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SOMMARIO

Materiali compositi fibro-rinforzati a matrice polimerica (FRP) sono correntemente im-
piegati per il rinforzo e la riabilitazione di strutture in calcestruzzo o muratura, ottenuti
tramite l’incollaggio di lamine di forma opportuna sulla superficie dell’elemento debo-
le. Studi sperimentali hanno mostrato che il collasso avviene per delaminazione della
lamina di FRP dal supporto, innescata dalla concentrazione di tensione all’estremità del
rinforzo. La frattura si propaga prima all’interfaccia parallelamente al rinforzo e poi al-
l’interno del substrato, portando alla completa separazione dei due aderenti. La rottura
finale è spesso caratterizzata dal distacco di un bulbo a forma di cuneo dal substrato,
che rimane adeso alla lamina di FRP. Per descrivere l’intero processo, si è considera-
to il problema-modello di una lamina sottile elastica, incollata al bordo di una lastra
semi-infinita in stato piano generalizzato di tensione. Lo spessore del rinforzo è supposto
piccolo in modo tale da poterne trascurare la rigidezza flessionale, così che le tensioni
di contatto sono tangenziali. Al contrario di quanto avviene nei modelli correnti, non si
trascurano le deformazioni elastiche del supporto: questo costituisce la principale novità
dell’approccio proposto. La compatibilità delle deformazioni tra rinforzo e substrato si
traduce in un’equazione integrale singolare per il problema di contatto, la cui soluzione è
ottenuta con un’espansione in serie di Chebyshev. Il processo di delaminazione, che av-
viene prevalentemente in modalità II di frattura, è attivato nel momento in cui il rilascio
di energia di deformazione eguaglia l’energia di frattura dell’interfaccia. Se l’adesione è
perfetta, il modello elastico predice la singolarità degli sforzi agli estremi del rinforzo. Le
tensioni nell’intorno della singolarità all’estremità caricata della lamina equilibrano, in
pratica, l’intero carico applicato, in disaccordo con l’evidenza sperimentale che mostra
invece una lunghezza effettiva di incollaggio (EBL), dove il trasferimento del carico avvie-
ne gradualmente. Per risolvere questa incongruenza, in una seconda modellazione è stata
introdotta una zona coesiva in corrispondenza dell’estremo caricato, in cui si può avere
scorrimento tra i due aderenti secondo una relazione costitutiva di interfaccia, finché non
si raggiunge un valore limite dello scorrimento. Seguendo un approccio alla Barenblatt,
la lunghezza della zona coesiva è trovata imponendo che il fattore di intensificazione degli
sforzi sia nullo in corrispondenza della transizione tra zona adesa e zona coesa, così da
eliminare la singolarità. Esiste una massima lunghezza di tale zona, nella quale le forze
coesive equilibrano praticamente tutto il carico applicato, e che pertanto può essere indi-
cata come la EBL. Si è pure mostrato che la singolarità all’altro estremo del rinforzo non
ha un ruolo importante, essendo trascurabile la parte di carico ad essa associata. Per
descrivere il fenomeno del distacco del bulbo cuneiforme, si è considerato un modello alla
Griffith per la frattura del substrato, assumendo un propagazione di cricca per quanti
di lunghezza finita, dello stesso ordine di grandezza della lunghezza intrinseca del mate-
riale. Dalla competizione, in termini energetici e tensionali, fra la rottura all’interfaccia
del giunto e la fessurazione del substrato, è stato possibile determinare un angolo critico
di propagazione della cricca che coincide con l’angolo caratteristico del cuneo distaccato.
I risultati ottenuti dai modelli analitici sviluppati sono in ottimo accordo con i risultati
sperimentali.
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ABSTRACT

Fiber Reinforced Polymers (FRP) are commonly used for strengthening and rehabilita-
tion of concrete or masonry structures, by gluing strips or plates made of this material on
the surface of the weak material. Experimental studies have provided evidence that the
main failure mode is the debonding of the FRP stiffener from the support, triggered by
high stress concentrations at the extremities of the stiffener. Fracture propagates firstly
parallel to the interface and then in the substrate, until complete separation between
the two adherents occurs. Final failure is often characterized by the detachment of a
wedge-shaped portion of the substrate, which remains bonded to the FRP strip. In or-
der to describe the whole process, the model problem considered here is that of a finite
thin elastic stiffener, bonded to an elastic half-space in generalized plane stress, pulled
at one end by an axial force. The thickness of the stiffener is supposed very small, so
that its bending stiffness can be considered negligible and only shear stresses act at the
interface. On the contrary to the common assumptions of current models, the elastic
deformations of the substrate are not neglected here: this is the main novelty of the pro-
posed approach. Compatibility equations between the stiffener and the substrate allow
to write a singular integral equation for the contact problem, whose solution can then
be obtained through an expansion in Chebyshev’s series. The debonding process in pure
mode II is supposed to be activated by an energetic balance, i.e., when the release of
elastic strain energy equals the surface energy associated with material separation. If the
bond is perfect, the theory of elasticity predicts stress singularities at both ends of the
stiffener. The shear stresses in a neighborhood of the singularity at the loaded end of
the FRP strip is sufficient to counterbalance, in practice, the whole load applied, while
the experimental evidence shows instead an effective bond length (EBL), over which the
load transfer occurs gradually. To solve this inconsistency, in a second model a cohesive
zone has been introduced at the loaded end of the stiffener, where slippage can occur
according to an interface constitutive law, until a limit slip value is reached. Following
an approach à là Barenblatt, the length of this zone is found by imposing that the stress
intensity factor is null at the transition zone between the completely bonded part and
the cohesive part, so to annihilate the stress singularity. There is a maximal reachable
length of this cohesive zone, in which cohesive forces counterbalance, in practice, all
the applied load, and which, therefore, can be referred to as the EBL. It can be also
demonstrated that the second singularity at the free end of the stiffener plays a minor
role, being negligible the load associated with it. In order to describe the phenomenon
of the wedge-shaped fracturing of concrete, a fracture mechanics problem à là Griffith
has been considered for the substrate, assuming the crack propagation occurs in steps
of finite length (quanta), of the same order of the intrinsic material length scale. From
the energetic and tensional competition between the failure of the adhesive joint and the
fracturing of the substrate, it has been possible to determine a critic propagation angle
which coincides with the characteristic angle of the detached wedge-shaped bulb. Results
obtained from the analytical models are in very good agreement with the experimental
results.
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CHAPTER 1

INTRODUCTION

1.1 Background
In recent years, there has been an increased interest in strengthening and rehabi-
litation of Reinforced Concrete (RC) structures. As a matter of fact, the ageing
of infrastructures, the change of service loads, the demand of higher capacities to
withstand seismic events have led to the necessity of an improvement of the per-
formance of existing construction works during their service life. An effective and
non-invasive method for increasing the capacity of RC structures is through the
use of externally bonded reinforcement. Steel plates have traditionally been used
as reinforcement to increase the flexural an shear capacity of structural elements.
However, over the last two decades, the application of Fiber Reinforced Polymers
(FRP) as external reinforcement has received much attention. This material has
in fact a higher tensile strength, higher strength-to-weight ratio and higher corro-
sion resistance than other structural materials, such as steel. Thanks to their light
weight, field application of FRP plates is easier and, although the material costs
may be high, the improved durability offered by FRP materials can make them the
most cost-effective material in many cases. The main issue associated with FRP
strengthened structures is the debonding or peeling of the plate from the support
before the desired strength or ductility is achieved. Despite the amount of literary
work, there exists a lack of knowledge on some aspects of the phenomenon. This
may result in erroneous implementation of FRP repair methods in rehabilitating or
strengthening existing structures. In order to overcome this drawback, this study
focus on the debonding behavior, failure mechanisms, and interfacial properties
that limit the composite system from achieving its desired goal.

1.2 Research objective and scope
The principal objectives and scope of this investigation are:

• To provide a review of the state-of-the-art in FRP strengthening concrete
structures and analyze the aspects that mainly influence the behavior of a
bonded joint.



1.3 Outline

• To develop an analytical model able to describe the interfacial behavior in
the FRP-to-concrete bonded joint.

• To analyze the effect of the substrate elasticity in the contact problem be-
tween an elastic FRP stiffener and the concrete substrate.

• To investigate the effect of the singularities arising from the elasticity prob-
lem on the behavior of the bonded joint and the effect of cohesive forces at
the interface.

• To analyze and fully describe the process of debonding of the FRP plate
from the support when a longitudinal force is applied at one end.

• To develop an analytical model for the description of crack propagation into
the substrate in order to give an insight on the separation of a wedge-shaped
concrete prism at the free end of the FRP plate.

1.3 Outline
This thesis is divided into six chapters and three appendixes. The chapters are
organized as follows:
Chapter 2 - presents a state-of-the-art review of the existing work on FRP applica-
tions in structural strengthening, pointing out the main aspects that characterize
the FRP-to-concrete interaction.
Chapter 3 - introduces a model problem for the debonding of an elastic stiffener
from an elastic substrate, highlighting the influence of the substrate elasticity. At
this stage, the case of a perfectly-adherent stiffener is considered, focusing the
attention on the debonding process assumed to begin, and continue, as soon as
the energy release rate due to an infinitesimal delamination becomes equal to the
interfacial fracture energy (Griffith balance).
Chapter 4 - presents a model which considers the effect of cohesive forces at the
interface. The presence of cohesive zones, where slippage between FRP plate
and concrete can occur, allows to eliminate the singularities predicted by the
theory of elasticity in the case of a perfect adherent stiffener. As a matter of
fact, stress singularities at both ends of the stiffener produce an inconsistency
in reproducing some aspects of the debonding phenomenon. The cohesive model
is able to describe the entire process, taking into account the main factors that
thoroughly characterize it.
Chapter 5 - presents an analytical model to describe peculiar phenomenon that
occurs in the last stage of debonding: an inclined crack forms starting from the
free end of the stiffener, so to define a wedge-shaped portion of the substrate
that eventually separates to form a characteristic bulb that remains attached to
the stiffener. The model employees the distributed dislocation technique and the
hypothesis of a finite propagation of crack.
Chapter 6 - summarizes conclusions from the investigation, contributions and rec-
ommendations for further research.
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CHAPTER 2

STATE OF THE ART

2.1 Introduction
Existing construction works have to face modification or improvement of their per-
formance during their service life. The main causes can be the change in their use,
deterioration due to exposure to an aggressive environment and abrupt events such
as earthquakes. To meet the need of rehabilitating and retrofitting the existing
structures, various innovative techniques and new materials have been recently
developed. Among them, the outstanding performance of the Fiber Reinforced
Polymer (FRP) composites makes them an excellent candidate for repairing or
retrofitting existing civil infrastructures. This is due to the many advantages
these materials afford when compared to conventional steel reinforcement or con-
crete encasement, some of which include [2]:

• light weight;

• high strength-to-weight ratios;

• outstanding durability in a variety of environments;

• ease and speed of installation, flexibility, and application techniques;

• the ability to tailor mechanical properties by appropriate choice and direction
of fibres;

• outstanding fatigue characteristics (carbon FRP);

• low thermal conductivity.

2.2 Mechanical properties of FRP
Composite materials are obtained by the combination of two or more materials, on
a macroscopic scale, to form a new and useful material with enhanced properties
that are superior to those of the individual constituents alone. In particular, an
FRP is a specific type of two-components composite material consisting of high
strength fibers embedded in a polymeric matrix (Figure 2.1). The most common
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applications of FRPs in structural engineering comprehend: i) externally bonded
FRP plates, sheets and wraps for strengthening of reinforced concrete, steel, alu-
minum and timber structural members; ii) FRP bars for internal reinforcement
of concrete and iii) all-FRP-structures (structures all made by FRP materials).
As regards retrofitting applications, FRP sheets or plates are typically organized
in a laminate structure, such that each lamina (or flat layer) contains an arrange-
ment of unidirectional fibers or woven fiber fabrics embedded within a thin layer of
light polymer matrix material. The fibers, typically composed of carbon, glass or
aramid, provide the strength and stiffness. The matrix, commonly made of epoxy,
vinyl ester or polyester, binds and protects the fibers from damage, and transfers
the stresses between fibers [2]. A comparison of the different FRP mechanical
properties is shown in Table 2.1. Since the presence of two distinct materials,
overall FRP material properties depend on the characteristics of the individual
constituents.

Figure 2.1: Material components of a FRP composite [2].

In particular, Figure 2.2 shows the constitutive laws of the fibers, of the matrix
and the correspondent composite. It can be noted that the stiffness of the latter
is lower than that of the fibers and its ultimate failure corresponds to a value of
deformation equal to that of the fibers. After this value, the stress transfer from
the fibers to the matrix cannot be possible.
The mechanical properties of an FRP depend also on the orientation of the fibers
within the matrix. In general, for the purpose of the external reinforcement of
concrete, the used FRP materials are usually unidirectional (with all the fibers
oriented along the length of the sheet). There are then two different types of
FRP composites available: plates, i.e., rigid strips obtained by a process called
pultrusion, and sheets, made of raw or pre-impregnated fibers. The sheets are
then applied on the element surface by saturating fibers with an epoxy resin.
For unidirectional FRP materials, an estimate of the mechanical behavior of the
composite can be possible using micro-mechanical models. In particular, through
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Figure 2.2: Constitutive laws of fibers, matrix and relative composite [3].

Table 2.1: Typical mechanical properties of materials used in retrofitting [4].

Material Tensile strength Modulus of elasticity Density Modulus of elasticity
[MPa] [GPa] [kg/m3] to density ratio [Mm2/s2]

Carbon 2200-5600 240-830 1800-2200 130-380

Aramid 2400-3600 130-160 1400-1500 90-110

Glass 3400-4800 70-90 2200-2500 31-33

Epoxy 60 2.5 1100-1400 1.8-2.3

CFRP 1500-3700 160-540 1400-1700 110-320

Steel 280-1900 190-210 7900 24-27

5
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the rule of mixtures, the elastic modulus of the FRP, EFRP , can be approximately
expressed in terms of the elastic moduli of the component materials, Em for the
matrix and Ef for the fiber, and the their respective volume fractions, Vm and Vf ,
to obtain [1]:

EFRP = VfEf + (1− Vf )Em. (2.1)

In the same way, the ultimate strength of the FRP

σFRP = Vfσf + (1− Vf )σm. (2.2)

where σf and σm are the tensile strength of the fibers and of the matrix, respec-
tively. It should be noted that the rule of mixtures, based on the hypothesis of
perfect adherence between fibers and matrix, gives accurate estimation of the elas-
tic modulus, while the value of the ultimate strength is in general not so accurate.
For this reason, in the design of the reinforcing system, it is always suggested to
evaluate both mechanical values (EFRP and σFRP) experimentally [1].

2.3 FRP strengthening of structural elements
During the past years, FRP materials have been increasingly used for the re-
pair and rehabilitation of existing structures. A noteworthy application refers to
the flexural and shear strengthening of concrete structural elements, according to
which FRP strips or plates are bonded to the exterior of the concrete members
using a wet lay-up procedure with an epoxy resin. In flexural applications, the
FRP sheets are bonded to the tension side of the element to improve the bending
capacity. The fibers are oriented along the longitudinal axis of the beam (Fig-
ure 2.3(a)). In shear applications, FRP materials are applied on the side faces
of the element (often in the form of U-wraps) (Figure 2.3(b)) to provide shear
reinforcement which supplements that provided by the internal steel stirrups. In
this case, the fibers are usually aligned perpendicular or rotated at a certain an-
gle β with respect to the longitudinal axis of the beam. There are also cases in
which FRPs are wrapped around reinforced concrete columns to provide confining
reinforcement (Figure 2.4). Under compressive axial load, the column expands lat-
erally and the FRP develops a tensile confining stress that places the concrete in a
state of triaxial stress (Figure 2.4(a)). This significantly increases the strength and
ductility of the concrete and the column. The fibers are generally perpendicular
to the longitudinal axis of the element.
Due to the popularity of these techniques, most of the research is focused on the
mechanical behavior of the bonded joints. There are many different experimental
set-ups for the determination of the FRP-to-concrete bond strength. Chen et al.
[5] classified the existing test set-ups into the following types (Figure 2.5): (a)
Far End Supported (FES) and (b) Near End Supported (NES) double-shear tests
[6, 7]; (c) FES and (d) NES single-shear tests [8, 9, 10, 11, 12, 13]; and (e)-(f)
beam or bending tests [14, 15]. All these tests may also be referred to as pull
tests, as the plate is always directly pulled by a tensile force and an extensive list
of references can be found in [13, 5].

6
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(a)

(b)

(c)

Figure 2.3: Strengthening of a reinforced concrete T-beam using externally-bonded FRP
reinforcement. (a) Flexural strengthening [3]; (b) Various schemes for shear strengthening [3];

(c) Flexural and shear strengthening application.

7
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(a)

(b)

Figure 2.4: Strengthening of a circular reinforced concrete column using externally-bonded
FRP wraps. (a) Confinement mechanism [3]; (b) Axial strengthening application.
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Figure 2.5: Classification of bond tests [5].

A more detailed scheme of the pull test is represented in Figure 2.6. According
to some recent studies [11], if the FRP plate is bonded close to the front side of
the concrete specimen, very high tensile stresses occur in this concrete portion.
As a consequence, an early failure typically occurs due to concrete splitting of a
prism with triangular section (Figure 2.7(a)). On the contrary, when the plate
bonded length starts far from the front side, tensile stresses are much smaller with
respect to previous case due to the confinement effect of concrete, and a more
regular growth of delamination along the specimen can be followed during the test
(Figure 2.7(b)). For this reason, in the pull-out test an unbonded zone is usually
left near the loaded end of the FRP plate (Figure 2.6).

2.3.1 Failure modes

There are different failure modes of FRP-to-concrete bonded joints and interfacial
debonding is one of the most common. A broadly classification can be made in
order to distinguish the different failure modes for FRP strengthened concrete
structures: i) failure related to the reach of the ultimate flexural or shear strength
of the materials and ii) interfacial debonding. If the ends of the plate are properly
anchored, then failure occurs when the ultimate flexural capacity of the beam is
reached, by either tensile rupture of the FRP plate (Figure 2.8(a)) or crushing of
concrete under compression (Figure 2.8(b)). The concrete beam can also fail in
shear if the flexural capacity of the strengthened beam exceeds the shear capacity
of the RC beam alone (Figure 2.8(c)). All these failure modes belong to the first
category and occur when the full composite action between concrete and FRP is
achieved. Numerous experimental studies have also reported brittle debonding
failures in plated beams prior to their ultimate flexural or shear strength being
reached. A variety of debonding failure modes have been observed in tests [5, 13]

9
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Figure 2.6: Scheme of a pull test.

(a) (b)

Figure 2.7: Effect of the FRP bonding mode on the concrete support [11]: (a) FRP plate
bonded starting from the front side of concrete block; (b) FRP plate bonded far from the front

side of concrete block.
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and these can be broadly classified into two types: (a) those associated with high
interfacial stresses near the ends of the bonded plate (Figure 2.8(d-e)); and (b)
those induced by a flexural or flexural-shear crack (intermediate crack) away from
the plate ends (Figure 2.8(f-g)).

Figure 2.8: Failure modes of FRP-strengthened RC beams.

Failure modes such as plate-end debonding and intermediate crack-induced debond-
ing are regarded as local failures. In these cases, the composite action between
concrete and FRP is lost and prevents the strengthened beam from reaching its
ultimate flexural capacity due to debonding. Thus, local failures must be con-
sidered in design to ensure structural integrity. In general, with reference to the
debonding failures, experimental evidence shows that the main failure mode is
the cracking of concrete under shear, occurring commonly a few millimeters below
the adhesive-concrete interface [6, 16]. Interfacial failure involving the rupture of
adhesives is not found, due the availability of strong adhesives that bond well the
support and the reinforcement. The experimentally-observed phenomenon is of
the type schematized in Figure 2.9.
If the axial stiffness of the reinforcement is high and the bond is strong, the
application of an axial pull-out load produces the initiation of cracking from the
loaded edge; the crack slightly dives into the substrate and then propagates almost
parallel to the interface a few millimeters beneath it, reaching a steady state phase
of mode II propagation [17]. In fact, the maximal energy release rate is when

11
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Figure 2.9: Crack propagation in a brittle substrate.

the FRP sheet itself is released. More precisely, a thin layer of the underlying
substrate remains attached to the reinforcing stringer, but this layer is so thin
that its contribution to the tension stiffening of the stringer is usually neglected:
indeed, if this was not the case, the energy release associated with the stringer
would be diminished. On the other hand, the contribution due to the glue layer
can certainly be neglected due to its infinitesimal thickness. Therefore, a model-
problem may consider the pure separation in mode II of the stringer from the
substrate.

2.3.2 Bond-slip behavior
In order to fully comprehend the behavior of the bonded joint, the experimen-
tal tests introduced at the beginning of paragraph 2.3 need to focus on different
aspects of the bond mechanism of FRP-to-concrete interface. In the following, a
non-extensive list of these aspect is summarized and a reference can be found in
[18].
2.3.2.1 Bond strength
Various shear-anchorage-strength models have been proposed to interpret the in-
terfacial debonding mechanism, for which a review can be found in [5, 19]. In
general, these models can be classified into three categories: i) empirical models
based on the regression of test results [6]; ii) engineering formulations based upon
simplified assumptions and appropriate safety factors [16, 5]; iii) Fracture Mechan-
ics Based (FMB) models [20, 9, 21, 22]. Experimental and theoretical studies have
shown that there is a certain number of parameters that governs the bond-slip
behavior and consequently the ultimate bond-strength of the bonded joint: the
concrete strength, in terms of the cylinder compressive strength, f ′c or the average
tensile strength, fctm, the bond length, l, the FRP axial stiffness, EsAs, the FRP-
to-concrete width ratio, bs/bp (Figure 2.6). Each model expresses the dependence
by these parameters in different ways and a non-exhaustive summary can be found
in Table 2.2. In this table, one can find the maximum load that can be achieved
by the joint Pu, the effective bond length (see paragraph 2.3.2.2 ) Le and the frac-
ture energy of the interface Gf , according to some of the shear-anchorage-strength
models present in the literature.

