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Abstract

The process of cellular signalling and signal transduction is a vital process enabling cells

to respond to and interact with their environment. Extracellular signalling molecules bind

to receptors on the plasma membrane, which in turn are internalised to endosomes and

trafficked to various locations. The trafficking and signalling of receptors are complex,

intertwined processes with many feedback mechanisms, often regulated by groups of small

GTPases, Guanine exchange factors (GEFs) and GTPase activating proteins (GAPs).

Confocal microscopy is a powerful tool to study the trafficking of receptors. Within

the field, quantitative methods to acquire and analyse data are often poorly specified,

manual, biased and lacking in reproducibility. In this work, robust, quantitative workflows

and tools to quantify and visualise receptor localisation, with and without endosomal

colocalization, are presented with epidermal growth factor receptor (EGFR) used as a

model system.

Specific attention is given to 4D (3D time-lapse) live cell confocal microscopy. A state

of the art 4D level set approach is developed to enable the accurate cellular segmentation

using only EGFR-GFP signal. Additionally it is used for label free nuclear segmentation.

Temporal constraints are introduced to further improve segmentation accuracy. This novel

approach is thoroughly validated, and statistically significant performance increase over

equivalent 2D and 3D approaches is demonstrated. These techniques could be adapted

and used for a large variety of segmentation problems.
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A critical review of current approaches to the quantification of colocalization between

receptors and endosomes is presented. Improvements to existing techniques and complete

workflows are provided. These approaches are validated and used to quantify colocal-

ization between EGFR and early endosomes after ligand stimulation in the presence of

various drug treatments.

Finally a confocal microscopy siRNA screen of GEFs and GAPs is presented. Quan-

titative methods to identify genes which perturb the trafficking of receptor are presented.

Together the screen and 4D live cell protocols provide a complete microscopy based plat-

form to identify and investigate regulators of receptor signalling and trafficking.
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Chapter 1

Thesis Aims and Contributions

1.1 Background

Cellular receptor signalling and trafficking are highly interlinked and essential processes

[1]. Fluorescence microscopy provides a powerful tool to investigate these processes and

the cross-talk between them. Microscopy based screens can be used to identify regulators

of signalling and trafficking [2, 3, 4, 5]. RNA interference is used to inhibit the expression

of individual genes and screens can be performed across a range of genes, up to whole

genome level. Cells are treated with ligand and the subsequent imaging of fluorescently

labelled receptor, or ligand, can be used to identify genes which regulate trafficking. To

do this, image analysis workflows are employed to extract relevant measurements from

the image data. For example, endosome number, size and clustering, the percentage of

internalised receptor and cell shape and size can all be quantified [3].

In addition to screening applications, confocal, or deconvolved wide-field, microscopy

can be used to validate hits and study how a specific treatment regulates the trafficking

of receptor. It is advantageous to perform such studies using live cell time-lapse data to

better capture the temporal dynamics of the trafficking. Performing the acquisition in 3D

is also superior, as the entire cellular volume can be sampled. In this work, two different
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strategies are considered. The first identifies sub-cellular regions of interest (ROIs). The

relative intensity of fluorescently labelled receptor, or ligand, is quantified for each ROI.

Typically, this approach is used to quantify receptor internalisation by placing a ROI

around the edge of the cell, and another ROI in the interior [6, 7].

The second strategy uses an additional flurophore to label sub-cellular structures of

interest, for example early endosomes, or lysosomes. Pixel based colocalization analysis

can then be performed to quantify the co-occurrence and correlation between the receptor

and the secondary marker [8, 9]. It is important to identify if either the level of colocal-

ization is higher than what one would expect for randomly distributed signal, or if there

is a change in the level of colocalization between conditions [10].

1.2 Aims

Cellular segmentation is conventionally a key step in the image analysis workflows used

to quantify receptor trafficking. One important aim of this work is to develop robust

and accurate protocols to segment the cellular boundary using only the signal from a

fluorescently labelled receptor. This problem is relatively simple if the majority of the

receptor is membrane bound but after ligand treatment, when the majority of the receptor

can be internalised, it is complex.

We also aim to develop adaptable workflows for the screening of trafficking regulators

using 2D fixed cell confocal microscopy. These workflows should be applicable for small to

medium scale screens, and should be suitable as a secondary screening protocol, using the

results of larger screens. We propose to take the results from a SILAC protemics screen

and then apply our microscopy based protocol to identify GEFs and GAPS which are

regulators of trafficking. To do this we aim to construct a single ROI based measurement

which should characterise changes to the trafficking response. We choose to define, and

use, a single measure only so that robust statistical tests can be used without losing
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significance as a result of multiple hypothesis correction.

Screen hits can be further validated using 3D time-lapse microscopy. Therefore our

final key aim is to develop adaptable workflows for this purpose. Specifically, the workflows

should verify and classify temporal changes to the ligand induced trafficking response. To

do this we propose to extend the ROI based approach, where a single ROI is placed

at the membrane, to a band-based analysis of the entire cellular volume. We should

also develop workflows for the visualisation and quantification of colocalization between

receptor and endosomes. These workflows should employ current best practice and be

able to identify population level changes in colocalization, both between treatments and

between time-points.

1.3 Contributions

In chapter 3 we present, to the best of our knowledge, the first application of 4D level

set segmentation to microscopy datasets. This approach uses a single level function to

segment the entire 4D volume [11, 12]. By incorporating temporal information, a statis-

tically significant improvement in segmentation performance, over equivalent 3D and 2D

implementations, is demonstrated. Two seminal level set frameworks are extended to 4D,

specifically the geodesic edge based and Chan-Vese region based formulations [13, 14]. To

the best of our knowledge we are the first to implement an edge based level set framework

in 4D. In all cases a distance regularized level set evolution term is introduced to the en-

ergy functional. This prevents the need for re-initialization and facilitates a simple finite

difference update scheme. Novel strategies for the scaling of the temporal derivatives are

presented. Finally, temporal constraints are introduced to further improve segmentation

performance. For example the segmentation can be encouraged to maintain a constant

volume over time.

In chapter 4, a single measurement strategy for the analysis of fluorescent microscopy
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based RNA interference screens for receptor trafficking is presented. In the proposed mea-

sure, the cellular volume is split into banded regions based on distance from the cellular

edge. The percentage of total cellular receptor in each band is then calculated. This

characterises the sub-cellular receptor distribution based on distance from the membrane.

A robust statistical analysis is then presented to identify hits using this banded measure.

A siRNA screen, across sixteen GEFs and GAPs, using 2D fixed cell confocal microscopy

is performed. Five hits are identified. Specifically IQSEC1, VAV2, TBC1D10B, TBC1D5

and USP6NL.

In chapter 5, adaptable workflows for the quantification of receptor trafficking using

live cell 4D datasets are presented. In all workflows cellular and nuclear segmentation

is facilitated using the 4D level set protocols introduced in chapter 3. The band-based

measure introduced in chapter 4 is extended to 3D and used to characterise the change

in receptor distribution over time. We also present automated protocols to quantify

receptor colocalization with endosomal sub-populations over time. These approaches are

validated by perturbing the trafficking response with three drug treatments; dynasore,

AG1478 and dasatanib. Using the band-based workflows, statistically significant changes

to ligand induced trafficking response are observed for the dynasore and AG1478 treated

populations (relative to an untreated control). Using the colocalization workflows, a

statistically significant change in the level of co-occurrence between EGFR and rab5

positive endosomes is demonstrated for the dynasore and AG1478 treated populations.
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Chapter 2

Introduction

2.1 Receptor Tyrosine Kinase Signalling

2.1.1 Structure

In 1954 neuronal growth factor was first described [15] and in 1962 epidermal growth

factor (EGF) was discovered and purified from mouse salivary gland extracts [16]. Over a

decade later the cellular EGF receptor, EGFR, was identified and shortly after the intrinsic

kinase activity was demonstrated [17, 18]. Since this seminal work, fifty-eight receptor

tyrosine Kinases (RTKs) have been identified in the human genome, which in turn can

be divided into twenty subcategories [19]. Cellular signalling by RTKs regulates a wide

range of important processes including embryonic development, mitosis, cell cycle control,

differentiation, apoptosis, cell migration, and wound healing [20, 21, 22, 23, 24, 25]. Since

RTKs are key regulators in so many pivotal processes, aberrant signalling can dramatically

affect the development and progression of numerous diseases, including cancer [26].

