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Abstract

A number of fitness landscape properties of randomly generated instances of a class

of NP-hard combinatorial optimisation problems are empirically studied in this research.

We believe that the studied properties give insight into the structure of the problem

landscape and can be representative of the problem difficulty, in particular with respect

to local search algorithms. The properties include: types of search position, number of

local and global optima and plateaux, quality of optima and plateaux, basin size and its

correlation with fitness, time to local optima, cost of finding the global solution, and the

quality of optima obtained with a fixed budget search. Our work focuses on studying

how these properties vary with different values of problem parameters. We also compare

these properties across different landscapes that were induced by different neighbourhood

operators or different penalty functions of the following problems: the number partition-

ing problem, the binary knapsack problem, and the quadratic binary knapsack problem.

Unlike existing studies of these problems, we study instances generated at random from

various distributions. We found a general trend where in all the three problems, some

of their landscape features were found to vary between the different distributions. We

captured this variation by a single, easy to calculate, parameter and we showed that it

has a potentially useful application in guiding the choice of the neighbourhood operator

of local search heuristics.
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NOMENCLATURE
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| · | Cardinality of a set
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p̂ Sample proportion
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CV Coefficient of variation

e The natural logarithm base

h Hamming distance



k Control parameter of the phase transition in Number Partitioning and Subset

Sum (k = log2M/n)

M Range of the weights

n Problem size

N(x) Neighbours set of configuration x

p Population proportion

pij Profit when both item i and j are selected

pi Item i profit
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wi Item i weight
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H1+2 1+2-bit flip neighbourhood operator

H1 1-bit flip neighbourhood operator
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CHAPTER 1

INTRODUCTION

Meta-heuristics are general approximate optimisation techniques. They have been suc-

cessfully applied to find good approximate solutions to many hard optimisation problems.

There is a vast number of available meta-heuristics techniques with a vast number of dif-

ferent variations to each technique. This number is growing every year with new proposed

techniques and variations. The most common way to evaluate the performance of a new

proposed algorithm is through “up-the-wall” game [13], where an extensive number of ex-

periments is performed on benchmark problems and the results are then compared against

the performance of other existent algorithms. The goal of the game is to claim further up

the wall than the others. Hooker [49] refers to this approach as “competitive testing” and

he argues that this approach is harmful for research as it gives little or no insight into why

or how the algorithm under test is better or worse than the others. This line of research

is increasingly being criticised for not advancing our knowledge and understanding of the

algorithm behaviour [108, 109, 1, 8], which in turns contributes to making the selection

of the most suitable algorithm for a given optimisation problem even more challenging.

Finding a single algorithm that has the best performance on every optimisation prob-

lem is ruled out by the no free lunch theorem [134], which states that an algorithm that

has superior performance over the others for all the possible optimisation problems does

not exist. Therefore, there is a need for a deep understanding of the problem features

and how that relates to the algorithm behaviour. This kind of research is encouraged
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by an ongoing initiative to direct the research in the field of meta-heuristics towards this

direction [108, 1, 109, 49].

Fitness landscape analysis provides a great analytical framework to address the need

of understanding the relation between problem features and algorithm performance. An

extensive amount of research has been carried out in the past two decades, where new

approaches were proposed to characterise the problem fitness landscape and relate that

to its difficulty with respect to certain meta-heuristics. The aim is that the gained insight

can help in the selection process of the best suited algorithm/configurations, or the design

of new more suitable techniques. Several predictive measures of problem difficulty have

been proposed over the years. According to [55] these measures fall into two types,

descriptive and analytical. Descriptive methods try to classify a problem according to

some properties of the landscape, while analytical methods define a measurable output

to classify problems (e.g. summary statistic). However, and despite the extensive work

being done in this area, until now none of the proposed measures seem to be satisfactory

[46]. Sometimes a measure cannot even accurately predict the difficulty of all instances

of a single problem class as [55] points out. For most of the measures, computing the

exact value of the measure is exponential with the size of the problems since it requires

exhaustive search of the whole search space [46, 55]. On the other hand, approximate

measures, which are computed on a sample of the search space, do not always give the

correct indication of the problem difficulty. Even exact computations of many difficulty

measures can be very misleading sometimes [55]. A major problem with the analytical

measures is that they try to compress large and complex information into a single number

and a lot of information gets lost in that process. But most importantly, a general measure

that accurately predicts the difficulty of all the problems and that can be computed in

polynomial-time cannot exist unless P = NP, as rigorously proven by He et al. [46].

Therefore, the emphasis should be on designing difficulty measures for a broad class of

problems on which the predictability of the measure is consistent. Studying more than

one measure or feature can help in getting a broader perspective and increase the chances
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of capturing various aspects of the problem difficulty.

In this thesis, we provide a fitness landscape analysis of three NP-hard problems that

fall into a class of NP-hard binary packing problems related to the 0-1 knapsack problem,

namely: the number partitioning problem (NPP), the binary knapsack problem (0-1KP),

and the quadratic binary knapsack problem (0-1QKP). We study a set of landscape prop-

erties with respect to local search. We believe these properties to be representative of

the problems difficulties and to give an insight into the structure of the problem land-

scape. The set includes: types of search position, number of local and global optima

and plateaux, quality of optima and plateaux, basin size and its correlation with fitness,

time to local optima, cost of finding the global solution, and quality of optima obtained

with a fixed budget search. Our work focuses on studying how these properties vary with

different values of problem parameters, where one of these parameter being phase transi-

tion control parameter. We also compare these properties across different landscapes that

were induced by different neighbourhood operators or different penalty functions. Most

of the existing studies of these problems only consider instances where the weights are

drawn at random from a uniform distribution. We study instances generated by drawing

the weights at random from various distributions. In all of the three problems, we found

that some of the landscape features vary greatly between some of the distributions. We

proposed and demonstrated that the use of a single parameter that is easy to calculate

and does not require the knowledge of the underlying distribution of the weights, namely

the coefficient of variation of the weights CV , captures most of this variability. We also

show that the CV has a potentially useful application in guiding the choice of the neigh-

bourhood operator of local search heuristics. The problem of estimating the number of

local optima often arises during fitness landscape analysis. We evaluate the performance

of estimating the number of local optima by estimating their proportion using simple

random sampling and discuss the choice of different confidence intervals in this thesis.
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CHAPTER 2

LITERATURE SURVEY

2.1 Fitness Landscape Analysis

Fitness landscape is a powerful metaphor which facilitates the visualisation of the rela-

tionship between configuration space and fitness values. The concept of fitness landscape

was first introduced by biologist Sewall Wright in 1932 [135]. Visualisation of the fitness

landscape offers an intuitive way of understanding a problem (though caution is required

in high dimensional spaces as it can be misleading [101]). Formally, the fitness landscape

is a triple (X,N, f), where X is the search space, N is the neighbourhood operator func-

tion, and f is the objective function f : X → R [107]. The neighbourhood operator

represents how the solutions are connected in the landscape, and how one can move from

one solution to another. Analysing the fitness landscape to identify the landscape features

that are related to problem difficulty has been an active area of research over the last two

decades. Stadler [104] notes that the fitness landscape can be studied in two ways. The

first is from a static point of view, in which the focus is to analyse the geometric features

of the landscape. The second is from a dynamic point of view, in which the focus is to

study the dynamic features of the search method, for instance an evolving population

searching the given landscape. The challenge lies in combining the two methods together,

and determining how the geometric features of the landscape influence the dynamic be-

haviour of the search method. One of the first studied features of the fitness landscape is
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deceptiveness. Goldberg [39] was the first to introduce the concept of deceptive problems

where the global structure of the problem leads the algorithm away from the global op-

tima. Deceptiveness can make a problem difficult to optimise and could render the search

algorithm less efficient than random search [127]. However, that does not apply to all

deceptive problems. Wilson [132] proposed a deceptive function that is easy to optimise

for a genetic algorithm. Also, Vose and Wright [123] have shown a non-deceptive function,

yet it is difficult to optimise for a genetic algorithm.

The rest of this section gives an overview of some of the concepts, predictive measures,

and sampling methods that have been proposed over the years to study the fitness land-

scape and characterise the problem difficulty. Note that some of the predictive measures

study the fitness function only and majority of them study the fitness landscape. For a

more detailed overview the reader is advised to look at [85, 124, 96].

2.1.1 Modality

When trying to assess the difficulty of a problem, a feature of the fitness landscape that

might seem to be the most obvious, is the number of local optima. One would think

that a unimodal problem with single optima would be easier to search than a multimodal

problem, but this is not always true. Horn and Goldberg [53] have shown a unimodal

problem that is hard to search and an extremely maximally multimodal problem, where

half of the points in the search space are local optima, yet it is easy to search. Therefore,

relying on the number of local optima alone as an indicator of problem hardness is neither

sufficient nor necessary [58]. Nevertheless, local optima and their number could still

provide valuable information about the landscape. Examples of the information that

can be studied about the local optima, alongside their frequency, are: the distribution

of the optima over the search space, examining if fitter ones cluster together, examining

if they form a valley in the search space (in which case, search algorithms such as tabu

search could be more suitable), and the difference in quality between the local and the

global optimum. A method to examine the distribution of the optima over the landscape
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is proposed in [110], where they study the average distance between local optima and

combined that with the optima entropy (as a measure of their diversity) to estimate

how they are distributed over the landscape. The local optima of many combinatorial

optimisation problems tend to cluster together and form “big valley” (or “central massif”

if maximising). This has been observed in NK family of landscapes, travelling salesman

problem, graph bi-partitioning and flow-shop scheduling [125].

2.1.2 Basins of attractions and barriers

Another important feature of an optimum is its basin of attraction, unlike modality,

basins of attraction could provide more information about the landscape. For an optimum

x∗ ∈ X, its basin of attraction B(x∗) is the set of points that leads to it after applying

local search to them, B(x∗) = {x ∈ X | localsearch(x) = x∗} [85, 78]. Pitzer et al. [86]

note that a basin of attraction can be classified as strong or weak according to the set of

points that belongs to it. A strong basin of attraction is a basin on which all the points

in the basin converge exclusively to a certain optimum. A weak basin of attraction is

a basin, which has some points that could converge to another optimum depending on

the algorithm or operators used. The search space X can be seen as the union of all the

weak basins X = ∪iεX∗B(i), where X∗ is the set of all the optima. Basins of attraction

have several interesting properties such as size, shape, stability and distribution, which

can be studied to drive difficulty measures [37]. For example if the basin size of the

global optimum is relatively small then the problem can be difficult. A reverse hill-

climbing algorithm to determine recursively the basin of attraction of a given point in the

landscape is developed in [56]. To examine the quality of the intermediate points between

local optima, [69] proposed a directed walk between two optima and then compared the

fitness trajectory of this walk to the fitness trajectory of a random walk starting from the

same optimum. The underlying idea behind this directed walk, is that it could give an

indication whether a crossover between the two optima is useful or not.

The concept of barriers is borrowed from physics where it describes the energy barriers
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between metastable states [94, 85]. In fitness landscapes and assuming minimization, a

fitness barrier is defined as the minimum fitness value required to go from one optimum

to another through any random path [94]. Fitness barriers between the the set of local

minima form an ultra-metric distance measure [94, 85] and it can be used to build a barrier

tree that represents a hierarchy of local optima. This ultra-metric distance measure can be

used to indicate the difficulty of moving between optima. However, it has some drawback

[85]. First, it does not take into account how far away the two optima are, which is a

factor that could affect the difficulty of moving between optima. Second, it does not take

into account the fitness values of the optima. If the difference between the fitness values

of the optima is large then moving from one to another might be easier than the other

way around [85]. A proposed extension to make the method of barrier trees more useful

in studying heuristic optimization algorithms is presented in [44].

2.1.3 Ruggedness

Another feature of fitness landscapes that is related to local optima is ruggedness (rugged

landscapes assumed to have many local optima). Ruggedness is one of the first proposed

methods to measure problem hardness. The first measures of ruggedness was introduced

by Weinberger [126], where he defines the autocorrelation function and the correlation

length. Autocorrelation function measures the correlation of fitness values of neighbour-

ing steps in a random walk [52]. An important assumption for this measure to accurately

characterise the correlation structure of the entire landscape, is that the fitness landscape

should be statistically isotropic. This means that the random walk is “representative” of

the fitness landscape, regardless of the starting point [126]. The correlation length can

be defined as the maximal distance between two points in the walk where the correlation

between them is still statistically significant [52]. Smoother landscapes have larger cor-

relation lengths. Autocorrelation and correlation length have been used successfully as a

measure of problem hardness for some problem classes [71, 21]. For other problems they

could not predict the problem difficulty [66]. In problems such as the needle in a haystack
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where the whole search space is flat except for a single point, correlation length for such

problems, indicates that the problem is easy while it is in fact very difficult [56]. Also,

auto-correlation fails to reflect the problem difficulty or detect the changes in the problem

difficulty over phase transitions as shown in [116].

2.1.4 Neutrality

Neutrality is another feature of fitness landscapes, which refers to the amount of neutral

areas or plateaux in the landscape [32]. The problem with neutrality is that it does not

provide any guidance for search heuristics which could lead the search process to wander

randomly in the neutral areas for a long time without much progress. Nevertheless, ex-

ploring neutral areas could be useful sometimes by allowing the search process to reach

better quality solutions and escape a nearly local optima [101]. A neutral walk is intro-

duced in [93], which is a variation of a random walk to explore neutral areas. A neutral

walk starts at a random point and continuously moves to neighbouring points with equal

fitness such that the distance to the starting point is maximised. The maximum distance

obtained from this walk could then be used as a measure of neutrality. There are interest-

ing features to study about neutral areas in a given landscape such as the size of neutral

areas, types of neutral areas, the maximum and average distances between two points in

the neutral area [85].

2.1.5 Position types and their distributions

We have seen how local optima and neutrality can be useful for characterising landscapes.

Another view that could help in gaining more insight about the structure of the landscape

is to look at the distribution of different search position types in the search space. For a

given point in the landscape, according to the topology and fitness of its direct neighbour-

hood, it can belong to seven different types of search position [51]. Collecting information

about these types could be helpful in trying to understand the behaviour of local search
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algorithms in particular, since they are guided mainly by their direct neighbourhood [50].

2.1.6 Fitness distance correlation

Fitness distance correlation (FDC) is perhaps one of the most popular measures of prob-

lem hardness. It was proposed by Jones and Forrest [57] to measure the correlation

between fitness values and the distances to the global optimum. The main motivation

behind this measure is that the relation between distances and fitness values can be an

attribute of problem difficulty. Considering a maximisation problem, a large and positive

correlation coefficient indicates a misleading problem, a correlation coefficient near to zero

indicates a difficult problem, while a large and negative correlation coefficient indicates

a straightforward problem [57]. An obvious drawback of this measure, is that it requires

the knowledge of the global optimum. This could be alleviated by considering the best

known solution since in many situations when applying meta-heuristics, the goal is to

find a good enough solution. However, if the best known solution is far from the global

optimum then this might result in an incorrect and misleading output [51]. FDC mea-

sure has been quite successful as a measure of difficulty in some problems and has given

significant insights into the behaviour of some meta-heuristics [85, 51]. However, in some

situations it fails to predict the problem difficulty [3, 76]. An example, is the function

developed by [3] on which the fitness values and the distances to the global optimum are

not correlated indicating that it is a difficult problem yet it is easy to solve. In addition,

obtaining the correlation coefficient approximately might give inaccurate and misleading

output. For instance, in the long path problem developed by [53], the correlation coeffi-

cient obtained from a sample of the search space suggests an easy problem while if it was

computed exactly over the entire search space then the value of the correlation coefficient

would indicate a difficult problem. In situations where the correlation coefficient does not

capture the relation between distance and fitness accurately, a scatter plot of the distance

and fitness could provide more information [57]. However, it has been shown that even

the insights from the scatter plot can be misleading sometimes [85].
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2.1.7 Epistasis

Epistasis is one of the earliest attempts to measure problem difficulty. It is computed

based on the fitness function only [25]. It studies the interaction between the solution

components in an attempt to measure the amount of non-linearity in the fitness function.

One of the first attempts to quantify epistasis was made by [25] when he proposed epistasis

variance. A high epistasis means that the variables depend on each other while low

epistasis means that the variables are independent of each other. Problems with high

epistasis are assumed to be hard to optimise. This method, however, is found to be

difficult to interpret and works only for limited number of cases. In addition, It has

been shown to have a basic flaw in [92]. Other related proposed measures are epistasis

correlation by [75] and bit-wise epistasis measure by [30]. Although these methods were

devised to measure the epistasis in a fitness function, [76] point out that both epistasis

variance and epistasis correlation only measure the absence of epistasis. The concept of

epistasis is difficult to quantify and all the previously proposed measures are difficult to

compute and have major shortcomings [55, 76, 85, 92, 77].

2.1.8 Information analysis

A different method to study the structure and ruggedness of the fitness landscapes is the

information analysis by [120]. It is inspired by the concept that the information content of

a system can be used as a measure of how difficult it is to describe that system. The main

idea is to use the amount of information needed to describe a random walk in the fitness

landscape of a problem as a difficulty measure of the problem [85]. Difficult problems are

assumed to require more information to describe a random walk in their landscape. This

measure is derived from a sample of the search space and assumes that the landscape is

statistically isotropic. A related idea is the concept of information landscapes [9, 10, 139].
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2.1.9 Evolvability

Evolvability involves studying the dynamic properties of certain meta-heuristics searching

the landscape (e.g. evolving population). It studies the chances of improving a certain

solution by measuring the correlation of successive solutions [85]. The general concept

is that a higher degree of evolvability indicates that the problem is easier for the meta-

heuristics. Some of the methods that have been proposed to measure evolvability are:

evolvability portraits [101], fitness cloud [20, 119, 87], and fitness-probability cloud [63].

2.1.10 Phase transitions and backbones

Phase transition from easy to hard regions occurs in many NP-complete problems [45, 73].

The most notable example of problems with phase transition is the SAT problem which

has an easy-hard-easy phase transition (easy-hard phase transition in MAX-SAT, the

optimisation version of the problem). In phase transition, an order parameter partitions

the problem instances into subsets with different degrees of difficulty [45, 124]. The change

in problem difficulty is often accompanied with changes in the structure of the landscape

which demonstrates that instances belonging to the same class could have very different

landscape structures [80]. However, within theses partitions, there is often a considerable

amount of variability in instance difficulty that cannot be explained by the phase transition

[124]. Backbones are the values of solution components that are common in all optimal

solutions [124]. Slaney and Walsh [99] show that for some problems the backbone size

and the problem difficulty are correlated. For instance, it has been observed that the

backbone size of random MAX 3-SAT problem increases as the problem transitions from

easy to hard phase [140]. By Identifying the problems backbone, the focus of the search

methods could be directed to find the correct assignment for the backbone components.

Defining the backbone of a problem, however, can be difficult as noted by Slaney and

Walsh [99].
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2.1.11 Spectral landscape analysis

Stadler [103] was the first to introduce the study of isotropic fitness landscapes using

Fourier Analysis, suggesting another approach to analyse fitness landscapes by decom-

posing the fitness landscape of an arbitrary problem into superpositions of elementary

landscape [85]. An elementary landscape is a special type of landscape that can be de-

scribed by Grover’s wave equation [41]. This method has been used extensively to analyse

many popular problems [103, 94, 104, 107, 130, 18, 128, 129].

2.1.12 Network measures

Recent attempts to develop predictive models of problem difficulty utilised the fact that

a fitness landscape can be represented as a network, and thus used complex network

analysis tools to analyse the fitness landscape. Local optima networks (LONs) was the

first method that employed complex network analysis tools to combinatorial optimisation

problems [78]. The proposed model is adapted from the inherent networks of energy

landscapes in physical-chemistry. LON is a descriptive method (i.e. it does not give

a number or summary statistic as an output) that reduces the fitness landscape into a

sub-landscape consisting of local optima only. The model was extended later to also

include the plateaux in the landscapes [121]. The proposed method involves exhaustively

extracting the local optima of small problem instances. After that, the LON is constructed

such that each vertex represents a local optimum and an edge between two vertices can

be defined in different ways to represent: that the two optima have adjacent basins, the

transition probability between the basins of the two optima, or the chances of escaping

a local optimum to another after a controlled mutation [122, 78, 24, 121, 17]. Another

network based measure is called motif difficulty (MD), which is based on a property used

to analyse the structural design of complex networks called Network motifs [62]. Network

motifs are patterns or subgraphs that occurs significantly frequently in the network and

can be used to differentiate between different networks. The underlying idea of the motif
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difficulty measure is that the problem would be easy if high fitness regions are near the

global optima and difficult otherwise. The output of this measure is a single number

that falls into the range of −1.0 (easiest) to 1.0 (most difficult). As with the previous

measures, this measure was found to work on some problems but for other problems it fails

to predict their difficulty, e.g. the needle in a haystack problem. Some of the limitations of

this measure are: it requires the knowledge of the global optima and imposes restrictions

on the neighbourhood operators.

2.1.13 Landscape walks

One of the ways to obtain a sample over the landscape is through landscape walks [85].

A walk on the landscape can be viewed as a time series of fitness values. It starts from a

random configuration and continuously moves to a neighbour solution, keeping a record

of their fitness values. There are different types of walks on the landscape, each of which

explores the landscape in a different way obtaining different information and thus pro-

viding different perspectives of the landscape [85]. A random walk chooses any of the

neighbours randomly. An adaptive walk always chooses a better neighbour (the meaning

of better can be defined as any or best improving move). A reverse adaptive walk always

chooses a worse neighbour (the meaning of worse can be defined as any or worst improving

move). An uphill-downhill walk is an adaptive walk followed by a reverse adaptive walk.

A neutral walk explores plateaux where one continuously choose a neighbour with the

same fitness and try to increase the distance from the starting configuration.

2.2 Analysis of Problem Classes

Several studies have been carried out to analyse the fitness landscape of certain problem

classes, some of which have linked the studied features to the performance of the search

heuristics while others went a step further and exploited the gained insight of the land-

scape structure to design a better search heuristic or to configure and tune the algorithm

13



parameters. For example, Watson et al. [125] have demonstrated experimentally that

the mean distance between random local minima and the nearest optimal solution in

job-shop scheduling problem (JSP) is highly correlated with the cost of finding optimal

solutions. They developed a model of problem difficulty for tabu search in the JSP that

measures the cost of locating suboptimal solutions and explains the difference between

the difficulty of two classes of JSP, square and rectangular. They also noted that their

model has some limitations. First, the accuracy of the model is inversely correlated with

the problem difficulty. Second, the model is significantly less accurate for the structured

non-random instances of JSP. Qasem and Prügel-Bennett [89] proposed a hybrid algo-

rithm that out-performs the state-of-the-art algorithms for finding good solution for large

MAX-SAT problem instances. Their algorithm exploits the fact that the solutions cluster

in small areas in the hard phase of MAX-SAT. The algorithm uses a search operator that

clustered good solutions reached by hill-climbers and then restarts the search from the

centroid of each cluster. They argued that the good performance of the algorithm is due

to the algorithm learning the large scale structure of the fitness landscape during the

search using the population. Tayarani-Najaran and Prügel-Bennett [88] extend the pre-

vious work done by [89] and provide more details about the landscape properties and the

analysis of the algorithm. Fabio et al. [23] studied the impact of the landscape features of

an extension of the multi-objective NK-landscapes on the performance of a global and a

local multi-objective search heuristics. Tayarani-Najaran and Prügel-Bennett present an

extensive fitness landscape analysis for a number of NP-hard problems, namely: graph-

colouring, travelling salesman, maximum satisfiability, and quadratic assignment problems

[114, 115, 113, 88]. They also provide a comparative analysis of the the landscape features

of these problems in [112]. Yoshizawa and S. Hashimoto [138] provide a short statistical

analysis of the fitness landscape of the uncorrelated binary knapsack problem with three

different approaches of handling the constraint and they proposed a new algorithm based

on that analysis. Yao et al. [136] proposed an improved fast evolutionary programming

based on the understanding of the underlying mechanism of two mutation operators in
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relation to the modality of the search space. Examples of other studies are: NK land-

scapes [122, 78, 121], quadratic assignment problem [24], flow-shop scheduling problem

[22], the multidimensional knapsack problem [111], generalised assignment problems [15],

the number partitioning problem [105, 100], and travelling salesman problem [106]. A

comprehensive survey of instance difficulty of six combinatorial optimisation problems:

assignment problems, travelling salesman, knapsack problems, bin-packing, graph colour-

ing, and timetabling is presented in [102].

2.3 Summary

In this chapter we reviewed most of the features and measures that have been proposed

over the last few decades in the field of fitness landscape analysis. Many of these tech-

niques have been proposed to predict general problem hardness, however, none of them

has been very successful in achieving that. As shown by He et al. [46] a general measure

that accurately predicts the difficulty of all the problems and that can be computed in

polynomial-time cannot exist unless P = NP. Therefore, we argue that these measures

should be viewed instead as a part of a toolbox of techniques to broadly characterise prob-

lems. Müller and Sbalzarini [74] used fitness distance correlation (FDC) to characterise

the CEC 2005 benchmark test suite and they argued that “fitness-distance analysis can

only provide one out of several useful landscape descriptors that need to be combined in

order to form discriminative ‘landscape fingerprints’”. Indeed, there is an already existing

body of work in this direction, where a group of measures is studied to characterise the

landscape of several problem classes as shown in section 2.2 of this chapter. This thesis

continues this line of research and studies a subset of features to characterise the landscape

of three combinatorial NP-hard problems: the number partitioning problem (NPP), the

binary knapsack problem (0-1KP), and the quadratic binary knapsack problem (0-1QKP).
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CHAPTER 3

METHODOLOGY AND ESTIMATING THE
NUMBER OF OPTIMA

In this thesis, we empirically study a number of landscape properties of randomly gen-

erated instances of some NP-hard problems with respect to local search. The properties

include: types of search position, number of local and global optima and plateaux, quality

of optima and plateaux, basin size and its correlation with fitness, time to local optima,

and cost of finding the global solution. We study how these properties change with dif-

ferent problem parameters (e.g. phase transition parameter). Also, given a problem

instance, we compare these properties across different landscapes (e.g. landscape induced

by different neighbourhood operator, or different penalty functions). Most of the results

were obtained through exhaustive enumeration of the fitness landscape, which was only

computationally feasible for small problem sizes n < 30. For larger problem instances, we

used sampling methods to obtain an estimate of these properties. The sampling methods

are discussed in section 3.3.

3.1 Definitions

The following definitions will be used throughout this thesis:

Search Space The search space X is the finite set of all the candidate solutions. The

fitness functions of all the studied problems in this thesis are pseudo-Boolean func-
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tions, hence the search space size is 2n.

