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Abstract

This work aims at defining, implementing and comparing some algorithms
that automatically learn specific OWL 2 inclusion axioms. These axioms
describe sufficient conditions of a given target OWL 2 concept. To do so,
a crisp OWL 2 background ontology, a target concept and a crisp training
set are given. The specific learnt inclusion axioms belong to the fuzzy OWL
2 EL Profile language. Fuzziness has been added in order to improve the
readability of the induced axioms. For instance, we may learn that ‘a good
hotel is one that has a low price’, in place of ‘a good hotel is one that whose
price is between 30 and 60 euro’. Here the fuzzy concept ‘low price’ has been
automatically determined from the training data.

The algorithms taken we have worked out are FOIL, a probabilistic vari-
ant of FOIL (pFOIL), a genetic variant of FOIL (gFOIL), the combination
of the latter two (pgFOIL) and an AdaBoost variant of gFOIL (gAdaBoost).

FOIL learns one axiom trying to greedily maximizing a score function.
After having learnt one axiom the positives samples covered are removed.
The procedure is iterated until a given coverage threshold is reached.

pFOIL tries to learn axioms by taking into account the ensemble of learnt
axioms, and specifically evaluates the ensemble in probabilistic terms.

gFOIL exploits hybrid learning to learn one axiom. Hybrid learning is
a particular form of genetic programming that we adapted to cope with an
ontology background theory. Like FOIL, the algorithm evaluates one axiom
at time and removes the positive samples covered.

pgFOIL extends gFOIL by evaluating the score of a learnt axiom like for
pFOIL.

gAdaBoost is based on a modified version of Real AdaBoost, in which
the weak learner used is as for hybrid learning.

Finally, a validation procedure has been adopted to evaluate the imple-
mented learning algorithms.
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Introduction

The study and usage of Descriptive Logics (DLs) to manage knowledge bases
is nowadays wide spread and are at the core of the OWL 2 [5, 32] standard
for the definition of ontologies (knowledge bases) and numerous ontologies
exists nowadays 1.

However, so far, the application of machine learning methods in the con-
text of OWL 2 is relatively rather an unexplored area, and, specifically,
related to the induction of rules describing a target OWL 2 concept [27].

This work aims at defining, implementing and comparing several algo-
rithms to induce such rules. Some of the of these algorithms are inspired by
Inductive Logic Programming (ILP)[9], a widely explored research area, and
our aim is to see if and how these algorithms can be adapted to the OWL
2 context.

Beside the definition of such algorithms, we address another issue. Many
inductive algorithms can reach a good effectiveness, but can also produce
rules that are hard to be understood for a human being. The readability,
besides effectiveness, is also important. In order to achieve better human
readability of the induced rules, we use fuzziness to describe concepts. So, for
instance, if we are dealing with an ontology about Hotels and we are interest
in getting a description of what characterises good hotels, based on the data
at hand, instead of learning restriction on prices like one that says a hotel has
a price lower than 50 (so shall I consider a hotel whose price is above 50 as
not good?), we may lear rather that a good hotel is one that has a low price.
This latter concept is called a fuzzy set [38]: fuzzy sets have characteristic
functions that are functions mapping elements into [0, 1] instead of {0, 1}.
Therefore, elements of a domain belong to a fuzzy set to some degree in [0, 1]
and, thus, in our example, the degree of goodness of a hotel is a degree in
[0, 1] that may depend on the hotel’s price. The use of fuzzy concepts has
been shown to improve the readability of logical axioms. So, our goal here is
then to find a set of rules expressed as fuzzy OWL 2 inclusion axioms.

1See, e.g., http://owl.cs.manchester.ac.uk/tools/repositories/.
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In this thesis, we start with FOIL ([27]), a method that was already
used to induce fuzzy OWL axioms. From FOIL we adapt nFOIL ([22]) to
our context and define a new algorithm, called pFOIL. Then, we try to use
hybrid learning ([23]) in combination with FOIL and pFOIL to evaluate the
change in effectiveness. Finally, we adapt a variant of AdaBoost [11], called
Real AdaBoost [30], to our needs and obtained an algorithm that uses hybrid
learning as weak learner. All these algorithms will be then tested for their
effectiveness.
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Knowledge Representation
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Chapter 1

Web Ontology Language OWL

Among the various fields of interest of Artificial Intelligence (AI ), there is the
area of machine learning from knowledge bases. This work aims at finding
ways to induce rules (automatic learning) that can give an understandable
description of a certain concept expressed in terms of an underlying knowledge
representation language.

Web Ontology Language (OWL) is a formalism to represent knowledge.
It is based on DLs and can easily be transformed into natural language
expressions. This formalism has been firstly defined as a W3C standard in
2004 ([31]). Then in 2009 it has been updated into OWL 2 ([32]).

Both for OWL and OWL 2 some profiles, have been defined [33]. An OWL
2 profile is a sublanguage that limits expressive power but also decrease the
complexity of reasoning. So beside a good understandability OWL and OWL
2 give the user the possibility to balance complexity and expressiveness in
accordance with his needs.

1.1 Description Logics Basics

Description Logics (DLs [7, 20]) can be considered the theoretical counterpart
of OWL and OWL 2 languages as OWL language constructs can be mapped
into DLs, for which reasoning algorithms and computational complexity are
known, allowing, thus, to reason with OWL, OWL 2 and its profile.

For what concerns us:

• OWL 2 refers to the DL SROIQ [5, 19]

• OWL 2 EL refers to the DL EL family, more specifically to EL++

[1, 3, 13]
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DLs have three fundamental blocks concepts, roles and individuals. Con-
cepts can be seen as unary predicates or class, roles can be considered binary
relations and individuals as elements that can belong to a concept. Complex
concepts and roles can be built using different concept and role constructors.

1.1.1 DL families

DLs can be grouped into families, and each family consists of various logics
each of which has a different expressive power and complexity. Families are
represented by letters and each letter adds one or more constructors that
allow to build complex concepts and roles. The basic family is the AL family
that contains essential constructors. By adding “letters” to AL we can obtain
more expressive expressions. However, the more expressive a logic the higher
its computational complexity of the related reasoning algorithms.

1.1.2 AL family

AL (Attributive Language) family has few basic constructors. Considering A
an atomic concept, C,D complex concepts and R an atomic role we have
that a concept in AL is defined as ([37]):

C,D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)

C uD | (concept conjunction)
∀R.C | (universal qualified restriction)
∃R.> (existential unqualified restriction)

It is important to note that negation can only be applied to atomic con-
cepts.

An informal First Order semantic can be considered as:

Syntax FOL View

C,D → A |
> |
⊥ |
¬A |

C uD |
∀R.C |
∃R.>

A(x)
>(x)
⊥ (x)
¬A(x)
C(x) ∧D(x)
∀y.R(x, y)→ C(x)
∃y.R(x, y)

3



Then an ontology can be defined as a pair 〈A, T 〉, where A is called ABox
and consists of a finite set of concepts and roles assertion axioms, while T is
called TBox and is a finite set of General Inclusion Axioms (GCIs).

Each ABox axiom is of the form a : C and (a, b) : R. They state respec-
tively that a is an instance of C and a and b are related through R or a has
b as R.

Each TBox axiom is of the form C v D (General Concept Inclusion, or
GCI ) or C = D (definitional), where C and D are concepts. A GCI states
that each instance of C is an instance of D or in FOL ∀x.C(x)→ D(x) while
a definition inclusion axiom is equivalent to say that C v D and D v C,
i.e., in FOL ∀x.C(x)↔ D(x).

We can define an interpretation I as a pair I = 〈∆I , ·I〉 where ∆I is
non empty set called interpretation domain and ·I is called interpretation
function and maps a concept into a subset of ∆I , a role into a subset of
∆I ×∆I and an individual into an element of ∆I .

The interpretation function is extended to complex concepts as follows:

>I = ∆I ,
⊥I = ∅ ,

(C uD)I = CI ∩DI ,
(∀R.C)I = {x ∈ ∆I | RI(x) ⊆ CI} ,
(∃R.>)I = {x ∈ ∆I | RI(x) 6= ∅} ,

where RI(x) = {y ∈ ∆I | 〈x, y〉 ∈ RI}.
Furthermore, we say that an interpretation I satisfies an axiom E (I |=

E) when:
CI ⊆ DI if E = C v D ,
aI ∈ CI if E = a : C ,
〈a, b〉 ∈ RI if E = 〈a, b〉 : R .

A set of axioms E is satisfied by an interpretation I (I |= E) if ∀E ∈
E , I |= E. An interpretation I is a model for an ontology K = 〈A, T 〉 if
I |= A∪T . A knowledge base K is said to entail an axiom E iff ∀I if I |= K
then I |= E.

Satisfiability of a K is a fundamental problem when working with DLs
and is often referred to as ontology consistency problem. Besides this problem
there are other relevant:

Subsumption Checking is the problem of deciding whether or not K |=
C v D.

Instance Checking is the problem of deciding whether or not K |= a : C.

4



Concept Consistence is the problem of deciding whether or not for an
individual a not occurring in K, K ∪ {a : C} has a model.

Instance Retrieval is the problem of finding all instances of a certain
concept, i.e., the instance retrieval problem w.r.t. concept C is to de-
termine the set {a occurs in K | K |= a : C}.

1.1.3 Concrete Domains

Concrete domains [4, 28, 29] are used to extend DLs in order to deal with
concrete datatypes. When dealing with datatypes we assume to have a certain
number of ingredients. We assume to have a finite set of data values, a set of
elementary datatypes and a set of datatype predicates each of which has a
predefined arity n ≥ 1 . A datatype theory is a pair D = 〈∆D, ·D〉 where ∆D

is the datatype domain and ·D a mapping that assigns to each data value an
element from ∆D, to each elementary datatype a subset of ∆D and to each
datatype predicate p of arity n a n-ary relation over ∆D. ·D is extended to
all datatype as {v1, ...}D = {vD1 , ...}.

A DL provided with a datatype is denoted adding to its name the label
(D) so, ALC with concrete domains is denoted as ALC(D). Once we have
concrete domains we can define data properties. Data properties can be con-
sidered as roles that relates an individual to a certain data value. Classical
roles are then denoted as object properties. An interpretation I will map a
data property into a subset of ∆I ×∆D and will not have an inverse.

1.1.4 ALC
The AL family is a very basic description logic family. An important increase
in terms of expressiveness is ALC. As explained earlier, each letter added
to the family name adds a constructor. The C adds the concept negation
constructor i.e., in ALC negation can be applied too every possible concept,
not only to atomic ones, but also to complex ones.

In the following, we say that two concepts C and D are considered equiv-
alent if for each interpretation I we have that CI = DI .

We extend the interpretation function of I = 〈∆I , ·I〉 to disjunction,
concept negation and qualified existential restriction as follows:

(C tD)I = CI ∪DI ,
(¬C)I = ∆I\CI ,

(∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I .〈x, y〉 ∈ RI and y ∈ CI} .

5



Then, it can be easily shown that:

¬((¬C) u (¬D)) ≡ C tD
¬(∀R.¬C) ≡ ∃R.C ,

where C ≡ D means that C is equivalent to D. Therefore, we can consider
ALC as defined by the following grammar:

C,D → A |
> |
⊥ |
¬C |

C uD |
C tD |
∀R.C |
∃R.C .

Notice that, this time, existential restriction is qualified i.e., a generic con-
cept is allowed as role filler, and a generic concept can be negated. As seen
above, the only increase in complexity/expressiveness is brought by the gen-
eralization of negation and not by qualification of existential restrictions nor
by disjunction.

1.1.5 SROIQ
Another interesting DL languge is SROIQ. This DL has the following fea-
tures:

S: equivalent to say ALCR+

R+: transitive role axioms, denoted as Trans(R) with semantics:

I |= Trans(R) iff RI is transitive .

R: complex role inclusion axioms, denoted as R ◦ S v T with semantics:

I |= R ◦ S v T iff RI ◦ SI ⊆ T I .

Note that R is stronger than R+.

O: Nominals, singleton class, denoted by {a}, with semantics:

{a}I = {aI} .

6



I: Inverse roles, denoted with R−, with semantics

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} .

Q: Qualified number restriction, denoted by (≥ n R.C) and (≤ n R.C), with
semantics:

(≤ n R.C)I = {x ∈ ∆I | #(RI(x) ∩ CI(x)) ≤ n }

(≥ n R.C)I = {x ∈ ∆I | #(RI(x) ∩ CI(x)) ≥ n } .

SROIQ ontologies are considered to be of the form K = 〈T ,A,R〉. T and A
are still a T BOX and an ABOX , while R is called an RBOX and contains
all Roles Inclusion Axioms (RIAs).

Let us point out that SROIQ is important as it is the logical counterpart
of OWL 2 , as any OWL 2 axiom can be mapped into SROIQ. We refer the
reader to [19] for further details on SROIQ.

1.1.6 EL family

The EL family is an important DL family and will be the family that will be
used in the following as the learning language. Besides being the EL family
related to the OWL 2 profile language OWL EL[34], this family is important
because all major reasoning tasks can be performed in polynomial time, while
most all other DLs have exponential or higher computational complexity.

An EL concept is described by the following grammar:

C,D → A | (atomic concept)
> | (universal concept)

C uD | (concept conjunction)
∃R.C (existential qualified restriction)

EL has been extended in [2] and successively in [3] to obtain EL++(D).
EL++(D), as addressed by (D) label, gives the possibility to deal with con-
crete domains. Besides concrete domains, there are more constructors for
concept expressions. The EL++(D) syntax, as presented in [3], is described
in Table 1.1. For the new concept expressions, we extend interpretation func-
tion as follows:

p(f1, ..., fn)I = {x ∈ ∆I | ∃yi ∈ ∆D, fi(x) = yi, 〈y1, ..., yn〉 ∈ pD, i = 1, ..., n} .

7



C,D → >
⊥
A
{a}

C uD
∃R.C

p(f1, ..., fn)
E → C v D

R1, ..., Rn v R
dom(R) v C
ran(R) v C

ref(R) (reflexivity)
a : C

(a, b) : R

Table 1.1: EL++(D) syntax.

Moreover we have to extend our notion of satisfaction for axioms. We say
that I |= E if:

∀〈x, y〉 ∈ RI .x ∈ CI if E = dom(R) v C ,
∀〈x, y〉 ∈ RI .y ∈ CI if E = ran(R) v C ,
∀x ∈ ∆I .〈x, x〉 ∈ RI if E = ref(R) ,

∀x1, xn+1 ∈ ∆I .(∃x2, ..., xn ∈ ∆I .
(R1(x1, x2) ∧ ... ∧Rn(xn, xn+1)))

→ R(x1, xn+1) if E = R1, ..., Rn v R .

8



1.2 OWL 2 Syntax

As explained above OWL 2 is strongly related to DLs. However it is still a
language on its own and has its syntax. Moreover it has particular constructs
that increase the usability of the language. OWL 2 has some fundamental
constructs [32]:

IRI: Internationalized Resource Identifier, identifiers associated to resources;

Declarations: used to declare what a certain entity is;

Assertions: used to assert something. They can be compared to DL axioms;

Annotations: used to add verbose information to IRIs and assertions.

