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Abstract

This dissertation contains two papers about systemic risk and interconnected-
ness.
Defuse the Bomb. In Part I we present a simulation model of contagion in
interbank networks. We find that the frequency of contagion is non-monotonic
in connectivity. We also explore the role of heterogeneity, finding how it in-
teracts with connectivity in affecting contagion risk. In general, high levels
of heterogeneity seem to widen the interval of connectivity levels in which
contagion is possible. Heterogeneity has, in general, stabilizing effects un-
der the hypothesis of random shocks, while it is detrimental when shocks are
targeted to the most relevant institutions. We also find that too-connected-
to-fail banks pose higher contagion risk than too-big-to-fail banks. We then
put forward a complete interbank model which includes a short-term and a
long-term market. Banks also engage in asset-liability management to sat-
isfy capital requirements. We find that the objectives of a micro-prudential
and a macro-prudential regulation may be misaligned when banks interact
in a complex system. Balance sheet composition, fire-sale losses and capital
requirements interact in complex ways in determining the probability of con-
tagion.
TailDep. In Part II we develop a theoretical model of systemic risk defining it
as the risk generated by and within the financial system. The model highlights
how systemic risk is a network externality stemming from the dependence
structure chosen by institutions in a decentralized equilibrium. Systemic risk
can be offset by a stabilization policy which can be optimally funded by a tax
based on institutions’ centrality. We find that the intensity of the stabilization
policy is linked to the leading eigenvalue of the financial network, which then
becomes a measure of systemic risk. A t-copula model is then used to estimate
the tail dependence (TailDep) network through which we are able to track the
evolution of systemic risk and to quantify the systemic importance of financial
institutions in the recent years.
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Introduction
Despite the frequency of economic and financial breakdowns (Reinhart and Rogoff,
2009) and the efforts of scholars and regulators, the concept of systemic risk still
lacks a unanimous rigorous definition. As noted by eminent authors (Bisias et al.,
2012; Hansen, 2013; Taylor, 2010), the term has been employed to indicate a variety
of phenomena, sharing the common feature of being system-wide malfunctioning
events. As a consequence, a number of indicators aiming at quantifying systemic
risk has been developed, ranging from those which focus on tail dependencies across
assets (Acharya et al., 2012, 2010; Adrian and Brunnermeier, 2011; Brownlees and
Engle, 2012), to those based on network stress testing and contagion via direct credit
exposures (Battiston, Puliga, Kaushik, Tasca and Caldarelli, 2012; Upper, 2011).

The recent crisis bursted at the end of a period characterized by high asset prices
and low volatility. With the advent of derivative products, financial institutions
found a way to hedge their risks, transferring them to those who were believed to
be better able to manage them.

Low volatility and hedging derivatives have induced institutions to feel safer.
They thus increased their leverage up to a threshold which later resulted to be criti-
cal. The so-called volatility paradox became clear, unfortunately, too late. Volatility
tends indeed to be very low in periods preceding a systemic breakdown. The result
is that, exactly in those phases when systemic fragility is building up, standard risk
indicators depict a safe world.

Of course, part of this puzzle may be solved by a causality mechanism, running
from low risk indicators to higher leverage. However, the deficiencies of such indi-
cators clearly emerged as they failed to take into account this increased leverage as
a factor of risk.

The challenge is, in first place, practical, but it is ultimately caused by theoretical
lacunas. The array of indicators mentioned above was developed after the recent
crisis. However, two main general criticisms may be addressed to them. First of
all, they all rely on publicly available data. Since intermediaries have access to
these data, it is not clear why they do not exploit them in order to have a more
accurate picture of the systemic risk threatening the economy. Secondly, they all
lack a theoretical foundation of systemic risk as a market failure.

Among the various interpretations of systemic risk, the more appropriate seems
to be the view of systemic risk as an externality originating from market imperfec-
tions and direct linkages (Stiglitz, 2009, 2011), eventually resulting in excessive risk
taking and risk misallocation.

However, so far, nobody has ever attempted to propose a model capturing these
aspects. Instead, two streams of literature have developed in the last years, focusing
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on separate questions. The first one builds on the early contributions of Bernanke
and Gertler (1989), Bernanke et al. (1999), and Kiyotaki and Moore (1997) and
explores the dynamics of an economy characterized by financial frictions. Recent
contributions (Brunnermeier and Sannikov, 2012; Cúrdia and Woodford, 2009; Ger-
ali et al., 2010; Gertler and Karadi, 2011; Gertler and Kiyotaki, 2010; He and Kr-
ishnamurthy, 2012, 2013) have extensively explored the influence of the financial
sector on asset prices and output dynamics in settings characterized by imperfect
markets and asymmetric information. The other stream of research draws from the
science of complex systems and, inspired by the pioneering article of Allen and Gale
(2000), investigates the resilience to contagion of networks of intermediaries linked
in a web of financial contracts (Acemoglu, Malekian and Ozdaglar, 2013; Acemoglu,
Ozdaglar and Tahbaz-Salehi, 2013; Amini et al., 2012, 2013; Battiston, Delli Gatti,
Gallegati, Greenwald and Stiglitz, 2012a,b; Caccioli et al., 2012; Gai and Kapadia,
2010; Iori et al., 2006; Nier et al., 2007).

The first approach has the clear advantage of modeling endogenous interactions
among agents and of adding a dynamic dimension to the analysis. The second
provides instead a realistic picture of the credit market and allows for extreme levels
of heterogeneity.

This thesis is framed in the current debate about systemic risk and macro-
prudential regulation and makes steps towards the understanding of systemic risk
as a result of the interconnectedness of the financial system.

In Part I, “Defuse the Bomb: Rewiring Interbank Networks”, we present a net-
work model of contagion in interbank markets, where we assess which features of
a financial network are relevant for its stability. The diversification of traders and
their heterogeneity interact in complex ways to influence the probability of a shock
to become systemic. We then make a step further with respect to the current net-
work literature by providing a richer and micro-founded model. Here, banks actively
manage their short-term exposures in order to meet liquidity demands and regula-
tory capital requirements. The results highlight the complex interaction between
network structure and banks’ balance sheet composition, which results in a strong
misalignment of micro-prudential and macro-prudential objectives. Indeed we find
that what from a micro-prudential perspective is clearly beneficial, e.g. large cash re-
serves and no fire-sale losses, turns out to have the opposite effect when the financial
sector is seen as a complex system of interacting agents.

Part II, “TailDep for the Measurement of Systemic Risk”, is instead related to
the econometric analysis of financial markets aiming at quantifying systemic risk.
Despite the limits of market data as input for systemic risk measurement, finan-
cial markets remain a crucial source of information regarding investors’ sentiment
and trading strategies. Thus, we are interested in investigating whether markets,
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more specifically OTC derivative markets, are able to convey an adequate level of
information regarding the stability of the financial system. With this purpose, we
analyze the CDS spread time series for 108 global financial institutions, quantify-
ing their degree of interconnectedness through statistical techniques. We then put
forward a definition of systemic risk, as the risk generated by and within the sys-
tem. A micro-founded network model is then used to quantify it and relate it to
the intensity of government intervention required to avoid amplification effects. The
model highlights how both the systemic risk indicator and the systemic importance
of institutions depend crucially on financial interconnections. Systemic risk is a net-
work externality, originating from imperfect information and coordination failures.
The model can be estimated using the TailDep methodology, which is based on a
copula model, through which conditional probability of default can be inferred. We
find that the system has become increasingly connected in the last ten years and we
detect the set of the most systemically relevant institutions. The indices of systemic
risk and systemic importance are identified in the model and display the expected
dynamics.
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Part I

Defuse the Bomb: Rewiring
Interbank Networks

1 Introduction

The financial crisis of the late 2000s has forced economists, both in the academia and
in regulatory bodies, to confront themselves with the role of the financial system’s
architecture. Facing the defaults of large financial institutions, regulators found
themselves uncertain about the consequences that they would have triggered in the
entire financial system. Uncertainty about the actual web of financial relationships
prevented any reasonable forecast about the eventual path a crisis would follow.

The years preceding the crisis were characterized by low volatility, high asset
prices and by a flourishing industry of financial innovation. Meanwhile banks were
increasing their leverage and the system was reaching high levels of interconnected-
ness, both via credit relations and via derivative contracts. The “volatility paradox”
illustrated by Adrian and Brunnermeier (2011) and Brunnermeier and Sannikov
(2012) describes exactly this situation in which low volatility is associated to, or is
even a cause of, higher leverage, but markets fail to take into account such increase
in leverage as a factor of risk.

Low volatility, low perceived risks and, additionally, low interest rates, created
an incentive for financial institutions to expand their business within the finan-
cial sector itself. Haldane and May (2011) argue that two thirds of the growth
of banks’ balance sheets in the years preceding the crisis were due to increasing
intra-financial claims. The interconnectivity of the system reached such levels that
a shock, spreading through such a complex system of claims, would have lead to
unpredictable consequences (Haldane, 2009).

Moreover, the advent of hedging derivatives created new form of financial link-
ages, introducing two additional sources of uncertainty. The first is related to the
OTC nature of most of them, which, despite providing instruments specifically de-
signed for the needs of traders, makes them difficult to monitor at a system-wide
level. The second one concerns the fact that derivative products, in particular credit
derivatives, add complexity to the financial system, which has seen the emergence
of a shadow banking sector and the creation of connections between parts of the
system which had traditionally been separate, e.g. the banking and the insurance
industries.

It is thus not surprising that regulators, after the crisis unfolded, shifted their at-
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tentions from a micro-prudential approach to financial stability to a macro-prudential
one. Macro-prudential regulation should indeed assess the risks the system faces as
a whole, even as a result of the endogenous amplification of apparently small shocks
Borio and Drehmann (2009), and taking into consideration the general equilibrium
effects of bank regulation (Hanson et al., 2011).

The regulatory framework of Basel III tries to address these issues by taking into
consideration higher capital requirements for systemically important banks and by
instituting a countercyclical capital buffer which would counterbalance the intrinsic
pro-cyclicality of a fixed capital requirement.

Despite skepticism remains regarding the actual anti-cyclicality of countercycli-
cal capital buffers (Repullo and Saurina Salas, 2011), any step towards a macro-
prudential approach to financial regulation constitutes an advancement for the fu-
ture of financial stability.

In this paper we intend to contribute to the debate on macro-prudential reg-
ulation by assessing which structure of the financial system is more resilient to
exogenous shocks, and which conditions, in terms of balance sheet compositions,
capital requirements and asset prices, guarantee the higher degree of stability. We
use techniques drawn from the theory of complex networks, since they provide a
powerful tool to match the empirical properties of real-world interbank markets.

Our approach to financial markets, seen as complex systems in which agents
locally interact between themselves, highlights crucial points for its regulation.

At first, we focus on a standard model of contagion through interbank exposures
which has been popularized by Gai and Kapadia (2010) and subsequent contribu-
tions, and find that the knife-edge property of diversification persists under a variety
of assumptions regarding the architecture of the financial system, its connectivity,
the heterogeneity of exposures and heterogeneity of size of traders. Connectivity is,
indeed, both a risk sharing device and a risk amplification factor. The probability
of observing systemic crises is non-monotonic in connectivity, reaching a peak for
intermediate values, while the severity of contagion episodes, when they happen,
worsen as connectivity increases. This leads to robust-yet-fragile systems, in which
contagion is a rare event but when it happens, it involves the entire system. We also
find that systems of heterogenous institutions are more stable to random shocks,
confirming the conjecture of Haldane (2009). However, heterogeneity poses high
risks when too-big-to-fail or too-connected-to-fail banks are distressed. Our results
demonstrate how the contagion risk stemming from their default is particularly high
and that connectivity matters more than size as far as contagion risk is concerned.

Then, we provide a richer model of contagion which includes both losses from
direct credit exposures, as in the previous framework, and liquidity shocks deriving
from defaulting banks and capital requirements. We model a short-term interbank
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market which clears at each time step according to a perfect information equilib-
rium, in which agents take into account their liquidity needs, the liquidity shocks
coming from their creditors and the ability of their debtors to repay. In this complex
framework a clear misalignment of micro-prudential and macro-prudential objectives
emerge. The most interesting role is certainly played by liquidity reserves and fire-
sale prices. Larger cash reserves always worsen the stability of the system, since
they allow banks to keep lower capital buffers. As for the fire-sale price, we find
that fire-sale losses induce a more prudent behavior of creditors. Indeed fire-sale
losses make debtors more likely to be illiquid. When creditors seek to obtain the
desired amount of liquidity, the illiquidity of a debtor will induce them to increase
their demand of liquidity to other debtors until the desired amount is obtained.
This process is thus likely to cause the closure of short-term exposures with other
non-illiquid banks, removing channel of transmission of shocks. In this sense we
cast new light on the challenges regulators face when designing an appropriate set
of micro-incentives for macro-stability and contribute to the debate on the proper
set-up of regulatory requirements (Hanson et al., 2011; Myerson, 2014).

After reviewing, in Section 2, the literature related to our contribution, in Section
3 we present an established model for the analysis of contagion risk and asses how the
network configuration, the heterogeneity of the system and its connectivity interact
in determining the stability of the market. More specifically, we use two network
models for the financial system, the Erdős and Rényi (1960) random graph model,
which results in a system in which banks have a very similar number of connections,
and a fitness model, which instead results in very heterogenous structures, so that the
distribution of the number of connections has a power-law tail decay. We also assess
how contagion risk changes depending on whether banks evenly distribute their
claims to their creditors or they assign heterogenous weights to various creditors. In
the latter case “contagious links” (Amini et al., 2012), i.e. large exposures relative to
the capital buffer, are more likely to emerge, making the system more fragile. For the
Erdős and Rényi (1960) network we also assess the role of size heterogeneity when
exposures are heterogenous. Larger banks are indeed both a source of instability
when distressed, but they also have larger capital buffers to absorb shocks.

In Section 4 we put forward a complex model which combines the previous con-
tagion dynamics with a sequential equilibrium market clearing of the short-term
market á la Eisenberg and Noe (2001). Here, we assess the resilience of the system
for varying degrees of connectivity and various hypothesis on balance sheet struc-
tures, capital requirements and fire-sale prices, finding evidence of misalignments
between micro and macro-prudential regulation. Section 5 concludes with the pol-
icy implications. Despite the network terminology is kept at the minimum, we invite
the reader which is not familiar with it to refer to Appendix A for elucidations.
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2 Related Literature

Networks model have become increasingly popular to study contagion dynamics in
financial markets (Allen and Babus, 2008; Chinazzi and Fagiolo, 2013).

The first generation of models of financial networks was primarily concerned with
the propagation of liquidity shocks hitting banks’ liabilities because of depositors’
stochastic liquidity needs. Interbank markets exist because they serve as insurance
devices to avoid the cost of excessive cash reserves. Their existence is pareto-superior
to autarchy despite the risk of contagion.

In this framework one or more banks face excess liquidity demand that they have
to meet by withdrawing interbank deposits. If debtors banks are illiquid and cannot
fully pay back their liabilities, creditors may themselves become illiquid, triggering
a cascade of defaults. The focus of the first generation of contagion models is on
stylized and analytically tractable structures for the interbank markets, e.g. ring
networks or fully connected networks, consequently assuming a deterministic config-
uration of market and ruling out any source of uncertainty other than a stochastic
liquidity shock. Allen and Gale (2000) and Freixas et al. (2000) adopt the same
modeling framework for the financial system of Diamond and Dybvig (1983) and
highlight the trade-off that interbank connections impose: on the one hand an in-
creasing number of linkages allows shocks to be diversified-away, but, on the other
hand, they constitute channels of transmission. In their models, complete network
structures provide the highest level of resilience to contagion and are pareto-superior
to an autarchic market. Their results are confirmed by Acemoglu, Ozdaglar and
Tahbaz-Salehi (2013) under the hypothesis that the aggregate shock is smaller than
the aggregate liquidity of the system. If this is the case, a complete network is
more resilient than a ring network. However, for larger aggregate shocks, the two
configurations are equally more fragile than clustered structures.

