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“Mes chers collègues, reprit ce dernier, je serai bref; je laisserai de côté le boulet

physique, le boulet qui tue, pour n’envisager que le boulet mathématique, le boulet moral.

Le boulet est pour moi la plus éclatante manifestation de la puissance humaine; c’est en

lui qu’elle se résume tout entière; c’est en le créant que l’homme s’est le plus rapproché

du Créateur! [...] En effet, s’écria l’orateur, si Dieu a fait les étoiles et les planètes,

l’homme a fait le boulet, ce critérium des vitesses terrestres, cette réduction des astres

errant dans l’espace, et qui ne sont, à vrai dire, que des projectiles! A Dieu la vitesse

de l’électricité, la vitesse de la lumière, la vitesse des étoiles, la vitesse des comètes, la

vitesse des planètes, la vitesse des satellites, la vitesse du son, la vitesse du vent! Mais

à nous la vitesse du boulet, cent fois supérieure à la vitesse des trains et des chevaux les

plus rapides!”

Jules Verne, De la Terre à la Lune, trajet direct en 97 heures 20 minutes (1865).
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Abstract
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Entanglement–Breaking Indices

by Ludovico Lami

The purpose of this thesis is the classification of the amount of noise introduced by

a local quantum channel only by means of its action on the entanglement of a global

bipartite quantum system. Fist of all, we consider the class of universal entanglement–

preserving channels, that never separate any entangled states. Our first contribution is

the rigorous proof that the only universal entanglement–preserving channels are the uni-

tary evolutions. This clarifies the context of our investigations. Next, we introduce some

entanglement–breaking indices associated with quantum channels. The most important

ones are the direct n–index (i.e. the minimum number of times we have to apply a

given channel in order to produce an entanglement–breaking behaviour) and the filtered

N–index (i.e. the minimum number of iterations such that the complete destruction of

the entanglement can not be prevented even if the interposition of appropriate channels,

called filters, is allowed). We initially make the intuitive conjecture that the optimal filters

are always unitary. However, we provide an explicit counterexample showing that this

conjecture is in general false. Moreover, we collect a series of clues pointing out that it

could retain its validity for channels acting on a two-dimensional system (qubit). Next,

we turn our attention to those channels (called entanglement–saving), whose n–index

takes the value +∞. We distinguish two possibilities. In the limit of an infinite number

of reiterations, the amount of entanglement can tend to zero or remain above a finite

threshold. The latter case defines the asymptotically entanglement–saving channels. We

find that a quantum channel is asymptotically entanglement–saving if and only if it ad-

mits two non–commuting phase points. A phase point is an input matrix on which the

channel acts as the multiplication by a phase. Finally, we find that almost everywhere the

entanglement–saving property coincides with the presence of a positive semidefinite fixed

point for the channel or for some of its powers. Consequently, we completely characterize

the entanglement–saving qubit channels. In order to give an operational meaning to our

abstract results, we provide also a concrete sequence of operations reproducing it.
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Chapter 1

Introduction

Quantum Mechanics occupies a special place in the long, bright catalogue of creations

of the human thought. Its structure appears to an eye which is well-trained to appre-

ciate the mathematical beauty as a crystal clear logical construction of shining natural

elegance. Beyond this, the physical dominion of the experimental predictions emerging

from quantum theories extends across an impressive range of tens of orders of magnitude

in all dimensions, from the internal structure of subatomic particles to the huge scales

pertaining to stars on the one hand, and on the other hand from the glacial cold of

Bose–Einstein condensates to the blazing fire burning in the core of the Sun. Moreover,

it is worth noting that the understanding of the laws which govern the quantum world

gives us a growing technological power that has been only a dream for the previous

generations. The last world war taught us what terrible might can be released when

the quantum strong force buried in the atomic nucleus is reawakened. However, look-

ing back on the last four centuries, which saw the birth and develop of modern science

and physics, I can not hold back the thought that all the past errors and achievements

have been but a preparation for the formidable questions raised by the discovery of the

quantum world.

It is almost impossible to overestimate the impact of quantum mechanics on our prac-

tical lives, but what makes the most successful theory of the history of physics also an

extremely audacious philosophical intuition is something it has to say about the way in

which we conceive the very nature of things. Actually, there are various kinds of issues

about which physicists argue since the very first appearance of quantum mechanical

ideas. Although we perfectly know how to predict the result of any experiment we could

1
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practically conceive, some of the conceptual problems concerning their possible interpre-

tations are still open, due to their particularly elusive nature. A clamorous example of

this rather uncommon situation is the so-called measurement problem, which however

we will not discuss. For some broad-spectrum, particularly acute, and non-technical

introductions to the main principles and interpretations of quantum mechanics, we refer

the reader to the text of Albert [1] and to those of Ghirardi [17]. We will follow these

texts in exposing in short the discover of non-locality.

1.1 The EPR Paradox

The first objections to the very nature of quantum mechanics as a fundamental physical

theory date back to 1935. They were expressed by Einstein, Podolsky, Rosen (EPR) in

their famous article [13]. These authors were the first to highlight the strange features

of some composite states of two quantum systems. Roughly speaking, their argument

intended to prove that, if the experimental predictions of quantum mechanics are true,

then the quantum mechanical description of the world must be incomplete. This term

means that there must exist elements of the reality pertaining to the world but not

included in the theory. To define what an element of the reality is, EPR used a sufficient

condition of the following form: “if, without in any way disturbing a system, we can

predict with certainty the value of a physical quantity, then there exists an element of

reality corresponding to this physical quantity.”

Their reasoning can be summarized as follows. Consider the following state of a pair of

two-level quantum systems (called qubits), which are supposed to be separated by some

immense distance:

|Ψ+〉AB ≡
|0A0B〉+ |1A1B〉√

2
. (1.1)

Denote by A and B the two subsystems, and by X,Z the first and third Pauli matrices.

Because of the particular mathematical form of (1.1), the measurement of the same

Pauli operator X or Z on the two halves of the system under examination will inevitably

produce identical outcomes. EPR propose to exploit this property to know in advance

and simultaneously the value of XB and ZB, by adopting the following strategy:

1. Perform a measurement of XA, obtaining the outcome +1. If the experimental pre-

diction of quantum mechanics are true, a later measurement of XB will inevitably
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yield the same result, i.e. +1. Thanks to the EPR condition, after our operation

the XB = +1 property of system B must be an element of the reality.

2. Soon after, perform a measurement of ZA, and suppose it produces again the

outcome +1. As above, if the experimental prediction of quantum mechanics are

true, then a later measurement of ZB will inevitably yield the opposite result, i.e.

+1. Then the ZB = +1 property of system B must be another element of the

reality. Here EPR assume that this second step can not affect the element of the

reality of B described in 1. instantaneously, because B is far apart. The name of

this key assumption, to be discussed further in a moment, is locality.

3. Thanks to the locality postulate, we are thus allowed, at least for a while, to claim

that:

(a) A measurement of XB would yield with certainty the outcome +1, and then

this is an element of the reality of B.

(b) A measurement of ZB would yield with certainty the outcome +1, and then

this is another element of the reality of B.

But these two statements are incompatible with the completeness of quantum me-

chanics as a physical theory, because in its formalism XB and ZB are complemen-

tary observables whose values can not be simultaneously defined. In other words,

in the formalism there is no mathematical counterpart of a state having such a

property.

The key assumption of locality in the EPR reasoning is that things can be arranged

in such a way as to prevent any instantaneous effect on B of operations done on A.

Apparently, as far as B lies outside the light-cone generated by the measurements on A,

it can not be affected by any observable consequences of these measurements, because

special relativity prohibits the instantaneous propagation of whatever physical signal (it

would be faster than light). Our intuitive belief that locality must be a fundamental law

of nature is so deep-seated that one of the greatest efforts in classical physics, from its

very birth on, was the attempt to find a mediator for the gravitational force, so as to

eliminate the action at a distance of the Newtonian gravitation. This goal was finally

reached by Einstein himself through his General Theory of Relativity, whose remarkable

achievements represented the peak of this classical world view.
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1.2 Bell’s Theorem

The EPR argument was largely underestimated or misunderstood by the scientific com-

munity. Bohr’s response [8] was not long in coming, but stood out for its obscurity and

ambiguity. Nonetheless, it was considered the conclusive victory of Bohr against Einstein

by the most part of the physicists for almost 30 years. However, in the sixties an Irish

physicist named John Stewart Bell recognized with great lucidity that the clarification

of the questions raised by EPR was indeed a thorny open question.

Maybe after all – he thinks – there is nothing ruling out the possibility that quantum

mechanics is only an useful statistical approximation of a more fundamental physical

theory. This theory must include a great number of hidden variables. Since they are

experimentally uncontrolled, maybe one can reproduce by means of them the (apparent?)

randomness of the outcomes of the measurements. The situation could be similar to a

dice roll: we can not completely control the exact direction and velocity of the launch,

but if we could, we would be able to predict the final result. Actually, an example of such

a hidden variable theory was presented by David Bohm in his 1952 paper [7]. This theory

is completely equivalent to quantum mechanics from the point of view of experimental

predictions, but still retains an explicit non-local behaviour. Bell asks himself (following

EPR’s reasoning) if could be possible to improve or to modify the Bohmian mechanics

in such a way as to preserve its experimental equivalence to quantum mechanics and

to eliminate its non-locality. After many vain attempts, he is struck by his greatest

intuition: there is no way to formulate such a theory, because there is a fundamental

contradiction between the experimental predictions of quantum mechanics and the claim

of locality itself. The groundbreaking 1964 paper by Bell [3] has to be considered one

of the brightest conceptual achievements of the history of science, because of its formal

simplicity and its huge philosophical importance.

Let us explain why Bell has drawn such a subverting conclusion. It is very interesting

to translate the reasoning in an everyday life language by telling a good story reported

for the first time in [39] and further developed in [17]. The human protagonists taking

the place of the entangled quantum particles, named Alice and Bob, claim that they are

telepathic (without metaphors, that there are genuinely non-local effects). In support of

this claim, they are able to perform a shocking show, which we are all set to describe.

The proscenium is divided in two by means of an opaque and soundproofed wall, and

Alice and Bob go to opposite sides. They are unable to communicate with each other by

normal means, and no one can distrust it (without metaphors, because causality forbids
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the communication over spacelike intervals). Then two members of the audience are

asked to write each one a number 1,2, or 3 on a piece of paper. One of these pieces of

paper is shown to Alice and the other to Bob, in such a way as to guarantee that nor

Alice can see Bob’s number, neither the converse. Then the two artists separately write

their responses, YES or NO, and show them to the audience. This test is repeated a

great number of times, and the amazing fact (on which is based the claim of telepathy)

is that whenever the same number is chosen, the same answer is given. No exception to

this rule has ever been observed.

How can we try to explain the performance of Alice and Bob without telepathy? There

is a simple possibility: before they are separated, Alice and Bob have decided to answer

in the same way to questions 1,2 and 3 of the first trial, and similarly for the others.

For example, they might have decided (concerning the first trial) that to question 1 they

will answer YES, and to question 2 and 3 they will answer NO (we will use the notation

YNN for such an agreement). The same reasoning must hold for the following trials.

Remarkably, such a strategy is the only way to explain the performance of Alice and

Bob without invoking magic. This is an example of a hidden variable theory for the

phenomenon under examination. Here is when John Bell comes out with an astonishing

exclamation: “Wait a second! All that does not make sense! Alice and Bob must be

telepathic!” Bell observed that Alice and Bob gave different answers with each other (on

the average) exactly in half of the cases. Without metaphors, this can be easily verified

by means of the quantum mechanical formalism. Why is this so important? Suppose

that there has been a previous agreement between Alice and Bob, and take into account

also the cases in which different numbers are shown to Alice and Bob. There are nine

possibilities, summarized in Table 1.1 for the YNN case:

Table 1.1: Responses of Alice and Bob in the case of YNN previous agreement

Numbers 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

Responses Y,Y Y,N Y,N N,Y N,N N,N N,Y N,N N,N

Bell argues that here there is disagreement between the two responses only in 4 cases

over 9. Of course, the same reasoning holds for the other plans involving two Ys and one

N or two Ns and one Y. The situation is even worse for the plans YYY and NNN, because

in that cases Alice and Bob always give the same answer. However, our protagonists

are able to display an higher rate of disagreement (on the average disagreement occurs
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exactly in one half of the cases, i.e. more that 4 times over 9). So a previous-agreement

explanation of the show to which we attended is no more supportable, and Alice and

Bob must be telepathic. And that’s all. Without metaphors, Bell’s theorem proves the

impossibility of a local hidden variable explanation of the quantum correlations between

entangled particles. Consequently, independently of the physical theory with which we

try to explain them, the correlations themselves show the irrefutable existence of non-

locality. Such a far-reaching conclusion has been subjected to strict experimental checks.

One of the most conclusive experiment was performed in 1982 by Aspect, Dalibard, Roger

(see [2]) and marked the final recognition (by the most part of the scientific community)

of the victory of quantum mechanics over the classical world view.

The argument by Bell that we have just presented relies on taking statistical averages

of the number of disagreements. For this reason, its experimental verification can be

subjected to criticism concerning the ability of the detectors (whose efficiency is not

unlimited) to perform a very fair sampling. However, there is another situation in

which no statistical averages are involved, and the non-locality test can be accomplished

by means of a single measurement. From a technical point of view, this allows us to

relax the assumptions concerning the efficiency of the experimental apparatus and to

strengthen Bell’s conclusions. Such a type of experiment has been proposed and per-

formed by Greenberger, Horne, Shimony, Zeilinger (GHSZ) in 1990 (see [18]). Consider

the following GHZ state of three two-level quantum systems:

|GHZ〉ABC =
|0A0B0C〉+ |1A1B1C〉√

2
. (1.2)

As can be easily verified, the three observables XAYBYC , YAXBYC , YAYBXC all assume

the value −1 on the GHZ state. However, their product XAXBXC takes not the value

(−1)(−1)(−1) = −1 (as expected in the context of a classical model), but instead the

opposite one, i.e. +1:

XAXBXC |GHZ〉ABC = + |GHZ〉ABC . (1.3)

This situation can be described by another good story, similar to the one we told above

but even simpler (see [17]). The protagonists of this story are the three “artists” Alice,

Bob and Charlie, and once again they claim to be telepathic. The shocking performance

on which they base their claim is as follows. The proscenium is divided in three parts by

means of opaque, soundproofed walls, and Alice, Bob and Charlie go to separate sides.

As above, they are certainly unable to communicate with each other by normal means.
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Then three members of the audience are asked to write each one a symbol X or Y on a

piece of paper. One of these pieces of paper is shown to Alice, another to Bob and the

last to Charlie, in such a way as to guarantee that each artist can see only one symbol.

Next, Alice, Bob and Charlie separately write their responses, + or −, and show them

to the audience. The amazing fact is that:

(i) When one X and two Ys are written by the spectators, the final response contains

an odd number of − .

(ii) When all the three spectators write X, the final response contains an even number

of − .

The experiment is repeated a great number of times, and these rules are always obeyed.

Let us try to give a hidden-variable explanation. Maybe Alice, Bob and Charlie agreed

to give predetermined answers. So let xA, yA denote the answers (+ or −) that Alice

will give to questions X and Y, following the plan. The same role is played by xB, yB

for Bob and by xC , yC for Charlie. The two conditions (i) and (ii) can be restated as

follows, according to the elementary rules of multiplication of signs:

(i) xAyByC = yAxByC = yAyBxC = − ;

(ii) xAxBxC = + .

Then we can see why there is contradiction between (i) and (ii): following (i), we would

obtain

xAxBxC = xAyByC yAxByC yAyBxC = (−)(−)(−) = − ,

absurd. Once again, the only possible explanation involves some form of telepathy

between Alice, Bob and Charlie.

1.3 Quantum Entanglement as a Physical Resource

Thanks to the work of Bell, we know that the quantum entanglement and the correla-

tions it displays are genuinely new effects having no counterpart in the classical world.

The question naturally arises, whether is possible to use entangled particles (for exam-

ple, photons transmitted through optical fibers) in order to perform tasks which are
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impossible from a classical point of view. In other words, we are trying to look at the

entanglement as a computational resource. What kind of new powers can the quan-

tum world give us? The following brief and extremely incomplete overview has only the

purpose to illustrate the usefulness of quantum correlations for doing computation.

1.3.1 No Faster-than-Light Communication

The discovery of non-locality seems to lead quite naturally to the possibility of instanta-

neous communication between two distant subjects. A device which is able to perform

such a communication is commonly known as Bell telephone. According to special rela-

tivity, the existence of a Bell telephone is equivalent to the possibility of a time travel.

That is, if a superluminal transmission of classical signal was allowed, then the possibility

of causing any sort of temporal paradoxes would be left open. One could, for example,

cause the death of his grandmother before he was born. This phenomena are called

violations of causality, and are precisely what Einstein wanted to keep out in assuming

locality.

However, as Einstein himself said, “subtle is the Lord, but malicious He is not.” And

this is the case. Although the quantum non-locality allows the transmission of some

correlations faster than light, it nevertheless forbids the possibility of instantaneous

communication of classical information. In other words, no violation of causality is

allowed. The general proof of this result is surprisingly easy (see for example [31], p.

113–118), and relies on the fact that the outcome of a quantum measurement is invariably

random.

Two conclusive remarks:

• The no-Bell-telephone theorem implies another famous general result known as

No-Cloning Theorem: there is no device which is able to produce as outcome two

identical copies of an unknown quantum state entered as input. Intuitively, this

statement is a consequence of the fact that no knowledge of a quantum system can

be gained without destroying some information contained in it (see the original

1982 works [44] and [12], or p. 532 of [29] for a short account).

• Suppose that there exists a hidden variable theory reproducing all the statistical

predictions of quantum mechanics. Then we know that it must be non-local, thanks

to Bell theorem. And not only. Quite reasonably, if there existed a device which



Chapter 1. Introduction 9

is able to detect the actual value of the hidden variables, then it turns out that

superluminal communication (and so violation of causality) would be allowed (for

an intuitive explanation see p. 248 of [17]). Therefore, a mechanism should be

included in the theory, so as to forbid any detection of the hidden variables.

1.3.2 Quantum Cryptography

One of the cornerstones of quantum mechanics is the impossibility to perform a mea-

surement without disturbing in an intrinsic way the system under examination. This

fundamental property, together with the correlations guaranteed by the entanglement,

can be naturally exploited to detect any undesired eavesdropping of a secret communica-

tion. Suppose that Alice wants to communicate with Bob in a provably secure way over a

classical channel such as a telephone line. This can be done by means of a cryptographic

system, which consists of an encoding and a decoding algorithm (a prescription such

as “write with the letters of the alphabet permuted in a given manner”), using as an

input a secret “password” called key (in the preceding example, the permutation of the

alphabet). Once Alice and Bob have shared a secret key, there are a number of ways in

which they can safely communicate. “Safely” here means that a possible eavesdropper

Eve can gain (even with the best possible strategy) little information about the actual

messages Alice and Bob are exchanging with each other.

The problem of such a private key cryptography is indeed the sharing of a secret key.

If Alice and Bob have no means of communication other than the public (i.e. not

necessarily secure) telephone line, this key can not be generated at all. In a concrete

situation Alice and Bob should meet and create together the key, a rather unfeasible

or expensive solution. But within the classical world there is no other one. However, a

clever use of the power of quantum entanglement can achieve the extraordinary goal of

a secret key generation over a public quantum channel. We will not describe here these

procedures of quantum key distribution, but we refer the reader to the useful overview

beginning at p. 582 of [29].

Classical cryptography is widely used in our every-day life, for example to safely commu-

nicate confidential data with a bank. As a consequence, the security of the procedures we

adopt is of prime importance. Remarkably, one of the most popular classical public-key

cryptosystems, namely the RSA scheme (see the original work [32] or p. 640 of [29]),

could be easily violated by means of a quantum computer! In fact, its security relies on
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the difficulty of the so-called factoring problem. The factoring problem is the task con-

sisting of finding the prime divisors of a given (large) natural number. It is believed to

be a very difficult task to perform by means of a classical computer (i.e. it would require

an enormous amount of time). But a quantum computer would reduce dramatically this

time (and so break the RSA scheme) thanks to the Shor’s algorithm for factorization

(see [38], or p. 226 of [29]). So on one hand quantum computation enables us to perform

truly secure cryptography, and on the other hand it can be used to break more “naive”

classical schemes.

1.3.3 Quantum Teleportation

Another direct application of the powerfulness of entanglement is the so-called quantum

teleportation. Suppose that Alice and Bob share an entangled pair (such as the one

described in (1.1)) and can communicate through a classical channel (a telephone line).

Alice wants to deliver an unknown quantum state |χ〉 to Bob. Observe that Alice can

not determine the state |χ〉 without perturbing it with a measurement. But, even if

she could know exactly |χ〉, the classical channel alone would not be by far a sufficient

resource, because it can transmit only a finite number of bits in a finite time, and the

quantum amplitudes defining |χ〉 contain an infinite amount of information.

However, the quantum correlations written in the entangled pair Alice and Bob share

are enough to perform the task. We will not describe here the simple procedure allowing

such a great achievement, but we refer the reader to p. 26 of [29]. Let us conclude by

remarking two conceptually important points:

• As a consequence of the above-mentioned no-cloning theorem, Alice can not simply

deliver a copy of the input state to Bob. Instead, she must destroy its copy of |χ〉
in order to make this state appear to Bob.

• Quantum teleportation is not instantaneous. It does not violate causality, because

to complete the process one has to use also a classical channel, which always send

slower-than-light information.
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1.4 Noise Affecting an Entangled System

In the preceding section we understood that entanglement is one of the most fundamen-

tal resources distinguishing between classical and quantum world. Like all the physical

resources, also the entanglement is subjected to deterioration. Indeed, one of the main

issues physicists have to face in dealing with quantum computation tasks from an experi-

mental point of view is the control of the noise interfering with non-classical correlations

in a bipartite quantum system. What kind of noise are we going to consider?

Suppose that Alice and Bob share a pair of entangled particles. Being far apart, they

can not create other entanglement, because they should generate some form of quantum

interaction between them. In other words, they should meet up again or build an optical

fiber joining them together, and this could be practically unfeasible. Since no other re-

sources can be produced, it becomes of prime importance to protect all the entanglement

Alice and Bob have previously stored. The experimental situations could be the follow-

ing. Alice’s entangled half of the global system (a nucleus, or a trapped ion, or a photon

etc.) is kept isolated. This subsystem surely undergoes an unitary time evolution, but

this does not affect the entanglement, being only a change of basis in the Hilbert space.

However, sometimes an interaction with the external world can take place. For example,

a stray thermal photon could hit one of Alice’s trapped ions, modifying its quantum

state in an uncontrolled way.

The mathematical description of this very general kind of noise is conceptually clear. One

of the two involved subsystems couples to an external environment through an interaction

Hamiltonian for a fixed time (i.e. undergoes an unitary evolution). However, during this

transformation, it shares part of its entanglement with other degrees of freedom which

are not under control. Such an entanglement has to be considered wasted, because the

process we described is irreversible (almost in the same sense as in thermodynamics).

In other words, the probability that the correlations will come back into the original

subsystem is negligible, the being environment like a huge heat bath. Since we are

concerning ourselves only with our controlled system and not with the environment, we

can simply forget (mathematically, trace away) it. The whole process is called a quantum

channel (Section 2.2) :

Quantum Channel: couple the system to an external environment + apply an unitary

evolution to the composite system + trace away the environment
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Let us remark a couple of technical points. Firstly, in this thesis we shall consider only

finite-dimensional quantum systems. This restriction is well-motivated from a practical

point of view: for example, only a finite number of modes of the electromagnetic field

will be excited in a concrete quantum optics experiment, and only within a finite range

of energies. The assumption is quite natural also for a theorist, in order to maintain an

analogy with the classical theory of information (a computer is a finite-state machine)

and to simplify the technical part (the finite-dimensional linear algebra is much simpler

that the infinite-dimensional theory of Hilbert spaces). Secondly, in considering the time

evolution of a closed quantum system we shall always keep the interaction time fixed. As

a consequence, we shall never write Schrödinger differential equations. Instead, we will

directly integrate them to produce an unitary evolution matrix, following a discretized

time approach.

An unitary operation (i.e. the time evolution of a closed system) is an example of quan-

tum channel, but the class we have defined is by far more extended. Clearly, the stronger

is the interaction with the external degrees of freedom, the worse will be the effect on

the entanglement we should protect. It turns out that there is a “threshold”, exceed-

ing which causes the complete destruction of whatever type of entanglement. Channels

going beyond this threshold are called entanglement–breaking (Section 2.4).

1.5 Our Contributions

Now we turn to a brief and intuitive description of our contributions. For a complete

discussion (including other significant concepts and results), the interested reader can

follow the cross references to the main text.

1.5.1 Fragility of Entanglement (Chapter 3)

As we have seen, quantum entanglement is a very powerful computational resource. But

the other side of the coin is that it is also fragile, in some precise sense to be pinpointed.

Concerning the possible noise it can be subjected to, we pose the following question:

what are the quantum channels whose noise level is so low that they do not destroy

any kind of entanglement? We call these channels universal entanglement–preserving,

because of their “complementarity” with respect to the entanglement–breaking transfor-

mations. As the latter always destroy the entanglement, the former always preserve it,
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i.e. they always produce an entangled state when acting on one subsystem of a global

entangled system. The characterization of these universal entanglement–preservers is a

mathematically precise question, and we shall rigorously answer it:

The only universal entanglement–preserving channels are the unitary evolutions. A

true interaction with an external environment always causes the loss of some kind of

entanglement.

Although the proof is rather technical, the physical meaning of this statement is crystal

clear. Even if the interaction with the surrounding world is very feeble or takes a very

short time, nevertheless it can destroy some form of weak entanglement between Alice

and Bob. This theorem mathematically defines the sense in which the entanglement is

a fragile resource, and conceptually clarifies the context of our investigations.

1.5.2 Entanglement–Breaking Indices (Chapter 4)

We have discovered that every universal entanglement–preserving channel must be neces-

sarily an unitary evolution. However, there is another sense in which a quantum channel

can be considered not too much noisy. As long as we model the external environment

as a heath bath, its state can be taken fixed and unaffected by any interaction with our

(much smaller) system. Then it becomes natural and physically motivated to consider

the repeated applications of a given quantum channel on the same half of the global

system. The noise “adds” and the entanglement is wasted one transformation after the

other, and one can try to quantify the noise introduced by a fixed quantum channel by

studying what number of repetitions is needed in order to obtain a complete destruction

of the original entanglement, i.e. an entanglement–breaking channel. This number of

repetitions is considered for the first time in [10], and we will call it the direct n–index

associated with the given channel (Definition 4.1, equation (4.1)).

On the other hand, from a practical point of view, we could think to play an active

role against the noise repeatedly affecting our half of the entangled system. A possible

strategy could be the following. After the first application of the noisy channel φ, we

can freely choose an arbitrary (local) quantum channel and employ it on our subsystem.

Then another noise φ (equal to the preceding one) is applied, and after that we can freely

perform another local operation. Naturally, the aim of our operations (called filters) is

to reduce as much as possible the noise interfering with the quantum correlations. Given
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a noisy quantum channel φ, the question could then arise, what is the minimum number

of applications of φ such that there is no filtering strategy allowing to save the entangle-

ment. We call this number the filtered N–index associated with φ (see Definition 4.1,

equation (4.5)). Since the most naive filtering strategy is simply doing nothing, it is

easily proved that N is greater than or equal to the direct n–index (see (4.13)). But

explicit examples can be constructed, for which there is a filtering strategy much more

efficient than doing nothing (Example 4.1).

As we have seen, every non-unitary filter creates some entanglement between Alice’s sub-

system and an external environment, lowering the level of quantum correlations between

Alice and Bob. So it seems intuitively quite natural to conjecture that the optimal filter-

ing strategy is obtained by means of unitary operations only (Conjecture 4.4). However,

once again the quantum entanglement has an astonishing surprise in store for us. Indeed,

it turns out that this conjecture is in general false. We construct an explicit, analytical

counterexample (Example 4.5), showing that our classical intuition can clamorously fail

when trying to guess the deep properties of the quantum world. As a matter of fact, the

optimal filtering strategy to be used against the local noise can be non-unitary. Phys-

ically, this is the same as to say that Alice can be forced to introduce other (suitable)

noise into her subsystem, if she wants to save the entanglement with Bob.

Interestingly enough, our counterexample to Conjecture 4.4 works only for d ≥ 3. Maybe,

this reflects an anomalous behaviour of the two-dimensional systems (called qubits). In-

deed, the rest of the chapter is devoted to collect a series of clues suggesting that Conjec-

ture 4.4 could be true, after all, for channels acting on a single qubit. We do not provide

a conclusive answer to this question, but two important results are proved (Theorems 4.7

and 4.11), ruling out the existence in the qubit case of a dramatic counterexample such

as Example 4.5.

1.5.3 (Asymptotically) Entanglement–Saving Channels (Chapter 5)

In this chapter, we turn our attention to the study of the direct n–index. Recall that this

index quantifies the minimal number of times a given noisy channel has to be applied

on Alice’s subsystem, in order to completely destroy the entanglement with Bob. The

question then arises, what kind of channels introduce so few noise in the system, that

the complete destruction of any form of entanglement is never reached. In other words,

these channels (which we call entanglement–saving in Definition 5.1) are characterized by
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an infinite value of the direct n–index. But also within the class of entanglement–saving

channels, there are still two possibilities. Even if the entanglement is never completely

destroyed, regardless of the number of repeated applications of the channel, it can nev-

ertheless happen that through this process the quantum correlations are reduced to

arbitrary low values, and eventually broken only in the limit. From a practical point of

view, the application of such a noise a thousandfold would make irrelevant the surviving

entanglement (because of its extreme weakness). In this regard, we define also the class

of the asymptotically entanglement–saving channels (Definition 5.6). An asymptotically

entanglement–saving noise does not reduce the entanglement to zero after an infinite

number of applications. Instead, a finite amount of entanglement is present also in the

limit. Far from being exquisitely theoretical, the distinction we have made is meaningful

also for an experimental physicist.

