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PREFACE

In this work we discuss the relaxation properties of a quantum one dimen-
sional gas. The interest in studying this kind of systems has recently grown
due to the development of innovative experimental techniques that made pos-

sible the confinement of particles in quasi one-dimensional optical lattices weakly
interacting with the environment. These properties can be explored using a quan-
tum quench: we prepare the system in the ground state of a given hamiltonian,
then we suddenly change a parameter and let it evolve unitarly. There are mainly
two types of quantum quenches: local and global. We focus our attention on a
global quantum quench and we see how the relaxation occurs as a many body
effect.
The structure of the thesis is the following.
In the first chapter of this thesis there is a brief overview about the recent theoret-
ical developments about thermalization of isolated quantum systems. In partic-
ular the attention is focused on the role of the spatial dimensionality and on the
conservation laws. In fact it is widely believed that one dimensional integrable
systems relax toward a non-thermal distribution that, in a certain sense, retains
“more memory” of the initial conditions than a thermal one.
In the second chapter some notions about quantum integrability are given. We
review the concept of classical integrability and we illustrate some criteria for the
quantum case. This is useful in the classification of the models between integrable
and non-integrable ones.
In the third chapter the model of interest is deeply analyzed. We deal with a
many body hamiltonian with point-like interactions. This model, for general
values of the coupling constant, is solvable via Bethe Ansatz techniques. How-
ever we are interested in two limiting cases: free bosons (no interaction) and
Tonks-Girardeau limit, which is often referred as “hard-core” (HC) bosons gas.
We show that the latter model is exactly mappable to a spinless free fermionic
gas using a Jordan Wigner transformation. Furthermore we show some results
from a problem in which the interaction parameter is quenched between c = 0
and c = ∞ (this corresponds to a quench from Bose-Einstein condensate to HC
bosons), with periodic boundary conditions.
The fourth chapter is the core of this work, indeed it is the original contribution
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to this thesis. We consider a global quantum quench in a confined one dimen-
sional bosonic gas. This configuration is very interesting from an experimental
point of view. We show that relaxation occurs in slightly different manner than in
the periodic case: the stationary correlation function “feels” the boundaries also
in the thermodynamic limit. Furthermore we find a compact expression for the
time dependent density profile and for the fermionic correlation function. Both
functions describe the non equilibrium behavior of the system. The solutions of
the confined problem present difficulties which were absent in the periodic case.
These have been overcome by some ingenious approximations which become ex-
act in the thermodynamical limit, thus providing the analytical solution to the
problem. In the course of the computation numerical analysis is often used as a
support.
We found out that the long-time state of the confined system is translation-
ally invariant (we demonstrated that non translationally invariant corrections
are finite-size effects), in particular the stationary density profile is the same as
in the homogeneous case, as naively expected. But the effects of the confinement
are visible both in the stationary two point correlation function and in the non
trivial evolution of the density profile.
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CHAPTER 1
INTRODUCTION

One of the hardest challenges in physics is the study of systems com-
posed by an enormous number of particles. The difficulty in dealing
with these kinds of systems is that it is practically impossible to get

(and store. . . ) informations about the positions and momenta of all the parti-
cles, and even if this were possible, it would be impossible (or very hard. . . ) to
solve the equations governing its dynamics.
These obstacles can be circumvented by introducing macroscopical quantities
that describe the collective effect of the interactions between the microscopical
constituents of the system. Examples of macroscopical quantities are: tempera-
ture, pressure, etc. . . . The words “collective” and “macroscopical” mean that it
is possible to describe the state of the system in this simplified view only when
we deal with a huge number of particles that together constitute a macroscopic
system (i.e. it makes little sense to ask the temperature of a system with one
particle). One fundamental assumption behind thermodynamics and classical
statistical physics is that of thermal equilibrium: let us image two systems A and
B with different temperatures TA and TB. If we put them in contact after a
transient time the whole system (A+B) will reach a stationary state character-
ized by an equilibrium intermediate temperature TA+B; we say that the system
thermalized. Statistical physics and thermodynamics do not tell us how the ther-
malization occurs but they fully describe the equilibrium state. The thermal state
reached after the thermalization has a well defined temperature and then a well
defined total energy, this steady state can be described and fully analyzed using
the “Gibbs ensembles”, based on the hypothesis that the time average coincides
with the average over the ensemble. Let us briefly summarize some properties
about Gibbs ensembles
The microcanonical ensemble 1 is a set of points in the phase space of a classi-

1Other ensambles can also be defined, i.e. the canonical and the gran-canonical. These are
particularly useful when we want to analyze the thermal state of subsystems in a thermal bath.
The energy and, in the grancanonical case the number of particles too, of the subsystem are
not fixed, although the quantities related to the entire system are fixed. Differences between
ensembles are present only for finite systems. When the thermodynamical limit is considered,
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cal system such that each point is characterized by a fixed total energy(namely
the energy belongs in a small interval [E and E + ∆E]). Each point of this set
defines a possible representative state for the system we are considering. From
a macroscopical point of view all these states are indistinguishable, therefore all
the points in the ensemble are equiprobable. When the system thermalizes, it can
be found in any of those microscopical configurations. The ergodicity hypothesis
states that, if the system is not integrable, it “explores” all the possible allowed
micro-states in the phase-space and therefore the average over the the ensemble
coincides with the time average. Integrable or quasi integrable systems present
periodic or quasi periodic trajectories in the phase space and therefore the ergodic
hypothesis is broken2.
So far we have considered classical systems. In the quantum case the situation is
more complicated. The most important difference in this case is the impossibility
to define a phase-space and therefore the impossibility to translate the ergodic
theorem from classical to quantum mechanics. Anyway this impossibility does
not imply that a quantum statistical system has to be necessarily described by
solving exactly its dynamics. It is possible to define the Gibbs ensemble also
in this case introducing the density matrix representation. The density matrix
representation is a formal procedure that it is particularly suitable when we deal
with systems in which there is a lack of information that does not permit to con-
struct a wave function for the entire system [1]. The averaging procedure using
the density matrix has a twofold nature, it considers both the averaging over the
intrinsic probabilities of the quantum mechanical description and the averaging
due to the incompleteness of information of the whole system analyzed. Pure sys-
tems can also be described using density matrix representation, in this case only
the probabilistic average over the quantum nature of the system is considered.
Before proceeding we must understand under which hypotheses the characteriza-
tion of a thermal quantum state through the ensembles technique makes sense.
Let us suppose to have an initial state described by the wave function:

|Ψ(0)〉 =
∑
n

cn|ϕn〉, (1.1)

where |ϕn〉 are stationary eigenfunctions of a certain Hamiltonan. The time
evolved state is:

|Ψ(t)〉 =
∑
n

e−i
En
~ tcn|ϕn〉 (1.2)

If we consider a certain observable A, its expectation value at the generic time t
is:

〈Ψ(t)|A|Ψ(t)〉 =
∑
n,m

cm(t)∗cn(t)〈ϕm|A|ϕn〉, (1.3)

where cn(t) = e−i
En
~ tcn. If a steady state exists, it must coincide with the time

average over an infinite interval of time. The stationary expectation value of the

the characterization of the steady state is equivalent in the three pictures and the distinction
becomes only formal.

2In the 2.1.1 this aspect will be discussed more in detail.
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observable A is therefore:

〈A〉 =
∑
n,m

cm(t)∗cn(t)〈m|A|n〉 (1.4)

with cm(t)∗cn(t) = c∗mcnei(Em−En)t = |cn|2δn,m.
Relation (1.4) holds only for an isolated system, if we consider a system in thermal
contact with a bath the former relations are not valid. In order to assure the
existence of a equilibrium state we must postulate that

cm(t)∗cn(t) = |cn|2δn,m. (1.5)

In statistical physics this postulate is known as random phases postulate, and
states that a quantum subsystem in thermal equilibrium with a bath is an in-
coherent superposition of the eigenstates of a certain Hamiltonian. The physical
meaning of this postulate is that the time average cancels all the quantum inter-
ferences among the states during the measure procedures. This is what is usually
referred as a “statistical mixture”. Under the assumption of the random phases
postulate the value of a certain observable can be written as:

〈A〉 = Tr(ρA), (1.6)

where ρ = ∑
n |cn|2|ϕn〉〈ϕn| is the density matrix of the mixed state.

Let us consider an example that will clarify a bit why the random phases postulate
is physically reasonable. Let us take a system S with two energy eigenstates (|1〉S
and |2〉S) in thermal equilibrium with the environment E that is in the state |E〉0,
the initial state of the composed system S+E is described by the wave function:

|φ0〉S+E = (α|1〉+ β|2〉)⊗ |E〉0 = α|1, E0〉S+E + β|2, E0〉S+E . (1.7)

If we suppose to have a weak interaction between the environment and the system
of the type:

Hin = C1|1〉〈1| ⊗ V1 + C2|2〉〈2| ⊗ V2

after a time interval the state will evolve in

|φt〉S+E = α|1, E(1)
t 〉S+E + β|2, E(2)

t 〉S+E . (1.8)

Let us note that the eigenstates of the system S are stationary instead the en-
vironment evolved in different way according to the different coupling with the
eigenstates of the subsystem. The reduced density matrix of the system S is

ρS = ρ11|1〉S〈1|+ ρ12|1〉S〈2|+ ρ∗12|2〉S〈1|+ ρ22|2〉S〈2|, (1.9)

the matrix elements can be calculated using the definition of reduced density
matrix TrE [|φt〉S+E〈φt|]: 

ρ11 = |α|2

ρ22 = |β|2

ρ12 = α∗β〈E(1)
t |E

(2)
t 〉

. (1.10)
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At this point we can make some observations. The environment has a lot of
degrees of freedom, by hypothesis it is much larger than the system S, therefore
assuming casual time evolution the states are coupled randomly then it is highly
probable that 〈E(1)

t |E
(2)
t 〉 � 1, this means that the reduced density matrix is

practically diagonal.
t For isolated quantum systems the situation is a bit different, in fact if the system
is prepared in a pure state:

ρin = |Ψ〉〈Ψ|, (1.11)

the unitary time evolution due to the Schroedinger equation:

|Ψ(t)〉 = e−
iHt
~ |Ψ(0)〉, (1.12)

will maintain it in a pure state all time. Therefore thermalization in this case
can not be reached in the sense seen formerly because the behavior could display
periodicity in time. For isolated quantum systems, then, the limit

lim
t→∞
|Ψ(t)〉 (1.13)

can be studied only passing through the exact non-equilibrium dynamics of |Ψ(t)〉.
Actually, as we shall see later, with a suitably choose of the order of limits, an
infinite subsystem of a certain isolated system can thermalize, or, said in another
way, it acts as its own thermal bath [3].

1.1 Non equilibrium dynamics
In recent years a great theoretical effort has been devoted to the study of the
unitary time evolution of isolated quantum systems. The main questions that we
are trying to answer are:

• What are the characteristics of the steady state of an isolated quantum
system?

• When this state is described by a thermal state with a effective temperature
Teff?

• What is the role played by the spatial dimensionality and the conservation
laws? Do they affect the characterization of the steady state?

These questions arose for the first time in 1929 (Von Neumann et al. [4]) but be-
fore the last decades they were considered of purely academic interest. Recently
the development of new experimental techniques have made possible the direct
observation of non-equilibrium dynamics of isolated quantum systems. A fruit-
ful comparison between theory and experiments has been possible thanks to the
use of cold atomic gases and nanostructures. In particular it has been possible
to construct quasi one-dimensional optical lattices that are so weakly interacting
with the environment that their evolution can be considered unitary. Therefore it
has been possible to see if, and eventually how, the spatial dimensionality affects
the evolution of these systems. We refer to the section (1.2) for a more detailed
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discussion of the experimental results.
The interest in understanding the out-of-equilibrium behavior of quantum inter-
acting systems is not only important from a fundamental point of view, indeed
there could be also technological implications. A quantum computer is the most
remarkable field of application of these topics, in fact it will definitely require
the capability of performing real time manipulations of interacting quantum sys-
tems. Therefore it is of crucial importance to understand the coherent dynamics
of these systems since it could be one of the main points of various experimental
setups and of future technologies.
There are several ways in which a system can be driven out of equilibrium. For
example, it is possible to prepare a system in a equilibrium state and then apply
a driving field, or pumping energy and particles. One of the most used technique
both in theoretical and experimental field is that of the quantum quench: one
prepares a quantum system in the ground state of a certain hamiltonian Hbq

with a tunable parameter; at t = t0 we change this parameter suddenly, the time
evolution will be given therefore by another post-quench hamiltonian Hpq, this
corresponds to an out-of-equilibrium evolution. It is important to remark that
the changing in the parameter must be done instantaneously, in practice this
means in a time interval ∆t� ∆tevolution where ∆tevolution is the minimum time
scale of the system.3In the opposite limit, we would explore an adiabatic regime.
There are mainly two types of quenches: global quenches and local quenches. In a
local quench the change in the hamiltonian is localized, for example impurities on
lattices, in the global quenches the hamiltonian is changed over the whole system.
In this work we analyze a global quench; this means that we consider a certain
hamiltonian (namely Lieb-Liniger model, see chapt. 3) with an interaction term
that will be quenched between two different values of the coupling constant.
From a theoretical point of view the quench problems can be tackled in different
ways:

• Numerically, using e.g. DMRG techniques or exact diagonalization;

• Analytically, exploiting various techniques (e.g. solving free theories after
an exact mapping, or via Bethe Ansatz. . . )

In this work only analytical techniques are used. Numerical analysis has been
only a support in order to understand the behavior of some quantities which were
hard to treat analitically.
Before proceeding, it is of fundamental importance to point out some things
about the infinite time limit for closed systems [5]. In fact for finite systems the
t→∞ could not exists due to the effect of quantum revivals of matter waves. In
order to bypass this obstacle it is sometimes convenient to consider time averaged
quantities. This problem disappears when we work in the thermodynamic limit
(TDL), that is when we consider a system composed by an infinite number of
particles N lying on an infinite volume L such that the density n = N

L is constant,
the large-time limit must be taken after the TD one.
The revivals of matter waves have been observed in one of the first experiments

3It is usually related to the energy gap between the ground state and the first excited.
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Figure 1.1: Figure from [6]. Interference patterns for different “hold times”: (a) τ = 0 µs, (b)
τ = 100 µs, (c) τ = 150 µs, (d) τ = 250 µs, (e) τ = 350 µs, (f) τ = 400 µs, (g) τ = 550 µs. We
note that after a hold time of 250µs the information about the initial pattern is completely lost,
but it is restored after τ = 550µs, this a classical example of matter wave revival.

about the out of equilibrium dynamics of closed systems performed by Greiner
et al. in 2002 [6]. In this experiment it has been considered a Bose gas in a three
dimensional cubic lattice, in this configuration the system is well approximated
by a Bose-Hubbard model described by the hamiltonian

H = −J
∑
〈ij〉

(a†iaj + aia
†
j) + U

2
∑
i

ni(ni − 1), (1.14)

where ai are bosonic operators and ni = a†iai are the number operators on site.
The system is initially prepared in a “superfluid phase”, that is, it is prepared
in the ground state of hamiltonian (1.14) with J � U , in which the tunneling
terms dominate. The on site interaction term U is suddenly quenched such that
U � J , the time evolution is performed by the hamiltonian:

Hpq ≈
U

2
∑
i

ni(ni − 1). (1.15)

The system is “hold” and left evolve for several time intervals and then is released
from the trap. Absorption images of interference patterns after the release are
shown in figure 1.1. As we can see after a time τ = 550 µs the system returns in
its initial configuration. This experiment shows that it is possible to maintain a
system isolated for a time sufficient to show its coherent dynamics.

1.2 Experimental results
In this paragraph some of the most important experimental results, that encour-
aged theoretical interest in the arguments previously outlined, will be presented.
The first one that we will discuss is the quantum Newton’s Cradle [7] performed
by T. Kinoshita, T. Wenger and D.S. Weiss. In this experiment it has been ob-
served the non-equilibrium dynamics of a 1D Bose gas composed by 87Rb atoms.
To create a one dimensional system a Bose Einstein condensate is loaded in a
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2D dimensional lattice, here, using a red-detuned crossed dipole trap, the bidi-
mensional lattice is divided in arrays of 1D Bose gases weakly interacting. The
dynamics in each tube is strictly one dimensional because the weak transverse
excitation energy (Et = ~ωr, ωr2π = 67kHz) far exceeds the thermal energies of the
trapped atoms and therefore the tunneling probability is very low.

Figure 1.2: Figures from [7]. Left: Schematic representation of the atomic bundles in the 1D
harmonic trap. Right: Absorption images in the first oscillation cycle. The dynamics is always
1D since the collision energy of the bundle is less than a quarter the transverse confinement
energy.