Neighbourhood A neighbourhood is a mapping N : X → P (X), that associates each

solution with a set of candidate solutions, called neighbours, which can be reached by

applying the neighbourhood operator once. The set of neighbours of x is calledN(x),

and x /∈ N(x). We consider two different neighbourhood operators: the Hamming 1

operator (H1 ) and the 1+2 Hamming operator (H1+2 ) . The neighbourhood of

the H1 operator is the set of points that are reached by 1-bit flip mutation of the

current solution x, hence the neighbourhood size is |N(x)| = n. The neighbourhood

of the H1+2 operator includes the Hamming one neighbours in addition to the

Hamming two neighbours of the current solution x, which can be reached by 2-bits

flip mutation. The neighbourhood size for this operator is |N(x)| = (n2 + n)/2.

Suppose we lay out the search space in circles around a configuration x, so that x

is placed in the centre and the configurations that are h Hamming distance away

from it lie on the circle of radius h (see figure 3.1 for an illustrative example when

n = 10). For a configuration in the h-th circle, its H1 neighbours will be spread out

as follows: h of them will reside in the h− 1 circle, the rest (n−h) will reside in the

h+ 1 circle. Its H1+2 neighbours will be spread out over the h− 2, h− 1, h, h+ 1,

h+2 circles as follows: h(h−1)/2, h, h(n−h), n−h, (n−h)(n−h−1)/2 respectively.

x

h-1

h

h+1

Figure 3.1: Illustration of the layout of the search space into circles of radius h around a
configuration, so points that are h-Hamming distance away from it lie on the h-th circle.

Fitness Landscape. The fitness landscape of a combinatorial optimisation problem is a
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triple (X,N, f), where f is the objective function f : X → R, X is the search space

and N is the neighbourhood operator function [107].

Search Position Type For a given point x ∈ X in the landscape, according to the

topology and fitness values of its direct neighbourhood, it can belong to one of

seven different types of search positions [51]. The types are:

• Strict local minimum (SLMIN): ∀y ∈ N(x), f(y) > f(x).

• Non-strict local minimum (NSLMIN): ∀y ∈ N(x), f(y) ≥ f(x), and ∃ u, z ∈

N(x), such that f(u) = f(x), and f(z) > f(x).

• Interior plateau (IPLAT): ∀ y ∈ N(x), f(y) = f(x).

• Ledge (LEDGE): ∃ u, y, z ∈ N(x), such that f(u) = f(x), f(y) > f(x), and

f(z) < f(x).

• Slope (SLOPE): ∀y ∈ N(x), f(y) 6= f(x), and ∃ u, z ∈ N(x), such that

f(u) < f(x), and f(z) > f(x).

• Non-strict local maximum (NSLMAX): ∀y ∈ N(x), f(y) ≤ f(x), and ∃ u, z ∈

N(x), such that f(u) = f(x), and f(z) < f(x).

• Strict local maximum (SLMAX): ∀y ∈ N(x), f(y) < f(x).

An illustration of the position types is shown in figure 3.2. Table 3.1 shows the

relation between the fitness value of a point x ∈ X and the fitness value of its

neighbours y ∈ N(x) for each position types, where ’+’ denotes that one or more

neighbour with the specified condition exists, and ’-’ denotes that no neighbour with

the specified condition exists. For the purpose of this thesis, we use the term local

optimum to refer to both strict and non-strict local optimum.

Global Optima Assuming maximisation, a point x ∈ X is a strict global maximum if it

is a strict local maximum and ∀y ∈ X, f(x) ≥ f(y), and a point x ∈ X is a non-strict

global maximum if it is a non-strict local maximum and ∀y ∈ X, f(x) ≥ f(y).
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Plateaux A plateau is a set of connected non-strict local maxima, with or without in-

terior plateau points. An exit is a neighbour of one or more configurations in the

plateau, which shares the same fitness value of the plateau, but has an improving

move. An exit could be a non-strict local minimum (maximum when minimising)

or a ledge. We call a plateau open when it has at least one exit, otherwise we call

it closed. We call a plateau of non-strict global maximum, a global plateau. Ob-

viously, all global plateaux are closed. Following [88], we illustrated our definitions

in Figure 3.3. Collecting information about the different plateaux types gives us an

insight into the different plateaux regions in the problems and can help inform the

algorithm design and the choice of search operators. For example, a problem with

mostly open than closed plateaux motivates the use of plateaux moves. Algorithm 1

shows how a plateau is explored exhaustively starting from a non-strict local opti-

mum, where U is the set of unvisited non-strict local optima, interior plateau and

exits configurations, V is the set of visited non-strict local optimum and interior

plateau configurations, and E is the set of exits founds. After exploring the entire

plateau, the algorithm then returns the set V and E.

Local Search The local search algorithm used in this thesis is the steepest ascent (de-

scent when minimising) with no plateau moves. Algorithm 2 shows steepest ascent

with random restart to find the global solution.

Basin of Attraction The attraction basin B(x∗) of an optimum x∗ ∈ X is the set of

points that leads to it after applying local search to them, B(x∗) = {x ∈ X |

localsearch(x) = x∗}. The basin of a plateau is the union of the basins of its

configurations. The neighbours of a point x are evaluated in order from left to right,

with respect to bit flips, in the case of having more than one neighbour with the best

improving move, the first one is always selected. Of course, this deterministic way

of choosing the improving move could introduce some bias to the size of the basin.

However, there was only a small subset of such configurations in the landscapes of
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the instances we have studied. Thus, we speculate that the bias, if any, will be quite

small. Another way to break the tie and avoid biasing the basin’s size, is to choose

randomly between the best improving configurations. This method, however, will

cause the structure of the landscape to keep changing.

Figure 3.2: Illustration of the search position types (figure source [50]). For the purpose
of this thesis, LMIN and LMAX, are called NSLMIN and NSLMAX respectively.

Algorithm 1 Exhaustive Plateau Exploring

1: start with x , where x is a NSLMAX

2: c← f(x)

3: V ← φ, U ← {x}, E ← φ

4: while |U | > 0 do

5: Choose y ∈ U

6: U ← U/{y}

7: if c < arg maxz∈N(y) f(z) then

8: E ← E ∪ {y}

9: else

10: V ← V ∪ {y}

11: for all z ∈ N(y) do

12: if z /∈ V and f(z) = c then

13: U ← U ∪ {z}

14: return (V,E)
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Figure 3.3: Schematic illustration (following [88]) of our definitions of strict global optima,
strict local optima, and global, closed and open plateaux. Two points are neighbours if
there is an edge between them. Assuming maximisation: a strict global optimum is shown
by the single dark red point of fitness 10; A strict local optimum is shown by the single
dark blue point of fitness 7; A global plateau is shown by the light red region of size 5
and fitness 10; A closed plateau is shown by the light blue region of size 2 and fitness 8;
and an open plateau is shown by the grey region of size 5 and fitness 7, the open plateau
has two exits (light grey), one (a non-strict local minimum) to the global plateau and one
(a ledge) to the closed plateau.

f(y) < f(x) f(y) = f(x) f(y) > f(x)
SLMIN - - +

NSLMIN - + +
IPLAT - + -
LEDGE + + +
SLOPE + - +

NSLMAX + + -
SLMAX + - -

Table 3.1: Relation between neighbours fitness and search position types
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Algorithm 2 Steepest Ascent with Random Restarts
repeat

Choose x ∈ {0, 1}n , uniformly at random

repeat

Choose x′ ∈ N(x), such that f(x′) = arg maxy∈N(x) f(y)

Replace x with x′ if f(x′) > f(x)

until f(x) ≥ f(x′)

until f(x) is the optimal solution

3.2 Random Instance Generation

We are interested in studying if and how the landscape properties of instances gener-

ated randomly from different distributions vary. Problem instances were generated with

integers drawn randomly from five different discrete probability distributions: uniform,

normal, negatively skewed, positively skewed and bimodal distribution with peaks at both

ends, figure 3.4 shows an illustration of the distributions pmfs1. Note that some of the

ranges we studied were very large. In these cases, we used arbitrary-precision arithmetic 2.

negatively skewed positively skewed normal two peaks uniform
0

0.05

0.1

0.15

0.2

0.25

p
ro

b
a

b
ili

ty

Figure 3.4: Illustration of the probability mass functions (pmfs) of the studied distribu-
tions of the weights.

1The random numbers were generated using boost::random::discrete distribution from Boost C++
libraries collection.

2For that we used the GNU multiple precision arithmetic library (GMP).
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3.3 Estimating the Number of Local Optima

In the last two decades, a number of approaches have been proposed for estimating the

number of local optima in combinatorial optimisation problems (COPs) [16, 90, 36, 37,

27, 91, 88]. Most of these methods start from a random sample of different configurations

and apply local search to them until a local optimum is reached. Some of the methods are

non-parametric estimators such as jackknife and bootstrap [27], while others assume some

parametric distribution of the basin sizes (e.g. gamma distributions) [36, 37]. However,

each of these methods has its particular limitations and none of them provide a good

estimate in all scenarios (e.g. when the basin sizes are different or when the number

of optima is small). For example, the jackknife method [27] requires the sample size to

increase as the number of optima increases, which is impractical since the number of

optima grows exponentially or sub-exponentially with the problem size in most problems

[65, 88]. One drawback of the bootstrap method is its computational demands to carry

out the re-samplings [27]. The approach proposed by [36] models the basin sizes using

gamma distribution and requires an estimate of the parameter value of the distribution,

which may not be practical. Another possible limitation of all the methods that apply

local search to an initial random sample is the time needed to converge to a local optimum.

In many cases, this time is linear or superlinear in problem size [117, 88], but it can be

exponential in other cases [26]. A review and an evaluation for several of these methods

and other methods from the statistical literature can be found in [47].

The problem of estimating the number of local optima in COPs can be considered

as the classical problem of estimating a population proportion in statistics. However,

the use of this method to estimate the number of local optima is seldom found in the

literature and even if it was used, the sample size and the confidence interval are usually

not mentioned. In [43], it has been used to estimate the number of optima in the feasible

region of the multidimensional assignment problem. It has been used in [115, 112] to

estimate the number of optima in the quadratic assignment problem. [16] mentioned the

attractiveness of the simplicity and the unbiased estimate provided by estimating the
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proportion, but they argued against using it as the required sample size can be very large

when the proportion is exceedingly small. They also criticised that in such a case, the

method is more likely to provide an upper bound estimate on the number of local minima

rather than a lower bound estimate. [47] recommends using it only when all or most of the

sampled optima have been seen once, after applying local search to an initial sample of

points. We argue that this method is the best for estimating the number of local optima in

terms of simplicity, accuracy and computational requirement when the studied landscape

has a large proportion of local optima. As mentioned before, the required sample size

for an accurate estimate increases as the proportion decreases, which makes obtaining an

accurate estimate of the number of optima very expensive. However, an upper bound

on the number of local optima in such landscapes, e.g. MAX-SAT [137, 88], can still be

obtained with smaller sample sizes, which can give some useful information about the

studied landscapes.

In the rest of this thesis, we refer to estimating the number of local optima by estimat-

ing their proportion as simple random sampling (SRS). To provide a baseline, we compare

the performance of SRS with the performance of the jackknife method on estimating the

number of optima in some instances of two of the problems studied in this thesis. In

the rest of this section, we describe SRS and jackknife, and discuss different choices of

confidence intervals for SRS. We then evaluate their performance and finally finish with

some concluding remarks 1.

3.3.1 Estimation methods

Simple Random Sampling

Suppose that a random sample of size s is taken from the search space, and that Y optima

has been observed in the sample (0 ≤ Y ≤ s), and p is the unknown proportion of the

optima in the search space. Since the sample size is fixed, and the sampled configurations

1The work presented in this section is published in the proceedings of PPSN 2016 [7].
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are independent and have a constant probability of being an optimum given by p, then Y

has a Binomial distribution, B(s, p), with s trials and p success probability. The unbiased

point estimate of the population proportion is given by p̂ = Y/s and the estimated

number of local optima can then be directly calculated by multiplying p̂ by the search

space size S = |X|.

There are several methods for computing confidence interval estimates for p; the most

referred ones are based on the approximation of the binomial distribution by the normal

distribution [81]. A rule of thumb, that is frequently mentioned, is that the binomial

distribution is suitable for approximation by normal distribution as long as sp ≥ 5 and

s(1− p) ≥ 5 [118, 12]. Figure 3.5 shows how, as a result of following this rule, the sample

size grows when the population proportion declines. The most widely used confidence

interval for p is the standard Wald confidence interval (CIs) [118, 12, 81]:

CIs = p̂± zα/2

√
p̂(1− p̂)

s
(3.1)

Where zα/2 is the z-score for (1 − α)100% confidence level and zα/2

√
p̂(1−p̂)
s

is the error

margin e . The error margin can be corrected for a finite population of size S to be equal

to e = zα/2

√
p̂(1−p̂)
s

√
S−s
S−1 , where the value

√
S−s
S−1 is the finite population correction (fpc)

factor [118]. The value of fpc is approximately one when the population size S is large

compared to the sample size s, and, obviously, is equal to zero when the sample size is

equal to the population size. The sample size for a desired confidence level and a desired

margin of error can be determined for an infinite population by:

s0 =
z2α/2p̂(1− p̂)

e2
(3.2)

If no prior information about p or no initial estimate of p̂ is available, then p̂ can conser-

vatively be set to 0.5 where the expression p̂(1 − p̂) is maximised. This will ensure that

the sample size is at its maximum for the desired e. However, the proportion of optima is

typically much smaller than that, thus it might be more wise to set p to a smaller value
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Figure 3.5: The population proportion p against the required sample size s, for the
binomial distribution to be suitable for approximation by normal distribution.

and set e to a much smaller value. The sample size can be corrected for a finite population

by the following formula:

s1 =
s0S

s0 + (S − 1)
(3.3)

From eq.(3.2) we can see that the sample size does not depend on the population

size but only on the desired confidence level, the desired margin of error, and the known

estimate of p.

The behaviour of Wald interval is poor when p is close to 0 or 1, and when Y = 0 or

Y = s, the length of the Wald interval is zero [2, 12, 81] . The exact Clopper-Pearson

interval is an alternative method to consider in such cases [141]. However, and because

of the inherent conservativeness of exact methods, other approximate methods are more

useful [2]. The Agresti-Coull confidence interval (CIAC) is recommend for correcting the

Wald interval. It recentres the Wald interval by adding the value z2α/2/2 to Y so it becomes

Ỹ = Y + z2α/2/2 and adding the value z2α/2 to s to become s̃ = s + z2α/2. When the z-

score for the 95% confidence level (z20.05/2 = 1.96) is approximated to 2, the Agresti-Coull

interval is equivalent to adding two successes and two failures to the sample [2, 12] . The

corrected point estimate is p̃ = Ỹ /s̃ and the confidence interval is given by:

CIAC = p̃± zα/2

√
p̃(1− p̃)

s̃
(3.4)
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Using Agresti-Coull confidence interval, the SRS estimation of the number of local

optima is given by:

v̂SRS = p̃S (3.5)

Jackknife

Jackknife is a non-parametric method based on the idea of re-sampling to reduce the bias

of the estimate. The use of jackknife to estimate the number of local optima was first

proposed by [27]. We selected jackknife method as a comparison baseline for two reasons:

jackknife has an attractive simple and fast closed-form computation, and it is recommend

to be used when the size of the sample is adequate with respect to the number of local

optima [27, 47].

Starting from s different randomly sampled configurations and after applying local

search to each one of them, the jackknife estimate of the number of local optima is given

by:

v̂JK = β +
s− 1

s
β1 (3.6)

Where β1 is the number of optima that have been seen once and β =
∑r

i=1 βi is the

number of distinct optima seen.

3.3.2 Evaluation

We obtain statistical estimates of the number of optima in randomly generated instances

of the number partitioning problem and the 0-1 knapsack problem. The aim of the

experiments is twofold: compare the estimates of SRS with that of jackknife, and examine

the effect of the sample size on the accuracy of the SRS estimation. We compare the

performance of the two methods using two sample sizes to allow for a fair comparison,

since SRS uses at most s(|N(x)|+1) number of fitness evaluations compared to s(|N(x)|+

1)+t|N(x)| fitness evaluations used by jackknife, where t is the total number of steps taken
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when descending(ascending) from each initial configuration. We describe the settings of

the two sample sizes in more details below.
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Figure 3.6: Simple random sampling (SRS) and Jackknife estimation of the number of
optima (in log scale) as the problem size grows. Each data point represents the average
estimate of 10 samples from a single instance. The error bars show the standard devia-
tions. The results are for the 0-1 knapsack problem with weights drawn from the normal
distribution and with 10 different instances for each problem size.

The mean estimates of the number of optima in the two landscape of the 0-1 knapsack

problem is shown as n grows in figure 3.6 (note that some data points lie on top of each

other). The estimates were obtained by the jackknife and SRS, and were averaged over

10 samples for each sample size. The sample sizes are set as follows: first we obtained

the sample size s for each n from eq.(3.2) and eq.(3.3) by setting e = 0.005, p̂ = 0.3

and zα/2 = 2.576. Note that the sample size, only changes slightly as the problem size

increases, starting from s = 45, 701 when n = 18, until it reaches s = 55, 351 when

n = 100. After obtaining s, we then set the small sample size of SRS to s and the small

sample size of jackknife to s−t+t/(|N(x)|+1) (i.e. we subtract the fitness evaluations used

when ascending from the sample budget). We set the large sample size of jackknife to s

and the large sample size of SRS to s+t−t/(|N(x)|+1), where t is the total number of steps

taken by jackknife with the large sample. The samples are drawn without replacement for

small problem sizes n ≤ 24. The figure shows that SRS using both small and large sample

sizes accurately estimates the real proportions in both landscapes, apart from n = 100 in

the H1+2 landscape. The discrepancy between estimates of the large and small samples
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in this case, in addition to the larger standard deviations, indicate that the proportion is

small and that the sample size, in particular the small one is probably inadequate. As

for the jackknife, both sample sizes quickly become inadequate as the number of optima

seen once quickly grows with n until all the optima that have been seen were only seen

once. Thus, the method fails to provide accurate estimates and grossly underestimates

the number of optima. This is more noticeable in the H1 landscape where the number

of local optima is large. The confidence intervals of SRS estimates are very small in H1

landscape across all n, but they get wider as n increases in the H1+2 landscape. In figure

3.7, we look closely at the results of four instances of size n = 30, 100 from figure 3.6.

The figure shows the confidence interval around 5 estimates of each method with each

sample size. The width of the confidence interval decreased with the large sample size as

expected. The SRS large sample size for n = 30 is around 2 × 105 and around 3 × 105

for n = 100. Obtaining the real number of optima was infeasible for n = 100, therefore

we show the estimate of SRS with a larger sample size by setting Y to the sum of the

number of optima found in all the large samples and s to the sum of the large sample

sizes. The outcome estimates of the proportion of both instances are around 10−5. The

very wide confidence intervals with negative lower bounds around the small sample size

estimates of SRS in n = 100 indicate that the proportion is much smaller than what SRS

can precisely estimate with this sample size. In such a case, the estimates of SRS can

only provide an upper bound to the number of optima. However, we suggest combining

the results of the two methods in such cases by using the result of the jackknife method

for a better lower bound than just zero.

Figures 3.8 and 3.9 show how the accuracy of SRS estimates increases as the desired

error margin e decreases. Decreasing e consequently increases the sample size. The

figures also show how SRS is able to accurately estimate the fraction of local optima with

relatively small sample sizes. As we mentioned before, the required sample size does not

directly depend on n, but since the fraction of optima usually declines as the problem

size grows [29], the required sample size will increase with the problem size as shown in
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Figure 3.7: Each figure shows the estimates of the number of optima in a single instance
of 0-1KP, and each data point shows the estimate of a single sample. The error bars
around SRS estimates are the 95% CIAC.

table 3.2. The sample sizes in table 3.2 are obtained from eq.(3.2) and eq.(3.3) by setting

p̂ = 〈p〉NPP (obtained from eq.(4.4) ), zα/2 = 2.576 and e as shown in the table. In both

problems and in both landscapes, most of the optima have small basin sizes with only

very few having large basin sizes.

Table 3.2: NPP sample size

n 24 30 100 1000

s

e = 〈p〉NPP 276 388 2,395 75,915

e = 〈p〉NPP

5
6,889 9,697 59,855 1,897,856

e = 〈p〉NPP

10
27,520 38,785 239,420 7,591,421

3.3.3 Conclusions

Simple random sampling with CIAC provides a simple way to obtain an unbiased statistical

estimate of the number of local optima. The accuracy of the obtained estimate depends

on the sample size s, which can be determined for a desired margin of error e. A wide

CIAC or a negative lower bound indicates that the proportion is smaller than the desired e.

In such a case, s can be increased considering that it only costs at most |N(x)|+ 1 fitness
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Figure 3.8: Simple random sampling estimation of the optima proportion versus sample
size. The sample sizes are obtained from eq.(3.2) and eq.(3.3) by setting p̂ = 0.3 and
zα/2 = 2.576 (corresponding to 99% confidence level). The results are for a single instance
of knapsack problem of size n = 30 and weights drawn from normal distribution. The
error bars are the 95% Agresti-Coull confidence intervals.

evaluations per configuration. This is practical as long as the proportion is not exceedingly

small. Alternatively, the estimate of SRS can be used as an upper bound, combined with

the estimate of another method that applies local search to an initial sample, for a lower

bound other than zero. We recommend that SRS should be the first method to use for

estimating the number of optima, especially when no prior information is available about

the problem being studied. In this thesis, we only use SRS for estimating the number of

optima, this is motivated by the findings of this evaluation and the fact that the optima

proportions in the exhaustively studied small problem sizes were found to be mainly large.
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Figure 3.9: Proportion of the strict optima in the H1 landscape of NPP for different
problem sizes. SRS estimates are shown when the sample size is obtained with three

different desired error margins (a) e = 〈p〉NPP, (b) e = 〈p〉NPP

5
, (c) e = 〈p〉NPP

10
. The

sample size for each problem size is shown in Table 3.2. The results are for 100 random
instances with uniform weights and kc > 1. Obtaining the real proportion was only
computationally feasible for n = 24 and n = 30. The theoretical mean proportions are
obtained from eq.(4.4).
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3.4 Basin of Attraction Shape: Return Probability

The size of the basin of attraction can be estimated using the return probability concept

introduced in [88]. The return probability to an optimum starting from a Hamming

sphere of radius h around it is given by pr(h). We mainly use this method to estimate the

shape of the attraction basin. We randomly sample s configurations that are h Hamming

distance away from an optimum, we then apply local search to them and calculate the

fraction that led to the starting optimum. The sample size s is obtained from eq.(3.2) and

eq.(3.3) by setting p̂ = 0.5, e = 0.005, and zα/2 = 1.645 (corresponding to 90% confidence

level). The probability of finding an optimum starting from a random configuration can

then be calculated as follows: P (fining an optimum) = 1
2n

∑n
h=0

(
n
h

)
pr(h). In this thesis,

we continue to sample configurations even after no configuration was found to be in the

optimum’s basin in the previous sphere. We continue sampling until the last configuration

in sphere n, however, and especially for the H1 operator, it might be more efficient when

studying larger problem sizes to stop sampling after no configuration was found to be in

the optimum’s basin.

3.5 Local Search Performance

We study a number of aspects of the performance of the steepest ascent/descent with

random restarts (algorithm 2) when each of the two neighbourhood operators is employed.

The first is the cost of finding the global optimum, where we measure the cost by the

number of fitness evaluations used. Note that we treat the objective function as a black-

box, hence the number of times the objective function is queried for each step taken by

the algorithm equals the size of the neighbourhood. We compare the results of the two

operators and determine the statistical significance between the two performances using

Wilcoxon rank-sum test at the 5% level. We also study the scaling behaviour of the

cost as the problem size grows. Usually the question of finding the optimal solution is

irrelevant for larger problem sizes as it is typically infeasible to find it, therefore, we study
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the quality of the local optima obtained using a fixed budget of fitness evaluations. We

also study the time the algorithm takes until a local optimum is found starting from a

random configuration. Note that the nature of the H1+2 operator can allow it to take

fewer number of steps by hopping over spheres to reach the local optimum. Note also that

although the local search algorithm under study here is called steepest descent/ascent,

it does not necessarily guarantee that the path, starting from a random configuration x

until a local optimum x∗ is found, will be the shortest path (i.e. the number of steps

taken from x until x∗ is reached is at most equal to the Hamming distance between x

and x∗). From the perspective of the Hamming spheres around an optimum x∗, this can

occur when the best improving move of a configuration xi in the path, which resides in

the Hamming sphere hi, is in a Hamming sphere hi+1 ≥ hi.

3.6 Summary

We discussed the definitions of the properties and the methods to measure them that we

used to carry out the fitness landscape analysis of the problems studied in this thesis.

We also discussed how we randomly generate instances of these problems but we left the

parameters that are problem-specific to be discussed in relevant chapters. To study the

landscape of larger problem sizes we need to use some sampling methods. We presented

a brief overview of the sampling methods used to estimate the number of local optima.

One method that is overlooked in the literature and rarely used is the simple random

sampling, where a sample of points is chosen uniformly at random from the search space,

and then examined to determine the proportion of them that are local optima (without

the application of local search, only examining if the condition of local optimality is met).

Not only this method is rarely used in the literature, but also only the point estimate is

reported without the confidence interval and usually with no mention of the used sample

size. We provided an evaluation of this method in section 3.3 and discussed the choices of

different confidence intervals and the effect of the sample size on the estimate accuracy.
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CHAPTER 4

NUMBER PARTITIONING PROBLEM

In this chapter we study the number partitioning problem (NPP), a classical problem in

theoretical computer science and one of Garey and Johnson’s six basic NP-complete prob-

lems [35]. We study various landscape features of a large number of randomly generated

instances. The instances were generated with different values of problem parameters to

study what effects they have on the H1 and H1+2 landscapes and the consequence of

that on the performance of local search 2.

4.1 Problem Definition

Given a set W = {w1, . . . , wn} of m-bit positive integers (weights) drawn at random from

the set {1, 2, . . . ,M} with M = 2m, the goal is to partition W into two disjoint subsets

S, S ′ such that the discrepancy between them |
∑

wi∈S wi −
∑

wi∈S′ wi| is minimised. A

partition is called perfect, if the discrepancy between the two subsets is 0 when the sum

of the original set is even, or 1 when the sum is odd. Equivalently, the problem can

be viewed as minimising: max
{∑

wi∈S wi,
∑

wi∈S′ wi
}

, the maximum sum over the two

subsets. Let x ∈ {0, 1}n, the fitness function to be minimised can be defined as:

2Part of the work presented in this chapter was published in the proceedings of EvoCOP 2014 [5] and
PPSN 2014 [4].
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f(x) =

∣∣∣∣∣
n∑
i=1

wixi −
n∑
i=1

wi(1− xi)

∣∣∣∣∣ (4.1)

The binary representation of NPP creates a symmetry in the search space, in the sense

that a solution and its bitwise complement have the same fitness value. Thus, the number

of unique solutions is ≤ 2n−1.