In this stream of literature, a methodological contribution come from Eisenberg
and Noe (2001). They introduce the concept of payment clearing vector, i.e. a
vector of interbank payments which is consistent with a perfect information equilib-
rium when banks have to fully repay their interbank and external liabilities. This
equilibrium satisfies the three criteria of (i) limited liability of firms, (ii) priority of
debt over equity and (ii) proportionality in repayments. The authors then identify
the condition for the existence and the uniqueness of such equilibrium vector.

We place under the first generation of models also the ones that have tried to
give a micro-foundation to an interbank network. As the aforementioned contribu-
tions, their set-up builds on Diamond and Dybvig (1983) and contagion is seen an
illiquidity phenomenon. Despite they provide a reacher behavioral model where the
network is endogenous, the resulting equilibrium structure is nevertheless determin-
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istic. Babus (2007) show that banks manage to reach a connectivity threshold above
which contagion does not happen, while Leitner (2005), Castiglionesi and Navarro
(2008) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2013) demonstrate that, be-
cause of coordination problems and network externalities, an equilibrium network
does not, in general, coincide with that chosen by a (contagion-averse) social planner.

However, their set-up is very stylized, as well as the resulting network struc-
tures, which do not resemble those described by a stream of research devoted to the
empirical analysis of interbank systems (Bech and Atalay, 2010; Boss et al., 2004;
Cont et al., 2013; Iazzetta and Manna, 2009; Iori et al., 2008; Soramäki et al., 2007).
Financial networks are extremely sparse, since only a minor share of the possible
links actually exist, they present a core-periphery structures, with large institutions
concentrating a large fraction of the market, the degree distribution is fat tail, clus-
tering is high and the structure is disassortative. Moreover, the distribution of the
link weight is power-law and an extremely high correlation exist between in-degree
and out-degree.

The need to better model the set of interbank relations has become particularly
relevant after the crisis of the late 2000s. The collapse of large financial entities has
often forced policy-makers to intervene to avoid the risks of a wide-spread contagion
that may have followed such credit events. Uncertainty about the network structure
is a key ingredient of the second generation of contagion model, whose focus has
also been extended to contagion as a solvency phenomenon.

Among second generation models, contagion is often seen as a consequence of
marking to market the exposures to insolvent counterparties. The writing-down of
exposures causes an erosion banks’ capital buffers, possibly leading to their insol-
vency. While in the first generation of models cash reserves are a cushion against
the propagation of defaults, in the second generation capital plays this role. Despite
the lack of micro-foundation (an interbank network is often given by an underlying
network formation process) network theory and large scale simulations allow to test
the resilience of several configurations of the interbank market.

Findings are often coherent in identifying a non-monotonic relation between con-
nectivity and systemic risk. Gai and Kapadia (2010), Battiston, Delli Gatti, Gal-
legati, Greenwald and Stiglitz (2012b), Battiston, Delli Gatti, Gallegati, Greenwald
and Stiglitz (2012a) and Caccioli et al. (2012) assess the trade-off between diversifi-
cation and network externalities in the case of insolvency cascades, while Iori et al.
(2006) and Gai et al. (2011) consider the case of contagion through illiquidity. All
these studies highlight that the prevailing effect, among diversification and network
externalities, depends non-linearly on connectivity. Another feature which is often
identified is the robust-yet-fragile property of interbank networks, which arises in
certain ranges of connectivity in which contagion is a very rare phenomenon, but,
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when it happens, it brings the entire system to collapse. Another factor which,
together with connectivity, influences contagion risk is the presence of what Amini
et al. (2012) define contagious link, i.e. exposure exceeding the creditor’s capital
buffer. The authors show indeed that the size of the sub-graph identified by a se-
quence of contagious links is the key determinant of contagion for (asymptotically)
large networks.

While most authors restrict their attention to network formation models which
yield relatively simple and homogenous structures (e.g. regular graphs or Erdős
and Rényi (1960) graphs), Amini et al. (2013), Caccioli et al. (2012), Georg (2013),
Montagna and Lux (2013) and Roukny et al. (2013) explore contagion dynamics in
more realistic cases, in which banks vary markedly in their number of connections
and the distribution of the number of counterparties follow a power-law. Amini et al.
(2013) argues that heterogeneity is detrimental for systemic stability, while Georg
(2013) shows instead that, in case of random defaults, very heterogenous structures
are the most resilient. The other contributions show how conclusions may vary
depending on connectivity, capitalization, market liquidity and the nature of the
exogenous default triggering the cascade (i.e. whether it is completely random, or
targeted to the largest or more connected bank).

3 The Role of Network Structure in a Typical Model

of Contagion

In this section we explore the role of structural characteristics on the spreading of
contagion through an interbank network. We focus on such features as the network
connectivity, the degree distribution and the distribution of the link weights.

Since our purpose is to assess the impact of the architecture of the financial
system on its resilience, we focus on an established network model where direct
credit linkages provide the only channel for contagion.

3.1 A Typical Model of Interbank Networks

We begin by introducing a model which has been extensively studied in the literature
(Amini et al., 2013; Caccioli et al., 2012; Gai and Kapadia, 2010; Nier et al., 2007),
and which represents the most essential set up to analyze contagion in financial
networks. The financial system is modeled as a static network of credit exposures
between banks, encompassing any sort of interbank claims, independently on their
maturity and liquidity. In this class of models, the crucial assumption is that the
time scale of the default cascade is so quick that bank do not manage to react and
modify their exposures.
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Assets (Ai) Liabilities (Li)
Capital (Ei)

Interbank Assets (AIB
i ) Interbank Liabilities (LIB

i )
External Assets (Mi) Customer Deposits (Di)

Table 1: Example of banks’ balance sheet in the baseline model of contagion.

The interbank system is thus represented by a graph G = (I, V ). I = {1, . . . , n}
represents the set of financial institutions (nodes of the graph) and V ⊆ I × I is
the set of the edges linking the banks, i.e. the set of ordered couples (i, j) ∈ I × I
indicating the presence of a loan made by bank i to bank j.

Every edge (i, j) is weighted by the face value of the interbank claim, AIB
i,j . Clearly

if (i, j) /∈ I × I, then AIB
i,j = 0.

This set up allows to represent the system of interbank claims by a single weighted
n-by-n matrix IB ,

IB =


0 AIB

1,2 . . . AIB
1,n

AIB
2,1 0 . . . AIB

2,n
...

... . . . ...
AIB
n,1 AIB

n,2 . . . 0


in which interbank assets are along the rows, while columns represent vectors of
interbank liabilities. From this matrix, can derive the total exposure of bank i in the
interbank market, AIB

i =
∑

j A
IB
i,j , and its total interbank liabilities, LIB

i =
∑

j A
IB
j,i .

The balance sheet structure of banks, in this model, is very simple and stylized,
as shown in Table 1. In addition to interbank assets, other items makes up the asset-
size of the balance sheet. Since they are not relevant in this modeling framework,
we group them in a single asset class that we name external and indicate as M . On
the liability side of the balance sheet, a capital buffer E serves as a shock absorber.
The remaining sources of funding, apart from the interbank liabilities, do not serve
particular purposes in this sort of model, so that we can group them under the name
of customer deposits (D).

It is not uncommon, in contagion literature, to add external assets fire-sales when
a bank defaults (Gai and Kapadia, 2010; Nier et al., 2007). Following Cifuentes
et al. (2005) the usual assumption is that the price, P, decreases exponentially in
the quantity of assets sold, X, so that P = P0e

−αX , for a given initial price P0.
However, since the our primary focus is now on the role of the network architecture
in the spreading of contagion through direct linkages, this assumption would be
superfluous.

The network structure of the market is thus the only shock transmission channel.
As soon as a bank is insolvent, i.e. has negative capital because of excessive losses, it
is declared bankrupted and its creditors suffer losses equivalent to the face value of
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their exposures. This is consistent with a short-term horizon, when banks experience
close-to-zero recovery rates

The approach, in this framework, is static, since banks do not put in practice
any strategy to restore their capital buffer. This assumption will be abandoned in
the modeling framework we present in the next section.

3.2 Methodology

The model presented above underlays five different architectures of the financial
system that we will stress-test: three employ the Erdős and Rényi (1960) network
model (cases ER1, ER2 and ER3 ) and two use the fitness model (De Masi et al.,
2006) which generates scale-free degree distributions1 (cases FIT1 and FIT2 ). In
all these scenarios we keep a fixed ratio of capital to total assets at 4% to preserve
comparability with previous contributions, such as Gai and Kapadia (2010) and
Caccioli et al. (2012). For the same reasons, the ratio of interbank assets to total
capital is fixed at 20%. We leave the assessment of different portfolio compositions to
Section 4. The five models that we will analyze differ for the degree of heterogeneity
of traders and for the variable which is heterogeneously distributed among banks.
Details are provided below.

ER1: Homogeneous banks with homogeneous exposures. The Erdős and Rényi
(1960) network model is used to generate interbank connections and banks are as-
sumed to have the same asset size. Interbank claims are evenly distributed among
the outgoing links, so that there is no single exposure which is more dangerous than
the others. This case reflects an homogenous market, in which only the in- and
out-degree vary, and in which banks seek the maximal amount of diversification for
a given set of creditors.

ER2: Homogeneous banks with heterogeneous exposures. As in the previous
case, all banks have the same asset size and the network is Erdős and Rényi (1960).
However, we now allow banks to unevenly distribute their exposures across creditors,
in such a way the the link weight is power-law distributed. For each bank we extract
a number of weights equal to its out-degree from a power-law distribution, we then
assign interbank claims to the links proportionally to the respective weights This
represents a scenario in which overexposures may be present, implying the existence
of contagious links. The assumption about the distribution of link weights has been
made in accordance to empirical findings (Cont et al., 2013; Soramäki et al., 2007).

ER3: Heterogeneous banks with heterogeneous exposures. In this case we allow
for heterogeneity also in the asset size. First, an Erdős and Rényi (1960) network is
generated. Then, link weights are drawn from a power-law distribution and assigned

1Appendix A explains the differences between the two models and their main features.
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the links. Total assets are assigned to banks proportionally to their interbank expo-
sures (AIB +LIB) in such a way that, on average, interbank assets represent 20% of
total assets. The result is a network in which link weights are power-law distributed
and asset sizes are power-law distributed as well. The presence of heterogeneity in
balance sheet sizes implies the presence of money center hubs, whose ambiguous role
as shock absorbers or shock amplifiers will be assessed.

FIT1: Heterogeneous banks with homogeneous exposures. We move towards a
more realistic architecture for the financial system, which shows a fat-tail degree
distribution. We generate a network using a fitness model, with an exogenous dis-
tribution of the fitness parameter that follows a power-law. In order to close the
model, the high level of heterogeneity in the connectivity imposes heterogeneity also
in the asset size. However, in this case, exposures remain homogeneous, so that no
link is more dangerous than any other. Since we first build the network and then
assign assets to bank proportionally to their interbank exposures (AIB + LIB), the
distribution of the asset size is power-law and the fixed ratio of interbank assets to
total assets is maintained on average.

FIT2: Heterogeneous banks with heterogeneous exposures. Here, we allow also
for heterogenous exposures so that, once the network is generated using the fitness
model, we draw the value of the exposures from a power-law distribution with the
same exponent of the distribution of the fitness parameter. Total assets are then
assigned proportionally to total interbank exposures (AIB+LIB) in order to maintain
the interbank ratio fixed at 20% on average.

In the simulations we shall vary the average degree of the network, which rep-
resents the average number of creditors and debtors a randomly chosen bank has.
As such, the average degree is a measure of diversification at the level of single
institutions, but, from a systemic point of view, it is also a measure of connectiv-
ity, which thus represents channels through which a shock may propagate. As in
previous contributions (Caccioli et al., 2012; Gai and Kapadia, 2010), we will ex-
ogenously set into default a bank and analyze the steady-state effect of contagion,
i.e. the number of defaulted banks when the process of contagion stops. We will
focus on the frequency of contagion, defined as the probability that at least 10%2 of
the intermediaries default, and on the extent of contagion, i.e. average fraction of
defaulted banks, provided that it is larger than 10%.

When heterogeneity is introduced (as in cases ER2, ER3, FIT1 and FIT2 )
through exogenous power-law distributions, also the exponent of the distribution
will be subject to analysis, since it represents the degree of heterogeneity. Indeed,
smaller exponents correspond to fatter tails and, consequently, to higher levels of

2We do not consider the threshold of 5% as in Gai and Kapadia (2010) and caccioli ? since it
is not robust when heterogeneity is marked.
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heterogeneity.
As we mentioned above, the triggering event of contagion is the exogenous default

of a bank. We assume three targets of the exogenous shock: (i) Random, in which
the exogenously defaulting bank is picked up randomly, with equal probability for
each bank; (ii) Too-connected-to-fail, in which we set into default the banks with
the largest number of creditors; (iii) Too-big-to-fail, in which the exogenous default
hits the bank with the largest asset size, and which is feasible only in those cases in
which the asset size is heterogeneous, i.e. cases ER3, FIT1 and FIT2.

One of the crucial policy implications of this contribution comes indeed from our
results on the role of “large” financial institutions, either in terms of connectivity or in
term of asset size. When heterogeneity is introduced, the system presents potential
“too-connected-to-fail” and “too-big-to-fail” banks. On the one hand, they may have
detrimental effects because of their large exposures in the interbank market. On the
other hand, their magnitude allows them to better absorb shocks, since their higher
level of diversification or their larger capital buffers prevent them to go bankrupt
after the default of a relatively small exposures.

We will present the computational results of 500 simulations performed for a
range of average degree considered relevant and plausible. The experiment is re-
peated for each network structure. Our financial system comprises 1,000 banks.

3.3 Results

In this section we will present the results of the simulations conducted on each of
the five cases described in Subsection 3.2. In general, the non-monotonic effect
of connectivity is confirmed. Heterogeneity in a given variable plays an ambiguous
role, depending on the initial shock and on the heterogeneity of other variables, while
“too-connected-to-fail” institutions poses higher contagion risk that “too-big-to-fail”
banks.

ER1: Homogeneous banks with homogeneous exposures

Figure 1 reports the results for case ER1, in which banks have the same size and
exposures are evenly distributed across debtors.

Random Default. The non-monotonic role diversification has on financial stabil-
ity is evident in 1(a). Indeed, for small values of the average degree both the extent
and the frequency of contagion is increasing. Then, once the average number of
counterparties becomes large enough, diversification prevails and the frequency of
contagion becomes negligible. The system has therefore two phase transitions which
delimit a contagion window : the lower phase transition is sightly below the value of
1 and the upper phase transition is around 7.5. Between these values contagion is
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(a) Random Default (b) Too-Connected-To-Fail

Figure 1: Frequency (red) and extent (blue) of contagion for case ER1.

a very frequent event, with probability peaking over 0.7 for average degrees around
3. However, while the frequency of contagion declines beyond a certain threshold,
this is not the case for the extent of contagion. Near the upper phase transition the
system exhibits the robust-yet-fragile property: contagion is a rare event, but, once
it breaks up, it affects the entire network.

This experiment suggests that the same random shock may have completely
different effects depending on the level of connectivity of the interbank market.

Too-Connected-To-Fail. 1(b) shows how the default of the most connected insti-
tution is unable to significantly affect the extent of contagion, which closely resemble
that of the random attack case. Also the width of contagion window is not affected.
However, contagion becomes a certain event for values of connectivity between 2.5
and 4. This highlights that the most connected institutions, even in an Erdős and
Rényi (1960) interbank network, pose a relevant contagion risk.

ER2: Homogeneous banks with heterogeneous exposures

Figure 2 reports the results on the frequency of contagion in case ER2, in which
banks have the same size and link weights follow a power-law distribution. Figure
3 shows instead the results on the extent of contagion. In these figures, opaque
plots are added to show and compare the results of case ER1 in the corresponding
scenario.

