete usando sia i dati sperimentali che quelli derivati dalla

letteratura, in modo da poter cambiare (ottimizzare) i parametri della rete. Infatti, i primi

parametri della rete sono stabiliti con l’unico obiettivo di generare un modello stabile, cioè un

modello in cui la concentrazione delle specie molecolari resti globalmente costante nel tempo;

questo tipo di rete, però, è ben lontano dal comportarsi come una vera cellula. Il training è

pertanto necessario per cambiare quei parametri in modo da ottenere una rete che sia stabile in

tutte le condizioni e in cui il rapporto delle concentrazioni dell’osservabile, simulate nei ceppi

mutanti e wild type, sia uguale al vero rapporto ottenuto dai dati sperimentali.

La rete definitiva non è comunque una rappresentazione fedele di una cellula vera, dal momento

che nessun valore dei parametri ha un reale corrispettivo biologico, ma dovrebbe essere in grado

comportarsi come se lo fosse; pertanto, tale rete potrebbe essere impiegata per effettuare

predizioni riguardo il comportamento di reali cellule di lievito in svariate condizioni quali

mutazioni, stress ossidativo, cambiamenti del mezzo di coltura etc.

La rete è stata creata usando esyN (Bean et al, 2014), un sito per la costruzione e condivisione sia di

Petri Nets stocastiche sia di grafici generici. Tale sito, disponibile all’indirizzo www.esyn.org, è stato

sviluppato nel nostro laboratorio; ho contribuito al suo sviluppo aiutando nella progettazione delle sue

caratteristiche e nella creazione di alcune reti di esempio. Ho inoltre fornito tutti gli strumenti accessori

necessari per la simulazione e l’analisi di Petri Net in ambiente R, cioè gli script che ho impiegato nel

mio lavoro e che sono ora disponibili all’indirizzo github.com/esyN/esyN-simulation.

La rete finale è (o sarà a breve) consultabile sia in esyN.org stesso sia nel sito eyeast.org, che funge da

vetrina per Petri Nets riguardanti il lievito, comprese tutte quelle prodotte in esyN.org

http://www.esyn.org/
https://github.com/esyN/esyN-simulation

Page | 1

1. Introduction

1.1. General background

1.1.1. Biological networks

Pathways, maps and networks

The graphical representation of biological pathways is becoming increasingly common: maps and

networks allow for an easy display of biological data and a quick confront of results from different

experiments conditions or species. Large curated networks help researcher in interpreting their data and

suggesting new potential experiments, e.g. the results of a transcriptomic experiments, by showing and

suggesting hints regarding the real and putative interactions among molecular species.

Moreover, new methods are being invented to analyse those maps, e.g. by identifying the most

important nodes and relations of the network, thereby obtaining new findings (e.g. Li et al., 2014;

Beurton-Aimar et al., 2014; Vera-Licona et al., 2014). In particular, the topology of any network can

be studied looking for distinctive feature such as motifs and modules, i.e. aggregations of elements that

have a definite architecture and can be found in several different and even unrelated networks.

Some of these maps work as descriptive network, i.e. they show molecular species (genes, proteins,

metabolites etc.) and their dependencies; therefore, they are useful for a visual inspection of a certain

pathway but they are not built to be simulated. Each node of these networks can be described in detail,

or can have links to other resources that allow the user to retrieve all the information he needs; clear

examples of this kind of maps can be found on the KEGG website (http://www.genome.jp/kegg,).

Some other network models are created so that their behaviour over time could be simulated and

generate quantitative predictions. There are many different ways to write an executable network model;

I have decided to use the Petri Net formalism and modelling language, but it must be noticed that there

are few others formalisms and many other modelling languages available (Modelling language, 2014).

Moreover, once the modelling language has been chosen, there are still many ways to employ it in the

definition and construction of the network; for instance Petri Net models could be written using the

Petri Net Markup Language (Billington et al., 2003), whose purpose is providing a common format for

allowing for a faster and easier exchange of those models.

Finally, once the formalism and all its features have been set, the experimenter has to choose between

stochastic and continuous simulations, between matrices or differential equations etc.; these choices

helps in identifying the best approach and algorithm to be employed in the simulation phase.

This large amount of possibilities allows for a great versatility of the networks, and their hundreds of

related archives, but it tends to cause compatibility issues and make their merging complicated.

http://www.genome.jp/kegg/

Page | 2

Executable networks (with predictive power)

When creating an executable network, three main factors must be taken into account: the elements, i.e.

which products and molecular species are going to be studied over time; the architecture, i.e. how these

elements are linked together; the parameters, i.e. the abundance of each element and the “weights” of

their links. The choice of the first two elements depends on whether a complete network is needed or

not and, if so, whether it is available at the present time (which varies from subject to subject); the

choice of the third element is a bit more tricky.

When creating a faithful network, real parameters should be employed, namely kinetic and stochastic

parameters measured in several repeated experiments; the advantage of this kind of network is obvious,

namely that they can be used to perform real and quantitatively exact simulations. Therefore, it should

be possible to evaluate how good a network is (i.e. its potential predictive power) by verifying if it does

reproduce the available experimental results and in a second stage if it predicts new properties (e.g.

interactions, protein levels, changes in equilibriums, etc.)

The disadvantages are obvious too, though, the first of them being that a huge effort must be carried out

to obtain all the parameters (some of whom could be tricky to measure). Second, it must be taken into

account that those parameters could change when varying conditions, so that they eventually must be

measured under several conditions, or a general rule must be found and applied to change them

accordingly. Third, it might be difficult to join and tune together network related to separate areas,

whose parameters are calculated and expressed in different ways, e.g. metabolic and genetic networks.

Another possible approach to the construction of executable network is choosing to employ purely

made-up parameters, thus solving many of the disadvantages of the previous approach; the problem is

that the simulation results of this kind of networks have no direct biological meaning per se.

Those results could still be meaningful if a relationship between simulation values and experimental

data were calculated; moreover, those results could be useful if they were used not as absolute values,

rather as relative ones when confronting the results of two different conditions of the network (e.g. wild

type and mutated, normal and perturbed).

This approach requires an accurate choice of the parameters and their careful improvement, in order to

obtain a network that behaves as a real cell even if it is not faithful representation of it, thus producing

meaningful simulation results. There are several ways to perform that improvement phase, for instance

setting the parameters so that the simulated ratio of the abundance of reporter places in different

conditions is equal to the ratio measured in the experiments.

Both approaches should generate executable networks that could be employed to predict the quantity

of molecular species in determinate conditions after a set amount of time. This feature would be useful

for suggesting hypothesis, driving experiments and in the interpretation of data analysis; in theory,

“faithful” networks could also be employed to obtain data without performing actual experiments.

Page | 3

1.1.2. Biological background

Saccharomyces cerevisiae

Yeasts comprise more than 1500 species of eukaryotic microorganisms belonging to the Fungi domain;

(Kurtzman and Fell, 2006); they do not form a single phylogenetic grouping because they actually

belong to two separate phyla (Ascomycota and Basidiomycota). Yeasts are unicellular, although some

species may behave as multicellular through the formation of strings of connected budding cells

(pseudohyphae). Saccharomyces cerevisiae is likely the most famous yeast because it is being used

since centuries in baking, brewing and winemaking. S. cerevisiae cells are round, about 5-10

micrometres in diameter; they live both as haploid and as diploid.

Haploid cells can only undergo mitosis, and die when facing stressful conditions; they reproduce via

budding, i.e. a bud grows from the mother cell and mitosis only occurs when the bud reaches the

dimension of a normal cell. When enough nutrients are provided, budding is a continuous process,

meaning that a new bud is produced from a daughter cell even before she divides from the mother cell;

this way, yeast cells can double their population every 100 minutes.

Diploid cells undergo mitosis too, and undergo meiosis when facing stressful conditions, thus producing

four haploid spores; haploid cells can reform a diploid organism by mating. For the mating to occur,

two cells belonging to different mating types are needed; S. cerevisiae mating types, i.e. primitive

aspects of sex differentiation, are MAT-α and MAT-A.

All S. cerevisiae cells can break sugars (e.g. glucose, maltose, and trehalose) thus producing ethanol by

fermentation or 𝐶𝑂2 by respiration (only in anaerobic conditions); if enough nutrients are provided,

cells show the Crabtree effect (De Deken, 1966), i.e. they tend to perform fermentation no matter

whether 𝑂2 is available or not. As nitrogen sources, yeast cells can use ammonia, urea and amino acids

(or small peptides), but they cannot use nor nitrate (they cannot reduce it) nor whole proteins (they do

not secrete proteases).

Image 1.1. On the left: S. cerevisiae cells on a solid plate (Rainis Venta, http://commons.wikimedia.org/).

On the right: cell cycle of a yeast cell.

Page | 4

Yeast as a model organism

Standard values, units of measure and concepts are of capital importance in each field of science; they

ensure that experiments can be repeated and results confronted, thus allowing proving or invalidating

theories. Repeating experiments in biology is not a trivial issue, though, because it is almost impossible

to take into account all the variables that influence the reproducibility of the results; a standardization

in the experimental conditions and in the kinds of organisms studied is therefore required.

This way, some “model organisms” have emerged, i.e. organisms that are studied as a paradigm for all

the other ones, meaning that the findings made in these models should explain (or provide hints about)

the same phenomena occurring in other organisms. There are several models because each one shows

a clear example of one or more specific phenomena of study; e.g., embryo development can easily be

studied in sea urchin, because its embryo is transparent.

The other main reason for which a certain organism is chosen as a model is that it is amenable to

experimental manipulation: it lives, grows and reproduces quickly and cheaply; moreover, its genome

can be “easily” manipulated and specific strains or races can be easily produced, selected and stored.

Finally, nowadays biologists can analyse and modify the genome of their model organisms, thus

producing and using fully characterized strains; this causes a reduction in the unexplained and

unaccounted variability, thus allowing for an easier and more accurate comparison of experimental

results.

Saccharomyces cerevisiae is a valid model organism because it possess all the qualities aforementioned:

it is easy to study because it is the simplest eukaryotic organism, yet it possess many of the features of

higher organisms; it is easily cultured, cheap and has a short generation time; its genome can be altered

easily (e.g. homologous recombination) and strains selected. Moreover, some of its features are known

and it has been used in industry since centuries.

An extensive effort is being carried out for a complete characterization of S. cerevisiae cells by

sequencing the genome (Goffeau et al., 1996) and performing systematic gene annotation, which

requires not only identifying all the genes but also their functions. This step is being carried on in many

ways, for instance by producing single mutant and double mutant strains (Giaever and Nislow, 2014).

Since many of these genes and gene products have homologs in other organisms, their characterization

is being helpful to discover the function and the interactions of many cell cycle proteins, signalling

proteins, channel proteins, protein-processing enzymes.

Its main application so far has been in the study of cell cycle: meiosis and mitosis, namely their stages

and their related checkpoints (Uhlmann et al., 2011); DNA damages and DNA repair mechanisms;

aging and senescence of cells, and the effects of the caloric restriction and replicative aging, and so on.

It has also been employed in astrobiology (Warmflash and Ciftcioglu, 2007) to test whether organisms

could survive in deep space, which is a requirement of the transpermia hypothesis (namely, the idea

that life came to the Earth through the deep space, protected inside rocks that hit our planet).

Page | 5

Protein processing in endoplasmic reticulum

As it is well known, the translation of mRNA into proteins is performed by ribosomes in the cytoplasm.

Proteins whose function must be carried out in the Endoplasmic Reticulum (ER) or the Golgi apparatus,

or must be secreted outside the cell, are translated by ribosome attached to the external membrane of

the (rough) ER; all the other proteins are translated by free ribosomes.

Briefly speaking, the first kind of proteins (from here on “ER-targeted proteins) has a tagging sequence

at its N-terminus, thus it is the first part of the proteins to be translated by ribosomes, while they are

still free in the cytoplasm. This sequence is bound by several factors that momentarily block the

translation, anchor the ribosome to the ER membrane, translocate the nascent protein inside the ER and

then allow the translation to continue; therefore, the nascent protein accumulates inside the ER.

This simple scheme varies when dealing with membrane proteins, especially if they have multiple

membrane domains; they possess one or more anchoring and targeting sequences, in order to allow the

protein to grow inside and outside the ER (i.e. by starting and stopping the translocation several times).

Inside the ER, proteins are in the proper environment for their folding and their post-translational

modifications: several specific chaperones and PDIs (protein disulphide isomerases) help the protein

folding; some enzymes trim the aminoacidic sequence (e.g. by recognising and eliminating the ER-

targeting sequence, which is useless after the translocation stage); some other enzymes add and modify

lateral sugar chains (N-linked glycosylation).

This N-glycosylation step consists of three main phases: the synthesis of a precursor oligosaccharide

(anchored to the membrane by a dolichol molecule), the transfer en bloc of the whole precursor

oligosaccharide to the protein, and the processing of this precursor (which is a species-specific stage).

These chains have multiple roles: they might be needed for the protein folding (e.g. by hiding, or

separating two sticky regions) or they might be a fundamental part of the final protein (e.g. membrane

glycoproteins). Moreover, they also signal the maturation stage of the protein, namely whether all the

steps have been completed and the protein is correctly folded, and thus can be exported to the Golgi;

they also signal whether some errors have occurred during the folding stage and thus the protein must

be unfolded and refolded, or rather sent to be degraded (ERAD). In this case, misfolded proteins are

recognized, unfolded and retrotranslocated into the cytoplasm, where they are bound by other

components that target them to the ubiquitin-proteasome system.

In some conditions (e.g. heat stress), unfolded proteins can accumulate inside the endoplasmic

reticulum, engulfing its mechanisms of folding and addressing to degradation; in such cases, unfolded

proteins start a signalling cascade which generate and sustain a clever system named UPR, i.e. Unfolded

Protein Response. It consists in a global re-modulation of the protein production, both at the

transcriptional and translational stages; generally speaking, it increases the number and efficiency of

chaperones and degrading systems, and it slows down the translation of all the other proteins.

Page | 6

1.1.3. Reporters

Growth phenotype

Growth rate µ defines how quickly a certain cell population increases over time; it is inversely

proportional to the doubling time of that cell population. Therefore:

𝑁 = 𝑁0 ∗ 2𝑛 𝑁 = 𝑁0 ∗ 2
𝑡

𝑡𝑑 𝑁 = 𝑁0 ∗ 𝑒
ln(2)

𝑡𝑑
𝑡
 𝑁 = 𝑁0 ∗ 𝑒𝜇𝑡 𝜇 =

ln(2)

𝑡𝑑

It is a very complex phenotype because it is affected by many variables (Black, 1996)

- Growth conditions, namely temperature, abundance of nutrients, kind of sugar and nitrogen

sources, exposure to selecting or mutating agents etc.

- Condition of the colony, i.e. number and density of cells, stage of the colony (lag phase,

exponential growth, steady state) etc.

- Condition of the single cell, namely its age (i.e. how many replications it has already made),

the accumulation of ROS and DNA damages etc.

- Possible presence of mutations of cell cycle related genes, or mutations of other unrelated genes

The results of these factors could be an increase or decrease of the growth rate, depending on their

interplay: e.g. if a cell maintained its usual replication rate but it went into a senescent (non-replicative)

stage earlier than usual, the global growth rate would be affected nevertheless.

On the other hand, it is quite easy to calculate the growth rate by measuring the number of cells over

time: the number of cells can be retrieved using sophisticated methods that allow counting only live

cells, or simply measuring the optical density of a sample. In facts, the optical density is proportional

to the cell density, and by confronting the OD in different time points, it is possible to calculate the

growth rate µ:

𝑁

𝑉
=

𝑁𝑜

𝑉
∗ 𝑒𝜇𝑡

𝑁

𝑉
= 𝑎 ∗ 𝑂𝐷

 𝑎 ∗ 𝑂𝐷 = 𝑎 ∗ 𝑂𝐷0 𝑂𝐷 = 𝑂𝐷0 ∗ 𝑒𝜇𝑡 𝜇 =
ln(𝑂𝐷2) − ln (𝑂𝐷1)

𝑡(2−1)

The OD measured is not caused by absorption at a specific wavelength (cells are almost transparent)

rather by scattering, which happens using any wavelength, although with different values. Therefore, it

does not actually matter which wavelength is chosen for measuring the OD, but it must be the same for

all the samples of the experiment; usually, 𝑂𝐷600 is used.

Moreover, most of the variables affecting growth rate can be monitored and maintained at constant level

through all the experiments, thus simplifying the global framework; this way, growth rate could be

employed as a global reporter of the effects of mutations, by confronting the absorbance of mutant and

wild type strains grown separately but in the same conditions (Blomberg, 2011).

Page | 7

It must be noticed that there is another way to confront the growth rate among different strains, namely

the competitive growth: a certain amount of cells of each “labelled” strain grow in the same medium

and compete for the same nutrients. After a certain amount of time, the number of cells of each strain

is measured and the ratio among those abundances is calculated, thus defining which strains grow more

quickly and which ones grow slower than the wild type (Bell, 2010).

Finally, it must also be considered that non-viable mutations, or mutations that totally impair cell growth

or division, require a more complex experimental design: for instance, instead of having them in null-

mutant strains, they could be in temperature sensitive strains and the temperature of the experiment

could be changed accordingly to turn the mutation on/off.

For sake of simplicity, I have performed only non-competing experiments, using viable mutants.

Green Fluorescent Protein

The GFP (Prendergast and Mann, 1978) is a protein isolated from the Atlantic jellyfish Aequorea

victoria; it exhibits bright green fluorescence (emission peak at 509nm) when exposed to light in the

blue-ultraviolet range (a major excitation peak at 395nm and a minor one at 475nm). In A. victoria, it

is coupled with the aequorin, a photoprotein that emits blue light after binding 𝐶𝑎2+ions, thus exciting

GFP; the blue light emission is due to the oxidation of its prosthetic group coelenterazine (i.e. luciferin)

into coelenteramide

It is composed of 238 amino acid residues, for a final weight of 26900 Dalton, arranged in 11 β-sheets

and 2 α-helices; the β-sheets form a β-barrel, whereas one of the helices is located along the central axis

of the barrel and contains the fluorophore (Ormö et al, 1996). The fluorophore is a heterocyclic ring

composed by three amino acids (Ser 65, Tyr 66 and Gly 67) that undergo posttranslational modification

(cyclisation, dehydration and oxidation); the barrel protects the fluorophore and determines its

environment, thus influencing its properties (e.g. excitation and emission wavelengths).

 Image 1.2. On the left: drawing based on the 3D structure of the GFP (Day and Davidson, 2009).

On the right: the fluorophore.

Page | 8

By mutating single residues of the protein, it has been shown (Shaner et al., 2005; Olenych et al., 2007)

that the glycine 67 is essential for the formation of the fluorophore, whereas the tyrosine 66 could be

changed in any aromatic amino acids. Serine 65 is not essential, but if it were mutated into Threonine,

the resulting fluorophore would be more stable; on the other hand, the overall stability of the protein

would be increased by mutating the phenylalanine 64 (which is outside the fluorophore) into a leucine.

Several variants of the GFP have been created by random or site-directed mutations, in order to increase

its stability but also to change its properties. These variants are catalogued in seven different classes:

- The first class consists of the native GFP

- The second and third classes are composed of GFPs that have only one excitation peak.

- The fourth class is composed of YFP, i.e. proteins that emit yellow light instead of green; the

most relevant mutation is Thr203Tyr, which changes the environment of the fluorophore

- The fifth class is composed of CFP, i.e. proteins that emit in the cyan wavelength; they are

created by changing the tyrosine 66 into tryptophan, and then changing other residues in the β-

barrel in order to maintain high quantic yields.

- The sixth class is composed of BFP, i.e. proteins emitting blue light thanks to the substitution

Tyr66His and other minor mutations.

Image 1.3. Upper image: spectra of GFP variants. (ClonTech Labs). Lower image: fluorophores of GFP variants.

Page | 9

GFP fluorescence is an intrinsic phenomenon, i.e. it does not require additional molecules, and therefore

it is frequently used as a reporter. There are many possible uses of the GFP and its variants (Tsien,

1998), limited only by the imagination of the researchers; for instance, it can be employed:

- Proving that an exogenous gene can be expressed in a transfected cell, e.g. when testing new

transfection methods or protocols, or dealing with new kind of cells;

- Proving that an exogenous gene can be transfected into an oocyte or a zygote, so that all the

cells of the organism express that gene (from the first or second generation, respectively);

- Measuring the expression of a gene that is under the control of an inducible promoter; this is

accomplished by using that promoter to transcribe GFP gene;

- Studying the strength of a promoter, again using that promoter to produce GFP;

- Measuring the production and degradation rate of a certain protein, by fusing GFP and target

protein together (some consideration needed, though).

- Studying the localization of a certain protein, again by creating a fusion protein.

- Performing assays such as the Two-Hybrid one, i.e. creating two fusion proteins bearing half

GFP each and then measuring the eventual fluorescence: there is fluorescence only if the other

two halves of the fusion proteins interact somehow.

Of course, qualitative experiments (e.g. localization) require fluorescence microscopes, whereas

quantitative experiments (e.g. measurement of gene expression levels) require fluorescence

spectrophotometers.

Using two or more GFP variants is useful for two main reasons. First, they allow studying multiple gene

products at the same time and in the same cell, e.g. their localization or their expression rates, which is

particularly useful in interaction studies. Second, they allow for a cross-validation of the data:

fluorescent proteins could behave differently from the gene products that is the object of study; using

more fluorescent proteins, each one behaving slightly different from the others, could help in reducing

this issue, for instance verifying whether a certain fluorescence localization is meaningful or not.

In my work, I have used the wild type GFP to test the transformation protocol of the mutant strains I

had selected; then I have employed the normal cytoplasmic variant of the Venus Yellow Fluorescent

Protein as a reporter of the translation efficiency. Venus (F46L, F64L, M153T, V163A, S175G) is an

YFP whose fluorophore assembles more quickly than usual due to the mutation of phenylalanine 46

into a leucine (Nagai et al., 2002).

Later on, I have used the Sapphire BFP (Q69M, C70V, S72A, Y145F, V163A, S175G, T203I) fused

with the secreted protein GPCR, mainly because a plasmid containing the fusion protein gene was

already available in the laboratory; therefore, I have repeated the previous experiment with the normal

cytosolic variant of the Sapphire Blue Fluorescent Protein (Zapata-Hommer and Griesbeck, 2003).

Page | 10

1.2. Computational background

1.2.1. Petri Nets

General description

The term “Petri Net” refers both to a mathematical modelling language for the description of distributed

systems (Blatke, 2001) and to its graphical representation; it derives from its inventor, Carl Adam Petri,

who ideated them in August 1939 for describing chemical processes.

A Petri Net is composed of nodes, namely places and transitions, and arcs (i.e. edges) joining places

and transitions (but not two nodes of the same kind; it is a bipartite graph); chosen a certain transition,

places upstream of it are called “input places”, whereas places downstream are called “output places”.

Places are populated by discrete quantities of tokens, whereas arcs are labelled using weights.

Petri Net graphs can be simulated, meaning that the tokens can be moved among the places thus

changing the marking of the network, i.e. the overall distribution and number of tokens; the simulation

is performed using specific firing rules (see the appropriate section in the following pages). Petri Nets

are usually stochastic; in this case, there is no predetermined sequence of firing transitions and therefore,

if multiple transitions are enabled at the same time, any one of them may actually fire.

According to the kind of simulations performed, one or more transitions can fire at the same time; this

or these transitions must be chosen from the set of all the enabled transitions by employing other

simulation algorithms. The algorithm is chosen according to the kind of network that is going to be

simulated; for instance, even though Petri Nets are born to simulate discrete models, they can also be

employed to describe continuous processes, thus requiring a completely different set of algorithms.

Petri Nets have a solid mathematic background: proper mathematical syntax is provided to describe all

the rules and the possible states (markings) of a network; graphs can be written as vector and matrices,

thus allowing for matrix calculus and other analysis etc.

Moreover, they can be extended by adding new features, some of which I have used in my work: marked

tokens (coloured Petri Nets), nested network (hierarchical P.N.), inhibitory and modifier arcs; Petri Nets

can also be transformed in semi-deterministic models by using timed and prioritised transitions.

Finally, Petri Nets can be analysed to identify their mathematical properties:

- the reachability of a marking, i.e. whether a certain configuration can be reached in a finite

number of steps starting from the present marking;

- the liveness of the network, i.e. how often and how many times transitions can fire (see also the

section regarding dead states);

- the boundness of the network, namely how the tokens can distribute among the places (see also

the section regarding the accumulation of tokens)

Page | 11

Arcs

Normal edges are oriented edges connecting places and transitions; pre-arcs are edges going from places

to transitions, whereas post-arcs are edges going from transitions to places. These edges have weights;

the weight of a pre-arc determines how many tokens are removed from the (pre)place when the

transition fires, whereas the weight of a post-arc determines how many tokens are produced to the

(post)place. They are the simplest kind of edges and they could be employed to represent most of the

metabolic reactions.

Read-only edges are non-oriented edges; their weight s represent how many tokens must be in a certain

place for the firing of the linked transition, but those tokens are not removed from the place. They could

be represented as two normal edges going from a place to the transition and vice versa: the firing of the

transition consumes and produces the same amount of tokens in that place. They could be employed to

represent the action of a molecular species that intervenes in a reaction without changing its

concentration, e.g. an enzyme: it is needed, but it is not consumed nor produced.

Image 1.4. On the left: read-only edge, redrawn as two normal edges.

On the right: inhibitory arcs and alternative network construction to substitute them.

Inhibitory edges are edges connecting places to transitions. They work exactly in the opposite way of a

normal edge: if the (pre)place has a number of tokens equal or greater than the weight of the inhibitory

arc, then the transition is disabled. It is impossible to represent those arcs as a combination of simple

normal arcs, although it might be possible to obtain very similar results using an appropriate architecture

of the network and parameters. Inhibitory edges could be employed to represent the action of inhibitory

molecules, such as miRNA.

Modifier edges are edges connecting places to transitions. They work in a dissimilar way from all the

other edges; their weights are only needed to determine whether these arcs are playing a role in the

transition or not. If the number of tokens of a (pre)place is equal or greater than the weight of the linking

edge, then the edge can act by changing some parameters of the transition; otherwise, the transition can

still happen using its original set of parameters. Being unique, those arcs cannot be represented in any

other way; they could be employed to represent changes in the speed of a reaction due to changes in the

enzyme (e.g. a transient phosphorylation) or the reaction environment (e.g. pH changes).

Page | 12

Nodes

Places represent the agents of the network, i.e. the nodes that cause and are affected by the events that

happen in the network. They may represent genes, proteins and metabolites, different states of the same

molecular species (e.g. repressed and transcribing genes, phosphorylated and unphosphorylated

enzyme) or even different localization of the same species (e.g. a transcription factor inside and outside

the nucleus); they may also represent generic concepts such as “catabolites” or “proteins”.

Each place owns tokens, which represent the quantity of that place in the network. This quantity could

have a biological meaning (e.g. molar concentration) when creating uniform networks, namely

networks that focus on specific pathways or consist of the same kind of species (and have no “generic”

places); in non-uniform networks instead, this quantity must be necessarily invented, unrelated to

biology measurements.

Transitions represent the actions that take place in the network, i.e. the nodes that are responsible for

the modification of the tokens amount in each place. They may represent all the processes that happen

in a cell: specific reactions, both chemical and enzymatic ones; signal transduction cascades, e.g.

binding of ligands, translocation of factors; general processes such as “translation”, “transcription” or

“degradation”; changes in the molecular species due to the environment, e.g. protein denaturation.

Each transition is characterized by a Mass Action parameter; it does not affect the firing of the transition

itself, rather it affects the likelihood that its transition actually fires if enabled. When dealing with the

“uniform” network abovementioned, these parameters could actually have a biological meaning; for

instance, they could be (or be derived from) the kinetic constants of reactions. When dealing with “non-

uniform” networks instead, these parameters could be invented in order to obtain networks showing the

desired behaviour; for instance, in a network showing two pathways, parameters could be set so that

one pathways is usually chosen (e.g. normal metabolic pathways versus salvage pathways).

Coarse nodes are a particular kind of nodes and transitions, namely nodes that contain something else

inside them; in the model I have drawn, course places contain other places while coarse transitions

contain whole networks. Those nodes do not actually exist, i.e. they are not part of the matrices

summarizing the network, so they must be employed very carefully.

Coarse places are useful for representing generic places, i.e. groups of real places (e.g. “chaperones”

instead of all the specific chaperones), or representing the protein complexes instead of all their

subunits. If a coarse place is linked to a real transition, this link is interpreted as all the children places

(i.e. the places contained in it) were connected to that transition.

Coarse transitions are useful for setting the layers of a multilevel network: the lower layers are

represented as coarse transition in the upper layer. Therefore, they are useful to organize the network,

but they do not have any functions; if a coarse transition is linked to a real place, this link does not

actually exist and it is not shown in any matrix.