The NPP is NP-hard in the weak sense [35], that is, there exists an algorithm that

can solve it in pseudo-polynomial time through dynamic programming. The complexity

of such an algorithm, O(n2log2

∑n
i=1 wi), is polynomial in the number of weights and the

sum of the weights but exponential in the number of bits required to represent the sum.

As Garey and Johnson [35] note, such an algorithm will display an exponential behaviour

only when extremely large input numbers are allowed. The running time of such an

algorithm would thus exhibit an exponential behaviour as M grows large.

4.1.1 Phase transition

NPP undergoes a sudden phase transition from solvability (a perfect partition exist) to

insolvability (a perfect partition doesn’t exist), determined by the control parameter k =

log2(M)/n, which corresponds to the number of the bits required to encode the numbers in

the set divided by the size of the set. For log2(M) and n tending to infinity, the transition

occurs at the critical value of kc = 1, such that for k < 1, there are many perfect partitions

with probability tending to 1, whereas for k > 1, the number of perfect partitions drops

to zero with probability tending to 1 [11]. A more detailed parameterisation of the critical

value of the control parameter is given by the following 1 [68]:

kc = 1−
ln(π

6
n)

2n ln(2)
(4.2)

The transition between the two phases appears in the size of the problem backbone.

The pairs of weights that are placed in the same subset or in opposite subsets in all optimal

1A more rigorous derivation of the transition point can be found in [11].
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solutions of an NPP instance, form the backbone of that instance. There is a very sharp

increase in the backbone size of the optimal solutions in the NPP as one approaches

the phase transition boundary, after which the backbone tends to be complete giving a

unique optimal solution [100]. Gent and Walsh [38] were the first to verify the existence

of a phase transition in NPP. They have shown an empirical evidence of its existence

in their paper through numerical simulations. They introduced the control parameter k

and estimated the transition point to occur around kc = 0.96. Previously, Fu [33] used

statistical mechanics to analyse the problem and concluded incorrectly that NPP does not

undergo a phase transition. Mertens [68, 67] used the same method from statistical physics

and the parameterisation of Gent and Walsh to obtain non-rigorous analytical results of

the phase transition in NPP. Borgs et al. [11] then performed a rigorous analysis of the

problem and showed the mathematical proofs for the existence of the phase transition.

In the literature, the effect of this phase transition has been shown in the computa-

tional complexity of some exact solvers such as the complete Karmarkar-Karp differenc-

ing algorithm [68]. Where instances with k < kc were “easy-to-solve” and the ones with

k > kc were “hard-to-solve”. In this chapter we are interested to see whether the land-

scape properties of number partitioning problem change with the phase transition. We

are also interested to see if similar changes in the computational complexity occur in the

performance of the local search algorithm we study. Note that through out this chapter

we refer to the phase with k < kc as the “easy” phase and the phase with k > kc as the

“hard” phase. Our use of hard and easy here does not correspond to the computational

complexity but to the probability of having a perfect partition.

4.1.2 Distribution of the weights

Most of the existing studies of the NPP assume that the weights are drawn at random

from a uniform distribution [105, 68, 67, 11, 60, 29, 133]. Only very few consider differ-

ent distributions, for example the exponential distribution in [133]. We study instances

generated by drawing the weights at random from various distributions as shown in sub-

37



section 3.2. We found that the number of strict local optima and the cost of local search

to find the global, vary greatly between some of the distributions. The variation is most

noticeable in the H1 landscape as shown in figures 4.2 and 4.25, respectively, for the

number of strict local optima and the cost of local search. In particular, the negatively

skewed and the normal distributions have the largest number of strict local optima in the

H1 landscape and the highest cost of local search, while the positively skewed and the two

peaks distributions have the fewest and lowest. We believe that most of this behaviour can

be explain by the variability of the weights. To capture this with a single parameter, that

does not require the knowledge of the underlying distribution of the weights, we suggest

using the coefficient of variation (CV ). The CV provides a measure of relative variability

or dispersion. It is defined as the ratio of the standard deviation σ to the mean µ:

CV =
σ

µ
(4.3)

4.2 Search Position Types

The search positions found in randomly generated instances of NPP with different values

of the CV and the phase transition control parameter k, are shown as proportion of the

search space in tables A.1, A.2 and A.3, in the appendix, for the H1 and the H1+2

landscapes. When the objective function is the square of the discrepancy, NPP has an

elementary landscape under the H1 operator [42]. This has an implication on the types

of plateaux and search positions that can exist on elementary landscapes [131]. The first

implication is that configurations of type IPLAT can only exist when the entire landscape

is flat, meaning that every configurations in the search space belongs to the same plateau.

The second implication is that exits of open plateaux can only be ledges. In our results, no

configuration of type IPLAT or NSLMAX has been found in either landscapes. On both

landscapes, there are always two configurations of type SLMAX: the all zeros solution

x = (0, · · · , 0) and its bitwise complement. The clear difference between instances from
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the easy and hard phase is in the number of NSLMIN. We examine this further, along

side the number of strict local and global optima, in the next section.

4.3 Optima and Plateaux

4.3.1 Number of optima and plateaux

Figure 4.1 shows the number of global optima found in randomly generated instances

of NPP. The figure shows that for all the distributions, the number decreases as we

approach the phase transition point and keeps decreasing as we cross the phase transition

until we have only two optimal solutions. There are some variations in the number of

global optima between the different distributions in the easy phase, with instances drawn

from the positively skewed distribution having the highest number of global optima and

instances drawn from the negatively skewed distribution having the lowest number of

global optima. Similar behaviour has been observed for the number of non-strict local

optima as figure 4.3 shows. The figure shows that the number starts to decrease as we

approach the phase transition until it becomes zero in the hard phase.

Figure 4.2 shows the number of strict local optima found in the randomly generated

instances of NPP. There is a very clear difference in the number of local optima across

instances generated from the different distributions. In the landscapes induced by the

H1 operator, instances drawn from normal distribution have the highest number of strict

local optima (around 15% of the search space). Instances generated from negatively

skewed distribution have a quite high number of local optima as well (around 8% of the

search space) but the number varies a lot between the randomly drawn instances from

this distribution. Instances drawn from the uniform distribution have less number of local

optima (around 3% of the search space), while the lowest number of local optima is seen

in instances drawn from both positively skewed and two peaks distributions (representing

around 1% of the search space). Figure 4, also, shows that the number of strict local
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optima does not change very much between the easy and the hard phase regardless of the

distribution from which the weights are chosen. The number of local optima can be used

as a measure of the ruggedness of the landscape [107]. The found results indicate that

instances with weights drawn from normal and negatively skewed distributions have more

rugged landscapes than instances drawn from uniform, positively skewed and two peaks

distributions.

For the landscapes induced by H1+2 operator, the number of strict local optima drops

for all the different distributions compared to the H1 landscapes. It seems that the largest

drop occurs in instances drawn from normal and negatively skewed distributions. As in

the H1 landscapes, the number of strict local optima does not seem to change much

between the easy and the hard phase, apart from very small values of k (0.4 and 0.5). We

believe that this is due to the slightly higher number of global and non-strict local optima

in the H1+2 landscapes of such instances.
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Figure 4.1: Number of global optima versus the phase transition control parameter k, for
all the different distributions of the weights. Each box represents the number found in 30
random instances of size n = 20. The dotted line is given by kc from eq.(4.2).
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Figure 4.2: Number of strict local optima versus the phase transition control parameter k,
for all the different distributions of the weights. Each box represents the number of strict
local optima found in the 30 random instances of size n = 20. This is shown for both
neighbourhood operators H1 and H1+2. The dotted line is given by kc from eq.(4.2).
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Figure 4.3: Number of non-strict local optima versus the phase transition control param-
eter k, for all the different distributions of the weights. Each box represents the number
found in 30 random instances of size n = 20. This is shown for both neighbourhood
operators H1 and H1+2. The dotted line is given by kc from eq.(4.2).
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Figure 4.4: Number of the different optima and plateaux found in the H1 landscape
against k. The results are for 600 instances of n = 20 for each value of k. The colours
show the different ranges of CV values.

Similar results are shown in figures 4.4 and 4.8 1, but now with the instances being

1A violin plot is a mixture of a box plot and a kernel density plot. In addition to the usual four main
features shown by a box plot (i.e. centre, spread, asymmetry and outliers), violin plot adds an estimated
density trace (smoothed histogram), which reveals the shape of the data distribution that would not have
been obvious in a box plot otherwise [48].
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described by their CV values instead of the distribution they are drawn from. Figures

4.11 and 4.12 show how instances drawn from the different distributions map to different

regions of the CV . Roughly speaking, normal and negatively skewed instances map to the

region ≤ 0.3, uniform instances map to the region between 0.4 to 0.7, positively skewed

and two peaks instances map to the region > 0.8. The density of the region ≤ 0.3 is

high because both the normal and the negatively skewed map to this small region. The

CV seems to capture most of the variation in the number of strict local optima in the

H1 landscape as the two correlate very strongly and negatively across different values of

n and k. To explain the intuition behind this strong correlation, we show an example of

two extreme cases in figure 4.9; when the CV is small there are
(
2n
n

)
∼ 4n√

πn
possible ways

to split the weights into two piles, while for the larger value there are only two ways to

do that.

In the easy phase where plateaux exists, the majority of the plateaux in the H1 land-

scape were open plateaux with very few global ones. Also, the number of configurations

in each plateau is very small as shown in figure 4.6. The size of the global and closed

plateaux for example was found to be only 2 to 3 non-strict local optima (all the plateaux

are composed of NSLMIN only, as there is no configuration of type IPLAT). All the open

plateaux we found are composed of only one non-strict local optimum. The majority of

open plateaux have only one exit, although the number of exits seems to increase slightly

as the the CV value increases.

(a) Small CV ,
(
2n
n

)
∼ 4n√

πn
optima (b) Large CV , only two optima

Figure 4.5: Two extreme examples of small and large CV values of the weights and the
resulting number of optima when using the H1 operator.
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Figure 4.6: Sizes of the different plateaux and the number of exits in open plateaux found
in the H1 landscape. The results are for 600 instances of n = 20 for each value of k.
The colours show the different ranges of CV values. All open plateaux found in the H1
landscape are composed of a single configuration.

The number of strict local optima decreases in the H1+2 landscape compared to the

H1 as shown in figure 4.8. The slightly higher number of local optima in instances with

CV values between 0.3 < CV < 1, captures the same behaviour that was observed in

instances drawn from uniform distribution (see figure 4.2). The number of strict global

optima decreases in the H1+2 landscape as many of them become part of global plateaux.

There are more global plateaux in the H1+2 landscape, but fewer number of open and

closed plateaux. The number of exits from open plateaux is larger in this landscape as

expected. The size of all the plateaux in this landscape is also much larger than that

in the H1 landscape as figure 4.7 shows. This may seem counter-intuitive, as applying

a larger neighbourhood operator as opposed to a smaller one, usually has the positive

effect of reducing the number of optima and plateaux, but it can also have an effect of

introducing new larger plateaux. A schematic illustration of this mechanism is shown

in figure 4.10. The figure shows how after applying the larger neighbourhood operator,

the same-fitness strict optima became connected forming a closed plateau. If the green

triangle-shaped optimum had a better fitness value than the red diamond-shaped optima,

then the figure shows how two open plateaux, sharing the same exit and each of size one,

can be formed. An example of the different types of optima and plateaux found in a small

instance of size n = 12 is shown in figure 4.9.
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Figure 4.7: Sizes of the different plateaux and the number of exits in open plateaux found
in the H1+2 landscape. The results are for 600 instances of n = 20 for each value of k.
The colours show the different ranges of CV values.
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Figure 4.8: Number of the different optima and plateaux found in the H1+2 landscape.
The results are for 600 instances of n = 20 for each value of k. The colours show the
different ranges of CV values.
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(a) H1 landscape (b) H1+2 landscape

Figure 4.9: The different types of optima and plateaux found in an easy NPP instance
(k = 0.5) of size n = 12 and CV = 0.61. The colours of the nodes and their labels
correspond to their type as follows: (1, red) a strict global optimum, (2, pink) a global
plateau, (3, green) a strict local optimum; (4, blue) a closed plateau; (5, dark grey) an
open plateau; and (6, light grey) an exit. The node size is scaled proportional to its
fitness (larger means fitter). An edge between two nodes can either indicate that they are
neighbours, or if it is between an exit and a node with a better fitness, it indicates that
the exit leads to the basin of that optimum or plateau.

(a) Small neighbourhood (b) Large neighbourhood

Figure 4.10: A schematic illustration showing how applying a larger neighbourhood oper-
ator as opposed to a smaller one, can reduce the number of optima, but also can introduce
plateaux. (a) Assuming minimisation and under the small neighbourhood operator: the
red diamond-shaped nodes are strict optima with the same fitness value, and the green
triangle-shaped node is a strict optimum with a higher fitness value than the red optima.
Every other node is either a local maximum, a slope or a ledge at a higher fitness value
than the four optima. The shaded areas indicate the neighbourhood of the optimum at
its centre. (b) After applying the larger neighbourhood operator, the green optimum is no
longer an optimum but a slope, however, the red optima have now formed a closed plateau.
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4.3.2 Average number of strict local optima

When the weights of NPP are drawn from uniform distribution, the average proportion

of the strict local optima in the H1 landscape is given by the following formula, which

was derived by Ferreira and Fontanari [29] using statistical mechanics analysis:

〈p〉NPP =

√
24

π
n−3/2 (4.4)

Based on the data we observed, we propose a generalized formula for estimating the

average proportion of strict local optima in the H1 landscape. The formula does not

require the knowledge of the distribution from which the weights are drawn and only

depends on the CV of the weights and the size of the problem.

〈v〉
2n

= a e−bCV (4.5)

Where the values of the coefficients a and b depend on n. Figures 4.11 and 4.12 shows

the estimation of the fraction of the strict local optima using this formula. The values

of a and b were determined by least-squares regressions; the goodness-of-fit is reported

using R-squared (R2) 1. In the case of n = 100, the randomly sampled instances are not

very well spread across the CV values. This is believed to be due to the decrease in the

statistical fluctuation of the CV values of the sampled weights, since they tend towards

the theoretical values of the distributions CV as n increases.
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Figure 4.11: The fraction of strict local optima versus CV. The results are for 600 instances
of size n = 20 for each value of k. The solid lines were obtained using least-squares fit.
Pearson’s correlation coefficient r between the two quantities is shown for each plot.

1R2 = 1− SSresidual/SStotal.

47



0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

CV

r=-0.889

 

 

0.3e
−3.3CV

, R
2
 (Adj.)=0.99

(a) n = 14

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

CV

r=-0.897

 

 

0.28e
−3.5CV

, R
2
 (Adj.)=0.99

(b) n = 16

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

CV

r=-0.885

 

 

0.26e
−3.6CV

, R
2
 (Adj.)=0.99
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Figure 4.12: The fraction of strict local optima versus the CV values. The results are for
600 instances for each n = 14, 16, 18, 20, 22 and for 500 instances for n = 30, 100 (k = 1).
The number of strict optima is estimated for n = 30, 100 using SRS, the sample sizes
are s = 105, 5 × 105 respectively. The solid lines were obtained using least-squares fit.
Pearson’s correlation coefficient r between the two quantities is shown for each plot.

To easily study the growth behaviour of the number of strict local optima as the

problem size increases, we grouped the instances based on their CV values into three

intervals: (0, 0.3], (0.3, 1), and [1, 2). Figure 4.13 shows the growth of the number of

strict local optima and the decay of its proportion against n. The number of strict

local optima seems to grow exponentially with n in both landscapes and across all the

intervals. The results for n = 30, 100 are the SRS estimates obtained with the sample

sizes s = 105, 5 × 105 respectively. All the proportions seems to decrease polynomially

with n in the form an−b. The largest decay happens in the landscape of H1+2 and the

smallest in the H1 landscape of the interval (0, 0.3]. The proportion of the strict local

optima appears to decay faster in the H1+2 landscape compared to the H1 across all the

intervals.
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Figure 4.13: The growth of the number of strict local optima and the decay of its pro-
portion as the problem size n grows (k = 1). The results are averaged over 600 instances
for each n = 14, 16, 18, 20, 22 and over 500 instances for n = 30, 100. The number of
strict optima is estimated for n = 30, 100 using SRS, the sample sizes are s = 105, 5× 105

respectively. The solid lines in (b) were obtained using least-squares fit. Note that the
proportion of the strict local optima in the H1+2 landscape is always lower and decays
faster in comparison to the H1 landscape.

4.3.3 Quality of optima and plateaux

Here we examine the quality of the optima and plateaux between the two landscapes.

Obviously, every optima in the H1+2 landscape is an optima in the H1 landscape. Thus,

the quality of the optima in in the H1+2 landscape is better or at least equal to that in the

H1. However, we want to examine how the difference in quality between the two landscape

changes across the CV values. To obtain a measure of quality that is independent of

the problem instance and that does not require the knowledge the optimal solution, we

measure the quality of an optimum x in a given instance as f(x)/
∑n

i=1wi. The quality of

all the found optima and plateaux in different instances of size n = 14, 16, 18 are shown

in figure A.1 and A.2. The quality of the optima in the H1 gets better with very large

CV values, apart from very few bad optima. The number of optima with bad quality in

the H1 landscape of instance with very small CV is very high. In figure 4.14 we grouped

the instances again into the three intervals of CV values: (0, 0.3], (0.3, 1), and [1, 2). We

can see that the number of optima with bad quality decreases as the CV values increases.

The apparent similarity of the histograms across the values of the control parameter k
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indicates that this behaviour occurs in both easy and hard phases of the problem.

(a) k = 0.4

(b) 0 < CV ≤ 0.3 (c) 0.3 < CV < 1 (d) 1 ≤ CV < 2

(e) k = 1

(f) 0 < CV ≤ 0.3 (g) 0.3 < CV < 1 (h) 1 ≤ CV < 2

(i) k = 1.2

(j) 0 < CV ≤ 0.3 (k) 0.3 < CV < 1 (l) 1 ≤ CV < 2

Figure 4.14: The quality of optima and plateaus in the H1 and H1+2 landscapes. The
x-axis shows the fitness value divided by

∑n
i=1wi. The data includes all optima and

plateaux found in 600 instances for each k value of problem size n = 20.

We continue to observe this phenomenon in sampled optima from larger instances as

shown in figure 4.15 for n = 30, 100. The optima obtained for each instance are the
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collection of optima sampled by 1000 random steepest descents and SRS with sample

sizes of s = 105, 5× 105 for n = 30, 100 respectively.

(a) n = 30

(b) 0 < CV ≤ 0.3 (c) 0.3 < CV < 1 (d) 1 ≤ CV < 2

(e) n = 100

(f) 0 < CV ≤ 0.3 (g) 0.3 < CV < 1 (h) 1 ≤ CV < 2

Figure 4.15: The quality of optima in the H1 and H1+2 landscapes (k = 1). The x-axis
shows the fitness value divided by

∑n
i=1wi. The data includes all sampled optima from

500 instances for each n. The sampling for each instance includes 1000 steepest descents
and SRS of size s = 105, 5× 105 for n = 30, 100 respectively.

4.4 Basins of Attraction

The basin of attraction size, shape and the correlation between the size and the optimum

fitness represent important aspects of the fitness landscape [85, 104]. In this section we try

to examine most of these properties across the different problem parameters and compare

the results of the two landscapes. We exhaustively calculate the basin sizes, thus we were

limited to studying small problem sizes n ≤ 22 only.
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4.4.1 Basin size

As with the number of strict optima, the basin sizes do not seem to change much between

the easy and hard phase for all the different distributions and for both landscapes. Figures

4.17 and 4.16 show the average basin sizes for the different distributions across k. The

figures show the average sizes of basins associated with each strict and non-strict local

optima (i.e in case of a plateau, the basin of each of its configuration is counted as a

single observation when calculating the average, instead of counting their union as a single

observation). There is a large increase in the average basin size in the H1+2 landscape in

comparison to the H1 landscape. This increase is in accordance with the decrease in the

number of local optima for all the different distributions and for all the different values

of k.
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Figure 4.16: Average basin size of global optima versus the phase transition control
parameter k, for all the different distributions of the weights. Each box represents data
from the 30 random instances of size n = 20. This is shown for both neighbourhood
operators H1 and H1+2. The dotted line is given by kc from eq.(4.2).

The distribution of the basin sizes in all the instances we studied was found to be

highly skewed to the right, with many small basins and only few large ones. This is true

for both landscapes. Similar skewness in the distribution of basin sizes was reported in

other combinatorial problems, for example in the flow-shop scheduling problem where the
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Figure 4.17: Average basin size of local optima versus the phase transition control param-
eter k, for all the different distributions of the weights. Each box represents data from
the 30 random instances of size n = 20. This is shown for both neighbourhood operators
H1 and H1+2. The dotted line is given by kc from eq.(4.2).

log-normal distribution was found to be a plausible model of the basin sizes [91]. We

tried to fit the log-normal distribution to the instances we studied, to examine if it is

also a plausible model for the basin sizes in NPP. Figure 4.18 shows the fitted log-normal

distribution on two instances of small and large CV values. The figure also shows how the

estimated distribution parameters (i.e. µ and σ) change with the CV . There is almost no

change in the H1+2 landscape, but in the H1 landscape µ increases with the CV , while σ

decreases. This increase in the basin sizes can be attributed to the decrease in the number

of optima as the CV increases. However, in almost all the instances, the null hypothesis

was rejected (at the 5% significance level) when chi-squared and Kolmogorov-Smirnov

goodness-of-fit tests were used to test the plausibility of the log-normal distribution. We

tried to fit what we believed to be other possible good models, namely the following

distributions: inverse Gaussian, exponential, Poisson, gamma, negative binomial and

power law (we followed the method in [19] to test the goodness-of-fit of a power law).

The best visual fits we found were gamma, log-normal, and negative binomial. But again

in almost all the instances, all the tested distributions failed the goodness-of-fit tests.
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This can be due to a number of reasons: statistical fluctuation (especially in large CV

instances where the number of optima is small), the presence of outliers, different degree

of freedom should have been used, or simply because the basin sizes do not actually follow

any of those distributions. Identifying and removing the outliers and examining the use

of different degrees of freedom could be investigated in the future.

(a) n = 20

(b) n = 22

(c) n = 20, CV = 0.2

(d) n = 20, CV = 1.1

Figure 4.18: (Left) The mean and the standard deviation of the fitted log-normal dis-
tributions to the basin sizes against the CV . The results are for both landscape of 600
instances for each n = 20, 22 and k = 1. (Right) Histograms of the basin sizes of two
instances with small and large CV values; the fitted log-normal distribution is shown for
each landscape.

In the H1 landscape, 20% of the basins cover around 60-70% of the search space in

instances with CV ≤ 0.3, while they cover around 35-50% of the search space in instances

with CV > 1. This discrepancy between the two CV intervals seems to continue to exist

in the H1+2 landscape, though at a lower level. Figure 4.19, shows the cumulative sum

of the basin proportions, after being sorted in descending order, against the percentage of

the basins. The search space is covered by fewer basins in the H1 landscape compared to

the H1+2 one, in instances with CV ≤ 0.3, in particular. For instance, around 90% of the

search space is covered by half of the basins in the H1 landscape, while it takes around
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70% of the basins to cover the same amount of the search space in the H1+2 landscape.

proportion 

proportion of optima

(a) H1 landscape

proportion of optima

(b) H1+2 landscape

Figure 4.19: To examine how quickly the largest basins cover the search space we plot
the cumulative sum of the basin proportions going from the largest to smallest ( i.e. we
plot the cumulative sum of the basin proportions after sorting them in descending order)
against the proportion of the optima. Each line shows the results of a single instance.
The results are for 600 instances of n = 20 and k = 1. You can see that in instances with
CV ≤ 0.3, the search space is covered by fewer basins in the H1 landscape compared to
the H1+2 one.

4.4.2 Basin size and fitness

Another important aspect of the fitness landscape is the correlation between the basin

size and the fitness of the optimum. Previous studies have shown that in general, fitter

optima have larger basins [104, 112], and landscapes with this kind of feature usually tend

to be easier to search. In general, the correlation between the fitness and the basin size in

both landscapes of NPP (see figures 4.20 and 4.21) was found to be moderately negative

(0.4− 0.6) to strongly negative (> 0.6). This indicates that fitter optima do indeed tend

to have bigger basins in NPP. We measured the correlation between the two quantities

using Spearman’s correlation coefficient instead of the traditional Pearson’s correlation

coefficient. The reason for that is, Pearson’s method assumes that both variables are

drawn from normal distribution, while Spearman’s method is non-parametric; as we have

seen in the previous sections, the distribution of the fitness values and the basin sizes
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are highly skewed and far from being normally distributed in NPP 1, thus Spearman’s

correlation coefficient is more suitable in this case.

Like with the basin size, the correlation between the fitness and basin size does not

seem to change much between the easy and hard phases, at least for instances with

CV > 0.3 in the H1 landscape. However, some instances with CV ≤ 0.3 seem to have

stronger correlations in the easy phase. In the H1+2 landscape, a small proportion of

instances have weak negative correlation in the easy phase. This changes in the hard phase

where we see that all the instances have moderate to strong correlation. The degree of

the negative correlation seems to remain more or less the same across the CV values in

the H1+2 landscape. The same applies to the H1 landscape, except again for instances

with CV ≤ 0.3, where they seem to have weaker correlation than the rest, particularly in

the hard phase. As a reminder, in the context of the weight distributions, instances with

CV ≤ 0.3 are generated from normal and negatively skewed distributions.

Figure 4.21 shows the correlation between the fitness and basin size as n grows. In

general, the correlation seems to get slightly stronger as n increases. Again, however, the

correlation of instances with CV ≤ 0.3 in the H1 landscape seems to get weaker with

larger n. Of course, as a consequence of studying only small instances, we cannot know

with certainty if this trend will continue to show in n larger than 22.
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Figure 4.20: Spearman’s rank correlation coefficient between basin size and fitness versus
CV . The results are for 600 instances of size n = 20 for each value of k.