12
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2.3.2.2 Effective bond length
In general, in pull-out tests the axial force in the stiffener is gradually transmitted
to the substrate by shear forces acting at the interface. Such forces decay very
quickly passing from the loaded end to the free end of the stiffener, so that they can
be considered active on a certain length only, usually referred to as the effective
bond length or the effective stress transfer length. In long stiffeners, as the load
increases, debonding near the applied load shifts the stress transfer zone to new
areas farther away from the loading point, confirming that only part of the bond is
active. In other words, the anchorage strength does not increase with an increase
of the bond length beyond its active limit. However, a longer bond length may
improve the ductility of the failure process due to the gradual translation of the
effective length, as debonding proceeds. This phenomenon has been confirmed by
many studies on steel-to-concrete [9] and FRP-to-concrete bonded joints [6]. This
is a fundamental difference between an externally bonded plate and an internal
reinforcing bar for which a sufficiently long anchorage length can always be found
so that the full tensile strength of the reinforcement can be achieved. Table 2.2
shows some expressions of the effective bond length according to some models
present in the literature.
2.3.2.3 Interface constitutive law
Pull-out tests furnish not only the ultimate load of the FRP-to-concrete interface,
but they can be used to build the local bond-slip law of the interface [23, 6, 7,
14, 24, 25], correlating the shear bond-stress τ with the relative slip s of the two
adherents. Bond-slip curves are generally obtained in two ways: (a) from axial
strains of the FRP plate measured with closely spaced strain gauges [26, 9, 14, 10];
(b) from load-displacement (slip at the loaded end) curves [27].
In the first method, assuming a linear variation of strains between two subse-
quent strain gauges, the average value of bond stresses is obtained by writing the
equilibrium of the portion of plate where the strain gauges are located, while the
corresponding slip can be found by a numerical integration of the measured axial
strains of the plate. This method appears to be simple but it does not produce
accurate bond-slip curves, since it cannot get rid of the experimental uncertainties
related to the measurement of the strains, very sensitive to the presence of con-
crete cracks, to the heterogeneity of concrete and the roughness of the underside
of the debonded FRP plate. Consequently, bond-slip curves found from different
tests may differ substantially. In the second method, the local bond-slip curve is
determined indirectly from the load-slip curve, but it is easy to show that rather
different local bond-slip curves may lead to similar load-displacement curves.
A typical response for a FRP/concrete interface is represented by the curve of Fig-
ure 2.10(b): after a pseudo-linear branch up to the peak stress τf , a strain-softening
phase follows, where increasing relative slip results in a decreasing interfacial shear
stress transfer along the interface. The shear stress then drops to zero and this is
associated with the complete separation of the FRP strip from the concrete sub-
strate. The area under the τ − s curve represents the interfacial fracture energy
Gf and can be obtained by integration in the form [29]:

Gf =
∫
τds. (2.3)
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(a)

(b)

Figure 2.10: Shear-stress vs. slip constitutive relationship for FRP-to-concrete: (a) Bond-slip
curves from existing bond-slip models [28]; (b) Tri-linear approximations.
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Lu et al. [28] summarized four existing bond-slip models for an FRP-to-concrete
bonded joint, whose curves are shown in Figure 2.10(a). It can be seen that the
shapes of the predicted bond-slip curves differ substantially. In particular, the
linear-brittle model of Neubauer and Rostasy [30] is very different from the other
three models and it is considered unrealistic. Nakaba et al. [31] and Savoia et al.
[32] have shown that the bond-slip curve should have an ascending branch and a
descending branch. A bilinear model of bond-slip curve is proposed by Monti et al.
[33]. Apart from the general shape, the slip at maximum stress and the ultimate
slip at zero bond stresses, determine the accuracy of the model. It is interesting
to notice that the models by Nakaba et al. [31], Monti et al. [33] and Savoia et al.
[32] are in reasonably close agreement, and the linear-brittle model of Neubauer
and Rostasy [30] predicts a similar maximum bond stress. Lu et al. [28] used
another approach to obtain the bond-slip curve of FRP-to-concrete. Their new
bond-slip models are not based on axial strain measurements on the FRP plate;
instead, they are based on the predictions of a meso-scale finite element model,
with appropriate adjustments to match their predictions with the experimental
results for a few key parameters. The bond-slip curves proposed by Lu et al. [28]
(the precise model and the bilinear model) are shown in Figure 2.10(a) as well.
As suggested in recent technical standards [1], a convenient curve can be obtained
by approximating the τ −s interface law with a trilateral (Figure 2.10(b)), formed
by a linearly ascending branch up to peak stress τf , followed by a linear softening
phase approaching the fracture slip sf where τ = 0 and, finally, a zero-stress
plateau. The fracture energy per unit-surface is Gf = 1

2τfsf and, in general, such
value is made to coincide with the integral of the τ vs. s experimental curve. This
equivalence allows to evaluate the limit slip sf once the peak load τf is known and
viceversa.

2.4 Analysis of the debonding process
The different-in-type pull tests shown in Figure 2.5 allow to have an insight into the
debonding mechanism, triggered by the high shear stress concentrations typically
found at the edges of the reinforcement. A direct shear test geometry consists of
a stiffener bonded to a substrate, which is restrained from movement and where a
longitudinal force is applied at one end of the FRP plate (Figure 2.6). A general
configuration of a pull out test is represented in Figure 2.11.
Equally-spaced strain gauges are usually glued on the top of the FRP plate in
order to measure longitudinal strains. Linear Variable Differential Transformers
(LVDTs) are positioned on both sides of the FRP composite (on the concrete
block) to measure the relative displacement of the FRP plate with respect to
the concrete support. The test is then conducted applying an increasing load at
one extremity of the FRP. Typical results show the actual load plotted against
the relative displacement of the FRP, measured by the LVDTs. As shown by
various experimental results present in the literature, the load response is initially
approximately linear, becomes nonlinear and then levels off and essentially remains
constant at a certain critical value of load with increasing global slip up to failure
(Figure 2.12).
These results are not able to capture a very important part of the process, that
is the snapback following the constant load phase. As a matter of fact, numerical
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Figure 2.11: Test setup of the experimental campaign of [12]: (a) Scheme of the specimen with
LVDT’s and strain gauges applied on the plate and (b) picture of the specimen on the

supporting system.

analysis have shown that the behavior of the bonded joint is strongly characterized
by the bond length l [23]. “Short” stiffeners show a post-peak softening while
“long” stiffeners are characterized by a plateau, usually followed by a snapback
phase, the more accentuated the higher the bond length is (Figure 2.13).
Scaling in the maximum load has been observed and the maximum load to achieve
complete debonding has been experimentally shown to increase with an increase
in the bond length until a critical length is reached after which no additional
increase in load capacity is possible. We can then conclude that most of the
experiments recorded in the technical literature are strain driven tests, which are
not able to capture any snap-back response. An exception is the experimental
campaign recently performed at the University of Parma by Carrara et al. [12],
where a closed-loop tensometer was used to control the force P applied at a FRP
stiffener glued to concrete specimens, according to the output of LVDT transducers
(Figure 2.11). Two different controls were used. Tests were started controlling the
load with a certain rate until the displacement measured by the clip-gauge reached
its measuring range; successively, the control was switched to the relative sliding of
the opposite free end of the stiffener, through a clip gauge. An observation of the
experimental test allows to understand the propagation of debonding. Considering
for example a bonded length of 150 mm, as long as the FRP stiffener is pulled, the
interface crack is observed to initiate in the nonlinear part of the load response.
Once the crack initiates in the interface, it grows in a stable manner. At the peak
load, a portion of FRP plate close to the applied load is complete detached from the
substrate. This debonded zone propagates in a self-similar manner at a constant
applied load with an increase of the slip of the reference point, as a consequence
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(a) Tests of Täljsten. [9].

(b) Tests of Ali-Ahmad et al. [23]

Figure 2.12: Experimental load-displacement curves for pull-out tests on FRP/concrete bonded
joints.

Figure 2.13: Typical load-displacement curves for pull-out tests on FRP/concrete bonded joints
for different bond lengths [23].
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of the deformation of the part of the FRP that is completely debonded. At a
certain point, both the load and displacement decrease simultaneously, producing
the phase that is known as snapback. The load carrying capacity of the remaining
bonded part starts to decrease with additional crack growth. Snapback results
due to the elastic unloading of the fully debonded FRP. This phenomenon, which
is associated with a sudden release of elastic energy, would result in a catastrophic
failure of the bond and becomes more dangerous as the bond length increases.
The final failure of the specimen is produced by complete separation of the FRP
composite sheet from the concrete substrate and the formation of a concrete bulb
at the free end of the reinforcement, whose extension is in general approximately
equal to the width of the lamina, and it seems independent from the reinforcement
length [34] (Figure 2.14).

Figure 2.14: Bulbs at FRP free end for different lengths of the reinforcement [34].

2.5 Open problems
To my knowledge, the totality of the analytical anchorage-strength models neglects
the elastic deformation of the substrate and assumes a shear vs. slip interface
constitutive law to describe the entire phenomenon. Whatever the length of the
stiffener is, such models predict a fast (usually exponential) decay of the transfer
shear stress from the loaded-end to the free-end that never reaches the zero value.
Since no part of the stiffener is inactive regardless of its length, the definition itself
of effective bond length needs an engineering interpretation. For example, many
researchers define the effective bond length as the bond length over which the shear
bond stresses offer a total resistance which is at least 97% of the ultimate load1 of

1Notice that tanh 2 ' 0.97: this is a characteristic value in the solution of the differential equa-
tions governing the debonding process [21]. Therefore, the limit of 97% seems to be motivated
by the analytical approach to the problem, rather than by sound physical considerations.

18



CHAPTER 2. STATE OF THE ART

an infinite joint [21, 25, 35, 36]. According to other authors, the evaluation cannot
but be purely experimental. Measuring the strain profile in the stiffener - usually
employing resistance strain gauges - the effective bond length is the length over
which the strain decays from the maximum to the zero value [23, 10, 37, 38, 39, 40].
There are some intrinsic ambiguities in these definitions. In the first case, there
is an a priori-defined percentage of load and the result strongly depends upon
the particular bond-slip constitutive law that is used for the model. For example,
Yuan et al. [21] and Wu et al. [35] studied the influence of the shape of the
interfacial constitutive relationships on the load capacity of the bonded joint (Fig-
ure 2.15), developing equations for the ultimate load, the interfacial shear stress
distribution and the effective bond length. The second definition cannot get rid of
the experimental approximations and depends upon the sensitivity of the gauges.
In any case, all definitions implicitly assume that the deformation of the substrate
is negligible, because the relative displacement between stiffener and substrate is
evaluated by simply integrating the axial strain of the stiffener. The hypothesis of
rigid substrate is indeed supported by the greatest majority of authors (see also
[12, 26, 11]) because it gives drastic simplifications, but it has major drawbacks,
such as the implication that the slip is always nonzero whatever the bond length
is.

Figure 2.15: Shear-stress vs. slip constitutive relationships for FRP to concrete bonded joints
used to develop the anchorage bond strength model of [21].

Moreover, as evidenced in section 2.4, the failure of the bonded joint is character-
ized by the complete separation of the FRP plate from the support. The duration
of this process depends on the bond length of the FRP strip. It is very short or
may not be noticed at all for a small bond length, but may be easily seen for long
stiffeners. The completely debonded strips evidence the presence of a concrete
bulb at the unloaded end [34, 12, 13] (Figure 2.14). A review of the existing liter-
ature has evidenced a lack in the description of this phenomenon, which instead it
has been proved to be a characteristic part of experimental tests. Biolzi et al. [34]
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2.5 Open problems

have been able to identify the onset of the bulb formation by comparing the load-
stroke and the load-clip curves of the individual tests: when the load drops with
a small change in clip-gauge displacement, the Load-Stroke response exhibits an
unstable branch (snap-back). In order to detect this phenomenon, Carrara et al.
[12] applied a LVDT at the free end of the FRP plate to measure the orthogonal
displacements between concrete and plate. Their results reveal that the peeling
crack appears during the snap-back branch of the load-slip curves. In general, the
debonding process starts from the loaded end and, as explained in section 2.4,
propagates towards the free end of the stiffener until the energy release rate of the
propagating crack is higher than the fracture toughness of the interface. As soon as
it approaches the free end, the interface delamination stops and a crack appears
at the unloaded end of the stiffener. As the process continues, the final failure
is then characterized by the formation of the concrete prism. Starting from the
physical observation of the phenomenon, its interpretation through an analytical
model will be pursued in the following chapters.
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CHAPTER 3

THE EFFECT OF THE DEFORMATION OF THE
SUBSTRATE

3.1 Introduction
The aim of this chapter is to evaluate the influence of the substrate deformabil-
ity with reference to the solution of a contact problem in plane linear elasticity,
between an elastic stiffener and an elastic substrate supposed in generalized plane
stress. Traditionally, from the point of view of applications, the problem has been
categorized in two main groups: stiffeners or cover plates mainly used in aircraft
structures [41, 42, 43, 44, 45, 46] and thin films used in microelectronics, sensors
and actuators [47, 48, 49]. In both fields, the primary interest is the evaluation of
stress concentrations or singularities near the edges of the film or the stiffener in
order to deepen the question of crack initiation and propagation in the substrate
or along the interface. This aspect seems to have been only partially considered for
the specific case of civil applications through the use of fiber reinforced polymer
composites.
The stress transfer between an elastic stiffener and an elastic plate was firstly
studied by Melan in 1932 [45]. By supposing perfect bond between the bodies,
both considered infinite, and by treating the fiber as a one dimensional stringer
loaded at one end by a longitudinal force, he was able to obtain a closed-form
solution. An important result was the unboundedness of the interface tangential
stress in the neighborhood of the force application point. This work was then
considered and extended by different authors. The problem of a finite stiffener on
an infinite plate was treated by Benscoter [42]. He considered the problem of stress
transfer under symmetric and anti-symmetric loading and reduced the governing
integro-differential equation to a system of linear algebraic equations.
There are two types of approaches to study the problem of debonding from the
theoretical treatment standpoint. The first deals with crack initiation by assuming
a preexisting crack [50]; the second assumes that the edge delamination occurs due
to stress singularities at the edges of the film [47, 51, 49, 52]. Erdogan and Gupta
[51] provided one of the earliest and most relevant contributions to thin films,
where they solved the problem of an elastic stiffener bonded to a half plane using
the membrane assumption. Later, Shield and Kim [49] extended this analysis



3.2 Load transfer from an elastic stiffener to a semi-infinite plate

using the plate assumption for the film, in order to take into account the bending
stiffness and the effect of peel stresses, especially near the edges of the film. It
was demonstrated that the membrane assumption is still valid when the stiffener
thickness is “small” compared to the other dimensions in the system. Freund and
Suresh [53] gave a qualitative indication for the thickness of the stiffener, which
has to be at least 20 times smaller than the other dimensions to assure a membrane
behavior.
In this chapter, the contact problem of an elastic finite stiffener bonded to the
boundary of a semi-infinite plate and loaded at one end by a longitudinal concen-
trated force is considered. A compatibility equation is written that automatically
furnishes the integro-differential equation in terms of the tangential stresses be-
tween stiffener and plate. An approximate solution is then obtained in term of
Chebyshev polynomial, following the approach proposed by Grigolyuk [54], tenta-
tively pursued by Villaggio [55, 56] and probably firstly introduced by Benscoter
[42].
I do not consider here the variety of responses that can be obtained under the
assumption of cohesive shear fractures à la Barenblatt, regulated by an assumed
shear stress vs. slip constitutive law. Being interested in the effect of the substrate
elasticity, at this stage I consider the minimal model, in which the debonding
process is assumed to begin and continue as soon as the energy release rate due
to an infinitesimal crack growth equals the interfacial fracture energy (Griffith
balance). The evaluation of the energy release rate due to a propagating interface
crack does not seem to have been correctly considered by previous contributions
[56]. This is why I analyze here in detail the extension to this particular problem of
the Crack Closure Integral Method developed by Irwin [57]. This energetic balance
is then used to derive the maximum load as a function of the bond length, provided
that the specific fracture energy is known. Moreover, one can reproduce a pull out
test, following step by step the corresponding interface-crack path.
A parametric study has been conducted in order to evaluate the load vs. displace-
ment curves predicted by this model, which are compared with careful experimen-
tal data obtained from recent direct tensile tests [12]. Despite the simplicity of
the Griffith energetic balance, the analytical results are in good agreement with
the experimental pull-out curves for high bond length, being able to reproduce,
at least at the qualitative level, their typical trend. This is characterized by a
plateau, during which debonding occurs, followed by a snap-back phase, related to
the release of the strain energy stored by the FRP stringer during the delamination
process. The latter was obtained with a closed loop control of the crack opening
in the detaching stringer [12].

3.2 Load transfer from an elastic stiffener to a semi-infinite
plate

Suppose that an elastic stiffener of constant width bs and (small) thickness ts
is bonded to the boundary of an elastic semi-infinite plate in generalized plane
stress over the interval [0, l], considered with respect to the ξ-axis of the Cartesian
system shown in Figure 3.1. At one end, the stiffener is loaded by a longitudinal
force P , which represents the resultant of the normal stress on the cross sectional
area. Since ts is small, the bending strength of the stiffener is negligible, so that
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CHAPTER 3. THE EFFECT OF THE DEFORMATION OF THE
SUBSTRATE

its normal component of the contact stress with the semi-plane may be neglected.
The state of stress in the stiffener is then uni-axial, due to P and the tangential
contact stresses transmitted by the plate.

Figure 3.1: A finite stiffener bonded to the boundary of a semi-infinite plate.

Equilibrium for that part of the stiffener comprised between the origin and a
section ξ = x allows to write the axial force Ns(x) in the form

Ns(x) = P −
∫ x

0
q(ξ) dξ , (3.1)

where q(ξ) is the contact tangential force per unity length. By Hooke’s law, the
stiffener strain reads

εs(x) = Ns(x)
EsAs

= 1
EsAs

[
P −

∫ x

0
q(ξ) dξ

]
, (3.2)

where Es is its elastic modulus and As its cross sectional area. Besides, on the
boundary of the semi-plane, the strain in the interval [0, l] due to the tangential
contact stress may be written in the form [54]

εp(x) = − 2
πEpbp

∫ l

0

q(ξ)
ξ − x

dξ , (3.3)

where Ep is the elastic modulus of the plate and bp its width. Since the strains
must be equal over the interval of contact, equating (3.2) and (3.3) one obtains
the singular integral equation

1
EsAs

[
P −

∫ x

0
q(ξ) dξ

]
= − 2

πEpbp

∫ l

0

q(ξ)
ξ − x

dξ. (3.4)
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3.2 Load transfer from an elastic stiffener to a semi-infinite plate

Introducing the rigidity parameter λ, defined as

λ = 2
π

Epbpl

EsAs
, (3.5)

and the dimensionless coordinate τ = ξ/l, equation (3.4) can be written in the
form

∫ 1

0

q(τ)
τ − τ0

dτ = −π
2λ

4

[
P

l
−
∫ τ0

0
q(τ) dτ

]
, (3.6)

which has to be solved under the equilibrium condition

l

∫ 1

0
q(τ) dτ = P. (3.7)

An approximate solution for (3.6) can be obtained by expressing the contact force
q in term of a series of Chebyshev polynomials [54, 51, 58]. Chebyshev terms are
orthogonal in the interval [−1, 1], so that it is convenient to make the change of
variable

t = 2τ − 1 ,

so that conditions (3.6) and (3.7) become, respectively,

∫ 1

−1

q(t)
t− t0

dt = −π
2λ

8

[
2P
l
−
∫ t0

−1
q(t) dt

]
, (3.8)

l

∫ 1

−1
q(t) dt = 2P . (3.9)

The approximate solution of (3.8) can be sought in the form of an expansion in
Chebyshev polynomials of the first kind Ts(t) defined as

q(t) = 2P
πl
√

1− t2

n∑
s=0

XsTs(t) , (3.10)

where Xs are constants to be determined. Observe that there is a square-root
singularity in the solution at both ends of the reinforcement, which is typical of
most contact problems in linear elasticity theory; the strength of the singularity is
determined by all terms of the series. Substituting (3.10) into condition (3.9) and
recalling the orthogonality conditions of the Chebyshev polynomials of the first
kind (see Appendix, eq. (A.4)), one obtains that
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X0 = 1.

Moreover, substitution of the expansion (3.10) in (3.8) allows to determine, after
integration, the other constants Xs by means of the Bubnov method [54]. The
final result is a set of algebraic equations for Xj of the type

Xj + λ

4

n∑
s=1

ajsXs = −λ4 bj , for j = 1, 2, ..., n (3.11)

where{
ajs = − 4j

[(j+s)2−1][(j−s)2−1] , for even j − s,
ajs = 0, for odd j − s,

and 
b1 = π2

4 ,

bj = − 4j
(j2−1)2 , for even j,

bj = 0, for odd j 6= 1.

Solving the system of algebraic equations (3.11), it is immediate to determine the
Xj and hence q(t). It may be seen that in the neighborhood of t = ±1, the contact
problem for the stiffener/plate gives a singularity analogous to a crack problem
under pure Mode II loading conditions. Therefore, one can define the Mode II
stress intensity factor at ξ = 0 (t = −1) in the form

KII = lim
ξ→0

q(ξ)
√

2πξ. (3.12)

Substitution of the contact stress (3.10) into (3.12) gives the expression

KII = 2P√
2πl

n∑
s=0

Xs(−1)s , (3.13)

which represents the governing parameter for the problem at hand.

3.3 Energetic balance
Linear elastic fracture mechanics (LEFM) is based upon an energetic balance à la
Griffith between the strain energy release rate and the increase in surface energy.

3.3.1 Generalization of the Crack Closure Integral Method by Irwin
For the problem at hand, let us consider the case of an elastic stringer bonded for
a length l to an elastic plate in generalized plane stress. The stringer is pulled by
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3.3 Energetic balance

a force P in the configurations sketched in Figure 3.2, referred to as the sound
state.

Figure 3.2: Sound state: stiffener bonded for a length l upon an elastic plate.

Let us consider another configuration, i.e., the debonded state represented in Fig-
ure 3.3, in which delamination has occurred over a portion of length c. A refer-
ence system (ξ, η) is introduced with the origin on the left-hand-side border of the
stringer, so that the bonded portion is c ≤ ξ ≤ l. The composite body is loaded
by two system of forces. System I is the force P I appended at the stringer left-
hand-side border, while system II is composed of forces per-unit-length qII(ξ),
representing a mutual interaction stress between plate and stringer (Figure 3.3).
Let uIs(ξ) (uIIs (ξ)) represent the displacement of the stringer in the positive ξ−axis
direction of the stringer due to system I (II) of forces, and let uIp(ξ) (uIIp (ξ)) be
the corresponding displacement of the plate, again associated with system I (II).
In the following, quantities referred to system I or II will be labeled with the I or
II apex, respectively.

Figure 3.3: Debonded state, where delamination has occurred on a portion of length c.
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By Clapeyron theorem, the elastic strain energy U I due to the action of system I
reads

U I = −1
2P

IuIs(0) . (3.14)

The strain energy U (I+II), associated with system I + II, is of the form

U I+II = −1
2P

IuIs(0) + 1
2

∫ c

0
qII(ξ)[uIIs (ξ)− uIIp (ξ)]dξ +

∫ c

0
qII(ξ)[uIs(ξ)− uIp(ξ)]dξ

= −1
2P

IuIs(0) + 1
2

∫ c

0
qII(ξ){[uIs(ξ) + uIIs (ξ)]− [uIp(ξ) + uIIp (ξ)]}dξ (3.15)

+1
2

∫ c

0
qII(ξ)[uIs(ξ)− uIp(ξ)]dξ .

Let us then assume that P I = P and that qII(ξ) represent the contact bonding
forces for the sound state of Figure 3.2. Since in this case the portion 0 ≤ ξ ≤ c is
perfectly bonded, one has that

[uIs(ξ) + uIIs (ξ)]− [uIp(ξ) + uIIp (ξ)] = 0 , (3.16)

and consequently, from (3.14) and (3.15), one finds

∆U = U I+II − U I = 1
2

∫ c

0
qII(ξ)[uIs(ξ)− uIp(ξ)]dξ . (3.17)

Here ∆U represents the difference of the strain energy between the sound state
and the debonded one. Obviously, the variation of the total energy ∆E equals
−∆U . The latest expression represents the extension to this case of the Crack
Closure Integral Method developed by Irwin [57].