IRIs are used to identify resources. Resources are intended to be all basic
structures named in ontologies. These basic structures are called entities
and are divided into:

• Classes: represent atomic concept;

• Individuals: ontology individuals;

• ObjectProperties: represent roles that involve two individuals;

• DataProperties: represent roles that associate a concrete data value to
an individual;

• Datatypes: represent a particular concrete datatype pre-defined, prim-
itive, or defined through some constructors, complex ;

• Other structures, e.g., AnnotationProperty.

Each entity must be declared through a declaration. Both IRI and decla-
rations can be annotated.

Declarations, assertions and annotations can be added to an ontology
through axioms. An OWL 2 ontology is composed of axioms. Below some
examples of OWL 2 assertions are given.

• AnnotationAssertion(<AnnotationProperty> <IRI/Axiom> <AnnotationValue>)

Used to associate an IRI/Axiom to an AnnotationProperty with value AnnotationValue. Annota-
tion properties are labels that identifies particular properties. Some properties are defined in rdfs,
e.g., rdfs:label.

• ClassAssertion(<ClassExpression> <Individual>)

Used to declare that Individual belongs to ClassExpression.

• ObjectPropertyAssertion(<ObjectProperty> <Individual1> <Individual2>)

Used to say that Individual1 and Individual2 are related through ObjectProperty.

9



• DataPropertyAssertion(<DataProperty> <Individual> <DataValue>)

Used to say that Individual and DataValue are related through DataProperty, i.e., Individual has
DataProperty DataValue.

• SubClassOf(<ClassExpression1> <ClassExpression2>

Used to say that ClassExpression1 is a subclass of ClassExpression2.

Many more axioms can be defined, a full list can be found in [32].
Finally, we recall some class expressions we may have in OWL 2 [32].

• ObjectIntersectionOf(<ClassExpression1> <ClassExpression2>)

Defines the conjunction of two class expressions;

• ObjectUnionOf(<ClassExpression1> <ClassExpression2>)

Defines the disjunction of two class expressions;

• ObectComplementOf(<ClassExpression>)

Defines the complement of a class expression;

• ObjectSomeValuesFrom(<ObjectProperty> <ClassExpression>)

Defines an existential restriction on ObjectProperty qualified with Clas-
sExpression;

• DataSomeValuesFrom(<DataProperty> <Datatype>)

Defines an existential restriction on DataProperty qualified with
Datatype.

Similar constructions can be applied to object properties, data properties
and datatypes. The complete OWL 2 syntax can be found in [32].

10



Chapter 2

Fuzzy Logics and Fuzzy OWL

When dealing with fuzziness we should first point out the difference between
uncertainty and vagueness. In knowledge representation and artificial intel-
ligence there has been a long-lasting misunderstanding between the two. An
accurate explanation of this distinction can be found in [8]. A simple example
to rapidly explain the difference between uncertainty and vagueness is the
following. Assume we want to say whether or not the assertion ‘ ‘today is a
hot day” is true. This assertion involves the fuzzy concept hot. Using crisp
logic (boolean valued) we should set a threshold and say, for instance, that if
the temperature is lower than 24◦ C then it is not a hot day and, it is hot, if
temperature is equal or higher than 24◦ C. Then if we have 23.9◦ C we do not
have a hot day. If, instead, we have 24◦ C, the day would be considered hot.
This does not fit with the common intuition of the concept of ”hot day”. To
deal with this issue we can use fuzzy sets/concepts[38]. We can define a fuzzy
function that associates to a given temperature a certain degree of truth. So,
we say that hot day is a fuzzy concept.

If instead we say that ”tomorrow we will have at least 24◦ C” then we
involve uncertainty because we may not know exactly which temperature we
will have tomorrow.

Summing up, when dealing with vagueness we use fuzzy theory to say
how much an individual belongs to a certain set/concept. When dealing with
uncertainty we use probability/possibility theory to say how probable/possible
a certain individual belongs to a set/concept. There’s also a third option to
consider when we deal with both uncertainty and vagueness. Considering
previous example, if we say ”tomorrow it will be hot” we should have a
probability/possibility distribution defined over fuzzy values. This way we
involve both vagueness, with the concept ‘hot’ day, and uncertainty, as we
try to predict tomorrow’s temperature. In this case we need both fuzziness
and probability/possibility.

11



In this work we will only deal with fuzzy logic.
Before starting to describe what is fuzziness and how it is defined, it is

necessary to explain why it is useful. Fuzziness increases not only understand-
ability but it also makes the description given by knowledge bases closer to
common intuition. For instance, it is questionable saying that a person who
is 179 cm tall is not tall and that a person who is 180 cm tall is tall. Fuzzy
set theory have been developed to overcome such limitations.

2.1 Fuzzy Sets Basics

Before starting to talk about fuzzy logics let’s have a small introduction to
fuzzy sets theory. Fuzzy theory is based on a simple modification of classical
set theory. Classical set theory has as first order citizen the characteristic
function. Assuming we have a universe X , we define a function µA as the
characteristic function of set A ⊆ X as µA : X → {0, 1}. The intuition of
characteristic function is that ∀x ∈ X , µA(x) = 1 iff x ∈ A.

When dealing with fuzziness we change the definition of characteristic
function to µA : X → [0, 1] with the intuition that ∀x ∈ X , x belongs to A
with degree µA(x).

Another thing to focus on is how we can define membership. Let’s con-
sider the fuzzy concept tall. We can define a membership function that says
whoever is at least 190 cm is tall with degree 1, whoever is 170 cm tall or
less is tall with degree 0 and building the function by linearly interpolating
the values between 170 and 180. Then we can define a linear function that
is 0 in 170 and 1 in 190. This way we have a definition of fuzzy concept tall.
So if someone is 180 cm tall he will be tall with degree 0.5.

µtall(x) =


1 if height(x) ≥ 190
0 if height(x) ≤ 160
x−170

190−170
otherwise ,

where height(x) is the height of x. This kind of function is called right shoul-
der and it is a typical fuzzy function. Typical fuzzy function are listed on
Table 2.1.

2.1.1 Norm-Based Fuzzy Set Operations

Among set operations that we can use on fuzzy sets norm-based operations
are among the most widely used. These kind of operations are called t-norms,
t-conorms or s-norms and negation. T-norms, denoted as ⊗, replace con-
junction, s-norms, denoted as ⊕, replace disjunction and negation, denoted

12



Name Denotation Definition Picture

Right Shoulder rs(a, b) rs(a, b)(x) =


1 if x ≥ b
0 if x ≤ a
x−a
b−a otherwise

Figure 2.1(d)

Left Shoulder ls(a, b) ls(a, b)(x) =


1 if x ≤ a
0 if x ≥ b
b−x
b−a otherwise

Figure 2.1(c)

Triangular(b) tri(a, b, c) tri(a, b, c)(x) =


0 if x ≤ a
0 if x ≥ c
1 if x = b
x−a
b−a if a < x < b
c−x
c−b if b < x < c

Figure 2.1(b)

Trapezoidal trz(a, b, c, d) trz(a, b, c, d)(x) =


0 if x ≤ a
0 if x ≥ d
1 if b ≤ x ≤ c
x−a
b−a if a < xb
d−x
d−c if c < x < d

Figure 2.1(a)

Table 2.1: Typical fuzzy functions.

Figure 2.1: (a) Trapezoidal Function: trz(a,b,c,d) (b) Triangular Function:
tri(a,b,c) (c) Left Shoulder: ls(a,b) (d) Right Shoulder: rs(a,b).
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as 	, replace, boolean negation. Considering three operations 〈⊗,⊕,	〉 they
can be considered, respectively t-norm, s-norm and negation if they respects
property of Table 2.2

Axiom Name T-norm S-norm

Boundary Condition a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a

Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b ≤ c then a⊗ b ≤ a⊗ c if b ≤ c then a⊕ b ≤ a⊕ c
Axiom Name Negation

Boundary Condition 	0 = 1
	1 = 0

Antitonicity if a ≤ b then 	a ≥ 	b

Table 2.2: Axioms for norm-based operations.

A useful requirement is duality between t-norm and s-norm.

Definition 1. Two operations ⊗ and ⊕ are said to be dual if

a⊗ b = 1− ((1− a)⊕ (1− b))

Duality guarantees that properties of Table 2.2 are respected as stated in
Proposition 1.

Proposition 1 ([21]). Let ⊗ be a t-norm then an operation ⊕ dual to ⊗ is
an s-norm

Another fuzzy operation usually adopted is implication. Fuzzy implication
replaces boolean implication. An implication operator is often represented as
⇒. It has to respect axioms of Table 2.3.

Usually implication is asked to be an r-implication w.r.t. a certain t-norm.

Definition 2. An operation ⇒ is said to be an r-implication w.r.t. a t-norm
⊗ if

a⇒ b = sup{c | a⊗ c ≤ b}

Axiom Name Axiom
Boundary Condition 0⇒ b = 1

a⇒ 1 = 1
Antitonicity if a ≤ b then a⇒ c ≥ b⇒ c

Monotonicity if b ≤ c then a⇒ b ≤ a⇒ c

Table 2.3: Fuzzy Implication Axioms.
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Name
T-Norm
x⊗ y

S-Norm
x⊕ y

Implication
x⇒ y

Negation
	x

 Lukasiewicz max(x+ y − 1, 0) min(x+ y, 1)
if x ≤ y then 1
else 1− x+ y

1− x

Gödel min(x, y) max(x, y)
if x ≤ y then 1
else y

if x == 0 then 1
else 0

Product x · y (x+ y)− x · y if x ≤ y then 1
else y/x

if x == 0 then 1
else 0

Zadeh min(x, y) max(x, y) max(1− x, y) 1− x

Table 2.4: Fuzzy Operations Families.

An r-implication respect axiom of Table 2.3.
Some families of fuzzy operations are described in Table 2.4

2.1.2 Fuzzy Cardinality

When working with fuzzy sets we have to reconsider also the notion of cardi-
nality. Informally, with classic sets the cardinality was defined as the number
of elements belonging to a set. This definition is no more valid on fuzzy sets
as we do not have a boolean definition of membership. Many works have been
developed on this topic, so many different ways of defining fuzzy cardinality
have been proposed.

There are three fundamental groups of cardinalities of fuzzy sets [10]:

• Scalar Cardinalities : cardinalities that uses a single number (scalar) to
express cardinality;

• Fuzzy Cardinalities : cardinalities that uses a fuzzy set to denote cardi-
nality.

• Gradual Numbers : cardinalities that uses gradual numbers defined by
Dubois and Prade ([6]).

For our purpose we use a single real value indicating cardinality so we
prefer using scalar cardinalities. However we could also have adopted fuzzy
cardinalities beside with a defuzzification method, e.g., middle of maxima.

A classic cardinality is Sigma Count. This cardinality sums up the degree
of truth of all elements belonging to the universe. This sum is the cardinality
of the set.
Let X be the universe and B ⊆ X a set. The cardinality of B w.r.t. X is:

cardX (B) =
∑
x∈X

µB(x) .
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Note that even if we have a lot of elements belonging to B with very low
degree we can have a high value for the cardinality.

A complete list of cardinalities is available in [10].

2.2 Fuzzy Logics Basics

After having introduced the idea of fuzziness we can apply it to logics. In
fuzzy logic statement is not necessarily true or false but every statement has
a degree of truth that states how much a statement is true.

A fuzzy statement can be considered as a pair 〈φ, r〉 where φ is a FOL
statement and r a real value in [0, 1]. The statement is interpreted as φ is
true with degree at least r. φ can be described by the grammar:

φ, ψ → A(x) | (Atomic)
φ ∧ ψ | (Conjunction)
φ ∨ ψ | (Disjunction)
φ→ ψ | (Implication)
φ↔ ψ | (Equivalence)
¬φ | (Negation)
∃x.φ | (ExistentialRestriction)
∀x.φ (UniversalRestriction)

To define interpretations we need a family of fuzzy operations. Then for
an interpretation I = 〈∆I , ·I〉 we have:

I(A(x)) = AI(I(x)) ,
I(φ ∧ ψ) = I(φ)⊗ I(ψ) ,
I(φ ∨ ψ) = I(φ)⊕ I(ψ) ,
I(φ→ ψ) = I(φ)⇒ I(ψ) ,
I(φ↔ ψ) = (I(φ)⇒ I(ψ))⊗ (I(ψ)⇒ I(φ)) ,
I(¬φ) = 	I(φ) ,
I(∃x.φ) = sup

a∈∆I
Iax(φ) ,

I(∀x.φ) = inf
a∈∆I

Iax(φ) ,

where I(x) ∈ ∆I , AI : ∆I → [0, 1] and Iax is the the same as I but I(x) = a.
We say that I is a model of (satisfies) a fuzzy statement 〈φ, r〉, I |= 〈φ, r〉

iff I(φ) ≥ r . We say that two formulas φ, ψ are equivalent, denoted φ ≡ ψ,
iff for each interpretation I, I(φ) = I(ψ). We say that an interpretation I
satisfies a formula φ, denoted I |= φ iff I(φ) = 1. We say that a formula is a
tautology iff it is satisfied by every interpretation. Defined a fuzzy knowledge
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base K as a set of fuzzy statements, we say that an interpretation I satisfies
K, denoted I |= K, iff I satisfies each axiom in K. We say that a fuzzy
statement 〈φ, r〉 is a logical consequence of a fuzzy knowledge base K iff
∀I, I |= K implies I |= 〈φ, r〉.

Now we can define two problems related to fuzzy knowledge bases:

1. Best Entailment Degree: bed(K, φ) = sup{r | K |= 〈φ, r〉}

2. Best Satisfiability Degree: bsd(K, φ) = sup
I
{I(φ) | I |= K}

2.2.1 Witnessed Models

We say that a fuzzy interpretation I is a witnessed interpretation iff

I(∃x.φ) = Iax(φ), for some a ∈ ∆I

I(∀x.φ) = Iax(φ), for some a ∈ ∆I

As can be noticed from the definition of fuzzy interpretation, we can have
interpretations without a witness. Considering that ∆I = N and that
AI(n) = 1− 1

n
. We have that:

I(∃x.A(x)) = sup
n
Inx (A(x)) = sup

n
1− 1

n
= 1

so I(∃x.A(x)) = 1 while there is no a ∈ ∆I for which Iax(A(x)) = 1.
It can be shown that [14, 15, 16, 17]:

Proposition 2. Under  Lukasiewicz logic, a fuzzy statement has a fuzzy model
iff it has a witnessed fuzzy model.

Proposition 2 does not hold for Gödel logic and Product logic.

2.2.2 Fuzzy Description Logics

Generally, when we want to use Fuzzy DLs we define Fuzzy DL statements of
the form 〈E, n〉 where E is a DL axiom and n is the degree stating how much
E is true. The axiom is then mapped into a FOL statement φ. So 〈E, n〉 can
be treated as a Fuzzy FOL statement 〈φ, n〉.