One of the most important results of this thesis (achieved in Section 5.3) is the complete

characterization of the set of asymptotically entanglement–saving channels. The central

Theorem 5.12 provides a physically meaningful answer to this question. The most in-

tuitive form of this answer concerns the phase points naturally associated to a given

quantum channel, i.e. those input matrices whose transformation under the action of

the channel is simply the multiplication by a phase (a complex number of modulus 1).

Intuitively, it turns out that these phase points are the only survivors in the limit of

an infinite number of repeated applications of the channel. As a consequence, only the

behaviour of these phase points is expected to decide the entanglement’s fate. If there is

some intrinsic quantum mechanical property in the set of phase points (one could think),

then the entanglement will not disappear. Otherwise, the survivors will be classical (in

some sense), and the quantum correlations will be broken. Indeed, Theorem 5.12 says

exactly that

a quantum channel is asymptotically entanglement–saving if and only if it admits two

non–commuting phase points.

All that is music for our ears. The quantum mechanical property which is required to

exist between the phase points is the most natural one, i.e. the non-commutativity. Ac-

tually, we know from all the basic courses that it is precisely the non-commutativity of

the observables (and the consequent uncertainty principle) that distinguishes the quan-

tum world from the classical one. Anyway, the asymptotic entanglement–saving property

has also a more direct, operative meaning, which becomes gradually clear through Ex-

amples 5.1, 5.2, and is precisely stated in Theorem 5.12.
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Much effort is devoted to find an adequate characterization theorem for the entanglement–

saving channels operating on finite-dimensional systems (Section 5.4). Although the

intrinsic difficulties of coping with quantum systems of arbitrary (though finite) dimen-

sion, rather surprisingly this goal is achieved almost everywhere, i.e. apart from a zero

measure set (Theorem 5.16). Moreover, it is shown that the latter restriction is irrele-

vant for the case of qubits, i.e. two-level systems (Lemma 5.17). As a consequence, we

completely characterize the entanglement–saving qubit channels (Theorem 5.19) from a

geometrical point of view. In order to give an operational meaning to such an abstract

result, we provide an explicit parametrization (Theorem 5.20) and a concrete sequence

of operations reproducing it (Figure 5.1 and Theorem 5.21).

1.6 Outline

Here we report a brief outline of the central body of this thesis. For more details, we

refer the reader to the discussions introducing the single chapters.

Chapter 2 : This chapter contains a brief review of some basic concepts and results of

the quantum information theory, with appropriate references to the most important

texts and articles on the subject. Section 2.1 hosts a complete list of the main

notations and acronyms to be used through the rest of the thesis. Section 2.2

is devoted to the elementary theory of quantum channels, with some insight into

more advanced topics, such as the spectral properties of positive maps or the

Kadison’s inequality that they must satisfy. Section 2.3 contains an account of

the central theory of entanglement, with particular attention paid to the study

of the separability criteria. Finally, Section 2.4 explores the class of the so-called

entanglement–breaking channels, which can be seen as a link between the world of

quantum channels and that of entanglement.

Chapter 3 : This chapter is devoted to the study of the particular class of universal

entanglement–preserving channels. Section 3.1 defines this concept and discusses

its physical meaning. Instead, Section 3.2 prepares the ground to the final results,

exposing some preliminary lemmas. Lastly, Section 3.3 states the central Theo-

rem 3.5: the only examples of universal entanglement preservers are the unitary

evolutions. A thorough discussion of the implications of this result follows its proof.
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Chapter 4 : Here we introduce the entanglement–breaking indices, particular function-

als (defined on the set of quantum channels) which are going to be fundamental

through the rest of the thesis. Section 4.1 contains the main definitions, while Sec-

tion 4.2 shows the first, elementary properties of these indices. Instead, Section 4.3

hosts a detailed list of instructive examples of specific classes of channels, for which

the calculation of our functionals can be carried out analytically. Through Sec-

tion 4.4, we start from intuitive considerations to formulate the Conjecture 4.4;

the rest of the section is devoted to the construction of an explicit counterexample

(Example 4.5), showing how an intuitive reasoning can fail when one deals with the

quantum entanglement. Finally, in Section 4.5 we observe that Example 4.5 works

only in dimension d ≥ 3, and investigate the possible validity of Conjecture 4.4 in

the qubit case, providing a series of proofs of it in some particular cases.

Chapter 5 : This chapter contains the main achievements of the whole thesis. Here,

a detailed study of two classes of particularly noiseless channels is conducted. We

begin by giving the necessary definitions of entanglement–saving and asymptoti-

cally entanglement–saving channels (Section 5.1). Later, in Section 5.2 we present

a brief review of some preliminary results concerning the peripheral part of the

spectrum of completely positive maps. Section 5.3 hosts the fundamental The-

orem 5.12. This result completely solves the problem of the characterization of

one of the two classes we defined, by stating that a quantum channel is asymptot-

ically entanglement–saving if and only if it admits non-commuting phase points.

Instead, Section 5.4 is devoted to the study of the entanglement–saving channels in

arbitrary dimension. The central result, i.e. Theorem 5.16, says that almost every-

where the entanglement–saving property coincides with the presence of a positive

semidefinite fixed point for the channel or for some of its powers. In Section 5.5, we

use the theory developed through Section 5.4 in order to study the simplest case

of entanglement–saving qubit channels. An analytical expression of the action of

these channels is provided, together with an explicit model reproducing it.



Chapter 2

Notation and Mathematical

Methods

This chapter is devoted to a brief (and incomplete) introduction to the main technical

tools we shall widely use in what follows, namely the theory of quantum channels and

that of entanglement. Moreover, here we fix the notations adopted through the rest of

the thesis. We assume that the reader is familiar with the basic axioms of quantum

mechanics and with the main results of elementary finite-dimensional linear algebra. In

fact, all the systems we will concern ourselves with are assumed to be finite-dimensional.

This assumption is physically and mathematically well-motivated (see the Introduction

above).

The content of this chapter can be summarized as follows.

Section 2.1 : Through this section, we provide the reader with a complete list of the

main notations and acronyms to be used in this thesis.

Section 2.2 : This section is devoted to the exposition of the concept of quantum chan-

nel. In Subsection 2.2.1, we give the three possible definitions of what a quantum

channel is, and state their equivalence. In Subsection 2.2.2, we examine some im-

portant inequalities that they must satisfy. Next, in Subsection 2.2.3 we analyze the

main spectral properties of a quantum channel. In Subsection 2.2.4 we introduce

a fundamental mathematical tool, the Choi–Jamiolkowski isomorphism. Finally,

Subsection 2.2.5 shows how the general theory can be applied in the simplest case

of a two-dimensional system.

18
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Section 2.3 : In this section we define in a rigorous way the central concept of entan-

glement. Subsection 2.3.1 is devoted to the explanation of such a definition, while

Subsection 2.3.2 contains a brief review of the main known separability criteria.

Section 2.4 : This section contains the exposition of the fundamental properties of

the entanglement–breaking channels. Subsection 2.4.1 defines the concept from a

theoretical point of view. Instead, Subsection 2.4.2 shows that a precise operative

meaning can be give to such an abstract definition. Finally, Subsection 2.4.3 is

devoted to the exploration of the simplest case of a two-dimensional system.

2.1 Notation

For the sake of clearness, let us group together the standard notations we shall use (to

be explained in the text) in the following list. We include also the cross references to

the definitions of the main acronyms.

S,E,A,B : Initials denoting physical systems (System, Environment, Alice, Bob). The

associated finite-dimensional Hilbert spaces will be indicated by HS , HE , HA,

HB. Juxtaposing two letters (e.g. SE) corresponds in quantum mechanics to

considering the tensor product of the Hilbert spaces (e.g. HS ⊗ HE). In some

cases, it could be useful to consider additional subdivisions of Alice’s system (for

example). They will be invariably denoted by natural numbers 1, 2, . . . (e.g. we

could occasionally decompose HA = HA1 ⊗HA2).

Rn, Cn : Vector spaces of n–dimensional column vectors with real or complex entries.

They are equipped with the standard hermitian or scalar product (v, w) ≡ v†w.

The norm it induces is denoted by | · |.

M(d;C) : Set of d × d complex matrices. It is a complex vector space of (com-

plex) dimension d2, possibly equipped with the Hilbert Schmidt hermitian product

(A,B) ≡ Tr
[
A†B

]
.

M(d;R) : Real d2-dimensional vector space of d× d real matrices.

H(d;C) : Set of d × d hermitian matrices. It is a real vector space of (real) dimension

d2 whose complexified is nothing butM(d;C). It can be equipped with the scalar

product obtained by restricting the Hilbert-Schmidt product defined on M(d;C)

(see above).
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SO(n), SU(n) : Special orthogonal real matrix group and special unitary complex ma-

trix group.

1 : Identity matrix (in arbitrary dimension).

X,Y, Z : The symbol X can denote a generic (hermitian) matrix, where not otherwise

specified. If required by the context, X,Y, Z can indicate the Pauli matrices,

defined by

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)
.

As usual, the symbol ~σ denotes the formal vector (X,Y, Z).

M i,Mj : ith column and jth row of the matrix M , respectively.

σ(L) : Spectrum of the linear endomorphism L (e.g. a square matrix). It is understood

to be a multiset, rather than a simple set. In a multiset each element can be

repeated a number of times equal to its multiplicity. We denote by aL(λ) and gL(λ)

the algebraic and geometric multiplicities of the eigenvalue λ ∈ σ(L), respectively.

The notation λi(L) refers to the ith eigenvalue of L with respect to a particular

ordering on σ(L). For example, if σ(L) ⊂ R then the symbol λ↓i (L) indicates the

ith greatest eigenvalue of L.

s(L) : Set of singular values of the linear endomorphism L (e.g. a square matrix) acting

on a vector space equipped with a hermitian product. Remind that

si(L) =
√
λi(L†L) .

Naturally, s↓i (L) refers to the ith greatest singular value of L.

‖ · ‖p : Schatten matrix norm of index 1 ≤ p ≤ ∞. For linear maps (e.g. square

matrices) acting on vector spaces equipped with a hermitian product, it is defined

as

‖L‖p ≡
(

Tr
[
(L†L)p/2

] )1/p
.

One has

‖L‖p =

(∑
i

spi (L)

)1/p

.

Observe that ‖ · ‖2 is precisely the norm induced by the Hilbert-Schmidt product

defined on M(d;C) (see above). Furthermore, the natural generalization to the
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p =∞ case imposes

‖L‖∞ ≡ s↓1(L) .

|ε〉 : Maximally entangled state of a bipartite system SS′, with dimHS = dimHS′ = d.

Once two complete orthonormal sets are fixed in HS and HS′ , it is defined by

|ε〉 =
1√
d

d∑
i=1

|i〉 ⊗ |i〉 .

We shall often use the shorthand |i〉 ⊗ |i〉 = |ii〉.

φ, ψ : Quantum channels. The operation of composition of two channels is denoted by

simply juxtaposing their symbols.

U : Unitary quantum channel, i.e. conjugation by an unitary matrix U .

I : Identity as a quantum channel.

T : Matrix transposition as a quantum channel. A subscript can be added to denote the

partial transposition with respect to a certain system. Moreover, the letter T can

be used as a superscript. For example RTBAB will denote the partial transposition

of an operator RAB on system AB only with respect to subsystem B.

GADp,γ : Generalized Amplitude Damping qubit channel (see (4.22) and (4.23)), de-

fined for 0 ≤ p ≤ 1 and 0 ≤ γ ≤ 1 by

GADp,γ

(
a b

b∗ c

)
=

(
pa+ γ(1− p) (a+ c)

√
p b

√
p b∗ −pa+ (1− (1− p)γ) (a+ c)

)
.

ADp : Amplitude Damping qubit channel (see (4.26), (4.27) and (4.28)), defined for

0 ≤ p ≤ 1 by

ADp

(
a b

b∗ c

)
=

(
a+ (1− p) c √p b
√
p b∗ p c

)
.

PFη : Phase Flip qubit channel (see (5.36)), defined for −1 ≤ η ≤ 1 by

PFη

(
a b

b∗ c

)
≡

(
a η b

η b∗ c

)
.
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Wλ : Werner channel (see (4.33)), defined for d–dimensional systems and for− 1
d2−1 ≤ λ ≤ 1

by

Wλ ≡ λI + (1− λ)
1

d
Tr

Rφ : Choi state associated to the quantum channel φ through (2.13)

Rφ ≡ (φ⊗ I)(|ε〉〈ε|) .

(C)Pt, (C)Pu, EBt, EBtu, U :

Sets of (completely) positive ((C)P), entanglement–breaking (EB) or unitary (U)

maps which are in addition trace-preserving (t) or unital (u). A subscript d can

be added if necessary to specify the dimension of the system considered.

PPT : Positive Partial Transpose criterion of separability (see Theorem 2.31, or (2.40)

when referred to a channel).

UEP : Universal Entanglement–Preserving channels (see Definition 3.1).

ES : Entanglement–Saving channels (see Definition 5.1).

AES : Asymptotically Entanglement–Saving channels (see Definition 5.6).

SAB : Set of separable density matrices on a bipartite system AB (the subscript can be

removed if there is no ambiguity). If we consider a multipartite system it can be

useful to indicate what systems are separated by means of a slash. For example,

SAE/B is the set of separable density matrices with respect to the bipartition

AE/B, while SA/B/E is the set of global separable density matrices.

2.2 Quantum Channels

2.2.1 Three Definitions, One Physical Meaning

As anticipated in the Introduction, we shall deal only with finite-dimensional quantum

systems. Let us recall the reasons that why this is a sensible assumption:

• From a physical point of view, only a finite number of degrees of freedom can be

under control in a concrete experiment. Take a quantum optics experiment as an

example: only a finite number of modes of the electromagnetic field will be excited,

and only within a finite range of energies.
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• From a logical point of view, this assumption allows to keep the analogy with the

classical theory of information. Indeed, a classical computer is a so-called finite-

state machine, i.e. a device which can exist only in a finite number of different

states.

• Finally, from a mathematical point of view the assumption of finite dimension dras-

tically simplifies the technical part. In fact, the finite-dimensional linear algebra is

incomparably simpler than the infinite-dimensional theory of Hilbert spaces.

There are at least three possible definitions of what a quantum channel is. We shall

give them separately and later state their equivalence. Basically, the theory of quantum

channels is an attempt to describe the dynamics of an open quantum system S. A natural

way to think of this process is the following. S couples to an external environment E and

interacts with it through an interaction Hamiltonian for a fixed time (i.e. undergoes an

unitary evolution). Next, the coupling is removed and we simply forget the environment

(which is not under control); mathematically, this corresponds to the operation of partial

trace over E. The way in which the states of S are modified by the whole process is

called a quantum channel (or quantum operation) on S, and the physical picture we

have drawn takes the name of Stinespring representation (see the Definition 2.1 below;

for further details, we refer the reader to [29] p. 358, or [4] p. 247).

Let us stress a technical point. When we consider the time evolution of an isolated

quantum system, we always follow an input-output approach. This means that we shall

next to never write Hamiltonian matrices or Schrödinger differential equations. Instead,

we will integrate directly the evolution equations, producing an unitary evolution matrix

linking directly the input with the output. In other words, our time will be always

discretized in finite steps (discretized time approach).

With these premises, we can give the following formal definition.

Definition 2.1 (Stinespring Representation of Quantum Channels).

Let S be a quantum system and E an environment starting in a fixed pure state |0〉〈0|E.

Let USE be an unitary matrix acting on the global system SE. A quantum channel in

Stinespring representation is a map φ acting on states of S as

ρS 7−→ φ(ρS) ≡ TrE [ USE ρS ⊗ |0〉〈0|E U †SE ] . (2.1)
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This is an extrinsic definition, involving not only the system S under examination but

also an external environment E. However, there is another very elegant way of expressing

the action of a quantum channel without referring to other degrees of freedom (see [29]

p. 360, or [4] p. 246).

Definition 2.2 (Kraus Representation of Quantum Channels).

Let S be a quantum system and {Mk} a finite set of arbitrary matrices (called Kraus

operators) acting on S and satisfying

∑
k

M †kMk = 1 . (2.2)

Then a quantum channel in Kraus form is a map φ acting on states of S as

ρ 7−→ φ(ρ) ≡
∑
k

MkρM
†
k . (2.3)

From a general point of view, one could ask what abstract features must have a map in

order to be a physically legitimate quantum channel. In order to explore them, let us

state the following definitions.

Definition 2.3 (Positivity and Complete Positivity).

A map φ :M(d;C) 7→ M(d;C) is called positive if

A ≥ 0 ⇒ φ(A) = φ(A)† ≥ 0 .

Recall that one can naturally identifyM(d;C)⊗M(n;C) =M(dn;C). Moreover, denote

by In :M(n;C) 7→ M(n;C) the identity map on the set of n×n complex square matrices.

Then φ is called completely positive if, for each n ∈ N,

φ⊗ In : M(dn;C) −→ M(dn;C)

is positive.

The main reason to give these definitions is that there are operations (such as the matrix

transposition, see [29], p. 369) which are positive but not completely positive. A phys-

ical transformation φ must be not only positive (because φ(ρ) must be positive for all
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positive ρ in order to be a valid density matrix), but also completely positive. Indeed,

one could always think our system S as a part of a larger one; in that case, acting only

on S can not bring some states into non-positive operators. Now we can give the third

definition below (see [29] p. 367, or [4] p. 243).

Definition 2.4 (Axiomatic Approach to Quantum Channels).

Let S be a quantum system, and φ a map sending states of S into other states of the

same system. We say that φ is a quantum channel if:

• φ is convex–linear, i.e. for all probability distributions {pi} and states {ρi} one

has

φ

(∑
i

piρi

)
=
∑
i

piφ(ρi) .

• φ is completely positive.

• φ is trace–preserving, i.e.

Tr φ(ρ) ≡ Tr ρ = 1 .

Observe that a map φ satisfying the first condition can be uniquely extended to a real

linear map φ : H(d;C) 7→ H(d;C) (with H(d;C) being the set of hermitian d × d

matrices), or also, by simple complexification, to a complex linear map φ : M(d;C) 7→
M(d;C).

As we have anticipated, the following result holds (see [29] p. 360–368, or [4] p. 244–248).

Theorem 2.5.

The three Definitions 2.1, 2.3, and 2.4 are equivalent.

As a by-product of the proof of this result, one obtains also some nontrivial bounds on the

dimensionality of the Stinespring environment and on the number of Kraus operators:

• Every quantum channel acting in dimension d admits a Stinespring representa-

tion (2.1) with a d2–dimensional environment starting in a pure state σE = |0〉〈0|E .

• Every quantum channel acting in dimension d admits a Kraus representation (2.3)

with at most d2 Kraus operators.
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In the following we call unitary channel or unitary evolution a quantum channel of the

form U(X) = UXU † (U being an unitary matrix). The unitary channels are examples of

the larger class of unital channels, verifying φ(1) = 1. We indicate with initials (C)Pt,

(C)Ptu, and U the sets of (completely) positive ((C)P) or unitary (U) maps which are

in addition trace-preserving (t) or unital (u). A subscript d can be added if necessary

in order to specify the dimension of the system considered. Observe that all these are

closed convex sets.

There is a very natural operation we can define between quantum channels, i.e. their

composition. It consists of the consecutive application of two channels ψ, φ ∈ CPt.

As usual in linear algebra, the simple juxtaposition φψ of the symbols denotes the

consecutive application of ψ firstly, and of φ secondly. A pictorial representation of

this process is shown in Figure 2.1. It can be easily verified that also φψ ∈ CPt is a

legitimate quantum channel.

Figure 2.1: The composition φψ of two quantum channel φ, ψ is nothing but the
consecutive application of ψ firstly, and of φ secondly.

Let a channel φ : M(d;C) 7→ M(d;C) be given. Since on M(d;C) it is defined the

Hilbert-Schmidt hermitian product, it becomes meaningful to consider the adjoint map

φ† :M(d;C) 7→ M(d;C) verifying

Tr [A φ(B)] ≡ Tr
[
φ†(A) B

]
. (2.4)

It can be easily seen that

φ ∈ P ⇔ φ† ∈ P , (2.5)

φ ∈ CP ⇔ φ† ∈ CP , (2.6)

φ ∈ t ⇔ φ† ∈ u . (2.7)

2.2.2 Operator Inequalities

Let us proceed in exploring the main properties implied by the (complete) positivity

condition. It turns out that the positive maps must necessarily obey certain inequalities.
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We briefly expose two useful results concerning these relations. For the first one, we

refer the reader to [20].

Theorem 2.6.

If φ ∈ Pd, then for each X ∈M(d;C) one has

‖φ(X)‖∞ ≤ ‖φ(1)‖∞ ‖X‖∞ . (2.8)

In particular, if φ ∈ Pud then

‖ φ(X) ‖∞ ≤ ‖X‖∞ . (2.9)

The second relation we present is called (after its discoverer) Kadison’s inequality. For

the original proof we refer to [27]; otherwise, a more intuitive argument can be found

in [45]. For the interested reader, the text [6] provides a comprehensive reference on the

subject.

Theorem 2.7 (Kadison’s Inequality).

Let φ ∈ Pud be a positive unital map. Then

∀ X = X† ∈ H(d;C) , φ(X)2 ≤ φ(X2) . (2.10)

Moreover, if φ ∈ CPud is completely positive and unital, then

∀ X ∈M(d;C) , φ(X)†φ(X) ≤ φ(X†X) . (2.11)

2.2.3 Spectral Properties

A positive map φ is first of all a linear operator (acting on matrices). That is, we can

consider a positive, trace-preserving map φ ∈ CPtd as a linear transformation of the real

vector space H(d;C) of hermitian d × d matrices (whose dimension is d2). Like all the

linear operations on a d2-dimensional real space, also φ can be regarded as a d2×d2 real

matrix. Therefore, a spectrum σ(φ), the related eigenvectors (actually, we should say

eigenmatrices!) and the whole Jordan form (see Chap. 3 of [22]) can be naturally asso-

ciated to it. It will be convenient to include the algebraic multiplicities in σ(φ); clearly,
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this can be done by repeating each eigenvalue an appropriate number of times (from

a formal point of view, we should speak of a “multiset”, rather than of a set). Actu-

ally, since the space of hermitian matrices is equipped with the natural Hilbert-Schmidt

product, the adjoint of a linear map operating on it can be easily defined through (2.4).

Consequently, we can legitimately consider also the singular value decomposition and

any sort of Schatten norms (2.46) in CPtd (see Chap. 5 and 7 of [22] for a complete

introduction to this standard subject).

Now, we will discuss some properties concerning the spectrum of an arbitrary trace-

preserving, positive map. The condition of complete positivity (pertaining to the physi-

cal quantum channels) has to be regarded as a particular case. The knowledge of these

basic properties will be very useful through the following chapters. For an excellent

overview with proofs, we refer the reader to Chap. 6 of [43]. For the sake of simplicity,

let us group all together in a proposition.

Proposition 2.8 (Spectral Properties of Pt Maps).

Let φ ∈ Pt be a positive, trace-preserving map. Denote by σ(φ) its spectrum (counting

multiplicities). Then the following properties hold.

1. The eigenvalues are real or come in complex conjugate pairs z, z∗, with the same

multiplicity and Jordan structure for z and z∗. If λ ∈ σ(φ) is real then the related

eigenvector can be chosen hermitian. Otherwise, φ(Z) = zZ ⇔ φ(Z†) = z∗Z†. As

a consequence, the linear span of the eigenvectors pertaining to complex conjugated

eigenvalues is a real subspace, i.e. it admits a basis composed of two hermitian

operators. Finally, the trace-preserving condition imposes that the eigenvectors

associated with 1 6= λ ∈ σ(φ) can be chosen traceless.

2. Let X = φ(X) be an hermitian fixed point of φ. Denote by X = X+ −X− the

decomposition of X into its positive and negative spectral parts X± ≥ 0. Then X±

are both (positive definite) fixed points of φ.

3. There exists at least a density matrix ρ0 ≥ 0 which is fixed by φ (that is, φ(ρ0) = ρ0).

4. All the eigenvalues lie in the complex unit circle (i.e. λ ∈ σ(φ)⇒ |λ| ≤ 1). More-

over, the eigenvalues with modulus equal to 1 can only have trivial Jordan blocks.
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2.2.4 Choi–Jamiolkowski Isomorphism

There is a remarkable duality between the quantum channels operating on S and the

states of SS′, S′ being a fictitious twin system of S (i.e. its Hilbert space verifies

dimHS′ = dimHS ≡ d). Denote by |ε〉 a maximally entangled state of SS′ (defined in

a fixed orthonormal basis), that is,

|ε〉 ≡ 1√
d

d∑
i=1

|i〉 ⊗ |i〉 . (2.12)

With this definition, we proceed to the construction of the Choi–Jamiolkowski isomor-

phism.

Definition 2.9 (Choi State).

Let φ ∈ CPd be a completely positive map acting on a d–dimensional system. The

associated Choi matrix is (up to a positive normalization constant) a state Rφ of SS′

(with dimHS = dimHS′) defined by

Rφ ≡ (φ⊗ I)(|ε〉〈ε|) . (2.13)

Thanks to the complete positivity of φ, Rφ is always positive; moreover, if φ is trace-

preserving then it has also unit trace; this justifies its name of “state”. A pictorial

representation of a practical procedure by means of which the Choi state can be obtained

is shown in Figure 2.2.

It can be easily seen that the information concerning the action of the channel φ on

every input state is contained in Rφ, and can be extracted by means of an appropriate

measurement. Let us explain what we mean. As a matter of fact, for every matrix X

one has the formal equality

d TrB [ (1A ⊗XB) Rφ ] = φ(XT ) , (2.14)

where the transpose is taken in the computational basis (that is, the basis we have used

in (2.12) to write |ε〉). We remark that the partial trace on the left-hand side of (2.14)
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Figure 2.2: The Choi state Rφ associated with a quantum channel φ can be practically
obtained by initializing the global system AB in a maximally entangled state, and acting

with φ only on Alice’s subsystem.

is taken only on the second subsystem. For X = |χ〉〈χ|, equation (2.14) takes the form

d
B
〈χ |Rφ |χ〉B = φ (|χ∗〉〈χ∗|) . (2.15)

Once again, the complex conjugation in the left-hand side of the previous equation has

to be taken in the computational basis. Observe that (2.15) admits a clear physical

interpretation: if one measure the observable |χ〉〈χ| on B, obtaining the outcome +1,

then the state in which A has collapsed is exactly φ (|χ∗〉〈χ∗|) .

From a mathematical point of view, all that is expressed by saying that there is a dual-

ity relation between channels φ acting on S and states Rφ of SS′. This relation is the

content of the following theorem (see [29] p. 368 – 370, or [4] Chap. 11).

Theorem 2.10 (Choi–Jamiolkowski Isomorphism).

If φ ∈ CP acts on S, then its Choi state Rφ defined in (2.13) is (up to a positive

normalization constant) a density matrix. Conversely, for each (unnormalized) density

matrix ρSS′, there exists an unique φ ∈ CP with the property that ρSS′ = Rφ. Moreover,

this correspondence is bijective, convex-linear and it preserves the Hilbert-Schmidt inner

product up to a multiplicative constant:

Tr [R†φRψ] =
1

d2
Tr [φ†ψ] . (2.16)
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In the right member of this equation we think of φ, ψ as linear applications, i.e. as d2×d2

complex matrices. The (possible) trace–preserving condition for φ can be rewritten as

TrS Rφ =
1S′

d
. (2.17)

It is worth noting that the Choi–Jamiolkowski correspondence between CP maps on S

and (unnormalized) states of SS′, being convex-linear, can be uniquely extended to a

linear isomorphism between the set of hemiticity–preserving linear maps on S and the

set of hermitian matrices on SS′. In this sense it is a linear isomorphism. Observe

that (up to a re-scaling constant) it is also unitary with respect to the Hilbert-Schmidt

product defined on both spaces.

As a consequence of Theorem 2.10, we get a simple criterion to decide whether a given

trace-preserving linear map φ :M(d;C) 7→ M(d;C) is a legitimate quantum channel or

not (see [4] p. 245):

φ ∈ CP ⇔ Rφ ≥ 0 . (2.18)

This is a physically meaningful condition, remarkably much more simple and elegant

than the so-called block positivity, which pertains to the Choi matrices associated with

maps being only positive but not completely positive. As a simple corollary, note that

φ ∈ CP ⇔ TφT ∈ CP . (2.19)

Here T denotes the matrix transposition channel, as usual. As previously observed, T is

positive but not completely positive. Thanks to (2.18), equation (2.19) is easily proved.

Indeed,

RTφT = RTφ ≥ 0 ⇔ Rφ ≥ 0 .

2.2.5 Bloch Representation of Qubit Channels

The simplest case of qubit (i.e. d = 2) channels admits a geometrical interpretation of

remarkable utility. Since we shall use it extensively in what follows, let us pay attention

to it. A more complete presentation of the subject can be found in [29], p. 374 – 385.
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Firstly, let us recall that every normalized qubit density matrix can be written as

ρ =
1+ ~r · ~σ

2
,

where ~σ = (X,Y, Z) denotes the vector of Pauli matrices, and |~r| ≤ 1. As a consequence,

the set of qubit density matrices can be represented as the three-dimensional ball of

unit radius, which is called Bloch sphere in this context. The center of the Bloch sphere

corresponds to the maximally mixed state (the normalized identity), while the points

lying on its surface represent the pure states.