All RTKs are transmembrane spanning and have a conserved architecture. The in-

tracellular region consists of a juxtamembrane region, a tyrosine kinase domain(s) and a

carboxyl(C-) terminal. The extracellular region contains ligand binding domains which

are linked to the intracellular region via a transmembrane helix [27]. Inactive, plasma
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membrane localised receptors usually exist as monomers which oligomerise when acti-

vated by ligand binding [28]. However in some cases RTKs exist as oligomers before

ligand binding [29]. Upon ligand binding and oligomerization, a stable complex is formed

and conformational changes activate the tyrosine kinase domain. This triggers the auto-

phosphorylation of various intracellular sites which is performed in a controlled and precise

order [30, 31]. Following activation, a highly regulated combination of signalling and scaf-

folding proteins are recruited to the activated sites, which in turn triggers downstream

signalling cascades.

2.1.2 Epidermal Growth Factor Receptor and the ERBB Re-

ceptor Family

This thesis uses the epidermal growth factor receptor (EGFR) as a platform for the devel-

opment of both computational and experimental workflows designed for more generalised

use in the field of receptor trafficking and signalling. EGFR and its ligand, EGF, were one

of the first receptor-ligand systems to be discovered and is still the subject of extensive

study [17]. Therefore by using EGFR as a platform we aim to reach the largest possible

audience. However, EGFR is not a prototypical RTK and has a distinct structure and

function [32, 33].

EGFR (also known as ERBB1) is part of the ERBB family of RTKs which has three

other members; ERBB2/3/4. ERBB receptors are expressed in tissue types of epithe-

lial, mesenchymal and neuronal origin and mediate a wide range of biological responses.

ERBB ligands can be split into three subgroups [34]. The first has specificity for EGFR

and consists of EGF, amphiregulin, transforming growth factor receptor-α (TGF-α) and

epigen. The second has specificity for EGFR and ERBB4 and includes heparin binding

EGF, epiregulin and betacellulin. The final group has specificity for ERBB3 and ERBB4

and consists of neuregulins. Consequently, EGFR has a total of seven known ligands [33].
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Interestingly, ERBB2 has no known ligands and ERBB3 has no significant kinase

activity. However, both can form hetero-dimers (or oligomers) with other family members

to initiate ligand stimulated signalling. Furthermore ERBB2 is the preferred partner of

other family members (including EGFR), acting as an amplifier by initiating prolonged

and extensive activation of signalling pathways [35, 36].

The mechanism of ligand dependent activation for ERBB receptors is unusual in that

it is entirely receptor mediated and the ligands themselves are not involved directly in the

dimerisation interface [37]. Upon ligand binding, the conformation of the receptor changes

to expose extracellular binding sites which allows direct dimerisation between receptors

[38]. The intracellular tyrosine kinase domains consist of an activation loop, a N-Lobe

and a C-lobe. These three components interact to remove auto-inhibitory interactions and

allow the kinase domains to adopt active conformations. Again the ERBB mechanism

is unusual in that the dimer is asymmetric and no activation loop phosphorylation is

required [39, 40]. Therefore the active confirmation is achieved solely by conformational

changes within the dimer.

2.1.3 The EGFR Signalling Network

After ligand binding, dimerization and the activation of the intracellular kinase domains,

specific tyrosine residues are trans-autophosphorylated in a controlled and precise or-

der [30]. This second phase of activation enables the recruitment of cytoplasmic pro-

teins with either Src homology 2 (SH2) or phospho-tyrosine binding (PTB) domains [28].

This is followed by the corresponding recruitment of docking proteins, either directly or

indirectly via adaptor proteins. For example growth-factor-receptor bound-2 (GRB2),

Src-homology-2-containing (Shc) and signal transducer and activator of transcription-5

(STAT5) are all recruited directly to activated EGFR [41]. This feeds into a complex

network of signalling cascades and feedback mechanisms (figure 2.1). Key pathways ac-
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(a) (b)

Figure 2.1: The EGFR signalling network. (a) Activation and auto-phosphorylation
of EGFR triggers a complex network of signalling pathways with built in positive and
negative feedback loops. (b) The EGFR signalling network has a bowtie architecture.
The analogue early response phase consists of many variable inputs, including ligand type
and concentration and binding partner identity. Input information is processed by the
conserved core, including the MAPK/ERK and PI3K/AKT signalling structures. Finally
the binary outputs are implemented often transcriptionally by the outer layer. All three
layers communicate and regulate the overall response by early and late response feedback
mechanisms. Figure adapted from [28].

tivated by EGF stimulation of EGFR include the MAPK/ERK, PI3K/AKT, PLC/PKC

and JAK/STAT pathways [42]. Pathways have characteristic functional outputs, for ex-

ample the MAPK/ERK pathway is linked to cell cycle entry and PI3K/AKT to cell

survival and cell proliferation [43, 44, 45, 46]. Describing the details of this network is

beyond the scope of this study, however a basic understanding of the overall structure of

the network and the mechanisms employed to regulate it is important.

The EGFR signalling network can be effectively modelled with bowtie configuration

consisting of three key components (figure 2.1)[47]. The first component, the input layer,

consists of a broad range of analogue signals. Signals from the input layer are interpreted

and processed by a highly conserved core, the second component, to produce a digital

decision. This decision is then implemented by the 3rd layer, the output layer, to produce
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functional results.

This structure provides robustness which in turn ensures that the network can process

inconsistent signals and minimise the effects of system damage [36]. Crucially the network

is modular, consisting of autonomous sub-systems. At every level the network has exten-

sive redundancy. Redundancy is the existence of non-identical components which achieve

the same result. This allows the system to achieve a result even if some components are

perturbed, damaged or inactive.

The three layers are heavily interlinked with feedback mechanisms providing highly

sensitive regulation. These mechanisms control and tune signalling amplitude, duration

and response, and can either be positive or negative, increasing or decreasing the response.

Feedback can be split into two categories; early and late response. A key component

of early response regulation is the control of endocytosis, trafficking and degradation.

This is discussed in more detail in section 2.2. Regulation is also often achieved by up-

stream or inter-pathway phosphorylation events [48]. For example ERK phosphorylates

an inhibitory site of RAS, an upstream component of the MAPK/ERK pathway, hence at-

tenuating signalling for this specific pathway [49]. Conversely, activity in the PI3K/AKT

pathway will enable PI3K to phosphorylate RAS hence providing an additional route for

negative regulation of the MAPK/ERK pathway [50].

Additionally, signalling can be regulated by direct de-phosphorylation of EGFR kinase

by protein tyrosine phosphatases (PTPs) [51]. Furthermore, as an example of positive

feedback, EGFR signalling can induce rapid production of hydrogen peroxide which in-

hibits PTPs and reduces de-phosphorylation of EGFR [52, 53].

The regulation mechanisms discussed so far are all early response and are the most

relevant class with respect to this study. Late responses are typically transcriptional

and drive the production of new RNA and proteins, which in turn regulates signalling

[48]. These responses can begin to affect signalling approximately 45 minutes post EGF
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stimulation.

Finally microRNAs provide an alternative mechanism for signal regulation [54, 55, 56].

MicroRNA targets specific mRNA molecules to suppress protein expression and act on

both early and late time-scales. Avraham et al. (2010) show a coordinated reduction

in miRNA in response to EGF and demonstrate that miRNA can act as attenuators of

EGFR signalling [57].