Random Default. In Figure 2(a) we note how the presence of an uneven distri-
bution of claims induces a much wider contagion window. The effect is particularly
evident for low exponents, i.e. for high levels of heterogeneity in the link weights
distribution. For values of the power-law exponent below 2.5 the contagion windows
does not close even for connectivity levels of 15. This indicates that diversifying
by increasing the number of counterparties is ineffective if contagious links persist.
Through these relevant links, contagion has still a way to spread. However, for
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(a) Random Default

(b) Too-Connected-To-Fail

Figure 2: Frequency of contagion for case ER2.

small exponents the frequency of contagion is lower than in the ER1 case when the
degree of connectivity is small. This gain in stability is lost for higher degrees of
interconnectedness. It seems that the heterogeneity of exposures interact in complex
ways with connectivity by making the system more stable for small average degrees,
between 1 and 3 or 4.5, depending on the cases, and offsetting the benefits of diver-
sification for large average degrees. Figure 3(a) shows how the extent of contagion
follow a patter that resembles that of case ER1, irrespective of the power-law expo-
nent, with the exception of small average degrees, were the deviation between the
results in the two cases follow the same pattern as in the frequency of contagion.

Too-Connected-To-Fail. When the most connected institution is set into default
decreases in the power-law exponent do not bring any positive effect. Figure 2(b)
show how the contagion window is wider and the probability of contagion is again
one for connectivity levels between 2.5 and 4. The width of the contagion window, as
in the previous cases, depends negatively on the exponent. However, as in the case
of random default, for value of the average degree between 1 and 4, heterogeneous
exposures make the system more stable. Again, with reference to Figure 3(b), the
extent of contagion display the familiar pattern in connectivity, with no evident
effect stemming from different power-law exponents and whose comparison with
case ER1 resembles the one made for the random default case.
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(a) Random Default

(b) Too-Connected-To-Fail

Figure 3: Extent of contagion for case ER2.
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ER3: Heterogeneous banks with heterogeneous exposures

Figure 4 reports the results on the frequency of contagion in case ER3, in which
banks have the different size and exposures are unevenly distributed across debtors.
In them, opaque graphs are added to show and compare the results in the same
shock scenario of case ER1. The power-law exponent in the plots is the one of the
distribution of the exposures, which also the distribution of asset size depends.

Random Default. In Figure 4(a) we see wider contagion windows than in case
ER1. However the difference in minimal for larger exponents and it closes always
below an average degree of 15. In the center of the contagion widow heterogeneity has
instead a positive role. Heterogeneity seems to reduce the probability of contagion.
Hence, if the system is not very connected, increasing heterogeneity both in the
exposures and in the asset size brings more stability to the system. This may be due
to the shock absorption potential of money-center banks and to the heterogeneity
of links as well. However, we also see that for larger exponents, the speed at which
the frequency of contagion decreases for increasing levels of connectivity is lower,
eventually making contagion a possible event also for large average degrees and thus
widening, as confirmed by 5(a), the region of average degree in which the system
is robust-yet-fragile. However, there is an intermediate region of average degree in
which the extent of contagion in case ER3 is less than in case ER1.

Too-Connected-To-Fail. Size heterogeneity seems to have a positive effect also
when the most connected bank is set into default. Indeed, we see from Figure 4(b)
that for small values of the exponent, the frequency of contagion is reduced with
respect to case ER1. Contagion widows are also much tighter than in case ER2,
despite being wider than case ER1. We note that for average degrees between 1
and 6, case ER1 is always more stable that case ER1, for any exponent choice, both
with regard to the frequency and the extent of contagion.

Too-Big-To-Fail. Figure 4(c) reports the contagion results when the biggest bank
is set into default and compares it with the result of the “too-connected-to-fail”
default in this case, which is, for easiest visualization, reported in opaque in Figure
4(c). The effects of the largest institution are severe than those stemming from the
default of the most connected one. In particular, for high levels of heterogeneity
in claims, and thus size, the frequency of contagion decreases, and the difference is
particularly marked near the peak of the frequency of contagion. The key message is
that size alone matters less than connectivity in spreading contagion. Hitting several
banks with possibly small losses has higher potential for contagion than hitting fewer
with larger losses. The extent of contagion shown in Figure 5(c) does not seem to
be affected in a relevant way by the initial default of the largest or most connected
bank.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 4: Frequency of contagion for case ER3.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 5: Extent of contagion for case ER3.
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FIT1: Heterogeneous banks with homogeneous exposures

We now consider a scale-free distribution for the degree and homogeneous exposures.
The distribution of the asset size is also power-law and proportional to the total
interbank exposures. Figure 6 and 7 show, respectively, the frequency and the
extent of contagion, and compare the results with the corresponding attack scenario
of case ER1, with the only exception of the too-big-to-fail case which is compared
with the too-connected-to-fail-one.

Random Default. In Figure 6(a) we clearly see the beneficial role played by an
heterogeneous distribution of the number of counterparties. Indeed the frequency
of contagion, for small exponents, is clearly lower than in the ER1 case in most of
the contagion window. Moreover, for values of average degree corresponding with
the peaks of the frequency of contagion, smaller exponents have a marked positive
effect on the stability of the system. However, the contagion window becomes larger
and the structure remains robust-yet-fragile even for larger values of the average
degree, no matter which degree of heterogeneity we consider. We also see from
Figure 7(a) that the extent of contagion is higher than in the ER1 for very small
values of the average degree, possibly reflecting the presence of interconnected hubs
which, despite the low connectivity of the network, are connected enough to trigger
rounds of defaults. The extent of contagion is however lower for intermediate values
of connectivity.

Too-Connected-To-Fail. All the beneficial effects of heterogeneity are lost if we
assume that the most connected institution is set into default. Despite Figure 7(b)
shows that the extent of contagion is not strongly affected, the frequency of contagion
is now extremely high even for large average degrees and increases together with
the heterogeneity of banks. For power-law exponents larger than 3, the contagion
window do not close even for average degrees as large as 15.

Too-Big-To-Fail. Figure 6(c) and 7(c) show the results when the largest institu-
tion is set into default and compare them with the too-connected-to-fail scenario. In
this case the results almost perfectly coincide. This is due to the fact that exposures
are homogenous and assets are proportional to total exposures. This makes the
too-connected-to-fail banks almost perfectly coincide with the too-big-to-fail ones.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 6: Frequency of contagion for case FIT1.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 7: Extent of contagion for case FIT1.
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FIT2: Heterogeneous banks with heterogeneous exposures

Finally we allow for heterogeneous link weights, connectivity and asset size, analyz-
ing the model that most resembles real interbank networks. We analyze the results
on the fitness model when exposures are drawn from a power-law which has the same
exponent of the fitness distribution. Figures 8 and 9 reports the results and compare
them with the corresponding attack scenario of case ER3, with the exception of the
too-big-to-fail scenario which is compared to the too-connected-to-fail one.

Random Default. Figures 8(a) and 9(a) reaffirm the beneficial role played by
heterogeneity of market players when shocks are random. Indeed the frequency of
contagion is clearly lower than in case ER3 and, also, than in case FIT1. Hetero-
geneity plays a stabilizing role despite the presence of contagious links and highly
connected hubs. Moreover heterogeneity seems always to be beneficial, since the
frequency of contagion, for a given average degree, decreases with the power-law
exponent. For exponents as small as 2.25 the maximum frequency of contagion is
the lowest seen so far, not even reaching 20%.

Too-Connected-To-Fail. Conclusions are reversed when the most connected bank
defaults (Figures 8(b) and 9(b)). In this case the frequency of contagion remains
extremely high for large values of connectivity, unless heterogeneity is particularly
small. Despite the extent of contagion does not seem to vary from the ER3 case, the
frequency is always higher. The frequency of contagion decreases at an extremely
slow speed when heterogeneity is high, making contagion a likely event also for
average degrees as large as 15. Less heterogeneity, as determined by larger power-
law exponent, allows the contagion window to close more quickly, however, results
on the extent of contagion show that episodes of total default still happen even for
high connectivity and large exponents.

Too-Big-To-Fail. When instead the largest bank is set into default, contagion ef-
fects remain severe. However, as shown in Figure 8(c), the largest bank always poses
less contagion risk than the most connected one. The heterogeneity of exposures
breaks the tight connection between too-big-to-fail and to-connected-to-fail bank
that characterizes case FIT1 and allows to properly assess which of the two matter
the most from a systemic point of view. In this scenario heterogeneity seems to play
a beneficial role for small values of the average degree, while, for largest values, it
prevents the contagion window to close. This result suggest that, in a model which
closely resemble a real-world financial network, connectivity matter most than the
size of the total assets and of the exposures.
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 8: Frequency of contagion for case FIT2
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(a) Random Default

(b) Too-Connected-To-Fail

(c) Too-Big-To-Fail

Figure 9: Extent of contagion for case FIT2
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Assets (Ai) Liabilities (Li)
Liquid Assets/Cash (Ci) Capital (Ei)

Long-term Interbank Assets (Ali) Long-term Interbank Liabilities (Lli)
Short-term Interbank Assets (Asi ) Short-term Interbank Liabilities (Lsi )
Illiquid Assets/Mortgages (Mi) Customer Deposits (Di)

Table 2: Example of banks’ balance sheet in the richer model of contagion.

4 Capital Requirements and Asset-Liability Man-

agement

In this section we put forward a more complete model of contagion, which encom-
passes losses due to direct credit exposures, bank runs and assets fire-sales. The
interbank market now comprises two layers, one for the long-term exposures and
the other for the short-term exposures. While the former cannot be modified during
the default cascade, the latter may undergone changes due to liquidity hoardings.
Montagna and Kok (2013) is the contribution that is closest to ours in terms of the
modeling framework, even though also Battiston, Delli Gatti, Gallegati, Greenwald
and Stiglitz (2012a) and Roukny et al. (2013) consider the presence of different
maturities in interbank lending.

This enhanced modeling framework allows to explore the interplay between the
network architecture of the market and the balance sheet structure of intermedi-
aries, highlighting their complex interaction that may lead to misalignments between
micro- and macro-prudential policies.

4.1 A Richer Model of Contagion and Bank Runs

The financial system comprises two networks, one consisting of the short-term expo-
sures and the other consisting of the long-term ones. Banks’ balance sheets include
now more items than in the previous section and an example is reported in Table 2.
The various categories of assets are in fixed proportions to total assets according to
the following rations, valid for all banks i:

λ =
Ci
Ai

ι =
Ali + Asi
Ai

τ =
Asi
Ai
.

Once the size of the total assets Ai is known, the parameters λ, ι and τ allow to
uniquely identify the composition of bank i’s assets.
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Consistently with the previous section, we indicate with Alij the long-term ex-
posure of bank i to bank j, with Asij the short-term exposure, while Llij and Lsij

indicate the long-term and short-term borrowing, respectively, of bank i from bank
j.

Capital has to satisfy a constraint given by the regulators. Capital is initially
assigned to banks in such a way to amount to a given fraction, e∗, of the risk-weighted
assets, RWAi, plus a capital buffer β, expressed in percentage terms. Hence

Ei = (e∗ + β)RWAi

in which the RWA are defined as

RWAi = γCCi + γIB(Ali + Asi ) + γMMi (1)

where γC , γIB and γM represents the weights assigned to liquid assets, interbank
loans and illiquid assets respectively. Typically γC = 0, and this will the assumed
henceforth.

Dynamic Capital Adjustment

While the above relations describe the initial state of the system, the model itself is
truly dynamic, and a first source of time-variation of the system is the need of banks
to satisfy the minimum capital requirement Ei(t) ≥ e∗RWAi(t), which induces them
to modify the composition of their assets, by withdrawing interbank deposits and,
in some cases, by selling illiquid assets.

In particular, as soon as a bank experiences losses which erode its capital below
the regulatory threshold, i.e. Ei(t) < e∗RWAi(t), the bank will try to meet the
required capital ratio by, first, reducing its short-term interbank exposures and then,
if this adjustment is not sufficient, by selling its illiquid assets.

For each bank i we define its regulatory hoarding of cash as:

d̄i(t) = min

(
Asi (t),max

(
0, Ali(t) + Asi (t) +

γM
γIB

M(t)i −
1

e∗γIB
Ei(t)

))
(2)

which thus represents the amount of liquidity it has to withdraw from the market
in order to maintain the regulatory capital.

If hoarding is not enough, the bank will try to sell its illiquid assets. However,
the success of this strategy crucially depends on the fire-sale price of illiquid assets.
Assume that the fair value of a unit of illiquid assets is 1, then, when the fire-sale
price p is larger than 1− e∗γM , banks will have to engage in regulatory fire-sales for
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a quantity of

f̄i(t) = min

(
Mi(t),max

(
0,
γIB(Ali(t) + Asi (t)− d̄i(t)) + γMMi(t)− Ei(t)/e∗

γM − (1− p)/e∗

))
.

(3)
If instead p < 1 − e∗γM , banks will never find convenient to fire-sale illiquid

assets in order to meet their capital requirements. Indeed, in this case, large price
discounts will induce losses which more than offset the reduction of the RWA, and
f̄i(t) would hence be zero.

A bank will try to adjust its RWA as far as it is possible. Once its capital ratio
irremediably falls below the minimum requirement, the bank as no other choice that
to keep operating with that ratio. Indeed, the only available solution would be to
raise capital, which is an action that cannot be pursued in the short time scale of a
contagion scenario, which is the focus of our analysis.

Note also that insolvent banks, i.e. those with Ei(t) ≤ 0, will withdraw all their
funds from the short-term market, i.e. d̄i(t) = Asi (t) for insolvent banks.

Equilibrium in the Short-term Market

The dynamic adjustment of short-term exposures trigger runs in the interbank mar-
ket. We assume that runs happen in a shorter time scale than contagion through
counterparty losses. More specifically, we model runs as perfect information equi-
libria. Eisenberg and Noe (2001) provide the basic set up, which, however, we need
to adapt for our framework, in which the regulatory hoarding constitute the initial
demand shock.

Moreover, we give more micro-foundation to the clearing algorithm by making
rationality assumption on banks’ behavior instead of the simplistic one of propor-
tional hoarding with respect to short-term debtors. Indeed, this pure proportionality
assumption may artificially lead banks to illiquidity if a debtor is illiquid. Suppose
that bank i hoards a quantity di of funds, proportionally splitting this amount among
its short-term creditors in quantities di1, di,2, ..., din. If a debtor j is illiquid its sup-
ply of funds to i will be sji < dij. If the algorithm stops here, it may be the case
that also i becomes illiquid, thus reducing the fund it may supply to its hoarding
creditors. A more realistic assumption is that, if i is not able to meet its demand
for liquidity because of j’s illiquidity, it may increase the quantities hoarded from
the other debtors, up to the point in which the supply of funds from liquid debtors
is enough to meet i’s demand for funds.

As soon as a bank j is found to be illiquid, perfect information in the short-term
market makes withdrawing all the fund from it a weakly-dominating strategy for
all its short-term creditors. However no payments will be made and exposures are
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marked down to zero, since slow and costly default procedures will be initiated by
the supervisors.

It is important to note that runs to illiquid banks happen only when illiquidity
is revealed by the failure to make a required payment. Indeed, in the short time
scale we assume, updated balance sheet information are not made public, and the
only source of information are market demand and supply of funds.

To make the analysis more precise we give the following definition of illiquid
bank.

Definition 1 (Illiquid bank). A bank i is illiquid if the total amount of funds it can
raise is not enough to meet the demand for funds

∑
dji(t) of its creditors.

If we define as Λ(t) the set of banks which become illiquid at time t, then the
amount of funds bank i can raise is given by Ci(t) +

∑
j /∈Λ(t) A

s
ij(t) + pMi(t).

It is clear from the definition that whether a bank is illiquid crucially depends
on whether its short-term debtors are liquid or not.

With this behavioral framework in mind we can define an equilibrium in the
short-term market.