Using two shortly separated pulses the atoms in every array are put in a super-
position of momentum states with p = ±2~k, in this way each bundle is split
in two atomic clouds with opposite momenta. The system is left evolving, the
bundles collide in the centre of the trap twice a cycle (Fig. 1.2), the collision
energy is still less than a quarter of the minimum transverse excitation energy,
ensuring that the dynamic remains 1D. There is not perfect recurrence due to
dephasing effects. It is possible to extract also the momentum distribution. As
we see in Fig 1.3, also after several periods of oscillations the distributions are
far from being gaussian meaning that there is not thermalization.
These distributions, in a certain sense, carry more informations about the initial
conditions. The same experiment has been done for 2D and 3D Bose systems
(see Fig. 1.4) , in that case thermalization occurs after a few periods. Therefore
the spatial dimensionality plays a crucial role in the thermalization of isolated
quantum systems.

The next experiment we are going to describe is conceptually slightly different
from the previous one, but is important to show how nowadays it is possible to
manipulate microscopic systems in order to implement quantum quenches and
then study the non-equilibrium dynamics [8]. In this experiment the expansion
of a fermionic gas in a 2D lattice after a trap release is studied. Two cases are
examined: interacting and non-interacting fermions (see Fig. 1.5)
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Figure 1.3: Figures from [7]. Left: Momentum distribution for t > 1910τ , with τ oscillation
period, and γ = 3.2. Right: Momentum distribution for t > 390τ , with τ oscillation period, and
γ = 18. γ = |2/a1Dn1D| where a1D is the 1D scattering length and n1D the average density.
The red curves are real data taken in a certain tobs, the blue and green curves are simulations
from different models that take into account the losses during the measure. For details see [7].

Figure 1.4: Momentum distribution of a 3D Bose gas in the same conditions described in [7].
t = 0τ , t = 2τ , t = 4τ , t = 9τ , with τ oscillation period, we can see that thermalization occurs
after a few periods.

This system is well described by a Fermi-Hubbard model with an external har-
monic potential that breaks the horizontal translational invariance:

H = −J
∑
〈ij〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ + Vext., (1.16)

where the ci are fermionic operators and σ are spins degrees of freedom. The
system is initially prepared in a confined state, due to a tight harmonic trap, and
then is released. This is an example of “inhomogeneus” quench: an external pa-
rameter of the hamiltonian is changed inhomogeneously along the whole system.
Also these types of quenches have been studied from a theoretical point of view
([9]).

After the release the non-equilibrium dynamics is studied, in particular the in-
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Figure 1.5: Figure from [8]. Schematic representation of the experiment. After the release
of the harmonic trap, the in-situ density is studied both in the interacting case and in the
non-interacting case, significative differences result.

Figure 1.6: Figure from [8]. Left: time evolution of the density for non-interacting fermions.
For large time (i.e. in the last panel) the system is homogeneous. Right: Density distributions 25
ms after the release for several values of the on-site interaction (both repulsive and attractive).
The system is rotationally invariant especially for high values of the interaction (first and last
panel).

situ density (see Fig.1.6). For non-interacting fermions the evolution is given only
by the hopping term of (1.16), (Hpq = −J∑〈ij〉,σ(c†i,σcj,σ + h.c.)), the expansion
is ballistic, that is, every excitation expands independently with constant quasi-
momentum. This results in a square-shaped density distribution at the equilib-
rium. In the interacting case the situation is much more complicated, in this case
the rotationally invariance of the density shape is preserved and the expansion is
diffusive.
The next, and last, experiment that we are going to show was performed by
Trotzky et al. in 2012 [10], they studied the relaxation properties of a one-
dimensional Bose gas.
In this experiment a Bose Einstein condensate composed by 87Rb atoms is loaded
in a three dimensional lattice and using a crossed trap is divided in an array of 1D
chains. According to the data, in the 3D lattice about 45 · 103 atoms are loaded.
The trap is set in such a way that in every chain there are about 43 atoms. The
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measured quantities have to be intended as an average over all the chains. Once
that the 1D systems are created a “short lattice” with wave length λsl = 765nm
is added along the direction of the chain with relative phase adjusted with the
trapping lattice to load the sites of the short lattice alternately (for example only
on “even” sites, see [10] for the technical details), as shown in the first picture of
the Fig. 1.7.

Figure 1.7: Figure taken from [10]. Schematic representation of the three steps of the experi-
ment.

This system is well described by a Bose-Hubbard model with the same Hamil-
tonian (1.14) and everything is set in such a way that the tunneling probability
is very low. Tuning the parameters, the potential is suddenly changed and the
tunneling between adjacent sites is activated, the system is left evolving for a
certain time t. After this time interval the potential in changed again and the
tunneling is blocked, the average population on “odd” sites is then measured.
This process is repeated for several values of t and four values of the ratio J

U .

Figure 1.8: Figure taken from [10]. Evolution of the average population of the odd sites
after the quench, the dots are the experimental data, the blue lines are results from numerical
simulations.

In figure 1.8 the results of the measures are shown. The population in the odd
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sites, that were empty in the initial state, after a transient period, approaches a
constant stationary value. This fact agrees with numerical simulations performed
using t-DMRG techniques.
The experiments discussed in this section are only a small sample of all the works
done in the study of the non-equilibrium dynamics of isolated systems, other im-
portant examples, that we will not discuss here, can be found in references [14],
[13], [12] and [11].

1.3 The Generalized Gibbs Ensemble
From the results of the experiments described in the former paragraph (especially
[7] and [10]) it seems that isolated quantum systems prepared in a pure states, in
the limit t → ∞ after a quench, present characteristics typical of mixed states.
As we have discussed in paragraph 1.1 systems prepared in a pure state evolve
unitarily according to the Schroedinger equation, therefore they can never reach
a steady state described by a density matrix. How can this apparent paradox be
solved? The solution [15] is that in the thermodynamical limit finite subsystems
reach an equilibrium steady state well described by a reduced density matrix that
has all the characteristic of a mixed state. If we consider a system in a pure state
|Ψ(t)〉, and a subsystem A, its reduced density matrix can be obtained tracing
out the degrees of freedom of the complementary system A:

ρA(t) = TrA(|Ψ(t)〉〈Ψ(t)|). (1.17)

The expectation value of an operator OA which degrees of freedom are within
the subsystem A reaches an equilibrium value that can be found from (1.17):

lim
t→∞
〈Ψ(t)|OA|Ψ(t)〉 = Tr[ρA(∞)OA]. (1.18)

Therefore ρA(∞) is effectively a density matrix describing the equilibrium prop-
erties of a mixed state. If it happens that for any finite subsystem A of our
system the limit:

lim
t→∞

ρA(t) = ρA(∞) (1.19)

exists we can make the following argument [15]: first of all, our entire system is
decomposed in a subsystem A and its complementary A, at this point we can
take the thermodynamical limit of the system keeping A finite. Then, finally, we
can make the system A very large4 itself. Since relation (1.19) holds for every
subsystem it will continue to be valid also for a system A built in this way. Then,
if the order of the limits is respected, the subsystem A will reach an equilibrium
state and all the operators within it will attain a value well described by a density
matrix. Suggestively we can say that the system acts as its own bath.
The experiment previously described (Fig. 1.4) suggests that the reduced density
matrix of the subsystem is thermal for 2D or 3D systems. In the configuration
used in that case (a harmonic confining potential) a thermal density matrix is

4Strictly speaking the system A at this point can be considered practically infinite but still
smaller than the entire system.
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recognized by having a gaussian momentum distribution at the equilibrium. In
this case we have only few conserved quantities (i.e. the energy and the number
of particle) and the steady state can be described by a Gibbs ensemble with an
effective temperature Teff .
For one-dimensional systems the situation is a slightly different, as we have seen
(fig. 1.3), and as conjectured by Rigol et al. [16] [17] [18] [19], for integrable
quantum systems there is relaxation to a non-thermal distribution. Quantum
integrable systems are characterized by an infinite set of higher conserved charges
{Qi} that seem to play a key role in the description of the stationary state [20]
[21] [22].
In [16] a model very similar to that considered in this thesis, but in the discrete
case, it is studied: a one-dimensional lattice of length L loaded with hard-core
bosons. This model is fully described by a Bose-Hubbard hamiltonian with no
on-site interaction5.

Ĥ = −J
L∑
i=1

(b̂†i b̂i+1 + h.c.), (1.20)

where [bi, b†j ] = [bi, bj ] = [b†i , b
†
j ] = 0 as long as i 6= j and {bi, b†i} = 1, with

(bi)2 = (b†i )2 = 0 for all i. This model can be mapped to a free fermion the-
ory (see paragraph 3.2.1) and therefore it is exactly solvable. In [16] the au-
thors questioned, assuming that after an out of equilibrium dynamics this system
reaches a stationary state, what is the statistical many-body density matrix that
would have described it. In order to answer this question it was conjectured that
standard prescriptions from statistical mechanics apply, therefore it should be
maximized the many-body entropy taking into account the constraints imposed
by all the integrals of motion. This resulted in the Generalized Gibbs Ensemble
(GGE):

ρGGE = e−
∑

m
λmIm

Tr(e−
∑

m
λmIm)

, (1.21)

where {Im} is a full set of local (see paragraph 1.3.1) integrals of motion, and
the λm are Lagrange multipliers fixed by initial conditions via:

Tr(ImρGGE) = 〈Im〉t=0. (1.22)

From (1.22) it is evident that the GGE carries an infinite amount of information
about the initial conditions, this could explain why the equilibrium momentum
distribution is not single peaked, as in the gaussian thermal case, but maintains
a shape that in a certain sense “remembers” the initial distribution (this concept
will be clearer soon). The integrals of motion {Im} are defined as operators such
that:

[Ĥ, Im] = 0,

where Ĥ is the hamiltonian of our model. Therefore, being conserved quantities,
they are the most intuitive choice to do if we want to catch the stationary state
properties.

5This was the same system studied in experiment [7], it was this experiment that motivated
Rigol et al. to investigate theoretically the thermalization properties of this system.
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In order to understand why the generalized Gibbs ensemble has that form we
can use the “maximum entropy argument” made by E.T. Jeynes [23]. In that
article, information theory is exploited to define a rigorous criterion that could
help in the construction of statistical ensembles when we have some constraints
(e.g. many conserved quantities). Quoting from article [23]: “Previously one
constructed a theory based on equation of motion, supplemented by additional
hypotheses of ergodicity [. . . ] and the identification of the entropy was made at
the end [. . . ] Now, however, we can take entropy as our starting concept, and
the fact that a probability distribution maximizes the entropy subject to certain
constraints becomes the essential fact which justifies the use of that distribution
for inference. [. . . ] we make it possible to see statistical mechanics in a much
more general light”.
In order to clarify slightly more this last concept let us consider a physical system
with n � 1 states, to each state corresponds a certain probability pi such that∑
i pi = 1. Let us suppose that we know r � n expectation values of the operators
O(l):

E(l) =
∑
i

pi〈φi|O(l)|φi〉,

what is the most probable expectation value of another operator F(x) that cannot
be decomposed in terms of O(l)? We would like to find it using constraints
that implement the little informations we have. The only physical quantity that
measures uncertainty, increasing with increasing uncertainty, that is positive and
additive can be demonstrated to be the Shannon’s entropy, defined as:

S({pi}) = −
∑
i

pi ln(pi). (1.23)

Note that this quantity coincides with the Gibbs’ entropy. If we know nothing
about the expectation values, the entropy is maximized if pi = 1

n ∀i, this is
exactly the microcanonical ensemble. If we, instead, have a constrain only on
one expectation value (e.g. the energy) E = ∑

i pi〈φi|O|φi〉, entropy can be
maximized introducing a the Lagrange’s multiplier β and this gives us the well-
know canonical ensemble

pi = Z−1e−βAi . (1.24)

The same argument can be exploited when we have many constraints (as in the
GGE . . . ). In this case we must use several Lagrange’s multipliers βl , one for
every known expectation value, this, if the Ai commute leads to

pi = e−
∑r

l=1 βlAl

Z
, (1.25)

where Z is a normalization factor (i.e. the partition function). This form is very
similar to the (1.21). Let us return to the discussion of Ref. [16]: the predictive
power of the generalized Gibbs ensemble is tested using numerical techniques.
The system is prepared in the ground state of a spatially-periodic background-
potential with period 4; Vext. = A

∑
i cos

(
2πi
T b†ibi

)
, then is released (Vext. = 0)

to a flat-bottom hard-wall box. In the paper, numerical simulations are used
to study the exact out-of-equilibrium dynamics and the steady state attained.
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The data are then compared with the results predicted by the Generalized Gibbs
Ensemble.

Figure 1.9: Figure taken from [16]. Upper : time evolution of the quasi-momentum distribution.
Lower : distribution of the quasi-momentum after relaxation. The discrepancy between the
results of the time evolution and the prediction of the GGE ensemble are less than the width of
the line (see [16] for further details).

As it can be seen in figure 1.9 there is a perfect matching between the GGE predic-
tions and the results from dynamical evolution, indeed the lines are completely
overlapped. From Fig. 1.9 we can understand why the generalized stationary
state carries “more memory” of the initial conditions, in fact also in the equilib-
rium state can be observed well-separated peaks in the momentum distribution
similar to the initial one.

1.3.1 Locality

In the last paragraph it has been stated that the generalized Gibbs ensemble
is built using a complete set of integral of motion Im. An important point to
face concerns what kind of operators should be included in the definition (1.21).
Any quantum system has too many integrals of motion; the easiest examples are
the projectors onto the energy eigenstates In = |ψn〉〈ψn| with H|ψn〉 = En|ψn〉,
since [H, In] = 0. However the projectors can not have any role in describing
the properties of a system after the thermalization. A possible solution to this
dilemma has been conjectured by P. Calabrese, F.H.L. Essler and M. Fagotti in
[15] and [24]. Since we focus on local properties of systems they proposed to
include only local integrals of motion. These integrals can be written as sums (or,
in the continuum case, as integral) of operators acting locally, In =

∫
dxJ(x),



CHAPTER 1. INTRODUCTION 17

with a procedure that remembers the Noether’s theorem. This conjecture has
demonstrated to work in many cases , but the proposal is still under debate (see
[25][26][27][28][29][30][31][32][33] for some criticism).



CHAPTER 2
INTEGRABILITY

In this chapter some notions of classical integrability following the Liou-
ville’s theorem are reviewed. We analyze the connection between the inte-
grability of classical systems and the ergodic theorem which guarantees the

validity of the ensembles technique. Furthermore the problems arising when a
quantum system is considered are discussed. In particular, we follow some recent
works ([37] or [42, chap. IV]) where it is shown a possible definition of quantum
integrability. Although it is not intuitive, such a definition will be useful to give
a first classification between integrable and non-integrable systems.

2.1 Classical Integrability
In order to show the precise mean of integrability in classical mechanics we will
use a hamiltonian approach. Let us remind some basic facts that will be the
background of our arguments1. Given a generic system described by the hamil-
tonian H(pj , qj), where pj and qj is a set of conjugate variables, it is possible to
characterize its dynamics by solving a system of coupled differential equations
called the Hamilton’s equations:q̇j = ∂H

∂pj

ṗj = −∂H
∂qj

where q̇ = dq

dt
and ṗ = dq

dt
. (2.1)

For a system with n degrees of freedom we can introduce a 2n× 2n matrix J :

J =
(

0 I
−I 0

)
, (2.2)

such that the hamilton’s equations can be written as:
−→̇
x = J · ∇H,

1The notions exposed here can be found in all the classical books of mechanics. See for
example [34] or [35]
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where ∇H = ( ∂H∂pj ,−
∂H
∂qj

) and −→x = (p, q).
The matrix J can be used to define the Poisson brackets on the space composed
by differentiable functions defined on the 2n−dimensional phase-space M :

{F,G} = (∇F, J · ∇G) =
N∑
i=1

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)
. (2.3)

A hamiltonian system with n degrees of freedom is therefore characterized by
a 2n-dimensional phase space, a Poisson structure and a Hamiltonian. For any
function G(p, q) defined on the phase space, it can be shown that the time evo-
lution is given by the Poisson brackets with the Hamiltonian:

dG(p, q)
dt

= {H,G}. (2.4)

Since, trivially, {H,H} = 0, the hamiltonian is a conserved quantity and then the
trajectories on the phase-space of the system live on a manifold with constant en-
ergy. The hamiltonian H(−→x ) can be expressed in terms of other variables H(−→x ′)
provided that the −→x and the −→x ′ are related trough a canonical transformation,
that is

−→x ′ = A−→x with AJAt = J (2.5)

where A is 2n× 2n matrix implementing the transformation and −→x and −→x ′ are
2n-dimensional vectors of the type defined previously. Since the matrix J is non-
degenerate the inverse, J−1 = −J exists. Using this property it is possible to
define a measure on the phase space by introducing the bilinear ω(−→x ,−→y ):

ω(−→x ,−→y ) = (−→x , J−1−→y ), (2.6)

where (, ) denotes the scalar product. It is easy to show that the measure defined
in this way is invariant under canonical transformations, indeed:

ω(A−→x ,A−→y ) = (A−→x , J−1A−→y ) = −(−→x ,AtJA−→y ) = (−→x , J−1−→y ) = ω(−→x ,−→y ).
(2.7)

The Lioville’s theorem states that a classical system with n degrees of freedom
described by a Hamiltonian H(−→x ) is integrable if we can find n functions Fi
defined smoothly over the phase-space M such that:

• the Fi are conserved charges, thus, for every i = 1, . . . , N one has

{H,Fi} = 0;

• the Fi are functionally independent of each other;

• all the Fi are in involution:

{Fi, Fj} = 0, ∀i, j.
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This definition of integrability is sufficient for our purposes, anyway it can be
improved. A more formal statement of the Liouville’s theorem can be found for
example in [34]. If a system is integrable, a particular type of conjugate vari-
ables can be introduced. These variables are called action-angle variables and
the differential equations governing the dynamics can be integrated by quadra-
tures [35]. The solution in terms of the action-angle variables displays a periodic
motion on invariant tori in the phase-space. This periodicity is typical of inte-
grable systems and it is one of the most important differences between classical
integrable and non-integrable models. Indeed, if the evolution of the system in
the phase-space is not chaotic, the ergodic theorem does not hold and the average
values of the various quantities will depend on the particular orbit of the system
in phase-space. Therefore, since the points of the sub-variety of the phase-space
with constant energy are not equivalent, the ensemble technique fails.