2.2 Regulation of Signalling through Endocytosis and

Trafficking

Endocytosis, trafficking and signal transduction are heavily interconnected processes with

complex regulatory structure. In this section we cover the fundamental mechanisms of

endocytosis and trafficking before discussing the connection with signalling with an em-

phasis on the ERBB family. Finally, we discuss with examples, how the cross-linking of

these systems can influence development and disease, with an emphasis on cancer.

2.2.1 Endocytosis

Once activated, receptor activity is controlled by internalisation and manipulation in var-

ious endocytic pathways. For RTKs, clathrin mediated endocytosis (CME) is the most

well characterised mechanism for receptor internalisation, and in most cases is thought

to be dominant (figure 2.2) [58, 59]. However, it has been shown that clathrin indepen-

dent endocytosis (CIE) such as the caveolar or dynamin independent CDC42 regulated

mechanisms play an important role [60]. Interestingly, Sigismund et al. (2005) provide

evidence that low EGF concentrations induce predominantly CME of EGFR whereas high

concentrations result in a roughly equal ratio of CME to CIE [61]. Moreover a follow up

study revealed that most EGFR internalised by CME was recycled back to the plasma

membrane, attenuating the signalling response. Conversely, CIE was shown to commit
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Figure 2.2: Clathrin mediated endocytosis of RTKs. A simple model for clathrin
mediated endocytosis of RTKs [64]. Activated receptors cluster in clathrin rich regions of
the membrane. The membrane invaginates in these clathrin rich regions, encapsulating
a cargo of receptors and adaptor proteins including AP2. The mechanisms which control
and trigger the formation of these clathrin coated pits (CCPs) are complicated and much
remains to be understood. It is clear that AP2 plays a crucial role in the recruitment
and stabilisation of the clathrin coat. The GTPase dynamin plays a crucial role in the
formation of a constricting ring which severs the CCP from the plasma membrane.

EGFR to eventual degradation in lysosomes [62]. Therefore it is concluded that ligand

concentration and the endocytic entry route can combine to regulate the amplitude of a

signalling response. Moreover a recent study has shown that the ubiquitination of EGFR

is a threshold controlled process and strongly correlated to EGF concentration and en-

docytic entry route [63]. Receptor ubiquitination plays a pivotal role in the designation

of receptor for degradation and is mediated by the direct recruitment of Cbl (a family of

ubiquitin protein ligases) and Grb2. Together, these studies show that EGF concentration

can regulate receptor ubiquitination and the ratio of CIE. This is turn has consequences

for receptor degradation rate, signal amplitude and duration.

Ligand type can also influence the ratio of CIE and thus regulate signal attenuation.

Henriksen et al. (2013) suggest that EGF treatment initiates only CME, whereas other

ligands including heparin-binding EGF induced both CME and CIE [65]. Note that this

contradicts the Sigismund et al. studies discussed above [61, 62, 63]. Both studies use the
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HeLa cell line so this contradiction is attributed to variation in EGFR expression level,

thus suggesting another layer of regulation. Clearly much remains to be understood about

the mechanisms controlling the endocytic entry routes for EGFR [66].

The use of ligand concentration to control endocytic entry route is not unique to

EGFR; De Donatis et al. (2008) propose that for platelet derived growth factor receptors

(PDGFRs), the route of endocytosis is used as a switch to determine if signalling triggers

proliferation or migration [67]. The control for this switch is shown to be ligand con-

centration such that high ligand concentration triggers CIE and a proliferation response,

whereas low ligand concentration triggers CME and a migratory response. This example

also demonstrates that endocytosis and trafficking are not simply a means to control sig-

nal amplitude and duration, through either inactivation or degradation of receptor, but

can have functional influence. This is a key concept which will be discussed further in the

next section.

2.2.2 The Endocytic Network

Once internalised, receptors are processed within the endocytic network (figure 2.3) and

(predominantly) designated for one of two destinations: recycling back to the plasma

membrane or eventual degradation in lysosomes. The regulation of this network is complex

and intrinsically interlinked to the receptor signalling response (figure 2.1).

The reversible ubiquitination of receptor plays a prominent role in the regulation of

receptor trafficking and, as noted in the previous section, this can be regulated by the

endocytic route of entry [71]. Importantly, ubiquitinated receptor is identified and sorted

into intraluminal vesicles within multi-vesicle bodies (MVBs) by the ESCRT (endosomal

sorting complexes required for transport) machinery, a point of no return for a degradative

receptor fate.

Interestingly, the dimer partner of a receptor can influence its trafficking [72]. For
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Figure 2.3: The endocytic network. Once internalised by either clathrin mediated
(CME) or clathrin independent endocytosis (CIE), vesicles fuse with early endosomes
(EE). Note clathrin coated vesicles (CCV) lose their coat before fusion with EEs. RTKs
in early endosomes can then either be recycled back to the plasma membrane or re-
main in early endosomes which mature to form multi vesicular bodies / late endosomes
(MVB/LE). In general there are two recycling mechanisms. Firstly, there is recycling by
fast recycling endsomes (FRE) which is regulated by Rab4 and Rab35. Secondly, there
are slower pathways requiring a Rab11 positive intermediate endocytic recycling compart-
ment (SRE) [68]. Receptors are labelled for degradation via ubiquitination. Ubiquitinated
receptors are internalised into intraluminal vesicles within the MVB. This is done with the
help of endosomal sorting complexes required for transport (ESCRT). The MVBs then
fuse with lysosomes (Lys) where the receptors are degraded. RTKs can also be trans-
ported to other destinations, such as the nucleus [69] and mitochondria (MT) [70]. Figure
adapted from [59].
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example, when EGFR forms a heterodimer with ERBB2, then Cbl recruitment and the

consequential ubiquitination of the receptor is impaired [73]. Consequently, in cells ex-

pressing high levels of ERBB2, where the EGFR/ERBB2 hetero-dimer receptor pair is

more abundant, there is an associated reduction in degradation and increase in recycling

of receptor.

In addition, the pH stability of the ligand receptor interaction is important as lig-

and dissociation is associated with de-ubiquitination [74, 66]. Therefore, in addition to

controlling the endocytic entry route (section 2.2.1), ligand type can also increase signal

amplitude by dissociating at an early stage in the endocytic pathway. For example unlike

EGF/EGFR, the TGF-α/EGFR pair will dissociate in endosomes and avoid degradation

[75].

In the above discussion of trafficking and endocytosis there is a recurring theme;

various input parameters converge on the ubiquitination of receptor (a core process) to

determine receptor fate. Therefore, recycling of endosomes is often viewed as the default

option, taken if receptors are not actively labelled for degradation [66]. This is supported

by a study which uses a non-Ubiquitinated EGFR mutant to demonstrate an increase in

recycling from MVBs and an inability to internalise EGFR in intraluminal vesicles [76].

However this is also evidence for more active regulation of recycling. Specifically CAML,

eps15S and odin have all been identified as effectors of EGFR recycling [77, 78, 79, 66].

Interestingly, translocation of receptor to alternative organelles, including the nucleus

and mitochondria is possible. Since the initial observation of nuclei localised EGFR in

Hepatocytes by Marti et al. (1991) the field has been slow to realise its importance [80].

However, more recent work has highlighted the functional affects of nuclear RTKs, includ-

ing the regulation transcription and DNA-repair [81, 69]. Similarly Mitrocondial EGFR

localization has also been observed and linked to regulation of mitochondrial function and

apoptosis [70, 82]. Clearly, much more work is needed to fully understand the mechanisms
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regulating trafficking to these organelles.

2.2.3 Signalling within the Endocytic Network

It was originally thought that regulation of receptor signalling by endocytosis and traf-

ficking was limited to the control of the quantity of receptor on the plasma membrane,

providing a means to modulate signal attenuation and amplitude. However the endocytic

network is also essential for regulation of the signalling outcome. We have seen examples

of this and the converse; trafficking regulation by signalling in sections 2.2.1 and 2.2.2 .

Moreover the hypothesis that receptors can continue to signal after internalisation within

endosomes has transformed our understanding of the relationship between signalling and

trafficking. Early evidence for such signalling endosomes was provided by Di Guglielmo

et al. (1994), where it was demonstrated that activated EGFR, SHC, GRB2 and SOS

complexes (key components of the MAPK/ERK pathway) can exist in endosomes [83].