Definition 2 (Equilibrium in the short-term market). An equilibrium in the short-
term market is a matrix of liquidity demands, D∗(t) = (d∗ij(t))

n
i,j=1, where d∗ij is the

equilibrium demand for cash of i to j, and a matrix of liquidity supply, S∗(t) =

(s∗ij(t))
n
i,j=1, where s∗ij is the equilibrium supply of cash of i to j, such that:

(i)
∑

j /∈Λ(t) d
∗
ij(t) = min

(∑
j /∈Λ(t)A

s
ij(t),max

(
d̄i(t),

∑
j d
∗
ji(t)− Ci(t)

))
∀i

(ii)
∑

j s
∗
ij(t) = min

(∑
j d
∗
ji(t), Ci(t) +

∑
j /∈Λ(t) s

∗
ji(t) + pf ∗i (t)

)
∀i

(iii) f ∗i (t) = min

(
Mi(t),max

(
f̄i(t),

∑
j d
∗
ji(t)−Ci(t)−

∑
j /∈Λ(t) s

∗
ji(t)

p

))
(iv) demands are proportional to exposures: d∗ij(t)

d∗ik(t)
=

Asij(t)

Asik(t)
∀i ∈ I,∀j, k /∈ Λ(t)

(v) supplies are proportional to demands: s∗ij(t)

s∗ik(t)
=

d∗ji(t)

d∗ki(t)
∀i, j, k ∈ I

(vi) i ∈ Λ(t) if and only if
∑

j s
∗
ij(t) <

∑
j d
∗
ji(t)

(vii) market clears: d∗ij(t) = s∗ji(t) ∀i ∈ I,∀j /∈ Λ(t)

Equilibrium demands and supply are then computed by an iterative algorithm
as suggested by Eisenberg and Noe (2001).

Condition (i) states that banks’ total demand for cash cannot exceed the amount
of their short-term interbank assets as that it should be at least as large to include
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both its regulatory demand and creditor’s hoarding exceeding available cash. Condi-
tion (ii) indicates that banks’ total supply of cash does not exceed the total demand
they have to meet and the liquidity they are able to raise via cash, supply of liquidity
from short-term creditors and assets fire-sales. Condition (iii) implies that equilib-
rium fire-sales cannot exceed the available illiquid assets and should be enough to
take into account regulatory fire-sales and the liquidity demand of creditors exceed-
ing cash reserves and funds obtained from the short-term interbank market.

Conditions (iv) and (v) are the formalization of the behavioral assumptions we
made in our micro-foundation. Condition (vi) is the definition of illiquid bank in
equilibrium. Note that this condition, together with condition (v), implies that, for
an illiquid bank i, it holds that s∗ij(t) < d∗ji(t) for every creditor j.

The last condition is a market clearing condition with illiquidity, in which the
market clears with equality only for liquid debtors, while there is excess demand to
illiquid debtors.

The clearing of the market conveys a crucial signal to financial institutions since
it revels which banks are unable to make the promised payments. In accordance
with current financial regulation, as soon as a bank is found illiquid it does not
make any payment and is then subject to regulatory supervision.

Since default procedures due to illiquidity are costly and time consuming pro-
cesses, whose outcome is uncertain, and since shorter maturity does not necessarily
imply higher seniority, we assume that all the creditors, both long-term and short-
term, of illiquid banks mark-to-market their exposures.

Default Cascade

As in the previous section a first channel of default cascade is losses due to direct
counterparty’s default, to which we add illiquidity due to bank runs.

Defaulted banks, either because insolvent or because illiquid, induce losses to
their direct lenders. They thus find themselves with a reduced capital buffer which,
if negative, makes them insolvent.

A reduction of the capital buffer will force banks to adjust their RWA, thus
triggering an additional round of runs. When the short-term market clears, new
illiquid banks default and, together with the banks that became insolvent in the
previous period, trigger another round of insolvencies.

The default cascade continues as long as no additional defaults happen.
We can define as ∆(t) the set of banks which are in default as of time t. Then,

assuming a zero recovery rate in the short run, we may update the exposures of
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institutions as follows:

Asij(t+ 1) = Asij(t)− d∗ij(t) if j /∈ ∆(t)

Asij(t+ 1) = 0 if j ∈ ∆(t)

fort the short-term, and

Alij(t+ 1) = Alij(t) if j /∈ ∆(t)

Alij(t+ 1) = 0 if j ∈ ∆(t)

for the long-term.
Certainly, defaulted banks continue to have liabilities to their creditors. However,

as default procedures start, the timing and the amount of the final obligations
become exogenous to our model. Hence, according to the update rules, we remove
defaulted banks from the system by wiping-away all their interbank liabilities.

Illiquid assets are updated according to

Mi(t+ 1) = Mi(t)− f ∗i (t)

while cash reserves follow the rule

Ci(t+ 1) = Ci(t) +
∑
j /∈∆(t)

s∗ji + pf ∗i (t)−
∑
j

s∗ij if i /∈ ∆(t)

Ci(t+ 1) = Ci(t) +
∑
j /∈∆(t)

s∗ji + pf ∗i (t) if i ∈ ∆(t)

The dynamics of the capital buffer can thus be expressed as follows:

Ei(t+ 1) = Ei(t)− (1− p)f ∗i (t)−
∑
j∈∆(t)

(
Asij(t) + Alij(t)

)
(4)

Finally, the set of defaulted banks is updated as follows:

∆(t+ 1) = ∆(t) ∪ Λ(t+ 1) ∪{i|Ei(t+1)<0} i.

We are interested in the steady-state of the default cascade. i.e. at the state of
the system at time t∗ when ∆(t∗ + 1) = ∆(t∗).

4.2 Results

In this subsection we discuss the results obtained for the simplest configuration
of the interbank market, i.e. the case of a Erdős and Rényi (1960) network with
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(a) λ = 0.08, τ = 0.02 (b) λ = 0.08, τ = 0.10 (c) λ = 0.08, τ = 0.18

(d) λ = 0.40, τ = 0.02 (e) λ = 0.40, τ = 0.10 (f) λ = 0.40, τ = 0.18

(g) λ = 0.72, τ = 0.02 (h) λ = 0.72, τ = 0.10 (i) λ = 0.72, τ = 0.18

Figure 10: Frequency (straight lines) and extent (dotted lines) of contagion for case ER1
under random initial default. Capital requirements: 6% (red), 8% (black), 10% (blue).
Fire-sale price: 1 (◦-marks), 0.5 (x-marks).

homogenous exposures and homogenous asset sizes.
As in the previous section the network includes 1000 banks and results are shown

from 500 simulations. In addition to connectivity, we vary the additional parameters
of the richer model. We explore different combination of liquid assets in portfolio,
λ, short-term exposures, τ , minimum capital ratio, e∗ and fire-sale price, p. In all
the simulations we keep ι, the share of total interbank exposures to total assets,
fixed at 20% and the capital buffer at 2.5%. Risk weights are fixed at γM = 0.5 for
illiquid assets, which is the weight assigned by regulators to residential loans, and at
γIB = 1 for interbank claims, which correspond to the regulatory weight for loans to
BBB- institutions, thus implying a conservative scenario. Figures 10 and 11 report,
respectively, the results for a random initial default and the too-connected-to-fail
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(a) λ = 0.08, τ = 0.02 (b) λ = 0.08, τ = 0.10 (c) λ = 0.08, τ = 0.18

(d) λ = 0.40, τ = 0.02 (e) λ = 0.40, τ = 0.10 (f) λ = 0.40, τ = 0.18

(g) λ = 0.72, τ = 0.02 (h) λ = 0.72, τ = 0.10 (i) λ = 0.72, τ = 0.18

Figure 11: Frequency (straight lines) and extent (dotted lines) of contagion for case ER1
under too-connected-to-fail default. Capital requirements: 6% (red), 8% (black), 10%
(blue). Fire-sale price: 1 (◦-marks), 0.5 (x-marks).

initial default.
The Figures immediately highlight the complex interactions of balance sheet

composition and connectivity, which we disentangle by discussing the effect of each
variable.

Connectivity

Connectivity has the same qualitative effect we found in the previous section. For
small values, increasing connectivity increases both the frequency and the extent
of contagion, since additional transmission channels more than offset the role of
diversification. Its effect on the frequency of contagion is reversed for larger values
of the average degree, so that contagion becomes a rarer events due to diversification.
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However, with only one exception, the extent of contagion is always increasing in
connectivity, making the network robust-yet-fragile for those levels of connectivity
at which the frequency is low, but the extent is extremely high.

Minimum Capital Ratio

The effect of higher regulatory capital ratio is unambiguously positive. The fre-
quency of contagion is always reduced by increasing the minimum capital, as well
as the extent of contagion, despite the differences are often slight. This was not,
however, a trivial result. Indeed, while higher capital ratios provide a larger buffer
to absorb losses, they also raise the threshold that triggers runs in the short-term
market because of the adjustments of the RWA.

Fire-sale Price

The results from two different assumptions for the fire-sale price, 1 and 0.5, are prob-
ably the most counterintuitive and interesting, since they clearly highlight how the
interplay between network architecture and behavioral rules can yield unexpected
results. Indeed, the frequency of contagion is always lower when banks incur losses
as they sell their illiquid assets. The reason for this fact is that banks, when facing
fire-sale losses, have higher probability of becoming illiquid. All short-term creditors
will thus try to obtain the desired amount of liquidity from other debtor banks. This
implies that a larger fraction of credit lines are reduced and, in part, closed. The
closure of short-term credit lines with short-term debtors removes possible channels
through which contagion may eventually spread, thus grating higher stability to the
system.

The beneficial effect of fire-sale losses is more evident when the fraction of short-
term interbank claims is small and when diversification is greater, i.e. in those cases
in which every short-term link carries a smaller weight and thus is more likely to be
removed during a run.

Initial Cash Reserves

As far as contagion through interbank exposures is concerned, a higher share of liquid
items in portfolio is detrimental for the stability of the system. Indeed, despite they
provide a cash buffer preventing liquidity shocks to spread, they also lower the RWA
and thus the initial absolute amount of capital available to absorb losses.

The result is that the most stable configuration is reached when liquid assets are
at their minimum. When λ = 0.08 and τ = 0.10 we clearly have the most stable
configuration, in which a capital buffer at least as large as 8% is able to prevent any
systemic episode to happen.
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Share of Short-term Exposures

The role of the share of short-term exposures seem to be non-linear, possibly display-
ing an optimal value. Indeed, for each level of λ, an intermediate value of τ = 0.10

makes the system more stable than the smaller value of 0.02 and the larger value of
0.18.

Indeed while it is true that an higher share of short-term exposures induces higher
risks of runs and thus of illiquidity, it is also true that runs are a mechanism through
which connections are removed, thus removing channels of contagion. Hence, this
trade-off at systemic level between liquidity shocks and possibility of removing chan-
nels of transmissions seems to yield an optimal intermediate value. When comparing
the two extreme values, we note that a τ = 0.18 makes the system more resilient
than τ = 0.02, showing how the positive marginal effect of disconnections may be
larger than the marginal increase of the risk associated to bank runs.

5 Conclusions

In this paper we explored the interplay between heterogeneity, network structure
and balance sheet composition in the spreading of contagion.

In the first part, using an established model of contagion, we have proved that
the system presents phase transitions in connectivity. Indeed connectivity is both a
driver of contagion, as it provides the channel for shocks to propagate, but it is also
an hedge against contagion, via diversification.

Also heterogeneity has an ambiguous role. If heterogeneity regards exclusively
the link weights, the main effect is a widening of the interval of connectivity levels
in which contagion is possible. This is due to the fact that diversification cannot,
in this case, prevent contagious links to exist, which are a necessary condition for
contagion to arise.

When size heterogeneity is introduced, also some positive effects are seen. In-
deed big banks seems to act as shock absorber, making contagion a less likely phe-
nomenon. Heterogeneity in connectivity provides additional stabilization when the
initial default is random. However, this comes with the cost of an extremely high
contagion risk when the most connected or the largest institution is initially dis-
tressed.

We showed how “too-interconnected-to-fail” banks are more dangerous that the
“too-big-to-fail” ones. In our model, despite being very correlate, the two set of
institutions do not necessarily overlap. We then proved that the total amount of
distressed loans matters less than the number of creditors being initially hit by the
default.
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In our richer model of contagion, which includes default cascades, endogenous
bank runs and asset-liability management, we highlighted the complex interactions
between network structure and balance sheet composition. We proved that larger
capital requirements are effectively able to stabilize the system, while larger liquid
reserves, despite providing a buffer in case of liquidity run, induce banks to keep a
smaller amount of capital, thus making them vulnerable to contagion.

The relative weight of short-term and long-term exposures also matters in this
framework and an intermediate balance between the two seems optimal. Short-term
exposures are indeed both a channel for liquidity shocks, but they can also be easily
removed, preventing shock to propagate.

Finally, the role of fire-sales highlight the complexity of this kind of models in
which several channels of contagion operate. Indeed, fire-sale losses imply higher risk
of illiquidity. Hoarding banks will then seek funds from other non-illiquid banks,
reducing their exposures to them and, eventually, leading to a more likely closure of
the credit lines. This effectively removes channel for the propagation of contagion.
In this sense, fire-sale losses induce a more prudent behavior.

This paper also provides policy suggestions for the regulation of the financial
system. The role of “too-interconnected-to-fail” and “too-big-to-fail” institutions in
financial markets is ambiguous, since they act as shock absorbers in case of random
attack, but pose relevant systemic risk if distressed. Nevertheless, we proved that
“too-interconnected-to-fail” banks should be the primary concern for a contagion-
averse regulator, since their distress is more likely to trigger systemic breakdowns.

Capital requirements should also be rethought in the light of the trade-offs
highlighted by our complex system approach, together with the incentives micro-
prudential regulation should set. Indeed, such incentives may be strongly mis-
aligned with macro-prudential objectives, if not designed in a systemic perspective.
Our paper has indeed clearly highlighted how those conditions that from a micro-
prudential point of view are extremely desirable, e.g. larger liquid reserves and no
fire-sale losses, may induce, at a systemic level, wrong incentives that translate into
systemic fragility.
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Appendix

A Network Theory

A network is simply a collection of points connected by links, which we may formalize
as a set G = (I, V ), where I is the set of vertices (nodes), while V is the set of couples
(i, j) ∈ I2 representing the edges, which may be ordered or unordered, and we shall
then speak of directed or undirected graphs respectively.

Any network can be unambiguously represented by an adjacency matrix A(G),
whose elements aij take the value of zero or one depending on whether (i, j) /∈ V
or (i, j) ∈ V . If the network is undirected the adjacency matrix is symmetric.
Moreover, whenever links have different weights, representing different intensities
in the connections one may define a weighted matrix W (G) whose elements wij
represent the weight of the link from i to j if a link between them exist, while they
are zero if no link is present between them.

A network is a natural representation of an interbank market. Banks represent
the nodes of the graph, edges are given by lending relations and their weight is the
value of the exposures. By taking this point of view on the financial system, one is
able to analyze its properties and its architecture, in order to identify the relevant
features for its stability. Indeed we are interested in the network structure of an
interbank market for its consequences in the transmission of liquidity shocks and
default cascades.

Network Statistics

A first step towards the understanding of the stability of financial systems passes
through the analysis of their structure itself. Despite not exhaustive of the entire
set of topological feature one my compute in a network, the following list provides
an overview of the statistics which are both economically meaningful and relevant
for financial stability. In the following definitions we consider a network of n nodes,
whose adjacency matrix is A and whose weighted matrix is W .

Definition 3 (Node Degree). The in-degree kini and out-degree kouti of a node in a
directed networks are the number of incoming and outgoing links respectively:

kini =
n∑
j=1

aij and kouti =
n∑
j=1

aji.

In the context of an interbank network the in-degree represent the number of
creditors and the out-degree the number of debtors.
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Definition 4 (Node Strength). The in-strength sini and out-strength kouti of a node
in a directed networks are the total amount of weight carried by its incoming and
outgoing links respectively:

sini =
n∑
j=1

wij and souti =
n∑
j=1

wji.

The definition parallels that of node in- and out-degree and, in our framework,
can be interpreted as the total amount of interbank assets and liabilities.

