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Introduction 

Autism Spectrum Disorders 

Diagnosis and clinical features in preschoolers 
 

The term " autism " describes a spectrum of heterogeneous neurodevelopmental disorders 

characterized by early-onset abnormalities in social communication, and atypically restricted 

and repetitive behaviors and interests. 

Since the first description of the 11 children with autism performed by Leo Kanner in 1943 , 

to date, autism had different definitions and nosographic descriptions (Asperger, 1944; Rutter, 

1978; DSM III, 1980). In 1980, autism was first included in the Diagnostic and Statistical 

Manual of Mental Disorders, in its third edition (DSM -III), that described the diagnostic 

category of Pervasive Developmental Disorders (PDD, Pervasive Developmental Disorders). 

In 2000, DSM -IV (Diagnostic and Statistical Manual of Mental Disorders, 2000) included 

Autistic Disorder in the nosographic category of PDD , with other four entities similar to 

autism. According to the DSM -IV PDD were characterized by " severe and pervasive 

impairment in several areas of development : reciprocal social interaction skills , 

communication skills , or the presence of stereotyped behaviors, interests and activities " and 

included: Autistic Disorder , Rett Syndrome, childhood disintegrative disorder , Asperger 

Syndrome , and Pervasive Developmental Disorder Not Otherwise Specified. The ' 

International Classification of Diseases, in its tenth edition ( ICD-10, 1993 the World Health 

Organization) classified the PDD in a manner comparable to the DSM -IV (except for the 

division of the Pervasive Developmental Disorder Not Otherwise specified in 3 sub-

categories: atypical autism , pervasive developmental disorder not specified and other 

pervasive developmental disorder) . ICD-10 also included in the DPS category the 

hyperactive syndrome associated with mental retardation and stereotyped movements. Within 

the category of PDD in the DSM -IV and ICD -10 , Autistic Disorder is the most important 

disorder , because it is the most frequent, and because it covers fully and complete description 

of the DPS . It fact, as outlined in the DSM -IV, is characterized by the “ presence of a 

significantly abnormal or deficient development of social interaction and communication and 

a markedly restricted repertoire of activities and interests.” 

Among the PDD described by the DSM -IV, Rett Syndrome , first described in 1966 , is a rare 

neurodegenerative condition that affects mostly females, characterized by an apparently 

normal early development (during the first 6-18 months) following then by a deterioration or 

a slowing of cognitive , social- communicative and motor development: children with Rett 

Syndrome show a regression or retardation of motor skills , a decline of social interactions , a 

regression of cognitive skills and communication skills learned, and the loss of use of hands, 

replaced by stereotyped hands behaviors. Originally called " infantile dementia " (Heller, 
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1908) , the Childhood Disintegrative Disorder is a rare and severe developmental regression , 

which occurs in 3-4 years old children, with an earlier apparently normal development . The 

onset is usually gradual, but rapid ( weeks or months) , and sometimes associated with 

psycho-social stress conditions . The disorder has the same symptoms of autism, with a 

clinically significant loss of previously acquired skills and social communication. Asperger 

Syndrome is a developmental disorder characterized by marked abnormalities in social 

interaction , despite adequate cognitive and verbal ability . Social withdrawn can remember 

the autistic isolation, however, children with Asperger Syndrome can often be hungry for 

relationships with other people . The social approaches , however, are inappropriate , often 

characterized by strict formal rules, and impaired social integration. Although verbal skills are 

formally adequate in children with Asperger Syndrome , language is often characterized by 

abnormalities in the pragmatic component . Also the restricted interests and repetitive tasks 

may resemble the stereotyped behavior of autistic disorder. The Pervasive Developmental 

Disorder Not Otherwise Specified (PDD -NOS) , although it represents a diagnosis of DSM- 

IV , is not a uniform clinical entity . PDD-NOS includes those PDD whose clinical features 

are not fully described by another diagnosis of DSM- IV or ICD -10. Sometimes the PDD- 

NOS is a sort of  “wildcard” , a label for diagnostic unfavorable conditions , when available 

information are inadequate, PDD-NOS diagnosis can be a temporary diagnosis. Other times, 

it is taken into account for children who , despite symptoms of the autistic spectrum, are at the 

edge of a more normal functioning , or without impairment in one of the 3 areas of the 

disorder is mild or absent.  

One of the most expected changes in the fifth edition of the DSM (Diagnostic and Statistical 

Manual of Mental Disorders ) , in May 2013 (DSM -5), was the revision of the diagnostic 

criteria for disorders related to autism, an important change in clinical practice of psychiatry. 

According to the American Psychiatric Association (2013) in fact, the new revision of 

diagnostic criteria provide a new, more accurate and useful tool to diagnosis  individuals with 

autism. The DSM-5 eliminates previous 5 possible diagnostic labels (Autistic Disorder , Rett 

Syndrome , Childhood Disintegrative Disorder , Asperger Syndrome, and Pervasive 

Developmental Disorder Not Otherwise Specified) and it introduces the concept of spectrum 

for disorders related to autism , with the creation of the new diagnostic category of Autism 

Spectrum Disorders (ASD) . Subjects previously diagnosed according to DSM -IV, with a 

diagnosis of PDD, today receive a unique diagnosis of ASD. The use of autism spectrum 

concept has solved some of the concerns about the appropriateness of  term "pervasive" in the 

description of the morbid condition , the validity and applicability of certain diagnostic labels 

sometimes used in different ways (ie. PDD -NOS) , the differentiation of clinical conditions 

often very similar and overlapping (ie. high functioning Autism and Asperger Syndrome ) , 

the inclusion within a psychiatric category of a neurological disorder (ie . Rett Syndrome ) . 

The use of a single , large " spectrum " of clinical conditions related to autism therefore better 

reflects the variability of clinical presentation and the phenotypic variability in time and 

reduces potential variability arising from the use of  previous diagnostic labels. 

DSM -5 recommend the use of the diagnostic category of ASD,  without a definition of 

subtypes, in all those subjects with " persistent deficits in social communication and social 

interaction in different contexts " and " patterns of restricted, repetitive behavior , interests or 
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activities ", then the previous diagnostic labels of Autistic Disorder, Asperger  Syndrome, and 

Pervasive Developmental Disorder Not Otherwise Specified are unified in the diagnosis of 

Autism Spectrum Disorder . Another  change in DSM-5 is the elimination of diagnostic labels 

of Rett Syndrome and Childhood Disintegrative Disorder , given their different clinical 

characteristics and etiological relation to other ASD. Another change is on diagnostic criteria: 

the new “socio-communicative” domain of DSM- 5 combines “social” and “communicative” 

domains, separated in DSM-IV. This is because, according to the Authors, communication 

deficits are intimately related to deficit in social skills, so the two clinical domains are 

actually different manifestations of a single socio- communicative domain. Third domain of 

restricted and repetitive interests and activities , otherwise remains unchanged , with the 

exception of the inclusion of the stereotyped or idiosyncratic language criteria, previously 

included in the communication domain. Atypical language development (historically linked to 

an autism diagnosis) was removed from the criteria, and is now classified as a co-occurring 

condition, even though large variation in language is characteristic of autism. Other changes 

introduced in the new DSM edition is the inclusion of Specifiers: With or without 

accompanying intellectual impairment; With or without accompanying language impairment; 

Associated with a known medical or genetic condition or environmental factor; Associated 

with another neurodevelopmental, mental, or behavioral disorder; With catatonia; current 

Severity.  

 

Current diagnostic criteria for ASD are: 

A.      Persistent deficits in social communication and social interaction across multiple 

contexts, as manifested by the following, currently or by history (examples are illustrative, not 

exhaustive, see text): 

 

1.       Deficits in social-emotional reciprocity, ranging, for example, from abnormal social 

approach and failure of normal back-and-forth conversation; to reduced sharing of interests, 

emotions, or affect; to failure to initiate or respond to social interactions. 

 

2.       Deficits in nonverbal communicative behaviors used for social interaction, ranging, for 

example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye 

contact and body language or deficits in understanding and use of gestures; to a total lack of 

facial expressions and nonverbal communication. 

 

3.       Deficits in developing, maintaining, and understanding relationships, ranging, for 

example, from difficulties adjusting behavior to suit various social contexts; to difficulties in 

sharing imaginative play or in making friends; to absence of interest in peers. 

 

B.      Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at 

least two of the following, currently or by history (examples are illustrative, not exhaustive; 

see text): 

 

1.       Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple 

motor stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases). 
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2.       Insistence on sameness, inflexible adherence to routines, or ritualized patterns or verbal 

nonverbal behavior (e.g., extreme distress at small changes, difficulties with transitions, rigid 

thinking patterns, greeting rituals, need to take same route or eat food every day). 

 

3.       Highly restricted, fixated interests that are abnormal in intensity or focus (e.g, strong 

attachment to or preoccupation with unusual objects, excessively circumscribed or 

perseverative interest). 

 

4.       Hyper- or hyporeactivity to sensory input or unusual interests in sensory aspects of the 

environment (e.g., apparent indifference to pain/temperature, adverse response to specific 

sounds or textures, excessive smelling or touching of objects, visual fascination with lights or 

movement). 

 

C.      Symptoms must be present in the early developmental period (but may not become fully 

manifest until social demands exceed limited capacities, or may be masked by learned 

strategies in later life). 

 

D.      Symptoms cause clinically significant impairment in social, occupational, or other 

important areas of current functioning. 

 

E.       These disturbances are not better explained by intellectual disability (intellectual 

developmental disorder) or global developmental delay. Intellectual disability and autism 

spectrum disorder frequently co-occur; to make comorbid diagnoses of autism spectrum 

disorder and intellectual disability, social communication should be below that expected for 

general developmental level. 

 

Epidemiology: 

For several decades after its first definition, autism was considered a rare disorder ( 2-4 out of 

10,000 children). In recent years, the prevalence of ASD is gradually increased : about 60 per 

10,000 ( Fombonne et al., 2003). The Centers for Disease Control and Prevention ( CDC) in 

2007 indicated that in Europe and the U.S., about one in 150 children was suffering from 

autism: an alarming statistics that led to talk of  " epidemic autism ". This concern has been 

steadily growing even for the significant prevalence increase reported by the CDC, in 2012, 

when prevalence of autism was estimated about 1 in 88 children ( 1 : 54 in males and 1 : 252 

in females ) . Other data on the prevalence of autism in the U.S. have recently been published 

( Blenner, 2014) by the same group, that currently estimates 1 child every 68 (14.7 in 1000) is 

suffering from an ASD ( 1 : 42 males and 1 : 189 females ).  

Hypotheses formulated to explain this increase of diagnoses number are varied ( Fombonne et 

al., 2001; Wing et al., 2002; Baird et al., 2003; Prior et al., 2003; Wazana et al., 2007; Bryson 

et al., 2008) and include: an increase in the number of diagnoses (greater definition in 

diagnostic criteria, development of the spectrum concept, use of different study methods , 

increased awareness and knowledge of the disorder among parents and operators, and an 

increase of diagnostic possibility) and of course the real increase of autism cases. Evidence 
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from several studies suggests that the growth of incidence and prevalence was due to greater 

diagnostic potential and enlargement of the definition of ASD, and consequently to a wider 

“recruitment”. If there is a real increase in the number of cases is still debated , and some 

Authors believe that actual number of cases of ASD is even higher than estimated by CDC , 

because the presence of many mild cases undiagnosed.  

Males are significantly more affected than females , with a ratio of about 4-4.5 / 1 , although 

this difference tends to decrease in subjects associated with intellectual disability ( Fombonne 

et al., 2011) . However, some Authors ( Baron-Cohen et al., 2011) argue that diagnosis in 

females may be underestimated because the diagnosis is later in life and is frequently due to 

the presence of major cognitive and / or behavioral problems. 

Nevertheless, a male predominance is a consistent epidemiological finding that has 

aetiological implications (Lai et al., 2014). It could imply female-specific protective effects, 

such that females would have to have a greater aetiological (genetic or environmental) load 

than would males to reach the diagnostic threshold. Alternatively, male-specific risks could 

heighten susceptibility (Werling et al., 2013). 

Some Authors suggest that the existence of sex-linked aetiological load and susceptibility 

emphasises the importance of stratification by sex, and of comparisons between males and 

females to disentangle the aetiological role of sex-linked factors at genetic, endocrine, 

anatomical, epigenetic, and environmental levels. 

 

Clinical features in preschoolers: 

Autism (from the Greek "autùs") is an early-onset disorder characterized by abnormal 

development or deficit of social interaction, communication and interests.  

Since the first description by Kanner, early age of onset represents one of the most consistent 

features of ASD (in DSM-IV included  age of onset in the diagnosis criteria of autism, with 

onset no more later 36 months of age). In DSM-5 Authors underlined that symptoms must be 

present in early childhood but may not become fully manifest until social demands exceed 

limited capacities. 

Signs of autism apparently are not present at birth, but emerge through a process of 

diminishing, delayed, or atypical development of social-communication behaviors, starting 

between the ages of 6 and 12 months ( Ozonoff et al., 2010). 

Some years ago, children with autism were often identified when older than 4-5 years, but 

toddlers are now frequently diagnosed because their atypical development is earlier 

recognized, and it allows early intervention.  

Early signs of autism are deficits or delays in the emergence of joint attention (ie. shared 

focus on an object), poor attention to social scenes or human faces (by 6 months of age), 

decreased response to own name, deficits in reciprocal affective behavior and little infant–

parent interaction at age 12 months (ie. reduced dyadic mutuality, including shared attention, 

infant acceptance of parental involvement, playing together, interactive flow, and shared body 

orientation; infant positive affect; and attentiveness to parent), and atypical implicit 

perspective taking. Pretend play is poor or delayed, imitation is decreased, verbal and 

nonverbal communication is delayed or atypical. Children with ASD also show motor delay, 

unusually repetitive behaviors, atypical visuomotor exploration, inflexibility in disengaging 

visual attention, and frequently extreme variation in temperament (Zwaigenbaum et al., 2009). 



8 
 

These symptoms contribute to early detection of  toddlers with ASD. However, identification 

of high-functioning children is still frequently later than it should be, particularly for females. 

 

 

Deficits in social communication and social interaction  

ASD are characterized by persistent deficits in social communication and social interaction 

across multiple contexts. Core elements of autism are  deficits in social-emotional reciprocity, 

in non-verbal communicative behaviors used for social interaction, in developing, 

maintaining, and understanding relationships. 

The social communication disability is due to a lack or deficit or atypicalities of inter-

subjectivity and verbal and non-verbal communication.  

ASD are characterized by deficits in social‐emotional reciprocity (Carpenter, 2013), ranging 

from abnormal social approach (eg., unusual social initiations, intrusive touching; licking of 

others or use of others as tools), failure of normal back and forth conversation (eg., poor 

pragmatic/social use of language, failure to respond when name called or when spoken 

directly to, does not initiate conversation, or one‐sided conversations/monologues/tangential 

speech), through reduced sharing of interests (eg., doesn’t share, lack of showing, bringing, or 

pointing out objects of interest to other people or impairments in joint attention, both 

initiating and responding), reduced sharing of emotions/affect (eg., lack of responsive social 

smile, failure to share enjoyment, excitement, or achievements with others, failure to respond 

to praise, does not show pleasure in social interactions, failure to offer comfort to others, 

indifference/aversion to physical contact and affection)  or total lack of initiation of social 

interaction (eg., only initiates to get help, has limited social initiations, has poor social 

imitation and failure to engage in simple social games). 

Deficits in nonverbal communicative behaviors used for social interaction are characterized 

by impairments in social use of eye contact, in the use and understanding of body postures 

(e.g. facing away from a listener) or gestures (e.g. pointing, waving, nodding/shaking head), 

abnormal volume, pitch, intonation, rate, rhythm, stress, prosody or volume in speech, 

abnormalities in use and understanding of affect, impairment in the use of facial expressions 

(may be limited or exaggerated), lack of warm, joyful expressions directed at others, limited 

communication of own affect (inability to convey a range of emotions via words, expressions, 

tone of voice, gestures), inability to recognize or interpret other’s nonverbal expressions, lack 

of coordinated verbal and nonverbal communication (e.g. inability to coordinate eye contact 

or body language with words), or lack of coordinated non‐verbal communication (e.g. 

inability to coordinate eye contact with gestures). 

Subjects with ASD have deficits in developing and maintaining relationships, appropriate to 

developmental level (beyond those with caregivers): lack of “theory of mind”; inability to 

take another person’s perspective, difficulties adjusting behavior to suit social contexts (eg., 

does not notice another person’s lack of interest in an activity, lack of response to contextual 

cues or inappropriate expressions of emotion, such as laughing or smiling out of context, 

unaware of social conventions/appropriate social behavior; asks socially inappropriate 

questions or makes socially inappropriate statements, does not notice another’s distress or 

disinterest and does not recognize when not welcome in a play or conversational setting, 

limited recognition of social emotions). They show difficulties in sharing imaginative play 
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with peers, including social role playing (>4 years developmental age), difficulties in making 

friends (eg., does not try to establish friendships, does not have preferred friends, lack of 

cooperative play over 24 months developmental age; parallel play only, unaware of being 

teased or ridiculed by other children, does not play in groups of children, does not play with 

children his/her age or developmental level, has an interest in friendship but lacks 

understanding of the conventions of social interaction or does not respond to the social 

approaches of other children), absence of interest in others (eg., withdrawn; aloof; in own 

world, does not try to attract the attention of others, limited interest in others; unaware or 

oblivious to children or adults, limited interaction with others and prefers solitary activities).   

The impaired social interaction and communication although permanent, is expressed by 

symptoms that can vary over time, during development. 

Infants can show  gaze avoidance, lack of anticipatory behavior (such as stretching arms when 

try to pick him up ), absence of social smile in response to a face or voice, that are early 

stages of social communication behavior's development. Gaze contact is an important step, in 

early months of life, to development of social interaction and social adjustment during entire 

life (Jones et al., 2008). Children with autism, aged about 2 years, have a significantly 

reduced eye contact . This deficit in visual interaction involves critical consequences for 

social communication development, so that the avoidance of the gaze is a good predictor for 

future social disability. 

In older children, symptoms will be more explicit, especially in interaction with peers: 

subjects with ASD show lack of shared attention, lack of attention to social environment, 

difficulties in interaction with peers, tendency to isolation, inability to develop relationships 

appropriate to child's age, apparent emotional indifference. Sometimes these children seem to 

not understand that other people have thoughts and feelings, knowing that usually develops in 

the first few years of life and is essential for a social life (Volkmar et al., 1997). Frequently 

children with ASD does not participate and does not require the participation of others in 

activities, does not show the objects of interest to others for the sake of sharing, their gestures 

are poor, they often use others as a "tool" to reach object. Frequently interpersonal 

relationships seem to be predominantly "requestive" and purposive rather than marked on the 

pleasure for interaction. For example, pointing sometimes is used by children with ADS,  but 

often only with demand function, and not to sharing with others. The presence of 

communicative gestures correlates inversely with ASD severity and seems to be a good 

predictor of subsequent communication and language development (Mundy et al. , 2003; 

Camaioni et al. , 2003). Even physical contact, often rejected when not required, is designed 

to meet their own needs or to seek physical comfort.  

At school age, thanks to a social adaptation, interaction with others often can improve, 

although a poor involvement in social relations is frequent. The lack of understanding social 

rules can lead, especially in older children and adolescents, to inappropriate behavior, such as 

temper tantrums, often apparently unprovoked, aggressions, destructiveness, screaming, 

attempts to escape. Often children with ASD show lack of social reciprocity and empathy. 

Impaired communication can be related to all expression's and reception's codes of language. 

Frequently children with ASD have a delay or absence of verbal language and non-verbal 

communication abilities. Infants with autism can have a delay or absence of vocalism and 

babbling (usually gained around 4-8 months). Subsequently autism can manifest itself more 
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explicitly with an impairment in language development: the toddler does not speak, does not 

call parents, does not turn when called by name (the criterion of language delay, present in 

DSM -IV diagnostic criteria, has been eliminated in the current DSM-5 criteria). Some of 

these children remain mute lifelong: about 33%-50% of children with ASD never acquires 

any form of finalized language (Bailey et al., 1996; Bryson et al.,1996; Marans et al.,1997). 

When language is present children with ASD show anomalies in various aspects of speech. 

Preschoolers with ASD frequently show deviant and delayed in comprehension and two-

thirds have difficulty with expressive phonology and grammar. In these children language is 

sometimes very fluent but often they still have a typical production: verbal stereotypies, 

bizarre or idiosyncratic phrases, echolalia, reverse pronouns, abnormal prosody (speech-song, 

monotonous or emphatic, not adequate to the meaning of the sentence), use of concrete 

language and literal meanings of words. Some children with ASD have a rich vocabulary, 

with long and sometimes bombastic words, in other cases sentences are telegraphic and 

uncorrected. Often even non-verbal components of language and communication are affected, 

such as intonation, pauses, gestures, facial expressions. Abnormalities in phonetic - 

phonological aspect and phonological difficulties are frequent and also in language 

programming and lexical access, with impairment in the morpho-syntactic phrasal structure. 

Even lexical and morpho-syntactic comprehension are often impaired.  

Older children with ASD usually show deviant pragmatics, semantics, and morphology, with 

relatively intact articulation and syntax (ie, early difficulties are resolved). 

Children have typically a difficulty in understanding "symbolic" language, and an inability to 

understand puns, metaphors, proverbs and figurative language. So communication , when 

present, is inadequate especially in the "pragmatic skills", eg. in defining social rules of 

language in relation to the purpose and the participants in dialogue. The communication is 

often not aimed to social interaction and enjoyment of interpersonal relationship, but 

frequently it is merely a tool to have what the child wants, or to talk about his interests, often  

expressed with repetitive and restricted content. The impairment in the pragmatic component 

of language is sometimes the only sign of ASD in children with high-functioning disorder. 

Other symptoms of this domain frequently shown by children with ASD are deficits in: 

emotion perception, face processing, biological motion perception, social attention and 

orienting, social motivation, social reward processing, imitation, affective empathy and 

sympathy, joint attention, theory of mind or mental perspective taking, self-referential 

cognition, and alexithymia. 

 

Restricted, repetitive patterns of behavior, interests, or activities 

ASD are characterized by restricted, repetitive patterns of behavior, interests, or activities. 

These children could show stereotyped or repetitive speech (eg. pedantic speech or unusually 

formal language, child can speaks like an adult or “little professor”, echolalia; repetitive 

vocalizations such as repetitive guttural sounds, intonational noise‐making, unusual squealing, 

repetitive humming, may include repetition of words, phrases, or more extensive songs or 

dialog, gibberish, idiosyncratic or metaphorical language, neologisms, pronoun reversal, 

refers to self by own name and does not use “I”), stereotyped or repetitive motor movements 

(eg., repetitive hand movements, stereotyped or complex whole body movements, 

abnormalities of posture such as toe walking or full body posturing, unusual facial grimacing, 
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excessive teeth grinding, perseverative or repetitive action / play / behavior) and stereotyped 

or repetitive use of objects (eg. nonfunctional play with objects such as lines up toys or 

objects, repetitively opens and closes doors or repetitively turns lights on and off ).  

They could have excessive adherence to unusual routines, ritualized patterns of verbal or 

nonverbal behavior (eg., repetitive questioning about a particular topic, verbal rituals or 

compulsions), or excessive resistance to change (eg., difficulty with transitions, insistence on 

same route or food, or extreme distress at small changes) and rigid thinking (eg., inability to 

understand humor and nonliteral aspects of speech such as irony or implied meaning, 

excessively rigid, inflexible, or rule‐bound in behavior or thought).  

Highly restricted, fixated interests that are abnormal in intensity or focus (such as strong 

attachment to or preoccupation with unusual objects, excessively circumscribed or 

perseverative interests, that are abnormal in intensity or focus, preoccupation with numbers, 

letters, symbols, or focus on nonrelevant or nonfunctional parts of objects, being overly 

perfectionistic, attachment to unusual inanimate object and having to carry around or hold 

specific or unusual objects). 

ASD frequently have hyper‐or hypo‐reactivity to sensory input or unusual interest in sensory 

aspects of environment (such as apparent indifference to pain/heat/cold, adverse response to 

specific sounds or textures, unusual sensory exploration with objects such as excessive 

smelling or touching of objects, fascination with lights or spinning objects, unusual visual 

exploration / activity such as close visual inspection of objects or self for no clear purpose or 

looks at objects and people out of corner of eye or extreme interest or fascination with 

watching movement of other things).  

A typical feature of children with autism is the inability to pretend play (Baron-Cohen et 

al.,1996; Charman et al., 1997, Rogers et al., 2003), a must step in typical development, it is 

characterized by a progressively increasing complexity during typical growth (eg, by 

pretending to drink from an empty cup to 1 year, to pretend to give the bottle to a doll to 1 

year and a half, to pretend to be a doctor in later life), and it represents the acquisition of 

symbolic thought. In children with ASD the beginning of these simulations is later than 

typical development and play tend to be poor and repetitive. The interests and the activities of 

children with autism are usually restricted, repetitive and stereotyped and play is usually 

solitary.  

Children with ASD can show stereotyped or repetitive motor movements, use of objects, or 

speech. 

Typically they are involved in motor mannerisms, such as twist, look or bite hands, rocking, 

repeated head movements, or bizarre postures. During growth these simple motor stereotypes 

tend to disappear, giving way to more complex repetitive behaviors, such collection, 

alignment objects, etc.  

Highly restricted, fixated interests, that are abnormal in intensity or focus, attention to detail 

or parts of objects or rotations are typical in children with ASD; objects and toys often are not 

used with the proper function and as representative elements in pretend play but are observed, 

handled, rotated.  

The involvement in specific and narrow topics is sometimes overly invested (eg, children with 

ASD know everything about dinosaurs, or recite the scenes of a movie). Children can spend 

their time on repetitive tasks that absorb them fully.  
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They can show insistence on sameness, inflexible adherence to routines, or ritualised patterns 

of verbal or non-verbal behaviour. Behaviors are often monotonous and ritualistic, daily 

activities follow rigid and immutable sequences (eg, individuals with ASD want to always eat 

the same limited number of foods, always sit in the same chair, always follow the same paths, 

etc). Often children with autism show increased perception, endurance, and discomfort to 

changes (eg. sometimes they place objects in an order that must remain unchanged, they can 

notice if placement of the objects was minimally altered and have a strong discomfort 

reaction). Stereotypic behaviors and rituals, in older children with ASD, can be less clear, but 

often they are very abitudinary and they have circumscribed interests, in topics that typically 

require a significant investment of mechanical memory (eg. dates, numbers, etc. ). 

 

Other symptoms, co-occurring conditions and prognosis: 

Another characteristic symptoms of ASD is the hypo-reactivity or  hyper-reactivity to sensory 

stimuli. In fact children with ASD often show an abnormal reactivity to sensory input or 

unusual interest in sensory aspects of the environment, they can show abnormal reaction to 

certain auditory stimuli (eg. bells, loud noises), visual (eg. flash, special colors, repetitive 

visual patterns), tactile (eg. roughness of surfaces or clothing, reduced sensitivity to pain), 

olfactory, gustatory or vestibular - proprioceptive, which can trigger unusual and idiosyncratic 

responses, such as fear or, conversely, charm. Atypicalities include too much attention to the 

"sensory characteristics" of objects or paradoxical responses to sensory stimuli (eg. children 

with ASD may react covering eyes in response to an auditory stimulus).  

Children with ASD also can show motor abnormalities, like motor delay, hypotonia, 

catatonia, deficits in coordination, movement preparation and planning, praxis, gait, and 

balance. 

Hyperactivity is also a common symptom. Hypotonia and joint laxity are found, according to 

some Authors ( Ming et al., 2006), in 51% of children with ASD. Sometimes it can be 

detected several neuromotor non-specific symptoms or signs (eg. residual of primitive 

reflexes, delayed hand dominance ). Apraxia is frequently identified in children with autism 

(34 % ), with prevalent impairment in manual motility. Some individuals may show 

echopraxia gestures.  

Children with ASD may have a tendency to walk on their toes (19 % of children with autism). 

Reduced mobility is also reported in the literature, but it is rare.  

The low prevalence of motor deficits in older children suggests an improvement over time, 

probably due both to the natural history of disease, both to therapy, although clumsiness and 

handling difficulty may remain well into adulthood. The severity of motor deficits seems to 

be proportional to intellectual deficits.  