Remind that a quantum channel acting in dimension d is a real linear map from the

set H(d;C) into itself. For the moment we consider the more general case of a trace-

preserving map φ ∈ t2, without assuming its (complete) positivity. In the simple case

of qubit, there is a natural basis we can choose to represent this linear map, namely

that composed by normalizing the Pauli matrices and the identity: { 1√
2
, X√

2
, Y√

2
, Z√

2
}.

The normalization is chosen in such a way that the resulting basis is orthonormal with

respect to the Hilbert-Schmidt scalar product on H(d;C). Then the trace-preserving

condition is enough to guarantee that (in this basis)

φ →

(
1 0

c M

)
. (2.20)

Here M ∈ M(3,R) and a c ∈ R3. This representation corresponds to the following

action on normalized hermitian matrices:

φ

(
1+ ~r · ~σ

2

)
=
1+ (M~r + ~c) · ~σ

2
. (2.21)

Remarkably, this action is nothing but an affine mapping in the (fictitious) R3 space in

which the Bloch sphere is embedded. As a consequence, the image of the Bloch sphere

under φ must be an ellipsoid, which we will call image ellipsoid. From the geometrical

point of view, it is worth noting that the singular values of M as a 3× 3 real matrix are

nothing but the lengths of the principal axes of the image ellipsoid.

As far as the (unital) adjoint of a trace-preserving map is concerned (see (2.7)), let us

observe that the orthonormality of the basis we have chosen implies that the following

representation holds:

φ† →

(
1 cT

0 MT

)
.
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As a matter of fact, it can be useful to identify a qubit trace-preserving map with its asso-

ciated pair (M, c). If φ = (M, c) and ψ = (N, b) are two arbitrary channels, the multipli-

cation rule for matrix of the form (2.20) imposes that φψ = (M, c)(N, b) = (MN,Mb+ c).

Moreover, the main functionals defined for the linear map φ can be translated in terms

of M and c. Here we pay attention to the trace, the Hilbert-Schmidt norm, the spectrum

and the determinant:

Tr φ = 1 + Tr M , (2.22)

‖φ‖22 = 1 + |c|2 + ‖M‖22 , (2.23)

σ(φ) = { 1 } ∪ σ(M) , (2.24)

detφ = detM . (2.25)

Obviously, an unital quantum channel must verify c = 0, being represented only by a

real 3 × 3 matrix M . The question arises, what matrices M are associated with the

unitary evolutions. The following proposition answers the question. The proof is left to

the reader.

Proposition 2.11.

Let U ∈ U2 be an unitary qubit channel of the form U(X) = UXU †, where U = e−i
~θ·~σ/2,

and ~θ = θθ̂ ∈ R3 is a real vector with modulus θ. Then the associated matrix M is the

counterclockwise rotation R(~θ) of an angle θ around θ̂. Since every SO(3) matrix is a

rotation, the unitary qubit channels are represented exactly by the rotations.

This result allows to find an useful canonical diagonal form of a qubit quantum channel

φ = (M, c). Indeed, let M = PDQ be a singular value decomposition of M , with P,Q

orthogonal matrices. Denoting by {si(M)} the singular values of M , we have

D =


s1(M) 0 0

0 s2(M) 0

0 0 s3(M)

 .

In order to give a physical interpretation to this algebraic decomposition, it is not suffi-

cient that P,Q are orthogonal, but it is necessary that P,Q ∈ SO(3) (i.e. they must be

special orthogonal). Suppose that this does not happen, and let us examine the other

cases. If detP = detQ = −1 (and so detM ≥ 0) we can simply write M = (−P )D(−Q),

in such a way that det(−P ) = det(−Q) = +1 and therefore −P,−Q ∈ SO(3). On the
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other hand, if detP = −1 = −detQ or the converse (and so detM ≤ 0), we must modify

D and write for example M = P̃ D̃Q, with

D̃ ≡


s1(M) 0 0

0 s2(M) 0

0 0 −s3(M)

 , P̃ ≡ P


1 0 0

0 1 0

0 0 −1

 ∈ SO(3) .

This discussion should convince the reader that the best special singular value decompo-

sition we can achieve is of the form M = PLQ, with P,Q ∈ SO(3) and

L =


l1 0 0

0 l2 0

0 0 l3

 ≡


s1(M) 0 0

0 s2(M) 0

0 0 sgn det(M) s3(M)

 . (2.26)

Here the symbol sgn denotes the sign function, defined by

sgn x ≡


+1 if x > 0

0 if x = 0

−1 if x < 0

.

Usually we shall suppose |s3(M)| ≤ s1(M), s2(M), so that l1, l2 ≥ 0 and only l3, which

has the lowest modulus, can be negative. In what follows, the notation l(M) will denote

the set of these special singular values of the real 3×3 matrix M . Once the decomposition

M = PLQ is obtained, we can define t ≡ P T c and write

φ = (M, c) = P (L, t) Q = U Λ V . (2.27)

Here U ,V are the unitary channels corresponding to P,Q ∈ SO(3), and Λ ≡ (L, t) is the

canonical diagonal form of φ (introduced for the first time in [28]). Remarkably, since the

unitary evolutions are one-to-one applications between density matrices, the positivity

and complete positivity conditions are not affected if one passes to the canonical diagonal

form. That is, with the notations of (2.27) we have

φ ∈ Pt2 ⇔ Λ ∈ Pt2 , (2.28)

φ ∈ CPt2 ⇔ Λ ∈ CPt2 . (2.29)

Now, we discuss what positivity implies for a linear map φ ∈ t2. Observe that the
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positivity condition imposes only that the image ellipsoid must be contained inside the

Bloch sphere. Moreover, it turns out that the inequality (2.9), when applied to φ† ∈ u2,

is enough to guarantee the positivity. All that is summarized in the following proposition.

Proposition 2.12.

Let M ∈M(3,R) and c ∈ R3 be a real matrix and a real vector. Consider the associated

trace-preserving map φ = (M, c) ∈ t2. Then the following facts are equivalent:

1. φ is positive.

2. |n| ≤ 1 ⇒ |Mn+ c| ≤ 1 .

3. |nT c|+ |nTM | ≤ |n| ∀ n ∈ R3 .

Proof. The equivalence 1⇔ 2 is geometrically obvious, and corresponds to the fact that

φ is positive if and only if its image ellipsoid is contained inside the Bloch sphere. Let

us concern ourselves about the equivalence 1⇔ 3. We prove the implication 1⇒ 3 first:

applying (2.9) to the unital positive map

φ† →

(
1 cT

0 MT

)
,

one obtains precisely

|n| = ‖n · ~σ‖∞ ≥ ‖φ†(n · ~σ)‖∞ = ‖(cTn) 1+ (MTn) · ~σ‖∞ =

= |cTn|+ |MTn| = |nT c|+ |nTM | .

Let us turn our attention to the converse implication 3 ⇒ 1. Suppose that our qubit

trace-preserving map φ = (M, c) verifies the condition expressed in 3. Thanks to the

elementary equality ‖n · ~σ‖∞ = |n|, one can restate it as ‖φ†(X)‖∞ ≤ ‖X‖∞ for all

traceless hermitian X. As the reader can easily see, a hermitian qubit operator, written

as α1+X with X traceless, is positive if and only if ‖X‖∞ ≤ α. So, if α1+X ≥ 0,

‖φ†(X)‖∞ ≤ ‖X‖∞ ≤ α

implies that

φ† (α1+X) = α1+ φ†(X) ≥ 0 .
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Being φ† ∈ Pu, we finally have φ ∈ Pt (by (2.5) and (2.7)).

The complete positivity condition (2.18) for qubit channels is algebraically clear, even

if it does not admit a simple geometrical visualization in terms of image ellipsoids. To

translate this condition into a set of analytical inequalities is computationally intricate

in the general case (see [36]), but for unital channels one can achieve the goal quite easily.

The following result is part of the paper [15].

Proposition 2.13 (Algoet–Fujiwara Conditions).

Let φ = (M, 0) ∈ tu2 be a trace-preserving unital map. If l(M) is the set of special

singular values of M , then φ ∈ CPtu2 if and only if the Algoet–Fujiwara conditions

hold:

| l1 ± l2 | ≤ 1± l3 . (2.30)

The set of vectors ~l = (l1, l2, l3) ∈ R3 satisfying (2.30) is the regular tetrahedron shown

in Figure 2.4. Its vertexes are

(1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1, 1,−1) .

2.3 Entanglement

2.3.1 Definitions

Now we turn our attention to the clarification of the central concept of entanglement.

Consider a bipartite quantum system AB in a global state ρAB. We can give the follow-

ing definition.

Definition 2.14 (Separability).

A state ρAB of a bipartite quantum system is called separate if it can be written in the

form ρAB = σA ⊗ σB. It is called separable if it belongs to the convex hull of the set

of separate states, i.e. if there are a probability distribution {pi}, and density matrices

σ
(i)
A , σ

(i)
B pertaining to the two subsystems, such that

ρAB =
∑
i

pi σ
(i)
A ⊗ σ

(i)
B .
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Conversely, ρAB is called entangled if it is not separable. We shall denote by SAB the

convex set of separable states on AB.

What is the operational meaning of such a definition? It turns out that a state ρAB is

separable if and only if it can be prepared by Alice and Bob only by means of local oper-

ations and classical communications (LOCC) starting from separate states. By LOCC

we mean transformations performed without the employment of any communications

medium allowing material quantum interaction (e.g. an optical fiber); instead, only a

classical communications line (e.g. a telephone line) is allowable. Then a non-separable

state is something that can not be prepared using only such a “classical” procedure. This

definition captures the sense in which the correlations exhibited by the entanglement can

be non-classical (see the Introduction).

Observe that the Definition 2.14 remains the same if we suppose that σ
(i)
A , σ

(i)
B are pure

states. Actually, once we have obtained a separate decomposition by means of mixed

states, it is sufficient to diagonalize them in order to achieve a separate decomposition

using only pure states.

2.3.2 Separability Criteria

The definition of separability is implicit: as a consequence, it is not easy to decide

whether a given quantum state is separable or entangled. Actually, it is known that

this task, called separability problem, is in general (i.e. in arbitrary dimension and

for arbitrary states) computationally very hard in a precise mathematical sense (more

accurately, we should say that it is NP–hard, as shown in [19] and [16]). Much effort

has been devoted from the very birth of quantum information science to find simple

separability criteria. The aim is twofold: on one hand, it is conceptually important to

clarify the physical meaning of the separability condition, but on the other hand it is also

fundamental to speed up the solution of the associated problem from the computational

point of view, at least for certain special classes of states. Here we present a brief excursus

on the main separability criteria valid for finite-dimensional bipartite systems. A good

review of this very large subject can be found in [4], p. 349 – 356.

The separability criteria are naturally divided into three main classes, according to the

type of claim they make:
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Necessary Criteria: They are of the form “if a state is separable, then this particular

condition must be verified”, and can be reversely used to prove the presence of

entanglement (if the condition is not met). This kind of criteria is the most common

one.

Sufficient Criteria: They are of the form “if this particular condition is verified, then

the state under examination is separable”. Typically these criteria are very rare

and weak, and can be reversely used to certify the absence of whatever form of

entanglement.

Necessary and Sufficient Criteria: These criteria express a condition which is to-

tally equivalent to the separability, but typically they are not practically usable or

valid in arbitrary dimension (if they were, the separability problem would be easy,

and this is not the case). However, the NP–hardness of the separability problem in

generic dimension does not rule out the possibility that for a particular dimension

a simple necessary and sufficient condition could be found. We will see that this

is the case for two-qubit systems.

We will give at least an example for each class, so as to clarify the meaning of this

subdivision.

Let us start with the necessary criteria. The first example belonging to this class is a

powerful condition found by Peres in [30]. Despite its powerfulness, the proof is almost

trivial, and it is left to the reader.

Theorem 2.15 (PPT Criterion).

If a state ρAB of a bipartite system is separable, its partial transposes must be positive:

ρAB ∈ SAB ⇒ ρTAAB ≥ 0 , ρTBAB ≥ 0 . (2.31)

Observe that the two PPT conditions in (2.31) are equivalent, because ρTBAB =
(
ρTAAB

)T
.

The strength of the PPT criterion is due to its sufficiency in the case of a two-qubit sys-

tem (see [25]). As we have anticipated, in this low-dimensional case it becomes possible

to give a simple necessary and sufficient condition for separability. This is the content

of the following theorem.



Chapter 2. Notation and Mathematical Methods 39

Theorem 2.16 (Necessary and Sufficient Separability Criteria for Two Qubits). For a

two-qubit system in a global state ρAB, the following facts are equivalent:

1. ρAB ∈ SAB .

2. ρTBAB ≥ 0 ( or ρTAAB ≥ 0 ) .

3. ρA ⊗ 1− ρAB ≥ 0 .

4. 1⊗ ρB − ρAB ≥ 0 .

Proof.

1 ⇔ 2 : The implication ⇒ is a particular case of Theorem 2.31. Instead, the converse

implication is a nontrivial result obtained firstly in [25]. We do not report the

proof here.

2 ⇔ 3 : This equivalence is specific of the two-qubit case, for which one has

1Trρ− ρ ≡ YT (ρ) . (2.32)

Here we denoted by Y the unitary conjugation by the second Pauli matrix Y . Now,

ρA ⊗ 1− ρAB = (I ⊗ YT )(ρAB) ≥ 0 ⇔ (1⊗ T )(ρAB) = ρTBAB ≥ 0 .

2 ⇔ 4: Totally analogous to the previous point.

The last example of necessary criterion that we present is the so-called reshuffling cri-

terion (see the earlier works [9], [33] and [34], or [4] p. 355 for a good review with

proofs). Also known as realignment or computable cross-norm criterion, it is a powerful

tool to detect entanglement in high dimension, being in general independent from the

PPT criterion (although for a two-qubit system it is strictly weaker). For the sake of

conciseness, we shall examine only its simplest form.

Theorem 2.17 (Reshuffling Criterion).

Let ρAB be a separable state on a bipartite system AB, with

dimHA = dimHB = d .
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Denote by φ ∈ CPd the unique linear map on states of A associated to ρAB via the Choi–

Jamiolkowski isomorphism (see Theorem 2.10), i.e. verifying Rφ = ρAB. Considering

φ as a d2 × d2 complex matrix, one has

‖φ ‖1 ≤ d , (2.33)

where by definition ‖φ‖1 ≡ Tr
√
φ†φ (exactly as in (2.46)).

Now, we turn our attention to one of the few known sufficient separability criteria, firstly

found by Gurvits & Barnum in their 2002 paper [20]. These authors use the size of the

largest separable ball around the maximally mixed state in order to state a sufficient

condition for separability.

Theorem 2.18 (Gurvits & Barnum Criterion).

Let ρ be a state of a bipartite quantum system of total dimension dAdB = D. Then

Tr
[
ρ2
]
≤ 1

D − 1
⇒ ρ ∈ S . (2.34)

Actually, since the minimum purity of a quantum state in dimensionD is 1/D, it becomes

apparent that this criterion (although very easy to use) is not so powerful, especially when

the dimension D is high.

Finally, let us present an example of a necessary and sufficient criterion for separability,

discovered for the first time by Woronowicz in his 1976 paper [45] and later discussed

and employed in [25]. It reveals a deep link between the positive maps and the theory

of entanglement, and so it is conceptually very important.

Theorem 2.19 (Woronowicz Criterion).

A state ρ of a bipartite system is separable if and only if

(I ⊗ ζ)(ρ) ≥ 0 ∀ ζ ∈ P . (2.35)

Moreover, one could freely restrict the range of variability of ζ to Pu or Pt.

In spite of its exquisitely mathematical nature, Theorem 2.19 has a striking physical

interpretation. Indeed, one of its equivalent formulations says that for every entangled
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state ρAB, there is an observable WAB which detects its entanglement, in the sense that

Tr [σABWAB] ≥ 0 ∀ σAB ∈ SAB , but Tr [ρABWAB] < 0 (2.36)

The meaning of (2.36) is clear: every form of entanglement can be detected by means

of the measurement of an appropriate observable (called entanglement witness) on the

global system.

2.4 Entanglement–Breaking Channels

Now, we turn our attention to the study of the “intersection” between the world of

quantum channels and that of entanglement. This section can be seen as the exploration

of the deep link existing between these two concepts. The ideas we shall develop will be

of fundamental importance through the rest of this thesis.

2.4.1 Definition

Suppose that Alice and Bob share an entangled state, and that Alice’s half of the global

system is affected by some noise represented by a quantum channel φ. As we have antic-

ipated, a too much noisy φ can destroy all the entanglement in the system. In this case

Alice and Bob will end up with a separable state. Therefore, we can give the following

fundamental definition.

Definition 2.20 (Entanglement–Breaking Channels).

Let φ ∈ CPt be a quantum channel acting on a A. If, for each system B and for each

global density matrix ρAB of AB, the output (φ ⊗ I)(ρAB) is separable, then φ is called

an entanglement–breaking channel (EB).

In what follows we will denote with initials EBtd the set of entanglement–breaking

channels acting on a d–dimensional system. It is worth noting that

φ ∈ EB , ψ ∈ CP ⇒ φψ, ψφ ∈ EB . (2.37)
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Moreover, it turns out that also EB (just like P or CP) is a closed convex set which is

in addition closed under the operation of taking the hermitian adjoint:

φ ∈ EB ⇔ φ† ∈ EB . (2.38)

This equivalence follows from Theorem 2.21, which we will prove in a moment.

An entanglement–breaking noise is exactly what we must avoid in dealing with the

storage of entanglement from a practical point of view. Once an EB interaction with

Alice’s environment has taken place, there is no way for Alice and Bob to restore the

non-classical correlations between them without a new quantum interaction. As a con-

sequence, it is of prime importance to understand and classify this destructive kind of

noise in its entirety.

2.4.2 Holevo Form of EB Channels

As the first issue of this program, we pose the problem of the operational characteriza-

tion of the EBt class. The solution to this problem, which is part of the paper [26], is

the content of the following theorem.

Theorem 2.21 (Structure Theorem for EB Channels).

Let φ ∈ EBt be a quantum channel. Then the following facts are equivalent:

1. φ is entanglement–breaking.

2. The associated Choi state Rφ is separable.

3. φ can be written in the Holevo form introduced in [21], i.e. there are a (finite)

set of density matrices {ρi} and positive operators {Ei} satisfying the sum rule∑
iEi = 1, such that

φ(X) ≡
∑
i

ρi Tr[EiX] ∀ X . (2.39)

Proof.

1 ⇒ 2 : Since φ breaks every form of entanglement when acting on one half of a global

system, we must have

Rφ ≡ (φ⊗ I)(|ε〉〈ε|) ∈ S .
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2 ⇒ 3 : Let d be the dimension of the system under examination. Write a separate decom-

position of Rφ using only pure states (the discussion below Definition 2.14 shows

that this is possible):

1

d

d∑
α,β=1

φ (|α〉〈β|)⊗ |α〉〈β| = (φ ⊗ I)(|ε〉〈ε|) = Rφ =
∑
i

pi |ηi〉〈ηi| ⊗ |ξi〉〈ξi| .

We can take the matrix element 〈α| · |β〉 of both members only on the second

subsystem, obtaining

φ (|α〉〈β|) = d
∑
i

pi |ηi〉〈ηi| 〈α | ξi〉〈ξi |β〉 =

= d
∑
i

pi |ηi〉〈ηi| Tr [ |β〉〈α| |ξi〉〈ξi| ] =

= d
∑
i

pi |ηi〉〈ηi| Tr
[
|ξi〉〈ξi|T |α〉〈β|

]
=

= d
∑
i

pi |ηi〉〈ηi| Tr [ |ξ∗i 〉〈ξ∗i | |α〉〈β| ] .

In the previous equation the operations of transpositions and conjugation have to

be taken in the orthonormal basis {|α〉} that we have chosen to write the maximally

entangled state. Define

Ei ≡ d pi |ξ∗i 〉〈ξ∗i | , ρi ≡ |ηi〉〈ηi| .

Then

φ (|α〉〈β|) =
∑
i

ρi Tr [Ei |α〉〈β|] .

Since this equation holds for every α, β, by linearity one has

φ (X) ≡
∑
i

ρi Tr [EiX] ∀ X .

Finally, observe that the trace-preserving condition for φ means exactly that

∑
i

Ei = 1 .
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3 ⇒ 1 : If ρAB is a state of a global system AB, the partial trace TrA[(Ei ⊗ 1) ρAB] must

be again a positive operators. Then

(φ⊗ I)(ρAB) =
∑
i

ρi ⊗ TrA [(Ei ⊗ 1) ρAB]

is separable, because it is explicitly written as a sum of separate positive operators.

Observe that in the Holevo form (2.39) we can freely suppose that the ρi are pure states

and that the Ei are (positive) multiples of pure states. This can be seen directly by

diagonalizing both operators, and it is also a by-product of the proof.

What is the operational meaning of the Holevo form (2.39)? It turns out that the

positive numbers Tr [EiX] can be seen as the probabilities of the outcomes of a generalized

measurement (or POVM) on the state X (see [29], p. 90). A POVM is by definition

an unitary interaction with an external environment followed by an usual projective

measurement on this composite system. From this point of view, Theorem 2.21 shows

that an application of an entanglement–breaking channel can be seen as the sequence of

the two operations represented in Figure 2.3 :

• A generalized measurement of X, whose outcome is i.

• A re-preparation of the input state depending on i. In other words, X is discarded

and substituted with a new state ρi. Then the classical information on i is deleted,

and the output ends up in a probabilistic combination of the various scenarios

identified by i.

Finally, we can summarize Theorem 2.21 from a practical point of view by saying that

Entanglement–Breaking Channel = Measurement + Re–preparation

An EB channels is so noisy that no quantum information can survive after its application.

A precise mathematical meaning can be given to this statement in the context of the

theory of quantum communication (see [5] for a good review of the subject). It turns

out that an EB channel has zero quantum capacity, i.e. is cryptoclassical. Intuitively,
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Figure 2.3: Operational meaning of the Holevo representation (2.39) of an
entanglement–breaking channel: the input state X is subjected to a POVM {Ei}. De-

pending on the outcome i of the POVM, it is replaced with a density matrix ρi.

quantum information can not pass through the classical step (measurement) of an EB

channel, because otherwise it could be cloned (since classical information can). This is

not the case, since a quantum no-cloning theorem holds (see the Introduction).

Obviously, Theorem 2.21 implies that the problem of deciding whether a given quantum

channel is entanglement–breaking or not is equivalent (via Choi–Jamiolkowski isomor-

phism) to the separability problem. As a consequence, we can translate every separa-

bility criterion into an “entanglement–breaking criterion”. Denoting by T the matrix

transposition channel, we have:

PPT : φ ∈ EB ⇒ Tφ ∈ CP ⇔ φT ∈ CP , (2.40)

Reshuffling : φ ∈ EBtd ⇒ ‖φ ‖1 ≤ d , (2.41)

Gurvits & Barnum : φ ∈ td , ‖φ‖22 ≤
d2

d2 − 1
⇒ φ ∈ EBtd , (2.42)

Woronowicz : φ ∈ EBt ⇔ ζφ ∈ CPt ∀ ζ ∈ Pt . (2.43)

Observe that in order to obtain (2.42) we employed the equality

Tr
[
R2
φ

]
=

1

d2
‖φ ‖22 ,

which is nothing but a particular case of (2.16). Once more, it is valid provided that we

think of φ as a d2 × d2 matrix.
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2.4.3 Entanglement–Breaking Qubit Channels

The entanglement–breaking conditions for qubit channels have been studied in detail

in the literature (see [35]). As in the case of positivity and complete positivity (equa-

tions (2.28) and (2.29)), we can freely suppose that the channel under examination is in

canonical form (2.27). This follows from the observation that the unitary channels used

in this decomposition are one-to-one mappings of the set of density matrices into itself.

As a consequence,

φ = UΛV ∈ EBt2 ⇔ Λ ∈ EBt2 . (2.44)

Now we are in position to examine the case of EB qubit channels in more detail. The

following theorem is obtained by joining together Theorem 1 and 2 of [35]. We present

also simple proofs of these claims. Indeed, we have already developed all the necessary

technical tools.

Theorem 2.22 (EB Conditions for Qubit Channels).

Let φ ∈ CPt2 be a qubit channel. Then the following facts are equivalent:

1. φ is entanglement–breaking.

2. RTBφ ≥ 0 .

3. Tφ ∈ CPt2 or φT ∈ CPt2 (T is the matrix transposition channel).

4. φ has the “sign-change” property that changing any li 7→ −li of the matrix L de-

fined in (2.26) and employed in the canonical diagonal decomposition (2.27) yields

another completely positive map.

5. ‖Rφ ‖∞ ≤ 1
2 .

Proof. On one hand, we know from Theorem 2.21 that φ is EB if and only if Rφ is

separable. On the other hand, Theorem 2.16 shows that the PPT criterion (2.40) is

sufficient for a two-qubit system, i.e.

φ ∈ EB2 ⇔ Rφ ∈ S ⇔ RTBφ ≥ 0 ⇔ Tφ ∈ CP2 ⇔ φT ∈ CP2 .

This proves that 1⇔ 2⇔ 3 .
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Thanks to (2.44), we can examine the condition 4. for a channel Λ in canonical form.

Observe that the matrix transposition is represented in the Pauli basis by

T =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 .

As a consequence, with the notation of (2.26) one has

ΛT = (L, t) T =


1 0 0 0

t1 l1 0 0

t2 0 l2 0

t3 0 0 l3




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 =


1 0 0 0

t1 l1 0 0

t2 0 −l2 0

t3 0 0 l3

 .

Therefore, the requirement ΛT ∈ CP2 in exactly equivalent to the “sign change” prop-

erty for l2. Since the order of the li is completely arbitrary, we can conclude that 2⇔ 3.

In order to prove that 1 ⇔ 4, it suffices to apply the condition 4. of Theorem 2.16

together with (2.17) :

Rφ ∈ S ⇔ 1A ⊗ TrARφ −Rφ =
1AB

2
− Rφ ≥ 0 ⇔ ‖Rφ ‖∞ ≤

1

2
.

Remarkably, for unital qubit channels one can state the EB conditions in an extremely

compact and simple way. The proof follows directly by writing the partial transpose of

the Choi matrix.

Proposition 2.23.

Let φ = (M, 0) ∈ tu2 be a trace-preserving unital map. Then φ ∈ EBtu2 if and only if

‖M ‖1 ≤ 1 . (2.45)

Denoting by {li} be the special singular values of M , the set of vectors ~l = (l1, l2, l3) ∈ R3

satisfying (2.45) is the regular octahedron shown in Figure 2.4. Its vertexes are

(0, 0, 1), (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1) .
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H1,1,1L

H-1,-1,1L

H-1,1,-1L

H1,-1,-1L

Figure 2.4: Graphical representation of the set of values of the vector
~l = (l1, l2, l3) ∈ R3, defined through (2.26), which are compatible with the complete
positivity (tetrahedron) and with the entanglement–breaking property (octahedron) of

an unital qubit channel.

Thanks to Proposition 2.45, when dealing with entanglement–breaking qubit channels

the Schatten norms come into play. For an introduction to the topic, we refer the reader

to Chap. 5 and 7 of [22]. For the sake of clearness, let us review here the most basic

properties. The Schatten norms are a family of norms identified by a continuous index

1 ≤ p ≤ ∞. For linear operators L acting on vector spaces equipped with an hermitian

product (e.g. for square complex matrices), they are defined through

‖L‖p ≡
(

Tr
[
(L†L)p/2

] )1/p
. (2.46)

In terms of the singular values si(L) of L, one has

‖L‖p =

(∑
i

spi (L)

)1/p

. (2.47)

Observe that ‖ · ‖2 is precisely the norm induced by the Hilbert-Schmidt hermitian

product (A,B) ≡ Tr
[
A†B

]
defined onM(d;C). Furthermore, the natural generalization
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to the p =∞ case imposes

‖L‖∞ ≡ s↓1(L) .

Also the trace norm corresponding to p = 1 has interesting peculiarities. Indeed, it can

be proved that

‖L‖1 = max
U unitary

|Tr [UL] | . (2.48)

From (2.47) it is apparent that the Schatten norms are invariant under left and right

multiplication by unitary operators. In other words, if U, V are unitary operators, then

‖ULV ‖p ≡ ‖L‖p , ∀ 1 ≤ p ≤ ∞ . (2.49)

One of the most important inequality the Schatten norms are subjected to is the following

Hölder inequality (valid for 1 ≤ p ≤ ∞) :

1

r
+

1

s
= 1 ⇒ ‖AB‖p ≤ ‖|A|r‖1/rp ‖|B|s‖1/sp = ‖A‖rp ‖B‖sp . (2.50)

The simplest case of (2.50) is those corresponding to p =∞:

‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞ (2.51)

Among the many consequences of (2.50), there is also the triangle inequality (or Minkowski

inequality)

‖A+B‖p ≤ ‖A‖p + ‖B‖p . (2.52)



Chapter 3

Universal

Entanglement–Preserving

Channels

This chapter is devoted to the exploration of a particularly ideal class of local noise

interfering with the quantum entanglement between Alice and Bob. We are prompted to

the study of this class of universal entanglement–preserving channels by cogent physical

reasons. However, before we go into the very essence of the problem, let us give a brief

outline of the various sections.