2.1.1 Integrability and ergodicity

Let us consider a system of N particles described by a certain hamiltonianH(p, q)
that defines a sub-variety of constant energy in the phase-space on which the
orbit of the temporal evolution lives. The ergodic hypothesis states that, for
every observable F (p, q) defined on the subvariety H(p, q) = E, the late-time
average can be calculated averaging over an infinite number of copies of the system
satisfying the only requirement of fixed energy. This picture coincides with the
Gibbsian ensemble technique [2] discussed formerly and that it is formalized by
the introduction of a density distribution defined in the phase-space ρ(p, q, t) such
that

ρ(p, q)d3qd3p = number of copies contained in the volume d3qd3p. (2.8)

The ensemble average of the quantity F (p, q) is defined as

〈F (p, q)〉 =
∫
d3Npd3NqF (p, q)ρ(p, q)∫

d3Npd3Nqρ(p, q) . (2.9)

The ergodic condition can be thus rewritten as

lim
T→∞

1
T

∫ T

0
dtF (q(t), p(t)) =

∫
d3Npd3NqF (p, q)ρ(p, q)∫

d3Npd3Nqρ(p, q) , (2.10)

where q(t), p(t) ∈ Γ(p, q) and Γ(p, q, ) is the trajectory of the system in the phase-
space. One fundamental assumption behind the ergodic condition and the validity
of the Gibbs ensemble technique, as sketched in the last paragraph, is that all
the copies of the system must be equiprobable. This statement can be rephrased
as: the points satisfying the condition of constant energy must be “touched”
at least once by the path representing the time evolution of the system in the
phase-space. In fact the averaging procedure over the ensemble takes in account
all the points compatible with the requirement of fixed energy, therefore if some
of them do not concur at the time evolution Eq. (2.10) does not hold. Those
systems whose trajectories display a certain regularity can not be treated as
ergodic ones. In this category both integrable and quasi-integrable systems fall.
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Quasi integrable systems are distinguished by the property that are very “close”
to be integrable, examples of this kind are integrable systems subjected to weak
non linear perturbations. These systems, although strictly speaking are non-
integrable, display an absence of ergodicity because the trajectories in the phase-
space are quasi periodic and, in the infinite time limit, do not cover all the allowed
sub-variety in the phase-space2. Non-integrable systems are instead qualitatively
different. Indeed in this case the evolution is “chaotic” and as time passes the
phase-space on which the system lives is completely explored and thus the relation
(2.10) is valid.This means that for “random” time evolution all the copies of the
system that preserves the condition of energy conservation are de-facto equivalent
and then we have ergodicity.
What has been reported here about the ergodic problem is only partial, indeed
we avoid to mention a lot of details and problematics that are behind the concept
of ergodicity, but what has been discussed should be sufficent to give an overview
and to remind some important concepts on which all the classical statistical
physics (and not only) is based.

2.2 Quantum Integrability
The aim of this paragraph is to introduce the reader to some concepts relating
the question of quantum integrability and quantum integrable systems. Our
discussion will follow what reported in the works [42, chap. IV] or [37] and [38].
First of all, we must point out that in this thesis, as reported in chapt. 4, we
consider a post-quench hamiltonian which can be mapped to a free fermionic one,
and the initial state was prepared in the ground state a free bosonic hamiltonian.
Therefore we are dealing with integrable models since, no matters what kind of
definition of quantum integrability we adopt, free theories should fall into the
integrable class. The first naive tentative that one can do in order to give a
proper definition of quantum integrability is translating in “quantum language”
the Liouville’s theorem that holds for classical systems. Then, if we replace the
Poisson brackets with the commutators under the prescription

{, } → i

~
[, ], (2.11)

we can say that:

Definition 1. A system is quantum integrable if we can find a complete set of
independent commuting operators (i.e. [Im, In] = 0 ∀m,n = 1, . . . , dim(H)).

This definition, although seems to be quite reasonable, shows some pitfalls.
The first question is that a classical definition transported in quantum mechanics
could be ill-conditioned by the fact that the degrees of freedom are counted in a
total different way in the two cases. In classical mechanics the number of degrees
of freedom is just the number of couples of conjugate variables that one needs

2The first and perhaps most famous demonstration of quasi periodic motion for quasi inte-
grable systems is the so called FPU (Fermi, Pasta, Ulam) problem, all the details can be found
in reference [36]
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to specify the dynamics, instead in quantum mechanics the number of degrees
of freedom of a system is just the dimensionality of its Hilbert space. For this
reason the requirement of completeness it has been added in the definition, in
other words: the cardinality of the conserved charges has to be the same as the
dimensionality of the Hilbert space H. The second, and more severe, problem is
that according to the definition 1 every quantum system with finite-dimensional
Hilbert space would be integrable. In fact by the spectral theorem every her-
mitian Hamiltonian is diagonalizable, then one can define dim(H) commuting
operators, Im = |ψm〉〈ψm|. This is not acceptable if we want a classical corre-
spondence, therefore we must abandon the idea of translating “word by word”
the integrability condition from classical to quantum language.
Another commonly definition used in literature is:

Definition 2. A quantum system is integrable if its full set of eigenstates can be
constructed, i.e. if it is exactly solvable.

Also this definition could be satisfactory at first sight, especially because
reminds the classical feature of angle-action variables. But this sounds as a
consequence of integrability rather than as a definition. Furthermore it sounds
too simplistic because it is not specified if models solvable with different methods
should display different physical behavior.
Before proceeding, we follow what done in [37] and itemize some inescapable
requirements that we want to be fulfilled by a proper definition:

• it should be unambiguous;

• it should define different classes to which different models belong;

• all the classes should display different physical behavior.

We realize that without a general and rigorous definition it is very hard to fulfill
all these criteria. In particular let us note that the second definition we gave (that
at the moment is the most reasonable one) fails in the third criterion. Another
subtle point concerns the number (i.e. the cardinality) of the conserved charges.
In the first definition, we required the completeness in the sense that the cardi-
nality of the conserved charges should be the same of the dimensionality of the
Hilbert space. A theorem by Von Neumann [38] states that: given a set of com-
muting operators {Im}, it is possible to construct another operator I such that
every Im can be viewed as a functions of I, Im = fm(I), so the number of the
conserved charges can be ill-defined. Furthermore the request of completeness is
often accompanied by the request of locality (see last chapter 1.3.1), but it is not
clear what should mean: “a complete set of local charges”, since the “locality”
requirement restricts the number of possible operators. The confusion probably
arises from the misunderstanding between the concept of infinite and the concept
of complete set of charges [37].
A possible escape from all these problematics has been proposed by J.S. Caux
and J.J. Mossel and is reported in [37] and [42]. The definition they gave is a very
formal one but fulfills all the criteria and, until now, seems to work, contrarily
to the previous ones we considered. It is worth to introduce some preliminary
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concepts. Let us define a size sequence as a strictly increasing string of inte-
ger numbers, (N1, . . . , Nm, . . . ) with N1 < N2 < N3 . . . etc. To each number
in the string it is associated a Hilbert space H(Ni) obtained by tensoring a fi-
nite dimension “basic” Hilbert space (with dimHi = di ) Hi Ni times, so that
dim

(
H(Ni)

)
= ∏Ni

j=1 dj ≡ dNi is also finite. Higher dimensional Hilbert spaces in
the sequence are built following the simple rule: HNi+1 = HNi ⊗Hj . In the basic
Hilbert spaces Hj self adjoint operators can be represented by dj × dj hermitian
matrices that can be decomposed in a chosen basis, therefore all the operators
acting on the tensored higher dimensional Hilbert space HNi can be decomposed
as:

O(Ni) =
∑

i1,...,iNi

O(Ni)
i1,...,iNi

ei1...iNi , (2.12)

where ei1···Ni is the basis obtained tensoring Ni times the chosen basis of the
fundamental Hilbert space Hi. The number of non-zero entries in (2.12) is de-
noted as Ne

(
O(Ni)

)
. Considering a size sequence of operators (O(N1),O(N2) . . . )

it is defined the density character of O(Ni) as the “nature” (i.e. linear, polyno-
mial, exponential, etc. . . ) of the minimal function f(Ni) such that Ne

(
O(Ni)

)
<

f(Ni). At this point it is possible to introduce a size sequence of Hermitian
operators (H(N1), H(N2), H(N3) . . . ) that can be interpreted as Hamiltonias act-
ing on the respective Hilbert spaces. Since these operators are hermitian and
finite-dimensional, automatically possess complete sets of conserved chargesQ(Ni)

m

which can be arranged in such a way that several size sequences can be defined:
(Q(Ni)

m , Q
(Ni+1)
m , Q

(Ni+2)
m . . . ) for all m = 1, . . . ,mmax ≤ d(Ni).

After these preliminary concepts we are ready to report the definition.

Definition 3 (Caux & Mossel). A Hamiltonian of density character O (f(N))
is quantum integrable if it is a member of a sequence (H(N1), H(N2), H(N3) . . . ) of
operators, having O (f(N)) density character in a certain basis too, for which it is
possible to define a sequence of sets of operators ({Q(N1)}, {Q(N2)}, {Q(N3)}, . . . )
such that:

• all operators QNim in {Q(Ni)} commute with each other and with the relative
hamiltonian H(Ni);

• the operators in {Q(Ni)} are algebraically independent;

• the cardinality of the set {Q(Ni)} becomes unbounded in the infinite size
limit;

• each member of a set {Q(Ni)} can be embedded within a sequence of oper-
ators (Q(Ni)

m , Q
(Ni+1)
m , Q

(Ni+2)
m . . . ) with O (f(N)) in a given basis.

This definition is very formal and at first sight hard, anyway it fulfills all
the required criteria; in particular it can be done a partition between different
classes of integrable models according to their density character O (f(N)).For all
the details see [37]. Let us note in particular that, by definition 3, free discrete



CHAPTER 2. INTEGRABILITY 24

models are linear quantum integrable in the sites basis (i.e. of density character
O(N) where N is the number of sites)3.

3Let us note that in the continuum case this means that we have an infinite number of
conserved charges, indeed any continuum theory can be obtained from a lattice regularization
in which subset of conserved charges can be chosen O(N).



CHAPTER 3
THE LIEB-LINIGER MODEL

In this chapter the model of our interest is introduced. We will show that
it is solvable using the coordinate Bethe ansatz and we will outline how
to find the general solution in the periodic case. Furthermore, the limit of

“hard-core” bosons is discussed in detail and we show, in two different ways,
that in this limit the model is solvable, since it can be mapped to a free fermion
theory. Finally, the last part of the chapter is devoted to the discussion of some
important results for a quench from non-interacting to strongly interacting bosons
with PBC, without confining potential following [47].

3.1 The model
The Lieb-Liniger model is an example of interacting model and describes one di-
mensional bosons with a contact interaction. It was introduced and solved in 1963
[39] and it gives a good description for bosons in effective 1D lattices, especially
when the limit of strong interaction is considered [40, sec. 5]. Exact solutions can
be found both for attractive and repulsive interaction. The hamiltonian in first
quantized notation for a system composed by N particles is:

HN =
N∑
i=1
− ∂2

∂x2
i

+ 2c
∑
j>i

δ(xi − xj), (3.1)

where we set ~ = 2m = 1, the constant c represents the interaction strength and
we will always consider the repulsive case (i.e. c > 0). The aim in this paragraph
is to find the eigenfunctions χN (x1 . . . xN ) of (3.1):

HNχN (x1 . . . xN ) = EN (k1 . . . kN )χN (x1 . . . xN ). (3.2)

Since we are dealing with a bosonic system we must impose the symmetry of the
functions χN (x1 . . . xN ) under the exchange of the coordinates, that is:

χN (x1 . . . xi . . . xj . . . xN ) = χN (x1 . . . xj . . . xi . . . xN ),



CHAPTER 3. THE LIEB-LINIGER MODEL 26

for every couple (i, j).
So far we have not discussed about boundary conditions, these are relevant since
they can drastically change the wave function especially when working with finite
N . Different boundary conditions can be implemented: we can study a one
dimensional bosonic gas lying on a ring of circumference L, (this coincides with
the imposition of periodic boundary conditions) or we can consider a box of length
L, meaning that we are fixing the boundaries. The model can also be solved in the
most general case of twisted boundary conditions. The effects of the boundaries
are expected to vanish when the limit L → ∞ is considered. Since our purpose
is to give only an outline of the methods used in finding the exact solutions of
(3.1), we will consider the easiest case of periodic boundary conditions.
The wave function has to be symmetric in the spatial coordinates, therefore we
can consider only the following domain

D : x1 < x2 < · · · < xN , (3.3)

in D the (3.1) reduces to a free Hamiltonian

H0
N =

N∑
i=1
− ∂2

∂x2
i

, (3.4)

with the following constraint:(
∂

∂xi+1
− ∂

∂xi
− c
)
χN = 0, xi+1 = xi, (3.5)

imposed by the δ interaction. In order to understand why the constraint (3.5)
works, let us show how it arises when we have only two particles.Tthe general-
ization for N bosons is straightforward. Introducing the variables{

z = x2 − x1

Z = x2+x1
2

the Hamiltonian (3.1) can be written as:

H2 = −2 ∂
2

∂z2 −
∂2

2∂Z2 + 2cδ(z), (3.6)

if we now integrate equation (3.2) for the Hamiltonian (3.6) in the variable z over
an interval of measure ε� 1 (i.e. − ε

2 < z < ε
2), we obtain:[

−2 ∂
∂z
χ2

] ε
2

− ε2
+
(
∂2

∂Z2χ2

)
ε+ 2cχ2 = O(ε). (3.7)

In the limit ε→ 0 (3.7) becomes exactly (3.5):(
∂

∂x2
− ∂

∂x1
− c
)
χ2 = 0, x2 = x1, (3.8)

this means that, if the wave function χ2(x1, x2) is an eigenfunction of the hamil-
tonian, the condition (3.8) has to be fullfiled.
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Before considering the general solution of (3.1) with the boundary conditions
(3.5), let us see what happens in the simplest possible case: N = 2. The wave
function in this case can be written as:

χ2(x1, x2) = C1eik1x1+ik2x2 + C2eik2x1+ik1x2 , (3.9)

where the coefficients C1 and C2 are determined by the constraint (3.8):

(ik1 − ik2 − c)C1 = (ik2 − ik1 − c)C2, (3.10)

C2
C1

= −eiφ(k1−k2) φ(k1 − k2) = −i ln c+ i(k1 − k2)
c− i(k1 − k2) , (3.11)

the function φ(k1 − k2) can be thought as a phase-shift due to the contact inter-
action. The general symmetric solution is:

χ2(x1, x2, k1, k2) = sgn(x2 − x1)[eik1x1+ik2x2−isgn(x2−x1)φ(k1,k2)/2

− eik2x1+ik1x2+isgn(x2−x1)φ(k1,k2)/2].
(3.12)

For a generic number of particles N we can proceed in the following way 1. We
make the ansatz that the solution can be written as a superposition of plane
waves