More than 70% of subjects with ASD have concurrent medical, developmental, or psychiatric 

conditions (Lai et al., 2014) and childhood co-occurring conditions tend to persist into 

adolescence, instead some co-occurring conditions, such as epilepsy and depression, can first 

develop in adolescence or adulthood. Generally, the more co-occurring conditions, the greater 

the individual’s disability.  

The high frequency of comorbidity could be a result of shared pathophysiology of disorders, 

of secondary effects of growing up with a developmental disorder, of shared symptom 

domains and associated mechanisms, or caused by overlapping diagnostic criteria. 
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Approximately 45-50% of children with ASD has an intellectual deficit (Volkmar et al., 2004 

Fombonne et al., 2011); also current data from the Centers for Disease Control and Prevention 

(2014) tend to confirm the percentages reported in the literature (46% of children with ASD at 

age 8 have standard or higher cognitive abilities). The relationship between autism and 

intellectual disability has been widely discussed by Authors and in clinical practice, because 

in children with severe cognitive impairment often is not easy to assess behavioral and socio-

communicative disorder, because atypicalities may be related to a coexistence of an ASD, 

rather than to the intellectual disability per se; conversely, in children with autism is difficult 

to determine whether the low functional level is due to ASD or to an associated intellectual 

deficit (Lord et al., 1989).  

Cognitive profiles presented by children with ASD are very heterogeneous. Many subjects in 

fact have non-verbal intelligence levels ( nvIQ ), higher than verbal cognitive skills ( vIQ ). 

Often the relationship between non-verbal and verbal cognitive skills is dependent on the 

disorder severity.  

Deficits in executive functions are typical in ASD and skill levels often show deficit in tasks 

requiring fluid reasoning processes, interpretation, planning, integration or abstraction. 

Instead generally in non-verbal cognitive performance, children with ASD have best results in 

visual- perceptual tests, in which these subjects often demonstrate good skills. Other high-

functioning subjects, especially in children previously diagnosed with a diagnosis of Asperger 

Syndrome, conversely, show lower peaks in non-verbal skills, in particular in visual-

perceptual tasks, and better verbal skills. In general, individuals with ASD are characterized 

by atypical information processing skills ( social, linguistic, sensory ), and these anomalies 

raised the question of how best assess intellectual abilities of these subjects. This led some 

Authors to speculate that, because of its unusual nature and the lack of appropriate assessment 

test, the intelligence of subjects with ASD in some cases may be underestimated ( Soulières et 

al., 2011). 

Children with ASD can also show low cognitive flexibility, and deficits in planning, 

inhibitory control, attention shifting, monitoring, generativity and working memory 

A small minority of children with autism (approximately 6%, O'Connor et al., 1988) show 

extraordinary abilities, for example they can have strong musical sensibility, exceptional 

computational skills, memory for numbers or dates, or unexpected talents as in drawing, 

reciting or playing music. 

In addition to core symptoms, children with ASD often (70%) have comorbidity with other 

psychiatric disorders: more frequently anxiety disorders ( 42-56 % ), depression (12 -70 %) , 

obsessive-compulsive disorder ( 7-24 %) , psychosis (12-17 %) , attention deficit disorder and 

hyperactivity disorder ( 28-44 %) and oppositional defiant disorder ( 16-28 %) , substance use 

(<16 % ) and eating disorders (4-5 % ) ( Simonoff et al., 2008; Lai et al., 2014; Matson et al., 

2014 ). In particular, 43 % of children with autism has at least one anxiety disorder ( 

Sukhodolsky et al., 2008). The higher levels of anxiety are associated with higher levels of 

IQ, language, and with the presence of higher levels of stereotyped behaviors. In general, 

high-functioning subjects seem to be more susceptible (or symptoms are more detectable). In 

children with higher cognitive level, anxiety is associated with a greater impact on social 

relations ( the most common are the social anxiety disorder and generalized anxiety disorder ). 

Depression is more common in adults and less in children, particularly in high-functioning 
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individuals with less social impairment. The obsessive-compulsive disorder shares with 

autism the presence of ritualistic behaviors and poses problems of differential diagnosis, 

although the presence of anxiety-causing and intrusive thoughts or obsessions, typically 

present in obsessive-compulsive disorder, is not detected in autism. The opponents behaviors 

frequently found in children with ASD may be a manifestation of anxiety, resistance to 

change, difficulty to put themselves into other people's shoes and to acquire the point of view 

of other people, lack of awareness of their own behavior and difficulties, lack of empathy and 

lack of interest in social compliance. Aggressive behaviours (<68%) are often directed 

towards caregivers rather than non-caregivers and could be a result of empathy difficulties, 

anxiety, sensory overload, disruption of routines, and difficulties with communication; self-

injurious behaviours (<50%) instead are associated with impulsivity and hyperactivity, 

negative affect, and lower levels of ability and speech; they could signal frustration in 

individuals with reduced communication, as well as anxiety, sensory overload, or disruption 

of routines and could also become a repetitive habit. 

The presence of disruptive behaviors or avoidant behaviors and stereotyped activity seems to 

be associated with lower IQ scores (Tureck et al., 2014). In addition, children with autism can 

often show apparently unprovoked and extreme mood changes and major difficulties in 

emotional control. In particular, a recent study (Mazefsky et al., 2014) reports that subjects 

with ASD more often use emotional control strategies in involuntary forms, which are 

typically maladaptive (eg. rumination and emotional arousal, or emotional paralysis) and 

those subjects most frequently have higher levels of psychopathology. 

Epilepsy has an increased incidence in individuals with ASD than the general population and 

it is estimated that up to 1 /3 ( 8-30 %) of subjects with autism have seizures during life. Age 

of epilepsy's onset follows two peaks of incidence in the early years of life and in 

adolescence, and critical events can be of various types (complex partial seizures, absence or 

generalized tonic-clonic seizures). Comorbidity with epilepsy is more common in individuals 

with intellectual disability, especially among females (Jokiranta et al., 2014) or in individuals 

with genetic abnormalities, and often is associated with a poor outcome. The relationship 

between autism and epilepsy is examined in several studies, as it is considered by some 

Authors ( Yunta-Muñoz et al., 2008) as a key to the common etiopathogenic hypothesis (eg. 

neuronal damage could be a cause of developmental impairment, and a epileptogenic focus; 

seizures or epileptic phenomena can disrupt the central nervous system's development and 

impact on subsequent functioning). In support of this hypothesis, some data confirm the 

presence of autistic traits in adults with epilepsy, especially in those suffering from temporal 

lobe epilepsy (Wakeford et al., 2013). In addition to the increased risk of epilepsy, the 

detection of abnormal EEG activity is not uncommon in individuals with autism. 

Some individuals with ASD may be subject to disorders of physiological rhythms, such as 

sleep disorders (50-80 %, most often insomnia), food, bowel rhythm, altered sense of thirst, or 

autonomic dysfunction, such as excessive sweating, tachycardia, or irregular breathing. Other 

symptoms frequently found in individuals with ASD are gastrointestinal symptoms (9-70 %, 

such as chronic constipation, abdominal pain, diarrhea, gastroesophageal reflux, gastritis, 

esophagitis, celiac disease and inflammatory colitis), and immune dysregulation (< 38%, an 

altered immune function, which interacts with neurodevelopment, could be a crucial 
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biological pathway underpinning autism, that is frequently associated with allergic and 

autoimmune disorders). 

 

Autism is a lifelong disability but its expression can be variable over time.  

Severity and symptomatology of ASD vary greatly from individual to individual and in most 

cases tend to improve with age. Social interaction, in general, improves with age, while still 

maintaining atypical traits: high-functioning children tend to develop into adulthood an 

artificial and conventional form of social interaction (Wing et al., 1992), that can allow good 

results in the socio-occupational field, but creates major difficulties in the most intimate 

relationships. A small number of children with autism becomes even more detached with 

growth. Despite any improvements during development, several follow-up studies suggest 

that the diagnosis of ASD remains stable over years to adulthood ( Lord et al., 2006; Moore et 

al., 2003; McGovern et al., 2005; Kocovska et al., 2013). There is agreement that the 

disorder's pervasiveness in adulthood leads to a limitation in autonomy and social life, 

although over years is detected increasing variability of psychopathology (Billstedt et al., 

2007). In addition, many difficulties may arise during adolescence or early adulthood, and 

other psychiatric conditions can overlap. Co-occoring conditions, most commonly anxiety, 

depression, obesity, and drugs use, are common in adults with autistic disorder ( Eaves et al., 

2008). Although in recent years the autism prognosis has improved and some adults, 

particularly high-functioning subjects, acquire a state of independence, most of them are not 

self-sufficient, their communication is poor, and the presence of stereotypes behaviors or 

interests persists into adulthood (Howlin et al., 2004), so 58–78% of adults with autism have 

poor or very poor outcomes in terms of independent living, educational attainment, 

employment, and peer relationships. The mean proportion of adults with autism in 

employment (regular, supported, or sheltered) or full-time education is 46%. A recent meta-

analysis (Woolfenden et al., 2012) showed that subjects with ASD have a mortality risk that is 

2-8 times higher than that of unaffected general population, of the same age and sex. This 

difference is mostly related to co-occurring medical conditions.  

 

Clinical assessment 

Diagnostic evaluation should be multidisciplinary and should use a developmental framework 

composed by an interview with parents or caregivers to collect information about behaviour in 

community settings (ie., home, school, etc), direct assessment of the child and of his play, 

interaction and communication skills, cognitive assessments, and a medical examination 

(Ozonoff et al., 2005). Co-occurring conditions should be carefully screened. The interview 

with parents should cover all history's step of the child (gestational, birth, developmental, and 

health history ) and family medical and psychiatric history. Clinician should assess specific 

foci of the disorder: the development of social, emotional, language and communication, 

cognitive, motor skills, the sensory profile and unusual behaviours and interests. A 

standardised structured interview should be incorporated into the investigation process (eg, 

ADI-R). Adaptive skills also should be evaluated by standardised instruments (eg, Vineland 

adaptive behaviour scales). In direct observation is also useful the parent-child interaction 

assessment, because parents are relevant for the planning of interventions. The direct 

assessment of the child should be interactive and engaging to enable evaluation of social-
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communication skills, in both structured and unstructured contexts and in a peer environment. 

Informations should be acquired with standardised instruments (eg, ADOS-G, CARS).  

Cognitive assessments of intelligence and language are essential; standardised, age-

appropriate, and development-appropriate instruments should be used to measure both verbal 

and non-verbal ability. Neuropsychological assessments are also helpful for individualized 

diagnosis and service planning. 

A medical and instrumental examination is important in view of the high frequency of 

comorbidity. Physical and neurological evaluation (eg, head circumference, minor physical 

anomalies and skin lesions, and neuro-motor functions) and genetic analyses (eg, karyotype 

analysis, FMR1 testing, and chromosomal microarray analysis) should be done. Other 

laboratory tests can be done as necessary (eg, EEG, neuroimaging, thyroid hormones testing, 

celiac disease testing and neurometabolic profiling). 

 

 

Brain development and atypicalities  

 

Neurobiological investigations about autism aetiology have helped to create an impressive 

number of studies in literature. 

Studies have identified several atypicalities in brain of subjects with ASD and possible 

neuroanatomical, cellular, and molecular underpinnings aetiological basis of autism have been 

identified. Since MRI is the method of choice for in vivo and non-invasively investigating 

human brain morphology, this neuroimaging tool has been used for a lot of studies about 

development of brain in children and adolescents with ASD. 

An old paper by Brambilla et al. (2003) reviews all structural MRI studies that investigated 

brain anatomy in autistic patients from 1966 to 2003, in order to elucidate brain anatomy and 

development of autism. Another review of neuroimaging literature in autism, from 1985 to 

2008, by Verhoeven et al. (2009), confirms some of evidences in brain anatomy in autistic 

patients, particularly in size of the cerebellum, caudate nucleus, thalamus, amygdala and of 

the corpus callosum.  

Several structural abnormalities, involving total brain volume, the cerebellum and corpus 

callosum have been consistently replicated, suggesting the existence of morphometric 

abnormalities in several brain structures in autism, even though some findings have often 

been controversial.  However the available evidence suggests in subjects with ASD the 

existence of a disturbed neural network, involving cortical and subcortical areas, temporo-

parietal cortex, limbic system, cerebellar, and prefrontal regions. In according to Brambilla et 

al. (2003), hypothetically, abnormalities of these structures might be relevant underlying 

neuroanatomical basis of some of  impaired abilities in ASD, such as altered responses to 

emotional clues, information processing, social and higher cognitive functions. 

Increased total brain, parieto-temporal lobe, and cerebellar hemisphere volumes were the most 

replicated abnormalities in autism, instead others studies suggested that the size of amygdala, 

hippocampus, and corpus callosum may also be abnormal.  

A meta-analysis by Stanfield (2008) reported, although the considerable heterogeneity of 

results across the studies included, findings about enlarged total brain volume, hemispheres, 
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cerebellum, and caudate in ASD, and decreased volumes in other brain regions including 

midbrain regions, regions of the cerebellar vermis, and area of the corpus callosum (gray and 

white matter volumes were not reported separately in this meta-analysis). 

 

ASD display significant heterogeneity, both in clinical and neurobiological manifestations. 

Although most neuroimaging studies in ASD have been designed to identify commonalities 

among affected individuals, rather than differences, some studies have explored variation 

within ASD (Lenroot et al., 2013). Findings have implicated many regions with prominent 

roles in social cognition, such as the superior temporal sulcus, amygdala, and insula. About 

age-related differences, volumetric and functional atypicalities appear to be more pronounced 

in younger individuals, with a tendency toward larger volumes earlier in life. With maturation 

these differences decrease in magnitude, such that by adolescence summative measures such 

as total brain volume are not significantly different than controls. The few structural imaging 

studies explicitly designed for gender comparison have generally not found significant 

differences in the pattern of abnormalities, except for the likelihood of females to show more 

pronounced brain differences than males.  

Clinically defined categories in neuroanatomical studies have included subgroups such as 

Aspergers’s versus narrowly defined Autism, ASD with and without significant language 

impairment, and low-functioning versus high-functioning autism. None of these comparisons 

have provided a strong case for a neurobiologically robust and distinct subtype, which is not 

to say variation along these clinical dimensions is not of ongoing interest. The relationship of 

intellectual disability to the pathophysiology of ASD has continued to be a challenging issue, 

complicated by the fact that brain imaging studies of individuals with significant cognitive 

impairment are very difficult to carry out, and so samples including these subjects are often 

underpowered. This has created a situation where despite the predominance of intellectual 

deficits in ASD, most imaging studies, particularly those with the sample sizes necessary for 

multivariate analyses, are carried out in ASD individuals with normal or near-normal IQ. 

 

 

Increased brain volume 

Enlarged total brain area and volume have consistently been reported in individuals with 

autism, after adjusting for height, IQ, and intra-cranial volume (ICV). Also Kanner, in his 

original paper in 1943, described "large head" in some of the children diagnosed with autism. 

This observation in combination with increased fronto-occipital head circumference appears 

to be one of the most consistent neurobiologic findings in autism (see as example Bailey et 

al., 1993; Aylward et al., 2002).  Up to 15% of patients with ASD show macrocephaly 

(defined as head circumference greater than the 97th percentile).  

Brain overgrowth correlates with the measureable increase in rate of growth of head 

circumference during the first few years of life  (Hazlett et al., 2005). But, although 

macrocephaly is common in children and adults with autism, it isn't common at birth: it 

appears to develop after birth in 90% of cases, as an abnormal postnatal brain overgrowth, 

both in white and gray matter (Courchesne et al., 2001).  
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Courchesne indicated that by age 2–3 years over 90 % of autistic toddlers exhibited 

abnormally larger total brain, and they had more cerebral (18 %) and cerebellar (39 %) WM, 

and more cerebral cortical GM (12 %) than normal boys. 

In two reviews by Courchesne (2004) was shown that abnormal brain overgrowth occurs 

during the first 2 years of life in children with autism. Head circumference, an accurate 

indicator of brain size in children, was reported to jump from normal or below normal size in 

the first postnatal months in autistic infants, to the 84 th percentile by about 1 year of age; this 

abnormally accelerated growth was concluded by 2 years of age. Infants with extreme head 

growth fell into the severe end of the clinical spectrum and had more extreme 

neuroanatomical abnormalities.  

In a quite recent longitudinal study of brain growth in toddlers (beginning at 1.5 years up to 5 

years of age) with autism compared with neurotypical toddlers, Schumann (2010) reported 

that by 2.5 years of age, both cerebral GM and WM was significantly enlarged in toddlers 

with autism, with the most severe enlargement occurring in frontal, temporal and cingulate 

cortices. In the longitudinal analyses, all regions (cerebral gray, cerebral white, frontal gray, 

temporal gray, cingulate gray, and parietal gray) except occipital gray, developed at an 

abnormal growth rate in toddlers with ASD. Females with ASD displayed a more pronounced 

abnormal growth profile in more brain regions than males with the disorder.  

Before 2 years of age brains of subjects with ASD show an abnormal growth trajectory. In a 

recent paper by Shen et al. (2013), was reported significantly larger total cerebral volumes in 

infants who developed autism spectrum disorder before 24 months of age, when compared 

both  to children with typical development and to those with developmental delays. Age, 

gender and weight all seem to had significant effects on total cerebral volume: total cerebral 

volume increased with age from 6-9 months of age to 18-24 months of age, was higher in 

males than females and was higher for children who weighed more. ASD group shows a 

significantly faster growth trajectory of total cerebral volume than the other groups, and by 

12–15 months, had significantly larger total cerebral volume. Infants who developed ASD had 

7% larger total cerebral volume than low-risk typical infants by 12–15 months and 8% larger 

total cerebral volume at 18–24 months. There were no interactions with gender. Compared to 

children with typical developmental and those with developmental delays, infants who 

developed autism had also shown significantly greater extra-axial fluid at early ages (6–9 

months, 12–15 and 18–24 months). Extra-axial fluid is characterized by excessive 

cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount 

of extra-axial fluid detected as early as 6 months was predictive of more severe ASD 

symptoms at the time of outcome. 

Some Authors (Nordahl et al., 2011) examined the relationship between TBV and autism 

onset status in a sample of 2-4 years old children with ASD, with and without regression, 

compared with age-matched typically developing controls. An abnormal brain enlargement 

was most commonly found in males with regressive autism, instead brain size in boys without 

regression did not differ from controls. Retrospective head circumference measurements 

indicate that head circumference in boys with regressive form of autism is normal at birth but 

diverges from the other groups around 4–6 months of age. There were no differences in brain 

size in girls with autism. These results suggest that there may be distinct neural phenotypes 

associated with different onset forms of autism. 
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For boys with regressive autism, divergence in brain size occurs well before loss of skills is 

commonly reported, thus, a rapid head growth may be a risk factor for regressive autism. 

By 2-4 years of age, the most deviant overgrowth is in cerebral, cerebellar, and limbic 

structures that underlie higher-order cognitive, social, emotional, and language functions. 

Excessive growth is followed by abnormally slow or arrested growth. From middle childhood 

(about 6-8 years) onwards, in fact, brain growing speed seems to fall below normal, so that in 

later childhood and adolescence, head circumference in subject with ASD appears similar (or 

smaller) than tipically developed subjects. 

Subsequent longitudinal studies of hundreds of children and adults with ASD in fact 

documented volume enlargement during preschool years, most prominently in the anterior 

regions, followed by possible growth arrest or exaggerated losses later in childhood (see as 

examples Courchesne et al., 2011). Schumann et al. (2010), for example, reported that 

children with ASD show 10% greater white matter volume, 6% greater frontal gray matter 

volume, and 9% greater temporal gray matter volume at 2 years of age. 

However a recent systematic review by Raznahan et al. (2013) suggests that differences in 

head circumference in ASD may be much more subtle than previously thought because of 

exaggerated differences to biased normative data in the database of general population head 

circumference growth curves, to the selection of control groups, as well as to a failure to 

control for head circumference confounders such as weight and ethnicity. 

The abnormal development of brain growth in subjects with ASD thus might be characterized 

by increased rate of brain growth from early infancy (2-3 years old) through preschool period 

(particularly in frontal, temporal and parietal lobes, and cerebellum), followed by an 

abnormally slow cerebral and cerebellar volume increase during late childhood, puberty and 

adolescence.  

Early brain over growth tends to be reported more in boys who have developmental 

regression than in other subgroups and might be a result of generalized physical overgrowth. 

Several developmental processes may be contributing to brain abnormalities in autism, and 

hypothetically, brain enlargement in autistic children can occur as a result of several atypical 

developmental processes: increased neurogenesis and/or myelination, decreased neuronal 

apoptosis and/or increased growth of non-neural tissues (ie., glial cells or blood vessels).  

These developmental abnormalities could be the result of gene mutations, inappropriate levels 

of neurotrophines, and environmental factors which, together or independently, are affecting 

brain development and leading to pathological states. 

 

Neuroanatomical findings  

In the posterior fossa, enlarged total volumes in cerebellum (also in gray and white matters) 

have been shown by several well-designed controlled MRI studies in children and young 

adult individuals with autism; cerebellar vermis is one of the most structures involved in 

autism aetiology: particularly in lobules VI–VII areas, where  87% of the patients show 

hypoplasia and 13% hyperplasia. A meta-analysis by Stanfield et al. (2007) confirmed the 

reduction in size of the lobules VI-VII of the vermis in subject with ASD. Cortical 

dysgenesis, with thickened cortices, high neuronal density, irregular laminar patterns, poor 

gray matter boundaries and decreased number and size of Purkinje cells have been reported in 

several studies about cerebellum abnormalies in brain of autistic subjects.  
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In the literature about neuroanatomy in ASD there is significant heterogeneity with respect to 

cortical thickness and cortical morphology, and sometimes data seem to show contradictory 

results depending on the age, IQ, and clinical severity of the study population. In ASD some 

studies support a pattern of very early overgrowth in cortical surface area and volume (<2 

years of age), followed, throughout childhood and adolescence, by cortical dysmaturation, 

with evidence suggesting both exaggerated and impaired cortical thinning.  

In a group of infants with ASD was shown, at the age of 2 years, an increased cortical volume 

and surface area (but not thickness) compared to controls (Hazlett et al., 2011). The rate of 

cortical growth between ages 2 and 5 years, instead did not differ between groups. These data 

suggest the implication of the prenatal and early postnatal periods as central to disease 

pathogenesis. In older age groups, many Authors have observed evidence of exaggerated 

cortical thinning in ASD: children ages 8–13 years show increased cortical thickness, 

particularly in the temporal lobe, as compared to age-matched controls. In a longitudinal study 

imaging, 2-years later on the same groups, children with ASD were found to show an 

exaggerated cortical thinning compared to controls (non-significant after controlling for 

multiple comparisons and variation in IQ) and that the degree of thinning correlated with the 

severity of symptoms (Hardan et al., 2006 and 2009).  

Another study by Mak-Fan et al. (2012), confirms these data: it showed a similar pattern of 

increased brain volumes (cortical thickness, surface area, and gray matter volume) in children 

with ASD at 6–10 years, that then underwent exaggerated losses compared to controls, such 

that by 12–13 years of age, controls show greater volumes in all three measures. 

Brain cortical regions proposed to play a role in social-communication skills have been a 

focus of a lot of investigations in ASD and several anomalies were found in any cortical 

regions.  

For example thinning of several areas in the temporo-parietal region, particularly on the left 

side, has been shown in subjects with ASD at all ages (McAlonan et al., 2005; Scheel et al., 

2011; Greimel et al., 2013). This region is thought to be central to the integration of social 

information and empathy, as well as selective attention to salient stimuli.  

Boys with ASD show a significant asymmetry reversal in the inferior lateral frontal language 

cortex (wich in these subjects is 27% larger on the right side compared to controls, who have 

larger cortical language regions in the left hemisphere) (Herbert et al., 2002).  

The orbital frontal cortex (in the ventromedial prefrontal region) is thought to play a role in 

sensory processing, goal directed behavior, adaptive learning, and attachment formation. 

Despite increased overall cortical thickness in the frontal region, subjects with ASD have 

specific reduction in cortical thickness, volume, and surface area in the orbital frontal cortex, 

which correlated with symptoms severity. Other frontal lobe structures showing reduced 

cortical thickness in ASD include the inferior and middle frontal gyri and the prefrontal cortex 

(Jiao et al., 2010; Hadjikhani et al., 2006). 

The anterior cingulate cortex is a highly connected part of the social brain network, situated 

along the medial side of the frontal cortex, and has a role in self-perception, social processing, 

error monitoring, and reward based learning. Studies have shown both increases and 

decreases in volume and thickness of the anterior cingulate cortex in ASD (given that cortical 

regions may grow at different rates between individuals with ASD and controls, variation in 
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the age of groups may account for these inconsistencies) (Doyle-Thomas et al., 2013; Ecker et 

al., 2013).  

Post-mortem studies on adults and adolescents with ASD, have shown a reduction in neuron 

number in the amygdala, fusiform gyrus, and cerebellum, and signs of persistent 

neuroinflammation, but no data are available on early development. One exception is a study 

on young children that showed significant increases (rather than decreases) in neuron number 

in the prefrontal cortex (Courchesne et al., 2011). 

A recent study by Zielinski (2014), analyzed longitudinal changes of cortical thickness in 

autism compared to typical development. Authors assessed MRI of 97 subjects with ASD (3-

36 years old), and found differences in some cortical regions thickness (bilateral inferior 

frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral 

middle frontal regions, and left frontal pole) when compared to controls. Group differences in 

cortical thickness varied by developmental stage and were influenced by IQ. Differences in 

age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, 

cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral 

middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, 

superior parietal lobule, and paracentral, lateral orbitofrontal, and lateral occipital regions. 

Authors suggest that abnormal cortical development in ASD undergoes three distinct phases: 

accelerated expansion in early childhood, accelerated thinning in later childhood and 

adolescence, and decelerated thinning in early adulthood. Moreover, cortical thickness 

abnormalities in ASD are region-specific, vary with age, and may remain dynamic well into 

adulthood. This hypothesis could be endorsed by another recent study on cortical thickness of 

subjects with ADS ranging from 7 to 25 years of age (Ecker et al., 2014). Authors reported 

that, when controlling for the effects of age, individuals with ASD show reductions in cortical 

thickness relative to controls, particularly in fronto-temporal regions, and also showed 

significantly reduced surface area in the prefrontal cortex and the anterior temporal lobe (a 

significant group × age interactions for both measures was observed also). Cortical thickness 

has been also related to ASD symptoms in a recent study by Doyle-Thomas (2013), who 

assessed effects of age and symptomatology on cortical thickness in individuals with ASD, 

between the ages of 7 and 39 years, in comparison to typically developing controls. An 

increased thickness in the rostral anterior cingulate cortex was associated with poorer social 

scores at Autism Diagnostic Interview-Revised (ADI-R). Additionally, a significant 

interaction between age and social impairment was found in the orbitofrontal cortex, with 

more impaired younger children having decreased thickness in this region. These results 

suggest that differential neurodevelopmental trajectories are present in individuals with ASD 

and some differences are associated with diagnostic behaviours. 

About subcortical structures, the caudate nucleus has been shown to be enlarged in ASD, in a 

recent volumetric meta-analysis (Duerden et al., 2012), and interestingly, caudate volumes 

significantly correlated with ritualistic-repetitive behaviors (Sears et al., 1999), suggesting 

that it may be part of an abnormal neural network sustaining stereotyped behaviors. 

Instead, a volume loss in the putamen has been shown in adults with ASD, but enlargement of 

the putamen has also been observed in younger populations (Hua et al., 2013). 

Decreased hippocampal measures and enlarged amygdala volumes have been found in 

patients with autism (mostly highfunctioning), even after total brain adjustment, but not in all 



22 
 

studies. In fact, volume losses emerge in meta-analytic approaches (Nickl-Jockschat et al., 

2012), but volume increase was noted in younger patient groups (Bellani et al., 2013). From a 

functional perspective, amygdala anomalies may account for impaired emotional perception 

and regulation.  

Abnormally reduced areas of lenticular nucleus has been reported in subjects with autism, 

instead no abnormalities in size of thalamus, and globus pallidus were reported. Several 

studies in brains of subjects with ASD reported no findings for size abnormalities in some 

regions, such as brainstem, some basal ganglia, and ventricles, suggesting that these structures 

are anatomically preserved; however, the absence of volumetric abnormalities does not 

exclude the existence of functional impairments sustaining a possible role in the 

pathophysiology of the illness. 