Page | 13

The firing rule

The standard firing rule is very simple (Murata, 1989): a transition is enabled if all the read-only edges

and the pre-arcs are enabled (i.e. their corresponding places have a number of tokens greater than the

weights of the arcs), and the inhibitory arcs are disabled. More the one transition could be enabled at

the same time, but only one actually fires; the choice of the transition depends on the algorithm

implemented (see the following pages), but it surely influenced by the Mass Action parameter.

When a transition fires, tokens are moved among places accordingly to the weights and kinds of the

edges and a new state (i.e. overall disposition of tokens) is reached. It must be noticed this is the standard

rule, but custom rules could be set for each transition; this is not particularly relevant in biological

networks but it has some application in other fields such as engineering.

The outcome

The repetition of these rules for many steps, the architecture of the network itself, and the sequence of

firing of the transitions determine the overall outcome of the simulation: tokens could accumulate,

diminish or remain constant; the network could “live” indefinitely or it could reach a dead state, i.e. a

state in which no transition is enabled.

The decrease of the overall number of tokens could be due to wells, i.e. transitions that consume tokens

without producing them, or it be simply due to unbalanced weights of the edges, so that more tokens

are consumed than produced. Of course, the increase of the tokens can happen for the opposite reasons,

namely because more tokens are produced than consumed, or because of “source” transitions, i.e.

transitions that produce tokens without consuming them.

Whether tokens remain constant or increase, they may be evenly distributed among places or they may

accumulate in only few ones. This outcome could be intentional, due to the network architecture, or it

could be unforeseen: e.g., a certain transition could be randomly chosen in the firsts steps and then it

could be preferred in the following ones because of the mechanisms of the algorithm, thus causing

tokens to accumulate in its post-places.

Therefore, a dead state could be reached not only in networks whose number of tokens decrease but

also in networks whose tokens accumulate in a dead-end place, i.e. a place that is not consumed in any

transitions. Dead states, as well as uncontrolled increases of tokens, are usually unwelcome features of

the network, meaning that its architecture is somewhere, somehow flawed.

It must be noticed that this is not a general rule: for instance, a network representing the growth of cells

in culture medium should show an increase and accumulation of the tokens; a network representing the

whole cell should reach a dead state when all the nutrients (inside and outside the cell) are consumed.

Page | 14

1.2.2. Algorithms

Totally stochastic simulation algorithm

As mentioned before, the simulation of Petri Nets is performed using other simulation algorithms, the

simplest one being the totally stochastic algorithm (a general description of Petri Nets modelling is

available at (Haas, 2002).

The functioning of this algorithm is very simple: each enabled transition has the same chance to be

chosen during a simulation step; therefore, transitions are randomly chosen. When using specific Mass

Action parameters, they influence the likelihood of each transition; therefore, transition are still

randomly chosen, but each one has a different chance.

In the first case, 𝑃1 = 𝑃2 = 𝑃3 = 𝑃𝑖

In the second case, 𝑃1 =
𝑘1

∑ 𝑘𝑖
 𝑃2 =

𝑘2

∑ 𝑘𝑖
 𝑃3 =

𝑘3

∑ 𝑘𝑖
 𝑃𝑖 =

𝑘𝑖

∑ 𝑘𝑖

Since each transition happens instantly, there is no actually way to define and calculate the duration of

each step of the simulation; actually, it might be stated that the whole simulation happens instantly (sum

of infinite zeroes).

A possible solution could be considering a single step as time unit, so that the global duration of the

simulation would be equal to the number of its steps. This method would have no physical meaning,

but it could be useful to study and observe changes of the markings over time; it could be adopted to

simulate networks in which each action has the same duration.

In this case, 𝑇1 = 𝑇2 = 𝑇3 = 𝑇𝑖 = 1 𝑇𝑡𝑜𝑡 = 𝑁𝑠𝑡𝑒𝑝𝑠

When using Mass Action parameters, another solution could be calculating the duration of each step as

the multiplicative inverse of the parameter of the chosen transition; this way the global duration of the

simulation would depend both on the number of steps and on which steps have actually happened. This

method could be adopted to simulate networks in which transitions have different durations due to their

own properties only.

In this case, 𝑇1 =
1

𝑘1
 𝑇2 =

1

𝑘2
 𝑇3 =

1

𝑘3
 𝑇𝑖 =

1

𝑘𝑖
 𝑇𝑡𝑜𝑡 = ∑ 𝑡𝑗

𝑁𝑠𝑡𝑒𝑝𝑠

1

Even though these methods could be applied to Petri Nets in many fields, it is almost impossible to

employ them to simulate biological networks and pathways.

The first method cannot be applied at all, because biological transitions last differently. The second

method cannot be usually applied because it does not take into account many additional factors, such

as the abundance of the species involved in the transition. Anyway, it could be employed in some limited

cases; e.g., it fits the representation of an enzymatic reaction when the substrate saturates the enzyme,

i.e. the reaction proceeds at its highest speed possible.

Page | 15

Gillespie algorithm

The Doob-Gillespie algorithm (Doob, 1942; Gillespie, 1976) is a powerful tool in computational

systems biology for simulating reactions involving small quantities of reagents, i.e. tens of molecules

rather than molar concentrations.

If fact, traditional modelling of reactions is performed considering bulk reactions, involving the

interaction of millions of molecules; these conditions allow the creation of continuous and deterministic

models, expressed as ordinary differential equations. Instead, Gillespie algorithm grants the ability to

perform discrete and stochastic simulation of scarcely populated systems; therefore, it can be applied

to cellular processes that involve few molecules and could not be modelled using ODEs.

The physical basis of the algorithm is that, even though cells are very populated systems, and therefore

random collisions among “agents” are frequent, proper fruitful collisions (e.g. collisions that happen

with the right orientation and energy of the “agents”) are not that frequent.

The algorithm works by generating a statistically correct trajectory (possible solution) of a stochastic

equation, i.e. “a random walk that exactly represents the distribution of the master equation”.

It is composed by three steps:

- Start: The number of molecules in the system and the values of reactions constants are set.

- Choice: The next reaction to occur and its duration are determined; the duration and the

likelihood of each reaction is proportional to the number of molecules involved, but it also

depends on a random number generated at each step.

- Update: The overall time is increased by the amount of the duration of the chosen reaction; the

molecular distribution (i.e. the number of each kind of molecules) is changed accordingly to

the chosen reaction.

The algorithm is repeated (steps 2-3) until the final time-point is reached or all the reactions are disabled.

The Gillespie algorithm can be employed in the simulation of Petri Nets (Haas, 2002). It is

computationally more expensive than the purely stochastic algorithm abovementioned, but it is more

versatile: the dependence on a random generated number accounts for the stochasticity; the dependence

on the number of molecules involved accounts for its rigour and versatility.

Therefore, it can be employed to simulate almost any network, or even a whole cell; in facts, it can

correctly distinguish very frequent reactions from others that happen very rarely (even if they had faster

kinetics) and it can help determining/displaying how certain pathways come to be preferred over others.

Of course, when adapting this algorithm to the Petri Nets, some considerations must be made:

- “Sources” transitions have no input places, therefor the abundance of input places is null; these

transitions would have zero chance to be chosen by the Gillespie algorithm

- If tokens of different places represented different quantities, they might even have different

orders of magnitude; the transitions linked to smaller places would be neglected, even though

they were not supposed to be.

Page | 16

Of course, the algorithm workflow must be slightly modified; there are a few variants, and it is important

to define which one has being used because it would change the results of the simulations. In the

following paragraph, I will introduce the variant I have used in my work (Blatke, 2011; Feres, 2007):

0) The number of tokens in places and MA parameters of transitions are set

1) The rate of each enabled transition is calculated: 𝑅𝑖 = 𝑘𝑖 ∗ ∑ 𝑀𝑗𝑖 where 𝑅𝑖 is the rate of the

“i” function, k is its MA parameter and ∑ 𝑀𝑗𝑖 is the overall sum of the tokens of input places.

2) An exponential distribution is calculated for each transition using the correspondent rate, i.e.

the mean of the distribution is 𝜆𝑖 =
1

𝑅𝑖
 ; a random number S is generated from each distribution.

3) The transition that possess the smallest S (i.e. 𝑆𝑖 = min (𝑆)) is the actually firing transition. Its

S is the “time of the transition”; it can be considered as a waiting time before the firing itself,

which happens in no time.

4) Update: The overall time is increased by the amount S; tokens are moved among the

accordingly to the chosen reaction.

The algorithm is repeated until a dead state (no transitions enabled) or the final time-point are reached.

Again, the elapsed time has no biological meaning, i.e. it cannot be easily converted in seconds;

nevertheless, it is more meaningful than the time calculated in the totally stochastic algorithm because

it takes into account that different transitions last differently.

For instance, the total time could be used to confront different condition of the same network: given a

certain number of steps, a condition producing a shorter final time means that the single transitions are

quicker and the network is more “active”. This analysis could be performed also on different networks,

if the overall time were normalized for the global tokens of the network.

It must be noticed that the duration of a transition could be an arbitrarily small number; in a positive

feedback loop, tokens would increase in the input places thus making the transition faster, its time

tending to zero lim
𝑀→∞

𝑆𝑖 = 0. It could be argued that this is biologically impossible, because the highest

speed of a reaction usually cannot exceed the diffusion speed; therefore, some changes in the algorithm

have been introduced in order to resolve this issue, for instance by setting a minimum duration.

Image 1.5. Petri Net graph of an indirect positive feedback: N4 and N6 represent the same reaction,

respectively without and with the positive feedback of the product N2.

Page | 17

Optimization algorithms

Machine learning (Baştanlar and Özuysal, 2014; Sommer and Gerlich, 2013) has been defined as the

"field of study that gives computers the ability to learn without being explicitly programmed" (Arthur

Samuel, 1959); it is composed by training and testing. There are many algorithms performing machine

learning approaches (List of machine learning algorithms, 2014) and many common applications, such

as the OCR (Optical Character Recognition) and the spam messages filters.

Training is the learning step, in which the machine acquires experience; it require the representation of

the data and the creation/evaluation of functions on these data. That means, the machine deals with

known data in order to build a model to interpret them.

It should be possible to generalize the training of the machine, meaning that these models should

perform well when applied on other sets of data. Even if it is impossible to predict how well a machine

will perform (that is the key object of study in the computational learning theory), some preliminary

checks can be done; this is the testing step, which is accomplished using another set of known data that

has not been employed in the training session.

As I have explained at the beginning of this introduction, I have not employed a real machine learning

approach in my work, but I have applied the same concepts of training and testing to my network: the

generalization principle of the machine learning approach represents the predictive power I have been

looking for in my “virtual cell”.

The algorithm used for the training of the network belongs to the vast class of Monte Carlo methods.

Those methods employ repeated random sampling to obtain the distribution of a probabilistic entity

(Raeside, 1976; Monte Carlo method, 2014).

The kind of the results and the input of those algorithms largely depend on their field of application and

purposes, such as optimization and numerical integration.

I have used a Monte Carlo optimization (minimization) algorithm, very similar to a method that is used

to optimize the structure of a protein (i.e. minimizing its free energy); it is composed by three steps:

- Random sampling step: creation of a new conformation by randomly changing one or more

attributes of the previous conformation. In the protein folding, the starting point is an invented

conformation; in networks, the starting conformation is the original set of parameters.

- Calculation of the energy of the new conformation. In networks, the “energy” could be the

quantity of a certain place that should be maximized, a ratio that should be minimized etc.

- Choosing or rejecting the new conformation: in the simplest version, a conformation is rejected

if its energy is more than the energy of the previous conformation. In more elaborated versions

such as the. Metropolis criterion, (Beichl and Sullivan, 2000) some of these otherwise rejected

conformation could be randomly accepted; this more flexible algorithm is useful to escape from

only apparently good solutions (e.g. local energetic minimum during protein folding).

Page | 18

These steps can be repeated for any number of times; theoretically, the iteration should terminate when

an equilibrium is reached, that is when the same conformation and energy is maintained for infinite

runs; practically, a number of runs must be chosen, whether for the whole process or the sole

equilibration stage.

Regarding the Monte Carlo algorithm applied to networks, some more considerations must be made:

- The function employed for calculating the “energy” values is the aforementioned Gillespie

algorithm; this algorithm can be considered as a form of Monte Carlo (kinetic Monte Carlo),

therefore the whole optimization process would consist in two nested Monte Carlo algorithms.

- The formula I have employed for choosing the destiny of a conformation is derived from Monte

Carlo optimization of protein conformations; therefore, some of the values must be adapted to

the new purpose of the formula.

- It makes no sense applying any kind of optimization algorithm to a network whose parameters

are known and measured; it is only useful if parameters are invented, such as this case.

- Even if parameters are invented, it does not mean that they do not follow any rules; for instance,

some parameters could be unchangeable, others could be intertwined each other (e.g. two

parameters that must have the same value) etc. Those rules must be taken into account when

randomly choosing and changing parameters values, thus limiting the optimization process.

Page | 19

2. Materials and methods

2.1. Computational part

2.1.1. Snoopy

Snoopy (Rohr et al., 2010) is a software tool to build, animate and simulate many types of Petri Nets.

It is a powerful tool because it can handle all the different kinds of Petri Nets, be they stochastic,

continuous, coloured or other minor species; it is therefore employed in many different fields of

application of Petri Nets (Marwan et al., 2012; Blatke et al., 2013). Depending on the kind of the

network, different types of output files are available, to conduct further analysis (e.g. simulation) of the

network; for instance the user can export stochastic network, written as matrices, as MatLab files.

The building tool allows the user to employ all the kinds of Petri Net edges (normal, inhibitory, read

only, modifiers), although some of them are disabled in certain types of networks, and nodes. User can

also choose to use coarse places or coarse transitions; the difference between them is very subtle and

resides in which kind of nodes (places or transitions) lay at the edge of the nested network, i.e. at the

interface between the lower and the upper layer.

User can change all the basic parameters: i.e. tokens, mass action parameters, weights of the edges,; it’s

also possible to change the rule according which a specific transition behaves (although this feature is

more useful in informatics or engineering rather than biology) or is picked during the simulation stage.

The animation tool is a graphical representation of the tokens game: a certain enabled transition is

picked randomly (mass action parameters and tokens number are not considered when choosing the

transition), then one or more tokens are moved accordingly among places. The user can follow the path

of the tokens and see whether they are disappearing (wells), increasing (sources), or simply moving,

whether there are some pathways disconnected from the network or other which are chosen more

frequently, whether some transitions are always disabled or always enabled etc.

The simulation tool allows the user to simulate the behaviour of the network (all the layers together),

choosing the rules to be applied and the duration of the simulation; the output of this tool is an interactive

graph of number of tokens over time, in which each line represent one place, which can be exported as

an image. Unfortunately, there is no way to export the values of the places population at the end of the

simulation; therefore this tool is only useful as support of the visual inspection provided in the animation

tool, to understand which places are accumulating tokens and which places are losing them, but it cannot

be employed for more detailed analysis.

Page | 20

Image 2.1. Screenshot of Snoopy main page: on the upper left, there is editing box; on the lower left, there is

the navigation box; on the upper right, there is the network-drawing box; on the lower right, there is the

animation toolbox.

On the other hand, the software is quite computationally heavy, which could potentially slow down or

freeze the computer when dealing with large networks. Moreover, despite its many functions, Snoopy

does not allow the user to customize it according to his wishes; this is likely not a major issue for most

of the users because its many functions cover all the principal needs, but it could become a serious issue

if the user required functions that are not provided in the program.

For instance, despite the graphical view being customizable, it is difficult to handle with coarse

transitions and multiple layers, connect nodes that lay in different layers, finding a certain node in the

network, tuning together coarse places and coarse transitions (they cannot be joined by an edge, so some

workaround is needed if that connection were required in the network.

In the simulation phase too, even if the user can change some parameters (especially regarding the

output), he cannot change nor check the simulation rules; so, it is impossible to know which operations

are being carried on during the simulation, or even stop the script in the middle of a simulation. Because

of this and other (hidden) problems, it is almost impossible to simulate any large network, which makes

this feature useless for my work.

Page | 21

2.1.2. esyN

The esyN web-based tool is based on Cytoscape.js (Lopes et al., 2010), which has been modified and

build upon in order to create a tool for building simple “diagram” networks and more complex multi-

layer stochastic Petri Nets. It is simpler than Snoopy is, given that it does not have all the features

needed for other kinds of networks (e.g. coloured, continuous etc.), nor it allows the user to simulate or

animate any networks; moreover, only two kinds of edges (direct and inhibitory ones) are allowed in

this web-based tool.

On the other hand, none of the lacking features are necessary when building stochastic Petri Nets, and

it is lighter than the pc-based software, which means it can handle easily bigger networks (i.e. a larger

amount of edges and nodes) without freezing or crashing; that is why esyN has proven to be very useful

for my work.

Moreover, it has some features that are useful for drawing clean networks and navigate among layers

in an easier way than in Snoopy:

 Coarse transitions work as usually, meaning that they do not really exists as a node but they

have another network nested inside them; you can navigate among the layers by clicking on a

coarse transition.

 Coarse places have a different function, meaning that they contain other places rather than

containing a whole network; this way, a hierarchy of places is generated, which can be accessed

using a dedicated toolbox. Coarse places are existing places in the network, and all the edges

reaching them automatically reach their “children” places; for instance, this is useful when

representing multimeric enzymes.

 Dispersed places are a novel kind of places that allows the user to add the same place many

times in the network (in the same layer or in different ones); they are existing places, where all

the copy of a single dispersed place work as a whole. This way, this feature could be useful for

reducing the number of overlapping edges in any networks, making them cleaner and clearer;

the localization of all the places can be found using a dedicated toolbox.

Finally, esyN provides another useful feature for finding a chosen place of the network in the InterMine

databases (http://intermine.github.io/intermine.org/ (Kalderimis et al., 2014) and retrieve all its genetic

or physical interaction from the Homo sapiens, Drosophila melanogaster or Saccharomyces cerevisiae

databases. The same toolbox also allows inserting those interacting genes inside the network: in Petri

Nets, they are only located near the chosen places; in simple non Petri Net network, they are linked to

the chosen places.

http://intermine.github.io/intermine.org/

Page | 22

2.1.3. R programming language and software

R (R core team, 2014) is a programming language and software environment to organize, show,

manipulate and analyse statistical data. The language itself is an implementation of the lexical scoping

semantics and S programming language, while the source code for the R environment is written in R,

FORTRAN and C. Although R language can be written on any O.S. (e.g. as a text file), it is not platform

independent, meaning that an O.S.-specific environment is needed to interpret it; inside the

environment, a command line interface is adopted.

As a programming language, R allows the user not only to run simple statistical analysis but also to

write and run complex scripts, handling many data at once and performing many manipulations and

analysis in the same time. That means the user can assign values to variables, use the main basic

programming features (e.g. loops, condition checks etc.) and perform common statistical analysis

(recorded as “functions” in the R repository), but he can also define his own functions to perform

customized analysis.

R can virtually handle any kind of data, be them characters or numbers (integer and non-integer), but

of course most of the functions only apply to numeric variables. There are many “classes” of variables

(e.g. vectors, matrices, tables and lists), each one handled by its dedicated functions; in R user can also

define its own class and functions, creating S3 or S4 kinds of objects.

The R interpreter can read data inserted using command lines, but it can also acquire data from files

stored in the PC, for instance from simple text files or CSV (comma separated values) tables. This also

applies to the output, which can be printed out in the screen, both as numeric results and graphs, but

also written in a file, be it a table, a matrix, a vector or even text lines.

Undoubtedly, one of the most important features of R environment is that its capabilities can be

extended using external packages containing more advanced and specialized formulas, functions,

graphical tools, external files handling, statistical techniques etc. Being so popular, there are thousands

of packages available, which cover almost all the aspects of statistical analysis; of course, most of them

are developed in R language, but some of them are developed in C and FORTRAN, or even Java.

Some of the most popular packages are already included in the installation files of the R interpreter, all

the others (more than 5.800 as of July 2014,) can be retrieved from CRAN (Comprehensive R Archive

Network, http://cran.r-project.org). More packages are available in other repositories; for instance,

Bioconductor (Gentleman et al., 2004) is the main archive of R packages applied to the manipulation

and analysis of biological data. The broadness of those repositories is because any user can create a

package containing his own functions, objects and classes (and any supporting material) and submit it

to those repositories for evaluation (and eventually integration in their archives).

Page | 23

Image 2.2. List of the first packages available from CRAN repository (in alphabetical order)

Some of those packages allow the user to integrate R with other programming languages (e.g. Python

or Java), meaning that they “translate” the files which are produced by (or eventually go to) scripts

written in other languages. For instance, “rjson” package (Couture-Beil, 2014) can be used to read and

extrapolate data from JSON files (i.e. files written in java).

Other integrating packages actually integrate those languages in R by translate the whole functions, so

that there is no need to use another interpreter at all; finally, it must be pointed out that the user can

actually apply the opposite strategy, meaning that he can also use packages to integrate R functions in

other languages’ interpreters (e.g. PyR).

Some other packages such as Ggplot2 (Wickham, 2009) address the plotting device of the R

environment, improving the plotting of data and functions and increasing the customizable options (e.g.

position of the legend, dimensions of all the elements). They also add new features as three-dimensional

graphs and adjacent plots; this latter feature is very useful for a visual comparison of two sets of data,

which is very difficult to do using the standard plotting device because it shows only one graph at time.

One example of packages that enhance the statistical capabilities of the R interpreter is the Zoo package

(Zeileis and Grothendieck, 2005); it is mainly used in financial analysis, but it can be applied in any

field. This package is made to deal with irregular time series, which are data collected in different times

(or time intervals): e.g., the user can extrapolate or interpolate data at specific time points, which is

useful for calculating mean values from multiple time series. Zoo works by converting those irregular

series (be they vectors or matrices) in a S3 class called “zoo"; it can only deal with totally indexed

series, but it has some functions to deal with duplicated times in a time series.

Page | 24

2.1.4. Web sites

GitHub (https://github.com/) and BitBucket (https://bitbucket.org/) are two web-based hosting

services that work both as cloud storage and as public archive for practically any kinds of codes and

scripts; in facts, they allow the user to store and share its code with selected users or the public, but also

to create teams and cooperate in writing a code.

This latter feature consists of a web environment where the users can write the code itself (without

testing, though), that is a text editor that can recognize many different programming languages; the code

can also be created locally and then uploaded to the website in the correct folder. All the different

versions of the code are stored and can be browsed and confronted; the authors can pursue their own

“branch” of changes, which can be later confronted and merged in order to obtain the definitive version.

KEGG (Kyoto Encyclopaedia of Genes and Genomes) (Kanehisa et al., 2014) is a database of

biological data; it articulates itself in several sub-databases regarding data about health (e.g. Disease

and Drug databases), the genomic information (e.g. Genome and Genes), data about chemical

compounds (e.g. Compound and Reaction) and systems information (e.g. Module and Pathway).

KEGG PATHWAY is an archive of manually drawn maps aiming to represent our knowledge on

metabolism and cellular functions. Those maps contain networks of physical interactions among gene

products, which are linked to the corresponding coding gene, and can be browsed to look for interactions

and gene functions, to compare organisms or different states of the same one (e.g. diseased vs healthy).

Gene Ontology (GO) (Ashburner et al., 2000) is a controlled vocabulary of gene/gene products

attributes, that is a list of generic, species non-specific interdependent concepts that should suffice to

univocally describe a certain molecular species. This vocabulary has been created by the Gene Ontology

Consortium, whose current aims are maintaining the vocabulary, using it to annotate all the gene and

gene products and providing tools to use those annotations. The GO file is available at the GO website

(http://www.geneontology.org) and can be downloaded as a whole or browsed using AmiGO.

Each gene or gene product can be described according to its localization, function and the biological

process in which it participates; therefore the GO vocabulary cover all those three domains. It is

structured as a directed acyclic graph, in which each term has relationships with others: e.g. “is a”,

“regulates” and “occurs in”, but also “broader synonym of”, “narrower synonym of” etc.

YeastMine (Balakrishnan et al., 2012) is a tool to search and retrieve data available in the

Saccharomyces Genome Database (Cherry et al., 2009); it is powered by InterMine, which means it

provides a very powerful, flexible and customizable way to search and organize multiple types of data.

It is available from http://yeastmine.yeastgenome.org and can be used to retrieve protein sequences and

features, gene localization and sequences, phenotypes and interaction data (both physical and genetic

ones); a single gene as well as a list of genes can be searched in the same time.

https://github.com/
https://bitbucket.org/
http://www.geneontology.org/
http://yeastmine.yeastgenome.org/

Page | 25

2.2. Experimental part

2.2.1. Yeast culturing

Yeast media

Yeast can be cultured both in liquid and solid (i.e. with agar) media, according to the purposes of the

culturing: yeasts in liquid media grow generally faster, which is useful if we needed a large number of;

yeasts in solid media grow more slowly and organize themselves in distinct colonies, which is useful if

a single colony is needed. Several kinds of media exist, and each kind can be made using different

“ingredients” and varying their proportion according to specific needs.

Generally speaking, media can be classified as synthetic (i.e. defined) or complex (i.e. undefined),

according to whether composition of the medium is known or not; synthetic media are produced by

adding known amounts of known chemical species, whereas complex media are produced using

substances whose chemical species might be known but their abundance is unknown.

Complex media are usually complete, meaning that they let any yeast to grow; synthetic media, instead,

usually lack one or more elements (e.g. a certain amino acid), therefore selecting against yeast that are

auxotrophic for those elements; synthetic media having only sugars and inorganic nitrogen are called

“minimal media” and allow the growth of solely non-auxotrophic yeasts.

Finally, a “selective medium” can be created adding a toxic substance (e.g. antibiotics); in this medium,

no wild type yeast can survive, therefore selecting for strains bearing a resistance gene. This is

particularly useful for selecting yeasts that have acquired a plasmid bearing the resistance gene.

YEPD (yeast extract peptone dextrose) is a complete medium made of yeast extract, peptone, glucose

(or dextrose) and distilled water; yeast extract (i.e. concentration of dead autolyzed yeasts) and peptone

(proteolyzed milk) provide all the kinds of amino acids and the vitamins, albeit their concentration is

unknown, thus making YEPD a complex (complete) medium.

Image 2.3. On the left: constituents of the YEPD (Mark McCormick at http://getyourscienceon.wikia.com).

On the right: structure of the Geneticin

Page | 26

YEPD can be transformed in a selective medium by adding an antibiotic, for instance G418 (i.e.

Geneticin). This is an aminoglycoside antibiotic produced by Micromonospora rhodorangea, which

acts by blocking the elongation step of the polypeptide biosynthesis, thus acting both on eukaryotes and

prokaryotes. Therefore, this medium selects those yeasts that bear the correspondent resistance gene,

the aminoglycoside phosphotransferase encoded by a gene from the Tn5 transposon.

YNB-SC (yeast nitrogen base, synthetic complete) is a complete medium made of YNB, glucose (or

dextrose), SC and distilled water; YNB is a mix which provides all the essential vitamins and salts,

whereas SC is a mix which provides all the amino acids, thus making YNB-SC a complete medium.

This medium is not very useful per se, but it is very useful if one or more amino acids are removed from

the SC mixture (creating the so called “dropout mix”); in fact, this medium has selective power,

impairing the growth of yeast cells which are auxotroph for the selected amino acids.

Yeast deletion strains library

The mutant strains I have used during my work derive from the results of a big international project,

the Saccharomyces Genome Deletion Project (Giaever et al., 2002), aimed to create a library of yeast

strains harbouring all the possible null mutations and then identify the function of all mutated genes.

This project generated four mutant collections: MAT-A haploid, MAT-α haploids, homozygous mutant

diploids and heterozygous diploids (the only collection whose strains can carry non-viable mutations).

Genes were mutated from the start to the stop codon, replacing them with a KanMX module (resistance

gene against the Geneticin G418) and a specific tag, so that the strains can be identified using an array

screening. To date, 90% of the genes have been mutated and the correspondent strains have been

created, thus producing over 20.000 mutant strains.

It must be noticed that the genetic background (i.e. the genotype shared by all the mutant strains) is not

wild type, rather all the strains share some mutations and are auxotroph for the same elements. At the

present time, the whole library can be bought from several laboratories (ATCC, Invitrogen, Open

Biosystems or EUROSCARF) and it is available in five different genetic backgrounds; only one

background harbour all four collections, the other four harbour only the MAT-A or MAT-α collection.

Our laboratory owns a copy of the whole library; the mutant strains I have used in my work derive from

the haploid MAT-A collection, whose genetic background is BY4241 his3Δ0, leu2Δ0, ura3Δ0. Yeast

cells have been frozen while adhering to beads, and using glycerol as cryoprotectant; therefore, they are

kept frozen in a -80°C freezer to preserve them and impede their growth. First time a mutant strain is

needed, a single bead can be extracted from its tube and then plated in liquid or solid medium; next time

that strain is needed, the researcher should use cells from the liquid culture or single colonies from the

solid plate rather than using another bead.