In summary, if we excluded the H1 with CV ≤ 0.3, the correlation appears to remain

more or less the same across k and CV apart from few cases in the H1+2 landscape. It

1You can also see figures A.3, A.4, and A.5 in the appendix, which show plot-matrices of the basin
size proportions and optima fitness values for three instances of different CV values.
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also appears to get slightly stronger with larger n. For the H1 landscape of instances with

CV ≤ 0.3, the correlation seems to be slightly stronger in the easy phase and it seems to

get weaker with larger n in the hard phase.

Figures A.6, A.7, and A.8 in the appendix give an overview of the relation between

the basin size and fitness in all the instances we studied. They show the skewness of the

distributions of the fitness values and the basin sizes, namely that most of the basins are

small and that most of the optima are good (apart from the ones in the H1 landscape

with CV < 0.3). They also show how the basin sizes in the H1 landscape increases with

the CV until their sizes become similar to those of the H1+2 landscape.
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Figure 4.21: Spearman’s rank correlation coefficient between basin size and fitness versus
CV . The results are for 600 instances for each problem size (k = 1).
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4.4.3 Global basin

As we have seen before, the number of global solutions drops down as we cross the phase

transition point. To examine how much the probability of finding the global changes

between the two phases, we plot the total sum of all the global basin proportions found

in instances of n = 20 against the control parameter k in figure 4.22. In general, the

probability of finding the optimal solution is always higher in the H1+2 landscape than

in the H1 one. In the H1+2 landscape, the probability of finding the global optima drops

down from almost around ∼ 1 in the easy phase to around ∼ 10−2 in the hard phase. Like

the previously studied features, the probability does not seem to change much across the

CV values in this landscape, unlike the H1 landscape, where the probability of finding the

global increases with the CV in both the easy and hard phases. Again, in H1 landscape

the probability of finding the global decreases from between around ∼ 0.1 in small CV

instance and ∼ 0.8 in large CV instances in the easy phase to be around ∼ 10−4 and

∼ 15 × 10−3 in the hard phase. Figure 4.23 shows that the probability of finding the

global in the hard phase, in both landscapes, decreases as the problem size grows.

In an attempt to study the shape of the global basin in the hard phase, we plot in figure

4.24, the proportion of the configurations that are part of its basin in every Hamming

sphere of radius h around it. The proportions were estimated as described in subsection

3.4. The plot shows the result for one of the two global found, as the same result applies

to the other global due to the symmetry of the search space. The results are shown for

three instances of size n = 22. Note that the global basin is not the largest in all of

these instances. For example, in the instance with the smallest CV value, the global

basin proportion in the H1 landscape is 1.98 × 10−05 while the largest basin proportion

is 1.86 × 10−04. Similarly in the H1+2 landscape the global basin proportion is 0.001

while the largest basin proportion is 0.009. The probability of return estimated using this

method was very close to the true probability that was obtained by exhaustive calculation

of the basins. From the figure we can see that in both landscapes the configurations in

the global basin are concentrated in the immediate Hamming spheres around it.
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Figure 4.22: The proportion (in log scale) of the basin size of all the global optima found
in an instance for each landscape against the CV . The results are for 600 instances of size
n = 20 0for each value of k. Notice how the probability of finding the global optimum
increases with the CV in the H1 case.
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Figure 4.23: The proportion (in log scale) of the basin size of all the global optima found
in an instance for each landscape against the CV . The results are for 600 instances of
each problem size (k = 1). Notice how in all of the sub-figures the probability of finding
the global optimum increases with the CV in the H1 case.
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Figure 4.24: Return probability to the global optimum starting from a Hamming sphere
of radius h versus h. The results are for 3 instances of size n = 22 and k = 1. Notice
how the probability of return approaches zero slightly faster in the H1 case compared to
H1+2.
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Figure 4.25: Average number of fitness evaluations used to find the global optimum, plot-
ted against the phase transition control parameter k. This is shown for all the considered
distributions of the weights and for both neighbourhood operators H1 and H1+2. Each
data point represents the average over the 30 instances of size n = 20 and 100 runs of the
steepest descent algorithm per instance. The dotted line is given by kc from eq.(4.2).
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We study in this section the performance of local search, namely steepest descent with

random restart algorithm, using the two neighbourhood operators. We carry out the

analysis of the algorithm performance from the perspective of the previously studied

landscape features in the earlier sections.

4.5.1 Cost of finding the global

To examine how the cost of finding the optimal solutions varies from the easy phase

to the hard phase, we ran the algorithm with the two neighbourhood operators for 100

times for each instance. The cost of finding the global optima is then calculated using

the number of used fitness evaluations. Note that we treat the objective function as a

black-box here, hence the number of times the objective function is queried for each step

taken by the algorithm equals the size of the neighbourhood. Also note that treating

the objective function of this problem as a white-box would achieve significantly better

results in terms of the cost. Figure 4.25 shows the average cost of finding the global

against k for each distribution of the weights. For all the different distributions, the

figure shows that the average number of fitness evaluations used to find the global optima

increases as we approach the phase transition point and keep increasing as we cross the

phase transition. This is expected due to the drastic decrease in the number of global

optima in the hard phase. As we have seen before, the probability of finding the global

is higher in the easy phase, the algorithm quickly finds one of the many global optima

while it struggles to find the single (two if we considered the symmetry) global optimum

in the hard phase. The number of used fitness evaluations varies across the different

distributions. Instances drawn from positively skewed and two peaks distributions have

the lowest number of fitness evaluations, which is unsurprising due to the low number

of local optima in the landscape of both cases. For instances drawn from normal and

negatively skewed distributions the performance of the H1+2 operator was much better

than the performance of the H1 operator. This can be explained by the very big difference

between the number of local optima in the H1+2 landscape compared to the H1 landscape
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which has far more local optima, suggesting that the algorithm probably had to do far

less restarts when using the H1+2 operator. For the rest of the distributions, the H1

operator seems to have a better performance even though the number of local optima is

less in the landscapes induced by the H1+2 operator. This perhaps can be explained by

the number of fitness evaluations needed to explore the much larger neighbourhood of the

H1+2 operator, which might have offset the advantage of having lower number of local

optima.

To examine further this relation between the number of fitness evaluations needed

to explore the neighbourhood and the difference between the number of local optima

between the two landscapes: we compare the performance of the two operators in figure

4.26, where we determine the statistical significance between the two performances using

Wilcoxon rank-sum test at the 5% level. Note that now the instances are mapped into

the three CV intervals. We can see that in the hard phase, the H1 operator performs

better when the CV is large ≥ 1. This behaviour continues to show as n grows, as shown

in figure 4.28. In this interval, although the number of local optima is higher in the H1

landscape and the probability of finding the global is lower than that in the H1+2, the

number of local optima is still small enough for the algorithm with the H1 operator to

carry out a number of restarts until the global is found and still use lower number of fitness

evaluations than that used by the H1+2 operator. In the easy phase, the H1 operator

performs better across all the CV intervals, despite the fact that the H1+2 landscape is

always smoother and has a higher probability of finding the global across all the values of

the CV . This can be explained by the presence of many global optima in the easy phase

which mitigates the ruggedness of the H1 landscape, even in the very rugged landscape

of the (0, 0.3] CV interval. However, this behaviour seems to fade away as n grows as

shown in figure 4.27, where the H1+2 operator starts to win more instances. This can

be attributed to the growth of the number of local optima in the H1 landscape in the

(0, 0.3] interval, which is the fastest growth rate out of all the CV intervals, while the

same interval has the lowest growth rate in the H1+2 landscape.
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Figure 4.26: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found (Tie).
Significance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for
600 instances of size n = 20 for each k.
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Figure 4.27: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found (Tie).
Significance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for
600 instances for each n and k = 0.4.
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Figure 4.28: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found. Sig-
nificance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for 600
instances for each n ( k = 1).
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The cost of finding the global optimum grows exponentially with n in the hard phase

as figure 4.29 depicts. The growth in the easy phase seems to be much slower but we are

unable to comment on its growth type as the trend is not very clear from the data in this

case. Bear in mind that the average number of evaluations used to find the optimal is

reported in log scale in the figure. You can see the big difference in the cost finding the

global optimum (almost one order of magnitude) between instances with small CV < 0.3

and instances with large CV ≥ 1 when H1 operator is used.
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Figure 4.29: Average number of fitness evaluations used to find the global optimum (y-
axis) against the problem size n (x-axis). The y-axis is in log scale. Each data point is an
average of 30 runs of steepest descent, averaged over the number of instances in each CV
interval. The results are for 600 instances for each n. Notice the large difference in the
average number of evaluations (almost one order of magnitude) between instances with
CV < 0.3 and CV ≥ 1 when H1 operator is used.

4.5.2 Quality of optima obtained with fixed budget search

The trend of the H1+2 operator performing better in the (0, 0.3] CV interval and the H1

operator performing better in the [1, 2) CV interval continues in larger problem sizes of

n = 30, 100 as shown in figure 4.30. Now the results show the quality of optima obtained

by a fixed arbitrarily selected budget of fitness evaluations. As we have seen before, the

difference in the quality between the two landscape decreases as CV grows, which explains

the results for the wining case of the H1 operator, of course alongside the lower difference

in the number of local optima in this interval between the two landscape. Note that these

results are specific to the budget we selected, whether the same trends will continue to

64



occur with other budget values remains an open question.
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Figure 4.30: The quality of the solution found averaged over 30 runs of local search with
fixed budget of 105 fitness evaluations. The results are for 500 instance per problem size
(k = 1).The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found (Tie).
Significance determined using Wilcoxon rank-sum (p−value ≤ 0.05).

4.5.3 Time to local optima

Here we study the time it takes steepest descent, starting from a random configuration

until a local optimum is found. As shown in figure 4.31, this was found to be very small in

both landscapes. In the H1 landscape, we believe that this is due to the large number of

local optima in this landscape. In the H1+2 landscape, although the number of optima

is much smaller than that in the H1, its neighbourhood is larger, which explains the small

number of steps in this landscape. Also, the small number of steps can be explained by

the fact that the attraction basin sizes in both landscapes were found to be mainly small.

The number of steps grows very slowly with n in both landscapes and across all the CV

values. This can be attributed to the exponential growth of the number of local optima

in both landscapes and across all the CV values. Note that the number of steps taken

in the H1 landscape was found to be always equal to the Hamming distance between the

initial random configuration and the found local optimum. In the H1+2 landscape this

was found to be almost always smaller or equal to the Hamming distance between the

initial random configuration and the found local optimum. However, in extremely few

cases, it was found to be one or two steps larger than the Hamming distance.
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(a) H1 landscape (b) H1+2 landscape

Figure 4.31: Number of steps starting from a random configurations until an optimum
is reached. The results are for 1000 steepest descents per instance and 600 instances for
each n = 14, 16, 18, 20, 22 and 500 instances for n = 30, 100 (k = 1).

4.6 Summary

In this chapter, we empirically studied various properties of two fitness landscapes of

random instances of the NPP, with a focus on how these properties change with the

phase transition and the CV value. The following is a summary of the main results:

• No configuration of type IPLAT or NSLMAX has been found in either landscapes.

• The only two properties that were found to change when the problem crosses the

phase transition, apart from slight changes in the correlation between the basin size

and fitness in instances when CV ≤ 0.3, are the number of global optima (and

consequently the probability of finding the global) and the number of plateaux, the

rest of the properties remained oblivious to the phase transition. This result is in

agreement with the results obtained by Stadler et al. [105], in which they found that

the features of the uniform NPP landscape, that have been mapped into barriers

trees, are insensitive to the phase transition.

• In general, the sizes of plateaux in the H1+2 landscape is larger than that in H1.

• The number of strict local optima seems to grow exponentially with the problem

size in both landscape, with a faster rate in the H1 landscape.
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• We proposed a formula to estimate the average number of local optima in the

H1 landscape that depends only on the problem size and the CV of the weights,

exploiting the strong correlation between the CV and the number of local optima

in this landscape.

• The quality of optima is always better in the H1+2 landscape, but the difference in

quality between the two landscape decreases as the CV increases.

• In general, the correlation between the size of the basin of attraction of a local

optimum and its fitness was found to be strong and negative, indicating that fitter

optima tend to have larger basins.

• The distribution of the basin sizes was found to be skewed with many small basins

and only few large ones.

• The performance of local search algorithms was found to be affected by the phase

transition in NPP, as shown by the considerable increase in the cost of locating the

optimal solution when k > kc.

• The H1 operator performs better in instances with CV ≥ 1, while the H1+2 op-

erator performs better in instances with CV ≤ 0.3. This shows that the CV of

the weights has a potentially useful application in guiding the choice of the move

operator of local search heuristics.

• The number of steps until an optimum is found starting from a random configuration

grows very slowly with n in both landscapes.
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CHAPTER 5

0-1 KNAPSACK PROBLEM

In this chapter we study the landscape properties of another NP-hard problem, the binary

knapsack problem (0-1KP) 2. We study 11 different problem types of the problem, which

vary in the relation between the problem coefficients (i.e. the profits and the weights).

One of these problem types is a generalisation of the NPP. As in the NPP chapter, we

study various landscape features of a large number of randomly generated instances with

different values of problem parameters. One of these parameters is the weights distribu-

tion. Instances were generated by drawing weights from the five different distributions

shown in subsection 3.2. However, in this chapter, we abandon the use of the underlying

distribution of the weights to describe the problem instance and only use the weights CV

to do so. We also carry out grouping the instances based on their CV values into the

three intervals: (0, 0.3], (0.3, 1), and [1, 2).

5.1 Problem Definition

Given a knapsack of capacity C and a set of n items each with associated weight wi and

profit pi, the aim is to find a subset of items that maximises

f(x) =
n∑
i=1

xipi (5.1)

2Initial work presented in this chapter was published in GECCO’15 companion proceedings [6]
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subject to:
n∑
i=1

xiwi ≤ C, x ∈ {0, 1}n (5.2)

where

C = λ
n∑
i=1

wi, 0 ≤ λ ≤ 1 (5.3)

The binary vector x = (x1, . . . , xn) represents the decision variable where xi = 1 when

item i belongs to the subset and xi = 0 otherwise. We study instances where pi and wi

are positive integers drawn from the set {1, 2, . . . ,M}.

The 0-1KP is NP-hard in the weak sense [35], that is, there exists an algorithm that

can solve it in pseudo-polynomial time through the use of dynamic programming. The

complexity of such an algorithm, O(n2log2 C), is polynomial in the number of items and the

capacity of the knapsack but exponential in the number of bits required to represent the

capacity. The running time of such an algorithm would exhibit an exponential behaviour

as M grows large.

Note that the 0-1KP search space, X = {0, 1}n, is partitioned into a feasible region

F = {x ∈ X |
∑n

i=1 xiwi ≤ C} and an infeasible region INF = X \ F . For λ = 1 there

are no infeasible solutions and as the value of λ decreases the size of the infeasible region

increases until INF = X when λ = 0. We define the boundary between feasible and

infeasible regions as the set of feasible configurations that have at least one infeasible

neighbour, B = {x ∈ X | x ∈ F ∧ ∃y : (y ∈ N(x) ∧ y ∈ INF )}.

5.1.1 Problem types

Randomly generated instances of the 0-1 KP can be classified into different types based

on the relation between the item’s profit and weight. We study 11 types, which have been

the focus of several studies in the literature, each with different properties that could

influence the performance of problem solvers [82, 83, 64, 14]. Given a positive integer a

and wi drawn at random from a given data range [1,M ], the profit pi can be expressed

as a function of wi yielding the following instance types:
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Figure 5.1: The relation between weights (x-axis) and profits (y-axis) in the different
types of knapsack instances. The different colours indicate different CV values of the
weights. The weights have been shifted along the x-axis for better visibility. (a) Uncor-
related. (b) Weakly correlated. (c) Strongly correlated. (d) Inverse strongly correlated.
(e) Subset sum. (f) Uncorrelated spanner span(2, 10). (g) Weakly correlated spanner
span(2, 10). (h) Strongly correlated spanner span(2, 10). (i) Multiple strongly correlated
mstr(3M/10, 2M/10, 6). (j) Profit ceiling pceil(3). (k) Circle circle(2/3).

Uncorrelated ucorr: there is no correlation between the profit and weight of an item;

pi is uniformly random in [1,M ].

Weakly Correlated wcorr: despite the label of this instance type, the profit and weight

of an item are highly correlated; pi is chosen uniformly at random from [wi −

M/a,wi +M/a] such that pi ≥ 1.

Strongly Correlated scorr: the profit of an item is linearly related to its weight pi =

wi +M/a.

Inverse Strongly Correlated invscorr: like strongly correlated instances, the profit
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of an item is linearly related to its weight but with a negative fixed charge; pi =

wi −M/a, and wi is drawn at random from [M/a + 1,M(M/a)]. In the original

definition of this instance, the weights were assigned accordingly after the profits

have been sampled. We changed the definition slightly by sampling the weights

first, to preserve the CV value of the weights.

Subset Sum sbstsum: the item’s profit and weight are equal pi = wi. Obtaining a filled

knapsack is thus the only aim when solving instances of this type.

The previous types are standard instances in the literature of the 0-1KP. The following

instance types were proposed by Pisinger in [83]. They are constructed in such a way to

make them difficult for the branch-and-bound algorithms.

Spanner span(v, d): a set called the spanner set is generated with v items each with a

profit and a weight. The spanner type is characterised by v, the spanner set size,

and d, a multiplier limit. The weight of each item is drawn at random from a given

range [1,M ]. The profit of each item is then generated according to the distribution

of the spanner problem type to be: uncorrelated (uspan), weakly correlated (wspan),

or strongly correlated (sspan) with the item’s weight. The items in the spanner set

are then normalised by dividing both profits and weights by d + 1. The last step

is to construct the n items by randomly selecting an item (wi, pi) from the spanner

set and a multiplier b drawn from the interval [1, d] such that the constructed item

has the following profit and weight (bwi, bpi). All items in a spanner instance are

multiples of the spanner set. For all the spanner problem types, v and d are set

to equal 2 and 10. Note that because of the way the spanner problem types are

generated, it was difficult to generate instances of this type with CV ≤ 0.3.

Multiple Strongly Correlated mstr(k1, k2, d): if the weight wi is divisible by d, then

pi := wi + k1, otherwise, pi := wi + k2. Since the weights in the first group are all

multiples of d, using only these weights will fill at most dbC/dc of the capacity [83].

Hence, the need to use some of the items from the second distribution to obtain
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a completely filled knapsack. In both groups the profits and weights are strongly

correlated. Setting the values of (k1, k2, d) to (3M/10, 2M/10, 6) has been shown to

generate very difficult instances according to computational experiments in [83].

Profit Ceiling pceil(d): all profits are multiples of a given parameter d, pi = ddwi/de.

We set d to 3 , since this setting produces difficult instances according to [83].

Circle circle(d): the item’s profit is a function of the weights from an arc of an ellipsis,

pi := d
√

4M2 − (wi − 2M)2 and d = 2/3.

5.1.2 Phase transition

Figure 5.2: Plot taken from [98] that shows the phase transition in subset sum (x =
C/(nM) and K = k). The area labelled easy is the region where exponentially many
perfect solutions (i.e. solutions with f(x) = C) are expected to exist, while the area
labelled hard is the region where the probability of finding a perfect solution is zero.

The problem type, subset sum, is a generalisation of the NPP. It has a similar phase

transition determined by the same control parameter k = log2M/n [98, 97]. Through

the application of the statistical mechanics framework, Sasamoto et al. [98] obtained an

asymptotic expression of the number of perfect solutions in the subset sum problem (i.e.

solutions with f(x) = C). They identified the easy and hard regions of this problem type

to be as shown in figure 5.2. In the easy phase, exponentially many perfect solutions are

expected to exist, while in the hard phase the probability of finding a perfect solution

decreases sharply to zero. The parametrisation of the critical value kc that was obtained
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for subset sum by Sasamoto et al. is given in [98]. The parametrisation depends on the

value of x = C
nM

. The method of statistical mechanics has been applied to investigate

some properties of the knapsack problem and some of its variations, such as an upper

bound to the optimal profit in the multi-knapsack problem [54, 31, 61]. However, to the

best of our knowledge, no phase transition has been identified other than for the subset

sum problem type. Nevertheless, we examine the effect of setting k to 0.4 and 1, which

respectively map to the easy and hard regions of the subset sum, for all the 11 problem

types. Note that like in the NPP chapter, our use of “hard” and “easy” here does not

correspond to the computational complexity but to the probability of having a perfect

solution. In this chapter we are interested to see if the computational complexity of

finding the optimal using local search algorithm changes with the phase transition.

5.1.3 Constraint handling

We use penalty as a constraint handling method. Various penalty functions have been

proposed for the 0-1KP [79, 72] and its generalisation the multiple knapsack problem

[40, 59]. An infeasible solution x that violates the given constraint is penalised by a value

Pen(x) > 0, while Pen(x) = 0 for a feasible solution x. The fitness functions after adding

the penalty term is as follows:

f(x) =
n∑
i=1

xipi − Pen(x) (5.4)

Allowing infeasible solutions to be part of the searchable space leads to a smoother

fitness landscape when a suitable penalty function is used [70]. Penalising the infeasible

solutions proportional to the the degree of violation of the constraint allows them to

contribute to the search process. Therefore, the choice of an appropriate penalty function

is very critical for inducing smoother landscapes and guiding the search to good feasible

regions. For the 0-1KP, Olsen [79] found that weak penalties prevent the search from

finding any feasible solution for highly constrained instances. Also, Gottlieb [40] note
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that the local optima in all covering and packing problems lie in the boundary of the

feasible region. Hence, assigning a lower fitness value to infeasible solutions than all

feasible solutions is important for successful penalty-based search.

We studied the effect of using three types of penalty functions, which have been

proposed in [72], on the H1 and H1+2 landscapes. The functions differ in the growth

of the penalty value with respect to the degree of constraint violation, namely the three

types are: logarithmic, linear and quadratic. We also add the term
∑n

i=1 pi to the penalty

function as an offset term that insures that all infeasible solutions achieve lower fitness

values than all feasible solutions [40]. Otherwise, in the logarithmic case for instance, the

entire search space becomes part of the basin of the all ones solution x = (1, · · · , 1). The

penalty functions, in order from weak to strong, are as follows:

Pen(x) = log2

(
1 + ρ

(
n∑
i=1

xiwi − C

))
+

n∑
i=1

pi (5.5)

Pen(x) = ρ

(
n∑
i=1

xiwi − C

)
+

n∑
i=1

pi (5.6)

Pen(x) =

(
ρ

(
n∑
i=1

xiwi − C

))2

+
n∑
i=1

pi (5.7)

where ρ = maxi=1,...,n {pi} /mini=1,...,n {wi}. In figure 5.3, we show an example in-

stance that demonstrates how the basin sizes change with the use of the different penalty

functions. It is clear that using the logarithmic penalty function is a bad choice since

it creates a strict local optimum, the all ones solution x = (1, · · · , 1), in the infeasible

region. While both the linear and quadratic functions do not create any local optima

in the infeasible region, the strong penalty enforced by the quadratic function seems to

direct the infeasible configurations to be part of the basins of optima with lower quality,

as opposed to the linear penalty function. This is also shown in the correlation coefficient

between the basin size and fitness when using the two penalty functions, where the linear

function has stronger correlations in both landscapes.
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(a) Logarithmic Penalty, H1
τ = 0.272, r = −0.053, rs = 0.375
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(c) Linear Penalty, H1
τ = 0.292, r = 0.319, rs = 0.404
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(d) Linear Penalty, H1+2
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(e) Quadratic Penalty, H1
τ = 0.236, r = 0.212, rs = 0.331
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(f) Quadratic Penalty, H1+2
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Figure 5.3: The basin size fractions of the search space using different penalty functions.
The red colour corresponds to the feasible configurations that are part of the basin and
the black corresponds to the infeasible ones. The figures show the global optimum basin
and the largest 20 local optima basins. The optima are ordered according to fitness (x-
axis) starting from the global optimum in the far left. The results are for an instance
of weakly correlated knapsack of size n = 22, k = 1, CV = 0.12, and λ = 0.5. The
fraction of the number of optima in the H1 landscape is 0.115 and in the H1+2 landscape
is 15 × 10−6. The correlation between fitness and basin size of all the optima for each
landscape is shown by Kendall’s τ , Pearson’s r, and Spearman’s rs correlation coefficients.
Obviously changing the penalty function only affects the infeasible part of the basin (the
black region of the bars). 75



Figure 5.5 shows the return probability to the global optimum starting from a Ham-

ming sphere of radius h, where we can see that the linear penalty function has the highest

return probability in both landscapes. One interesting observation is that the basin con-

figuration proportions continue to increase and decrease between consecutive spheres in

the H1+2 landscape. This can be attributed to the very small number of optima (61

when using either linear and quadratic penalty functions and 62 when using logarithmic

penalty function) and the nature of the H1+2 neighbourhood, as the neighbours of a

configuration in sphere h would be spread over more spheres using this neighbourhood

operator compared with the H1 operator. Figure 5.4 presents an example illustrating

this oscillating behaviour in the H1+2 landscape. Figure 5.6 shows the performance of

local search to find the global when all the three penalties are used, where again, the best

performance was achieved with the linear penalty function. The previous results provide

some evidence that the linear penalty function appears to be the best choice, in terms of

local search performance and correlation of basin size and fitness, out of the three inves-

tigated functions . Therefore, in the rest of this chapter we only use this linear penalty

function to handle the constraint.

We use the linear penalty function (eq. 5.6) with all instance types except for the

subset sum. Since applying this penalty function to infeasible solutions in a subset sum

instance assigns equal fitness values for all infeasible solution, thus creating large plateaus

in the landscape. Instead, we simply set the fitness of an infeasible solution in a subset

sum instance to the negative of the amount it exceeded the knapsack capacity by. The

fitness function of subset sum instances is, thus, as follows:

f(x) = C −
n∑
i=1

xiwi (5.8)
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(a) Return probability to the global optimum starting from a Hamming sphere of radius h versus h.

(b) Each node represents a configuration and edges indicate neighbourhood relation. The fitness is shown
for each node, also the node size is scaled proportional to fitness. The graph has been laid out such that
the global optimum (with fitness 121) is placed in the centre and the configurations that are h Hamming
distance away from the global lie on the h-th circle. The colours dark green and light green indicate that
a configuration is in the global’s basin, while the colours pink and purple indicate that a configuration
is not in the global’s basin. The semi-transparent nodes with the colours dark green and purple are
neighbours of the highlighted node (with fitness -2053). In addition to the global, there are two strict
local optima with fitness 102 and 113.