3.3.2 Strain energy release rate
With the same notation of Section 3.2, indicating with Γ the surface fracture
energy and with bs the width of the stiffener, energetic balance states that

Γ bs = lim
c→0

d

dc
∆U = − lim

c→0

d

dc
∆E = G , (3.18)

where G denotes the strain energy release rate.
Substituting expression (3.17) in the relation (3.18), the problem reduces to the
evaluation of G, i.e.,

G = lim
c→0

d

dc

[
1
2

∫ c

0
qII(ξ) {uIs(ξ)−uIp(ξ)}dξ

]
= lim
c→0

d

dc

[
1
2

∫ c

0
qII(ξ)uIrel(ξ)dξ

]
,

(3.19)
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3.3 Energetic balance

where it has been posed uIrel = uIs − uIp. By using Leibniz’s rule for differentiation
under the integral sign, the preceding expression becomes

G = lim
c→0

{
1
2q

II(c)uIrel(c) + 1
2

∫ c

0
qII(ξ) ∂

∂c
uIrel(ξ) dξ

}
. (3.20)

The first term is null because there is no relative displacement for ξ = c, since at
this point the stiffener is still bonded to the plate. As regards to the second term,
denoting with εIs the axial strain in the stiffener, and with εIp the normal strain
component in the ξ direction of the plate, observe that

∂

∂c
uIrel(ξ) = ∂

∂c

[∫ c

ξ

εIs(ζ) dζ
]
− ∂

∂c

[∫ c

ξ

εIp(ζ) dζ
]

= εIs(c)−
∂

∂c

[∫ c

ξ

εIp(ζ) dζ
]
.

(3.21)

Consider first the term containing εIp, i.e., the one associated with the strain in
the plate. Referring to Figure 3.3, the strain needs to be evaluated at points that
are external to the interval [c, l], where stiffener and plate are bonded. The elastic
solution for a plate reinforced by a stringer of length l − c can be obtained with
the same method described in Section 3.2. With reference to equation (3.3), let
us introduce the new variable

t = 2ξ − l − c
l − c

.

Solving the elastic problem in terms of the new variable t, from equation (3.3),
one obtains

εIp(t0) = − 4P
π2Epbp(l − c)

n∑
s=0

Xs

∫ 1

−1

Ts(t)√
1− t2(t− t0)

dt , (3.22)

where t0 = (2ξ0−l−c)/(l−c). The integral can be evaluated by using the property
of Chebyshev polynomials reported in Appendix (eq. (A.6)), with reference to the
case |t0| > 1. The final result is

εIp(t0) = − 4P
πEpbp(l − c)

n∑
s=0

Xs
(t0 +

√
t20 − 1)s√

t20 − 1
, (3.23)
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and therefore the displacement reduces to

uIp(t0) =
∫ −1

t0

εIp(t)dt = − 4P
πEpbp(l − c)

n∑
s=0

Xs

∫ −1

t0

(t+
√
t2 − 1)s√
t2 − 1

l − c
2 dt

= − 2P
πEpbp

n∑
s=0

Xs

s

[
(−1)s −

(
t0 +

√
t20 − 1

)s]
.

(3.24)

Written in term of ξ, using a Taylor expansion in a neighborhood of ξ = c, (3.24)
reads

uIp(ξ) = − 2P
πEpbp

n∑
s=0

Xs(−1)s2
√
c− ξ
l − c

. (3.25)

Consequently, the derivative of the displacement with respect to the interfacial
crack length c is

∂

∂c
uIp(ξ) = − 2P

πEpbp

n∑
s=0

Xs(−1)s (l − ξ)
(l − c)

√
(c− ξ)(l − c)

. (3.26)

The contact stresses qII(ξ) are given by (3.10) and can also be expanded in Taylor’s
series in neighborhood of ξ = 0 to obtain

qII(ξ) = P

π

n∑
s=0

Xs cos (πs)
[

1
√
ξ
√
l
− 2s2√ξ

l
√
l

]
. (3.27)

Therefore, the strain energy release rate G can be evaluated substituting (3.26)
in (3.21) and the result, together with (3.27), in the second term of (3.20). After
integration, one obtains the expression

G = lim
c→0

1
2ε

I
s(c)

∫ c

0
qII(ξ) dξ + P 2

πEpbpl

[
n∑
s=0

Xs(−1)s
]2

. (3.28)

But the first term of (3.28) is null, because the contact stress qII(ξ) of (3.27) has
a square-root singularity in a neighborhood of ξ = 0 so that for c→ 0 the integral
vanishes2. Consequently, one finds the general expression for the energy release

2Indeed, one can demonstrate that when Ep → ∞ (rigid substrate) qII(ξ) tends to become
a Dirac distribution centered at ξ = 0, so that the integral does not vanish when c→ 0. Here I
consider the elastic solution for Ep < ∞ and will show later on that when Ep → ∞ the second
term of (3.28) tends to the energy release rate associated with the problem of an elastic stiffener
on a rigid substrate. This fact does not seem to have been recognized in [56], where the expression
proposed is not correct.
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rate G in the form

G = P 2

πEpbpl

[
n∑
s=0

Xs(−1)s
]2

. (3.29)

Recalling the expression of Mode II stress intensity factor given by (3.13), the
expression (3.29) can be re-written in the form

G = K2
II

2Epbp
. (3.30)

Equation (3.30) plays a key role since it bridges the energetic approach with the
stress analysis. Remarkably, it is similar to Irwin’s relationship between the strain
energy release rate and the stress intensity factor. To my knowledge, the method
used to derive the strain energy release rate in the context of plane elasticity has
never been stated up to now. As a matter of fact, common ways to evaluate G are
based on the J-integral [59].
The expression (3.30) is particularly important because the stress intensity factor
KII can also be evaluated numerically3, without resorting to the Chebyshev ex-
pansion. The energetic balance detailed in Section 3.3.3 thus allows to calculate
the maximum tensile load P once the fracture energy of the bond is known.

3.3.3 Energetic balance
Suppose that the toughness of the bonded joint is defined by the fracture energy
per unit area ΓF . Then, energetic balance à la Griffith implies that the crack
propagates when

G = ΓF bs , (3.31)

where bs is the width of the stiffener. Then, from (3.29), one finds that the critical
value Pcr of P reads

Pcr =
√

ΓF bs
πEpbpl

[
∑n
s=0 Xs(−1)s]2

. (3.32)

Apparently Pcr depends upon the elasticity of the substrate only, because the
elasticity of the stiffener is not explicitly involved in the expression (3.29) of G. But
it should be noticed that the terms of the Chebyshev expansion strongly depend
upon the mechanical properties of the stiffener through the rigidity parameter λ,
defined in (3.5).
To illustrate, it is useful to consider directly the limit condition Ep =∞, i.e., the
case of a rigid substrate. A simple calculation indicates that the energy release

3Most numerical codes evaluate the stress intensity factor using the J-integral.
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rate takes the form

Gr = P 2

2EsAs
, (3.33)

which is the same expression derived by Taljsten in [60], for a general linear and
non-linear interface law with reference to a pure shear bond-slip model, and by
Wu et al. in [35], for a bilinear interface law.
Figure 3.4 shows the ratio G/Gr, with G evaluated through (3.30) and Gr through
(3.33), as a function of the bond length l for values of Ep/Es ranging from 0.01 to
100. Notice that G→ Gr as l →∞, and the limit value is attained more quickly
as Ep/Es increases, i.e., as the substrate tends to become rigid.
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Figure 3.4: Normalized strain energy release rate G/Gr for different values of the ratio Ep/Es.

Moreover, as shown more in detail in Figure 3.5, for short bond lengths the value
of the energy release rate may be much higher than the value associated with the
case of rigid substrate. From (3.31), this means that short stiffeners may detach
at much lower load levels than long stiffeners. This effect is entirely due to the
elasticity of the substrate, because if the substrate is rigid then Gr is given by
(3.33), which is independent of the length of the stringer.
It is important at this point to quantify the meaning of “short” and “long” stiffen-
ers. Recall that terms Xs defining the Chebyshev expansion only depend upon the
non-dimensional parameter λ of (3.5). Figure 3.6 shows the ratio G/Gr now as
a function of λ: obviously the graphs obtained in Figures 3.4 and 3.5 for varying
Ep/Es collapse into one curve (for convenience of representation, the scale for λ
is now logarithmic). It is then quite evident that the transition between the case
of a soft elastic substrate to the case of a rigid substrate is marked by a value
λ = λ∗ that can be estimated of the order λ∗ ' 101. But since the stringer length
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Figure 3.5: Normalized strain energy release rate G/Gr for different values of the ratio Ep/Es.
Detail for small bond lengths l.

l enters in the definition (3.5) of λ, the “rigidity” of the substrate does not depend
upon its elastic modulus only. In other words, it is λ that represents the similarity
parameter: the case λ � λ∗ (λ � λ∗) is associated with long (short) stiffeners
and rigid (soft) substrates.
The presence of a step change in the distribution of contact stress along the stiffener
bond length is also evident in the logarithmic plot of Figure 3.7, where ξ denotes
again the distance from the stringer edge where the load P is applied. As ξ → 0, the
slope of the curves equals to −1/2 because of the typical square root singularity.
The graphs tend to a vertical asymptote when approaching the second edge of
the stringer, where another stress singularity occurs (the various graphs refer to
different bond lengths). The slope of the graphs changes for a value of ξ comprised
between 100 and 101. This transition value should not be confused with the
anchorage length, i.e., the minimum length assuring maximum anchoring force. In
fact, there are stress singularities at both edges of the stiffener, so that the axial
strain in the stiffener is never zero. This is a characteristic feature (and perhaps
a limitation) of this model.
Figure 3.8 represents, as a function of ξ, the normalized axial load Ns/P calculated
as per (3.1), for two different value of the substrate elastic modulus Ep. The
continuous lines may be associated with a typical reinforcement on a concrete
support, whereas the dashed lines refer to the case of a substrate ten times more
deformable (elastic modulus one tenth of the previous one). From the graphs it is
evident that the softer the substrate, the higher is the length that is necessary to
transfer the load from the stringer.
It should also be mentioned that, in order to achieve a good approximation, the
number n of Chebyshev terms that are needed in the series (3.29) to define G,
strongly increases as Ep/Es increases, i.e., as the substrate becomes stiffer and
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stiffer. This fact is shown in Figure 3.9, which refers to cases when λ� λ∗ (rigid
substrate) and represents the ratio G/Gr as a function of n for varying Ep/Es.
Observe that when Ep/Es = 0.1 just a few terms are sufficient to obtain a good
approximation, but when Ep/Es = 1000, more than one thousands terms are
necessary. This remark is useful to indicate a suitable value for n in the case of
a typical concrete/FRP stiffness ratio. Since for this case Ep/Es ' 0.1÷ 0.2, one
finds in Figure 3.9 that the curve of interest lays between the curves Ep/Es = 0.1
and Ep/Es = 1, for which n ' 100 can be considered appropriate.

3.4 Comparison with experiments

Expression (3.32) allows to calculate the critical tensile load P = Pcr in the stiff-
ener as a function of the geometric and mechanical parameters, in particular the
fracture energy ΓF . In general, there may be two distinct failure mechanisms: i)
failure in the thin glue layer or ii) failure in the neighboring layer of the substrate.
In the first case, ΓF represents the fracture energy of the glued interface, whereas
in the second case it is the (mode II) fracture energy of the substrate.

One of the most common applications certainly consists in the strengthening of
concrete with Carbon Fiber Reinforced Polymers (CFRP). In most of the tests
recorded in the technical literature, fracture occurs through the shearing of a thin
concrete layer underneath the CFRP plate. Thus, one can assume that ΓF is
the concrete fracture energy, for which the relation proposed by Italian technical
recommendations [1], also accepted at the European Community level, is of the
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form

ΓF = 1
2sfκaκb

√
fckfctm . (3.34)

Here sf is the maximum slip, associated with an assumed bilinear shear-stress vs.
relative-slip constitutive relationship, usually taken equal to 0.2 mm; fck and fctm
are the characteristic compression strength and the mean tensile strength of con-
crete; κa is a value calculated on the basis of a statistical analysis of experimental
data, for which 0.64 represents an average value; κb is a geometric parameter that
depends upon the stiffener width bs and substrate width bp, that takes the form

κb =

√√√√ 2− bs
bp

1 + bs
400[mm]

≥ 1 , (3.35)

when bs/bp ≥ 0.33 (when bs/bp < 0.33, assume bs/bp = 0.33).
In this study the results of a series of pull tests on CFRP-to-concrete bonded joints
collected from the existing literature are considered. The fundamental problem is
the evaluation of the critical load which can be transmitted to the reinforcement
before debonding occurs.
Experimental evidence suggests that, in general, crack propagation due to debond-
ing occurs approximately at a constant load. The model predicts this response in
the case of “long” strips. In fact, when the parameter λ of (3.5) exceeds the
threshold value λ∗ ' 101, Figure 3.6 shows that the energy release rate G is al-
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most constant and equal to the value Gr of (3.33) for the rigid support. The
energetic balance (3.31) thus furnishes the value

Pcr,r =
√

2EsAsΓF bs = bs
√

2EstsΓF , (3.36)

which coincides with the expression suggested by most technical standards. Debond-
ing of the stiffener occurs when P ' Pcr,r = const. as long as λ � λ∗, i.e., when
the bonding length l is sufficiently high. When λ � λ∗, one understands from
Figure 3.6 that the energy release rate becomes much higher than Gr and conse-
quently Pcr results much lower than Pcr,r.
In summary, “long” stiffeners progressively detach from the support, until the
bond length becomes so small that equilibrium can only be attained provided that
the pull out load P is decreased. This decay provokes an elastic release in that
part of the stiffener that has already debonded from the substrate and is strained
by P . The main consequence of this is that, after a plateau, pull out tests on long
strip should exhibit a snap-back phase.
Most of the pull-out tests considered in the technical literature are strain-driven
tests that cannot capture any snap back response. An exception is the experimen-
tal campaign recently performed in the laboratories of the University of Parma by
[12], who used a closed-loop tensometer to control the pull-out-force P from the
output of LVDT transducers, placed at the non-loaded end of the stringer, i.e.,
at point ξ = l in the scheme of Figure 3.2. Among other tests, recorded in [12],
concrete prisms of 150 × 90 × 300 mm nominal size were reinforced by pultred
CFRP plates 30 mm wide and 1.3 mm thick. The measured mechanical properties
of the materials used in the tests are reported in Table 3.1.

Table 3.1: Mechanical properties of materials used for the tests of [12]

Concrete FRP Adhesive

Young’s Modulus, E [MPa] 28700 168500 3517.3

Poisson’s Ratio, ν 0.2 0.248 0.315

Tensile Strength, ft [MPa] 3.2 - 12.01

Average Compression Strength, fc [MPa] 37.2 - -

The results of the pull-out experiments are summarized in the graphs of Fig-
ure 3.10, reporting the load P as a function of ∆, i.e., the measured displacement
at the point of application of P . What should be noticed here is the marked
snap-back response, which occurs approximately when ∆ = 0.30÷ 0.35 mm.
In order to compare this results according to the prediction of the proposed model,
parameter calibration has to be performed. The critical load is evaluated through
(3.32), where the Chebyshev coefficients Xs depend upon the parameter λ of (3.5).
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Figure 3.10: Load P vs. displacement ∆ curves for the pull-out tests of [12]. Initial bond
length l = 150 mm.

Material parameters are taken from Table 3.1. The geometry of the stiffener is
known, but attention should be paid in the evaluation of bp. The proposed model
is two-dimensional and consequently is accurate only when bp/bs ' 1. For the
case at hand bp/bs = 5 and the hypothesis of plate in generalized plane stress is
questionable. A technical solution can be found through the following argument.
Recalling from Figure 3.6 that the decrease of load P occurs at λ = λ∗ ' 101, one
can measure from experiments [12] what is the bond length l∗ that is associated
with the beginning of the decay of the tensile strength. By using (3.5), the effective
width b∗p can be evaluated as

b∗p = π

2λ
∗Estsbs
Ep(l∗)

= α∗ bs. (3.37)

For the experiments of Figure 3.10 the value l∗ ' 60 mm has been measured [12],
from which α∗ ' 2.0 and b∗p '= 60 mm.
The results are shown in Figure 3.11, which represents the experimental force vs.
displacement curves juxtaposed with that obtained through the model. There
is a good estimate of the plateau associated with stable debonding. Moreover,
the model can also predict the snap-back phenomenon: that part of the CFRP
stiffener already detached from the substrate is strained by the applied load that,
when released, causes its contraction. In the theoretical curve, the bond length
calculated through the model are evidenced by labeled dots: bigger circles are at
multiples of 10 mm, whereas smaller dots are for lengths multiple of 1 mm. Notice
that material softening starts approximately in the fourth quarter of the plateau,
when the bond strength is about 60 mm, even if the decay is just appreciable
at the scale of resolution of the graph. Remarkably, when the snap-back branch
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starts, the bond length rapidly diminishes. This is a phase governed by an abrupt
phenomenon, whose experimental evaluation needs appropriate feed-back controls.
It must also be mentioned that the value of the fracture energy ΓF that has been
used in the relevant expressions is that obtained by integrating the P −∆ curves
of Figure 3.10, i.e., ΓF ' 0.57 N/mm. Such a value is much lower that obtainable
with the expression (3.34), which would give ΓF = 0.77 N/mm.
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Figure 3.11: Load vs. displacement curves: comparison between theoretical and experimental
[12] results. In the theoretical curve, bond lengths l are evidenced by dots (bigger dots for l

multiple of 10 mm, smaller dots for l multiple of 1 mm).

There are however some aspects that the model is not able to capture, such as the
strain-hardening trend evidenced by the experimental data. This finding may be
ascribed to an increase in surface toughness as the crack propagates, a phenomenon
observed in quasi-brittle materials such as concrete. Quasi brittle materials ex-
hibit an extensive microcracking in a limited area, known as the fracture process
zone. Whereas in ductile fracture of metals the fracture process zone is negligible
in size when compared to the non linear plastic-hardening zone, in a quasi-brittle
material the process zone is larger than the plastic hardening zone. Microcracking
affects the behavior of the material and results in an apparent increase of tough-
ness, described through the well-known rising R-curve (crack Resistance curve).
Fracture energy cannot be considered constant with crack growth as in the case of
a flat R-curve typical of ideally brittle materials [61]: then, the driving force due
to P must increase to maintain crack growth.
Another aspect is that the predicted slope of the snap-back branch is lower than
the one measured through experiments. There is little uncertainty about this,
because the occurrence of the snap-back phase is associated with the release of
elastic strain energy in the stringer whose geometry and mechanical properties are
perfectly known. In the theoretical model the final deformation of the stiffener
tends to the null value, because no detachment is assumed from the substrate
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matrix; on the other hand, the experimental curves of Figure 3.10 highlight a
permanent displacement of the stiffener. Consequently, other phenomena such as
residual cohesion, inelastic slip, or friction between the detached surfaces, must be
considered for a deeper characterization of the phenomenon.

3.5 Discussion
An analytical model has been presented for the description of the interfacial
debonding failure of an elastic stiffener from a substrate, in view to practical
applications such as the characterization of reinforcements with Fiber Reinforced
Polymers (FRP). The contact problem is analyzed under the hypotheses that the
bending stiffness of the stringer is negligible and the substrate is a linear elastic
semi-infinite plate in generalized plane stress. Compatibility conditions for the rel-
ative displacement allow to obtain an integral equation in terms of the tangential
stresses [54]. A solution with Chebyshev polynomials can then be used to establish
an energetic balance à la Griffith, providing the maximum transmissible load. In
order to determine the energy release rate, a generalization of the Crack Closure
Integral Method developed by Irwin [57] has been detailed.
Results of the calculations show that the strain energy release rate strongly de-
pends upon the elasticity of the substrate, tending to the limit value for a rigid
substrate calculated by Taljsten [60] when the Young modulus of the substrate,
Ep, tends to ∞. In general, a soft substrate influences the fracture propagation
process and, consequently, the diffusion of the load. The qualitative properties
of the solution depend upon a coefficient λ, defined in (3.5), which represents a
non-dimensional similarity parameter providing a synthesis of all those physical
variables that influence the phenomenon, such as elastic moduli of stiffener and
substrate, geometry and bond length. The substrate can be considered rigid when
λ � λ∗, where λ∗ is of the order of 101. Clearly λ is directly proportional to
the substrate modulus Ep, but remarkably λ also depends linearly upon the bond
length l. Consequently, the substrate can be considered rigid when, left aside all
the other material properties, the length of the stringer is sufficiently high.
In other words, “long” (“short”) stringers are those for which λ � λ∗ (λ � λ∗).
In “long” stringers, the elasticity of the substrate does not influence the strain
energy release rate (case of rigid substrate), so that energetic balance predicts a
gradual detachment at approximately constant pull-out force. In “short” stringers,
the contribution from the substrate is important: the lower the bond length, the
higher the strain energy release rate. Short stringers thus exhibit a strain softening
response.
In a load history when the relative displacement of the stringer is controlled in a
closed loop testing machine, such as in the experiments of [12], the stringer grad-
ually debonds from the substrate at approximately constant load, until the bond
length becomes so small that the equilibrium load decreases. Release of strain
energy in the elastic stringer results in typical load vs. displacement snap-back
response, that has been experimentally verified. Results obtained through the
model are in good quantitative agreement with the experimental results of [12],
provided that the fracture energy considered in the formulas is the one experimen-
tally measured through integration of load-displacement curve.
The model just presented may be considered minimal, because it only relies upon
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an energetic Griffith balance for the description of the debonding phenomenon.
One of the major drawbacks of this assumption is that the diffusion of the load
from the stringer to the substrate only depends upon the elasticity of the material:
stress singularities occur at both ends of the adherent interface, so that it is difficult
to give a consistent definition of the effective anchorage length. However, despite
its simplicity, the model is able to capture the maximum transmissible load, the
progression of the debonding phenomenon as well as the onset of a snap-back phase,
remarking the important role played by the elasticity of the substrate, which is
usually neglected in the practice. In order to provide a more accurate description,
it would be necessary to slightly complicate the model, taking into account for the
possibility of cohesive sliding before final detachment through the assumption of
a proper shear-stress vs. slip constitute law at the interface. This is the subject
of the next chapters.
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CHAPTER 4

THE ROLE OF COHESIVE INTERFACE FORCES

4.1 Introduction
In the previous chapter, the case of a perfectly-adherent stiffener has been con-
sidered, focusing the attention on the debonding process assumed to begin, and
continue, as soon as the energy release rate due to an infinitesimal delamination
becomes equal to the interfacial fracture energy (Griffith balance) [62]. The main
drawback of this approach was the difficulty to give a consistent definition of the
effective anchorage length. In fact, when slip is not contemplated, the presence of
the stress singularities at both ends of the stiffener produces a very rapid decay of
the shear stress profile at the interface, which does not agree with experiments.
This chapter aims at solving this inconsistency by introducing a cohesive zone
where slippage can occur. Following the approach originally proposed by Baren-
blatt [63], also pursued by other authors [64, 49] for similar-in-type problems, the
length of the cohesive zone for a fixed load is evaluated by imposing that the stress
intensity factor at the end of the bonded zone is null, eliminating the singularities
which are predicted by the theory of elasticity. Effective material separation is
supposed to start when the relative slip exceeds a certain threshold. If the stiff-
ener is sufficiently long, there is a maximal reachable length of the cohesive zone:
in a strain-driven pull out test, the cohesive portion simply translates along the
stiffener as debonding proceeds, maintaining its length unchanged, while the load
remains practically constant. A strain softening phase, usually associated with
snap-back, is entered when the cohesive zone reaches the free end of the stiffener.
The present model provides a natural, physically-motivated definition of the ef-
fective bond length, since it is associated with the maximal length of the cohesive
zone reached in sufficiently long stiffeners. Assuming a very simple, step-wise,
shear-stress vs. slip constitutive law for the interface, the model is able to in-
terpret the debonding process step-by-step, evidencing different-in-type responses
when the bond length is higher, or lower, than the effective bond length. The
response is characterized in terms of load-displacement curves that, despite the
simplicity of the model, are in excellent agreement with experimental data drawn
from the technical literature.