However it is preferable to avoid such translation and trying to find a
direct way to work with Fuzzy Description Logics.
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2.2.2.1 Syntax and Semantics

Working with SROIQ we have that possible Fuzzy DL statements are:

1. 〈a : C, n〉: Fuzzy Concept Assertions, a is an individual and C a concept
expression, it states that a is C with degree at least n;

2. 〈(a, b) : R, n〉: Fuzzy Role Assertions, a and b are individual and R is a
role, it states that a and b are related through R with degree at least
n;

3. 〈C v D,n〉: Fuzzy GCIs, C and D are concept expressions, it states
that B is a subclass of C with degree at least n;

4. 〈R1 ... Rm v R, n〉: Fuzzy RIAs, where R1, ..., Rm, R are roles, it states
that the composition of R1, ..., Rm is a subrole of R with degree at least
n;

5. (w1 · A1 + ... + wn · An) v C: Weighted Sum, where w1, ..., wn are real
numbers in [0, 1] such that

∑n
i=1wi <= 1, A1, ..., An,WeightedSum

are atomic concepts;

6. Axioms trans(R), disj(S1, S2), ref(R), irr(S), sym(R) and asy(S), these
axioms are not fuzzy and so the interpretations satisfying such axioms
must behave as for crisp case.

An interpretation is considered as I = 〈∆I , ·I〉 where ∆I is an interpreta-
tion domain and ·I an interpretation function that maps an atomic concept
into a function from ∆I to [0, 1], i.e., AI : ∆I → [0, 1]. Each role is mapped
into a function RI : ∆I ×∆I → [0, 1]. Finally an individual is mapped into
an element of interpretation domain, i.e., aI ∈ ∆I .

To extend interpretation definition we need a family of fuzzy operators.
Assume that 〈⊗,⊕,⇒,	〉 are a family of fuzzy operators then:

I(A)(x) = AI(x) ,
I(C uD)(x) = I(C)(x)⊗ I(D)(x) ,
I(C tD)(x) = I(C)(x)⊕ I(D)(x) ,
I(¬C)(x) = 	I(C)(x) ,
I(∀R.C)(x) = infy∈∆I{RI(x, y)⇒ I(C)(y)} ,
I(∃R.C)(x) = supy∈∆I{RI(x, y)⊗ I(C)(y)} .
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Then we define the notion of satisfaction for fuzzy statements i.e., I |= E
when:

I(C)(aI) ≥ n if E = 〈a : C, n〉 ,
RI(aI) ≥ n if E = 〈(a, b) : R, n〉 ,

(infx∈∆I I(C)(x)⇒ I(D)(x)) ≥ n if E = 〈C v D,n〉 ,
(infx1,xm+1∈∆I (supx2,...,xm∈∆I

(RI1 (x1, x2)⊗ ...⊗RIm(xm, xm+1))
⇒ RI(x1, xm+1))) ≥ n if E = 〈R1 ... Rm v R, n〉 ,

(infx∈∆I (
∑n

i=1wi · I(Ai)(x))⇒ I(C)(x)) = 1
if E = (w1 · A1 + ...+ wn · An) v C .

Further definitions are needed to cover other type of axioms. However as
they will not be used in the following they are omitted. The interested reader
can find a complete definition in [37].

A knowledge base is defined as K = 〈T ,A,R〉 where T is the fuzzy
T BOX , A is the fuzzy ABOX and R is the fuzzy RBOX .

We say that an interpretation I satisfies a fuzzy DL statement 〈E, n〉 if
I(E) >= n. An interpretation I is said to satisfy a set of fuzzy DL statements
if it satisfies each statement of the set. An interpretation I is said to satisfy
a fuzzy DL ontology K = 〈T ,A,R〉 iff I |= T , I |= A and I |= R. A
fuzzy statement 〈E, r〉 is said to be a logical consequence of an ontology K
(K |= 〈E, r〉) iff each model of K is a model for 〈E, r〉. As before we can
define:

Best Entailment Degree: bed(K, E) = sup{r | K |= 〈E, r〉};

Best Satisfiability Degree: bsd(K, E) = sup
I
{EI | I |= K};

2.2.2.2 Concrete Domains

Like in classical DLs, in fuzzy DLs we may have concrete domains. However,
also if it is possible, it is a little bit harder to consider them, as, when working
under fuzziness, we already put together logic and concrete values to repre-
sent degree of truth. It is very important to distinguish between concrete
data values and concrete values used to denote degrees. Anyway concrete
domains work exactly as for classical DLs.

For our description of fuzzy concrete domains we refer to [36]. A fuzzy
concrete domain, also called fuzzy datatype theory, is a pair D = 〈∆D, ·D〉
where ∆D is called datatype domain and ·D is a mapping that assigns to each
data value an element of ∆D and to each n-ary datatype predicate an n-ary
fuzzy relation over ∆D. As fuzzy DLs support unary datatypes only, then ·D
maps each datatype predicate into a function from ∆D to [0, 1].
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Typically datatype predicates d are the already mentioned fuzzy functions

d→ ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) ,

and crisp functions
d→≥v | ≤v | =v .

Introducing concrete domains we can have data properties besides object
properties. An interpretation I will map an object property into a function
from ∆I ×∆I → [0, 1] and a data property into a function from ∆I ×∆D →
[0, 1]. Moreover unique name assumption (UNA) will be adopted, i.e., vI1 6=
vI2 if v1 6= v2. From now on, datatatypes will be denoted as d and concrete
individuals will be denoted as v or vi.

Finally, concrete domains can be used in concept expressions as follows:

C → ∀T.d | ∃T.d ,

where T is a data property and d a datatype. For what concerns us only
∃T.d will be used.

2.3 Fuzzy OWL 2

Fuzzy OWL 2 is a standard presented in [12]. The standard has been defined
on OWL 2 in such a way OWL 2 reasoners still work on fuzzy OWL 2 on-
tologies and fuzzy reasoners can find fuzzy informations. The most natural
way to do so is to define fuzziness through OWL annotations. So each fuzzy
definition is given as an annotation. This solution permits the OWL 2 stan-
dard reasoner to ignore fuzzy structures. However fuzzy OWL 2 reasoners
can find fuzzy informations and work with them.

All fuzzy definitions are given through an annotation property called
fuzzyOWL2. This annotation property has a field called fuzzyType which
indicates which type of fuzzy annotation we are defining. fuzzyType cha be:

Concept: when we are defining some type of fuzzy concept;

Datatype: when we are defining a fuzzy datatype;

Role: when we want to define a modifier, e.g., very;

Axiom: when we are defining a fuzzy axiom, i.e., an axiom having a degree
of truth;

Ontology: added to the ontology to state that we are working on a fuzzy
ontology with some family of fuzzy operators.
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Fuzzy annotations has, as annotation value, plain text that has xml-like
format. This format can be understood by fuzzy OWL reasoners. Here we
have some examples of fuzzy structures:

Fuzzy Datatype: Suppose we have a datatype with IRI datatypeIRI, then
we can annotate it with:

< fuzzyOwl2 fuzzyType =” datatype ” >
< DATATYPE >

< / fuzzyOwl2 >

where:

< DATATYPE > :=
< Datatype type=” l e f t s h o u l d e r ” a=”<DOUBLE>” b =”<DOUBLE>” /> |
< Datatype type=” r i g h t s h o u l d e r ” a=”<DOUBLE>” b=”<DOUBLE>” /> |
< Datatype type=” t r i a n g u l a r ” a=”<DOUBLE>” b=”<DOUBLE>”

c=”<DOUBLE>” /> |
< Datatype type=” t r a p e z o i d a l ” a=”<DOUBLE>” b=”<DOUBLE>”

c=”<DOUBLE>” d=”<DOUBLE>” />

Fuzzy SubClassOf Axiom: Suppose we want to define a fuzzy SubClassOf

axiom, then we can annotate the axiom with a fuzzy label stating its
degree of truth. When the SubClassOf axiom is defined, it should be
annotated with the following annotation:

<fuzzyOwl2 fuzzyType =”axiom” >
< Degree value =”<DOUBLE>” />

</ fuzzyOwl2 >

where < DOUBLE > is a double number.

Fuzzy Weighted Sum: Fuzzy weighted sum

(0.1 ·B1 + 0.2 ·B2 + 0.1 ·B3 + 0.2 ·B4 + 0.4 ·B5) v weightedSum

can be expressed with the following annotation:

< fuzzyOwl2 fuzzyType =” concept ” >
< Concept type =”weightedSum” >
< Concept type =” weighted ” value =” 0 .1 ” base=”B1” />
< Concept type =” weighted ” value =” 0 .2 ” base=”B2” />
< Concept type =” weighted ” value =” 0 .1 ” base=”B3” />
< Concept type =” weighted ” value =” 0 .2 ” base=”B4” />
< Concept type =” weighted ” value =” 0 .4 ” base=”B5” />

</Concept >
< / fuzzyOwl2 >
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Part II

Learning Fuzzy EL(D)
Inclusion Axioms from Crisp

OWL Ontologies

22



Chapter 3

Axiom Learning Introduction

We will first introduce the problem of axiom learning and what we use to
face it. Once the general setting has been introduced we will present our
algorithms and finally we will compare them.

3.1 Axiom Learning

Axiom learning is a field of machine learning. It can be considered as the
problem of finding rules that define a certain class. Axiom learning setting
can be defined as follows:

Definition 3 (Axiom Learning). Suppose we have a knowledge base K. Let
Ind be the set of individual appearing in K and let T be a concept expression
definable in K. Axiom learning is the problem of finding a set of rules H =
{R1, ..., Rn} such that:

• K 2 Ri with i = 1, ..., n;

• K ∪H 2⊥;

• K |= a : T ⇒ (K\T ) ∪H |= a : T for each a ∈ Ind.

where K\T is K removing concept T and all axioms that involve such concept.

Notice that implicitly we ask that learnt rules cannot state that an ele-
ment belonging to T also belong to ¬T , i.e.,K |= a : ¬T ⇒ (K\T )∪H 2 a : T
for some a ∈ Ind. In fact if previous statement does not stand then K∪H |=⊥.

Our setting is based on Crisp (not fuzzy) OWL ontologies. So, in our case
K is a crisp OWL ontology. Moreover T is an atomic concept, i.e., an OWL
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class. Each Ri is a SubClassOf axiom of the type C v T . Where C is an
EL(D) class expression and so:

C → A |
C uD |
∃R.C |
∃S.d ,

d → ls(a, b) |
rs(a, b) |
tri(a, b, c) |
trz(a, b, c, d) ,

where D is an EL(D) class expression, R is an object property, S is a data
property and d a fuzzy datatype.

3.1.1 Computing fuzzy datatypes

When there is a data property available it is possible to adopt a discretization
method to partition it into a finite number of sets. After such a discretization
has been obtained we can define a fuzzy function on each set and obtain a
fuzzy partition.

In this work we adopted two simple discretization algorithms. We used
equal width triangular partition and equal width trapezoidal partition over
numerical data values.

The first algorithms looks for minimum and maximum value of a data
property S into the ontology K. Minimum value of a data property is
min = inf{v | K |= (a, v) : S for some a ∈ IndK} and maximum is
max = sup{v | K |= (a, v) : S for some a ∈ IndK}. Then interval [min;max]
is split into n > 1, intervals of the same width. Each of the n intervals,

I1, ..., In, has a fuzzy function associated. Let ∆ =
max−min

n− 1
then I1 has

associated a left shoulder ls(min,min+∆), In instead has associated a right
shoulder rs(max − ∆,max) and Ii with i = 2, ..., n − 1, has associated a
triangular function tri(min+ (i− 2) ·∆,min+ (i− 1) ·∆,min+ i ·∆).

If instead we use the second algorithm the only difference is that Ii with
i = 2, ..., n − 1, has associated a trapezoidal function trz(min + (i − 2) ·
∆,min+ (i− 1) ·∆,min+ i ·∆,min+ (i+ 1) ·∆).

Example 1. Suppose we want to discretize has price and we have that max-
imum value for has price is 150 and minimum value is 30. Suppose we want
to have five intervals. With triangular equal width we will have (Figure 1(a)):
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1. ls(30, 60);

2. tri(30, 60, 90);

3. tri(60, 90, 120);

4. tri(90, 120, 150);

5. rs(120, 150).

Instead with trapezoidal we will have (Figure 1(b)):

1. ls(30, 60);

2. trz(30, 60, 90, 120);

3. trz(60, 90, 120, 150);

4. trz(90, 120, 150, 180);

5. rs(120, 150).

3.1.2 Open World and Closed World Assumptions

Another thing to focus on is the difference between Open World Assumption
(OWA) and Closed World Assumption (CWA).

Definition 4 (Open World Assumption). Let K be an OWL 2 ontology, A
be an atomic concept expression definable in K and a an individual from K.
If open world is assumed we have that:

• K |= a : A iff for each interpretation I we have I |= K then I |= a : A

• K |= a : ¬A iff for each interpretation I we have I |= K then I |= a :
¬A

Definition 5 (Closed World Assumption). Let K be an OWL 2 ontology, A
be an atomic concept expression definable in K and a an individual from K.
If open world is assumed we have that:

• K |={CWA} a : A iff for each interpretation I we have I |= K then
I |= a : A

• K |={CWA} a : ¬A iff there exists an interpretation I s.t. I |= K then
I 2 a : A
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Figure 3.1: Trapezoidal and Triangular partitions of hasPrice from Example
1.

Intuitively if we assume OWA, an individual belongs to an atomic con-
cept’s complement if and only if we can prove that. Assuming CWA if an
individual cannot be proven to belong to a certain atomic concept then it is
assumed to belong to its complement.

The difference between the two assumptions relies in negative classifica-
tion. In our case this distinction is very useful when building samples sets.
In fact if we assume OWA we will have that positives samples are all the
individuals that can be proven belonging to target class, negative samples
instead will be all the individuals that can be proven belonging to target
complement.

If using CWA positive samples will be still those samples that can be
proven belonging to target class. Negative samples will be all the others.

3.2 General Settings

Summing up in our setting we have a crisp OWL 2 ontology, from this
ontology we pick a concept T that will be our target. Then, we create, for
each numeric data property, some fuzzy datatypes. We use as positive samples
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during learning ontology individuals that can be proven belonging to target
concept, negatives are picked in different ways depending on the open/closed
world assumption. Then, using different algorithms, we try to learn fuzzy
SubClassOf axioms. Formally the setting can be described as:

Definition 6. Let K be a crisp OWL 2 ontology, let T be an atomic concept
from K. Axiom learning aims at finding axioms of the form: C v T where C
is a legal EL(D) class expression.

Assuming axioms obtained are H = {C1 v T, ..., Cn v T}

• K 2 Ci v T with i = 1, ..., n;

• K ∪H 2⊥;

• K |= a : T ⇒ K |= a : Ci for some i = 1, ..., n and for each a ∈ Ind.
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Chapter 4

DL-FOIL

Description Logic First Order Inductive Larning (DL-FOIL) is the first al-
gorithm we are going to talk about. DL-FOIL derives from FOIL algorithm
created by Quinlan [35]. This algorithm has been adapted to cope with de-
scription logics in [25, 26, 27].