Page | 27

2.2.2. Plasmids

Plasmids are small DNA molecule that can replicate independently and are separate from chromosomal

DNA. They are very common in bacteria, but they can also be found in Archaea and simple eukaryotic

organisms such as yeasts; usually they can be transferred between hosts (not necessarily belonging to

the same species) via horizontal gene transfer (e.g. via bacterial conjugation).

There are several kinds of plasmids, which differ for many aspects such as sequence length, preferred

host, DNA conformation (e.g. linear, circular and supercoiled and functions of genes they carry. Usually

plasmids enhance their hosts’ survival chances: resistance plasmids provide resistance genes, to avoid

or destroy harmful compounds; Col plasmids and virulence plasmids provide genes which code for

toxic compounds attacking bacteria and superior organisms (e.g. humans), respectively; degradative

plasmids provide metabolic genes that are capable of digesting usually indigestible substances etc.

Natural plasmids, together with cosmids, viruses, artificial plasmids and chromosomes (e.g. BAC and

YAC) are used as vectors in genetic engineering; they are commonly manipulated to alter their

sequence, replacing naturally occurring genes with other genes of interest, adding new features etc.

These plasmids are then transferred inside the host cells via transformation (natural uptake of naked

DNA, only suitable for certain hosts), transduction (requires the use of viruses) or transfection (DNA

inserted inside the cell by damaging cell wall and membrane). This way, cells can accomplish many

different functions: producing large amounts of the desired protein or (normal amounts of) novel

engineered molecules, amplifying specific gene sequences (e.g. useful when creating libraries) etc.;

when using integrating plasmids that disrupt a chromosomal gene sequence, mutant strains can be

obtained (see the Yeast Deletion Library above).

Independently from the specific sequence of each plasmid, all the plasmid used for the expression of

recombinant proteins share some common features. First, non-integrating plasmids need a replication

origin, namely a site where DNA polymerases can bound, whereas integrating plasmids need a specific

sequence to integrate themselves inside a host chromosome. Second, any plasmid need to harbour at

least one gene that allows for the selection of transfected cells; it could be a resistance gene that allows

the cells to live in a selective medium, or a metabolic gene that compensate an auxotrophy and allows

the cells to live in a non-complete medium.

Plasmids that are going to be used in yeast cells are often amplified (i.e. replicated) inside bacterial

cells; that means that those plasmids need two replication origins, one for the bacterial polymerases and

the other for the eukaryotic ones, and they often harbour two resistance genes (e.g. if bacteria and yeast

are going to be selected using two different antibiotics).

Plasmids that possess all the aforementioned features (and some more) but do not carry the gene of

interest are called “empty” plasmids; they are the starting point for creating recombinant plasmids.

Page | 28

In other words, empty plasmids are capable of

replicating themselves and rescuing the

hosting cell from selective conditions, but

they do not harbour the desired gene; rather

they carry a counter-selecting gene, i.e. a gene

whose product can harm the hosting cell (e.g.

apoptosis proteins, prodrug activators). The

gene of interest is then cloned inside the toxic

gene, disrupting it; this way, only cells that

have acquired the recombinant (i.e. not

empty) plasmid can survive, thus increasing

the yield of successfully transfected cells.

This is a sample protocol for creating yeast strains containing a non-integrated, non empty plasmid:

1) Amplifying the sequence to be transfected, e.g. using a PCR machine. If the sequence is not

available in nature (e.g. genes codifying for tagged proteins or fusion proteins), further steps

must be carried out. For instance, fusion proteins require the amplification of the single pieces,

which are joined using restriction enzymes; tagged protein instead can be produced more easily

by an accurate design of the primers, so that they already contain the tagging sequence.

2) Transforming E. coli cells with the empty plasmid and then selecting the transformed cells

using a selective medium (e.g. LB and ampicillin). Since E. coli is not naturally competent to

perform transformation, cells must be pre-treated (e.g. heat shock) to induce the transformation.

3) Extracting the empty vector from those cells and cloning the amplified sequence into it. This

requires using restriction enzymes that recognize and cut the same short sequence both on the

plasmid and the amplified sequence, and then ligases that repair those DNA cuts thus inserting

the sequence of interest inside the plasmid; this insertion should disrupt the “toxic” gene.

4) Transforming E. coli cells with the newly produced plasmid and then selecting the transformed

cells that bear the complete plasmid using an appropriate medium: e.g. LB and ampicillin (to

select transformed cells) and a substance that can be converted in a toxic compound by the

“toxic” gene (to counter-select the cells transformed with empty plasmids). Transformed cells

can be stored, or the plasmid can be extracted and preserved in a -20°C freezer.

5) Cultivating yeast cells on a complete liquid medium (e.g. complex YEPD), and then transfect

them with the extracted plasmid; in order to do so, electroporation or solvents (e.g. PEG) can

be employed to weaken cell membrane. Transfected yeast cells can be cultivated on selective

medium, be it a complex medium with antibiotics or a synthetic non-complete medium (when

using auxotrophic strains and plasmids that allow recovering from that deficiency).

Image 2.4. Main elements of a “complete” plasmid

(http://blog.addgene.org/topic/plasmids-101)

Page | 29

2.2.3. Spectrophotometric measurements

Whereas a standard spectrophotometer is useful for performing biochemical assays and measure instant

absorbance or fluorescence of a relatively small number of samples, it is not enough when dealing with

live cultures whose absorbance or fluorescence must be read over a long period (e.g. 48-72 hours). In

those cases, a plate reader is much more useful; the device I have used in my work is the FLUOstar

Optima reader (BMG LabTech).

It is a device that allows measuring absorbance and fluorescence directly from the plate wells (e.g. 96

or 384) in which yeast cells are growing; therefore, it combines the features of a spectrophotometer

with those of an incubator (e.g. shaking the plates, keeping a constant temperature thorough the

experiment).

The device is connected to a pc where all the data collected are recorded. The software running in the

pc allows the user to define all the parameters:

- The general settings, namely which kind of measurement are carried out (absorbance, fluorescence,

FRET etc.), the size and type of the plate used, the global duration of the experiment and the duration

of each stage of the process etc.

- The specific parameters such as temperature, rounds per minutes, orientation of the shaking etc., but

also absorbance or excitation/emission wavelengths.

In the software interface, each well can be renamed (this name will be used to flag the resulting data

from that well) or flagged as “blank well”, which is relevant for the following data analysis. The user

can load previously saved parameters or protocols, and he can write and run homemade scripts, which

are useful when combining multiple operations in the same experiments (e.g. measuring absorbance

and fluorescence, or fluorescence in different wavelengths, in the same cycle).

Finally, the data recorded can be exported as csv (comma separated values) files for processing and

statistical analysis (e.g. in an R environment), but they can also be accessed and analysed using the

correspondent analysis software. For instance, recorded values of each sample of a 96-well plate can be

represented as graphs nested inside a 96-boxes table, thus allowing for a quick comparison of all the

samples. When analysing the results, the user can choose to deal with unmodified recorded values or

with normalized values, which are the original values minus the mean values of the blank-flagged wells.

It must be noticed that the device can perform instant measurements; these are particularly useful for

calculating the concentration of cells in each sample (i.e. well of a plate). Instant cell concentration

measurements should be performed before any longer analysis in order to check that the correct amount

of cells has been added to each well, namely a number of cells that can sustain an exponential growth.

Page | 30

3. Results

3.1. Network modelling

3.1.1. Drawing the network

First step: general layers

The very first step of my work has been the drawing of the network. We decided to use a complete

network, comprising all the cellular processes, rather than limiting it to a single process; nevertheless,

we did not want to (and we could not) characterize all the processes in detail, therefore I have focused

on some processes and used some approximations to model the other ones.

The choice of creating a whole-cell network was driven by the idea that this work is not self-conclusive;

rather it could be used as a starting point for future development in order to achieve a complete network,

showing each process in detail. As modelling language, we choose Petri Net: it is relatively easy to

learn and put into practice, and its features allows for creating multi-scale, multi-level networks that

can be simulated.

At the very first level, I have drawn a network showing all the main cellular processes, common to all

the living organisms: transitions such as “transcription”, “translation”, “metabolism”, and places such

as “RNA”, “proteins”, “DNA” etc.

The main purpose of this level is providing a scaffold for the lower layers, where processes are

investigated in more details. Therefore, it is made mostly of coarse nodes (both places and transitions),

which are not part of the final matrices that I have employed to simulate the multi-level network.

This layer also hosts a simplified sketch of the cellular replication process, which culminates in a place

that works as a cell counter.

In the second level, I have drawn networks that are slightly more detailed; nodes are still generic, i.e.

they do not correspond to specific molecular species or reactions, but each network show a (simple)

representation of the processes that constituted the transitions of the first level. This way, I have added

a network that describes metabolism, another one showing transcription and another one representing

translation. At this stage, the network can be employed to describe all the eukaryote cell, but it does not

apply to bacteria; in fact, the translation network explicitly distinguish processes that happen in the

cytoplasm from processes happening in the endoplasmic reticulum (which is absent in bacteria).

From this stage onward, I have deepened the description of translation processes only, leaving the other

processes at this level of detail.

Page | 31

Second step: detailed layers

The second step consisted in the creation of the layers describing the translation process. This broad

term include: translation; modification of proteins in the cytoplasm; translocation and modification of

proteins in the endoplasmic reticulum, their following processing through the Golgi apparatus and their

possible secretion or expression in membrane); degradation of protein via the ubiquitin-proteasome

system and via the autophagy mechanisms.

The translation events that take place inside the cytoplasm, as well as the degradation processes, have

been explained by using generic nodes instead of real gene products, but increasing the details provided

by the network; therefore, some insights on the different stages of the translation, folding,

posttranslational modification and eventually degradation are provided.

Differently, the “translation events” that take place inside the endoplasmic reticulum have been

described in detail, using a set of intertwined networks; real gene products and their interaction have

been employed in the drawing of these networks. In order to build them I have begun looking for known

genes and their relationships; main sources of data have been the KEGG pathway website and the

Saccharomyces Genome Database repository.

First, I have retrieved the pathway map of protein processing inside the endoplasmic reticulum; this

map has provided me the name of the most important genes involved in protein processing, from the

translocation of the nascent polypeptide chain to the export to the Golgi apparatus, as well as those

genes involved in the ERAD and the UPR. This list can be found in the supplementary materials (6.4.2)

Second, I have looked for these genes in the SGD repository, aiming to understand their function, their

interplay with other factors and the physical interaction occurring in the ER. This way, the original list

has slightly changed by adding some genes whose functions could be useful in modelling the process

and deleting some others that would have likely been useless in the model.

I could have kept them, but my aim was creating the simplest network possible, thus avoiding all the

unnecessary agents that would have only increased the size and complexity of the network without

improving it. In particular, I was interested in genes whose deletion gives rise to viable mutant strain,

which I needed for the experimental part of my work.

The final list consists of:

- Proteins involved in the protein folding, such as chaperones and disulfide-isomerases;

- Enzymes involved in the N-glycosylation and subsequent changes in the sugar chain;

- Signalling proteins and downstream signals (outside the ER too);

- Channel constituents for protein translocation, retrotranslocation etc.;

- Proteins involved in the vesicles formation and protein export;

- Ubiquitinating enzymes and ancillary proteins involved in the ERAD.

Page | 32

Third, I have used those genes to draw a network showing the ER processes and another that focuses

on the ERAD system. It must be noticed that these networks occupy the same level of the hypothetical

hierarchy of the whole network, meaning that they could be merged in a single network; I have preferred

keeping them separate simply for clarity reasons.

I have “translated” KEGG pathway maps to Petri Net models to draw these networks; since those maps

only show agents (i.e. places), this has required the explicit definition of the actions (i.e. transitions)

and the molecular species that are subject of these agents and actions (i.e. different stages of protein

maturation). Of course, I have also had to determine how to represent relationships and interaction

among genes in the Petri Nets; again, I have tried to use the minimum amount of edges (and transition),

in order not to overload the network itself.

The next step of this “translation” process has been deciding the names of the nodes; since these projects

are made to be public, and maybe extended by other authors, I had to find and use unambiguous names

for the nodes of the network. At this stage, I have also changed the temporary names of all the nodes in

the rest of the global multi-level network, in order to write them using the same criteria.

- For places representing real gene product, I have adopted the standard name (i.e. the official

Gene Symbol), retrieved from the SGD; I have chosen these names because they are short (they

fit well in the network) and yet unambiguous.

- I had to invent the names of the general places (be they coarse or not),, trying to employ terms

that could easily describe the molecular species/category; for instance, I have used the term

“G3M9 glycosylated intermediate” to define a specific stage of the protein processing inside

the ER, where “G3 M9” refers to a specific stage of the sugar chain processing)

- For all the transitions, I have decided to employ names that are recorded in the Gene Ontology

vocabulary, in its domain of functional terms. Using these terms in a network is useful not only

for improving its clarity but also for helping in the hierarchical organization of the transitions,

which should follow the organization of GO terms; therefore, it is also useful in organizing

layers, since each lower layer corresponds to a coarse transition in the upper layer.

Fourth, I have connected all the single networks together. This means joining in the same project all

different layers and ensuring that the hierarchy is maintained, but also linking “sibling” networks, i.e.

networks that lay in the same layer; coarse transitions and dispersed places have been instrumental in

linking layers and sibling networks, respectively.

Once the network has been completed, I have specified all the necessary parameters, namely weights

of the edges, mass action parameters of the transitions and tokens of the places (the rationale I have

used is explained in the next paragraph). Finally, I have exported the final matrix and manually checked

it in order to verify that all the interactions had been correctly written.

Page | 33

Third step: reporters in the network

The third step consisted in adding reporters in the network, i.e. places that could be employed to

summarize the “phenotype” of the network, thus allowing for comparison between model and

experimental data.

As I mentioned in the introduction, a possible reporter could have been the growth rate, namely the

number of cells divided by the simulation time; the time depends on the algorithm adopted, whereas the

number of cells can be read in the “cell counter” place located in the uppermost layer.

Some changes might be needed on the simulation script when using this reporter. For instance, the

network may represent a cell that can only live by acquiring nutrients from the external environment,

and those nutrients are limited and must be shared by all the cells in the culture. In this case the finite

number of tokens in the “external nutrient” place must be divided for the number of cells generated, so

that the network have less nutrients and could reach a dead state before expected.

Another possible reporter could have been the number of dead cells due to apoptosis. Apoptosis could

be modelled as a reduction in the aforementioned “cell counter”, or it could be drawn as a pathway

leading to a dead state of the model (e.g. by removing tokens from fundamental places, such as the

place corresponding to the DNA).

The use of GFP as reporter (normal and fused with an ER-targeted protein) does not require any other

additional reporter in the network, since its abundance can be studied using generic places that are

already in the network. The idea is that the level of the GFP corresponds to the mean levels of all the

other proteins, or at least changes in the GFP level are proportional to changes in the levels of other

proteins.

Therefore, normal GFP levels can be evaluated looking at the amount generic cytoplasmic proteins,

whereas ER-targeted GFP levels and fusion protein levels can be obtained from the amount of generic

ER-processed proteins. It must be noticed that the simulated values refer to a single cell only whereas

the measured values refer to many cells, and therefore must be divided by the number of cells.

The last reporter considered is GFP transcription dependent on the Unfolded Protein Response.

I could have added to the network a gene that is specifically transcribed and translated after UPR; this

way, levels of its gene product could have been evaluated and confronted to the amount of UPR-

dependent GFP produced after UPR events in real cells.

However, due to the design of the whole network, I have envisioned that the abundance of the activated

transcription factor could be used in place of the protein produced by the action of that transcription

factor. This way I could “recycle” a place that is already in my network rather than adding a completely

new pathway, thus simplifying the following stages of simulation and optimization of the network.

Page | 34

3.1.2. Focus on: modelling problems

Choice of the parameters

In theory, all the parameters of a biological network could be retrieved from literature; in practice it

could not be made because the network is not homogeneous, i.e. some places are specified at gene level,

others represent generic “agents”. First, some of the parameters are not known, and many are only been

studied in standard conditions, so that we would have no idea of their values in all the other conditions.

Second, even if we knew the all the values of all the parameters in all conditions, we could not know

whether these parameters could be employed in simulating an incomplete network.

Therefore, some parameters must be estimated; it is important to choose these values properly because

if the simulation starts from a not biological plausible network, it might be impossible to reach a

working network (i.e. a network that fit the experimental data) using the algorithms I have developed.

This is because this multidimensional parameter optimisation has a very rugged solution space, which

is typical explained using the Travelling Salesman Problem (Applegate, 2006). Therefore, it would

require very sophisticated Monte Carlo techniques and a large amount of CPU time to be solved.

In order to reduce the complexity of the problem, I have decided to start from a “biological plausible

network”, showing those properties:

- Its simulation tends to reach a dead state, that is, the catabolic reactions in the network must

destroy more tokens than those created in the anabolic reactions. In other words, since the

network represent a closed system, it must be avoided the creation of self-sustaining networks,

which would violate the second principle of thermodynamics.

- It must be possible to avoid dead states by supplying nutrients (i.e. tokens) from external

sources; that is, network must not reach dead states before nutrients are finished (unless

apoptosis intervenes) because of the action of some errors in the architecture of the network.

External sources could be unlimited or not, thus allowing for simulating cultures growing in

media whose nutrients level is maintained constant or depletes during the cell growth.

- During the simulation, the amount of tokens in each place can oscillate but it must remain

within some boundaries. More generally, tokens must not accumulate in few places leaving the

others empty. It should also be avoided that some transitions fire not even once during the

simulation, whereas some others are always firing; more generally, even if the simulation must

go through some pathways very rarely, it should be avoided the creation of short circuits that

cause the simulation going through very few pathways.

- Last but not least, since this network has been created by substituting read-only edges with

coupled normal edges, edges forming a couple must have the same weights. On the other hand,

when a place is both read and used in the firing of a transition, the weights of the edges in the

couple must diverge, the pre-arc weighting more than the post-arc.

Page | 35

These rules apply to the architecture of the network and the weights of the edges, but they also apply to

the other two kinds of parameters, namely tokens in each place and Mass Action parameters.

I have assigned tokens to places in order to create a configuration of the network that, when simulated,

could show the aforementioned properties; in particular, the amount of tokens greatly impact which

transitions are chosen and therefore it determines whether tokens accumulate in some places.

Therefore, I have assigned tokens to each place in order to enable all the transitions, except those

inhibiting processes, and then I have manually modified some of these amounts of tokens in order to

obtain the desired feature. These markings have no biological meaning, but they can be employed for

our purposes in the following optimization stages.

Mass Action parameters have been set to “1” as default; the idea is that network properties should

emerge independently from this kind of parameters, which are the real parameters that are going to

change during the optimization process. Nevertheless, some parameters had to be decided at this stage;

for instance all those transitions that have no biological counterpart but are required for the network

functioning, have parameters set to infinite, so that their duration (calculated using the Gillespie

algorithm) is zero; these parameters will not be changed during the optimization stage.

Besides, in my network there are no concurring pathways, i.e. a classic metabolic pathway and a salvage

pathway producing the same molecular species, but if they had been in the model, I would have used

Mass Action parameters to insure that the first pathway would have been preferred over the second one.

Moreover, in order to avoid unwanted dead states, catabolic processes must be kept under control, so

that tokens are not consumed too quickly. At first, I had thought of drawing these processes as

transitions requiring many tokens in the input place to fire (read-only edges), even if consuming only

one token. This solution would have solved this problem, but it would have caused a limitation to the

stochasticity of these processes: the architecture would have not allowed the transition to fire when the

number of tokens in the input place is low. Then, I have decided to employ mass action parameters

instead of weights to model these processes; I have set these parameters to 0.1, so that the corresponding

transitions would happen less frequently. This solution solves the issue and, at the same time, it lets the

model be fully stochastic: these transition can always happen (if the input places are populated), even

if that cause a place to be totally emptied of its tokens.

Image 3.1. On the left: first solution (as drawn in esyN and Snoopy). On the right: second solution

Page | 36

Logic gates

By the term “logic gates” I refer to transitions that do not have any biological counterparts or meanings,

rather they are necessary for the network architecture; as I mentioned before, they all have parameter

values equals to infinite. I have drawn the templates of all these gates, which are now available inside

the esyn.org website and can be added as “modules” to Petri Nets by any users.

They are created and applied with the purpose of performing simple logic operation. For instance: AND

(standard operation of Petri Nets) means that all the input places must be populated in order to enable

the firing of the transition; OR means that at least one input place must be populated; XOR means that

not all the input places must be populated; NOT is the standard action of the inhibitory edges etc.

As I mentioned in the introduction, coarse places are considered as implicit AND gates; since a coarse

place linked to a real transition could be written as if all its child places were linked to the same

transition, this means that all the children places must be populated to enable the firing of the transition.

This conversion is automatically performed when writing the network as matrices.

This feature is useful when the coarse place represents a molecular complex: all its subunits must exist

in order to produce a complex that can perform its activity. On the other hand, it would be detrimental

when the coarse place represents a generic category that comprises its child places but it is not limited

to them. In this case, it would be a mistake interpreting the link between coarse place and real transition

as an AND logic gate; rather, it should be converted into an OR logic gate.

It would be a useful extension of the drawing tool if allowed the user to choose which kind of conversion

must be applied to each coarse place; however, currently this conversion towards OR logic gates must

be done manually:

- First, the real transition must be converted into a coarse transition; this way the automatic

conversion to AND gates cannot be trigged when obtaining the matrices. The problem is that

coarse transition and coarse places are non-existing nodes, thus the link between them is lost.

- Second, a logic network is created inside the newly made coarse transition. It is a network

showing only the “OR” logic gate: each children place is linked to a different copy of the

original transition, and they all produce the same output place; therefore, if one children place

is populated, that is enough to produce tokens in the output place.

Image 3.2. On the left: NAND logic gate. On the right: XOR logic gate. Source: esyn.org

Page | 37

3.1.3. The final network

All the single networks that compose the final network can be found in the supplementary materials;

hierarchy of places and occurrence of dispersed places in the network is also noted there. Here, I will

comment some other interesting features and descriptions.

The first level is occupied by a network called “whole cell”; it is made of

- coarse places: CYT-Functional proteins (i.e. all the proteins that work in the cytoplasm) and

ER-Functional proteins (i.e. working in the endoplasmic reticulum)

- coarse transitions: Transcription, Translation and Metabolism

- non-coarse transitions (for now): Cell division, DNA replication, Apoptosis (it is a “well”

transition that consumes DNA tokens without producing anything)

- non-coarse places: Apoptosis factors, CYT-Polymerases (comprising both DNA and RNA

polymerases), DNA, RNA, Amino acids, Nucleotides, Cells counter.

Image 3.3 Example of a non-detailed network: “whole cell” network.

The second level is occupied by three networks corresponding to the coarse places of the first level.

Transcription network is made of:

- coarse transitions: none, because this is already the highest level of detail for this field;

- non-coarse transitions: gene transcription, RNA processing and preRNA and RNA destruction;

- non-coarse places: DNA, RNA, Nucleotides, CYT-Polymerases, preRNA.

Page | 38

Metabolic network is made of:

- coarse transitions: none, because this is already the highest level of detail for this field;

- non-coarse places: Nucleotides, Amino Acids, Energy, Metabolites, External metabolites,

membrane transporters, CYT-Enzymes;

- non-coarse transitions: nucleotide and amino acid catabolism, i.e. destruction of

nucleotides/amino acids, generating generic “metabolites”; nucleotide and amino acids

anabolism, i.e. the opposite reactions, which require “metabolites” and energy; metabolic

reactions, i.e. using metabolites to produce energy; uptake, which transfers tokens from the

“external metabolites” place to the internal “metabolites” place.

Translation network is made of:

- coarse transitions: CYT-processing and ER-processing;

- coarse places: CYT-Functional proteins and ER-Functional proteins (linked to coarse transitions);

- non-coarse transitions: “translation starts”, i.e. the first step of translation, which is common

for proteins that mature in the cytoplasm and in the endoplasmic reticulum;

- non-coarse places: RNA, Amino Acids, Ribosomes, Primed translation (the output of the non-

coarse transition), eIF2α (working as inhibitor of the translation, activated by UPR events).

The third level consists of four real network and four logic networks. I have already mentioned how

logic networks are created and how they work; therefore, I will describe their purposes only:

- “ER retaining” and “CYT localization” networks are required for modelling the production of

a generic ER-processed and CYT-processed proteins;

- “hidden transition 4” and “vesicle formation” are required for modelling the opposite reactions,

i.e. the degradation of a generic CYT-processed or ER-processed protein.

Image 3.4 Example of a logic network: the same transition is repeated many times but there is one output only

The “ERAD retrotranslocation” network describes the steps from the recognition of misfolded proteins

to their addressing to the proteasome, thus including the ubiquitination steps. Some of the most

interesting nodes are the coarse places representing molecular complexes: Chaperones, CYT-Hsp40,

Sec61, PDI and Derlin.

Page | 39

The “CYT processing” network describes the protein processing inside the cytoplasm. It is made of:

- coarse places: CYT-Functional proteins; it has required the introduction of coarse transitions

containing logical networks, i.e. “logical hidden transition 4” and “logical CYT-localization”;

- real coarse transitions: catabolic process, another network of the third level, although it might

be speculated that it forms another independent level;

- non-coarse places: Primed translation, Amino acids, Ribosomes, CYT-Chaperones, unfolded

protein, folding intermediate, folded protein, destruction targeted protein;

- Non-coarse transitions: “translation continues”, CYT folding, Posttranslational Modifications,

and hidden transitions 1, 2, 3. The first three are required for the protein processing, the other

three are required for the creation of a OR logic gate inside this network; this gate is required

to model the degradation of proteins and protein intermediates.

The “ER processing” network is very vast, describing all the steps of protein folding, modification and

targeting toward the Golgi or toward the destruction (ERAD), and the subsequent steps of processing

in the Golgi etc.; here are described the most important nodes:

- “ER-Functional proteins” is a generic coarse place, which has required the introduction of a

coarse transitions called “logical ER retaining”

- “ERAD retrotranslocation” is a real coarse transition, containing another network of the third

level (same consideration applies as before).

- Sec13/31, Sec23/24, ER hsp40, ERAD-factors, OST, Sec61 are coarse places that represent

molecular complexes; therefore, they do not require any logic gate and network. Their children

places are located in the same network, encircling their correspondent parent places; they are

easily spotted because they have no connections to any nodes.

The “catabolic process” network contains both the autophagy and the ubiquitin-proteasome pathways,

expressed as generic processes, i.e. there are not real gene products. Cytoplasmic processed proteins

(both native and misfolded) targeted for destruction can enter both pathways; ER processed proteins

can only enter the autophagy pathway; ER-misfolded proteins can only enter the ubiquitin-proteasome

pathway (at the end of the pathway because the ubiquitination steps have already been carried over in

the “ERAD retrotranslocation” network).

In this network the most interesting nodes are the “ER-Functional_proteins” coarse place and the

correspondent “logical vesicle formation” coarse transition: the coarse places represent a generic place,

which therefore has required the use of a coarse transition containing the fourth and last logic network.

Page | 40

3.2. Coding the scripts

3.2.1. Simulation script

Input files

As I have mentioned, networks can be written as matrices and vectors, which represent the input files

for any simulation script; when creating the matrices, all the networks levels are collapsed into one.

Vectors are employed to represent the names of the places, the name of the transitions, the marking of

each place and the Mass Action parameters for each transition.

Matrices are employed to represent the weights of the edges; their rows consist of transitions whereas

their columns consist of places. Therefore, matrices can summarize inhibitory edges, read only edges,

inward edges (i.e. edges going towards transitions), outward edges (i.e. edges going toward places) etc.

Snoopy software allows the user to export matrices as a single MatLab files; then, an in-house developed

python script converts this file into multiple text files, each bearing one vector or matrices. These text

files are the input of the R script.

There are several functions in R to read external files and save the read data into a variable; examples

of these functions are “read.csv()”, “read.delim()”, “read.table” and so on. They differ for the kind of

input they can read (e.g. numeric matrices, generic tables, table written as comma separated values files,

incomplete tables and so on) and the class of the variable they produce (e.g. matrix, vector, list etc.).

When calling these functions in a script, other features can be set; for instance, a function could be

written so that it does not count the first line of a file, which is particularly useful when dealing with

files that have a header.

Therefore, this is the command I have written: matrixVariable <- as.matrix(read.delim("file path.txt")).

It must be noticed that the matrices representing input edges have positive values even if those edges

actually subtract tokens from places; therefore, their sign must be changed into negative before

employing those matrices.

esyN tool allows the user to export matrices as a single JSON file. This file can be read in the R

environment, provided that the “rjson” package is installed and working, and its content can be assigned

to a variable. Matrices and vectors can be extrapolated directly from this variables and assigned to the

correspondent variables; the prototype command is matrixVariable <- filevariable$part_of_the_file for

vectors and matrixVariable <- do.call(rbind, filevariable$part_of_the_file) for matrices.