Section 3.1 : This section contains the definition of the concept of universal entanglement–

preserving channel, together with a detailed discussion of its physical meaning.

Section 3.2 : Here we expose some technical results, which turn out to be useful in

what follows.

Section 3.3 : This section is the very kernel of the chapter. It contains the definitive

answer to the question of what the universal entanglement–preserving channels

are. Indeed, Theorem 3.5 states that the only examples of universal entanglement

preservers are the unitary evolutions. A thorough discussion of the meaning of our

result follows the proof of Theorem 3.5.

50
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3.1 Definition and Physical Motivations

The entanglement is the fundamental physical resource which distinguishes the quantum

world from the classical one. As we have seen in the Introduction, it is the most important

ingredient of many quantum algorithms and protocols, such as Quantum Cryptography

and Teleportation (see Section 1.3). Not surprisingly, these remarkable successes of the

quantum information theory are made possible by the existence of some subtle form

of non-local and non-classical correlation between the entangled subsystems. This is

exactly the content of Bell’s theorem, already discussed in Section 1.2.

From an abstract and theoretical point of view, that’s all: once Alice and Bob have shared

some entangled pairs, they can perform these amazing tasks (and many others) without

difficulties. However, one has to practically build an entangled system in a laboratory in

order to exploit all the power of this quantum resource. And there is reason to believe

that this task will not be easy, since the entanglement is a fragile entity. Indeed, there

is not a trace of entanglement in our every-day life; if it was robust (in some sense), we

would see it in the macroscopic world. Therefore, we can foresee that the entanglement

is particularly exposed to deterioration. As a matter of fact, the prime objective on

which experimental physicists focus, when dealing with quantum computation tasks in

a laboratory, is the control of the noise interfering with quantum correlations. In other

words, if one side of the coin is represented by the unexpected computational power of

the microscopic quantum world, the other side of the coin is the extreme delicateness of

this same world.

These practical considerations induce us to leave the cushy world of idealized quantum

systems, and to delve into the theory that governs the physically ubiquitous noise. As

already anticipated in the Introduction, the realistic situation to which we refer is the

following. Suppose that Alice and Bob store a pair of entangled particles in their own lab-

oratories. From a practical point of view, it could be unattainable any further exchange

of other quantum correlations. Indeed, this would require the installation of a quantum

communication device such as an optical fiber, and all that could be unpractical. With

these premises, it becomes of prime importance to shield all the entanglement Alice and

Bob have previously stored from any external source of noise. Observe that the two

subsystems definitely possess their own Hamiltonian, and so they certainly undergo an

unitary time evolution, even if perfectly isolated. However, this kind of transformation

does not damage the entanglement, because it is ultimately only a change of basis in

the Hilbert space. On the other hand, a true interaction between Alice’s subsystem and
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an external, uncontrolled environment could effectively cause the loss of some quantum

correlations. Since Alice’s and Bob’s laboratories are far apart, this external environ-

ment has definitely nothing to do with Bob’s subsystem. Therefore, this kind of noise

affecting an entangled system can be seen as the action of a local quantum channel on

Alice’s subsystem (see Section 2.2).

This thesis is an attempt to study the set of quantum channels with respect to their

local action on the entanglement of a bipartite system. The first question we pose is the

characterization of those channels which are always innocuous, in the sense that they

never break the entanglement between Alice and Bob, no matter how weak it could be.

We can give the following definition.

Definition 3.1 (Universal Entanglement–Preserving Channels).

Let φ ∈ CP be a quantum channel acting on system A. We say that φ is universal

entanglement–preserving (UEP) if for each quantum system B and for each global en-

tangled state ρAB, (φ⊗ I)(ρAB) is again entangled:

ρAB /∈ SAB ⇒ (φ⊗ I)(ρAB) /∈ SAB . (3.1)

The requirement that the entanglement preservation must hold for all the states of the

system (even if mixed) is crucial. As noted in [11], we can not restrict this property

to the pure states alone. Indeed, this would modify Definition 3.1 in such a way as to

include other channels. For example, in the case of qubit, the channels that preserve the

entanglement of every pure state are all but the entanglement–breaking ones. Instead,

we shall see that Definition 3.1 is by far more strict.

We remark how the concept of universal entanglement–preserving channel is complemen-

tary to that of entanglement–breaking channel (Definition 2.20). Indeed, as the latter

always destroys the entanglement, the former always preserves it, no matter how much

entangled the input state is. We have already mentioned a class of examples of UEP

channels, i.e. the unitary evolutions. Indeed, being only a change of basis in the Hilbert

space, they are easily invertible (i.e. there exists the undo operation). The aim of this

chapter is to completely characterize the set UEP in arbitrary dimension. The proof of

our claims is rather technical, but the physical meaning of the final result will be clear.
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3.2 Preliminary Results

In order to achieve the conclusive goal, we need some preliminary results. The first one

concerns the boundary of the convex set SAB of separable states on a bipartite quantum

system AB.

Proposition 3.2.

Let ρA be a density matrix on a system A. Denote by ∂SAB the boundary of the set of

separable states on the bipartite system AB (with dimHB = dB). Then

ρA ⊗
1

dB
∈ ∂SAB ⇔ det ρA = 0 . (3.2)

Proof. Firstly, recall the Woronowicz criterion (Theorem 2.19) :

ρ ∈ S ⇔ ∀ ζ ∈ Pu , (I ⊗ ζ)(ρ) ≥ 0 .

Remind that Pud can be thought as a set of linear operators on the d2-dimensional

vector space of hermitian matrices, i.e. as a subset of M(d2;C). With this clarification,

observe that Pud is compact (i.e. closed and limited). Indeed, a rough estimate on the

maximal operator norm of ζ ∈ Pud (with respect to the Hilbert-Schmidt norm ‖ · ‖2)
gives for example

‖ζ‖∞ ≤ 2
√
d . (3.3)

To get this bound, take a positive matrix A ≥ 0 and write

A ≤ ‖A‖∞1 ⇒
∥∥ζ(A)

∥∥2
2

= Tr
[
ζ(A)2

]
≤ Tr [ ζ (‖A‖∞1) ζ(A)] =

= ‖A‖∞ Tr [ζ(A)] ≤ ‖A‖∞
√
d ‖ζ(A)‖2 ≤

≤
√
d ‖A‖2 ‖ζ(A)‖2 ⇒

∥∥ζ(A)
∥∥
2
≤
√
d ‖A‖2 .

Then consider a generic hermitian X = A−B, where A,B ≥ 0 have orthogonal supports:

‖ζ(X)‖2 = ‖ζ(A)− ζ(B)‖2 ≤ ‖ζ(A)‖2 + ‖ζ(B)‖2 ≤

≤
√
d ‖A‖2 +

√
d ‖B‖2 ≤ 2

√
d
(
‖A‖22 + ‖B‖22

)1/2
= 2
√
d ‖X‖2 .



Chapter 3. Universal Entanglement–Preserving Channels 54

Since ζ is hermiticity-preserving, the maximum of ‖ζ(X)‖2
‖X‖2 (i.e. the maximum singular

value of ζ, which we call as usual ‖ζ‖∞) is reached by a hermitian X, and so we can

conclude. The most important consequence of this bound is that Pud is a limited set.

The specific value of the constant has no practical relevance.

Now we are ready to begin the proof. Suppose that det ρA 6= 0. Then there exists an

ε0 > 0 such that ρA ≥ ε01. Consider a perturbation X such that ‖X‖2 ≤ ε0

2d
3/2
B

, and

take a generic ζ ∈ Pu acting on system B. Then

(I ⊗ ζ)

(
ρA ⊗

1

dB
+ X

)
= ρA ⊗

1

dB
+ (I ⊗ ζ) (X) ≥ ε0

dB
1 + (I ⊗ ζ) (X) .

Thanks to (3.3), one has ‖ζ‖∞ ≤ 2
√
dB. Therefore,

‖(I ⊗ ζ)(X)‖∞ ≤ ‖(I ⊗ ζ)(X)‖2 ≤ ‖I ⊗ ζ‖∞ ‖X‖2 = ‖ζ‖∞ ‖X‖2 ≤
ε0
dB

.

Then we obtain the first part of the thesis:

(I ⊗ ζ)

(
ρA ⊗

1

dB
+ X

)
≥ 0 .

The argument we employed is the rigorous transcription of the following intuitive rea-

soning. Each ρA ⊗ 1
dB

> 0 is a nontrivial convex combination of a separate state with

the maximally mixed state. Since the latter is internal to the set of separable states (see

for example Gurvits & Barnum [20]), we can inscribe a nontrivial circular cone inside

the convex set of separable density matrices. The axis of this cone can be chosen to

contain the separate state and the maximally mixed state as endpoints, and our ρA⊗ 1
dB

as a non-extremal point. The thesis follows by arguing that every axial point which is

different from the vertex (and from the base point) must be internal to the cone, and so

to the the set of separable states.

Now we turn our attention to the converse statement. Suppose that det ρA = 0; we must

prove that ρA ⊗ 1
dB
∈ ∂SAB. Take two vectors |1〉 ∈ ker ρA and |2〉 ⊥ |1〉. Consider

|Ψ〉 ≡ |11〉+ |22〉√
2

, ρ(δ) ≡ δ |Ψ〉〈Ψ|+ (1− δ) ρA ⊗
1

dB
.

Then

• ρ(δ) is a density matrix for each 0 ≤ δ ≤ 1 .
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• limδ→0 ρ(δ) = ρA ⊗ 1
dB

.

• Acting with partial transposition TB on ρ(δ) does not produce a positive opera-

tor, for each 0 < δ ≤ 1; as a consequence, ρ(δ) can not be separable (see The-

orem 2.31). To see this, we will prove that ρ(δ)TB restricted to the subspace

W ≡ Span {|12〉 , |21〉} in not positive definite. In fact, simple calculations show

that

ρ(δ)TB |W =

(
0 δ/2

δ/2 a (1− δ)

)
, a ≡ 〈2| ρA |2〉

dB
.

Since det(ρ(δ)TB |W ) < 0 for 0 < δ ≤ 1, ρ(δ)TB can not be positive definite.

We can construct entangled matrices arbitrary close to ρA ⊗ 1
dB

, and so it must be

ρA ⊗ 1
dB
∈ ∂SAB .

Next, let us state another simple lemma.

Lemma 3.3.

Let φ ∈ P be a positive map. Denote by supp X the linear span of the eigenvectors

of the hermitian matrix X whose associated eigenvalue is nonzero (i.e. the orthogonal

complement of the kernel). Then, for each A > 0 and for each hermitian X one has

supp φ(A) ≡ supp φ(1) and supp φ(X) ⊆ supp φ(1).

Proof. Let us prove the various claims step by step.

1. If B ≥ 0 and C > 0, one must have supp φ(B) ⊆ supp φ(C). Indeed, there must

exist a real number κ such that κC ≥ B, and so

0 ≤ B ≤ κC ⇒ 0 ≤ φ(B) ≤ κφ(C) ⇒

⇒ supp φ(B) ⊆ supp φ(κC) = supp (κφ(C)) = supp φ(C) .

2. For each A > 0, one has supp φ(A) ≡ supp φ(1). In order to prove this statement,

it suffices to apply the claim contained in point 1. two times: firstly with B = A

and C = 1, and secondly with B = 1 and C = A.
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3. For each hermitian X, one has supp φ(X) ⊆ supp φ(1). Indeed, one can always

decompose X = B − C, with B,C ≥ 0. Then, by point 1,

supp φ(X) = supp (φ(B)− φ(C)) ⊆

⊆ supp φ(B) + supp φ(C) ⊆ supp φ(1) .

This lemma allows us to make an important observation. Let φ ∈ P be a positive map

from the set H(d;C) (hermitian d× d matrices) into itself. Suppose that supp φ(1) = V

is an r-dimensional subspace of Cd (r ≤ d). Then we can freely think of V as a copy of

Cr, and of φ(1) as an hermitian r × r matrix. Actually, this lemma allows much more.

We can see the whole application φ from H(d;C) as a map whose codomain is H(r;C)

rather than the same H(d;C). Note that we can also extend these claims to generic

matrices (not only hermitian): that is, we can write

φ̃ : M(d;C) −→ M(r;C) . (3.4)

If this restricted form φ̃ of the map φ is taken into account, we can also claim that

φ̃(1) > 0 (3.5)

(because here φ̃(1) is restricted to its own support).

In conclusion, let us mention another fundamental tool in quantum mechanics, namely

the Wigner’s theorem (see the original work [41], p. 251–254). For a direct and mathe-

matically clear proof, we refer the reader to [37].

Theorem 3.4 (Wigner’s Theorem).

Let T : H → H be a (not necessarily linear) operator on a (not necessarily finite-

dimensional) Hilbert space H. Suppose that

| 〈T (x) |T (y)〉 | ≡ | 〈x | y〉 | ∀ x, y ∈ H . (3.6)

Then there exists a real function ϕ : H → R such that

T (x) ≡ eiϕ(x)V x , (3.7)
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where V : H → H is an isometry or an anti-isometry. In particular, if H is finite-

dimensional then V is unitary or anti-unitary.

3.3 UEP: Complete Characterization

Now we are in position to state and prove the main result about the universal entanglement–

preserving channels. Its statement is the content of the following theorem. We postpone

the discussion of the physical meaning of the result after its proof.

Theorem 3.5 (Universal Entanglement–Preserving Channels are Unitary).

The only universal entanglement–preserving channels are the unitary evolutions.

Proof. We know that an unitary channel is definitely UEP. The problem is to prove

the converse statement. If φ is an universal entanglement–preserving channel acting on

a d–dimensional system A, we shall argue that it must be unitary. The argument is

organized as follows.

1. Define r = rank φ(1), and restrict the map φ to φ̃ as in (3.4). Since φ̃(1) > 0

by (3.5), we can construct the map ψ :M(d;C)→M(r;C) defined by

ψ(X) ≡ φ̃(1)−1/2 φ̃(X) φ̃(1)−1/2 . (3.8)

Observe that:

• ψ is again UEP, because so is φ (and φ̃(1) is invertible).

• ψ is unital (even if no longer trace-preserving), because

ψ(1) = φ̃(1)−1/2φ̃(1) φ̃(1)−1/2 = 1 ∈ M(r;C) .

Actually, one could see that for an UEP channel it must be a priori r = d. However,

it will be clear in a moment that this is the case.

2. We claim that

∀ ρ ≥ 0 , det ρ = 0 ⇒ detψ(ρ) = 0 . (3.9)



Chapter 3. Universal Entanglement–Preserving Channels 58

In order to prove this statement, we can suppose that ρ is a normalized density

matrix. Consider a second system B of dimension dB ≥ 2. If ρ ≥ 0 but det ρ = 0,

we know from Proposition 3.2 that ρ ⊗ 1
dB
∈ ∂SAB (here ∂SAB is the boundary

of the set of separable states). This entails that one can construct a sequence Rε

(0 ≤ ε ≤ 1) of entangled states of AB such that

lim
ε→0+

Rε = ρ⊗ 1

dB
.

Since ψ is UEP, definitely (ψ ⊗ I)(Rε) /∈ SAB for each ε > 0. Moreover, observe

that

lim
ε→0+

(ψ ⊗ I)(Rε) = (ψ ⊗ I)

(
lim
ε→0+

Rε

)
=

= (ψ ⊗ I)

(
ρ⊗ 1

dB

)
= ψ(ρ)⊗ 1

dB
∈ SAB .

Strictly speaking, ψ(ρ) is no longer a density matrix, because it is not guaranteed

to have unit trace. Anyway, it makes sense to say that its normalized form is

indeed separable. We have proved that there exists a sequence of entangled states

whose limit is the separable state ψ(ρ) ⊗ 1
dB

. This is the same as to say that

ψ(ρ)⊗ 1
dB
∈ ∂SAB, and so Theorem 3.2 implies that

det ψ(ρ) = 0 .

3. Moreover,

∀ X = X† , detX = 0 ⇒ detψ(X) = 0 . (3.10)

In order to prove this claim, apply (3.9) to the positive matrix X2 :

detX = 0 ⇒ det(X2) = 0 ⇒ detψ(X2) = 0 ⇒

⇒ ∃ |η〉 :
〈
η
∣∣ψ(X2)

∣∣ η〉 = 0 .

Since ψ is positive and unital, we can apply the Kadison’s inequality (2.10) to

conclude that

∃ |η〉 : (ψ(X) |η〉 )† (ψ(X) |η〉 ) ≤
〈
η
∣∣ψ(X2)

∣∣ η〉 = 0 ⇒

⇒ ∃ |η〉 : ψ(X) |η〉 = 0 ⇒ detψ(X) = 0 .
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4. From now on, we can proceed on the guideline drawn by [43] (see p. 66). A crucial

fact is that ψ must preserve the spectrum of an hermitian matrix as a set, i.e. that

∀ X = X† , λ ∈ σ(X) ⇒ λ ∈ σ (ψ(X)) . (3.11)

Indeed, by (3.10) one has

λ ∈ σ(X) ⇒ det(X − λ1) = 0 ⇒ detψ(X − λ1) = 0 ⇒

⇒ det (ψ(X)− λ1) = 0 ⇒ λ ∈ σ (ψ(X)) .

Observe that this result allows us to exclude the case r < d: if one takes as

input a hermitian matrix with non-degenerate spectrum (i.e. which has d distinct

eigenvalues), (3.11) immediately implies that r = d. Consequently, φ̃ coincides

with φ.

5. Observe that (3.11) implies that also the multiplicities of the eigenvalues are the

same for X and ψ(X) (i.e. ψ preserves the spectra as multisets). Indeed, the set

of hermitian matrices with non-degenerate spectrum is dense in H(d;C). Take a

sequence Xε (with 0 < ε ≤ 1) of hermitian matrices enjoying this property, and

such that limε→0+ = X. Denoting by σ(·) the spectrum as a multiset (i.e. counting

multiplicities), we must prove that

σ(ψ(X)) ≡ σ(X) ∀ X = X† . (3.12)

From (3.11) we deduce that

σ(ψ(Xε)) ≡ σ(Xε) ∀ ε > 0 .

On the other hand, the continuity of the eigenvalues requires that

σ(ψ(X)) = σ
(

lim
ε→0

ψ(Xε)
)

= lim
ε→0

σ(ψ(Xε)) =

= lim
ε→0

σ(Xε) = σ(lim
ε→0

Xε) = σ(X) .
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6. We claim that ψ sends pure states into pure states in such a way as to preserve

the moduli of the scalar products:

ψ ( |η〉〈η| ) ≡
∣∣η′〉〈η′∣∣ ∀ |η〉 ∈ HA , (3.13)

| 〈η |χ〉 | ≡ |
〈
η′
∣∣χ′〉 | ∀ |η〉 , |χ〉 ∈ HA . (3.14)

The proof of this statement is as follows. On one hand, for each |η〉 ∈ HA we have

σ (|η〉〈η|) = {1, 0, . . . , 0︸ ︷︷ ︸
d2−1

} ⇒ σ (ψ(|η〉〈η|) ) = {1, 0, . . . , 0︸ ︷︷ ︸
d2−1

} ⇒

⇒ ψ(|η〉〈η|) =
∣∣η′〉〈η′∣∣ .

On the other hand, take |η〉 , |χ〉 ∈ HA, and denote by |η′〉 , |χ′〉 their images under

the action of ψ. Then

{ 1 + | 〈η |χ〉 | , 1− | 〈η |χ〉 | , 0, . . . , 0︸ ︷︷ ︸
d2−2

} = σ ( |η〉〈η|+ |χ〉〈χ| ) =

= σ (ψ( |η〉〈η|+ |χ〉〈χ| ) ) = σ
( ∣∣η′〉〈η′∣∣+

∣∣χ′〉〈χ′∣∣ ) =

= { 1 + |
〈
η′
∣∣χ′〉 | , 1− |

〈
η′
∣∣χ′〉 | , 0, . . . , 0︸ ︷︷ ︸

d2−2

} ⇒ | 〈η |χ〉 | = |
〈
η′
∣∣χ′〉 | .

7. Thanks to (3.14), the hypothesis of Wigner’s Theorem 3.4 are satisfied. Since an

anti-unitary transformation can be represented as the complex conjugation in some

basis followed by an unitary operation, we must conclude that

∣∣η′〉 = eiϕ(η) U |η〉 or
∣∣η′〉 = eiϕ(η) U |η∗〉 ∀ |η〉 ∈ HA ,

where U is unitary. Therefore, for each |η〉 ∈ HA one has

ψ (|η〉〈η|) ≡ U |η〉〈η| U † ∀ |η〉 ∈ HA

or

ψ (|η〉〈η|) ≡ U |η∗〉〈η∗| U † ≡ U |η〉〈η|T U † ∀ |η〉 ∈ HA .

Actually, this implies that

ψ(X) ≡ UXU † or ψ(X) ≡ UXTU † ∀ X ∈ H(d;C)
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The second option has to be discarded, because ψ is completely positive, and the

matrix transposition is only positive. Going back to φ by means of (3.8) (and

recalling that r = d so that φ̃ = φ), we obtain

φ(X) ≡ φ(1)1/2 UXU † φ(1)1/2 ∀ X ∈ H(d;C) .

Since φ has to be trace-preserving, we can easily see that it must be

U †φ(1)U = 1 ⇒ φ(1) = 1 ⇒ φ(X) ≡ UXU † ∀ X ∈ H(d;C) .

Hence φ is an unitary evolution, quod erat demonstrandum.

Let us make the main point one more time. This proof of Theorem 3.5 is technically

quite complex. It involves an impressive series of elegant mathematical results such as

the Wigner’s theorem and the Kadison’s inequality. However, this can not distract our

attention from its physical meaning. What have we proved about the physical, quantum

world? Concerning the entanglement between Alice and Bob, Theorem 3.5 says a simple,

intuitive thing:

A true interaction of Alice’s subsystem with an external environment definitely breaks

some form of entanglement between Alice and Bob.

Thus, we are not allowed to hope that a not-fully-isolated quantum system can maintain

all the quantum correlations with a distant twin. In this sense, we can say that in spite

of its power, the entanglement is a fragile resource.

From a conceptual point of view, the context of our investigations is remarkably clarified.

Indeed, this characterization theorem is exactly specular to Theorem 2.21. The latter

specifies an operational meaning (the Holevo form (2.39)) for those channels which always

break the quantum correlations. The former, instead, claims that only the unitary

evolutions can definitely make the entanglement survive.

Moreover, all that strengthens our belief that the deterioration to which the entanglement

is subjected can be used to quantify the amount of noise introduced by a quantum

channel. In this respect, we have proved that this kind of measure is faithful : if no

entanglement is wasted, there is no true noise acting on the system. So, the main purpose
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of the following chapters is to develop these guidelines, investigating the classifications

induced on the set of quantum channels by the entanglement preservation properties.



Chapter 4

Entanglement–Breaking Indices:

Definitions and First Properties

This chapter discusses some interesting functionals (which we call entanglement–breaking

indices) defined on the set of quantum channels. The aim of these indices is to classify the

amount of noise introduced by these channels, from the point of view of the disturbance

induced on the entanglement. Now, let us present a brief overview of the contents of the

various sections.

Section 4.1 : In this section, we give and explain the definitions of the entanglement–

breaking indices.

Section 4.2 : Here we expose the first, elementary properties of the functionals previ-

ously defined.

Section 4.3 : This section is devoted to the presentation of some instructive examples

of analytical calculation of the entanglement–breaking indices.

Section 4.4 : Through this section, we take some time to think of the physical mean-

ing of the filtered indices. Starting from intuitive considerations, we formulate the

Conjecture 4.4: the best possible filtering strategy is always unitary. However, the

rest of the section is devoted to the construction of an explicit, analytical counterex-

ample to this intuitive statement (Example 4.5). This shows that Conjecture 4.4

is false for every d ≥ 3.

63
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Section 4.5 : Finally, this section is mainly devoted to the investigation of Conjec-

ture 4.4 in the particular qubit case. Subsection 4.5.1 shows that the unitary

filtered indices can be analytically computed for an unital qubit channel. The rest

of the chapter attempts to rule out the existence of a dramatic counterexample

to Conjecture 4.4 (such as Example 4.5) in the two-dimensional case. Subsec-

tion 4.5.2 studies what happens if a filtered index reaches ∞ on a qubit channels,

while Subsection 4.5.3 proves that for an unital qubit channel mU = 2 implies

N = 2.

4.1 Definitions

In the previous chapters we understood that the quantum entanglement reveals itself

by means of delicate, subtle, non-classical correlations between distant systems. The

properties of this behaviour can be exploited as a resource, in order to perform incredible

tasks such as Quantum Cryptography and Teleportation. However, Theorem 3.5 warned

us against the danger represented by the uncontrolled interaction between our entangled

system and the surrounding heat bath: we learned that the entanglement is also a fragile

resource.

Here comes the appealing sequel of the story. In their 2012 paper [10], Giovannetti and

De Pasquale discussed an interesting idea. They tried to quantify the noise introduced

by a quantum channel by means of the number of iterations which are necessary to

produce an entanglement-breaking behaviour. This is of course a partial point of view,

but we will see that it allows powerful classifications. Theorem 3.5 showed us the way:

since the entanglement is an extremely delicate entity, strong characterization theorems

could follow from some restrictions on how much noise can perturb it.

Our purpose is to develop these guidelines. We shall attempt to gain some insight into

the entanglement–breaking properties of repeated applications of quantum channels act-

ing on a finite-dimensional system. In order to study these properties, the first step is

the definition of some interesting functionals (which we call indices because they are

integer-valued). We postpone our comments after the following rigorous definitions.



Chapter 4. Entanglement–Breaking Indices: Definitions and First Properties 65

Definition 4.1 (Entanglement–Breaking Indices).

Let φ ∈ CPt be a quantum channel. Define

n(φ) ≡ min {n ≥ 1 : φn ∈ EBt} , (4.1)

mU (φ) ≡ max {n(Uφ) : U ∈ U} ≡ max {n(φU) : U ∈ U} , (4.2)

m(φ) ≡ min {n ≥ 1 : ∀ ψ ∈ CPt, φψφ . . . φψφ︸ ︷︷ ︸
φ repeated n times

∈ EBt } , (4.3)

NU (φ) ≡ min {n ≥ 1 : ∀ U1, . . . ,Un−1 ∈ U, φU1φ . . . φUn−1φ ∈ EBt } , (4.4)

N (φ) ≡ min {n ≥ 1 : ∀ ψ1, . . . , ψn−1 ∈ CPt, φψ1φ . . . φψn−1φ ∈ EBt } . (4.5)

For an EB channel all these indices are set equal to 1 by definition. Moreover, it is

implicitly understood that the minimum of an empty set and the maximum of an unlimited

set should be posed equal to +∞, which becomes in this way a legitimate value of the

functionals defined. We call filters the maps used between repeated applications of a

channel to reduce its entanglement–breaking properties (the U ’s of (4.2) and (4.4), or

the ψ’s of (4.3) and (4.5)). Given a subset of filters F ⊆ CPt, one can consider more

generally the restricted filtered indices:

mF (φ) ≡ min {n ≥ 1 : ∀ ψ ∈ F, φψφ . . . φψφ︸ ︷︷ ︸
φ repeated n times

∈ EBt } , (4.6)

NF (φ) ≡ min {n ≥ 1 : ∀ ψ1, . . . , ψn−1 ∈ F, φψ1φ . . . φψn−1φ ∈ EBt} . (4.7)

Obviously, equations (4.6) and (4.7) reduce themselves to (4.2) and (4.4) if F = U, and

to (4.3) and (4.5) if F = CPt, respectively.

Several observations and explanations become necessary. These functionals represent an

inverse measure of the noise introduced in the system by a given channel. The smaller

is the value of the index, the more dangerous for the entanglement is the action of the

channel. Indeed, all these indices assume the value +∞ for the unitary transformations.

Firstly, let us discuss the direct n–index defined by (4.1), since it is the most intuitive

one. It is nothing but the smallest number of direct, serial applications of a given channel

such that the global transformation becomes entanglement–breaking. In this situation

Alice plays no role against the noise. Her subsystem simply suffers it a few at a time,
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and there is no possibility to contrast or delay its action. This quantity already appears

in [10], though it is indicated by nc there; we adopt the shorthand n.

The other functionals are filtered indices. This means that Alice chooses to play an active

role against the noise affecting her subsystem. Her strategy consist of the application

of some filters between an action of the noisy channel and the subsequent one. A filter

is nothing but a (local) quantum channel that is chosen by Alice in such a way as to

preserve the entanglement with Bob as best as she can. Let us analyze the possible

scenarios, which are summarized in Table 4.1 in a graphical way.

• In (4.2), we fix once for all an unitary operation U . Only this U is used as a filter,

every time the noisy channel φ is applied.

• In (4.3), we admit the possibility that a single non-unitary filter is employed.

• In (4.4), we consider again only unitary filtering maps Ui, but we allow them to be

changed from time to time.

• Finally, in (4.5) we optimize over all the possible sets of CPt operations imple-

mented by Alice. In other words, we admit the possibility that non-unitary filters

ψi are used, and moreover that they are changed from time to time.

Table 4.1: Filtered EB indices

Only unitary filters Every type of filter

Every time the same filter mU m

Different filters from time to time NU N

4.2 First Properties of EB Indices

Our first concern is the analysis of the elementary properties of these entanglement-

breaking indices. Their proofs (which we omit for the sake of brevity) are directly
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related to the operational meaning of our functionals, as outlined in the previous sec-

tion. Let us group all together in a proposition:

Proposition 4.2 (Elementary Properties).

Let φ ∈ CPt be a quantum channel, and let F ⊆ CPt be a set of filters (possibly

F = CPt). Then the following properties hold.