DL-FOIL, like every other axiom learning algorithm in this work, tries to
learn a good definition of an atomic concept. This definition is induced using
a set of positive and negative samples.

This algorithm starts with a set of positive examples and a set of nega-
tive examples. A procedure, learnOneAxiom, is called. This procedure starts
from top concept. A refinement operator [24] is applied. From the possible re-
finement of top concept, the best one (according to a performance measure)
is picked. If the best refinement has a legal negative coverage it is learnt,
otherwise refinement operator is applied to this concept expression until we
get to a legal concept or no legal concept can be found. In the latter case the
learning is finished and the algorithm outputs all the axioms learnt so far.

After the invocation of learnOneAxiom, if a legal concept expression has
been found, all covered positive examples are removed from positive samples
set.

The process is iterated until it is impossible to get a legal class expression
from learnOneAxiom or until all positive samples are covered.

After this informal explanation, we are going to specify in more detail:

1. How refinement operator works;

2. Which performance evaluation has been used;

3. What legal negative coverage, and thus legal concept, means;

4. As we are learning fuzzy inclusion axioms, how degrees are assigned to
learnt axioms.
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Before starting the explanations, please note that the algorithm described
is a greedy one, as it greedily look for a ”good” refinement. A backtrack algo-
rithm could reach better performance but it would have higher computation
costs. However a best-k backtrack has been applied. It will be explained later
how it works. For the moment being we just need to consider that the search
is greedy.

4.1 Refinement Operator

In this section we are going to define a refinement operator as requested on
point 1. Refinement operators can be considered function that associates to
a concept expression a more general or more specific concept expression. A
concept expression C is considered to be more general than a concept expres-
sion D if D v C. If C is more general than D, we say that D is more specific
than C. If a refinement outputs only more general concept expression from an
input concept expression it is called upward refinement operator, denoted as
ρ↑. When a refinement operator produces more specific concept expressions
from a concept expression it is called downward refinement operator, denoted
as ρ↓.

In this work downward refinement operators have been used almost al-
ways. When needed, an explicit distinction will be made. Otherwise, we will
use ρ to denote downward refinement operators.

Let’s now have a look at how the refinement operators work. As explained
earlier, learnOneAxiom begins its search from top concept. Informally it has
been said that learnt axioms should cover as less negative samples as pos-
sible. Obviously top concept does not respect this, as it covers all negative
examples, if they exist. To reduce the number of negative examples covered
we need more specific concept expressions. That’s what downward refinement
operators do. So learnOneAxiom exploits a downward refinement operator ρ↓
to make a concept more specific in such a way the “negative coverage” can
be reduced. The refinement operator used is the same used in [25, 26, 27]. It
works as follows:

Definition 7. Let K be an ontology, A be the set of all atomic concept in K,
R the set of all object properties in K, S the set of all data properties in K
and D a set of (fuzzy) datatypes. ρ is a function that associates to a concept
expression a set of concept expressions. Each element of the result set is a
sub class of ρ’s input.

ρ as used in this work is defined in Table 4.1. It is possible to notice that
ρ is defined only on a small subset of possible concept expressions. However
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ρ(C) =


A ∪ {∃R.> | R ∈ R} ∪ {∃S.d | S ∈ S, d ∈ D} if C = >
{A′ | A′ ∈ A, A′ v A} ∪ {A uA′′ | A′′ ∈ ρ(>)} if C = A ∈ A
{∃R.D′ | D′ ∈ ρ(D)} ∪ {(∃R.D) uD′′ | D′′ ∈ ρ(>)} if C = ∃R.D
{∃(S.d) uD | D ∈ ρ(>)} if C = ∃S.d, S ∈ S, d ∈ D
{C1 u ... u C ′i u ... u Cn | i = 1, ..., n, C ′i ∈ ρ(Ci)} if C = C1 u ... u Cn

Table 4.1: Downward Refinement Operator.

it covers all EL(D) concept expressions used in this work.

Max Depth and Max Length. The refinement operator defined in Ta-
ble 4.1 has an issue. It can lead to infinite application. There are two possible
ways to have infinite generation:

• Applying refinement to ∃R.>. In fact we have that a possible refinement
of > is ∃R.>. We would generate ∃R.∃R.>. It is clear that it is possible
to apply this rule an infinite number of time;

• Applying refinement to a conjunction. In fact if we have an atomic
concept into a conjunction, we can refine the conjunction adding a
conjunct as, an atomic concept can be refined into a conjunction of
that atomic with another. Applying again refinement we still would
have the same atomic concept and so we could add another conjunct.
And so on.

These two issues can be solved adding two threshold called Max Depth
and Max Length.

Definition 8. Let C be a concept expression, we define length(C) as:

length(C) =


0 if C = A or

C = ∃S.d or
C = ∃R.D

length(C1) + length(C2) + 1 if C = C1 u C2

We define depth(C) as:

depth(C) =


0 if C = A or

C = ∃S.d or
C = C1 u C2

depth(D) + 1 if C = ∃R.D
We insert Max Depth and Max Length among DL-FOIL parameters. We

will impose that length(C) ≤ maxLength and depth(C) ≤ maxDepth to
avoid infinite refinement operations.
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4.2 Performance Measures

We are now facing issue 2. This algorithm adopts a compound evaluation
metric. First of all a confidence measure cf is used.

Definition 9. Let E+ be the set of positive examples, E− the set of negative
individuals and E = E+∪E−. We define a confidence measure over a concept
expression C w.r.t. a target concept T as:

cf(C) =

∑
e∈E+

bed(K, e : C)∑
e∈E

bed(K, e : C)

cf defines how much a concept C can be considered “precise”. A confi-
dence value of 1 states that all examples are correctly classified by C, i.e., C
covers at least a positive and no negatives. A value of 0 means that C covers
no positives, thus it is useless.

With cf at hand we define a gain measure.

Definition 10. Let cf be the confidence measure defined in definition 9, we
define the gain of concept expressions C w.r.t. D as:

gain(C,D) = p · (log (cf(C))− log (cf(D)))

where p = |{e ∈ E+ | bed(K, e : D) > 0 and bed(K, e : C) > 0}|.

In our settlement we always consider the gain of C w.r.t. D where C v D.
In fact we use gain to evaluate the “best” refinement. All refinements with
negative gain are ignored.

Thus gain is our measure to choose the best refinement of a certain con-
cept expression. Moreover gain is a possible stop situation. In fact if we can’t
obtain an acceptable refinement, i.e., a refinement whose gain is non nega-
tive, we reach a stop condition as the refined concept was not good (otherwise
it would not have been refined) and no good refinement can be found. If it
is the case, the algorithm stops and the axioms learnt until that moment are
given back as the result. A similar situation happens when no refinements
are available. We will see later when this can happen.

4.3 Negative Coverage

Negative coverage can be defined as follows:
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Definition 11. Let E− be the set of negative examples, the negative coverage
of a concept expression C is defined as:

negCov(C) =

∑
e∈E−

bed(K, e : C)

|E−|

Informally negative coverage of a concept C can be defined as the per-
centage of negative samples covered. Note that negCov assumes that we are
dealing with crisp target concept T otherwise |E−| should be replaced by∑
e∈E−

(	bed(K, e : T )) where 	 is a fuzzy negation operator. If T is crisp the

two are equivalent.
Clearly our goal is to keep negative coverage as low as possible. It is

important to notice that if we are using OWA on a crisp ontology and we
achieve a non zero negative coverage, the axioms learnt together with the
original ontology originate an inconsistent ontology. In fact if negCov(C) > 0,
then C covers at least one negative. So if we add axiom C v T to the original
ontology K we obtain that for some e ∈ E− we have K ∪ {C v T} |= e : T .
But as e ∈ E− we have also that K |= e : ¬T . Thus we have an inconsistency.
However this may not be an inconsistency in a fuzzy ontology.

If we assume CWA we may still have an inconsistency, but not necessarily
as if e ∈ E− then K |= e : ¬T may not hold (e.g., K 2 e : T and K 2 e : ¬T )

In this work all of the algorithms give the possibility to define a negative
coverage threshold stating that concept expressions with a higher negative
coverage than the threshold should be avoided.

In DL-FOIL if we get a negative coverage higher than the threshold the
search is continued until we get no admissible refinement or until we have a
negative coverage low enough. If a crisp inconsistency has to be avoided, it
is advisable to set the negative coverage to 0. In any case, DL-FOIL makes
the best effort to lower the negative coverage as much as possible.

4.4 Axioms Degree

As last issue, let’s have a look at how a degree is assigned to each axiom.
Having defined a confidence measure in Definition 9, we can use that measure
again. So we establish that an axiom has a degree equal to its confidence,
i.e., the degree of C v T is cf(C).

Notice that if the negative coverage threshold is set to 0, the degree of
C v T will be lower than 1 iff C involves a fuzzy concept, i.e., a data
restriction, as they are the only fuzzy concepts admitted.
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4.5 The Algorithm

After having described the main ingredients of DL-FOIL, it is possible to de-
scribe the actual algorithm (see Algorithm 1). The external loop is a function
called learnSetOfAxioms (Algorithm 1). This function has as parameters a
knowledge base K, a target atomic concept T from K, a set of positive exam-
ples E+ and a set of negative examples E−. This function simply accumulate
learnt axioms into result axiom set H and removes covered positive sam-
ples. This outer loop ends when all positive examples are covered or when
learnOneAxiom returns null or >. As can be noticed, learnSetOfAxiom has
a quite simple structure. The working core of DL-FOIL is learnOneAxiom,
i.e., Algorithm 2.

Algorithm 1 DL-FOIL: External Loop

function learnSetOfAxioms(K, T, E+, E−)
H ← ∅;
while E+ 6= ∅ do

φ← learnOneAxiom(K, T , E+, E−);
if(((φ = >) or (φ = null)))

return H;
H ← H∪ {φ v T};
E+
φ ← {e ∈ E+ | bed(K, e : φ) > 0};
E+ ← E+\E+

φ ;
return H;

end

The function learnOneAxiom, as explained earlier, greedily search for the
best acceptable concept expression in terms of gain. It starts from > and ap-
plies refinement until a good concept is found. So, the method refine, called
in line 7 of Algorithm 2, is a method that returns all possible refinements of a
concept expression as specified by refinement operator defined in Section 4.1.

Finally method notLegalNegCov is defined in Algorithm 3. It simply
return true if φ has not a legal negative coverage as specified in Section 4.3.
threshold is the threshold of acceptable negative coverage.

4.6 Backtrack Variant

A simple variant of DL-FOIL has been proposed and analysed. This simple
variant uses a partial backtrack, called Best-K Backtrack. Best-K Backtrack
saves the K best concept expression obtained from refinements. The stack is
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Algorithm 2 DL-FOIL: Internal Loop

1: function learnOneAxiom(K,T,E+,E−)
2: φ← >;
3: E−φ ← E−;

4: while ((cf(φ) < θ) or (notLegalNegCov(K, φ, E−φ ,E−))) do
5: φbest ← φ;
6: maxgain← 0;
7: Φ← refine(φ);
8: for all φ′ ∈ Φ do
9: gain←gain(φ′, φ);

10: if gain ≥ maxgain then
11: maxgain← gain;
12: φbest ← φ′;

13: if(φbest = φ)
14: return null;
15: φ← φbest;
16: E−φ ← {e ∈ E− | bed(K, e : φ) > 0};

return φ;
17: end

Algorithm 3 DL-FOIL: Negative Coverage Check

1: function notLegalNegCov(K, φ, E−φ ,E−)
2: negCov ←

∑
e∈E−φ

bed(K, e : φ);

3: return
negCov

|E−|
≤ threshold;

4: end
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locally maintained during learnOneAxiom. Saving K possible candidates, if
we get stuck we can recover a saved candidate and continue the search from
it. Backtrack variant is described in Algorithm 4. Using backtrack we try to
balance quality and complexity of the algorithm. BESTK function called in line
10, simply returns a set containing the K elements that have the highest gain
w.r.t. φ. NEXTBEST function called in line 13 instead removes from stack the
concept expression that has the highest gain w.r.t. φ. The removed concept
is returned as result.

Algorithm 4 DL-FOIL: Internal Loop with Best-K Backtrack

1: function learnOneAxiom(K,T,E+,E−)
2: φ← >;
3: E−φ ← E−;
4: stack ← ∅;
5: while ((cf(φ) < θ) or (notLegalNegCov(K, φ, E−φ ,E−))) do
6: φbest ← φ;
7: maxgain← 0;
8: Φ← refine(φ);
9: stack ← stack ∪ Φ;

10: stack ←bestk(φ, stack);
11: if (φbest = φ) then
12: if stack 6= ∅ then
13: φbest ←nextBest(φ, stack);
14: elsereturn null;

15: φ← φbest;
16: E−φ ← {e ∈ E− | bed(K, e : φ) > 0};

return φ;
17: end
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Chapter 5

pFOIL

pFOIL is a probabilistic variant of DL-FOIL. It has two main differences
from DL-FOIL:

• It uses a probabilistic measures to evaluate concept expressions;

• Instead of removing positive examples covered from the training set,
once an axiom has been learnt, positive examples are left unchanged
for all the invocations of learnOneAxiom. Moreover concept expressions
are no more evaluated one at a time, but the whole set of learnt rules
is evaluated as an ensemble.

5.1 Probability Estimation

Our first idea for pFOIL was to adapt näıve Bayes FOIL (nFOIL), proposed
in [22]. nFOIL put together FOIL and the usage of probability together
with näıve Bayes assumption to improve FOIL algorithm. Many attempts
have been made to improve FOIL using probability. The original idea con-
tained in [22] was that probability measure should be used during learning,
as performance measure, and not after learning to prune results. We followed
somewhat the same idea, but nFOIL was applied to logic programming and
its goal was to learn conjunctive axioms. As nFOIL axioms were considered
as conjunctions, näıve Bayes assumption was made to reduce complexity. In
our case, we wanted to learn a set of axioms that should be considered as a
disjunction. In fact if C1 v T, ..., Cn v T are the learnt axioms we should
consider that C1, ..., Cn can be put together with a disjunction. In [22] instead
the learnt axioms are considered as conjunction.

Let’s have a look at how probability is computed and how it is used as
score. Let’s begin with a set containing only one axiom, H = {C v T}. We
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define:
T+ = card(T )
C+ = card(C)

T+ u C+ = card(T u C)

where card(·) is a cardinality measure over the sample set E .

Precision, Recall and Fβ−score. In the following to compute the scores
of a set of rules we used measures derived from precision, recall and Fβ−score.

Precision, recall and Fβ − score are measures that evaluate goodness of
classification.