 

White matter findings 

In subjects with ASD, some meta-analyses suggest no differences in overall white matter 

volume in adults, although early white matter volumetric overgrowth may occur in younger 

patient samples.  

Earlier volumetric analyses in fact suggested a pattern of accelerated white matter growth and 

increased white matter volume in younger children, particularly in the frontal regions, instead 

in adolescents with ASD similar or reduced white matter volume compared to controls was 

found (Courchesne et al., 2004). In the frontal and temporal lobes, in 2-4 years old children 

with autism, there have been reports of abnormal increases in gray and white matter, reduced 

metabolic measures and deviant diffusion tensor imaging results in white matter. 

A meta-analysis of studies on white matter volume in older children (>6 years), adolescent 

and adults groups reported that, while global white matter volumes were not different, 

evidence of increased volumes in regions relevant to language and social cognition were 

found (Radua et al., 2011).  

Looking at specific white matter regions, volume losses have been noted in the corpus 

callosum and cingulum.  

In a quite recent investigation about the neurodevelopment of GM and WM in autism, a 

combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging 

(DWI) was applied in 20 children (age range: 4-14 years) with autism and in matched controls 

(Mengotti et al., 2011). Compared to normal children, those with autism had significantly: (1) 

increased WM volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left 

precentral and supplementary motor area and the left hippocampus, (2) increased GM 

volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right 

superior occipital lobe and the left superior parietal lobule, and (3) decreased GM volumes in 

the right inferior frontal gyrus and the left supplementary motor area. Abnormally decreased 

apparent diffusion coefficients (ADC) of water molecules values in the bilateral frontal cortex 

and in the left side of the genu of the CC were also reported in autism. Finally, age correlated 

negatively with lobar and callosal ADC measurements in individuals with autism, but not in 

children with normal development. Authors concluded that these findings support cerebral 

dysconnectivity theory in autism, coupled with an altered WM maturation trajectory during 

childhood, potentially taking place in the frontal and parietal lobes, which may represent a 
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neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social 

deficits. 

Regarding diffusion tensor imaging studies, a recent systematic review (Aoki et al., 2013), 

about DTI data from 14 studies, from 1980 to 2012, including both children and adults with 

ASD, summarized some areas of consensus in the literature: decreased FA was most 

consistently demonstrated in the corpus callosum, left uncinate fasciculus, and left superior 

longitudinal fasciculus of individuals with ASD. Mean diffusivity was increased in the corpus 

callosum, and bilaterally in the superior longitudinal fasciculus. These data emphasize 

important roles of the superior longitudinal fasciculus, uncinate fasciculus, and corpus 

callosum in the pathophysiology of autism spectrum disorders. 

However few studies have been conducted in very young children, and in this age range less 

consistency emerges in the data available in literature.  

Contrary to data in older populations, some Authors reported that FA was greater for children 

with ASD ages < 6 years compared to controls in the areas of the corpus callosum, superior 

longitudinal fasciculus, and cingulum (Weinstein et al., 2011), and in this age range an 

accelerated white matter maturation (marked by increased FA and reduced displacement 

values) was found, most prominently in frontal regions, in a sample of children with ASD 

(Ben Bashat et al., 2007).  

 

Evidences from electrophysiology, functional neuroimaging, structural neuroimaging, 

molecular genetics and information processing have given rise to the idea that autism is 

characterized by atypical neural connectivity, rather than by anomalies in different brain 

regions. So, in recent years, there is an abundance of literature on functional connectivity in 

ASD. 

The synchronization is used in functional MRI (fMRI) studies as a measure of the degree of 

functional connectivity between brain regions and is defined by the correlation of activation 

levels in two activated areas over a time period. Anomalies in the synchronization between 

the frontal and parietal regions have been observed in autism in fMRI studies. This has led to 

the theory of antero-posterior underconnectivity or long-distance dysconnection of autism 

(Just et al., 2007). 

Ideas about the precise way in which connectivity is atypical vary in studies, from decreased 

fronto-posterior and enhanced parietal-occipital connectivity, reduced long-range and 

increased short-range connectivity,  to temporal binding deficits. 

Although yet consistency about connectivity is low, (findings depend on the definition of 

connectivity, the developmental stage of the individual, the spatial and temporal scales, task 

vs no-task conditions, how motion artifacts are handled, and specific neural systems of 

concern), data support the hypothesis that neural networks in autism are atypical in various 

ways. 

An emerging hypothesis based on data from fMRI, suggests that in ASD brains are 

characterized by an abnormal functional connectivity between cortical areas, with increased 

local connectivity but decreased global connectivity. 

Several studies in adults have reported that functional connectivity between brain areas 

engaged during cognitive tasks is weaker in ASD, leading to the “under-connectivity theory” 

of autism (Just et al., 2012). fMRI data reveal hyper-connectivity in subcortical networks and 
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hypo-connectivity in cortical networks in adult males with ASD. Regional inter-connection 

circuits are damaged in individuals with ASD (especially connections of coordination and 

integration between the anterior and posterior regions, that are more susceptible). In fact, in 

functional MRI of individuals with ASD, the activation of frontal areas and posterior areas is 

much less synchronous than in controls. 

Under-connectivity however has not been the only finding, because some fMRI studies show 

evidence of increased connectivity or altered developmental trajectories with respect to 

integrated neural networks. For example, a recent meta-analysis of fMRI studies (Dickstein  et 

al., 2013) found that children and adolescents with ASD (< 18 years) versus adults with ASD 

( >18 years) had significantly greater hyperactivation in the left post-central gyrus (and 

hypoactivation in the right hippocampus and right superior temporal gyrus) in response to a 

social task, suggesting that the neural alterations associated with ASD are not static, occurring 

only in early childhood. Instead, children with ASD have an altered neural activity compared 

to adults during both social and nonsocial tasks, especially in fronto-temporal structures. 

However despite the early developmental origins of this disorder and its variable 

developmental trajectory, almost all of the current literature on brain connectivity has focused 

on adolescents and adults with ASD, rather than children. Smaller studies in younger age 

groups suggest important age effects regarding the connectivity hypothesis as well, with 

younger children with ASD seemingly showing more “over-connectedness” than adults. 

While hypoconnectivity seems most prevalent in the literature for adults subjects, Uddin et al. 

(2013) observed long-range hyperconnectivity across remote regions in children ages 7–12 

years with autism compared to controls. Hyperconnectivity was noted to involve the default 

mode network, fronto-temporal, motor, visual, and salience networks. Hyperconnectivity of 

the salience network (which involves the anterior cingulate and insula) was most predictive of 

the diagnosis of ASD and was able to discriminate between cases and controls with 83% 

accuracy, a finding that was reproduced in a separate image dataset. 

In a recent study (Superkar et al., 2013), in which results are replicated in 3 independent 

cohorts (110 children, age 7-13 years), Authors show that brains of children with ASD it is 

widely hyperconnected. Using neuroimaging techniques ("task-free" fMRI), Authors in fact 

report an increased connectivity in brains of children with ASD compared to typically 

developing children. Hyperconnectivity was detected between both near and distant 

anatomical regions, thus the increased connectivity in children with ASD involves both short 

fibers circuits and long fibers circuits. Results of this study suggest that in children with 

autism, in contrast to findings from adults, there is evidence of a hyperconnectivity rather than 

a functional hypoconnectivity, suggesting the hypothesis about the existence of possible 

developmental trajectories altered in subjects with autism compared to typical 

neurodevelopment. 

The literature in very young patients with ASD is relatively sparse but seems to suggest 

altered developmental trajectories for affected children beginning at very young ages.  

A recent publication (Keehn et al., 2013) reported increased functional connectivity at 3 

months, which disappeared by 12 months in high risk infants. Alternatively, Redcay (2008) 

found increased connectivity between hemispheres in 2–3 year old children with ASD 

compared to chronological age matched controls (however the opposite pattern emerged when 

they were compared to mental age matched controls).  
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One of the earliest signs of autism is enlarged head circumference or macrocephaly and 

infants and young children with ASD show signs of early brain overgrowth; also postmortem 

studies of children with ASD show that they have an overabundance or excess numbers of 

neurons in the prefrontal cortex and animal models of autism have provided evidence for 

hyper-connectivity at very early time points in development (Testa-Silva et al., 2011). These 

findings of macrocephaly and hyper-connectivity have yet to be reconciled with human 

neuroimaging studies in early ages children with autism.  

Hypothetically neocortical dysgenesis, marked by atypical patterning of cortical minicolumns 

(reduction in size, increased neuronal density, and increase in cell dispersion) is potentially 

associated with atypical synaptogenesis and an imbalanced excitatory-to-inhibitory ratio, both 

of which are important for neural connectivity  (Lai et al., 2014).  

Interaction between the immune and the nervous systems is substantial throughout life and 

frequency of immunological anomalies is increased in individuals with autism and their 

families. Thus in autism, altered immune processes could affect several neurodevelopmental 

processes (eg, neurogenesis, proliferation, apoptosis, synaptogenesis, and synaptic pruning), 

with persistent active neuroinflammation, increased concentrations of pro-inflammatory 

cytokines in serum and cerebrospinal fluid, and altered cellular immune functions. 

Neuroimmune mechanisms could have key roles in some aspects of the pathophysiology of 

autism, but the exact biology awaits clarification (Lai et al., 2014). 

A brief review on structural connectivity, recently performed by Zikopoulos (2013), 

highlights at multiple levels (on macro and micro scales), the atypical brain connectivity in 

autism, that affects in distinct ways short- and long-range cortical pathways, disrupting neural 

communication and the balance of excitation and inhibition. Converging evidence from 

genetic, functional, and structural studies suggests that there are changes in excitatory and 

inhibitory neural communication in ASD and in the structure of the underlying cortical 

circuits or networks. At the microscopic and synaptic level, numerous genetic studies have 

highlighted a large variety of polymorphisms and epigenetic factors that primarily affect 

axons growth, synapse formation, and synaptic transmission of excitatory and inhibitory 

neurons. At the level of the network, most imaging studies have also focused on affected brain 

systems by identifying abnormalities in the GM and WM, primarily in frontal and temporal 

lobes, or in their major pathways. Studies performed at cellular level, have described changes 

in the cytoarchitecture, density and neurochemical features of excitatory and inhibitory 

neurons in frontal and temporal areas in autism. Imaging studies in children and adults with 

autism, show decreased functional connectivity between frontal and other brain areas, and 

gross changes in the structural integrity of  GM and WM, particularly in frontal lobes. Typical 

findings in the WM include lower fractional anisotropy (FA) and higher radial diffusivity in 

ASD groups than in controls, which may come about by a reduction of diffusion barriers 

between axons. These findings suggest decreased axon diameter and/or decreased myelination 

that reduce axon volume, and may result in changes in the density of axons. 

A wide range of data sources (MRI, EEG, etc) reported the presence, in ASD, of  relatively 

high levels of short-range (functional and structural) brain connectivity, concomitant with low 

levels of long-range connectivity, and this theory represent one of the best replicated and best-

supported findings in the study of autism (Crespi, 2013). The causes of relatively reduced 

long-range connectivity in autism remain the subject of intense study, but appear to include, 
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among other causes, larger overall brain size, especially in early childhood, alterations to 

cortical minicolumns, increased dendritic spine density, and genetically-based reductions in 

development of long-range connections. In typical development, from infancy to early 

adulthood, there is a functional and structural shift from short-range connectivity to long-

range connectivity, in association with early overproduction of neurons and synapses, 

differential pruning of relatively short-range connections, and increasing myelinization. 

Findings on connectivity in autism in comparison with that one in typical development, 

concord with a model of "heterochronic development" in ASD, representing, at least in part, 

the result of slower or incomplete connectivity-pattern maturation. Crespi proposed a 

developmental heterochronic model, with regard to changes in short-range structural and 

functional brain connectivity. In this specific model, autism involves a slower rate of pruning 

for short-range connections. Neurodevelopmental variation salient to this process may also 

involve cortical volume and early short-range connectivity, that are greater in autism than in 

typically developing individuals. 

 

Sex differences 

The male-to-female ratio is about 4:1 (Fombonne, 2003). The female-to-male ratio is skewed 

even more in individuals with the highest levels of intellectual capacity, to about 11:1 

(Gillberg et al., 2006). Among individuals diagnosed with an ASD without any physical or 

cerebral abnormalities as measured by MRI the ratio has been estimated to be as high as 23:1 

(Miles and Hillman, 2000). 

Mechanisms for the sex difference are ascribed either to a genetic (eg., overexpression of sex 

chromosomal genes due to mono- or polysomy, sex-specific Y-linked genes, sex-specific 

expression of X-linked genes, mosaicism and skewed X-inactivation, aberrant  X 

chromosome imprinting), environmental mechanisms (eg., related to maternal immune 

activation, or  parental age) or to a sex-related hormones etiology (eg., due to prenatal gonadal 

hormones). 

In typical development there is an early sexual dimorphism of brain volumes (Gilmore et al., 

2007), characterized by a neonatal enlargement of intracranial volume, cortical and 

subcortical GM, cortical WM in males as compared to females and by a prefrontal and 

occipital asymmetry (left hemisphere-greater than-right hemisphere) more pronounced for 

females than males. 

A recent meta-analysis quantified current literature regarding sex differences in typical human 

brain morphology (Ruigrok et al., 2014). In a wide age range, from newborns to individuals 

over 80 years old, differences in overall brain volumes were found between males and 

females. On average males have larger intracranial volume (12%), total brain volume (11%), 

cerebrum (10%), GM (9%), WM (13%), cerebrospinal fluid  (11.5%) and cerebellum (9%) 

absolute volumes than females. At a regional level, males on average have larger volumes and 

higher tissue densities in the left amygdala, hippocampus, insular cortex, putamen; higher 

densities in the right VI lobe of the cerebellum and in the left claustrum; and larger volumes 

in the bilateral anterior parahippocampal gyri, posterior cingulate gyri, precuneus, temporal 

poles, and cerebellum, areas in the left posterior and anterior cingulate gyri, and in right 

amygdala, hippocampus, and putamen. Females have on average higher density in the left 

frontal pole, and larger volumes in the right frontal pole, inferior and middle frontal gyri, pars 
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triangularis, planum temporale/parietal operculum, anterior cingulate gyrus, insular cortex, 

and Heschl’s gyrus; bilateral thalami and precuneus; the left parahippocampal gyrus and 

lateral occipital cortex (superior division). The results from the regional volume and density 

analysis mostly include areas that are part of the limbic and language systems.  

 

Biological sex may contribute significantly to the heterogeneity in autism and sex differences 

in the behavioral presentation of autism in boys and girls were reported. Growing evidence 

suggests in fact that females with autism differ from males at multiple levels. Some studies 

report no sex differences in cardinal autistic behavioral characteristics after controlling for IQ 

and cognition, but data are highly inconsistent  (Solomon et al., 2012; Lai et al., 2011; Lai et 

al., 2012; Mandy et al., 2012).  

While no sex differences were found in the broad social criteria presented in the DSM-IV-TR 

or DSM-5, numerous differences were evident in how boys and girls came to meet each 

criterion and in the absence of intellectual impairment ASD is diagnosed both less and later in 

females. Behaviorally, females may go undetected due to a ‘non-male-typical’ presentation or 

a greater ability to camouflage their difficulties (Baron-Cohen et al., 2011; Kopp and 

Gillberg, 2011).  For example, according to data recently published (Hiller et al., 2014), girls 

were more likely to show an ability to integrate non-verbal and verbal behaviors, maintain a 

reciprocal conversation, and be able to initiate, but not maintain friendships. Moreover, girls 

presented with both less and different restricted interests. Teachers also reported substantially 

fewer concerns for girls than boys, including for externalising behaviors and social skills. 

Results suggest that girls with ASD may present a clinical manifestation a little bit different 

from the classic presentation of ASD. 

 

Few studies analyzed developmental sex differences in brains of ASD subjects, especially in 

the infant population.  

Females with autism have been found to differ from males with autism at the levels of early 

brain overgrowth (Sparks et al., 2002; Bloss and Courchesne, 2007; Schumann et al., 2010; 

Nordahl et al., 2011). 

In the first longitudinal MRI study of brain volume growth during early ASD childhood, 

Schumann (2010) accounted for the presence of a gender effect on brain volumes. His 

analysis reveals that ASD females present an abnormal growth of whole brain and specific 

anterior regions when compared to typical females and that this finding is more prominent 

than in ASD males versus typical males. An abnormal brain enlargement was most commonly 

found in males, particularly with regressive autism, instead there were no differences in brain 

size in girls with autism (Nordahl et al., 2011). Shen et al. (2013), reported that age, gender 

and weight all seem to had significant effects on total cerebral volume: total cerebral volume 

was higher in males than females and was higher for children who weighed more.   

Recently, Lai (2013) reported neuroanatomical differences between males and females, in a 

high-functioning adults sample group. Regarding GM, males had larger volume than females 

in several brain regions, (distributed across the bilateral frontal and occipital poles, 

dorsomedial prefrontal cortices, sensori-motor cortices, superior temporal gyri, Heschl gyri, 

lingual and calcarine gyri, temporo-occipital and lateral temporal regions, precuneus, 

posterior cingulate cortices, superior cerebellar hemispheres and brainstem), instead females 
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had larger volume than males in other regions (involving left dorsolateral prefrontal cortex, 

supplementary motor area, primary somatosensory cortex, and bilateral orbitofrontal cortices, 

caudate, thalamus, fusiform, hippocampal and parahippocampal gyri, cerebellar vermis and 

hemispheres). For WM, males were larger than females bilaterally in the frontal, occipital and 

temporo-parieto-occipital junction regions, whereas females were larger than males in the 

cerebellum and brainstem, and bilaterally in posterior frontal lobe involving internal capsule 

and fibres from the body of CC. These findings suggest that aspects of the neuroanatomy of 

autism in high-functioning adults are sex-dependent and males and females may have 

different structural neurophenotypes. 
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Corpus Callosum  

Anatomy, Embryogenesis and Development 
 

Corpus callosum is the largest white matter structure in human brain and it is the main 

connection and information transfer structure. In fact it connects the left and right cerebral 

hemispheres and facilitates interhemispheric communication. It is the largest white matter 

structure in the brain, consisting of 200–300 million contralateral axonal projections.  

The CC is the largest commissural interemispheric formations, which include the anterior 

commissure, (that connects the main structures of limbic system), and the hippocampal 

commissure, (that connects the temporal lobes, particularly the hippocampus). The CC, even 

though its size may vary considerably, has approximately 300 million fibers connecting 

several cortical areas of both hemispheres (Barr et al , 1995; Paul L. et al, 2007 ; G. Lanza , 

1993; Osborn AG, 2007); according to other AA the number of fibers in the CC is around 190 

million (Tomasch J., 1954). The CC is ~10cm in length and is C-shaped, in a gentle upwardly 

convex arch. 

The CC is a massive structure located at the base of the interemispheric fissure, in sagittal 

orientation, curved at the front end and at rear end. The CC , in a median sagittal section, 

appears as a quadrilateral sheet of white color, composed by myelinated fibers oriented in 

almost horizontal direction, transversely stretched between the two hemispheres. Its fibers, 

penetrating within the hemispheres, are involved in the formation of the lateral ventricles roof, 

and then fibers radiate mostly in the semi-oval centers.  

The upper or dorsal callosal surface is convex in sagittal section, in the front section instead 

appears concave. Immediately above the body of the CC, lies the interhemispheric fissure in 

which runs the falx cerebri, the anterior cerebral vessels. The dorsal surface of the CC is 

covered by a relief called median raphe and is covered with a thin layer of gray matter known 

as indusium griseum, which incorporates two bundles of fibers (medial and lateral 

longitudinal striae of Lancisi) that constitute part of the dorsal hippocampus and the limbic 

system. On either sides, he dorsal surface of the CC is separated from the cingulate gyrus by a 

sulcus (callosal sulcus) in which passes the pericallosal artery, branch of the anterior cerebral 

artery.  

The CC ventral surface (or bottom) is concave in a sagittal view, and attached to its concave 

undersurface there is the septum pellucidum, anteriorly, and the fornix and its commissure, 

posteriorly. The ventral surface of the CC becomes part of the lateral ventricles of which form 

the roof. The splenium of the CC lies on the quadrigeminal plate of the midbrain and takes 

relationships with superiors tubercles and epiphysis. 

The corpus callosum (CC) has a rich blood supply, relatively constant and is uncommonly 

involved by infarcts. The majority of the CC is supplied by the pericallosal arteries (the small 

branches and accompanying veins forming the pericallosal moustache) and the posterior 
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pericallosal arteries, branches from the anterior and posterior cerebral respectively. In 80% of 

patients additional supply comes from the anterior communicating artery, via either 

subcallosal artery or median callosal artery. 

Fibers and subdivisions:  

The CC is the largest white matter fiber bundle in the brain with more than 300 million axons 

connecting the corresponding areas of the 2 hemispheres. Although many of these fibers 

connect homologous/mirror image areas of cortex, there is a significant proportion of 

asymmetry and a number of heterotopic fibers also asymmetrically link functionally different 

cortical areas. The CC fibers form the so-called radiation of the CC. These consist of all the 

fibers originating from various areas of the telencephalic cortex, that are directed medially to 

cross the midline and pass in the contralateral hemisphere. These fibers take on a 

characteristic curved course to the front and rear of the CC, giving rise to two arch formations 

called, respectively, of forceps minor or frontalis (anteriorly, given by the fibers that connect 

the frontal lobes) and forceps maior or occipitalis (posteriorly, given by the fibers that connect 

the occipital lobes). Some fibers form a thin white matter layer, the tapetum, above the 

temporal horns of the lateral ventricles, which connects the ventral surfaces of the temporal 

lobes. 

Proceeding in antero-posterior direction, thus in the CC could be identified the following 

portions (Raybaud C. et a., 2010; Barr et al., 1995): 

1. The rostrum, so named for its resemblance to a bird's beak, is localized in the anterior 

inferior part of the CC, continues in the terminal lamina (that delimits anteriorly the third 

ventricle), and its fibers connect the frontal cortex;  

2 . The genu, forming the frontal end of the CC, curves gently following the lower limit of the 

frontal lobe; it is the greater density of fibers portion of CC, and connects the prefrontal cortex 

and the area of the anterior cingulate; 

3 . The body, constitutes the main portion and is the compact part of the CC; changes in the 

size of the body may be related to the preferential use of one hand, and its fibers, larger and 

less dense, connect the pre-central motor cortex, insula and cingulate gyrus; 

4 . The isthmus, whose fibers connect the cortex of the pre-central and post-central  gyri ( 

motor and somatosensory areas) and the primary auditory area; 

5 . The splenium, lying on the quadrigeminal plate, marks the posterior end of the CC, 

appears in the sagittal section, generally larger in women than in men; its fibers connect the 

posterior parietal, occipital medial and temporal medial cortex. 

Due to the fact that there are no macroscopic anatomical landmarks that clearly delimit 

distinct callosal areas in a midsagittal cross-section, several geometric partitioning schemes 

have been designed to subdivide the CC and one of the most well-known is the Witelson 

subdivision (Witelson, 1989) that is the conventional partitioning schemes used to divide the 

CC into functionally significant regions. In fact, most studies rely on Witelson's classification, 

although the underlying data predominantly originates from non-human primates. In 
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particular, the CC is subdivided by Witelson into five regions, based on arithmetic fractions of 

major antero-posterior axis. Subdivisions include the anterior third, the anterior and posterior 

midbody, the posterior third, and the posterior one-fifth. Fibers of the anterior third (including 

the rostrum, genu, and rostral body) are assigned to prefrontal, premotor, and supplementary 

motor cortical areas. Fibers originating in the motor cortex are assumed to cross the CC 

through the anterior midbody, whereas somaesthetic and posterior parietal fiber bundles cross 

the CC through the posterior midbody, and fibers of the posterior third (including the isthmus 

and splenium) are assigned to temporal, parietal, and occipital cortical regions. It should be 

noted, however, that neither Witelson's classification nor other geometric partitioning 

schemes exactly mirror the texture of the CC at the cellular level. 

The fibers of the anterior body are transversely oriented. Fibers projecting from the genu and 

splenium tend to arch more anteriorly and posteriorly, forming the forceps minor and forceps 

major, respectively. Projections from the splenium, which pass inferiorly along the lateral 

margin of the posterior horn of the lateral ventricle to the temporal lobes, are easily 

identifiable in midsagittal plane by their right–left orientation. Near the cortex, callosal fibers 

interdigitate with the association and projection fibers and are difficult to delineate. 

Conventional MRI of the human CC does not reveal morphologically discernable structures to 

distinguish subregions, although microscopy techniques help to identify myelinated axons 

with a relatively small diameter in the anterior and posterior third of the CC as opposed to 

thick fibers in the midbody and posterior splenium. Recently, knowledge about the anatomo-

functional topography of the human CC has been revolutionized by the technique called 

tractography by diffusion tensor imaging (DTI), that allows to measure the location, 

orientation, and anisotropy of particular tracts within the white matter fibers.  

In 2006 Hofer and Fahm applied DTI technique in conjunction with a tract-tracing algorithm 

to gain cortical connectivity information of the CC in individual subjects. With DTI-based 

tractography, they distinguished five vertical segments of the CC, containing fibers projecting 

into prefrontal, premotor (and supplementary motor), primary motor, and primary sensory 

areas as well as into parietal, temporal, and occipital cortical areas. Thus they proposed a 

modification of the widely accepted Witelson scheme and a new classification of vertical CC 

partitions. Similar to Witelson, they defined a geometrical baseline connecting the anterior 

and posterior borders of the CC, then, in accordance with DTI fiber tractography, they 

distinguished five vertical partitions of the CC: 

- Region I, as the most anterior segment covers the first sixth of the CC and contains fibers 

projecting into the prefrontal region.  

- Region II, that is the rest of the anterior half of the CC, contains fibers projecting to 

premotor and supplementary motor cortical areas. Together, these callosal fibers occupy the 

largest subdivision of the CC, which extends far more posteriorly as compared to Witelson's 

scheme. 

- Region III was defined as the posterior half minus the posterior third and comprises fibers 

projecting into the primary motor cortex. This finding is in clear contrast to Witelson's 

scheme, which postulates that primary motor fibers cross the CC in the anterior half.  

- Region IV, the posterior one-third minus posterior one-fourth, refers to primary sensory 

fibers.  
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- Region V is cossed by callosal parietal, temporal, and occipital fibers, and is defined as the 

posterior one-fourth. 

In summary, the new segmentation proposed by Hofer-Frahm, differs from Witelson's scheme 

mainly at the anterior tip and the broad midbody area. It has already been used as a template 

for several anatomical and MRI studies, especially when studying callosal fibers connecting 

to primary motor and sensory cortical areas (ie., Blumenthal et al., 2013; Wade et al., 2012; 

Ozalay et al., 2013, etc). 

The highest density of fibers of large size (3-5 μm) is located in the posterior body, in the 

isthmus and splenius, and project to the motor and somatosensory areas; the highest density of 

small fibers instead is located in the genu and the rostrum, and connect to the prefrontal cortex 

and temporo-parietal associative cortex. The highly density thin fibers of genu and rostrum 

have a poor myelination and have a slower conduction speed, but their high density allows an 

highly refined topography mapping. In contrast, the large fibers of the posterior part of the 

body and splenius, have high conduction speed and are highly myelinated. These fibers make 

up a small percentage of all fibers of the CC (< 1%), and they have higher density in regions 

connecting auditory cortices, possibly because them role to facilitate the inter-aural 

comparison for auditory localization. 

The area of the CC is positively correlated with the density of small fibers but not with that of 

the large fibers (Aboitiz et al. 1992). Thus, measures of the CC reflect axonal density in the 

genu and the anterior splenium, portions where fibers are more densely packed and 

connecting associative cortical areas. However, the area of the CC is not a meaningful 

indicator of axonal density of the posterior body and the posterior splenium, where fibers are 

less dense, and connected respectively to the primary motor cortex and the occipital lobe 

cortex. Although some of the CC connections are inhibitory ( useful to hemispheres to inhibit 

each other, to facilitate the functioning of some independent functions ), the majority of axons 

passing through the CC are excitatory, and facilitate the inter-hemispheric transfer (IHT) and 

the integration of information between the hemispheres. 