Additional early evidence was reported for neurons, where it was hypothesised that TrkA

receptor signalling within endosomes was necessary to explain the range and speed of

communication between the synapse and cell body [84, 85].

There is now a large quantity of evidence to support the signalling endosome hy-

pothesis. However two key concepts remain disputed; firstly, can endosomal signalling

contribute significantly to the overall signal amplitude, secondly can endosomal signalling

trigger functionally distinct responses [86]? We will now briefly review several studies

which provide evidence to support these concepts for EGFR signalling.

Viera et al. (1996) showed that inhibiting dynamin dependent endocytosis results in

a significant reduction in ERK activation, thus providing the first evidence that endoso-

mal signalling is significant in amplitude and can affect specific signalling pathways [58].

Furthermore Teis et al. (2006) demonstrated that MAPK/ERK complexes are anchored

to late endosomes by the adaptor protein p14. The authors disrupted p14 to demonstrate
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that MAPK/ERK signalling from late endosomes is required to maintain tissue home-

ostasis and regulate cell proliferation [87]. This is particularly interesting as it suggests

signalling response can be controlled within specific sub-endosomal populations. This is

true of other types of endosomes, for example Miaczynska et al. (2004) suggest that a

sub-population of early endosomes positive for rab5, APPL1 and APPL2 can regulate

cell proliferation [88]. It is proposed that in response to EGF internalisation, APPL1 is

released from the endosomal membrane to translocate to the nucleus. The concept of sub-

endosome specific signalling can be explained by the variable biochemical environments

available to receptors in different endosome types. These distinct endosomal platforms

can enable or restrict access to various signalling molecules and control ligand dissociation

though pH differences (section 2.2.2) [1].

Recent work has highlighted potential roles for endosomal signalling under physiolog-

ical conditions. Fortian et al. (2014) use live cell confocal microscopy to demonstrate,

through colocalization of EGFR and Grb2 in endosomes, that endosomal signalling is

significant under (near) physiological conditions and suggest it may even be dominant

for low expression levels of EGFR [6]. Interestingly, they also propose that receptor sig-

nalling may continue even after dissociation of ligand. Finally, Villasenor et al. (2015)

provide evidence, through FRET microscopy, that the mean quantity of phosphorylated

EGFR present in individual endosomes remains approximately constant with increased

EGF stimulation but the amount of EGFR positive endosomes increases [89]. Notably

they also show that a change in endosomal distribution of EGFR can trigger a functional

response, specifically a change in EGF distribution triggered neuronal differentiation in

PC12 cells.

Clearly the role of endosomal signalling is significant, the emphasis of future work

will be understanding its regulation and the full extent of the complex interlinking of the

signalling, trafficking and endocytic networks.
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2.2.4 Consequences for Cancer

Here we review the importance of receptor endocytosis, trafficking and signalling in cancer

research and treatment. We will do this with several non-exhaustive but illustrative exam-

ples and refer the interested readers to more complete reviews. Oncogenic signalling has

access to the same core regulatory processes used by healthy tissue but the positive and

negative feedback loops are manipulated to change functional responses (figure 2.1). Typ-

ically this is initiated either by gene amplification/suppression or genetic mutation [90].

Based on the previous discussions in this section it should be clear how simply the control

processes could be hijacked to facilitate oncogenesis. For example, simply over-expressing

ERBB2 will increase the proportion of EGFR/ERBB2 hetero-dimers which resist ubiqui-

tination and subsequent degradation leading to increased signal amplitude and duration

(section 2.2.2). It is unsurprising then that gene amplification leading to ERBB2 over-

expression is seen in many cancers, including a prominent role in breast cancer [91, 90].

Similarly, over-expression of ERBB3 in non-small cell lung cancer (NSCLC) leads to an

increased ratio of EGFR/ERBB3 hetero-dimers which in turn increases activation of the

PI3/AKT pathway [92].

Ligand-independent dimerisation of EGFR triggered either by receptor mutations or

over-expression plays an important role in oncogenesis [93, 66]. There is evidence that

constituently active EGFR mutations present in NSCLC do not effectively recruit Cbl

and therefore avoid ubiquitination and degradation [94]. Moreover Chung et al. (2009)

demonstrate that mutant EGFR has increased colocalization with recycling endosomes

[95]. The authors suggest that the recycling endosomes provide a signalling platform with

increased access to Src, a key mediator of oncogenesis in NSCLC [96].

The sprouty family (SPRY) of proteins are negative regulators of RTK signalling and

often down-regulated in cancer. Down-regulation of SPRY2 increases activation of the

PI3/AKT pathway [97, 66]. Interestingly this triggers increased receptor internalisation
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and also signalling from early endosomes, dependent on the presence of phosphatase and

tensin homolog (PTEN) [98]. This example is particularly noteworthy as the regulation

of signalling pathways, endocytosis and trafficking are all manipulated simultaneously to

produce an oncogenic response.

To date, there are only two treatment strategies which demonstrate anti-tumour ef-

ficiency and target EGFR; tyrosine kinase inhibitors (TKIs) and monoclonal antibodies.

Tyrosine kinase inhibitors such as lapatinib and gefitinib, target the intracellular kinase

domains of EGFR, whereas monoclonal antibodies such as cetuximab target the extracel-

lular ligand binding domains [66]. Cetuximab has been shown to increase overall survival

rates for specific cancers in combination with standard radio/chemo-therapy, which is

attributed to a reduction in EGFR expression levels [99]. Regulation of DNA repair and

anti-apoptotic responses leading to drug resistance have been associated with aberrant

stress induced trafficking of receptor. In conclusion, the regulatory mechanisms for endo-

cytosis and trafficking of receptor play important roles in cancer and there is significant

scope for treatments targeting these systems.

2.3 Small G Protein regulation by GEFs and GAPs

2.3.1 GEF and GAP Function

Small G-proteins are a large family of proteins which act as key components of signalling

pathways. Small G-proteins exist either in an active GTP bound state or an in-active

GDP bound state. Active small G-proteins recruit effector proteins and contribute in

many signalling scaffolds. In general, GTP is hydrolysed slowly and GTP/GDP are tightly

bound so both the active and in-active states are inherently stable [100]. Therefore the

critical and reversible switch between active and inactive states is predominantly induced

and regulated by two further classes of proteins; guanine exchange factors (GEFs) and

GTPase-activating proteins (GAPs).
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GEFs recruitment catalyses the release of both bound GTP and GDP from small

G-proteins. Conversely, GTP/GDP recruitment will induce dissociation of the GEF.

Therefore, increased GEF activity will dramatically increase the rate of switching between

bound and unbound states [101]. Although there is typically no significant preference for

the GTP bound state, the cellular concentration of GTP is typically ten times higher

than GDP. Therefore the net effect of GEF activity is a rapid increase in the proportion

of the GTP bound state, hence GEFs act as the activating switch (figure 2.4a) [102].

As already noted the basal rate of hydrolysis for GTP bound small G-proteins is

very low. GAPs function to catalyse and increase the hydrolysis rate, hence deacti-

vating G-proteins (figure 2.4b) [103]. Therefore it should be clear that together small

G-proteins, GEFs and GAPs form a three fold machinery which form and regulate bio-

chemical switches.

2.3.2 Ras regulation in Signalling and Trafficking

The Ras super-family are an important class of small G-proteins, heavily implicated in

signal regulation and with well established oncogenic consequences. There are 5 sub-

families of Ras proteins; Ras, Rab, Arf, Rho and Ran [104]. The Rab and Arf families

are of particular interest to this study due to numerous key roles in the regulation of

intracellular and membrane trafficking [105, 106]. In the interest of space we omit a

complete review of Ras signal regulation by GEFs and GAPs. Instead we briefly review

several illustrative examples focussing on two members of the Ras super-family; rab5 and

ARF6.