Figure 5.4: Example of an H1+2 landscape where the return probability to the global
does not decrease monotonically as h increases. The landscape is for an instance of weakly
correlated knapsack of size n = 6, k = 1, CV = 0.25, and λ = 0.5.
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Logarithmic Penalty, H1
Linear Penalty, H1
Quadratic Penalty, H1
Logarithmic Penalty, H1+2
Linear Penalty, H1+2
Quadratic Penalty, H1+1

Figure 5.5: Return probability to the global optimum starting from a Hamming sphere
of radius h versus h. The results are for the same knapsack instance in figure 5.3. Notice
how the probability of return approaches zero faster in the H1 case compared to the H1+2
which only approaches zero in the last sphere.

(a) (b)
(c)

Figure 5.6: Number of fitness evaluations, restarts and steps to find the global optimum.
Each box-plot shows the data distribution of 30 runs of local search to find the global
optimum. The results are for the same knapsack instance in figure 5.3.

5.1.4 Constraint level

Perhaps the most interesting observation about the landscape and the CV of the weights

in the NPP was the strong negative correlation between the number of local optima and

the CV in the H1 landscape. We show here that it is also the case in the 0-1KP. Figure

5.7 shows the correlation between the number of strict local optima and the CV of the

weights in the H1 and H1+2 landscapes against λ. As in NPP, the correlation was found

to be strong and negative in the H1 landscape, apart from highly constrained instances

(λ ≤ 0.2) and weakly constraint instances (λ > 0.8).
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Figure 5.7: Correlation between the CV of the weights and the number of strict local
optima in the H1 and H1+2 landscapes versus λ. The results are shown for all instance
types of problem size n = 20. Each data point shows Pearson’s r correlation coefficient
calculated over 180 instances.
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Figure 5.8: The number of optima in the H1 landscape against the different values of λ.
The results are for two uncorrelated KP instances of size n = 12. The bar on the far left
in each plot shows the set of all weights in the instance, the CV of the weights is shown
over the bar. The following two bars show the smallest and the largest weight respectively
(to facilitate comparison). The rest of the bars illustrate the knapsack capacity C with
each λ setting. The boundary size |B |, the number of optima (all of which are strict
and with only one global), and the feasible region size |F | for each λ setting are shown
over the corresponding bar. For example in (a): when λ = 0.3, there are 357 feasible
configurations, of which 271 lie on the boundary between the feasible and the infeasible
regions, and out of these 271 configurations 198 of them are optima. The rest of the
configurations are infeasible

In the following we attempt to explain the positive correlation between the CV and

the number of strict local optima when the problem is highly or weakly constrained. In

small CV instances, most of the solutions are infeasible when highly constrained and

feasible when weakly constrained. This consequently decreases the boundary size and

thus the number of strict local optima. On the other hand, the larger weights in large CV
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instances, prevent many solutions from becoming feasible when weakly constrained and

allow many solutions to be feasible when highly constrained. This makes the boundary

size in large CV instances relatively larger in both cases, causing the number of strict

optima to be higher than that in small CV instances. An illustrative example is shown in

figure 5.8. In fact, when highly constrained, the mechanism of solving large CV instances

becomes similar to that of solving small CV instances, in that the problem becomes about

fitting the small and similar weights into the knapsack.

In the H1+2 landscape, the strong positive correlation, in some of the problem types,

when highly and weakly constrained could be attributed to the same above explanation.

The case in moderately constrained instances is similar to that in NPP, in that, the

correlation between the CV and the number of local optima in this landscape is weak.

Generally in this landscape, the number of local optima is slightly higher in the middle

CV interval (0.3, 1) than in the other two CV intervals ((0,0.3],[1,2)). The strong negative

correlation in the spanner problem types, when moderately constrained, can be explained

by the lack of instances with small CV values, as it was difficult to generate instances of

these types with CV ≤ 0.3. Thus as the CV ranged between middle to large, the number

of local optima ranged from slightly higher to slightly lower values.

Moderately constrained instances have the largest boundary sizes and thus the largest

number of optima. We believe, for this reason, that they have the most interesting

landscapes to study. This was the motivation behind setting λ to 0.5 in the rest of the

instances studied in this chapter.

5.2 Search Position Types

The search position types found in randomly generated instances of all the problem types

with different values of CV and k are shown in appendix B. The tables B.1 to B.6 show

results of the feasible region, and tables B.7 to B.12 show the infeasible region results.

The positions in both the infeasible and feasible regions are shown as proportions of the
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search space for both the H1 and the H1+2 landscapes. As in NPP, no configuration

of type IPLAT has been found in either landscapes or regions. In the infeasible region,

all the found configurations were of the following types: LEDGE, SLOPE, SLMIN and

NSLMIN. No strict optima or plateaux were found in the infeasible region. In the H1

landscape of the infeasible region, the configurations were mainly of type LEDGE with

both values of k. In the H1+2 landscape of the infeasible region, the configurations were

mainly of types LEDGE and SLOPE when k = 0.4, and mainly LEDGE when k = 1.

In the feasible region of the H1+2 landscape, when k = 0.4, the found configurations

were mainly of types LEDGE, SLOPE , NSLMAX and SLMAX in all the problem types.

Apart from the uncorrelated and uncorrelated spanner instances, where no configurations

of type NSLMAX or SLOPE were found. When k = 1, the SLOPE and NSLMAX types

disappear, aside from very few configurations in small CV instances (CV ≤ 0.3) of the

profit ceiling and circle problem types. The feasible region of the H1 landscape is similar

to its infeasible region, in that, no apparent changes were observed between the values of

k. In general, the configurations were of type SLMAX and LEDGE in this region.

5.3 Optima and Plateaux

5.3.1 Number of optima and plateaux

Figure 5.9 shows the number of global optima found in randomly generated instances

of all the problem types and across the different values of k and CV , while figure 5.10

shows the number of local optima. Note that all the global are strict local optima in

the H1 landscape, but some of them become connected forming global plateaux in the

H1+2 landscape. In fact, all the global and local optima in the H1 landscape are strict.

Plateaux were only found in the H1+2 landscape and mainly when k = 0.4 as shown in

the previous section. In general, only one optimal solution was found in all the problem

types when k = 1. There is a clear difference in the number of optimal solutions between
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instances of subset sum that were drawn from the easy and the hard phase. The number

of the optimal solutions is around 1000 in the easy phase (k = 0.4), and it drops down

to only one in the hard phase (k = 1). This is true across all the CV values, apart from

the largest CV interval where the number of optimal solutions was found to be slightly

more than one sometimes but always less than ten. The number of global when k = 0.4

in the strongly correlated and multiple strongly correlated instances seems to decrease as

the CV increases, until it reaches around only one in the interval [1, 2). The number of

global in the profit ceiling is slightly higher when k = 0.4 compared to that when k = 1.

For the rest of the problem types, the number of global appears to not change much over

the values of k.

In general and across all the different problem types, the number of local optima in

the H1 landscape is the highest in the CV interval (0, 0.3] and it starts decreasing as

the CV gets larger. This does not seem to change much between the two values of k.

Also, the variation in the number of local optima in this landscape between the different

problem types was found to be very small as shown in figure 5.10. As in the NPP, the

difference in the number of local optima between the two landscape is very large, and it

is the largest in the small CV interval (0, 0.3]. In the H1+2 landscape, the number of

local optima seems to vary between the different problem types. The lowest number of

local optima was found in the uncorrelated, weakly correlated, uncorrelated and weakly

correlated spanner instances. Note that the number of local optima is very low in the

weakly correlated (when k = 0.4) and the uncorrelated instances with medians < 10. The

number of local optima in the weakly correlated and the weakly and strongly correlated

spanner problems is higher in instances with k = 1 than that with k = 0.4. The opposite

is true for the profit ceiling and circle instances where the number of local optima is

slightly lower when k = 1 than that when k = 0.4.

82



uc
or

r

w
co

rr

sc
or

r

in
vs

co
rr

sb
st
su

m
m

st
r

pc
ei
l

ci
rc

le
10

0

10
1

10
2

10
3

(a) 0 < CV ≤ 0.3
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(b) 0.3 < CV < 1
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(c) 1 ≤ CV < 2

Figure 5.9: Number of both strict and no-strict global optima (in log scale) found in 600
instances of size n = 20 of each problem types for each k value. The red boxes show the
k = 0.4 results and the black ones show the k = 1 results.

As we have seen before, plateaux were only found in the H1+2 landscape. Aside

from very few configurations in small CV instances (CV ≤ 0.3) of the profit ceiling and

circle problem types, these plateaux were found only when k = 0.4. Both uncorrelated

and uncorrelated spanner instances did not have any plateaux. The weakly correlated

and weakly correlated spanner instances were found to have very few plateaux of all the

types but mainly open plateaux. For the rest of problem types, the majority of the found

plateaux were closed plateaux. For the subset sum instances, the majority of plateaux

were global and closed plateaux. Most of the plateaux found in the profit ceiling instances

were open and closed plateaux.
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(b) H1+2 landscape

(c) 0 < CV ≤ 0.3
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(d) H1 landscape
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(e) H1+2 landscape

(f) 0.3 < CV < 1
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(g) H1 landscape
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(h) H1+2 landscape

(i) 1 ≤ CV < 2

Figure 5.10: Number of both strict and no-strict local optima (in log scale) found in 600
instances of size n = 20 of each problem types for each k value. The red boxes show the
k = 0.4 results and the black ones show the k = 1 results.

In all the problem types, most of the found plateaux have very small sizes, around

two or three configurations. The largest found plateaux were less than 10 configurations

in all the instances, apart from the profit ceiling and circle instances where the largest

plateaux were found to be composed of around 30 configurations. However, these large
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plateaux were rarely found. The number of exits in open plateaux was found to be also

quite small in all the problem types; it was found to be mainly between 1 and 3 exits.

5.3.2 Average number of strict local optima

Figure 5.11 shows the mean decay of the strict local optima proportion against n. The re-

sults for n = 30, 100 are the SRS estimates obtained with the sample sizes s = 105, 5×105

respectively. Most of the proportions seems to decrease polynomially with n in the form

an−b. The proportion in the H1+2 landscape of some of the problem types, namely: un-

correlated, weakly correlated, uncorrelated spanner, weakly correlated spanner, strongly

correlated spanner, and multiple strongly correlated, seems to be smaller than what the

SRS with the above sample sizes can detect. This was evident by the negative lower

bound of the 95% CIAC of the obtained estimates indicating that the point estimates are

greatly overestimating the real proportions. Therefore, we did not include these estimates

in figure 5.11. We also did not fit the decay of the proportions with the form an−b, since

we are only left with four close data points. In general, and as in the NPP, the largest

decay happens in the landscape of H1+2 and the smallest in the H1 landscape of the

interval (0, 0.3]. The proportion of the strict local optima appears to decay faster in the

H1+2 landscape compared to the H1 across all the CV intervals in all the problem types.

We are unable to comment on the growth of the number of strict local optima in the H1+2

landscapes of the following problem types: uncorrelated, weakly correlated, uncorrelated

spanner, weakly correlated spanner, strongly correlated spanner, and multiple strongly

correlated. However, the growth of the number of strict local optima in the H1+2 land-

scape of the rest of the problem types and the growth in all the H1 landscapes seems to

be exponential with n.
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Figure 5.11: The decay of the strict optima proportion (in log scale) as the problem size n
grows (k = 1). The results for each problem type are averages over 600 instances for each
n = 14, 16, 18, 20 and over 500 instances for n = 30, 100. The number of strict optima is
estimated for n = 30, 100 using SRS, the sample sizes are s = 105, 5 × 105 respectively.
The solid lines were obtained using least-squares fit. Note that the proportion of the strict
local optima in the H1+2 landscape is always lower and decays faster in comparison to
the H1 landscape.

As in the NPP, the number of strict local in the H1 landscape was found to be strongly

and negatively correlated with the CV across all the problem types (see figure 5.12). We

tried to fit the same used formula in NPP for the average number of strict optima (a e−bCV )

to the optima found in all the problem types (the values of the coefficients a and b depend

on n). In general and as in NPP, this seems to be a good approximate fit of the average

number of strict optima. However, it seems to be noisier in the 0-1KP especially around
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the small CV values (CV ≤ 0.3). The estimated number of local optima in the H1

landscape of n = 30, 100 was also found to follow this trend.
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Figure 5.12: The fraction of strict local optima in the H1 landscape versus CV. The
results are for 600 instances of size n = 20 for each problem type and k = 1. The solid
lines were obtained using least-squares fit. Pearson’s correlation coefficient r between the
two quantities is shown for each plot.

5.3.3 Quality of optima and plateaux

We examine here how the difference in the optima quality between the two landscape

changes across the CV values. Again, obviously every optimum in the H1+2 landscape

is also an optimum in the H1 landscape. Thus, the quality of the optima in the H1+2
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landscape is at least equal to or better than that in the H1. As in the previous chapter, we

want to obtain a measure of quality that is independent of the problem instance and that

does not require the knowledge the optimal solution. Thus, we measure the quality of an

optimum x in a given instance as f(x)/
∑n

i=1 pi. Figure 5.15 shows the quality of optima

across the three CV intervals for all the problem types. There is a clear difference among

the various problem types in terms of the overall quality of the optima and in the difference

between the quality of the optima in the two landscapes. For example, in the uncorrelated

and the uncorrelated spanners instances there is a large difference in the quality of optima

between the two landscapes and that difference does not seem to change much across the

CV intervals. On the other hand, the quality of the optima in the two landscapes seems

to be similar in the circle instances and that similarity seems to increase as the CV value

increases. The case in the subset sum instances is perhaps the most similar to that in

the NPP, in that the quality of the optima in the H1 landscape gets better as the CV

value increases, which in turn decreases the difference in the quality between the two

landscapes. In general, and apart from the uncorrelated and the uncorrelated spanner

instances, the difference in the quality of optima between the two landscapes appears to

decrease as the CV value increases.

Uncorrelated

Weakly correlated
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Figure 5.15: The quality of optima and plateaus in the H1 and H1+2 landscapes across
the different values of CV : 0 < CV ≤ 0.3 (left), 0.3 < CV < 1 (middle), 1 ≤ CV < 2
(right). The x-axis shows the fitness value divided by

∑n
i=1 pi. The data includes all

optima and plateaux found in 600 instances for each problem type of problem size n = 20
and k = 1.

Remember that the results in figure 5.15 were obtained by dividing the fitness of the

optima by the sum of all the profits in that given instance (f(x)/
∑n

i=1 pi). The shape of

the obtained distributions can give us an idea about the ratio between the fitness of the
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optima and the total possible profit. You can see that in the subset sum case for example

this cannot exceed 0.5 since we are studying instances where the constraint is set to half

of the total weights λ = 0.5 (remember that in subset sum pi = wi). The distributions

in the figure cannot be used directly to infer the relation between the quality of the local

and global optima since the distributions are calculated over all the instances studied.

5.4 Basins of Attraction

As in the NPP, in this section we study the following features of the attraction basins: the

basin size, shape and the correlation between the size and the optimum fitness. We try

to examine most of these properties across the different problem parameters and compare

the results of the two landscapes. We exhaustively calculate the basin sizes, thus we were

limited to studying small problem sizes n = 20 only.

5.4.1 Basin size

Figures B.1 to B.11 in the appendix give an overview of the relation between the basin size

and fitness in all the instances we studied for each problem type. They show the general

right skewness of the distribution of the basin sizes (i.e. most of the basin sizes are small

with very few large ones). They also show how the basin sizes in the H1 landscape increase

with the CV until their sizes become similar to those of the H1+2 landscape.

Figure 5.16, shows the cumulative sum of the basin proportions, after being sorted in

descending order, against the percentage of the basins in the H1 landscape for uncorre-

lated, weakly correlated and subset sum problem types. The results of the uncorrelated

spanner are similar to the results of the uncorrelated problem type. The results of the

weakly correlated spanner are similar to the results of the weakly correlated problem type.

The rest of the problem types have similar results to that of subset sum. The figure shows

that the largest basins in the uncorrelated problem type quickly covers large area of the

search space, where around 60% to 90% of the search space is covered by only 20% of
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the basins. The same percentage of the basins covers around 40% to 70% of the search

space in the weakly correlated problem type, and around 40% to 60% in the subset sum

problem type. Figure 5.17 shows the same results for the H1+2 landscape. Note that, in

the uncorrelated problem type, we show each data point as it has a very few number of

optima in this landscape. The results of the cumulative sum of the basin proportions in

all the problem types are more or less similar between the values of k apart from weakly

correlated problem type. When k = 0.4, the results of the H1+2 landscape of the weakly

correlated instances are similar to the shown results of the uncorrelated problem type.

(a) Uncorrelated (b) Weakly correlated (c) Subset Sum

Figure 5.16: To examine how quickly the largest basins cover the search space in the H1
landscape, we plot the cumulative sum of the basin proportions going from the largest to
smallest ( i.e. we plot the cumulative sum of the basin proportions after sorting them in
descending order) against the proportion of the optima. Each line shows the results of a
single instance. The results are for 600 instances of n = 20 and k = 1. You can see that
in the uncorrelated instances around 1% of the basins covers more than half of the search
space.

(a) Uncorrelated (b) Weakly correlated (c) Subset Sum

Figure 5.17: To examine how quickly the largest basins cover the search space in the H1+2
landscape, we plot the cumulative sum of the basin proportions starting from the largest
to smallest (i.e. we plot the cumulative sum of the basin proportions after sorting them
in descending order) against the proportion of the optima. Each line shows the results of
a single instance. The results are for 600 instances of n = 20 and k = 1. Note that in
the uncorrelated instances the landscape has far fewer number of optima compared to the
rest of the problem types. You can see that some lines have only two data points which
corresponds to having only two optima in those instances, with the largest basin of out
of the two covering between half to almost 90% of the search space.
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5.4.2 Basin size and fitness

(a) Uncorrelated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CV

-1

-0.5

0

0.5

1

r
s

H1

H1+2

(b) Weakly correlated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CV

-1

-0.5

0

0.5

1

r
s H1

H1+2

(c) Strongly correlated

0 0.5 1 1.5

CV

-0.2

0

0.2

0.4

0.6

0.8

1

r
s

H1

H1+2

(d) Inverse strongly correlated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CV

-1

-0.5

0

0.5

1

r
s

H1

H1+2

(e) Subset sum

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CV

-0.2

0

0.2

0.4

0.6

0.8

1
r
s

H1

H1+2

(f) Uncorrelated spanner

0.5 1 1.5 2

CV

-1

-0.5

0

0.5

1

r
s

H1

H1+2

(g) Weakly correlated spanner

0.5 1 1.5 2

CV

-1

-0.5

0

0.5

1

r
s

H1

H1+2

(h) Strongly correlated spanner

0.5 1 1.5 2

CV

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

r
s H1

H1+2

(i) Multiple strongly correlated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CV

-0.5

0

0.5

1

r
s

H1

H1+2

(j) Profit ceiling

0 0.5 1 1.5

CV

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r
s

H1

H1+2

(k) Circle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

CV

-0.2

0

0.2

0.4

0.6

0.8

1

r
s

H1

H1+2

Figure 5.18: Spearman’s rank correlation coefficient between basin size and fitness versus
CV .The results are for 600 instances of size n = 20 and k = 0.4 for each problem type.

Figures 5.18 and 5.19 show the correlation between the basin size and the optimum fitness

when k = 0.4, 1 respectively. The uncorrelated and uncorrelated spanner problem types

have very strong positive correlation in both landscapes. This does not seem to change

much across the values of k or CV . The correlation in the weakly correlated and weakly

correlated spanner, does not seem to change very much between the values of CV , but

they seem to change with the values of k. In the weakly correlated, when k = 0.4, the

correlation in the H1+2 landscape varies between strong positive and strong negative,

while it is almost always strong positive when k = 1. The correlation of the H1 landscape

of this problem type however does not seem to be affected much by the values of k. In
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the weakly correlated spanner, when k = 0.4, the correlation in both landscapes is strong

positive, but when k = 1, the correlation in the H1 landscape seems to get weaker but

never negative.
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Figure 5.19: Spearman’s rank correlation coefficient between basin size and fitness versus
CV .The results are for 600 instances of size n = 20 and k = 1 for each instance type.

The correlation in the strongly correlated instances seems to increase slightly as the

CV increases, in both values of k. The correlation in both landscapes of the inverse

strongly correlated type seems to decrease (to sometimes strong negative correlation) as

the CV increases, and this does not seem to change much between the values of k. The

correlation in the subset sum, multiple strongly correlated, and profit ceiling instances
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does not seem to change very much between the values of k or CV , and generally it was

found to vary between weak to strong positive. Similar results were seen in the strongly

correlated spanner instances, but the correlation in this type was found to vary between

moderate to strong positive correlation. In the circle problem type, the correlation in

both landscapes seems to increase as the CV increases, and this does not seem to change

much between the values of k.

5.4.3 Global basin
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Figure 5.20: The proportion (in log scale) of the basin size of all the global optima found
in an instance for each landscape against the CV . The results are for 600 instances of
size n = 20 and k = 0.4 for each problem type. Notice how the probability of finding the
global optimum increases with the CV in the H1 landscape in all of the problem types
apart from the inverse strongly correlated.
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In a few of the problem types and especially in the subset sum, number of global solutions

drops down as we cross the phase transition point (from k = 0.4 to k = 1). To examine

how much the probability of finding the global is affect by this, we plot the total sum of

all the global basin proportions found in instances of n = 20 against the CV for all the

problem types in figures 5.20 and 5.21 for the values of k = 0.4, 1 respectively.
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Figure 5.21: The proportion (in log scale) of the basin size of all the global optima found
in an instance for each landscape against the CV . The results are for 600 instances of
size n = 20 and k = 1 for each problem type. Notice how the probability of finding the
global optimum increases with the CV in the H1 landscape in all of the problem types
apart from inverse strongly correlated.

Generally, the probability of finding the optimal solution is always higher in the H1+2

landscape than that in the H1. In general, and especially in the H1 landscape, the
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probability of finding the global increases as the CV increases. This can be attributed to

the decrease in the number of local optima in this landscape as the CV increases, and the

positive correlation between the basin size and fitness. In the inverse strongly correlated

instances the opposite happens and the probability decreases as the CV increases, despite

the fact that the number of local optima decreases as the CV increases. This reflects the

results of the correlation between the basin size and the fitness in this problem type, where

the correlation was found to be moderately to strongly positive in the small CV interval

but it starts to decease as CV increases to a strong negative sometimes. We continue

to see the effect of this feature on the performance of local search to find the global in

this problem type in the next section. As in NPP, the probability of finding the global

decreases in the hard phase (k = 1) of the subset sum problem. Note that the probability

of finding the global is very high in the H1+2 landscape of the uncorrelated instances.

In an attempt to study the shape of the global basin (one of the global basins if there

is more than one), we plot in figure 5.22, the proportion of the configurations that are

part of its basin in every Hamming sphere of radius h around it. The proportions were

estimated as described in subsection 3.4. The results are shown for three instances of size

n = 20 for each problem type. From the figure we can see that in the H1 landscape the

configurations in the global basin are concentrated in the immediate Hamming spheres

around it, similar to what we have seen in the NPP. This is also the case in the H1+2

landscape of most of the problem types. In the H1+2 landscape of the uncorrelated,

weakly correlated, and uncorrelated spanner types, the probability of returning to the

global continues until the last sphere sometimes. This can be attributed to the very small

number of optima in these instances. Again we continue to see the oscillating behaviour of

the probability of return over the spheres in the H1+2 landscape of some of the instances.

This can be attributed to the very small number of optima in this landscape (e.g. only 3

in the instance shown for the uncorrelated type with CV = 0.19) and the nature of the

H1+2 neighbourhood, as the neighbours of a configuration in a given sphere h would be

spread over five spheres using this neighbourhood operator compared to only two spheres
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when using the H1 operator.
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Figure 5.22: Return probability pr(h) to the global optimum starting from a Hamming
sphere of radius h (y-axis) versus h (x-axis). The results are for 3 instances of size n = 20
and k = 1 for each problem type. Additional information about each instance is shown
in legends of every sub-figure, where each legend entry shows respectively: the landscape
type, the instance CV value, and the number of optima in that landscape of that instance.
Notice how the probability of return approaches zero faster in the H1 case compared to
H1+2.

5.5 Local Search

We study in this section the performance of local search, namely steepest ascent with ran-

dom restart algorithm, using the two neighbourhood operators. We carry out the analysis
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of the algorithm performance from the perspective of the studied landscape features in

the earlier sections.

5.5.1 Cost of finding the global
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Figure 5.23: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found. Sig-
nificance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for 600
instances for each problem type of size n = 20 and k = 0.4.

Figures 5.23, and 5.24 compare the performances of the two operators in terms of the

number of fitness evaluations used to find the global when k = 0.4 and k = 1 respectively.

The results for the uncorrelated, uncorrelated spanner, inverse strongly correlated, mul-
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tiple strongly correlated and circle instances do not seem to be affected by the different

values of k. In the subset sum, the H1 operator was found to perform better in instances

from the easy phase with CV > 0.3, while the H1+2 operator was found to perform

better in instances from the hard phase with CV < 0.3.
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Figure 5.24: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found. Sig-
nificance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for 600
instances for each problem type of size n = 20 and k = 1.

In the weakly correlated and the weakly correlated spanner, when k = 0.4, the H1

operator was found to perform better in instances with CV > 1 and the H1+2 was found

to perform better in the rest of instances. However, when k = 1, the H1+2 was found

to perform better across all the CV values. This reflects the results we obtained about
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the probability of finding the global optima in these instances, where the probability in

the H1 landscape of the weakly correlated and weakly correlated spanner instances with

large CV were higher when k = 0.4.
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(a) Uncorrelated
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(b) Weakly correlated
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(c) Strongly correlated
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(d) Inverse strongly correlated
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(e) Subset sum
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(f) Uncorrelated spanner
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(g) Weakly correlated spanner
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(h) Strongly correlated spanner
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(i) Multiple strongly correlated
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(j) Profit ceiling
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(k) Circle

H1, CV ∈ (0, 0.3]

H1, CV ∈ (0.3, 1)

H1, CV ∈ [1, 2)

H1+2, CV ∈ (0, 0.3]

H1+2, CV ∈ (0.3, 1)

H1+2, CV ∈ [1, 2)

Figure 5.25: Number of fitness evaluations used to find the global (in log scale) against
n. Each data point is an average of 30 runs of steepest ascent, averaged over the number
of instances in each CV interval. The results for each n are for 600 instances with k = 1.
Notice that in most of the problem types, there is the large difference in the average
number of evaluations (almost one order of magnitude) between instances with CV < 0.3
and CV ≥ 1 when H1 operator is used. Also notice that the uncorrelated instances have
the lowest cost of finding the global while inverse strongly correlated and subset sum have
the highest.
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(a) k = 0.4
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(b) k = 1

H1, CV ∈ (0, 0.3]

H1, CV ∈ (0.3, 1)

H1, CV ∈ [1, 2)

H1+2, CV ∈ (0, 0.3]
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Figure 5.26: Number of fitness evaluations used to find the global (in log scale) against n.
Each data point is an average of 30 runs of steepest ascent, averaged over the number of
instances in each CV interval. The results for each n are for 600 instances of subset sum.
Notice the large difference in the average number of evaluations (almost one order of
magnitude) between instances with CV < 0.3 and CV ≥ 1 when H1 operator is used.
Also notice in (a) that the cost using H1 operator is always lower or equal to the cost
using the H1+2.