Supposing we have a classifier C, a target T and a samples set E . We say
that:

1. An example e is classified as a true positive if it is classified as positive
by C, i.e., C predicts that it belongs to T , and e actually is in T ;

2. An example e is classified as a true negative if it is classified as negative
by C, i.e., C predicts that it does not belong to T , and e actually is
not in T ;

3. An example e is classified as a false positive if it is classified as positive
by C, i.e., C predicts that it belongs to T , and instead e is not in T ;

4. An example e is classified as a false negative if it is classified as negative
by C, i.e., C predicts that it does not belong to T , and instead e is in
T ;

The objective is to classify as many true positives and true negatives as
possible. The other two cases are wrong predictions. Disposition is explained
in Table 5.1.

Definition 12. Let tp, fp, fn and tn be the number of true positive, false
positive, false negative and true negative respectively. Let C be a classifier
and T our target, we define:

Precision: prec(C, T ) =
tp

tp+ fp
;

Recall: rec(C, T ) =
tp

tp+ fn
;

Fβ − score: Fβ(C, T ) = (1 + β2) · prec(C, T ) · rec(C, T )

(β2 · prec(C, T )) + rec(C, T )
;
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Target
Positive Negative

Cla
ss

if. Positive True Positive (tp) False Positive (fp)
Negative False Negative (fn) True Negative (tn)

Table 5.1: Classification Table.

The most used version of Fβ − score is the one with β = 1. However
increasing β gives recall bigger relevance while decreasing it gives precision
more relevance.

In this work the measures that we use are based on probability. So we
define

P (C+ | T+) =
C+ u T+

T+
,

as the probability of correctly classifying a positive example, and

P (T+ | C+) =
C+ u T+

C+
,

as the probability that a sample classified as positive is actually positive.
The first probability measures the recall of C w.r.t. T while the second

one measures the precision of C w.r.t. T . We can combine the two measures
through a Fβ − score obtaining:

score(C) = (1 + β2) · P (T+ | C+) · P (C+ | T+)

(β2 · P (P (T+ | C+) + P (C+ | T+)

5.2 Ensemble Evaluation

In DL-FOIL we have seen how to evaluate hypothesis having H with only
one axiom. Here, instead, we want to evaluate the set of hypothesis as an
ensemble.

While in DL-FOIL each iteration of learnOneAxiom have an evaluation
of candidates on their own, in pFOIL we want learnOneAxiom’s evaluation
to consider also previously learnt axioms.

Specifically, for H = {C1 v T, ..., Cn v T}, we define

T+ = card(T ) ,
H+ = card(C1 t ... t Cn) ,

H+ u T+ = card((C1 t ... t Cn) u T ) .

Notice that the definition of H+ uT+ involves disjunction. Once we have
at hand the degrees for C1, ..., Cn to compute the degree for C1 t ...tCn, we
just need to combine them through an s-norm.
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We have that our ensemble variant for precision, recall and Fβ − score is

prec(H, T )=P (T+ | H+)=H
+,uT+

H+

rec(H, T )=P (H+ | T+)=H
+,uT+

T+

scoreβ(H, T )= Fβ(H, T ) =(1 + β) · P (T+ | H+)·P (H+ | T+)
(β2·P (T+ | H+))+P (H+ | T+)

In summary, to evaluate the performance of a concept expression φ w.r.t.
axioms H = {C1 v T, ..., Cn v T} that have been already learnt, we shall
compute score(H ∪ {φ v T}, T ) as our scoring function.

5.3 Stop Criterion

In DL-FOIL we stopped the algorithm when positive samples were all covered
or when it became impossible to find a concept with a legal negative coverage.
In pFOIL, instead, we impose that no axioms are learnt unless they improve
the ensemble score. So if adding a new axiom the score of ensemble does not
vary (or decreases) the axiom is not learnt.

Moreover, we use a threshold and stop a soon as the score improvement
is below the threshold.

Once an axiom has been learnt, the ensemble performance is evaluated
through the Fβ − score. However, this evaluation is a different evaluation
w.r.t. the evaluation made for candidates concept expressions. It would be
useful to define different a value for β to be used during concept evaluation
and another one to be used during ensemble evaluation. In this work the two
are considered independent and so may have different values. In the following,
the β used during concept evaluation will be denoted as β1 while the value
used during ensemble evaluation will be denoted as β2.

5.4 The Algorithm

The pFOIL algorithm is defined in Algorithm 5. As for DL-FOIL we have to
define both learnSetOfAxioms method and learnOneAxiom method.

learnSetOfAxioms, Algorithm 5, is very similar to the DL-FOIL one.
But, a first difference is in line 5: the stop criterion is no more on positive
samples size but on score increment. Notice that the first score is evaluated
w.r.t. H = {>}. This means that at the beginning we consider a näıve
classifier that classifies all individuals as belonging to target concept. The
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Algorithm 5 pFOIL: learnSetOfAxioms

1: function learnSetOfAxioms(K, T, E+, E−, θ, β1, β2)

2: H ← ∅;
3: oldScore← 0;
4: newScore← scoreβ2({> v T}, T );
5: while newScore− oldScore > θ do
6: φ← learnOneAxiom(K, T , H, E+, E−, β1);
7: if(((φ = >) or (φ == null)))
8: return H;
9: H ← H∪ {φ v T};

10: oldScore← newscore
11: newScore← scoreβ2(H, T );

return H;
12: end

explicit form of first score is:

prec({> v T}, T )= |E
+|
|E| ,

rec({> v T}, T )=1 ,

score({> v T}, T )=(1 + β2) ·
|E+|
|E|

(β2
2 ·
|E+|
|E| )+1

.

The other significant difference stands in the fact that positive samples
removal has been eliminated. It has been replaced by a score update.

Algorithm 6 instead is the learnOneAxiom for pFOIL. In this case we
have few significant differences. We have changed the score evaluation. More
important we do not have E−φ and we use noteLegalNegCov method (see
Algorithm 7).

Note that in Algorithm 7 we have replaced negative coverage of φ with its
cardinality. Notice that in Algorithm 3 we explicitly used σ-count. Moreover
cardinality of target is computed and replaced |E−|. 1

5.5 Backtrack

Like for DL-FOIL in pFOIL backtrack is possible and reported in Algo-
rithm 82.

1In this case, we increase usability and admit T to be fuzzy. However if target is crisp,
the cardinality works exactly as |E−|.

2Methods BESTK and NEXTBEST are exactly the same as for DL-FOIL.
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Algorithm 6 pFOIL: learnOneAxiom

1: function learnOneAxiom(K, T, H, E+, E−, β1)

2: φ← >;
3: while notLegalNegCov(K, φ, E−) do
4: φbest ← φ;
5: maxscore← scoreβ1(H ∪ {φbest v T}, T );
6: Φ← refine(φ);
7: for all φ′ ∈ Φ do
8: score← scoreβ1(H ∪ {φ′ v T}, T );
9: if score ≥ maxscore then

10: maxscore← score;
11: φbest ← φ′;

12: if(φbest = φ)
13: return null;
14: φ← φbest;

return φ;
15: end

Algorithm 7 pFOIL: Negative Coverage Check

1: function notLegalNegCov(K, φ, E−)
2: negCov ← cardE−(φ);
3: negSize← cardE−(T );

4: return
negCov

negSize
≤ threshold;

5: end
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Algorithm 8 pFOIL: learnOneAxiom with Best-K Backtrack

1: function learnOneAxiom(K, T, H, E+, E−, β1)

2: φ← >;
3: stack ← ∅;
4: while notLegalNegCov(K, φ, E−) do
5: φbest ← φ;
6: maxscore← scoreβ1(H ∪ {φbest v T}, T );
7: Φ← refine(φ);
8: stack ← stack ∪ Φ;
9: stack ←bestk(φ, stack);

10: for all φ′ ∈ Φ do
11: score← scoreβ1(H ∪ {φ′ v T}, T );
12: if score ≥ maxscore then
13: maxscore← score;
14: φbest ← φ′;

15: if φbest = φ then
16: if stack 6= ∅ then
17: φbest ←nextBest(φ, stack);
18: elsereturn null;

19: φ← φbest;
return φ;

20: end
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Chapter 6

Hybrid Learning

In this chapter we present Hybrid Learning. It is an application of genetic
programming to DLs. The original idea was proposed by Lehamann in [23].
In this work small changes have been made.

The basic idea of genetic programming is to emulate evolution of a pop-
ulation of hypothesis in such a way the “fittest” hypothesis would survive
and hand down his good genes. Usually genetic programming is applied on
sets of elements that can be represented as trees. OWL 2 , and DL, concept
expressions can easily be represented as trees. In fact, as they are obtained
from a grammar, we can represent a concept expression with its parse tree.

Once we can have such a tree like representation of elements, we have to
define a crossover operator. This operator takes two concepts and combines
them into one or more elements that are called the offspring. Due to the
tree representation, an easy way of achieving this is to split each of the two
trees into two subtrees. The obtained subtrees get merged to originate an
offspring.

Example 2. Suppose we have two concept expression C = ∃R1.(A1 u A2)
and D = A3 u ∃R2.>. We can represent them as trees, Figure 6.1(a), and
then define a split point as Figure 6.1(b). Once we have a split point we can
apply crossover and obtain offspring as in Figure 6.1(c).

This operation is a typical cross over operation for genetic programming.
Offspring is added to population and during the successive iteration, the
selection process will select population randomly following a distribution that
gives to each individual (concept expression) a probability to survive that is
proportional to its evaluation.

It is important to note that crossover operator does not consider the
ontology as background knowledge. Due to this in [23] beside crossover also
a refinement operator was used. [23] proposed to use refine on a general
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Figure 6.1: Crossover Example

description logic and to adopt both a downward and an upward refinement
operator. In our case we adopt only the downward refinement operator, as
defined in Section 4.1.

6.1 The Algorithm

Algorithm 9 Hybrid Learning Algorithm

1: function runHybridLearning(K, N , T , E+, E−)
2: population←InitializePopulation(K);
3: for i = 1, ..., N do
4: distribution←ComputeDistribution(population, T , E+, E−);
5: selectedPopulation←Selection(population, distribution);
6: reproducedPopulation←Reproduction(selectedPopulation);
7: mutatedPopulation←Mutation(reproducedPopulation);
8: population← mutatedPopulation;

return BestIndividual(population);

Algorithm 9 depicts how hybrid learning works. First of all, a population
gets initialized. In our setting, the initial population is composed of all the
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useful > refinements, i.e., the concepts that cover at least a positive sample.
Then N iterations are made. At each iteration we generate a distribution on
the current population that gives higher probability to individuals that have
a higher score. Based on this distribution, we operate a selection obtaining
the selected population. These selected individuals get involved in reproduc-
tion. After reproduction we have a population containing both parents and
offspring. On reproduced population we randomly apply mutation. Mutation
is an operation that with very low probability modifies an individual, ignor-
ing score and background knowledge. Mutated population is now considered
as the current population. Finally Hybrid learning returns the best individ-
ual, i.e., the one with highest score. Score function is left abstract, i.e., every
score function can be used.

It is important to note that target class and samples are useful only
during the definition of the distribution (line 4). In fact samples and target
are only used to get evaluation of concept expressions contained in the current
population.

6.1.1 Computing distribution and selection

The method called to compute distribution (line 4) computes a distribution
in such a way that concepts with higher score will receive a higher probability.

Selection is performed randomly following the computed distribution. To
obtain a selection,a roulette wheel selection is performed. This kind of selec-
tion chooses randomly a number in [0, 1], called wheel outcome. After that,
an accumulator is initialized to zero and a concept is picked up from popula-
tion: if it has a probability higher than the wheel outcome then it is selected
otherwise its probability is added to the accumulator. A second concept is
chosen, and this time we take the sum of the probability and the value of
the accumulator. If the result is bigger than the wheel outcome, the concept
is chosen otherwise the accumulator gets the computed sum. The process is
iterated until a concept is chosen.

The whole procedure is iterated until we have selected enough concepts to
survive, i.e., until we have selected ps·popSize concepts (the value is rounded
up). Where ps is the faction of population that survives the selection, while
popSize is the maximum size that the population can achieve.

6.1.2 Reproduction

Algorithm 10 illustrates the reproduction procedure. At line 8 and 10 we
randomly pick an index to choose which type of reproduction will be chosen.
The choice is among crossover, refine and forward. The latter simply adds an
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Algorithm 10 Hybrid Learning: Reproduction

1: function Reproduction(selectedPopulation)
2: population← selectedPopulation;
3: reproducedPopulation← ∅;
4: while not isEmpty(population) do
5: algType← 0;
6: offspring ← ∅;
7: if size(population)≥ 2 then
8: algType←random(0,1,2);
9: else

10: repType←random(1,2);

11: if repType = 0 then
12: C1 ←randPickAndRemoveFrom(population);
13: C2 ←randPickAndRemoveFrom(population);
14: offspring ←crossover(C1, C2);
15: else if repType = 1 then
16: C1 ←randPickAndRemoveFrom(population);
17: offspring ←refine(C1)
18: else
19: C1 ←randPickAndRemoveFrom(population);
20: offspring ← {C1};
21: add(reproducedPopulation, offspring);

return reproducedPopulation;
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individual to next population. In this algorithm the three reproductions are
uniformly distributed. In our setting the distribution can be defined by user.
In such a way it is possible to choose with which probability crossover and
refine will be used. However, crossover should never get a probability of zero.
In fact an uninformed crossover could avoid to get stuck on local minima.

If the refine method is selected, a concept gets removed from population.
It is used as argument to refine. refine method returns a set containing all
the useful refinements, i.e., those who cover at least a positive. The result of
refine also contains the refined concept.

If crossover is selected, two individuals are removed from population and
they get crossed. The result returned is a set containing the two individuals
picked and the offspring of them. Crossover is performed as explained pre-
viously (see Figure 6.1). Crossover can only be applied when the population
has at least two individuals. This is the reason behind distinction from line
8 and line 10 of Algorithm 10.

Finally if forward is picked a concept is removed from population and it
is put into reproduced population.

6.1.3 Mutation

Mutation, called on line 8 of Algorithm 9, is a procedure that iterates over
a population. For each individual a mutation is made with very low prob-
ability. So every individual of a population can be mutated, but with very
low probability. This operation is used to emulate natural evolution. In fact
also in nature sometimes mutations occur introducing new characteristics,
sometimes very useful ones. In genetic programming mutation can avoid lo-
cal minima. In this work mutations are made through conjunction. Given a
concept expression C, if C is a conjunction then we have two possibilities
either a conjunct is added or one is replaced. If the concept expression is
not a conjunction, we simply add a conjunct. Every new concept expression
involved in mutation is a refinement of >. Both the type of mutation end the
> refinement used to mutate are chosen randomly. The mutation is made
without considering background ontology.

Example 3. Suppose that we have

ρ(>) = {A1, A2, A3,∃R1.>,∃R2.>,∃S.d1,∃S.d2}

and two concept expressions C1 = A3 u ∃S.d2 and C2 = ∃R2.A1. Then we
have:

• mutation(C1) ⊃ {(∃R1.>) u (∃S.d2), A3 u (∃S.d2) u A2};
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• mutation(C2) ⊃ {(∃R2.A1) u (∃S.d2), (∃R2.A1) u A1};
where muation(C) is the set of all possible mutations of C.