Rab proteins are essential regulators for all the core mechanisms of endocytic traffick-

ing including sorting, motility, (un)coating, fusion and tethering [105]. Rabs are localised

to the membranes of specific endosome sub-populations where they can act as specialised

recruiters for a large variety of effectors. rab5 is localised to a subpopulation of early endo-
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(a)

(b)

Figure 2.4: GEF and GAP function. (a) Guanine exchange factors (GEFs) bind to
small G-proteins and trigger the release of the bound nucleotide (NT) (GDP or GTP).
The process is reversible and the binding of GDP/GTP will trigger the release of the GEF.
This increases the rate of exchange towards an equilibrium where the ratio of bound GTP
to GDP is approximately equal to the unbound ratio. In physiological conditions this is
heavily weighted towards GTP, hence GEF activity facilitates activation of the small G-
protein. (b) GTPase-activating proteins (GAPs) facilitate the hydrolysis of bound GTP
and the consequential deactivation of the small G-protein. The mechanism is specific to
the type of GAP and G-protein. Figure adapted from [102].
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somes and has numerous well studied roles in the regulation of signalling and trafficking.

For example Semerdjieva et al. (2008) showed that in an active state, rab5 facilitates the

shedding of AP2 from clathrin coated vesicles, a necessary step for fusion with early en-

dosomes [107]. Furthermore, it is suggested that the rab5 GEF, hRME-6 but not rabex-5

(a second rab5 GEF) is responsible for regulating this process. Hence the activation of

rab5 to facilitate the shedding mechanism is shown to be induced by specific GEFs. This

highlights that GEFs and GAPs can regulate the functional effect of the switch as well as

the on/off state. This specificity can be understood by the existence of distinct activation

sites on the small G-proteins. Alternatively, the GEF/GAP may act as a scaffold capable

of recruiting specific effectors [102]. Other roles for rab5 include facilitating endosomal

fusion [108, 109] and regulating transport along microtubules [110].

As discussed in section 2.2, there is inherent cross talk between the regulation of

signalling and trafficking. To see an explicit example of this for rab5 we note that EGF

stimulation of EGFR will induce recruitment of Grb2 to the phosphorylated receptor

(section 2.1.3), this will trigger activation of Ras by the GEF SOS1 [105]. Activated Ras

will bind to and activate RIN1, a GEF for rab5. We have already seen an example of

EGF induced GEF activation of rab5 in section 2.2.3 where the rab5 effectors APPL1

and APPL2 trigger transduction of EGFR signalling to the nucleus [88]. In addition

to nuclear transduction, rab5 recruitment of APPL1 in signalling endosomes has been

demonstrated to regulate cell survival in zebrafish development [111]. Furthermore RIN1

activation of rab5 has been shown to regulate EGFR endocytosis , endosome fusion [112]

and promote receptor degradation over recycling [113]. A recent study by Balaji et al.

(2012) demonstrates that the proportion of receptor recycling can be regulated by RIN1

through control of the balance between rab5 and ABL tyrosine kinase activation [114].

ARF6 is localised to either the plasma or endosomal membranes and is heavily impli-

cated in the regulation of endosomal trafficking and actin organisation [115]. ARF6 has
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been shown to regulate endosomal recycling for various receptor systems [116]. Interest-

ingly, active ARF6 can induce different trafficking and physiological outcomes dependent

on the specific receptor being trafficked [117]. For example ARF6 activity can increase

receptor recycling and signal duration for EGFR and integrins [118] but increase lysoso-

mal targeting for E-cadherin [119]. Allaire et al. (2013) suggest a mechanism involving

interplay with rab35 and the ARF6 GAP; ACAP2 to explain this [117].

2.3.3 Implications for Cancer

As seen in the previous section the regulation of signalling, trafficking and endocytosis by

the Ras super-family is a very complex interwoven process with many integral feedback

loops. GEFs and GAPs provide a focal point in many of these mechanisms and can act as

both on/off and decision making switches. Unsurprisingly then, the GEFs and GAPs of

the Ras super-family are extensively associated with cancer. Here we give two examples

of where aberrant GEF and GAP activity is implicated in oncogenic EGFR signalling.

For a more complete review we refer to Vigil et al. (2010) [104]. The potential of GEFs

and GAPs for targeting drug delivery is also briefly discussed.

The Arf subfamily, notably ARF1 and ARF6, are implicated in cancer. For example

ARF6 is implicated in the growth and invasion of breast cancer [120] and melanoma

[121, 104]. The ARF6 effector, AMAP1, is linked to cancer invasion and the ARF6 GEF,

IQSEC1 (also known as GEP100), links EGFR signalling to ARF6 activation and AMAP1

recruitment [122]. This is achieved by direct binding of IQSEC1 to EGFR after ligand

stimulation. Furthermore AMAP1 and ARF6 are over-expressed in breast cancer and this

pathway is implicated in ductal cancers [123].

VAV2 is a GEF for the Rho subfamily of Ras. VAV2 hyper-activation has been im-

plicated in tumour growth of several cancers [124, 104] and specifically linked to a EGFR

signalling response for head and neck squamous cell carcinoma (HNSCC) [125]. In a note-
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worthy study, Thalappilly et al. (2010) demonstrated that VAV2 knockdown increased

the rate of EGF stimulated EGFR degradation and net internalisation [126]. Further-

more VAV2 over-expression was shown to increase phosphorylation of ERK and Akt,

while knockdown reduced cell growth.

The specificity and importance of the mechanisms regulated by GEFs and GAPs

make for desirable drug targets. However the chemical characteristics of GEFs/GAPs

make them unsuitable for commonly employed methods of small molecule inhibition.

However some proof of concept drugs such as the Arf GEF inhibitors, Brefeldin A [127]

and LM11 [128, 104] have been developed. There is substantial optimism in the field that

a wider range of targeted inhibitors for both GEFs and GAPs will be developed for cancer

treatment [104].

2.4 Fluorescence Microscopy

2.4.1 The Stokes’ Shift

The first observations of the fluorescence process is commonly attributed to John Herschel

(1845) who observed that when illuminated by sunlight, the outer regions of a quinine

solution (tonic) would admit blue light, an effect amplified by adding ethanol (gin) [129].

Gabriel Stokes’ seminal work (1852) built on these observations by designing an experi-

ment using two bandpass filters [130]. The first, the excitation filter (a blue stained glass

window), selected wavelengths less than approximately 400nm. This filtered light was

used to illuminate the quinine solution and the second filter, the emission filter, (glass of

white wine with yellow tint) was used to filter light passing though this solution. Stokes

could not observe the non-visible UV excitation light but could see the visible component

through the emission filter. As the second filter would only pass wavelengths greater

than 400nm is was concluded that the quinine solution was absorbing the UV light and

emitting a light of longer wavelength (lower energy).
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The process described by Stokes is fluorescence and the difference between the wave-

lengths of the emission and excitation profile peaks is referred to as the Stokes’ shift (figure

2.5b). In Stokes’ experiments quinine is responsible for the observed fluorescence and is

the first example of a fluorophore. The fluorescence mechanism can be easily understood

by use of a Jablonski diagram as shown in figure 2.5a [131].

2.4.2 The Epi-fluorescence Microscope

Oskar Heimstädt [132] invented the fluorescence microscope by introducing emission and

excitation filters into the optical path (1911). A typical configuration for a modern in-

verted fluorescence microscope in shown in figure 2.6.

Before considering the process of image formation for a light microscope first, note

that the wave-like properties of light demand that light passing though a convergent

lens must diffract. Therefore, if we consider the theoretical imaging of an infinitesimally

small fluorescent point source, the light focused onto the image plane will have a 3D

diffraction pattern. The corresponding image captured by the camera will be a discretized

representation of this pattern. The fringes of the diffraction pattern depend on two key

parameters. Firstly, the wavelength of light will determine the location of the peaks

formed by constructive and destructive interference. The smaller the wavelength the finer

the pattern. The second key parameter is the numerical aperture, NA, of the objective

lens which is defined as,

NA = n sin θ (2.4.1)

where n is the refractive index of the working media and θ is the half angle of the

maximal cone of light collected by the lens. The numerical aperture characterises the

efficiency of the objective lens to collect the emission light and the information it carries.