ψ(x1 . . . xN ) =
∑
P
APeikP1x1+···+ikPN xN , (3.13)

where ki are the (quasi)momenta, P is a permutation of the ki and the sum is
extended over all the permutations. All the possible permutations are done by
exchanging two possible indices at a time, therefore the coefficients AP can be
found exploiting the results from the two particles case

AP
AP ′

= i(ki − kj) + c

i(ki − kj)− c
= −eiφ(ki−kj), (3.14)

where ki and kj are the momenta exchanged by the permutation. Therefore we
obtain [39]:

AP = C(−1)P
∏
j<i

(kPj − kPi + ic) (3.15)

where C is a normalization constant. The wave functions that we found in this
way are eigenfunctions of the Hamiltonian (3.4) with eigenvalue

E =
N∑
j=1

k2
j . (3.16)

They are also eigenfunctions of the momentum operator, with total momentum

P =
N∑
i=1

ki. (3.17)

1A part from the original reference [39], there are several reviews about the coordinate Bethe
Ansatz techniques used in the solution of the Lieb-Liniger model, e.g. [41] or [42, chapt. 2].
The reference [41] is more complete.
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So far we said nothing about the permitted values of the quasi-momenta ki; these
values must be found imposing the boundary conditions. As discussed formerly
we will consider periodic boundary conditions (PBC). If the particles lying in a
length L, PBC are imposed if for every 1 ≤ j ≤ N we have:

ψ(x1 . . . xj . . . xN ) = ψ(x1 . . . xj + L . . . xN ), (3.18)

this effectively means that our system has the geometry of a ring. If a particle
moves around the circle it will acquire a phase due to two different contributions.
The first contribution will be the dynamical phase (i.e. eikjL). The second
contribution will come from the scattering with all the others particles around
the ring, when PBC are considered. The sum of these contributions is a integer
multiple of 2π [41]. More formally we can say that if we take two permutation of
the momenta2 such that the difference between the two(P and P ′) is the shift of
one index (i.e. P ′N = PN−1 and P ′1 = PN . . . ), the following condition must hold

AP ′

AP
= eikPNL, (3.19)

this is equivalent to:

eikjL =
∏
j 6=i

(
kj − ki + ic

kj − ki − ic

)
, j = 1, . . . , N. (3.20)

The (3.20) is a set of N equations for N variables (the quasi-momenta ki) called
Bethe equations. Although the number of equations is the same of the number
of variables the solution is not unique since different solutions can be shifted by
integer multiples of 2π. This fact is evident is we take the logarithm of (3.20):

kjL = −i
∑
i 6=j

iπ +
∑
i 6=j
−i ln

(
c+ i(ki − kj)
c− i(ki − kj)

)
+ 2πIj , (3.21)

that is :
kjL = (N − 1)π +

∑
i 6=j

φ(ki − kj) + 2πIj . (3.22)

The numbers Ij are integers if N is odd, half-integers otherwise. From equation
(3.22) it is clear that the sum of the dynamical phase and the phase acquired due
to the interaction has to be a integer multiple of 2π. Let us note that the set of
integers Ij are quantum numbers that identify the state of the system. It is not
hard to convince ourselves that the ground state is the one in which the integers
Ij are symmetrically distributed around the zero

Ij = −N + 1
2 + j j = 1 . . . N. (3.23)

This fact can be proved in different ways but we will omit the demonstration. It
is important to remark that the Bethe solution of the Lieb Liniger model provides
all the quasi-momenta to be distinct, indeed if we have ki = kj for a given (i, j)
the wave function vanishes. In particular, this last point shows that, also if we
are considering bosons in real space, the contact interaction reveals a “fermionic
nature” in momentum space.

2Different orderings of the particle can be expressed as different permutations of the momenta.
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3.2 Tonks-Girardeau limit
The limit for c → ∞ in the Hamiltonian (3.1) is usually referred as “Tonks-
Girardeau” limit since it was solved for the first time by Girardeau [43] and, in
its classical version by Tonks [44]. In this regime the Hamiltonian (3.1) describes
a one-dimensional system of strongly interacting bosons. What we calculated so
far for the generic Lieb-Liniger gas is still valid and the solution for the Girardeau
gas could be found considering, with a certain care, the limit for c → ∞ of the
previous results. However we will derive the correct solution focusing on the
physical meaning of the limit considered.
Imposing a strong repulsive contact interaction means that the probability for
two particles to be “close” to each other is very low. For c → ∞, when deal-
ing with point like particles3, this is equivalent to say that, given a many-body
eigenfunction of the hamiltonian χN (x1 . . . xN ), the following condition must be
respected:

χN (x1 . . . xi . . . xj . . . xN ) = 0 if xi = xj , (3.24)

for every couple (i, j). Equation (3.24) sounds like a fermionic requirement.
Effectively in this regime, since it is not allowed multiple spatial occupation, the
bosonic gas is physically undistinguishable from a free fermionic one, as will be
clearer soon. The Hamiltonian for a Girardeau gas can thus be written as:

HTG =
N∑
i=1
− ∂2

∂x2
i

, (3.25a)

χN (x1 . . . xi . . . xj . . . xN ) = 0 if xi = xj , (3.25b)

let us note that relations (3.25) are, as expected, exactly the same as (3.4)
with the constraint (3.5) in the limit c → ∞. A possible solution to (3.25) is a
determinant of a N × N matrix with entries eikixl (i.e. a Slater determinant).
However we must take into account the fact the we are still dealing with a bosonic
system, therefore the wave function should be symmetric under the exchange of
two spatial coordinates. Following [43] the wave function is:

χN (x1 . . . xN |k1 . . . kN ) = C√
N !

det[exp{iklxj}]
∏
i<j

sgn(xl − xj), (3.26)

that is:

χN,G(x1, x2, . . . , xN ) =
∏
i<j

sgn(xi − xj)χN,F (x1, x2 . . . , xN ), (3.27)

where χN,F (x1, x2 . . . , xN ) is a many-body eigenstate of a free fermionic hamil-
tonian. The allowed values for the momenta are found, as usual, imposing the
boundary condition. Following what has been done for the general Lieb-Liniger
model, (i.e. imposing PBC) we find

eikjL = (−1)N−1 for j = 1, . . . , N. (3.28)
3A more realistic physical situation would prescribe to consider the particles as spheres of

finite ray, this has been done classically and is fully described in [44].
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These equations coincide with the limit c → ∞ of the Bethe equations. Let us
note that the energy eigenvalues are identical to the fermionic ones, indeed in this
singular limit, all the possible observables are genuinely fermionic. Actually, in a
more realistic situation, c is set such that it is larger than a certain energy scale
c2 � E, in this context the model would be purely bosonic if the momentum of
the particles is p� c (i.e. c ≈ 0), purely fermionic otherwise.
Lastly, we must point out that in the Lieb-Liniger model the coupling constant
has the dimensions of an inverse length therefore, except in the limits c = 0 and
c→∞, there is a natural energy scale. Following [39] an adimensional non trivial
parameter, γ = cρ−1 where ρ = N

L , can be introduced. The Tonks-Girardeau limit
is recovered when

γ � 1, (3.29)

that is for high values of the coupling constant or for extreme diluted systems.

3.2.1 Jordan-Wigner transformations

As we have seen in the last paragraph, there is a one-to-one correspondence
between the Hilbert space of a free fermionic system and the Hilbert space of a
strongly interacting bosonic one. This mapping can be implemented by mean of a
Jordan-Wigner transformation. The procedure that will be showed for the Lieb-
Liniger is valid quite in general; indeed this mapping to free-fermion theories is
often used for the solution of several one-dimensional lattice models (e.g. strongly
interacting Bose-Hubbard model or spin chains). In order to solve the Lieb-
Liniger model we have to rewrite the Hamiltonian (3.1) in a “second quantization”
notation

H =
∫ L

0
dx[∂xφ̂†(x)∂xφ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)], (3.30)

where, if we use periodic bound conditions, φ̂(x) = 1√
L

∑
p eipxâp. The âp are

bosonic operators, therefore their algebra is:

[ap, a†q] = δpq, (3.31)

where a†p creates a particle of momentum p and aq annihilates a particle of mo-
mentum q. The allowed values for the momenta p are 2πk/L with k integer.
In the limit of strong interaction (c→∞) it is convenient to rewrite the hamilto-
nian in terms of the “hard-core” bosons operators Φ̂(x), Φ̂(x)†. They are related
to the free bosonic fields by a non-linear transformation:

Φ̂†(x) = Pxφ̂
†(x)Px, (3.32)

in which Px is the projector on the truncated Hilbert space with at the most one
boson in x, P = |0x〉〈0x| + |1x〉〈1x|. The Tonks-Girardeu Hamiltonian can thus
be written as a free hamiltonian in the hard-core fields

H =
∫ L

0
dx[∂xΦ̂†(x)∂xΦ̂(x)], (3.33)
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provided that they obey an “effective” Pauli principle implemented by an unusual
algebra:

[Φ̂(x)]2 = [Φ̂†(x)]2 = 0, {Φ̂(x), Φ̂†(x)} = 1, (3.34a)
[Φ̂(x), Φ̂(y)] = [Φ̂(x), Φ̂†(y)] = 0 x 6= y. (3.34b)

Although (3.33) seems quite simple to solve, this is not the case due to the non
trivial relations (3.34). This problem can be circumvented by introducing the
Jordan-Wigner mapping

Ψ̂(x) = eiπ
∫ x

0 dzΦ̂(x)†Φ̂(x)Φ̂(x). (3.35)

It is straightforward to show that (3.35) is a purely anti-commutating field:

{Ψ̂(y), Ψ̂†(x)} = δ(x− y). (3.36)

The fields defined through the Jordan-Wigner transformation are genuinely fermionic
and the Hamiltonian (3.33) becomes therefore:

H =
∫ L

0
dx[∂xΨ̂†(x)∂xΨ̂(x)]. (3.37)

If we use PBC (3.35) can be decomposed as

Ψ̂(x) =
∑
k

eikxηk η̂k =
∫

dx e−ikxΨ̂(x). (3.38)

Plugging 3.38 in 3.37 we obtain:

H =
∞∑

k=−∞
k2η̂†kη̂k, {η̂†q, η̂k} = δq,k. (3.39)

We note that the Hamiltonian (3.39) is diagonal in the proper modes, confirming
that the Tonks-Girardeau model has purely fermionic properties.
As we have already seen formerly the Lieb-Liniger is not the only model that
(in a particular limit) can be mapped to a free fermionic theory by mean of a
Jordan-Wigner transformation, another important example is the Bose-Hubbard
model (1.14) in the limit of strong on-site interaction. When the limit U →
∞ is considered, the only permitted values of the lattice site occupation are:
ni = 0, 1 (actually this exactly the discrete analogous of a Girardeau gas). The
hamiltonian of the hard-core Bose-Hubbard model has been introduced formerly
(1.20) together with the commutation relations for the fields bi and b†i . In this
case the Jordan-Wigner transformations are defined as:

ci = e
iπ
∑

j<i
b†jbjbi =

∏
j<i

(1− 2b†jbj)bi, (3.40a)

c†i = b†ie
−iπ

∑
j<i

b†jbj = b†i
∏
j<i

(1− 2b†jbj). (3.40b)
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Also in this case it is straightforward to show that ci and c†i obey anti-commutation
relations

{ci, c†j} = δi,j . (3.41)

Using (3.40) the Hamiltonian (1.20) becomes:

H = −J
∑
i

(c†ici+i + h.c.). (3.42)

This expression is very similar to (1.16), indeed it is exactly the Hamiltonian of a
system of non-relativistic spinless fermions hopping on a lattice without on-site
interaction.
Another important example of discrete hamiltonian that can be diagonalized
using Jordan-Wigner transformation is the XX-model

HXX = −1
2

L∑
j=1

σxj σ
x
j+1 + σyj σ

y
j+1 − 2hσzj (3.43)

where σx,y,zj are the Pauli matrices on lattice site j and h is a magnetic field. In
this case the JW is defined as

ci =

∏
j<i

σzj

 σxi + iσyi
2 . (3.44)

After the transformation the hamiltonian can be written as:

HXX = −
L∑
i=1

(c†ici+i + h.c.)− 2h
(
c†jcj −

1
2

)
. (3.45)

Let us note that if we set h = 0 (3.45) is equal to (3.42). This demonstrates that
also very different models can be resolved using the same physical picture of free
fermionic theories thanks to the Jordan-Wigner transformation.

3.3 Quantum quench from free to hard-core boson in
a periodic 1-D gas

In this paragraph some results from [47] are reported. In the paper a global
quantum quench, with the same protocol that we used in this thesis, is studied.
It is considered a 1D system composed by N particles lying over a ring of length
L prepared in the ground state of the Lieb-Liniger Hamiltonian with c = 0.
The interaction parameter is suddenly quenched in such a way that the time
evolution is governed by a Tonks-Girardeau Hamiltonian ((3.1) with c → ∞).
All the analytical results are given in the thermodynamical limit with n = N

L
constant. The particularity of this quench protocol is that there is a non-linear
relation (Eq. (3.32)) between the pre- and post-quench operators. In [47] the
attention is focused both on the dynamical and on the stationary properties of
the two-point and of the density-density correlation function. One of the most
important thing to remark is that in the hardcore limit there is a linear relation
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between the local integrals of motion Im and the fermionic occupation modes n̂j ,
although these are typically non-local. This means that all the information about
the stationary state is encoded in the fermionic two point correlation function.
The existence of such linear relation is important because it makes possible the
construction of the GGE avoiding the divergences that arise in the local integrals
of motion when the continuum limit is considered, making necessary a proper
regularization (for the details [45]). In order to demonstrate this last point let us
follow what done in [9]. For free fermionic fields the local charges can be written
in the continuum case as:

Îj =
∫

dx Ψ̂†(x)(−i)j ∂
j

∂xj
ˆΨ(x). (3.46)

It is not hard to show that (3.46) is equivalent to:

Îj =
∑
k

kjn̂k, (3.47)

Indeed the relation (3.46) can be written as:

Îj =
∫ ∫

dxdy(−i)jΨ̂†(x)δ(j)(x− y)Ψ̂(y) =∫ ∫
dxdyΨ̂†(x)

[∑
k

1
L
kjeik(x−y)

]
Ψ̂(y) =

1
L

∑
k

∫ ∫
dxdyΨ̂†(x)kjeik(x−y)Ψ̂(y) =∑

k

kjn̂k,

(3.48)

where we used the decomposition (3.38) and fact that for finite values of L the
momentum is discrete. Therefore, there some coefficients γk exist such that:∑

k

γkn̂k =
∑
m

λmÎm. (3.49)

The fact that the GGE properties of the system are fully described only by
the occupation fermionic number is a clear indication that in the infinite time
limit the Wick’s theorem holds in its usual form and therefore all the multipoint
function can be expressed as combination of the two-point fermionic function.
The fermionic correlation 〈Ψ̂†(x)Ψ̂(y)〉 is found to be time-independent and its
expression in the thermodynamical limit is

CF (x, y) = ne−2n|x−y|. (3.50)

If we set x = y we find the spatial density n(x) = n. Therefore if we prepare the
system in a translationally invariant state the two-point function does not evolve,
this is one of the most remarkable differences with the confined case.
The calculation of the density-density correlation function is less trivial. One
astonishing result in this case is that for finite times the Wick’s theorem does not
apply and therefore the dynamical multipoint functions have to be calculated
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esplicitly.
The density operator is defined as

ρ̂(x, t) = Ψ̂†(x, t)Ψ̂(x, t), (3.51)

let us note that the fermionic density coincides with the hard-core bosonic one and
for this reason the density-density correlation function is experimentally relevant.
The density-density function is defined in general as:

〈ρ̂(x1, t1), ρ̂(x2, t2)〉 = 1
L2

∑
k1,k2,k3,k4

e−i(k1−k2)x1−i(k3−k4)x2ei(k2
1−k

2
2)t1ei(k2

3−k
2
4)t2

× 〈ψ0|η̂†k1
η̂k2 η̂

†
k3
η̂k4 |ψ0〉,

(3.52)

where, again, the decomposition (3.38) has been used for the fermionic field. The
four points correlation in the proper modes can not be found using the standard
prescriptions of the Wick’s theorem because the initial state is definided as

|ψ0〉 = (a†0)N√
N !
|0〉 with [a†p, aq] = δp,q, (3.53)

and the relation between the fermionic operators ηk and the pure bosonic ones
ap is non trivial.4 The only way to proceed is going back to the real space

〈ψ0|η̂†k1
η̂k2 η̂

†
k3
η̂k4 |ψ0〉 = 1

L2

∫ L

0
dz1dz2dz3dz4ei(k1z1−k2z2+k3z3−k4z4)

· 〈ψ0|Ψ̂†(z1)Ψ̂(z2)Ψ̂†(z3)Ψ̂(z4)|ψ0〉.
(3.54)

In order to calculate the four-points function (3.54) all the possible permutations
of the spatial indices must be taken in account. Moreover one has to consider
also the fact that two or more fermionic operators can act in the same spa-
tial point. Furthermore, there are minus signs arising from the ordering of the
fermionic operators and extra minus signs coming from the commutation rules
of the Jordan-Wigner string, see e.g. appendix of [46]. Then the four-points
function is given by:

〈ψ0|Ψ̂†(z1)Ψ̂(z2)Ψ̂†(z3)Ψ̂(z4)|ψ0〉 = δ(z2 − z3)ne−2n|z4−z1|

+
∑
P
θ(zP)σPn2e−2n(zP4−zP3+zP2−zP1 ), (3.55)

where θ(zP) = θ(zP4 − zP3)θ(zP3 − zP2)θ(zP2 − zP1). The sum is intended to
be done over all possible permutations and σP is the sign of the permutation.
Plugging this expression in (3.52) one obtains

〈ψ0|η̂†k1
η̂k2 η̂

†
k3
η̂k4 |ψ0〉 = n(k1)δk2,k3δk1,k2 + (δk1,k2δk3,k4 − δk2,k3δk1,k4)n(k1)n(k3)

+ δk1,−k3δk2,−k4
k1k2
4n2 n(k1)n(k2).