Definition 5 (Connectivity). Connectivity is the fraction of possible links that the
network actually displays. Calling l the number of existing edges, in a directed
graph, connectivity is given by

c =
l

n(n− 1)
.

Connectivity of thus a measure of the fraction of possible interbank relations
which actually exist. It thus provide a measure of diversification and also of the
channels of transmissions through which a shock may flow. A closely related concept
is that of average degree

Definition 6 (Average Degree). The average degree is the average in-degree, or,
equivalently, the average out-degree, of the n nodes in the network

k̄ =
n∑
i=1

kini =
n∑
i=1

kouti

Which thus represents the average number of counterparties a bank has, and
thus even more clearly represents both the average level of diversification and the
average number of possible sources of shock.

Definition 7 (Average Path Length). A path is a sequence of vertices such that
each pair of consecutive vertices in the sequence are connected by an edge. The
number path of length r from i to j is the element i, j of Ar. The average path
length is the average shortest path between any two nodes.

Despite most studies on interbank contagion have, so far, focused on connectivity,
also the average path length should be taken into consideration when exploring the
resilience of an interbank markets. Indeed it represents the average number of
connections separating two banks and may thus be relevant for the timing and the
severity of a default cascade.
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Definition 8 (Reciprocity). In directed networks, reciprocity is the fraction of links
for which a link in the opposite direction exists. An expression for reciprocity is

r =
TrA2

l
.

Reciprocity represents the frequency of reverse lending relationships. Certainly,
from an empirical point of view, it is interesting to note how several contributions
have found high levels of reciprocity in real interbank networks (Bech and Atalay,
2010; Soramäki et al., 2007). This possibly reflects the role of what Cocco et al.
(2009) define preferential lending, i.e. the importance of non-economic foundations
for interbank lending.

Definition 9 (Clustering). In an undirected network, the clustering coefficient is
defined as the probability that two nodes, which are connected with another node,
are connected between themselves:

C =
number of triangles× 3

number of connected triples
=

1

n

n∑
i=1

(A3)ii
ki(ki − 1)

.

In the definition of the clustering coefficient, we consider, for simplicity, the case
of an undirected network, which can be derived from a directed one if the direction-
ality of a link is neglected. ki indicates the (undirected) degree of node i, i.e. the
number of connections i has, and (A3)ii represents the i-th element in the diagonal
of A3. The clustering coefficient is a measure of how tight interbank relations are
at local level. An high clustering coefficient indicates that the counterparties of a
given bank are very likely to make transactions also between themselves.

Definition 10 (Assortativity and Disassortativity). A network is said to be assor-
tative if nodes with a certain degree are more likely to be connected with nodes
with similar degree. It is said to be disassortative if the opposite holds. A simple
measure of assortativity in undirected networks is

m =
cov(ki, ANNDi)

σ(ki)σ(ANNDi)
∈ [−1, 1]

where ANNDi is the average nearest neighbor degree, i.e. the average degree of
node i’s neighbors.

As for the clustering coefficient, we presented only the undirected version of the
assortativity coefficient. Interbank markets tend to be disassortative, in the sense
that small banks tend to trade with large banks and viceversa. This may be symp-
tomatic of the presence of banking groups, in which small subsidiaries preferentially
trade with the parent company.
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The previous statistics are either referred to single nodes, or are synthetic network-
level measures that summarize, in a single number, a series of local features. Other
relevant information may instead come from the statistical distribution of certain
local characteristics. First and foremost, the distribution of the degree, i.e. the
number of counterparties, provides important information regarding the structure
of an interbank network, since it is able to quantify the level of heterogeneity of its
nodes.

Definition 11 (Degree Distribution). Given a network, construct a sequence of
possible degrees {1, 2, . . . } and a sequence of probabilities {p1, p2, . . . }, where pk is
the frequency of nodes with degree k. The quantities {p1, p2, . . . } thus define a prob-
ability distribution over degrees {1, 2, . . . }, which is defined as degree distribution.

More appropriately, in the context of directed graphs, we would dealt with a joint
degree distribution {pkinkout} representing the probability that a node have in-degree
kin and out-degree kout.

Models of Network Formation

The previous overview of definition can be applied to any arbitrary network. How-
ever, when one seeks to build a network displaying some desired features, he has to
confront with the theory of network formation, which provides a set of models that,
because of different assumptions on the mechanism of link formation, are able to
generate a corresponding set of networks with specific statistical peculiarities. Here,
we intend to provide a brief description of the two network formation models em-
ployed in our analysis, namely the random graph model by Erdős and Rényi (1960)
and the fitness model3.

Random Graphs

The random graph model due to Erdős and Rényi (1960) is a model in which, given
a set of N nodes a link from a node i to a node j exist with a probability p which is
constant for each pair of nodes. In the network there are N(N−1) possible directed
links to be created, resulting in an expected number of edges in the network equal
to pN(N − 1), so that the (expected) average degree is p(N − 1). Indeed each node
has (N − 1) nodes which it can connect to. It follows that both the distribution of
the in- and out-degree follow a binomial distribution:

pin(k) = pout(k) =

(
N − 1

k

)
pk(1− p)N−k−1

3For a more complete overview of network formation models one may refer to standard textbooks
as Newman (2010) or to the reviews by Albert and Barabási (2002) and Chakrabarti and Faloutsos
(2006).
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Figure 12: Example of Erdős and Rényi (1960) random graph with 100 nodes and average
degree of 3.

If c denotes average degree of a random graph, asymptotically, as N → ∞, the
degree distribution converges to a Poisson(c)

p(k) =
e−cck

k!

which is the reason why the model is sometimes referred to as Poisson random graph.
Since the probability of forming a link is homogenous, the resulting network

structure does not present marked heterogeneity. In a Poisson distribution the
dispersion around the mean is limited and deviations from it are exponentially rare.
An interbank network generated using this model will thus provide of an homogenous
market, in which banks tend to have similar levels of connectivity, i.e. their specific
number of counterparties does not significantly vary from the average.

The Erdős and Rényi (1960) graph is also said to be small-world, since it presents
a short average path length and its diameter, i.e. the longest of the shortest paths
linking two nodes, grows at a much lower rate than N , precisely as log(N). The
clustering coefficient is equal to the probability of a link’s existence, p.

This kind of models has been extensively applied for the study of contagion in
financial networks, e.g. in the contributions from Nier et al. (2007), Gai and Kapadia
(2010), Iori et al. (2006) and Montagna and Kok (2013).
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Figure 13: Example of graph generated with a fitness model with 100 nodes and average
degree of 3. The distribution of the fitness is power-law with exponent 2.5.

Fitness Model

The fitness model is a very flexible model of network formation which is able to
provide a wide range of structural features. Every node i is endowed with a fit-
ness parameter, xi, which is a measure of its “attractiveness”, and links are formed
between nodes with a probability which is a function of the fitness of the nodes.
More formally, if we define pij as the probability that a link exists from i to j, this
probability is given by

pij = f(xi, xj)

for a generic function f .
Depending on the shape of the function f and on the probability distribution ρ

of the fitness, various properties may emerge.
In general the expected in-degree for a node with fitness x is

kin(x) = n

∫ +∞

−∞
f(t, x)ρ(t)dt ≡ nFin(x)

while the expected out-degree is

kout(x) = n

∫ +∞

−∞
f(x, t)ρ(t)dt ≡ nFout(x).
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Clearly, the two expressions coincide if f is symmetric, i.e. f(xi, xj) = f(xj, xi),
meaning that the fitness parameter represents the attractiveness of the node irre-
spective of the direction of the relation to be established.

Under the assumption of invertibility of F in and F out and of differentiability of
their inverse, one can derive an analytical expression for the probability of observing
nodes with in-/out-degree equal to a generic k:

P in(k) = ρ

[
F−1
in

(
k

n

)]
· d
dk
F−1
in

(
k

n

)
P out(k) = ρ

[
F−1
out

(
k

n

)]
· d
dk
F−1
out

(
k

n

)
One may also compute higher order properties of networks built via fitness mod-

els. Focusing on undirected models, where pij = f(xi, xj) = f(xj, xi) represents the
probability of an undirected link between i and j, closed form solutions are available
for the clustering coefficient of nodes with fitness x

C(x) = n2

∫ +∞
−∞

∫ +∞
−∞ f(x, t)f(t, s)f(s, x)ρ(t)ρ(s)dtds

k(x)2

and for the average degree of their neighbors

ANND(x) =
n

k(x)

∫ +∞

−∞
f(x, t)k(t)ρ(t)dt.

Despite this is just a brief summary of the properties of a fitness model4, it should
be clear enough that its flexibility has the potential to take into account a number
of target properties. This is the reason why authors as De Masi et al. (2006) and
Montagna and Lux (2013) suggest the fitness model in order to match the empirical
features of real interbank networks.

In our (directed) interbank network we use a fitness model with an additive
linking function

pij = f(xi, xj) = c(xi + xj) (5)

where c is a constant that we tune in order to obtain the desired average degree.
We then draw a series of n fitness parameters {x1, x2, . . . , xn}, one for each bank

from a power-law distribution with exponent β > 2 and minimum value x0

P (x) = ax−β x > x0 (6)
4For a more detailed description of its properties we invite the reader to refer to Caldarelli et al.

(2002), Caldarelli (2007) and Servedio et al. (2004).
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Solving the integration for the expected in- and out-degree we find that

Fin(x) = Fout(x) =
cx2−β

0

β − 2
+
acx1−β

0

β − 1
x

Inverting these functions and using the formulas for the degree distribution we
see that

P in(k) = P out(k) ∝ (k − ξ)−β (7)

where ξ is a positive constant that depends on the parameters of the fitness model.
This means that our model is able to replicate a power-law tail decay of the degree
distribution, which is a feature often observed in real networks (Caldarelli, 2007;
Newman, 2010), including in interbank markets (Bech and Atalay, 2010; Boss et al.,
2004; Cont et al., 2013; Iazzetta and Manna, 2009; Iori et al., 2008; Soramäki et al.,
2007) and which is thus symptomatic of high levels of heterogeneity in the connec-
tivity of financial institutions. The model is flexible enough to allow us to tune the
exponent of the tail decay.
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Part II

TailDep for the Measurement of
Systemic Risk

6 Introduction

The risk of wide-spread contagion became a concern for academics and policy-makers
when the recent crisis unfolded. Uncertainty regarding the actual degree of inter-
connectedness of the financial system prevented any knowledgeable assessment of
the consequences exogenous shocks would have triggered.

The dominating approach to financial regulation, before the crisis, was primarily
micro-prudential (Hanson et al., 2011), i.e. based on a partial equilibrium view of
the financial system, in which entities were seen as stand-alone risk takers.

Standard measures of riskiness were the Value-at-Risk (VaR) and the Expected-
Shortfall (ES). VaR is defined as the largest loss a bank may experience with prob-
ability (1 − α), i.e. P (L > V aRα) = α, while the ES is the expected value of the
loss, conditional on being larger than VaR, i.e. ESα = E(L|L ≥ V aRα).

These measures, despite being flexible enough to take into account macroeco-
nomic shocks, are specific to single institutions and fail to give any measure of the
risks generated by the system itself.

Our view of systemic risk is that of a risk generated by and within a financial
system. As such, idiosyncratic risk indicators, e.g. leverage, liquidity mismatch,
VaR and ES, should not enter in an appropriate measure of systemic risk. They
remain, however, useful instruments to identify idiosyncratic risks, which may be
amplified by systemic factors.

In order to generate systemic risk, financial connections are crucial, since they
identify the dependence structure which interlinks the financial institutions in a sys-
tem. Their existence is able to generate amplification effects5, which are a source of
risk on their own, and which we regard as systemic risk. In this paper we propose a
quantification procedure for systemic risk, which entirely rely on the interconnect-
edness of the financial system.

We model the financial system as a network of institutions which chose their
degree of dependence on other institutions. The systemic risk of the system is seen

5Recent contributions on financial networks (Amini et al., 2012; Battiston, Delli Gatti, Gallegati,
Greenwald and Stiglitz, 2012a,b; Gai and Kapadia, 2010; Lenzu and Tedeschi, 2012; Montagna
and Kok, 2013; Nier et al., 2007) and industrial networks (Acemoglu et al., 2012; Carvalho and
Gabaix, 2013; Gabaix, 2011) have addressed the issue of the amplification effects generated by
local interlinkages.
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the probability of its entire collapse, conditional on a shock hitting some part of the
system. The magnitude and the location of the shock is asymptotically irrelevant in
determining the steady-state risk of default of financial entities, which is exclusively
determined by the equilibrium network.

A policy-maker which is averse to systemic risk will have then an incentive to
design a stabilization policy whose intensity depends on the leading eigenvalue of
the network. If a tax is imposed on banks’ assets and banks are risk neutral, they
will be willing to pay a tax rate which is proportional to their eigenvector centrality,
which we show to be the key determinant of their susceptibility to systemic risk.

Such tax accomplishes four roles: (i) it entirely finances the stabilization policy,
(ii) it provides banks with an information on the centrality of their counterparties,
and thus on their systemic importance, (iii) it reduces the degree of interconnect-
edness of the system in equilibrium, (iv) it aligns banks’ incentives to those of the
policy-maker.

We view our concept of systemic risk a theoretically strong one. Several measures
have taken into account the probability of default, or joint default, of entities or the
tail correlation of single entities to the market (Acharya et al., 2010; Adrian and
Brunnermeier, 2011; Huang et al., 2012). However, most of them lack a theoretical
motivation and they all suffer of an idiosyncratic bias: it is not clear why, if excessive
correlation is a problem, investors do not take it into account and the regulator’s
intervention is needed.

In our model, systemic risk emerges because the linking decisions of banks affect
also the stability of banks linking to them, because of imperfect information and
network externalities. Imperfect information is indeed a necessary ingredient when
dealing with financial systems, especially after the rapid expansion of OTC deriva-
tives and of the shadow banking system, which have made the financial network
extremely complex and opaque (Haldane, 2009).

We estimate systemic risk with the TailDep methodology, which is based on the
tail dependence of CDS spread, which is a proxy of the probability of conditional
default. Tail dependence is indeed a mathematical concept expressing the probabil-
ity of a random variable to experience large (asymptotic) movements, conditional of
another variable being at its asymptotic value. In the context of CDS spread, this
reflect the probability of conditional default and this methodology allows to build
a network where each link represents the probability of default of an institution
conditional on the default of another institution.

Importantly one has to notice that the network of tail dependencies does not
tell anything about the risk of default of individual entities since, as mentioned
above, links are defined as conditional probabilities. The fundamental contribution
of TailDep is that of assessing the probability of distress of a reference entity con-
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ditional on another one being in distress. For this reason it allows to assess the
systemic risk generated by the network of interconnections.

The concerns of scholars and regulators have recently begun to be channeled
towards the potential sources of risk stemming from OTC derivatives, in particular
Credit Default Swaps (ESRB, 2012; IMF, 2013; Noyer, 2010). A number of critics
have also been addressed to CDS products, among which we may recall Fostel and
Geanakoplos (2012), who argue that the introduction of CDSs of mortgage products
in 2005 and 2006 led mortgage bonds and house prices to increase, thus fueling the
housing bubble which eventually bursted. Others highlight how, by creating a false
sense of security, CDS incentivize leverage and excessive risk taking, in such a way
that, despite idiosyncratic risk is reduced (or at least it appears to be so), systemic
risk is actually increased. Lastly, another point of view is that of Heise and Kühn
(2012) and Stulz (2010) who see the dangers of CDSs in generating new forms of
financial dependencies and interconnections across financial institutions.

However, we view such instruments as important signaling devices of the percep-
tion markets have of the interconnectedness of the financial system. Nevertheless,
we claim that regulators should engage in extensive data collection in order to ob-
tain their own estimates of the interconnectedness of the financial system. The data
to be gathered should encompass also OTC, shadow banking and off-balance sheet
exposures, information which are not available to investors and not easily priceable
into CDS contracts. Confidential collection of such data would allow regulators to
monitor the building up of systemic risk before a crisis, allowing them to intervene
in due time, without imposing banks the public disclosure of sensitive information.