Therefore a high NA will result in both a brighter signal and finer diffraction fringes.
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(a) (b)

Figure 2.5: Fluorophore properties. (a) A simplified Jablonski Diagram showing a
subset of the quantised electron energy states for a fluorophore. Electrons in the ground
state, S0, can absorb photons from incident light with energy, E1, in the neighbourhood of
the energy transition and corresponding frequency, v1, and move to the excited state, S2.
Electrons in S2 can decay to a lower energy excited state, S1, without emitting photons.
This internal energy conversion is typically achieved by radiative heat loss. Electrons in
the S1 state which radiatively decay to S0 will emit photons of (average) lower frequency,
v2, than the excitation light due to the smaller energy difference. Photons can also
move back to S0 by non-radiative decay from various mechanisms including heat loss or
transfer of energy to adjacent molecules. An important (wavelength dependent) property
of a fluorophore is the ratio of emitted to absorbed photons which is referred to as the
quantum yield. (b) A fluorophore will absorb a range of incident wavelengths with varying
efficiency. This is referred to as the emission spectra. Similarly, a fluorophore will emit
at a range of wavelengths with varying probability as seen in the emission spectra. The
difference between the excitation and absorption maximum is referred to as the Stokes’
shift. In fluorescence microscopy, a large Stokes’ shift is desirable as it minimises spectral
overlap, which is turn enables effective separation of the emitted and excitation light.
The brightness of a fluorophore at a particular wavelength is defined as the product of
the absorption and quantum yield. The brighter the fluorophore the lower the required
illumination intensity necessary to achieve sufficient image contrast. Low illumination
intensity is beneficial as it reduces bleaching and photo-toxic effects.

35



Figure 2.6: The epi-fluorescence microscope. To understand the modern epi-
fluorescence microscope, it is beneficial to first review the basics of epi-illumination mi-
croscopy. First, consider sample illumination where the entire field of view should be
exposed to the excitation light source. Typical light sources include mercury or xenon
lamps but newer systems may use LED sources which offer more flexible and specific
wavelength coverage. It is desirable for the sample illumination to be even. Even illu-
mination is produced by a combination of lenses which combine to ensure that light is
perfectly de-focussed at the sample plane. This is called Köhler illumination and is, in
practice, achieved by correct calibration of the collector, field, convex and objective lenses
[133]. Once illuminated, light from the sample should be collected and magnified to an
image plane where a detection device can be placed. This is achieved by the objective and
tube lenses. Modern objective lenses typically consist of many individual lenses designed
to correct for spherical, chromatic and off axis aberrations. A dichroic mirror is used to
separate the two converging light paths. The detection device is typically a highly sen-
sitive CCD chip which converts the continuous signal into discrete image data. Finally,
consider the two filters necessary for epi-fluorescence microscopy. The excitation filter
should select wavelengths necessary to excite the fluorophore(s) of interest. The emission
filter should select the longer wavelength emission light and be distinct to those selected
by the excitation filter. Modern filters often employ interference rather than absorption
and allow for multiple narrow bands of transmission.
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Figure 2.7: The theoretical point
spread function. Point spread func-
tion, PSF , for an epi-fluorescence mi-
croscope. (a) The lateral plane (xy) of
the diffraction pattern is an Airy func-
tion. (b) With contrast enhancement
the fringes are easily visible. The dis-
tance between fringes limit the resolu-
tion of the microscope. (c) The axial
(xz) form of the point spread function
is more blurred than the lateral cross
section. (d) Axial view with contrast
enhancement. The fringes are spread
further apart, hence axial resolution is
worse than lateral. PSF generated in
Matlab (2015a) using the PSF genera-
tor developed by the Biomedical Imag-
ing Group (EPFL, Switzerland) [134].

The 3D diffraction pattern created by a point emitter is referred to as the point spread

function, PSF , of the microscope. Note, here and in all further discussion when referring

to the PSF , we are referring to the intensity projection. The theoretical PSF for an

epi-fluorescence microscope is shown in figure 2.7. When viewed in the xy plane, the

PSF has the form of an airy disk.

It is worth noting that the theoretical PSF is a best case scenario and inevitably, small

imperfections and aberrations in the system mean it can never be achieved in practice.

When considering a real system we do not have ideal isolated point-emitters but highly

complex biological samples emitting a combined signal, which we denote, f(x, y, z). In

this case the image formation process can be described by the convolution,

I(x, y, z) = (f ⊗ PSF )(x, y, z) = F−1(F (f)× F (PSF )) (2.4.2)

where F : R → C is the Fourier transform and I(x, y, z) is the optical image formed

at the image plane which is subsequently digitised by a CCD camera.
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Having described the image formation process, it should be clear that the resolution is

limited by the PSF . If we define resolution as the minimal separation distance for which

two point emitters can be distinguished then there are several different ways of describing

the resolution limit. The Rayleigh criterion is commonly used in microscopy which defines

the resolution limit, R, as the distance between the centre and the first minimum of the

PSF [135]. For the lateral and axial cases this is given by,

Rxy =
0.61λ

NA
Rz =

2nλ

NA2 (2.4.3)

where λ is the wavelength of the emitted fluorescence and n is the refractive index

of the mounting/immersion medium. Note that the axial resolution limit is significantly

worse than the lateral. As an example, consider imaging at λ = 400nm with a 100×

1.4NA oil (n = 1.5) objective, then the lateral and axial resolution limits as defined by

the Rayleigh criterion will be Rxy ' 174nm and Rxy ' 612nm respectively.

Finally consider the sampling of the CCD camera. To capture all the available infor-

mation at the highest possible resolution, and avoid aliasing artefacts, the sampling rate

should be at least twice the limit of resolution. This is known as the Nyquist rate. As

an example consider a lateral resolution limit, Rxy ' 200, then each pixel in the image

should represent less than 100nm in real space. It is worth noting that sampling at a rate

substantially above the Nyquist rate is wasteful and will result in unnecessary large data

sets. Sampling below the Nyquist rate can be used to limit data size, increase acquisi-

tion speed (for line scanning methods) or increase signal (through binning) at the cost of

resolution and the risk of artefacts.

2.4.3 The Confocal Microscope

In many applications the key drawback of epi-fluorescence microscopy is the lack of an

intrinsic ability to distinguish between in-focus and out of focus light sources. This can be
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addressed computationally by a class of techniques referred to as deconvolution. This can

produce excellent results but is typically computationally expensive. Alternately, or in

parallel, the optical configuration can be modified to minimise out of focus contributions

to the image. In confocal microscopy this is done by placing a pinhole in the plane

conjugate to the sample. This will (predominantly) block light originating from out of

focus sources. Combined with a focused laser beam for excitation, this is refereed to as

optical sectioning (figure 2.8). To construct an image, the laser beam is raster scanned

across the sample. A 3D volume can be easily acquired by moving the sample in small

steps through the focal plane where an image (slice) is acquired for each step.

A principal drawback of confocal microscopy is that acquisition time is limited by the

scan speed of the laser, typically about 1 second per image. To combat this, sophisticated

scanning devices such as resonance scanners, which use oscillating mirrors, can be incor-

porated to greatly increase acquisition speed. Alternately, multiple excitation volumes

can be generated using a micro-lens array. With this approach many spatially distinct

measurements can be recorded simultaneously using an array of pinholes and a camera.

This is called spinning disk confocal microscopy.