 

Embryogenesis and development 

Embryogenesis of the CC is a quick process that begins on the midline, between the 12-13th 

and the 18th gestation weeks, but first differentiation as a commissural plate within the lamina 

terminalis starts at 39 embryonic days (Sarnat et al., 1991).  

According to a recent review by Paul (2011) there have been two main theories regarding the 

progression of callosal development in utero. For many years, the prevalent theory maintained 

that callosal axons first cross the midline toward the anterior end and callosal development 

proceeds posteriorly, with the rostrum added last. However, evidence from both earlier 

neuroanatomic literature and recent neuroimaging studies of human embryology indicates that 

callosal connections begin more centrally in the hippocampal primordium and the subsequent 

growth progresses bidirectionally both anterior and posterior, with more prominent anterior 

growth. 

Callosal development involves a previous exuberant axon growth, followed by a period of 

axonal pruning, that extends from late in gestation through the first 2 postnatal months 

(Innocenti and Price 2005).  
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In the human embryo, the earliest callosal axons appear at 74 days, the genu and the splenium 

begins to be recognizable at 84 days, and adult morphology is achieved by 115 days (Loser et 

al., 1968). 

The plate acts as a passive bed for axonal passage and provides a preformed glial pathway to 

guide decussating growth cones of commissural axons (Silver et al., 1982). Rudimentary CC 

fibers, during the proliferation stage, cross the midline to the other hemisphere by the 12th 

gestational week. They move along a connective tissue bridge, the lamina terminalis 

(Korkmaz - Njiokiktjien, 2013). This process is complete by 4 or 5 months, but without 

lamina terminalis the CC fibers do not cross the midline and the CC fails to form.   

Growth of anterior sections is clear in the 14th–15th gestational week and development of 

posterior sections is clear by the 18th–19th gestational week. By birth, cross-sectional area of 

the splenium and genu are uniform (Barkovich,1988) and the splenial fibers have developed 

greater directional organization than the genu. 

The anterior and posterior callosal sectors are among the most rapidly developing white 

matter structures in humans. Increases in callosal fiber direction and external axonal structures 

(for example myelin) are visible in neuroimaging by 4 months, with the most significant 

increase in external axonal structures appearing between 13 and 18 months of age (Morriss et 

al. 1999). 

During the 3 months after birth, the size decreases, as a large proportion of the huge 

population of callosal axons is eliminated.  

Throughout postnatal development, white matter maturation of the splenium generally 

precedes genu maturation. Thus splenium myelinates first and increases in thickness by 40% 

in the first year of age, with a further 110% increase in subsequent years. Around the 6th 

month of life, when the cerebellum and the internal capsule genu complete the myelination 

process, the CC is yet partially myelinated. Around the 8th month of life the CC genu 

myelinates; until the end of the first year of life, the CC does not acquire its classic signal 

intensity on MRI (hyperintensity on T1-weighted images and hypointensity on T2-weighted 

images). However the splenium begins to work at approximately 3.5 motnhs and parts of the 

body of the CC at about 5 months.  

While total brain weight increases by 35% after the second year of age, the medial callosal 

area increases by 115%; CC in fact continues to increase in relative size between 6-10 years 

and 11-15 years (Mukherjee et al., 2001). Until age of 4 years of age CC grows in the 

rostrocaudal direction, and between 3 and 6 years there is a growth of the frontal fibers. At a 

later age one sees growth in temporal-parietal connections (isthmus).  

By 11 years of age, both the anterior and posterior regions of CC, have reached 90% of their 

maximum fiber directionality, and by 20 years they have 90% of their maximum external 

axonal structures maturation. The final volume is achieved at around 6-9 years of life. 

 

CC formation involves multiple steps, including correct midline patterning, formation of 

hemispheres, birth and specification of commissural neurons and axon guidance across the 

midline, and their final connection in the contralateral hemisphere. Much of data about the 

stages of callosal development comes from animal models. Several mechanisms have been 

proposed to regulate callosal formation and development, such as guidance by pre-existing 

axons and support by midline glial structures.  
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The first axons to cross the midline arise from neurons in the cingulate cortex. In mice, these 

pioneer axons cross the rostral midline, providing a path for the fasciculation of later-arriving 

neocortical axons. In humans, pioneer axons express the guidance receptor neuropilin 1, 

which can guide the axons themselves or the later-arriving callosal neurons from the 

neocortex. 

Cingulate cortex neurons also project axons into the rostrolateral cortex, perhaps to initially 

guide neocortical axons towards the midline. In more caudal regions of the corpus callosum, 

the hippocampal commissure, which is formed earlier than the corpus callosum, may provide 

a growth substrate. 

Multiple glial structures includingthe glial wedge, midline zipper glia and indusium griseum 

are present at the developing midline and are probably required for corpus callosum 

formation.  

Guidance by the glial wedge occurs through both SLIT–ROBO and WNT–RYK signalling. 

The indusium griseum glia expresses SLIT2 and guide callosal axons across the midline; in 

knockout mice, when the receptors of growth factors, fibroblast / glial fibrillary acidic protein 

(FGFR1/GFAP) is eliminated from glial cells, the CC fails to form; also when  genes NFIA 

and NFIB are mutated the CC does not form. FGFR1 is also important for the migration and 

development of the midline glial structure and at different stages of formation and 

development of the CC. 

After crossing the midline, callosal axons grow into the contralateral hemisphere towards their 

designated target region, usually homotopic to their region of origin, and then innervate the 

appropriate cortical layer. Such processes probably involve both molecular recognition of the 

appropriate target region and activity-dependent mechanisms that regulate axon targeting to 

the correct layer and the subsequent refinement of the projection. It is not yet clear whether 

the defects in axonal pruning modify the CC size and contribute to some callosal anomalies 

(eg, hypoplasia). 

The adult form of the CC is already present between the 16th and 18th gestational week and is 

known to be highly genetically determinated, as studies have shown that its shape and size are 

very similar in twins. Differences in the size and form of the CC in adults have also been 

shown to be related to differences in hemispheric representation of cognitive abilities. 

The fetal CC serves as a sensitive indicator for normal brain development and maturation 

(Achiron et al., 2001). A comprehensive evaluation of CC development during normal human 

fetal gestation is essential to detect and understand the congenital abnormalities within the 

fetal brain. As the CC is part of the highest order, latest maturing mental network of the brain, 

its measurements are important to assess normal brain development and to locate structural 

changes that may disturb cognitive skill development. Although prenatal detection of CC 

abnormalities has been widely reported, its normal in utero growth and development are 

scarcely documented (Pilu et al., 1993; Chasen et al., 1997). 

Callosal cells are located in both supra- and infra-granular layers, depending on the species 

and area; most callosal neurons lie only in the column in which callosal axons from the other 

side terminate, thus a strong reciprocity seems to exist in each column. Many cells in the 

superficial layers send callosal projections to the homotopic site in the contralateral 

hemisphere, whereas most cells in the deep layers project mainly to heterotopic sites. 
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The CC is present from lower animals to highest primates and the phylogenetic increase in the 

size of the neocortex is followed by a corresponding increase in the size of the CC, thus the 

CC develops in proportion to the neocortex and reaches its highest development in the human 

brain. Some AA suggest that a loss of callosal connections might accompany the development 

of an enlarged brain in higher primates, as the macaque monkey.  

Function 
 

After 1970 we see an increase in interest in the CC.  CC function in humans was classically 

investigated in classic studies of ‘split-brain’ patients, whose callosum is severed surgically 

for the treatment of epilepsy, and secondly studies involved individuals with developmental 

absence (agenesis) of the CC. Subsequently CC research entered the field of psychiatry, 

mostly focused on schizophrenia.  

The main role of CC is to transfer information between hemispheric cortical regions, mostly 

homologous, allowing information filed in the cortex of one hemisphere is also available for 

the corresponding cortical area of the opposite hemisphere. Thus CC allows the hemispheric 

functional cooperation. It is the indispensable link for integrating the specialized functional 

activities of the right and left cortices. As example, a motor learning exercise with one hand, 

can be performed efficiently even with the other hand, because memory traces learned are 

transferred from one hemisphere to another thanks to the CC integrity. When CC is damaged, 

a new exercise learned with one hand can not be transferred, so it can not be executed by the 

contralateral hand.  

Depending on its location within the CC, focal callosal damage can cause unique 

combinations of functional impairments and spared functional capabilities. The impaired 

functions can thus be ascribed to the cortical regions disconnected by the callosal damage, and 

the spared capabilities can thus be ascribed to the cortical regions with callosal connections 

spared by the damage. 

CC injury determine mental disorders, with ideation incoordination, changes in the character 

and especially alteration in the execution of movements, due to the lack of information 

transfer from one hemisphere to the other (Krupa K. et al, 2013).  

The interhemispheric connections of the cortical areas of the human brain are distributed 

within the CC according to a topographic order which is being studied in detail by novel 

imaging techniques. Total section of the CC is followed by a variety of interhemispheric 

disconnection symptoms each of which can be attributed to the interruption of fibers in a 

specific callosal sector. Disconnection symptoms deriving from posterior sections 

(disconnecting parietal, temporal and occipital lobes across the midline) are more apparent 

than those following anterior callosal sections (disconnecting the frontal lobes). In spite of the 

massive bulk of the frontal callosal connections in human brain, consequences of their 

interruption are limited to disorders of motor control, with particular regard to bimanual 

coordination (Berlucchi, 2012). An example of disorders related to CC lesions is given by the 

so-called "alien hand syndrome": in case of a frontal CC damage (eg., caused by stroke, 

trauma or surgical callosotomy), and therefore loss of interemispheric connection, it results in 

an intermanual conflict, characterized by involuntary movements in the hand "anarchist" 
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contrasting the voluntary activity of the agent hand. Frontal callosal disconnection causes the 

inability to learn movement patterns that require simultaneous, mutually adjusted movements 

of both upper limbs, such that in the movement of each limb, the action of the contralateral 

limb has to be continuously taken into account. 

Another example of CC role in interemispheric information transfer is the spread of electrical 

activity and the effectiveness of surgical callosotomy in drug-resistant epilepsy: patients 

undergoing a callosotomy suffer a "disconnection syndrome" (or split-brain syndrome), 

characterized by sensory and neuropsychological deficits. After callosotomy patients will no 

longer be able to verbally describe an object, with eyes closed, held in the left hand, or if the 

object is kept in the left visual hemicampo (sensory information reaching the right hemisphere 

are not transferred to the left hemisphere where the function resides linguistics). This 

difficulty does not occur if sensory information come from the right side (and then reach the 

left hemisphere).  

Section of the CC anterior portion causes memory impairment, disturbance in executive and 

cognitive functioning, behavioral disturbances and increase in response time to a stimulus 

(Peltier J. et al, 2012).  

Although splenium correlates with language skills in typical subjects, in developmentally 

impaired populations both over- and under-development of this callosal subregion results in 

impairments of visuospatial skills, attention, and motor coordination (Paul et al., 2011). In 

addition to deficits in those skills, individuals with reduced posterior callosal connections also 

have subtle diminished processing speed during complex tasks, and social-skill impairments. 

This suggests that in addition to the general cognitive effects, callosal reduction has also a 

behavioral impact on social skills and other forms of rapid problem solving. 

There is empirical evidence that not only callosal disconnection but also subtle degradation of 

the CC can influence the transfer of information and integration between the hemispheres. 

The reviewed studies on patients with callosal degradation with and without disconnection, 

indicate a dissociation of callosal functions: while anterior callosal regions were associated 

with interhemispheric inhibition in situations of semantic (eg., Stroop interference test) and 

visuospatial (hierarchical letters stimuli test) competition, posterior callosal areas were 

associated with interhemispheric facilitation from redundant information at visuomotor and 

cognitive levels. 

Together, the reviewed research on selective cognitive functions provides evidence that the 

CC contributes to the integration of perception and action within a subcortico-cortical 

network promoting a unified experience of the way we perceive the visual world and prepare 

our actions (Schulte et al., 2010). 

 

CC can be affected by various morbid events, congenital or acquired. Both genetic and 

environmentally caused birth defects often involve callosal malformations, with particular 

vulnerability in the posterior callosum. 

Among  congenital disorders have particular relevance the agenesis and the hypoplasia of the 

CC, characterized by absent or incomplete development of the callosal structure. Unlike 

patients who have undergone a callosotomy, individuals with agenesis of the CC show few 

symptoms of disconnection syndrome due to neuronal plasticity, that allows the construction 

of alternative pathways for information transfer. Rarely agenesis of the CC is an isolated 
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anomaly, instead often it is associated with agenesis or hypoplasia of other commissures, and 

in 80% of cases with other diseases of the CNS (eg., interhemispheric cysts, cortical 

malformations, meningeal dysplasia, holoprosencephaly, Chiari II malformation, Dandy-

Walker syndrome, microcephaly, etc.). CC isolated congenital abnormalities are generally 

asymptomatic and highlighted only by neuropsychological tests. Other morbid events that can 

affect the CC are phacomatosis (eg., neurofibromatosis NF1, where you can find the so-called 

UBO, unidentified bright objects), or neurometabolic demyelinating diseases (eg., 

Alexander's disease, X-linked adrenoleukodystrophy, Menkes disease, Pelizaeus-Merzbacher 

disease, etc.), mitochondrial diseases (eg., MERRF syndrome), acquired demyelinating 

diseases (eg., multiple sclerosis, Marchiafava-Bignami disease), infectious-inflammatory 

diseases (eg., subacute sclerosing panencephalitis, streptococcal meningitis, Lyme disease), 

vascular lesions (eg., ischemia, vascular malformations), tumors (eg., glioblastoma, 

lymphoma, metastasis), and iatrogenic or traumatic events.  

Several studies have examined and compared symptoms of the agenesis of the CC with ASD 

(Paul et al., 2007; Lau et al., 2012; Booth et al., 2011).  

Agenesis and hypoplasia of the CC (AgCC) are congenital conditions (Paul et al., 2007), with 

genetic etiology, often found in many genetic syndromes, with known or unknown causative 

gene, or with environmental etiology (eg., alcohol exposure, hypothyroidism, prematurity, 

environmental deprivation). The phenotypic consequences of callosal agenesis are highly 

variable and include cognitive, neuropsychological, neurological and behavioral problems. 

Isolated AgCC does not appear to have a direct or dramatic impact on general cognitive 

ability. IQ scores frequently remain within the average range, even though full-scale IQ may 

be lower than expected based on family history and there is an unusual tendency for 

significant discrepancy between performance IQ and verbal IQ (in either direction). Among 

individuals with AgCC and normal range IQ, linguistic impairments and social impairments 

are common. Deficits in communication and social interaction in patients with AgCC 

frequently overlap with the diagnostic criteria for ASD. Subjects with agenesis of the CC 

show a wide variety of social symptoms, attentional and behavioral characteristics, that 

resemble those of some psychiatric disorders.  

Psychiatric diagnoses are based on complexes symptom cluster, which probably involve 

multiple neurobiological mechanisms.  Also data on atypical structural brain connectivity are 

present in almost all psychiatric disorders. For example, many studies reported alterations of 

the CC morphology in schizophrenia (both in the shape and in the size of the CC) and 

microstructural abnormalities in some callosal regions, detected by MRI diffusion. Some 

studies reported also the presence of complete agenesis of the CC in patients with 

schizophrenia. 

In a study, 8,5% of subjects with AgCC received a diagnosis of autism (Doherty et al., 2006). 

Another recent study shows that 45% of 4-11 year old children with agenesis of the CC 

reaches clinical cutoff  in screening tools for autism (Lau, 2012). Some Authors (Booth et al., 

2011), comparing the "fractionable autism triad" with callosal agenesis symptoms, reported 

that in 10% of cases callosal agenesis symptomatology was "autism-like" and characterized 

by social immaturity, difficulty in establishing friendships, ingenuity, hyperfamiliarity, 
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difficulty in sustaining a conversation, atypia in the use and understanding of non-verbal 

communication, slight degradation of performance in cognitive tasks, emotional distress, 

alexithymia, poor humor.  Symptoms attributed to the "third area" of autism instead were 

absent (ie., stereotypies, attention to detail, sameness, etc.). Communication deficits are also 

evident in comprehension of syntax and linguistic pragmatics (including idioms, proverbs and 

vocal prosody) and in phonological processing and rhyming. 

Differences in the midsagittal area of the CC have been associated with a number of cognitive 

and behavioral phenotypes, including obsessive-compulsive disorders, psychopathy (often 

characterized by a larger callosal area; Park et al., 2011; Raine et al., 2003) and suicidal 

tendencies, bipolar disorder, schizophrenia, autism, and attention deficit hyperactivity 

disorder (often characterized by smaller callosal area; Cyprien et al., 2011, Arnone et al., 

2008, Frazier and Hardan, 2009; Cao et al., 2010).  

A general observation is that callosum is positively correlated with attention, regardless of 

how other comorbid conditions may impact callosal structure. Microstructural abnormalities 

of the CC were detected in patients with Tourette's syndrome and patients with attention 

deficit hyperactivity disorder (ADHD). Some studies have reported splenium reduction in 

children and adolescents with ADHD. In several clinical populations callosal size was 

compared in those subjects with and without comorbid ADHD (e.g., dyslexia, NF-1, and 22q 

deletion syndrome). Across conditions, the findings indicate that subjects with comorbid 

ADHD are likely to have diminished callosal size. 

According to recent studies, several neuropsychiatric disorders would result from an 

abnormality in the connectivity development, which could be increased or decreased. Further 

studies are needed to define the pathophysiological mechanisms, to shed light on the cognitive 

and behavioral consequences of abnormal connectivity during development, and also to 

highlight the potential compensation due to the treatment. In most cases, individuals with 

autism, schizophrenia or ADHD do not have gross abnormalities of the CC. However, these 

disorders, as well as AgCC, could provide a model for studying brain connectivity and 

identify conditions that contribute to the cognitive and behavioral symptoms of these 

psychiatric illnesses. Since these complex disorders, particularly autism, are likely to have not 

a single etiologic explanation, identification of genetic and neuroanatomical models 

underlying aspects of these disorders, might be useful to explain the origin and inter-

individual diversity of symptoms. 

Overall, functions of CC are thought to be involved in motor and sensory integration as well 

as in higher cognitive functions and behavioral skills, including information processing, 

abstract reasoning, problem solving, ability to generalize, processing speed, working memory, 

planning, social skills, attention, arousal, language comprehension and expression of syntax 

and pragmatics, emotion and memory (Paul et al., 2007). 

Although there is evidence to suggest that CC size is heritable in normal human populations 

(Scamvougeras et al., 2003), there is surprisingly little evidence concerning the genetic 

modulation of this key neuroanatomical and functionally critical part of the brain. 
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Sex differences  
 

The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ 

between males and females.  

Several studies reported the presence of a sexual dimorphism in the human CC (Luders et al., 

2014). However it is not yet clear whether CC morphological differences described in 

literature are related to differences in brain size, typically greater in males than in females, or 

are themselves linked to sex dimorphism. 

Although various observations suggest that sexual dimorphism in callosal morphology exists, 

findings have been non consistently replicated. For example, discrepancies concern the 

affected callosal region and some studies reported sex differences for the splenium, for the 

isthmus, for the genu or for the entire CC. Disagreement also exists with respect to the 

direction of the sexual differences, with some studies reporting larger CC in men and other 

studies reporting larger callosal regions in women. Several studies also failed to detect any 

significant sexual difference. Study-specific criteria for callosal measurements may account 

for these discrepancies in results (Luders et al., 2010).   

Some literature data (meta-analysis of Bishop and Wahlsten, 1997) report that callosal size, 

unadjusted to total brain volume, are greater in males than in females, but these differences 

disappear when it is taken into account also the total brain size. Subsequent studies however 

(Sullivan et al, 2001) show that, when CC sizes were corrected for total intracranial volume, 

males have a larger midsagittal callosal area than females, suggesting that sexual dimorphism 

of the CC is not simply an artifact due to the different size of the brain. Conversely, Tepest 

(2010) reported that the difference of the ratio of CC to TBV can be convincingly explained 

as a function of brain size per se, but not of gender, thus rejecting the sexual dimorphism 

hypothesis of the CC. In this study males had a significantly larger TBV than females and 

there were no gender differences in CC raw data, but the CC/TBV ratio was significantly 

larger in females than in males. Thus, these results are in accordance with the hypothesis that 

brain size, per se, is the relevant factor and contradict the sexual dimorphism hypothesis of the 

human CC. 

In a recent study (Luders et al., 2014), Authors examine the CC morphology in adult male and 

female brains well matched for total intracranial volume (TIV). This study shows that the CC 

is larger in males than in females. However, this sex difference is strongly related to variation 

in brain size: the larger the discrepancy between the male and female brain volume, the 

greater the difference in the thickness of the CC. For example, when males with greater TIV 

(M extreme XL) are compared to females with lower TIV (F extreme XS), CC thickness is 

greater in males than females in all its extension, except in small portions of the genu and 

isthmus-splenium, where no significant differences were identified. These data suggest that 

individual differences in brain size are associated with CC anatomical differences in both 

sexes, and in particular increased brain size in males is associated with larger CC. 

In an old study (Allen et al.,1991) Authors observed a dramatic sex difference in the shape of 

the CC, instead there was no conclusive evidence of sexual dimorphism in the area of the CC 

or its subdivisions. Subjective and mathematical evaluation indicated that the posterior region 

of the CC, the splenium, was more bulbous shaped in females, and more tubular-shaped in 
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males. However, sex differences in bulbosity did not reach significance in children (aged 2-18 

years).  

Sexual differences in hemispheric asymmetry and interemispheric connectivity may be 

underpinned not only by CC macro-structural differences but also by differences in the 

microscopic structure.  

In an old DTI study (Shin et al., 2005) was found an increased T1 signal intensity and 

decreased FA in the females CC, when compared to males one. 

A fairly recent study (Westerhausen et al., 2011), based on analysis of DTI parameters, 

showed in males increased FA and lower MD than females, in the CC frontal regions, 

indicating sexual differences in the micro-architecture of the callosal interemispheric 

connections, particularly in the frontal lobes. In a more recent study (Takao et al., 2013), 

Authors conduct a microstructural analysis of all cerebral WM of adult males and females, 

placing it in relation to the brain size. Analysis without adjustment for TIV, showed several 

regions with a significant effect of sex on FA; these included the splenium of the CC (also 

bilateral superior corona radiata, and posterior limbs of the internal capsule, midbrain, and 

cerebellum). Significantly higher FA was seen in males compared with females in these 

regions. Analysis with adjustment for TIV, however, showed a greatly reduced number of 

such regions (remaining mostly differences in cerebellum). These data therefore emphasize 

the importance of considering gender differences and total brain volume in clinical trials 

studies on the CC.  
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Corpus callosum and ASD: Review of the literature 
 

The increasing number of neuroimaging studies on autism has resulted in many new 

suggestions about the underlying brain abnormalities. However, diagnosis is still made from 

the observation of behaviour.  

Since the early 90s CC has been one of the main focuses of imaging studies on autism. One of 

the firsts paper about CC in ASD was that of Egaas in 1995. It reported an overall size 

reduction of callosal midline area, concentrated in posterior subregions, in 51 subjects with 

ASD (age range 3-42 years). Thereafter many studies has been performed about CC size and, 

to date, we can find 191 papers about CC and autism on the main engine of scientific 

research. 

Head circumference, postmortem brain weight, and brain volume from MRI studies are 

consistent in suggesting the brain overgrowth (in both gray and white matter) in early 

developmental stages of children with ASD. The period of most pronounced head/brain 

enlargement in ASD appears to occur in the 1–4-year age range, and by adulthood, brain size 

does not seem larger than norms. This has led Authors to suggest that the brain of subject with  

ASD prematurely undergoes to an arrested growth (Courchesne et al., 2007), and, later in 

development, it is characterized by a reduction in its tissue, reflected in thinner cortex 

(Wallace et al., 2010). 

Some Authors suggested that brains of subjects with ASD are characterized by an aberrant 

connectivity (Frith, 2004). Connectivity is assessed in terms of the extent to which variations 

over time in one brain region are correlated with activity in another brain region. High 

correlations indicate that the two brain regions are interacting and are thus connected in terms 

of their function. Subjects with ASD had substantially reduced connectivity between brain 

regions (eg., language regions) compared with healthy volunteers (Just et al., 2004). 

The reduced connectivity and the aberrant growth trajectory in brains of subjects with ASD, 

led Authors to speculate that an aberrant synaptogenesis could be the pathogenic mechanism 

of these atypicalities in autism: a lack of pruning during the early childhood brain 

development (when brain volume continues to increase), could result in the abundance of 

unnecessary connections, and increased brain size; subsequently, an overpruning process 

could result in cortical thinning. These processes would likely impact the connectivity 

between brain regions during phases of brain overgrowth and later periods. Thus, these 

abnormalities in brain growth have been suggested to contribute to the atypical neural 

connectivity in ASD.  

Subsequently neural theories of ASD, like those of many disorders, moved from a lesion-

based model, to a focus on disordered structural and/or functional connectivity and the most 

basic index of anatomical brain connectivity is the integrity of the corpus callosum. 

A further boost to the study of the CC in autism has been given by detection of  autistic 

symptoms in individuals with agenesis of the CC (AgCC) (Booth et al., 2011). In the light of 

the reduced connectivity theory in ASD, individuals with AgCC provide an interesting 

comparison condition. But while in many idiopathic cases of ASD, also with severe behavior 

and development impairment, little if any discernable abnormality are found in brain, in 
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AgCC individuals can be found with almost no behavioral difficulty, despite the absence of 

the major connective tract between the two hemispheres. Authors concluded that findings 

supported functional connectivity models of autism, but while impaired interhemispheric 

transfer, perhaps due to reduced callosal integrity, may be an important factor in ASD, it is 

not a sufficient cause in isolation. Thus, abnormal interhemispheric connectivity could be 

only part of the pathogenic basis of autism but additional neural atypicalities are maybe 

necessary. 

Another comprehensive comparison between ASD and AgCC was recently made by Paul 

(2014), who compared 26 adults with AgCC to 28 matched adults with a diagnosis of ASD 

without any neurological abnormality. No one had intellectual disability. About a third of 

agenesis subjects presented autism symptoms detected with ADOS (Autism Diagnostic 

Observation Schedule). No relationship between intelligence quotient and autism 

symptomatology in callosal agenesis was found. These findings support the hypothesis that 

congenital disruption of the corpus callosum constitutes a major risk factor for developing 

autism. 

 

Callosal abnormalities found  in ASD 

In a meta-analysis of 10 studies, from 1970 to 2008, that included in total 503 participants 

(average age 14.5 years, 86% males subjects), Frazier and Hardan (2009) found a general 

reduction in the area of the CC in ASD compared to controls. This reduction shows more 

pronounced effects for anterior than posterior regions. Those studies using Witelson 

subdivisions, reported that rostral body subdivision showed the largest effect, suggesting 

greatest reduction in the region of the CC containing premotor/supplementary motor neurons, 

that is crucial for motor planning and disruption of these regions may be the neural substrate 

for impairments in fine motor skills and imitation observed in autism. Additionally, these CC 

regions, while important for motor planning, have also been identified as supporting a subset 

of mirror neuron functions.  

The greatest reduction of CC area was observed in anterior regions providing a 

neuroanatomical link to the prominent executive dysfunction in autism. 

In this meta-analysis CC size reductions were moderated by two major factors, i.e. magnet 

strength and participant age. Larger CC reductions were found in advanced age and this data 

are consistent  with previous white matter findings (Courchesne et al., 2001). Authors 

suggested that increasing reductions in CC size over time might be a consequence of early 

abnormal cortical development, a result of ongoing neurobiological disruptions, or due to 

other unknown processes. Early neural proliferation with abnormal cortical cytoarchitecture 

and densely-packed minicolumnar organization may lead to poor coordination with distal 

brain regions. Consequently, developmental alterations of these neural networks may result in 

reductions over time of long fiber neurons responsible for intra-hemispheric or inter-

hemispheric regional communication.  