4.2 Adhesion of an elastic stiffener to an elastic substrate

4.2 Adhesion of an elastic stiffener to an elastic substrate

The contact problem of an elastic stiffener of finite length bonded to the boundary
of an elastic semi-infinite plate and pulled at one end by a coaxial load is governed
by a singular integral equation involving the unknown tangential contact forces
[54]. If no slippage occurs between stiffener and plate, the theory of elasticity
predicts that interface shear forces have a singularity at both ends of the stiffener.
In order to remove this physically-inconsistency, two cohesive zones are introduced
at both edges of the reinforcement. The length of these zones depends upon the
applied load, and can be found from condition that interface forces are finite in the
whole bond, according to the same rationale followed by Barenblatt in the theory
of cohesive cracks [63]. In section 4.2.1 the resulting system of singular integral
equations is solved through a Chebyshev expansion, while sections 4.2.2 and 4.2.3
recover the solutions of one cohesive zone and no cohesive zone (perfect bond) (the
latter seen in Chapter 3) as limit cases.

4.2.1 Double-Cohesive-Zone (DCZ) model

Consider an elastic stiffener of length l, thickness ts and constant width bs, bonded
to the boundary of an elastic semi-infinite plate in generalized plane stress of width
bp (Figure 4.1). At one end, the stiffener is loaded by a coaxial concentrated force
P . As indicated in Figure 4.1, let c1 and c2 denote the length of the cohesive
zones at the left-hand-side and at the right-hand-side extremities of the stringer,
respectively. A reference system (ξ, η) is introduced with the origin on the left-
hand-side edge, so that the loaded-end cohesive zone is 0 ≤ ξ ≤ c1 and the
free-end cohesive zone is l − c2 ≤ ξ ≤ l, while the perfectly bonded part is the
interval c1 ≤ ξ ≤ l − c2.

Figure 4.1: A finite stiffener bonded to the boundary of a semi-infinite plate with cohesive
zones at both ends.

With reference to the free-body diagram of Figure 4.2, let qc(ξ) be the (cohesive)
tangential force per unit length acting over the length c1 and c2, while q(ξ) the
contact tangential force per unit length in the bonded portion. The stiffener
strain can be obtained through Hooke’s law, from the equilibrium of that part of
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Figure 4.2: A finite stiffener bonded to the boundary of a semi-infinite plate. Free body
diagram of a portion of the stiffener.

the stiffener comprised between the origin and a section ξ = x, in the form

εs(x) = Ns(x)
EsAs

= 1
EsAs

[
P −

∫ c1

0
qc(ξ) dξ −

∫ x

c1

q(ξ) dξ
]
, (4.1)

where Es is the elastic modulus of the stiffener and As its cross sectional area.
Besides, on the boundary of the semi-infinite plate, the strain in the interval [0, l]
due to the cohesive stress and to the tangential contact stress may be written as
[54]

εp(x) = − 2
πEpbp

[∫ c1

0

qc(ξ)
ξ − x

dξ +
∫ l−c2

c1

q(ξ)
ξ − x

dξ +
∫ l

l−c2

qc(ξ)
ξ − x

dξ

]
, (4.2)

where Ep is the elastic modulus of the plate and bp its width.
One obtains the singular integral equation that solves the problem by imposing
that strains are equal over the perfectly-bonded interval. In the simplest case
one may assume that the cohesive forces are constant, i.e., qc(ξ) = const. =
qc. Consequently, by equating (4.1) and (4.2) and introducing the dimensionless
coordinate t in such a way that the completely bonded zone is the interval [−1, 1],
that is

t = 2 (ξ − c1)
(l − c1 − c2) − 1⇐⇒ ξ = (l − c1 − c2)

2 (t+ 1) + c1, (4.3)

one finds

qc

[
ln
∣∣∣∣ t0 + 1
t0 + a

∣∣∣∣+ ln
∣∣∣∣ t0 − bt0 − 1

∣∣∣∣]+
∫ 1

−1

q(t)
t− t0

dt = −π
2λ

8

[
2(P − qcc1)

lb
−
∫ t0

−1
q(t) dt

]
,

(4.4)
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where λ is the rigidity parameter, which reads

λ = 2
π

Epbplb
EsAs

, (4.5)

having defined

lb = l − c1 − c2,

a = (lb + 2c1)/lb,
b = (lb + 2c2)/lb.

(4.6)

Solution to equation (4.4) is subject to the equilibrium condition for the stiffener

∫ 1

−1
q(t) dt = 2(P − qcc1 − qcc2)

lb
. (4.7)

An approximate solution for (4.4) can be obtained by expanding the contact force
q in term of a series of Chebyshev polynomials4 [54, 51, 58], which are orthogonal
in the interval [−1, 1], i.e,

q(t) = 2Q
πlb
√

1− t2

n∑
s=0

XsTs(t) , (4.8)

where Ts(t) are the Chebyshev polynomials of the first kind [54], Xs are constants
to be determined and, for simplicity of notation, I have set Q = P − qcc1 − qcc2.
Observe that there is a square-root singularity in the solution at both ends of
the reinforcement, which is typical of most contact problems in linear elasticity
theory. Following Bubnov’s method [54], with a procedure similar to that of section
3.2, substitution of (4.8) into conditions (4.7) and (4.4) allows to obtain, with the
orthogonality conditions for Chebyshev polynomials of the first kind (see Appendix
A),

X0 = 1,

and the system of linear equations

Xj + λ

4

n∑
s=1

ajsXs = −λ4 bj −
πλqcc2

4Q cj −
qclb
πQ

dj , for j = 1, 2, ..., n . (4.9)

4The main properties of Chebyshev polynomials are reported in Appendix A.
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Here

ajs = 1/s
∫ 1

−1
Uj−1(t)Us−1(t)(1− t2) dt,

bj =
∫ 1

−1
Uj−1(t)

√
1− t2 arccos t dt,

cj =
∫ 1

−1
Uj−1(t)

√
1− t2 dt,

dj =
∫ 1

−1
Uj−1(t)

√
1− t2

[
ln
∣∣∣∣ t+ 1
t+ a

∣∣∣∣+ ln
∣∣∣∣ t− bt− 1

∣∣∣∣] dt,
being Uj(t) the Chebyshev polynomials of the second kind [54]. These expressions
can be evaluated with the change of variable t = cosϕ, so that Uj−1(t(ϕ)) =
sin jϕ/ sinϕ. In conclusion, one finds

{
ajs = − 4j

[(j+s)2−1][(j−s)2−1] , for even j − s,
ajs = 0, for odd j − s,


b1 = π2

4 ,

bj = − 4j
(j2−1)2 , for even j,

bj = 0, for odd j 6= 1.

{
c1 = π

2 ,

cj = 0, for j = 2, 3, .., n,

and



d1 = π
2
{[
a
(√
a2 − 1− a

)
− ln

∣∣a+
√
a2 − 1

∣∣]− [b (√b2 − 1− b
)
− ln

∣∣b+
√
b2 − 1

∣∣]} ,
dj = π

2

[
2(−1)j

j2 − 1 −
(
√
a2 − 1− a)j+1

j + 1 + (
√
a2 − 1− a)j−1

j − 1

]

+ π

2 (−1)j
[

2(−1)j

j2 − 1 −
(
√
b2 − 1− b)j+1

j + 1 + (
√
b2 − 1− b)j−1

j − 1

]
, for j = 2, 3, .., n.

The parameters c1 and c2 add to the other n unknowns Xs, so that there are n+2
unknowns for the n equations (4.9). Other two conditions need to be introduced,
and these are accomplished by imposing that in ξ = c1 (t = −1) and in ξ = l− c2
(t = 1) the shear stress must be finite, or, equivalently, that the mode II stress
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intensity factors KII are null. The resulting conditions become

KII,load = lim
ξ→c1

q(ξ)
√

2π(ξ − c1) = 0,

KII,free = lim
ξ→l−c2

q(ξ)
√

2π(ξ − l + c2) = 0.
(4.10)

where the subscripts “load” and “free” refer to the loaded end and the free end
of the bonded part of the stiffener, respectively. Substitution of the contact forces
(4.8) into (4.10) gives the expressions


KII,load = 2Q√

2πlb

n∑
s=0

Xs(−1)s ,

KII,free = 2Q√
2πlb

n∑
s=0

Xs .

(4.11)

which reduce to the conditions


n∑
s=0

Xs(−1)s = 0 ,
n∑
s=0

Xs = 0 .
(4.12)

under the requirement that, of course, lb > 0. This is the adaptation to the
contact problem of the approach originally proposed by Barenblatt [63] to eliminate
the stress singularity predicted by the elasticity theory in an opening crack, as a
consequence of cohesive forces acting at its tip. Conditions (4.12) allow to evaluate
the length of the zones over which tangential slippage can occur at the interface,
provided that the cohesive stress qc is known.

4.2.2 Single-Cohesive-Zone (SCZ) model

This model can be considered a limit case of the DCZ approach when the cohesive
zone at the free end c2 is null. Setting for simplicity c1 = c (Figure 4.3 B), this
Single Cohesive Zone (SCZ) model is governed by the set of algebraic equations

Xj + λ

4

n∑
s=1

ajsXs = −λ4 bj −
qclb
πQ

dj , for j = 1, 2, ..., n , (4.13)

where lb = l − c1 = l − c, Q = P − qcc1 = P − qcc and λ has the same expression
of (3.5). The coefficients of (4.13) are
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ajs = 1/s
∫ 1

−1
Uj−1(t)Us−1(t)(1− t2) dt,

bj =
∫ 1

−1
Uj−1(t)

√
1− t2 arccos t dt,

dj =
∫ 1

−1
Uj−1(t)

√
1− t2 ln

∣∣∣∣ t+ 1
t+ a

∣∣∣∣ dt.
From equation (4.6), one has b = 1 and a = (l + c)/(l − c). Therefore, with the
change of variable t = cosϕ and the representation for the Chebyshev polynomials
of the second kind Uj−1, one finds

{
ajs = − 4j

[(j+s)2−1][(j−s)2−1] , for even j − s,
ajs = 0, for odd j − s,


b1 = π2

4 ,

bj = − 4j
(j2−1)2 , for even j,

bj = 0, for odd j 6= 1,

and


d1 = π

2

[
1− a2 + a

√
a2 − 1− ln(a+

√
a2 − 1)

]
,

dj = π

2

[
2(−1)j

j2 − 1 −
(
√
a2 − 1− a)j+1

j + 1 + (
√
a2 − 1− a)j−1

j − 1

]
, for j = 2, 3, .., n.

It is evident how the second term of the right-hand side of equation (4.9) disap-
pears, because it was associated with the cohesive length c2. The expression of the
coefficient dj results substantially simplified. In this case, the parameter c adds to
the other n unknowns Xs, so that there are n + 1 unknowns for the n equations
(4.13). The condition to be introduced is the annihilation of the mode II stress
intensity factor KII in ξ = c (t = −1), that is

KII,load = lim
ξ→c

q(ξ)
√

2π(ξ − c) = 0, (4.14)

which reduces, after substitution of the contact stress (3.10) into (4.14) and sim-
plification, to the first condition of equation (4.12) under the condition that, of
course, lb = l − c > 0.
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4.2.3 No-Cohesive-Zone (NCZ) model
When at the interface between stiffener and substrate no cohesive zone exists, i.e.
c1 = c2 = 0, one has (Figure 4.3 A):

Xj + λ

4

n∑
s=1

ajsXs = −λ4 bj , for j = 1, 2, ..., n (4.15)

which is the solution of an elastic stiffener bonded to the boundary of an elastic
semi-infinite plate [54], just analyzed in section 3.2. Hereinafter, this will be
referred to as the No-Cohesive Zone (NCZ) model. In this case the coefficients
cj and dj of equations (4.13) and (4.15) disappear, because there is no more
dependence by the cohesive zone size, while the coefficients ajs and bj have the
same expression of sections 4.2.1 and 4.2.2. In this case, the rigidity parameter λ
involves the entire bond length, i.e. lb = l, and reads

λ = 2
π

Epbpl

EsAs
, (4.16)

The solution of (4.15) presents singularities at both ends of the reinforcement,
which are typical of most contact problems in the linear theory of elasticity.

4.3 Analysis of the debonding process
In order to give an insight on the debonding process, reference will be made to
the case of a single cohesive zone (SCZ model). It will be demonstrated later on
in section 4.4 that the influence of the singularity at the free end of the stiffener
is almost negligible, since the load balanced by the second cohesive zone is very
low and the contact shear stress profile of the DCZ model coincides with that of
the SCZ model, giving in practice identical results in terms of bond strength and
effective bond length. For this reason, in order to avoid much more complicated
calculations, the analysis will be done on the simple SCZ model, even if results
would be similar if one considered the more refined DCZ model.

4.3.1 Constitutive law for the cohesive interface
Any adhesive junction is characterized by an interface constitutive law, correlating
the shear bond-stress τ with the relative slip s of the two adherents through the
adhesive. In general, the τ − s curve is evaluated by measuring experimentally
the strain in the stiffener and the substrate, as done e.g. in [23]. A typical trend
is of the type represented in Figure 4.4: after a pseudo-linear branch up to the
peak stress, a strain-softening phase follows that ends when the zero-stress level,
associated with complete debonding, is reached.
As suggested in recent technical standards [1], the τ − s interface law may ap-
proximated by a trilateral (Figure 4.4), formed by a linearly ascending branch up
to peak stress τf , followed by a linear softening phase approaching s = sf where
τ = 0 and, finally, a zero-stress plateau. The fracture energy per unit-surface is
Gf = 1

2τfsf and, in general, such value is made to coincide with the integral of
the τ vs. s experimental curve. This equivalence allows to evaluate the limit slip
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Figure 4.3: A finite stiffener bonded to a semi-infinite plate. A) No-cohesive zone (NCZ) model;
B) Single cohesive zone (SCZ) model; C) Double cohesive zone (DCZ) model.
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Figure 4.4: Typical experimentally-measured shear-stress vs. slip constitutive law at the
interface. Trilinear and step-wise approximation.

sf once the peak load τf is known.
In the simplest NCZ approach of Section 4.2.3, the only relevant parameter is the
material fracture energy. Debonding is regulated by Griffith energetic balance,
i.e., the stiffener detaches from the substrate whenever the release of elastic energy
becomes equal to the work consumed to fracture the interface. Assume that the
stress is constant on the width bs of the interface. Remarkably, as discussed at
length in Chapter 3, the energy release rate is associated with the stress intensity
factor KII by an expression à là Irwin of the type

bsGf = K2
II

2Epbp
. (4.17)

Consequently, the debonding condition for the NCZ model is KII ≥
√
bsτfsfEpbp.

The models SCZ and DCZ for cohesive debonding of Sections 4.2.2 and 4.2.1 have
been derived under the hypothesis that the cohesive force per-unit-length qc = τcbs
is constant. To comply with this simplification, an equivalence may be established
between the triangular and a step-wise constitutive law by imposing the same slip
limit sf and the same delamination fracture energy Gf . This is obviously achieved
when τc = 1

2τf . I will show that, despite this simplification, the obtainable results
are in excellent agreement with experimental measurements.
As highlighted in various experimental and numerical works [23, 12], the gross
force vs. displacement response of a bonded joint strongly depends upon the bond
length l. “Short” stiffeners show a post-peak softening while “long” stiffeners are
characterized by a plateau, usually followed by a snapback phase (Figure 2.13).
These two cases need to be distinguished in the analysis.
Referring to the SCZ model, relative slip takes place in the cohesive zone, whereas
adhesion is perfect on the remaining part of the bond length. For any given
pull out force P it is possible to calculate the length c of the cohesive zone for
which the cohesive force per unit length qc, supposed uniformly distributed, can
annihilate the stress singularity at the extremity of the adherent part. From the
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elastic solution, it is also possible to calculate the relative slip between stiffener
and substrate; debonding starts when the relative slip reaches the limit value sf
(Figure 4.4). The overall response will be different in type in the case of “long”
stiffeners and “short” stiffeners.

4.3.2 Load-displacement curve for long stiffeners
Suppose that in the undistorted reference configuration the stringer is bonded over
its length l (Figure 4.3 A). Then, the load P is gradually applied at the left hand
side. One can consider an hypothetical strain-driven test where the relative dis-
placement of the loaded end of the stiffener with respect to the substrate can be
controlled, until debonding starts. From that instant on, equilibrium configura-
tions are sought as the length of the debonded zone increases.
The typical response for long stiffeners is summarized in the graph on the right
hand side of Figure 4.5, which shows the applied load P as a function of the relative
slip δ0 between stiffener and substrate, calculated at a reference point coinciding
with the loaded end. The curve can be characterized by three branches, which
represent respectively the strain-hardening, plateau and strain-softening phases.
The graph is marked by a series of key-points that correspond to step changes in
the response.
The relative slip between stiffener and plate needs to be established at various
points. Hereinafter, the slip at ξ may be denoted with δ(ξ), but to simplify I will
use the concise notation

δ(ξ)|ξ=ξ0 ≡ δξ0 . (4.18)

As already mentioned, the reference point for the force vs. slip graphs will be the
loaded end ξ = 0 (Figure 4.1); here the slip, according to (4.18), will be referred
to as δ0.

i) Strain hardening branch (point A).

The first, strain hardening phase, marks the development of the cohesive zone.
Using equations (4.13) with condition (4.12), each value of the load P is associated
with a unique value of the cohesive length c. Such equations are non linear in c,
so that a root-finding algorithm has to be used. Once P and the corresponding c
are known, the value of the slip δ0 at the loaded end ξ = 0 can be calculated as

δ0 = us(0)− up(0), (4.19)

where (Figure 4.1) us and up are the displacements of the stiffener and of the plate
substrate, respectively, taken positive if leftwards, i.e., in opposite direction of the
ξ axis. Then, for the situation sketched in Figure 4.5 (A), the relative displacement
of a point x comprised in the interval [0, c] can be written as (recall the positive
verse of displacements)

us(x)− us(c) =
∫ c

x

εs(ξ) dξ = 1
EsAs

[P c− qcc2/2] , (4.20)
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Figure 4.5: Response of long stiffeners. A) development of the cohesive zone; B) initiation of
debonding at the loaded end (δ0 = sf ); C)-D) propagation of debonded zone; E) the cohesive

zone reaches the free end; F) strain softening branch.
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up(x)−up(c) =
∫ c

x

εp(ξ) dξ = up(t0)−up(−1) =
∫ −1

t0

εp(t)
l − c

2 dt , (4.21)

where, in (4.21), I have used the change of variables (4.3). Observing that at ξ = c
the plate and stiffener are perfectly bonded so that us(c) = up(c), the slip δ0 can
thus be calculated from the difference of the terms on the right hand side of (4.20)
and (4.21). Referring to the expression (4.2) for the plate strain, equation (4.21),
evaluated at x = 0 (t0 = −(l + c)/(l − c)), becomes5

up(t0)− up(−1) =

− 2
πEpbp

(P − qc c)
[
X0 ln

(
−t0 +

√
t20 − 1

)
+

n∑
s=1

Xs

s

[
(−1)s −

(
t0 +

√
t20 − 1

)s]]
.

(4.22)

The load P continues to increase as the length c of the cohesive zone increases.
The debonding process does not start until the slip δ0 reaches the limit value
sf (Figure 4.5, point B), i.e., the value of the slip after which the shear stress
reduces to zero (Figure 4.4). At this point the maximum load Pu is attained and,
correspondingly, the cohesive zone reaches the maximum length cu.

ii) Plateau (points B-E).

If the test is strain driven, after point B, debonding propagates along the interface
(Figure 4.5, points C and D). Let d denote the length of the debonded part. Given
d, one can again calculate with the same procedure just outlined the length c of the
cohesive zone and the corresponding value of equilibrium load P that annihilates
the stress singularity at ξ = d + c. The condition in this case is that, at the
point ξ = d, the slip δd equals the fracture slip sf . Remarkably, one finds that
P ' Pu and c ' cu. In other words, the cohesive zone, once established, remains
constant in practice, and moves towards the free end of the bonded joint, leaving
the load Pu unchanged. As recalled in section 2.3.2.2, the effective bond length is
usually defined as that bond length beyond which there is no further increase of
the strength of the joint. From the former analysis, it is possible now to identify
the length cu as the effective bond length. In fact, the debonding process occurs
at constant ultimate load in the way just outlined whatever the bond length is,
provided this is higher than cu. In fact, as it will be verified later on, the shear
stress in the zone that remains perfectly bonded decays very quickly, so that the
entire load Pu is in practice equilibrated by the shear interface-stress acting in
the cohesive portion only. Indeed, the part of the load that is equilibrated by the
contact forces in the perfectly bonded region is negligible (here, less than 1%) and
acts in a very small (right) neighborhood of ξ = d+ c.
From this analysis, it is then possible to make precise the definition of “long”
stiffeners. A stiffener is “long” when its bond length is higher than cu. If this is

5Note that the point t0 is external to the interval of contact, i.e. t0 < −1, so integration has
to be performed using relation (A.6) for the case |t0| > 1.
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the case, the stiffener can withstand the maximum tensile load, associated with
the formation of the maximum cohesive zone cu, that is, the development of the
full stress-transfer zone.
As debonding develops, the relative slip δ0 at the reference point ξ = 0 increases
as a consequence of the strain of the debonded portion of the stringer, not any
more constrained by the substrate. To precisely determine δ0, it is necessary to
calculate the displacement of the plate at ξ = 0 (t0 = −(l + cu + d)/(l − cu − d))
that, similarly to (4.22), can be found from an expression of the form

up(t0)− up(−1) = − 2
πEpbp

{
qc

(
−cu ln cu + (cu + d) ln(cu + d)− d ln d

)
+ (P − qc cu)

[
X0 ln

(
−t0 +

√
t20 − 1

)
+

n∑
s=1

Xs

s

[
(−1)s −

(
t0 +

√
t20 − 1

)s]]}
.

(4.23)

Observing again that us(−1) = up(−1), the slip δ0 at the reference point becomes

δ0 = [us(t0)−us(−1)]−[up(t0)−up(−1)] = 1
EsAs

[Pu(d+cu)−qcc2
u/2]−[up(t0)−up(−1)] .

(4.24)

Clearly δ0 increases with the debonding length d and this is why this phase is
associated with a plateau.

iii) Strain softening branch (point F).