After discussing the related literature in Section 7, in Section 8 we present our
dataset. Section 9 provides a first overview of the evolution of the interconnectedness
of the financial system using a dynamic conditional correlation model and principal
component analysis. Section 10 put forward our model and discusses the copula
methodology used to estimate it. Section 11 presents the results of the estimation
and Section 12 concludes.

7 Related Literature

The spirit of our work is closer to the ones by Acharya et al. (2010), Adrian and
Brunnermeier (2011), Billio et al. (2012) and Huang et al. (2012) who tried to quan-
tify systemic risk from market data. Acharya et al. (2010) provides a theoretical
model in which a planner wants to maximize a welfare function taking into con-
sideration the stability of the overall system. An optimal tax that depends on the
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expected shortfall6 and the systemic expected shortfall7 of banks. Such tax allows to
align the incentives of banks to those of the planner. They estimate these measures
using high frequency equity and CDS data and assess their predictive power.

Adrian and Brunnermeier (2011) propose the CoVar and forward CoVar measures
as indicators of systemic importance and as predictor of future distress respectively.
CoVar is estimated via quantile regression of the VAR of the system conditional on
a given institution being at its VAR level. The forward CoVar is instead estimated
by regressing the VAR on lagged values of market and balance sheet data. However
no theoretical motivation is provided for these measures and it is not clear how a
forward CoVar may be superior in predicting future distress than simply using the
market and balance sheet data used to estimate it.

Billio et al. (2012) provide an extensive analysis of the correlations of the returns
of 100 financial institutions in the two decades preceding the 2008 crisis. They find
that co-movements became increasingly marked, despite it is not clear why only 36
components result from a sample of 100 variables. They then construct a network
of Granger-casual relations, which became particularly dense in the crisis years.
Measures of centrality in the networks have good out-of-sample predictive power on
future losses of market value.

Finally, Huang et al. (2012) propose a systemic risk index, the distressed in-
surance premium (DIP), which is based on the risk-neutral probabilities of default
implied by CDS spreads, which measures the premium an insurer would require to
cover losses in the entire banking sector. They then rank banks according to their
marginal contribution to the DIP, which is strongly driven by the asset size, and
relate it to losses in market value and capital shortfall under regulatory assessment.
However, no theoretical model is provided.

From the theoretical side, our contribution relates to the concept of negative
spillovers and network externalities which have been recently subject to a flourish-
ing academic debate (Acemoglu, Ozdaglar and Tahbaz-Salehi, 2013; Acharya, 2009;
Allen et al., 2010; Allen and Gale, 2000; Battiston, Delli Gatti, Gallegati, Green-
wald and Stiglitz, 2012b; Krishnamurthy, 2010; Lorenzoni, 2008) and which have
boosted increasing attention to the role of the complex structure of the financial
system, which is seen as a network of contractual linkages (Amini et al., 2012; Bat-
tiston, Delli Gatti, Gallegati, Greenwald and Stiglitz, 2012a; Gai and Kapadia, 2010;
Montagna and Kok, 2013; Nier et al., 2007).

From the empirical side, our work relates also to the growing literature that uses
6The expected shortfall is the expected loss, conditional on losses larger than the VAR of a

bank, i.e. ES = E[L|L ≥ VARα], where L indicate the loss and V ARα is the institution’s VAR
relative to quantile α

7The systemic expected shortfall is defined as the expected capital shortfall of an institution
conditional on the overall system being undercapitalized
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copula models to study the dependence structure of CDS spreads (Christoffersen
et al., 2013; Lucas et al., 2014; Oh and Patton, 2013). Their focus is however
more on the application of an econometric methodology than on the estimation of
a theoretical model, while, in our contribution, the use of a copula model will be
ancillary to our theoretical framework.

Not many papers have been written on the statistical analysis of CDS spreads.
To our knowledge Cont and Kan (2011) represents the first and most extensive
contribution in this field. The authors show that CDS spreads follow non stationary
processes, while spread returns are stationary with positive autocorrelation. They
find positive serial correlations in extreme values, conditional heteroschedasticity
and two-sided heavy tails. They show how large co-movements may be observed,
often unrelated to credit events, thus suggesting the presence of common risk factors.
Furthermore, they showed that correlations of spread returns increase significantly
after 2007 and that credit events do not necessarily lead to large upward moves
in the CDS spreads. They also estimate a heavy-tailed multivariate AR-GARCH
model for CDS spread returns and simulated statistical properties of CDS spread
returns as well as their dependence structures.

Gündüz and Kaya (2014) perform an econometric analysis of the CDS spread of
10 European countries, finding mixed evidence of long memories in the series of CDS
log-differences. They also run a Granger causality test and find evidence of causal-
ity going from CDS log-differences volatility and CDS spread. Their estimates of
dynamic conditional correlations show an upward jump coinciding with the collapse
of Lehman

Kaushik and Battiston (2012) is another contribution in the field of the statistical
analysis of CDS spreads. Here the authors introduce the tool of the ε-drawups to
build a network of CDS securities. Two entities are linked if they are likely to
experience jumps together. This allows the authors to build a topology of the risk
structure in the CDS market.

8 Data

Credit Default Swaps are credit derivatives which grant protection against the de-
fault of a debt issuer. Using the terminology of CDS contracts, a protection seller
is the short side, a protection buyer is the long side, while the debt issuers against
whose default the contract is written is called reference entity. Under the terms of
a CDS contract, the protection buyers pays an annual premium to the seller. This
premium is often expressed as a percentage, named spread, of the notional amount
insured. In exchange of the premium, the protection seller will refund the protection
buyer of any loss incurred due to the default of the reference entity, within limits of
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(a) Banks

(b) Insurers

(c) Real Estate

(d) Others

Figure 14: CDS spread and spread returns.
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the notional amount insured.
CDS spread data are downloaded from Bloomberg. We have data available for

108 financial institutions for the time period between the 1st January 2004 and 30th
September 2013.

Entities are grouped into four different categories, indeed the dataset comprises
49 banks, 33 insurers and 9 real estate companies. The remaining 17 entities, which
we group under the name of ’others’, mainly include the financial branches of indus-
trial companies, asset management firms, providers of financial services and credit
institutions other than banks.

Figure 14 plots the CDS spread and the CDS spread return, defined as the
first difference of the logarithm of the spreads. The 2007 clearly represents clear
transition year from a relatively tranquil period, characterized by low CDS spreads,
to a period where investors became increasingly concerned with stability of financial
sector, concerns which are indicated by the quoted premiums.

CDS spread returns provide complementary information. Relatively small daily
spread changes characterize the period from 2010 onwards. Before, the years from
2007 to 2009 included present a market volatility cluster, which somehow anticipate
the spikes in the CDS spread series.

Overall, three phases can be identified: the first one, from January 2004 to
December 2006, correspond with the build-up of the crises, spreads are low and
volatility limited; the second one, from January 2007 to December 2009, is the acute
phase of the crisis, when at first, uncertainty increase, as reflected in the volatility
of CDS returns, and then the risks perceived by investors rise together with the
spreads; the third one, from January 2009 onwards seems to represent the mature
phase of the crises, when uncertainty is reduced but perceived risk remains relevant.

In our analysis we are interested in the co-movements of CDSs net of any au-
tocorrelation and volatility clusters. The Augmented Dickey-Fuller test conducted
under different specification of the autoregressive model confirms the visual intuition
and fails to reject the null hypothesis of a unit root at a 10% confidence level for
all the 108 CDS spread series. This confirms the finding on the nonstationariety of
(Cont and Kan, 2011).

Spread returns seem instead to follow a stationary behavior according to an ADF
test, which reject the null hypothesis of non-stationariety for each of the series at a
1% confidence level. We thus filter out residuals of the spread return series by using
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an AR(1)-GARCH(1,1) model

rl,t = ρri,t + εl,t (8)

εl,t ∼ σl,ttν (9)

σ2
l,t = kl + αlσ

2
l,t−1 + βlε

2
l,t−1 (10)

and we define the standardized residuals as vl,t = εl,t/σl,t.
We estimate this model via maximum likelihood under the hypothesis of t-

distributed errors with stochastic variance. A student-t distribution is better able
to account for fat tails in the distribution of residuals, while the stochastic variance
estimated via GARCH model is used to normalize each innovation and thus to offset
sources of heteroschedasticity due to volatility clusters.

Two types of estimation are conducted: one for the entire sample period and
the other using a 24 month rolling window. The entire sample estimation is used to
estimate the dynamic conditional correlations, while 24 month rolling window are in-
stead used to understand the dynamics of the other measures of interconnectedness.
All these measures are explained in details in the following sections.

Why CDS?

We have already mentioned in the Introduction that a CDS is, essentially, an insur-
ance contract against the default of a reference entity. Their premium is therefore
a clear market information about the financial soundness of the entity.

To clarify the meaning of the CDS spreads consider a very simple model in which
the default of a reference entity is a Poisson process with (time-varying) intensity
µt, the premium is paid continuously and the recovery rate is a fixed constant ρ. We
can hence define Q(τ) as the probability of the reference entity to survive at least
up to time τ , which is Q(τ) = e−

∫ τ
0 µsds. Then, −dQ(τ) represent the probability of

default at time τ since it is the absolute value of the variation (which is negative) of
the probability of surviving up to time τ + dτ and τ . Finally, we indicate the with
rτ the instantaneous interest rate paid by a risk-free bond with maturity τ .

In this case the value of the protection given by the CDS is

Vb = (1− ρ)

∫ T

0

erτ (−dQ(τ))

while the value of the short position is

Vs = s

∫ T

0

erτQ(τ)dτ.

Then, by equating the two expressions, it can be shown that the fair spread for
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a CDS with maturity at T is given by

s = −(1− ρ)

∫ T
0
e−rτ τdQ(τ)∫ T

0
e−rτ τQ(τ)dτ

.

If, to simplify further, we assume a flat credit curve, i.e. a constant µt = µ, the
formula simplifies to

s = (1− ρ)µ

Keeping the recovery rate fixed, movements of the CDS spread correspond to
movements of intensity of the default process driving the probability of default. In
particular as µ → +∞, also s → +∞ since the probability of surviving up to an
a certain time t, no matter how small, is Q(t) = e−tµ → 0, reflecting therefore
the default of the reference entity. Innovations to the spread are then driven by
innovations to the intensity of default.

CDS spreads are therefore the ideal measure of distress of a financial institution,
and the co-movements of the CDS prices of financial entities uncover important
information about the co-movements of the probability of distress of the underly-
ing entities. Marked co-movements of the CDS spreads of two reference entities
signal that markets regard the two entities as being very interlinked, so that their
probabilities of default increase or decrease together in the same direction.

9 A First Look to Correlations

Since correlation of the probability of default of entities are reflected in the corre-
lation of their spread and, consequently, in the spread returns, we begin our explo-
ration of the interconnectedness in the financial sector by having a first look to the
co-movements of CDS returns.

9.1 Dynamic Conditional Correlation

The Dynamic Conditional Correlation (DCC) estimator was put forward by Engle
(2002) to estimate the correlation of returns conditional on past information. It
allows to obtain daily estimates of the correlation matrix of various assets.

Consider the Constant Conditional Correlation (Bollerslev, 1990) estimator

R̄ =
1

T

T∑
t=1

vtv
′
t
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Figure 15: Dynamic Conditional Correlation of the normalized residuals of spread returns.
The Figure report mean, median correlations, together with the 95th and 5th percentile
using a single estimate of the model for the entire sample period.

The the one-lag DCC model is

Ht = R̄ + α(vt−1v
′
t−1 − R̄) + β(Ht−1 − R̄)

The matrix Ht contains the correlation coefficients of the normalized residuals con-
dition on the past realizations. Thus it can be used to a first assessment of the
interconnectedness of default risks in financial markets. Increasing dynamic cor-
relations imply stronger co-movements of CDS spreads, and thus of the perceived
financial soundness of financial entities.

In our analysis we perform an estimate of the DCC model for each pair of ref-
erence entities, allowing the parameters of the model to be different for each pair
of reference entity. Estimations are conducted using a single model for the entire
sample period.

As we seen in Figure 15, the median and the mean DCC are positive for the
entire sample period, however they experienced a jump around mid 2007: while
before they were fluctuating around 10%, in the second half of 2007 they started a
transition to higher values, fluctuating around 20% from 2008 onwards. They change
of regime is even more marked in the tails of the distribution of the correlations.
The 95th percentile started from values around 40% and reached levels fluctuating
around 70% from 2008 onwards. As for the 5th percentile, it started from negative
values and, form 2012, it has been frequently hitting the value of zero 0, with some
slight fluctuations below it.

It is clear, even with these summary data, that the co-movements of CDS re-
turns became more marked in the second half of 2007, following the first signs of
uncertainty in the American housing market.
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9.2 Principal Component Analysis

The principal component analysis (PCA) is a statistical technique based on a linear
transformation of the dataset. In simple words, given N variables and T observa-
tions, the PCA finds N linear combinations of the original variables, called principal
components, which are: (i) uncorrelated, (ii) and sorted in decreasing order of ex-
planatory power.

In our context, consider the zero-mean, unit-variance series of normalized resid-
uals vi for institution i. Define as V the matrix whose i-th column is vi.

Then we know that
V TV = Σ

where Σ is the covariance matrix of our data, which, since it is symmetric, has
N distinct orthonormal eigenvectors. Unless some observations are constant Σ is
positive definite, so it has strictly positive eigenvalues. It can be thus decomposed
as

V TV = WΛW T

where Λ is the matrix whose diagonal elements are the eigenvalues sorted in de-
creasing order and where W is the matrix whose columns are the (orthonormal)
eigenvectors of Σ, ordered according to the eigenvalues in Λ.

Then
(WV )T (WV ) = Λ

and the matrix WV is the matrix whose columns are the principal components,
whose covariance matrix is Λ. Since Λ is diagonal, this implies that the principal
components are uncorrelated.

Statistical theory (Jolliffe, 2005) shows that the eigenvalues in Λ, which are
the variances of the principal components, are proportional to the fraction of the
total variation of the dataset which is explained by the corresponding principal
components. This is the reason why, without loss of generality, the matrix Λ was
built by placing the eigenvalues along the first diagonal in decreasing order and
arranging the eigenvectors in matrix W accordingly. The first column of WV will
thus be the component that explains a fraction λ1∑

l λi
of the total variation of the

observations.
The first principal component may then be interpreted as the leading factor

driving market movements. Hence, the variance of the market explained by the
first components is a clear indicator of the interconnectedness of the system. If few
common factors are able to account for most of the variation of the market, these
few common factors gain systematic importance and the institutions which are more
strongly correlated to them represent themselves critical entities, since they are the
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Figure 16: Variance explained by the first principal component and by principal com-
ponents 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, estimated using a 24-month rolling
window.

ones with the strongest connections to the systematic risk factors.
We then estimate the principal components and the explained variances in our

dataset using a 24-month rolling window estimations of the normalized residuals of
an AR-GARCH model. Results are reported in the figures at the date when they
would have been available, i.e. the end of the rolling window.

Figure 16 shows how, in the time span covered by our data, the systematic rick
factors have become increasingly important in explaining market movements. The
variance explained by the first component experienced a small drop at the end of
the first half of 2007, starting a sustained increase afterwards. Starting from a value
around 15% in 2006, the variance explained by the first component reached a level of
almost 40% at the end of 2013. Similar observations hold for the variance explained
by additional components. The first ten components started from values below 40%
and reached levels of 60% at the end of the sample period. The increase in explained
variance is progressively less marked as more components are considered. However,
at the end of the sample period only 50 components are sufficient to explain 90% of
the market variations.

Figure 17 reports the correlation coefficient between the normalized residuals
of single reference entities and the first principal component. High correlation is a
symptom that the entity tends to strongly co-move with the entire market, due to a
strong connection with systematic risk factors. We separate the results according to
the sector of activity of the financial institutions. Coherently with our findings on
an increasing fraction of variance explained by the first component, the correlation
coefficients with it are generally increasing. However, the results highlight different
correlation patterns of financial entities.