This meta-analysis is mainly made with studies performed on adults and the only paper 

carried out with preschoolers was that by Boger-Mediddo (2006). In this paper, CC areas of 

45 preschoolers with ASD (7 girls and 38 boys, age range 38-54 months) were compared to 

CC areas of 26 children with typical development (TD) and 14 children with developmental 

delay (DD). In this study, CC mid-sagittal area, although  not smaller in an absolute measure 
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in ASD compared to TD, it does not show an increase proportional to brain volume 

enlargement: therefore 3-4 years old children with ASD, compared to TD, have a smaller CC 

when adjusted (co-varied or ratio) for cerebral volume (that is increased), even when 

considering gender differences. Size differences appear to be widely distributed in the CC, 

with no single subregion accounting for the overall size reduction in ASD. Comparison in 

ASD clinical group showed that structural abnormalities tend to be more accentuated in 

children with classic autism expression when compared to those with fewer symptoms.  Since 

previous studies, performed on older samples, have generally found in absolute measures, CC 

to be smaller in ASD, Authors suggested that age-related changes could results in a relative 

decrease of CC size during childhood, becoming an absolute reduction in callosal size over 

time. Considering the larger TBV in ASD children, findings of a disproportionately smaller 

CC led Authors to speculate that increase in brain volume may be due to increase in non-

neural tissues (such as astrocytes and intercellular tissue). Alternatively, Authors suggested an 

alteration in inter-hemispheric connectivity in the autistic brain. 

More recent investigations have employed a 3-dimensional volumetric measures than areas 

measures. 

A brief recent review by Bellani et al. (2013) examined MRI studies on CC in ASD subjects, 

since 2004, and analyzed clinical and demographic factors of samples. Findings of several 

studies in literature are not so consistent:  recent studies report a reduction of the entire 

volume of the CC (Hardan et al. 2009; McAlonan et al. 2009; Duan et al. 2010; Anderson et 

al. 2011), other studies report a reduction of one or more parts of the CC, mainly in the 

anterior region (Alexander et al. 2007; Keary et al. 2009; Thomas et al. 2011), others mainly 

in the posterior region (Waiter et al. 2005) or simultaneously in the anterior and posterior 

regions (Vidal et al. 2006).  

Volumetric reduction of CC size has been found both in adults and children, but studies 

performed on children, assessed mainly school-age subjects and adolescents, and only few 

studies are carried out on preschoolers (Duan et al., 2010; Riva et al., 2011; Calderoni et al., 

2012).  

Among these, Duan (2010) performed a study on 30 ASD subjects compared to 28 controls; 

the age range of participants was 3-30 years. In this wide age range sample Authors found a 

significant reduction in each sub-region of the CC in the patients. Besides the traditional 

volume test, they also conducted tests based on the length, width, and shape of the CC. 

Authors reported a significant reduction in the CC length in the patients, but the difference in 

the width is far from significant, suggesting that the decrease in the CC volume is caused by 

the decrease in the anterior–posterior length more than the top–bottom length.  

In a voxel-based morphometry (VBM) study, Calderoni (2012) found in 38 females, 

preschool-age ASD no size differences in CC volume when compared to 38 age and IQ-

matched female controls.  

In 2011, Riva analyzed VBM data, covaried with IQ, age, and brain volume, of 21 

developmentally delayed children with ASD (aged 3–10 years) and compared them with those 

of 21 controls matched for age, sex, and sociocultural background. Aside from a pattern of 

regional gray matter (GM)  reduction affecting some brain regions (basal forebrain, 

accumbens nucleus, cerebellar hemispheres, and perisylvian regions, including insula and 

putamen), they found no regional white matter (WM) differences between the 2 groups and no 
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significant differences between patients and controls were found regarding total brain volume, 

total GM, and total WM. Particularly, no differences in CC volume were found.  

More recently, Prigge (2013) examined CC mid-sagittal area from a developmental 

perspective, across a 30-year age range, in 68 individuals with ASD compared to a typically 

developing sample (47 subjcets). All subjects were males, age-range was 3-36 years in the 

ASD group and no individuals with intellectual deficits were included in the study. Increased 

variability in total CC area was found in the ASD group and after adjusting for TBV, the total 

CC and isthmus areas were found smaller in ASD subjects, but none of these results survive 

our correction for multiple comparisons (p<0.007). Neither  performance-IQ nor  verbal-IQ 

were significant predictors of CC area. In autism, increased midsagittal areas were associated 

with reduced severity of autism behaviors, higher intelligence, and faster speed of processing, 

suggesting that individuals with autism benefit functionally from increased CC area. In the 

total CC area, similar age-related changes were found in autism and controls, but a trend 

toward group differences in isthmus development was found, and Authors supported the 

hypothesis about potential maturational abnormalities in autism. Particularly, in ASD, a 

slower isthmus growth was found.  

The first longitudinal study of the CC in autism was that by  Frazier and Hardan group (2012). 

The study investigates the volumetric changes of the CC in 2 years, their correlations to 

behavioral phenotype, reported in the follow-up of 23 subjects with ASD and 23 controls, 7-

13 years old. The volume of the CC increases with age in a similar measure between ASD and 

controls (3.1% vs 1.5%), especially at the genu, the anterior and posterior body and the 

splenium. This finding contrasts with the meta-analysis by the same group (2009), when there 

was reported a worsening of the reduction in the volume of the CC over time. In 2012 Frazier-

Hardan reported that the CC is smaller in subjects with ASD compared to controls at all ages 

and in all its subregions. The only callosal portion that is not always smaller in ASD than in 

controls is the rostral region, that over time shows a different pattern of growth between ASD 

and controls: in control subjects, with the increase of age, rostral region is slightly reduced in 

volume (1.4%), while in the ASD children volume of this region increases significantly 

(4.7%). This growth is associated with clinically reduction of externalizing behaviors, with 

greater emotional modulation and control of motor behavior. The rostral region of the CC in 

individuals with ASD is the only one that reaches normal size in adolescence (and it is the 

smallest in the ASD compared to the other subdivisions). This area connects fibers of the pre-

supplementary motor cortex (involved in fine motor coordination, motor planning and motor 

imitation, all impaired in ASD) and implicated in the functioning of mirror neurons (involved 

in synchronization with intent and motivation of others). These findings, as reported by 

Authors, support the hypothesis that individuals with ASD could have abnormalities in the 

process of axon myelination. 

Recently, Xiao (2014) analyzed brain images of 50 toddlers with ASD and 28 age, gender, 

and developmental quotient matched toddlers with developmental delay, between ages 2 and 

3 years, to assess overall GM and WM volumes, and regional alterations, by voxel-based 

morphometry. DTI was also used to investigate the WM tract integrity. Compared with 

developmental delayed controls, significant increases in global GM and WM volumes and in 

right superior temporal gyrus regional GM and WM volumes were observed in ASD. No 

differences were reported on callosal volume between ASD and controls.  
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Higher fractional anisotropy value was instead observed in the CC (and in the posterior 

cingulate cortex and limbic lobes) in the ASD toddlers group. These findings about structural 

and WM abnormalities in ASD, suggest that alterations in neural-anatomy of different brain 

regions may be involved in autism phenotype, especially in an early ages (Xiao et al., 2014). 

The fractional anisotropy (FA) value, a measure derived from diffusion data, is a structural 

WM integrity index and provides a simple and robust means to assess the degree of 

anisotropic diffusion occurring within a region. It is sensitive to developmental changes and 

pathological differences in axonal density, size, myelination and coherence of organization of 

fibers within a WM voxel. Because FA reflects the degree of anisotropic diffusion, it will be 

high (ie, nearly one) in regions of higher fibers organization (eg, corpus callosum), 

intermediate in regions with a lower degree of organization (eg, WM  regions with lower 

predominant axon fiber axis orientation), and low in tissues where the predominant cell shape, 

and therefore diffusion, is not specifically oriented (eg, GM) and approaching zero in free 

fluids (eg, CSF). Particularly, FA has proven to be highly sensitive to microstructural 

changes, but not very specific to the type of changes (e.g., radial or axial) (Alexander et al., 

Jul 2007).  

FA of CC of subjects with ASD was reported to be reduced in an old paper by Alexander (Jan 

2007), especially in the genu and splenium regions. This study examined CC volume and DTI 

analysis of callosal fibers of 43 subjects with high-functioning ASD and 34 controls (mean 

age 16 years). CC volume was reduced in ASD, with large variability between subjects, and 

the FA reduction correlates positively with CC volume, thus a reduction in CC volume was 

associated with a lower FA value. The radial mean diffusivity (MD) is increased in 

individuals with ASD, suggesting the possibility of an alteration of myelination, axonal 

diameter and density of axonal and glial cells in the CC of individuals with ASD. Authors 

found that 72% of ASD had normal callosal FA, but the ASD-Control group difference was 

driven by a subgroup of ASD subjects (28%) who had low FA of the CC. This subgroup also 

exhibited decreased performance IQ, increased MD, increased radial diffusivity, and 

decreased CC volume compared to their ASD peers. These data  suggest that within-group 

differences in callosal WM integrity may be related to within-group differences in 

performance IQ. 

Another study performed by Keller (2007), focused on the developmental changes in the 

organization of WM in autistic subjects aged 10-35 years, found lower FA values for the 

whole age range in long-range communication tracts (anterior corona radiate, right 

retrolenticular part of internal capsule) and in interemispheric connections (corpus callosum).  

Many studies analyzed callosal microstructure.  

A study, analyzing major frontal lobe tracts and CC of young children with autism (mean age: 

5 years), nonautistic developmentally impaired children (DI) and typically developing 

children, using DTI  tractography and tract-based spatial statistics, found that FA was lower in 

CC in ASD and DI children compared with TD children. The ASD group showed increased 

length and density of CC compared with the TD group and these callosal features correlate 

with communication impairment in ASD. Compared with DI group, instead ASD group had 

increased callosal length only (Kumar et al., 2010).  

A quite recent review of literature (Travers et al., 2012) provide an overview of studies that 

investigate the integrity of white matter in subjects with autism. Among the 48 studies 
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analyzed, subjects with autism tend to have a reduced FA and increased MD in tracts crossing 

several brain areas, such as the CC, the cingulate and the temporal lobe. The FA reduction is 

often associated with an increase in radial diffusivity (RD). RD has been shown to be 

modulated and increased by myelin in models of dys- and de-myelination (see as example 

Harsan et al., 2006). Changes in axonal density, axonal diameter, cytoskeletal properties, 

swelling from neuro-inflammation and WM complexity (e.g., crossing, curving and branching 

fibers) are also plausible explanations for changes to RD and other DTI measures (including 

FA). Findings of an increased RD suggest that ASD subjects have a higher diffusivity of 

water perpendicular to axons. Taken together these findings suggest that the axons of the CC 

may be less myelinated in autism or, alternatively, the increase of the callosal RD may be due 

less dense and / or thinner axons. 

Although several studies reported an FA reduction in the CC of subjects with autism, there are 

some exceptions. For example, some Authors (eg., Cheng et al., 2010; Thomas et al., 2011) 

did not detect significant differences in the FA of the CC of the diagnostic group. 

Furthermore, two studies with the youngest sample (Ben Bashat et al., 2007; Weinstein et al., 

2011), performed on preschoolers, actually demonstrated increased FA of the CC in ASD. 

One possible explanation is that sample heterogeneity may have contributed to the variation in 

their findings, as certain  characteristics (e.g., intellectual/cognitive ability, language ability, 

head circumference) may be more indicative of atypical WM microstructure in ASD. 

A recent meta-analysis of DTI tractography studies (Aoki et al., 2013) selected DTI studies 

comparing individuals with ASD with typically developing individuals from 1980 through 

2012. 14 studies were included in the meta-analysis, which demonstrated significant FA 

reductions in the CC and other brain regions (such as left uncinate fasciculus and left superior 

longitudinal fasciculus), and significant increases of MD in the CC and superior longitudinal 

fasciculus bilaterally in subjects with ASD compared with typically developing individuals 

with no significant publication bias. These findings emphasize important roles of these 

regions, and particularly of CC in the pathophysiology of autism and support the long-

distance under-connectivity hypothesis. 

Atypical brain connectivity has repeatedly been implicated in neuroimaging studies of people 

with ASD (Vissers et al., 2012). Some evidences from postmortem studies and structural and 

functional MRI studies provided the hypothesis that, in ASD, brain is characterized by long-

distance under-connectivity. However, it remains unclear which of the major long-distance 

tracts that compose the cortical network in the human brain is disordered (these tracts include 

main association or intrahemispheric fibers, such as the uncinate fasciculus, cingulum, 

superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior frontal occipital 

fasciculus and fornix and one commissural or interhemispheric fiber tract, the CC). 

Another recent diffusion weighted MRI study (Razek et al., 2014), performed on preschoolers 

with ASD (mean age 55 months), analyzes the ADC (apparent diffusion coefficient), in 

various brain regions and correlated with clinical data (CARS scores, social age as measured 

by the Vineland Social Maturity Scale and language skills). ADC provides a measures of the 

magnitude of diffusion of water molecules within tissues and can be helpful in assessment of 

WM integrity. Significant differences in the ADC between ASD and controls were found, in 

some WM regions, particularly in genu and splenium of the CC, the frontal and temporal 

WM, where the ADC value is increased in subjects with autism. All of these areas correlated 
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positively with autism severity. This finding is consistent with disruption, poorly organization 

and microstructural differences in the WM of ASD children, that allow unrestricted diffusion 

of water throughout the tissue. The increased intercellular space in autism may be due to a 

reduced number of fibers, which was supported by decreased fiber density found in these 

children. According to Authors, the volume and density increasing and the decreased 

functionality (connectivity) in WM of autistic children, may be because a large number of 

remaining disrupted axons leads to higher cross-connection and increased noise, which may 

lead to inefficient signal transmission.  

In a quite recent investigation about neurodevelopment of WM in autism an abnormally 

decreased ADC values in the left side of the genu of the corpus callosum was reported in 

children with autism (4-14 years old). Age correlated negatively with callosal ADC 

measurements in individuals with autism, but not in children with normal development 

(Mengotti et al., 2011). The negative correlation between age and callosal ADCs in autism 

supports the role of the altered trajectory of WM growth during childhood. During normal 

development, in fact, ADC values of cortical WM decrease in the first 2–3 years of life, with 

subsequent stabilization, reflecting the process of WM maturation and its structural integrity. 

In contrast to normal development, in autism there is a constant decrement of ADC values. 

A recent spectroscopy analysis (Goh et al., 2014) found that lactate doublets, a marker 

of mitochondrial dysfunction,  were present at a significantly higher rate in a wide age-range 

(5-60 years) participants with ASD (13%) than controls (1%). In the ASD group, the presence 

of elevated lactate correlated significantly with age and was detected more often in adults 

(20%) than in children (6%), though it did not correlate with sex, ASD subtype, intellectual 

ability, or the Autism Diagnostic Observation Schedule total score or subscores. In those with 

ASD, lactate was detected within some regions, including CC (the cingulate gyrus most 

frequently and it was also present in the subcortical gray matter nuclei, superior temporal 

gyrus, and pre- and postcentral gyri). This study demonstrate evidence for mitochondrial 

dysfunction in vivo in the brains of individuals with ASD. 

Recently the aberrant brain connectivity hypothesis was supported by studies reporting 

whole-brain hyper-connectivity in children with ASD (Supekar et al., 2013; Di Martino et al., 

2014).  

In particular, Di Martino focused on whole-brain intrinsic functional connectivity of a large 

sample > 6 years old high-functioning ASD males in the Autism Brain Imaging Data 

Exchange (ABIDE) consortium (360 males with ASDs compared to 403 age-matched typical 

males). Whole-brain analyses seems to conciliate findings of both hypo- and hyper-

connectivity in the ASD literature, in fact both were detected, although with different degrees 

and with distinct topographies. Specifically, while findings of hyper-connectivity were limited 

and primarily associated with subcortical regions, hypoconnectivity dominated, particularly 

for cortico-cortical and interhemispheric functional connectivity. This result underscores the 

hypothesis of alterations in interhemispheric connectivity, but preschoolers were not recruited 

in this large analysis.  

From the same cohort (ABIDE), recent data about CC analysis among 694 subjects (328 

patients, 366 controls, 7-40 years old) were published (Lefebvre et al., 2014). No differences 

in CC size between groups were reported: the observed difference was < 7 mm³ (larger in 

controls), not statistically significant, as were none of the differences in the 5 callosal 
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subregions analyzed. There was a small but statistically significant increase in mean CC size 

per year, and the increase was more pronounced in the Posterior and Anterior subregions, 

which are those that more strongly correlate with TBV. Mean CC size was statistically 

significantly smaller among females by 7.4% compared with males and a similar difference 

was observed in all subcallosal regions especially the Posterior and Anterior ones; however 

this difference is explained by the significant difference in TBV between females and males 

(as adding TBV as a covariate made the sex effect not statistically significant). The CC 

appeared to scale non-linearly with brain size, with large brains having a proportionally 

smaller corpus callosum. Additionally, intelligence scores correlated with brain volume 

among controls but the correlation was significantly weaker among patients. 

Also in the Supekar study (2013) three different cohort of children with ASD were used, all 

older than 7 years. Connectivity was analyzed with preprocessed fMRI datasets that were 

parcellated into cortical and subcortical regions. Hyper-connectivity was observed in ASD, 

both at the whole-brain and subsystems level, and both across long- and short-range 

connections. Brain hyper-connectivity predicted symptom severity in ASD, such that children 

with greater functional connectivity exhibited more severe social deficits. These results 

reported that the brain in ASD is largely functionally hyper-connected and this anomaly 

contribute to social dysfunction. 

Conversely to the wide consensus on whole-brain aberrant connectivity, recent data challenge 

the widely claimed general disruption of WM tracts in children with autism, instead 

implicating only one tract, the right inferior longitudinal fasciculus, in the ASD phenotype 

(Koldewyn et al., 2014).  

Toddlers with autism exhibited significantly weaker inter-hemispheric synchronization (i.e. 

weak “functional connectivity” across the two hemispheres) in putative language areas, as 

shown by Dinstein (2011) in the spontaneous cortical activity of 72 naturally sleeping 1-3.5 

years old toddlers with autism. The strength of synchronization was positively correlated with 

verbal ability and negatively correlated with autism severity. 

 

Functional correlation of callosal abnormities 

Structural morphometric and microstructural abnormalities in the CC have called attention to 

interhemispheric dysconnection in ASD (Just et al., 2004; Just et al., 2007; Dinstein et al., 

2011; Anderson et al., 2011). While initial volumetric studies only found evidence of partial 

compromise of the CC, DTI studies of CC microstructure have suggested that abnormalities 

extend to its all subdivisions. Similarly, while initial fMRI studies reported abnormalities in 

interhemispheric functional connectivity only for sensori-motor and language areas, whole-

brain analyses suggest broader compromises, affecting 30% of homotopic connections. Given 

that interhemispheric interactions are thought to facilitate high-load cognitive processes, 

findings of altered connectivity extending across systems, may be relevant to clear 

impairments of complex reasoning and information processing in ASDs. 

Given that the CC has been considered as an index of interhemispheric connectivity, and brain 

is seen as an integrated system of regions of interest that must collaborate to achieve normal 

functioning, the poor connectivity between different cortical regions of autistic brain, results 

in impaired integrative processing and deficient higher order cognitive abilities. Decreased 

coordination between brain regions has been found during performance on tasks of sentence 
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comprehension (Kana et al., 2006) and executive planning (Just et al., 2007). Relationships 

have been found between smaller CC size in individuals with autism and decreased 

"functional connectivity" in specific CC subregions. Just, in its "theory of frontal-posterior 

underconnectivity" (2012), reported that callosal size has a relationship with functional 

connectivity of cortical regions, as a reduced degree of synchronization of the activation 

between frontal and posterior brain, during neuropsychological and social tasks (eg., 

language, social processing, executive functions, working memory, high-level inhibition, 

visuo-spatial processing). A study applied on a volumetric analysis (Keary et al., 2009), 

examined the size of the CC in non-mentally retarded individuals with autism (8-45 years old) 

and controls, to investigate the relationship between this structure and cognitive measures 

linked to interhemispheric functioning. Participants with autism displayed reductions in total 

CC volume and in several of its subdivisions (rostrum, genu, anterior body). The relationships 

between CC volumes and age and TBV were examined and no associations were found in the 

autism and control groups. Correlations were examined between CC structures and 

performance on neuropsychological tests (Wisconsin Card Sorting Test, Tower of Hanoi test, 

Tactile Finger Recognition test and the Tactual Performance Test) and relationships were 

observed only in the autism group. The largest difference in performance on the selected 

neuropsychological tests was observed in tests associated with frontal lobe function. 

Correlations between these neuropsychological test performance and CC measurements were 

observed and CC volume reductions were correlated with poor performance.  

The neuroanatomical underpinning basis of ASD are still poorly understood, but theories 

surrounding atypical cerebral asymmetry as one possible factor influencing this disorder have 

received considerable attention. Many people with ASD show a pattern of deficits in skills 

ascribed to the left hemisphere, such as language, communication and symbol use, whilst 

appearing relatively unimpaired in right hemisphere functions such as visuospatial abilities. 

These observations have given rise to the hypothesis that autism might be related to atypical 

cerebral organization, with the left hemisphere being most affected. In typical individuals one 

of the most reliable findings is that consistently right-handed men have a smaller CC than 

non-consistently right-handed men (Witelson, 1989) and rightward asymmetry of anterior 

regions of the CC seems to be a normal pattern in right-handed men. An investigation about 

functional and neuroanatomical callosal asymmetry, in terms of handedness and CC 

measurements, in male adolescents with autism, and about their associations with executive 

dysfunction and symptom severity (Floris et al., 2013), found that adolescents with autism did 

not differ from controls in functional asymmetry (handedness), but when compared to 

controls ASD subjects neuroanatomically showed a reversed patterns of association between 

the posterior midbody and anterior midbody of the CC and handedness, and a reversed 

patterns of association between the isthmus and executive function also.  

Most neuroanatomical asymmetry measures indicated that rightward lateralization was 

associated with stronger symptom severity.  Measures of symptom severity were related to 

rightward asymmetry in three callosal subregions (splenium, posterior midbody and rostral 

body). Authors found the opposite pattern for the isthmus and rostrum with better cognitive 

and less severe clinical scores associated with rightward lateralization. 

Because of its extensive connectivity, changes in CC structure and their correlation with 

several brain functions have been studied, also in ASD and its functional features.  
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Recently Prigge (2013) reported a relationship between callosal size and autism severity: 

increased midsagittal areas were associated with reduced severity of autism, above all ADOS-

G social scores are related significantly to anterior midbody subregion of the CC. Lack of a 

significant interaction between age and CC area suggests the significant relationship between 

anterior midbody and severity of social features is similar across the broad age range (3-36 

years) of the individuals with autism studied. No significant relationships between ADOS 

communication scores and CC subregions were found. Authors studied also relationship 

between callosal area and intelligence: relationship between IQ and rostral area was found to 

be different in the autism and control groups. A decreased rostral area was associated with 

increased VIQ in the typically developing group but decreased VIQ in the autism group. 

Authors concluded that a smaller CC area is associated with a greater social impairment and a 

lower intelligence in autism. 

A similar correlation was also found by Alexander (2007), who described a subgroup of 

autistic patients with smaller CC volume, reduced WM integrity (as deduced by lower FA 

values and higher MD values) and poorer intellectual abilities and slower processing speed.  

A DTI study revealed a correlation between fiber length and density of total CC and 

communication scores on the Vineland Adaptive Behavior Scales (Kumar et al., 2010). 

Social and communication deficits have also been reported in patient with other type of 

callosal disruption, as in subjects with AgCC (Lau et al., 2013). 

Anomalies on the callosal structure contribute to various motor deficits, including uni- and bi-

manual movement disturbances (Beaulè et al., 2012), eye-hand coordination (Rademaker et 

al., 2004), and gait (Laat et al., 2011), all found in ASD. As example, larger CC size is 

associated with better motor performance in children: a poorer score on the Movement 

Assessment Battery for Children was related to a smaller CC and a larger CC was strongly 

associated with better Visual Motor Integration. Individuals with AgCC (Moes et al., 2009), 

exhibited a pattern of delayed motor development, difficulty with balance and bimanual 

movements, poor muscle tone, poor depth perception, reduced pain perception, and an 

increased proportion of left and mixed handedness. 

A recent study was performed about callosal connectivity and its relationship with socio-

communication deficits and motor deficits in children with autism (Hanaie et al., 2014). The 

ASD group (5-14 years old children) was compared to typically developed children and 

displayed  abnormal macro and microstructure of the total CC and its subdivisions. ASD 

group had a significantly decreased callosal tracts volume and a shorter average fiber length. 

FA, axial diffusivity and radial diffusivity were similar in ASD and controls. Structural 

properties of CC in ASD were related to socio-communicative deficits but not to motor 

deficits of the clinical group.  

The rostral body was identified, in the meta-analysis by Frazier and Hardan (2009), as the 

callosal portion showing the largest reductions of any CC sub-division in autistic subjects. 

Interestingly, this region of the CC connects fiber tracks originating in pre-supplementary 

motor cortical regions, which support fine motor coordination, motor planning, and motor 

imitation, all of which are impaired in autism; it has also been implicated in mirror neuron 

functions, that facilitate the tuning of individuals to others’ intentions and motivations. 

Normalization of the rostral body size, in adolescence, is associated to improvements in some 

autistic features, usually  observed in older children and adolescents, such as reciprocal social 
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interaction (Seltzer et al. 2003) and repetitive behavior observed (Esbensen et al. 2009) in 

individuals with autism. In the longitudinal study, proposed by Frazier (2012), decreases in 

externalizing behavior were associated with rostral body volume increases and Authors 

concluded that these results suggest that normalization of the rostral body size, in older 

children and adolescents (8-15 years old), is linked to improvements in motor coordination 

and emotion regulation, possibly indicating an ongoing developmental or compensatory 

process. 

A recent EEG coherence study analyzed the current model proposed of ASD as a 

developmental disconnection syndrome (Peters et al., 2013). In ASD, both with and without a 

genetic syndrome (Tuberous Sclerosis Complex), decreased long- over short-range coherence 

and markedly increased network resilience were found. Authors concluded that the increased 

resilience in ASD may reflect an excessively degenerate network, with local over-connection 

and decreased functional specialization. Quite at the same time, also Boersma (2013) 

demonstrated aberrant functional brain networks in autistic toddlers. With the EEG recordings 

in 12 toddlers with autism (mean age 3.5 years) and 19 control subjects, Authors assessed 

interregional functional brain connectivity, with functional brain networks constructed at the 

level of temporal synchronization between brain regions underlying the EEG electrodes. 

Children with autism showed a significantly increased normalized path length and reduced 

normalized clustering, suggesting a reduced global communication capacity already during 

early brain development. In addition, whole brain connectivity was found to be significantly 

reduced in these young patients suggesting an overall under-connectivity of functional brain 

networks in autism. These findings support the hypothesis of abnormal neural communication 

in autism, with deviating effects already present at the early stages of brain development. 

Sex differences 

Recent studies continue to report in the prevalence of ASD a male bias, but also suggest some 

sex differences in phenotypic presentation, such as fewer restricted and repetitive behaviors 

and externalizing behavioral problems in females than males, that may contribute to this bias. 

Genetic studies demonstrate that females are protected from the effects of heritable and de-

novo ASD risk variants, and other papers report that sex chromosomal genes and/or sex 

hormones, especially testosterone, may modulate the effects of genetic variation on the 

presentation of the phenotype (Werling et al., 2013). 

The investigation of sex-related differences in brain structure is relevant to understanding the 

pathophysiology of ASD, but to date very limited neuroimaging data are available to evaluate 

this feature, mostly in children population. Particularly, to our knowledge, to date sex-

differences in the CC structure in ASD have not been assessed enough.    

Some data, although conflicting, suggest gender effects on CC size, in healthy subjects, but 

few data have been reported in the autistic population and no data, to our knowledge, are 

available in preschoolers with ASD.  

In a high-functioning adults sample, the CC (splenium) showed a pattern of females with 

autism greater than typical females, but males with autism equal to typical males (Lai et al., 

2013).  



52 
 

Recently, unpublished data about CC size in the ABIDE large sample (Lefebvre et al., 2014), 

reported that callosal volume was statistically significantly smaller among females by 7.4% 

compared with males, and a similar difference was observed in all subcallosal regions 

(especially the Posterior and Anterior ones); however this difference is explained by the 

significant difference in TBV between females and males (as adding TBV as a covariate made 

the sex effect not statistically significant). 

In another high-functioning adults sample, with respect to gender, only TBV was significantly 

increased in males compared with females, resulting in a significantly decreased CC/TBV 

ratio in males (independently from gender and fully attributed to brain size). This finding is in 

accordance with the hypothesis that brain size, per se, is the relevant factor and contradicts  

the sexual dimorphism hypothesis of the human CC (Tepest et al., 2010).  