When the cohesive zone reaches the free end, the strain softening branch is at-
tained (Figure 4.5, point E). From now on, the interface is purely cohesive and
the shear forces are equal to qc. If the stringer is pulled further, the relative slip
increases and debonding proceeds where the relative slip exceeds the limit value
sf of Figure 4.4. However, this phenomenon is associated with a sudden decrease
of the load carrying capacity and the consequent release of the stiffener produces
in general a snap-back response (Figure 4.5, point F).
Observe that the snap-back phase cannot be revealed if the test is strain driven:
therefore at this point a new control variable must be introduced. In particular,
as done in the experimental tests of [12], the control variable can be chosen to be
the slip δl of the free end ξ = l of the stiffener. The relative slip δ0 at the reference
point ξ = 0 is then equal to

δ0 = [us(0)− us(l)]− [up(0)− up(l)] + δl , (4.25)

where

us(0)− us(l) = qc c

EsAs
(l − c/2) , (4.26)
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and

up(0)− up(l) = − 2
πEpbp

[
qc

(
−c ln c+ l ln l − (l − c) ln(l − c)

)]
. (4.27)

For any given value of δl the corresponding c is found from condition that at
ξ = d ≡ l − c the relative slip δd equals the limit value sf of Figure 4.4. The
resulting P − δ0 graph actually exhibits a snap-back response. If one neglects the
strain in the plate and the consequent displacement given by (4.27), the snap back
branch shows a parabolic trend. As P → 0, the slip δ0 of the reference point ξ = 0
tends to the value sf .

4.3.3 Load-displacement curve for short stiffeners
Having defined in section 4.3.2 the length cu as the effective bond length, one can
consequently call “short” stiffeners those for which l < cu. The debonding process
for this case is sketched in Figure 4.6.
i) Strain hardening branch (point A).
The first stage is characterized by a strain-hardening branch where the cohesive
zone develops. The equilibrium configuration at point A can be calculated with the
same procedure of Section 4.3.2. However, now the stringer is too short to permit
the development of the entire effective bond length cu. Consequently, point B
of Figure 4.6 is characterized by a full cohesive interface of length l < cu where
q = qc, and a relative slip δ0 of the reference point ξ = 0 such that δ0 < sf . The
ultimate load is consequently attained at Pu = qcl.
ii) Plateau (points B-D).
Augmenting the pull out displacement, the relative slip increases due to a rigid
translation of the stringer, characterized by the relative slip δl of the free end ξ = l.
The scenario is that of point C, with the load remaining equal to Pu.
It must be clearly remarked that the plateau attained in this case of short stiff-
eners is different in type from that developing in long stiffeners, discussed in the
preceding section 4.3.2. In short stiffeners the plateau is due to a uniform slip
of the completely yielded interface and, consequently, its width can never exceed
the limit value sf defined in the constitutive relation of Figure 4.4. On the other
hand, in long stiffeners the plateau is consequent to a progressive translation of
the cohesive zone, and its extension becomes proportional to the bond length.
Since sf is in general very small, in short stiffeners the plateau can be hardly
recognized, although for clarity of representation it has been oversized in the graph
on the right hand side of Figure 4.6. On the contrary, long stiffeners exhibit a well-
marked yielding, due to the progressive debonding and consequent translation of
the cohesive zone cu throughout the stiffener length. This finding is in agreement
with the experimental results, qualitatively recalled in Figure 2.13.
Eventually, one reaches point D, characterized by condition δ0 = sf .
iii) Strain softening branch (point E).
After passing point D, it is again necessary to switch the control variable to the
relative slip δl of the free end ξ = l. Increasing this parameter, the situation is
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Figure 4.6: Response for short stiffeners. A) development of the cohesive zone; B) the cohesive
zone reaches the free end; C) plateau due to rigid slip; D) initiation of debonding (δ0 = sf ); E)

strain softening branch.

58



CHAPTER 4. THE ROLE OF COHESIVE INTERFACE FORCES

like that of Figure 4.6, point E. For a given δl, one can find the length c of the
cohesive zone from the condition that relative slip δd at ξ = d ≡ l − c is equal to
sf .
At this stage, the P − δ0 graph can be found from conditions analogous to (4.25),
(4.26) and (4.27). The result is as represented on the right-hand-side of Figure 4.6.

4.4 Theoretical prediction of the contact shear stress
The interfacial shear stress associated with the NCZ, SCZ and DCZ models are
now compared in an example that uses the material data from the experiments of
[12]. Results for a bond length of l = 150 mm are represented in Figure 4.7, which
shows the normalized interfacial shear force distribution q/qc at various stages of
loading. Results are shown for increasing complexity of the models, i.e., from the
NCZ model to the DCZ model.

i) The NCZ model

It is evident in Figure 4.7(a) the presence of singularities at both ends of the
reinforcement. The stress rapidly diminishes going towards the free end of the
stiffener: it is almost null for most part of the bond length, except for a very small
zone near the free end where another singularity occurs. The results that can be
obtained with this model have been discussed at length in Chapter 3.

ii) The SCZ model

For each value of the applied load, the length c of the cohesive zone can be calcu-
lated with the equations of Section 4.2.2. In the normalized interfacial-force graph
of Figure 4.7(b) it is evident that at the loaded end the shear distribution tends
to the maximum allowable stress qc, i.e.,

lim
ξ→c

q(ξ)
qc

= 1 . (4.28)

This means that the shear stress at the frontier between the cohesive and the
perfectly bonded zones is continuous. At the free edge of the stiffener, the solution
still presents the singularity predicted by the theory of elasticity. Debonding starts
when the relative slip between stiffener and substrate exceeds the limit value sf .
In this particular example, the applied load is always lower than the debonding
limit.
What is important to notice for this case is that most of the applied load is equi-
librated by the tangential force acting in this cohesive portion; in particular, the
stress singularity at the free end does not play a significant role in the equilibrium
of the stiffener. To illustrate, Figure 4.8 shows the load fraction carried by the
cohesive part (Pcohes/P ) and by the remaining part of the bond length (Pbond/P )
as a function of the applied load P . In the same picture the value of the cohesive
zone length c corresponding to each load-level is indicated at the top border. It
is clear that increasing the load, the cohesive portion is the one that gives by far
the most important contribution (Pcohes/P ' 1).
Figure 4.9 represents the axial load P as a function of the slip δ0 at the reference
point ξ = 0 (Figure 4.5), calculated with no consideration of debonding, i.e., as if
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on the perfectly bonded portion as a function of the applied load. Results from the SCZ model

(bond length l = 150 mm and mechanical parameters of [12]).

the interface had infinite ductility. Table 4.1 indicates that for the tests of [12] the
failure slip is sf = 0.15 mm. Therefore at δ0 = 0.15 mm debonding starts, and the
corresponding load Pu = 15.09 kN is the ultimate load. An effective bond length
cu = 125.4 mm corresponds to this case. As the load is increased, the cohesive
zone reaches a maximal length cu after which debonding starts and, as shown
in section 4.3, the cohesive zone translates towards the free end of the stiffener
maintaining its length practically unaltered. This is confirmed by Figure 4.10,
which represents the axial load P as a function of the global slip δd, calculated at
the end of the debonded zone ξ = d, for three different values (d = 0, d = 5 mm,
d = 10 mm) such that d + cu < l. These cases correspond to the configurations
C and D of Figure 4.5. For each value of d, a new cohesive length is derived from
condition (4.12) as a function of P . The three graphs in practice overlap, meaning
that the response is substantially similar in all the cases when the bond length is
greater than cu. In particular, the value of the cohesive length when δd = sf is
independent of d (cu varies in the range 125.20 ÷ 125.41), while the critical load
Pu is practically constant (Pu ' 15 kN).

In general, the length of the cohesive zone c depends upon the value of the applied
load P , independently of the bond length of the stiffener. This is also confirmed
by Figure 4.11, which represents the value of c associated with various values of
the load P for increasing values of the bond length l. Remarkably, c does not
substantially change as l is varied. However, a minimum value of the bond length
l has to be associated with each load P . This derives from the condition that
l > P/qc, so that for a given value of load there is a minimum length necessary to
develop the cohesive zone.
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iii) The DCZ model

Once the value of the cohesive lengths associated with a given load and the re-
spective constants Xs are evaluated, the interface force per unit length q can
be calculated with the expression (4.8). Results are represented in Figure 4.7(c)
where, in particular, the values of the cohesive lengths c1 and c2, as defined in
Figure 4.3 C, have been indicated near the curve corresponding to each load. Also
for this case, at the frontier between the bonded part and the cohesive portions
the stress results to be continuous, i.e.,

lim
ξ→c1

q(ξ)
qc

= 1 , lim
ξ→l−c2

q(ξ)
qc

= 1 . (4.29)

In any case, the length of the cohesive zone at the free end of the stiffener is
much smaller than that at the loaded end. Comparing the values of c1 with the
corresponding values of c for the SCZ model, also highlighted in Figure 4.7(b),
it is clear that at the loaded cohesive zone the SCZ and the DCZ models give
in practice identical results. The shear stress profile at the interface does not
appreciably change if the singularity at the free end is removed, apart of course in
a neighborhood of the free end. In any case, that part of the applied load that is
equilibrated by the second singularity at the free end is not significant.
To make this clearer, Figure 4.12 represents the fraction of the axial load equili-
brated by that portion of bond length laying on the left-hand side of the generic
abscissa ξ. The results obtained with the three approaches for P = 15 kN are
juxtaposed: the NCZ model (continuous line), the SCZ model (dashed line) and
the DCZ model (dash-dotted line). For what the NCZ model is concerned, notice
that a bonded length of ∼ 20 mm is sufficient to balance 97% of the axial load: in
rough terms, most of the load is balanced by the singularity at the loaded edge.
Instead, the SCZ and the DCZ curves evidence that a bond length higher than
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∼ 120 mm is necessary to balance the relevant part of the applied load. The
curves obtained with both the SCZ and DCZ models almost overlap, confirming
that the part of load carried out by the singularity at the free end is negligible.
Figure 4.12(b) shows a magnification of Figure 4.12(a) in a neighborhood of the
free end of the bond length. It is again evident that the main discrepancy between
the dashed curve (SCZ model) and the dash-dotted curve (DCZ model) is in a
very small part of the bond length, and that the difference between the results
obtainable with the two approaches is not substantial.
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Figure 4.12: Fraction of the axial load balanced by the interfacial shear force acting in the
portion 0 ≤ x ≤ ξ. Mechanical parameters of [12] (l = 150 mm and Pmax = 15 kN). (a)
Comparison between the NCZ, the SCZ and the DCZ model; (b) Detail of the portion

comprised between ξ = 125 mm and ξ = 150 mm.

64



CHAPTER 4. THE ROLE OF COHESIVE INTERFACE FORCES

In conclusion, the NCZ model predicts a rapid decay of the interface shear stress
because most of the applied load is carried in a small neighborhood of the stress
singularity at the loaded end of the stiffener. In the cohesive interface models,
most of the load is carried in the yielded portion of the bond length in proximity
of the loaded end. The SCZ model still predicts a singularity at the free end of the
stiffeners, but this does not furnish a significant contribution. Indeed, the length
of the cohesive portion in proximity of the loaded end of the stiffeners, which is
the most important, remains substantially the same in both the SCZ and the DCZ
models. Consequently, if one is mainly interested in the engineering evaluation
of the mechanism of adhesion, reference could be made to the SCZ model, which
requires a computational effort much lower than the DCZ model.

4.5 Effective bond length. Comparison with experiments

There is a general agreement that the adhesion strength (in pure mode II) of a
stiffener on a substrate is characterized by an intrinsic length usually referred to
as the Effective Bond Length (EBL). This can be defined as the length necessary
to transfer the load from the stiffener to the substrate (see section 2.3.2.2). In
fact, it has been experimentally verified that increasing the bond length beyond
such limit does not lead to any increase of load carrying capacity, confirming that
only part of the bond is active. For this reason, the determination of this limit
is of fundamental importance in the characterization of the joint performance (as
seen in section 4.3).
The aim of this section is to assess the capability of the three considered models
to capture, besides the ultimate load, the value of the EBL. Such value can be
experimentally determined from pull-out tests on stiffeners with different bond
lengths: by definition, the EBL is the bond length beyond which the ultimate
load remains almost constant. Comparisons will be made between the analytical
outputs and the results from relevant experimental campaigns recorded in the
technical literature.

4.5.1 Assessment of the constitutive properties of the interface from
experiments.

Several experimental results for FRP reinforced concrete will be now considered.
With reference to [23, 12, 8, 11, 9, 25], Table 4.1 reports the specimen properties
and the parameters τf and sf that are associated with the trilinear constitutive
interface law τ −s of Figure 4.4. Recall that, following the equivalence established
in Section 4.3.1, in the cohesive models here considered a step-wise approximation
of the interface-law will be used, with τc = τf/2. Since most of the times the
values of τf and sf are not explicitly provided in the technical references, it is
necessary to describe how they can be derived from generic experimental results.
When only the characteristic compressive strength of concrete fck is known [65],
one can evaluate τf through an expression borrowed from technical standards [1]
of the form

τf = 0.64κb
√
fckfctm , (4.30)
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where fctm = 0.30 3
√

(fck)2, with fck expressed in MPa, is the value of the average
tensile strength of concrete [65], while κb =

√
2−bs/bp

1+bs/400[mm] ≥ 1. The values in
Table 4.1 that have been obtained with this procedure have been evidenced by an
asterisk.
If the fracture energy per unit area Gf is known, then one readily has sf =
2Gf/τf . When Gf is not explicitly given, it can be approximated through the
simple expression

Gf = (Pmax,e)2

2b2
sEsts

, (4.31)

where Pmax,e is the experimentally measured peak load6 and ts is the thickness
of the stiffener. Such an expression, also suggested by standards [1], neglects
the elasticity of the substrate [60] and results quite accurate for FRP-reinforced
concrete. However, for the proper evaluation of the shear interface forces, the
elasticity of the substrate cannot in general be neglected.

Table 4.1: Mechanical properties of materials used in experimental campaigns and parameters of
the interface law.

Concretea FRP Interface Lawb

Testc Ep tp bp Es ts bs τf sf
[MPa] [mm] [mm] [MPa] [mm] [mm] [MPa] [mm]

Ali Ahmad et al. [23] 33230 125 125 230000 0.167 46 7.07 0.230

Carrara et al. [12] ∗ 28700 90 150 168500 1.3 50 7.71 0.150

Chajes et al. [8] ∗ 34411 152.4 152.4 108478 1.016 25.4 8.78 0.234

Mazzotti et al. [11] 30700 200 150 195200 1.2 50 9.14 0.0971

Taljsten [9] ∗ 35000 200 200 170000 1.25 50 9.04 0.154

Yuan et al. [25] 28600 150 150 256000 0.165 25 7.20 0.160

Notes:
a. When the literature provides the cylindrical strength fck only, then, as suggested in technical standards
[65], Ep is calculated through Ep = 22000(fcm/10)0.3 MPa, being fcm = fck + 8 MPa, fck in MPa.
b. When the literature does not provide the value for the peak stress τf , then expression (4.30) from the
Italian Standard [1] has been used.
c. Experimental tests for which the interface-law parameters are not explicitly provided are evidenced
by an asterisk (∗).

Let us then discuss the results that can be obtained with the various formulations
just presented. For what Gf is concerned, the values calculated in the experiments

6The maximum axial loads derived from experiments are recorded later on in Table 4.2.
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by evaluating the work consumed during the fracture process (integration of the
load vs. displacement curve) may differ from the values obtained through (4.31),
but the discrepancy is in general very small. This parameter is the only one that
needs to be considered in the NCZ approach: the ultimate load can be calculated
through the evaluation of the stress intensity factor as per (4.17). If one calcu-
lates from the experimentally-determined value of the ultimate load the debonding
surface energy through (4.31), which derives from a Griffith-like energetic balance
where the elasticity of the substrate is neglected, and afterwards re-calculate the
ultimate load through (4.17), which considers the elasticity of the substrate, the
results that are obtained are in practice the same. This confirms that, at least for
concrete, the elasticity of the substrate does not give a substantial contribution for
what the evaluation of Gf is concerned. In general I have found that evaluating
Gf through (4.31) provides a slightly better approximation than the integration
of the experimental load vs. displacement curve (when this is provided in the
technical reference), which is usually subjected to measurement errors.
The parameters τf and sf are of importance for the SCZ and the DCZ models. In
order to understand how they may affect the results, reference is made to the tests
of [23] and [8], where the sophisticated experimental apparatus allowed a precise
measurement of the constitutive interface law.
Figures 4.13(a) and 4.13(b) refer to the tests of [23] and shows Pu as a function
of the virgin bond length l. The points indicated with dots refer to data obtained
by the same authors in [66] with very accurate numerical experiments that took
into account the exact, experimentally measured, interface-law. The graph drawn
with continuous line in Figure 4.13(a) refers to the results obtainable with the SCZ
model by considering τf = 5.03 MPa, sf = 0.23 mm, i.e., the average peak stress
and the fracture slip limit of the interface-law that was experimentally-measured
in [23].
Since this graph does not exactly match with experiments, I attempted at varying
the fracture slip sf while keeping unchanged the maximum shear stress τf . By con-
sidering the average experimentally-measured value Gf = 0.735 MPa mm [23], one
obtains sf = 2Gf/τf = 0.292 mm. The corresponding graph, which is indicated
by the dashed curve in Figure 4.13(a), still underestimates the ultimate load. But
it is also possible to evaluate the fracture energy from (4.31): taking Pmax,e = 11.5
kN as the average experimental value of [23], one obtains Gf = 0.812 MPa mm
and, leaving unchanged τf = 5.03 MPa, the value sf = 0.3235 mm. The curve
obtained in this way is the one indicated by a dotted line in Figure 4.13(a). This
shows excellent results for what the evaluation of the maximum load is concerned,
but results are still inaccurate for short bond lengths (l < 100 mm).
Because of this discrepancy, a further elaboration has been made by assuming that
now sf = 0.23 mm is fixed and by changing τf . The graphs in Figure 4.13(b) show,
respectively, again the curve obtained with the experimentally-measured values
τf = 5.03 MPa and sf = 0.23 mm (continuous line); the curve corresponding to
Gf = 0.735 MPa mm and τf = 2Gf/sf = 6.39 MPa (dashed line); the curve
associated with Gf = 0.812 MPa mm from equation (4.31) and the corresponding
τf = 7.07 MPa (dotted line). It is clear that it is the dotted line that approximates
the best the experiments.
A similar procedure has been followed for the experimental data of Chajes et al.
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[8], where the authors did not directly provide the parameters of the interface law.
At first, an attempt has been made to use the method by Ferracuti et al. [26], who
proposed a procedure to derive a non-linear mode II interface law starting from
experimental data. With a calibration procedure, they obtained τf = 6.64 MPa
and sf = 0.475 mm for the experiments of [8]. The corresponding curve, which is
shown with continuous line in Figure 4.13(c), is not accurate. In a second attempt,
the expression (4.31) for Gf has been calculated using the maximum experimental
load of [8]: setting τf = 8.78 MPa as per (4.30), one finds sf = 0.234 mm. The
results, drawn with dashed line in the same picture, show a very good agreement
with the experimental data.
In conclusion, the best approximations are usually achieved when Gf is estimated
through (4.31) from the maximum load obtained in pull-out experiments. This
quantity defines the product τf · sf . The best way to find the relative values
of these parameters is through a calibration of the model on the basis of simple
experimental campaigns, where the pull-out load is measured for various values
of the bond length (short and long stiffeners). This approach by-passes all the
technical difficulties of a sophisticated experimental apparatus that always be-
comes necessary to evaluate the constitutive interface-law and, what is more, all
the uncertainties of such a complicated measure. The values of τf and sf that are
indicated in Table 4.1 have obtained following this procedure.

4.5.2 Results from the various models.
The results obtainable with the NCZ, SCZ and DCZ models are now compared
with the experiments of [23, 12, 8, 11, 9, 25], using the material parameters of
Table 4.1.

i) The NCZ model

As in Section 4.3.1, let Gf represent the fracture energy per unit surface and Gfbs
the fracture energy per unit length of the stiffener. Then, from the expression
(4.17) for the strain energy release rate associated with an infinitesimal crack
growth, one finds

Gfbs = K2
II

2Epbp
= P 2

πEpbpl

[
n∑
s=0

Xs(−1)s
]2

, (4.32)

so that the critical value Pu of P reads

Pu =
√
Gfbs

πEpbpl

[
∑n
s=0 Xs(−1)s]2

. (4.33)

Values of the critical load as a function of the bond length l obtained for the
mechanical parameters of [23, 12, 8, 11, 9, 25] are indicated by a continuous line
in Figures 4.14 and 4.15 as a function of the bond length. Each graph is compared
with the experimental data, here indicated by dots7, and with the results from

7In the case of [23] and [25], the dots refer to very careful numerical experiments that consider

69



4.5 Effective bond length. Comparison with experiments

the SCZ model (dashed line) and the DCZ model (dotted line), whose derivation
is done in the sequel.
For what the NCZ model is concerned, notice that the values of the bond length
beyond which there is no substantial increase of the ultimate load, i.e., the EBL,
is of the order of few millimeters. This is due to the rapid decrease of the inter-
facial shear stress beyond the singularity, but the result is not corroborated by
experiments. In other words, the NCZ model underestimates the EBL.
The values of the ultimate load calculated with the mechanical parameters of
the experimental campaigns of [23, 12, 8, 11, 9, 25] are summarized in Table 4.2,
together with the results of the SCZ model, the DCZ model and experimental data
recorded in the Literature. More precisely, in the “experimental data” columns,
the mean experimental value on the peak load has been indicated with Pmax,e,
while the values of the EBL evaluated from the experimental data8 have been
referred to as le,e.

ii) The SCZ model

The results of the SCZ model are shown in Figures 4.14 and 4.15 by dashed lines.
Comparison with the experimental data [23, 12, 8, 11, 9, 25] evidences the good
agreement with the prediction of the model for what the ultimate load is concerned.
Notice that Pu increases with the bond length l until the limit of the EBL, which
is also well captured by the model. The values of the ultimate load and of the
EBL so calculated are also summarized in Table 4.2.
As largely discussed in section 4.3, since the greatest part by far of the applied
load is equilibrated by the cohesive shear forces acting in the yielded portion of the
adhesive, in this model the EBL may be associated with the maximal length cu of
the cohesive zone attained in long stiffeners. Increasing the bond length beyond
this limit does not increase the load bearing capacity of the joint. The value of
cu, calculated through the model, is also evidenced in Figure 4.14 and Figure 4.15
with a circular marker and denoted with cu,SCZ. It matches very well with the
limit bond length according to the standard definition.
The EBL could thus be evaluated through a strain-driven pull-out test on long
stiffeners. Measuring the relative displacement of the loaded end, debonding starts
when the relative slip of the reference point reaches the fracture slip sf predicted
by the interfacial constitutive law (see Figure 4.4). At this point, the maximum
load that can be carried by the FRP stringer is attained. The maximal cohesive
zone cu at the beginning of the debonding gives a physical characterization of the
EBL.
Recall that, as demonstrated in section 4.3, the value of the ultimate cohesive
length cu does not change as debonding proceeds, but simply the cohesive zone
moves towards the free end of the stiffener, leaving its length unaltered, so that
the ultimate load Pu remains almost constant. This confirms that increasing the
bond length over the EBL limit does not increase the anchorage strength of the
joint. However, it certainly improves the joint ductility!

the full constitutive interface-law obtained through sophisticated experimental apparatus.
8The effective bond length is here defined as that limit of the bond length beyond which no

apparent increase of ultimate load is experimentally observed.
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Figure 4.14: Ultimate load Pu as a function of the initial bond length l. Predictions of the
NCZ, SCZ and DCZ models and comparisons with experimental results.
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Figure 4.15: Ultimate load Pu as a function of the initial bond length l. Predictions of the
NCZ, SCZ and DCZ models and comparisons with experimental results.
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iii) The DCZ model
There are noteworthy analogies with the SCZ model. A strain driven test can be
conducted in order to measure the relative slip of the loaded end of the stiffener
for each stage of loading. When the relative slip of the reference point reaches
the fracture slip sf provided by the interface constitutive law (see Figure 4.4),
debonding starts and correspondingly the maximum value of the cohesive zone
length c1 is attained, while the cohesive length c2 undergoes inappreciable changes.
The graph showing the ultimate load Pu as a function of l is drawn in Figure 4.14
and Figure 4.15 with dotted line. The limit length of the cohesive zone c1 is here
indicated with cu,DCZ and evidenced by a triangular marker. Notice that in all the
considered cases, the graphs of the SCZ model and of the DCZ model overlap in
practice, giving almost the same value of ultimate load and effective bond length,
confirming that the influence of the singularity at the free end of the stiffener in
the SCZ model is negligible to this respect. The numerical values of the outputs
are reported in Table 4.2, where the accuracy of both cohesive models SCZ and
DCZ is even more evident.
The main conclusion from this discussion is that the SCZ model is the most con-
venient engineering approach for the characterization of the joint response, since
it involves a reasonable computational effort if compared to that required by the
DCZ model.
Finally, it may be useful to compare the values of the EBL just obtained with
those obtainable with formulas suggested by technical standards. To this respect,
the recent Italian instructions CNR-DT200 [1], which appear to be one of the most
modern references, suggest to take EBL= le, with

le =

√
Ests
2fctm

, (4.34)

where fctm is the mean tensile strength of concrete [65]. The main underlying as-
sumption for (4.34) is a trilinear shear-stress vs. slip model, of the type represented
in Figure 4.4, together with the hypothesis of rigid substrate. The standard also
suggests to evaluate the ultimate load Pmax through an energetic balance, leading
to an expression of the same type of (4.31).
Using the data of Table 4.1, the results from the technical recommendations [1]
are also reported in Table 4.2. Notice that the cohesive models, which are not
based upon an energetic balance but simply rely upon the calculation of the state
of stress with the classical theory of elasticity, give values which are in excellent
agreement with the standards for what the ultimate load is concerned. On the
other hand, the expression (4.34) seems to excessively overestimate the EBL with
respect to the experimental data, which are instead very well captured by the
proposed cohesive models.