6.2 Usage of Hybrid Learning

Hybrid learning iterates for a certain number of times. When it finishes, the
final population will be composed of different concept expressions. In [23],
hybrid learning is executed on ALC concept expressions. This means that
disjunctions are admitted. If C1 tC2 tC3 v T is learnt in crisp ALC, it can
be considered as having learnt C1 v T , C2 v T and C3 v T . In our setting
instead this is not possible and we can have two possibilities:

1. Use genetic programming on set of concept expressions;

2. Use hybrid learning to learn one rule, modify the problem and run
hybrid learning again.

In the first case we have to ignore ontology information and give a com-
pletely different formulation of the problem. So, we choose to use the latter
approach.

So far we have already defined two algorithms that behave in this way.
DL-FOIL learns one axiom, then modifies the set of positive examples and
runs again the same procedure. pFOIL instead learns one axiom, modifies
the scoring function considering the ensemble of learnt axioms and then runs
again the same procedure. Therefore, to involve hybrid learning all we need
to do is to use hybrid learning to learn the single axiom and let DL-FOIL
and pFOIL modify the problem as they usually do.

6.3 gFOIL

gFOIL is a simple modification of DL-FOIL. In this algorithm learnOneAxiom

simply call hybrid learning. learnSetOfAxioms is unchanged. The only thing
that should be specified is how to evaluate concept expressions. We adopt as
score the cf function of DL-FOIL (Definition 9). The problem is changed at
every invocation of hybrid learning because learnSetOfAxiom modifies the
set of positive examples and so the evaluation is different.

6.4 pgFOIL

pgFOIL combines both probabilistic measures and hybrid learning. It
is obtained by modifying pFOIL. learnSetOfAxioms is unchanged while
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learnOneAxiom simply calls hybrid learning. As above we need to define
an evaluation function. The evaluation was made with the probability mea-
sure defined in Section 5.1. The problem is changed at each iteration because
the evaluation function is modified adding the axiom previously learnt. This
means that during the first iteration each candidate is evaluated on its own.
During the second iteration instead, each candidate is evaluated as an en-
semble with the axiom learnt during the first iteration. Successively each
candidate is evaluated as an ensemble with all the axioms learnt so far.
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Chapter 7

gAdaBoost

gAdaBoost is an algorithm that differs for many aspects from others. The
main idea is the one of AdaBoost. In general, we learn some weak learner
and combine them at the end. However the way our algorithm works is quite
different from the original idea.

The original Adaptive Boost (AdaBoost) algorithm was proposed by Fre-
und and Schapire in [11]. The main idea was to acquire a certain number of
weak learners and then combine them in a weighted sum to obtain a strong
learner. The original formulation worked with boolean target and boolean
classifier. The peculiarity of this algorithm is that it considers weighted sam-
ples. At the beginning samples are uniformly distributed. After a weak learner
is acquired, samples weights get updated in such a way that samples wrongly
classified have higher weight w.r.t. correctly classified ones.

Algorithm 11 General AdaBoost algorithm

Input: sample S = {〈xi, yi〉 | xi ∈ X , yi ∈ {0, 1}};
1: w1 ← u;
2: for t = 1, ..., N do
3: ht ← WL(S, wt);
4: FIND αt;
5: for all 1 ≤ i ≤ m do
6: wt+1,i ← wt,i × exp(−αtyiht(xi));
7: normalize(wt+1);

Output: HN(x) =
N∑
t=1

αtht(x);

Algorithm 11 depicts a general version of AdaBoost. Many statements are
deliberately left abstract. Line 4 asks to find a certain value αt that will be
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used to give a weight to t-th classifier. α will be set to a value that optimizes
overall classification.

In line 3 a method to obtain a weak learner is called. This method will
return a weak learner as a classifying function ht.

Line 6 is used to update the weight of training examples. So wt will be
a vector containing a weight wt,i for each of the m samples (so 1 ≤ i ≤ m).
At the beginning, the weights are uniform. After that, they will be update
as described in Line 6.

After each weights update, the new weights must be normalized in such
a way they sum up to 1. This is done on line 7.

At the end of the algorithm, weak learners are put together to form the
final learner. Line 7 describes how how the strong learner is obtained. As
underlined before, the classification outputs the sign of final classifier.

Let us point out that this formulation does not work in our case because
we don’t have a boolean (crisp) classifier. In fact, dealing with fuzzy axioms,
a classifier does not output a value in {0, 1} but a value in [0, 1]. So instead
of using the original idea of AdaBoost we use Real AdaBoost proposed by
Nock and Nielsen in [30]. In this version the target is still crisp but classi-
fiers outputs a real value; the classification is intended to classify as positive
those samples whose classification value is bigger than zero and the others
as negative.

7.1 Real AdaBoost
Let’s see informally how Real AdaBoost works.

Real AdaBoost is as AdaBoost, but allows to deal with classifiers that
outputs a real value instead of a crisp one. General functioning is maintained.
Weight update and goal function are modified.

Specifically the changes involve only α, weights update and obviously the
score function that is considered as weak learner’s learning function. Indeed,
we have that the:

• new weight update rule is

wt+1,i ← wt,i ×

1− (µtyiht(xi))

h?t
1− µ2

t

 ;

• new αt value is computed as:

1

2h?t
log

1 + µt
1− µt

;

51



• weak learners scoring function is:

µt =
1

h?t

m∑
i=1

wt,iyihtxi ∈ [−1,+1] ;

where h?t = max1≤i≤m|ht(xi)|. It should be noted that while, in general, in
AdaBoost the function used to train weak learners was an error function, i.e.,
it had to be minimized; in this setting µt is a score function, i.e., it has to
be maximized. This perfectly fits our setting as we have always used scoring
functions.

Real AdaBoost has been proven in [30] to be able to build a strong learner
from weak learners.

7.2 gAdaBoost

In general, Real AdaBoost and AdaBoost aggregate weak learners to obtain
a strong learner. We, instead, learn at each iteration a single axiom.

gAdaBoost uses Real AdaBoost weights and score functions. So it is en-
tirely specified unless how weak learners are obtained. We want to learn one
axiom each time a weak learner has to be obtained. Among the previous
methods to learn one axiom (DL-FOIL, pFOIL learnOneAxiom and hybrid
learning), hybrid learning has be chosen as the method to learn the axiom
at each iteration. The principal reason behind this choice stands in the fact
that hybrid learning is the most customizable method among the three. In
fact it is quite easy to let hybrid learning consider samples weights. It suffices
to use a score function that not only considers coverage, but also individual
weights.

Hybrid learning can be considered as a stand alone algorithm and does
not exploit a specific scoring function and, thus, the Real AdaBoost scoring
function can be used. Notice that the DL-FOIL learnOneAxiom works only
coupled with learnsetOfAxioms. Similarly, pFOIL learnOneAxiom is not
usable as it evaluates an ensemble of rules, while in our case we need a
method that evaluates a concept at a time.

To do so, first of all we have to obtain a sample set with correct struc-
ture. Remember that our samples set must have the form S = {〈xi, yi〉 | xi ∈
X , yi ∈ {−1, 1}}. So we build our sample set with X being the set of indi-
viduals and yi = 2 × bed(K, xi : T ) − 1. Notice that if the target concept is
crisp the setting perfectly fits Real AdaBoost requirements.

Having modified the target semantics, we have to correct two more things.
(1) The scoring function values are in [−1, 1]. But hybrid learning cannot deal
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with negative scores. To patch this, we filtered µt values. If a value is scored
with a value v ≤ 0 then its score is set to zero. With this filter we guarantee
to remove negative scores, i.e., a concept expression will have a zero score
score only if it covers more negatives than positives. It is important to point
out that value of µt is filtered only during evaluation in hybrid learning. In
every other case it is left unchanged.

Once axioms have been induced, we need a method to classify the new
elements. Usually AdaBoost and Real AdaBoost use weighted sum. In our
case, we can use the weighted sum as it can be expressed as a fuzzy concept
of Fuzzy OWL 2 .

However, note that AdaBoost and Real AdaBoost tend to acquire learners
that cover more or less the same set of examples, i.e., they acquire rules that
are not mutually exclusive, while in our setting, the induced rules tend to be
mutually exclusive w.r.t. coverage. Therefore, we try two different versions:
one in which we use the weighted sum as aggregation function, and one in
which we use the max only as aggregation function.
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Part III

Evaluation
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Chapter 8

Evaluation

An evaluation of the proposed algorithms has been carried on. Evaluation
has been made on some ontologies. Our evaluation aims at comparing the
proposed algorithms. Evaluation has been carried out with two different ap-
proaches. For some ontologies, k-fold cross validation has been run and com-
parisons are made on squared error, precision, recall and F1− score. For the
other ontologies tests have been made in order to find whether or not the
algorithm is able to find “reasonable” axioms.

8.1 The Ontologies

Below Table 8.1 reports the ontologies used and some of their statistics.

8.2 Results

The ontologies have been tested through k-fold cross validation or by a “goal
oriented” method, i.e., with the goal of learning a correct axiom. For illustra-
tive purposes, we report also the induced axioms (in case of the k-fold cross
validation test, we provide the set of induced axioms of one of the k runs).

8.2.1 The Father Ontology

This ontology has been tested following the goal oriented approach and as-
suming the CWA. The target was concept Father, max length was 2 and max
depth 1. This ontology has produced positive results for all the algorithms.
All of them have induced at least the rule:

male and (hasChild some Thing) SubClassOf Father

This rule is indeed correct. Some algorithms also induced
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Father 14 3 1 0 6 ALC
Hotel2 749 89 3 1 88 ALCHOF(D)
Moral 4869 46 0 0 202 ALC

Trains2 344 32 5 0 50 ALCO

Table 8.1: Ontologies Used.

male and (hasChild some male) SubClassOf Father

This rule on its own is too specific but together with the first one it
becomes redundant and so does not affect classification quality.

8.2.2 The Hotel2 Ontology

This ontology has been tested through k-fold cross validation and us-
ing Good Hotel as target concept. Max length was set to 3 and
max depth to 2. Data property hasPrice has been provided with
5 fuzzy datatypes hasPrice veryLow, hasPrice low, hasPrice medium,
hasPrice high and hasPrice veryHigh. These datatypes were obtained
through triangular same width discretization. hasPrice veryLow has
been defined as a left shoulder ls(45, 63.2), hasPrice low a trian-
gular function tri(45, 63.2, 81.4), hasPrice medium with a triangular
function tri(63.2, 81.4, 99.6), hasPrice high with a triangular function
tri(81.4, 99.6, 117.8) and hasPrice veryHigh with a right shoulder rs(99.6, 117.8).
The results of a 5-fold cross validation have been reported in Table 8.2.

As we can see from statistics, the most performing algorithms is pFOIL. It
got the best squared error and the best F1−score. pFOIL reach full precision
classification. It means that for each of the 5 runs pFOIL has reached full
precision, i.e., it never gets false positive. This is indeed an important result
as precision is very important in our setting. In fact, it should be remembered
that if an axiom classifies a negative sample as positive, when such axiom is
added to the original ontology, the ontology obtained is inconsistent.

Another important aspect that should be noticed is related to precision
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Algorithm Squared Error Precision Recall F1 − score AVG Time
Gredy FOIL 0.1759 0.8326 0.4731 0.5884 1336 ms

Best-5 Backtrack FOIL 0.1559 0.9 0.4731 0.6073 860 ms
pFOIL 0.1054 1 0.5956 0.7252 1689 ms
gFOIL 0.1748 0.7985 0.5627 0.6293 14956 ms

pgFOIL 0.2135 0.4917 0.75 0.5536 5885
gAdaBoost Weighted 0.2297 0.6554 0.1115 0.1837 21756 ms

gAdaBoost Thresholded 0.2826 0.6167 0.3956 0.4010 21756 ms

Table 8.2: Hotel2 5-fold cross validation average results.

Figure 8.1: Hotel average squared error for the 5 runs of 5-fold cross valida-
tion.

and recall. Algorithms that involve hybrid learning suffer from low precision.
Algorithms that do not exploit hybrid learning suffers from low recall but can
reach high precision. This means that hybrid learning tries to find particular
concept expressions reducing precision. Whenever high precision is needed,
algorithms that do not exploit hybrid learning seem to perform better. Hybrid
learning algorithms seem to suffer from overfitting.

It is important to notice that Weighted gAdaBoost seems to perform very
badly. However it can reach a high precision. This happens because this kind
of classification adopted for gAdaBoost is an extremely safe one.

Figures 8.1 - 8.4 depicts the scores achieved by the algorithms for each
run.

Following we report the axioms learnt during the first run.
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Figure 8.2: Hotel average precision for the 5 runs of 5-fold cross validation.

Figure 8.3: Hotel average recall for the 5 runs of 5-fold cross validation.
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Figure 8.4: Hotel average F1− score for the 5 runs of 5-fold cross validation.

Greedy FOIL
Site Near Civic SubClassOf Good Hotel

Hostel SubClassOf Good Hotel

Hotel 4 Stars and (hasPrice some hasPrice veryHigh)

SubClassOf Good Hotel

Hotel 1 Star SubClassOf Good Hotel

Bed and Breakfast and (hasPrice some hasPrice high)

SubClassOf Good Hotel

Hotel 4 Stars and (hasAmenity some Babysitting)

SubClassOf Good Hotel

Best-5 Backtrack FOIL
Site Near Civic SubClassOf Good Hotel

Hostel SubClassOf Good Hotel

Hotel 4 Stars and (hasPrice some hasPrice veryHigh)

SubClassOf Good Hotel

Hotel 1 Star SubClassOf Good Hotel

Bed and Breakfast and (hasPrice some hasPrice high)

SubClassOf Good Hotel

Hotel 4 Stars and (hasAmenity some Swimming Pool)

SubClassOf Good Hotel
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pFOIL
Bed and Breakfast and (hasPrice some hasPrice high)

SubClassOf tempConcept 0

hasPrice some hasPrice veryHigh SubClassOf tempConcept 1

Hostel SubClassOf tempConcept 2

Hotel 5 Stars and Site Near University

SubClassOf tempConcept 3

Site Near Bridge and (hasPrice some hasPrice high)

SubClassOf tempConcept 4

(tempConcept 0 or tempConcept 1 or tempConcept 2 or

tempConcept 3 or tempConcept 4) SubClassOf Good Hotel

gFOIL
Hotel 3 Stars and Site Near University SubClassOf Good Hotel

Hotel 1 Star and (hasAmenity some (Beach-Volley and (hasAmenity

some Sub)))) SubClassOf Good Hotel

Hotel 5 Stars and Site Near University

SubClassOf Good Hotel

Hotel 4 Stars and Site Near Civic SubClassOf Good Hotel

Site Near University and (hasAmenity some Cradle)

SubClassOf Good Hotel

Hostel and (hasPrice some hasPrice veryLow)

SubClassOf Good Hotel

Hostel and (hasAmenity some Parking) SubClassOf Good Hotel

Hotel 4 Stars and (hasAmenity some Babysitting)

SubClassOf Good Hotel

Bed and Breakfast and (hasPrice some hasPrice high)

SubClassOf Good Hotel

pgFOIL
Hotel 5 Stars and (hasAmenity some Internet Access Point)

SubClassOf tempConcept 0

Site Near University and (hasAmenity some Disabled Facilities)

SubClassOf tempConcept 1

(hasAmenity some WI-FI) SubClassOf tempConcept 2

(tempConcept 0 or tempConcept 1 or tempConcept 2)

SubClassOf Good Hotel

gAdaBoost
(hasAmenity some WI-FI) SubClassOf Good Hotel crisp
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Algorithm Squared Error Precision Recall F1 − score Times
Gredy FOIL 0 1 1 1 3659 ms

Best-5 Backtrack FOIL 0 1 1 1 4762 ms
pFOIL 0 1 1 1 28503 ms
gFOIL 0.0025 1 0.9889 0.9943 166871 ms

pgFOIL 0.0217 0.9778 0.916 0.9452 228140 ms
gAdaBoost Weighted 0.0774 1 0.4543 0.6246 825460 ms

gAdaBoost Thresholded 0.0125 1 0.9511 0.9747 825460 ms

Table 8.3: Moral 5-fold cross validation average results.