Regarding microstructural organization, sexual dimorphism in the CC were reported, also in 

healthy subjects, but data are inconsistent. Men showed significantly higher values of FA, 

lower diffusion strength and lower radial diffusivity in this structure, when compared to 

women, based on differences in myelination (Menzler et al., 2011; Westerhausen et al., 2011). 

Some Authors underline a stronger inter-hemispheric connectivity between the frontal lobes 

in males than females, which might be related to sex differences in hemispheric asymmetry 

and brain size.  

Diffusional measurements revealed, in the body of the CC of an adults sample, an higher FA 

for males than females in controls but not in the ASD group; furthermore, there was a trend 

toward lower FA in males with autism with respect to control males. No effects were 

observed for the genu and splenium of the CC. Authors concluded that autism-related changes 

in the CC microstructural organization, consistent with reduced axonal density or 

myelination, have been demonstrated selectively in males but not in females (Beachera et 

al.,2012). 
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Objectives 

 

The hypothesis of abnormal neural connectivity, involving short- and long-distance 

connections, is one of the most sustained pathophysiological theories of ASD. Recently, 

whole-brain analyses reconciled seemingly disparate themes of both hypo- and 

hyperconnectivity in the ASD literature, because both were detected, although 

hypoconnectivity seems to dominate, particularly for corticocortical and interhemispheric 

functional connectivity. 

CC is the largest WM structure in human brain and it is the main connection and information 

transfer structure involved in interhemispheric communication. A growing body of literature 

has identified size reductions of the CC in subjects with ASD, and CC size also appears to be 

inversely related to autism severity and the intelligence quotient (IQ). However to date very 

few studies have been conducted on preschool age, when the disorder show its higher clinical 

expression. 

The main goal of our study is to compare the CC volume between preschoolers with ASD and 

controls subjects. We analyzed CC subregions volume in both groups also. 

Then, callosal size relations to demographic and clinical variables of ASD and control group 

(gender, age, non-verbal IQ, and language) have been examined.  

Lastly, in the ASD group we assessed callosal volume relationship with autism severity. 

 

Methods: 

Participants, Procedures, Clinical measures and Image processing 

 

Participants 

We selected a sample of 41 preschoolers diagnosed with an ASD not clearly due to organic 

pathology.  

Each of them was assessed with a clinical and functional evaluation performed by 

multidisciplinary team, in a inpatient or outpatient condition. Autistic subjects were compared 

to 40 controls; control group was gender-, age-, and non-verbal IQ-matched with the sample. 

All subjects of the ASD group satisfied the following inclusion/exclusion criteria. 

Main inclusion criteria were: diagnosis of an ASD, age between 18 and 72 months and a non-

verbal IQ≥30 (NVIQ).  

Exclusion criteria, both for sample group and control group, were signs, symptom and 

information of a possible "organic" nature of the disorder, and included: neurological 

syndromes or focal neurological signs; dysmorphic features suggestive of a genetic syndrome; 

significant sensory impairment (e.g., blindness, deafness); anamnesis of birth asphyxia, 

premature birth, head injury or epilepsy; use of any psychotropic medication; presence or 

history of any other axis I mental disorder. 
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Exclusion and inclusion criteria (except diagnosis of ASD) were satisfied also for the control 

group.  

Subjects with incomplete functional assessment and those with a not reliable evaluation (ie. 

for severe behavioral and/or cognitive impairment) were also eliminated from the sample. 

Instead subjects with complete functional assessment but without CBCL 1 ½ -5 behavioral 

assessment were included in the sample (7 subjects). 

In the sample selection, subjects are chosen to be equally divided by gender, age and 

intellectual level.  

Intellectual level is defined by non-verbal IQ (no development delay: NVIQ ≥70; 

developmental delay: NVIQ<70). 

All subjects underwent a brain magnetic resonance imaging (MRI) examination for clinical 

goals (ie. to complete diagnostic protocol and etiopathogenic study), during the first 

admission or during subsequent hospitalization.  

ASD group children also received blood tests aimed to exclude the "organic" nature of the 

disorder (dosage of thyroid hormones, screening for celiac disease, aminoacids dosage in 

plasma and urine, organic acids and mucopolysaccharides dosage in urine and creatine and 

metabolites dosage in plasma and urine, standard karyotype and fragile X research) and 

audiometric examination or auditory evoked potentials. Also controls children with 

developmental delay received the same assessment (except auditory evaluation).  

In the control group, children without intellectual disability are healthy subjects observed by 

the child neuro-psychiatrist for the presence of non epileptic paroxysmal episodes (ie., 

headache, periodic syndromes, paroxysmal vertigo), developmental "immaturity", or affective 

problems (ie., elective mutism, separation anxiety disorder). In these subjects, ASD-related 

anomalies (eg., social and interaction atypicalities, communication difficulties, etc.) and 

others neurodevelopmental disorders were excluded. 

All subjects were selected at the IRCCS Stella Maris Institute in Calambrone (Pisa - Italy). 

 

 

Procedures  

ASD diagnosis was made according to the DSM-IV-TR criteria (APA; 2000) and to the 

DSM-5 criteria (APA; 2013), by a multidisciplinary team during some days of extensive 

evaluation. Thus diagnosis of "Pervasive Developmental Disorder" or "Pervasive 

Developmental Disorder Not Otherwise Specified" according to the DSM-IV-TR or "Autism 

Spectrum Disorder" according to the DSM-5, was made. The diagnosis was processed by 

senior child psychiatrists with long experience in the neurodevelopmental disorders field, 

particularly autism, and has been supported by clinical neuropsychiatric evaluation, 

comprehensive psychological assessment by an experienced clinically trained research child 

psychologist, psycho-educational assessment and a speech-language evaluation. Each subject 

also received an intellectual skills assessment. All clinical parameters were assessed using 

standardized tests. 

 

Even control subjects performed a clinical evaluation (neuropsychiatric assessment, 

psychological assessment, language evaluation and/or psycho-educational assessment).  
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Those children, in both sample and control group, who have not carried out the language 

assessment (eg., because expressive language was absent), however, have received a clinical 

estimation of language skills in the course of the functional observation. 

 

For each subject (both in ASD and in control group), we analyzed demographic data (gender 

and age) and clinical data (NVIQ and expressive language level) in relation to brain imaging 

data. In the ASD group were also considered autism severity (assessed by ADOS-G and 

CBCL1½-5). 

 

Given that many children in the sample has performed more than one functional assessment, 

during several hospitalizations, we selected clinical data (ADOS, cognitive, language and 

behavioral) closer to the date of MRI acquisition or otherwise within 1 year from that date.  

Considering also that, during development, language can change very quickly over time, the 

empirical evaluation of expressive language level was made at the same time of MRI 

acquisition for all children. 

 

Brain imaging were processed and volumetric segmentation was performed with an 

automated parcellation approach on T1-weighted MRI images. Previously, MRI images were 

assessed and, when required, a manual correction was made in the preprocessing phase. 4 

different raters evaluated images and inter-rater reliability was analyzed on images of 10 

subjects (equally distributed between ASD and controls, and males and females) assessed by 

all raters. All raters were blind to diagnoses and clinical-demographic features of subjects.  

CC volume analysis was made in ASD and controls subjects. We analyzed CC subregions 

volume in both groups also. CC volume relationship with demographic and clinical features 

was assessed in ASD and control group, particularly were analyzed correlations with gender, 

age, non-verbal IQ, and language. To better explore age correlation we divided the sample, 

both ASD and controls, into two age groups using the mean age as watershed: ≤ 49 months of 

age and > 49 months of age. In the ASD group we analyzed CC volume relationship with 

autism severity. 

 

Clinical measures  

 

ADOS-G 

The ASD diagnosis was confirmed by the Autism Diagnostic Observation Schedule-Generic 

(ADOS-G) in all patients.  

ADOS-G is a semistructured, standardized assessment of social interaction, communication, 

play, and imaginative use of materials for individuals suspected of having ASD (Lord et al., 

2000). The observational schedule consists of four 30-minute modules, each designed to be 

administered to different individuals according to their level of expressive language. It is still 

considered the gold standard instrument for diagnosing and assessing autism. 

The modules provide social-communicative sequences that combine a series of unstructured 

and structured situations. Each situation provides a hierarchy of presses for particular social 



56 
 

behaviors. Module 1 is used for children who do not use spontaneous phrase speech 

consistently and consists of 10 activities with 29 accompanying ratings. Module 2 is intended 

for children with some flexible phrase speech who are not verbally fluent; it consists of 14 

activities with 28 accompanying ratings. Module 3 provides 13 activities and 28 ratings and it 

is intended for verbally fluent children for whom playing with toys is age appropriate. 

Module 4 contains the socio-emotional questions of the ADOS and it is intended for verbally 

fluent adults and for adolescents who are not interested in playing with toys such as action 

figures (usually over 12–16 years).  

The operational definition of verbal fluency is the spontaneous, flexible use of sentences with 

multiple clauses that describe logical connections within a sentence. It requires the ability to 

talk about objects or events not immediately present.  

Subsets of items in each module are used to generate separate diagnostic algorithms for each 

module in the ADOS-G. Items and the thresholds for classification of autism and of ASD 

differ for each module in the ADOS-G. However, the general principles and procedures for 

computation are the same across modules and similar to DSM-IV (American Psychiatric 

Association, 1994) and ICD-10 (World Health Organization, 1993). Classification is made on 

the basis of exceeding thresholds on each of two domains: social behavior and 

communication, and exceeding a threshold for a combined social-communication total.  

The ADOS-G is intended to be one source of information used in making a diagnosis of ASD, 

but is not sufficient to do so on its own.  

Because only a small window of time is considered, the ADOS-G does not offer an adequate 

opportunity to measure restricted and repetitive behaviors (though such behaviors are coded if 

they occur). Thus, ADOS-G algorithms include only items coding social behaviors and 

communication.  

Because it consists of codings made from a single observation, the ADOS-G does not include 

information about history or functioning in other contexts. This means that the ADOS-G 

alone cannot be used to make complete standard diagnoses. 

ADOS-G provides scores that are distinct in 3 domains: Language and Communication-

scores, Reciprocal Social Interaction-scores and Total-scores. In this study the 3 of them all 

were analyzed. 

 

 

Intellectual assessment tests 

The cognitive assessment was performed for all children using standardized tests, specific to 

the chronological age, such as: Leiter International Performance Scale - Revised (Leiter-R), 

Griffiths Mental Development Scale (GMDS) and Wechsler Preschool and Primary Scale of 

Intelligence (WPPSI, Italian version).  

Leiter-R scale is an intelligence test in the form of a strict performance scale. It was designed 

for children and adolescents ages 2 to 18, it can be administered completely without the use of 

oral language, including instructions, and requires no verbal response from the participant. 

The Leiter-R contains 20 subtests organized into four domains (Reasoning, Visualization, 

Memory and Attention). The test have game-like tasks, and its easy administration and quick, 

objective scoring make for an efficient assessment. Because the Leiter-R is non-verbal, it is 

especially suitable for children and adolescents who are cognitively delayed, non-verbal, 
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speech or hearing impaired, motor impaired, or suffering from neurodevelopmental disorders, 

like ASD. 

The GMDS is used to measure the rate of development of young children from birth to 8 

years. The six areas of development measured by the six sub-scales include: Locomotor 

(gross motor skills including the ability to balance and to co-ordinate and control 

movements); Personal-Social (proficiency in the activities of daily living, level of 

independence and interaction with other children); Language (receptive and expressive 

language); Eye and Hand Co-ordination (fine motor skills, manual dexterity and visual 

monitoring skills); Performance (visuospatial skills including speed of working and 

precision); Practical Reasoning (ability to solve practical problems, understanding of basic 

mathematical concepts and understanding of moral issues). A kit of standardised equipment is 

required to administer the items in the Griffiths scales. 

The WPPSI is an intelligence test designed for children ages 2 years 6 months to 7 years 3 

months. It consist of 14 subtests and composite scores that represent intellectual functioning 

in verbal and performance cognitive domains, as well as providing a composite score that 

represents a child’s general intellectual ability (ie., Full Scale IQ). In addition, the Processing 

Speed Quotient can be derived for children aged 4 – 7 years 3 months, and a General 

Language Composite can be determined for children in both age bands (2 years 6 months – 3 

years 11 months & 4–7 years 3 months). Children in the 2 years 6 months – 3 years 11 

months age band are administered only five of the subtests: Receptive Vocabulary, Block 

Design, Information, Object Assembly, and Picture Naming. 

 

To promote greater data homogeneity, in those cases where cognitive assessment test 

provided verbal IQs (VIQ) and performance IQs (QIP) (ie., WPPSI) or different quotients for 

various developmental areas (ie., GMDS), we selected for each subject the non-verbal IQ 

scores (or performance quotient). 

 

 

Language 

As a measures of expressive language development, we choose the framework for describing 

spoken non-echolalic language acquisition in preschoolers with ASD defined by Tager-

Flusberg (2009).  

Within a developmental framework, thus five key phases of expressive language acquisition 

were identified: 

Phase or level 1: Preverbal Communication 

Children in this phase communicate using preverbal intentional communication through vocal 

(babble) and gestural means. This phase generally covers the age range of 6–12 months in 

typically developing children.  

Phase 2 or level: First Words 

Children in this phase use non-imitated spontaneous single words referentially and 

symbolically to communicate about objects and events, including those outside the immediate 

context. At least some of their speech is intelligible and incorporates the most frequent 

consonant sounds heard in typical babble. Children in this phase use speech with a variety of 
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people in different settings to serve several functions, including, but not limited to, labeling, 

requesting, and commenting on (directing joint attention to) some objects or activities. This 

phase generally covers the age range of 12–18 months in typically developing children. 

Phase 3 or level: Word Combinations 

Children in this phase have a vocabulary that is rapidly increasing in size and includes a 

variety of parts of speech (nouns, verbs, descriptors). They are able to combine words 

creatively to refer to objects and events. Two- and three-word combinations are used for 

several different communicative functions. This phase generally covers the age range of 18–

30 months in typically developing children. 

Phase 4 or level: Sentences 

Children in this phase combine words into clausal structures, or sentences, and use some 

morphological markers such as plurals, prepositions, and some verb endings. Their 

vocabulary is sufficiently large to serve their communicative needs in everyday situations. 

They communicate a wide range of functions in different settings with both familiar and 

unfamiliar people. The portion of this phase relevant for the proposed benchmarks defined 

here corresponds to typically developing children between the ages of 30–48 months. 

Phase 5 or level: Complex Language 

By the end of the preschool years, typically developing children have large and rich 

vocabularies that they use to communicate a wide range of topics (including abstract or 

hypothetical ideas) using complex grammatical constructions (e.g., relative clauses, sentential 

complements, anaphora) in different discourse contexts (e.g., conversation, narrative).  

Thus, according to this assessment framework about productive language abilities, patients 

and controls were directly assessed and assigned to one of the conditions described above.  

 

CBCL 1½-5  

To complete the behavioral assessment was compiled by parents the Child Behavior Checklist 

1½-5. It is a widely used method of identifying behavioral problems in children. It is a 

component in the Achenbach System of Empirically Based Assessment developed by M. 

Achenbach (2000). 

Problems are identified by a respondent who knows the child well, usually a parent or other 

care giver. Alternative measures are available for teachers (the Teacher's Report Form) and 

the child (the Youth Self Report). There are two versions of the checklist: the preschool form 

(CBCL/1½-5) is intended for use with children aged 18 months to 5 years; the school-age 

version (CBCL/6-18) is for children aged 6 to 18 years. It is an important measure for 

children's emotional, behavioral and social aspects of life. It is used as a diagnostic tool for a 

variety of behavioral and emotional problems such as attention deficit hyperactive disorder, 

oppositional defiant disorder, conduct disorder, childhood depression, separation anxiety, 

childhood phobia, social phobia, specific phobia and a number of other childhood and 

adolescent issues. The checklists consists of a number of statements about the child's 

behavior. Responses are recorded on a Likert scale: 0 = Not True, 1 = Somewhat or 

Sometimes True, 2 = Very True or Often True. The preschool checklist contains 100 

questions. Similar questions are grouped into a number of syndromes and their scores are 

summed to produce a score for that syndrome. Some syndromes are further summed to 

provide scores for Internalizing and Externalizing problem scales. A total score from all 
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questions is also derived. For each syndrome, problem scale and the total score, tables are 

given that determine whether the score represents normal, borderline, or clinical behavior.  

 

In our sample 6 subjects were excluded in the CBCL/1½-5 analysis, because the questionnaire 

data were not available (questionnaire was not compiled by parents or caregivers).  

Of all CBCL/1½-5 scales we selected those that best describe symptoms of ASD: 

Internalizing problems scale, Externalizing problems scale, Total problems scale, Withdrawn 

scale, Attention problems scale, and the DSM-oriented Pervasive developmental problems 

scale.  

Our research group, some years ago, reported that CBCL/1½-5 has high sensitivity and 

specificity for Pervasive developmental problems scale and Withdrawn scales when 

preschoolers ASD were compared to age-, sex-, and IQ-matched control children (Muratori et 

al., 2011). 

 

 

Image processing 

Structural MRI of the brain were performed on a 1.5 T MR system (Signa Horizon LX, GE 

Medical System). Both ASD and controls were sedated with a general anaesthesia with a 

halogenated agent while  spontaneously breathing. The written informed consent from a 

parent or guardian of children was obtained. 

Volumetric segmentation was performed with the Freesurfer image analysis suite: CC 

volumes were quantified with an automated parcellation approach on T1-weighted MRI 

images. Preprocessing steps of each subject included: 1) extraction of the folder containing 

the DICOM images from cd-patient related to the acquisition sequence FSPGR for T1-

weighted structural brain images; 2) using the SPM software, the sequence of DICOM images 

was imported into ANALYZE format, getting a metadata consists of two files:. Img and. Hdr; 

3) file in ANALYZE format was imported in the Freesurfer format, using the command: 

recon-all-the-s1.hdr subjid s1 4) The subject 'was processed with Freesurfer using the 

command: recon-all-all-subjid s1; 5) brain imaging of each subject was subjected to manual 

correction when needed (eg., registration, skull stripping and/or white matter editing); 6) 

manual corrections are implemented by Freesurfer software using the command: recon-all-

autorecon2-autorecon3-subjid s1. 

Freesurfer software is documented and freely available for download online. The technical 

details of these procedures are described in prior publications (see publications by Fischl et 

al.). Briefly, this processing includes motion correction and averaging of multiple volumetric 

T1 weighted images (when more than one is available), removal of non-brain tissue using a 

hybrid watershed/surface deformation procedure, automated Talairach transformation, 

segmentation of the subcortical white matter and deep gray matter volumetric structures 

(including hippocampus, amygdala, caudate, putamen, ventricles) intensity normalization, 

tessellation of the gray matter white matter boundary, automated topology correction and 

surface deformation following intensity gradients to optimally place the gray/white and 

gray/cerebrospinal fluid borders at the location where the greatest shift in intensity defines the 

transition to the other tissue class. The maps are created using spatial intensity gradients 

across tissue classes and are therefore not simply reliant on absolute signal intensity. The 
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maps produced are not restricted to the voxel resolution of the original data thus are capable 

of detecting submillimeter differences between groups.  

The CC was automatically identified and segmented by the FreeSurfer processing software. 

The Freesurfer software, using the script mri_cc, automatically divides the CC into 5 

segments, using as a reference the subdivision proposed by Hofer-Frahm (2006), considered 

to be less arbitrary than other existing subdivision schemes. A publication describing the 

process of automated segmentation of CC was performed by Rosas et al. (Neuroimage, 2010). 

The CC has been divided into 5 segments along its main axis (eigenaxis), thus 5 callosal 

subregions were identified: CC-Anterior (CC-Ant), CC-Mid Anterior (CC-Mid Ant), CC-

Central (CC-Cen), CC-Mid Posterior (CC-Mid Post) and CC-Posterior (CC-Post). Total CC 

volume was calculated as the sum of these five segment volumes for each study participant.  

Supratentorial brain volume (TBV) was estimated using Freesurfer, and includes everything 

except the cerebellum and the brain stem. In particular, it includes the volume of the 

ventricles, choroid plexus, and vessels. 

Freesurfer morphometric procedures have been demonstrated to show good test-retest 

reliability across scanner manufacturers and across field strengths (Han et al., 2006; Reuter et 

al., 2012). They have been widely used for neuroimaging studies and, in particular, in some 

publication Freesurfer is used to examine the CC, even in the pediatric age and in subjects 

with autism (Johnson et al., 2012; Salat et al., 2005; Vatta et al., 2011; Francis et al., 2011; 

Lefebvre et al., 2014). Overall, segmentations performed by Freesurfer were judged to be of 

excellent quality and relatively accurate for brain parenchyma (i.e. GM + WM) volumetry, 

although it was noted that they tend to over-estimated WM volume when compared to manual 

segmentations (Klauschen et al., 2009). 

To date, to our knowledge, Freesurfer is the only imaging analysis tool that automatically 

parcellates CC subregions. In his publication, Johnson (2012) underlined his confidence in 

this methodology, because he reported that unpublished data shows a high correlation (about 

r=.95) between Freesurfer segmentation of the CC and manual measurements in a group of 

young normals and OCD patients. 

 

Statistical analysis 
 

The statistical examination of the CC volumes was performed using the analysis of variance 

(ANOVA) test. Even if it can be used to compare the means of the distributions of more than 

two variables, it was implemented here to compare a single variable, such as the CC volume, 

between  ASD and control groups.  

In the ANOVA, the test statistic has a Fisher-Snedecor distribution (F-distribution) under the 

null hypothesis of equal means between the groups, which variables are assumed to be 

normally distributed and to have the same standard deviation.  The probability (p-value) of 

observing a statistical value of F greater than that observed was evaluated, considering α=0.05 

as significance level  to reject the null hypothesis when  p<α.  
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The statistical analyses were univariate because each test was performed on a single variable 

compared between the groups. When the ANOVA tests were applied on correlated variables, 

such as the volumes of CC subregions, covariate analysis was considered, and then the 

significance level was Bonferroni corrected to take into account the problem of multiple 

comparisons. 

If there is a linear relationship between two variables, it is evaluated by Pearson's correlation 

index. It is an index between -1 and 1. When it is 0 there is no correlation. When the index is 

closer in absolute value to 1 or -1, the correlation increases. Correlation significance is 

evaluated by calculating the p-value and considering α=0.05 as significance threshold. 

Inter-rater reliability statistical analysis was made on the volumes taken from the file 

aseg.stats, using the Freesurfer asegstats2table. On each volume, was made a paired two-

sample t-test considering α=0.05 as significance level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

Sample description 
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CC volume of 41 children with ASD were quantified and compared to 40 gender, age, and 

non-verbal IQ-matched control subjects. In the ASD group 21 are males and 20 females; 

controls are equally divided by gender (20 males and 20 females). Regarding intellectual 

level, the distribution of non-verbal cognitive abilities is sufficiently uniform within groups 

and sex: in the ASD group 20 children (9 males and 11 females) have developmental delay or 

intellectual disability (NVIQ <70), and 21 children (12 males and 9 females) have not 

developmental delay or intellectual disability (NVIQ ≥70); NVIQ range is 34-113 and mean 

NVIQ is 73±22. In the control group 20 children (10 males and 10 females) have 

developmental delay or intellectual disability, and 20 children have not developmental delay 

or intellectual disability (10 males and 10 females); NVIQ range is 31-123 and mean NVIQ is 

73±23. Mean age of ASD group is 49 ± 12 months (age range is 28-70 months); chosen 49 

months as age cut-off, in the ASD group 22 children are younger (≤49 months of age: 10 

males and 12 females) and 19 children are older (>49 months of age: 11 males and 8 females). 

In the control group the mean age is 49 ± 14 months (age range is 22-72 months); 20 children 

are younger than 49 months (10 males and 10 females) and 20 older (10 males and 10 

females).  

Demographic and main clinical features of subjects are summarized in Table 1. 

Variable Subject group, mean ± std [range] 

ASD (n=41)  Controls (n=40) 

 Males 

(n=21) 

 Females 

(n=20) 

 Males 

(n=20) 

 Females 

(n=20) 

 ID no-ID  ID no-ID  ID no-ID  ID no-ID 

(n=9) (n=12) (n=11) (n=9) (n=10) (n=10) (n=10) (n=10) 

Age 
(months) 

  49 ± 12 

[28-70] 

     49 ± 14 

[22-72] 

          

NVIQ   73 ± 22 

[34-113] 

     73 ± 23 

[31-123] 

          

Table 1: Demographic and main clinical features of ASD and controls group; abbreviations: ASD, autism 

spectrum disorders; NVIQ, non-verbal intelligence quotient; ID, with intellectual disability; no-ID, without 

intellectual disability. 

Language level is not equally spread between ASD and controls, because subjects with ASD 

have a lower language degree. In fact, within the ASD group 13 children have a language 

development at level 1, 13 at level 2, 3 at level 3, 11 at level 4 and 1 child at level 5. By 

contrast, within the control group 6 children are a level 1, 9 at level 2, 3 at level 3, 11 at level 

4 and 11 at level 5.  

Language levels are summarized in Table 2.  
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Variable  Subject group  

ASD (n=41)   Controls (n=40) 

  Males (n=21)    Females 

(n=20)  

  Males (n=20)    Females (n=20)  

Level 1 6  7  3  3 

Level 2 5  8  3  6 

Level 3 3  0  3  0 

Level 4 7  4  6  5 

Level 5 0  1  5  6 

Table 2: Language levels of ASD and controls groups.  

 

In the ASD group autism severity has been analyzed by ADOS-G scores (Language and 

Communication-scores, Reciprocal Social Interaction-scores and Total-scores). All subjects, 

except 2 females, have Total-scores above the clinical cut-off for ASD. In males mean Total-

score is 13.1 ± 3.5 (range 7-18); in females is 14.1 ± 5.5 (range 6-22).  

CBCL1½-5 scores were accounted to assess autism severity also. In the ASD group 7 children 

(4 males and 3 females) have not any CBCL1½-5 scores so in the statistical analysis of this 

clinical feature they were not taken into account because missing data.  

 

Inter-rater reliability 

Inter-rater reliability, assessed with a paired-two-sample t-test on volumes of 10 subjects MRI 

images, shows a good degree of concordance among raters. Particularly, inter-rater 

disagreement on CC volumes is not significant for significance level p<0.05 (CC-Posterior, 

p=0.831; CC-Mid-Posterior, p=0.271; CC-Central, p=0.466; CC-Mid-Anterior, p=0.188; CC-

Anterior, p=0.163).  

 

 

Total Brain volume 

TBV is higher in ASD when compared to controls, when age and sex were considered as 

covariates (p=0.006). This difference is driven mainly by differences between males, because 

TBV was significantly higher in males ASD compared to control males (p=0.017), when age 

is considered as covariate; instead TBV does not show significant differences between ASD 
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females and control females (p=0.169). TBV results are summarized in Table 3; Figure 1 

shows TBV differences between ASD and controls. 

Males + Females         

 

Mean ± std 

  

Anova (covariates: age, sex) 

 

ASD 

 

CTRL F p 

TBV (1.08 ± 0.12) x 10˄6 

 

(1.01 ± 0.13) x 10˄6 7.72 0.006 * 

      Males           

 

Mean ± std 

  

Anova (covariate: age) 

 

ASD 

 

CTRL F p 

TBV (1.14 ± 0.11) x 10˄6 

 

(1.05 ± 0.14) x 10˄6 6.14 0.017 * 

      Females           

 

Mean ± std 

  

Anova (covariate: age) 

 

ASD 

 

CTRL F p 

TBV (1.02 ± 0.10) x 10˄6   (0.98 ± 0.12) x 10˄6 1.96 0.169 

      Table 3: TBV comparison between ASD and controls (* significance level p <0.05). 

 

Figure 1: Differences in TBV between ASD and controls, both with and without gender distinction 

(males+females, males and females); abbreviations: ASD, autism spectrum disorder; CTRL, controls.   

Corpus callosum total volume 

 

CC total volume (CC-tot) is greater in the ASD group compared to controls, and if no 

covariate was used (two-sample t-test) CC-tot is significantly greater in ASD subjects (2875 ± 
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585 mm³) compared to controls (2544 ± 577 mm³; p=0.012) and this difference is mainly 

driven by males (2971 ± 532 mm³ in ASD; 2526 ± 597 mm³ in controls;  p=0,015) rather than 

by females (2774 ± 635 mm³ in ASD; 2562 ± 570 mm³ in controls; p=0.272). 