Figure 5.25 shows the mean number of fitness evaluations used to find the global as n

grows for each problem type. Note that uncorrelated and uncorrelated spanner instances

have the lowest cost of finding the global in both landscapes. This is a reflection of the very

strong positive correlation between the basin size and fitness, and the higher probability

of returning to the global in theses instances as we have seen in the previous section.

Instances of type inverse strongly correlated have the highest mean cost of finding the

global, apart from the cost of the CV ∈ (0, 0.3] interval. The increase in the cost in the

instances with CV > 0.3 can be attributed to the sometimes strongly negative correlation

between the basin size and fitness, which in turn resulted in a lower probability of finding

the global in these instances. In fact, we can see that the cost of finding the global using

the H1 operator in this problem type is the lowest in the CV interval (0, 0.3]. Despite the

fact that the number of local optima is the highest in this interval, which translates in all

the other problem types to having the highest cost of locating the global out of all the CV

intervals. This again goes to show the importance of the correlation between the basin

size and fitness (remember the correlation in invscorr was found to be moderately to

strongly positive in CV ∈ (0, 0.3] but it starts to decease as the CV increases to a strong

negative sometimes). The straight lines in almost all the observations in each problem

102



type indicate that the cost of finding the global seems to grow exponentially with n.

Figure 5.26 shows the cost of finding the optimal solution in the easy and hard phase

of the subset sum. As we have seen before, the probability of finding the global is higher

in the easy phase, the algorithm quickly finds one of the many global optima while it

struggles to find the single global optimum in the hard phase. This explains why the cost

of finding the global is much lower in the easy phase. Also, and like in the NPP, the

growth in the hard phase is much faster than that in the easy phase.

5.5.2 Quality of optima obtained with fixed budget search

The previous results of the growth of the cost of finding the global give an indication

that finding the global seems to be irrelevant as the problem size grows. Therefore, we

look here at the quality of the optima obtained by a fixed budget of fitness evaluations.

Figures 5.27 and 5.28 compare the performances of the two operators in terms of the

quality of the obtained optima for n = 30, 100 respectively. In some of the problem types,

the number of tie cases seems to decrease as n increases, and a clear winner emerges.

In general, and from the results of n = 100, the H1 operator was found to perform

better in the strongly correlated, inverse strongly correlated and circle problem types,

across all the CV intervals. The H1+2 operator was found to perform better in the

uncorrelated, weakly correlated, uncorrelated spanner, and weakly correlated spanner

problem types, across all the CV values. In the multiple strongly correlated, profit ceiling,

subset sum and strongly correlated spanner problem types, the H1+2 operator was found

to perform clearly better in the small CV ((0, 0.3]) interval ( (0.3,1) for the strongly

correlated spanner). The H1 operator was found to clearly perform better in the [1, 2)

CV interval of the strongly correlated spanner and multiple strongly correlated problem

types. In the multiple strongly correlated, the H1 operator was found to also perform

better in the (0.3, 1) CV interval. Theses results can be explained by the difference in

the quality of the optima between the two landscapes that we have seen in section 5.3.3.

Note that these results are specific to the budget we selected, whether the same trends

103



will continue to occur with other budget values remains an open question.
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Figure 5.27: The quality of the solution found averaged over 30 runs of local search with
fixed budget of 105 fitness evaluations. The results are for 500 instance for each instance
type of size n = 30 and k = 1. The results show the percentage of instances where
each operators performed significantly better and the percentage where no significance
difference was found (Tie). Significance determined using Wilcoxon rank-sum (p−value
≤ 0.05).
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Figure 5.28: The quality of the solution found averaged over 30 runs of local search with
fixed budget of 105 fitness evaluations. The results are for 500 instance for each problem
type of size n = 100 and k = 1. The results show the percentage of instances where
each operators performed significantly better and the percentage where no significance
difference was found (Tie). Significance determined using Wilcoxon rank-sum (p−value
≤ 0.05).

5.5.3 Time to local optima

The time it takes steepest ascent, starting from a random configuration until a local

optimum is found, is shown as n grows in figure 5.32. In the H1 landscape, and in most

of the problem types, this was found to be similar to the case in NPP, in that, the number

of steps is very small and grows slowly with n. Again, this is believed to be due to

the large number of optima in this landscape and the exponential growth of the number
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of optima with the problem size. Note that the number of steps in the uncorrelated

and the uncorrelated spanner instances is slightly higher, which is believed to be due to

the larger basin sizes in these instances. In the H1+2 landscape, the number of steps

is still small and grows slowly for most problem types apart from uncorrelated, weakly

correlated, uncorrelated spanner, weakly correlated spanner, strongly correlated spanner,

and multiple strongly correlated instances. The number of steps in these problem types

seems to grow faster with n. This is clearly shown when n = 100. This supports our

observation that the decay of the number of local optima in the H1+2 landscape of these

problem types is faster than that in the other types. Note that the number of steps taken

in the H1 landscape was found to be always equal to the Hamming distance between the

initial random configuration and the found local optimum. In the H1+2 landscape this

was found to be almost always smaller or equal to the Hamming distance between the

initial random configuration and the found local optimum. However, in very few cases it

was found to be one or two steps larger than the Hamming distance.

Uncorrelated

Weakly correlated
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Strongly correlated

Inverse strongly correlated

Subset sum

Uncorrelated spanner
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Strongly correlated spanner

Multiple strongly correlated
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Circle

Figure 5.32: Number of steps starting from a random configuration until an optimum
is reached when using H1 (left) and H1+2 operators (right). The results for each
instance types are for 1000 steepest ascents per instance and 600 instances for each
n = 14, 16, 18, 20 and 500 instances for n = 30, 100 (k = 1).
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5.6 Summary

In this chapter, we empirically studied various properties of two fitness landscapes of

random instances of 11 different problem types of the binary knapsack problem. We

focused on how these properties change with k and the CV of the weights. The following

is a summary of the main results:

• The logarithmic penalty function was found to create a strict local optimum in the

infeasible region.

• The quadratic penalty function seems to direct the infeasible configurations to be

part of the basins of lower quality optima as opposed to the linear penalty function.

• In subset sum, the only properties that were found to change when the problem

crosses the phase transition is the number of global optima (and consequently the

probability of finding the global), and the number of plateaux in the H1+2 land-

scape.

• No configuration of type IPLAT has been found in either landscapes of all the

problem types.

• Plateaux were only found in the H1+2 landscape and mainly when k = 0.4.

• The number of local optima in the H1+2 of the weakly correlated (when k = 0.4)

and uncorrelated problem types was found to be very low, as low as only one or two

optima sometimes.

• In all the problem types, there is a very strong and negative correlation between the

CV and the number of local optima in the H1 landscape of moderately constrained

instances.

• The average number of local optima in the H1 landscape of all the problem types

seems to be well approximated by the same formula used to estimate the average

number of local optima in the H1 landscape of NPP.

109



• The number of local optima seems to grow exponentially in the H1 landscape of all

the problem types.

• The quality of optima and the difference in the quality between the two landscapes

were found to vary across the problem types.

• In all the problem types, the distribution of the basin sizes was found to be skewed

with many small basins and only few large ones, particularly in the H1 landscape.

• In general, the correlation between the basin size and fitness was found to vary

between weak to strong positive in both landscapes, apart from instances of type

inverse strongly correlated with CV > 0.3 and few other cases where the correlation

was found to be negative. This negative correlation is in fact unusual in the com-

binatorial optimisation problems studied in the literature, where in general fitter

optima were found have larger basins [104, 112]. We can see that in the case of the

inverse strongly correlated this negative correlation between fitness and basin size

has totally changed the complexity of finding the global using local search between

instances with small CV ≤ 0.3 and instances with large CV > 0.3. The instances

with small CV have more number of optima than the instances with large CV

(by almost more than one order of magnitude). However, because the correlation

between fitness and basin size in the instances with large CV is negative that trans-

lated into an increase in the cost of finding the global in these instance to be almost

one order of magnitude more than the cost of finding the global in the instances

with small CV .

• The performance of local search algorithms was found to be affected by the phase

transition in subset sum, as shown by the considerable increase in the cost of locating

the global solution when k > kc.

• Unlike in the NPP, the trends of the winner operator were found to change in

some of the problem types between when searching for the global and the fixed
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budget search. They also were found to change with n. In terms of the quality of

the obtained optima with fixed budget search, the H1 operator performs better in

the strongly correlated, inverse strongly correlated and circle problem types, across

all the CV intervals. The H1+2 operator performs better in the uncorrelated,

weakly correlated, uncorrelated spanner, and weakly correlated spanner problem

types, across all the CV values. In the multiple strongly correlated, profit ceiling,

subset sum and strongly correlated spanner problem types, the H1+2 operator

was found to perform clearly better in the small CV (0, 0.3] interval ( (0.3,1) for

the strongly correlated spanner). The H1 operator clearly performs better in the

multiple strongly correlated problem type in instance with CV > 0.3.

• The time it takes steepest ascent, starting from a random configuration until a local

optimum is found, grows very slowly with n in the H1 landscape. The time in

the H1+2 landscape seems to grow faster for the uncorrelated, weakly correlated,

uncorrelated spanner, weakly correlated spanner, strongly correlated spanner, and

multiple strongly correlated problem types.
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Table 5.1: Overview of main differences between the problem types

Problem Type
Number of local optima Quality of optima

with fixed budget
Time to optima
using H1+2H1 landscape H1+2 Landscape

Uncorrelated
The number of optima is
more or less the same
across all the types and it
increases exponentially
with n. The number is the
highest in the CV interval
(0, 0.3] and it starts
decreasing as the CV
increases.

Has the lowest
number of local

optima. The optima
proportion decays

faster than in the rest
of types.

H1+2 Grows faster with n
compared to the rest

of types.

Weakly Correlated Has a lower number
of local optima than
the rest. The optima

proportion decays
faster than in the rest

of types.

H1+2

Strongly Correlated H1
Inverse Strongly Correlated H1

Subset Sum H1+2 when CV < 0.3
Uncorrelated Spanner Generally has a lower

number of local
optima than the rest.
The optima
proportion decays
faster than the rest.

H1+2
Grows faster with n
compared to the rest
of types.

Weakly Correlated Spanner H1+2
Strongly Correlated Spanner H1+2 when

0.3 < CV < 1
Multiple Strongly Correlated H1+2 when CV ≤ 0.3

H1 when CV > 0.3
Profit Ceiling H1+2 when CV ≤ 0.3

Circle H1
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CHAPTER 6

QUADRATIC 0-1 KNAPSACK PROBLEM

In this chapter we study the landscape properties of another NP-hard problem, the

quadratic binary knapsack problem (0-1QKP). This problem is a variant of the 0-1KP,

where the profit associated with an item depends also on the other selected items. As

in the previous two chapters, we study various landscape features of a large number of

randomly generated instances with different values of problem parameters. One of these

parameters is the weights distribution. Instances were generated by drawing weights from

the five different distributions shown in subsection 3.2. However, in this chapter and as

with the Knapsack chapter, we abandon the use of the underlying distribution of the

weights to describe the problem instance, and only use the weights CV to do so. We

also carry out grouping the instances based on their CV values into the three intervals:

(0, 0.3], (0.3, 1), and [1, 2).

6.1 Problem Definition

Given a knapsack of capacity C and a set of n items each with associated weight wi, in

addition to an n×n non-negative integer matrix P = pij, where pjj is the profit achieved

if item j is selected and pij + pji is the profit achieved if both items i and j are selected

(for i < j) [34]. The aim of the 0-1QKP is to find a subset of items that maximises the

profit without exceeding the knapsack capacity. The density of the profit matrix, that is
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the percentage of non-zero elements, is given by ∆. The quadratic fitness function to be

maximised is as follows:

f(x) =
n∑
i=1

n∑
j=1

pijxixj (6.1)

subject to the linear constraint

n∑
i=1

wixi ≤ C, x ∈ {0, 1}n (6.2)

where

C = λ
n∑
i=1

wi, 0 ≤ λ ≤ 1. (6.3)

As with any constrained optimisation problem, the 0-1QKP search space, X = {0, 1}n, is

partitioned into a feasible region F = {x ∈ X |
∑n

i=1 xiwi ≤ C} and an infeasible region

INF = X \F . For λ = 1, there are no infeasible solutions and as the value of λ decreases,

the size of the infeasible region increases until INF = X when λ = 0. We define the

boundary between feasible and infeasible regions as the set of feasible configurations that

have at least one infeasible neighbour, B = {x ∈ X | x ∈ F ∧ ∃y : (y ∈ N(x) ∧ y ∈

INF )}. Note that all the optima in this problem reside in the boundary, as pointed out

by Gottlieb [40] about the optima of all covering and packing problems.

We only consider instances where the profit matrix is symmetric, i.e. pij = pji. We

study instances where pij and wi are positive integers drawn at random from the set

{1, 2, . . . ,M}. In this chapter, we only study instances where the profits and the weights

are uncorrelated. The weights are drawn at random from the five different distributions

shown in subsection 3.2. The profits are drawn at random from the uniform distribution.

We also continue to investigate setting k (k = log2M/n) to 0.4 and 1 as in the previous

chapters. In addition, we explore the effect of varying the density of the profit matrix on

the landscape by studying instances with ∆ = 0.1, 0.25, 0.5, 0.75, 0.95, and 1. As with

the 0-1KP, we study instances where λ is set to 0.5, this is motivated by the fact that

moderately constrained instances have the largest boundary sizes and thus the largest
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number of optima.

The 0-1QKP is NP-hard in the strong sense [35, 84], it cannot be solved by a pseudo-

polynomial time algorithm unless P=NP [35]. Wide spectrum of real world problems

can be formulated as instances of the 0-1QKP. One example is the allocation of airports

or railway stations where the global traffic between the stations needs to be maximised

under a constrained budget [95, 34, 84].

6.1.1 Constraint Handling

As with the 0-1KP, we use a penalty-based approach to handle the constraint. An in-

feasible solution x that violates the given constraint is penalised by a value Pen(x) > 0,

while Pen(x) = 0 for a feasible solution x. The fitness functions after adding the penalty

term is as follows:

f(x) =
n∑
i=1

n∑
j=1

pijxixj − Pen(x) (6.4)

The choice of an appropriate penalty function is very critical. Gottlieb [40] notes

that some penalty-based algorithms suffer from the feasibility problem, that is they often

terminate with completely infeasible solutions, due to inappropriate choice of the penalty

function. As with the 0-1KP, we want to allow the infeasible solutions to be part of the

searchable space and we want to penalise them proportional to the degree of violation

of the constraint. Also, we want all infeasible solutions to have lower fitness values than

all the feasible solutions. To ensure that, we added the offset term
∑n

i=1

∑n
j=1 pij to the

penalty function. We ruled out the logarithmic penalty function as it creates a strict

local optimum in the infeasible region as shown in the 0-1KP chapter. We also ruled out

the use of the linear one as it was found to create a strict local optimum (the all ones

solution x = (1, · · · , 1)) in the infeasible region of some instances with highly dense profit

matrix. It was also found to create some open and closed plateaux in the infeasible region

of some instances with various values of ∆. The quadratic penalty function was found to
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induce a landscape with a smooth infeasible region that does not have any local optima

or plateaux. Therefore, we use the quadratic penalty function to handle the constraint in

this problem. The function is defined as follows:

Pen(x) =

(
ρ

(
n∑
i=1

xiwi − C

))2

+
n∑
i=1

n∑
j=1

pij (6.5)

where ρ = maxi,j=1,...,n {pii + pij + pji} /mini=1,...,n {wi}.

6.2 Search Position Types

The tables in appendix C show the search position types found in randomly generated

instances of the 0-1QKP with different values of the CV and k for all values of ∆. Tables

C.1 to C.6, show the types proportions in the feasible regions of the H1 and the H1+2

landscapes. Tables C.7 to C.12, show the types proportions in the infeasible regions of

both landscapes. Very few configurations of type IPLAT were found in the feasible region

of the H1 landscape in instances with very small ∆ ≤ 0.25. The existence of IPLAT types

in such instances is not surprising, since the very low density of the profit matrix in these

instances results in many solutions sharing similar fitness values. The H1 landscape of the

rest of the instances and all the H1+2 landscapes have no configuration of type IPLAT,

which is similar to the findings in the previous two chapters. The configurations in the

infeasible region were of types: SLMIN, LEDGE, and SLOPE. The SLOPE configurations

seem to disappear in the infeasible region of the H1+2 landscape when k goes from 0.4

to 1. Apart from that, not much difference is found between the two values of k across

all the different parameters and for both landscapes and regions. In the feasible region

of both landscapes, there are, as expected, more plateaux in instances with sparse profit

matrix. As the density of the matrix increases, the number of plateaux decreases. We

can clearly see that in the number of configurations of type NSLMAX, which was found

to decrease as ∆ increases.
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6.3 Optima and Plateaux

6.3.1 Number of optima and plateaux
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Figure 6.1: Number of both strict and non-strict local optima (in log scale) found in 600
instances of size n = 20 against ∆ for each k value. The red boxes show the k = 0.4
results and the black ones show the k = 1 results.
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The number of global optima was found to be the same across the values of k and CV .

In general, there is only one optimal solution (the number was found to be slightly higher

in instances with very sparse profit matrix ∆ = 0.1). Figure 6.1, shows the number of

both strict and non-strict local optima. Again in both landscapes and across all the CV

intervals, there is no difference in the number of optima between the values of k. As in

the uncorrelated problem types in the 0-1KP, the number of local optima in the H1+2

landscape is very small, less than ∼ 100, and with median ≤ 10. Also, and as in NPP and

the 0-1KP, the number of optima in this landscape does not seem to change much across

the CV values. Similar to the previously studied problems, the number of optima in the

H1 landscape is the highest in the small CV interval and it starts decreasing as the CV

increases. In both landscapes, the number of local optima seems to be slightly higher in

instances with very sparse profit matrix ∆ = 0.1, apart from that the number of optima

does not seem to change much between the values of ∆. Note that the number of non-

strict local optima decreases as ∆ increases until almost all of them become strict optima

in instances with very dense profit matrix. In both landscapes, the non-strict local optima

form either closed or open plateaux of very small sizes (less than five configurations). The

number of exits in an open plateau of an instance with very sparse profit matrix (∆ = 0.1)

can reach up to 14 (for n = 20). For the rest of ∆, the number of exits drops to only one

or two.

6.3.2 Average number of strict local optima

As with the NPP and the 01-KP, the number of strict local in the H1 landscape was found

to be strongly and negatively correlated with the CV across all values of ∆ as shown in

figure 6.2. In general and as in the previous chapters, the formula a e−bCV seems to be a

good approximate of the average number of strict optima in the 01-QKP (the values of

the coefficients a and b depend on n). However, and as in the 0-1KP, this seems to be

nosier, especially in the small CV interval (0, 0.3]. The estimated number of local optima

in the H1 landscape of n = 30, 50, 100 was also found to follow this trend.
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Figure 6.2: The fraction of strict local optima in the H1 landscape versus CV. The results
are for 600 instances of size n = 20 for each ∆ and k = 1. The solid lines were obtained
using least-squares fit. Pearson’s correlation coefficient r between the two quantities is
shown for each plot.

Figure 6.3 shows the mean decay of the local optima proportion against n. The results

for n = 30, 50 are the SRS estimates obtained with a sample size s = 105. Again, and

as with the uncorrelated problem types in the 0-1KP, the SRS with this sample size

greatly overestimates the real proportion in the H1+2 landscape. This was evident by

the negative lower bound of the 95% CIAC of the obtained estimates. Therefore, we did

not include these estimates in figure 6.3. We also did not fit the decay of the proportions

with the form an−b, since we are only left with four close data points. The proportion

of the local optima appears to decay faster in the H1+2 landscape compared to the H1

across all the CV intervals in all values of ∆. In general, and as in the previous two

problems, the largest decay happens in the landscape of H1+2. Note that the decay in

the H1+2 landscape of this problem is similar across the CV intervals. The smallest

decay occurs in the H1 landscape of the interval (0, 0.3]. We are unable to comment on

the growth of the number of local optima in the H1+2 landscapes, however, their growth

in the H1 landscapes seems to be exponential with n.
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Figure 6.3: The decay of the optima proportion as the problem size n grows (k = 1). The
results for each ∆ are averaged over 600 instances for each n = 14, 16, 18, 20 and over
500 instances for n = 30, 50. The number of strict optima is estimated for n = 30, 50
using SRS with a sample size s = 105. The solid lines were obtained using least-squares
fit. Note that the proportion of the optima in the H1+2 landscape is always lower and
decays faster in comparison to the H1 landscape.

6.3.3 Quality of optima and plateaux

We examine here how the difference in the optima quality between the two landscape

changes across the CV values. Obviously, the quality of the optima in the H1+2 landscape

is at least equal to or better than that in the H1 as every optimum in the H1+2 landscape

is also an optimum in the H1 landscape. As in the previous chapter, we want to obtain a

measure of quality that is independent of the problem instance and that does not require

the knowledge of the optimal solution. Thus, we measure the quality of an optimum x

in a given instance as f(x)/
∑n

i=1

∑n
j=1 pij. Figure 6.5 shows the quality of optima across

the three CV intervals for every ∆. In general, and across all values of ∆, the quality of

optima in the H1+2 landscape is better than that in the H1, and this difference in the

quality does not seem to change much across the CV values. This is again similar to the

uncorrelated problem types in the 0-1KP.
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∆ =1

Figure 6.5: The quality of optima and plateaus in the H1 and H1+2 landscapes across
the different values of CV : 0 < CV ≤ 0.3 (left), 0.3 < CV < 1 (middle), 1 ≤ CV < 2
(right). The x-axis shows the fitness value divided by

∑n
i=1

∑n
j=1 pij. The data includes

all optima and plateaux found in 600 instances for each ∆ of problem size n = 20 and
k = 1.

6.4 Basins of Attraction

As in the previous chapters, in this section we study the following features of the attraction

basins: the basin size, shape and the correlation between the size and the optimum fitness.

We try to examine most of these properties across the different problem parameters and

compare the results of the two landscapes. We exhaustively calculate the basin sizes, thus

we were limited to studying small problem sizes n = 20 only.

(a) ∆ = 0.1 (b) ∆ = 1

Figure 6.6: To examine how quickly the largest basins cover the search space in the H1
landscape, we plot the cumulative sum of the basin proportions starting from the largest
to the smallest (i.e. we plot the cumulative sum of the basin proportions after sorting
them in descending order) against the proportion of the optima. Each line shows the
results of a single instance. The results are for 600 instances of n = 20 and k = 1. These
results are similar to results of the uncorrelated 01KP instances, in that only a very small
percentage of the optima covers most of the search space.
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6.4.1 Basin size

Figures C.2 to C.6 in the appendix give an overview of the relation between the basin

size and fitness in all the instances we studied for each ∆. They show the general right

skewness of the distribution of the basin sizes, in the H1 landscape in particular (i.e. most

of the basin sizes are small with very few large ones). The figures, also, show how the

basin sizes in the H1 landscape increases with the CV until their sizes become similar to

those in the H1+2 landscape.

(a) ∆ = 0.1 (b) ∆ = 1

Figure 6.7: To examine how quickly the largest basins cover the search space in the H1+2
landscape, we plot the cumulative sum of the basin proportions starting from the largest
to smallest (i.e. we plot the cumulative sum of the basin proportions after sorting them
in descending order) against the proportion of the optima. Each line shows the results of
a single instance. The results are for 600 instances of n = 20 and k = 1. As with the H1
landscape, these results are similar to the results of the H1+2 landscape of uncorrelated
01KP instances.

Figure 6.6 shows the cumulative sum of the basin proportions, after being sorted in

descending order, against the percentage of the basins in the H1 landscape for ∆ = 0.1, 1.

In general, this was found to be similar across all values of ∆ for both landscapes. The

figures show that the largest basins in this problem quickly covers large part of the search

space. In instances from the large CV interval [1, 2), large portion of the search space gets

covered by very few basins, where we can see that only 10% of the basins cover between

70% to 90% of the search space. The same percentage of the basins cover around 50%

to 70% of the search space in instances with CV ∈ (0.3, 1), and cover around 50% of the

search space in instances with CV ∈ (0, 0.3]. Figure 6.7 shows the same results for the

H1+2 landscape. Note that we now show each data point as there are far fewer number
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of optima in this landscape. In general, we still see that the largest basins cover a large

part of the search space. In most cases, around 80% of the search space gets covered by

half of the basins.

6.4.2 Basin size and fitness
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Figure 6.8: Spearman’s rank correlation coefficient between basin size and fitness versus
CV . The results are for 600 instances of size n = 20 and k = 1 for each ∆. Notice how
in the H1+2 landscape more negative correlations occur as the value of ∆ increases.

Similar to the uncorrelated 0-1KP problem types, the correlation between the attraction

basin size and the optimum fitness in both landscape is very strong and positive, indicating

that indeed in this problem the fitter optima tend to have larger basins (see figure 6.8

). This does not seem to change much across the CV values for all the values of ∆.

However, as ∆ gets larger the correlation in the H1+2 landscapes of some of the instances

seems to get weaker and sometimes even very strong negative (this is more noticeable in

the small CV interval (0, 0.3]). This indicates that, in such instances, fitter optima have

smaller basins.Usually this feature means that these landscapes are more difficult to search

particularly for local search, as the fitter optima has less probability of being found with

a hill climber.
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6.4.3 Global basin

We plot the total sum of all the global basin proportions found in instances of n = 20

against the CV for all the values of ∆ in figure 6.9. In general, the probability of finding

the optimal solution is always higher in the H1+2 landscape than that in the H1. Like

the previously studied features, the probability does not seem to change much across the

CV values in the H1+2 landscape, unlike the H1 landscape, where the probability of

finding the global increases with the CV across all values of ∆. The probability of finding

the global in the H1+2 landscape seems to decrease slightly as ∆ increases. This reflects

the results of the correlation between the basin size and fitness that we have seen in the

previous subsection. The correlation was found to be strongly negative in some of these

instances, which explains the decrease in the global basin size in these cases.
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Figure 6.9: The proportion (in log scale) of the basin size of all the global optima found
in an instance for each landscape against the CV . The results are for 600 instances of size
n = 20 and k = 1 for each ∆. Notice how the probability of finding the global optimum
increases with the CV in the H1 case.