Unitary conjugation: If U ,V ∈ U are unitary evolutions, then

n (UφU†) ≡ n(φ) , (4.8)

mU (UφV) ≡ mU (φ) , m(UφV) ≡ m(φ) , (4.9)

NU (UφV) ≡ NU (φ) , N (UφV) ≡ N (φ) . (4.10)

Composition with generic channels: Let ψ ∈ CPt be another quantum channel.

Then

m(φψ) ≤ m(ψ), m(φ) ; (4.11)

N (φψ) ≤ N (φ), N (ψ) . (4.12)

Here the commas denote alternative options.

Elementary inequalities: The following elementary inequalities hold:

n(φ) ≤ mU (φ) ≤ m(φ), NU (φ) ≤ N (φ) ; (4.13)

as above, the comma separates two equally valid possibilities.

Reduction to the extreme points of the filtering set: Denote by C(F ) the con-

vex hull of the set of filters F ⊆ CPt. Moreover, consider the extreme points

eC(F ) of the convex set obtained. Then

mF (φ) ≡ meC(F )(φ) , (4.14)

NF (φ) ≡ NeC(F )(φ) . (4.15)

Now, let us analyze some less trivial properties of our indices. Recall that every quantum

channel ψ (in particular, the filters involved in (4.3) and (4.5)) admits a Stinespring

representation as specified in (2.1). Its physical meaning is conspicuous: ψ can be seen
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as the (non-unitary) restriction of a global unitary evolution in a greater system. We

can exploit this physical property in order to reduce the set of filters to only the unitary

ones. However, this is done at the price of expanding the dimension of the system. In the

following, suppose that our system has dimension d. Consider another “environment” E

of dimension d2, and denote by |0〉 ∈ HE a pure state of E. The associated depolarizing

channel D0 ∈ EBtd2 acts by definition as

D0(X) ≡ |0〉〈0| Tr [X] . (4.16)

With these preliminary discussion, we can prove the following theorem.

Theorem 4.3 (Stinespring Dilation of Filtered Indices).

Let φ ∈ CPtd be a quantum channel. With the notation of (4.16), one has

N (φ) = NU (φ⊗D0) , (4.17)

m (φ) = mU (φ⊗D0) . (4.18)

Proof. It suffices to prove (4.17), since (4.18) is completely analogous. Consider a filtering

strategy φψ1φ . . . φψn−1φ implemented by Alice. Take the global unitary evolutions

Ui ∈ Ud3 (acting as Ui(X) = UiXU
†
i ) which represent the filters ψi in Stinespring

form 2.1:

ψi(X) = TrE [ Ui X ⊗ |0〉〈0| U †i ] .

The existence of these unitary maps is guaranteed by Theorem 2.5. In the previous

equation the first degree of freedom corresponds to our system, while the second one is

the (fictitious) environment. We will maintain this notation in what follows. As can be

easily seen, for each n ≥ 1 we can write

φψ1φ . . . φψn−1φ ⊗ D0 = (φ⊗D0) U1 (φ⊗D0) . . . (φ⊗D0) Un−1 (φ⊗D0) . (4.19)

Indeed, consider for example the case n = 2 :

(φ⊗D0) U (φ⊗D0) (X) = (φ⊗D0) U (φ (TrEX) ⊗ |0〉〈0| ) =

= φ
(

TrE [U (φ (TrEX) ⊗ |0〉〈0| ) U † ]
)
⊗ |0〉〈0| =

= φ (ψ (φ (TrEX) ) ) ⊗ |0〉〈0| = (φψφ⊗D0) (X) .
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Moreover, it is worth noting that to each unitary family {Ui } ⊆ Ud3 we can associate a

corresponding family {ψi} ⊆ CPtd such that (4.19) is satisfied. Since D0 is a depolariz-

ing channel (i.e. its images are all proportional to a fixed matrix), it can be immediately

verified that for each η ∈ CPtd

η ⊗D0 ∈ EBtd3 ⇔ η ∈ EBtd .

Therefore, we can directly prove (4.17) (of course, the same reasoning holds for (4.18)) :

N (φ) ≡ min {n ≥ 1 : ∀ ψ1, . . . , ψn−1 ∈ CPtd, φψ1φ . . . φψn−1φ ∈ EBtd } =

= min {n ≥ 1 : ∀ ψ1, . . . , ψn−1 ∈ CPtd, φψ1φ . . . φψn−1φ ⊗ D0 ∈ EBtd } =

= min {n ≥ 1 : ∀ U1, . . . ,Un−1 ∈ Ud3 ,

(φ⊗D0) U1 (φ⊗D0) . . . (φ⊗D0) Un−1 (φ⊗D0) ∈ EBtd3 } ≡ NU (φ⊗D0) .

4.3 Examples

Through this section, we present a large variety of explicit, nontrivial examples of chan-

nels for which some entanglement–breaking indices can be calculated. This will help to

explain the meaning of Definition 4.1, and to become acquainted with it.

In what follows we will use extensively the Bloch sphere representation (2.21) of the

qubit (i.e. d = 2) channels. For unital qubit channels φ = (M, 0), observe that (2.45)

implies the simple equality

n(φ) = n(M) = min {n ≥ 1 : ‖Mn‖1 ≤ 1 } . (4.20)

As usual, we use the definition (2.46) of Schatten norm.

Now, let us examine some concrete examples of qubit channels which clarify the dis-

tinction among our definitions. The following example shows that the first inequality

in (4.13) can be strict. That is, the introduction of an orthogonal matrix before or after

a given channel can produce a lower n–index.
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Example 4.1 (Qubit Channels with n < mU ).

Unital qubit channels whose noise can be reduced by means of a single unitary filter are

easily found:

n

(
0 −1/2 0

3/4 0 0
0 0 1/2

)
= 2 but n

((
0 −1 0
1 0 0
0 0 1

)
·
(

0 −1/2 0
3/4 0 0
0 0 1/2

))
= 3 .

There is even the more extreme case

n

(
0 −1 0

1/3 0 0
0 0 1/3

)
= 2 but n

((
0 −1 0

1/3 0 0
0 0 1/3

)
·
(

0 −1 0
1 0 0
0 0 1

))
= ∞ .

Along the lines of the previous example, we can explore also the non-unital case. Consider

the Bloch sphere representation (4.28) of the Amplitude Damping qubit channel (whose

action on 2× 2 matrices is specified in (4.27)):

ADp =



√
p 0 0

0
√
p 0

0 0 p

 ,


0

0

1− p


 . (4.21)

Moreover, write the real matrix associated (via (2.21)) to the unitary conjugation by
1−iX√

2
, i.e.

Rx

(π
2

)
=


1 0 0

0 0 −1

0 1 0

 .

As one can see by applying the Descartes’ rule of sign to the characteristic polynomial

of the Choi state (as defined in (2.13)), we have

n
(
AD 1

3
Rx

(π
2

))
= 2 .

On the contrary,

n
((
AD 1

3
Rx

(π
2

))
Rx

(π
2

))
= n

(
AD 1

3

)
= ∞ .

Example 4.2 (n–Index of Generalized Amplitude Damping Channels).

A fundamental physical process involving a system coupled to an environment in a ther-

mal state is the spontaneous emission. From the point of view of Stinespring representa-

tion (2.1), we know that this process can be described by means of a quantum channel. In
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the case of a single qubit, this channel is called generalized amplitude damping (GAD).

The set of GADs is parametrized by the two real numbers 0 ≤ p ≤ 1 and 0 ≤ γ ≤ 1,

linked to the time the interaction takes (or to its intensity) and to the temperature of the

environment, respectively (see [29], p. 382). The action of a GAD on a given qubit state

can be written as follows:

GADp,γ

(
a b

b∗ c

)
=

(
pa+ γ(1− p) (a+ c)

√
p b

√
p b∗ −pa+ (1− (1− p)γ) (a+ c)

)
. (4.22)

As usual, (2.21) allows us to write the Bloch representation GADp,γ = (Mp,γ , cp,γ), where

Mp,γ =


√
p 0 0

0
√
p 0

0 0 p

 , cp,γ = (1− p) (2γ − 1)


0

0

1

 . (4.23)

The composition rules of the GADs can be easily deduced for example by means of equa-

tion (4.23). It turns out that

GADp1,γ1 GADp2,γ2 = GADp3,γ3


p3 ≡ p1p2

γ3 ≡ p1(1−p2)γ2+(1−p1)γ1
1−p1p2

. (4.24)

In particular,

GADn
p,γ ≡ GADpn,γ . (4.25)

An important subclass of the GADs is composed of those channels representing a sponta-

neous emission interaction with an environment at zero temperature. This idealization

corresponds to set γ = 1 in (4.22) and (4.23), and produces the class of Amplitude

Damping Channels (AD) :

ADp ≡ GADp,1 . (4.26)

The action of the amplitude damping on qubit states is as follows:

ADp

(
a b

b∗ c

)
=

(
pa+ (1− p) (a+ c)

√
p b

√
p b∗ −pa+ p (a+ c)

)
. (4.27)
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Otherwise, they can be represented also as ADp = (Mp, cp), with

Mp =


√
p 0 0

0
√
p 0

0 0 p

 , cp =


0

0

1− p

 . (4.28)

Now, let us concern ourselves about the entanglement–breaking properties of the GADs.

Thanks to Theorem 2.22 (for example, by condition 2), the range of p, γ which identifies

an EB behaviour can be easily deduced:

GADp,γ ∈ EBt2 ⇐⇒ 0 ≤ p ≤ f(γ) ≡ 1 − 2

1 +
√

1 + 4γ(1− γ)
. (4.29)

Remarkably, (4.26) implies that ADp /∈ EBt as soon as p > 0.

That said, we can easily calculate the direct n–index for the set of generalized amplitude

damping channels. Indeed, (4.25) together with (4.29) implies that

n (GADp,γ) =
⌈ log f(γ)

log p

⌉
, (4.30)

where the ceiling function d·e is defined by

dxe ≡ min {s ∈ Z : s ≥ x} . (4.31)

In (4.30), we have supposed p > 0; otherwise, we immediately know that n(GAD0,γ) ≡ 1.

Moreover, observe that (4.30) returns n = ∞ as soon as γ = 1 (with p > 0). With the

notation of (4.26), this ensures that

p > 0 ⇒ n (ADp) ≡ ∞ . (4.32)

A pictorial representation of the regions of the space p, γ identified by equation (4.30)

can be found in Figure 4.1.

The previous examples focused on the qubit case. However, there exists another famous

class of channels acting in arbitrary dimension for which the entanglement–breaking

properties can be studied analytically.
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Figure 4.1: Graphic representation of the value of the direct n–index in the parameter
space γ, p of the GAD channels. The boundary points are always included in the

adjacent region which has the lowest value of n.

Example 4.3 (n–Index of Werner Channels).

The Werner channels are defined through a simple operative procedure on Alice’s d–

dimensional system. This procedure could be seen as the interaction with an environ-

ment, as usual, but it can be more simply visualized by involving a third human agent,

named Eleonore. Eleonore takes Alice’s state ρ and secretly rolls a dice. Depending on

the outcome of the dice, she gives back the system to Alice without performing any oper-

ation (with a certain probability λ), or she discards Alice’s state and replaces it with the

maximally mixed one 1
d (with probability 1 − λ). In any case, Alice does not know the

outcome of the dice. Clearly, from her point of view, the state of the system transforms

as follows:

ρ 7−→ λ ρ + (1− λ)
1

d
.
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The Werner channels are thus defined by

Wλ ≡ λI + (1− λ)
1

d
Tr , − 1

d2 − 1
≤ λ ≤ 1 , (4.33)

where
1

d
Tr : X 7−→ 1

d
TrX . (4.34)

It can be easily seen that the range of the parameter λ in (4.33) is chosen in such a way

as to guarantee that Wλ is always a completely positive (trace-preserving and unital)

map. Observe that also a (little) range of negative values is allowed; this would not fit

into our probabilistic operative definition, but this is going to be irrelevant. The laws of

composition of the Werner channels are very simple:

Wλ1Wλ2 = Wλ1λ2 , Wn
λ = Wλn . (4.35)

The class of Werner channels is important because its entanglement–breaking properties

can be studied analytically. Indeed, in [24] it is proved that

Wλ ∈ EB(tu)d ⇐⇒ − 1

d2 − 1
≤ λ ≤ 1

d+ 1
. (4.36)

While the implication ⇒ can be deduced with the aid of (2.40), the reverse one is non-

trivial and requires the introduction of more advanced mathematical tools.

Thanks to (4.36), we can explicitly compute the actual value of the n–index for a Werner

channel in arbitrary dimension. We are free to suppose 0 < λ ≤ 1, since the values λ ≤ 0

are immediately known to correspond to EB channels. Then we have

n (Wλ) =
⌈ log (d+ 1)

log 1
λ

⌉
. (4.37)

For λ = 1 (actually, 1−), this equation gives n = ∞, as expected (because W1 = I).

There are no other values of λ sharing this property. The graphic of (4.37) is shown in

Figure 4.2.

Until this time, the discussion focused mainly on the n–index. Now, let us jump on

the opposite side of the inequality (4.13). Because of the fact that a minimization over

the entire set of CPt channels is required, the N–index could seem a difficult functional
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Figure 4.2: Graphic of the n–index as a function of the parameter λ for a Werner
channel. Here the qubit case d = 2 is shown.

to calculate in practice. Let us make an example to show that this is not always the case.

Example 4.4 (N–Index of Werner Channels).

In Example 4.3 we introduced the important class of the Werner channels, acting on

arbitrary d–dimensional systems (see (4.33)). We saw in (4.37) that it is possible to

calculate their n–index. However, the question remains open, if it is possible to enhance

the entanglement preservation by means of the application of some filtering map. In other

words, what can Alice do in order to preserve as much as possible the entanglement with

Bob against the noisy action of Eleonore? The answer to this question is simple: she

can do nothing. This is the same as to say that all the entanglement–breaking indices

are equal when calculated on a Werner channel:

n (Wλ) = mU (Wλ) = m (Wλ) = NU (Wλ) = N (Wλ) =
⌈ log (d+ 1)

log 1
λ

⌉
. (4.38)

In what follows, we suppose as usual λ > 0; otherwise, the Werner channels are already

entanglement–breaking.

Proof. Since (4.37) and (4.13) hold, in order to prove (4.38) it suffices to show that

n (Wλ) ≥ N (Wλ) ,
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i.e. that

Wλn ∈ EB(tu)d ⇒

⇒ Wλψ1Wλ . . .Wλψn−1Wλ ∈ EBtd ∀ ψ1, . . . , ψn−1 ∈ CPtd .

Actually, the equality n (Wλ) = mU (Wλ) = NU (Wλ) can be seen as a direct consequence

of the fact that the Werner channels commute with all the unitary evolutions:

Wλ U ≡ UWλ ∀ U ∈ Ud , ∀ − 1

d2 − 1
≤ λ ≤ 1 (4.39)

Indeed, one could take (4.39) as the defining property of theWλs. However, the behaviour

of m (Wλ) and N (Wλ) is a priori not obvious.

With the same notation as in (4.34), it can be easily proved by induction that

Wλψ1Wλ . . .Wλψn−1Wλ = λnψ1 . . . ψn−1 +

+ (1− λ)
n−1∑
i=1

λi (ψ1 . . . ψi)

(
1

d

)
Tr + (1− λ)

1

d
Tr . (4.40)

Moreover, since Wλn is entanglement–breaking, and (2.37) holds, we must have for every

1 ≤ i ≤ n− 1

ψ1 . . . ψiWλn ψi+1 . . . ψn−1 = λnψ1 . . . ψn−1 + (1− λn) (ψ1 . . . ψi)

(
1

d

)
Tr ∈ EBtd .

(4.41)

The generalization of (4.41) for the “degenerate case” i = 0 can be immediately written

as

Wλn ψ1 . . . ψn−1 = λnψ1 . . . ψn−1 + (1− λn)
1

d
Tr ∈ EBtd . (4.42)

With (4.40), (4.41) and (4.42) at hand, it can be explicitly proved that

Wλψ1Wλ . . .Wλψn−1Wλ =

n−1∑
i=0

λi(1− λ)

1− λn
ψ1 . . . ψiWλn ψi+1 . . . ψn−1 . (4.43)

Now, we can conclude. In fact, the right-hand side of (4.43) is a convex mixture of the

entanglement–breaking channels (4.41) and (4.42). Since the set EBtd is convex, we

deduce that

Wλψ1Wλ . . .Wλψn−1Wλ ∈ EBtd .
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4.4 Conjecture and Counterexample

The direct n–index can be computed with a relatively easy and efficient algorithm.

Given a channel φ, we construct the Choi states Rφn and test their separability. The

first Rφn ∈ S corresponds exactly to n = n(φ). Even if deciding whether a given bipartite

state is separable or not is very difficult (the separability problem is known to be NP–

hard), one could easily get lower bounds by means of some necessary separability criteria

(such as Theorems 2.31 and 2.33), and upper bounds by means of the sufficient criteria

(such as Theorem 2.34).

However, the situation is radically different for the filtered indices mU , m, NU , N . In

that case there seems to be no a priori efficient algorithm allowing their calculation.

Indeed, it must be remarked that the defining equations (4.2), (4.3), (4.4), and (4.5) all

involve a nontrivial optimization over the whole (infinite) set of completely positive or

unitary channels. Because of the potentially infinite number of possibilities one has to

check, the task of calculating the actual value of any filtered index seems a rather difficult

one. Of course, some lower bounds can be given by trialling some filtering strategies.

But then, in order to prove an upper bound we have to inspect all the infinite possible

filtering strategies.

Interestingly enough, we examined the explicit class of Werner channels in arbitrary

dimension, for which all the entanglement–breaking indices can be analytically calculated

(see Example 4.4). The result of this calculation was clear: for a Werner channel

n = mU = m = NU = N . We already know that in general it can happen that n < mU

(see Example 4.1). In this context, as already observed, the equalities n = mU = m = NU
have to be seen as a mere consequence of the incidental property (4.39). However, one

could think that the other equalities mU = m = NU = N are more fundamental. What

should be the intuitive meaning of these equalities?

The filtering maps appearing in Definition 4.1 play the role of preserving as much as

possible the entanglement between Alice and a Bob. From the point of view of the

Stinespring representation (see Definition 2.1), every non-unitary filter acting on A can

be simulated by an unitary operation on a larger system AE (E being an external envi-

ronment). This viewpoint has been already exploited in stating Theorem 4.3. Anyway,
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because of this global unitary evolution, some of the entanglement initially present be-

tween A and B is wasted to create uncontrolled, useless quantum correlations with E.

This invariably weakens the link between Alice and Bob. However, all that can be

avoided if Alice chooses to use only unitary filters. Thanks to this discussion, the fol-

lowing conjecture appears to be quite natural.

Conjecture 4.4 (Unitary Filters Only).

N (φ) ≡ NU (φ) ∀ φ ∈ CPt . (4.44)

Moreover, one may think that there exists once for all a single unitary filter that delays

as much as possible the appearance of an entanglement–breaking behaviour. This can

be formalized through the following conjecture.

Conjecture 4.5 (Single Unitary Filter).

NU (φ) ≡ mU (φ) ∀ φ ∈ CPt . (4.45)

We remark that the most physically intuitive among these statements is Conjecture 4.4.

Indeed, Conjecture 4.5 seems to claim nothing but a mathematical simplification. In

fact, together with Conjecture 4.4, it would imply that all the filtered entanglement–

breaking indices are always equal. However, once again the properties of the quantum

entanglement seem to fly in the face of our intuition. Indeed, Conjecture 4.4 is in general

false. We devote the rest of this section to the construction of an explicit counterexam-

ple, which turns out to be valid in all systems with dimension d ≥ 3.

Example 4.5 (Counterexample to Conjecture 4.4).

In [40], Werner introduces the (U⊗U)–invariant states on a bipartite (d×d)–dimensional

system:

χϕ ≡
(dϕ− 1)S + (d− ϕ)1

d (d2 − 1)
, −1 ≤ ϕ ≡ Tr [χϕS] ≤ 1 . (4.46)

Here, the symbol S denotes the swap operator, defined on a bipartite system by the

equation

S |α〉 ⊗ |β〉 = |β〉 ⊗ |α〉 .
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For the sake of simplicity, it is more convenient to make the substitution

η ≡ 1− dϕ
d2 − 1

,

by means of which one has

χη ≡ − η
S

d
+ (1 + η)

1

d2
, − 1

d+ 1
≤ η ≤ 1

d− 1
. (4.47)

In what follows we shall adopt η as our parameter. Remarkably, Werner proved that the

precise range of η (or ϕ) can be determined, for which χη is separable:

χη ∈ S ⇐⇒ − 1

d+ 1
≤ η ≤ 1

d2 − 1
. (4.48)

We highlight that (4.48) is a great conceptual achievement, because of the intrinsic diffi-

culties one encounters when dealing with the separability problem in generic dimension.

Anyway, as the reader can verify, the implication ⇒ of (4.48) can be simply proved by

means of the PPT criterion (Theorem 2.31). Instead, the opposite direction ⇐ requires

the use of a more sophisticated mathematical apparatus.

We can move the whole power of (4.48) into the world of quantum channels, thanks to

the Choi–Jamiolkowski isomorphism (Theorem 2.10). The Choi dual of (4.47) is

Vη ≡ − η T + (1 + η)
1

d
Tr , − 1

d+ 1
≤ η ≤ 1

d− 1
. (4.49)

This equation defines a one-parameter set of CPtud quantum channels, just like (4.33).

Observe that we adopted the standard notation of (4.34). Thanks to Theorem 2.21, we

can use (4.48) to deduce that

Vη ∈ EB(tu)d ⇐⇒ − 1

d+ 1
≤ η ≤ 1

d2 − 1
. (4.50)

It is worth noting that these Werner channels of the second kind Vη obey simple rules of

composition, which complete (4.35) :

Vη1Vη2 = Wη1η2 , VηWλ = WλVη = Vλη . (4.51)

Moreover, an equality analogous to (4.39) holds:

Vη U ≡ U∗Vη , ∀ U ∈ U . (4.52)
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If U(X) = UXU †, here we indicate with U∗ the channel U∗(X) = U∗XUT (which is

nothing but the conjugation by U∗).

Although it is not immediately obvious, the channels (4.33) and (4.49) are unitary equiv-

alent for the qubit case d = 2. More precisely, (2.32) allows us to prove that

d = 2 ⇒ Vη ≡ YWη ,

where Y denotes the unitary conjugation by the second Pauli matrix. For this reason, the

qubit case does not deserve any further attention; we analyzed it in Examples 4.3 and 4.4.

On the contrary, for d ≥ 3 these two sets of channels are truly different. Observe in fact

that

d ≥ 3 ⇒ ∀ − 1

d+ 1
≤ η ≤ 1

d− 1
, η2 ≤ 1

d2 − 1
. (4.53)

Thanks to (4.51) and to (4.50), this is the same as to say that

d ≥ 3 ⇒ V 2
η ∈ EB(tu)d . (4.54)

But not only: provided that d ≥ 3, (4.52) (together with (4.54)) implies that there is no

unitary filter we can use in order to prevent the complete destruction of the entanglement

after two iterations. Indeed, if U is an unitary evolution,

Vη U Vη = U∗ V 2
η ∈ EB(tu)d .

Observe that we used also (2.37) in the last passage. In other words, we have proved that

d ≥ 3 ⇒ n (Vη) = mU (Vη) = NU (Vη) = 2 . (4.55)

Therefore, the unitary filtering strategy is in the present case demonstrably useless. Let

us try another kind of quantum channel as a filter, even if Conjecture 4.4 claims that

our trial should be fruitless. In the following we shall deal only with the extreme case

η = 1
d−1 . Indeed, in that case the calculations are more simple. Consider the Hilbert

space Cd (with d ≥ 3) spanned by the d vectors {|0〉 , |1〉 , . . . , |d− 1〉}. Moreover, define

the quantum channel ψ whose action is

ψ(ρ) = ( |0〉〈1|+ |1〉〈0| ) ρ ( |0〉〈1|+ |1〉〈0| ) +
d−1∑
i=2

|0〉〈i| ρ |i〉〈0| . (4.56)
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A more compact form of (4.56) can be written if one decomposes ρ as a block matrix

ρ =

(
A B

B† C

)
,

where A and C have sizes 2×2 and (d−2)× (d−2), respectively, while B is a 2× (d−2)

rectangular matrix. In that case, denoting by X the first Pauli matrix, one has

ψ(ρ) = ψ

(
A B

B† C

)
=

(
XAX + |0〉〈0|TrC 0

0 0

)
. (4.57)

Observe that for every k ≥ 1 one has

ψ2k−1 ≡ ψ , ψ2k ≡ ψ2 . (4.58)

Recall also (2.19); in our case, we have simply

TψT = ψ . (4.59)

Now, we claim that for every n ∈ N and d ≥ 3, one has

V 1
d−1

ψ V 1
d−1

. . . V 1
d−1

ψ V 1
d−1︸ ︷︷ ︸

V 1
d−1

repeated 2n+ 1 times

/∈ EBtd (4.60)

As a consequence,

m
(
V 1
d−1

)
= N

(
V 1
d−1

)
= ∞ . (4.61)

Observe that equations (4.61) and (4.55) explicitly disprove Conjecture 4.4 for every

d ≥ 3 .

Proof of (4.60).

In order to prove (4.60), we will write the Choi matrix RTξ corresponding to Tξ through

the rule (2.13); here we have defined for short

ξ ≡ V 1
d−1

ψ V 1
d−1

. . . V 1
d−1

ψ V 1
d−1︸ ︷︷ ︸

V 1
d−1

repeated 2n+ 1 times

.
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Next, we will verify that RTξ � 0; by means of (2.18) and (2.40), this will imply that

ξ /∈ EBt, i.e. the thesis.

Firstly, write for the Vη channels the analogous of the composition formula (4.40), with

the same shorthand notation as in (4.34) :

Vηψ1Vη . . . Vηψk−1Vη = (−η)k Tψ1T . . . Tψk−1T +

+ (1 + η)
k−1∑
i=1

(− η)i (Tψ1 . . . Tψi)

(
1

d

)
Tr + (1 + η)

1

d
Tr . (4.62)

In our case we have ψ1 = . . . = ψk−1 = ψ, k = 2n + 1 and η = 1
d−1 . Because of

equations (4.58) and (4.59), (4.62) becomes

T ξ = − 1

(d− 1)2n+1
ψ2 −

− 1

d(d− 2)

(
1− 1

(d− 1)2n

) (
ψ(1) − 1

d− 1
ψ2(1)

)
Tr +

1

d− 1
Tr (4.63)

Naturally, the Choi matrix RTξ is a complicated object. However, we are interested only

in proving that it is not positive definite. To this purpose, we can examine its restriction

to the subspace spanned by { |00〉 , |11〉 }. Thanks to (2.14), we have

〈ij |RTξ | ij〉 =
1

d
〈i | (Tξ) (|j〉〈j|) | i〉 . (4.64)

By applying repeatedly this identity and (4.57), one can see that

〈00 |RTξ | 00〉 = 0 , 〈00 |RTξ | 11〉 = − 1

d (d− 1)2n+1
.

Therefore, there exists a ∈ R such that

RTξ
∣∣
Span {|00〉, |11〉} =

1

d (d− 1)2n+1

(
0 −1

−1 a

)
.

Since

det

(
0 −1

−1 a

)
= −1 ,

the restriction RTξ
∣∣
Span {|00〉, |11〉} can not be positive definite. This necessarily forbids

RTξ ≥ 0, and so Tξ /∈ CPt. Thanks to the PPT criterion (2.40), we can conclude that

ξ /∈ EBt, i.e. (4.60).
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Let us make the main point one more time. Example 4.5 shows that the optimal filtering

strategy to be used by Alice against the local noise can be, as a matter of fact, non-

unitary. This explicitly disproves Conjecture 4.4. From the physical point of view,

we are claiming that Alice can be forced to introduce other (controlled) disturbances

into her system, so as to save the entanglement with Bob. Moreover, equations (4.55)

and (4.61) show that the difference between the best unitary strategy and the best

non-unitary one can be dramatic. The former causes the almost immediate destruction

of the entanglement, while the latter allows its unlimited survival. All that is quite

counterintuitive, but we are accustomed to be surprised by the oddity of the quantum

world.

4.5 Filtered Indices for Qubit Channels

An amazing fact about the Example 4.5 in that it works only for d ≥ 3. This restriction

comes from (4.54), and instills in us a glimmer of hope that Conjecture 4.4 could be true,

after all, at least for d = 2 . For this reason, the following section is devoted to the

investigation of the qubit case. In fact, the Bloch representation (2.21) can considerably

simplify the theory for two-dimensional systems (we will analyze several examples of this

simplification in the rest of the thesis). Nevertheless, we should gain some insight into

the general case also by means of the analysis of such a naive model.

4.5.1 Unitary Filtered Indices for Unital Qubit Channels

We begin by translating in our language and notation a result originally proved in [10]

(although in a slightly weaker form). Here the simplest problem of the calculation of

mU and NU for an unital qubit channel is faced and solved. The result of the analysis

is the confirmation of the validity of Conjecture 4.5 for unital qubit channels.

Theorem 4.6 (Proof of Conjecture 4.5 for Unital Qubit Channels).