To consider the theoretical resolution limit for a confocal microscope, it is important to

note that the excitation volume is restricted to a near-diffraction limited spot. Therefore

the point spread function of a confocal microscope, PSFcon, will be the product of the

point spread functions for the observation, PSFobs and the illumination, PSFill, optics

[137]. In the case where the same optics are used for illumination and acquisition this

product can be approximated as follows,

PSFcon = PSFobs(λex) · PSFill(λem) ' PSF 2
obs (2.4.4)

where λex and λem are the wavelengths of the excited and emitted fluorescent light

respectively. Therefore, the point source diffraction pattern for a laser scanning micro-
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Figure 2.8: The confocal microscope. In confocal microscopy a collimated laser
beam is focused by the objective lens onto a small focal volume on the sample plane. The
in-focus light is filtered by placing a pinhole aperture at the conjugate sample plane. The
intensity read out for this single excitation volume can then be recorded by a detector.
Typically a photo multiplier tube (PMT) is used due to high read speed. To image off axis,
the laser beam is raster scanned across the sample using two galvanometers (oscillating
mirrors). The light is then de-scanned (the off axis perturbation is reversed) by the
same mirrors to ensure that the in-focus light passes through the pinhole. Figure partly
reproduced with permission from [136].
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scope will have finer fringes than the pattern produced by an epi-illumination microscope

and the corresponding resolution limit will be improved. For a confocal microscope the

Rayleigh criterion is given by,

Rxy =
0.44λ

NA
Rz =

1.5nλ

NA2 (2.4.5)

which represents a small improvement over the epi-fluorescence microscope (equation

2.4.3).

The effect of the pinhole aperture should also be considered as it will further modify

the axial resolution; the smaller the pinhole the better the axial resolution. However

reducing the pinhole size will reduce the signal to noise ratio (SNR) and hence there must

be a practical compromise. Typically, the pinhole is set to the diameter of the central

Airy peak but for dim or live samples it may need to be larger.

2.4.4 Noise in Fluorescence Microscopy

When working with any imaging system it is useful to understand the various sources

of noise corrupting the image formation process. Typically, the noise generated in the

digital acquisition of fluorescence microscopy images can be modelled as originating from

three sources [138, 139];

1. Dark (or thermal) noise is inherent to the detection device (typically a CCD or

PMT) and is independent of the incident illumination signal. Dark noise is well

modelled by a Poisson distribution. Typically, dark noise is triggered by the thermal

excitation of electrons and is therefore dependent on the temperature of the detector.

Detector cooling systems are often employed to reduce dark noise.

2. Read (or amplifier) noise is associated with the amplification of a signal to ob-
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tain a voltage reading that is subsequently digitalised. This form of noise is more

predominant in CCDs than PMTs and can be modelled with an additive Gaussian

distribution. Read noise is also signal independent.

3. Shot (or photon) noise is caused by inherent statistical variation in the arrival time

of photons at the detector . This quantum mechanically derived stochastic process is

unavoidable and provides a theoretical limit for the SNR. Shot noise can be modelled

as a Poisson distribution. Note however that for large numbers of incident photons,

the Poisson statistics will tend towards a symmetric normal distribution.

Collectively system noise can be modelled as a mixed Poisson-Gaussian distribution

[140];

I = Gaussian + Poisson(ω, I0) (2.4.6)

where I0 and I are the incident and noisy signals respectively and ω is the detector

gain. In the regime where the signal is strong, dark and read noise are dominant and

the photon noise is normally distrusted. Therefore under these conditions the total noise

can be approximated with Gaussian statistics. However in fluorescence microscopy the

signal is often weak and photon (Poisson) noise is dominant. This is likely to be the case

in live-cell imaging where low illumination intensity (and high detector gain) is used to

avoid photo-damage.

2.4.5 Choosing Fluorescent Probes

Fluorescent microscopy has become one of the most extensively used and insightful tools

in biological research. This is due to two key advantages it has over other high resolution

imaging techniques. Firstly, the contrast between signal and background is inherently

high, and secondly the specificity for molecules of interest is unparalleled. This specificity
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is provided by a wide range of fluorescent probes and corresponding labelling techniques.

When choosing a probe it is essential to consider properties such as brightness and

the spectral absorption and emission as discussed in figure 2.5. It is also necessary to

consider the photo-stability and photo-toxicity of the probe, especially for live cell imaging

[141]. When undergoing repeated fluorescence excitation, all fluorophores will eventually

photobleach; an irreversible process involving interactions with surrounding molecules such

that the fluorophore can no longer fluoresce. Probes with poor photo-stability will bleach

at a higher rate and thus may be unsuitable for time-lapse or 3D imaging.

When performing multi-colour fluorescence microscopy, it is also necessary to consider

spectral overlap between probes, the light source(s) and the emission and excitation filters

to avoid crosstalk (bleed-through) [142]. Crosstalk is the detection of signal from one probe

in a second probe’s channel, and it is particularly important to avoid when performing

colocalization analysis. The various sources of crosstalk are described in figure 2.9. Note,

the terms crosstalk and bleed-through are often used interchangeably to describe all the

situations presented in figure 2.9 (this is the approach taken in this thesis). However,

in some studies cross-emission is referred to as bleed-through (figure 2.9a), and cross-

excitation as crosstalk (figure 2.9b).

Prevalent labelling techniques include immuno-labelling, genetic tagging and direct

conjugation of fluorophore. However there are numerous other approaches including the

use of quantum dots (semi-conducting nano-crystals) which are very bright, photo-stable

and have highly adaptable spectral properties [144]. Immuno-labelling uses antibodies to

attach small fluorophores to proteins of interest. Typically, primary antibodies are used

to recognise the protein of interest and secondary antibodies to attach the fluorophore.

This approach is not normally applicable to live cell imaging as the sample should be

fixed and permeabilized. Live cell imaging has been combined with immuno-labelling to

visualise internalised proteins but may trigger oligomerization [145].
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(a) (b) (c)

Figure 2.9: Sources of crosstalk. Crosstalk (or bleed-through) is a common problem
in multi-channel fluorescence microscopy. Dashed and solid lines represent absorption
and emission spectra respectively. Probe A represents the probe with lower peak absorp-
tion. There are three sources of crosstalk; (a) Emission from probe A (DAPI) overlaps
with emission filter for probe B (Alexa Fluor 488). (b) Excitation of probe A (RFP)
also excites probe B (YFP) (c) Emission from probe A (CFP) overlaps with excitation
filters and/or absorption spectra for probe B (RFP). To avoid crosstalk, probes with well
separated spectra must be chosen and sequential (as opposed to simultaneous) excitation
and acquisition of colour channels can greatly reduce some effects. It is often necessary to
perform singly labelled controls which can be used for computational correction. Figure
adapted from [143].

In genetic tagging approaches, the fluorophore is bonded covalently to the protein of

interest. The binding is typically achieved by introducing cDNA with transfection or

transgenic protocols. This approach was revolutionised by the discovery and purification

of the green fluorescent protein (GFP) from the jellyfish; Aequorea victoria [146, 147],

and later the red fluorescent protein dsRed from anthozoan corals [148]. These and other

natural fluorescent proteins have been modified to provide many variants with desirable

properties such as greater photo-stability, narrow and varied absorption and emission

spectra, pH sensitivity and increased brightness. Genetic tagging is ideal for live cell

imaging, but over-expression, and the size/bonding of the fluorescent protein may affect

the protein function.
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2.5 Selected Noise Removal Strategies for Fluores-

cence Microscopy

Noise removal (or de-noising) is the process of computationally removing corruption within

data, which was generated during acquisition. Typically this is done by devising strate-

gies which are based on a statistical model for the noise, n(I), and assumptions about

the underlying gradient of the true signal, I0. As discussed in section 2.4.4, noise in fluo-

rescence microscopy is well modelled by a mixed Poisson-Gaussian distribution (equation

2.4.6) which is often dominated by its Poisson component. Here we review a combination

of basic and sophisticated strategies for noise removal. This review is not exhaustive and

emphasis is placed on the methods used in this work. For a more complete review we refer

the interested reader to Buades et al. (2005) and the literature referenced throughout this

section [149].