I have employed the first method when trying to draw and simulate Snoopy networks, but I have hastily

moved to the second one since I have started using esyN tool for network creation.

Page | 41

Other inputs

In both cases, during the input reading stage some more variables must be set.

The number of steps (“stepsNumber” variable) determine how accurate the simulation is, meaning that

a certain amount of steps is required for all the network properties to emerge, and if a lower amount of

steps is chosen, some properties could be lost. Unfortunately, this number of steps is unknown and

therefore an arbitrarily high number must be set instead; even better, the whole simulation should be

repeated using different numbers of steps and thus obtaining the minimum amount required.

The number of iteration of the whole simulation (“iterNumber variable) determines how many times

the simulation is repeated; the purpose of these iterations it will be explained in the next paragraphs.

The number of points (spotsN) and the threshold (sensSd) variables are important in the analysis of the

simulation data. The idea is that each simulation output is an irregular time series and therefore, when

calculating mean values among the simulations, these time series must be interpolated to some specific

common time points: spotsN determines the number of this spots. If some simulation lasted sensibly

longer or shorter than the mean duration, they should not be considered; the threshold variable

determines how distant (in standard deviation units from the mean) a duration must be in order to cause

the discarding of the correspondent simulation.

These parameters are set to default values that, based on my experience, should allow for a relatively

quick but reliable simulation; they can be changed in the script or during the simulation, writing them

in the user interface when prompted to do so.

Moreover, during the simulation, it could be possible to analyse a specific place of the network rather

than the whole network. In order to do so, its name must be assigned to the “choicePlaceName” variable,

so that its corresponding column in the matrices would be assigned to the “choicePlaceNumber”

variable. By default, there is no place assigned to these variables (each network differs and has different

place names), rather they are written so that all the places of the network are considered.

Finally, in the input setting stage, some other variables must be initialized (even if no value is assigned

to them at this stage), libraries must be loaded and possible external scripts must be called. In fact, since

all the scripts I have written share many of their functions (e.g. reading input files), I have written those

functions in external scripts, which must be called for the scripts to work.

It must be noticed that another version of the simulation script exists; in that version, the script is

complete, meaning that there is no need to call any external scripts, but it is actually split into two

(simulations and the analysis of the simulation. This latter version is that one available on GitHub,

accompanying the esyN tool.

Page | 42

Totally stochastic core

The core of the simulation consists of a complex function, which could be written in the script code or

in another file; both versions are available in the supplementary materials (6.2). Its functioning is quite

simple: the simulation is repeated for the selected number of steps, unless a dead state is reached

beforehand; the total amount of steps performed corresponds to the duration of the simulation.

Therefore, the function has the following workflow:

1) A probability vector is created from the vector containing the Mass Action parameters, and a

transition vector is created, containing numbers from one to the number of transitions.

2) A transition is randomly chosen, taking into account the likelihood of each transition

3) Some “if clauses” check whether the network contains inhibitory edges and, if so, whether the

chosen transition is inhibited or not.

4) If it is not inhibited, another “if clause” is employed to check whether it is enabled or not, i.e.

whether each place involved in that transition has enough tokens for its firing.

5) If it enabled, then the marking of the network is updated by subtracting the consumed tokens

and adding the produced ones; this new marking is recorded in a global matrix containing the

markings of each step. Then, another step is performed starting from point 1.

6) If the transition is inhibited or not enabled,

then the probability and the transition vectors are updated by deleting that transition; the step is

then repeated from point 2, without updating the marking of the network. If all the transitions

are deleted, then a dead state is reached; in this case, the simulation stops.

7) When the simulation end (or is stopped), the global matrix (containing all the markings at each

step) is returned to the script and stored in another variable.

Image 3.5 Core functions workflow (both stochastic and Gillespie cores)

I have also tried to employ a different approach, namely calculating which transitions are enabled before

choosing one; this way, I could have avoided picking disabled transitions. I have abandoned that path

because it was clear that the script would have been computationally heavier, not lighter, than the

previous one.

Page | 43

Gillespie core

The core of the Gillespie simulation is almost identical to the core of the totally stochastic simulation;

the only features that differ are the formula employed in the choice of the firing transition and the

method employed for calculating time. The final matrix contains the markings reached and the elapsed

time at each step of the simulation. Therefore, the function has the following workflow:

1) “sweep()” function is employed to sum, for each transition, all the tokens inside its input places:

the input matrix signals which places are involved, the tokens vector define the number of

tokens in each place. Therefore, a vector is created; by multiplying it and the vector containing

the Mass Action parameters, the final probability vector is obtained. Moreover, a transition

vector is created, containing numbers from one to the number of transitions.

2) For each transition, an exponential distribution is calculated using the correspondent value in

the probability vector as rate of the function (i.e. inverse number of the function mean value);

a random number is generated from each distribution, thus creating a time vector.

3) The minimum value of this vector is the “waiting time” of the simulation step; the firing

transition is its corresponding transition (i.e. that one that has generated the exponential

distribution and the random number).

4) Some “if clauses” check whether the network contains inhibitory edges and, if so, whether the

chosen transition is inhibited or not; if it is not inhibited, another “if clause” is employed to

check whether it is enabled or not, i.e. whether each place involved in that transition has enough

tokens for its firing.

5) If it enabled, then the marking of the network is updated by subtracting the consumed tokens

and adding the produced ones; total elapsed time is updated by adding the newly calculated

“waiting time”. This new marking and the elapsed time are recorded in a global matrix

containing the markings of each step; then, another step is performed starting from point 1.

6) If the transition is inhibited or not enabled, then the time and the transition vectors are updated

by deleting that transition; the step is then repeated from point 3, without updating the marking

of the network and the total elapsed time. If all the transitions are deleted, then a dead state is

reached; in this case, the simulation stops.

7) When the simulation end (or is stopped), the global matrix (containing all the markings at each

step) is returned to the script and stored in another variable. If the simulation had stopped before

its natural end, the last line of the matrix is repeated but the amount of time is made negative,

in order to flag that state as a “dead state”.

I have also tried to employ a different approach, namely calculating which transitions are enabled before

choosing one; this way, I could have avoided picking disabled transitions. I have abandoned that path

because it was clear that the script would have been computationally heavier, not lighter, than the

previous one.

Page | 44

Iterating the simulation

As I have mentioned before, the simulation scripts I have creates allows for the reiteration of the

simulation; the number of times a simulation is repeated is set in the “iterNumber” variable.

Reiterating is useful to calculate mean values and to reduce the intrinsic variability of the simulation

output, i.e. that variability that is not due to the stochasticity of the cell processes, rather to the

stochasticity of the algorithm itself.

Moreover, when reiterating new properties emerge, i.e. the properties of a group of cells (a colony, for

instance) rather than the properties of a single cell. As example, I have reported the behaviour of a

feedback loop (Blatke, 2011, p. 50); the three following images represent the Petri Net model (upper

diagram) and the simulation outputs when iterating the simulation 100 times (graph on the left) or when

no reiteration is performed (graph on the right).

Image 3.6 Petri Net diagram (upper picture) and graphs representing the output of its simulation.

The oscillatory behaviour produced by the negative feedback loop can be easily noticed when

performing a single simulation; when iterating it, though, another feature emerges: peaks are attenuated

during the simulation, ‘till all the places that can accumulate tokens (i.e. not the places representing

enzymes, such as E1, E2, E3) tend to have the same mean amount of tokens. This feature could not be

guessed without repeating the simulation and calculating the mean of the results.

Page | 45

It must be noticed that many statistical analyses can be performed on the results of the simulation;

calculating the mean among them is one of the simplest and more widely adopted, and that is the method

I have employed in my scripts.

In order to calculate mean values, some steps must be performed:

1) Simulation is repeated many times and the output of each simulation is recorded in independent

variables; a time vector is created, containing the duration of each simulation

2) Mean and standard deviation are calculated from the distribution of those durations, and a graph

of this distribution is plotted. Outliers, i.e. simulation that lasted sensibly more or sensibly less

than the mean duration, are removed; the exclusion distance is set in the “sensSd” variable.

3) Among the remaining simulations, the shortest duration of the simulation is chosen as the time

of the mean simulation; that means that all the other simulations are trimmed to that time,

discharging the markings recorded in the steps that had followed that time.

4) A time vector is created by dividing the minimum time calculated into a number of time points;

this number is set in the “spotsN” variable and determines the accuracy of the following steps.

Each simulation, which is an irregular time series, is converted into a “zoo” object and markings

(i.e. tokens in each place) are interpolated for each time point; this way, each transition is

converted into a regular time series.

It must be noticed that this step can be skipped when employing the totally stochastic core of

the simulation; in facts, in that case the simulation are already regular time series, and the

markings are recorded at the same time points, therefore interpolating is not necessary.

5) A mean time series is calculated using all the non-discarded simulations, i.e. calculating the

mean amount of tokens in each place in each time point; moreover, a summarizing table is

created by joining the final markings of each simulation.

Those matrices are exported and saved as text files, in the same folder that contained the input file, so

that they can be accessed anytime outside the R environment; the mean time series is useful for studying

changes of mean markings during the simulations, whereas the summarizing table is useful for

comparing the results of different simulations.

Moreover, a graph is plotted by using data from the mean time series; the x-axis represent the duration

of the time series, i.e. the duration of the shortest non-discarded simulation, whereas the y-axis represent

the amount of tokens in each place. If a specific place had been set, the graph is created using the

“plot()” function and it only shows the trend of that place. If no specific place had been chosen, the

graph is created using the “matplot()” function and it shows the trend of all the places; the graphs

employed in the description of the iteration stages have been created using this function.

Page | 46

3.2.2. Optimization script

The starting point 1

In my work, the training of the network has been performed by optimizing the network, i.e. changing

its parameters so that the ratio between the final value of a reporter in wild type and mutated networks

is the same of the ratio measured in the experimental part (or found in the literature). As I have

mentioned, it employs a Monte Carlo method; inside this method the values of the reporter are

calculated by performing a simulation with the aforementioned Gillespie algorithm. This is why I have

written all those scripts as pieces that can assemble in different ways, so that the main formulas could

be employed in several circumstances; therefore:

- The input files are the same files that are employed in the simulation scripts, and are

called/read/assigned to variables by using the same external scripts; however, since this

optimization phase has been performed only on networks drawn in esyN.org, I have only

employed the script that reads the JSON file.

- The simulation is performed by calling the same functions employed in the simulation scripts,

the only feature missing is the iteration of the simulation; each simulation stage is repeated

twice, once using the parameters of the “wild type” network and once using the parameters of

the “mutated” one.

- The output files are text files that can be read as input files of the simulation scripts, so that the

simulation can be performed without changing the network; they can also be read by the user

and applied to change the network, thus obtaining its final version. As I will explain later, they

contain the vector representing the (changed) set of Mass Action parameters.

A mutated network is a wild type network with a place missing, which corresponds to the mutated gene.

The problem is that deleting a place alters the equilibrium of the network: upstream transitions, i.e.

transitions that produced tokens in that place, are transformed into “well” transitions, which consume

tokens without producing them; on the opposite, downstream transitions, i.e. transition that required

tokens, are transformed into “source” transitions.

Therefore, in order to prevent upstream and downstream transitions from firing, they can be deleted

from the network or their Mass Action parameters can be set to zero, so that they cannot ever happen.

Instead, setting the amount of tokens of the mutated place to 0 prevents downstream transitions but do

not affect the upstream ones; finally, changing the weights of edges, does not solve the problem at all.

These changes are not performed in the network drawing, rather they are carried on in the optimization

script itself; that makes easier deciding which place should be mutated, and simulating the resultant

outcome. I have written a few variants of the script, differing in the way mutated networks are created:

setting the Mass Action to zero is the easiest way, whereas deleting the transitions seems to be the most

efficient one from a computational point of view.

Page | 47

The starting point 2

Practically speaking, this script changes the Mass Action parameters of the network, thus modifying

the rates of the transitions rather than the architecture of the network; the final output is therefore a new

vector of these parameters. Before starting the simulation, some parameters, specific of the optimization

stage, must be chosen:

- The number of Monte Carlo steps (“mcNumber” variable) determines how many changes are

applied to the original set of parameters before the optimization ends; as I have mentioned in

the introduction, this number should be the smallest number possible that allows for reaching

the optimized configuration.

- The number of total iterations of the optimization process (“totIteration” variable) determines

how many times the whole script is repeated; the purpose of these iterations it will be explained

in the next paragraphs.

- The minimum and the maximum weights (“minWeight” and “maxWeight” variables)

determine the smallest and the highest value that can be assigned to a Mass Action parameter

during the phase of random changes of the parameter set; by default, they are set to 0.1 and 100

respectively.

- The inverse temperature (“invTemp” variable), usually set to 0.5, influences how likely is that

an otherwise rejected conformation is actually accepted; by “rejected conformation” I mean a

set of parameters that increase the difference between the simulated and measured ratio instead

of reducing it. Its name derives from the value assigned to this parameter when using Monte

Carlo methods for structure optimization: in those cases, it is equal to
1

𝐾𝑏𝑇
.

Therefore, the first steps of the optimization algorithm can be reassuming in the following way:

1) The input files are read, the external script are called and all the script parameters are set (both

the optimization and the simulation parameters); in this step, users are prompted to set the real

measured ratio of reporter values from wild type and mutant cells.

2) Selection of the “reporter” place, whose levels will be “measured” and used in the optimization

step. It is handled as the place that is specifically analysed in the simulation script: first, it can

be changed in the script or the user can interactively assign it; second, it is assigned to the same

“choicePlaceName” variable and translated into the “choicePlaceNumber” variable.

3) Mutation of the network, i.e. creation of matrices and vectors representing the mutated network;

it can be done in any of the methods discussed above; the place to be mutated is written by the

user when prompted to do so. It must be noticed that if the selected methods involved the

deletion of places and/or transitions, the size of the matrices and the length of the vectors

change; in this case, it might be necessary to “retune” all the formulas (e.g. the

choicePlaceNumber) in order to be sure that they refer to the same item in the variables.

Page | 48

The workflow

Once the script has been initialized, the proper optimization can begin; as the corresponding script, it is

divided into three main stages:

- One value of the vector containing the Mass Action parameters (from here on “vectorPar”) is

randomly chosen and then changed into a random number, extracted from a uniform

distribution extending from minWeight and maxWeight.

- Gillespie simulations are performed on the wild type and the mutant networks using the

corresponding function, and the resulting matrices are stored into variables; from this matrices,

the final value of the reporter place and the final duration of the simulation are obtained. It must

be noticed that the simulation is performed only once per network; this is necessary in order to

keep the computational cost under control, even if this might cause loss of information.

- An “if clause” check whether the mutation introduced has produced networks that reach dead

states; this is performed by simply evaluating the sign of the duration of the simulation, since

negative values are employed to flag dead states. If not, another “if clause” checks whether it

has produced networks that are incapable of increasing the amount of tokens in the reporter

place (i.e. its value is 0).

- If all those clauses are false, then a ratio is calculated between the values of the simulated

reporter in the mutant and wild type networks, and it is subtracted from the value of the

experimental ratio; this way, a delta value is calculated. This delta value is compared with the

delta value calculated in the previous Monte Carlo step (in the first step, infinite is employed

as the old delta value) using the following statement: 𝑒(𝑖𝑛𝑣𝑇𝑒𝑚𝑝∗(𝐷𝑒𝑙𝑡𝑎𝑖−𝐷𝑒𝑙𝑡𝑎𝑖−1) > 𝑟𝑢𝑛𝑖𝑓(1),

where “runif(1)” is a function to extract a random number from a uniform distribution (range 0

to 1).

- This way, if the new Delta (i. e. 𝐷𝑒𝑙𝑡𝑎𝑖) is smaller than the old Delta (i.e. 𝐷𝑒𝑙𝑡𝑎𝑖−1), that

statement is always true, otherwise its validity depends on the difference among the deltas and

the random number generated.

- If the statement is true, then the changes made to the “vectorPar” variable are kept; if the

statement is false, or any of the previous “if clauses” have prevented the computation of the

simulated ratio (and the following stage), then those changes are discarded. Then, another

Monte Carlo step begins, using the new or the old set of Mass Action parameters.

Some other “if clauses” could be employed before calculating the ratio and the delta values. For

instance, it could be improper comparing reporter values reached in different times; therefore, it should

be checked that both simulations of the wild type and the mutant network lasted a comparable amount

of time. Moreover, it could be checked that both networks are stable, i.e. they do not tend to accumulate

tokens in some places because of the mutation of the network or the changes in the parameters. These

clauses are not implemented in the script yet, but they will surely be added in the nearest future.

Page | 49

Image 3.7 Workflow of the whole optimization script (iteration excluded)

Possible extensions of the script

In order to train the network, two conditions (one mutant and one wild type) are not enough; rather

many single mutations must be employed. It is pointless, however, to use them in series, i.e. optimizing

the network using the ratio between reporters in a mutant and wild type and then repeating the

optimization for each mutation: the final set of Mass Action parameters could not be applied

successfully for the first mutation analysed.

Therefore, all the mutation must be employed in parallel, i.e. in the same time; this requires some

changes in the script, first of all that a whole set of mutated vectors and matrices must be generated for

each mutation. Then, one delta value (simulated ratio minus experimental ratio) is calculated for each

mutation; the square values of all the deltas are summed together, as if a vector distance were calculated,

thus generating the global new Delta. The formula is: 𝐷𝑒𝑙𝑡𝑎𝑖 = ∑ (𝐷𝑒𝑙𝑡𝑎𝑖,𝑗)2𝑚𝑢𝑡𝑎𝑛𝑡 𝑁𝑟
𝑗

This new Delta (𝐷𝑒𝑙𝑡𝑎𝑖) is finally compared to the global old Delta (𝐷𝑒𝑙𝑡𝑎𝑖−1, i.e. the delta generated

in the previous Monte Carlo step), and the algorithm proceeds normally.

Page | 50

Another detail must not be overlooked: some Mass Action parameters must not change. For instance,

those “locked” parameters could be related to logic transitions, or they could be the parameters set to

zero when “creating” mutant network (if that is the chosen method). Luckily, there is a quite simple

method in order to accomplish that:

- First, user is prompted into writing the names of the transitions corresponding to the

unchangeable parameters (parameters set to zero are locked by default); those names could also

be written in the script, or they could be read from an external file. A possible implementation

of the script could allow the automatic creation of this vector of parameters by reading the name

of the transitions and “locking” all those parameters related to transition that have a special tag

(e.g. “logic”) in their name.

- Second, this vector of unchangeable parameters is removed from the vector containing all the

mass action parameters; the resulting vector will provide the pool of parameters that can be

chosen when selecting which transition should change.

The only side effect of using locked parameters is that it might happen that no transition is left free to

change; in that case, the sole solution is loosening those blocks (if they do not apply to logic transition)

or reducing the number of conditions (i.e. mutants) that are employed in the optimization process.

Last, as I mentioned before, the whole optimization process can be repeated for “totIteration” number

of times; each time it is repeated, a new output file containing the last set of Mass Action parameters is

produced. Repeating the optimization could be useful to verify whether the set of parameters generated

at each iteration are identical or differ; in case they differed, confronting them could be useful to check

how different they are and whether some key features are preserved. For instance, some parameters

could maintain almost the same values in each set of parameters, thus indicating that these values are

very important for the creation of an optimized set of parameters, i.e. their corresponding transitions

are the main transitions in the network.

When multiple output files are produced, they must also be investigated in order to understand which

one should be chosen as final set of Mass Action parameters of the network, and therefore employed in

the following testing stage. The easiest way to perform this choice is simulating the network using all

the available sets (i.e. output files): the set that generates the best results (simulated ratio nearest to

experimental one) is chosen as the definitive one. In order to do so, simulation parameters should be

changed so that they generate results that are more precise; e.g., the number of simulation steps could

be increased (doubled?) compared to the number of those employed in the optimization stage, or the

simulation could be iterated.

Page | 51

3.3. Network optimization

3.3.1. First experiment: growth rate as reporter

General explanation

As I have mentioned in the previous sections, at first I have tried to use growth rate as reporter in my

network, even before defining all the lower layers and specifying the ER pathways. I have chosen

growth rate because it is a well-known reporter, many literature being already available, and it is quite

easy to put into practice, i.e. to experiment on it; moreover, it could be added to the network without

compromising its architecture. Therefore, I have measured the growth rate of several mutant strains,

whose mutations were not obviously related to the cell cycle (e.g. cyclins, CDKs, checkpoint proteins);

however, after obtaining the experimental results I have decided to give up on this idea, partly because

of problems in the modelling, partly because of problems in the experimental stage.

The main experimental issue was that the variability among the replicas I had performed convinced me

that I could not rely on the data I had obtained. This point could have been overcome only by repeating

the experiments many more times in order to yield reliable mean values but of course, I had no idea

how many times should I have performed these experiments to reach the goal.

Moreover, experimental conditions, settings and criteria change in each growth experiment of yeast

mutant strains that can be found in the literature, and some these parameters are not even known or

available; therefore, it is difficult to tune the results together, i.e. using those data from the literature to

drive and interpret the experimental data collected

The main issues concerned the modelling part, though. Since growth rate can be affected in many ways,

and many possible mutations can be studied, I had selected those mutations yielding great changes in

the growth rate phenotype. Therefore, since these mutations belong to many different pathways and are

largely uncorrelated, it would have been essential modelling many pathways in detail and then training

all them together. The problem is that this tremendous increase in the number of parameters would have

yield to a proportional increase in the computational time required for the training stage.

Moreover, even if I could have managed to finish the training stage in an acceptable time, I could not

have been sure that the final network would have been properly trained. In facts, increasing the number

of parameters without increasing the number of conditions causes the increase of the number of possible

solutions (i.e. sets of values that can be employed in the network to obtain the required growth rates).

In other words, I would have obtained a network that behaved well in the selected conditions (the mutant

strains I had employed in the training stage) but that would have had no predictive power at all.

Page | 52

The workflow

Despite the use of this reporter not being optimal, I have nevertheless decided to describe the steps I

have performed, as some of them are common to the other experiments I have conducted.

First, I have chosen the mutant strains to be analysed, selecting those genes that are not involved in the

cell cycle but whose mutation is viable and yields significant changes in the growth rate (Giaever et al.,

2002, suppl. mat.),. Then, I have located these genes in the -80°C freezer containing the library of

single-mutated MAT-A yeast strains, thus ignoring those genes whose correspondent strains were not

available; the final list can be found in the supplementary materials (6.4.1).

Second, I have plated one single bead of each strain into non-selective solid complex medium (YPD+

agar) in order to create a stock of cells that could be employed in the following stages, without

consuming any more beads. From this stock, I have retrieved the cells I have cultured overnight on

liquid selective medium (YPD+G418); it must be noticed that I could grow them on this medium

because all the library strains carry the correspondent resistance gene integrated in the genome

(substituted to the mutated gene). All the strains have been cultivated together in a 96-well plate

Third, I have taken an aliquot of this liquid culture in order to replicate the plate into another 96-well

plate. In order to do so, I have measured the OD of each well of the first culture, and then I have taken

one specific aliquot for each well, so that the second culture had a starting OD equal to 0.2.

This second liquid culture has been employed for the data gathering step; therefore, it has grown

overnight inside the cell-counter, which has kept the temperature at 31°C and has shaken the culture at

300 rounds per minute. This way I could measure the absorbance (i.e. the amount of cells) thorough the

experiment. I have repeated this measurement two more times starting from the solid culture, thus

creating biological replicas (the same strains are repeated but using different cells); it must be noticed

that each 96-well plate already contained all the strains repeated twice, thus creating a technical replica

(the same cells are repeated).

As I have explained before, the results were quite disappointing because both the lag phase duration

and the growth rate in the exponential phase were remarkably different in the biological replicas (but

not in the technical ones). One way to explain this is that some important factors, distinguishing cells

belonging to the same strain, had been neglected and therefore they had to be considered in order to

explain the results; since those factor are unknown, this would have proven to be impossible. The other

explanation is that there was a great intrinsic variability, due to the interaction of many small non-

important factors, and an undisclosed number of replicas should have been employed in order to obtain

meaningful mean results.

Page | 53

3.3.2. Second experiment: GFP as reporter

General explanation

The second run of experiments has involved the measurement of the reporter values in different strains

of yeast, bearing mutations in gene involved in the protein processing inside the endoplasmic reticulum.

The reporter that has been employed in these experiments is the GFP (actually the Sapphire variant of

the BFP), both as normal cytoplasmic variant and the fusion protein GFP-GPCR (G-protein coupled

receptor), which is targeted to the ER by default.

Using these reporters and focusing on a smaller area has allowed me to avoid the modelling issues that

had emerged in the previous run: the final model has a reasonable number of parameters, so that the

network can be easily simulated and optimized. Moreover, since all the mutants belong to the same area

(i.e. sub-network), it could have been possible to restrict the optimization process to that area only (by

locking all the parameters of transition not related to the protein processing), thus speeding up the

optimization process further more. Finally, even if it is impossible to determine whether a trained

network will behave as planned, it is evident that the network trained using this reporter is more reliable

than the network I would have obtained by using the growth rate as reporter.

Therefore, I have conducted two experiments using the two variants of the GFP; these experiments have

the same starting point, i.e. the choice of the genes that need to be mutated. This list had already been

retrieved when building the network, specifically when building the layers related to the protein

processing inside the endoplasmic reticulum; therefore, I only had to check that our library contained

all the selected strains, and eventually removing from the list all the missing ones. Of course, I could

have bought the missing strains, but we have considered that there was no need, since we were not

interested in those mutations in particular and we had enough strains to work on; the final list, which

can be found in the supplementary materials (6.4.3), comprises 52 strains.

Then, as in the previous experiments, I have plated one single bead of each strain into non-selective

solid YPD medium in order to create a stock of cells that could be employed in the following stages.

Then, I have plated E. coli cells carrying the plasmid I had to transfect into the yeast mutant strains.

In the case of the normal Sapphire protein, it has just meant retrieving the cells from the frozen liquid

culture (i.e. without beads) in the -80°C freezer and plating them into a complex selective medium (LB

plus ampicillin, that is the selection marked employed in the creation of these lines).

In the case of the fusion protein, it has meant cultivating E. coli cells, retrieving the plasmid from a

-20°C freezer, transforming the cultivated cells with this plasmid and then cultivating in liquid medium

and selecting the transfected E. coli cells. Generic explanation of this method can be found in the

“Materials and Methods” section, whereas protocol can be found in the supplementary materials (6.3.2).

Page | 54

The workflow

Once I have obtained colonies of the yeast strains and E. coli cells carrying the plasmids of interest, I

could start the transformation step. The whole process has been repeated twice, once for each plasmid,

meaning that I have performed those experiments in series rather than in parallel; anyway, the protocol

I have employed is almost the same in both cases. The detailed protocol can be found in the

supplementary materials (6.3.1); here, I will enounce the workflow and some of its key points:

1) Yeast cells are cultured overnight in liquid medium (YPD + G418) in a 96-well plate. Unlike

the previous experiments, in this case it is impossible to fit two replicas inside one plate,

therefore, replicas are going to be created in a later stage; it also reduce the number of

manipulation that must be done, thus quickening the protocol.

2) Plasmid is retrieved from the bacterial culture by lysing the cells and then purifying the mixture.

In our lab, E.Z.N.A.® Plasmid Mini Kit II are employed; ; their name is due to the fact that

they can be only used to deal with small amount of cells, thus retrieving small amount of

plasmid DNA. They consist of reagents, buffers and purification columns that are needed in the

whole process, from cell lysis to DNA precipitation and plasmid purification.

3) The solution containing the plasmid is analysed in order to measure the final concentration

achieved; this measurement is performed by a device called “NanoDrop”. It is a

spectrophotometer that is designed to do instant measurement of tiny amounts of solutions

(usually, 1µL of the target solution); user can set the wavelength (280nm for nucleic acids) and

the solution volume, and the concentration of the selected species is printed out in the output.

4) The plate containing yeast cells is centrifuged in order to remove most of the culture medium

and a mixture is added to make cell membrane more permeable to DNA; this mixture contains

Lithium Acetate, DTT (dithiothreitol) and PEG (polyethylene glycol). Then a precise amount

of plasmid is added in each well (that means, different volumes of the solution but the same

amount of micrograms); it is accompanied by carrier DNA (e.g. single strand salmon sperm

DNA), which is useful for preventing plasmid degradation by cytosolic DNases.