The top of the plots is dominated by European banks and insurers which, at
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(a) Banks

(b) Insurers

(c) Real Estate

(d) Others

Figure 17: Correlation with the first principal component. The principal component and
the correlations are estimated using a 24-month rolling window.
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least in the last period, exhibit the highest correlation with the first component.
While before the first half of 2007 correlations with the first component were all
less than 60%, with only one exception, and no clear cluster of highly correlated
entities could be detected, starting from the second half of 2007, European banks
and insurers started converging towards high value of correlation and their departure
from US entities was particularly clear in 2009 and 2010. US entities are usually
ranked among the medium-highly correlated, while entities from other Countries
usually show low correlation.

In the first half of 2007 the correlation with the first component experienced a
sharp drop for a number of entities, reflected also in Figure 16 in a small drop of
the explained variance of the various components. This could be due to a structural
break in the components of systematic risk: the first half of 2007 was the time in
which markets started realizing the dangers of the housing bubbles and securitized
mortgages. This may have shifted investors concerns towards different risk factors.,
thus changing the correlation structure which had existed up to that moment.

10 TailDep

Correlations, however, do not tell the full story of a crisis. While it is certainly true
that they convey an idea of how interconnected markets are and how default risks
co-move, their explanatory power about the systemic risk generated by and within
the financial sector is limited.

Our purpose is to derive a measure of systemic risk which is: (i) endogenous, i.e.
defined entirely and exclusively by the interconnectedness of the financial system
and not by exogenous factors, such as asset size, (ii) meaningful, in the sense that
it can be related to physical quantities, (iii) theoretically motivated.

To deduce such a measure we need to first discuss a model of systemic risk
in which the network structure of interconnections is able to generate endogenous
probabilities of default.

10.1 Model

Consider an economy with N financial institutions, where we assume that N is large.
Institutions may be in one of two states: distressed or not distressed. An institution
is distressed if it is experiencing a relevant credit event which leads almost surely
to default. We denote with pi,t the probability that institution i is distressed at
time t. To be more precise, pi,t is an endogenous probability of being in distress,
i.e. a probability that takes into account only the possibility of receiving shocks
from the rest of the financial system, and not the possibility that i may be a source
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of exogenous shocks. We then define a matrix D whose element dij indicates the
probability of i being in distress conditional on j being in distress. Using the network
terminology, we say that if dij > 0, then i and j are neighbors8.

We take a first order approximation of the contagion model by assuming that,
for any institution i, the distress of any two neighboring institutions are independent
events9.

With a fixed probability δ an institution is guaranteed by the policy-maker, thus
effectively removing it from the network. Finally, we denote by φi,t the probability
that institution i does not receive shocks from its neighbors at time t, that is:

φi,t =
∏
j 6=i

(1− dijpj,t−1) (11)

Hence we can write

1− pi,t = δ + (1− δ)[(1− pi,t−1)φi,t] (12)

If we assume that pi,t−1 and dijpj,t−1 are all very small, we can approximate this
expression as

1− pi,t = δ + (1− δ)
[
1− pi,t−1 −

∑
j 6=i

dijpj,t−1

]
and obtain the simple relation

pi,t = (1− δ)
∑
j 6=i

dijpj,t

Hence, we can write the following linear dynamical system for Pt = (p1,t, . . . , pN,t)
T :

Pt = (1− δ)DPt−1. (13)

D is a nonnegative matrix, hence the Perron-Frobenius theorem guarantees us
that its leading eigenvalue λ̄ is positive. Moreover if λj is an eigenvalue of D, then
(1− δ)λj is an eigenvalue of (1− δ)D.

Standard results in the theory of linear dynamical system ensure that, for Pt not
to diverge, a necessary and sufficient condition is that (1− δ)λ̄ < 1. In particular, if
this is the case, the steady state distress probabilities will be zero. For this condition

8Our model has indeed some affinities with the mathematical modeling of epidemics on networks,
e.g. Dezső and Barabási (2002), Newman (2002), Pastor-Satorras and Vespignani (2001) and Wang
et al. (2003).

9This assumption is not made only for mathematical tractability, but also for computational
feasibility. Estimating the probability of distress of each entity i conditional on the distress of
any possible set of other entities would require an amount of estimations growing as 2N , which is
unfeasible for large systems.
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to hold, the policy-maker has to enforce a bail-out policy such that

δ > 1− 1

λ̄
. (14)

Note that if λ̄ < 1 no bail-out is needed, since shocks will be dampened by the
dependency structure of the financial system. This makes clear that λ̄ is a measure
of the systemic risk generated by the financial systems, and this measure is related
to the efforts a policy-makers has to make in order to prevent the spreading of shocks
across the system.

Suppose that no stabilization policy is enforced, then the probabilities of distress
evolve according to:

Pt = DPt−1. (15)

If the leading eigenvalue of D, λ̄, is less than one, then system is safe and
the system does not generate systemic risk, otherwise Pt diverges. In this case
we can find a basis of eigenvectors {v1, . . . , vn} corresponding to the eigenvalues
{λ1, . . . , λn}. Without loss of generality we assume λ1 = λ̄ and denote v1 as v̄.
Equation 15 can be written as Pt = DtP0 and P0 may be expressed as a linear
combination of the set of the eigenvectors: P0 =

∑
k αkvk. Therefore, substituting

in equation 15, yields:

Pt = DtP0 =
∑
k

λtkαkvk = λt1
∑
k

(
λk
λ1

)t
αkvk. (16)

Since |λ1| > |λk| for any k 6= 1, as t increases the dominating direction of increase
will be given by the leading eigenvector, v1 = v̄, and the rate of increase will depend
on λ1 = λ̄, i.e.

Pt ∼ α1λ̄
tv̄. (17)

Hence, bank i’s probability of being shocked through interconnections is pro-
portional to the i-th element of the leading eigenvalue. This is what in network
terminology is referred to as eigenvector centrality or eigenvector score.

If the leading eigenvalue is less than one, then the system has a stable fixed point
at zero and banks would not face any probability of contagious shocks in steady state.
Thus, the value of their assets remains the original one, that we denote as ai. If
instead the leading eigenvalue is larger than 1, there exists a positive probability of
contagious default, which is pi,t and increases in time. Hence the expected value of
their assets as shocks flow through the system is (1−pi,t)ai. If a stabilization policy
δ̄ > λ̄−1

λ̄
is enforced, the equilibrium asset value of bank i is certain and equal to an.

If banks are risk neutral and the leading eigenvalue is larger than 1, they will be
willing to pay a tax equal to tiai = pi,tai to finance a stabilization policy. It follows
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that the ratio of the optimal tax rates two banks, i and j, are willing to pay is

ti
tj

=
pi,t
pj,t

=
v̄i
v̄j
. (18)

If the policy-maker has to raise total resources of T̄ = δ̄
∑

n an = λ̄−1
λ̄

∑
n an, a

tax rate
t̄i =

v̄i∑
j v̄jaj

T̄ (19)

is able to: (i) cover the financial needs of the policy-makers, (ii) satisfy the equilib-
rium condition for risk neutral institutions.

Moreover, we can show that such a tax is able to align the incentives of banks
with those of the policy-maker, reducing the connectivity of the network and, thus,
the implied network externalities.

Micro-foundation of the Network

We focus only on the linking decisions of banks, which have to chose their degree of
dependence on other entities, given their net worth and liabilities, which sum up to
total assets ai. The maximization problem of banks thus becomes:

max
di1,...,din

Πi = πi(di1, . . . , di,n) + (1− ti)ai (20)

s.t. 0 ≤ dij ≤ 1 ∀j (21)

s.t. dii = 0 (22)

where π denotes the expected payoff of a bank as a function of the linking decisions.
This function captures the gains a bank expects to obtain from connections, as well
as the risks connections involve, since it includes the believes of banks about the
riskiness of exposures. Function πi, then, represents, in a sense, the set of micro-
prudential incentives of banks. As such, this expected payoff does not depend on
the level of systemic risk, since it captures the a priory believes a bank has on the
default risk of other banks.

As for its shape, we assume that (i) it is twice continuously differentiable in
(0, 1)n, (ii) it is strictly quasiconcave, (iii) πi(0, . . . , 0) = 0 and (iv) for every j 6= i,
limdij→1

∂πi
∂dij

< 0. Strict quasiconcavity reflects the fact that a convex combination
of two connectivity levels is always better than the worst one, condition (iii) states
that no connections do not yield gains nor losses and the assumptions at the extreme
tells that full dependence is not desired.

Suppose that taxation does not depend on the choice of connections, then, under
the above assumptions, there exists a unique set of connections (d̄i1, . . . , d̄in) that
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maximizes 20 and it satisfies:

∂πi
∂dij

∣∣∣∣
dij=d̄ij

= −µj (23)

where µj is the non-negative Lagrange multiplier associated with constraint dij ≥ 0.
If d̄ij > 0 then µj = 0.

Consider now the policy-maker’s problem:

max
di1,...,din,t1,...,tn,δ

W =
[
1− P (ξ|δ)

] n∑
i=1

[
πi(di1, . . . , di,n) + (1− ti)ai

]
(24)

s.t.
N∑
i=1

aiti = T = δ

N∑
i=1

ai (25)

s.t. 0 ≤ dij ≤ 1 ∀i, j (26)

s.t. dii = 0 ∀i (27)

where P (ξ|δ) is the probability of a systemic breakdown given the bailout policy δ.
As for the discussion above, if δ < λ̄−1

λ̄
then P (ξ|δ) = 1, if instead δ > λ̄−1

λ̄

then P (ξ|δ) = 0. This condition, together with the first constraint, ensures that the
welfare function is strictly positive as long as δ < 1 which is the case for a finite λ̄.

Now consider a bailout policy δ̄ > λ̄−1
λ̄
, so that the total amount of resources to

be collected is T̄ = δ̄
∑

i ai, and consider a tax rate t̄n = v̄n∑
k v̄kak

T̄ . Then the planner
objective function becomes:

W =
n∑
i=1

[
πi(di1, . . . , di,n) + (1− t̄i)ai

]
, (28)

and the bank’s objective function becomes:

Πi = πi(di1, . . . , di,n) + (1− t̄i)ai. (29)

Hence the set of choices maximizing 29 also maximizes 28. It is clear that a tax
designed in that way depends on the connection choices of the bank since v̄n =∑

k dikv̄k.
Hence in equilibrium every bank will satisfy

∂πi
∂dij

∣∣∣∣
dij=d∗ij

= −µj +
1

λ∗
aiT

∗∑
k akv

∗
k

v∗j , (30)

where the stars denote the socially optimal equilibrium values of the variables, in
order to distinguish them from the spontaneous equilibrium values, indicated with
bars, when no regulatory intervention was enforced. Note that µj ≥ 0, with equality
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for interior solutions, and 1
λ∗

aiT
∗∑

k akv
∗
k
v∗j ≥ 0, with equality if v∗j = 0 or if T ∗ = 0,

which is the case if λ∗ < 1.
The following theorems highlight how the tax does not distort equilibrium struc-

tures which do not generate any systemic risk, while it provides an incentive for
banks to reduce their degree of interconnectedness if the system exhibits systemic
fragility.

Theorem 1. If the spontaneous equilibrium yields d̄ij = 0, then also d∗ij = 0.

Proof. If d̄ij = 0 then ∂πi
∂dij

∣∣
dij=0

< 0. Strict quasiconcavity implies that ∂πi
∂dij

< 0

for any dij. If the solution were interior, relation 30 would imply ∂πi
∂dij
≥ 0, which is

impossible.

Theorem 2. If the spontaneous equilibrium of the system is an acyclic network,
then this is also a socially optimal equilibrium.

Proof. If the acyclic network is an equilibrium when no tax is implemented, then
it maximizes πi for all i, thus any deviation cannot strictly increase the payoff of
banks. Moreover, in an acyclic network the centrality of every institution is zero,
thus any deviation cannot reduce the tax, which is nonnegative. Hence, the acyclic
network remains an equilibrium.

Theorem 3. If the spontaneous equilibrium of the system yields a network with
λ̄ < 1, then this network remains a socially optimal equilibrium.

Proof. In this case no tax would be imposed and problem 29 would remain equal to
problem 20.

Theorem 4. If the spontaneous equilibrium of the system is a network with λ̄ > 1

and d̄ij > 0, then, when the stabilization policy is enforced, d∗ij ≤ d̄ij, with strict
inequality if v∗j > 0.

Proof. If d∗ij = 0 then the statement is trivial. If d∗ij 6= 0, then equation 30 implies
∂πi
∂dij

∣∣
dij=d∗ij

≥ 0, with strict inequality if v∗j > 0. Under the assumption of strict

quasiconcavity this implies that d∗ij ≤ d̄ij, with strict inequality if v∗j > 0.

A tax policy as the one we have suggested has thus important implications:
(i) it provides an incentive to reduce the degree of connectedness, (ii) it conveys
an information on the centrality (and thus the susceptibility to contagion) of other
institutions, (iii) it forces banks to internalize the network externalities they impose.

Our result is consistent with a strand of economic literature on network exter-
nalities (Brock and Durlauf, 2001; Fagiolo, 2005; Katz and Shapiro, 1985; Liebowitz
and Margolis, 1994) and on asymmetric information in financial markets (Stiglitz
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and Greenwald, 1986). Uncertainty regarding the network structure of the economy
leads agent to over-connect with respect to the socially desirable level. Linking de-
cisions of a bank i affect its centrality, which thus in turn affects the centrality of
the banks linking to it. If the centrality of other banks is ignored, institutions may
only rely on their a priori believes, captured by their expected payoff function πi.
The presence of a tax proportional to a trader’s centrality allows, in equilibrium, to
establish the optimal connections as if the network structure were known.

10.2 Estimating Interconnections from Market Data

We have seen in the previous subsection a model of interconnectedness and govern-
ment stabilization policy. The model have two major advantages: (i) we can find
closed-form solution for the systemic importance of institution and for the level of
systemic risk generated by the system, (ii) it is entirely focused on systemic-risk and
exogenous probability of defaults are not needed.

While it may seem very difficult to estimate such a model, recent advancements
in multivariate statistics allow to construct matrix of conditional probabilities of
default. This constitutes the empirical contribution of this paper, i.e. the TailDep
methodology, which aims at estimating from real data the relevant quantities iden-
tified in the model. In order to do so we need to estimate the tail dependencies of
CDS returns using a copula model.

In its simplest definition an n-copula may be defined as a multivariate distribu-
tion function whose support is the unit hypercube [0, 1]n and whose marginals are
uniformly distributed (Embrechts et al., 2003). More specifically a copula function
C : [0, 1]n → [0, 1] is such that: (i) ∀U = (u1, . . . , un) ∈ [0, 1]n, C(U) = 0 if at
least one element of U is zero, (ii) ∀U ∈ [0, 1]n, C(U) = ui if uj = 1, ∀j 6= i, (iii)
∀U,W ∈ [0, 1]n s.t. U ≤ W µC([U,W ]) ≥ 0, where µC([U,W ]) is the probability
measure induced by the copula on the hypercube defined as [u1, w1]× · · · × [un, wn].

The great advantage of modeling random variables with copulas is the possibility
to disentangle the univariate margins from their dependence structure, which is what
the copula formalization captures.

Several measures of correlation and dependence may be computed given a cop-
ula model (Embrechts et al., 2003, 2002), but for our purposes the concept of tail
dependence it the most relevant one. The tail dependence between two random
variables expresses the probability of the two variables being contemporaneously in
the tail of their distribution. In the context of CDS spread returns, it amounts to
the probability of two spread to experience sudden and large co-movements.

In general terms, given two spread returns, ri and rj and their CDFs, Fi and Fj,
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their coefficient of upper tail dependence is

τUij = lim
u→1

P[ri > F−1
i (u)|rj > F−1

j (u)]

and indicates the probability of ri lying in the upper tail of its distribution (thus
possibly tending to infinity) conditional on rj taking an extreme value. Joe (1997)
provides an alternative formulation of the tail dependence in the case of a bidimen-
sional copula, showing how the tail dependence is an property driven by the copula
structure of the data generating process:

τU = lim
u→1

1− 2u+ C(u, u)

1− u
.