4.6 Discussion
The contact problem between an elastic stiffener and an elastic half-space has
been considered to assess the interfacial conditions of detachment in pure mode
II of the two adherents. Contrarily to the traditional approaches that neglect the
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important role played by elastic deformation of the substrate, here this aspect has
been emphasized.
In Chapter 3 the adherents were supposed in perfect contact; in this No-Cohesive-
Zone (NCZ) approach, stress singularities are predicted at both extremities of the
stiffener. In this chapter, a Single-Cohesive-Zone (SCZ) was introduced at the
loaded-end of the stiffener, allowing for relative slip under constant cohesive forces
so to annihilate the corresponding stress singularity. Moreover, I have considered
a more complicated problem that accounts for a second cohesive region at the free
end of the stiffener, such to mitigate also the second singularity. The solutions
of this Double-Cohesive-Zone (DCZ) problem, obtained through a Chebyshev ex-
pansion, prescribes a continuous interfacial shear stress that never exceeds the
cohesive limit.
The potentialities of the three approaches have been discussed. In the NCZ model,
the interfacial shear stress shows an extremely rapid decrease from the maximum
concentration near the loaded end. The SCZ approach, just assuming a very simple
step-wise interface law, predicts the formation of a cohesive zone that produces a
more gradual decay of the contact stress in agreement with experimental results.
The DCZ model prescribes two cohesive zones at the edges of the reinforcement,
but it has been shown that the zone at the free end does not play a significant
role. The stress distribution practically coincides with that of the SCZ model,
apart from a very small neighborhood of the free end where the singularity is
present.
A method has also been proposed to calibrate the parameters that determine
the interface shear vs. slip constitutive law of the cohesive models on the basis of
simple experimental campaigns. The interface fracture energyGf can be estimated
from the maximum pull-out forces through simple formulas proposed in technical
standards [1]. Then, the cohesive parameters can be conveniently calibrated from
a series of elementary pull-out tests on specimens with a sufficiently wide range
of bond lengths. This is done by requiring the equivalence with the expected
value of Gf and the best fitting with the experimental results, trying to capture
in particular the limit value of the bond length beyond which no further increase
of the pull-out load can be obtained.
Indeed, such limit value is usually referred to as the Effective Bond Length (EBL)
of the reinforcement. The NCZ model underestimates by far the experimentally
measured EBL, because the shear stress at the interface decays too rapidly. The
SCZ and the DCZ approaches both give excellent predictions of the EBL, because
their shear stress distribution is almost the same except in a small neighborhood
of the free-end.
As explained in detail in section 4.3, the SCZ approach allows a complete descrip-
tion of the post-critical response of bonded joints, after delamination has started.
A maximal length cu of the cohesive zone is reached when the relative slip at
the loaded end reaches the fracture limit sf , representing a key parameter of the
model. Debonding initiates at this stage at a critical value Pu of the applied load.
The length cu does not change appreciably but simply translates as delamination
propagates along the interface, until it reaches the opposite free end. Since the
resultant of the cohesive forces only is sufficient to equilibrate almost the whole
applied load P , this remains almost constant and equal to Pu during the delam-
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ination process. Therefore, the length cu gives a physical characterization of the
EBL, i.e., the length necessary to transfer the load from the stiffener to the sub-
strate. Obviously, increasing the bond length beyond its effective limit does not
increase the load bearing capacity, although it increases the ductility of the re-
inforcement. The length of the ultimate cohesive zone cu predicted by the DCZ
model practically coincides with that of the SCZ model because the length of the
second cohesive zone is usually very small, as small is the resultant of the shear
stress at the free-end singularity in the SCZ model.
The ultimate load Pu obtained through the three models matches very well not
only with experimental results, but also with the relevant formulas proposed in
technical standards [1]. For what the effective bond length is concerned, the NCZ
is not accurate, but both the SCZ and DCZ models give predictions in good
agreement with relevant tests recorded in the literature, here considered for the
sake of comparison. On the other hand, it must be observed that the formulas
suggested by standards [1] give excessively overestimated values, that in some
cases are about twice the experimental results. To this respect, the SCZ and DCZ
approaches seem to be an improvement of what proposed so far.
In conclusion the SCZ model, which considers only one cohesive zone and the
simplest stepwise interface constitutive law, is able to predict correct values of the
critical pull-out load as well as of the EBL. The DCZ model is physically more
accurate, but gives in practice identical results, though at a price of much more
complicated calculations. In an engineering approach, thus the SCZ formulation
appears to be the best compromise.

76



CHAPTER 5

WEDGE-SHAPED FRACTURING OF SUBSTRATE

This study has been in part developed during a stage at the University of Minnesota, with the super-
vision of professor Roberto Ballarini.

5.1 Introduction
In order to qualitatively describe the debonding phenomenon in all its phases, in
Chapters 3 and 4 the contact problem between an elastic stiffener and an elastic
half-space has been considered, emphasizing the role played by the deformation
of the substrate on the contrary to the traditional approaches that neglect such a
contribution.
We have seen that at the beginning of the loading process, the process zone starts
to develop at the loaded end of the stiffener and progresses in a stable manner
until it reaches a critical length, indicated by cu in Figure 4.5B. Indeed, this is
reached when the relative slip δ0 at the loaded end of the bond reaches the crack
sliding displacement, sf , one of the parameters that defines the shear-relative slip
constitutive relationship that governs the cohesive zone. Debonding initiates at
this stage, at the critical value Pu of the applied load. As it is pulled further,
the relative displacement δ0 between the stiffener and substrate exceeds the limit
value sf and delamination starts. During this phase, corresponding to Figures
4.5C-D, the length cu does not change appreciably but simply translates as the
delamination propagates along the interface, maintaining the load unchanged and
equals to Pu, until it reaches the opposite free end.
When the cohesive zone reaches the free end of the stiffener (Figure 4.5E), a
strain-softening phase begins. Henceforth the length of the cohesive zone de-
creases, causing a reduction of the strength of the bond. This phase, sketched
in Figure 4.5F, is often associated with a snapback response that could not be
captured under displacement control. Final failure is produced by the complete
separation of the FRP stringer from the substrate. Remarkably, such a failure is
characterized by the formation of a characteristic wedge-shaped bulb-shaped spall,
as shown in Figure 5.1 for a FRP-to-concrete bond. Experiments [34, 12, 67, 68]
have provided evidence that the width of this bulb is approximately equal to the
width of the FRP lamina. However, its length is independent of the initial length
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of the reinforcement [34], as evident in Figure 5.1 where various bond lengths have
been compared. This phenomenon is true not only for concrete substrates, but
also for masonry substrates.

Figure 5.1: Wedge-shaped detached portions of the substrate in FRP-to concrete reinforcement
with different initial bond lengths, as per [12]. Initial bond length: a) l = 30 mm, b) l = 90

mm; c) l = 150 mm.

The stage at which the bulb forms corresponds to a very small surviving bond
length, of the order of 30÷ 50 mm, and is associated with phase F of Figure 4.5.
The bulb is isolated by an inclined crack that initiates at the free end of the
stiffener, and whose extension eventually leads to the complete separation of a
portion of material from the substrate. To my knowledge, this type of cracking
has not been modeled. Thus the present study.
A key hypothesis made here that enables interpretation of the phenomenon is that
fractures do not progress continuously and uniformly, but in discrete steps. In
other words, there is a quantized length for crack propagation, that is attributed
to the fact that the characteristic dimensions of the experiment are comparable
to those of the microstructure of the substrate material. For the case of artificial
conglomerates like concrete, the finite length crack increment is of the same order
as the characteristic size of the constituent aggregates. The justification for the
hypothesis is that the aggregate represents the most brittle constituent in the
concrete mass; when the stress intensity factor of a crack within a portion of
an aggregate reaches a critical value, the crack is prone to extend through the
whole grain, rather than arrest within it. The granular microstructure of the
substrate prevents the possibility of a continuous propagation of cracks. This fact
is confirmed by experimental evidence. Figure 5.2 shows a concrete surface from
which an adherent FRP strip was pulled off. Notice the presence of well-marked
grooves on the surface that reflect the discrete steps taken by the advancing crack
front. A theory of “quantized fracture mechanics” has been recently proposed in
[69] to interpret the size effect in solids made of quasi brittle materials.
Under reasonable simplifying assumptions, a model problem in linear elasticity is
now proposed. The stiffener is assumed to transmit shear stresses to a substrate
modeled as a homogeneous isotropic elastic half-plane in generalized plane stress.
The elastic fields are found by means of the distributed dislocation technique pro-
posed in [71, 72] and developed by different authors [73, 74, 75]. The formulation
of the propagation of a crack at the free end of the stiffener relies on the su-
perposition of two effects: i) the effect of tangential forces per unit area on the
surface of the half plane and ii) the effect of distributed edge dislocations along the
crack reference configuration. The condition that the crack lips are traction-free
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Figure 5.2: Detail of the surface of a concrete support after delamination of the FRP strip [70].

furnishes an integral equation, which is solved using the properties of Chebyshev
polynomials.
In the proposed model, two competing mechanisms of degradation may occur: a)
failure of the adhesive joint, which progresses at the stiffener-substrate interface
when the corresponding shear stress is greater than the strength of the interface
itself; b) inclined cracking, which can develop in the substrate when the strain
energy release associated with its (quantized) propagation is greater than the cor-
responding fracture energy of the material. From the competition between the two
mechanisms one can evaluate when the inclined crack starts to form and the char-
acteristic angle of the wedge-shaped bulb. The proposed model problem represents
a simple and intuitive tool to investigate this peculiar phenomenon and provides
results that are in very good qualitative agreement with experiments drawn from
the technical literature.

5.2 The model problem
A simple Linear Elastic Fracture Mechanics model amenable of an analytical treat-
ment is now presented. It relies on a few simplifying assumptions.

5.2.1 Preliminary considerations
The detachment of a bulb from the substrate occurs in the latest stage of the
debonding process, where the surviving bond length is very small, of the order of
30÷50 mm. In the schematic representation of Figure 4.5, this stage is associated
with phase F. The characteristic wedge-like shape of the bulb, represented in
Figure 5.1, is due to the nucleation of an inclined crack that initiates at the free
end of the stiffener, and eventually induces the complete separation of that portion
of the substrate.
In general, the stiffener is a very thin strip or plate, with negligible bending stiff-
ness. Therefore, peeling stresses at the interface are absent because the stiffener is
not able to equilibrate transverse loads during small deformations. Thus the only
relevant contact stresses are the shear stresses acting at the stiffener-substrate in-
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terface [76]. There is general agreement that the strength of the adhesive joint can
be characterized through a shear-bond-stress “τ” vs. relative-slip “s” constitutive
law. The τ − s curve is evaluated by measuring experimentally the strain in the
stiffener and the substrate [23]. The typical response is illustrated in Figure 4.4:
the quasi-linear branch leading to the peak stress is followed by a strain-softening
phase that ends at the zero-stress level associated with complete debonding. This
curve can be approximated by three straight lines [1]; an ascending branch up
to the peak stress τf ; a linear strain-softening phase approaching s = sf where
τ = 0 and, finally, a zero-stress plateau. In certain cases, to interpret the gradual
debonding process, it is sufficient to consider a simple step-wise approximation of
such a constitutive law [76, 77] with equal fracture-energy Gf and critical crack
sliding displacement sf , so that the maximum shear stress is τc = 1

2τf . But if the
bond length is very small, as it is in the final stage of the debonding process, then
the relative displacement at the extremities is moderate. Consequently, one can
neglect the strain gradient and assume that the slip is uniform. The consequence
is that the interfacial shear stress transmitted by the stiffener to the substrate can
be considered constant over the entire bond length.
The initiation of the inclined crack is sketched in Figure 5.3(a) for a bond length
that reaches the critical value l. Observe that when a crack of length a, inclined
by the angle ω, forms at the free end of the stiffener, a wedge-shaped prism is
formed within the substrate. This suggests that the substrate stiffness is locally
degrading in the neighborhood of the crack.
As a first order approximation, the effect of the elastic deformation of the sub-
strate can be modeled by a set of shear springs à là Winkler, which connect the
stiffener to a support now supposed infinitely rigid. This scheme is represented
in Figure 5.3(b). But if a portion of the substrate locally yields because of the
formation of the inclined crack, then the stiffness of the springs tends to zero in
a neighborhood of such a portion. Consequently, there is a local release of the
stiffener, which must be taken into account.
To give a quantitative interpretation, one may consider the problem of an elastic
half plane in generalized plane stress, with a crack of length a inclined by the angle
ω. A uniformly-distributed shear stress q is applied on the free surface of the half-
space, for a length l starting from the crack origin, to represent the contact stress
transmitted by the stiffener over its whole bond length. The elasticity problem is
solved using the method presented in Section 5.2.2 and the corresponding solution
is recorded in Appendix C. The normal component of strain εrr in the direction of
the surface of the half-plane, derived according to equations (C.7) and (C.12a), is
drawn in Figure 5.4 as a function of the normalized abscissa ξ/(a cosω), indicated
in Figure 5.3(a). Apart from a neighborhood of ξ = 0, the analytical solution
is in perfect agreement with the results of numerical simulations performed with
the FEM program Abaqus [78], also reported in the same figure for the sake of
comparison.
The analytical solution predicts a strain singularity at ξ = 0+; then the strain
remains almost constant for 0 < ξ/(a cosω) < 1. Moreover, one finds that the
strain energy becomes infinite as the angle ω tends to zero. It should be observed
that over the wedge-shaped portion isolated from the substrate by the inclined
crack (Figure 5.3(a)), the state of stress is similar to that associated with the
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(a)

(b)

Figure 5.3: A finite stiffener bonded to the boundary of a semi-infinite plate. a) Edge crack
forming at the free end of the stiffener; b) Simplified scheme with a set of shear springs à là

Winkler.
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Michell problem of a long wedge subjected to shear loading along one of the sides
[79], as represented in Figure 5.5. The solution by Michell, whose relevant results
are given in Appendix C (eqs. (C.11) and (C.12a)), prescribes a constant strain
that fits very well with the analytical solution and the numerical experiments in
the range 0 < ξ/(a cosω) < 1, as represented in Figure 5.4. Of course when ω → 0
the wedge angle is null, and the displacement becomes infinite: this is the reason
why the elastic strain energy becomes unbounded.

Figure 5.5: Michell problem of a wedge, loaded along one side by shear stresses.

It is important to note that the strain over the portion 0 ≤ ξ/a cos(ω) ≤ 1 is
much higher (in absolute value) than in the remaining part of the bond length.
For the case considered in Figure 5.4, representative of a typical condition (l = 52
mm, a = 15 mm, ω = 30◦, q = 3.85 MPa), the strain in the neighborhood of
the crack is more than five times higher than the strain in the remaining portion.
Consequently, in the simplified scheme of Figure 5.3(b), the stiffness of the springs
on that left-hand-side portion would be about 20% of the stiffness of the others.
Deriving an analytical solution to the actual contact problem of an elastic stringer
bonded to an elastic half space with an inclined crack is a formidable task that
is not attempted here. Instead, with the aim at a qualitative description of the
phenomenon, the following assumptions are made to achieve a reasonable first-
order approximation:

• the stringer is only able to transmit shear contact stress because of its small
stiffness, which annihilates its bending strength;

• the shear contact stress is constant, because the actual bond length of the
stringer in the latest stage of the debonding process is so small that one can
assume that the stiffener-substrate relative slip is constant;

• the shear contact stress is null in the interval 0 ≤ ξ/a cos(ω) ≤ 1; in fact,
one can neglect the stiffness offered by the substrate in that portion because
of the formation of the inclined crack.
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In conclusion, the elasticity problem that will be considered is that represented
in Figure 5.6. Here, a linear-elastic, homogenous and isotropic half-plane in gen-
eralized plane stress, with an inclined crack initiating at ξ = 0, is loaded by an
uniformly distributed shear stress q on the interval a cos(ω) ≤ ξ ≤ l.

Figure 5.6: Model problem for a finite stiffener bonded to the boundary of an elastic half-space,
where an inclined fracture forms.

Observe that all the aforementioned hypotheses are required, without exception,
for a simple but complete description of the phenomenon. In particular, it is cru-
cial to consider that there is a local weakening of the substrate in the neighborhood
of the inclined crack. Here I made the simplifying, quite drastic, assumption that
the shear contact stress is null in the interval 0 ≤ ξ/a cos(ω) ≤ 1. Of course, more
refined considerations could be made, but the simplicity of the analytical solutions
would be lost. Comparison with numerical experiments where no simplifying as-
sumption is made will be the subject of further work.

5.2.2 Governing equations in linear elasticity theory
The problem in linear elasticity represented in Figure 5.6 can be formulated in
terms of the complex Muskhelishvili potentials [80]. With respect to a system of
polar coordinates as in Figure 5.7(a), centered at ξ = η = 0, the components of
stress in polar coordinates can be expressed in terms of two analytic functions
Φ(z) and Ψ(z) of the complex variable z = ξ + iη = reiϑ as

σrr + σϑϑ = 4Re[Φ(z)], (5.1a)
σϑϑ − σrr + 2iσrϑ = 2e2iϑ[zΦ′(z) + Ψ(z)], (5.1b)
σϑϑ + iσrϑ = Φ(z) + Φ(z) + e2iϑ[zΦ′(z) + Ψ(z)], (5.1c)

in which i =
√
−1, µ is the shear modulus, κ = 3 − 4ν for plane strain and

κ = (3−ν)/(1 +ν) for generalized plane stress, ν is the Poisson’s ratio. Moreover,
(·)′ denotes differentiation with respect to z and (·) implies complex conjugation.
The normal and shear components of stress must be zero on the crack surfaces,
i.e.,

σϑϑ + iσrϑ = 0, for ϑ = −ω, 0 ≤ r ≤ a, (5.2)
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and must agree with the boundary conditions on the surface of the half space.
In the distributed dislocation approach, the problem can be reduced to that of an
elastic half-plane containing a distribution of edge dislocations on ϑ = −ω, 0 ≤
r ≤ a, as described in Figure 5.7(a), and tangential stress q(ξ) applied over the
portion ϑ = 0, a cos(ω) ≤ r ≤ l, as indicated in Figure 5.7(b).

(a) (b)

Figure 5.7: Superposition effects: a) distributed edge dislocation; b) effect of surface tangential
stress.

Equation (5.2) can then be written as

(σϑϑ+ iσrϑ)(d+q) = (σϑϑ+ iσrϑ)d+(σϑϑ+ iσrϑ)q = 0, for ϑ = −ω, 0 ≤ r ≤ a,
(5.3)

where the apexes d and q indicate the contribution of dislocations and shear
stresses, respectively.
5.2.2.1 Problem I: elastic half-plane with edge dislocations
Consider a straight crack of length a at an angle ϑ = −ω in an elastic half plane
η < 0, as indicated in Figure 5.8. The functions Φ(z) and Ψ(z) are holomorphic
in this region. If z is a point of the lower half-plane, clearly z is its mirror image
in the upper half-plane.
The solution of the problem of one edge dislocation in an elastic homogenous half-
space is known [80, 71]. It can be represented in complex variables form using the
analytic continuation procedure. The complex potentials given by

Φdw(z) = β

z − z0
, Ψdw(z) = β

z − z0
+ βz0

(z − z0)2 , (5.4)

define the elastic solution at any point z for a dislocation acting at point z0 in a
whole elastic plane. The constant β is defined as

β = µ

πi(κ+ 1) [br + ibϑ] z0

|z0|
, (5.5)

84



CHAPTER 5. WEDGE-SHAPED FRACTURING OF SUBSTRATE

Figure 5.8: An edge dislocation in a half space. Representative variables.

where br and bϑ represent the radial and circumferential components of the Burgers
vector and µ is the shear modulus.
These potentials produce non-zero tractions along the line representing the free
surface of the half-plane. To clear these, an additional set of complex potentials
need to be added. These are determined using the analytic continuation of (5.4)
through the boundary of the half plane [80], and recalling the properties Φ(z) =
Φ(z), and Φ(z) = Φ(z). In conclusion, one finds that the potential Φ in the half
plane Im(z) ≤ 0 reads

Φdc(z) = −Φdw(z)− zΦ′dw(z)−Ψdw(z). (5.6)

For the particular case of a half plane with zero tractions on the boundary, using
symmetry considerations, one can demonstrate [80] that the expression (5.1c) can
be simplified and results to be a function of the potential Φ(z) only. In particular,
one finds

σϑϑ + iσrϑ = Φ(z) + (1− e−2iω)Φ(z) + (z− z)e−2iωΦ′(z)− e−2iωΦ(z). (5.7)

By setting in this expression Φ(z) = Φdw(z) + Φdc(z), as per (5.4) and (5.6), one
obtains the desired solution.
The discrete dislocation at z0 = ρe−iω can be replaced by a distribution of dislo-
cations, B(ρ)dρ, of the form

B(ρ) = µ

πi(κ+ 1)
∂

∂ρ
[br + ibϑ]e−iω. (5.8)
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In this way, maintaining fixed ω and integrating over the length of the crack a, the
relevant stresses on the radial line z = re−iω (Figure 5.8) due to the distributed
dislocations become

(σϑϑ+ iσrϑ)d =
∫ a

0
B(ρ)K1(r, ρ)dρ+

∫ a

0
B(ρ)

[
2e−iω

r − ρ
+K2(r, ρ)

]
dρ, (5.9)

where K1(r, ρ) and K2(r, ρ) are given in Appendix B.
5.2.2.2 Problem II: elastic half-plane under surface tangential stress
In the problem of Figure 5.9, a distribution of shear stresses q(ξ), positive if
directed towards the positive ξ−axis, is applied on the surface over the length
lc = l − a cosω.