5) Cells are cultured for a short period (less than 1h) in a water bath, then they are plated into solid

plates containing selective medium (YNB-SC); one petri capsule can only fit half of a 96 well

plate, so two plates are needed. In my case, since all the strains are auxotroph that cannot

produce histidine, uracil and leucine, and since the plasmid reverts the auxotrophy for the latter

amino acid, the selective medium must contain all the amino acids except leucine. At this stage,

more replicas can be created; this is useful to increase the likelihood that a certain transformed

strains grows and forms visible colonies.

6) All the plates are put into an incubator set to 31°C for a couple of nights to allow all the strains

to grow; in facts, it must be noticed that the transformation process stresses the cells, increasing

the duration of the lag phase, and the mere presence of the plasmid slows down the growth rate.

Page | 55

Image 3.8 Some of the yeast strains cultivated and transfected with the plasmid containing the GFP gene

Final step

Once I have obtained the culture of all the mutant yeast strains, I could start the main part of the

experiment, i.e. measuring the fluorescence and the absorbance of each strain growing in a liquid

culture. In order to do that, first I had plate the strains in liquid medium (YNB-SC –Leu in a 96-well

plate), by picking one colony from each strain; then, this culture has grown overnight and an aliquot

from each well has been transferred into a new 96-well plate containing the same medium, thus yielding

a dilution factor of 1:20.

This plate has been employed in the measuring phase: it has been placed in the spectrophotometer and

about 200 cycles has been automatically performed over a period of two days; each cycle is composed

of shaking, absorbance measurement and fluorescence measurement, and it is performed keeping

temperature constant (30°C). It must be noticed that the 96-well plates I have used in the machine are

black, only the bottom being transparent; this is required for an exact fluorescence measurements, in

order to avoid that fluorescence from other wells could be recorded as coming from the well that is

being measured.

The entire measuring phase has been repeated two times for each reporter (i.e. cytoplasmic and ER-

targeted GFP); each time a new 96-well plate has been employed, using the same methods and the same

volume of medium and transferred aliquots. Therefore, the whole measuring stage has required

2(reporters)*3(replicas)*2(days) = 12 days to be completed; the data, analyses and results are illustrated

in the “results” subsection, whereas their application to the network optimization can be found in the

“network optimization” section.

Page | 56

Other considerations

As I have mentioned in the introduction, at first I had employed Venus YFP as cytoplasmic reporter

and the transformed yeast cells were selected on a –Ura medium rather than on a –Leu medium. Then,

since the fusion protein had been obtained using the Sapphire variant, for homogeneity reasons I decided

to use that variant as cytoplasmic reporter too; therefore, I had to repeat this experiment using Sapphire

variant and an YNB-SC –Leu medium.

Moreover, I had some difficulties when applying the protocol to the second transformation, namely that

one performed using the plasmid that carried the gene codifying for the fusion protein.

The first problem was due to the fact that the plasmid had been mistakenly annotated, so that it seemed

that the selective marker was URA3 rather than LEU2: the obvious result is that the first attempt of

creating transformed strains has miserably failed because I had employed the wrong medium (YNB-SC

–Ura). Therefore, I had to repeat the transformation protocol and then plating the transformed cells

using the right medium, i.e. YNB-SC –Leu.

The second problem is that the growth rate of the cells transformed with this plasmid is very low, so

that cells had to be cultivated for more than three days before showing typical yeast colonies; even so,

some strains have not grown at all, therefore I had to remove them from the list of employed strains.

The last consideration that must be done before analysing the results concerns the localization of the

fusion protein GFP-GPCR, because fluorescence levels might not suffice in explaining the phenotype.

For instance, let us imagine a strain that is mutant for a protein involved in the translocation of the

nascent protein inside the ER. In that strain the folding of the fusion protein could still happen and the

fluorescence levels could be equal to those measured in a wild type strain, but the localization of the

native protein would surely differ. In other word, microscopic visualization is needed to gain a more

complete understanding of the data.

I have employed a microscope to look at the cell (bright field) and to localize the fluorescence, trying

to determine whether fluorescence came from the membrane or the cytoplasm. Some of its features are:

- It mounts a set of oil immersion lenses, whose highest magnification power is 100X

- It can be used both in bright field and in fluorescence mode because it is associated to a laser

- it has many filters for choosing the wavelength observed; roughly speaking, they correspond to

the emission wavelength of the most common fluorescent proteins (e.g. GFP, mCherry, YFP)

- The image can be seen through the oculars or can be recorded by a camera, and therefore seen

and stored using a computer.

- The camera software also allows for modifying image capture parameters (e.g. exposition

time), thus allowing for identification of weak and otherwise invisible fluorescence signals.

Page | 57

3.3.3. Second experiment: data

Cytoplasmic-processed GFP

A first analysis of the results can be made using the software of the cell-counting machine. For instance,

by observing absorbance over time it is possible to determine which strains have grown and which

strains have not; it is also possible to verify that non-charged wells are truly empty, and using the

absorbance measured in those wells as blank measure for all the other measurements.

On the other hand, analysing absorbance data on R environment offers more information; for instance,

it is possible to fit a growth curve on the data recorded in each well, and then studying the dispersion

of data (i.e. the deviation between estimated and measured values). The “grofit” package (Kahm and

Hasenbrink, 2010) implements many solutions, i.e. it allows employing many kinds of growth curves

and choosing the curve that fits best.

By these analyses, I have discarded those mutant strains that had not grown in both experimental

replicas, i.e. mutant that had not reached the stationary phase, or those strains whose distribution fitted

very poorly on any growth curve.

Analysing the fluorescence intensity values, some other consideration could be made, the easiest being

which strain had the highest intensity and therefore produced the highest levels of GFP.

One informative data comes from the analysis of fluorescence over time: as it can be seen in the graphs

and data produced, some strains reached the highest levels of fluorescence at the end of the exponential

phase, whereas other reached this level in the mid of the exponential phase. These data can be

interpreted in many different ways, and should be subject to further analyses; in the meantime, though,

I have decided to employ all the strains whose behaviour was confirmed, observed in both replicas.

After these preliminary considerations, I could compare absorbance and fluorescence levels among the

non-discarded strains; for each strain, I have calculated the fluorescence intensity in the middle of the

exponential growth phase (𝐹50), and then I have employed that value for further comparisons.

In particular, by dividing the value calculated in mutant strains for the value calculated in the wild type

strain, I have obtained the experimental ratios that I needed for the optimization phase. If the ratio of a

certain mutant strain could be measured in both the replicas, I have employed the mean among those

ratios as the final ratio for that strain; 𝐹50 values can be found in the supplementary materials (6.4.3).

At the end of these analyses, I am confident that the cytoplasmic-processed GFP can be employed as

reporter because meaningful levels of fluorescence can be read in almost any strain, and because its

expression does not impair cell growth. This reporter could seem too far from the processes we want to

observe and evaluate (i.e. protein processing in the ER), but the differences on 𝐹50 levels state

otherwise: cytoplasmic processing of proteins is indirectly affected by mutations in genes expressing

ER-related proteins. Therefore, this reporter can be used in the network optimization.

Page | 58

ER-processed GFP

The same consideration applies on this case too.

First, I have employed both the software of the cell-counting machine and the “grofit” package in R to

evaluate the absorbance data of each strains; almost all the strains have grown normally, reaching the

stationary phase before the end of the measurement process.

Second, I have analysed the fluorescence intensity data, which has proven to be much more

complicated. In facts, it seems that the levels of fluorescence of almost all the strains (in any replica)

were lower than the blank measure obtained from the empty wells. It is not due to contamination of the

blank wells, because absorbance measurements in those wells indicate that nothing is growing in there;

therefore, it must be due to very low levels of fluorescence in almost any wells.

Another possible explanation could be that all the wells were contaminated, so that bacteria have grown

instead of transformed yeast; however, microscopy observations of some aliquots from these wells have

shown that no significant bacteria contaminants were present in those wells.

Image 3.9 Images of the transformed yeast: very few cells (red arrow) have measurable fluorescence levels.

It could also be argued that the medium was not selective, thus allowing for the growth of any yeast and

impeding the selection and growth of transformed yeast; however, wild type yeast cells plated in the

same medium have not grown, thus confirming that the plate wells really contained transformed yeasts.

Finally, it could be hypothesized that the fluorescent protein employed was not the Sapphire variant as

it was supposed to be, but it is impossible since the plasmid has been sequenced to verify its content

before employing it.

Therefore, the remaining options are that the fusion protein did not work as planned and failed in

obtaining its correct folding, or cells required much more time to express this construct and show

appreciable levels of fluorescence; in any case, it would have been much more complicated obtaining

meaningful and usable results.

In conclusion, ER-targeted GFP would have been a very good reporter for the optimization of the

network, being very near to the processes directly affected by the mutants that I am using in the network.

In practice, though, it was not essential and its level have proved too difficult to obtain experimentally;

therefore I have optimized the network using literature data and fluorescence levels of normal GFP.

Page | 59

Image 3.10 Graphs of the fluorescence intensity of each well (i.e. each strain) over the duration of the

experiment: fluorescence of the cytoplasmic GFP (upper image) and the ER-processed GFP (lower image).

Absolute values are depicted in blue, blanked values are depicted in green; external wells only contain blue lines

because they are the blank wells. In the lower image, it can be noticed that the all wells (both empty and full

ones) have the same level, i.e. zero fluorescence.

Page | 60

3.3.4. Testing the optimization script

Initialization

Before optimizing the network, it is necessary to test the script itself:

- To verify that the script works as planned, i.e. it tends to produce sets of the Mass Action

parameter that reduce the difference between the experimental and the simulated ratios of

certain reporters in set conditions, while keeping the original features of the network.

- To confront different k parameters obtained iterating the optimization multiple times (starting

from the same set of parameters), evaluating how much they differ and whether the amount of

these differences is related to the accuracy of the optimization process itself (i.e. whether these

differences tend to diminish when the difference between the ratios tend to zero).

- To study the behaviour of the script when using different initial markings. In facts, it is positive

that markings influence the sequence of transitions that are chosen to fire, but it is not clear

whether they would determine which set of MA parameters is obtained at the end of the

optimization.

This testing could be performed directly on the whole-cell network, but it is very large and the

optimization process takes much time; therefore, I have decided to employ a smaller network, being

confident that the findings could be extended to any conditions of usage of the script. I have therefore

employed the following workflow:

1) I have retrieved a Petri Net from the public database of esyN.org, choosing a model representing

the role of TDP43 in healthy condition; I have slightly modified the architecture of the network

so that it fitted better with my purpose. The network can be found at

http://www.esyn.org/builder.php?publishedid=198&type=PetriNet

2) I have then chosen the reporter and the mutant places in this network, and I have simulated the

behaviour of the wild type and mutated network using its original markings and MA

parameters. The ratios between the tokens in the reporter place in each mutant and in the wild

type represent the “experimental” set that I have employed in the following stages.

3) I have created the first initial marking by assigning ten tokens to each place. In addition, I have

created one hundred initial markings by randomly choosing the abundance of each place. For

all those initial markings, I have set to one all the MA parameters that need to be modified

during the optimization.

4) I have run the optimisation script once for each randomly generated initial marking, and then

one hundred times using two randomly generated markings. Each run has generated a different

set of MA parameters and a correspondent final delta value i.e., in this case, the difference

between the ratios calculated using the native and the mutated set of MA parameters.

http://www.esyn.org/builder.php?publishedid=198&type=PetriNet

Page | 61

Testing and results

As expected, since the optimization is performed using a stochastic approach, many different results are

obtained from each iteration of the optimization script, whether the same or different initial markings

are employed; the results differ both in the set of MA parameters created and in their final delta value.

Some analyses of the results have been performed; explanations, example graphs and considerations

can be found in the text below, whereas all the plots can be found in the supplementary materials (6.5).

First, by plotting the frequency of occurrence of the starting delta values (obtained at the beginning of

the optimization stage), it can be observed that they are approximately normally distributed. On the

other hand, by plotting the frequency of occurrence of the final delta values (obtained at the end of the

optimization stage), it can be observed that values near to zero are the most populated.

These findings can be observed using delta values obtained both by employing different markings and

by iterating the script using the same marking; therefore, it is proved that the script does minimize

effectively the final delta value.

Image 3.11 Histogram representing the final delta values obtained by using 100 different starting markings.

Second, each random marking can be compared to the mean of all the random markings, thus calculating

a “distance” from that mean marking. By plotting these distances and their corresponding final delta

values, it can be observed that starting markings do not influence the final delta values obtained, i.e.

they all have the same chance to achieve a low delta value, i.e. yielding a better MA parameters set.

Third, it can be observed that all the final MA parameters sets differ from each other and from the native

one. For each set, a “distance” from the original set can be calculated and plotted against their related

final delta values; this way, it can be noticed that smaller deltas associate with smaller distances. This

is true for sets obtained both from random markings and from iterations of the same optimization;

therefore, it is proved that MA parameters sets tend to the native one when their delta tends to zero.

Image 3.12 Graph representing the distances between final MA parameters sets and the native set;

distances have been plotted against their related delta values.

Page | 62

Fourth, heat maps can be drawn by comparing the final MA parameters sets, indexed according their

corresponding delta values. Those maps are useful to highlight whether some parameters are more

important than others are in determining a final good or bad delta value; their functioning is explained

in the supplementary materials (6.5).

By observing the values of the highlighted parameters, it can be appreciated that they tend to the values

they had in the native MA parameters set when final delta values tend to zero; on the other hand, this

finding does not hold true for all the others parameters.

In these optimizations performed, three parameters were more important than all the others; by

observing the Petri Net, it could be observed that they do not all belong to transitions directly linked to

the reporter place. Therefore, it can be stated that the heat maps highlight the most important parameters,

i.e. those parameters that are mainly responsible for the final delta values obtained, and that this

information could not be easily retrieved otherwise.

Image 3.12 Heat map created by comparing the values of each parameter among all the MA parameters sets;

sets obtained iterating the optimization 50 times, employing one starting markings.

Fifth, it could be argued that the values of the most important parameters are determined by the random

starting markings employed only when associated to bad (high) final delta values. In that case, it could

be stated that the starting markings have a major impact in determining the final MA parameter set only

if the set is obtained from an incomplete optimization.

Finally, it must be noticed that one or more mutated sets could be different from the native one and yet

it could yield a final “delta” of 0; in this case, it would simply mean that all those sets are solutions of

the network, i.e. the same result can be reached using any of them. However, when increasing the

number of conditions or the number of reporters employed, it should become progressively more

difficult to obtain multiple solutions.

Page | 63

3.3.5. Training and testing the network

Initialization

Once I have proved that the optimization script could be applied to my network, I could start the proper

optimization phase. It has required some preliminary steps:

1) Obtaining the set of mutations that must employed in the script; the optimization is performed

twice using two different reporters, each one needing a specific set of conditions (i.e. mutations)

in which it has been measured and it must be simulated.

Experimental data have supplied the set of mutants to be used with the cytoplasmic-processed

GFP reporter, whereas literature data (a subset of the list found in the supplementary materials

of Jonikas et al., 2009) have supplied the set of mutants accompanying the UPR reporter; this

set can be found in the supplementary materials (6.4.4).

Both sets have been randomly split into two subsets each, one for the training stage and another

one for the following testing stage.

2) Setting MA parameters values. As I have mentioned in the previous sections, almost all the

parameters have been set to one; only logic transitions have MA parameter set to 10000, i.e. a

number that is sufficiently high so that they can be considered as immediate transitions.

The script has been modified so that it automatically recognize logical transitions and add their

corresponding parameters to the list of those that cannot not be changed; it also recognize

transitions belonging to the same logical layer, which should have the same MA parameter

values, so that their parameters changes together whenever one of them is chosen.

3) Finally, an external list is loaded, which contains the parameters of all the transitions not

directly involved in the protein processing in the endoplasmic reticulum (and subsequent

processes); this way, the number of changing parameters is decreased, and it should be easier

to reach good values in the optimization process. Moreover, keeping external parameters

unchanged allows for creating a more flexible network, i.e. it should be relatively easy to add

additional detailed processes and optimize only those new parts of the network

4) I have finally made some changes in the script to add those optional checks described before

(e.g. checking that tokens do not accumulate too much). I have also decided to modify the way

reporter values are considered, preferring to employ their absolute values rather than the ratio

between their values and the duration of the simulation; that was made to reduce the variability,

considering that the absolute values oscillate much less than the aforementioned ratio

Other minor adjustments consisted in changing the network eliminating the “External

metabolites” place, thus introducing a source transition instead; this change does not affect the

optimization stage, rather it prevents some problems that could have arisen when simulating

the network. I have also changed some names of the transitions (e.g. logic and coupled ones)

so that the script could recognize them automatically.

Page | 64

Running the process

Once the script and the network were complete, I have trained the network using those two subsets of

mutants I had generated, in two different optimization processes.

I have chosen a number of optimization steps that could yield a mean of ten changes in each of the

considered transitions, and a number of simulation steps (for each optimization step) that could yield a

mean of ten firing events for each transition of the network. Therefore:

- For the UPR-related set: 𝑚𝑐𝑆𝑡𝑒𝑝𝑠 = 300, 𝑠𝑡𝑒𝑝𝑠𝑁𝑢𝑚𝑏𝑒𝑟 = 5000

- For the cytoplasmic GFP-related set: 𝑚𝑐𝑆𝑡𝑒𝑝𝑠 = 500, 𝑠𝑡𝑒𝑝𝑠𝑁𝑢𝑚𝑏𝑒𝑟 = 5000

I have run each process four times, changing the “inverse temperature”, that influences how likely a

configuration that increases the energy of the system is accepted rather than rejected: too restrictive

temperatures may prevent the system from reaching its energy minimum, whereas too relaxed

temperature may prevent the system from remaining in its energy minimum once it is reached. I have

also employed a simulated annealing approach, i.e. is I have changed those temperatures during the

optimization process so that they were progressively more restrictive.

For each set of mutants, I have obtained four sets of MA parameters and I have chosen the set that

yielded the smallest “delta” value during the optimization process, thus completing the training stage.

Then, I could start the testing stage; I have followed the same protocol for both the sets of mutants,

therefore I will describe just one of them:

1) I have simulated the network using the testing subset of mutants, and employing the starting

set of MA parameters. I have employed the same formulas from the optimization script to

calculate the ratios of the reporter values in the mutant and wild type conditions, thus obtaining

a ∆𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔

2) I have simulated the network using the testing subset of mutants, and employing the optimized

set of MA parameters; using the same formulas described before, I have obtained a ∆𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

3) I have simulated the network using the testing subset of mutants, and employing N randomly

generated sets of MA parameters; this way, I have obtained a N ∆𝑟𝑎𝑛𝑑𝑜𝑚,𝑖

It must be noticed that all those simulations have been performed using the same number of steps

employed during the optimization stage, but they have been iterated at least ten times in order to obtain

mean values of the final deltas.

The testing stage confirms that the final delta obtained using any optimized set of MA parameters is

smaller than all the other deltas calculated (from randomly generated set and from the starting set);

therefore, it can be stated that optimization was successful using both experimental and literature data.

The set of MA parameters yielding the lowest delta has been employed to update the parameters of the

whole-cell network on the eysN.org website.

Page | 65

Further possibilities

There are more analyses that could be performed if optimization were repeated several times.

Unfortunately, due to the complexity and the size of the network, each run of the simulation requires

several days to be completed on a standard hardware (2GHz, 4GB of RAM), and repeating the script

many time would require months of computations or the use of a supercomputer. Therefore, here I will

simply describe some of the analyses that could be performed, without actually performing them.

First, the whole training and testing could be repeated using a greater number of simulation and

optimization steps; this way, it could be possible to obtain a final set of MA parameters that would

generate an even smaller delta between the simulated and the experimental results. Moreover, the

optimization could be repeated starting from different markings of the network, all preserving the

desired features of the network; this way it could be possible to confirm the finding that markings do

not influence the final set, if an adequate number of steps is employed during the optimization.

Second, it might be argued that optimization would yield a better set of MA parameters if a lower

number of parameters were changed during the process, i.e. if only the key parameters were changed

while leaving the others unaffected. In order to test this idea, this workflow should be employed:

1) Repeating optimization many times, each time preventing changes on one value from the set of

changeable MA parameters.

2) If a better set were created, then the transition corresponding to the blocked parameters could

be added to the set of unchangeable transitions; the first point could be repeated again

preventing changes on one more MA parameter

3) If no better set were created, then the set of changeable MA parameters represent the minimum

pool required for optimizing the network.

It this idea were confirmed, it could also be useful to analyse which are the transitions whose parameters

need to change, because it is highly likely that they represent the most important transitions of the

network, i.e. those that happen more often or somehow affect more deeply the outcome of a simulation.

It could also be possible to demonstrate this idea using a very different approach:

1. By repeating the optimization many times, it should be possible to obtain many different

solutions, i.e. sets of parameters that minimize the delta values. By confronting those sets

together, it could be possible to find which parameters are similar and which change greatly

among the sets: parameters with similar values are likely more important than parameters that

can assume any value

2. Optimization could be then repeated by changing only the most important parameters, while

setting the others to one: if the final delta were smaller than all the others measured changing

the whole set of parameters, then the tested idea would be confirmed.

Page | 66

Third, by confronting the final sets of parameters obtained using the sets of ratios from the literature

and the experiments, it can be observed that they are very different, and therefore they are not

interchangeable: they are different solutions of different problems.

It order to obtain a final set that could be employed for both conditions (the experimental and the

literature sets of ratios), the only possible approach is optimizing the network using both conditions

simultaneously. In other words, that means:

1) Finding a set of mutants whose ratios are available in both conditions; this set must be divided

into a training and a testing subsets.

2) Optimizing the network using a slightly different formula, that considers both the conditions at

the same time: 𝐷𝑒𝑙𝑡𝑎𝑖 = ∑ ∑ (𝐷𝑒𝑙𝑡𝑎𝑖,𝑗,𝑘)2𝑚𝑢𝑡𝑎𝑛𝑡 𝑁𝑟
𝑘𝑗 , where “i” is the current optimization

step, “j” is the condition (experimental vs literature ratios) and “k” is the mutant.

The resulting set of MA parameters might perform worse than the starting sets when applied to a single

condition, because of the reduced number of mutants employed in the optimization; on the other hand,

its overall performance (on both conditions) should be much better than the starting sets obtained using

a single condition. If this hypothesis were proved, it might be useful deciding to implement many more

reporters at the same time, in order to have an accurate representation of the network in more conditions.

Page | 67

4. Conclusions

In conclusions, the outcome of My Master’s thesis work consists of:

1) A whole-cell Petri Net model of yeast S. cerevisiae that is available to the public, and therefore

it can (and will be) extended in the future

2) Two scripts for the simulation and analysis of Petri Nets models downloaded from esyN.org;

as such, they are an integral part of the first release of the esyN.org website, which resulted in

a paper that has been accepted for publication by PLoS One (Bean et al., 2014).

3) A script that allows the optimization of the MA parameters using experimental data.

4) Predictive power obtained optimizing the abovementioned model, which validates the approach

employed and can be applied for driving experimental design.

In this section, I will briefly summarize the main features and future perspective, of each of these points.

4.1. Whole-cell yeast network

4.1.1. The network

I have built a multi-level whole-cell yeast network: the upper levels contain a coarse-grained

representation of all the cellular processes, whereas the lower levels contain a more detailed

representation of translation-related processes (e.g. translation, folding, post-translational

modifications, targeting to organelles or to the membrane). In particular, protein processing inside the

ER is described at the highest level of details, using real genes and metabolic reactions, whereas all the

other layers contain generic (“coarse”) places and transitions. Three main features of this network are:

1) It is written using the Petri Net formalism, therefore it can be written as matrices and its

behaviour can be simulated over time combining Petri Net firing rules and other algorithms

(e.g. Gillespie algorithm)

2) Some of its parameters are set in order to yield a final network showing the desired features:

a. Uniformity in the distribution of tokens, i.e. proteins do not accumulate

b. Accessibility of all the transitions, i.e. all the reactions that are really occurring in a cell

must be able to occur in the network too;

c. Avoidance of self-sustaining states, i.e. the network/cell must die when running out of

external metabolites.

3) Some other parameters are esteemed, therefore I had to optimize them using a “training and

testing” approach and implementing a Monte Carlo method; this approach has required some

experimental data to be used for comparison with the simulated values during the optimization.

It must be noticed that optimization generates predictive power in the network, meaning that the results

obtained simulating the network in different conditions could be employed as expected results of a real

experiment conducted in the same conditions.

Page | 68

4.1.2. Future expansions

Another key feature of this network is that it can be extended quite easily: in some cases, processes are

already in the network and they just need to be described in details, whereas in some other cases the

upper layers can supply a framework for easily adding new detailed processes.

Expanding the network would be useful to create a complete yeast network that can be employed to

visualize reactions and physical interaction among molecular species. It would be a Petri Net version

of networks already available to the public, but it could be particularly useful because Petri Net require

explicitly indicating and showing how molecular species interact, and because they allows for

describing different states of the same species (e.g. phosphorylated/dephosphorylated, folded/unfolded,

inside/outside a compartment).

An expanded network could be optimized yielding a better (more accurate) set of parameters, even if

the computational time required for its optimization would increase. Moreover, expanding the network

would increase the pathways and processes that can be studied, and the conditions whose results can be

predicted by simulating the network.

4.1.3. Web repositories

The whole-cell network has been built in the esyN.org; it is a website recently developed in our lab,

which implements the cytoscape.js tool, thus allowing for building Petri Net and standard networks.

Its main feature, though, is that users can both save and export their networks offline in several formats

and they can save them online in the esyN.org database. The networks can be saved as private project,

so that only the author and other collaborators (invited by him) can see and modify the project, or they

can be saved as public project, so that everybody can see, use, copy and modify them.

Therefore, esyN.org works as database of Petri Networks but it also allows multiple users to share

networks, cooperate in the creation of a project, and to publish the final drawing.

The whole-cell network I have created is still a private project, but it will be made public soon; this

way, the expansion process of that network could be performed not only by me but also by many other

users, independently working on different layers at the same time. That would dramatically reduce the

time required to build the network, even if it would require some additional work to tune together those

different parts, which are likely going to be written using different “styles” (e.g. names assigned to the

nodes).

It should also be possible to use eyeast.org to access this unfinished network and all the pieces that will

compose the whole picture: this website, currently under construction, should work as a showcase of

all yeast network stored in the esyN database.

Page | 69

4.2. Scripts for Petri Nets

4.2.1. Simulation script

I have created a script that allows simulating Petri Nets by implementing the Gillespie algorithm. Unlike

some other programs already available, this script allows for changing almost all the simulation

parameter, thus yielding a great flexibility; moreover, it is written in R, therefore it is completely

verifiable and customizable by the user. I have also created some other variants implementing less

sophisticated algorithms, in case a simpler but quicker script was required.

This script accepts as inputs file produced both by Snoopy and by the esyN.org web tool. Indeed, this

tool accompanies the website, meaning that all the users of esyN.org can download the script from the

GitHub public repository at https://github.com/esyN/esyN-simulation and run it on their computers.

I am still working on this script in order to make it faster and more stable, and the copy on the repository

is updated frequently to reflect these changes.

The simulation script goes with an analysis script that allows transforming each irregular time series

(representing the simulation output) into a regular time series, so that it can be compared with other

time series and a mean time series can be calculated. The analysis script also allows plotting the mean

time series in order to have an immediate, graphical representation of the behaviour of the network (or

some places within it) during the simulation steps: the amount of tokens is on the y-axis, whereas the

time of the simulation (as calculated in the Gillespie algorithm) is on the x-axis.

It must be noticed that meaning the time series is just one of the possible analyses that can be performed;

indeed, the simulation and analysis scripts are divided so that any user can write its own analysis script

and replace mine.

At first, some “qualitative” tests have been performed using bigger networks, i.e. verifying that the

general simulated behaviour of the model was similar to the expected one: e.g. tokens accumulating in

the right place, network reaching a dead state after few steps and so on.

Then, the simulation and the analysis scripts have been “quantitatively” tested using some Petri Nets

found in the literature, which had already been built and simulated (Blatke, 2011, pp. 48-52):

1) The networks have been built on esyN.org, setting the appropriate tokens and MA parameters;

then, they have been simulated using the same parameters found in the literature.

2) The final outputs (i.e. graphs) have been confronted with the results already available, thus

showing that both the simulation and the analyses had worked as planned. This way I could

compare not just trends, but also quantitative values.

https://github.com/esyN/esyN-simulation

Page | 70

4.2.2. Optimization script

Then, I have created another script that allows optimizing Petri Nets by implementing a Monte Carlo

method. This script too allows for changing almost all the parameters and, being written in R, it is highly

customizable; this is particularly interesting because almost each network has different requirements,

different conditions that must be checked during the optimization process and, therefore, that must be

added to the optimization script.

At the moment, two versions exist: one can (must) be applied for optimizing the whole-cell network I

have created; the other one is a simpler version without any “if condition” checks, so that it can be

employed as the starting point for building customized optimization scripts. These versions are not

available to the public yet, but it is planned that they will be made public in the near future.