(3.56)
4Namely, it is exactly the same that holds for the fields (3.32), i.e. the multi-occupied spatial

states have to be drop out.



CHAPTER 3. THE LIEB-LINIGER MODEL 35

Notice that, if the Wick’s theorem held, only the first line of (3.56) would have
been obtained. By using (3.56) the density-density correlation can be explicitly
found. Let us set ∆x = x2 − x1 and ∆t = t2 − t1 then

〈ρ̂(x, t), ρ̂(x+ ∆x, t+ ∆t)〉 = 1 + isgn(∆t)
2
√

2π|∆t|
e−i

∆x2
4∆t

∫
dk

2π e
ik∆x−ik2∆tn(k)

+ n2 −
∣∣∣∣∫ dk

2π e
ik∆x−ik2∆tn(k)

∣∣∣∣2
+
∣∣∣∣ 1
2n

∫
dk

2π e
ik∆x−ik2(∆t+2t)kn(k)

∣∣∣∣ .
(3.57)

The anomalous term in the second line of (3.56) originates the last term of (3.57),
which is the only one that depends on the time after the quench. It easy to
convince that when t → ∞ it vanishes because the phase of the integrand is
highly oscillating, therefore, in the stationary state, all the contributions come
from the terms in the first line of (3.56). This means that in the GGE the
four-point functions can be obtained using the Wick’s theorem.



CHAPTER 4
QUANTUM QUENCH IN A CONFINED 1-D GAS

In this chapter we analyze the stationary properties and the non-equilibrium
dynamics of a confined strongly interacting one dimensional Bose gas. The
situation in this case is slightly different from the one studied in [47]. Indeed

we consider a confined system and see how the trap influences the dynamics and
the stationary state reached after the quench. This configuration is potentially
interesting from an experimental point of view (see paragraph 1.2). We study
the simplest confined situation that can be implemented: the potential well trap
described by the Hamiltonian

Ĥ(x) =
N∑
i=1
− ∂2

∂x2
i

+ V, (4.1)

where {
V = 0 if 0 < x < L

V →∞, otherwise
. (4.2)

We set ~ = 2m = 1 and L represents the extension of the trap. At the time
t = 0− our system is composed by N non-interacting spin-less bosons. In order
to simplify the problem we will consider the thermodynamical limit (TDL), that
is N → ∞ and L → ∞ maintaining n = N

L fixed. The n in our case has to be
intended as an average density, indeed the initial state is inhomogeneous and, in
order to preserve this inhomogeneity, we must pay attention in performing the
TDL.
Let us find the single-particle wave functions of the bosons, that, since there is
no interaction, are the fundamental bricks whit whom we will build everything.
We must solve: {

∂2

∂x2ϕ(x) = −Eϕ(x)
ϕ(0) = ϕ(L) = 0.

(4.3)

The solution of (4.3) is of the form

ϕ(x) = A sin (
√
Ex+ δ), (4.4)
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the constant A is fixed requiring the normalization of the wave function in the
interval [0, L] and the constant δ is given by the boundary conditions. The correct
normalized wave functions areϕj(x) =

√
2
L sin

(
jπ
L x
)

j ∈ N
. (4.5)

We prepare our system in the ground state, that is the one with j = 1. The
initial density is given by

n0(x) = 2N
L

sin2
(
π

L
x

)
. (4.6)

0.2 0.4 0.6 0.8 1.0
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L

0.5
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n Hx � L, t = 0L

n

Figure 4.1: Initial density

4.1 The quench protocol
Following what done in chapter 3, it is convenient to introduce fields and de-
scribe everything in second quantization, this a typical approach in many-body
problems. Let us define

φ̂(x) =
∞∑
j=1

ϕj(x)aj φ̂†(x) =
∞∑
j=1

ϕj(x)a†j , (4.7)

where the ϕj(x) are the same of (4.5) and the a†j and aj are commutating raising
and lowering operators, so their algebra is

[aj , a†k] = δj,k. (4.8)

The initial hamiltonian can thus be written as

H =
∫ L

0
dx(∂xφ̂†(x)∂xφ̂(x) + V φ̂†(x)φ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)), (4.9)

with c = 0.
As in the [47], at time t = 0 we suddenly turn on an infinitely strong contact in-
teraction and let the system evolve, in other words we consider as evolving hamil-
tonian the one with c→∞. In this limit (Tonks Girardeau limit paragraph 3.2)
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bosons behave as they were impenetrable. Since there is an interaction we can-
not quantize the fields naively as done in (4.7), again, we can define “hard-core”
bosonic fields that obey a “hybrid” algebra reflecting their fermionic behavior

[Φ̂(x), Φ̂†(y)] = 0, {Φ̂(x), Φ̂†(x)} = 1, [Φ̂†(x)]2 = [Φ̂(x)]2 = 0. (4.10)

The relation between these fields and the free bosonic ones is non-trivial and can
be written as:

Φ̂†(x) = Pxφ̂
†(x)Px, (4.11)

where Px = |0x〉〈0x|+ |1x〉〈1x| is a local projector.
It is possible to rewrite the post quench hamiltonian in terms of the hard-core
bosons fields:

H =
∫ L

0
dx(∂xΦ̂†(x)∂xΦ̂(x)), (4.12)

The crucial passage at this point is to use the Jordan-Wigner transformations, in-
troduced in the last chapter, that permit to rewrite the strong interacting bosonic
Hamiltonian as a free fermionic one, in the same spirit of what done in [47]

Ψ̂(x) = exp
{
iπ

∫ x

0
dzΦ̂†(z)Φ̂(z)

}
Φ̂(x), (4.13a)

Ψ̂†(x) = Φ̂†(x)exp
{
−iπ

∫ x

0
dzΦ̂†(z)Φ̂(z)

}
. (4.13b)

The fermionic fields are defined as

Ψ̂(x) =
∞∑
p=1

ϕp(x)ξp ξp =
∫ L

0
dxϕp(x)Ψ̂(x) (4.14)

where ξp are anti-commutating fermionic operators (i.e. {ξp, ξ†q} = δp,q) and the
ϕp(x) are the single-particle solutions of the Schroedinger equation found in (4.5).
In terms of these fermionic fields the hamiltonian can be written as

H =
∫ L

0
dx(∂xΨ̂†(x)∂xΨ̂(x)) or H =

∑
k

k2ξ̂†kξ̂k. (4.15)

Therefore the evolution of our strong interacting bosonic system can be studied
from that of a free theory.

4.2 Generalized Gibbs Ensemble results
In this section we want to study the stationary properties of the density and of
the fermionic correlation function. As stated in paragraph 1.3.1, the Generalized
Gibbs Ensemble is constructed considering only the local integrals of motion.
However, as we have seen, for free fermionic theories a linear relation between
the local conserved charges and the momentum occupation number exists (see
paragraph 3.3). Therefore the GGE can be written as:

ρGGE = Z−1 exp
(
−
∑
k

λkn̂k

)
, (4.16)
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where Z = ∏
k

[
1 + e−λk

]
is the partition function. The coefficients λk are La-

grange multipliers that must be fixed imposing:

Tr (ρGGEn̂k) = nk. (4.17)

Since, by definition, Z = Tr [exp (−∑k λkn̂k)], equation (4.17) can be rewritten
as

− ∂

∂λk
ln(ZGGE) = 1

eλk + 1 = nk. (4.18)

Equation (4.18) suggests that all the information about the equilibrium state is
in the fermionic occupation number. Then the characterization of the system in
the infinite time limit can be done by considering only the diagonal terms in the
time evolution of operators. In this sense it is clear that the GGE describes time
averaged quantities that must coincide with the stationary ones.
In order to understand this last statement, let us consider the formal expression
for the time evolved fermionic correlation function:〈

Ψ†(y)Ψ(x)
〉
t

=
〈
eiĤtΨ†(y)Ψ(x)e−iĤt

〉
. (4.19)

This expression can be rewritten in a clearer way, using the definition of fields
given in (4.14), as

∞∑
p=1

∞∑
q=1

ϕq(y)ϕp(x)
〈
eiĤtξ̂†q ξ̂pe−iĤt

〉
, (4.20)

and, since the fermionic hamiltonian is diagonal in the proper modes ξp, equation
(4.20) becomes:

∞∑
p=1

∞∑
q=1

ϕq(y)ϕp(x)ei(εq−εp)t
〈
ξ̂q
†
ξ̂p

〉
, (4.21)

where, εp =
(pπ
L

)2.
Let us now calculate the time average of the expression (4.21) over an interval
[0, T ]

1
2T

∞∑
p=1

∞∑
q=1

ϕq(y)ϕp(x)
∫ +T

0
dt ei(εq−εp)t

〈
ξ̂q
†
ξ̂p

〉
=

∞∑
p=1

∞∑
q=1

ϕq(y)ϕp(x)e
i(εq−εp)T − 1
i(εq − εp)T

〈
ξ̂q
†
ξ̂p

〉
,

(4.22)

if we now consider the limit for T →∞ we obtain

lim
T→∞

ei(εq−εp)T − 1
i(εq − εp)T

= δpq. (4.23)

Therefore, plugging in (4.22) we have

〈Ψ†(y)Ψ(x)〉 ≡
〈

Ψ†(y)Ψ(x)
〉
GGE

=
∞∑
q=1

ϕq(y)ϕq(x)
〈
ξ̂q
†
ξ̂q

〉
. (4.24)
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4.2.1 Initial fermionic correlation function

The first quantity we calculate is the initial correlation function. This is a funda-
mental step that will enable us in finding both the dynamical and the stationary
properties. Using Jordan Wigner transformations defined in (4.13) and the anti-
commutation relations, it is straightforward to show that [47]〈

Ψ†(x)Ψ(y)
〉
t=0

=
∞∑
j=0

(−2)j
j!

∫ y

x
dz1 . . .

∫ y

x
dzj

〈
Φ†(x)Φ†(z1) . . .Φ†(zj)Φ(zj) . . .Φ(z1)Φ(y)

〉
.

(4.25)

At this point we make a fundamental hypothesis. We assume that the expectation
value of the multi-point function of hard-core and real bosonic fields is the same,
this means〈

φ†(x)φ†(z1) . . . φ(z1)φ(y)
〉

=
〈

Φ†(x)Φ†(z1) . . .Φ(z1)Φ(y)
〉
. (4.26)

As will be showed in the appendix A.1 using a rigorous lattice regularization
this approximation makes completely sense. In fact this assumption is physically
reasonable, because as long as we consider a continuum of sites we cannot (more
correctly it is highly improbable. . . ) have multiple occupied sites especially with
finite N .
By hypothesis the initial state |N〉 is the ground state, therefore it can be written
in terms of the raising operators as

|N〉 = a†N1√
N !
|0〉 . (4.27)

The φq(x) are real bosonic fields, then from (4.7) and (4.27) we have

〈φ†(x)φ†(z1) . . . φ†(zj)φ(zj) . . . φ(z1)φ(y)〉 =

∑
{p}

ϕ∗p1(x)ϕ∗p2(z1) . . . ϕp2j+1(z1)ϕp2j+2(y)〈N |a†p1a
†
p2 . . . ap2j+1ap2j+2 |N〉 =

∑
{p}

2j+1∏
i=1

δpi,1

ϕ∗p1(x)ϕ∗p2(z1) . . . ϕp2j+1(z1)ϕp2j+2(y)〈N |a†p1 . . . ap2j+2 |N〉 =

j∏
i=1
|ϕ1(zi)|2ϕ1(x)∗ϕ1(y) 〈N | a†j+1

1 aj+1
1 |N〉 .

(4.28)

Between the second and the third line of (4.28) we used that

aq |N〉 = δq1
√
N |N − 1〉 . (4.29)

Using (4.29) it is also straightforward to see that

〈N | a†j+1
1 aj+1

1 |N〉 = N !
(N − j − 1)! . (4.30)
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Equation (4.25) thus can be rewritten in terms of the wave function of the ground
state〈

Ψ†(x)Ψ(y)
〉
t=0

=
∞∑
j=0

(−2)j
j! ϕ1(x)ϕ1(y) N !

(N − j − 1)!

(∫ y

x
dz

2
L

sin2
(
π

L
z

))j
,

(4.31)
which is valid only if y > x, otherwise we must flip the integration extremes.
This point can be understood observing how is defined the Jordan-Wigner trans-
formation (4.13). Taking into account this fact the result of the integral in (4.31)
is:

|y − x|
L

+ 1
2π sign(y − x)

(
sin
(2πx
L

)
− sin

(2πy
L

))
. (4.32)

Equation (4.31) can be rewritten in a more compact way, using the binomial
formula and the prosthaphaeresis relations, as〈

Ψ†(x)Ψ(y)
〉
t=0

= 2N
L

sin
(
π

L
x

)
sin
(
π

L
y

)
×
[
1− 2

( |y − x|
L

+ 1
π
sign(y − x) cos

(
π

L
(x+ y)

)
sin
(
π

L
(x− y)

))]N−1
.

(4.33)

4.2.2 Some general features about quantum-quenches in trap

The relation obtained formerly is valid for finite values of N and L. As already
stated, we would like to find an intelligent (and of course correct. . . ) way to
consider the thermodynamic limit of (4.33). In the periodic case analyzed in
[47] this passage was quite straightforward. The importance of considering the
TDL relied on the fact that the initial fermionic correlation function simplified
considerably and this fact permitted to calculate both stationary and dynamic
quantities. In the confined case the situation is quite different and unfortunately
much more complicated. The complication arises when we deal with the typical
wave-functions of a confined problem. Let us consider a normalized single-particle
wave function of a confined system. In order to fix the ideas we can initially take
a function defined over a symmetric compact domain D =

[
−L

2 ,
L
2

]
, where L is

the length of the trap1

λp(x) with
∫ + 1

2

− 1
2

dx ||λp(x)||2 = 1. (4.34)

In the previous relation we reabsorbed a factor L such that the integration domain
becomes D′ =

[
−1

2 ,
1
2

]
. Using λp(x) we can define a monotonically increasing

function
Λp(x) =

∫ x

0
dz ||λp(z)||2 x ∈ D′ . (4.35)

1Although we are dealing with a compact domain, this argument is general and is valid for
problems defined in on the whole real axis as, for example, the harmonic trap, where 1√

ω
= L

is the typical decay length.
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The initial fermionic correlation function has the same structure of (4.33):〈
Ψ†(x)Ψ(y)

〉
t=0

= Nλ∗0 (x)λ0 (y) [1− 2 |Λ0(y)− Λ0(x)|]N−1 . (4.36)

At this point we should take the limit N →∞, L→∞ Keeping N
L = n constant.

In the limit N →∞:{
Nλ∗0 (x)λ0 (y) [1− 2 |Λ0(y)− Λ0(x)|]N−1 → 0 if x 6= y

Nλ∗0 (x)λ0 (y) [1− 2 |Λ0(y)− Λ0(x)|]N−1 →∞ otherwise
. (4.37)

Let us set:

F (x, y,N) = Nλ∗0 (x)λ0 (y) [1− 2 |Λ0(y)− Λ0(x)|]N−1

-0.4 -0.2 0.2 0.4
x
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20

30

40

50

60

FHx,0.2,50L

-0.4 -0.2 0.2 0.4
x

-2

2

4

6

8

FHx,0.2,50L

Figure 4.2: F (x, y,N) in the case of a symmetric trap (i.e. λ0(x) =
√

2 cosπx) Left: In this
figure we set y = 0.2, we are quite far from the boundary and the function is “well-behaved”,
in the limit N →∞ it is a Dirac delta. Right: In this case y = 0.4 we are close to the point in
which ∂xΛp(x) = 0. As we can see near the boundaries the delta approximation is not so good,
in order to “see” a delta function for points close but still different from the nodes of the wave
function, we have to consider very high values of N .