Let (M, 0) ∈ CPtu2 be an unital qubit channel. Denote by M = O1LO2 the special
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singular value decomposition of M , as defined in (2.27) and (2.26). Then

mU (M) = NU (M) = n(L) =

= min {n ≥ 1 :

3∑
i=1

|li|n ≤ 1 } = min {n ≥ 1 : ‖M‖n ≤ 1 } . (4.65)

Proof. The explicit expressions for n(L) are direct consequences of (4.20), and of the

elementary observation
3∑
i=1

|li|n = ‖L‖n = ‖M‖n ,

which descends from (2.47). On the other hand, the elementary properties (4.9) and (4.10)

ensure that

n(L) ≤ mU (L) = mU (M) ≤ NU (L) = NU (M) .

Consequently, the only nontrivial claim is that n(L) ≥ NU (L), so that the inequalities

in the previous equation are actually equalities. Thanks to (4.20), we have only to prove

the p = 1 case of the following statement:

∀ n ≥ 1 , ∀ O1, . . . , On ∈ SO(3) , ‖LO1L . . . LOnL‖p ≤ ‖Ln+1‖p , (4.66)

where we use once again the notation of (2.46) for the Schatten norms. Indeed, (4.66)

would imply that the channel LO1L . . . LOnLmust necessarily be entanglement–breaking

if so is Ln+1 .

In what follows, we will use extensively the well-known Hölder inequality (2.50). Since

L is diagonal, observe that for every 1 ≤ p ≤ ∞ and for every integer n ≥ 1 we can write

‖L‖np = ‖Ln‖1/np (4.67)

Then, the best way to prove (4.66) is by induction.

• For n = 1, thanks to the r = s = 2 case of (2.50) we have

‖L(OL)‖p ≤ ‖L‖2p ‖OL‖2p = ‖L‖2p ‖L‖2p = ‖L‖22p = ‖L2‖p ,

where we used the unitary invariance (2.49), together with (4.67).
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• Now, suppose that we have proved the inequality for every p and for n− 1; we can

apply Hölder again for r = n+ 1, s = n+1
n , obtaining

‖LO1L . . . LOnL‖p ≤ ‖L‖(n+1)p ‖O1L . . . OnL‖n+1
n
p =

= ‖L‖(n+1)p ‖LO2L . . . LOnL‖n+1
n
p ≤ ‖L‖(n+1)p ‖Ln‖n+1

n
p =

= ‖Ln+1‖
1

n+1
p ‖Ln+1‖

n
n+1
p = ‖Ln+1‖p .

We used, in order, (2.50), (2.49), the inductive hypothesis, and (4.67).

It is worth noting that Proposition 4.6 gives us a simple procedure to calculate the

simplest filtered indices, mU andNU , at least in the simplest case of unital qubit channels.

In spite of the strict restriction it is subjected to, (4.65) is quite encouraging. In fact,

it shows how the theory of the filtered indices can be simpler in the qubit case than in

general, because of the low dimensionality of the system under examination.

4.5.2 Conjecture 4.4 for Qubit: Divergent Filtered Indices

Now, let us face the more delicate question of the case d = 2 of Conjecture 4.4. Exam-

ple 4.5 shows that in higher dimensions (d ≥ 3) it can happen that mU = NU = 2, while

m = N =∞. However, we will be able to show that such an extreme possibility can be

ruled out in the qubit case. This is the content of the following theorem.

Theorem 4.7 (Proof of Conjectures 4.4, 4.5 for Qubit Channels with mU = ∞). Let

φ ∈ CPt2 be a qubit channel. Then the following facts are equivalent.

1. The image of the Bloch sphere under the action of φ contains a pure state, and

detφ 6= 0 (recall (2.25)).

2. The image ellipsoid of φ is tangent to the surface of the Bloch sphere, and it has

nonzero volume.

3. mU (φ) =∞ .

4. m(φ) =∞ .
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5. NU (φ) =∞ .

6. N (φ) =∞ .

Proof. In order to complete the proof of this result, we are forced to anticipate some

results taken from Chapter 5. For our present purpose, we need only the claims contained

in Lemma 5.17, in Lemma 5.18, and in Theorem 5.19.

1⇔ 2 : In the context of the geometrical interpretation of the action of the qubit chan-

nels, developed through Subsection 2.2.5, it should be intuitively clear that 2 is

nothing but the geometrical translation of 1.

1⇔ 3 : In order to prove this statement, we invoke Theorem 5.19. This result says

that a qubit channel φ ∈ CPt2 can verify n(φ) = ∞ if and only if detφ 6= 0

(where (2.25) holds) and φ fixes or inverts (geometrically, in the Bloch sphere) a

pure state. Then, we have to characterize the set of qubit channels φ ∈ CPt2 such

thatmU (φ) =∞. By definition, mU (φ) =∞ if and only if there exists U ∈ U2 such

that n (Uφ) =∞. By Theorem 5.19, this is equivalent to require that det(Uφ) 6= 0

and that Uφ fixes or inverts a pure state. Since (2.25) and Proposition 2.11 hold,

we have detU = detO = 1. Consequently, 0 6= det(Uφ) = detU detφ = detφ, i.e.

the first condition is simply detφ 6= 0. Instead, thanks to Proposition 2.11, it is

geometrically obvious that Uφ fixes or inverts a pure state for some U ∈ U2 if and

only if the image ellipsoid of φ already contains a pure state.

3⇒ 4⇒ 5⇒ 6 : These implications follow in an obvious way from 4.13 .

6⇒ 1 : In what follows, denote by φ = (M, c) a Bloch representation (2.21) of the

channel φ. If N (φ) = ∞, then φ can not be entanglement–breaking, and so

detφ 6= 0, by Lemma 5.17. It remains to show that its image ellipsoid contains

a pure state. Suppose by contradiction that this is not the case. Then, thanks

to Lemma 5.18, we must have ‖M‖∞ < 1. On the other hand, the condition

N (φ) =∞ means exactly that

∀ n ≥ 1 , ∃ (N
(n)
1 , b

(n)
1 ) , . . . , (N

(n)
n−1, b

(n)
n−1) ∈ CPt2 :

(Tn, tn) ≡ (M, c) (N
(n)
1 , b

(n)
1 ) (M, c) . . . (M, c) (N

(n)
n−1, b

(n)
n−1) (M, c) =

=
(
MN

(n)
1 M . . .MN

(n)
n−1M , . . .

)
/∈ EBt2 . (4.68)
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In particular,

(Sn, sn) ≡ (N
(n)
1 , b

(n)
1 ) (M, c) . . . (M, c) (N

(n)
n−1, b

(n)
n−1) (M, c) =

=
(
N

(n)
1 M . . .MN

(n)
n−1M , . . .

)
/∈ EBt2 . (4.69)

Since (Sn, sn) is a sequence of (completely) positive trace-preserving operators,

and the set Pt is compact (just like Pu, see (3.3)), we can conclude that (Sn, sn)

must have at least one accumulation point, which is a quantum channel as well.

Moreover, it must be a depolarizing channel of the form ρ0 Tr, with the same

notation as in (4.34). This corresponds to say that limn→∞ Sn = 0, and this

follows from the fact that

‖Sn‖∞ = ‖N (n)
1 M . . .MN

(n)
n−1M‖∞ ≤ ‖M‖

n
∞ −−−→n→∞

0 .

Note that we have repeatedly used (2.51), together with Lemma (5.18). Now, the

problem is that on one hand a depolarizing channel is entanglement breaking, but

on the other hand (4.69) must hold. In other words, the Choi matrices R(Sn,sn) are

entangled for every n, but their limit point Rρ0 Tr = ρ0 ⊗ 1
2 is separable. Thanks

to Proposition 3.2, this can be possible only if det ρ0 = 0, i.e. only if ρ0 = |χ0〉〈χ0|
is a pure state. From this reasoning and from (4.68), it follows that (Tn, tn) has

φ(|χ0〉〈χ0|) Tr as an accumulation point . Since also (Tn, tn) is not entanglement–

breaking for every finite n, again Proposition 3.2 (by exactly the same argument

as above) implies that φ(|χ0〉〈χ0|) = |χ1〉〈χ1| is a pure state. Therefore, the image

ellipsoid of φ contains at least a pure state.

The proof of Theorem 4.7 is very complicated, but its meaning is clear. The qubit

channels can not play the joke we described in Example 4.5. Recall that we showed

(for the channel V 1
d−1

in d ≥ 3) that the unitary filtering strategy could not go beyond

the threshold mU = NU = 2, while m = N =∞. Instead, for channels acting on a

two-dimensional system, if one filtered index reaches ∞, then the same happens to the

others. There is no way to construct a dramatic counterexample such as the one we

analyzed in Section 4.4.
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4.5.3 Conjecture 4.4 for Qubit: Simple Unital Case

Naturally, this does not imply that Conjecture 4.4 is true for d = 2. Maybe there exists

another counterexample, satisfying for example NU = 2, which is exactly the same as to

say that mU = 2, but 3 ≤ N <∞ (the constraint N <∞ is imposed by Theorem 4.7).

The restriction NU = 2 = mU is reasonable, because it confines our analysis to the

first nontrivial case. Indeed, if an EB index takes the value 1, then the channel under

examination is entanglement–breaking, and also all the other indices are equal to 1.

However, we will show that at least for unital qubit channels, if NU = 2 = mU , then also

m = N = 2. As a consequence, there exists no unital counterexample to Conjecture 4.4

which satisfies the restriction mU = 2, as Example 4.5 did.

The proof of this result will not be easy. Actually, we need a rich list of preliminary,

technical lemmas. Since we are trying to prove an upper bound on N , by the very

definition (4.5) we will have to prove that a certain set of channels is entanglement–

breaking, sooner or later. For this reason, the first task is to formalize a sufficient

separability criterion which is capable to detect the absence of entanglement between

two-dimensional systems.

Now, a two-qubit state ρ can be written in the so-called Fano form, a parametrization

employing a 3× 3 real matrix M ∈M(3;R) and two real vectors c, b ∈ R3:

ρ (M, c, b) =
1

4

(
1 + (~c · ~σ)⊗ 1 + 1⊗ (~b · ~σT ) +

3∑
i=1

(M i · ~σ)⊗ σTi

)
. (4.70)

HereM i stands for the ith column of the matrixM , and, analogously, Mj would represent

the jth row of M . Instead, ~σ = (X,Y, Z) is the formal vector of the three Pauli matrices,

as usual. As can be easily seen, thanks to the equality

4 |ε〉〈ε| = 1+

3∑
i=1

σi ⊗ σTi , (4.71)

the map associated to the state ρ(M, c, b) by means of the Choi–Jamiolkowski isomor-

phism (Theorem 2.10) is represented, in the operator basis {1, X, Y, Z} (as in (2.20)),

precisely by the real matrix
(
1 b
c M

)
. This justifies the equivalence

φ→

(
1 b

c M

)
⇐⇒ Rφ = ρ (M, c, b) . (4.72)
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Now, we are in position to state and prove our sufficient separability criterion.

Theorem 4.8 (Trace–Norm Criterion).

With the notation of (4.70), one has

ρ (M, c, b) ∈ S ⇒ ‖M‖1 ≤ 1 , (4.73)

‖M‖1 + |c|+ |b| ≤ 1 ⇒ ρ (M, c, b) ∈ S . (4.74)

Proof. The first implication (4.73) has no direct relevance for the rest of this thesis.

It is already known, and can be seen as a particular case of the reshuffling criterion

(Theorem 2.33). Denote by M = PDQ the singular value decomposition of M , and

recall that ‖M‖1 = TrD (by (2.47)). Thanks to (4.72), to Theorem 2.33 and to (2.48),

we have

ρ(M, c, b) ∈ S ⇒ 2 ≥

∥∥∥∥∥
(

1 b

c M

)∥∥∥∥∥
1

= max
O∈O(4)

Tr

[
O

(
1 b

c M

)]
≥

≥ max
O∈O(3)

Tr

[(
1

O

) (
1 b

c M

)]
≥ Tr

[(
1

QTP T

) (
1 b

c PDQ

)]
=

= Tr

(
1 b

QTP T c QTDQ

)
= 1 + TrD = 1 + ‖M‖1 .

Instead, the second statement (4.74) will be very useful. In order to prove it, we can

suppose M reduced in canonical form L (see equations (2.27) and (2.26)), by exactly the

same reasoning that justifies (2.44). Then, write the partial transpose of ρ (L, c, b) as

ρ (L, c, b)TB =
1

4

(
1 + (~c · ~σ)⊗ 1 + 1⊗ (~b · ~σ) +

3∑
i=1

li σi ⊗ σi

)
. (4.75)

If we could demonstrate that ρ (L, c, b)TB ≥ 0, then the second condition expressed in

Theorem 2.16 would conclude the proof. Actually, we will show that∥∥∥∥∥ (~c · ~σ)⊗ 1 + 1⊗ (~b · ~σ) +

3∑
i=1

li σi ⊗ σi

∥∥∥∥∥
∞

≤ 1 .
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Naturally, this will imply that ρ (L, c, b)TB ≥ 0, by (4.75). Firstly, observe that the

following elementary equalities hold:

‖A⊗B‖∞ = ‖A‖∞ ‖B‖∞ , ‖n · ~σ‖∞ = |n| .

Thanks also to (2.52), we have

∥∥∥∥∥ (~c · ~σ)⊗ 1 + 1⊗ (~b · ~σT ) +
3∑
i=1

li σi ⊗ σTi

∥∥∥∥∥
∞

≤

≤

(
‖ (~c · ~σ)⊗ 1 ‖∞ + ‖1⊗ (~b · ~σT ) ‖∞ +

3∑
i=1

|li| ‖σi ⊗ σTi ‖∞

)
=

=

(
‖~c · ~σ ‖∞ + ‖~b · ~σT ‖∞ +

3∑
i=1

|li| ‖σi‖∞ ‖σTi ‖∞

)
=

= |c|+ |b|+
3∑
i=1

|li| = |c|+ |b|+ ‖L‖1 = |c|+ |b|+ ‖M‖1 ≤ 1 .

Recall the fundamental second condition of Theorem 2.21. Putting together (4.74)

and (4.72), we obtain

‖M‖1 + |c| ≤ 1 =⇒ (M, c) ∈ EBt2 . (4.76)

Another technical result that will be useful through the rest of the section is the following.

Lemma 4.9.

Given a vector v ∈ Rn, let us denote by [v] ∈ Rn the vector obtained by taking the

absolute value of the components of v, i.e. [v]i ≡ |vi|. We claim that for each v ∈ Rn

and for each A ∈M(n,R), there exists a special orthogonal matrix O ∈ SO(n) such that

the two vectors

[Ov] , ( |(OA)1| , . . . , |(OA)n| )

are linearly dependent. We denote by the symbol Mi the ith row of the matrix M , as

usual.
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Proof. Note immediately that we are free to suppose v,A 6= 0, and so also (up to a

rescaling constant)

|v| = 1 = ‖A‖2 . (4.77)

Now, we prove that there exists O ∈ SO(n) such that

|(Ov)i| ≡ |(OA)i| ∀ 1 ≤ i ≤ n . (4.78)

Actually, we can freely extend the range of O to all the orthogonal matrices, not neces-

sarily with determinant equal to 1. Indeed, if we find an O ∈ O(n) such that detO = −1

and (4.78) is satisfied, changing the sign of the first row of O produces a special or-

thogonal matrix O′ ∈ SO(n) which verifies again |(O′v)i| ≡ |(O′A)i|. Now, one can

square (4.78), obtaining the requirement that

∃ O ∈ O(n) :
(
O (vvT −AAT ) OT

)
ii
≡ 0 . (4.79)

We can suppose without loss of generality that vvT −AAT (which is a symmetric matrix)

is diagonal. Indeed, the spectral theorem guarantees that it can be diagonalized by means

of an orthogonal transformation. Thus, vvT −AAT can be taken diagonal up to a change

of variables in O(n). Therefore, the set of matrices of the form O (vvT − AAT ) OT is

composed of all the symmetric matrices S with the following features:

a. Their spectrum σ(S) is precisely σ(vvT −AAT ).

b. They have diagonal elements Sii all equal to zero.

Now, we invoke Theorems 4.3.26 (p. 193) and 4.3.32 (p. 196) of [22]. Their content is

precisely the condition we are looking for: a. and b. can be simultaneously satisfied if

and only if

σ(vvT −AAT ) ≺ {0} ,

where the symbol ≺ stands for majorizes. A vector q ∈ Rn is said to majorize another

vector p ∈ Rn (and we write p ≺ q) if the following inequalities are satisfied:

k∑
i=1

p↑i ≤
k∑
i=1

q↑i ∀ k = 1, . . . , n , and

n∑
i=1

p↑i =

n∑
i=1

q↑i ,
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where p↑i is the vector obtained from p by sorting its entries in ascending order. This

requirement is satisfied precisely because

Tr
[
vvT −AAT

]
= |v|2 − ‖A‖22 = 1− 1 = 0 ,

where we used (4.77). Therefore, we can conclude.

The last precondition for our final result is the following lemma.

Lemma 4.10.

Let (M, c) ∈ Pt2 be a positive, trace-preserving qubit map. Then, for all matrices K ∈
M(3,R), we have

|Kc| + ‖KM‖2 ≤ ‖K‖2 . (4.80)

Proof. Thanks to the third condition of Lemma 2.12, for each O ∈ SO(3) we have

|(OK)i c| + |(OK)i M | ≤ |(OK)i| ,

that is,

|Oi Kc| + |(OKM)i| ≤ |(OK)i| . (4.81)

Here Ni denotes the ith row of a matrix N , as usual. Squaring and adding (4.81) for

i = 1, 2, 3, one obtains

|Kc|2 + ‖KM‖22 + 2

3∑
i=1

|(OKc)i| |(OKM)i| ≤ ‖K‖22

We will show that the sum in the expression above can be reduced to the product

|Kc| ‖KM‖2. In fact, we use Lemma 4.9 to choose an orthogonal matrix O such that

[OKc] and ( |(OKM)1| , |(OKM)2| , |(OKM)3| )

are linearly dependent vectors. In that case, the equality sign holds in the Cauchy-

Schwartz inequality for their scalar product:

3∑
i=1

|(OKc)i| |(OKM)i| ≡

(
3∑
i=1

(OKc)2i

)1/2( 3∑
i=1

|(OKM)i|2
)1/2

≡ |Kc| ‖KM‖2
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Finally, we can state the main result of this section:

Theorem 4.11 (Proof of Conjecture 4.4 for Unital Qubit Channels with mU = 2). Let

φ = (M, 0) ∈ CPtu2 be an unital qubit channel such that mU (φ) = 2 (and this is the

same as to say that NU (φ) = 2). Then also m(φ) = N (φ) = 2. Formally,

∀ φ ∈ CPtu2 , mU (φ) = 2 = NU (φ) ⇐⇒ m(φ) = N (φ) = 2 (4.82)

Proof. Denote by L the canonical form of M (see (2.27) and (2.26)). Then, the fact that

mU (φ) = 2 can be translated, by (4.65), into the inequality

‖L‖2 ≤ 1 . (4.83)

Take a generic filter ψ = (N, b). In order to prove that N (φ) = 2, we want to show

that φψφ = L(N, b)L = (LNL,Lc) ∈ EBt2. We will reach such a conclusion by apply-

ing (4.75); indeed, we will show that

‖LNL‖1 + |Lc| ≤ 1 . (4.84)

First of all, thanks to the case p = 1, r = s = 2 of (2.50) and to (4.83), one has

‖LNL‖1 ≤ ‖LN‖2 ‖L‖2 ≤ ‖LN‖2 . (4.85)

Invoking Lemma 4.80, and using again (4.83), we can see that

‖LN‖2 + |Lc| ≤ ‖L‖2 ≤ 1 . (4.86)

Putting together (4.85) and (4.86), we obtain exactly (4.84).

Theorem 4.11 strengthens the possibility that Conjecture 4.4 could be true for qubit

channels, by showing once again that there is nothing too similar to Example 4.5 in the

d = 2 case. We stress that the problem of deciding the validity of Conjecture 4.4 for

qubit channels has been left open. Through this section, we exhibited only a list of

partial proofs. Remarkably, the two-dimensional systems seem to exhibit a more plain
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theory than the higher dimensional ones. This deep difference between d = 2 and d ≥ 3

appears many times in the quantum information theory. A well-known example of this

phenomenon is the exceptional sufficiency of the PPT criterion for a two-qubit state

(Theorem 2.16). Other important instances will be found in the rest of the thesis (see

Theorems 5.11 and 5.19).



Chapter 5

Entanglement–Saving Quantum

Channels

This chapter contains the main results of the thesis. Here we state some deep, general

theorems, which provides (almost) complete answers to the questions we pose. Moreover,

it is shown how they can be used in order to completely characterize the simplest case

of a two-dimensional system (qubit). Let us give a brief outline of what follows.

Section 5.1 : This section contains the definitions of the two classes of channels we

will study through the rest of the chapter. Subsection 5.1.1 defines the set of

entanglement–saving channels, while Subsection 5.1.2 shows that a further dis-

tinction can be made within this set, identifying the subclass of asymptotically

entanglement–saving channels.

Section 5.2 : This section is devoted to a brief exposition of some useful, technical

facts concerning the so-called peripheral spectrum associated with a given quantum

channel.

Section 5.3 : Here the problem of the characterization of the asymptotic entanglement–

saving channels is faced and solved. Firstly, Subsection 5.3.1 is devoted to the

exposition of some simple criteria which help to decide whether a given channel is

asymptotically entanglement–saving or not. Next, Subsection 5.3.2 contains a list

of instructive examples of this kind of channels. Subsection 5.3.3 is the kernel of the

95
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entire section, since it hosts the central Theorem 5.12, which states that a quan-

tum channel is asymptotically entanglement–saving if and only if it admits non-

commuting phase points. Finally, Subsection 5.3.4 shows how the simple results

exposed in Subsection 5.3.1 fit into the general scheme drawn by Theorem 5.12.

Section 5.4 : This section contains a detailed study of the features of the entanglement–

saving channels in arbitrary dimension. Subsection 5.4.1 displays the main techni-

cal tools to be used. Instead, Subsection 5.4.2 is devoted to the statement and proof

of the deep Theorem 5.16, which shows that almost everywhere the entanglement–

saving property is the same as the presence of a positive semidefinite fixed point for

the channel or for some of its powers. A discussion of the meaning of this result

follows its proof.

Section 5.5 : Through this section, we apply the general theory of the entanglement–

saving channels (developed in Section 5.4) to study the simplest qubit case. Sub-

section 5.5.1 gives an analytical form to the entanglement–saving qubit channels,

while Subsection 5.5.2 displays an explicit model reproducing them.

5.1 Definitions

5.1.1 Iterated Noise and Entanglement Saving

We begin our study of the direct n–index by posing the following question: which kind

of noise is so weak that it never separates completely a maximally entangled state, even

if applied an arbitrary number of times? Within the language developed through the

preceding chapter, these “entanglement–saving” channels are characterized by an infinite

value of the direct n–index. So we can give the following definition.

Definition 5.1 (Entanglement–Saving Channels).

A map φ ∈ CPt is called “entanglement–saving” (ES) if n(φ) =∞, i.e. if

φn /∈ EBt ∀ n ∈ N .

One of the main goals of the rest of this chapter is to find an adequate characterization of

these channels. The objective will be completely achieved almost everywhere (i.e. apart
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from a set of zero measure), and in arbitrary dimension. As a corollary, we shall solve

completely the problem in the case of qubit.

5.1.2 Limit Points and Asymptotic Entanglement Saving

Recall that a limit point of a sequence is by definition the limit of one of its subsequences.

Naturally, if a sequence admits more than one limit point, then it does not converge

(e.g. the sequence ((−1)n)n∈N has two limit points +1 and −1). With this concept at

hand, we can make another kind of distinction within the set of entanglement–saving

channels. It is based on the behaviour of the limit points of the sequence (φn)n∈N. We

need some lemmas in order to study the structure of these limit points. An algebraic

characterization of this set is the purpose of this section. After this technical step, the

physical meaning of the definition we are giving will be clear.

Now, it will be useful to recall the main spectral properties of the (completely) positive

maps (see Proposition 2.8). Remind that we consider a quantum channel φ ∈ CPtd

as a linear transformation of the real vector space H(d;C) of hermitian d × d matrices

(whose dimension is d2), i.e. as a d2 × d2 real matrix, with well-defined spectrum σ(φ)

(in which we include the multiplicities). Moreover, the Hilbert-Schmidt scalar product

between hermitian matrices allows us to consider singular value decompositions and any

sort of Schatten norms (2.46) in CPt. Now, we are in position to state some technical

facts, whose proofs can be found in Chap. 6 of [43].

Lemma 5.2.

Let A ∈ M(m;C) be a complex square matrix. Then the sequence (An)n∈N has some

(finite) limit points if and only if every eigenvalue z ∈ C of A verifies |z| ≤ 1, and

for each eigenvalue z of modulus 1 the corresponding Jordan blocks are trivial. Every

quantum channel φ ∈ CPtd has these properties.

Lemma 5.3.

Let A ∈M(m;C) be a complex square matrix. Write a Jordan decomposition for A as

A =
∑
k

(λkPk +Nk) , (5.1)
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where the λk are eigenvalues, the Pk are projectors onto the generalized subspaces, and

the Nk are nilpotent applications. If the sequence (An)n∈N has some (finite) limit points,

then

E(A) ≡
∑

k: |λk|=1

Pk , A E(A) =
∑

k: |λk|=1

λkPk , I(A) ≡
∑

k: |λk|=1

λ∗kPk . (5.2)

are three of them. Moreover, every limit point is diagonalizable in a Jordan basis for A,

and has the form ∑
k: |λk|=1

zkPk , |zk| ≡ 1 ∀ k . (5.3)

Now we have the technical tools we need. The following result explores the algebraic

structure of the set of the limit points of a sequence (An)n∈N.

Theorem 5.4 (Limit Points of the Powers of a Matrix as a Group).

Let A ∈M(m;C) be a complex square matrix. Consider

GA ≡ { limit points of (An)n∈N } . (5.4)

Then GA, if not empty, is an abelian compact group with the standard operation of matrix

multiplication.

Proof. We will prove that GA is closed under multiplication, possesses an identity ele-

ment, is closed and limited as a set, and moreover that each element has an inverse.

• If S, T ∈ GA, then it must be ST ∈ GA. In fact, there exist subsequences

(kn)n∈N, (hn)n∈N such that

S = lim
n→∞

Akn , T = lim
n→∞

Ahn .

But then

ST = lim
n→∞

Akn+hn ∈ GA .

• Let us explicitly construct an identity element. If S ∈ GA, then Lemma 5.3 ensures

that S is diagonalizable in a Jordan basis for A. Therefore, with the same notation

of (5.2), it should be obvious that S E(A) = S. And so, E(A) is an identity

element for GA.
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• Observe that GA is closed as a set because of its definition. To see this, we consider

a limit point of GA and show that it actually belongs to GA itself. Let (Sk)k∈N be

a sequence of elements belonging to GA. Then for every k there exists a sequence

of powers of A which converges to Sk. In other words, we can write

S̃ = lim
k→∞

Sk , Sk = lim
n→∞

Ah
(k)
n .

For each k ≥ 1, define an integer nk such that

∥∥Sk −Ah(k)nk

∥∥
∞ ≤

1

k
.

Then

S̃ = lim
k→∞

Sk = lim
k→∞

Ah
(k)
nk ∈ GA .

• A consequence of Lemma 5.3 is that GA must be limited as a set. In fact, all

matrices S ∈ GA can be simultaneously diagonalized using a Jordan basis for A. In

this basis our claim is obvious, because again Lemma 5.3 guarantees that all the

eigenvalues belong to the complex circumference |z| = 1.

• Let us prove that each generic S ∈ GA has an inverse internal to GA (and so,

such an object must be unique). Observe that Sk ∈ GA for each k ∈ N, and

that Lemma 5.3 claims that I(S) (defined as in (5.2)) is indeed a limit point of

this sequence (which is limited because contained inside GA, and therefore has

some limit points). Thanks to the property of closure of GA, we can deduce that

I(S) ∈ GA. Because of its definition, it must be S I(S) = E(A), so I(S) is an

inverse of S.

Now, consider a quantum channel φ ∈ CPtd. Thanks to Lemma 5.2, Theorem 5.4 ap-

plies, and we can define the corresponding (non-empty) set of limit points Gφ. Since

CPtd is a closed set, it can immediately seen that Gφ ⊆ CPtd. Our immediate goal is

to classify the entanglement-breaking properties of the elements belonging to Gφ. Fortu-

nately, this task is not so difficult; the answer is the content of the following proposition.

Proposition 5.5.

Let Gφ be the non-empty set of limit points of the powers of a quantum channel φ ∈ CPt.
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There are only two possibilities:

Gφ ⊆ EBt or Gφ ∩EBt = ∅ .

Proof. The only thing we have to prove is that Gφ ⊆ EBt if there exists S0 ∈ Gφ ∩EBt.

Thanks to the group properties of Gφ, taken a generic S ∈ Gφ we can certainly write

S = S0 (S−10 S) , S−10 S ∈ Gφ ⊆ CPt .

Recall the property (2.37) of the entanglement-breaking channels. Since S0 ∈ EBt, it

must be also S ∈ EBt.

Proposition 5.5 makes a clear distinction between the two behaviours of the limit points.

The following definition makes sense now; actually, it seems quite natural.

Definition 5.6 (Asymptotically Entanglement–Saving Channels).

Let φ ∈ CPt be a quantum channel, and denote by Gφ the non-empty set of limit points

of the sequence (φn)n∈N. If Gφ∩EBt = ∅ then φ is called asymptotically entanglement–

saving (AES).

Remind that the set EBt is closed, and so its complement in CPt is open. As a

consequence, every AES channel is also ES, but the converse is not necessarily true.

Moreover, consider a limit point S ∈ Gφ of the sequence of powers of an AES channel φ.