Accomodation and Site Near Civic

SubClassOf Good Hotel crisp

Site Near Civic and (hasAmenity some Amenity)

SubClassOf Good Hotel crisp

Hostel and (hasAmenity some Cradle)

SubClassOf Good Hotel crisp

(hasAmenity some WI-FI) SubClassOf T 1

Accomodation and Site Near Civic SubClassOf T 2

Site Near Civic and (hasAmenity some Amenity)

SubClassOf T 3

Hostel and (hasAmenity some Cradle)

SubClassOf T 4

0.33*T 1 + 0.24*T 2 + 0.28*T 3 + 0.15*T 4

SubClassOf weightedSum

weightedSum SubClassOf Good Hotel

8.2.3 The Moral Ontology

This ontology has been tested through k-fold cross validation. The target
concept has been set as ToLearn and concept guilty, defined equivalent to
ToLearn, has been excluded from the learning experiments. Max depth used
was 1 and max length 2. As for hotel ontology, a 5-fold cross validation has
been run. Table 8.3 depicts the average performance of algorithm through
the 5 runs.

As can be seen from the results, target concept is well explained by sam-
ples, in fact results are quite high for almost all of the algorithms. It is clear
that FOIL and pFOIL perform better than the others. Algorithms that ex-
ploit hybrid learning do not perform perfectly on this ontology. This is mainly
due to the recall, in fact recall more than precision causes performances to
decrease.

As before weighted gAdaBoost seems to perform badly. Anyway, for the
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same reasons explained earlier, this is what was expected.
Following we report the axioms learnt during the first run.

Greedy FOIL
blameworthy SubClassOf ToLearn

vicarious blame SubClassOf ToLearn

Best-5 Backtrack FOIL
blameworthy SubClassOf ToLearn

vicarious blame SubClassOf ToLearn

pFOIL
intend mental state SubClassOf tempConcept 0

vicarious blame SubClassOf tempConcept 1

blameworthy SubClassOf tempConcept 2

(tempConcept 0 or tempConcept 1 or tempConcept 2)

SubClassOf Good Hotel

gFOIL
monitor and vicarious blame SubClassOf ToLearn

external cause and intend mental state SubClassOf ToLearn

blameworthy and careful SubClassOf ToLearn

blameworthy and high foreseeability SubClassOf ToLearn

goal achieveable less harmful and vicarious blame

SubClassOf ToLearn

blameworthy and monitor SubClassOf ToLearn

foreseeable and vicarious blame SubClassOf ToLearn

blameworthy and neither mental state SubClassOf ToLearn

blameworthy and negligent c SubClassOf ToLearn

pgFOIL
blameworthy and foresee intervention SubClassOf tempConcept 0

blameworthy and weak intend tempConcept 1

blameworthy and control perpetrator tempConcept 2

notaccident and vicarious blame tempConcept 3

blameworthy and goal achieveable less harmful tempConcept 4

(tempConcept 0 or tempConcept 1 or tempConcept 2

or tempConcept 3 or tempConcept 4) SubClassOf ToLearn
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gAdaBoost Average time elapsed:707628 ms
blameworthy SubClassOf ToLearn crisp

blameworthy SubClassOf T 1

1.0*T 1 SubClassOf weightedSum

weightedSum SubClassOf ToLearn

8.2.4 Trains

This ontology has been tested following the goal oriented approach. Target
concepts used were WestTrain and EastTrain. Max depth has been set to 1
and max length to 2.

8.2.4.1 EastTrain

This learning process is executed using EastTrain as target concept.

Greedy FOIL learns
3CarTrain and (hasCar some ClosedCar)

SubClassOf EastTrain accuracy:1.0

4CarTrain and (hasCar some TriangleLoadCar)

SubClassOf EastTrain accuracy:1.0

Best-5 backtrack FOIL is able to learn the rule:
hasCar some (ClosedCar and ShortCar)

SubClassOf EastTrain accuracy:1.0

pFOIL learns
Train and (hasCar some (ClosedCar and ShortCar))

SubClassOf tempConcept 0 accuracy:1.0

3CarTrain and (hasCar some (2LoadCar))

SubClassOf tempConcept 1 accuracy:1.0

(tempConcept 0 or tempConcetp 1)

SubClassOf EastTrain accuracy:1.0

gFOIL learns
3CarTrain and (hasCar some (TriangleLoadCar and 3WheelsCar))

SubClassOf EastTrain accuracy:1.0

4CarTrain and (hasCar some (ElipseShapeCar and 2WheelsCar))

SubClassOf EastTrain accuracy:1.0
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3CarTrain and (hasCar some (ClosedCar and 2WheelsCar))

SubClassOf EastTrain accuracy:1.0

Train and (hasCar some (HexagonLoadCar and OpenCar))

SubClassOf EastTrain accuracy:1.0

pgFOIL learns
hasCar some (ClosedCar and ShortCar) SubClassOf T0 accuracy:1.0

3CarTrain and (hasCar some (CircleLoadCar and ClosedCar))

SubClassOf T1 accuracy:1.0

(T0 or T1) SubClassOf EastTrain

Weighted gAdaBoost learns
3CarTrain and (hasCar some (ClosedCar and ShortCar))

SubClassOf T0 accuracy:1.0

4CarTrain and (hasCar some (RectangleShapeCarTriangleLoadCar and

2WheelsCar))

SubClassOf T1 accuracy:1.0

3CarTrain and (hasCar some (ClosedCar and RectangleShapeCar))

SubClassOf T2 accuracy:1.0

4CarTrain and (hasCar some (TriangleLoadCar and 1LoadCar))

SubClassOf T3 accuracy:1.0

0.33*T0 + 0.25*T1 + 0.21*T2 + 0.21*T3

SubClassOf weightedSum

weightedSum SubClassOf EastTrain

Thresholded gAdaBoost learns
3CarTrain and (hasCar some (ClosedCar and ShortCar))

SubClassOf EastTrain Crisp accuracy:1.0

4CarTrain and (hasCar some (RectangleShapeCarTriangleLoadCar and

2WheelsCar))

SubClassOf EastTrain Crisp accuracy:1.0

3CarTrain and (hasCar some (ClosedCar and RectangleShapeCar))

SubClassOf EastTrain Crisp accuracy:1.0

4CarTrain and (hasCar some (TriangleLoadCar and 1LoadCar))

SubClassOf EastTrain Crisp accuracy:1.0

CELOE and ELTL algorithms from DL-LEARNER learns
hasCar some (ClosedCar and ShortCar) SubClassOf EastTrain accuracy:1.0.
Among the algorithms the most satisfactory performance is produced by

Best-5 backtrack FOIL and pgFOIL.

64



8.2.4.2 WestTrain

This learning process is executed using WestTrain as target concept.

Greedy FOIL learns (in 1909 ms)
2CarTrain SubClassOf WestTrain accuracy:1.0

4CarTrain and (hasCar some JaggedCar)

SubClassOf WestTrain accuracy:1.0

3CarTrain and (hasCar some JaggedCar)

SubClassOf WestTrain accuracy:1.0

Best-5 backtrack FOIL is able to learn the rule (in 167 ms):
2CarTrain SubClassOf WestTrain accuracy:1.0

3CarTrain and (hasCar some 0LoadCar)

SubClassOf WestTrain accuracy:1.0

hasCar some JaggedCar

SubClassOf WestTrain accuracy 1.0

pFOIL learns (in 953 ms)
2CarTrain SubClassOf T0 accuracy:1.0

4CarTrain and (hasCar some JaggedCar)

SubClassOf T1 accuracy:1.0

3CarTrain and (hasCar some 0LoadCar)

SubClassOf T2 accuracy:1.0

4CarTrain and (hasCar some (CircleLoadCar and UShapeCar)

SubClassOf T3 accuracy:1.0

(T0 or T1 or T2 or T3) SubClassOf WestTrain accuracy:1.0

gFOIL learns (in 1483 ms)
2CarTrain and (hasCar some (LongCar and RectangleShapeCar))

SubClassOf WestTrain accuracy:1.0

3CarTrain and (hasCar some (ShortCar and 0LoadCar))

SubClassOf WestTrain accuracy:1.0

Train and (hasCar some (JaggedCar and RectangleShapeCar))

SubClassOf WestTrain accuracy:0.33

pgFOIL learns (in 2281 ms)
2CarTrain and (hasCar some (ClosedCar and 3LoadCar)

SubClassOf T0 accuracy:1.0
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2CarTrain and (hasCar some (ClosedCar and 3LoadCar))

SubClassOf T1 accuracy:1.0

(T0 or T1) SubClassOf westTrain

Weighted gAdaBoost learns
2CarTrain and (hasCar some (ShortCar and 2WheelsCar))

SubClassOf T0 accuracy:1.0

2CarTrain and (hasCar some (OpenCar and 1LoadCar))

SubClassOf T1 accuracy:1.0

2CarTrain and (hasCar some (OpenCar and ShortCar))

SubClassOf T2 accuracy:1.0

2CarTrain and (hasCar some (1LoadCar and 2WheelsCar))

SubClassOf T3 accuracy:1.0

2CarTrain and (hasCar some (LongCar and RectangleShapeCar))

SubClassOf T4 accuracy:1.0

2CarTrain and (hasCar some (ShortCar and 1LoadCar))

SubClassOf T5 accuracy:1.0

0.28*T0 + 0.21*T1 + 0.17*T2 + 0.14*T3 + 0.12*T4 + 0.08*T5

SubClassOf weightedSum

weightedSum SubClassOf WestTrain

Thresholded gAdaBoost learns (in 3793 ms)
2CarTrain and (hasCar some (ShortCar and 2WheelsCar))

SubClassOf WestTrain accuracy:1.0

2CarTrain and (hasCar some (OpenCar and 1LoadCar))

SubClassOf WestTrain accuracy:1.0

2CarTrain and (hasCar some (OpenCar and ShortCar))

SubClassOf WestTrain accuracy:1.0

2CarTrain and (hasCar some (1LoadCar and 2WheelsCar))

SubClassOf WestTrain accuracy:1.0

2CarTrain and (hasCar some (LongCar and RectangleShapeCar))

SubClassOf WestTrain accuracy:1.0

2CarTrain and (hasCar some (ShortCar and 1LoadCar))

SubClassOf WestTrain accuracy:1.0

CELOE and ELTL algorithms from DL-LEARNER learns
hasCar some (ClosedCar and ShortCar)

SubClassOf EastTrain accuracy:1.0.
CELOE algorithm of DL-LEARNER learns the axiom
hasCar some LongCar accuracy:0.8

ELTL algorithm of DL-LEARNER learns the axiom
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hasCar only (LongCar or OpenCar) accuracy 1.0

The last axiom won’t never be learnt by fDLL as it works only on EL(D)
and cannot learn a universal restriction class expression (denoted by only).

However all fDLL algorithms learn rules with accuracy 1, it means that
they do not wrongly classify any individual of training set. This can be con-
sidered a good result.
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Part IV

Conclusions
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In this work, we have defined, adapted, implemented and compared sev-
eral machine learning algorithms to induce inclusion axioms, given an OWL
2 ontology and a target concept whose descriptive characterisation we were
searching for. Some basic ideas for these algorithms have been taken from
ILP and have been then adapted to the OWL 2 context. To improve read-
ability, we also allowed automatically generated fuzzy concepts to occur in
the induced axioms. In summary, we may conclude that among all the tested
algorithms, the pFOIL algorithm seems to to be the best option so far.
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Appendix A

Some Implementation Details

To work with aforementioned learning algorithms a learning system called
fDLL has been developed. In this chapter fDLL will be roughly described.
First of all, we will talk about the description logic API created, then we will
talk about how OWL ontologies and DLs are used throughout this work. To
manage ontologies we used the OWL API ([18]) that can be used to deal with
reasoners. In this way it is possible to perform instance checking, instance
retrieval, consistency checking, etc.. However the OWL API cannot deal with
fuzziness. fDLL implements an extended API that deals with fuzzy degree of
truth. Moreover fDLL’s API gives the chance to define new fuzzy datatypes
and use them in data restrictions.

A.1 Description Logic API

To manage description logics background fDLL extends the OWL API with
fuzzy degree of truth. Each ClassExpression C will have a method degree(a)

that outputs a double number in [0, 1] representing the bed(K, a : C). Avail-
able ClassExpression are the ones used for refinement and the disjunction,
used to produce appropriate results for pFOIL.

So we have that a ClassExpression C can be:

1. A, being A an atomic concept;

2. ∃R.D, being R an atomic object property and D a ClassExpression;

3. ∃S.d, being S an atomic data property and d a fuzzy datatype;

4. C1 u ... u Cn being C1, ..., Cn ClassExpressions
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It is important to note that data properties are only used together with
fuzzy datatypes defined within fDLL. So a data property will not be used
unless a fuzzy datatype has been defined on it. Datatypes already defined in
the ontologies will be ignored.

It can be easily noticed that fuzziness can only be introduced by
datatypes. However they can spread fuzziness both to object restrictions and
to conjunction. In fact we can have an object restriction ∃R.(∃S.d), where
R is an object property, S a data property and d a fuzzy datatype. In this
case the restriction becomes fuzzy. Similarly if a conjunct of a conjunction is
fuzzy, i.e., a data restriction, the whole conjunction becomes fuzzy.

A.1.1 Fuzzy Datatypes

Fuzzy datatypes are defined by a fuzzy function (see Table 2.1). In this work
fuzzy functions are obtained through two different methods.

Triangular Same Width Discretizer: it simply splits the interval
[minS,maxS] of a data property S into a predefined number of equidistant
points. min is the minimum values related to an individual from the ontology
while max is the max value related to an individual, i.e., minS = mina∈I{r ∈
[0, 1] | (a, r) : S} and maxS = maxa∈I{r ∈ [0, 1] | (a, r) : S}, where S is a
data property and I is the set of all individuals of ontology. So if we want to
have n datatypes we would split the interval [minS,maxS] into n+1 equidis-
tant points. We will then define n − 2 triangular functions, a left shoulder
and a right shoulder. We will have that I0 will be a left shoulder ls(min, p0),
Ii will be a triangular function tri(pi−1, pi, pi+1) with i = 1, ..., n − 2, and
finally In−1 will be a right shoulder rs(pn−2, pn−1).