This script employs the following workflow:

- Reading the input files (the same as the simulation script described before)

- Creating mutant networks by modifying parameters of transitions linked to the mutated places

- Randomly changing a MA parameter; rules can be implemented to set which parameters should

not be changed in this step

- Simulating the wild type and the mutant networks, thus obtaining the ratio of reporter values in

mutant and wild type conditions; simulation is performed using the abovementioned script.

- Comparing the simulated and the experimental ratio, thus obtaining the “energy” of the system

- Comparing the new and old values of the system “energy”, and accepting the changed

parameter if the energy decreases.

As it has been demonstrated by testing the network, the number of simulation steps and the number of

optimization steps greatly influence the outcome of the optimization script, especially its ability to

produce a final set of MA parameters that gives a final “energy” very near to 0. It has also been

demonstrated that, when employing a numbers of steps that allows the minimization to be completed,

the starting markings of the network do not influence the outcome of the optimization process.

This script is computationally heavy, because it repeats several times another script that perform some

calculi several times. Pruning the network, i.e. removing useless nodes, could help in speeding up the

script: it reduces the size of the matrices, and therefore the time required for the calculi, and it reduces

the number of steps (i.e. calculi) that are required to simulate the behaviour of the network.

Moreover, the number of required Monte Carlo steps is reduced when using a smaller number of

parameters, thus speeding up the process. It is also useful for generating a more versatile network: if

the model were extended in other regions using the appropriate parameters, the parameters obtained

optimizing the starting region should continue behaving correctly.

Page | 71

4.3. Predictive power

4.3.1. Possible uses

The network is optimized so that the ratio of the values of a certain reporter place, obtained simulating

the wild type and the mutated network, should be equal to the ratio that could be measured

experimentally. It should be possible to extend this feature to other conditions, whether they were

experimentally known or not: these extensions generate the predictive power, i.e. the ability to predict

the outcome of an experiment in a semi-quantitative fashion.

This predictive power could be employed to perform a preliminary check of experimental results, or for

suggesting which range of values should be expected when performing an experiment. It could also be

applied to perform in silico experiments and to drive the experimental design, e.g. by determining which

experiments would be more informative for proving/rejecting a hypothesis.

The current network can be employed to predict the behaviour of yeast strains harbouring mutations in

the genes involved in the protein processing (especially in the processing that occurs inside the

endoplasmic reticulum), the Unfolded Protein Response or the ERAD. These mutant genes could

already be in the network or they could be added if needed, although it might require repeating the

whole optimization phase.

The predictive power obtained so far could also be employed for simulating the behaviour of the

network when overexpressing a yeast gene or when expressing heterologous genes. For instance, it

could be employed to simulate what happens in a yeast cell when an unstable or aggregation-prone

protein (e.g. Tau protein from Alzheimer’s disease) is expressed, e.g. by measuring the activation of

the UPR or the production/degradation rates of cytoplasmic and ER-targeted proteins.

It must be noticed that an optimized set of MA parameters with a very low energy is not necessarily a

good set for predicting the outcome of the network; in facts, a certain set might just be a good solution

of the optimization problems without being usable for performing good predictions. Therefore, the

testing stage is essential for verifying that the optimized set of parameters shows predictive power, and

even in that case the predictions obtained must be considered and used with caution.

Image 4.1 Workflow summarizing the “training and testing” approach required for obtaining predictive power

Page | 72

4.3.2. Increasing the predictive power

Predictive power can be increased by increasing the number of reporters and conditions employed in

the optimization stage. So far, I have employed two different reporters, each one studied using a set of

about 40-50 mutants; the employed reporters are the GFP expressed upon the induction of Unfolded

Protein Response and the cytoplasmic levels of the native GFP.

Unfortunately, I could not use the third planned reporter, i.e. the levels of the GFP in the endoplasmic

reticulum measured as fluorescence of the fusion protein GFP-GPCR, because the reporter did not work

as planned. The next step could therefore be repeating those experiments, or employing an ER-targeted

GFP (fusing the fluorescent protein with a translocation signal sequence) as reporter of the GFP levels

in the endoplasmic reticulum.

Moreover, predictive power is limited to the processes that have been described in details and

subsequently optimized; therefore, extending the network allows for obtaining predictive power on

many more processes. When completing the network and optimizing it (using supercomputers), in

theory it should be possible to obtain a set of parameters that show predictive power in all the processes,

thus allowing for simulating the behaviour of any mutant strains.

Finally, a complete network will allow using global reporters such as growth rate. These reporters might

be particularly useful to optimize the whole network rather than single pieces of it, thus “tuning” all the

processes together; they would also allow for optimizing and then employing the network to simulate

different experimental conditions (e.g. changes in the metabolite sources) rather than mutant strains.

Page | 73

5. Bibliography

Applegate, D. L. (2006). The Traveling Salesman Problem: A Computational Study (p. 593). Princeton

University Press.

Ashburner, M., Ball, C., Blake, J., & Botstein, D. (2000). Gene Ontology: tool for the unification of

biology. Nature Genetics, 25(May), 25–29.

Balakrishnan, R., Park, J., Karra, K., Hitz, B. C., Binkley, G., Hong, E. L., Sullivan, J., Micklem, G. &

Cherry, J. M. (2012). YeastMine--an integrated data warehouse for Saccharomyces cerevisiae data as

a multipurpose tool-kit. Database. The Journal of Biological Databases and Curation, 2012, bar062.

doi:10.1093/database/bar062

Baştanlar, Y., & Özuysal, M. (2014). Introduction to Machine Learning. In M. Yousef & J. Allmer

(Eds.), miRNomics: MicroRNA Biology and Computational Analysis SE - 7 (Vol. 1107, pp. 105–128).

Humana Press. doi:10.1007/978-1-62703-748-8_7

Bean, D. M., Heimbach, J., Ficorella, L., Oliver, S. G., & Favrin, G. (2014.). esyN: Network Building,

Sharing and Publishing. PLoS One, (in publishing).

Beichl, I., & Sullivan, F. (2000). The metropolis algorithm. Computing in Science & Engineering, 65–

69.

Bell, G. (2010). Experimental genomics of fitness in yeast. Proceedings. Biological Sciences /The Royal

Society, 277(1687), 1459–67. doi:10.1098/rspb.2009.2099

Beurton-Aimar, M., Nguyen, T.-N., & Colombié, S. (2014). Metabolic Network Reconstruction and

Their Topological Analysis. In M. Dieuaide-Noubhani & A. P. Alonso (Eds.), Plant Metabolic Flux

Analysis SE - 2 (Vol. 1090, pp. 19–38). Humana Press. doi:10.1007/978-1-62703-688-7_2

Billington, J., Christensen, S., & Hee, K. Van. (2003). The Petri net markup language: concepts,

technology, and tools.

Black, J.G. (1996). Microbiology. Principles and Applications. Third Edition. Prentice Hall. Upper

Saddle River, New Jersey. pp. 144-148.

Blatke, M. A., Dittrich, A., Rohr, C., Heiner, M., Schaper, F., & Marwan, W. (2013). JAK/STAT

signalling - an executable model assembled from molecule-centred modules demonstrating a module-

oriented database concept for systems and synthetic biology. Molecular BioSystems, 9(6), 1290–1307.

doi:10.1039/C3MB25593J

Blatke, M. A. (2011). Petri Nets in Systems Biology

Blomberg, A. (2011). Measuring growth rate in high-throughput growth phenotyping. Current Opinion

in Biotechnology, 22(1), 94–102. doi:10.1016/j.copbio.2010.10.013

Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., Christie, K. R.,

Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hirschman, J. E., Hitz, B. C., Karra, K.,

Krieger, C. J., Miyasato, S. R., Nash, R. S., Park, J., Skrzypek, M. S., Simison, M., Weng, S. & Wong,

E. D. (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic

Acids Research, 40(Database issue), D700–5. doi:10.1093/nar/gkr1029

Page | 74

Couture-Beil, A. (2014). rjson: JSON for R. Retrieved from: http://cran.r-project.org/package=rjson

Day, R. N., & Davidson, M. W. (2009). The fluorescent protein palette: tools for cellular imaging.

Chemical Society Reviews, 38(10), 2887–921. doi:10.1039/b901966a

De Deken, R. H. (1966). The Crabtree effect: a regulatory system in yeast. Journal of General

Microbiology, 44(2), 149–56.

Doob, J. (1942). Topics in the theory of Markoff chains. Transactions of the American Mathematical

Society, 1(I), 35–37.

Feres, R. (2007). Notes for Math 450, lecture 6. Stochastic Petri nets and reactions Petri nets. Available

from http://www.math.wustl.edu/~feres/Math450Lect06.pdf [14/07/2014]

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier,

L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F.,

Giaever, G., & Nislow, C. (2014). The Yeast Deletion Collection: A Decade of Functional Genomics.

Genetics, 197(2), 451–465. doi:10.1534/genetics.114.161620

Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., … Johnston, M. (2002).

Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387–91.

doi:10.1038/nature00935.

Supplementary Materials available from: http://genomics.lbl.gov/YeastFitnessData/slow_table.html

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of

coupled chemical reactions. Journal of Computational Physics, 22(4), 403–434. doi:10.1016/0021-

9991(76)90041-3

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel,

J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., &

Oliver, S. G. (1996). Life with 6000 Genes. Science, 274(5287), 546–567.

doi:10.1126/science.274.5287.546

Haas, P. J. (2002). Stochastic Petri Nets: Modelling, Stability. Simulation, 19–24.

Jonikas, M., Collins, S., Denic, V., & Oh, E. (2009). Comprehensive characterization of genes required

for protein folding in the endoplasmic reticulum. Science, (March), 1693–1697.

Kahm, M., & Hasenbrink, G. (2010). grofit: fitting biological growth curves with R. Journal of

Statistical Software, 33(7)

Kalderimis, A., Lyne, R., Butano, D., Contrino, S., Lyne, M., Heimbach, J., Hu, F., Smith, R., Stěpán,

R., Sullivan, J., & Micklem, G. (2014). InterMine: extensive web services for modern biology. Nucleic

Acids Research, 42(Web Server issue), W468–72. doi:10.1093/nar/gku301

Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet.

Nucleic Acids Research, 30(1), 42–6.

Kurtzman, C., & Fell, J. (2006). Yeast Systematics and Phylogeny — Implications of Molecular

Identification Methods for Studies in Ecology. In G. Péter & C. Rosa (Eds.), Biodiversity and

Ecophysiology of Yeasts SE - 2 (pp. 11–30). Springer Berlin Heidelberg. doi:10.1007/3-540-30985-

3_2

http://cran.r-project.org/package=rjson
http://www.math.wustl.edu/~feres/Math450Lect06.pdf
http://genomics.lbl.gov/YeastFitnessData/slow_table.html

Page | 75

Li, M., Zheng, R., Zhang, H., Wang, J., & Pan, Y. (2014). Effective identification of essential proteins

based on priori knowledge, network topology and gene expressions. Methods (San Diego, Calif.), 67(3),

325–33. doi:10.1016/j.ymeth.2014.02.016

Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. H. &

Zhang, J. (2004). Bioconductor: open software development for computational biology and

bioinformatics. Genome Biology, 5(10), R80. doi:10.1186/gb-2004-5-10-r80

List of machine learning algorithms [Internet]. Wikipedia, The Free Encyclopedia; 2014 May 20, [cited

2014 Aug 14]. Available from: http://en.wikipedia.org/wiki/List_of_machine_learning_algorithms

Lopes, C. T., Franz, M., Kazi, F., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010). Cytoscape Web:

an interactive web-based network browser. Bioinformatics (Oxford, England), 26(18), 2347–8.

doi:10.1093/bioinformatics/btq430

Marwan, W., Rohr, C., & Heiner, M. (2012). Petri Nets in Snoopy: A Unifying Framework for the

Graphical Display, Computational Modelling, and Simulation of Bacterial Regulatory Networks. In J.

van Helden, A. Toussaint, & D. Thieffry (Eds.), Bacterial Molecular Networks SE - 21 (Vol. 804, pp.

409–437). Springer New York. doi:10.1007/978-1-61779-361-5_21

Modelling language [Internet]. Wikipedia, The Free Encyclopedia; 2014 Mar 27, 06:42 UTC [cited

2014 Aug 14]. Available from: http://en.wikipedia.org/wiki/Modeling_language

Monte Carlo method [Internet]. Wikipedia, The Free Encyclopedia; 2014 Jun 22, [cited 2014 Aug 14].

Available from: http://en.wikipedia.org/wiki/Monte_Carlo_method

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE.

Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of

yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat

Biotech, 20(1), 87–90.

Olenych, S. G., Claxton, N. S., Ottenberg, G. K., & Davidson, M. W. (2007). The fluorescent protein

color palette. Current Protocols in Cell Biology, Chapter 21, Unit 21.5.

doi:10.1002/0471143030.cb2105s36

Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal

Structure of the Aequorea victoria Green Fluorescent Protein. Science, 273 (5280), 1392–1395.

doi:10.1126/science.273.5280.1392

Prendergast, F. G., & Mann, K. G. (1978). Chemical and physical properties of aequorin and the green

fluorescent protein isolated from Aequorea forskalea. Biochemistry, 17(17), 3448–3453.

doi:10.1021/bi00610a004

R Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria.

Retrieved from: http://www.r-project.org/

Raeside, D. E. (1976). Monte Carlo principles and applications. Physics in Medicine and Biology,

21(2), 181.

Rohr, C., Marwan, W., & Heiner, M. (2010). Snoopy--a unifying Petri net framework to investigate

biomolecular networks. Bioinformatics (Oxford, England), 26(7), 974–5.

doi:10.1093/bioinformatics/btq050

http://en.wikipedia.org/wiki/List_of_machine_learning_algorithms
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.r-project.org/

Page | 76

Shaner, N., Steinbach, P., & Tsien, R. (2005). A guide to choosing fluorescent proteins. Nature

Methods, (December).

Sommer, C., & Gerlich, D. W. (2013). Machine learning in cell biology - teaching computers to

recognize phenotypes. Journal of Cell Science, 126(Pt 24), 5529–39. doi:10.1242/jcs.123604

Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–44.

doi:10.1146/annurev.biochem.67.1.509

Uhlmann, F., Bouchoux, C., & López-Avilés, S. (2011). A quantitative model for cyclin-dependent

kinase control of the cell cycle: revisited. Philosophical Transactions of the Royal Society of London.

Series B, Biological Sciences, 366(1584), 3572–83. doi:10.1098/rstb.2011.0082

Vera-Licona, P., Jarrah, A., Garcia-Puente, L. D., McGee, J., & Laubenbacher, R. (2014). An algebra-

based method for inferring gene regulatory networks. BMC Systems Biology, 8, 37. doi:10.1186/1752-

05

Warmflash, D., & Ciftcioglu, N. (2007). Living Interplanetary Flight Experiment (LIFE): an experiment

on the survivability of microorganisms during interplanetary transfer. Workshop on the exploration of

Phobos and Deimos, 34, 84001.

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York.

Zapata-Hommer, O., & Griesbeck, O. (2003). Efficiently folding and circularly permuted variants of

the Sapphire mutant of GFP. BMC Biotechnology, 3, 5. doi:10.1186/1472-6750-3-5

Zeileis, A., & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series.

Journal of Statistical Software, 14(6), 1–27.

5. Supplementary materials

5.1. Petri Networks

First layer: whole-cell network

Second layer: metabolism

Second layer: transcription

Second layer: translation

Th
ir

d
 la

ye
r:

 p
ro

te
in

 p
ro

ce
ss

in
g

in
 t

h
e

ER

Third layer: Endoplasmic Reticulum Associated Degradation

Third layer: protein processing in the cytoplasm

Logic layer: ER retaining

Logic layer: vesicles formation

Lo
gi

c
la

ye
r:

 c
yt

o
p

la
sm

ic
 lo

ca
liz

at
io

n

Lo
gi

c
la

ye
r:

 h
id

d
en

 t
ra

n
si

ti
o

n
 (

4
)

5.2. Scripts

Script locating lines

It is needed by all the split scripts in order to locate the input files and the subscripts.

if (!(file.exists(scriptFile))) {

 repeat {

 choiceInput <- readline ("\n Press 1 to enter the path manually, or choose the

directory you want to search in “)

 if (choiceInput == 1) {

 scriptPath <- readline("Please enter the path to the script file: \n")

 if (file.exists(paste (scriptPath, scriptFile, sep = ""))) {break}

 } else {

 if (.Platform$OS.type == "windows")

 diskPath <- paste(choiceInput, ":/", sep ="")

 else diskPath <- "/"

 inputList <- list.files(diskPath, pattern= "3-Simulator.R", full.names =

TRUE, recursive = TRUE)

 if (length(inputList) != 0) {

 print (dirname(inputList))

 repeat {

 choiceInput3 <- type.convert(readline ("\n please enter the number of the

line you want to use "), as.is = TRUE)

 if (choiceInput3 %in% c(1:length(inputList))) {break

 } else cat ("please enter a valid value \t")

 }

 scriptPath <- dirname(inputList[choiceInput3])

 break

 }

 }

 }

 setwd(scriptPath)

}

Variable script

It is needed for reading the input files and setting simulation and optimization parameters.

This section is needed to read the input files

 if (!("rjson" %in% rownames(installed.packages())))

 install.packages("rjson")

 if (!("zoo" %in% rownames(installed.packages())))

 install.packages("zoo")

 library('rjson')

 library('zoo')

 inputData <- fromJSON(paste(readLines("../Materials/merge_matrices.txt"),

collapse="")) #you can give a file path where I have "merge_matrices.txt"

 matrixInhibit <- do.call(rbind, inputData$inhib) #matrix of the weights of

inhibitory arcs, always going FROM places TO transitions

 inhibIndex <- (which(matrixInhibit>=1, arr.ind=TRUE)) #see where are

inhibitions in the matrix

 matrixInward <- do.call(rbind, inputData$post)

 matrixOutward <- -1*(do.call(rbind, inputData$pre))

 matrixDelta <- matrixInward + matrixOutward

 matrixTokens <- inputData$marking #tokens in all the places at time 0 (i.e.

the tokens you've written in the network)

 vectorPar <- inputData$k # Mass Action parameters

 transitNames <- inputData$tnames

 placesNames <- inputData$pnames #you'll need those variables later to run

the simulation

 kplaceN <- length(placesNames) # Number of places

 ktransitN <- length(transitNames) #Numb of Transitions

 colnames(matrixInhibit) <- colnames(matrixInward) <- colnames(matrixOutward) <-

colnames(matrixDelta) <- placesNames

}

This section is needed to call most of the required variables

 totIteration <- 20

 mcNumber <- 100

 iterNumber <- 100

 stepsNumber <- 2000

 minWeight <- 0.001

 maxWeight <- 4

 invTemp <- 10 #Inverse Temperature

Creating new vector and matrices representing the mutated network

if ((scriptFile != "3. Simulator.R") && (scriptFile != "0. Starting.R")) {

 if (interactive == "Y") {

 source ("Subscripts/Variables_ask.R")

 } else {source ("Subscripts/Variables_set.R")}

} else {source("Subscripts/Variables_start.R")}

if (scriptFile != "3. Simulator.R") {

 ## matrices and vectors must be created for each mutation considered

 allallIndexM <- NA

 for (mutCounter in 1:cPMNnumber) {

 nam1 <- paste ("allIndexM",mutCounter,sep = "")

 assign (nam1, unique(c(which(matrixInward [,choicePlaceMutantN[mutCounter]]!=

0), which(matrixOutward [,choicePlaceMutantN[mutCounter]]!= 0))))

 nam2 <- paste ("inhibIndexM",mutCounter,sep = "")

 assign (nam2, which(matrixInhibit[,choicePlaceMutantN[mutCounter]]!= 0))

 allallIndexM <- unique(c(allallIndexM,get(nam1)))

 tempInhibit <- matrixInhibit

 tempInhibit[get(nam2),choicePlaceMutantN[mutCounter]] = 0

 nam3 <- paste ("matrixInhibitM",mutCounter,sep = "")

 assign (nam3, tempInhibit)

 }

 allallIndexM <- allallIndexM[-1]

 simulcoreTot <- matrix(nrow = cPMNnumber+1, ncol= kplaceN+1)

Ancillary function

 vectorParStart<- vectorPar

 tokenProduct <- vector(length=ktransitN)

 prova = which(matrixOutward != 0, arr.ind = TRUE)

 prova3 = which(matrixInward !=0, arr.ind = TRUE)

 temp = list()

 temp2 = list()

 temp3 = list()

 for(i in 1:ktransitN){

 # the product of the number of tokens in the input places for each transition

 temp[[i]] <- prova[(prova[,1] == i),2]

 tokt <- matrixTokens[temp[[i]]]

 tot <- prod(tokt)

 tokenProduct[i] <-tot

 temp2[[i]] <- unique(c(prova[(prova[,1] == i),2], prova3[(prova3[,1] == i),2]))

 if (length(temp2[[i]]) == 0) {

 temp3[[i]] <- unique(c(prova[(prova[,1] == i),2], prova3[(prova3[,1] ==

i),2]))

 } else if (length(temp2[[i]]) == 1) {

 temp3[[i]] <- unique(which(matrixOutward[,temp2[[i]]] != 0, arr.ind = TRUE))

 } else {

 temp3[[i]] <- unique(which(matrixOutward[,temp2[[i]]] != 0, arr.ind =

TRUE)[,1])

 }

 }

 vectorProb <- tokenProduct*vectorPar # probability vector completed

Variable “ask” subscript

It is needed for setting further parameters employed in the optimization and pre-testing stage.

if (file.exists("../Materials/kparametersBEST.txt")) {

 choiceSettingsD = readline ("\n Do you want to use new optimized mass action

parameters? press 1 for yes ")

 if (choiceSettingsD == 1) {

 vectorPar <- readLines("../Materials/kparametersBEST.txt")

 vectorPar <- type.convert(unlist(strsplit(vectorPar, "\t")))

 }

}

This section is needed to set the optimization parameters

cat ("\Total repetitions= ", totIteration, "\n MonteCarlo steps = ", mcNumber)

cat ("\n duration of the simulation = ", stepsNumber, "\n Min value of k parameter

= ", minWeight, "\n Max value of k parameter = ", maxWeight)

repeat {

 choiceSettingsB <- readline("\n Press ENTER to use default values, or insert

new values divided by space \n")

 if (choiceSettingsB == "") {break

 } else {

 simulParametersB = unlist(strsplit(choiceSettingsB, " "))

 if ((length(simulParametersB) == 5) && (min(simulParametersB) >0)) {

 simulParametersB1 = type.convert(simulParametersB[1:3])

 simulParametersB2 = type.convert(simulParametersB[4:5])

 if ((is.integer(simulParametersB1)) && (is.numeric(simulParametersB2))) {

 totIteration <- simulParametersB1[1]

 mcNumber <- simulParametersB1[2]

 stepsNumber <- simulParametersB1[3]

 minWeight <- simulParametersB2[1]

 maxWeight <- simulParametersB2[2]

 break

 }

 }

 }

}

This section is needed to set the reporter and the mutating places

while (!(exists("cPMNnumber"))) {

 cat ("the places in this network are: \n")

 print (placesNames)

 while (!(exists("choicePlaceNumber"))) {

 choicePlaceName <- readline ("insert the exact name of the place you want

to optimize: ")

 if (choicePlaceName %in% placesNames) {

 choicePlaceNumber <- match (choicePlaceName, placesNames)

 }

 }

 while (!(exists("choicePlaceMutantName"))) {

 choiceSettingsE <- readline ("Press ENTER to load the training set (mutants

ratio) from the external file, anything else to write them manually: ")

 if (choiceSettingsE == "") {

 trainingMatrix <- as.matrix(read.csv("../Materials/TrainingSet.csv", header =

FALSE, sep = " "))

 choicePlaceMutantName <- trainingMatrix[1,]

 ratioReal <- type.convert(trainingMatrix[2,])

 } else {

 tempInput <- unlist(strsplit(readline ("insert the exact name of the places

you want to delete, divided by space: ")," "))

 if (all(tempInput %in% placesNames)) {choicePlaceMutantName <- tempInput}

 tempRatio <- type.convert(unlist(strsplit(readline ("insert the ratios

between the fluorescence measured in wt and mut, divided by space: ")," ")))

 if ((is.numeric(tempRatio)) && (length(tempRatio) ==

length(choicePlaceMutantName)))

 ratioReal <- tempRatio

 }

 }

 if (scriptFile == "1. MLA 2.1.R") {choicePlaceMutantName <-

unique(c(choicePlaceMutantName, "ER-Transporters"))}

 # checking that the reporter is different from the mutating place(s)

 if (!(choicePlaceName %in% choicePlaceMutantName)) {

 choicePlaceMutantN <- match(choicePlaceMutantName, placesNames)

 cPMNnumber <- length(choicePlaceMutantN)

 } else {

 choiceSettingsD <- readline ("you're trying to mutate the place you have

chosen to evaluate. Press 1 to discard this mutation, 2 to modify the optimized

places, 3 to modify the mutated places, anything else to change everything")

 if (choiceSettingsD == 1) {

 choicePlaceMutantName <- choicePlaceMutantName[choicePlaceMutantName !=

choicePlaceName]

 if (!(length(choicePlaceMutantName > 1))) {

 cat ("\n It seems you have deleted all the mutated places; please, insert

new ones")

 rm("choicePlaceMutantName")

 }

 } else if (choiceSettingsD == 2) { rm("choicePlaceNumber")

 } else if (choiceSettingsD == 3) { rm("choicePlaceMutantName")

 } else {rm("choicePlaceNumber", "choicePlaceMutantName")}

 }

 }

 ## This section is needed to decide which rules should be employed

 forbiddenPar <- 0

 allowedTransit <- c(1:ktransitN)

 choiceSettingsC1 <- readline ("Press 1 to prevent changes of the logic

transitions parameters, anything else to skip this rule: ")

 if (choiceSettingsC1 ==1) {forbiddenPar <- which(grepl("logic",

transitNames))}

 choiceSettingsC2 <- readline ("Press 1 to prevent changes of the mutated

transitions parameters, anything else to skip this rule: ")

 if (choiceSettingsC2 ==1) {forbiddenPar <- unique(c(allallIndexM,

forbiddenPar))}

 choiceSettingsC4 <- readline ("Press 1 to couple duplicated transitions

together, anything else to skip this rule: ")

 if (choiceSettingsC4 ==1) {

 duplPos <- which (grepl("dupl", transitNames))

 } else {duplPos = duplNames <- ""}

 if (file.exists("../Materials/forbiddenPar.txt")) {

 choiceSettingsC3 <- readline ("Press 1 to read from an input file, 2 to

write the names of forbidden transition now, anything else to skip this rule: ")

 if (choiceSettingsC3 ==1) {

 forbiddenList <- readLines("../Materials/forbiddenPar.txt")

 forbiddenTemp <- unlist(strsplit(forbiddenList, " "))

 forbiddenPar <- unique(c(forbiddenPar,which(transitNames %in%

forbiddenTemp)))

 }

 } else {choiceSettingsC3 <- readline ("Press 2 to write the names of

forbidden transition now, anything else to skip this rule: ")}

 if (choiceSettingsC3 == 2) {

 forbiddenList <- readline ("\n Write the names of the transitions that

cannot change, divided by spaces")

 forbiddenTemp <- unlist(strsplit(forbiddenList, " "))

 forbiddenPar <- unique(c(forbiddenPar,which(transitNames %in%

forbiddenTemp)))

 }

 if ((length(forbiddenPar) >1) || ((length(forbiddenPar) ==1) && (forbiddenPar

!=0))) {allowedTransit <- allowedTransit[-forbiddenPar]}

 }

Variable “start” subscript

It is a subscript for setting further parameters that are only employed in the starting and

simulation stage.

if (file.exists("../Materials/kparametersBEST.txt")) {

 choiceSettingsD = readline ("\n Do you want to use new optimized mass action

parameters? press 1 for yes ")

 if (choiceSettingsD == 1) {

 vectorPar <- readLines("../Materials/kparametersBEST.txt")

 vectorPar <- type.convert(unlist(strsplit(vectorPar, "\t")))

 }

}

This section is needed to set the optimization parameters

cat ("\n The default values are: \n Duration of the simulation \t = ",

stepsNumber, "\n Iterations of the simulation = ", iterNumber)

repeat {

 choiceSettingsB <- readline("\n Press ENTER to use default values, or insert

new values divided by space \n")

 if (choiceSettingsB == "")

 break

 else {

 simulParametersB = type.convert(unlist(strsplit(choiceSettingsB, " ")))

 if ((length(simulParametersB) == 2) && (is.integer(simulParametersB)) &&

(min(simulParametersB) >0)) {

 stepsNumber <- simulParametersB[1]

 iterNumber <- simulParametersB[2]

 break

 }

 }

}

This section is needed to set the reporter and the mutating places

if (scriptFile == "0. Starting.R") {

 while (!(exists("choicePlaceNumber"))) {

 cat ("the places in this network are: \n")

 print (placesNames)

 tempInput <- readline ("insert the exact name of the place you want to

optimize: ")

 if (tempInput %in% placesNames) {

 choicePlaceName <- tempInput

 choicePlaceNumber <- match (choicePlaceName, placesNames)

 choicePlaceMutantName <- placesNames[-choicePlaceNumber]

 choicePlaceMutantN <- match(choicePlaceMutantName, placesNames)

 cPMNnumber <- length(choicePlaceMutantN)

 }

 }

} else {

 tableGlobal <- matrix(ncol= kplaceN+1, nrow= iterNumber)

 colnames(tableGlobal) <- c(placesNames, "Dead State?")