It easy to test numerically that, fixed the value of a variable, for large N, we have:

I(y,N) =
∫
x∈D′

dx F (x, y,N) = 1. (4.38)

Therefore we can say that:

lim
N→∞

F (x, y,N) = δ(x− y). (4.39)

Actually the situation is not so smooth. Relation (4.39) is valid only for that
points in which ∂xΛp(x) 6= 0 (that is λp(x) 6= 0. . . ), otherwise the limit is identi-
cally zero. We can say, therefore, that F (x, y,N) in the limit N →∞ is pointwise
convergent to a Dirac delta function, except in the null-measure set represented
by the points in which the wave function is zero (i.e. in the “nodes” of the wave
function). Note that, as long as our initial state is the ground state of a certain
system, there are no nodes in the wave function (except at the boundaries. . . ).
If the limit (4.39) holds we have then

lim
N→∞

〈
Ψ†(x)Ψ(y)

〉
t=0

= δ(x− y). (4.40)
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Figure 4.3: Integral of the same F (x, y,N) of figure 4.2 as a function of N . Left: we set
y = 0.2, being far from the boundaries the convergence of the integral is fast. Right: in this
case we set y = 0.4, the convergence is much slower than the former case.

This expression is very simple but it is incorrect. In fact if we calculated the
fermionic occupation number (see next paragraph. . . ) using (4.40) as initial
correlation function, we would have a constant occupation, this does not make
sense.
The thermodynamic limit of (4.36) can also be performed in another way following
what done in [47]. Let us preliminary point out that the wave functions describing
a confined system have all the same structure:

φp(x) = 1√
L
ψp

(
x

L

)
, (4.41)

where L is the typical confining length. Using this property we can rewrite the
initial correlation as:〈

Ψ†(x)Ψ(y)
〉
t=0

= nψ∗0

(
x

L

)
ψ0

(
y

L

)[
1− 2n

N

∣∣∣∣∫ y

x
dz ||ψ(z/L)||2

∣∣∣∣]N−1
, (4.42)

and since:
lim
N→∞

(
1 + α

N

)N
= eα,

equation (4.42) becomes:〈
Ψ†(x)Ψ(y)

〉
t=0

= nψ∗0

(
x

L

)
ψ0

(
y

L

)
e−2n|

∫ y
x

dz ||ψ(z/L)||2|. (4.43)

Also this expression gives an unphysical result for the fermionic occupation num-
ber, unless we expand the wave functions near the center of the distribution. In
that case we would obtain〈

Ψ†(x)Ψ(y)
〉
t=0

= Cne−2Cn|x−y|, (4.44)

with C constant depending on the initial distribution (for our problem C = 2).
This expression is identical to that obtained in the homogeneous case meaning
that we are simply expanding on the top of the initial distribution losing com-
pletely the effect of the trap. The only way in which we can proceed is to not
consider the thermodynamic limit soon but maintain N and L finite as much as
possible, but this will complicate all the calculations.
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4.2.3 Fermionic mode occupation

In order to obtain the GGE results for the spatial density and for the correlation
function we must calculate the fermionic mode occupation number that, since the
hamiltonian is diagonal in the fermionic modes, is a conserved quantity. From
equation (4.14) we see that it is possible to obtain an expression for the occupation
number nj using the initial fermionic correlator. In fact

nj =
∫ L

0
dx

∫ L

0
dyϕj(x)ϕj(y)

〈
Ψ†(x)Ψ(y)

〉
t=0

, (4.45)

that is

nj = 4N
L2

∫ L

0
dx

∫ L

0
dy sin

(
jπ

L
x

)
sin
(
jπ

L
y

)
sin
(
π

L
x

)
sin
(
π

L
y

)
[1−2β(x, y)]N−1,

(4.46)
where,

β(x, y) =
( |y − x|

L
+ 1
π
sign(y − x) cos

(
π

L
(x+ y)

)
sin
(
π

L
(x− y)

))
. (4.47)

We can slightly simplify this expression using the Werner formulas and, since the
integrand function depends only on (x− y) and (x+ y), we can change variables
obtaining:

nj = N

2π2

∫ 2π

0
dt

∫ π−|t−π|

|t−π|−π
dz [cos(jz)− cos(jt)][cos(z)− cos(t)]

×
[
1− 2

π
(|z| − sign(z) cos(t) sin(z))

]N−1
,

(4.48)

in which t = L(x+y)
π and z = L(x−y)

π .
This is a highly non trivial integral and in order to perform it we need a prelimi-
nary numerical analysis that will show its behavior in the thermodynamic limit.
Numerical results of the integration of (4.48) are in figure 4.4. As we can see,
apart for small values of j (j ≤ 10), this function is well behaved. The disordered
cloud of values for small j is caused by numerical errors that occur in the inte-
gration of (4.48) due to the oscillating behavior of the integrand. We can ignore
this for two reasons: the function is limited for all j, so we can drop a finite
number of points changing nothing, but, especially, because nj = f

(
j
N

)
, then in

the thermodynamic limit small values of j do not contribute.
After these considerations we can further simplify, in the TDL, equation (4.48)2

nj = 1
π

∫ π

0
dt

1(
1 + j2π2

4N2A(t)2

) = 1−

√√√√ j̃(j̃ +
√
j̃2 + 4)

2(4 + j̃2)
, (4.49)

where A(t) = 1 + cos(t) and j̃ = jπ
2N .

This integral can be performed exactly, however we are not interested in its
2In appendix B.1 formal passages that led from (4.48) to (4.49) are reported.
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Figure 4.4: Left: numerical results for nj as a function of j. Right: numerical results for nj
as a function of the rescaled variable j

N
for many values of N.

exact expression, we need only to compare this approximation with the previous
numerical results in order to see if what done makes any sense. This has been
reported in figure 4.5, as shown, a part the initial disorder, there is an almost
perfect matching, considering the approximations done both in the numerical
analysis and in the manipulation of (4.48), this is a surprising result.
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Figure 4.5: Comparison between numerical and analytical results for nj for the same values
of N of the fig. 4.4.

We should show that ∞∑
j=1

nj = N, (4.50)

but it is hard to perform this sum exactly. In the next paragraph we will show
some results that are coherent with the condition (4.50). Actually, using relation
(4.49), we should test that ∫ ∞

0
dj nj = N, (4.51)
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since we obtained it in the thermodynamic limit. From (4.50) we have that

1
π

∫ π

0
dt

∫ ∞
0

dj
1(

1 + j2π2

4N2A(t)2

) = 1
π

∫ π

0
dt NA(t) = N. (4.52)

4.2.4 Density profile

Using relation (4.49) we can find the shape of the density profile in the GGE,
that is the time evolved spatial density. The definition of n(x) is:

n(x) =
∞∑
j=1

nj |ϕj(x)|2. (4.53)

We can evaluate equation (4.53) at the point x = L
2

n

(
L

2

)
=
∞∑
j=1

nj

∣∣∣∣ϕj (L2
)∣∣∣∣2 = 2

L

∞∑
j=1, j=odd

nj . (4.54)

If equation (4.50) holds, then
∞∑

j=1, j=odd
nj = 1

2

∞∑
j=1

nj = N

2 , (4.55)

therefore, we should find that n
(
L
2

)
= N

L = n.
Plugging (4.49) and (4.5) in equation (4.53) we find that

n(x) = 2
πL

∞∑
j=1

∫ π

0
dt

1(
1 + j2π2

4N2A(t)2

) sin2
(
jπ

L
x

)
. (4.56)

This expression can be studied numerically, the result is in figure 4.6.
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Figure 4.6: Numerical results of the density profile.

In the second picture of the figure 4.6 it is possible to see that n(x) approaches to
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a constant profile as N grows. The behavior of n(x) close to the boundaries can
be calculated analytically. Since both nj and ϕj(x) are functions of j

L in (4.56)
we can change variable. In the thermodynamic limit L → ∞, so j

L becomes a
continuos variable and this permits us to replace the sum with an integral. Then
we can write n(x) as:

n(x) = 2
π

∫ ∞
0

dq

∫ π

0
dt

sin2 (qx)
π
(
1 + q2

4n2A(t)2

) . (4.57)

At this point the trick is to exchange the order of integration doing the integral
in q before that in t. Then

n(x) = 2
π

∫ π

0
dt

1
π

∫ ∞
0

dq
sin2 (qx)(

1 + q2

4n2A(t)2

) . (4.58)

The integral in q is essentially a Fourier transform, giving:

n(x) = n− ne−4n|x|(I0(4n|x|)− I1(4n|x|)), (4.59)

where I0(x) and I1(x) are modified Bessel’s functions.
Let us observe that, due to the presence of the exponential cut in (4.59), this
result is valid only near the boundary (that is near the origin in the figure 4.6).
For symmetry reasons the the shape of the distribution near the point x = L is
the same.
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Figure 4.7: Detail of the edge. As N grows the exponential cut disappears.

It is important to remark that the exponential “Bessel modulated” cut on the
edge is only a finite-size effect. In fact, in the thermodynamic limit (i.e. L→∞),
it is clear that we lose the information about the boundaries, but this is not a
problem as long as we preserve the shape of the distribution inducted by the trap.
For this reason the correct rescaling of the spatial variable is

x̃ = x

L
, (4.60)
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Otherwise the risk is to expand near a boundary (as for example in (4.59)...) or
near the center of the distribution. In the latter case we would flatten the shape
recovering to the homogeneous case. In other words, we would lose totally the
information of the effects inducted by the trap.
In order to show that the exponential cut at the boundaries is a finite-size effect,
let us rewrite equation (4.59) as a function of x̃

n(x̃) = n− ne−4nLx̃(I0(4nLx̃)− I1(4nLx̃)). (4.61)
We note that the correction to the constant density is exponentially suppressed
with L, therefore it vanishes in the TDL. The value of n(x = L

2 ) can be easily
computed either from the TDL of (4.61) or considering the limit for x → ∞ in
(4.59)

n

(
L

2

)
= n(x̃)TDL = n(x→∞) = n. (4.62)

Then from both numerical and analytical evidences we can say that the condition
(4.50) holds.

4.2.5 Two-points correlation function

The fermionic correlation function in the GGE can be found following the same
steps done previously. In the case of the correlation function it is senseless to
rescale the spatial variable as done in (4.60), because we are interested in studying
also the correlation of points that can be arbitrarily close to each other. Therefore,
while the rescaling of the spatial variable is necessary in the analysis of the density
profile, it is harmful in the study of the correlation because it would mean to
consider only points infinitely separated.
The fermionic correlation function CF (x, y) is defined as:

CF (x, y) =
∞∑
j=1

njϕj(x)ϕj(y), (4.63)

using equation (4.49) this expression can be rewritten as:

CF (x, y) = 2
πL

∞∑
j=1

∫ π

0
dt

1(
1 + j2π2

4N2A(t)2

) sin
(
jπ

L
x

)
sin
(
jπ

L
y

)
, (4.64)

In the first picture of figure 4.8 we note that near the boundaries the translational
invariance is broken, but this, as for the density, is a finite size effect.
Using the same trick of (4.58) we can rewrite equation (4.64) as:

CF (x, y) = 2
π

∫ π

0
dt

∫ ∞
0

dq
sin (qx) sin (qy)
π
(
1 + q2

4n2A(t)2

) , (4.65)

With some algebra we can solve this integral and its result is

CF (x, y) = ne−2n|x−y|(I0(2n|x− y|)− I1(2n|x− y|))
− ne−2n|x+y|(I0(2n|x+ y|)− I1(2n|x+ y|)).

(4.66)
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Figure 4.8: Left: Numerical result for the correlation near the boundary (in this case we set
y = (0.05)L). Right: numerical results for the correlation near the center of the distribution
(i.e. y = (0.5)L).

Before proceeding it is proper to make some clarifications. Formerly we said that
for the correlation function the rescaling of the spatial variable was harmful, this
is not properly correct. In fact our goal is to find the behavior of the stationary
correlation in the thermodynamic limit. Therefore we must focus our attention
far from the boundaries of the system, in order to avoid the same finite size
effects that arise in the study of the density. For this purpose let us consider the
following change of variables: {

x+ y = u

x− y = v
. (4.67)

Focusing “far from the boundaries” means that u
L ∼ O(1). Then the correct

rescaling to be considered in this case is{
ũ = u

L

v = v
. (4.68)

In terms of ũ and v equation (4.66) becomes

CF (x, y) = ne−2n|v|(I0(2n|v|)−I1(2n|v|))−ne−2Lnũ(I0(2Lnũ)−I1(2Lnũ)). (4.69)

It is clear that relation (4.69) gives the correlation for points x and y such that
|x − y| � L, but this is not a problem because infinitely distant points are
uncorrelated.
Therefore the stationary correlation function in the thermodynamic limit is, as
expected, translationally invariant

CF (x, y)x,y�1 = ne−2n|x−y|(I0(2n|x− y|)− I1(2n|x− y|)). (4.70)

In [47] the same calculation is done without trap, and in that case the result is

CF (x, y)free = ne−2n|x−y|. (4.71)
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Expressions (4.70) and (4.71) are different, meaning that, also where the density
is constant and we have translational invariance, there is a non-trivial effect of the
boundary conditions in the correlation function (see fig. 4.10). It is important to
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Figure 4.9: Comparison between the correlation in the free case and in the trap case both in
natural (left) and in Log scale (right).

remark that the trap suppresses the exponential decay of the correlation function.
Indeed for |v| � 1 we have

C(v) ' v−
3
2 . (4.72)

This behavior is due to the fact that the fermionic occupation number n(j), if
j
N � 1, can be written as

n(j) = 1− C
√
j

N
+O

(
j

N

) 3
2
, (4.73)

where C is a constant. Therefore, in the Fourier transform of (4.73), a term
proportional to v− 3

2 arises. This term dominates at long distances.
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Figure 4.10: Comparison between the correlation and its asymptotic expansion. Left: for
small values of v the behavior of the two functions if quite different (log scale). Right: as v
grows the two functions almost overlap (log-log scale). This confirms that for large distances
the decay of the correlation is algebraic.
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4.3 Temporal evolution of the density profile
In this section we discuss the dynamical evolution of the density profile. Before
starting we have to understand if this calculation makes sense, in other words
we should wonder whether the density profile evolve. In the case treated in [47],
the spatial density and the two-points function were constant in time. In our
problem we start with a non-translationally invariant shape given by (4.6) and,
as seen in the last paragraph, the stationary density is constant. Therefore it is
interesting to understand how this happens.
The time evolution of the density profile is harder to find because we have to
consider also the off-diagonal elements in (4.21). The formal definition of the
time dependent density is

n(x, t) =
∞∑
p=1

∞∑
q=1

ϕq(x)ϕp(x)ei(εq−εp)t
〈
ξ̂q
†
ξ̂p

〉
, (4.74)

where εp =
(pπ
L

)2. Then, in order to find the time-dependent behavior, we must
calculate〈

ξ̂q
†
ξ̂p

〉
= 4N

L2

∫ L

0
dx

∫ L

0
dy sin

(
pπ

L
x

)
sin
(
qπ

L
y

)
sin
(
π

L
x

)
sin
(
π

L
y

)
× [1− 2β(x, y)]N−1, (4.75)

where β(x, y) is the same defined in (4.47). Also in this case we can change
variables as done in (4.46):{

L(x+y)
π = u

L(x−y)
π = v

→
{
x = π(u+v)

2L
y = π(u−v)

2L
. (4.76)

The expression (4.75) is then

N

π2

∫ 2π

0
du

∫ π−|u−π|

|u−π|−π
dv sin

[
p

2(u+ v)
]

sin
[
q

2(u− v)
]

(cos(v)− cos(u))

×
[
1− 2

π
(|v| − sign(v) sin(v) cos(u))

]N−1
. (4.77)

This expression is more complicated than (4.48) because in this case p 6= q. In
order to simplify it we can do an ansatz. We suppose that the only relevant
contributions to (4.77) come, in the TDL, from high values of p and q. This
means considering p + q � 1, nothing can be said, instead, about p − q. This
hypothesis, as we have seen formerly, works very well for the diagonal term. Let
us expand the term “sin

[p
2(u+ v)

]
sin
[ q

2(u− v)
]
” and see how can be simplified

under this assumption

sin [. . . ] sin [. . . ] =
(

cos
[
pv

2

]
sin
[
pu

2

]
+ cos

[
pu

2

]
sin
[
pv

2

])
×
(

cos
[
qv

2

]
sin
[
qu

2

]
− cos

[
qu

2

]
sin
[
qv

2

])
. (4.78)
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If we expand the product, the first term is

cos
(
p

2v
)

cos
(
q

2v
)

sin
(
p

2u
)

sin
(
q

2u
)

=

1
2 cos

(
p

2v
)

cos
(
q

2v
)(

cos
(
p− q

2 u

)
− cos

(
p+ q

2 u

))
. (4.79)

Since p+ q � 1 and the integration interval in the u contains always an integer
number of periods of the cosine, we can ignore “cos

(
p+q

2 u
)
”. If we do the same

thing with all the terms of the previous product and then sum up we obtain

sin [. . . ] sin [. . . ] ' 1
2

[
sin
(
p+ q

2 v

)
sin
(
p− q

2 u

)
+ cos

(
p+ q

2 v

)
cos

(
p− q

2 u

)]
.