Figure 5.9: Elastic half-plane under surface shear stress. Representative variables.

The complex potentials for the uncracked half plane are given by

Φq(z) = − 1
2π

∫ l

a cosω

q(ξ)
ξ − z

dξ, (5.10a)

Ψq(z) = 1
2π

∫ l

a cosω

q(ξ)
ξ − z

dξ − 1
2π

∫ l

a cosω

q(ξ)
(ξ − z)2 ξdξ. (5.10b)

The relevant stresses on the radial line z = re−iω (z = reiω) of Figure 5.9, can be
obtained by substituting equations (5.10) in (5.7), to give

(σϑϑ+ iσrϑ)q = 1
2π

[∫ l

a cosω
q(ξ)H1(r, ξ)dξ +

∫ l

a cosω
q(ξ)H2(r, ξ)dξ

]
, (5.11)

where H1(r, ξ) and H2(r, ξ) are given in Appendix B.
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5.3 Solution of the elastic problem
Taking into account the contributions of the two systems considered in sections
5.2.2.1 and 5.2.2.2, the condition of traction free crack surface (5.3) reads

∫ a

0
B(ρ)K1(r, ρ)dρ+

∫ a

0
B(ρ)

[
2e−iω

r − ρ
+K2(r, ρ)

]
dρ

+ 1
2π

[∫ l

a cosω
q(ξ)H1(r, ξ)dξ +

∫ l

a cosω
q(ξ)H2(r, ξ)dξ

]
= 0. (5.12)

5.3.1 Approximation in Chebyshev’s series
The integral equation (5.12) can be solved using the method suggested by Erdogan
and Gupta in [58], which exploits the properties of Chebyshev polynomials of
the first and the second kind9. These polynomials are traditionally defined in
the interval [−1, 1], so that it is convenient to change variables according to the
transformations

ρ = a

2 (t+ 1), (5.13a)

r = a

2 (s+ 1), (5.13b)

ξ = a cosω + (l − a cosω)
2 (ζ + 1), (5.13c)

to obtain

∫ 1

−1
B(t)K1(s, t)d t+

∫ 1

−1
B(t)

[
2e−iω

s− t
+K2(s, t)

]
d t

+ 1
2π

[∫ 1

−1
q(ζ)H1(s, ζ) dζ +

∫ 1

−1
q(ζ)H2(s, ζ) dζ

]
= 0, (5.14)

where K1(s, t), K2(s, t), H1(s, ζ) and H2(s, ζ) are reported in Appendix B.
Observe that the kernelsK1(s, t) andK2(s, t) appearing in the integrals of equation
(5.14) are not regular at all points of the crack, as can be seen from equations
(B.8) and (B.9). They become infinite as both s and t approach the mouth of the
crack (s, t → −1). The integral equations are referred to as having Generalized
Cauchy kernels and the Gauss Chebyshev quadrature for standard Cauchy integral
equations does not apply. It is necessary to examine the behavior of the functions
B(t) at the ends t = ±1.
We argue that at the crack mouth the order of the singularity is weaker than the
square root type, and thus we force the regular part of the dislocation density at

9The definition and properties of Chebyshev polynomials that are used here, have been sum-
marized in Appendix A.
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5.3 Solution of the elastic problem

the crack mouth to be zero, i.e.,

B(−1) = 0. (5.15)

It has been demonstrated that such treatment of the mouth of the edge crack pro-
duces sufficiently accurate stress intensity factors for the range of angles considered
in this study.
For the reasons explained at length in Section 5.2.1, one can assume that the
surface stress q(ξ) is constant over the length lc, i.e., q(ξ) = const. = q. In this
situation, equation (5.14) becomes

∫ 1

−1
B(t)K1(s, t)d t+

∫ 1

−1
B(t)

[
2e−iω

s− t
+K2(s, t)

]
d t+

q

2π

∫ 1

−1
[H1(s, ζ) +H2(s, ζ)] dζ = 0. (5.16)

Such a singular integral equation can be solved by representing the dislocation
density B(t) in terms of a regular function Breg(t) and a function w(t) with proper
singularities at the end points, of the form

B(t) = Breg(t)w(t) = Breg(t)√
1− t2

, (5.17)

where Breg(t) is bounded. The regular function can be expressed in terms of the
Chebyshev polynomials of the first kind Tj as

Breg(t) =
n∑
j=0

XjTj(t), (5.18)

where Xj are complex coefficients. Substituting (5.17) and (5.18) in (5.16), setting
B̂reg = Breg/(qc/(2π)), and using the properties of Chebyshev polynomials, one
obtains the discretized form of the integral equation as

π

n

n∑
k=1

B̂reg(tk)K1(sj , tk) + π

n

n∑
k=1

B̂reg(tk)
[

2e−iω

sj − tk
+K2(sj , tk)

]

+ sgn(q)π
n

n∑
k=1

[H1(sj , ζk) +H2(sj , ζk)] = 0, j = 1, ..., n− 1, (5.19)

where tk = cosϕk, sj = cosϑj and ζk = cos δk, while the integration and colloca-
tion points{

ϕk = δk = (2k−1)π
2n k = 1, ..., n,

ϑj = jπ
n j = 1, ..., n− 1,

(5.20)
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represent the roots of the Chebyshev polynomials of the first and second kind,
respectively. Condition

B̂reg(−1) = 0 , (5.21)

has to be added in order to fulfill (5.15).

5.3.2 Stress intensity factors

At the apex of the inclined crack, the complex stress intensity factor K = KI +
iKII , comprehensive of mode I and mode II opening, is given by

K = KI + iKII = lim
r→a

(σϑϑ + iσrϑ)(d+q)
√

2π(r − a). (5.22)

It can be shown that the only unbounded part of the integral equation (5.12) is
the one involving the Cauchy Kernel, so that

K = KI + iKII = lim
r→a

[∫ a

0
B(ρ)2e−iω

r − ρ
d ρ

]√
2π(r − a). (5.23)

In terms of the dimensionless quantities introduced in the previous section, equa-
tions (5.17) and (5.18), together with the properties10 of Chebyshev polynomials
of the first kind for |s| > 1, the relevant expression reads

K = KI + iKII = q

2
√

2πae−iω
n∑
j=0

Xj , (5.24)

or, equivalently,

K = KI + iKII = q

2
√

2πae−iωB̂reg(1), (5.25)

which can be made normalized as

Kn = K

q
√

2πa
= 1

2e
−iω

n∑
j=0

Xj = 1
2e
−iωB̂reg(1). (5.26)

The value of the functionB(t) at the end points t = ±1 is given by the interpolation
formulas [72, 81]

10See Appendix A.
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B(1) = 1
n

n∑
k=1

sin
[ 2k−1

4n π(2n− 1)
]

sin
[ 2k−1

4n π
] B(tk), (5.27a)

B(−1) = 1
n

n∑
k=1

sin
[ 2k−1

4n π(2n− 1)
]

sin
[ 2k−1

4n π
] B(tn+1−k). (5.27b)

Figure 5.10 shows the stress intensity factors KI (Figure 5.10(a)) and KII (Fig-
ure 5.10(b)), evaluated through equation (5.25), as a function of the angle ω for
different values of the crack length a and a fixed bond length of the stiffener. Both
figures have been obtained using the mechanical parameters of [12], whose values
are reported later in Table 5.1.
It should be noted that in order to achieve a good approximation the number n
of Chebyshev terms that are needed in the series to define K, strongly increases
as ω decreases, i.e., as the crack tends to be parallel to the surface. This is shown
in Figure 5.11, which plots the normalized stress intensity factors KI,n and KII,n,
evaluated through equation (5.26), as a function of ω for varying n. For the sake
of comparison the graph also reports the results obtained using FEM program
Abaqus [78]. Observe that, for ω > 20◦, 100 terms are sufficient to obtain a very
good approximation, but for small values of ω, at least 300 terms are necessary to
avoid the classical “fluctuations”, as evidenced in Figure 5.11(b).

5.4 Competing mechanisms of failure
In a pull-out test, debonding starts from the loaded end of the stiffener and pro-
gresses parallel to its axis (Figure 4.5). When the actual bond length reaches a
critical value the formation of an inclined crack, nucleated at the free end, becomes
more favorable than continued debonding. There is thus a competition between
two different failure mechanisms, summarized in Figure 5.12: interface debonding
and crack diving into the substrate.
When at the loaded end, the interfacial tangential stresses become greater than
the maximum allowable tangential stress for the interface, q0, namely when

τ ≥ q0, (5.28)

interface debonding occurs and, consequently, fracture propagates parallel to the
adhesive joint.
On the other hand, for the inclined crack of length a and inclination ω that pro-
gresses from the free end of a stiffener, the energy release rate is obtained from its
stress intensity factors by using Irwin’s relation

Gω(a) =
(KI,ω(a))2 +

(
KII,ω(a)2)

Ep
, (5.29)

where Ep = Ep for plane stress, Ep = Ep/(1 − ν2) for plane strain, and in the
notation I have emphasized the dependence upon ω and a. When the crack length

90



CHAPTER 5. WEDGE-SHAPED FRACTURING OF SUBSTRATE

0 20 40 60 80 100
0

5

10

15

20

25

30

Inclination angle, ω [°]

S
tr

es
s 

In
te

ns
ity

 F
ac

to
r,

 K I [N
/m

m
2  m

m
1/

2 ]

 

 

a= 1 mm
a= 2 mm
a= 5 mm
a= 7 mm
a= 10 mm
a= 12 mm
a= 15 mm

(a)

0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

Inclination angle, ω [°]

S
tr

es
s 

In
te

ns
ity

 F
ac

to
r,

 K II
 [N

/m
m

2  m
m

1/
2 ]

 

 

a= 1 mm
a= 2 mm
a= 5 mm
a= 7 mm
a= 10 mm
a= 12 mm
a= 15 mm

(b)

Figure 5.10: Stress intensity factors at the tip of the crack for different values of crack length a
and a fixed l = 30 mm (mechanical properties of [12]). Stress intensity factor in: a) Mode I; b)

Mode II.
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Figure 5.11: Normalized stress intensity factors at the tip of the crack as a function of the angle
ω (mechanical parameters of [12]: l = 30 mm and a = 15 mm). a) Influence of the number n of

terms of the Chebyshev expansion. b) Detail in the interval 1◦ ≤ ω ≤ 12◦.

Figure 5.12: Competing mechanisms of failure in a pull out test of a stringer bonded to a
substrate.
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passes from the value a = a1 to a = a2 > a1, the corresponding energy release
reads

∆Gω,a1→a2 =
∫ a2

a1

Gω(a) da . (5.30)

One of the major assumptions in the present theory is that fracture propagation
is quantized, i.e., crack progress in steps (quanta) of finite length, which are of the
same order of the material intrinsic length scale. Let a∗ represent such a quantum,
and suppose that the toughness of the substrate is defined by the fracture energy
per unit area Γ. Then, the quantized nucleation of the crack at the free end of the
stiffener is governed by an energetic balance à là Griffith that reads

∫ a∗

0
Gω(a) da = Γa∗ . (5.31)

In other words, the crack propagates when

G∗ω ≥ Γ, with G∗ω = 1
a∗

∫ a∗

0
Gω(a) da. (5.32)

In general G∗ω is a quadratic function of the stress intensity factors and, conse-
quently, it is a quadratic function of the shear stress τ transmitted by the stiffener
to the substrate. One can normalize such a quantity and write G∗ω = G∗ω,nτ

2, so
that equation (5.32) can be written in the equivalent form

τ2 ≥ Γ
G∗ω,n

. (5.33)

Comparing such an expression with (5.28), the competition between the two mech-
anisms of Figure 5.12 can be summarized in the following conditions

τ2 ≥ Γ/G∗ω,n, ⇒ crack propagation in the substrate,

τ2 ≥ q2
0 , ⇒ interface debonding.

(5.34)

Combining these expressions, following the same rationale proposed by [82], one
obtains

G∗ω,n q
2
0/Γ > 1, ⇒ crack propagation in the substrate,

G∗ω,n q
2
0/Γ < 1, ⇒ interface debonding,

G∗ω,n q
2
0/Γ = 1, ⇒ the two mechanisms are equivalent.

(5.35)
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The importance of (5.35) is that it provides a comparison which is independent on
the applied shear stress τ . The value of the non-dimensional quantity G∗ω,n q2

0/Γ
directly indicates which one of the mechanisms of Figure 5.12 is the most favorable
when the stiffener is pulled until some damage occurs. When G∗ω,n q

2
0/Γ is less

than 1, propagation along the interface (debonding) occurs first; when it is greater
than 1, formation of an inclined crack is privileged; when it is equal to 1, both
mechanisms are equivalent.

5.5 Comparison with experiments
In order to make a comparison with experiments, reference is made to the two
campaigns of pull-out tests recorded in [34] and [12]. Carbon Fiber Reinforced
Polymer (CFRP) strips were bonded to concrete prisms and subjected to simple
pull out tests with a closed loop control that allowed the capture of snap-back
instabilities. Typical specimen size and measured mechanical properties for the
materials used in such tests are reported in Table 5.1.
As already discussed in Section 5.2.1, it is commonly accepted that the adhesive
joint can be characterized by an interface constitutive law of the type represented
in Figure 4.4, correlating the shear bond-stress τ with the relative slip s of the
two adherents through the adhesive. Supposing that the slip between the two
adherents is constant in practice, from the constitutive law of Figure 4.4 it is
possible to consider a definite value for the shear stress transmitted by the stiffener
to the substrate. Failure in the bond occurs when such stress reaches the critical
value, which has been indicated with q0 in Section 5.4.
The correct choice of q0 deserves some comments. One could directly refer to
the peak value τf of Figure 4.4, which is certainly associated with failure of the
interface, but there are some uncertainties in the experimental evaluation of the
τ − s constitutive law. This is assessed by estimating the slip s by measuring, by
means of gages, the strains in the stiffener and in the substrate. However, in the
latter case the measurement cannot be made immediately below the stiffener, but
instead it is made at one of its sides [23]. Moreover, as evident from Figure 5.2,
debonding is not a smooth process and the concrete substrate always present
noteworthy inhomogeneities that render any constitutive law valid only at the
qualitative level.
In the theory of debonding presented in [76, 77], a simple step-wise approximation
of the constitutive law of Figure 4.4 has been sufficient to represent the debonding
process in very good agreement with the experimental results. Therefore, I suggest
to set also here q0 = τc, where τc = τf/2 represents an average value of the bond
strength and corresponds to the maximum stress in a stepwise approximation that
preserves the same fracture energy of the joint and the same limit slip sf . Ad
hoc experiments would be necessary for a precise evaluation of q0, but this choice
represents a reasonable compromise. In any case, the results that follow remain
valid, at the qualitative level, if one considered other values of q0 rather than this.
For the experiments of [12], I suggest the values τf = 7.71 MPa and sf = 0.15
mm, so that τc = 3.85 MPa (Table 5.1). Figure 5.13 shows the ratio G∗ω,nτ2

c /Γ
introduced in (5.35), as a function of the inclination angle ω of the crack for
different values of the quantum length a∗. The fracture energy Γ for the substrate
has been evaluated through the empirical model by Bažant and Becq-Giraudon
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5.5 Comparison with experiments

[83], which takes into account the effects of the shape and the surface texture
of the aggregates based upon a large database of test results. In particular, one
can consider the expression for mode I fracture energy of concrete (the dominant
fracture mode), which reads

Γ = 2.5 a0

(
f ′c

0.051

)0.46(
1 + da,max

11.27

)0.22(
W

C

)−0.30
=
{

0.077Nmm−1, for [34],
0.11Nmm−1, for [12],

(5.36)

where a0 is the parameter that takes into account the shape of the aggregate (1
for rounded aggregates; 1.44 for crushed and sharp aggregates), f ′c = fc + 8[MPa]
is the cylinder compressive strength of concrete [65], da,max is the maximum ag-
gregate size in the mix and W/C is the water/cement ratio by weight of the mix.
Assumed data are those of Table 5.1.
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Figure 5.13: Normalized strain energy release as a function of the inclination angle ω for
different values of the crack quantum length a∗ (mechanical parameters of [12], bond length

l = 30 mm, q0 = τc).

The value G∗ω,n τ2
c /Γ = 1 defines the limit case that separates the two different

damage mechanisms as per (5.35) of section 5.4. From the graph of Figure 5.13, it
is then possible to evaluate, for a fixed quantum length a∗ of crack-propagation,
defined in (5.31), the limit angle ω which marks the transition from one of the
damage mechanism to the other. For example, the angle ω ' 31◦ corresponds
to a quantum length a∗ = 10 mm, whereas the angle ω ' 21◦ is associated with
a∗ = 20 mm.
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For the sake of comparison, I report in Figure 5.14 the counterpart of the graphs
of Figure 5.13 for the case q0 = τf , i.e., when the peak shear stress, rather than
the average value, is considered. For this case, ω ' 33◦ for a∗ = 10 mm, and
ω ' 26◦ when a∗ = 20 mm. In general, the higher the value of the critic shear
stress q0, the higher are the inclination angles. It is reasonable to assume that
the real situation should correspond to an intermediate value between q0 = τc and
q0 = τf . In any case, the qualitative aspects of the problem remain the same.
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Figure 5.14: Normalized strain energy release as a function of the inclination angle ω for
different values of the crack quantum length a∗ (same parameters of Figure 5.13, except

q0 = τf and l = 25 mm).

Figure 5.15 reports the counterpart of the graphs of Figure 5.14 for the tests by
Biolzi et al. [34]. From Table 5.1, one has τf = 7.78 MPa and sf = 0.26 mm.
Consequently, for this case, ω ' 17◦ for a∗ = 10 mm, and ω ' 10◦ when a∗ = 20
mm.
It is important to remark that such a result is strongly based upon the assump-
tion of “quantized fracture mechanics” [69]. Relaxation of this hypothesis, i.e.,
assuming that the crack propagation is smooth and the increment of crack length
is whatever small, does not allow to interpret the phenomenon. In fact, notice that
as a∗ → 0, the corresponding graphs tend to flatten so that in general, for what-
ever value of ω and q0, one would find G∗ω,nq

2
0/Γ < 1. In other words, interface

debonding would always be the preferred mechanism. Therefore, the definition of
the “fracture quantum” has a central role for the description of the propagation
process.
For the case of concrete, the crack quantum length a∗ is certainly associated with
the average size of the aggregate, correlated with the characteristic length-scale of
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Figure 5.15: Normalized strain energy release as a function of the inclination angle ω for
different values of the crack quantum length a∗ (Mechanical parameters of [34], l = 50 mm,

q0 = τf ).

the material. For the tests of [12], since such average size is in the range 10 ÷ 15
mm, one can conveniently consider values of the same order for a∗. Figure 5.13
shows that, with this choice, the critical angle ω varies in the interval 24◦ ÷ 31◦.
From the pictures recorded in [12], already presented in Figure 5.1, it is evident
the formation of wedge-shaped concrete bulbs at the end of the broken specimens.
Such wedges are defined by angles comprised in the interval 18◦÷33◦, which agree
very well with the conclusions of the present theory.
In the same way, considering the experimental data of [34], since the average
size of the aggregate is in the range 10 ÷ 20 mm, one can conveniently consider
such values for a∗. Therefore, from the graph of Figure 5.15, it is evident that
the critical angle ω varies in the interval 10◦ ÷ 17◦. Measurements of the bulbs
detached in the experiments [34] show that the critical angle ω varies in the range
9◦ ÷ 18◦, which squares very well with the prediction of the analytical model.