In an attempt to study the shape of the global basin, we plot in figure 6.10 the

proportion of the configurations that are part of its basin in every Hamming sphere

of radius h around it. The proportions were estimated as described in subsection 3.4.

The results are shown for three instances of size n = 20. From the figure we can see

that in the H1 landscape the configurations in the global basin are concentrated in the
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immediate Hamming spheres around it. In the H1+2 landscape, the number of optima is

much smaller, and can actually be the only optimum in the landscape as in the instance

with CV = 1.1 and ∆ = 0.5. This explains why the probability of returning to the

global continues until the last sphere sometimes. Again we continue to see the oscillating

behaviour of the probability of return over the spheres in the H1+2 of some of the

instances. Also, we can see that the return to the global in the H1+2 landscape of

instances with small CV values approaches zero faster in larger values of ∆, where the

return probability is almost zero in configurations different than the global in half or more

of the dimensions. This agrees with the results obtained previously about the proportion

of the global basins and the correlation between the fitness and the basin size.
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Figure 6.10: Return probability pr(h) to the global optimum starting from a Hamming
sphere of radius h (y-axis) versus h (x-axis). The results are for 3 instances of size n = 20
and k = 1 for each ∆. Each legend entry shows respectively: the landscape type, the
instance CV value, and the number of optima in that landscape of that instance. Notice
how the probability of return approaches zero faster in the H1 case compared to H1+2.

6.5 Local Search

We study in this section the performance of local search, namely steepest ascent with ran-

dom restart algorithm, using the two neighbourhood operators. We carry out the analysis

of the algorithm performance from the perspective of the studied landscape features in
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the earlier sections.

6.5.1 Cost of finding the global

Figures 6.11 and 6.12 compare the performances of the two operators in terms of the

number of fitness evaluations used to find the global when k = 0.4 and k = 1 respectively.

As with the previous properties, this does not seem to change with the values of k. Similar

to the trend observed in the previous problems, the H1 operator was found to perform

better in the [1, 2) CV interval, and the H1+2 operator was found to perform better in

the rest of the CV intervals. However, there is no clear winner in the CV interval [1, 2)

of instances with very sparse profit matrix.
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Figure 6.11: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found. Sig-
nificance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for 600
instances for each ∆ of size n = 20 and k = 0.4.

In general, the cost of finding the global optimum seems to grow exponentially with

n as shown in figure 6.13. We can see that for ∆ ≥ 0.5, the H1 operator has the lowest

mean number of used fitness evaluations to find the global in instances with CV ∈ [1, 2).

The cost of the H1+2 operator increases slightly as ∆ increases. This can be attributed

to the results of the global basin proportion of the search space and how it was found to

decrease slightly as ∆ increases.
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Figure 6.12: Number of fitness evaluations used to find the global optimum averaged over
30 runs. The results show the percentage of instances where each operators performed
significantly better and the percentage where no significance difference was found. Sig-
nificance determined using Wilcoxon rank-sum (p−value ≤ 0.05). The results are for 600
instances for each ∆ of size n = 20 and k = 1.
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Figure 6.13: Number of fitness evaluations used to find the global (in log scale). The
results are averaged over 30 runs of steepest ascent. The results for each n are for 600
instances with k = 1. Notice the large difference in the average number of evaluations
(almost one order of magnitude) between instances with CV < 0.3 and CV ≥ 1 when H1
operator is used.
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6.5.2 Quality of optima obtained with fixed budget search

The previous results of the growth of the cost to find the global give an indication that

finding the global seems to be irrelevant as the problem size increases. Therefore, we look

here at the quality of optima obtained by a fixed budget of fitness evaluations. Figures

6.14 and 6.15 compare the performances of the two operators in terms of the quality of

the obtained optima for n = 30, 50 respectively. Now we can see that clearly the H1+2

operator performs better in all the CV intervals and across all values of ∆. This can be

explained by the small number of optima in this landscape and the faster decay of their

proportions. Also, as we have seen before the quality of the optima in the H1+2 is always

better than that in the H1 in all the CV intervals. This result is again similar to the

uncorrelated problem types of the 0-1KP. Note that as in the previous two chapters, these

results are specific to the budget we selected, whether the same trends will continue to

occur with other budget values remains an open question.
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Figure 6.14: The quality of the solution found averaged over 30 runs of local search with
fixed budget of 105 fitness evaluations. The results are for 500 instances for each ∆ of size
n = 30 and k = 1. The results show the percentage of instances where each operators
performed significantly better and the percentage where no significance difference was
found (Tie). Significance determined using Wilcoxon rank-sum (p−value ≤ 0.05).
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Figure 6.15: The quality of the solution found averaged over 30 runs of local search with
fixed budget of 105 fitness evaluations. The results are for 500 instances for each ∆ of size
n = 50 and k = 1. The results show the percentage of instances where each operators
performed significantly better and the percentage where no significance difference was
found (Tie). Significance determined using Wilcoxon rank-sum (p−value ≤ 0.05).

6.5.3 Time to local optima

H1 H1+2

∆ =0.1

∆ =0.25

130



∆ =0.5

∆ =0.75

∆ =0.95

∆ =1

Figure 6.17: Number of steps starting from a random configuration until an optimum
is reached (H1 on the left and H1+2 on the right). The results for each ∆ are for
1000 steepest ascents per instance and 600 instances for each n = 14, 16, 18, 20 and 500
instances for n = 30, 50 (k = 1).

The time it takes steepest ascent, starting from a random configuration until a local

optimum is found, is shown as n grows in figure 6.17. Again, this was found to be
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similar to the uncorrelated instances of the 0-1KP. In the H1 landscape, the number

of steps was found to be relatively small and has a small growth rate. In the H1+2

landscape, the number of steps is still relatively small but it has a faster growth rate.

This supports our observation that the decay of the number of local optima in the H1+2

landscape of these instances appears to be fast. Note that the number of steps taken

in the H1 landscape was found to be always equal to the Hamming distance between

the initial random configuration and the found local optimum. In the H1+2 landscape

this was found to be almost always smaller or equal to the Hamming distance between

the initial random configuration and the found local optimum. However, and like in the

two previously studied problems, the number of steps was found to be larger than the

Hamming distance in very few cases. But unlike the previous problems, the difference

between the steps and the Hamming distances was found to be slightly larger here, ranging

from one to five (this is for n = 22).

6.6 Summary

In this chapter, we empirically studied various properties of two fitness landscapes of

moderately constrained random instances of the quadratic binary knapsack problem with

uncorrelated weights and profits. We focused on how these properties change with these

problem parameters: k, ∆ and the CV . The following is a summary of the main results:

• The logarithmic penalty function was found to create a strict local optimum in the

infeasible region. The linear penalty function was also found to create a strict local

optimum in the infeasible region of some of the instances with highly dense profit

matrix.

• Configurations of type IPLAT were only found in instances with very sparse profit

matrix.

• In both landscapes, the number of plateaux decreases as ∆ increases until they
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almost disappear in instances with very dense profit matrix.

• As with the uncorrelated knapsack problem types, in general the properties were

found not to be affected by the different values of k.

• The number of local optima in the H1+2 was found to be very low, as low as only

one or two optima sometimes.

• There is a very strong and negative correlation between the CV and the number of

local optima in the H1 landscape.

• The same formula used to estimate the average number of local optima in the H1

landscape of the previous problems seems to be a good approximate here as well.

• The number of local optima seems to grow exponentially in the H1 landscape.

• The quality of optima is always better in the H1+2 landscape, and the difference

in quality between the two landscape does not seem to be affected by the CV .

• The distribution of the basin sizes was found to be skewed with many small basins

and only few large ones, especially in the H1 landscape.

• In general, the correlation between the basin size and fitness was found to be very

strong and positive in both landscapes, which indicates that fitter optima tend to

have larger basins.

• The number of steps until an optimum is found, starting from a random configu-

ration, grows very slowly with n in the H1 landscape, but seems to have a faster

growth rate in the landscape induced by the H1+2 operator.

• The H1 operator was found to have a better performance in instances with CV ≥ 1

only when searching for the global solution only (this was examined in small problem

sizes only).
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• The H1+2 operator performs better in instances with CV < 1 when searching for

the global solution. But it was found to always perform better, in terms of the

quality of the obtained optima with fixed budget search, across all the CV values.

• In general the landscape properties and the performance of local search in the un-

correlated 0-1QKP was found to be similar to that of the uncorrelated 0-1KP.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we empirically studied a number of landscape features of three NP-hard

problems: the number partitioning problem (NPP), the binary knapsack problem (0-

1KP), and the quadratic binary knapsack problem (0-1QKP). All of the three problems

are similar in nature, in the sense that all of them fall into a class of NP-hard binary

packing problems related to the 0-1 knapsack problem. The subset sum problem, which

is a special case of the 0-1KP and one of its 11 problem types studied in this thesis, is

a generalisation of the NPP. The 0-1QKP is a variant of the 0-1KP where the profit of

an item depends also on the the other selected items. The 0-1KP and the 0-1QKP are

constrained optimisation problems and their search space is partitioned into a feasible

and an infeasible region. The NPP and the 0-1KP are both NP-hard in the weak sense

but the 0-1QKP is NP-hard in the strong sense [35]. Only the NPP and the subset

sum problems have an identified phase transition determined by the control parameter k,

which corresponds to the number of the bits required to encode the weights divided by the

size of the problem [11, 98]. Most of the existing studies of these problems only consider

instances where the weights are drawn at random from a uniform distribution. We studied

instances generated by drawing the weights at random from various distributions. In all of

the three problems, we found that the number of strict local optima and the cost of local

search to find the global, vary greatly (most noticeably in the H1 landscape) between

some of the distributions. We proposed and demonstrated that the use of the CV of the
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weights, a single parameter that is easy to calculate and does not require the knowledge

of the underlying distribution of the weights, captures most of this variability.

We studied the fitness landscapes induced by two neighbourhood operators, the H1

operator with a neighbourhood that grows linearly with the problem size and the larger

neighbourhood operator H1+2, which has a neighbourhood that grows quadratically with

the problem size. We also studied the landscape structure induced by different penalty

functions in the 0-1KP and the 0-1QKP. We studied a set of properties that we believe to

be representative of the problems difficulties (with respect to local search) and to give an

insight into structure of the problem landscape. The set includes: types of search position,

number of local and global optima and plateaux, quality of optima and plateaux, basin size

and its correlation with fitness, time to local optima, cost of finding the global solution,

and quality of optima obtained with a fixed budget search. Our work focuses on studying

how these properties vary with different values of problem parameters. The parameters

are, for the NPP: k and the CV ; for the 0-1KP: k, λ, CV , and the correlation between wi

and pi; for the 0-1QKP: k, ∆, and the CV . We also studied the scaling behaviour of some

of these properties as the problem size grows. Our approach was mainly exhaustive and

thus we were limited to studying problem sizes with enumerable search spaces only. We

did sample some of these properties from medium sized instances. One of these properties

is the number of local optima. We evaluated the performance of estimating the number

of local optima by estimating their proportion using simple random sampling (SRS) and

discussed the choice of confidence intervals in chapter 3. Of course, as a consequence of

studying mainly small instances, we cannot know with certainty if the observed trends

will continue to show as n gets larger, but we have shown that they still occur in medium

problem sizes (n = 100).

In the following we outline and discuss some of the main observations and trends

found:

• One observation that may seem counter-intuitive is that the landscape induced

by the larger neighbourhood has sometimes more plateaux and usually has larger
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plateaux sizes. In fact, in the 0-1KP, plateaux were only found in this landscape.

This perhaps can be understood when knowing the fact that no configuration of

type IPLAT was found (apart from instances with a very sparse profit matrix in the

0-1QKP), and that all the found plateaux were composed of connected non-strict

optima. Plateaux in the NPP and the 0-1KP were only found in the easy region

(k < 1). In the 0-1QKP, plateaux were mainly found in instances with a sparse

profit matrix. This fact also goes to explain the previous observation as in such

cases more strict optima share the same fitness value in the H1 landscape and they

get connected forming plateaux with the application of the H1+2 neighbourhood

operator.

• For the NPP and subset sum, the only two properties, in both landscapes, that

were found to change when the problem crosses the phase transition are the number

of global optima (and consequently the probability of finding the global) and the

number of plateaux (note plateaux in subset sum were found only in the H1+2

landscape). The rest of the properties remained oblivious to the phase transition.

The performance of local search algorithms was found to be affected by the phase

transition in both NPP and subset sum, where there was a considerable increase in

the cost of locating the global solution in instances with k > kc.

• The different values of k did not have any effect on the landscape of the 0-1QKP,

apart from the disappearance of SLOPE configurations in the H1+2 landscape of

the infeasible region when k = 1. Some properties of a few problem types in the

0-1KP seemed to be affected by the values of k. One property that changed with

the values of k across almost all of the problem types is the existence of plateaux

when k = 0.4.

• In all the problems investigated, there is a very strong and negative correlation

between the CV and the number of local optima in the H1 landscape. We continued

to see this trend in all the problem sizes we studied. The average number of local
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optima in this landscape, in all the problems, seemed to be well approximated by

the formula a
ebCV 2n (where a and b for each problem depend on n). We believe

that this phenomenon is particular to the binary packing problems related to the

0-1 knapsack problem. From some preliminary experiments on the weighted not

all equal 3-SAT problem and the generalised assignment problems, there was no

such strong correlation between the CV and the number of local optima in the H1

landscape of these problems.

• In all the problems, the number of local optima in the H1+2 landscape was found to

be much smaller than that in the H1 landscape. The largest difference between them

occurs in the small CV interval (0, 0.3]. The number of local optima seems to grow

exponentially with the problem size in both the landscapes, with a faster rate in the

H1 landscape. However, we are unable to comment on the growth behaviour of the

the number of local optima in the H1+2 landscape of the 0-1QKP, and the following

types of the 0-1KP: uncorrelated, weakly correlated, uncorrelated spanner, weakly

correlated spanner, strongly correlated spanner, and multiple strongly correlated.

The local optima proportion in the H1+2 landscape of these instances appears to

decay faster than what the sample size we used for SRS can detect with accuracy.

The faster growth in the time it takes steepest ascent, starting from a random

configuration until a local optimum is found, in these instances seems to support

this observation.

• The landscape properties and the performance of local search in the uncorrelated

0-1KP and the uncorrelated 0-1QKP were found to be similar to that of the un-

correlated 0-1KP. The number of local optima in their H1+2 was found to be very

low, as low as only one or two optima sometimes.

• The distribution of the basin sizes in both landscapes of all the problems was found

to be skewed to the right, with many small basins and only few large ones.

• The CV of the weights has a potentially useful application in guiding the choice of
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the move operator of local search heuristics, particularly in the NPP and some of

the problem types of the 0-1KP.

7.1 Future Work

The work presented in this thesis provides fingerprints of the studied problems landscapes.

This should be of interest for anyone who wants to design or select an algorithm for these

problems or similar problems. The work also revealed some of the mechanism behind the

changes in the landscape of a problem when a different search operator is used, which

again should be of interest for algorithm designers. A specific example of possible use

of the presented findings in the process of selecting an algorithm or a component of an

algorithm is that the number of optima in the H1+2 landscape of the uncorrelated 0-1KP

and the uncorrelated 0-1QKP is very small, as small as one or two sometimes. This finding

raises the question if other strategies of local search, which do not exhaustively explore

the whole neighbourhood, such as next ascent would perform better than steepest ascent,

by using less number of fitness evaluations to find the global (through avoiding the cost

of exploring the large neighbourhood). Another interesting finding that is worth further

investigation is that the empirical results in this thesis show no difference between the

landscape of NP-hard and NP-weak problems. This raises an important question if there

is no difference between NP-hard and NP-weak from the point of view of search heuristics.

Additional direction of future work is the identification of other problem that have similar

landscape features as the ones studied in this thesis. Finally, another obvious direction

for future work is to continue investigating the studied properties for larger problem sizes

and examine which of the trends continue and which of them disappear.
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APPENDIX A

NUMBER PARTITIONING PROBLEM
SUPPLEMENTARY RESULTS

The following tables are used to support the observations/conclusions made in section 4.2.

CV SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

(0,0.3] 1.28e-01 9.54E-04 0.00E+00 8.63E-01 8.48E-03 0.00E+00 1.91E-06

(0.3,1) 1.94e-02 1.24E-03 0.00E+00 9.69E-01 1.08E-02 0.00E+00 1.91E-06

[1,2) 8.10e-03 1.67E-03 0.00E+00 9.75E-01 1.55E-02 0.00E+00 1.91E-06

(a) H1 Landscape

CV SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

(0,0.3] 5.00e-04 1.99E-03 0.00E+00 3.74E-01 6.24E-01 0.00E+00 1.91E-06

(0.3,1) 1.22e-03 2.11E-03 0.00E+00 5.06E-01 4.91E-01 0.00E+00 1.91E-06

[1,2) 6.05e-04 2.87E-03 0.00E+00 3.28E-01 6.69E-01 0.00E+00 1.91E-06

(b) H1+2 Landscape

Table A.1: Proportion of the search position types, averaged over 600 instances of NPP
with k = 0.4 and n = 20.
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CV SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

(0,0.3] 1.33e-01 3.05E-07 0.00E+00 8.67E-01 2.16E-06 0.00E+00 1.91E-06

(0.3,1) 1.72e-02 2.67E-07 0.00E+00 9.83E-01 2.84E-06 0.00E+00 1.91E-06

[1,2) 8.24e-03 3.89E-07 0.00E+00 9.92E-01 3.96E-06 0.00E+00 1.91E-06

(a) H1 Landscape

CV SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

(0,0.3] 1.24e-03 3.05E-07 0.00E+00 9.99E-01 3.15E-05 0.00E+00 1.91E-06

(0.3,1) 2.01e-03 3.30E-07 0.00E+00 9.98E-01 3.23E-05 0.00E+00 1.91E-06

[1,2) 1.41e-03 6.07E-07 0.00E+00 9.99E-01 4.95E-05 0.00E+00 1.91E-06

(b) H1+2 Landscape

Table A.2: Proportion of the search position types, averaged over 600 instances of NPP
with k = 1 and n = 20.

CV SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

(0,0.3] 1.33e-01 1.91E-08 0.00E+00 8.67E-01 1.72E-07 0.00E+00 1.91E-06

(0.3,1) 1.83e-02 0.00E+00 0.00E+00 9.82E-01 1.51E-07 0.00E+00 1.91E-06

[1,2) 7.61e-03 3.31E-08 0.00E+00 9.92E-01 2.98E-07 0.00E+00 1.91E-06

(a) H1 Landscape

CV SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

(0,0.3] 1.18e-03 2.86E-08 0.00E+00 9.99E-01 1.80E-06 0.00E+00 1.91E-06

(0.3,1) 2.11e-03 1.68E-08 0.00E+00 9.98E-01 1.68E-06 0.00E+00 1.91E-06

[1,2) 1.47e-03 1.10E-08 0.00E+00 9.99E-01 2.57E-06 0.00E+00 1.91E-06

(b) H1+2 Landscape

Table A.3: Proportion of the search position types, averaged over 600 instances of NPP
with k = 1.2 and n = 20.
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The following figures are used to support the observations/conclusions made in sub-

section 4.3.3.

Figure A.1: The quality of optima in the H1 and H1+2 landscapes versus the CV value
of the weights. The y-axis shows the fitness value divided by

∑n
i=1wi. The data includes

both global and local optima, and each data point represents a single optimum. The
results are for 600 instances of n = 14 and k = 1. Smooth histograms of the number of
optima of both H1 and H1+2 landscapes are shown in the horizontal and vertical axes
of the plot.

(a) n = 16 (b) n = 18

Figure A.2: The quality of optima in the H1 and H1+2 landscapes versus the CV value
of the weights. The y-axis shows the fitness value divided by

∑n
i=1wi. The data includes

both global and local optima, and each data point represents a single optimum. The
results are for 126 instances per problem size and k = 1. Smooth histograms of the
number of optima in both H1 and H1+2 landscapes are shown in the horizontal and
vertical axes of the plot.

The following figures are used to support the observations/conclusions made in sub-

section 4.4.2.
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Figure A.3: Plot-matrix of the basin size proportion and optima fitness (f(x)/
∑n

i=1wi)
of both H1 and H1+2 landscapes of a single instance of size n = 20, CV = 0.14 and
k = 1. Histograms of the basin size and the fitness for each landscape are shown along
the diagonal.

Figure A.4: Plot-matrix of the basin size proportion and optima fitness (f(x)/
∑n

i=1wi)
of both H1 and H1+2 landscapes of a single instance of size n = 20, CV = 0.41 and
k = 1. Histograms of the basin size and the fitness for each landscape are shown along
the diagonal.
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Figure A.5: Plot-matrix of the basin size proportion and optima fitness (f(x)/
∑n

i=1wi)
of both H1 and H1+2 landscapes of a single instance of size n = 20, CV = 1.4 and
k = 1. Histograms of the basin size and the fitness for each landscape are shown along
the diagonal.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure A.6: Basin size/2n (y-axis) against f(x)/
∑n

i=1wi (x-axis), the colour bars show
the frequency of each data point. The results show the fitness and basin size of all the
strict optima and plateaux found in 600 instances of n = 20 and k = 0.4. The rightmost
plot is just the H1 (red) and the H1+2 (black) results (without the frequency) overlaid
on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure A.7: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1wi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of n = 20 and k = 1. The rightmost plot is just the H1 (red) and
the H1+2 (black) results (without the frequency) overlaid on the same axes (y-axis in log
scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure A.8: Basin size/2n (y-axis) against f(x)/
∑n

i=1wi (x-axis), the colour bars show
the frequency of each data point. The results show the fitness and basin size of all the
strict optima and plateaux found in 600 instance of n = 20 and k = 1.2. The rightmost
plot is just the H1 (red) and the H1+2 (black) results (without the frequency) overlaid
on the same axes (y-axis in log scale) to facilitate comparison of values.
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APPENDIX B

0-1 KNAPSACK PROBLEM SUPPLEMENTARY
RESULTS

Tables of the search position types found in the feasible region of randomly generated

instances of the 0-1 Knapsack problem with linear penalty function. These tables are

used to support the observations/conclusions made in section 5.2.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 3.84E-01 0.00E+00 0.00E+00 1.16E-01

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 3.84E-01 0.00E+00 0.00E+00 1.16E-01

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.85E-01 0.00E+00 0.00E+00 1.15E-01

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.85E-01 0.00E+00 0.00E+00 1.15E-01

Subset Sum 9.54e-07 0.00E+00 0.00E+00 3.86E-01 0.00E+00 0.00E+00 1.15E-01

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.84E-01 0.00E+00 0.00E+00 1.16E-01

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 3.85E-01 0.00E+00 0.00E+00 1.15E-01

Circle 9.54e-07 0.00E+00 0.00E+00 3.86E-01 0.00E+00 0.00E+00 1.14E-01

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 3.64E-06

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 3.96E-01 1.04E-01 1.53E-07 3.54E-06

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.86E-01 3.12E-01 1.26E-03 6.67E-04

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 2.04E-01 2.95E-01 1.14E-03 7.52E-04

Subset Sum 9.54e-07 0.00E+00 0.00E+00 1.87E-01 3.12E-01 1.26E-03 6.93E-04

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.96E-01 3.04E-01 3.30E-04 1.82E-04

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 3.37E-02 4.64E-01 2.56E-03 2.85E-04

Circle 9.54e-07 0.00E+00 0.00E+00 1.99E-01 3.00E-01 1.19E-03 7.33E-04

(b) H1+2 Landscape

Table B.1: Proportion of the search position types in the feasible region, averaged over
600 instances of KP with k = 0.4, n = 20, and 0 < CV ≤ 0.3.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 4.81E-01 0.00E+00 0.00E+00 1.95E-02

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.82E-02

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.87E-02

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.80E-01 0.00E+00 0.00E+00 2.04E-02

Subset Sum 9.54e-07 0.00E+00 0.00E+00 4.81E-01 0.00E+00 0.00E+00 1.89E-02

Uncorrelated Spanner 9.54e-07 0.00E+00 0.00E+00 4.71E-01 0.00E+00 0.00E+00 2.96E-02

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.71E-01 0.00E+00 0.00E+00 2.93E-02

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.72E-01 0.00E+00 0.00E+00 2.89E-02

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.81E-01 0.00E+00 0.00E+00 1.92E-02

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.80E-01 0.00E+00 0.00E+00 2.00E-02

Circle 9.54e-07 0.00E+00 0.00E+00 4.81E-01 0.00E+00 0.00E+00 1.91E-02

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 5.31E-06

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 3.02E-01 1.98E-01 4.02E-07 4.29E-06

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 2.69E-01 2.29E-01 1.33E-03 1.53E-03

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.01E-01 1.97E-01 1.17E-03 1.65E-03

Subset Sum 9.54e-07 0.00E+00 0.00E+00 2.93E-01 2.04E-01 1.15E-03 1.65E-03

Uncorrelated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 2.45E-05

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 3.69E-01 1.31E-01 1.43E-05 1.39E-04

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 2.42E-01 2.57E-01 3.06E-04 2.76E-04

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 2.89E-01 2.10E-01 2.57E-04 4.01E-04

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 1.11E-01 3.85E-01 2.55E-03 9.82E-04

Circle 9.54e-07 0.00E+00 0.00E+00 2.93E-01 2.04E-01 1.13E-03 1.68E-03

(b) H1+2 Landscape

Table B.2: Proportion of the search position types in the feasible region, averaged over
600 instances per each instance type, with k = 0.4, n = 20, and 0.3 < CV < 1.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.82E-03

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.95E-03

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.71E-03

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.29E-03

Subset Sum 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 7.99E-03

Uncorrelated Spanner 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.99E-03

Weakly Correlated Spanner 9.50e-07 0.00E+00 0.00E+00 4.91E-01 0.00E+00 0.00E+00 9.05E-03

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.91E-01 0.00E+00 0.00E+00 9.39E-03

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.68E-03

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.52E-03

Circle 9.54e-07 0.00E+00 0.00E+00 4.91E-01 0.00E+00 0.00E+00 9.44E-03

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.25e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 4.81E-06

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 1.57E-01 3.44E-01 1.09E-06 5.06E-06