We know (by definition) that S is not entanglement–breaking. But not only: since Gφ is

a closed set (see Theorem 5.4), it turns out that S itself must be an AES channel! We

can write

φ is AES ⇒ Gφ is entirely composed of AES channels. (5.5)

What is the physical meaning of Definition 5.6? These AES channels represent a par-

ticularly innocuous kind of entanglement–saving noise, in the following sense. It can

happen that a quantum channel never breaks completely the entanglement, even if it is

applied many times; this is the entanglement–saving property. However, these repeated

application can reduce the quantum correlations to an arbitrary low value, and destroy

them only in the limit. Therefore, if our system is subjected in laboratory to such a

noise a thousandfold, the surviving entanglement (even if theoretically present) is of zero
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practical relevance. Indeed, because of its extreme weakness, it can be completely can-

celed by a minimal experimental error. An asymptotic entanglement–saving channels

does not play such a joke. Instead, a finite amount of entanglement is present also in

the limit. In other words, suppose that Alice makes sure that only an AES noise is acting

on her half of the global system. Then she is guaranteed that the bipartite system will

always contain a significant and concretely usable quantity of entanglement (also after

many years).

5.2 Peripheral Spectrum

In the following we will denote by σP (φ) the peripheral part of the spectrum of a quantum

channel φ ∈ CPtd, i.e. the set of the eigenvalues having modulus equal to 1 (see Chap.

6 of [43]). As usual, it will be useful to include the multiplicities in σP (φ) by repeating

each eigenvalue an appropriate number of times. While the eigenvectors corresponding

to the eigenvalue 1 are called fixed points, we shall deserve the name phase points for the

eigenvectors corresponding to a generic peripheral eigenvalue.

If φ ∈ CPt, remind that for each z ∈ σP (φ) the corresponding Jordan blocks are trivial,

i.e. the algebraic and geometric multiplicities of z must coincide (see Proposition 2.8

and Lemma 5.2). In this way, the cardinality |σP (φ)| is nothing but the sum of all the

multiplicities of the peripheral eigenvalues. Proposition 2.8 ensures that the elements of

σ(φ) must appear in complex conjugate pairs, with the same Jordan structure for each

element in the pair. Moreover, the existence of a positive semidefinite fixed point (i.e. a

density matrix which is left unperturbed by the action of the channel) is guaranteed. In

particular, 1 ∈ σP (φ) 6= ∅.

Although a general characterization of the spectra of CPt maps has not been found, a

complete answer for the same question restricted to peripheral spectra is indeed avail-

able. The following theorem is part of the paper [42].

Theorem 5.7 (Peripheral Spectrum).

Let φ ∈ CPtd be a quantum channel. Then there are integers nc, dc ∈ N (labeled by an

index c ∈ C) satisfying
∑

c ncdc ≤ d, and vectors ωc ∈ Cdc whose component are phases

(i.e. |ωci| ≡ 1 ∀ i, c), such that

σP (φ) = { ωci ω∗cj e
2πimc
nc : c ∈ C, 0 ≤ mc ≤ nc − 1, 1 ≤ i, j ≤ dc } . (5.6)
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In this way

|σP (φ)| =
∑
c

ncd
2
c . (5.7)

Conversely, every such a set of numbers is the peripheral spectrum of some φ ∈ CPt∑
c ncdc

,

which in addition can be chosen unital and with no other non-zero eigenvalue.

We do not need the whole power of Theorem 5.7. Instead, we will find very useful a

simple consequence of this theorem.

Corollary 5.8.

Let φ ∈ CPtd be a quantum channel satisfying |σP (φ)| ≥ 2. Then there exists an integer

1 ≤ n ≤ d such that 1 belongs to σP (φn) with multiplicity strictly greater than 1.

Proof. Let us assume that the multiplicity of 1 ∈ σP (φ) is exactly 1 (otherwise it will

be sufficient to choose n = 1). Since 1 is reached in (5.6) for each i = j, mc = 0, there

must be only one possible c (call it 0), and moreover d0 = 1. But then

∃ 2 ≤ n0 ≤ d : σP (φ) = { e
2πim0
n0 : 0 ≤ m0 ≤ n0 − 1 } .

As a consequence, 1 belongs to σP (φn0) with multiplicity n0 ≥ 2.

An interesting result concerning the size of the peripheral spectrum is expressed by the

following proposition. The interested reader can find the proof in [43], p. 96 – 97.

Theorem 5.9.

Let φ ∈ Ptd. Then

|detφ| = 1 ⇔ |σP (φ)| = d2 ⇔ φ is unitary . (5.8)

Another useful fact to be taken in mind is the statement of Theorem 5.7 for d = 2:

φ ∈ CPt2 ⇒ σP (φ) = {1}, {1, 1}, {1,−1}, {1, 1, eiθ, e−iθ} . (5.9)

The commas in the preceding equation identify the possible alternative spectra. Recalling

also (5.8), we can see that the last spectrum is the signature of an unitary evolution:

σP (φ) = {1, 1, eiθ, e−iθ} ⇔ φ ∈ U2 . (5.10)
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This makes sense, because {1, eiθ, e−iθ} is exactly the spectrum of a rotation in SO(3),

and (2.24) holds.

5.3 AES: Complete Characterization

Through this section, we will discuss and characterize the particularly gentle form of noise

introduced in Definition 5.6. Remind that a quantum channel is said to be asymptotically

entanglement–saving (AES) if its repeated application does not completely destroy the

entanglement between Alice and Bob, even in the limit of an infinite number of iterations.

As previously observed, this is a physically meaningful condition. An AES channel

always allows the survival of a finite amount of entanglement, even after thousands of

repetitions. This is the ideal condition for a practical experiment in which the long-time

storage of some form of entanglement is involved.

Therefore, a complete characterization of these AES channels is of concrete relevance.

If an experimental physicists could certificate that the noise affecting its half of the

global system is indeed AES, then his setup would allow the conservation of the quan-

tum correlations on a long (ideally, infinite) time span. How can we reach a complete

understanding of the AES noise? Let us proceed step by step.

5.3.1 Simple Results about AES Channels

Firstly, let us expose some results linking the asymptotic entanglement saving with the

spectral properties. Indeed, a large peripheral spectrum is enough to guarantee the

asymptotic entanglement saving, as we will see in a moment. We start by recalling that

the trace norm ‖A‖1 of a generic matrix A can be bounded by the sum of the moduli of

its eigenvalues {λi(A)} :

‖A‖1 ≥
∑
i

|λi(A)| . (5.11)

We refer the reader interested in the proof to [23], p. 172. Now, we are in position to

state a link between the AES property and the peripheral spectrum.

Proposition 5.10 (AES Channels and Peripheral Spectrum).

Let φ ∈ CPtd be a quantum channel. If |σP (φ)| > d, then φ is AES.
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Proof. Suppose |σP (φ)| > d. Then (5.3) guarantees that every limit point S ∈ Gφ also

verifies |σP (S)| > d. Thanks to (5.11), this implies that

‖S‖1 ≥
∑
i

|λi(S)| > d .

By invoking Theorem 2.33, we can see that this forbids S ∈ EBtd.

In the case of qubit, Theorem 5.9 gives us a powerful tool to characterize the whole set

of AES channels.

Theorem 5.11.

A qubit channel is AES if and only if it is unitary.

Proof. Obviously an unitary channel U is AES, because the limit points of (Un)n∈N

are again unitary channels. Let us concern ourselves with the converse. Thanks to

Theorem 5.9, we have only to prove that every AES channel φ satisfies the property

| detφ| = 1. Assume by contradiction that | detφ| < 1. Then (thanks to Lemma 5.2)

there would exist an eigenvalue z ∈ σ(φ) with |z| < 1, and the limit points of (φn)n∈N

would have a zero eigenvalue, i.e. zero determinant. This is absurd, because we will prove

in Lemma 5.17 that this mere property implies that they are entanglement-breaking.

5.3.2 Zoology of AES Channels

For higher dimension the situation is not as simple as the one detailed in Theorem 5.11.

To see this explicitly, let us examine a few paradigmatic examples.

Example 5.1 (Non-Unitary AES: Block Channels).

Consider the Hilbert space C4 spanned by the four vectors |0〉 , |1〉 , |2〉 , |3〉. In what

follows, we will focus on operators defined on this space as 2 × 2 block matrices whose
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blocks are in turn 2× 2 matrices. For example, we can write the two projectors

P ≡


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ≡

(
1 0

0 0

)
= |0〉〈0|+ |1〉〈1| ,

Q ≡


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 ≡

(
0 0

0 1

)
= |2〉〈2|+ |3〉〈3| .

Since P †P +Q†Q = 1, these two operators P,Q satisfies the sum rule (2.2). Therefore,

equation (2.3) and Theorem 2.5 guarantee that

φ1(X) ≡ PXP † +QXQ† (5.12)

is a completely positive and trace-preserving quantum channel, whose action on a block

matrix can be written as

φ1

(
A B

B† C

)
=

(
A 0

0 C

)
. (5.13)

Moreover,

• φn1 ≡ φ1 , ∀ n ≥ 1.

• φ is not entanglement–breaking: for example, φ1 ⊗ I fixes the entangled state
|00〉+|11〉√

2
of a bipartite system. Since φn1 ≡ φ1, this implies that φ1 is AES.

• Obviously, φ1 is not unitary, because P and Q are linearly independent and can

not be combined into a single Kraus operator.

Intuitively, the channel (5.12) is AES thanks to the property that the 2 × 2 top left

corner of the input matrix (for example) is left completely unchanged (see (5.13)). As

a consequence, the entanglement written in the first two degrees of freedom can not be

wasted. It is worth noting that in a more general case there are at least two other

transformations which act on these nontrivial blocks in such a way as to preserve the

entanglement:
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• An unitary conjugation.

• A permutation between preserved blocks of the same size.

A more general channel which implements also an unitary conjugation on each block is

for example

φ2(X) ≡ V φ1(X)V † , (5.14)

where V is an unitary block matrix:

V ≡

(
V1 0

0 V2

)
, V1, V2 ∈ SU(2) .

Its action on an input matrix written in block form is

φ2

(
A B

B† C

)
=

(
V1AV

†
1 0

0 V2CV
†
2

)
. (5.15)

Moreover, consider also

φ3(X) ≡ W φ2(X)W † , (5.16)

where W has the block structure

W ≡

(
0 1

1 0

)
.

The conjugation by W exchanges the top left and the bottom right blocks. That is, φ3

acts on block matrices as

φ3

(
A B

B† C

)
=

(
V2CV

†
2 0

0 V1AV
†
1

)
. (5.17)

Once again, φ2 and φ3 are AES, because the entanglement written in the first two degrees

of freedom is automatically preserved. A formal proof can be obtained by noting that

φ1 /∈ EBt4 is always a limit point of the sequences (φn2 )n∈N and (φn3 )n∈N. From an

intuitive point of view, for every n ≥ 1 the actions of φn2 and φ2n3 on the first half of a

bipartite system in a global state |00〉+|11〉√
2

are the same as unitary conjugations on the

first subsystem.
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Example 5.1 shows some non-unitary AES channels. However, there is another class

of nontrivial examples. We can construct it by thinking about Alice’s subsystem as a

quantum bipartite system itself. That is, we introduce another subdivision 1, 2 in A,

other than the standard one A,B existing between Alice and Bob. Let us explain what

we mean in the following example.

Example 5.2 (Non-Unitary AES: Partial Depolarizing Channels).

Suppose that Alice’s subsystem consists of two qubits. Her Hilbert space C4 is spanned by

the four product vectors |00〉 , |01〉 , |10〉 , |11〉 (sorted in lexicographical order, as usual).

We think about the operators defined on this space as 2×2 block matrices (qubit 1) whose

blocks are in turn 2× 2 matrices (operators acting on qubit 2). For example, if A,B,C

are 2× 2 matrices, we can write(
A B

B† C

)
= |0〉〈0|1 ⊗ (A)2 + |0〉〈1|1 ⊗ (B)2 + |1〉〈0|1 ⊗ (B†)2 + |1〉〈1|1 ⊗ (C)2 .

Fix a qubit density matrix σ, and consider the associated depolarizing channel, which is

denoted by σTr and acts as

σTr : X 7−→ σTrX . (5.18)

Observe that a depolarizing channel such as (5.18) is a particularly drastic entanglement–

breaking transformation: from a practical point of view, it corresponds to the two con-

secutive operations:

• discard the input state;

• produce as output a fixed state σ.

Now, define the channel φ4 (operating on Alice’s C4 = C2
1 ⊗ C2

2 space) by means of the

equation

φ4 ≡ I1 ⊗ σTr2 . (5.19)

The transformations induced on block matrices takes the form

φ4

(
A B

B† C

)
=

(
σ TrA σ TrB

σ (TrB)∗ σ TrC

)
=

(
TrA TrB

(TrB)∗ TrC

)
⊗ σ . (5.20)
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Observe that φ4 is an AES channel. Intuitively, this property reflects a simple consider-

ation. Although the entanglement written in Alice’s second qubit is completely destroyed

by the entanglement–breaking depolarizing channel, the quantum correlations involving

the first qubit are kept intact. A formal proof of this fact can be sketched as follows.

Consider the Alice’s and Bob’s entangled state

ρAB = |ε〉〈ε|A1B1
⊗ σA2 ⊗ |0〉〈0|B2

.

As usual,

|ε〉A1B1
=
|0〉A1

⊗ |0〉B1
+ |1〉A1

⊗ |1〉B1√
2

.

Observe that

((φ4)A ⊗ IB) (ρAB) =
(
IA1 ⊗ IB1 ⊗ (σTr)A2

⊗ IB2

)
(ρAB) =

= I(|ε〉〈ε|)A1B1 ⊗ (σTrσ)A2
⊗ I(|0〉〈0|)B2 = ρAB .

As a consequence,

((φn4 )A ⊗ IB) (ρAB) ≡ ρAB ∀ n ∈ N .

Now, the thesis can be deduced by contradiction. If φ4 was not AES, then the limit points

of the sequence (φn4 )A ⊗ IB would be entanglement–breaking. Therefore, the limit points

of ((φn4 )A ⊗ IB) (ρAB) would be separable (because of the very Definition 2.20). But this

is absurd, since ((φn4 )A ⊗ IB) (ρAB) ≡ ρAB is entangled.

5.3.3 General Characterization

In the previous examples we presented some nontrivial AES channels. Each one high-

lights a different operation an AES channel can be composed of. Let us summarize them

by making a list.

1. The channel φ1 defined in (5.12) preserves single (nontrivial) blocks. The entan-

glement written in the degrees of freedom pertaining to these blocks can survive.

2. The operation φ2 defined in (5.14) acts almost in the same way as φ1, but adds

also an innocuous change of basis (i.e. an unitary conjugation).
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3. Equation (5.16) is another variation on the theme. This time, also a swap between

the two preserved blocks is performed.

4. A new kind of AES operation φ4 is defined through (5.19). Conceptually, its

construction relies on a subdivision of Alice’s system. The first subsystem can

make the entanglement survive, even though the second suffers an entanglement–

breaking noise.

Given a system identified by a Hilbert space K, the more general composition φ of the

four operations presented in the preceding list can then be written as follows.

1: There exist orthogonal projectors Pα (projecting on subspaces Kα ⊆ K) which sat-

isfies
∑

α Pα = 1;

4 : formal tensor product structures Kα = K(1)
α ⊗ K(2)

α , with at least one α satisfying

dimK(1)
α ≥ 2 ; density matrices σ

(2)
α pertaining to K(2)

α ;

2 : unitary operators Vα acting on K(1)
α ;

3 : and a permutation π on the set of αs exchanging only indices with the same dimK(1)
α ;

such that

φ (X) =
⊥⊕
α

Vα Tr2 [Pπ(α)X Pπ(α)] V
†
α ⊗ σ(2)α , (5.21)

for all operators X defined on K.

In spite of its apparent complexness, equation (5.21) is only the the more general compo-

sition of the basic operations we examined through Examples 5.1 and 5.2. The question

arises, whether this operations are all the basic ingredients which guarantee the asymp-

totic entanglement saving. The answer to this question is affirmative. We will formalize

this fact in a moment, but first we have to make an effort to see the AES problem under

a different viewpoint. Let us recall and discuss some facts.

Remind that the phase points of a quantum channel are by definition those input ma-

trices whose transformation under the action of the channel is simply the multiplication

by a phase factor. In other words, they are the eigenvectors (actually, eigenmatrices)

corresponding to the peripheral part of the spectrum. Here the term “peripheral” refers

to the fact that no eigenvalue of a quantum channel can have a modulus greater than 1.

As a consequence, in the limit of an infinite number of repetitions of the channel, only
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these peripheral eigenvalues can survive. Any other eigenvalue of modulus strictly lower

than 1 will rapidly tend to zero. Pictorially, we can say that the phase points are the

only survivors in the limit we are considering. We should expect that only the behaviour

of these phase points will decide the asymptotic entanglement saving. If there is some

intrinsic quantum mechanical property in the set of phase points, then the entanglement

does not disappear (even in the limit). Otherwise, the survivors will be classical (in

some sense), and the quantum correlations will die.

This is the content of the following theorem, which completely solves the characteriza-

tion problem concerning the AES. We omit the proof for the sake of brevity, since it is

absolutely nontrivial and would require the introduction of highly sophisticated mathe-

matical tools.

Theorem 5.12 (Complete Characterization of AES Channels).

Let φ ∈ CPt be a quantum channel acting on states of an Hilbert space H. Then the

following facts are equivalent:

1. φ is asymptotically entanglement–saving.

2. φ admits non-commuting phase points.

3. There exists a subspace K ⊆ H such that for each hermitian X supported in K, φ

acts exactly as in (5.21).

This theorem provides the most intuitive and physically cogent answer we could imagine.

In the context of the discussion developed through this section, let us explain briefly the

meaning of the two conditions stated.

Condition 2: It expresses exactly the requirement that the quantum mechanics must

survive to an AES channel. The deep physical meaning of the AES property can be

understood now. Indeed, quantum mechanics and non-commutating observables

are almost the same thing (in this context). Then Theorem 5.12 says a simple

thing: if there are nontrivial commutation relations among the surviving states

of the system, then the entanglement can be maintained. Otherwise, it will be

invariably broken.
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Condition 3: This feature has been anticipated in Examples 5.1 and 5.2. Theorem 5.12

shows that the more general action of an AES channel is nothing but a compositions

of the four basic operations we have discussed.

5.3.4 Simple Results (Revisited)

We conclude this section by showing how Theorem 5.11 and Proposition 5.10 fit into the

very general scheme drawn by Theorem 5.12. In spite of its simplicity, this exercise is

extremely instructive.

Proof of Theorem 5.11 (revisited): The fact that the only AES qubit channels are

the unitary evolutions can be easily proved now. In fact, in the qubit case the third

condition of Theorem 5.12 (together with the constraints exposed before (5.21))

imposes that there is only one possible value of α (call it 0), and that dimK(1)
0 = 2.

Consequently, it must be dimK(2)
0 = 1 (that is, σ

(2)
0 = 1) and K = H = C2. Thanks

to (5.21), this implies that φ is an unitary evolution.

Proof of Theorem 5.10 (revisited): We have to prove that a peripheral spectrum

strictly larger than d (counting multiplicities) invariably denotes an AES behaviour.

This can be easily regarded as a consequence of condition 2 of Theorem 5.12.

Indeed, suppose by contradiction that |σP (φ)| > d and that the associated (at

least) d+ 1 phase points commute with each other. Then the linear span VP of the

phase points has dimension at least d+ 1. Since φ is hermiticity-preserving, VP is

a real subspace (see Proposition 2.8), and so it contains d+ 1 linearly independent

(and commuting) hermitian matrices. It is a well-known fact that commuting

hermitian operators can be simultaneously diagonalized. We would obtain d + 1

linearly independent, diagonal matrices. Since the diagonal is composed of only d

entries, this is clearly absurd.

5.4 ES: Main Result

In this section we discuss and prove a general theorem concerning the entanglement-

saving channels. An useful assumption which considerably simplifies the task of finding

a geometrical characterization of the ES channels φ is detφ 6= 0. As usual, here we

think of φ as a linear application; its determinant is by definition the product of the
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eigenvalues. Although this assumption could seem rather arbitrary, in the next section

we will prove that it is indeed quite natural at least for a single qubit. In fact, in that

case it causes no loss of generality. In order to take advantage of this restriction, we

need some preliminary results concerning the entanglement–breaking channels.

5.4.1 Preliminaries

It is well-known (Proposition 2.8) that every CPt map has a positive semidefinite fixed

point. However, this density matrix can be or not be strictly positive definite. Through

the rest of the paper, we will distinguish between the two alternatives by calling “strictly

positive definite” a matrix A > 0, and “positive semidefinite” a matrix A ≥ 0 having a

nontrivial kernel (i.e. satisfying detA = 0). Whenever this distinction is not necessary,

we will say simply “positive definite”.

To appreciate the importance of the question and its link with the separability problem,

recall Proposition 3.2. We will find this result quite useful also in this context. Indeed,

we proved that matrices of the form ρ0 ⊗ 1
dB

, with ρ0 only positive semidefinite, belong

to the boundary of the separable set. Therefore, for an entanglement–breaking channel

(whose images are always separable) the presence of a positive semidefinite fixed point

must be a rather delicate situation. Our immediate purpose is to discuss the conse-

quences of this possible situation. Actually, we will explore a more general circumstance

through the following theorem.

Theorem 5.13 (Image of Positive Semidefinite Matrices Through EB Channels).

Let φ ∈ EBd be an entanglement-breaking channel. Suppose that

∃ σ = σ† ≥ 0 : rankσ = r < d , rankφ(σ) = s , with r2 + s2 < 2dr .

Then

dim kerφ ≥ 2dr − r2 − s2 > 0 . (5.22)

Proof. Let us write the action of the entanglement–breaking channel φ in Holevo form (2.39):

φ(X) =
∑
i∈I

ρi Tr [XEi] .
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Here the ρi are density matrices, and the operators Ei are positive definite. Calling

σ′ ≡ φ(σ), one has

σ′ =
∑
i∈I

ρi Tr [σEi] .

In the following we will denote by supp X the support of a hermitian matrix X, i.e. the

orthogonal complement of the kernel. Clearly, thanks to the positivity of the operators

ρi and Ei,

∀ i ∈ I , supp ρi ⊆ supp σ′ or supp Ei ⊆ kerσ . (5.23)

Let us define a bipartition of I as follows:

I0 ≡ { i ∈ I : supp ρi ⊆ supp σ′ } , I1 ≡ I\I0 .

Thanks to (5.23), we can write

∀ i ∈ I1 , supp Ei ⊆ kerσ . (5.24)

Denote by |1〉 , . . . , |r〉 an orthonormal basis of supp σ, and by |1〉 , . . . , |d〉 one of its

completions to a global orthonormal basis. Consider the vector spaces of hermitian

matrices

V ≡ SpanR

(
{ |α〉〈β|+ |β〉〈α| : 1 ≤ min{α, β} ≤ r, α 6= β } ∪

∪ { i |α〉〈β| − i |β〉〈α| : 1 ≤ min{α, β} ≤ r, α 6= β } ∪ { |α〉〈α| : 1 ≤ α ≤ r }
)

,

W ≡ { X = X† : supp X ⊆ supp σ′ } .

The dimensions of V and W are easy to calculate:

dimV = 2
d∑

α=1

(d− α) + r = 2dr − r(r + 1) + r = 2dr − r2 ,

dimW = (rank σ′)2 = s2 .

Observe that

dimV − dimW = 2dr − r2 − s2 > 0 (5.25)

by hypothesis. Moreover, (5.24) implies that

∀ i ∈ I1, ∀X ∈ V, Tr [XEi] = 0 .
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Therefore,

∀ X ∈ V , φ(X) =
∑
i∈I

ρiTr [XEi] =

=
∑
i∈I0

ρiTr [XEi] +
∑
i∈I1

ρiTr [XEi] =
∑
i∈I0

ρiTr [XEi] ∈ W .

As a consequence, it makes sense to consider the restriction φ|V : V → W . Thanks to

(5.25), one has

dim kerφ ≥ dim kerφ|V = dimV − rank φ|V ≥

≥ dimV − dimW = 2dr − r2 − s2 > 0 .

However, Theorem 5.13 is by far too general for our purpose. We will only use the

following, weaker corollary.

Corollary 5.14.

Let φ ∈ EBt be an entanglement-breaking channel. Suppose that φ possesses a positive

semidefinite fixed point. Then

detφ = 0 .

Before we can state and prove our main result, another technical lemma is necessary.

Lemma 5.15.

Let φ ∈ Pt be a positive trace-preserving map whose spectrum contains 1 with multiplicity

strictly greater than 1. Then φ admits a positive semidefinite fixed point.

Proof. Let us call ρ0 the positive fixed point of φ whose existence is guaranteed by

Proposition 2.8. If ρ0 is positive semidefinite we can immediately conclude. Otherwise,

suppose ρ0 > 0 and take another X = X† (independent from ρ0) such that φ(X) = X.

Denoting by λmin(Y ) the minimum eigenvalue of a hermitian matrix Y , define

A ≡ X − λmin(ρ
−1/2
0 Xρ

−1/2
0 ) ρ0 =

= ρ
1/2
0

(
ρ
−1/2
0 Xρ

−1/2
0 − λmin(ρ

−1/2
0 Xρ

−1/2
0 ) 1

)
ρ
1/2
0 .



Chapter 5. Entanglement–Saving Quantum Channels 115

Then φ(A) = A, and moreover A must be positive semidefinite, since

λmin

(
ρ
−1/2
0 Xρ

−1/2
0 − λmin(ρ

−1/2
0 Xρ

−1/2
0 ) 1

)
= 0 .

5.4.2 Characterization Theorem

Now, we are in position to easily prove the following theorem, which is the main achieve-

ment of this chapter. We postpone our comments on the deep meaning of this result

after a precise statement and proof of it. Once more, recall that (according to our con-

ventions) a positive semidefinite matrix is a hermitian positive matrix with at least one

zero eigenvalue.

Theorem 5.16 (ES Channels with Non–Zero Determinant).

Let φ ∈ CPtd be a quantum channel satisfying detφ 6= 0. Then the following facts are

equivalent:

1. φ is entanglement–saving.

2. φ has a positive semidefinite fixed point, or |σP (φ)| ≥ 2 .

3. There exists 1 ≤ n ≤ d such that φn has a positive semidefinite fixed point.

Proof.

1 ⇒ 2 : This implication is true independently of the hypothesis detφ 6= 0. Suppose by

contradiction that φ has a fixed point ρ0 > 0 and σP (φ) = {1}. Then it is not

difficult to prove that limn→∞ φ
n = Dρ0 , where the depolarizing channel is defined

by Dρ0(X) ≡ ρ0TrX. The Choi-Jamiolkowski isomorphism is linear (in particular,

continuous), and so

lim
n→∞

Rφn = Rlimn→∞ φn = RDρ0 = ρ0 ⊗
1

d
.

Since ρ0 > 0, by Proposition 3.2 the limit of the sequence is internal to the set of

separable states, and this implies n(φ) <∞, which is absurd.
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2 ⇒ 3 : Also this statement does not require the hypothesis detφ 6= 0. If φ admits a

positive semidefinite fixed point we can immediately conclude. Otherwise, thanks

to Corollary 5.8, there exists 1 ≤ n ≤ d such that the spectrum of φn contains 1

with multiplicity strictly greater than 1. In that case, Lemma 5.15 again guarantees

the existence of a positive semidefinite fixed point.

3 ⇒ 1 : Here is where our restrictive hypothesis detφ 6= 0 comes into play. Firstly, if for

some n = n0 the map φn has a positive semidefinite fixed point, it is not difficult

to see that the same thing happens for each multiple of n0, i.e. frequently in

n ∈ N. Assume by contradiction that n(φ) < ∞. Then there exists N ∈ N such

that φN is entanglement-breaking and has a positive semidefinite fixed point. By

Theorem 5.14, this would imply detφN = 0, i.e. detφ = 0, which is absurd by

hypothesis.

All that is quite amazing. Theorem 5.16 completely solves the problem of finding an

explicit characterization of the entanglement–saving property for a wide class of channels,

i.e. those verifying detφ 6= 0. From a geometrical point of view, we could say that our

goal is reached almost everywhere, that is, apart from a set of measure zero. Moreover,

our result is valid for all finite-dimensional system, no matter how large the dimension

d is. This is an unexpected achievement, because of the intrinsic difficulties associated

with the high level of generality.

The surprising particularity of the result we have proved is that it states a deep link

between a physical, operational meaning (the entanglement must be preserved through

an arbitrary number of applications of the channel), and some exquisitely mathemat-

ical, elegant properties, directly related to abstract concepts such as eigenvalues and

eigenvectors.

One could be annoyed by the restriction detφ 6= 0. We do not intend to underestimate

it. Actually, there are many entanglement–saving channels whose determinant is equal to

zero. A large class of examples has been already examined. Consider the limit points of

the sequence of powers of a non-unitary, AES channel. Thanks to (5.8), these channels

must have zero determinant. On the other hand, (5.5) ensures that they are AES,

and in particular ES. If not satisfied by this abstract argument, one could verify that

the channels defined through equations (5.12), (5.14), (5.16), and (5.19) all have zero

determinant. However, we will see in the next section that the restriction detφ 6= 0
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causes no loss of generality for the simplest nontrivial case, i.e. those of qubit channels.

In this sense, it is less severe than we could imagine.