(4.80)
The integral (4.77) becomes then

N

2π2

∫ 2π

0
du

∫ π−|u−π|

|u−π|−π
dv

[
sin
(
p+ q

2 v

)
sin
(
p− q

2 u

)
+ cos

(
p+ q

2 v

)
cos

(
p− q

2 u

)]
(. . . ). (4.81)

Since the integration interval of the v is symmetric, there is no contribution from
the term “sin

(
p+q

2 v
)

sin
(
p−q

2 u
)
”, therefore equation (4.81) is:

N

2π2

∫ π

−π
du cos

(
p− q

2 (u+ π)
)∫ π−|u|

|u|−π
dv cos

(
p+ q

2 v

)
(cos(v) + cos(u))

×
[
1− 2

π
(β(u, v))

]N−1
. (4.82)

At this point we note that if p− q = odd, “cos
(
p−q

2 (u+ π)
)
” is an odd function

integrated over a symmetric interval, then is zero. Following the same steps
used to obtain (4.49) from equation (4.48) (these passages are explained in the
appendix B.1. . . ) we have

〈
ξ̂q
†
ξ̂p

〉
= 1

π

∫ π
0 dτ

cos[ p−q2 (τ+π)](
1+ (p+q)2π2

16N2A(τ)2

) if p− q = even

0 if p− q = odd
, (4.83)

where A(τ) = 1 + cos(τ) as usual.
It is important to remember that relatoin (4.83) has been obtained assuming
that p + q � 1. In order to understand if this makes any sense let us compare
numerical results from the exact expression (4.77) and from (4.83). In this case
we have two free indices (that are p and q) then the numerical analysis is a bit
tricky. In order to perform it we can fix the value of a variable (e.g. q) and study
the behavior of the off-diagonal expectation value as a function of the free index
p. This has been done for several values of q and for N = 50. The results of this
analysis are in figure 4.11.
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Figure 4.11: Numerical results for the off-diagonal expectation value as a function of the free
index.

We note for small values of p+ q the approximation, as expected, is not perfect,
but as the indices grow the matching becomes better. Indeed for high values of
the p+ q the markers in the figure 4.11 are almost perfectly overlapped3 4.
Using equation (4.83) we can rewrite (4.74) as

n(x, t) = 2
Lπ

∞∑
p=1

∞∑
q=1

∫ π

0
dτ

sin
(pπ
L x
)

sin
( qπ
L x
)(

1 + (p+q)2π2

16N2A2(τ)

) ·(cos
[
p− q

2 (τ + π)
])

ei
π2
L2 (p+q)(p−q)t.

(4.84)

The domain of the double summation is in figure 4.12. We must remember that
the only contribution comes from the cuples (p, q)=(odd, odd) or (p, q)=(even,
even). In order to consider this fact we can change variables in the double sum-
mation setting {

p+ q = 2r
p− q = 2l

. (4.85)

All the dots in the figure 4.12 are covered using the following summation extremes:{
1 ≤ r <∞
−r + 1 ≤ l ≤ r − 1

. (4.86)

3One can object, observing Fig.4.11, that the approximation worsens for high values of p
and q (compare, for example, the second picture and the last two ones). At first sight this is
true, but we must take into account the fact that (4.77) for high values of q and p is highly
oscillating and therefore it is harder to catch its correct behavior. However, the approximation
is still better in the last panel, than in the first one.

4If we set p = q we obtain exactly relation (4.49).
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p

q

Figure 4.12: domain of the double sommation

The equation (4.84) becomes then:

n(x, t) = 1
Lπ

∞∑
r=1

r−1∑
l=−r+1

∫ π

0
dτ

cos
(

2lπ
L x

)
− cos

(
2rπ
L x

)
(
1 + r2π2

4N2A2(τ)

) · (cos[l(τ + π)])ei
4π2
L2 r·l·t.

(4.87)

In order to simplify this relation we can consider the following rescaling of the
variables: 

r̃ = r
L

t̃ = t
L

x̃ = x
L

, (4.88)

this permits us to substitute the sum over r with an integral and to extend the
sum over l in the domain (−∞ to +∞). Equation (4.87), in the limit L → ∞,
becomes

n(x̃, t̃) = 1
π

∫ ∞
0

dr̃
∞∑

l=−∞

∫ π

0
dτ

cos (2lπx̃)− cos (2Lr̃πx̃)(
1 + r̃2π2

4n2A2(τ)

) ·(cos[l(τ+π)]) cos (4π2r̃ · l · t̃),

(4.89)

where we used the symmetry of the summation domain. In (4.89) the term
“cos (2Lr̃πx̃)” has a highly oscillating phase then we can drop it out. This will
simplify the integral but will make us lose information about the behavior around
the boundaries. However the “lost of the boundaries” is not dramatic, in fact, as
we observed for the stationary density, the exponential cut at the edges is only a
finite-size effect.
We can further simplify relation (4.89) using the parity of the integrand in the
variable r

n(x̃, t̃) = 1
2π

∫ ∞
−∞

dr̃
∞∑

l=−∞

∫ π

0
dτ

cos (2lπx̃)(
1 + r̃2π2

4n2A2(τ)

)(cos[l(τ + π)])ei4π2r̃·l·t̃. (4.90)
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The integral in r is simply a Fourier transform:∫ +∞

−∞
dr

ei4π2r·l·t

1 + r2π2

4n2A(τ)2

= 2nA(τ)e−8nπ|A(τ)l|t. (4.91)

Then equation (4.89) becomes

n(x̃, t̃) = n

π

∞∑
l=−∞

cos(2lπx̃)
∫ π

0
dτ cos[l(τ + π)]A(τ)e−8nπ|A(τ)l|t̃, (4.92)

let us note that this expression depends neither on N nor on L and then is well
defined in the thermodynamic limit. In order to understand whether equation
(4.92) is correct, let us explore two limiting cases: t = 0 and t→∞.
If we set t = 0 the integral in τ can be performed exactly

n(x̃, 0) = n

π

∞∑
l=−∞

cos(2lπx̃)1− 2l2 − 2 cos(lπ)
l(l2 − 1) sin(lπ), (4.93)

the only non-zero contributions to the sum come from l = 0 and |l| = 1, substi-
tuting, we have

n(x̃, 0) = 2n sin2(πx̃). (4.94)
that is exactly the same as (4.6).
If we consider t→∞ we must set l = 0 and the result is:

n(x, t→∞) = n. (4.95)

This value is the same of (4.59) but, as already said, with a cut on the edges.
Equation (4.92) can be rewritten as:

n(x̃, t̃) = n+ 2n
π

∞∑
l=1

cos(2lπx̃)
∫ π

0
dτ cos[l(τ + π)]A(τ)e−8nπ|A(τ)l|t̃, (4.96)

in this form it is clear why after a transient time the system reaches a stationary
state. Indeed, the time-dependent part of (4.96) is exponentially suppressed. The
transient part of the previous formula is negligible if

n · t̃� 1
8π|A(τ)l| .

Let us note, in particular, that this time is inversely proportional to the average
density.
Using that, if l ∈ Z,

1
π

∫ π

0
du cos(lu)ez cos(u) = (−1)mIm(z), (4.97)

the integral in (4.96) can be performed exactly. Then, the time-dependent density
can be written as

n(x̃, t̃) = n

(
1 +

∞∑
l=1

cos(2lπx̃)(2Il(8nπlt̃)− Il+1(8nπlt̃)− Il−1(8nπlt̃))e−8nπlt̃
)
.

(4.98)



CHAPTER 4. QUANTUM QUENCH IN A CONFINED 1-D GAS 56

Since for the modified Bessel’s functions holds that
∂

∂x
Im(x) = 1

2(Im−1(x) + Im+1(x)), (4.99)

equation (4.98) can expressed as

n(x̃, t̃) = n

(
1− 2

∞∑
l=1

cos(2lπx̃)(∂ze−zIm(z))
)
, (4.100)

where z = 8nπlt̃.
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Figure 4.13: Numerical results for n(x, t). Left: Density profile for some values of nt̃. Right:
Value of the density for three different spatial points, as a function of time.
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The former results make sense, however we would like to test numerically the
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approximations we have used to transform (4.87) in (4.96). For this purpose we
can try to work with the exact relation of the time-dependent density (i.e. (4.87)).
It is important to point out that there are some difficulties in the numerical
analysis in this case. Since the sum in r should be performed from 0 to ∞ we
truncated it, but the effect of a cut-off could be non trivial. Moreover it is very
hard to set high values of the cut-off because the computation time grows very
rapidly.
Let us define the function:

∆(x, t, L,N)Λ = − 1
Lπ

Λ∑
r=1

r−1∑
l=−r+1

∫ π

0
dτ

cos
(

2rπ
L x

)
(
1 + r2π2

4N2A2(τ)

)(cos[l(τ + π)])ei
4π2
L2 r·l·t,

(4.101)
this is exactly the part that we ignored in relation (4.90). Equation (4.101) con-
tributes to nullify the density at the edges, however it is interesting to see whether
there are contributions from (4.101) also in the middle of the distribution, that
is for x

L = 1
2 .

In figure 4.15 there are the results of our analysis. As it is possible to see the con-
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Figure 4.15: Left: numerical study of (4.101) for N = 100, 200, 500 and Λ = 100, 200, 500
respectively, x = L

2 . Right: comparison between the approximated value of the time-dependent
spatial density previously found and the correct truncated value 4.102 in x = L

2 .

tribution of (4.101) is compatible with zero. It significative to see that, although
Λ increases, as N grows ∆ becomes smaller.
Let us now compare the results of the approximated time-dependent density and
the exact one.
As we have seen formerly, n(x̃, t̃) around x̃ = 1

2 can be written as:

n(x, t, L,N)Λ = 1
Lπ

Λ∑
r=1

r−1∑
l=−r+1

∫ π

0
dτ

cos
(

2lπ
L x

)
(
1 + r2π2

4N2A2(τ)

)(cos[l(τ + π)])ei
4π2
L2 r·l·t.

(4.102)

In this case too we have to pay attention to the value of Λ.
The results from the right panel of figure 4.15 are “unsatisfactory” because the
“exact” curves are always below the approximated one5, even if they behave in a

5However, the correct values are the “approximated” ones.
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Figure 4.16: Truncated density as a function of Λ in linear and log-log scale.

similar way. This is the greatest difficulty in performing a correct numerical anal-
ysis of equation (4.102), indeed, unfortunately, the convergence of n(x, t, L,N)Λ
is extremely slow with Λ. Therefore, in order to catch the correct behavior of
(4.102), we would need extremely high values of the cut-off, but this is very hard
from a computational point of view.
Let us see how the truncated density defined in (4.102) approaches to the correct
value as the cut-off grows. For this purpose we consider the value of the density
for x = L

2 and t = 0, that, from previous results, we know to be 2n.
Observing figure 4.16 we can understand how the convergence of the truncated
density is slow. For this reason numerical analysis in this sense is incomplete and
unsatisfactory.

4.4 Time-dependent two-points correlation function
Using same techniques of section 4.3 it is possible to calculate the dynamical
fermionic two-points correlation function. This will complete our insight into the
non-equilibrium behavior of the system.
The formal definition of the dynamic correlator is

C(x, y, t) =
∞∑
p=1

∞∑
q=1

ϕp(x)ϕq(y)ei(εq−εp)t
〈
ξ̂q
†
ξ̂p

〉
. (4.103)

For the off-diagonal expectation value we have seen that the approximation (4.83)
holds, therefore

C(x, y, t) = 2
Lπ

∞∑
p=1

∞∑
q=1

∫ π

0
dτ

sin
(pπ
L x
)

sin
( qπ
L y
)(

1 + (p+q)2π2

16N2A2(τ)

) (
cos

[
p− q

2 (τ + π)
])

ei
π2
L2 (p+q)(p−q)t.

(4.104)

We see that this expression is a bit more complicated than (4.84). Let us consider
the following variables: {

x+ y = u

x− y = v
. (4.105)
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The correlation function can be written as

C(u, v, t) = 2
Lπ

∞∑
p=1

∞∑
q=1

∫ π

0
dτ

sin
( pπ

2L(u+ v)
)

sin
( qπ

2L(u− v)
)(

1 + (p+q)2π2

16N2A2(τ)

)
×
(

cos
[
p− q

2 (τ + π)
])

ei
π2
L2 (p+q)(p−q)t. (4.106)

In relation (4.106) the term “sin
( pπ

2L(u+ v)
)

sin
( qπ

2L(u− v)
)
” can be approxi-

mated as:
1
2 cos

(
π(p+ q)v

2L

)
cos

(
π(p− q)u

2L

)
(see appendix B.2 for all the details).
Using the same spatial variables defined in (4.68) for the stationary correlator
and considering again {

p+ q = 2r
p− q = 2l

, (4.107)

with {
1 ≤ r <∞
−r + 1 ≤ l ≤ r − 1

, (4.108)

expression (4.106) becomes:

C(u, v, t) = 1
Lπ

∞∑
r=1

r−1∑
l=−r+1

∫ π

0
dτ

cos
(
rπv
L

)
cos

(
lπu
L

)
(
1 + rπ2

4N2A2(τ)

) (cos [l(τ + π)]) ei
4π2
L2 l·r·t.

(4.109)
Rescaling the variables in the usual way:

r̃ = r
L

ũ = u
L

t̃ = t
L

, (4.110)

and considering the limit L→∞, equation (4.109) becomes

C(v, ũ, t̃) = 1
4π

∫ +∞

−∞
dr̃

+∞∑
l=−∞

∫ π

0
dτ

cos[r̃(πv + 4π2lt̃)] + cos[r̃(πv − 4π2lt̃)](
1 + r̃π2

4n2A2(τ)

) (cos [l(τ + π)]) .

(4.111)

The integral in r̃ can be simply done, and the final result is:

C(u, v, t̃) = C(v, t̃→∞) + n

π

∞∑
l=1

(−1)l cos(πlũ)Υ(n, l, t̃), (4.112)

where C(v, t̃→∞) is the stationary correlation found in (4.70) and

Υ(n, l, t̃) =
∫ π

0
dτ cos(lτ)A(τ)(e−2n|A(τ)(v+4π2·l·t̃)|+e−2n|A(τ)(v−4π2·l·t̃)|). (4.113)
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It is clear that as t̃→∞ we find again the stationary part calculated previously.
In particular let us note that this part depends only on v = x − y, then it is
correctly translationally invariant. In the paragraph 4.2.1 we found an expression
for the initial correlation for finite values of N and L because, as stated later,
it was not trivial to find a correct way to perform the thermodynamic limit. In
order to have an expression for the initial correlation function one may wonder
whether considering the limit for t̃ → 0 of expression (4.112) could be useful.
Unfortunately this could not give the correct result, for mainly one reason. Indeed
it is not said that t̃ → 0 corresponds to t → 0, because, since t̃ = t/L, also for
finite values of t, as L → ∞, we find t̃ = 0. Then it is not clear what we would
calculate performing the limit t̃ → ∞, especially because we have nothing to
compare to. Equation (4.112) depends on v and ũ, these two variables work on
different scales. In fact the correlation is a local property of the system and the
“local variable” is v = x−y, indeed it is the only that “survives” when the system
reaches a stationary state. The role of the variable ũ is quite different, indeed
it implements the anisotropy inducted by the trap. This anisotropy is a global
property of the system, in fact we have to consider u ≈ L or ũ ≈ 1. Therefore, in
order to study equation (4.112), we can fix the value of ũ and see the behavior of
the correlation as a function of the local variable v. Numerical analysis of (4.112)
is in figure 4.17.
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Figure 4.17: Dynamical behavior of the fermionic correlation function. Left: we set ũ = 1, this
means that we are studying the correlation in a neighborhood of the centre of the distribution
(i.e. x ≈ y ≈ L

2 ). Right: in this case ũ = 0.1, then we study the correlation near the edge of the
system. We note that the behavior is qualitatively different in the two cases, anyway, for large
values of t̃, the correlation is the same (green curve).