CC-tot does not significantly differ when using either TBV (p=0,159) or TBV + age 

(p=0,100) as covariates between ASD group and controls group.  

Table 4 summarizes CC-tot analysis results.  

Males + Females  
    

covariate:  

TBV 

covariates: 

TBV + Age 

Two-sample    

t-test 

  Mean ± std  

  

            

  ASD 

 

CTRL F p F p t  p 

CC-tot 2875 ± 585  > 2544 ± 577 2,021 0,159 2,776 0,100  2,56 0,012*  

Males                   

  Mean ± std 

  

            

  ASD 

 

CTRL F p F p t p 

CC-tot 2971 ± 532 > 2526 ± 597 0,32 0,575 1,545 0,222 2,52 0,015* 

Females                 

  Mean ± std 

  

            

  ASD 

 

CTRL F p F p t p 

CC-tot 2774 ± 635 > 2562 ± 570 0,402 0,530 0,946 0,337 1,11 0,272  

Table 4: CC-tot analysis results (* significance level p<0.05). 

 

 

 

 

 

 

No differences in ASD CC-tot were found, when compared to controls and using covariates, 

either among males (p=0.575 when TBV is used; p=0.222 when TBV + age is used), or 

females (p=0.530 when TBV is used; p=0.337 when TBV + age is used). If no covariate was 

used (two-sample t-test) differences found in CC-tot is driven mainly by males ASD subjects 

who show greater CC-tot than controls (p=0.015); instead females show no significant 

difference (p=0.272). 



66 
 

See Table 4 for CC-tot results. Figure 2 shows differences within groups. 

 

Figure 2: Differences in CC-tot volume between ASD and controls, both with and without gender distinction 

(males+females, males and females); abbreviations: ASD, autism spectrum disorder; CTRL, controls.   

 

 

 

 

 

 

 
 

 

 

Sub-regions volumes 

 

Sub-regions volumes tend to be larger in ASD when compared to controls, but when 

covariates were considered (TBV, CC-tot, TBV + age, or CC-tot + age), sub-regions volumes 

do not differ significantly within groups, except that for females in Mid-Ant sub-region, 
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where ASD have a smaller volume than controls (p = 0.004, using CC-tot as covariate; p = 

0.001, using CC-tot + age as covariate). See table 4 for sub-regions volumes analysis results. 

Figure 3 shows CC sub-regions segmentation performed by Freesurfer. 

 

Figure 3: CC sub-regions as segmented by Freesurfer; abbreviations: Ant, anterior; Mid-Ant, mid-anterior; 

Centr, central; Mid-Post, mid-posterior; Post, posterior. 

 

 

 

 

 

 

 

 

Males + Females         

covariate: 

TBV 

covariate:  

CC-Tot   

Covariates: 

TBV+Age 

covariates: 

CC-Tot+Age 

Sub-region Mean±std 

  

        

 

        

  ASD 

 

CTRL F p F p 

 

F p F p 
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CC_Post  710 ± 117 > 638 ± 143 1,782 0,186 0,401 0,528 

 

2,187 0,143 0,383 0,538 

CC_Mid_post 373 ± 108 > 321 ± 102 1,16 0,285 0,021 0,885 

 

1,617 0,207 0,038 0,846 

CC_Cen 433 ± 108 > 372 ± 116 1,936 0,168 0,05 0,824 

 

2,846 0,096 0,137 0,712 

CC_Mid_Ant 546 ± 170 > 495 ± 199 0,089 0,766 3,284 0,074 

 

0,228 0,634 3,292 0,073 

CC_Ant 813 ± 195 > 719 ± 151 2,675 0,106 0,701 0,405 

 

3,046 0,085 0,6 0,441 

  

   

        

 

        

Males                         

Sub-region  Mean±std 

  

        

 

        

  ASD 

 

CTRL F p F p 

 

F p F p 

CC_Post 713 ± 95 > 648 ± 152 0,062 0,805 0,321 0,574 

 

0,059 0,81 0,337 0,565 

CC_Mid_post 408 ± 88 > 308 ± 99 4,999 0,031 4,607 0,038 

 

4,919 0,033 4,484 0,041 

CC_Cen 462 ± 98 > 359 ± 120 3,592 0,066 2,533 0,12 

 

3,745 0,061 2,712 0,108 

CC_Mid_Ant 593 ± 157 > 454 ± 179 2,565 0,118 0,654 0,424 

 

2,877 0,098 0,841 0,365 

CC_Ant 796 ± 189 > 757 ± 133 0,087 0,77 5,831 0,021 

 

0,089 0,767 6,82 0,013 

  

   

        

 

        

Females                         

Sub-region Mean±std 

  

        

 

        

  ASD 

 

CTRL F p F p 

 

F p F p 

CC_Post 706 ± 139 > 628 ± 135 2,019 0,164 2,413 0,129 

 

3,058 0,089 2,795 0,103 

CC_Mid_post 338 ± 118 > 333 ± 106 0,244 0,624 2,972 0,093 

 

0,053 0,819 2,656 0,112 

CC_Cen 403 ± 112 > 385 ± 113 0 0,992 1,988 0,167 

 

0,095 0,76 1,77 0,192 

CC_Mid_Ant 497 ± 172 < 535 ± 214 1,19 0,282 0,368 0,004* 

 

0,998 0,324 13,89 0,001* 

CC_Ant 831 ± 204 > 680 ± 162 5,32 0,027 5,553 0,024   7,441 0,01 6,348 0,016 

Table 4: CC sub-regions volumes (mm³) analysis results (* significance level p<0.01, after Bonferroni 

correction); abbreviations: Ant, anterior; Mid_Ant, mid-anterior; Cen, central; Mid_Post, mid-posterior; Post, 

posterior. 

Demographic correlations: sex and age 

 

Sex 
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In the analysis of gender differences, both among ASD and controls, no significances were 

found. Particularly no significant sex differences were observed, among ASD subjects, both 

in CC-tot, for significance level p<0.05 (p=0.258), or CC-subregions for p<0.01 (see Table 5 

for detailed sex analysis results). No significant difference were found among controls also in 

CC-tot (p=0.458) and its sub-regions.  

However, although not significant, ASD males subjects show a tendency for a larger CC-tot 

compared to females; among controls the trend is reversed. In ASD, males have almost all 

sub-regions larger, compared to females, except the Anterior sub-region, that is smaller in 

males than females (796 ± 189 < 831 ± 204). Controls show more heterogeneity among sub-

regions, and the Anterior sub-regions is larger in males than in females (757 ± 133 > 680 ± 

162). 

Figure 4 shows sex differences in CC-tot among ASD and controls. 

ASD           

 
Mean ± std 

  

ANOVA  

(covariates: TBV, age) 

 
Males 

 

Females F p 

      CC_tot  2971 ± 532 > 2774 ± 635 1,32 0,2581 

      CC_Posterior  713 ± 95 > 706 ± 139 4,29 0,0453 

CC_Mid_Posterior  408 ± 88 > 338 ± 118 0,00 0,9772 

CC_Central  462 ± 98 > 403 ± 112 0,00 0,9922 

CC_Mid_Anterior  593 ± 157 > 497 ± 172 0,02 0,8842 

CC_Anterior  796 ± 189 < 831 ± 204 4,16 0,0485 

      
Controls 

     

 
Mean ± std 

  

ANOVA  

(covariates: TBV, age) 

 
Males 

 

Females F p 

      CC_tot  2526 ± 597 < 2562 ± 570 0,56 0,4585 

      CC_Posterior  648 ± 152 > 628 ± 135 0,16 0,6910 

CC_Mid_Posterior  308 ± 99 < 333 ± 106 2,03 0,1627 

CC_Central  359 ± 120 < 385 ± 113 1,32 0,2581 

CC_Mid_Anterior  454 ± 179 < 535 ± 214 2,55 0,1191 

CC_Anterior  757 ± 133 > 680 ± 162 2,56 0,1181 

      Table 5: sex differences of callosal volumes (mm³) in ASD group and in control group (significance level 

p<0.05 for CC-tot; p<0.01 for sub-regions). 
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Figure 4: sex differences in CC-tot among ASD group and control group; abbreviations: ASD-M, ASD males; 

CTRL-M, controls males; ASD-F, ASD females; CTRL-F, controls females.   
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Age 

CC-tot positively correlated with age in both ASD and controls. The correlation is significant 

only in the control group (p = 0.009, r = 0.406), instead it is not significant in ASD (p = 

0.050, r = 0.308). In age correlation, the comparison between males and females reveals 

gender differences in both groups: in ASD group, the correlation is driven mostly by females 

(p = 0.005, r = 0.600), while males do not show significant CC volume correlations with age 

(p = 0.485, r = -0.161). On the contrary, in control group opposite results are found: the 

correlation is driven mostly by males (p = 0.040, r = 0.463), while females do not show 

significant CC volume correlations with age (p = 0.118, r = 0.361). 

Table 5 summarizes age correlations results. Figure 5 shows age distribution in ASD and 

controls. 

ASD     

 
Controls     

  p-value  

Pearson's 

index 

 
  p-value 

Pearson's 

index 

Males + Females   0,050 0,308 

 
Males + Females   0,009* 0,406 

Males 0,485 -0,161 

 
Males 0,040* 0,463 

Females 0,005* 0,600 

 
Females 0,118 0,361 

Table 5: CC-tot correlations with age (* significance level p<0.05). 
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Figure 5: CC-tot correlation with age in the ASD group and in the control group; sex are represented by 

different colours; a line is plotted only for significant correlations (p<0.05); abbreviations: ASD-M, ASD males; 

CTRL-M, controls males; ASD-F, ASD females; CTRL-F, controls females.   
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To better explore age correlation we analyzed CC-tot relations with age in two groups of ages: 

children younger than 49 months of age (named Group1: age ≤ 49 months, N=42) and older 

than 49 months of ages (named Group 2: age > 49 months, N=39 ). Both in Group 1 and in 

Group 2 no differences were found in the analysis of CC-tot when ASD are compared to 

controls and TBV, age and sex were used as covariates (Group 1, p=0.211; Group 2 p=0.400). 

A significant difference emerges between younger males: CC-tot is significantly larger in the 

ASD group compared to controls (p=0.008), when TBV and age were used as covariates. In 

older males the difference loses significance (p=0.508). In the female set no differences were 

found in Group 1 (p=0.503) and Group 2 (p=0.075).  

Figure 6 shows CC volume differences between ASD and controls in Group 1 and Group 2  

respectively. Table 6 and Table 7 summarize respectively Group 1 and Group 2 features and 

CC volume results.  

 

Figure 6: CC volume differences between ASD and controls in Group 1 (age ≤ 49 months) and Group 2 (age > 

49 months)  respectively 
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Group 1 ( age ≤ 49 months, N=42 )   

Males + Females        

 
Mean ± std 

 

Univariate analysis  

 
ASD (N=22) CTRL (N=20) (covariates: TBV, age, sex) 

   
F p 

CC total 2843.8 ± 629.8 2401.3 ± 532.7 1.62 0.211 

          
Males         

 
Mean ± std 

 

Univariate analysis  

 
ASD (N=10) CTRL (N=10) (covariates: TBV, age) 

   
F p 

CC total 3199.5 ± 533.1 2354.6 ± 344.3 9.03 0.008 * 

          
Females       

 
Mean ± std 

 

Univariate analysis  

 
ASD (N=12) CTRL (N=10) (covariates: TBV, age) 

   
F p 

CC total 2547.4 ± 560.2 2448 ± 689.7 0.47 0.503 

     Table 6: Group1 (age ≤ 49 months) features and CC total volume analysis results (* significance level p<0.05).  

Group 2 ( age > 49 months, N=39 ) 

Males + Females       

 

Mean ± std 

 

Univariate analysis  

 
ASD (N=19) CTRL(N=20) (covariates: TBV, age, sex) 

   
F p 

CC total 2911.1 ± 543.9 2686.9 ± 596.5 0.72 0.400 

          
Males       

 

Mean ± std 

 

Univariate analysis  

 
ASD (N=11) CTRL (N=10) (covariates: TBV, age) 

   
F p 

CC total 2763.6 ± 458.4 2698.3 ± 754.7 0.46 0.508 

          
Females       

 

Mean ± std 

 

Univariate analysis  

 
ASD (N=8) CTRL (N=10) (covariates: TBV, age) 

   
F p 

CC total 3113.8 ± 615.9 2675.5 ± 425.7 3.68 0.075 

     Table 7: Group2 (age > 49 months) features and CC total volume analysis results (* significance level p<0.05).  
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Clinical correlations: NVIQ and Language 

Non verbal IQ (NVIQ) 

CC-tot does not correlate with NVIQ either in ASD (p=0.685, r=0.065) or control group 

(p=0.617, r=-0.081), after Bonferroni correction (significance level p<0.05). Although not 

significantly, CC-tot of control subjects seems to have a negative correlation trend with NVIQ 

(r=-0.081), instead CC-tot of subjects with ASD, shows a positive, not significant, correlation 

with NIVQ (r=0.065); in this group the positive trend is mainly due to females (p=0,255; 

r=0,267), instead males with ASD show a negative correlation trend (p=0,360; r=-0,210), as 

controls do. 

In Table 8 NVIQ analysis results are shown. Figure 7 shows NIVQ and CC-tot distribution in 

ASD and controls. 

ASD     

 

Controls     

  p-value  

Pearson's 

index 

 
  p-value 

Pearson's 

index 

Males + Females   0,685 0,065 

 
Males + Females   0,617 -0,081 

Males 0,360 -0,210 

 
Males 0,885 -0,034 

Females 0,255 0,267 

 

Females 0,587 -0,129 

       Table 8: NVIQ correlation analysis (significance level p<0.05). 

 

Language 

CC-tot does not correlate significantly with expressive language level achieved in either the 

ASD group (p=0.883, r=-0.024) or the control group (p=0.331, r=0.158). Although not 

significantly, ASD group tends to correlate negatively with language level, both in males and 

females, conversely than controls. 

Table 9 shows language correlation analysis. Figure 8 shows speech and CC-tot distribution 

in ASD and controls. 

ASD     

 
Controls     

  p-value  

Pearson's 

index 

 
  p-value 

Pearson's 

index 

Males + Females   0,883 -0,024 

 
Males + Females   0,331 0,158 

Males 0,279 -0,248 

 
Males 0,472 0,171 

Females 0,553 -0,141 

 

Females 0,532 0,148 

       Table 9: Language correlation analysis (significance level p<0.05). 
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Figure 7: CC-tot correlation with NVIQ in the ASD group and in the control group; sex are represented by 

different colours; no line is plotted because no significant correlations were found (p<0.05); abbreviations: 

ASD-M, ASD males; CTRL-M, controls males; ASD-F, ASD females; CTRL-F, controls females.   
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Figure 8: CC-tot correlation with speech (expressive language level) in the ASD group and in the control group; 

sex are represented by different colours; no line is plotted because no significant correlations were found 

(p<0.05); abbreviations: ASD-M, ASD males; CTRL-M, controls males; ASD-F, ASD females; CTRL-F, 

controls females; level 1, Preverbal Communication; level 2, First Words; level 3, Word Combinations; level 4, 

Sentences; level 5, Complex Language. 
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Clinical correlations: autism severity  

ADOS-G scores  

CC-tot significantly correlates (p<0.05), in a negative direction, with ADOS-G Total scores 

(p=0.018, r= -0.372). All ADOS-G scores show a negative trend correlation with CC-tot, both 

in males and females. A negative significant correlation (p<0.025) was found for Language 

and Communication scores (p=0.017, r= -0.376), after Bonferroni correction, in the ASD 

group (males+females). Reciprocal social interaction scores shows a negative correlation 

trend but it does not result significant after Bonferroni correction (p=0.034, r= -0.336).  

Table 10 shows correlations between ADOS scores and CC-tot in the ASD group. Figures 9a, 

9b, 9c represent ADOS-G scores correlation with CC-tot. 

 

ADOS-G and CC-tot     

  p-value Pearson's index 

Males + Females     

ADOS-G - Language and Communication 0,017 * -0,376 

ADOS-G - Reciprocal Social Interaction 0,034 -0,330 

ADOS-G Total  0,018 * -0,372 

      

Males     

ADOS-G - Language and Communication 0,279 -0,248 

ADOS-G - Reciprocal Social Interaction 0,295 -0,240 

ADOS-G Total  0,233 -0,272 

  

 

  

Females     

ADOS-G - Language and Communication 0,048 -0,459 

ADOS-G - Reciprocal Social Interaction 0,114 -0,374 

ADOS-G Total  0,076 -0,416 
Table 10: ADOS-G scores correlations with CC-tot (* significance level p<0.05 for Total scores, p<0.025 for 

Language and Communication scores and Reciprocal Social Interaction scores). 
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Figure 9a: CC-tot correlation with ADOS-G Language and Communication scores in the ASD group; sex are 

represented by different colours; a line is plotted for significant correlations (p<0.025); abbreviations: ASD-M, 

ASD males; ASD-F, ASD females.   

 

 

Figure 9b: CC-tot correlation with ADOS-G Reciprocal Social Interaction scores in the ASD group; sex are 

represented by different colours; no line is plotted because no significant correlation was found (p<0.025); 

abbreviations: ASD-M, ASD males; ASD-F, ASD females.   
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Figure 9c: CC-tot correlation with ADOS-G Total scores in the ASD group; sex are represented by different 

colours; a line is plotted for significant correlation (p<0.05); abbreviations: ASD-M, ASD males; ASD-F, ASD 

females. 

We search for a potential ADOS-G scores and TBV correlation, but no significant 

relationship was found.  

Table 11 show ADOS-G and TBV correlation analysis. 

ADOS-G and TBV     

  p-value Pearson's index 

Males + Females 

  ADOS-G - Language and Communication 0,3729 -0,1447 

ADOS-G - Reciprocal Social Interaction 0,2421 -0,1893 

ADOS-G Total  0,2620 -0,1816 

  

  Males 

  ADOS-G - Language and Communication 0,5116 0,1517 

ADOS-G - Reciprocal Social Interaction 0,8278 -0,0505 

ADOS-G Total  0,8638 0,0398 

  

  Females 

  ADOS-G - Language and Communication 0,1035 -0,3851 

ADOS-G - Reciprocal Social Interaction 0,3237 -0,2394 

ADOS-G Total  0,2100 -0,3013 
Table 11: correlation analysis between ADOS-G scores and TBV (* significance level p<0.05 for Total scores, 

p<0.025 for Language and Communication scores and Reciprocal Social Interaction scores). 
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CBCL 1½-5 scores 

 

CC-tot does not correlate with CBCL1½-5 scores, in none of the analyzed scales: 

Internalizing Problems (p=0.275), Externalizing Problems (p=0.613) and Total Problems 

(p=0.714), Withdrawn (p=0.284),  Attention Problems (p=0.706), and DSM-oriented 

Pervasive Development Problems (p=0.242). 

However, among other, a tendency for negative, not significant, correlations for the DSM-

oriented scale Pervasive Development Problems (p=0.242, r = -0.210) and Withdrawn scale 

were found (p=0.282, r= -0.192). 

Table 11 summarizes CBCL1½-5 scores correlations with CC-tot results. Figure 10 shows 

data about DSM-oriented Pervasive Development Problems and Withdrawn scales.  

CBCL 1½-5 

 

  

  p-value 

Pearson's 

index 

Males + Females     

Int 0,275 -0,196 

Ext 0,613 0,091 

Tot 0,714 -0,066 

Withd 0,284 -0,192 

Atten 0,706 0,068 

DSM-PDP 0,242 -0,210 

      

Males     

Int 0,993 -0,002 

Ext 0,859 0,047 

Tot 0,831 0,056 

Withd 0,952 -0,016 

Atten 0,401 0,218 

DSM-PDP 0,490 0,180 

      

Females     

Int 0,218 -0,326 

Ext 0,668 0,116 

Tot 0,649 -0,123 

Withd 0,259 -0,300 

Atten 0,851 -0,051 

DSM-PDP 0,101 -0,425 
Table 11: CC-tot correlations with CBCL1½-5 scores analysis (significance level p<0.05); abbreviations: Int,  

Internalizing problems scale; Ext, Externalizing problems scale; Tot, Total problems scale; Withd, Withdrawn 

scale; Atten, Attention problems scale; DSM-PDP, DSM-oriented Pervasive developmental problems scale.  
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Figure 10: CC-tot correlation with CBCL1½-5 scores in the ASD group; sex are represented by different 

colours; a line is plotted for significant correlation (p<0.05); abbreviations: ASD-M, ASD males; ASD-F, ASD 

females; CBCL dsm-dps, DSM-oriented Pervasive developmental problems scale; CBCL ritiro, Withdrawn 

scale. 
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Discussion 

Autism Spectrum Disorder (ASD) are an heterogeneous spectrum of neurodevelopmental 

disorders characterized by early-onset abnormalities in social communication and interaction, 

and atypically restricted and repetitive behaviors and interests. The impaired social interaction 

and communication, although permanent, is expressed by symptoms that can vary over time  

during development. Symptoms often are present in the early developmental period, but may 

not become fully manifest until social demands exceed limited capacities, or may be masked 

by learned strategies in later life. 

Despite its high and increasing prevalence (recently estimated in about 1 child every 68; 

Blenner, 2014), it is not yet clear what causes autism, and neurobiological investigations 

about ASD etiology have helped to create an impressive number of studies in literature. 

Genetics has a key role in the etiology of autism, and twins studies have suggested that autism 

has high heritability, that occurs in the context of environmental pre- and/or post-natal risk 

factors. This gene-environment interplay, in epigenetic mechanisms, causes neurobiological 

anomalies in brain development, resulting in the heterogenic spectrum of autistic symptoms. 

Many studies have identified several atypicalities in brain of subjects with ASD and possible 

neuroanatomical, cellular, and molecular underpinnings etiological factors of autism have 

been identified. 

One of the most replicated data on neuroanatomical studies of ASD, is the abnormal 

overgrowth of brain volume (TBV) in early development (Courchesne et al., 2001; 2004; 

2011; Schumann et al., 2010; Nordahl et al., 2011; Shen et al., 2013), with over 90% of 

autistic toddlers (2-3 years of age) exhibited abnormally larger total brain, compared to 

neurotypical peers. Before 2 years of age, brains of subjects with ASD show an abnormal 

expansion trajectory, as result of increased rate of brain growth from early infancy  through 

preschool period, followed by an abnormally slow cerebral volume increase during late 

childhood, puberty and adolescence. These and other evidences from electrophysiology, 

functional neuroimaging, molecular genetics and information processing studies, have given 

rise to the idea that autism is characterized by atypical neural connectivity, rather than by 

anomalies in different brain regions. 

Although yet consistency about connectivity is low, data support the hypothesis that neural 

networks in autism are atypical, leading to the "disconnection syndrome theory" (Frith et al, 

2004; Melillo et al., 2009) and  the "under-connectivity theory" of autism (Just et al., 2012). 

Recent fMRI data reveal hyper-connectivity in subcortical networks and hypo-connectivity in 

cortico-cortical and interhemispheric functional networks, in a large sample of males with 

ASD (Di Martino et al., 2014). 

In the disconnection hypothesis framework, a growing body of literature studies corpus 

callosum (CC), as the largest white matter structure in human brain and the main connection 

and information interhemispheric transfer structure. A further boost to the study of CC in 

autism has been given by the detection of autistic symptoms in individuals with agenesis of 

the CC (Booth et al., 2011; Paul et al., 2014), supporting the hypothesis that congenital 

disruption of the CC constitutes a risk factor for developing ASD. Thus, to date, we can find 
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192 papers about CC and autism on the main engine of scientific research, and many of these 

studies are focused on callosal size (volume or area).  

Most of these studies identified reductions of the CC size in subjects with ASD (see review by 

Bellani et al., 2013). However findings are not so consistent and some studies reveal no CC 

differences between ASD and controls (Waiter et al. 2004; Bonilha et al. 2008; Ke et al. 2008; 

Ecker et al. 2010; Toal et al. 2010; Cheng et al. 2011; Mengotti et al. 2011; Hong et al. 2011; 

Calderoni et al. 2012; Lefebvre et al., 2014). Interestingly no study published, in our 

knowledge, reports CC size increased in ASD. Moreover some studies report a reduction of 

the entire volume of the CC (Hardan et al., 2009; McAlonan et al., 2009; Duan et al., 2010; 

Anderson et al., 2011), others report a reduction of one or more parts of the CC, mainly in the 

anterior region (Alexander et al., 2007; Keary et al., 2009; Thomas et al., 2011), others mainly 

in the posterior region (Waiter et al., 2005) or simultaneously in the anterior and posterior 

regions (Vidal et al., 2006).  

Volumetric reduction of CC size has been found both in adults and children, but studies 

performed on children involved mainly school-age subjects and adolescents, and only few 

studies are carried out on preschoolers.  

Data about size of CC in preschoolers with ASD are few, inconsistent and not comparable, 

due to differences on sample selection (age, sex, clinical features of participants) and size 

parameters used (volume vs area). Among this publications, some studies report a reduction 

in CC size in ASD compared to controls (Duan et al., 2010; Boger-Mediddo et al., 2006; 

Prigge et al., 2013), others found no differences (Riva et al., 2011; Calderoni et al., 2012; 

Xiao et al., 2014). 

The main goal of our study is to compare the CC volume of a well-selected group of 41 

preschoolers with ASD and 40 age-, sex- and NVIQ-matched controls subjects. We analyzed 

CC subregions volume in both groups and callosal size relations to demographic and clinical 

variables of ASD and control group (gender, age, non-verbal IQ, and language) have been 

examined. Lastly, in the ASD group we assessed callosal volume relationship with autism 

severity. 

Corpus callosum and its hypothetical growth trajectory 

In preschoolers with ASD of our sample, CC is larger than their peers without autism. CC 

total volume (CC-tot) in fact is significantly greater in ASD group when compared to 

controls, and this difference is mainly driven by males rather than by females. But when TBV 

only, or TBV and age together, are considered, CC-tot does not significantly differ between 

ASD group and control group, because in ASD children TBV is significantly larger than 

controls during early development, as already widely described in literature (Courchesne et 

al., 2001; 2004; 2011; Schumann et al., 2010; Nordahl et al., 2011; Shen et al., 2013), 

especially in males (Nordahl et al., 2011). Our results are consistent with other data reported 

in literature (Xiao et al, 2014), resulting from a comparable sample groups (males and females 

preschoolers with ASD, with and without intellectual deficits) and size measurement data, 

using volume measures instead area. In our opinion the volume measure describes better CC 

dimensions than area measure, considering callosal tridimensional features, and better 

represent real size of the structure. Interestingly, previous studies that used area as measure 

parameter, found that CC is smaller in ASD subjects compared to controls (Boger-Mediddo et 
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al., 2006; Prigge et al., 2013), instead studies using volume as measurement value found no 

differences. This incongruity could be explained by anomalies in the shape of CC. Duan 

(2010) reported a significant reduction in the callosal length in ASD subjects, but the 

difference in the width was not significant, suggesting that the decrease found in CC size, 

especially in studies using mid-sagittal area, could be due to the decrease in the anterior-

posterior length, rather than to the tri-dimensional reduction.  

Results of these studies about CC area are not comparable, given that ASD samples are very 

different: in fact Boger-Mediddo analyzed CC area of 45 preschoolers ASD (38-54 months of 

age, 89% males), instead Prigge examined a wide range age sample (3-36 years old, only 

males). Anyway both reported that CC is smaller in ASD subjects when TBV is considered 

and not in absolute manner and, interestingly, callosal area inversely correlates with autism 

severity. 

Other studies, using volume measurement, reported no differences in CC or other white 

matter structure of ASD subjects compared to controls, but as previously said, also these data 

are not comparable, given that sample selections are different:  Calderoni (2012) involved  

only females and Riva (2011) recruited older children (age range 3-10 years) only with 

intellectual impairment. Another study about CC volume in ASD is that by Duan (2010), 

where a reduction in CC-tot was described, especially in its anterior portion. This reduction 

becomes more significant when considering TBV. Again this study result is not comparable to 

our data because sample age is very different to our, given that they analyzed MRI data from 

a 3-30 years old aged sample. Maybe the CC-tot reduction reported by Duan is mainly due to 

older subjects, consistently whit other literature data describing smaller callosal size in older 

ASD subjects.  