As the final remark of this section, let us observe that the thesis of Theorem 5.16 remains

valid also if one changes the hypothesis detφ 6= 0 with the weaker one aφ(0) < 2(d− 1),

where aA(λ) stands for the algebraic multiplicity of the eigenvalue λ of the linear map

A. This fact can be easily seen by exploiting the whole power of Lemma 5.15. It is worth

noting to observe that this enlarges even more the class of channels for which we have

solved the ES problem.

5.5 ES: Complete Characterization for Qubit

5.5.1 Explicit Form of ES Qubit Channels

In this section we explore some consequences of Theorem 5.16. In particular, we show

that this result gives a complete characterization of the ES class in the case of a single

qubit. To proceed further, we need some simple lemmas. The first one discusses the

consequences of the equation detφ = 0 for a quantum qubit channel.

Lemma 5.17.

Let φ ∈ CPt2 be a qubit channel such that detφ = 0 (as a linear application). Then φ

is entanglement-breaking.

Proof. The basic ingredient of this simple proof are (2.25) and the fourth condition

of Theorem 2.22. If detM = 0, then at least one special singular value li of φ is

zero. Consequently, φ must necessarily have the sign-change property, and so it must be

entanglement–breaking.

As shown in (2.21), every quantum channel acting on a two-dimensional system can be

seen as an affine transformation sending the Bloch sphere into itself. Therefore, the

image of the set of density matrices is represented by an ellipsoid contained in the Bloch

sphere (we called it image ellipsoid). Its principal axes’ lengths are nothing but the

singular values of M . The following result states some geometrically intuitive facts.
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Lemma 5.18.

Let (M, c) ∈ Pt2 be a positive, trace-preserving, qubit map. Then we must have ‖M‖∞ ≤ 1.

Moreover, if ‖M‖∞ = 1 then c = 0, i.e. the map is unital, and the image ellipsoid con-

tains a pure state.

Proof. Consider a generic unit vector n ∈ R3. Then, thanks to the positivity of (M, c),

the second condition of Proposition 2.12 holds:

|M(±n) + c|2 ≤ 1 .

Taking one half the sum of these equations, one obtains

|Mn|2 + |c|2 ≤ 1 .

Since we can certainly choose |Mn| = ‖M‖∞, we must have ‖M‖∞ ≤ 1, where the

equality sign can hold if and only if c = 0. Moreover, we have already observed that

the singular values of M are the lengths of the principal axes of the image ellipsoid.

Therefore, the image ellipsoid of an unital qubit channel with ‖M‖∞ = 1 is necessarily

tangent to the surface of the Bloch sphere, that is, it contains a pure state.

Thanks to Lemma 5.17, we can see that the restriction detφ 6= 0 we considered in The-

orem 5.16 causes no loss of generality in the d = 2 case. In fact, quantum channels with

zero determinant are easily classified as entanglement–breaking. We are ready to use

Theorem 5.16 to obtain a classification of the ES qubit channels.

Theorem 5.19 (ES Qubit Channels).

Let φ ∈ CPt2 be a qubit channel. Then φ is entanglement–saving if and only if detφ 6= 0

and it fixes or inverts a pure state. Here the “inversion” is intended as the geometrical

inversion −1 in the Bloch sphere. Observe that a map which inverts a pure state is

necessarily unital.

Proof. If detφ 6= 0 and φ fixes or inverts a pure state, then surely φ2 fixes one of them.

In that case, Theorem 5.16 guarantees the entanglement saving property, because of the

fact that a pure state is (as a density matrix) positive semidefinite, that is, it has zero

determinant.
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Let us turn our attention to the converse statement. If φ is entanglement–saving, then

certainly detφ 6= 0 by Lemma 5.17. Moreover, either φ has a positive semidefinite

fixed point (i.e. fixes a pure state), or |σP (φ)| ≥ 2 (again by Theorem 5.16). The first

possibility gives us directly the thesis, so let us concern ourselves with the second one.

If M has an eigenvalue with unit modulus, then ‖M‖∞ ≥ 1, and so Lemma 5.18 implies

that φ is unital. Moreover, (5.9) restricts the possible peripheral spectra to

σP (φ) = {1, 1}, {1,−1}, {1, 1, eiθ, e−iθ} .

Note that Lemma 5.15 implies that φ must necessarily fix a pure state if {1, 1} ⊆ σP (φ).

Therefore, let us restrict to the case σP (φ) = {1,−1}. Recall the first point of the

list of spectral properties we examined in Proposition 2.8: the −1 eigenvector can be

chosen hermitian (since φ is hermiticity-preserving), and traceless (because it is also

trace-preserving), i.e. of the form n ·~σ. Moreover, up to a simple rescaling, we can freely

suppose |n| = 1. In that case, we obtain

φ

(
1+ n · ~σ

2

)
=
1− n · ~σ

2
.

This is the same as saying that φ inverts the pure state 1+n·~σ
2 in the Bloch sphere.

Now, we have obtained a geometrical characterization of the ES qubit set. With a tool

such as Theorem 5.19 at hand, we can find an explicit parametrization of the ES set (in

the d = 2 case). This is the content of the following theorem.

Theorem 5.20 (Explicit Form for ES Qubit Channels).

Let φ ∈ CPt2 be a qubit channel represented in the Pauli basis (as in (2.21)) by a matrix
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M ∈M(3;R) and a vector c ∈ R3. Then φ is entanglement–saving if and only if

∃ O ∈ SO(3) , θ ∈ R , 0 < λ ≤ 1 , λ2 ≤ µ ≤ 1 , α ≥ 0 :

the CPt condition α2 ≤ (1− µ)(µ− λ2) holds, and

M = O M+(λ, θ, α, µ) OT ≡ O


λ cos θ λ sin θ α

−λ sin θ λ cos θ 0

0 0 µ

 OT ,

c = O c+(α, µ) ≡ O


−α
0

1− µ

 ; (5.26)

or

∃ O ∈ SO(3) , θ ∈ R , 0 < λ ≤ 1 :

M = O M−(λ, θ) OT ≡ O


λ cos θ λ sin θ 0

λ sin θ −λ cos θ 0

0 0 −1

 OT , c = 0 . (5.27)

Proof. Thanks to Theorem 5.19, we know that φ is entanglement–saving if and only if

detφ 6= 0, and it fixes or inverts a pure state. Let us begin with the first possibility. In

the following, recall the elementary property (4.8), which corresponds to the degree of

freedom represented by O in (5.26) and (5.27). Therefore, by applying if necessary an

orthogonal matrix before the channel and its inverse after, we can suppose without loss

of generality that the fixed point is |0〉〈0| = 1+e3·~σ
2 , i.e.

Me3 + c = e3 . (5.28)

The positivity condition which has to be imposed on (M, c) can be written as in Propo-

sition 2.12 :

|Mn+ c|2 ≤ 1 ∀ n ∈ R3 : |n| = 1 . (5.29)
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Since the left-hand side of (5.29) reaches its maximum at n = e3, here its first-order

variation must be zero. Then

2 δnT MTM e3 + 2 δnT MT c ≡ 0 ∀ δn ⊥ e3 ⇒

⇒ MT (Me3 + c) ∝ e3 ⇒ ∃ − 1 ≤ µ ≤ 1 : MT e3 = µe3 .

This shows that there exist m ∈M(2;R) and −1 ≤ α, β ≤ 1 such that

M =


m11 m12 α

m21 m22 β

0 0 µ

 , c =


−α
−β

1− µ

 .

It will be more simple to adopt the parametrization

m =

(
s+ d a+ b

a− b s− d

)
.

Until now we have used only the positivity of φ. In order to exploit the complete positiv-

ity, we have to write the Choi matrix (2.18). In what follows, we will use for the bipartite

system the computational basis sorted in lexicographical order, i.e. |00〉 , |01〉 , |10〉 , |11〉.
With this convention, one has

Rφ =
1

2


1 0 0 s+ ib

0 1− µ d− ia −α+ iβ

0 d+ ia 0 0

s− ib −α− iβ 0 µ

 .

Take the 2 × 2 principal minor composed of the second and third rows and columns.

Then

Rφ ≥ 0 ⇒ 0 ≤

∣∣∣∣∣1− µ d− ia
d+ ia 0

∣∣∣∣∣ = − d2 − a2 ⇒ d = a = 0 .

Let us call s = λ cos θ and b = λ sin θ, with θ ∈ R. Observe that λ = 0 is prohibited by

detφ 6= 0, and λ > 1 would imply ‖M‖∞ > 1. Since this would contradict Lemma 5.18,
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we must require 0 < λ ≤ 1. Then

Rφ =
1

2


1 0 0 λeiθ

0 1− µ 0 −α+ iβ

0 0 0 0

λe−iθ −α− iβ 0 µ

 .

Exploiting Silvester’s criterion on principal minors, it is not difficult to prove that the

positivity of this matrix is equivalent to

0 ≤

∣∣∣∣∣∣∣∣
1 0 λeiθ

0 1− µ −α+ iβ

λe−iθ −α− iβ µ

∣∣∣∣∣∣∣∣ = (1− µ)(µ− λ2) − α2 − β2 .

Until now, we have proved that, if detφ 6= 0 and φ = (M, c) fixes a pure state, then

∃ O ∈ SO(3) , θ ∈ R , 0 < λ ≤ 1 , λ2 ≤ µ ≤ 1 , α, β ∈ R

satisfying the condition α2 + β2 ≤ (1− µ)(µ− λ2) , such that

M = O M̃+(λ, θ, α, β, µ) OT ≡ O


λ cos θ λ sin θ α

−λ sin θ λ cos θ β

0 0 µ

 OT ,

c = O c̃+(α, β, µ) ≡ O


−α
−β

1− µ

 .

To show that every such a pair (M̃+, c̃+) is entanglement–saving, observe that

(
M̃+(λ, θ, α, β, µ) , c̃+(α, β, µ)

)n
=

=
(
M̃+(λn, nθ, αn, βn, µ

n) , c̃+(αn, βn, µ
n)
)

,

with (
αn

βn

)
≡

( (
λ cos θ λ sin θ

−λ sin θ λ cos θ

)
+ µ 1

)n (
α

β

)
.

Therefore, by taking the partial transpose of Rφn , one obtains
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RTBφn =
1

2


1 0 0 0

0 1− µn λneinθ −αn + iβn

0 λne−inθ 0 0

0 −αn − iβn 0 µn

 .

The 2 × 2 principal minor formed of the second and third rows and columns has neg-

ative determinant because λ > 0, and this shows that RTBφn can not be positive defi-

nite. Then the partial-transpose separability criterion (2.40) implies that φn can not be

entanglement-breaking. Observe that it is possible to suppose β = 0 and α ≥ 0 without

compromising (5.28), by means of the application of an appropriate rotation around e3

before the channel and of its inverse after. In this way, one obtains (5.26). This concludes

the first part of the proof.

Now, let us concern ourselves with the second possibility. Suppose that detφ 6= 0 and

that φ inverts a pure state. Proposition 5.18 shows that such a channel must be unital

(c = 0), since ‖M‖∞ = 1. As in (5.28), we can suppose Me3 = −e3. Moreover, to avoid

‖M‖∞ > 1, the third row of M can not contain any other non-zero element, i.e. there

must exists (
s+ d a+ b

a− b s− d

)
∈ M(2;R)

such that

M =


s+ d a+ b 0

a− b s− d 0

0 0 −1

 .

Now, the corresponding Choi-Jamiolkowski matrix becomes

Rφ =
1

2


0 0 0 s+ ib

0 1 d− ia 0

0 d+ ia 1 0

s− ib 0 0 0

 .

The positivity condition for such an object implies s = b = 0, and so d = λ cos θ, a = λ sin θ,

again with 0 < λ ≤ 1 and θ ∈ R. In order to show that every such a pair (M−(λ, θ), 0),

with 0 < λ ≤ 1, is entanglement–saving, observe that

M−(λ, θ)2n = M+(λ2n, 0, 0, 1) , M−(λ, θ)2n+1 = M−(λ2n+1, θ) .
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We can restrict ourselves to the last case, since the first one has been already discussed.

Writing the partial transpose of the Choi-Jamiolkowski matrix, one has

RTB
φ2n+1 =

1

2


0 0 0 λ2n+1 e−i(2n+1)θ

0 1 0 0

0 0 1 0

λ2n+1 ei(2n+1)θ 0 0 0

 .

Thanks to the fact that λ > 0, this matrix can not be positive definite. Again, the partial

transpose criterion (2.40) guarantees that φ2n+1 is not entanglement-breaking.

Observe that the tho cases (M+, c+) and (M−, 0) are truly different only if λ < 1 (in

this case the spectra are different). Conversely, if λ = 1 it is always possible to bring

back the second channel into the first form.

Thanks to this result, the set of n = ∞ channels is essentially characterized (up to an

unitary channel applied before and its inverse after) by four parameters, which we called

λ, θ, α, µ. It could be useful to write once for all the action of the two maps

φ+λ,θ,α,µ ≡ ( M+(λ, θ, α, µ), c+(α, µ) ) , φ−λ,θ ≡ (M−(λ, θ), 0) (5.30)

on a generic hermitian 2× 2 matrix:

φ+λ,θ,α,µ

(
a b

b∗ c

)
≡

(
a+ (1− µ) c λeiθ b− α c
λe−iθ b∗ − α c µ c

)
, (5.31)

φ−λ,θ

(
a b

b∗ c

)
≡

(
c λe−iθ b∗

λeiθ b a

)
. (5.32)

Observe that the two real parameters λ, θ can be joined together in order to form an

unique complex parameter z ≡ λeiθ which satisfies 0 < |z| ≤ 1 .

Now, let us examine a particular well-known set of ES channels in the following example.

Example 5.3 (Amplitude Damping Channels as ES).

In Example 4.2 we defined the Amplitude Damping channels (see (4.27) and (4.28)). We
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observed that their direct n–index takes the value +∞, that is, that they are entanglement–

saving. As expected, a comparison with (5.26) shows that that

ADp = φ+λ,θ,α,µ with λ =
√
p, θ = 0, α = 0, µ = p .

We remark that Theorem 5.20 gives us another proof of Theorem 5.11. In fact, an AES

channel must be necessarily ES, and so must be of the form (5.26) or (5.27). But the

limit points of these particular channels have determinant equal to zero (and so, by

Lemma 5.17, are entanglement–breaking), unless λ = µ = 1, so that α = 0, and we

obtain unitary evolutions.

5.5.2 A Simple Model for ES Qubit Channels

The aim of this section is to give an operational meaning to Theorem 5.20, which oth-

erwise could seem rather abstract. We will define an explicit, operative model which

reproduces the whole class of entanglement–saving channels. A schematic representa-

tion of the procedure we propose is shown in Figure 5.1. The input state ρS of system

S interacts with an environment E (with the same dimension) in a fixed state σE . The

global system SE undergoes an unitary evolution, after which S is measured through

a POVM represented by operators {Ei}. The outcome i is sent along a classical com-

munication line, and a quantum channel ψi is applied to E, depending on the classical

label i (which is otherwise not recorded). The whole procedure defines the action of a

quantum channel φ on the states of S.

Observe the difference between Figure 5.1 and the graphical representation of an EB

channel in Holevo form, Figure 2.3. In the latter there is no red line transmitting

quantum information which crosses the picture. On the other hand, in our model the

quantum correlations between input and output can be preserved. Indeed, it can be

easily verified that choosing the swap operator as the unitary evolution (and taking

ψi ≡ I) eventually produces the identity channel (i.e. φ = I).

Having adopted these notations and conventions, we can say something more about the

free degrees of freedom which are present in the model: the state σE , the unitary evo-

lution U (or the generating hamiltonian), the POVM {Ei}, and the quantum channels

ψi. In particular, it is possible to specify these free parameters in such a way that the
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Figure 5.1: Our simple model of a special type of quantum channel. The state ρS
interacts with an environment E initialized in a fixed state σE . The global system SE
undergoes an unitary evolution, after which S is subjected to a POVM measurement.
Depending on the classical outcome i of this measurement, a quantum channel ψi is
applied to E. The whole sequence of operations defines the action of a quantum channel

φ on ρS .

resulting channels are (up to an unitary channel applied before and its inverse after) the

ones and the only ones being entanglement–saving.

Theorem 5.21 (Model for ES Qubit Channels).

Specify the free parameters of the model described in Figure 5.1 in the following way:

• S and E are qubit, and σE = |0〉〈0| .

• The hamiltonian generating the unitary evolution U is

Ht

~
= − θ |00〉〈00| + i

λ arcsin
√
µ

√
µ

|01〉〈10| − i
λ arcsin

√
µ

√
µ

|10〉〈01| +

+ i

√
1− λ2

µ
arcsin

√
µ |10〉〈11| − i

√
1− λ2

µ
arcsin

√
µ |11〉〈10| . (5.33)

Here θ ∈ R, 0 < λ ≤ 1, and λ2 ≤ µ ≤ 1 .

• The POVM {Ei} is the simplest Von Neumann measurement:

E0 = |0〉〈0| , E1 = |1〉〈1| . (5.34)



Chapter 5. Entanglement–Saving Quantum Channels 127

• Only ψ1 is a nontrivial Phase Flip Channel:

ψ0 = I , ψ1 = PFη . (5.35)

Here −1 ≤ η ≤ 1 is the parameter specifying a Phase Flip Channel as

PFη

(
a b

b∗ c

)
≡

(
a η b

η b∗ c

)
. (5.36)

Then the resulting channel is of the form φ+λ, θ, α(λ,µ,η), µ described in (5.30) and (5.26),

with

α(λ, µ, η) ≡ η
√

(1− µ)(µ− λ2) . (5.37)

Observe that the inequality α2 ≤ (1 − µ)(µ − λ2) is satisfied, thanks to the fact that

−1 ≤ η ≤ 1.

Conversely, for each 0 < λ ≤ 1 , λ2 < µ < 1 , and

0 ≤ α ≤
√

(1− µ)(µ− λ2) ,

there is one and only one value of η (up to the sign) that reproduces the channel

(M+(λ, θ, α, µ) , c+(α, µ)). This value is given by

η = ± α√
(1− µ)(µ− λ2)

. (5.38)

The only “degenerate” cases occurring in this inversion are µ = λ2 and µ = 1, which

correspond in our model to a complete freedom in η (within its range).

If we change our assumptions and take σ′E = |1〉〈1|,

H ′t

~
= θ |11〉〈11| − i arcsin(λ) |01〉〈10| + i arcsin(λ) |10〉〈01| , (5.39)

and ψ0 = I, ψ1 = X (i.e. ψ1(ρ) = XρX, where X is the first Pauli matrix), we obtain

also the other exceptional unital case φ−λ,θ (see (5.30) and (5.27)).
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Proof. Denote in the following the initial state of the system under examination by

ρS ≡

(
a b

b∗ c

)
.

The global (system + environment) initial state written in the computational basis

(sorted in lexicographical order, i.e. |00〉 , |01〉 , |10〉 , |11〉) takes the form

ρSE ≡


a 0 b 0

0 0 0 0

b∗ 0 c 0

0 0 0 0

 .

In the same basis, the first hamiltonian (5.33) becomes

Ht

~
=


−θ 0 0 0

0 0 i
λ arcsin

√
µ√

µ 0

0 − i
λ arcsin

√
µ√

µ 0 i
√

1− λ2

µ arcsin
√
µ

0 0 − i
√

1− λ2

µ arcsin
√
µ 0

 .

In order to determine the unitary evolution operator U ≡ e−iHt/~, we have to find the

exponential of a 3× 3 matrix

A ≡


0 r 0

−r 0 s

0 −s 0

 ,

where

r =
λ arcsin

√
µ

√
µ

, s =

√
1− λ2

µ
arcsin

√
µ .

Such a skew-symmetric matrix can be easily diagonalized:

A = V


0 0 0

0 i
√
r2 + s2

0 0 − i
√
r2 + s2

 V † .
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Here V is the unitary matrix

V =


s√

r2+s2
r√

2(r2+s2)

r√
2(r2+s2)

0 i√
2

− i√
2

r√
r2+s2

− s√
2(r2+s2)

− s√
2(r2+s2)

 .

Then one has

eA = V


1 0 0

0 ei
√
r2+s2

0 0 e−i
√
r2+s2

 V † =

=



s2+r2 cos
√
r2+s2

r2+s2
r sin

√
r2+s2√

r2+s2
rs (1−cos

√
r2+s2)

r2+s2

− r sin
√
r2+s2√

r2+s2
cos
√
r2 + s2 s sin

√
r2+s2√

r2+s2

rs (1−cos
√
r2+s2)

r2+s2
− s sin

√
r2+s2√

r2+s2
r2+s2 cos

√
r2+s2

r2+s2


.

By inserting the expressions of r, s in terms of λ, µ, we obtain

U = e−iHt/~ =


eiθ 0 0 0

0 1−λ
2

µ (1−
√
1−µ) λ λ

µ

√
µ−λ2 (1−

√
1−µ)

0 −λ
√
1−µ

√
µ−λ2

0 λ
µ

√
µ−λ2 (1−

√
1−µ) −

√
µ−λ2 λ2

µ
+
(
1−λ

2

µ

)√
1−µ

 .

With this expression at hand, it is not difficult (although quite cumbersome) to write

the evolved global density matrix:

ρ̃SE = U ρSE U † =

=


a λeiθ b

√
1−µ eiθ b −

√
1−µ eiθ b

λe−iθ b∗ λ2c λ
√
1−µ c −λ

√
µ−λ2 c

√
1−µ e−iθ b∗ λ

√
1−µ c (1−µ) c −

√
(1−µ)(µ−λ2) c

−
√
µ−λ2 e−iθ b∗ −λ

√
µ−λ2 c −

√
(1−µ)(µ−λ2) c (µ−λ2) c

 .
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Now, suppose that a Von Neumann measurement on the system S is performed in the

computational basis (see (5.34)). The two possible results are 0 and 1, obtained with

probabilities p0 and p1, respectively. Then S is traced away, and the final states of the

system E are denoted by A0 and A1. One has

p0 A0 = TrS [ ρ̃SE |0〉〈0|S ⊗ 1E ] =

(
a λ eiθ b

λ e−iθ b∗ λ2 c

)
,

p1 A1 = TrS [ ρ̃SE |1〉〈1|S ⊗1E ] =

(
1− µ −

√
(1− µ)(µ− λ2)

−
√

(1− µ)(µ− λ2) µ− λ2

)
c .

Conditioned to the result of the measurement, the identity channel or a phase flip channel

is applied (see (5.35)). The final state is obtained as the convex combination

p0 A0 + PFη (p1 A1) =

=


a+ (1− µ)c λeiθ b − η

√
(1− µ)(µ− λ2) c

λe−iθ b∗ − η
√

(1− µ)(µ− λ2) c λ2 + (µ− λ2)c

 .

Taking (5.37) into account, one can see that this is exactly the image of
(
a b
b∗ c

)
under

the channel φ+λ,θ,α,µ, as specified in (5.31).

Using the second hamiltonian (5.39), and taking σ′E = |1〉〈1|, one gets intead

U ′ = e−iH
′t/~ =


1 0 0 0

0
√

1− λ2 −λ 0

0 λ
√

1− λ2 0

0 0 0 e−iθ

 ,

and consequently

ρ̃′SE = U ′ ρ′SE (U ′)† =


0 0 0 0

0 (1− λ2) a λ
√

1− λ2 a
√

1− λ2 eiθ b
0 λ

√
1− λ2 a λ2 a λeiθ b

0
√

1− λ2 e−iθ b∗ λe−iθ b∗ c

 .
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With the same notations as in the previous case, we can write

p′0 A
′
0 = TrS [ ρ̃′SE |0〉〈0|S ⊗ 1E ] =

(
0 0

0 (1− λ2) a

)
,

p′1 A
′
1 = TrS [ ρ̃′SE |1〉〈1|S ⊗ 1E ] =

(
λ2 a λeiθ b

λe−iθ b∗ c

)
.

The output density matrix then takes the form specified in (5.32) :

p′0A
′
0 + X (p′1A

′
1) X =

(
c λe−iθ b∗

λeiθ b a

)
= φ−λ,θ

(
a b

b∗ c

)
.



Chapter 6

Conclusions

Finally, we have reached the end of our long journey across the magic quantum world.

We began in Chapter 1 by introducing the EPR paradox and the astonishing Bell’s

theorem, which shows that the quantum entanglement is something genuinely differ-

ent from the classical stochastic correlations. In this respect, we found very useful and

instructive, tough unconventional, to explain the Bell’s point of view using anthropo-

morphic, “telepathic” entities (Alice and Bob), rather than physical quantum particles

(e.g. electrons).

Next, in Chapter 2, we discussed the concept of quantum channel, and laid solid foun-

dations to the theory of quantum entanglement. Moreover, we examined the deep link

existing between these two ideas, and defined the fundamental class of the entanglement–

breaking channels, that invariably destroy the precious and delicate quantum correla-

tions.

Chapter 3 was devoted to the proof that a quantum channel that never separates any

entangled states (no matter how weak their entanglement is) must necessarily be an

unitary evolution. This conceptually clarified and justified the main purpose of this

thesis, that is, the classification of the amount of noise introduced by a (local) quantum

channel only by means of its action on the (global) entanglement of a bipartite system.

Following these guidelines, in Chapter 4 we defined (from an operational point of view)

the entanglement–breaking indices, which associate to a given channel acting on Alice’s

subsystem an integer number quantifying how much iterations of this channel are allowed

before that the entanglement with Bob is completely destroyed. In calculating the filtered
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indices, also the possibility to play an active action against the noise (by means of the

interposition of appropriate local channels, called filters) has to be taken into account.

One could ask, why we did not consider the possibility that a local noise acts also on

Bob (see for instance [14]). Here we observe that this approach does not introduce any

new elements in our scenario. Indeed, from the mathematical point of view, the equality

(φ⊗ ψ)(|ε〉〈ε|) = (φψT ⊗ I)(|ε〉〈ε|) allows us to bring back this case to the preceding one.

As a consequence, the resulting theory will be more intricate, but by no means more

fundamental. On the other hand, from the physical point of view, this corresponds to

assign to Alice and Bob a non-maximally entangled state, even before that Alice’s noise

acts (in fact, some entanglement has already been wasted by the local channel operating

on Bob’s subsystem). However, this is not the philosophical attitude we adopted. We

chose to study the limits on Alice’s noise beyond which the entanglement with Bob

is inevitably destroyed, even if the best physical resources are available. And so, we

implicitly assumed to provide Alice (and Bob) with a state that is maximally entangled

(at least, at the very beginning).

Note that we chose to take the entanglement–breaking behaviour of the repeated appli-

cations of a channel as the signal that certifies the uselessness of the surviving (classical)

correlations for doing quantum computation. However, as the careful reader should

have observed, this assumption is rather arbitrary. Actually, there exist entangled states

(called bound entangled) that are nevertheless non-distillable. A state is said to be non-

distillable if there is no way to recover from an arbitrary great number of copies of it even

a single (almost) maximally entangled state, if only local operations and classical com-

munication are allowed. Evidently, such a bound entanglement can not be used directly

to perform tasks such as Quantum Teleportation. Consequently, we could state that it

is no more a quantum resource, and we could define a corresponding non-distillability

index, which can take a lower value than the entanglement–breaking one. We hope that

these generalized concepts will be the object of further investigations.

With regard to the entanglement–breaking indices, we showed that they can be analyt-

ically calculated for many interesting examples of quantum channels. It is hoped that

these calculations could be performed in other cases, such as to deepen our understanding

of these functionals. In this context, we formulated the conjecture that the optimal filters

are always unitary, so that they do not waste any quantum correlations in external en-

vironments. However, rather surprisingly, we constructed an explicit counterexample to

this statement. As a matter of fact, there are non-unitary filtering strategies much more
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efficient than the most efficient unitary one. But we left the possibility open, that this

could not happen for the simplest case of qubit. Although many partial proofs seemed

to strengthen this hypothesis, no conclusive answer has been given to this question. We

hope that future researches on the subject will definitively clarify it.

Finally, Chapter 5 contained the main theoretical achievements of the whole thesis.

Here we examined in detail those channels (called entanglement–saving) which exhibit a

divergent direct n–index. This means that the entanglement is never completely broken,

regardless of the number of iterations of the channel. We proved that almost everywhere

this property coincides with the presence of a positive semidefinite fixed point for the

channel or for some of its powers. However, this characterization problem has to be

considered only partially solved, because our classification does not work everywhere. In

this respect, it is hoped that further analysis will throw light on the unclear aspects of

the issue.

As a matter of fact, we showed that our (nontrivial) restriction is nevertheless irrelevant

for the case of qubit. Accordingly, we were able to give a complete characterization of

the entanglement–saving qubit channels. This theory was rather abstract and mathe-

matically cumbersome. In order to make this heaviness milder, an explicit, canonical

form for a generic entanglement–saving qubit channel has been developed. Moreover, we

constructed also an operative model which reproduces it.

Within the class of entanglement–saving channels, we distinguished two different pos-

sibilities. Although an entanglement–saving channel never destroys the entanglement

(independently of the number of applications), it can happen that the amount of quan-

tum correlations tends to zero in the limit of an infinite number of reiterations. For

an asymptotically entanglement–saving channel, this possibility is ruled out by defini-

tion. We examined a rich zoology of asymptotically entanglement–saving channels, and

we presented the conclusive result which completely classifies these particularly noise-

less channels: a quantum channel is asymptotically entanglement–saving if and only if

it admits two non–commuting phase points (a phase point is an input matrix whose

transformation under the action of the channel is simply the multiplication by a phase).

I hope you enjoyed this research into the astonishing properties of the quantum entangle-

ment. Personally, I found it exciting, though tremendously difficult and to some extent

perturbing. Anyway, I hope that some readers will follow the guidelines of this thesis,

continuing the exploration of the magnificent world of quantum physics.
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