Hence, fitting a copula to our data would prove to be an important source of infor-
mation regarding the dependence structure between financial institutions. However,
since data to be fitted must be i.i.d. and spread returns exhibit some autocorrelation
and volatility clusters, we fit the copula model on the normalized residuals zi.

Various contributions in the financial literature (Longin, 2000; McNeil and Frey,
2000; Nystrom and Skoglund, 2002) show how empirical CDFs perform poorly when
the tails of the distribution are the main concern of the analysis. Thus, before
estimating the copula model, we fit the top and lower 10% of the observations with
a Generalized Pareto distribution, in order to account for the presence of fat tails,
while we allow the interior of the distribution to be represented by the empirical
one.

As a model, we chose the t-copula since, as argued by Breymann et al. (2003)
and Mashal and Zeevi (2002), it provides a better model for the analysis of extreme
events, and, more specifically, of extreme co-movements of the variables. A t-copula
is parametrized by its degrees of freedom νij and the Pearson correlation coefficients
ρij, which are estimated via maximum likelihood.

The t-copula, in addition to being a good fit for financial time series, has, in the
bivariate case, interesting properties which allow to compute the tail dependencies
analytically.

Indeed the dependence in the upper-right tail of the distribution of the residuals
is defined in the standard way as

τUij = lim
u→1

P[zi > F−1
i (u)|zj > F−1

j (u)]

which, for a bivariate t-copula, takes a convenient closed form solution (Embrechts
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et al., 2003):

τUij = 2 lim
z∗→+∞

P[zi > z∗|zj = z∗]

= 2

[
1− tνij+1

(√
(νij + 1)

(1− ρij)
(1 + ρij)

)] (31)

where ρij is the Pearson correlation coefficient, νij the degrees of freedom of the
bivariate t-copula and tνij+1 is the CDF of a t-distributed random variable with
νij + 1 degrees of freedom.

As we have seen in Section 8, large jumps in the CDS spread of an entity reflect
large jumps in the intensity of the Poisson process underlying the arrival of default.
An infinite spread correspond to an infinite intensity of default, i.e. immediate de-
fault. The tail dependence of CDS spreads is thus a measure of conditional default
and the estimated tail dependence parameter between the spread returns of institu-
tion i and institution j, τUij , is thus an estimate of the element dij of the matrix D
used in the in the model to describe the dependence structure of the financial system.
The estimated matrix of dependencies is what we define as TailDep network.

11 Results of TailDep

Once the tail dependence (TailDep) network has been estimated we can perform the
estimation of the relevant measures of the model.

A graphical representation of three realizations of the TailDep network is pro-
vided in Figures 18, 19 and 20. They represent the maximum spanning tree of
the TailDep network estimated in the periods 2005-2006, 2008-2009 and 2011-2012,
respectively. A network can be effectively displayed by showing its maximum span-
ning tree, which is the graph obtained from the original one by retaining the most
relevant connections and deleting the redundant ones due to closed cycles. The re-
sulting structure is thus tree-like and connects all the entities belonging to connected
components using the links with the largest weights.

A look at the Figures reveals clusters of entities grouped according to geographi-
cal location and sector of activity. Groups of European, US, Japanese and Australian
companies can easily be detected and, within each of them, banks, insurers and other
entities tend to have the tighter connections with entities of the same sector.

In order to identify the most connected entities we compute the eigenvector cen-
trality of institutions, which we have proved to be a measure of systemic importance
in the previous section10. Since this centrality measure has clear systemic risk im-

10We recall that this estimated network is symmetric, therefore avoiding the problems, pointed
out by Bonacich and Lloyd (2001), of connected nodes receiving no centrality in directed networks.
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Figure 18: Maximum spanning tree of TailDep network for the period 2005-2006. The
maximum spanning tree representation of a network provides a visualization of the most
relevant links, deleting the redundant information contained in closed triangles.
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Figure 19: Maximum spanning tree of TailDep network for the period 2007-2009. The
maximum spanning tree representation of a network provides a visualization of the most
relevant links, deleting redundant information contained in closed triangles.
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Figure 20: Maximum spanning tree of TailDep network for the period 2010-2012. The
maximum spanning tree representation of a network provides a visualization of the most
relevant links, deleting redundant information contained in closed triangles.
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Table 3: TailDep score estimated in the periods 2005-2006, 2008-2009 and 2011-2012.
The score is in percentage terms and is normalized in such a way that the norm of the
corresponding eigenvector is unitary.

2005-2006 2008-2009 2011-2012

Institution Score Institution Score Institution Score

Axa 26.34 Banco Espirito Santo 20.26 Aegon 23.82
Generali 26.16 Banco Comercial Português 19.27 Credit Suisse 22.70
Unicredit Bank Ag 25.60 RBS Plc 19.12 Banco Santander 22.32
Allianz 24.44 Deutsche Bank 18.39 BBVA 21.97
Munich Re 23.71 Swiss Re 18.24 Zurich 21.07
Banco Comercial Português 23.09 Credit Agricole 18.19 UBS 20.25
BBVA 22.73 Allianz 18.05 Deutsche Bank 20.11
Barclays 22.72 Munich Re 17.26 Commerzbank 19.62
Banco Santander 22.36 Rabobank 17.09 Swiss Re 19.40
Aegon 20.87 Société Génerale 17.07 Credit Agricole 19.33
Commerzbank 20.37 Zurich 16.97 Société Génerale 18.74
ING 18.73 RBS 16.93 Lloyds 18.10
Deutsche Bank 17.62 Banco Santander 16.76 Generali 17.08
Lloyds 17.34 BBVA 16.66 BNP 16.85
Banca MPS 16.73 Aegon 16.42 Allianz 16.64
Banco Espirito Santo 15.89 Generali 16.37 Aviva 16.26
HSBC Bank 15.84 Commerzbank 16.27 RBS Plc 15.34
Aviva 15.66 ING 16.02 Axa 15.31
RBS Plc 15.32 Barclays 15.70 Banca MPS 14.88
BNP 14.79 Unicredit Bank Ag 15.43 Unicredit Spa 14.80

plications and since it has been estimated with the TailDep methodology, we call
it TailDep score. Table 3 reports the scores of the most connected 20 entities in
the sub-periods corresponding to 2005-2006, 2008-2009 and 2011-2012. We see how
European entities lead the table of the most systemic institutions, with large banks
and insurers progressively gaining importance.

According to our model, this means that European entities are those who would
benefit the most from a stabilization program. Interestingly, a number of insurers
are represented among the most connected institutions, especially in the first and
last period, highlighting the increasing importance insurance companies are gaining
at a systemic level. In the middle period, which corresponds to the acute phase of
the crisis, the top three entities in terms of centrality are distressed European banks,
probably reflecting their susceptibility to contagion risk.

By comparing the centrality scores in the three periods, one may not how the
largest European institutions gradually gained importance. The width of the edges
in the three Figures, which is proportional to the tail dependence, also highlights
a generalized increase in the tail dependencies of financial firms. Dependencies in-
creased, in particular, between European institutions, possibly reflecting the weak-
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(a) Banks

(b) Insurers

(c) Real Estate

(d) Others

Figure 21: Evolution of TailDep score computed using the eigenvector centrality in the tail
dependence network estimated with a 24-month rolling window. The score is normalized
in such a way that the norm of the corresponding eigenvector is unitary.
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(a) 2005-2006 (b) 2008-2009

(c) 2011-2012

Figure 22: Relation between correlation with the first principal component and TaiDep
score in selected sample periods.

ening of the macro-economic conditions, which may have increased the dependencies
of financial institutions between themselves. The raise, in the ranks, of large central
European entities may indeed reflect the increasing concerns of investors regarding
the riskiness of uncertain intra-financial linkages.

Figure 21 provides the time evolution of the centrality score of each institutions.
The TailDep score has been normalized so that the corresponding eigenvector has
norm one. One can clearly note how banks and insurers have always been the most
connected entities along the whole sample period. As for banks and insurers one
can observe dynamics which are consistent with those found in Figure 17 for the
correlation with the first principal component. Indeed in the period from 2008 to
2011 included, the system seem to be more polarized, with European entities being
clearly more central than other institutions, reflecting the presence of different sets
of institutions with different levels of exposures to systemic risk. In the end of the
sample period, however, this clear grouping disappears, large banks and insurers
started occupying the most central positions and, probably as a consequence of this
fact, the distribution of the TailDep score became less polarized around two regimes.

This observations are corroborated also by Figure 22 which plots the relation
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Figure 23: Leading eigenvalue of TailDep network, which is a measure of systemic risk and
interconnectedness of the system.

between the correlation with the first component and the TailDep score. The relation
is clearly non-linear and, in 2008-2009, a group of entities was forming a cluster
displaying both high correlation with systematic factors and high TailDep score.

Figure 23 shows the leading eigenvalue of the TailDep network estimated using a
24-month rolling window. As we have shown in Section 10.1, the leading eigenvalue
of the dependence network is a measure of systemic risk since it is related to the
intensity of government’s intervention in mitigating the contagion risk. We see that
the eigenvalue markedly increased from the end of the first half of 2007, it remained
at high levels until the second half of 2009, and started decreasing afterwards. It
then fluctuated at intermediate values from mid 2011 to the end of 2012, when it
again started increasing.

The first marked increase is a clear effect of the financial crisis, however, most
of the systemic risk had already been priced by the TailDep network before the
Lehman episode. The decrease seems instead to be due to the European Sovereign
debt crisis. In that period financial institutions have become increasingly connected
to their government and a segmentation of the European market happened. Indeed,
the lower level of systemic risk represented by the TailDep eigenvalue coincides with
the peak of the sovereign crisis. In the second half of 2012 sovereign concerns were
alleviated, thus weakening the sovereign-bank nexus. The dependence of financial
institutions among themselves subsequently began increasing again, together with
the systemic risk.

12 Conclusions

In this paper we put forward a view of systemic risk as the risk generated by and
within the financial system. We provided a model where its quantification is achieved
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by solving for an optimal stabilization policy undertaken by a policy-maker. The
policy-maker can fund this policy by taxing banks according to their centrality
in the financial system. If such a tax is implemented, banks’ incentives coincides
with the regulators’ and a lower degree of interconnectedness is chosen by banks in
equilibrium.

Our contribution, from an operational point of view, allows to measure the risk
generated by a financial system, with no need to bring into its quantification ex-
ogenous risk measures, which are instead sources of idiosyncratic risk. Idiosyncratic
risk regards indeed a triggering event, whose impact on the overall system depends
on its inherent fragility.

From a theoretical point of view, we put forward a model with a large number
of heterogenous banks, showing how, in an economy viewed as a complex intercon-
nected system, the quantification of systemic risk is feasible. Moreover, we high-
lighted that regulators should be concerned about the risk generated by the system
itself, which stems from network externalities, worsened by imperfect information.

Finally, from an empirical point of view, we proposed the TailDep methodology,
which is based on the estimation of the conditional probabilities of default through
a copula model. Our theoretical framework allowed us to identify the relevant mea-
sure of systemic risk and systemic importance of institutions, and to observe their
evolution in the last two decades.

While the use of CDS spreads for the estimation of financial dependencies nec-
essarily implies the use of public information, regulators, which have access to con-
fidential data, may effectively adopt the TailDep methodology as an early warning
signal of the building up of systemic fragility.

In conclusion, we would like to remark the need to proper data collection by
regulators. Indeed, confidentiality issues and the increasing complexity of markets
often prevent full disclosures of the financial linkages institutions have. Regulators,
by collecting and analyzing exposure data in a confidential manner, may put in
place a set of incentives for financial institutions in order to align, in due time,
banks’ objectives with those dictated by a macro-prudential regulation.
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Concluding Remarks
In this thesis we made two contributions to the current debate on systemic risk
and macro-prudential regulation. Our approach was to consider the economy as a
complex system of interacting agents, in which the probability of a systemic event
crucially depends on its interconnectedness.

In Part I, “Defuse the Bomb: Rewiring Interbank Networks”, we investigated
the resilience to contagion of interbank networks under a variety of assumptions
regarding their architecture and banks’ portfolio. We showed how diversification
in the interbank market works both as a risk sharing strategy and as a device to
increase the channel of shock transmission. Hence, contagion risk is non-monotonic
in diversification and there exists an interval of connectivity in which the system is
robust-yet-fragile, i.e. the probability of contagion is low but, when it happens, it
affects the entire system. More heterogenous structures in terms of connectivity, due
to a power-law distribution of the number of connections among traders, are able
to sensibly stabilize the system when shocks are random. However, too-connected-
to-fail and too-big-to-fail banks may exist, posing high contagion risk if distressed.
Moreover, the former are more systemically relevant than the latter, calling from a
more holistic view on the systemic importance of institutions, which does not solely
rely on banks’ size.

We also explored a more complete model of interbank market, in which a short-
term and a long-term segment are present. Banks have to meet regulatory capital
requirements and this may induce runs, which are cleared as a perfect information
equilibria. This dynamic and micro-founded model highlights the challenges reg-
ulators face when the market is seen as a complex system of interacting agents.
We explored the effects of connectivity, capital requirements, portfolio composition
and fire-sale losses, and found how micro-prudential objectives may strongly diverge
from macro-prudential targets.

In Part II, “TailDep for the Measurement of Systemic Risk’, we, first, developed
a statistical analysis of the CDS spreads in order to identify the correlation pat-
terns that emerged during and after the crisis. European banks and insurers are
the entities which are more strongly connected with the systematic factors driving
the largest share of the overall market movements. We then proposed a definition
of systemic risk as the risk generated by and within the financial system. We pro-
posed a model that is able to identify it and relate it to the dependence structure
linking financial institutions in a network. Our measure of systemic risk is the only
determinant of the intensity of the stabilization policy a regulator should pursue in
order to avoid systemic breakdowns.

We then estimated the dependence structure of the global financial system using
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the TailDep methodology: a t-copula model is fitted to the data using a 24-month
rolling window, tail dependencies are estimated and a time series of networks link-
ing reference entities according to their tail dependencies is obtained. The model
provided us with the relevant measure of systemic risk, i.e the leading eigenvalue of
the dependence matrix, and of systemic importance of entities, i.e. their eigenvec-
tor centrality. We found that systemic risk rapidly increased from the end of the
first half of 2007, well before the Lehman episode. Its decrease corresponded to the
phase of the European sovereign distress, and its post-crisis minimum corresponded
with the peak of the sovereign crisis, reflecting the segmentation that global and
European financial markets experienced in that phase. Afterwards, the sovereign-
financial nexus was weakened by central banks’ intervention, and our measure of
systemic risk began rising again. Throughout the years, the most central institu-
tions are European entities, and, recently, the largest European banks, together with
a number of insures, gained systemic importance.

Our contributions to the understanding of systemic risk crucially relied on the
view of the financial system as an interconnected network of institutions. Emi-
nent authors (Brunnermeier and Oehmke, 2012; Caballero, 2010; Haldane, 2009;
Hansen, 2013; Schweitzer et al., 2009; Stiglitz, 2010) have welcomed network theory
as a promising field of research. However, many of them blame its lack of micro-
foundation. In both our contribution, we tried to meet this theoretical request,
highlighting how the behavior of agents in a complex system may yield, in gen-
eral equilibrium, results which do not coincide with conclusions reached in a partial
equilibrium perspective.

We hope our models will serve as a basis to build theoretically robust early
warning signals of incipient crisis and to design an appropriate set of micro-incentives
in order to grant stability to the entire system. The need for macro-prudential
regulation today is felt more strongly than ever in history, and the consciousness of
the importance of an efficient and stable financial system has rooted in the academic
and regulatory environments. Theoretical and empirical investigations on systemic
risk are thus increasingly demanded, and we hope to have met, at least in part, this
demand.
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