CONCLUSIONS AND OUTLOOKS

In this work we have studied the dynamical and stationary properties of a confined
one dimensional Bose gas after a global quantum quench. The quench protocol
considered was the easiest one that could be implemented in the Lieb-Liniger
model. The difficulties in our cases arose from the fact that we were dealing with
a confined gas. The hamiltonian describing our system could be written as

H =
∫ L

0
dx(∂xφ̂†(x)∂xφ̂(x) + cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x) + φ(x)†φ(x)V (x)), (4.114)

in which V (x) played the role of trapping external potential.
We studied the simplest trap that could be considered: the potential well, that
corresponds to an external potential{

V = 0 if 0 < x < L

V →∞, otherwise
. (4.115)

The particularity of the trapped systems is that in the initial state there is not
translational invariance. In order to preserve this inhomogeneity, particular care
has been devoted in performing the thermodynamical limit. In fact, as we have
stated in paragraph 4.2.2, if one does naively the TDL the risk is to obtain un-
physical results. This particular feature makes trapped systems harder to handle
from a computational point of view.
One of the most remarkable result obtained is that, contrarily to the case de-
scribed in [47], the two-point functions (i.e. both the fermionic correlation and
the spatial density) evolve. This property has to be attributed to the initial
non-trivial state. Therefore we could test the validity of the Generalized Gibbs
Ensemble predictions by the analysis of the stationary and the dynamic corre-
lation. Since we used a free fermionic theory the local integrals of motion could
be expressed as linear combination of the momentum occupation number (as
demonstrated in 3.3) simplifying considerably the calculations. Then the GGE
has been constructed as:

ρGGE = Z−1 exp
(
−
∑
k

λkn̂k

)
, (4.116)
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where Z = ∏
k

[
1 + e−λk

]
and the Lagrange multipliers λk were fixed by the

relation
〈n̂k〉 = 1

eλk + 1 .

The stationary value of the two-points correlation function in the thermodynam-
ical limit was found to be:

CF (x, y) = ne−2n|x−y|(I0(2n|x− y|)− I1(2n|x− y|)). (4.117)

The effect of the trap in this case can be recognized in correction implemented by
the Bessel functions. This correction for CF (x, y) “survives” also in thermody-
namical limit, that is when we focus the attention on the centre of the trap and
the boundaries are set at infinity. This correlation has been calculated using the
diagonal GGE ensemble. The time-dependent correlation, instead, was harder to
compute but with a bit of work its correct expression could be found too,

C(u, v, t̃) = C(v, t̃→∞) + n

π

∞∑
l=1

(−1)l cos(πlũ)Υ(n, l, t̃), (4.118)

where Υ(n, l, t̃) =
∫ π

0 dτ cos(lτ)A(τ)(e−2n|A(τ)(v+4π2·l·t̃)| + e−2n|A(τ)(v−4π2·l·t̃)|).
As we noted, when the infinite time limit t̃ → ∞ was considered the dynamical
correlation approaches exactly the value calculated using the diagonal GGE, and
this aspect is true also for the spatial density.
There are many unsolved features that can led to future developments of this
type of problems. The first issue concerns the study of the same quench protocol
in another confining potential, better if more realistic from an expermental point
of view. It could be worth to consider a harmonic trap (i.e. V (x) = ω2

2 x
2). In

this case, since the functions involved are less elementary than sines and cosines,
it is harder to achieve the same analytical results we found in this work, however,
adapting the techniques used here, it does not seem to be impossible.
Another possible further improvement that can be done is the computation of the
dynamical density-density correlation function in the same spirit of what done in
[47]. Indeed it may be interesting to see whether, as expected, the Wick’s theorem
also in this case holds only in the stationary state. Anyway this challenge could
be too hard from a computational point of view and we are pessimistic about the
possibility of finding good analytical results. In conclusion we have to point out
that, although in this work we used only free theories, we expect that qualitatively
these results should be similar for a generic quench c = 0 → c = c0. However
in this case the problem should be treated with numerical techniques or with
Thermodynamical Bethe Ansatz [48] [49].
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A.1 Setup on lattice
In this section we want to demonstrate that the approximation (4.26) makes
sense. For this purpose we use a rigorous lattice regularization following the
steps of what done in the homogeneuos case [47].
Let us consider a system of N boson hopping on a one dimensional lattice com-
posed by M sites with lattice spacing δ, the length of the lattice is L = Mδ. The
wave function of the ground state is

ϕ1(x) =
√

2
L

sin
(
π

L
x

)
. (A.1)

Then the ground state for a single particle on lattice is given by:

|GS〉1−P =
√

2
M

M∑
i=1

sin
(
πi

M

)
b†i
∏⊗

i

|0〉i, (A.2)

where b†i is the construction operator on the ith site. In order to have a well-
defined continuum limit, in (A.2), we used that, the relation between the lattice
operators and the continuum ones is

bm =
√
δφ̂(δm) cm =

√
δΨ̂(δm) am =

√
δΦ̂(δm). (A.3)

Since we are dealing with non-interacting bosons the initial state of our system
is a BEC:

|BEC〉N =

√
2N

MNN !

(
M∑
i=1

sin
(
πi

M

)
b†i

)N ∏⊗
i

|0〉i. (A.4)

We are interested in the continuum limit that is defined as M → ∞, δ → 0
with L = M · δ constant. The hard-core bosons operators are defined as in the
continuum case:

ai = PibiPi, (A.5)
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with Pi = |0i〉〈0i|+ |1i〉〈1i|. In discrete case too, it is possible to define a Jordan-
Wigner mapping from hard-core bosons to free fermions

ai = e
−iπ

∑
j<i

c†jcjci =
∏
j<i

(1− 2c†jcj)ci, (A.6)

ci = e
iπ
∑

j<i
a†jajai =

∏
j<i

(1− 2a†jaj)ai, (A.7)

with {c†j , ci} = δij .
The initial fermionic correlation function for k < l can be written as

〈BEC|c†kcl|BEC〉 = 〈BEC|a†k
l−1∏
j=k

(1− 2a†jaj)al|BEC〉, (A.8)

that is

〈BEC|c†kcl|BEC〉 = 〈BEC|a†k
∑
r

(−2)r
∑

k<n1...<nr<l

a†n1an1 ...a
†
nranral|BEC〉.

(A.9)
Therefore, in order to find the initial correlation function, we have to deal with
terms of type

〈BEC|a†ka
†
n1an1 ...a

†
nranral|BEC〉. (A.10)

In order to calculate terms like (A.10) we must expand the multinomial of equa-
tion (A.4)

|BEC〉N =

√
2N

MNN !
∑

i1....iM

(
N

i1, . . . , iM

)
(p1b

†
1)i1 . . . (pMb†M )iM |0〉, (A.11)

where pi = sin
(
πi
M

)
. Let us consider the ket of expression (A.10)

a†ka
†
n1an1 ...a

†
nranral|BEC〉. (A.12)

If we want a non-zero result we must fix the value of some indeces, i.e. il =
inr = . . . in1 = 1 e ik = 0. This because when we rewrite the hard-core operators
in terms of the real ones we have some projectors that annihilate all the multi-
occupied sites. Equation (A.12) becomes therefore,√

2N
MNN !

∑
{i′}

(
N

i1, . . . , ik = 0, . . . , in1 = 1, . . . , inr = 1, il = 1, iM

)

× (p1b
†
1)i1 . . . b†k . . . (pMb

†
M )iM |0〉 (A.13)

in which {i′} = {i1 . . . iM}/{ik, inr . . . in1 , . . . il}. Let us note that in (A.13) there
is only one b†k and there are not b†l . When we consider the scalar product be-
tween the ket defined in (A.13) and a bra defined in (A.4) the only non-zero
contributions will come from terms in which there is a perfect matching between
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the powers of all operators. Therefore the “non-zero” bra in the scalar product
(4.28) is that with ik = in1 = . . . inr = 1 e il = 0. Using that:

〈0|pni bni pni b
†n
i |0〉 = p2n

i n!, (A.14)

we obtain

〈BEC| . . . |BEC〉 = 2Npkpl
MNN !

∏
s=n1...nr

p2
s

∑
{i′}

(
N

i1, . . . , iM

)2

p2i1
1 i1! . . . p2iM

M iM !.

(A.15)
Since ∑

j∈{i′}

ij = N − r − 1, (A.16)

equation (A.15) can be rewritten as:

〈. . . 〉 = 2Npkpl
MN

p2
n1 . . . p

2
nrN(N − 1) . . . (N − r)

 ∑
j∈{i′}

p2
j


N−r−1

, (A.17)

where we used again the multinomial expansion. The indices {i′} are M − r − 2
and their distribution depends on how are chosen the other r − 2 indices on lat-
tice. In the continuum limit between the site l and k there is an infinite number
of operators, however r ≤ N − 1 because the operators a†n1an1 . . . a

†
nranr act a

N − 1 particles state and N is finite.

· · · · ·

n1 nr−2 nr−1

k r

Figure A.1: Schematic representation of the lattice.

Therefore in the continuum limit ∑j∈{i′} p
2
j is a sum of infinite terms dis-

tributed practically uniformly over the lattice, then we can approximate it as:

p2
j = 1

2 ∀j ∈ {i′} (A.18)
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(we are flattening the distribution with its average value over the lattice).
Equation (A.10) is then:

〈BEC|a†ka
†
n1an1 ...a

†
nranral|BEC〉 =

2r+1pkp
2
n1 . . . p

2
nrpl

N

M

(
N − 1
M

)
. . .

(
N − r
M

)(
1− r + 2

M

)N−r−1
. (A.19)

Let us note that, a part for a normalization factor, if we set pk = . . . pl = 1 we
obtain exactly the free expression described in [47].
At this point we have to sum this expression over the indices ni. In order to do
this non trivial passage we can consider the following approximation:

l∑
n1=k

l∑
n2=n1

· · ·
l∑

nr=nr−1

p2
n1p

2
n2 . . . p

2
nr = 1

r!

 l∑
n=k+1

p2
n

r , (A.20)

that is formally valid only when deal with continuos indices (i.e. with inte-
grals. . . ). In the continuum limit holds also that

2r+1 N

M

(
N − 1
M

)
. . .

(
N − r
M

)(
1− r + 2

M

)N−r−1
'( 2

M

)r+1
N(N − 1) . . . (N − r). (A.21)

Then plugging (A.19) in (A.9), using (A.20) and (A.21), we find:

〈. . . 〉 = 2N
M

pkpl

N−1∑
r=0

(−2)r (N − 1) . . . (N − r)
r!

 2
M

l∑
n=k+1

p2
n

r , (A.22)

that is,

〈. . . 〉 = 2N
M

pkpl

1− 2

 2
M

l∑
n=k+1

p2
n

N−1

. (A.23)

The goal now is to rewrite (A.23) in the continuum limit. This can be done
remembering the correct power counting of the δ. From relation (A.3), we have
that:

〈c†kcl〉 = δ〈Ψ†(x)Ψ(y)〉, (A.24)

and then

〈Ψ†(x)Ψ(y)〉 = 2N
Mδ

pkpl

1− 2

 2
Mδ

l∑
n=k+1

δp2
n

N−1

. (A.25)

Since δ∑ =
∫
equation (A.25) becomes:

〈Ψ†(x)Ψ(y)〉 = 2N
L

sin
(
πx

L

)
sin
(
πy

L

)[
1− 2

( 2
L

∫ y

x
dz sin2

(
πz

L

))]N−1
,

(A.26)
this is the same expression we found in (4.33).
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B.1 Demonstration of equation (4.49)
In this section we obtain relation (4.49) for the nj starting from the definition
(4.48). Firstly we set

τ = t− π,

the integral (4.48), then, becomes:

nj = N

2π2

∫ π

−π
dτ

∫ π−|τ |

|τ |−π
dz(cos(jz)− (−1)j cos(jτ))(cos(z) + cos(τ))

×
[
1− 2

π
(|z|+ sign(z) cos(τ) sin(z))

]N−1
. (B.1)

At this point we note that the integration domain of the τ contains always an
integer number of periods of the function cos(jτ), so we expect that for large j
the contribution from cos(jτ) is suppressed with respect to the contribution from
cos(jz), then we can ignore it. Equation (B.1) can be rewritten as:

nj = 2N
π2

∫ π

0
dτ

∫ π−|τ |

0
dz(cos(jz))(cos(z)+cos(τ))

[
1− 2

π
(|z|+ sign(z) cos(τ) sin(z))

]N−1
,

(B.2)
where we used the parity of the integrand function. The function:∣∣∣∣[1− 2

π
(|z|+ sign(z) cos(τ) sin(z))

]∣∣∣∣ = β(τ, z,N), (B.3)

in the integration domain of the z is always β(τ, z,N) ≤ 1. For large N the only
relevant contribution will come from the values of z � 1. This fact permits us
to Taylor expand the integrand function to the first useful order, that is O(z),
we must pay attention to the integration extremes. Considered ε� 1 and, since
sign(z)z = |z|, equation (B.2) becomes:

nj = 2N
π2

∫ π

0
dτ

∫ ε

0
dz(cos(jz))(1 + cos(τ))

[
1− 2z

π
(1 + cos(τ))

]N−1
. (B.4)
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We cannot expand cos(jz) because for large j the argument is not small. It is
possible to rewrite equation (B.4) as

nj = 2N
π2

∫ π

0
dτ

∫ ε

0
dz(cos(jz))(1 + cos(τ))eN ln[1− 2z

π
(1+cos(τ))], (B.5)

and, since log(1 + x) ' x if x� 1,

nj = 2N
π2

∫ π

0
dτ

∫ ε

0
dz(cos(jz))(1 + cos(τ))e−N

2z
π

(1+cos(τ)). (B.6)

The integrand (B.6) is exponentially suppressed then, although we obtained it in
the limit z � 1, it possible to consider ε→∞ without changing significantly its
value. Let us note that this is true especially for large values of N . Therefore nj
can be expressed as:

nj = 2N
π2 <

(∫ π

0
dτ

∫ ∞
0

dz eijz(1 + cos(τ))e−
2N
π

(1+cos(τ))z
)
. (B.7)

Using that:
<
(∫ ∞

0
dz eikze−αz

)
= 1
α
(
1 + k2

α2

) , (B.8)

the result of integral (B.7) is:

nj = 1
π

∫ π

0
dτ

1(
1 + j2π2

4N2(1+cos(τ))2

) , (B.9)

that is exactly the same as (4.49).

B.2 Approximation used in the dynamical correlation
function

In this paragraph it is explained the approximation that permitted us to simplify
expression (4.106).
Using well known trigonometrical relations the term:

sin
(
pπ

2L(u+ v)
)

sin
(
qπ

2L(u− v)
)

can be written as:

1
2 cos

(
π(p+ q)v

2L

)
cos

(
π(p− q)u

2L

)
− 1

2 cos
(
π(p− q)v

2L

)
cos

(
π(p+ q)u

2L

)
+

1
2 sin

(
π(p+ q)v

2L

)
sin
(
π(p− q)u

2L

)
− 1

2 sin
(
π(p+ q)u

2L

)
sin
(
π(p− q)v

2L

)
.

(B.10)

It is not hard to show that in the thermodynamic limit the only relevant con-
tributions to the dynamical correlation function will come from the first term of
(B.10), the others are or identically zero or, simply, finite size corrections. For this
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purpose it is important to remember that we are working under the assumption
that p+ q � 1 and u

L ∼ O(1), therefore we can rescale as usual
ũ = u

L

v = v

r̃ = p+q
2L

l = p−q
2

. (B.11)

In terms of the new variables (B.10) is

1
2 cos (πr̃v) cos (πlũ)− 1

2 cos
(
πlv

L

)
cos (πũr̃L) +

1
2 sin (πr̃v) sin (πlũ)− 1

2 sin (πũr̃L) sin
(
πlv

L

)
.

(B.12)

We can see immediately that as L→∞ the last term is zero. The third term does
not contribute because it is odd in the variable l and in (4.109) the summation
domain of l is symmetric. At this point only two terms remain:

1
2 cos (πr̃v) cos (πlũ)− 1

2 cos (πũr̃L) . (B.13)

The first one gives the time-dependent correlation formerly calculated, the second
one instead gives only a finite size correction. In fact, following the steps of what
done in paragraph 4.4, it is easy to show that:

1
Lπ

∞∑
r=1

r−1∑
l=−r+1

∫ π

0
dτ

cos (πũr̃L)(
1 + rπ2

4N2A2(τ)

) (cos [l(τ + π)]) ei
4π2
L2 l·r·t ∝ e−|L|, (B.14)

therefore it vanishes in the thermodynamic limit.
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