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.92E-01 3.06E-01 1.59E-03 9.67E-04

Inverse Strongly Correlated 9.31e-07 0.00E+00 0.00E+00 1.75E-01 3.24E-01 1.54E-03 8.52E-04

Subset Sum 9.42e-07 0.00E+00 0.00E+00 1.86E-01 3.12E-01 1.47E-03 9.48E-04

Uncorrelated Spanner 8.86e-07 0.00E+00 0.00E+00 5.01E-01 0.00E+00 0.00E+00 7.73E-06

Weakly Correlated Spanner 8.96e-07 0.00E+00 0.00E+00 2.10E-01 2.91E-01 1.99E-06 1.14E-05

Strongly Correlated Spanner 8.83e-07 0.00E+00 0.00E+00 2.31E-01 2.70E-01 8.02E-06 1.87E-05

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.91E-01 3.09E-01 3.48E-04 2.51E-04

Profit Ceiling 9.19e-07 0.00E+00 0.00E+00 3.18E-02 4.65E-01 2.95E-03 3.95E-04

Circle 9.31e-07 0.00E+00 0.00E+00 2.02E-01 2.96E-01 1.56E-03 1.03E-03

(b) H1+2 Landscape

Table B.3: Proportion of the search position types in the feasible region, averaged over
600 instances of KP with k = 0.4, n = 20, and 1 ≤ CV < 2.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 3.83E-01 0.00E+00 0.00E+00 1.17E-01

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 3.83E-01 0.00E+00 0.00E+00 1.17E-01

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.83E-01 0.00E+00 0.00E+00 1.17E-01

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.82E-01 0.00E+00 0.00E+00 1.18E-01

Subset Sum 9.54e-07 0.00E+00 0.00E+00 3.82E-01 0.00E+00 0.00E+00 1.18E-01

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.83E-01 0.00E+00 0.00E+00 1.17E-01

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 3.83E-01 0.00E+00 0.00E+00 1.17E-01

Circle 9.54e-07 0.00E+00 0.00E+00 3.82E-01 0.00E+00 0.00E+00 1.18E-01

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 3.50E-06

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 3.71E-05

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.20E-03

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.23E-03

Subset Sum 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.19E-03

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 3.05E-04

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.98E-01 1.25E-03 3.56E-06 1.17E-03

Circle 9.54e-07 0.00E+00 0.00E+00 4.98E-01 1.25E-03 2.84E-06 1.19E-03

(b) H1+2 Landscape

Table B.4: Proportion of the search position types in the feasible region, averaged over
600 instances of KP with k = 1, n = 20, and 0 < CV ≤ 0.3.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.75E-02

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.81E-02

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.83E-01 0.00E+00 0.00E+00 1.70E-02

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.75E-02

Subset Sum 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.76E-02

Uncorrelated Spanner 9.54e-07 0.00E+00 0.00E+00 4.71E-01 0.00E+00 0.00E+00 2.94E-02

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.71E-01 0.00E+00 0.00E+00 2.93E-02

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.72E-01 0.00E+00 0.00E+00 2.78E-02

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.84E-01 0.00E+00 0.00E+00 1.63E-02

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.83E-01 0.00E+00 0.00E+00 1.72E-02

Circle 9.54e-07 0.00E+00 0.00E+00 4.83E-01 0.00E+00 0.00E+00 1.74E-02

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 5.04E-06

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 2.61E-04

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 2.09E-03

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 2.09E-03

Subset Sum 9.54e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 2.03E-03

Uncorrelated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 2.27E-05

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 7.40E-04

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 1.68E-03

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 9.21E-04

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 2.08E-03

Circle 9.54e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 2.10E-03

(b) H1+2 Landscape

Table B.5: Proportion of the search position types in the feasible region, averaged over
600 instances per each instance type, with k = 1, n = 20, and 0.3 < CV < 1.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.54e-07 0.00E+00 0.00E+00 4.93E-01 0.00E+00 0.00E+00 7.15E-03

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 7.89E-03

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.93E-01 0.00E+00 0.00E+00 7.22E-03

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 7.83E-03

Subset Sum 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.23E-03

Uncorrelated Spanner 9.46e-07 0.00E+00 0.00E+00 4.95E-01 0.00E+00 0.00E+00 5.03E-03

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.95E-01 0.00E+00 0.00E+00 4.81E-03

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.95E-01 0.00E+00 0.00E+00 4.83E-03

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 7.83E-03

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 7.63E-03

Circle 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.23E-03

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.42e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 4.41E-06

Weakly Correlated 9.48e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 7.39E-05

Strongly Correlated 9.31e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.45E-03

Inverse Strongly Correlated 9.34e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.37E-03

Subset Sum 9.36e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.40E-03

Uncorrelated Spanner 8.43e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 6.70E-06

Weakly Correlated Spanner 8.49e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 1.09E-04

Strongly Correlated Spanner 8.69e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 2.24E-04

Multiple Strongly Correlated 9.23e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 5.53E-04

Profit Ceiling 9.37e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 1.44E-03

Circle 9.48e-07 0.00E+00 0.00E+00 4.98E-01 0.00E+00 0.00E+00 1.51E-03

(b) H1+2 Landscape

Table B.6: Proportion of the search position types in the feasible region, averaged over
600 instances of KP with k = 1, n = 20, and 1 ≤ CV < 2.

Tables of the search position types found in the infeasible region of randomly generated

instances of the 0-1 Knapsack problem with linear penalty function. These tables are used

to support the observations/conclusions made in section 5.2.

154



Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.00e-07 1.08E-07 0.00E+00 4.74E-01 2.53E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.00e-07 1.08E-07 0.00E+00 4.74E-01 2.53E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.98E-01 1.25E-03 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.87E-01 3.13E-01 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 2.03E-01 2.96E-01 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 1.87E-01 3.12E-01 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.96E-01 3.04E-01 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 1.36E-01 3.64E-01 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 1.99E-01 3.00E-01 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table B.7: Proportion of the search position types in the infeasible region, averaged over
600 instances of KP with k = 0.4, n = 20, and 0 < CV ≤ 0.3.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.02e-07 1.02E-07 0.00E+00 4.73E-01 2.66E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Uncorrelated Spanner 9.46e-07 1.59E-08 0.00E+00 4.95E-01 4.07E-03 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.51e-07 1.03E-08 0.00E+00 4.98E-01 1.33E-03 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.50e-07 7.75E-09 0.00E+00 4.98E-01 1.98E-03 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.02e-07 1.02E-07 0.00E+00 4.73E-01 2.66E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.88E-01 1.21E-02 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 2.70E-01 2.30E-01 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 3.02E-01 1.98E-01 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 2.95E-01 2.05E-01 0.00E+00 0.00E+00

Uncorrelated Spanner 9.46e-07 1.59E-08 0.00E+00 4.95E-01 4.07E-03 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.51e-07 1.03E-08 0.00E+00 4.74E-01 2.52E-02 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 3.32E-01 1.68E-01 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.50e-07 7.75E-09 0.00E+00 2.88E-01 2.12E-01 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 2.91E-01 2.09E-01 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 2.94E-01 2.05E-01 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table B.8: Proportion of the search position types in the infeasible region, averaged over
600 instances of KP with k = 0.4, n = 20, and 0.3 < CV < 1.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.07e-07 9.30E-08 0.00E+00 4.75E-01 2.43E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Uncorrelated Spanner 9.50e-07 7.95E-09 0.00E+00 4.97E-01 2.06E-03 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 4.99E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.48e-07 9.78E-08 0.00E+00 4.96E-01 3.20E-03 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.07e-07 9.30E-08 0.00E+00 4.75E-01 2.43E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.55E-01 4.49E-02 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.92E-01 3.07E-01 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 1.75E-01 3.25E-01 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 1.87E-01 3.13E-01 0.00E+00 0.00E+00

Uncorrelated Spanner 9.50e-07 7.95E-09 0.00E+00 4.97E-01 2.06E-03 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 3.85E-01 1.15E-01 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 3.09E-01 1.90E-01 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.48e-07 9.78E-08 0.00E+00 1.91E-01 3.09E-01 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 1.92E-01 3.08E-01 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 2.02E-01 2.97E-01 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table B.9: Proportion of the search position types in the infeasible region, averaged over
600 instances of KP with k = 0.4, n = 20, and 1 ≤ CV < 2.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.01e-07 1.05E-07 0.00E+00 4.75E-01 2.46E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.01e-07 1.05E-07 0.00E+00 4.75E-01 2.46E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 4.99E-01 1.16E-03 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 4.99E-01 1.25E-03 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table B.10: Proportion of the search position types in the infeasible region, averaged over
600 instances of KP with k = 1, n = 20, and 0 < CV ≤ 0.3.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 8.93e-07 1.22E-07 0.00E+00 4.68E-01 3.17E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Uncorrelated Spanner 9.45e-07 1.68E-08 0.00E+00 4.96E-01 4.31E-03 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 8.93e-07 1.22E-07 0.00E+00 4.68E-01 3.17E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Uncorrelated Spanner 9.45e-07 1.68E-08 0.00E+00 4.96E-01 4.31E-03 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table B.11: Proportion of the search position types in the infeasible region, averaged over
600 instances of KP with k = 1, n = 20, and 0.3 < CV < 1.
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Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.02e-07 1.03E-07 0.00E+00 4.73E-01 2.69E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Uncorrelated Spanner 9.32e-07 4.42E-08 0.00E+00 4.88E-01 1.16E-02 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

Instance Type SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

Uncorrelated 9.02e-07 1.03E-07 0.00E+00 4.73E-01 2.69E-02 0.00E+00 0.00E+00

Weakly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Inverse Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Subset Sum 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Uncorrelated Spanner 9.32e-07 4.42E-08 0.00E+00 4.88E-01 1.16E-02 0.00E+00 0.00E+00

Weakly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Strongly Correlated Spanner 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Multiple Strongly Correlated 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Profit Ceiling 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

Circle 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table B.12: Proportion of the search position types in the infeasible region, averaged over
600 instances of KP with k = 1, n = 20, and 1 ≤ CV < 2.

The following figures are used to support the observations/conclusions made in sub-

section 5.4.1.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.1: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of uncorrelated knapsack of size n = 20 and k = 1. The rightmost
plot is just the H1 (red) and the H1+2 (black) results (without the frequency) overlaid
on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.2: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of weakly correlated knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.3: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of strongly correlated knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.4: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show
the frequency of each data point. The results show the fitness and basin size of all the
optima found in 600 instances of inverse strongly correlated knapsack of size n = 20 and
k = 1. The rightmost plot is just the H1 (red) and the H1+2 (black) results (without
the frequency) overlaid on the same axes (y-axis in log scale) to facilitate comparison of
values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.5: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of subset sum knapsack of size n = 20 and k = 1. The rightmost
plot is just the H1 (red) and the H1+2 (black) results (without the frequency) overlaid
on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0.3 < CV < 1

(b) 1 ≤ CV < 2

Figure B.6: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of uncorrelated spanner knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0.3 < CV < 1

(b) 1 ≤ CV < 2

Figure B.7: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show
the frequency of each data point. The results show the fitness and basin size of all the
optima found in 600 instances of weakly correlated spanner knapsack of size n = 20 and
k = 1. The rightmost plot is just the H1 (red) and the H1+2 (black) results (without
the frequency) overlaid on the same axes (y-axis in log scale) to facilitate comparison of
values.
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(a) 0.3 < CV < 1

(b) 1 ≤ CV < 2

Figure B.8: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show
the frequency of each data point. The results show the fitness and basin size of all the
optima found in 600 instances of strongly correlated spanner knapsack of size n = 20 and
k = 1. The rightmost plot is just the H1 (red) and the H1+2 (black) results (without
the frequency) overlaid on the same axes (y-axis in log scale) to facilitate comparison of
values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.9: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show
the frequency of each data point. The results show the fitness and basin size of all the
optima found in 600 instances of multiple strongly correlated knapsack of size n = 20 and
k = 1. The rightmost plot is just the H1 (red) and the H1+2 (black) results (without
the frequency) overlaid on the same axes (y-axis in log scale) to facilitate comparison of
values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.10: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of profit ceiling knapsack of size n = 20 and k = 1. The rightmost
plot is just the H1 (red) and the H1+2 (black) results (without the frequency) overlaid
on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure B.11: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1 pi (x-axis), the colour bars show the
frequency of each data point. The results show the fitness and basin size of all the optima
found in 600 instances of circle knapsack of size n = 20 and k = 1. The rightmost plot is
just the H1 (red) and the H1+2 (black) results (without the frequency) overlaid on the
same axes (y-axis in log scale) to facilitate comparison of values.
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APPENDIX C

QUADRATIC 0-1 KNAPSACK PROBLEM
SUPPLEMENTARY RESULTS

The following tables are used to support the observations/conclusions made in section 6.2.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.70E-02 1.30E-06 7.59E-04 3.60E-01 1.20E-01 3.40E-03

0.25 0.00e+00 8.27E-04 4.84E-09 8.37E-02 3.02E-01 4.85E-02 6.52E-02

0.5 0.00e+00 5.37E-05 0.00E+00 3.55E-01 3.05E-02 1.34E-03 1.13E-01

0.75 4.87e-09 8.79E-06 0.00E+00 3.85E-01 6.92E-04 4.81E-06 1.15E-01

0.95 2.99e-07 1.69E-06 0.00E+00 3.84E-01 2.85E-06 0.00E+00 1.16E-01

1 9.54e-07 0.00E+00 0.00E+00 3.86E-01 0.00E+00 0.00E+00 1.15E-01

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.38E-02 0.00E+00 3.71E-03 4.83E-01 1.28E-05 6.60E-06

0.25 0.00e+00 8.24E-04 0.00E+00 1.33E-01 3.66E-01 5.71E-07 8.42E-06

0.5 0.00e+00 5.37E-05 0.00E+00 4.36E-01 6.40E-02 6.88E-08 8.50E-06

0.75 4.87e-09 8.79E-06 0.00E+00 4.71E-01 2.95E-02 9.24E-08 8.85E-06

0.95 2.99e-07 1.69E-06 0.00E+00 4.71E-01 2.93E-02 1.20E-07 8.71E-06

1 9.54e-07 0.00E+00 0.00E+00 4.70E-01 3.05E-02 9.24E-08 8.21E-06

(b) H1+2 Landscape

Table C.1: Proportion of the search position types in the feasible region, averaged over
600 instances for each ∆ value, with k = 0.4, n = 20, and 0 < CV ≤ 0.3.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.30E-02 2.85E-06 1.90E-03 4.56E-01 2.85E-02 6.25E-04

0.25 0.00e+00 8.09E-04 0.00E+00 1.43E-01 3.36E-01 8.31E-03 1.18E-02

0.5 0.00e+00 5.68E-05 0.00E+00 4.51E-01 2.97E-02 1.94E-04 1.95E-02

0.75 8.05e-09 9.18E-06 0.00E+00 4.80E-01 5.92E-04 3.14E-07 1.99E-02

0.95 3.24e-07 1.59E-06 0.00E+00 4.82E-01 2.56E-06 0.00E+00 1.87E-02

1 9.54e-07 0.00E+00 0.00E+00 4.81E-01 0.00E+00 0.00E+00 1.94E-02

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 7.70E-03 0.00E+00 2.29E-03 4.90E-01 2.18E-05 3.64E-06

0.25 0.00e+00 6.94E-04 0.00E+00 1.41E-01 3.59E-01 7.93E-07 8.19E-06

0.5 0.00e+00 5.57E-05 0.00E+00 4.41E-01 5.94E-02 6.11E-08 8.91E-06

0.75 8.05e-09 9.14E-06 0.00E+00 4.73E-01 2.69E-02 4.83E-08 8.13E-06

0.95 3.24e-07 1.59E-06 0.00E+00 4.73E-01 2.68E-02 1.11E-07 8.29E-06

1 9.54e-07 0.00E+00 0.00E+00 4.72E-01 2.83E-02 8.93E-08 9.66E-06

(b) H1+2 Landscape

Table C.2: Proportion of the search position types in the feasible region, averaged over
600 instances for each ∆ value, with k = 0.4, n = 20, and 0.3 < CV < 1.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.02E-02 1.86E-06 5.78E-04 4.75E-01 1.39E-02 2.42E-04

0.25 0.00e+00 6.85E-04 0.00E+00 1.48E-01 3.42E-01 4.06E-03 5.33E-03

0.5 0.00e+00 5.13E-05 0.00E+00 4.64E-01 2.74E-02 1.01E-04 8.63E-03

0.75 5.71e-09 9.31E-06 0.00E+00 4.91E-01 6.27E-04 6.51E-07 8.46E-03

0.95 3.08e-07 1.60E-06 0.00E+00 4.92E-01 2.71E-06 0.00E+00 8.86E-03

1 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.58E-03

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 2.62E-03 0.00E+00 7.61E-04 4.97E-01 3.99E-05 2.23E-06

0.25 0.00e+00 3.16E-04 0.00E+00 1.40E-01 3.60E-01 8.50E-07 5.90E-06

0.5 0.00e+00 3.66E-05 0.00E+00 4.45E-01 5.57E-02 6.10E-08 5.79E-06

0.75 5.71e-09 7.92E-06 0.00E+00 4.75E-01 2.57E-02 5.14E-08 6.20E-06

0.95 3.02e-07 1.49E-06 0.00E+00 4.74E-01 2.59E-02 5.33E-08 6.25E-06

1 9.48e-07 0.00E+00 0.00E+00 4.73E-01 2.71E-02 2.82E-08 6.12E-06

(b) H1+2 Landscape

Table C.3: Proportion of the search position types in the feasible region, averaged over
600 instances for each ∆ value, with k = 0.4, n = 20, and 1 ≤ CV < 2.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.58E-02 8.20E-07 6.40E-04 3.60E-01 1.20E-01 3.98E-03

0.25 0.00e+00 8.53E-04 4.77E-09 8.03E-02 3.00E-01 5.11E-02 6.76E-02

0.5 0.00e+00 5.22E-05 0.00E+00 3.52E-01 3.01E-02 1.25E-03 1.16E-01

0.75 0.00e+00 8.85E-06 0.00E+00 3.81E-01 6.03E-04 1.11E-06 1.18E-01

0.95 3.72e-07 1.52E-06 0.00E+00 3.82E-01 2.84E-06 0.00E+00 1.18E-01

1 9.54e-07 0.00E+00 0.00E+00 3.83E-01 0.00E+00 0.00E+00 1.17E-01

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.30E-02 0.00E+00 4.62E-03 4.82E-01 9.18E-06 6.18E-06

0.25 0.00e+00 8.49E-04 0.00E+00 1.48E-01 3.51E-01 3.96E-07 8.27E-06

0.5 0.00e+00 5.22E-05 0.00E+00 4.69E-01 3.14E-02 4.77E-09 8.71E-06

0.75 0.00e+00 8.85E-06 0.00E+00 4.99E-01 6.11E-04 0.00E+00 8.89E-06

0.95 3.72e-07 1.52E-06 0.00E+00 5.00E-01 1.03E-05 0.00E+00 8.31E-06

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 7.68E-06 0.00E+00 8.56E-06

(b) H1+2 Landscape

Table C.4: Proportion of the search position types in the feasible region, averaged over
600 instances for each ∆ value, with k = 1, n = 20, and 0 < CV ≤ 0.3.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 1.35E-02 1.65E-06 1.43E-03 4.55E-01 2.93E-02 5.62E-04

0.25 0.00e+00 8.39E-04 0.00E+00 1.40E-01 3.41E-01 7.45E-03 1.07E-02

0.5 0.00e+00 5.37E-05 0.00E+00 4.50E-01 3.15E-02 1.88E-04 1.78E-02

0.75 0.00e+00 8.67E-06 0.00E+00 4.80E-01 5.96E-04 4.57E-07 1.90E-02

0.95 3.79e-07 1.56E-06 0.00E+00 4.82E-01 2.68E-06 0.00E+00 1.77E-02

1 9.54e-07 0.00E+00 0.00E+00 4.82E-01 0.00E+00 0.00E+00 1.80E-02

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 8.15E-03 0.00E+00 1.98E-03 4.90E-01 2.11E-05 3.79E-06

0.25 0.00e+00 7.37E-04 0.00E+00 1.51E-01 3.48E-01 8.83E-07 8.04E-06

0.5 0.00e+00 5.30E-05 0.00E+00 4.68E-01 3.17E-02 8.44E-09 9.00E-06

0.75 0.00e+00 8.65E-06 0.00E+00 4.99E-01 6.04E-04 0.00E+00 8.91E-06

0.95 3.79e-07 1.56E-06 0.00E+00 5.00E-01 1.00E-05 0.00E+00 8.51E-06

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 7.01E-06 0.00E+00 8.67E-06

(b) H1+2 Landscape

Table C.5: Proportion of the search position types in the feasible region, averaged over
600 instances for each ∆ value, with k = 1, n = 20, and 0.3 < CV < 1.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 8.99E-03 9.71E-07 1.17E-03 4.78E-01 1.16E-02 2.77E-04

0.25 0.00e+00 6.63E-04 0.00E+00 1.49E-01 3.42E-01 3.42E-03 5.02E-03

0.5 0.00e+00 5.13E-05 0.00E+00 4.62E-01 3.01E-02 1.08E-04 7.62E-03

0.75 0.00e+00 8.78E-06 0.00E+00 4.91E-01 6.35E-04 7.18E-07 7.94E-03

0.95 3.16e-07 1.69E-06 0.00E+00 4.93E-01 3.02E-06 0.00E+00 7.38E-03

1 9.54e-07 0.00E+00 0.00E+00 4.92E-01 0.00E+00 0.00E+00 8.12E-03

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 0.00e+00 2.54E-03 0.00E+00 1.45E-03 4.96E-01 2.46E-05 2.43E-06

0.25 0.00e+00 3.25E-04 0.00E+00 1.54E-01 3.46E-01 8.69E-07 6.47E-06

0.5 0.00e+00 3.57E-05 0.00E+00 4.70E-01 3.03E-02 0.00E+00 5.97E-06

0.75 0.00e+00 7.82E-06 0.00E+00 4.99E-01 6.43E-04 0.00E+00 6.45E-06

0.95 3.16e-07 1.58E-06 0.00E+00 5.00E-01 9.44E-06 0.00E+00 6.41E-06

1 9.26e-07 0.00E+00 0.00E+00 5.00E-01 7.12E-06 0.00E+00 6.28E-06

(b) H1+2 Landscape

Table C.6: Proportion of the search position types in the feasible region, averaged over
600 instances for each ∆ value, with k = 1, n = 20, and 1 ≤ CV < 2.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 4.57E-01 4.32E-02 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 4.98E-01 1.44E-03 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 4.99E-01 3.40E-04 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 4.99E-01 2.98E-04 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 4.99E-01 2.95E-04 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 4.99E-01 2.78E-04 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table C.7: Proportion of the search position types in the infeasible region, averaged over
600 instances for each ∆ value, with k = 0.4, n = 20, and 0 < CV ≤ 0.3.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 4.72E-01 2.81E-02 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 4.99E-01 1.09E-03 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 4.99E-01 1.89E-04 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 1.70E-04 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 1.22E-04 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 1.75E-04 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table C.8: Proportion of the search position types in the infeasible region, averaged over
600 instances for each ∆ value, with k = 0.4, n = 20, and 0.3 < CV < 1.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 4.30E-01 6.95E-02 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 4.97E-01 2.28E-03 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 4.99E-01 2.92E-04 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 4.99E-01 2.96E-04 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 4.99E-01 2.99E-04 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 4.99E-01 3.44E-04 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table C.9: Proportion of the search position types in the infeasible region, averaged over
600 instances for each ∆ value, with k = 0.4, n = 20, and 1 ≤ CV < 2.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table C.10: Proportion of the search position types in the infeasible region, averaged over
600 instances for each ∆ value, with k = 1, n = 20, and 0 < CV ≤ 0.3.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table C.11: Proportion of the search position types in the infeasible region, averaged over
600 instances for each ∆ value, with k = 1, n = 20, and 0.3 < CV < 1.
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∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(a) H1 Landscape

∆ SLMIN NSLMIN IPLAT LEDGE SLOPE NSLMAX SLMAX

0.1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.25 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.5 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.75 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

0.95 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

1 9.54e-07 0.00E+00 0.00E+00 5.00E-01 0.00E+00 0.00E+00 0.00E+00

(b) H1+2 Landscape

Table C.12: Proportion of the search position types in the infeasible region, averaged over
600 instances for each ∆ value, with k = 1, n = 20, and 1 ≤ CV < 2.

The following figures are used to support the observations/conclusions made in sub-

section 6.4.1.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure C.1: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1

∑n
j=1 pij (x-axis), the colour bars

show the frequency of each data point. The results show the fitness and basin size of all
the optima found in 600 instances of ∆ =0.1 knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure C.2: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1

∑n
j=1 pij (x-axis), the colour bars

show the frequency of each data point. The results show the fitness and basin size of all
the optima found in 600 instances of ∆ =0.25 knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure C.3: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1

∑n
j=1 pij (x-axis), the colour bars

show the frequency of each data point. The results show the fitness and basin size of all
the optima found in 600 instances of ∆ =0.5 knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure C.4: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1

∑n
j=1 pij (x-axis), the colour bars

show the frequency of each data point. The results show the fitness and basin size of all
the optima found in 600 instances of ∆ =0.75 knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure C.5: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1

∑n
j=1 pij (x-axis), the colour bars

show the frequency of each data point. The results show the fitness and basin size of all
the optima found in 600 instances of ∆ =0.95 knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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(a) 0 < CV ≤ 0.3

(b) 0.3 < CV < 1

(c) 1 ≤ CV < 2

Figure C.6: |B(x∗)|/2n (y-axis) against f(x∗)/
∑n

i=1

∑n
j=1 pij (x-axis), the colour bars

show the frequency of each data point. The results show the fitness and basin size of all
the optima found in 600 instances of ∆ =1 knapsack of size n = 20 and k = 1. The
rightmost plot is just the H1 (red) and the H1+2 (black) results (without the frequency)
overlaid on the same axes (y-axis in log scale) to facilitate comparison of values.
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[17] F. Chicano, F. Daolio, G. Ochoa, S. Vérel, M. Tomassini, and E. Alba. Local op-
tima networks, landscape autocorrelation and heuristic search performance. Parallel
Problem Solving from Nature - PPSN XII, pages 337–347, 2012.

[18] F. Chicano, L.D. Whitley, and E. Alba. A methodology to find the elementary
landscape decomposition of combinatorial optimization problems. Evol. Comput.,
19(4):597–637, 2011.

[19] A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical
data. SIAM Review, 51(4):661–703, 2009.
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