5.6 Discussion
The pull-out of a FRP stringer adherent to a quasi-brittle substrate such as con-
crete is characterized by debonding starting from the loaded end and progressing
towards the free extremity of the stringer [76, 77]. A peculiar phenomenon occurs
just prior to rupture, when the surviving bond length is of the order of 30 ÷ 50
mm. An inclined crack forms at the free end of the stiffener and extends into the
substrate, and in doing so it defines a wedge-shaped portion of the substrate that
eventually separates as a characteristic bulb that remains attached to the stiffener.
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To my knowledge, this type of failure has not been exhaustively discussed in the
technical literature. This is the motivation for the present study, where a simplified
model problem has been presented. The model is built upon four hypotheses: i)
the stiffener bending stiffness is negligible, so that only tangential traction devel-
ops between the stiffener and the substrate; ii) when the inclined crack initiates,
the surviving bond length is so small that the stiffener-substrate relative slip, and
consequently the tangential contact stress, can be considered uniform; iii) the
eventual formation of the inclined crack isolates a wedge in the substrate imme-
diately underneath the stiffener that produces a localized release of the stiffener
itself, here supposed to be complete (contact stresses directly applied on this por-
tion are neglected); iv) the crack propagation occurs through crack increments
(quanta) of small but finite length.
Under the assumption of a linear elastic, homogeneous and isotropic semi-infinite
substrate in generalized plane stress, the distributed dislocation approach has been
used to determine the opening of the inclined crack, the stress intensity factors,
and the energy release rate. The problem is reduced to the solution of a singu-
lar integral equation, representing the condition of zero traction along the crack
surfaces, which has been solved numerically by using the method proposed by
Erdogan and Gupta [58].
It is concluded that two damage mechanisms are in competition: debonding along
the stiffener-substrate interface or cracking at the free extremity of the stiffener
along an inclined path. In general, debonding can occur when the shear contact
stress is greater than the maximum allowable strength of the interface. On the
other hand, the inclined crack opens when the strain energy release associated with
its quantized propagation is not lower than the corresponding fracture energy of
the substrate itself. Which of the two scenarios is realized for prescribed values of
the crack quantum (including the angle of extension of the subsurface crack that
do form) is identified using the criterion proposed in [82].
The hypothesis of “quantized fracture mechanics” is crucial for the present model,
because the inclination of the crack that wins the competition with interface
debonding depends upon the length of the crack “quantum”. This quantity is
associated with the characteristic length-scale of the material, which for a nat-
ural conglomerate, like concrete, is of the same order of the average size of the
aggregate.
Assuming consistent material parameters, the predictions of the proposed model
have been compared with experimental results of FRP-to-concrete pull-out tests
that are available in the literature. The concrete bulbs that remain attached to the
FRP strips have angles in very good agreement with the proposed analytical model.
The results of this study provide valuable insights that can in the future be assessed
further using computational simulations under less restrictive assumptions.
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CHAPTER 6

CONCLUSIONS

6.1 Review
Fiber Reinforced Polymer (FRP) strips are widely employed to strengthen con-
crete or masonry structural elements. Although an extensive research has been
carried out during the past years, a review of the state-of-the-art in the applica-
tions of FRP to concrete structures has evidenced that further investigations need
to be done to clarify some aspects of the debonding process. Information on how
interfacial properties affect the debonding mechanism and strengthening capacity
is not completely understood and, in some cases, the modeling techniques pro-
posed by different authors in past investigations have been done without a sound
theoretical basis. Furthermore, a review of the technical literature has evidenced
a lack in the modeling of the characteristic phenomenon of the wedge-shaped frac-
turing of concrete in the final stage of debonding, i.e., when complete separation of
the stiffener from the support occurs. As a matter of fact, there is no unanimous
agreement on the causes of this particular aspect.
Motivated by the necessity to furnish a throughout characterization of the debond-
ing process with sound theoretical basis, an analytical model has been developed
in order to assess the interfacial debonding failure of the FRP-to-concrete bonded
joint.
Due to the popularity of this strengthening technique, many different experimental
set-ups have been proposed, but all the experiments evidence that the main failure
mode is the cracking of concrete under shear, generally occurring a few millimeters
below the adhesive interface. For this reason, among the various experimental
set-ups, the pull-out test has been considered to analyze the debonding process.
Despite the variety of the reinforcing materials, of the strengths of the substrates
and of the geometry of the stiffeners, there is a general agreement on many aspects
of the ultimate performance of the bonded joint. One of these is certainly the
Effective-Bond-Length (EBL) of the stiffener, defined as the bond length beyond
which no further increase of pull-out load can be achieved. Accordingly, the latter
is therefore another important parameter of the failure process, i.e., the ultimate
load or bond strength of the bonded joint.
Considering the main characteristics of the pull-out test, the model problem here
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considered is therefore the debonding in mode II of a straight elastic stiffener, of
prescribed length, from an elastic substrate in generalized plane stress. Since its
thickness is in general very small, the FRP strip can be modeled as a membrane
with negligible bending stiffness. Hence, the stiffener is not able to sustain trans-
verse loads during small deformations and this results in the absence of peeling
stresses at the interface.
In the model of Chapter 3, the role of the substrate elasticity has been emphasized.
Compatibility conditions for the axial strains between stiffener and substrate per-
mitted to obtain an integral equation in terms of the shear stresses. The solution
obtained exploiting the properties of Chebyshev polynomials has then be used to
establish an energetic balance à la Griffith, which also permits to determine the
critical load. Fracture occurs as long as the strain energy release rate associated
with the propagation of an infinitesimal crack length is higher than the interfacial
fracture energy. In order to determine the energy release rate, a generalization of
the Crack Closure Integral Method developed by Irwin [57] has been written. Re-
sults of the calculations show that the strain energy release rate strongly depends
upon the elasticity of the substrate, tending to the limit value for a rigid substrate
calculated by Taljsten [60] when the Young modulus of the substrate, Ep, tends
to ∞. The energetic balance allows to evaluate the maximum transmissible load
and the progression of the debonding phenomenon as well as the onset of a snap-
back phase, remarking the important role played by the elasticity of the substrate,
which is usually neglected in the practice. One of the major drawbacks of this
model is that the diffusion of load from the stringer to the substrate only depends
upon the elasticity of the material: stress singularities occur at both ends of the
adherent interface, so that it is difficult to give a sound definition of the effective
anchorage length.
To solve this inconsistency, Chapter 4 introduces two cohesive zones at both ends of
the stiffener, where slip can occur, in order to annihilate the singularities predicted
by the elasticity theory. Following the approach originally proposed by Barenblatt
[63], the length of these cohesive zones for a fixed load is evaluated by imposing
that the stress intensity factors at the extremities of the perfectly bonded zone
are null. Two model have been developed: the SCZ (Single Cohesive Zone) model,
where the cohesive zone is introduced at loaded end of the stiffener and the DCZ
(Double Cohesive Zone) model, that accounts also for a second cohesive zone at the
free end of the stiffener. To illustrate, one may consider that in the SCZ model11

material separation is supposed to start when the relative slip at the loaded end
exceeds a certain threshold. If the stiffener is sufficiently long, there is maximal
reachable length of the cohesive zone: in a pull out test, the cohesive portion
simply translates along the stiffener as debonding proceeds, maintaining its length
unchanged, while the load remains practically constant, confirming that only part
of the bond is active. In other words, the bond strength does not increase with
an increase of the bond length, even if increasing the bond length can improve the
ductility of the bonded joint. A strain softening phase, usually associated with
snap-back, is entered when the cohesive zone reaches the free end of the stiffener.
As a consequence, this model provides a physical definition of the effective bond
length, since it is associated with the maximal length of the cohesive zone reached

11The behavior is exactly the same in the DCZ model.
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in sufficiently long stiffeners. Assuming a very simple, step-wise, shear-stress vs.
slip constitutive law for the interface, the model is able to interpret the debonding
process step-by-step, evidencing different-in-type responses when the bond length
is higher or lower than the effective bond length.
The potentialities of the two approaches (SCZ and DCZ) have been discussed and
compared with the completely adherent model of Chapter 3, referred to as No
Cohesive Zone (NCZ) model. In the NCZ model, the interfacial shear stress shows
an extremely rapid decrease from the maximum concentration near the loaded
end. The SCZ approach, just assuming a very simple step-wise interface law,
predicts the formation of a cohesive zone that produces a more gradual decay
of the contact stress in agreement with experimental results. The DCZ model
prescribes two cohesive zones at the edges of the reinforcement, but it has been
shown that the zone at the free end does not play a significant role. The stress
distribution practically coincides with that of the SCZ model, apart from a very
small neighborhood of the free end where the singularity is present.
The ultimate load obtained through the three models matches very well not only
with experimental results, but also with the relevant formulas proposed in technical
standards [1]. For what the effective bond length is concerned, the NCZ is not
accurate, because the shear stress at the interface decays too rapidly. The SCZ
and DCZ models both give predictions in good agreement with relevant tests
recorded in the literature, because their shear stress distribution is almost the
same except in a small neighborhood of the free-end. On the other hand, it
must be observed that the formulas suggested by standards [1] give excessively
overestimated values. To this respect, the SCZ and DCZ approaches seem to
be an improvement of what proposed so far. Moreover, the SCZ model, which
considers only one cohesive zone, is able to predict correct values of the critical
pull-out load as well as of the EBL, identical to those provided by the DCZ model
through more complicated calculations. Consequently, in an engineering approach,
the SCZ formulation appears to be the best compromise.
Chapter 5 investigates the last stage of debonding, when a wedge-shaped portion
of material detaches from the support. The opening of an inclined crack, which
isolates the bulb, usually occurs when the remaining bond length is very small,
generally of the order of the width of the FRP lamina. Under reasonable hypothe-
sis, the solution of the elastic problem has been found by means of the distributed
dislocation technique and the propagation of crack at the end of the stiffener has
been obtained superimposing two schemes: i) the effect of the distribution of tan-
gential stresses on the surface of the half plane and ii) the effect of distributed edge
dislocations along the crack reference configuration. Conditions that the crack lips
are stress free furnishes an integral equation that is solved in series of Chebyshev’s
polynomials.
In the model, two competing mechanisms of failure may occur: a) failure of the
adhesive joint, which progresses at the stiffener-substrate interface when the corre-
sponding shear stress is greater than the strength of the interface itself; b) inclined
cracking, which can develop in the substrate when the strain energy release associ-
ated with its propagation is greater than the corresponding fracture energy of the
material. From the competition of the two mechanisms one can evaluate when the
inclined crack starts to form and the characteristic angle of the wedge-shaped bulb.
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The proposed model problem represents a simple and intuitive tool to investigate
this peculiar phenomenon and provides results that are in very good qualitative
agreement with experiments, drawn from the technical literature.

6.2 Contributions
The main purpose of this work has been the modeling of the various and different-
in-type mechanisms that characterize the failure process of FRP stiffeners bonded
to quasi-brittle substrates under pull-out loads. What I repute to be novel contri-
butions of this research to the state-of-the-art can be summarized as follows.

• The contact problem of the elastic stiffener to the substrate has been ana-
lyzed taking into account the deformation of the substrate itself, here consid-
ered linear elastic. In the traditional approaches the substrate is supposed
rigid and the essence of the phenomenon is condensed in a particular stress
vs. slip constitutive law for the cohesive interface. But I have shown that
this assumption has major drawbacks.

• The Crack Closure Integral Method developed by Irwin has been extended to
the case of a propagating interface crack between the stiffener and the sub-
strate, to evaluate the energy release rate as a function of the corresponding
stress intensity factor. This generalization, although attempted by other au-
thors, does not seem to have been correctly posed in previous contributions.

• I have shown that a simple energetic balance à la Griffith is effective in
predicting the strength of the bond under the hypothesis of perfect adhesion
(no slip) between stiffener and substrate. However, the presence of stress
singularities in the corresponding linear elastic solutions does not allow to
give a sound definition and interpretation of the effective bond length.

• To solve the aforementioned inconsistency, I have assumed the presence of
a cohesive zone in the bond. With a very simple step-wise constitutive law
for the interface, but considering the elastic deformation of the substrate,
I have shown that it is possible to annihilate the stress singularities. More
important, slip can occur in just a portion of the bonded joint, while the other
part remains perfectly bonded. The load applied to the stiffener is in practice
balanced by the cohesive portion of the joint, whose maximum length can
therefore be considered the effective bond length. In this way, a physically
consistent definition of this important parameter has been provided.

• In the elastic perfect-contact problem, the are two stress singularities, one
at loaded end and the other at the free extremity of the stiffener. The
singularity that plays a major role is the one at the loaded end, because the
stress in a very small neighborhood of that singular point equilibrates, by
far, most of the pull-out load. The second singularity, at the free extremity,
gives almost a negligible contribution to this respect. Therefore, I have
concluded that it is sufficient to introduce one cohesive zone at the loaded
end to obtain consistent results, thus avoiding the major complication of
treating two cohesive zones.
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• The characteristic wedge-shaped fracturing of the substrate in the final stages
of the failure process has been modeled in detail. This aspect does not seem
to have been exhaustively treated in the technical literature. A basic hy-
pothesis for the proposed theory is the “quantized” propagation of fracture,
i.e., crack increments can only be of finite length (quantum).

• The proposed models can cover the whole process of failure of the bonded
joint under a pull out load. The results obtained from the models are in very
good agreement with the experimental evidence.

6.3 Further developments and future research
This study is analytical. The careful hypotheses that were necessary to simplify
the problem to allow its analytical solution have permitted, at the same time, to
recognize and understand the fundamental aspects of the phenomenon. This is
therefore a preliminary study, propaedeutic to do a more complex numerical mod-
eling. For example, the cohesive models have been derived under the hypothesis of
a step-wise constitutive law for the interface. Despite its simplicity, the formulation
is able to capture the essence of the debonding phenomenon before the snap-back
phase occurs, i.e., the maximum strength and the extension of the effective bond
length. However, a numerical implementation that uses the trilinear interface law,
the one commonly accepted in the scientific community, could improve the predic-
tions obtainable through the model, to better interpret in particular the snapback
phase in the load-displacement curve. Moreover, the characteristic wedge-shaped
fracturing of the substrate in the latest stage of the failure process has been ob-
tained under the major hypothesis of quantized propagation of cracks. I believe
that such an assumption cannot be relaxed, and therefore should be accurately
implemented in any numerical modeling. Further work could account for the pos-
sibility of a cohesive zone at the interface. Of course, a more refined experimental
investigation is needed to confirm the soundness of the proposed approaches. The
essential aspects of the debonding phenomenon have been conjectured in the an-
alytical models here presented. Ad hoc designed experimental activity will clarify
the correctness of the assumptions made.
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APPENDIX A

CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials are usually defined introducing the variables

t = cos(ϕ) , ϕ = arccos(t) . (A.1)

The polynomials of the first kind take the form [84]

Ts(t) = cos(sϕ(t)) = cos(s arccos(t)) , (A.2)

while the polynomials of the second kind are defined as

Us(t) = sin(s+ 1)ϕ(t)
sin(ϕ(t)) . (A.3)

Both Ts and Us form a sequence of orthogonal polynomials. The polynomials of
the first kind are orthogonal with respect to the weight 1/

√
1− t2 on the interval

[−1, 1], that is,

∫ 1

−1

Ts(t)Tm(t)√
1− t2

dt =


0 , for m 6= s ,
π
2 , for m = s 6= 0 ,
π , for m = s = 0 .

(A.4)

Similarly, the polynomials of the second kind are orthogonal with respect to the
weight

√
1− t2 on the interval [−1, 1], i.e.,

∫ 1

−1
Us(t)Um(t)

√
1− t2dt =

{
0 , for m 6= s ,
π
2 , for m = s .

(A.5)



The following properties are useful:

∫ 1

−1

Ts(t)√
1− t2(t− t0)

dt =


0 , for s = 0 and |t0| < 1 ,
πUs−1(t0) , for s > 0 and |t0| < 1 ,

−π
(t0− |t0|t0

√
t20−1)s

|t0|
t0

√
t20−1

, for s ≥ 0 and |t0| > 1 .
(A.6)

∫ 1

−1
Us−1(t)

√
1− t2 ln |t− t0|dt

=



−π2 (t20 + ln 2), for s = 1 and |t0| < 1,
π
2

[
Ts+1(t0)
s+1 − Ts−1(t0)

s−1

]
, for s > 1 and |t0| < 1,

π
4

[(√
t20 −

√
t20 − 1

)2
+ 2 ln

∣∣∣∣ t0+ |t0|t0
√
t20−1

2

∣∣∣∣] , for s = 1 and |t0| > 1,

π
2

(
− |t0|t0

)s−1
[(√

t20−1−
√
t20

)s+1

s+1 −
(√

t20−1−
√
t20

)s−1

s−1

]
, for s > 1 and |t0| > 1.

(A.7)

Another property of the Chebyshev polynomials is that, in the interval −1 ≤ t ≤ 1,
they attain the maximum and minimum values at the endpoints, given by

Ts(1) = 1 ,
Ts(−1) = (−1)s ,
Us(1) = s+ 1 ,
Us(−1) = (s+ 1)(−1)s .

(A.8)

These relationships are of help while estimating qualitative properties of the solu-
tion.
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APPENDIX B

GREEN’S FUNCTIONS

K1(r, ρ) = − 2ρi sinω
(reiω − ρe−iω)2 −

1− e−2iω

(re−iω − ρeiω) + 2rie−2iω sinω
(re−iω − ρeiω)2 (B.1)

K2(r, ρ) = − 1
(reiω − ρe−iω) + 2ρi(1− e−2iω) sinω

(re−iω − ρeiω)2

− e−2iω

(re−iω − ρeiω) + 8rρe−2iω sin2 ω

(re−iω − ρeiω)3 (B.2)

K3(r, ρ) = − 1
re−iϑ − ρeiω

+ 1
re−iϑ − ρe−iω

− 1
reiϑ − ρe−iω

− e2iϑ

reiϑ − ρeiω

+ (1 + e2iϑ)(reiϑ − ρeiω)
(reiϑ − ρe−iω)2 + 4rie2iϑ sinϑ

(reiϑ − ρe−iω)2 −
4rie2iϑ sinϑ(reiϑ − ρeiω)

(reiϑ − ρe−iω)3

(B.3)

K4(r, ρ) = − 1
re−iϑ − ρeiω

− (1 + e2iϑ)
reiϑ − ρe−iω

+ 1
reiϑ − ρeiω

+ re−iϑ − ρe−iω

re−iϑ − ρeiω

+ 2rie2iϑ sinω
(reiϑ − ρe−iω)2 + e2iϑ(re−iϑ − ρe−iω)

(reiϑ − ρeiω)2 (B.4)

H1(r, ξ) = 1
ξ − reiω

− e−2iω

ξ − re−iω
(B.5)

H2(r, ξ) = (1− e−2iω)
ξ − re−iω

+ 2rie−2iω sinω
(ξ − re−iω)2 (B.6)



H3(r, ξ) = 1
ξ − re−iϑ

+ (1 + e2iϑ)
ξ − re−iϑ

+ 2rie2iϑ sinϑ
(ξ − reiϑ)2 (B.7)

K1(s, t) = − 2(t+ 1)i sinω
((s+ 1)eiω − (t+ 1)e−iω)2 −

1− e−2iω

((s+ 1)e−iω − (t+ 1)eiω)

+ 2(s+ 1)ie−2iω sinω
((s+ 1)e−iω − (t+ 1)eiω)2 (B.8)

K2(s, t) = − 1
((s+ 1)eiω − (t+ 1)e−iω) + 2(t+ 1)i(1− e−2iω) sinω

((s+ 1)e−iω − (t+ 1)eiω)2

− e−2iω

((s+ 1)e−iω − (t+ 1)eiω) + 8(s+ 1)(t+ 1)e−2iω sin2 ω

((s+ 1)e−iω − (t+ 1)eiω)3 (B.9)

H1(s, ζ) = 1
(ζ + 1)− (s+ 1)eiω −

e−2iω

(ζ + 1)− (s+ 1)e−iω (B.10)

H2(s, ζ) = (1− e−2iω)
(ζ + 1)− (s+ 1)e−iω + 2(s+ 1)ie−2iω sinω

((ζ + 1)− (s+ 1)e−iω)2 (B.11)
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APPENDIX C

STRESS AND STRAIN ON THE
WEDGE-SHAPED-CRACKED HALF-PLANE,

LOADED FOR THE WHOLE BOND LENGTH

Consider the wedge-shaped cracked elastic half-plane of Figure 5.3(a), and suppose
that the contact stresses with the stiffener are tangential forces per unit area q,
uniformly distributed along the whole bonded surface. In order to evaluate the
state of stress σrr along such surface, consider the relation

σrr + iσrϑ = Φ(z) + (1 + e2iϑ)Φ(z)− (z − z)e2iϑΦ′(z) + e2iϑΦ(z). (C.1)

With the same procedure of section 5.2.2, the stress is due to the superposition of
the two problems of Figure 5.7.
Consider first the half-plane with the inclined crack (Figure 5.8). The stress along
the radial line z = re−iϑ due to a distributed dislocation acting along the crack of
length a at z0 = ρe−iω, 0 ≤ ρ ≤ a, are given by setting Φ(z) = Φdw(z) + Φdc(z),
as per (5.4) and (5.6), in (C.1), and reads

(σrr + iσrϑ)d =
∫ a

0
B(ρ)K3(r, ρ)dρ+

∫ a

0
B(ρ)K4(r, ρ)dρ, (C.2)

where K3(r, ρ) and K4(r, ρ) are given in Appendix B.
The case of a half-space with tangential stresses applied over the length l of its
boundary can be solved with the same procedure of section 5.2.2 substituting the
expression for the complex potentials (5.10) into equation (C.1), where in this case
the domain of integration is the interval [0, l]. The stresses along the line z = re−iϑ

due to the presence of a distribution of constant shear stress q along the surface
z0 = z0 = ξ are given by

(σrr + iσrϑ)q = q

2π

∫ l

0
H3(r, ξ)dξ, (C.3)



where H3(r, ξ) is given in Appendix B.
Therefore, the state of stress due to the superposed effects is given by

σrr+iσrϑ =
∫ a

0
B(ρ)K3(r, ρ)dρ+

∫ a

0
B(ρ)K4(r, ρ)dρ+ q

2π

∫ l

0
H3(r, ξ)dξ. (C.4)

In the special case ϑ = 0 (surface of the half-plane) the integral (C.4) becomes

(σrr+iσrϑ)|ϑ=0 =
∫ a

0
B(ρ)K∗3 (r, ρ)dρ+

∫ a

0
B(ρ)K∗4 (r, ρ)dρ+ q

2π

∫ l

0

[
4

ξ − r

]
dξ,

(C.5)

where

K∗3 (r, ρ) =
[

2
(
− 1
r − ρeiω

+ r − ρeiω

(r − ρe−iω)2

)]
,

K∗4 (r, ρ) =
[

2
(
− 1
r − ρe−iω

+ r − ρe−iω

(r − ρeiω)2

)]
,

(C.6)

and the last integral is intended as a Cauchy principal value.
The integral (C.5) can be solved using the methods provided by Erdogan and
Gupta in [58] and reported in section 5.3.1. By using relations (5.17) and (5.18)
and the property of Chebyshev polynomials, one obtains the integral (C.4) in the
discretized form

(σrr + iσrϑ)|ϑ=0 = π

n

n∑
k=1

Breg(tk)K∗3 (sj , tk) + π

n

n∑
k=1

Breg(tk) K∗4 (sj , tk)+

q

2π

[
4
(
iπ + ln

∣∣∣∣1− sj1 + sj

∣∣∣∣)] , j = 1, ..., n− 1, (C.7)

where tk = cosϕk, sj = cosϑj and the integration and collocation points are given
by equation (5.20). The following relation holds

Breg = q

2π B̂reg,

where B̂reg is given by the solution of the integral equation (5.19).
For the sake of comparison, one may focus on the wedge-shaped portion of the
substrate isolated by the inclined crack, and consider for this, as an approximation,
the solution given by Michell [79] for an infinite wedge loaded by shear stresses on
one of its edges, as represented in Figure 5.5. Recall that the stress components
are given by
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σrr = −2A1 cos 2ϑ+ 2A2 − 2A3 sin 2ϑ+ 2A4ϑ, (C.8a)
σrϑ = 2A1 sin 2ϑ− 2A3 cos 2ϑ−A4, (C.8b)
σϑϑ = 2A1 cos 2ϑ+ 2A2 + 2A3 sin 2ϑ+ 2A4ϑ, (C.8c)

where the four constants can be obtained through the boundary conditions{
σrϑ = q, σϑϑ = 0, for ϑ = 0 ,
σrϑ = 0, σϑϑ = 0, for ϑ = ω .

(C.9)

The stress components are therefore

σrr = −q2
[cos(2ϑ− ω) + cosω − 2ω cosϑ cos(ϑ− 2ω) cscω − 2ϑ sinω]

ω cosω − sinω ,

(C.10a)

σrϑ = −q [− cosϑ+ ω cosϑ cotω + ω sinϑ] sin(ϑ− ω)
ω cosω − sinω , (C.10b)

σϑϑ = q

2
[cos(2ϑ− ω)− cosω − 2ω sinϑ sin(ϑ− 2ω) cscω + 2ϑ sinω]

ω cosω − sinω .

(C.10c)

In the case ϑ = 0, one obtains

σrr = q

2
cscω (2ω cos 2ω − sin 2ω)

ω cosω − sinω , (C.11a)

σrϑ = q, (C.11b)
σϑϑ = 0. (C.11c)

Finally, the strain components are given, by Hooke’s law, in the form

εrr = 1
E

(σrr − νσϑϑ), (C.12a)

εϑϑ = 1
E

(σϑϑ − νσrr), (C.12b)

εrϑ = 2(1 + ν)
E

σrϑ. (C.12c)

Remarkably, the simple Michell’s solution, and the elastic solution for the cracked
half plane, coincide on the wedge-shaped cracked portion, as represented in the
graph of Figure 5.4.
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