 #Table to summarize the results of all runs and the mean value of the runs (for

each place)

 spotsN <- 1000 # Number of sampling points in which you interpolate

 sensSd <- 2 # Simulations farther than "sensSd" Standard

Deviation won't be considered

 while (!(exists("choicePlaceNumber"))) {

 cat ("the places in this network are: \n")

 print (placesNames)

 choicePlaceName = readline ("insert the exact name of the place you're

interested in, or press ENTER if you don't want to consider a particular place ")

 if (choicePlaceName == "") {

 cat ("\n \t All places will be considered \n")

 choicePlaceNumber <- c(1:kplaceN)

 }else if (choicePlaceName %in% placesNames) {choicePlaceNumber = which

(colnames(matrixInward) == choicePlaceName)}

 }

}

Simulcore subscript

It is the core of the simulation that is only employed in the simulation stage.

Simulcore <- function(vectorPar, vectorProb,inhibIndex, matrixInhibit){

 matrixMatrix <- matrix(ncol =kplaceN+1, nrow= stepsNumber)

 matrixMatrix[1,] <- c(matrixTokens,0)

 totTime <- 0

 for (matrixRow in 1:stepsNumber) {

 # the following lines implement the core of the Gillespie algorithm;

 vectorTrans <- 1:ktransitN

 vectorTime <- 0

 for (x in 1:ktransitN) {

 if (vectorProb[x] <= 0) {vectorTime[x] = Inf}

 else {vectorTime[x] <-rexp(1,vectorProb[x])}

 }

 repeat {

 parTime <- min(vectorTime)

 if (parTime == Inf) {

 cat("\t you reached a dead state!! \t")

 matrixMatrix[matrixRow,] <- c(matrixTokens, -totTime)

 return(matrixMatrix[c(1:matrixRow),])

 }

 chance <- which(vectorTime == parTime)

 if (length(chance) >1)

 chance <- sample(chance,1)

 rn <- vectorTrans[chance]

 if (length(inhibIndex) == 0) {

 if (all(matrixTokens >= -matrixOutward[rn,])) {

 matrixTokens <- matrixTokens + matrixDelta[rn,]

 totTime <- totTime + parTime

 matrixMatrix[matrixRow,] <- c(matrixTokens, totTime)

 break

 }

 } else {

 indexIndex <- inhibIndex[which(inhibIndex[,1] ==rn),2]

 if ((length(indexIndex) == 0) || (all(matrixTokens[indexIndex] <

matrixInhibit[rn,indexIndex]))) {

 if (all(matrixTokens >= -matrixOutward[rn,])) {

 matrixTokens <- matrixTokens + matrixDelta[rn,]

 totTime <- totTime + parTime

 matrixMatrix[matrixRow,] <- c(matrixTokens, totTime)

 break

 }

 }

 }

 vectorTrans <- vectorTrans[!vectorTrans == rn]

 vectorTime <- vectorTime[-chance]

 if (length(vectorTrans) == 0){

 cat("\t you reached a dead state!! \t")

 matrixMatrix[matrixRow,] = c(matrixTokens, -totTime)

 return(matrixMatrix[c(1:matrixRow),])

 }

 }

 importantTemp <- temp3[[rn]]

 important <- importantTemp[which(vectorPar[importantTemp] !=0)]

 for (i in important) {

 vectorProb[i] <-prod(matrixTokens[temp[[i]]]) * vectorPar[i]

 }

 }

 return(matrixMatrix[c(1:matrixRow),])

}

Simulcore Opt subscript

It is the core of the simulation that is employed in all the other stages.

Simulcore <- function(vectorPar, vectorProb, inhibIndex, matrixInhibit){

 totTime <- 0

 for (matrixRow in 1:stepsNumber) {

 # the following lines implement the core of the Gillespie algorithm;

 vectorTrans <- 1:ktransitN

 vectorTime <- 0

 for (x in 1:ktransitN) {

 if (vectorProb[x] <= 0) {vectorTime[x] = Inf}

 else {vectorTime[x] <-rexp(1,vectorProb[x])}

 }

 repeat {

 parTime <- min(vectorTime)

 if (parTime == Inf) {

 cat("\t YOU reached a dead state!! \t

 matrixMatrix = c(matrixTokens, -totTime)

 return(matrixMatrix)

 }

 chance <- which(vectorTime == parTime)

 if (length(chance) >1)

 chance <- sample(chance,1)

 rn <- vectorTrans[chance]

 if (length(inhibIndex) == 0) {

 if (all(matrixTokens >= -matrixOutward[rn,])) {

 matrixTokens <- matrixTokens + matrixDelta[rn,]

 totTime <- totTime + parTime

 break

 }

 } else {

 indexIndex <- inhibIndex[which(inhibIndex[,1] ==rn),2]

 if (((length(indexIndex) == 0) || (all(matrixTokens[indexIndex] <

matrixInhibit[rn,indexIndex]))) && (all(matrixTokens >= -matrixOutward[rn,]))) {

 matrixTokens <- matrixTokens + matrixDelta[rn,]

 totTime <- totTime + parTime

 break

 }

 }

 vectorTrans <- vectorTrans[-chance]

 vectorTime <- vectorTime[-chance]

 if (length(vectorTrans) == 0){

 cat("\t you reached a dead state!! \t")

 matrixMatrix = c(matrixTokens, -totTime)

 return(matrixMatrix)

 }

 }

 importantTemp <- temp3[[rn]]

 important <- importantTemp[which(vectorPar[importantTemp] !=0)]

 for (i in important) {

 vectorProb[i] <-prod(matrixTokens[temp[[i]]]) * vectorPar[i]

 }

 }

 matrixMatrix <- c(matrixTokens, totTime)

 return(matrixMatrix)

}

Starting script

It is only useful for creating the mutant set during the TESTING of the optimization script.

here it starts the "declaration" part"

scriptFile <- "0. Starting.R"

if (!(file.exists(scriptFile))) {...}

source ("Subscripts/Variables.R")

source ("Subscripts/simulcoreOpt.R")

here it starts Montecarlo Simulation

meanMatrix <- matrix(ncol = kplaceN+1, nrow = iterNumber)

vectorResults <- vector(length = (cPMNnumber+1))

for (iterCounter in 1:iterNumber) {

 meanMatrix[iterCounter,] <- Simulcore(vectorPar, vectorProb, inhibIndex,

matrixInhibit)

}

cat ("\t 1")

if (any(meanMatrix[,kplaceN+1] <= 0)) {

 stop("\n Error! Your starting network is not viable!!")

}

vectorResults[1] <- mean(meanMatrix[,choicePlaceNumber])

for (mutCounter in 1:cPMNnumber) {

 allIndexM <- get(paste ("allIndexM", mutCounter,sep=""))

 inhibIndexM <- get(paste ("inhibIndexM",mutCounter,sep = ""))

 matrixInhibitM <- get(paste ("matrixInhibitM",mutCounter,sep = ""))

 vectorParM <- vectorPar

 vectorParM[allIndexM] = 0

 vectorProbM <- vectorProb

 vectorProbM[allIndexM] = 0

 for (iterCounter in 1:iterNumber) {

 meanMatrix[iterCounter,] <- Simulcore(vectorParM, vectorProbM, inhibIndexM,

matrixInhibitM)

 }

 loopCheck <- mutCounter+1

 cat ("\t", loopCheck)

 if (any(meanMatrix[,kplaceN+1] <= 0)) {

 cat ("\n This mutant is not viable and therefore it will be discharged")

 vectorResults[loopCheck] = NA

 } else {vectorResults[loopCheck] <-mean(meanMatrix[,choicePlaceNumber])}

}

simulcoreMat <- vectorResults[c(2:(cPMNnumber+1))]/vectorResults[1]

testDeath <- which(is.na(simulcoreMat))

if (length(testDeath) != 0) {

 if (length(testDeath) == length(simulcoreMat)) {

 stop("\n Error! All the mutants are not viable!!")

 }

 choicePlaceMutantName <- choicePlaceMutantName[-testDeath]

 simulcoreMat <- simulcoreMat[-testDeath]

}

trainingSet <- matrix(nrow =2, ncol= length(simulcoreMat))

trainingSet[1,] = choicePlaceMutantName

trainingSet[2,] = simulcoreMat

tempName <- "../Materials/TrainingSet.csv"

write.table(trainingSet, tempName, quote = FALSE, sep= " ", row.names = FALSE,

col.names = FALSE)

Optimization script

It is the proper optimization script to be used for training the whole-cell network; it employs

most of the needed condition checks.

here it starts the "declaration" part"

scriptFile <- "1. MLA 2.2.R"

interactive <- "Y"

if (!(file.exists(scriptFile))) {..}

source ("Subscripts/Variables.R")

source ("Subscripts/simulcoreOpt.R")

dir.create ("../Materials/MontecarloResults", showWarnings = FALSE)

here it starts Monte Carlo Simulation

for (totCounter in 1:totIteration) {

 vectorParOld = vectorPar <- vectorParStart

 countMcReal <- 0

 # first simulations to simulate the original network

 simulcoreTot[1,] <- Simulcore(vectorPar, vectorProb, inhibIndex, matrixInhibit)

 cat ("\t", 1)

 if ((simulcoreTot[1,choicePlaceNumber] == 0) || (simulcoreTot[1,kplaceN+1] == 0))

{

 stop("\n Error! Your starting network is not viable!!")

 }

 for (mutCounter in 1:cPMNnumber) {

 allIndexM <- get(paste("allIndexM", mutCounter,sep=""))

 inhibIndexM <- get(paste ("inhibIndexM",mutCounter,sep = ""))

 matrixInhibitM <- get(paste ("matrixInhibitM",mutCounter,sep = ""))

 vectorParM <- vectorPar

 vectorParM[allIndexM] = 0

 vectorProbM <- vectorProb

 vectorProbM[allIndexM] = 0

 simulcoreTot[mutCounter+1,] <- Simulcore(vectorParM, vectorProbM, inhibIndexM,

matrixInhibitM)

 cat ("\t", mutCounter+1)

 if (simulcoreTot[mutCounter+1,kplaceN+1] == 0) {

 stop("\n Error! One or more mutants are not viable; you need you use another

script.")

 }

 }

 valuesNew <- simulcoreTot[, choicePlaceNumber]

 valuesDeltaVec <- abs((valuesNew[c(2:(cPMNnumber+1))]/valuesNew[1]) - ratioReal)

 valuesDeltaOld <- sum(valuesDeltaVec^2)

 valuesDeltaBegin = valuesDeltaBest <- valuesDeltaOld

 cat ("\n")

 # other simulations to optimize the original network

 for(mcCounter in 1:mcNumber) {

 rnp <- sample(allowedTransit,1)

 if (rnp %in% duplPos) {

 duplChosen <- substr(transitNames[rnp],5,5)

 rnp <- which(grepl(paste ("dupl", duplChosen, sep = ""),

transitNames))

 }

 vectorPar[rnp] <- runif(1,minWeight,maxWeight)

 simulcoreOutput <- Simulcore(vectorPar, vectorProb, inhibIndex, matrixInhibit)

 cat ("\t", 1)

 if ((simulcoreOutput[kplaceN+1] == 0) || (simulcoreOutput[choicePlaceNumber] ==

0) || ((simulcoreOutput[] > stepsNumber) && (sample(2,1) !=1)) ||

((simulcoreOutput[kplaceN+1] < 0) && (sample(2,1) !=1))) {

 vectorPar <- vectorParOld

 } else {

 simulcoreTot[1,] <- simulcoreOutput

 loopCheck <- 0

 for (mutCounter in 1:cPMNnumber) {

 allIndexM <- get(paste("allIndexM", mutCounter,sep=""))

 inhibIndexM <- get(paste ("inhibIndexM",mutCounter,sep = ""))

 matrixInhibitM <- get(paste ("matrixInhibitM",mutCounter,sep = ""))

 vectorParM <- vectorPar

 vectorParM[allIndexM] = 0

 vectorProbM <- vectorProb

 vectorProbM[allIndexM] = 0

 simulcoreOutput <- Simulcore(vectorParM, vectorProbM, inhibIndexM,

matrixInhibitM)

 if ((simulcoreOutput[kplaceN+1] == 0) || ((simulcoreOutput[] > stepsNumber)

&& (sample(2,1) !=1)) || ((simulcoreOutput[kplaceN+1] < 0) && (sample(2,1) !=1))) {

 vectorPar <- vectorParOld

 break

 }

 loopCheck <- mutCounter + 1

 simulcoreTot[loopCheck,] <- simulcoreOutput

 cat ("\t", loopCheck)

 }

 if (loopCheck == cPMNnumber+1) {

 valuesNew <- simulcoreTot[, choicePlaceNumber]

 valuesDeltaVec <- abs((valuesNew[c(2:(cPMNnumber+1))]/valuesNew[1]) -

ratioReal)

 valuesDeltaNew <- sum(valuesDeltaVec^2)

 valuesDelta <- valuesDeltaOld - valuesDeltaNew

 if (valuesDeltaNew < valuesDeltaBest) {

 valuesDeltaBest <- valuesDeltaNew

 vectorParBest <- vectorPar

 }

 if (exp(invTemp*valuesDelta)> runif(1)) {

 vectorParOld <- vectorPar

 valuesDeltaOld <- valuesDeltaNew

 countMcReal <- countMcReal +1

 cat("\t !!", countMcReal,"\t")

 } else {vectorPar<- vectorParOld}

 }

 }

 cat ("\t", mcCounter, "\n")

 }

 cat("\n", totCounter, " rounds completed of ", totIteration, "\n")

 # final configuration and markings obtained is stored in external files; each

iteration of the script produces 2 files

 tempName1 <- sprintf("../Materials/MontecarloResults/kparameters%03d.txt",

totCounter)

 tempName11<- sprintf("../Materials/MontecarloResults/kparametersMIN%03d.txt",

totCounter)

 tempName2 <- sprintf("../Materials/MontecarloResults/markings%03d.txt",

totCounter)

 tempName3 <- sprintf("../Materials/MontecarloResults/Deltas%03d.txt", totCounter)

 write.table(t(vectorPar), tempName1 , quote = FALSE, row.names=FALSE,

col.names=FALSE, sep = "\t")

 write.table(t(vectorParBest), tempName11 , quote = FALSE, row.names=FALSE,

col.names=FALSE, sep = "\t")

 write.table(t(simulcoreTot[nrow(simulcoreTot),]), tempName2 , quote = FALSE,

row.names=FALSE, col.names=FALSE, sep = "\t")

 write.table(c(valuesDeltaBegin, valuesDeltaOld, valuesDeltaBest), tempName3 ,

quote = FALSE, row.names=FALSE, col.names=FALSE, sep = "\t")

}

tempName3 <- sprintf("../Materials/MontecarloResults/kparameters%03d.txt",

totIteration + 1)

write.table(t(vectorParStart), tempName3 , quote = FALSE, row.names=FALSE,

col.names=FALSE, sep = "\t")

save (totIteration, stepsNumber, choicePlaceNumber, file =

"../Materials/MontecarloResults/parameters.R", ascii = TRUE)

Pre-testing script

It is needed to choose the best set of parameters among those generated in the optimization.

here it starts the "declaration" part"

scriptFile <- "2. optGrowth 1.R"

interactive <- "Y"

if (!(file.exists(scriptFile))) {...}

source ("Subscripts/Variables.R")

load ("../Materials/MontecarloResults/parameters.R")

source ("Subscripts/simulcoreOpt.R")

here it starts Montecarlo Simulation

totalDelta <- vector(length=totIteration)

valuesDelta <- vector(length=iterNumber)

simulcoreTot <- vector(length = cPMNnumber+1)

for (totCounter in 1:totIteration) {

 cat ("starting set ", totCounter , ", iteration ")

 vectorPar <-

readLines(sprintf("../Materials/MontecarloResults/kparameters%03d.txt", totCounter

))

 vectorPar <- type.convert(unlist(strsplit(vectorPar, "\t")))

 vectorProb <- tokenProduct*vectorPar

 for (iterCounter in 1:iterNumber) {

 simulcoreOutput <- Simulcore(vectorPar, vectorProb, inhibIndex, matrixInhibit)

 cat ("\t", 1)

 if (((simulcoreOutput[] > stepsNumber) && (sample(2,1) !=1)) ||

((simulcoreOutput[kplaceN+1] <= 0) && (sample(2,1) !=1))) {

 valuesDelta[iterCounter] = Inf

 } else {

 simulcoreTot[1] <- simulcoreOutput[choicePlaceNumber]

 for (mutCounter in 1:cPMNnumber) {

 allIndexM <- get(paste ("allIndexM", mutCounter,sep=""))

 inhibIndexM <- get(paste ("inhibIndexM",mutCounter,sep = ""))

 matrixInhibitM <- get(paste ("matrixInhibitM",mutCounter,sep = ""))

 vectorParM <- vectorPar

 vectorParM[allIndexM] = 0

 vectorProbM <- vectorProb

 vectorProbM[allIndexM] = 0

 simulcoreOutput <- Simulcore(vectorParM, vectorProbM, inhibIndexM,

matrixInhibitM)

 if (((simulcoreOutput[] > stepsNumber) && (sample(2,1) !=1)) ||

((simulcoreOutput[kplaceN+1] <= 0) && (sample(2,1) !=1))) {

 valuesDelta[iterCounter] = Inf

 break

 }

 simulcoreTot[mutCounter+1] <- simulcoreOutput[choicePlaceNumber]

 }

 if (valuesDelta[iterCounter] != Inf) {

 valuesDeltaVec <- abs((simulcoreTot[c(2:(cPMNnumber+1))]/simulcoreTot[1]) -

ratioReal)

 valuesDelta[iterCounter] <- sum(valuesDeltaVec^2)

 }

 }

 }

 totalDelta[totCounter] = mean(valuesDelta[which(valuesDelta != Inf)])

 cat("\n", totCounter, " rounds completed of ", totIteration, "\n")

}

totalDelta[which(is.na(totalDelta))] = Inf

print (totalDelta)

bestResult = which.min(totalDelta)

cat ("\n the best k set is the ", bestResult, "°, which gives a final delta of ",

totalDelta[bestResult])

if (bestResult == length(totalDelta)) {

 cat ("\n Optimization failed!!")

} else {

 tempName <- sprintf("../Materials/MontecarloResults/kparameters%03d.txt",

bestResult)

 file.copy (tempName, "../Materials/kparametersBEST.txt")

}

Optimization script v.2

It is employed during the TESTING of the optimization script.

It is identical to the Optimization script v.1, apart from the conditions checked; the previous

and the new conditions checks may be found below.

OLD

if ((simulcoreOutput[kplaceN+1] == 0) || (simulcoreOutput[choicePlaceNumber] == 0)

|| ((simulcoreOutput[] > stepsNumber) && (sample(2,1) !=1)) ||

((simulcoreOutput[kplaceN+1] < 0) && (sample(2,1) !=1)))

NEW

if ((simulcoreOutput[choicePlaceNumber] == 0) || (simulcoreOutput[kplaceN+1] == 0)

|| ((simulcoreOutput[kplaceN+1] < 0) && (sample(2,1) !=1)))

Moreover, in this script, the variable “matrixTokens” is not read from the input file, rather it

is randomly generated at each iteration of the optimization process
NEW: matrixTokens[-choicePlaceNumber] <- round(runif((kplaceN-1), min=0,max=20))

Pre-testing script v.2

It is employed during the TESTING of the optimization script.

It is identical to the pre-testing script v.1, apart from the conditions checked; the previous and

the new conditions checks may be found below.

OLD

if (((simulcoreOutput[] > stepsNumber) && (sample(2,1) !=1)) ||

((simulcoreOutput[kplaceN+1] <= 0) && (sample(2,1) !=1)))

NEW

if ((simulcoreOutput[kplaceN+1] <= 0) && (sample(2,1) !=1))

Simulation script

Simulation and analysis of the data are joined in this script, but the simulation core is located

in another script

HERE STARTS THE DECLARATION PART

scriptFile <- "3. Simulator.R"

if (!(file.exists(scriptFile))) {...}

dir.create ("../Materials/Results", showWarnings = FALSE)

dir.create ("../Materials/Analysis", showWarnings = FALSE)

inputPath <- "../Materials/Results/"

outputPath <- "../Materials/Analysis/"

outputFile1 <- paste (outputPath, "finalmarkings.txt", sep = "")

outputFile2 <- paste (outputPath, "timeseries.txt", sep = "")

source ("Subscripts/Variables.R")

source ("Subscripts/SimulcoreMod.R")

HERE STARTS THE SIMULATION PART

valMat = allMat <- c(1:iterNumber)

if (iterNumber == 1) {

 tempOutput <- Simulcore(vectorPar, vectorProb, inhibIndex, matrixInhibit)

 #outputFile3 <- paste (inputPath, "simulation1.txt", sep = "")

 #write.table (t(tempOutput), outputFile3, quote = FALSE, sep = "\t", row.names =

FALSE, col.names = c(placesNames,"Time"))

 simulcoreOutput1 <- tempOutput

 maxTime = minTime <- abs(tempOutput[stepsNumber, kplaceN+1])

} else {

 maxTime <- 0

 for (iterCounter in 1:iterNumber) { #the entire simulation is repeated

"iterNumber" number of times

 cat ("\n", iterCounter, "iterations started of ", iterNumber)

 tempOutput <- Simulcore(vectorPar, vectorProb, inhibIndex, matrixInhibit)

 #outputFile3 <- paste (inputPath, "simulation", iterCounter,".txt", sep = "")

 #write.table (tempOutput, outputFile3, quote = FALSE, sep = "\t", row.names =

FALSE, col.names = c(placesNames,"Time"))

 assign (paste ("simulcoreOutput",iterCounter, sep=""),tempOutput)

 maxTime[iterCounter] <- abs(tempOutput[stepsNumber, kplaceN+1])

 }

 meanTime <- mean(maxTime)

 sdTime <- sd(maxTime)

 #hist(maxTime, col="red")

 #abline (v=c(meanTime, (meanTime - 2*sdTime), (meanTime + 2*sdTime)),col =

"blue")

 #abline (v=c((meanTime - sdTime), (meanTime+sdTime), (meanTime + 3*sdTime),

(meanTime - 3*sdTime)),col="green")

 #readline("\n Distribution of the duration of each iteration; press enter to

continue")

 invMat <- c(which(maxTime > (meanTime+sensSd*sdTime)), which(maxTime <

(meanTime -sensSd*sdTime)))

 bornDead <- which(maxTime == 0)

 if (length(bornDead) != 0) {

 invMat <- unique(c(valMat,invMat))

 cat ("\n One or more iteration ignored (the simulation reached a dead state at

the very beginning)")

 }

 if (length(invMat) != 0) {

 if (length(invMat) != length(allMat)) {

 valMat <- allMat[-invMat]

 } else {stop ("\n All the transitions have been ignored. No data available to

calculate a time series")}

 }

 minTime <- min(maxTime[valMat])

 cat ("\n", 100*length(valMat)/length(allMat), "% of the iteration considered")

}

HERE STARTS THE ANALYSIS PART

tableGlobal <- matrix(ncol= kplaceN+1, nrow= length(valMat)) # Table to

summarize the results of all runs and the mean value of the runs (for each place)

colnames(tableGlobal) <- c(placesNames, "Dead State?")

totalOutput <- matrix(ncol= kplaceN, nrow=(spotsN+1))

totalOutput[,] <- 0

for (matCounter in valMat) {

 timeLine <- seq(0.0, minTime, length.out = spotsN + 1)

 timeAxis <- zoo(0, timeLine)

 nam2 <- paste("simulcoreOutput", matCounter, sep = "")

 assign("tempInput2",get(nam2))

 timeSeries <- zoo(tempInput2[,c(1:kplaceN)], tempInput2[,(kplaceN+1)])

 #aggregate(timeSeries, index(timeSeries), mean) # Only useful if a

transition happens so quickly that R cannot measure its duration

 mergedSeries <- merge(timeSeries,timeAxis)

 mergedSeries[,c(1:kplaceN)] <- na.approx(mergedSeries[,c(1:kplaceN)], rule=2)

 timeIndex <- which (index(mergedSeries) %in% index(timeAxis))

 simulcoreTemp <- as.matrix(mergedSeries[timeIndex,c(1:kplaceN)])

 totalOutput <- totalOutput + simulcoreTemp[c(1:(spotsN+1)),]

 if (tempOutput[stepsNumber,kplaceN+1] < 0) {

 tableGlobal[which(valMat == matCounter),]<-

c(round(simulcoreTemp[spotsN+1,],3), "YES")

 } else tableGlobal[which(valMat == matCounter),]<-

c(round(simulcoreTemp[spotsN+1,],3), "NO")

}

if (length(valMat) > 1) {

 totalOutput <- totalOutput/length(valMat)

 tableMean <- totalOutput[spotsN+1,]

 tableGlobal <- rbind(tableGlobal, c(round(tableMean,3), ""))

 rownames(tableGlobal) <- c(valMat, "Mean")

}

if (choicePlaceName != "") {

 cat ("\n therefore, the (mean) value of ", choicePlaceName, " is ",

tableMean[choicePlaceNumber], "for each iteration")

 plot ((0:spotsN), totalOutput[,choicePlaceNumber], type="l")

} else {

 matplot ((0:spotsN), totalOutput, type="l")

 legend('topright', placesNames , col=1:6, lty=1, bty='n', cex=.75)

}

totalOutput <-cbind(totalOutput, timeLine)

write.table (tableGlobal, outputFile1, quote = FALSE, sep = "\t",row.names = FALSE,

) #print the summary table and the mean value of the selected place

write.table (round(totalOutput,3), outputFile2, quote = FALSE, sep = "\t",row.names

= FALSE,) #print the summary table and the mean value of the selected place

Simulation script – on GitHub

Simulation script as found on GitHub; it does not contain the analysis part, but it does not

require any additional subscript for reading the input files and performing simulations.