Trapezoidal Same Width Discretizer: it simply splits the interval
[minS,maxS] of a data property S into a predefined number of equidis-
tant points. min is the minimum values related to an individual from the
ontology while max is the max value related to an individual, i.e., minS =
mina∈I{r ∈ [0, 1] | (a, r) : S} and maxS = maxa∈I{r ∈ [0, 1] | (a, r) : S}
where S is a data property and I is the set of all individuals of the ontology.
So if we want to have n datatypes we would split the interval [minS,maxS]
into n + 1 equidistant points. We will then define n − 2 trapezoidal func-
tions, a left shoulder and a right shoulder. We will have that I0 will be a left
shoulder ls(min, p0), Ii will be a triangular function tri(pi−1, pi, pi+1, pi+2)
with i = 1, ..., n − 2 and pn = max, finally In−1 will be a right shoulder
rs(pn−2, pn−1).
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Naturally every discretization can be adopted to create fuzzy functions
for a data property. However a particular care should be adopted if trying
to use discretization methods guided by a target concept. In this work the
latter kind of discretization are not considered also because they can bias the
learning.

Beside discretization methods, fDLL provides a simple GUI to manage
fuzzy datatypes. It is possible to define brand new fuzzy functions cloning
an existing fuzzy datatype and modifying it.

A.1.2 Reasoners and reasoning tasks

As explained earlier, OWL API provide an interface that can work with
reasoners. fDLL can use three reasoners, PELLET1, HERMIT2 and JFACT3,
however, all tests have been carried on using PELLET.

Thanks to reasoners, it is possible to perform reasoning tasks though some
care has to adopted to get reasonable response time.

Specifically, fDLL’s implementation of logic api buffers all individuals
when the first reasoning operation is requested, whatever the operation is. In
fact OWL 2 reasoners are very fast when performing instance retrieval. This
approach is by far more fast than performing a certain number of instance
checking. Few instance checking, probably less than 10, will cost more than
a full instance retrieval.

Once instance retrieval is performed on a concept, instances are buffered
together with their degree of membership. For crisp concepts the degree will
always be 1. For fuzzy concepts, i.e., concepts that involves existential data
restrictions on fuzzy datatypes, only individuals with membership degree
bigger than 0 are buffered.

A.2 Refinement Operator Implementation

Refinement operator usage is the most time consuming task, so it is necessary
to pay particular attention on it. Refinement operators are an implementa-
tion of an interface AbstractRefine that provides a simple method with
signature:

public ArrayList<ClassExpress ion> r e f i n e ( Clas sExpres s ion ce )

It is a duty of implementation to deal with performance.

1http://clarkparsia.com/pellet/
2hermit-reasoner.com/
3http://jfact.sourceforge.net/
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fDLL implementation of AbstractRefine organizes refinement of class
expression in a structure similar to direct acyclic graphs with links managed
by graph nodes. The graph obtained is acyclic because it is not possible to
obtain a concept refining one of its refinement.

To avoid duplication, nodes creation has been centralized. Once a node
is created it is inserted into an HashMap using as key the result of method:

public St r ing toStr ingID ( )

This method is declared on the logic API interface for ClassExpression so
every class expression have to implement it. It is necessary that the string
returned by this method uniquely identifies a class expression.

A further request made on this method is that if two class expressions
should be considered equal, then they should return the same id, e.g., if two
conjunctions have the same conjuncts but in different orders, they can be
considered equal, if it is the case they should have the same id. In our logic
API implementation conjunctions are ordered, i.e., before a conjunction is
created the conjuncts used for its creation are ordered with respect to their
id.

The main class of refinement operator, RefineGraph, provides a method
for generic node creation from a generic class expression, a different node is
available for each type of class expression. New nodes are created through an
implementation of a visitor interface provided by the logic API.

When a method in RefineGraph is asked to create a new node, it first
checks if a node for the class expression has been previously created. If not,
it invokes the creation method of the aforementioned visitor.

The refinements returned are only those that have a positive witness.
However during the refinement process all refinements are evaluated, also
those without positive witness and all the refinements are buffered unless they
are inconsistent. There’s no use in saving inconsistent refinements as they
will never be useful for learning. Instead concepts without positive witness,
or without witness from ontology, could be useful as role filler.

Summing up, when we have a RefineGraph object, that implements
AbstractRefine, and we ask it to refine a class expression, it performs the
following steps:

1. It checks whether or not there is an available node that refers to that
class expression, i.e., if a node has been buffered and associated to the
same id of the class expression;

2. If such a node is already buffered, it is asked to provide its refinements.
If refinements are available the node simply returns them, otherwise
the node will compute its refinements, i.e., those relative to the class
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expression represented, it will buffer them and returns the list with
such refinements;

3. The RefineGraph object will return the list of refinements provided by
the class expression node.

A.3 Algorithm Implementation

All algorithms previously described have been implemented. As they all ex-
ploit a refinement operator they all use the refinement operator defined by
RefineGraph described in Section A.2. Moreover all algorithms ask for a
ChunkBuffer in such a way they can send learnt axioms through this syn-
chronized buffer. This object can be null, in that case axioms are not sent.

A.3.1 DL-FOIL

DL-FOIL has been implemented following Algorithm 4.5. Both greedy and
best-k backtrack versions have been implemented, however the difference
between the two have been handled through handlers.

The main class for DL-FOIL is FOIL contained in package fDLL.foil.
It implements the algorithm in both its part, learnSetOfAxioms and
learnOneAxiom. The FOIL object includes informations about the logic as
a factory to produce class expressions and to manage ontology interaction,
the target concept, the lists of individuals, atomic concepts, object properties,
data properties and datatypes available for learning. It also needs parame-
ters like maximum depth, maximum length, θ, positive coverage, negative
coverage and a flag used to indicate whether or not open world is assumed.
Beside these informations, the class also asks to have a HandlerSelector,
an AbstractConfidence, an AbstractGain and an AbstractRefine. The
latter object refers to a refine object, as explained earlier. The others will be
explained in the following.

AbstractConfidence.
AbstractConfidence is an interface that defines a confidence function. It

provides a method

public double computeConfidence ( Clas sExpres s ion ce ,
ArrayList<Ind iv idua l> p o s i t i v e s ,
ArrayList<Ind iv idua l> nega t i v e s )
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that computes the confidence of class expression ce w.r.t. individuals con-
tained in variable positives considered as positive samples and individuals
contained in variable negatives as negative samples.

The implementation used by fDLL simply implements the confidence
function defined in Definition 9.

AbstractGain.
AbstractGain is an interface that defines an abstraction of a gain method

and provides method

public double computeGain ( Clas sExpres s ion oldCE ,
Clas sExpres s ion newCE,
ArrayList<Ind iv idua l> p o s i t i v e s ,
ArrayList<Ind iv idua l> nega t i v e s )

that is intended to compute the gain of newCE w.r.t. oldCE considering
as positive sample the individuals contained in positives variable and as
negative samples the individuals contained in negatives variable.

SamplesHandler. Finally FOIL objects needs a HandlerSelector. Han-
dler selectors are objects that build a SamplesHandler. So HandlerSelector

and classes implementing it are factories. SamplesHandler is an interface
that implements strategies to manage samples. SamplesHandler object may
or not have a backtrack method.

public boolean hasLocalBacktrack ( ) ;

returns true if the handler exploits a backtrack policy. Samples handler also
manages the removal of positive samples during learnSetOfAxiom, the set-
ting of negative samples during learnOneAxiom, the evaluation of class ex-
pressions and the checks on positive and negative coverages. FOIL objects
completely abstract from sample handling and delegate this task to samples
handler. FOIL objects simply asks for backtrack after having verified that a
handler exploits such a policy and asks the handler to perform all operations
concerning samples manipulation.

A.3.2 pFOIL

The main class for pFOIL is PFoil, contained into package fDLL.pfoil. This
class is more simple than FOIL class as it does not need samples handlers and
backtrack is used by default. Like FOIL, PFoil objects are built using logic
informations and parameters as above. The difference stands in evaluators.
Differently from FOIL, PFoil does not need confidence and gain measures
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as it uses probability measures to evaluate class expressions. So, an object
typed AbstractProbability is requested. AbstractProbability provides
a method to both access individuals and to compute two types of scores. In
fact pFOIL is implemented exploiting two different scores, one used to com-
pare class expressions in learnOneAxiom and the other one to evaluate the
ensemble performance in learnSetOfAxioms. The latter is mainly necessary
to evaluate the stop condition. In fact we assume to stop pFOIL algorithm
when we do not achieve an increment in score above a certain threshold or
when it is no more possible to obtain a “legal” class expression. In the first
case a measure to evaluate ensemble performance is needed.

In our implementation both performances are evaluated through the Fβ−
score, as explained in Section 5.2. The only difference between the two stands
in the fact that they use different values of β.

A.3.3 gFOIL and pgFOIL

Hybrid Learning algorithms are implemented through the HLAlgorithm class.
This class needs like the others logic informations and some parameters. It
also need some parameters used during genetic learning. Parameters needed
are: a number indicating the number of genetic iterations to perform (nIter),
an integer indicating the size of the population (popSize) a selection ratio
(ps) indicating the fraction of the actual population that will be nominated
to reproduction, a cross over probability (pc) indicating the probability that
during reproduction a crossover is used, a refine probability (pr) indicating
the probability of performing refinement during reproduction, and a proba-
bility of mutation (pm) determining the probability of performing a mutation
on a population member after reproduction.

It can be noticed that pc and pr are strictly related. In fact they refer to a
choice between two different types of operation. As they are complementary,
their sum should be at most 1. If it is the case, then, with probability pc,
a crossover is performed, with probability pr a refine is performed and with
probability 1-(pc+pr) a class expression is simply forwarded to the successive
population.

Our hybrid learning algorithm needs three operators: a refinement oper-
ator, a crossover operator and a mutation operator. The first two are not
requested from class constructor while the latter is. The first two are auto-
matically built when needed. However a setter method give the possibility to
use particular refinement or crossover operator.

The refinement used is the same as FOIL and PFoil. Crossover operators
instead are objects of type CrossOver that is an interface providing a method
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public ArrayList<ClassExpress ion> c r o s s ( Clas sExpres s ion c1 ,
Clas sExpres s ion c2 )

The implementation used by fDLL exploits several wrappers extending in-
terface CrossableClassExpression which provides methods:

public Crossab l eC las sExpre s s i on g e t R i g h t S p l i t ( )
public Crossab l eC las sExpre s s i on g e t L e f t S p l i t ( )
public Crossab l eC las sExpre s s i on c r o s s (

Cros sab l eC las sExpre s s i on cce )

the first two methods split the class expression referred by the wrapper and
the latter cross cce with class expression referred by the wrapper. The im-
plementation exploited by fDLL follows the definition presented in Section
6.1.2. Each type of class expression available has a proper wrapper. Wrappers
are created through an implementation of a logic visitor as for refinement.

Mutator operators instead implement the interface Mutator providing
method

public ClassExpres s ion mutate ( Clas sExpres s ion ce )

that mutates ce. fDLL implementation of Mutator follows the definition of
mutation provided in Section 6.1.3.

Last parameter is how class expressions are evaluated. As for refine and
crossover, a default evaluator is available and a set method is used to set
another evaluator.

gFOIL and pgFOIL. These two algorithms are implemented respectively
in class GFoil and GPFoil. These classes simply extend respectively FOIL

and PFoil overriding learnOneAxiom method. This time learnOneAxiom

simply creates a HLAlgorithm instance that evaluates class expressions us-
ing a confidence measure on available individuals. Once learnOneAxiom is
run, learnSetOfAxioms removes covered positive samples and at the next
iteration learnOneAxiom will create an instance of HLAlgorithm that con-
siders only positive samples not yet removed.

GPFoil extends PFoil overriding leanrOneAxiom. Here the HLAlgorithm
object exploits an evaluator that considers ensemble performance.

A.3.4 gAdaBoost

The gAdaBoost algorithm is implemented through GeneticBoost class from
package fDLL.boost. As explained earlier, gAdaBoost iterates a certain num-
ber of times (this number is a parameter) and at each iteration learns
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an axiom exploiting hybrid learning and so HLAlgorithm. At each iter-
ation the only modification occurring in HLAlgorithm are about individ-
ual weighting. To implement this kind of scenario, an evaluation function
that considers individual weights has been introduced. The interface used
to perform evaluation is called WeightedIndividualEvaluator and extends
IndividualEvaluator, the interface used forHLAlgorithm evaluation func-
tions. IndividuaEvaluator provides the method

public double e v a l u a t e I n d i v i d u a l ( Clas sExpres s ion ce ,
ArrayList<Ind iv idua l> p o s i t i v e s ,
ArrayList<Ind iv idua l> nega t i v e s )

used to evaluate class expression ce (that is an individual of the popula-
tion used in HLAlgorithm) w.r.t. individuals of variables positives and
negatives respectively considered as positive and negative samples.

WeightedIndividualEvaluator extends the interface providing the
method

public void updateWeights ( ArrayList<WeightedIndividual> inds )

used to update weights w.r.t. weights defined in inds.
So, WeightedIndividualEvaluator has a method to evaluate a class

expression and a method to update weights of the individuals. In our imple-
mentation, updateWeights is used to buffer individuals with weights.

GeneticBoost at each iteration let a HLAlgorithm object perform hy-
brid learning, once a population is returned, HLAlgorithm is asked to choose
the best class expression from such a population. The chosen class ex-
pression is learnt and weights are updated considering the learnt class ex-
pression as the classifier. Next HLAlgorithm is run using as evaluator the
WeightedIndividualEvaluator with updated weights.

A.3.5 K-Fold Cross Validation

To perform K-Fold Cross Validation fDLL has class KFoldCrossValidation
from package fDLL.kFoldCrossValidation. This class is built with logic
informations and a parameter k representing the number of folds. If the
number of individuals is smaller or equal to k than a leave-one-out cross
validation is performed.

The KFoldCrossValidation object has a method for each learning algo-
rithm, essentially a split of samples set (containing both positive and negative
samples) into k subsets is performed. Once a cross validation of an algorithm
is called, the algorithm is performed k times. Each time one of the k split is
used as test set while the others are used as training set.
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At the end, an ArrayList containing k objects of type KFoldResult is
returned. A KFoldResult object refers to a run of KFoldCrossValidation.
It contains the training set and the test set used for the run, an ArrayList

containing the learnt axioms and provides the squared error, the precision,
the recall and the F1− score, computed from the test set. The squared error
is computed as follows:

e(I) =
∑
a∈I

(H(a)− T (a))2 ,

where I is the test set,H is the set of axioms learnt andH(a) is the predicted
value for a, i.e., with which degree a belongs to T following the prediction
made by H. T (a) instead is the actual degree with which a belongs to T .
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