In fact, it is interesting to note that, whereas older ASD subjects (school-aged, adolescents and 

young adults) have widely reported smaller CC than controls (Bellani et al., 2013), data on 

preschoolers are less consistent, and those studies using volume as measure parameter report 

no differences in callosal size of preschoolers ASD compared to controls (Riva et al., 2011; 

Calderoni et al., 2012; Xiao et al., 2014). Taken together, these data lead to the hypothesis 

that CC could have an abnormal growth trajectory in ASD compared to controls, 

characterized by a  greater development in early ages, followed by a slower rate of growth in 

older ages, resulting in smaller CC in adolescents and adults patients. Larger reductions in CC 

size were found in advanced age in a meta-analysis involving subjects whose mean age was 

approximately 14 years (Frazier-Hardan, 2009). This hypothesis is not surprising, because this 

hypothetical and atypical CC growth trajectory seems to reflect abnormal TBV growth 

trajectory in ASD, that, as widely reported, is characterized by a rapid overgrowth with larger 

brain volumes in early stage of development, whereas subsequently in older children cerebral 

volume growth is slower, so in adults brain could be normal sized or smaller than controls.  

The abnormal growth pattern of CC in ASD children is confirmed by the different correlation 

between CC-tot and age found in our study, along all the age-range used (54 months, from 18 

to 72 months of age). CC size positively correlates with age both in ASD group and in control 

group, but this relationship is statistically significant only in preschoolers without ASD and it 

is not significant in ASD subjects. This results could mean that in preschoolers ASD the CC is 
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initially larger but tends to grow slowly than control, resulting smaller in older children and 

adults, as reported in literature. This hypothesis is supported by our results about CC-tot in a 

subgroup of younger children (≤ 49 months of age), particularly males, who have a 

significantly larger CC than their peers without ASD, when considering TBV also, whereas in 

older preschoolers (> 49 months of age) this difference disappear.  

In a developmental perspective comparison of CC mid-sagittal area across 30-years age range, 

Prigge (2013) found that similar age-related changes were found in autism and controls (3-36 

years old), although a slower isthmus growth was found. Though it was not a longitudinal 

study, it supported the brain maturation abnormalities hypothesis in autism. The first 

longitudinal study of the CC in autism was that by Frazier and Hardan group (2012), that 

investigated the volumetric changes of the CC during 2 years, in 7-13 years old subjects with 

ASD. Authors reported that volume of the CC increases with age in a similar measure 

between ASD and controls. This finding contrasted with the meta-analysis by the same group 

(2009), that reported a worsening of the reduction in the volume of the CC over time, except 

in the rostral region. However these studies involved older children, adolescents and young 

adults, thus they are poorly helpful to explain early developmental anomalies in callosal 

growth.   

The hypothesis of atypical development of CC is also supported by other data about callosal 

white matter integrity in preschoolers. Some DTI-based studies already described 

abnormalities in the integrity of the CC in ASD population; in adolescents and adults findings 

are quite consistent, reporting a reduction of the FA in the CC in ASD (Alexander et al., 2007; 

Keller et al., 2007; Kumar et al., 2010; Travers et al., 2012; Aoki et al., 2013), although with 

some exceptions that found no differences (Cheng et al., 2010; Thomas et al., 2011; Hanaie et 

al., 2014). Other studies reported microstructural white matter anomalies in CC of ASD 

children also, particularly an increased fractional anisotropy (FA) value was found in 

preschoolers with ASD (Ben Bashat et al., 2007; Weinstein et al., 2011; Xiao et al., 2014), 

leading Authors to speculate an early and accelerated abnormal maturation of white matter in 

ASD young children. FA assess the degree of anisotropic diffusion in tissue and it is very 

sensitive to microstructural anomalies (Alexander et al., 2007), such as axonal density, size, 

myelination and organization of fibers within a white matter voxel. Whereas FA is increased 

in preschoolers ASD, it is reported to be reduced in older ASD subjects, as described in a 

quite recent review of literature (Travers et al., 2012). Some Authors recently reported an 

increased apparent diffusion coefficient (ADC), an indirect measure of white matter integrity, 

in CC of preschoolers with ASD (Razek et al., 2014). Its increasing is positively correlated to 

autism severity. In older children ADC decreases in ASD but not in controls (Mengotti et al., 

2011). Authors underlined that age correlates negatively with callosal ADC only in the ASD 

group and not in neurotypical children, supporting the role of the altered trajectory of white 

matter growth in ASD during childhood. An altered myelination of the CC has been found in 

preschoolers with ASD, particularly in region II and III of Hofer-Frahm segmentation (Gozzi 

et al., 2012). 

To explain the atypical overgrowth of brain and CC in ASD, some Authors speculate that this 

early brain overgrowth should result in a greater-than-normal amount of pruning of long-
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distance connectivity, thus a greater brain overgrowth results in a greater connections pruning 

(Lewis et al., 2012). ASD show an inverse relation between callosal fiber length and CC size,  

supporting the hypothesized impact of fiber length in the over-pruning during development, 

resulting in a smaller CC.  

Taken together, these finding about macro-structural (i.e., volumetric) and micro-structural 

features of CC in ASD children support not only the theory of atypicalities in connectivity 

and in white matter tracts, particularly in CC, but lead also to the hypothesis that these 

anomalies are age-related in developmental stages. Specific growth trajectory of CC in ASD 

is still unknown but it may be abnormal, as all brain growth is, and these findings support this 

hypothesis. Therefore it is important to consider the role of abnormal developmental 

trajectories in studying neuroanatomical features of ASD brains and maybe longitudinal 

studies are needed to better explore atypical changes during development in young children 

with ASD. Longitudinal studies could also explain if callosal and brain growths have a linear 

proportion or they have a different and indipendent growth trajectory one to each other.  

Higher variability in CC size was reported in ASD compared to controls (Alexander et al., 

2007jan; Prigge et al., 2013). Also in our sample, ASD children, especially females, show 

higher variability in CC volume than controls.  

Sex differences  

 

In preschoolers with ASD, CC-tot is greater in males than females, but this difference does 

not reaches statistic significance. Particularly no significant sex difference, among ASD 

subjects, emerges both in CC-tot or CC sub-regions, when TBV and age were considered. No 

significant sex-related difference is found, in CC-tot or sub-regions, among control group 

also. Although not significant, however ASD males children show a tendency for a larger CC-

tot compared to females; among controls the trend is reversed. In ASD, males have almost all 

sub-regions larger, compared to females, except the Anterior sub-region, that is smaller in 

males than females. Instead controls show more heterogeneity among sub-regions, and the 

Anterior sub-regions is larger in males than in females.  

Recent studies continue to report in the prevalence of ASD a male bias and to suggest sex 

differences in phenotypic presentation (such as fewer restricted and repetitive behaviors, 

greater social communication impairment, lower cognitive ability, weaker adaptive skills in 

females than males; see as example the recent study about behavioral and cognitive sex-

related differences in ASD, by Frazier et al., 2014). Sex-related genetic differences (females 

are protected from the effects of heritable and de-novo ASD risk variants) and sex-related 

different in genetic-hormonal modulation were also reported (sex chromosomal genes and/or 

sex hormones, especially testosterone, may modulate the effects of genetic variation on the 

presentation of the phenotype; see as example Werling et al., 2013). 

The investigation of sex-related differences in brain structure is relevant to understanding the 

pathophysiology of ASD, but to date very limited neuroimaging data are available to evaluate 

sex-related brain features, and, to date, no study, to our knowledge, analyses CC sex-

differencs in preschoolers with ASD. Moreover studies performed on adults report 

inconsistent findings. In a high-functioning adults sample, quite recently Lai (2013) found 
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that the CC (splenium) is greater in females with autism than typical females, insted males 

with autism have CC equal to typical males. More recently, unpublished data about CC size in 

the ABIDE large sample (Lefebvre et al., 2014), reported that callosal volume in ASD adults 

was significantly smaller among females compared with males; however this difference is 

explained by the significant difference in TBV between females and males (as adding TBV as 

a covariate made the sex effect not statistically significant). In another high-functioning adults 

sample, with respect to gender, only TBV was significantly increased in males compared with 

females, resulting in a significantly decreased CC/TBV ratio in males (independently from 

gender and fully attributed to brain size). This finding is in accordance with the hypothesis 

that brain size, per se, is the relevant factor and contradicts  the sexual dimorphism hypothesis 

of the human CC (Tepest et al., 2010).  

Also in healthy subjects findings about CC sexual dimorphism are inconsistent. Several 

studies in fact reported the presence of a sexual dimorphism in the human CC, however it is 

not yet clear whether CC morphological differences described in literature are related to 

differences in brain size (Bishop and Wahlsten, 1997; Tepest et al., 2010; Luders et al., 2014), 

typically greater in males than in females, or are themselves linked to sex dimorphism 

(Sullivan et al, 2001). Disagreement also exists with respect to the direction of the sexual 

differences, with some studies reporting larger CC in men (Luders et al., 2014) and other 

studies reporting larger callosal regions in women (Tepest et al., 2010). Several studies also 

failed to detect any significant sexual difference in size of CC (Allen et al.,1991). 

In this scenery, our findings are important but poorly comparable. However they support the 

hypothesis that males and females with ASD may have different not only clinical but also 

neuroanatomical features, such as CC volume and volume distribution among its sub-regions, 

though few substantial. Globally we can assume that females ASD have callosal features 

more similar to controls than males ASD. CC-tot in ASD females in fact does not 

significantly differ than control females callosal volume, instead volume differences are 

bigger among males, given that males with ASD have CC-tot significantly larger than control 

peers (if any TBV is not considered). In ASD, males and females show different CC growth 

pattern also: while in males CC shows an early overgrowth followed by a slower growth, in 

females callosal growth is similar to those of controls and homogenous. 

Obviously this hypothesis has to be better explored with further studies, considering brain size 

and age as potential interfering factors. Although few studies analyzed developmental sex-

related features in brains of subjects with ASD, some sex differences in the neuroanatomy of 

these children were reported, especially in the early brain overgrowth (Sparks et al., 2002; 

Bloss and Courchesne, 2007; Schumann et al., 2010; Nordahl et al., 2011) and 

interemispheric functional connectivity (Schulte et al., 2010). Our data supports the 

hypothesis that that some aspects of the neuroanatomy of autism are sex-dependent and males 

and females may have different structural neurophenotypes, but how these neuroanatomical 

differences relate to clinical presentation of ASD in boys and girls remains to be understood. 
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Sub-regions analysis 

 

Another difference between males and females CC, regards sub-regions volume.  

Quite all sub-regions tend to be larger in preschoolers with ASD when compared to controls, 

but when global volumes, such as TBV or CC-tot, and age were considered as covariates, sub-

regions volumes do not differ significantly between groups.  

This finding is in contrast with several other studies analyzing sub-regions volumes. Whereas 

some of them, in fact report in ASD subjects a reduction of the entire CC and all, or almost 

all, its sub-regions (Hardan et al. 2009; McAlonan et al. 2009; Anderson et al. 2011; 

Alexander et al. 2007), most of studies report internal differences in callosal segmentation 

size, mainly a reduction of the anterior region (Keary et al. 2009; Frazier-Hardan, 2009; Duan 

et al. 2010;), in the posterior region (Waiter et al. 2005; Freitag et al., 2009; Prigge et al., 

2013) or simultaneously in the anterior and posterior regions (Vidal et al. 2006; Chung et al, 

2004). Among these, studies performed with preschoolers subejcts are those by Duan (2010) 

and Prigge (2013), reporting in children with ASD a reduction in each sub-regions of the CC 

or only in the isthmus, respectively.  

In our sample, the only sub-regions maintaining significance, when CC-tot and CC-tot + age 

are used as covariates, is the Mid-Anterior sub-region, that in females with ASD is 

significantly smaller when compared to females without ASD; this finding survives 

Bonferroni correction (significance value p<0.01). In our study, segmentation of CC was 

automatically performed with the software used for image processing (Freesurfer). This 

software subdivide CC in 5 regions on the basis of equally distant segments along its main 

axis, so no functional subdivision is done, but only a dimensional one (see Appendix for 

observation about methodological techniques). However we can assume, simply on a 

perceptive basis, that Mid-Anterior portion corresponds approximately to rostral body and 

part of the anterior mid-body of CC, according to Witelson subdivision. Many hypothetical 

scheme for CC segmentation were proposed in time (as example Witelson, 1989; Hofer-

Frahm, 2006; Chao et al., 2009; Fabri-Palonara, 2013), often with inconsistent results. The 

most used in studies about CC is the historical and geometrically-based Witelson scheme, but 

more recently Hofer-Frahm, starting from Witelson scheme, revisited CC topography on the 

basis of DTI-based tractography and cortical connectivity information. Mid-Anterior sub-

region,  as identified by Freesurfer software, approximately overlap rostral body and the first 

part of anterior mid-body of Witelson subdivision, that corresponds to region II of Hofer-

Frahm scheme, which contains fibers projecting to premotor and supplementary motor 

cortical areas (figure 11 shows a comparison between Freesurfer segmentation, A; Witelson 

subdivision, B; and Hofer-Frahm scheme, C). Both premotor and supplementary motor 

cortical areas are mainly involved in movements control. The premotor cortex is an area of 

motor cortex lying within the frontal lobe just anteriorly to the primary motor cortex and 

occupies part of Brodmann's area 6 (Barr - Kiernan, 1995). It is involved in the direct control of 

movement, especially in fine motor tasks, playing a role in planning (Purves et al., 2001), and 

in the spatial and sensory guidance of movement (such as selection of movements based on 

external events) and speech motor planning; thanks to the "mirror neurons system", situated in 

the ventral premotor cortex, this area is involved in social cognition also, such as 

understanding others' actions and their intentions behind them, and it underlies mechanisms of 
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observational learning and imitation (Cattaneo et al., 2009). The supplementary motor area is 

located in the medial part of Brodmann's area 6. Its neurons project directly to the spinal cord 

and may play a role in the direct control of movement, such as the control of postural stability 

during stance or walking, coordinating temporal sequences of actions, bimanual coordination, 

and the initiation of internally generated movement (as opposed to stimulus driven 

movement) and it is involved in relation and adaptation to the surroundings. Anatomically and 

functionally related, premotor cortex, particularly the "mirror neuron system" (Iacoboni et al., 

2007), and supplementary motor cortex (Saugstad, 2008) are both involved in autism 

symptoms (Puzzo et al 2010; Peeva et al., 2013). Meta-analysis on CC size performed by 

Frazier and Hardan (2009) underlined that the portion showing the largest reduction in the CC 

of ASD is the rostral body, and the normalization of the rostral body, observed in adolescents, 

is associated with a decrease in externalizing and repetitive behavior, improvement in social 

interaction, and fine motor coordination (Frazier et al., 2012). This callosal region has less 

white matter density and higher ADC value in ASD subjects, and these findings are 

associated with a severer disoerder (Hong et al., 2011).These findings appear inconsistent and 

insignificant, but taken together they lead 

to the hypothesis that CC sub-regions 

may vary independently one to each 

other, and changes may be age and sex-

related. Mid-Anterior (or rostral body) 

region seems to have a key role in ASD, 

thanks to its fibers originating from 

cortical areas involved in social 

cognition and motor coordination,  and 

its development may have a peculiar 

growth trajectory compared to other sub-

regions in subjects with autism. Why, in 

our sample, only females show this 

anomaly in sub-regions volume, should 

be further explored. It can be explained 

by a severer disoerder in females (in our 

sample females with ASD have higher 

ADOS-G scores than males), but also 

females may have intrinsic differences in 

callosal structure than males. 

Figure 11: comparison between Freesurfer 

segmentation, A; Witelson subdivision 

(Witelson, 1989), B; and Hofer-Frahm scheme 

(Hofer-Frahm, 2006), C; abbreviations: Ant, 

anterior; Mid-Ant, mid-anterior; Centr, central; 

Mid-Post, mid-posterior; Post, posterior; 1, 

rostrum; 2, genu; 3, rostral body; 4, anterior mid-

body; 5, posterior mid-body; 6, isthmus; 7, 

splenium; CC1, CC2, CC3, CC4, CC5, regions I, 

II, III, IV, V respectively).  
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Clinical correlations 

ASD are frequently associated with cognitive impairment and a reduced CC size has been 

related, in subjects with autism, to lower IQ (Freitag et al., 2009; Verhoeven et al., 2009; 

Prigge et al., 2013) and poor performance in neuropsychological tests (Keary et al., 2009). 

Alexander (2007jan) described a specific subgroup of autistic patients with smaller CC 

volume, reduced WM integrity (lower FA values and higher MD values), poorer intellectual 

abilities and slower processing speed. Social and communication deficits have been reported 

in patient with other type of callosal disruption, as in subjects with AgCC (Lau et al., 2013; 

Paul et al., 2014), a congenital syndrome frequently associated to intellectual deficit, and 

among this patients those with a diagnosis of ASD show a lower IQ also (Booth et al., 2011). 

Callosal sizes were related to intelligence in neurotypical children also, and the observed 

negative correlations between callosal thickness and IQ in the pediatric population contrast 

with the positive correlations typically reported in adult samples, suggesting again that 

relationships between callosal morphology and clinical and demographic features are highly 

dynamic during brain maturation (Luders et al., 2011). Studies about CC size and intelligence 

relationship performed with children samples are few, and to our knowledge, the only one 

involving preschoolers with autism is that by Prigge (2013), who reported, in his wide age-

range sample (3-36 years), an increased callosal area associated with an higher intelligence in 

the ASD group.  

In our well selected and matched sample, no significant correlation was found between CC 

volume and non verbal IQ, either in ASD group or in control group. Although not 

significantly, callosal size of control subjects seems to have a negative correlation trend with 

non verbal intelligence, instead children with autism have a not significant correlation in the 

opposite direction, thus those with larger CC reached better performance in non verbal tasks 

and, conversely, children with smaller CC have lower IQ. In our ASD group the positive 

correlation trend is mainly due to females, instead males show a negative correlation trend, as 

controls do, suggesting again that sex-related differences in ASD regard both clinical and 

structural features. This findings are consistent to the few data of literature reported in this 

specific population, but due to the heterogeneity of sample selection and clinical assessment 

data, a real comparison can not be done. Regarding sample selection should be underlined 

again the importance of further studies on children population, with small age-range selection, 

in consideration of the dynamic nature of neuroanatomical features during development, as 

reported in neurotypical children also. Moreover given that our sample includes children in 

the early stage of preschool age (age-range is from 18 months of age), we choose to select 

only non verbal abilities assessment, to avoid bias potentially derived from the presence or the 

absence of language skills, instead other studies used also verbal type assessment tests, and 

this variability creates further inaccuracy in a findings comparison. 

Language correlation to callosal size was separately analyzed and, as observed for non verbal 

IQ, no statistically significant relationship was found between expressive verbal skills and CC 

volume. However, although weak, an opposite correlation was found between groups: ASD 

subjects with higher language level have smaller CC, conversely than controls. In literature, 

some fMRI-based studies are performed to explore anatomical correlation to language skills, 

and a weaker interemispheric synchronization (ie., functional connectivity) in language 
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cortical areas was found in subjects with ASD (Just et al., 2004; Dinstein et al., 2011) as an 

evidence of under-connectivity. Studies based on DTI-analysis found no correlation between 

ADC of CC and language in ASD (Razek et al., 2014). Instead no study aim to assess the 

correlation between verbal abilities and callosal size. However CC represent the larger 

interemispheric structure in human brain and could reflect functional connectivity (Booth et 

al., 2011; Just et al., 2012). Recent unpublished data (Di Martino) found a negative correlation 

between functional interemispheric connectivity and expressive language level in 

preschoolers with ASD. These results are consistent with the weak negative correlation found 

in our study about language and CC volume. This finding could be explained by the 

hypothesis that a less inter-connected and more lateralized language function tends to be more 

efficient, as occurs in neurotypical population, whose verbal function are lateralized in the 

dominant left hemisphere.  

It is interesting to note that the two different features of cognitive skills, such as non verbal IQ 

and language abilities, are inversely related with CC: in the ASD group in fact lower IQ is 

associated with smaller CC, instead a poorer verbal expression is associated  with a larger CC. 

In the control group we observe the opposites correlations, both in non verbal and verbal 

skills. Maybe this apparent incongruity could be explained by the different nature of these 

cognitive functioning areas, subtended by different neuroanatomical network. These findings, 

although statistically insignificant, support again the hypothesis that the atypical cognitive 

profile, both verbal and non verbal, of children with ASD have some kind of abnormal 

correlation with underlying brain structures when compared to subjects without autism. 

CC is larger, though not significantly, in preschoolers with ASD, but callosal volume 

inversely correlates with autism severity, measured by ADOS-G Total scores (the analysis of 

correlation performed using CBCL1½-5 reveals no significances, though DSM-oriented 

Pervasive Development Problems scores show a negative correlation trend with CC volume). 

Instead no correlation was found between ADOS-G scores and TBV. These findings together 

may mean that CC, that tends to be larger in ASD, is smaller in children with a severer 

disorder, indipendently by brain size.  Maybe this apparent incongruity could be explained by 

the presence of a subgroup of patients with a severe form of autism, within the ASD, who 

have a smaller CC. This finding is consistent with other studies reporting a smaller CC in 

severer ASD (Hardan et al., 2009), in the preschooler population also (Boger-Megiddo et al., 

2006; Prigge et al., 2013). These results suggest the hypothesis that different clinical 

phenotypes within the autism spectrum could be subtended by different neuroanatomical 

substrates, probably reflecting not in CC size only but in callosal functionality also. In this 

sense, children with autism with a larger CC could likely have a CC with a better functioning, 

although macroscopically it is farther from the mean size of children without ASD. 

Conversely, those autistic children with a smaller CC, although with normal callosal size, may 

have more microstructural anomalies or less compensatory mechanisms, resulting in a severer 

symptomatology. Higher FA values in the CC of ASD young children were found (Ben 

Bashat et al., 2007; Weinstein et al., 2011; Xiao et al., 2014), but no correlations with autism 

severity were searched; ADC is increased in CC of preschoolers with ASD and correlates 

with autism severity (Razek et al., 2014). Maybe further studies performed about functional 

integrity of the CC in relation to its volume and to detailed clinical and demographic features 
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of ASD preschoolers sample, could better outline phenotypic variability of autism in early 

age. Another possible explanation of the relation between a severer autism and a smaller CC 

could be that children presenting more autistic symptoms may have an earlier reduction of CC 

size, that in children with a mild phenotype begins afterwards.  

The apparent incongruity of our results could be caused by the presence of a greater 

heterogeneity in clinical and anatomopathological anomalies of the ASD. In fact, a grater 

intrinsic variability in the structure of CC has been described in autism compared to 

neurotypical population (Alexander et al., 2007; Prigge et al., 2013), thus this heterogeneity 

may reflect in the variability of clinical manifestations and development trajectories of autistic 

spectrum.    

It is interesting to note that among ADOS-G subscale, particularly ADOS-G Language and 

Communication scores correlate, in a negative and statistically significant manner, with CC 

volume, thus a smaller CC is associated with lower communication skills. Instead, the not 

significant correlation found in the language analysis, goes in the opposite direction: a smaller 

CC is associated with better language skills. This appearent incongruity could be caused by 

the different nature of these clinical measures: language represents the expressive verbal skills 

of subjects, ADOS-G scores reflect the social nature of communication abilities. Thus, given 

that correlation with CC volume is stronger and negative for the ADOS-G Language and 

Communication scores, it could be assumed that mostly the social communication is related to 

grater CC anomalies, such as a reduction of callosal volume.   

 

In sum, CC is abnormal in preschoolers with ASD compared to controls, and this study 

complicates the research about CC in ASD: it is not simply a question about reduction or not 

of callosal size, but study of CC in autism implicates many clinical and demographic 

variables that should be considered to better explore how and when changes in CC may occur 

and how these changes reflect clinical phenotype. In this study CC of preschoolers with ASD 

reflects the atypical growth trajectory of the brain and tends to be larger in early ages. 

However, in ASD, a smaller CC is associated with a greater impairment, particularly with a 

lower IQ and mostly with a severer autism. Children with ASD may have micro-structural 

anomalies that maybe are somehow counterbalanced by a bigger CC (more or larger or more 

myelinated fiber?) or, vice versa, smaller CC may also have greater micro-structural 

anomalies resulting in a worse functioning CC. The complex variability, resulted by gene-

environment inter-play, can be observed in the micro- and macro-structural anomalies of 

brains of ASD, related to gender and age also, and it is reflected in heterogeneity of clinical 

phenotypes of this wide spectrum of disorders.    
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Conclusions 

Autism is an heterogeneous spectrum of neurodevelopmental disorders characterized by 

early-onset anomalies in social communication and unusually restricted, repetitive behavior 

and interests. It is subtended by atypical brain and neural development and genetics has a key 

role in the etiology of autism, in association with early environmental epigenetic factors. It is 

characterized by an atypical neural connectivity as widely reported in recent literature. CC 

represent the larger interemispheric structure in human brain and callosal size could reflect 

functional brain connectivity. CC size is highly heritable in human brains and significant 

heritability was found for several CC sub-regions (Woldehawariat et al., 2014). Genetic 

factors play an important role in CC size among individuals and distinct genetic factors seem 

to be involved in far callosal portions, such as caudal and rostral regions, consistent with the 

divergent functional specialization of these brain areas. 

CC size reflects brain connectivity and brain volume. Both CC and brain volume show an 

atypical growth trajectory during development in ASD children compared to their 

neurotypical peers and these atypicalities might be responsible for some of the behavioral 

impairments in patients. The early brain and callosal overgrowth is followed, during 

childhood, by a decrease in this structures volumes, probably subtended by micro- and macro-

structural neuropathological changes (e.g. reduction in number and/ or size of axons, impaired 

myelination, excessive synaptic pruning) that are genetically related.  

CC shows greater variability in the ASD and maybe this heterogeneity could explain the 

heterogeneity of clinical phenotypes, such as autistic symptoms, language skills and 

intelligence, and it can be influenced by demographic features of individuals, such as age and 

sex. 

This study is based on a well selected and well matched sample of preschoolers with ASD and 

it is the first study, to our knowledge, to analyze CC volume in this population and to 

correlate it with all these variables. Among main limitations of this study is to underline the 

poor possibility of comparison with other literature data, given that comparable studies are 

few, and some inconsistency emerged could be related to sample features, to methodological 

differences but also to the possible existence of subgroup of ASD subjects with different 

clinical and neuroanatomical phenotype. Future dedicated studies, performed on large sample 

with restricted range of clinical and demographic data, should aim to address these issues 

more specifically. Another limitation could be the use of a semi-automated software used to 

get callosal volume and sub-regions segmentation (see Appendix for further discussion). 
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Appendix 
 

The subdivision of the CC in 5 sub-regions is performed with the semi-automated software 

for brain images analysis Freesurfer, that divides CC into 5 segments along its eigenaxis. In a 

perceptive analysis of callosal images segmented by the software, some errors have been 

noticed in the subdivisions drawings. These inaccuracies have been confirmed by volume 

analysis, and callosal volume of each subjects may have an intrinsic variability of about 5%. 

Freesurfer is a widely used software for CC segmentation analysis, in the pediatric age and in 

subjects with autism also (Johnson et al., 2012; Salat et al., 2005; Vatta et al., 2011; Francis et 

al., 2011; Lefebvre et al., 2014), and it is, in our knowledge, the only one that automatically 

parcellates CC subregions. Segmentations performed by Freesurfer were judged to be of 

excellent quality and relatively accurate for brain parenchyma (i.e. GM + WM) volumetry, 

although it was noted that they tend to over-estimated WM volume when compared to manual 

segmentations (Klauschen et al., 2009). Some Authors described their confidence in this 

methodology, and unpublished data showing a high correlation (about r=0.95) between 

Freesurfer segmentation of the CC and manual measurements were reported (Johnson et al., 

2012). However Authors concluded writing that "errors in registration or parcellation 

occurring in the automated processing of the scans" are possible. 

Freesurfer is still being improved and these inaccuracy have been described to the Authors of 

the software. However possible errors and corresponding volume differences, if present, 

involve both ASD group and controls group, likewise. Thus, although aware of possible 

inaccuracy in our analysis, we can assume that this potential errors can not significantly affect 

our work.   
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