HERE STARTS THE INPUT PART

General input

 library('rjson') # rjson package is loaded

 stepsNumber <- 3000 # Number of steps of each simulation

 iterNumber <- 100 # Number of times each simulation is repeated

 inputPath <- "" # by default, the input file is read from the w.d.

 outputPath <- "Results/" # by default, output files are in this folder

 inputFileName <- "merge_matrices.txt"

 inputFile <- paste (inputPath, inputFileName, sep = "")

 inputData <- fromJSON(paste(readLines(inputFile), collapse=""))

 matrixTokens <- inputData$marking

 transitNames <- inputData$tnames # Name of transitions

 placesNames <- inputData$pnames # Name of places

 kplaceN <- length(placesNames) # Number of places

 ktransitN <- length(transitNames) # Number of Transitions

 vectorPar <- inputData$k # Mass Action parameters

 matrixInhibit <- do.call(rbind, inputData$inhib)

 inhibIndex <- which(matrixInhibit>=1, arr.ind=TRUE)

 matrixInward <- do.call(rbind, inputData$post)

 matrixOutward <- -1*(do.call(rbind, inputData$pre))

 matrixDelta <- matrixInward + matrixOutward

 colnames(matrixInhibit) <- colnames(matrixInward) <- colnames(matrixOutward) <-

colnames(matrixDelta) <- placesNames

Ancillary function

 tokenProduct <- vector(length=ktransitN)

 prova = which(matrixOutward != 0, arr.ind = TRUE)

 prova3 = which(matrixInward !=0, arr.ind = TRUE)

 temp = list()

 temp2 = list()

 temp3 = list()

 for(i in 1:ktransitN){

 # the product of the number of tokens in the input places for each transition

 temp[[i]] <- prova[(prova[,1] == i),2]

 tokt <- matrixTokens[temp[[i]]]

 tot <- prod(tokt)

 tokenProduct[i] <-tot

 temp2[[i]] <- unique(c(prova[(prova[,1] == i),2], prova3[(prova3[,1] == i),2]))

 if (length(temp2[[i]]) == 0) {

 temp3[[i]] <- unique(c(prova[(prova[,1] == i),2], prova3[(prova3[,1] ==

i),2]))

 } else if (length(temp2[[i]]) == 1) {

 temp3[[i]] <- unique(which(matrixOutward[,temp2[[i]]] != 0, arr.ind = TRUE))

 } else {

 temp3[[i]] <- unique(which(matrixOutward[,temp2[[i]]] != 0, arr.ind =

TRUE)[,1])

 }

 }

 vectorProb <- tokenProduct*vectorPar # probability vector completed

HERE STARTS THE SIMULATION FUNCTION

Simulcore <- function() {

 matrixMatrix <- matrix(ncol =kplaceN+1, nrow= stepsNumber)

 matrixMatrix[1,] <- c(matrixTokens,0)

 totTime <- 0

 # each step is repeated for stepsNumber times (x=1 is the starting condition)

 for (matrixRow in 1:stepsNumber) {

 vectorTrans <- 1:ktransitN

 vectorTime <- 0

 for (x in 1:ktransitN) {

 if (vectorProb[x] <= 0) {vectorTime[x] = Inf}

 else {vectorTime[x] <-rexp(1,vectorProb[x])}

 }

 repeat {

 # the shortest transition is chosen and its time recorded

 parTime <- min(vectorTime)

 if (parTime == Inf) {

 matrixMatrix[matrixRow,] <- c(matrixTokens, -totTime)

 return(matrixMatrix[c(1:matrixRow),])

 }

 chance <- which(vectorTime == parTime)

 if (length(chance) >1) {chance <- sample(chance,1)}

 rn <- vectorTrans[chance]

 if (length(inhibIndex) == 0) {

 # option 1: there is no inibitory edge in the network

 if (all(matrixTokens >= -matrixOutward[rn,])) {

 matrixTokens <- matrixTokens + matrixDelta[rn,]

 totTime <- totTime + parTime

 matrixMatrix[matrixRow,] <- c(matrixTokens, totTime)

 break

 }

 } else {

 # option 2: there are some inibitory edges in the network

 indexIndex <- inhibIndex[which(inhibIndex[,1] ==rn),2]

 if ((length(indexIndex) == 0) || (all(matrixTokens[indexIndex] <

matrixInhibit[rn,indexIndex]))) {

 if (all(matrixTokens >= -matrixOutward[rn,])) {

 matrixTokens <- matrixTokens + matrixDelta[rn,]

 totTime <- totTime + parTime

 matrixMatrix[matrixRow,] <- c(matrixTokens, totTime)

 break

 }

 }

 }

 vectorTrans <- vectorTrans[!vectorTrans == rn]

 vectorTime <- vectorTime[-chance]

 if (length(vectorTrans) == 0){

 cat("\t dead state!!")

 matrixMatrix[matrixRow,] <- c(matrixTokens, -totTime)

 return(matrixMatrix[c(1:matrixRow),])

 }

 }

 importantTemp <- temp3[[rn]]

 important <- importantTemp[which(vectorPar[importantTemp] !=0)]

 for (i in important) {

 vectorProb[i] <-prod(matrixTokens[temp[[i]]]) * vectorPar[i]

 }

 }

 return(matrixMatrix[c(1:matrixRow),])

}

HERE STARTS THE SIMULATION PART

dir.create ("Results", showWarnings = FALSE)

for (iterCounter in 1:iterNumber) {

 tempOutput <- Simulcore()

 outputFile3 <- paste (outputPath, "simulation", iterCounter,".txt", sep = "")

 if (is.matrix(tempOutput)) {

 write.table (tempOutput, outputFile3, quote = FALSE, sep = "\t", row.names =

FALSE, col.names = c(placesNames,"Time"))

 } else {write.table (t(tempOutput), outputFile3, quote = FALSE, sep = "\t",

row.names = FALSE, col.names = c(placesNames,"Time"))}

 cat ("\n", iterCounter, "iterations completed of ", iterNumber)

}

Analysis script – on GitHub

Analysis script as found on GitHub; it does not contain the simulation part, but it does not

require any additional subscript for reading the input files and performing simulations.

HERE STARTS THE INPUT PART

library('zoo') # zoo package is loaded; it must be installed

before running the script

spotsN <- 100 # Number of sampling points in which you

interpolate from all the time series to build a new averaged one

sensSd <- 2 # Simulations whose duration is farther than

"sensSd" Standard Deviation from the Mean won't be considered

choicePlaceName <- "" # The places you're interested in; as

default, all the places are considered

inputPath <- "Results/" # by default, input files are read from this

folder inside the working directory

outputPath <- "Analysis/" # by default, output files will be placed in

this folder inside the working directory

outputFile1 <- paste (outputPath, "finalmarkings.txt", sep = "")

outputFile2 <- paste (outputPath, "timeseries.txt", sep = "")

fileNames <- list.files(inputPath)

iterNumber <- length(fileNames)

each matrix retrieved from a file is assigned to a specific variable and

its final time is stored in a vector

if (iterNumber == 1) {

 inputFile <- paste(inputPath, fileNames, sep = "")

 tempInput <- read.table(inputFile, header = TRUE, sep="\t")

 assign("simulcoreOutput1",tempInput)

 maxTime = minTime <- abs(tempInput[nrow(tempInput),ncol(tempInput)])

 valMat <- 1

the script changes a little when dealing with more than one input files

(a for loop is required)

} else {

 maxTime <- 0

 for (iterCounter in 1:iterNumber) {

 inputFile <- paste(inputPath,"simulation", iterCounter,".txt", sep =

"")

 tempInput <- read.table(inputFile, header = TRUE, sep="\t")

 nam <- paste ("simulcoreOutput",iterCounter, sep="")

 assign(nam,tempInput)

 maxTime[iterCounter] <-

abs(tempInput[nrow(tempInput),ncol(tempInput)])

 }

 # mean value and stardard deviation of the simulation durations are

calculated

 meanTime <- mean(maxTime)

 sdTime <- sd(maxTime)

 # simulation durations are plotted in a graph indicating mean value and

1x, 2x, 3x sd distances from the mean

 hist(maxTime, col="red")

 abline (v=c(meanTime, (meanTime - 2*sdTime), (meanTime + 2*sdTime)),col =

"blue")

 abline (v=c((meanTime - sdTime), (meanTime+sdTime), (meanTime +

3*sdTime), (meanTime - 3*sdTime)),col="green")

 readline("\n Distribution of the duration of each iteration; press enter

to continue")

 valMat = allMat <- c(1:iterNumber)

 # simulation that lasted too differently from the mean are flagged; if a

simulation has been flagged, it is removed from the pool

 invMat <- c(which(maxTime > (meanTime+sensSd*sdTime)), which(maxTime <

(meanTime -sensSd*sdTime)))

 # other simulations are removed if the reached a dead state in the very

first stage of the simulation

 bornDead <- which(maxTime == 0)

 if (length(bornDead) != 0) {

 invMat <- unique(c(valMat,invMat))

 cat ("\n One or more iteration ignored (the simulation reached a dead

state at the very beginning)")

 }

 if (length(invMat) != 0) {

 if (length(invMat) != length(allMat)) {

 valMat <- allMat[-invMat]

 } else {stop ("\n All the transitions have been ignored. No data

available to calculate a time series")}

 }

 #the shortest simulation determines the duration of the mean time series

 minTime <- min(maxTime[valMat])

 cat (100*length(invMat)/length(allMat), "% of the iteration ignored")

}

this part is needed if you are interested in a specific place and have

specified it at the beginning of the script

kplaceN <- ncol(simulcoreOutput1) - 1

placesNames <- colnames(simulcoreOutput1)[-(kplaceN+1)]

if (all(choicePlaceName == "")) {

 choicePlaceNumber <- c(1:kplaceN)

} else choicePlaceNumber <- which (colnames(simulcoreOutput1) ==

choicePlaceName)

####################################

HERE STARTS THE ANALYSIS PART

####################################

dir.create ("Analysis", showWarnings = FALSE)

tableGlobal <- matrix(ncol= kplaceN+1, nrow= length(valMat)) # Table to

summarize the results of each simulation (tokens in each place)

colnames(tableGlobal) <- c(placesNames, "Dead State?")

totalOutput <- matrix(ncol= kplaceN, nrow=(spotsN+1)) # Table to

mean amount of tokens at each time point, i.e. the mean of all the

simulations

totalOutput[,] <- 0

for (matCounter in valMat) {

 timeLine <- seq(0.0, minTime, length.out = spotsN + 1) # time line

created by subsetting the selected total duration for the chose number of

time points.

 timeAxis <- zoo(0, timeLine)

 nam2 <- paste("simulcoreOutput", matCounter, sep = "")

 assign("tempInput2",get(nam2))

 timeSeries <- zoo(tempInput2[,c(1:kplaceN)],

tempInput2[,(kplaceN+1)]) #the original irregular time series is converted

into a zoo object

 #aggregate(timeSeries, index(timeSeries), mean)

Extremely slow step; to be used only if you suspect that a transition

happens so quickly that R cannot measure its duration

 # the original irregular time series is interpolated at specific time

points, thus creating a regular time series

 mergedSeries <- merge(timeSeries,timeAxis)

 mergedSeries[,c(1:kplaceN)] <- na.approx(mergedSeries[,c(1:kplaceN)],

rule=2)

 timeIndex <- which (index(mergedSeries) %in% index(timeAxis))

 simulcoreTemp <- as.matrix(mergedSeries[timeIndex,c(1:kplaceN)])

 # the regular time series can be summed to the others because it has been

created by interpolating in the same time points

 totalOutput <- totalOutput + simulcoreTemp[c(1:(spotsN+1)),]

 # the results of each simulation, modified during the interpolation

phase, are recorded into the summarizing table

 if (tempInput[nrow(tempInput),kplaceN+1] < 0) {

 tableGlobal[which(valMat == matCounter),]<-

c(round(simulcoreTemp[spotsN+1,],3), "YES")

 } else tableGlobal[which(valMat == matCounter),]<-

c(round(simulcoreTemp[spotsN+1,],3), "NO")

}

the actual mean is calculated in the mean matrix by diving the total

amount of tokens for the number of simulations

if (length(valMat) > 1) { # there's no need to do that if only one

simulation has been analysed.

 totalOutput <- totalOutput/length(valMat)

 tableMean <- totalOutput[spotsN+1,]

 tableGlobal <- rbind(tableGlobal, c(round(tableMean,3), ""))

 rownames(tableGlobal) <- c(valMat, "Mean")

}

a graph is plotted, showing the amount of tokens during all the

simulation; a specific place or all the places are plotted according to the

first settings.

if (choicePlaceName != "") {

 cat ("\n therefore, the (mean) value of ", choicePlaceName, " is ",

tableMean[choicePlaceNumber], "for each iteration")

 plot ((0:spotsN), totalOutput[,choicePlaceNumber], type="l")

} else {

 matplot ((0:spotsN), totalOutput, type="l")

 legend('topright', placesNames , col=1:6, lty=1, bty='n', cex=.75)

}

the mean table and the summarizing table are exported into two text files

totalOutput <-cbind(totalOutput, timeLine)

write.table (tableGlobal, outputFile1, quote = FALSE, sep = "\t",row.names

= FALSE,) #print the summary table and the mean value of the selected

place

write.table (round(totalOutput,3), outputFile2, quote = FALSE, sep =

"\t",row.names = FALSE,) #print the summary table and the mean value of

the selected place

5.3. Protocols

5.3.1. Transformation of yeast cells

Culture

- Distribute 100µl of YPD in a 96-multi well plate (U bottom)

- Add 10µl of a stationary phase culture in each well

- Incubate overnight at 30°C without agitation (to avoid cross-contamination) under a wet atmosphere

(for instance, humidity supplied by a water bath)

Transformation

- Centrifuge cells 5 minutes at 3000rpm (remember to balance the centrifuge!)

- Remove the supernatant by quickly flipping the plate (over a sink)

- Resuspend the pellet by smoothly vortexing the plate (there is enough liquid left to do so).

- Add 100 µl in each well of the following solution (note that Carrier DNA must be denatured 5 minutes

at 95°C and then immediately put on ice).

-Add 1 µg of the replicative plasmid to each well (the volume in µl must be calculated using the

concentration read using the NanoDrop machine)

NOTE: You may want to test the optimal concentration for your plasmid; it should not be needed to use

more than 1µg, because the rate between transformed cells and µg of plasmid quickly reaches a plateau.

Incubation

- Carefully mix by pipetting.

- Incubate 30 minutes at 45°C (e.g. using a water bath)

- Make 10µl drops on the appropriate media (we use large square plates) (2-4 repeats)

NOTE: This protocol can be applied for transforming many strains in the same time, but the final

yield is not excellent; on the other hand, when dealing with a few strains, other protocols may be

employed in order to obtain higher yields (i.e. number of transformed cells).

Substance Final concentration Final volume = 50 ml Final volume = for 25 ml

Lithium Acetate 0,2 M 10 ml of 1 M 5 ml of 1 M

PEG 3350 40% 40 ml of 50% 20 ml of 50%

DTT 0.1M 5 ml of 1 M 2.5 ml of 1 M

Carrier DNA 5% 2.5 mL of 10mg/ml 1.250 mL of 10mg/ml

5.3.2. Transformation of Escherichia coli cells

Protocol

1. Thaw competent cells on ice. Once thawed they will start losing viability and cannot be reused.

2. Pre-chill all Eppendorf tubes on ice (it is important!) and thaw plasmid DNA on ice.

3. Prepare Eppendorf tubes with 50ul competent cells, and then add 5ul plasmid DNA.

4. Mix by flicking (do not pipette nor vortex)

5. Incubate on ice for 30 min

6. Heat shock 42°C 30 sec, no shaking

7. Add 500ul LB (do not select for the plasmid because the cells have not had time to express the

resistance marker)

8. Incubate 37°C, 750 rpm, 60 min. Do not extend the incubation time of the plate if you do not

see colonies: if any correct colonies are going to form, they will appear by the morning.

9. Plate 100-150ul on selective medium

10. Incubate 37°C overnight

Notes

 We prepare a large batch of competent cells using the Rubidium chloride method, and then

rapidly freeze the cells in 200ul aliquots for storage at -80°C. Only take as many tubes as you

need from the freezer (competent cells are fragile)

 It is important not to incubate the plate for too long. This is particularly important when using

Amp as a marker, because it is degraded by the transformed cells and satellite colonies will

begin to form around them.

o Therefore, plates must be taken from the incubator and checked in the morning, cooled

to room temperature and then parafilmed and put in the fridge.

o Similarly, if a long-term storage is required, then a glycerol stock must be prepared,

because transformed E. coli cannot be reliably stored on plates for long.

 If a very low concentration of plasmid DNA is employed, or the transformation is supposed to

be inefficient, SOC medium can be used instead of LB for step 7.

o SOC (a version of Super Optimal Broth with added glucose) is more complicated to

prepare than LB but can increase transformation efficiency; once prepared, it must be

stored in the fridge to help preventing contamination.

5.3.3. Plasmid extraction

E.Z.N.A.® Endo-Free Plasmid DNA Mini Kit II Protocol - Spin Protocol. This protocol is designed to

isolate plasmid DNA from E. coli grown in an overnight 1-5 mL LB culture.

Materials and Equipment to be supplied by user:

- 100% ethanol

- Nuclease-free 1.5 mL or 2 mL microcentrifuge tubes

- Culture tubes and sterile deionized water

- Water bath or incubator capable of 70°C

- Microcentrifuge capable of at least 13,000 x g

Kit materials

- Solution I with RNase A (RNase must be added to the solution before starting the experiment)

- Solution II and Solution III

- Equilibration buffer

- HiBind® DNA Mini Columns

- DNA wash buffer (it must be diluted with 100% ethanol prior to use)

Protocol

1. Isolate a single colony from a freshly streaked selective plate, and inoculate a culture of 1- 5

mL LB medium containing the appropriate selective antibiotic. Incubate for ~12-16 hours at

37°C with vigorous shaking (~300 rpm). Use a 10-20 mL culture tube or a flask with a volume

of at least 4 times the volume of the culture.

2. Centrifugation at 5,000g for 10 minutes at room temperature.

3. Decant or aspirate the medium and discard.

4. Add 250 µL Solution I/RNase A. Vortex or pipet up and down to mix thoroughly. Complete

suspension of cell pellet is vital for obtaining good yields.

5. Transfer suspension into a new 2 mL microcentrifuge tube.

6. Add 250 µL Solution II. Invert and gently rotate the tube several times to obtain a clear lysate.

A 2-3 minute incubation may be necessary. Note: Avoid vigorous mixing, as this will shear

chromosomal DNA and lower plasmid purity.

7. Add 350 µL Solution III. Gently invert several times until a flocculent white precipitate forms.

8. Centrifuge at maximum speed (≥13,000 x g) for 10 minutes. A compact white pellet will form.

9. Insert a HiBind® DNA Mini Column II into a 2 mL Collection Tube.

Optional Protocol for Column Equilibration:

1. Add 100 µL of equilibration buffer the HiBind® DNA Mini Column.

2. Centrifuge at maximum speed for 30-60 seconds.

3. Discard the filtrate and reuse the collection tube.

10. Transfer the cleared supernatant from Step 8 by CAREFULLY aspirating it into the HiBind®

DNA Mini Column. Be careful not to disturb the pellet and that no cellular debris is transferred

to the HiBind® DNA Mini Column

11. Centrifuge at maximum speed for 1 minute; discard the filtrate and reuse the collection tube.

12. Add 500 µL HB Buffer.

13. Centrifuge at maximum speed for 1 minute; discard the filtrate and reuse collection tube.

14. Add 700 µL DNA Wash Buffer. Note: DNA Wash Buffer.

15. Centrifuge at maximum speed for 1 minute; discard the filtrate and reuse the collection tube.

Optional: repeat steps 14-15 for a second DNA Wash Buffer wash step.

16. Centrifuge the empty HiBind® DNA Mini Column for 2 minutes at maximum speed to dry the

column matrix. Note: It is important to dry the HiBind® DNA Mini Column matrix before

elution because residual ethanol may interfere with downstream applications.

17. Transfer the HiBind® DNA Mini Column to a clean 1.5 mL microcentrifuge tube.

18. Add 40µL sterile deionized water directly to the centre of the column membrane. Note: the

efficiency of eluting DNA from the HiBind® DNA Mini Column is dependent on pH. If using

sterile deionized water, make sure that the pH is around 8.5.

19. Let sit at room temperature for 1 minute, then centrifuge at maximum speed for 1 minute.

Optional: Repeating steps 18-19 will yield any residual DNA, though at a lower concentration.

20. Store plasmid DNA at -20°C

5.4. Gene lists

1. List of the viable mutant strains employed in the first experiment, i.e. measurement of the

growth rate of slow growing yeast colonies.

Systematic

name

Standard

name
Connections

Network

size
SHELF PLATE R C

YER044C ERG28 45 117 57 312 D 12

YEL044W IES6 21 189 57 312 A 3

YLR403W SFP1 34 139 60 320 C 1

YGR006W PRP18 15 113 61 322 C 2

YDR300C PRO1 22 65 62 327 C 8

YLR435W TSR2 23 197 64 333 E 11

YNL054W VAC7 11 110 66 338 B 2

YGR036C CAX4 45 225 66 337 D 9

YJL184W GON7 30 67 67 342 B 10

YJL189W RPL39 20 40 67 342 B 11

YCR047C BUD23 11 48 67 342 G 5

YNL133C FYV6 11 63 67 341 A 12

YPR067W ISA2 16 41 68 344 F 11

YLR382C NAM2 12 75 68 343 A 10

YPL268W PLC1 15 198 68 344 E 10

YNL138W SRV2 85 268 68 343 E 6

YGR272C EFG1 15 49 (59) 69 348 E 12

YLR244C MAP1 18 93 71 372 A 9

YPL050C MNN9 62 116 71 372 B 10

YLR240W VPS34 20 82 71 372 B 8

YGL038C OCH1 20 82 71 372 C 5

YOR202W HIS3 // // 59 318 E 6

“Connections” is the number of interacting partners of a gene retrieved in YeastMine. “Network size”,

instead, is the number of all the physical interactions among the genes connected to the query gene; it

is calculated by retrieving the number of total interactions in YeastMine and then removing duplicate

interactions.

Shelf, Plate, R (Row) and C (Column) refer to the location of the strains in the -80°C freezer. It may be

noticed that this list has been sorted according to the location of the strains rather than the alphabetical

order of the genes; it has been made this way in order to quicken the step of strains retrieval from the

fridge, thus reducing the damages to the frozen samples.

2. List of genes involved in the ERAD and the UPR (retrieved from KEGG pathways).

They might not exactly correspond to the places in the network due to modelling reasons.

Systematic Name KEGG name

YDL072C Bap31

YJL034W BiP

YAL058W CNX

YMR264W Cue1

YBR201W Derlin

YDR411C Derlin

YIL030C Doa10

YMR276W DSK2

YJR007W eIF2a

YJR131W ERMan I

YLR057W ERMan I

YGL027C Glc I

YBR229C Glc II

YOL013C Hrd1

YLR207W Hrd3

YJL073W Hsp40

YMR214W Hsp40

YMR161W Hsp40*

YNL064C Hsp40*

YAL005C Hsp70

YBL075C Hsp70

YER103W Hsp70

YLL024C Hsp70

YNL209W Hsp70

YMR186W Hsp90

YPL240C Hsp90

YHR079C IRE1

YHR204W MNL1

YKL073W NEF

YOL031C NEF

YBR169C NEF*

YIL016W NEF*

YPL106C NEF*

YBR170C Npl4

YDR057W OS9

YDL232W OST

YEL002C OST

YGL022W OST

Systematic Name KEGG name

YGL226C-A OST

YJL002C OST

YML019W OST

YMR149W OST

YOR085W OST

YOR103C OST

YDL126C p97

YCL043C PDI

YDR518W PDI

YIL005W PDI

YOR288C PDI

YDR283C PERK

YPL096W Png1

YEL037C RAD23

YPL218W SAR1

YDL195W Sec13/31

YLR208W Sec13/31

YIL109C Sec23/24

YPR181C Sec23/24

YBR283C Sec61

YDR086C Sec61

YER019C-A Sec61

YER087C-B Sec61

YLR378C Sec61

YPL094C Sec62/63

YOR254C Sec62/63

YBR072W sHSF

YDR171W sHSF

YER100W Ubc6/7

YMR022W Ubc6/7

YBR082C UbcH5

YDR059C UbcH5

YBL058W Ubx

YML013W Ubx2

YGR048W Ufd1

YDL190C Ufd2

YOR336W UGGT

3. List of the mutant strains employed in the second experiment, i.e. fluorescence measurement

using a cytoplasmic GFP as reporter.

Systematic

name

KEGG

Name
F. Ratio Set

YDL072C Bap31 1.071438 TR

YAL058W CNX 1.450026 TE

YBR201W Derlin 1.271776 TR

YDR411C Derlin 1.372556 TE

YIL030C Doa10 1.146694 TR

YMR276W DSK2 0.680619 TE

YJR131W ERMan I 1.016127 TR

YLR057W ERMan I 0.96801 TE

YBR229C Gcl II 1.133449 TR

YGL027C Glc I 1.205143 TE

YOR202W HIS3 1 TR

YOL013C Hrd1 1.320354 TE

YLR207W Hrd3 1.181487 TR

YJL073W Hsp40 0.997621 TE

YMR214W Hsp40 1.07017 TR

YMR161W Hsp40 1.173455 TE

YNL064C Hsp40

YAL005C Hsp70 1.063484 TR

YBL075C Hsp70 0.903656 TE

YER103W Hsp70 1.209884 TR

YLL024C Hsp70 1.125516 TE

YMR186W Hsp90 1.213468 TR

YPL240C Hsp90 1.223061 TE

YHR079C IRE1 0.992711 TR

YHR204W MNL1 1.062126 TE

YKL073W NEF 0.927122 TR

Systematic

name

KEGG

Name
F. Ratio Set

YOL031C NEF 1.137503 TE

YBR169C NEF 2.0225 TR

YIL016W NEF 1.210837 TE

YPL106C NEF

YBR170C Npl4 1.308627 TR

YDR057W OS9 0.976991 TE

YDL232W OST 0.861588 TR

YGL226C-A OST 1.088746 TE

YML019W OST 1.091643 TR

YOR085W OST 0.957667 TE

YDR518W PDI 0.963519 TR

YIL005W PDI 0.66542 TE

YOR288C PDI 1.076834 TR

YDR283C PERK 0.935403 TE

YPL096W Png1 1.011833 TR

YEL037C RAD23 1.122692 TE

YBR283C Sec61 1.234497 TR

YER019C-A Sec61 0.836368 TE

YBR072W sHSF 1.159579 TR

YDR171W sHSF 1.332989 TE

YMR022W Ubc6/7 0.586871 TR

YBR082C UbcH5 1.41485 TE

YDR059C UbcH5 1.146073 TR

YBL058W Ubx

YML013W Ubx2 0.967074 TE

YDL190C Ufd2 1.139287 TR

The table also shows the calculated fluorescence ratio when available, and the final subsets (TE =

testing, TR = training). It may be noticed that more genes have the same name in KEGG: in some cases,

that means that any of them could perform the activity reported in KEGG pathways; in other cases, that

means that all the genes associated to a certain name are required for that action to take place. Therefore,

retrieving the list from KEGG was not enough, since each place in those pathways had to be investigated

in details.

4. List of the mutant strains employed in one of the two optimization processes.

Systematic

Name

Name in

Network
F. Ratio Set

YAL058W CNX 0.795919 TE

YMR264W Cue1 2.690238 TR

YBR201W DER1 0.983099 TR

YDR411C DFM1 1.028758 TE

YMR276W DSK2 1.256507 TR

YIL005W EPS1 1.212764 TR

YDR518W EUG1 1.045429 TE

YMR161W HLJ1 1.593492 TE

YOL013C HRD1 1.027215 TE

YLR207W HRD3 1 TE

YMR186W HSC82 1.610198 TR

YBR072W HSP26 0.941434 TE

YPL240C HSP82 1.812730 TR

YHR079C IRE1p 0.992055 TE

YJL073W JEM1 1 TR

YKL073W LHS1 0.986476 TE

YHR204W MNL1 1.092884 TR

YOR288C MPD1 1.594510 TE

YBR170C Npl4 0.832199 TR

YOR085W OST3 0.942065 TR

YDL232W OST4 1.002485 TE

Systematic

Name

Name in

Network
F. Ratio Set

YGL226C-A OST5 1.669784 TR

YML019W OST6 1.849899 TE

YPL096W PNG1 0.496856 TE

YMR022W UBC7 1.100814 TR

YEL037C RAD23 0.943032 TE

YER019C-A SBH2 1.035770 TR

YMR214W SCJ1 1.209995 TR

YML013W Ubx2 0.914934 TR

YOL031C SIL1 5.093371 TR

YIL016W SNL1 0.683595 TE

YPL106C SSE1 3.132344 TR

YBR169C SSE2 2.978349 TE

YBR283C SSH1 0.854054 TR

YIL030C Doa10 18.70455 TE

YBR082C UBC4 2.575009 TE

YDR059C UBC5 0.854729 TR

YDL190C UFD2 1.394445 TR

YNL064C YDJ1 2.258177 TE

YDR057W OS9 7.541905 TR

YBL058W Ubx1 1.705164 TE

YDR171W HSP42 1.149413 TR

YLR057W MNL2 0.916348 TE

It derives from the supplementary materials of Jonikas et al. (2009), i.e. the measurement of the

fluorescence levels induced upon activation of the UPR; it only contains those genes that were already

shown in my whole-cell network. The table also shows the fluorescence ratio, and the final subsets.

5.5. Analyses from the testing the optimization script

Distribution of starting delta values: plots obtained using 100 random markings (lower picture) and

using 50 iteration starting from the same marking (middle and higher picture)

Distribution of final delta values: plots obtained using 100 random markings (higher picture) and using

50 iteration starting from the same marking (middle and lower picture)

Scatterplot showing the distribution of markings distances (y-axis) as function of the final delta values

they have produced (x-axes); given a marking “j” and a mean marking “mean”, a marking distance is

calculated as 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑((𝑇𝑖,𝑗 − 𝑇𝑖,𝑚𝑒𝑎𝑛)2)

Scatterplot showing the distribution of MA parameters sets distances (y-axis) as function of their

corresponding final delta values; distances are calculated as explained above, but using the real set of

MA parameters instead of a mean set. Plots obtained using 100 random markings (lower picture) and

using 50 iteration starting from the same marking (middle and higher picture)

Heat Maps: sets are indexed according to their corresponding final delta value (higher values on top of

each map, lower values at the bottom); 1-6 represent the MA parameters composing the set.

Each parameter is coloured according to its difference from the real parameter (as found in the network):

brighter colours indicate greater differences, whereas redder colours indicate smaller differences.

Plots obtained using 100 random markings (lower picture) and using 50 iteration starting from the same

marking (middle and higher picture). It can be appreciated that the parameters 6, 1 and 8 follow a clear

colouring pattern, becoming redder as they reach the bottom of each plot; that means, they become more

similar to the native parameter as the final delta value is reduced, thus indicating that they are likely

responsible for the reduction of the corresponding delta value.