2.5.1 Matched filtering and Gaussian blurring

In a matched filtering approach the underlying signal is modelled as a construct of a

specific impulse response, and the maximum signal to noise ratio (SNR) is restored by

convolution with the conjugated time-reversed impulse [150]. In fluorescence microscopy,

the PSF can be considered the impulse response for the system. Note that Gaussian

approximations for the PSF are accurate in 2D for epi-fluorescence, and in both 2D/3D

for confocal microscopy. Therefore, the use of Gaussian blurring can be considered a

matched filtering approach with the PSF [151]. Gaussian blurring is a very popular and

simple approach to de-noising fluorescence microscopy data, and can be described as;

IG = I(x, y)⊗G(x, y, σ) (2.5.1)

where IG is the blurred data, I(x, y) is the raw data and G(x, y, σ) is the Gaussian
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kernel with standard deviation σ;

G(x, y, σ) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
(2.5.2)

In this approach there is an assumption of additive noise which is true for Gaussian but

not Poisson noise [152]. However, in practice this procedure will often produce adequate

results if the signal is bright. As already noted under this regime, the Poisson distribution

will tend towards a normal distribution where an additive noise assumption is valid.

Typically the standard deviation of the kernel, σ, is set to the width of the PSF (although

it can be higher for larger features of interest); note this will suppress sub-diffraction limit

spatial frequencies which are characteristic of noise.

2.5.2 Other Simple Filtering Schemes

There are many other examples of simple filtering schemes for de-noising. Notable meth-

ods include mean, median and Laplacian of Gaussian (LoG) filtering. Mean and median

filters replace each pixel with the mean or median of its local neighbourhood respectively.

Mean filtering is linear and computationally cheap but unwanted smoothing effects are

significant. Median filtering is a non-linear process which is effective for removal of salt

and pepper impulse noise and edge preservation.

LoG filtering is the process of Gaussian smoothing followed by Laplacian filtering and

can be calculated by convolution with the following function,

LoG(x, y, σ) = − 1

σπ4

(
1− x2 + y2

2σ2

)
exp

(
− x2 + y2

2σ2

)
(2.5.3)

LoG filtering is an effective and computationally cheap method for detection of spot

like objects in fluorescence microscopy [153, 154].
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2.5.3 Wavelet Transforms

Wavelet transforms are an important class of transforms which can represent image data

with an orthonormal series derived from a wavelet. This is analogous to the well known

Fourier transform which represents an image as a series of sinusoidal waves [155]. Thresh-

olding within wavelet domains provides a powerful platform for image de-noising by al-

lowing subtle and targeted access to spatial-frequency information [156].

Undecimated wavelet transforms (UWTs) are often used for image de-noising in flu-

orescence microscopy. The transforms are undecimated, meaning that there is no down-

sampling step as used in more conventional discrete transforms, such as the bi-orthogonal

wavelet transform used in JPEG2000 file compression [157]. The main advantage of

using an undecimated approach is translational invariance (important for images), but

redundancy in the wavelet coefficients means computational costs are higher [158]. This

approach was first implemented by Holschneider et al. (1989) with the well known and

elegant algorithme á trous [159].

The isotropic undecimated wavelet transform (IUWT) is a specific example of an

UWT, with origins in astronomy where isotropic objects such as stars are commonplace.

It is also well matched to the isotropic objects often found in fluorescence microscopy

[160].

UWTs are multi-resolution approaches where the image is decomposed into a series

of N images, each sampling at a different resolution. In the popular B3-spline implemen-

tation of the á trous algorithm as proposed by Stark et al. (1995) we can describe the

wavelet planes, Wn, where n = 1, ..., N as [161],

Wn(x, y) = I0(x, y)⊗ hn−1 − I0(x, y)⊗ hn = In−1(x, y)− In(x, y) (2.5.4)

where h1, ...hN represent the kernels for a set of filters which sample at increasing res-
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olution [152]. In this multi-resolution representation, individual thresholds can be applied

to each wavelet coefficient to remove noise. This can be done with either hard or more

complicated soft thresholding schemes to produce modified wavelet planes, W̃1, ..., W̃N .

Finally the inverse transformation is computed;

IW (x, y) = IN(x, y) +
N∑
n=1

W̃n(x, y) (2.5.5)

where IW is the de-noised image. Wavelet de-noising schemes are very effective but

may introduce artifacts at edges or point like objects [157]. Standard wavelet approaches

are well suited to Gaussian noise. To account for Poisson noise, non-linear variance

stabilising transforms, such as the Anscombe transform [162], can be used as a pre-

processing step to produce approximately Gaussian data [163]. This step must be reversed

by inverse transforms after the wavelet de-noising. There are additional strategies for

processing Poisson noise including wavelet domain Wiener filters [164] and hypothesis

testing [165].

2.5.4 Noise Removal using the PURE-LET Scheme

Here we briefly describe the PURE scheme for noise removal of Poisson or mixed Poisson-

Gaussian noise as introduced in two papers by Luisier et al. (2010, 2011)[166, 140]. We

provide detail on this approach as it is used extensively in this work.

In the PURE-LET scheme for Poisson noise removal the Haar discrete wavelet trans-

form (HDRT) is used as it preserves Poisson statistics at some resolution planes [166].

The authors design a wavelet domain mean squared error estimate for Poisson corruption

termed the Poisson unbiased risk estimate (PURE). The orthogonality of the wavelet

basis allows for independent minimisation of the PURE in each wavelet plane using a

set of linear parameterisations for de-noising processes, termed the linear expansion of

thresholds (LET) [167].

48



This approach has lower computational requirements than comparable techniques for

Poisson noise removal at no cost in performance. Crucially, it can operate parameter free

where all necessary information is derived automatically from the image. The extension

to mixed Poisson-Gaussian noise requires a different mean squared error estimate and

must be optimised in the image domain due to loss of a guaranteed orthonormal basis

[140].

2.6 Colocalization Analysis

In fluorescence microscopy, colocalization studies compare the spatial distributions of

multiple fluorescent labels. Typically this is done to establish if two labelled proteins

colocalize to the same organelle or sub-cellular location. This is one of the most common

and important applications of fluorescence microscopy, however it is often misunderstood

or poorly implemented. In this section we critically review the different colocalization

strategies commonly used in the study of receptor trafficking, and cover recent develop-

ments in methodology. For the interested reader there are several excellent reviews on

the subject [168, 169, 9, 170].

It is worth noting that due to the physical limits on spatial resolution, conventional flu-

orescence microscopy techniques are inappropriate for determining the existence of direct

protein-protein interaction (equations 2.4.3, 2.4.5) [9]. Even super-resolution techniques

such as SIM [171], STED [172], or localization microscopy [173, 174] are not well suited for

the confirmation of direct interaction. However, techniques such as Förster Resonance En-

ergy Transfer (FRET) microscopy [175] or Fluorescence Cross-Correlation Spectroscopy

(FCCS) [176] can be used for this purpose. Conversely, dipole-dipole coupling is required

for FRET, hence it is unsuitable for determining association over larger distances, for

example within endosomes [168].

Formally, colocalization studies should confirm the existence of a (statistically signif-
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(a) (b)

Figure 2.10: Pixel and object based colocalization analysis. (a) Pixel based
colocalization analysis measures the correlation and/or overlap of each pixel separately.
(b) Object based colocalization analysis use spot detection protocols to calculate clustering
statistics such as Ripley’s K-function over varying distance scales, r.

icant) relationship between two or more spatial distributions of fluorophores on a (often

unknown) distance scale, r. If r is less than the resolution limit of the microscope, then

we can look at correlation and/or overlap between channels on a pixel by pixel basis, but

cannot determine r (section 2.6.1, figure 2.10a). An alternative approach is to detect the

COM of individual objects and calculate clustering related statistics to determine colo-

calization (section 2.6.2, figure 2.10b). Such object based approaches are applicable for all

r, and if r is greater than the resolution limit, its range can be specified.

The testing of statistical significance when quantifying colocalization is a vital but

often ignored element of colocalization analysis. Clearly it is necessary to perform sta-

tistical tests to determine if the measured colocalization is greater than the basal level

where each fluorophore is randomly distributed within the region of interest (ROI), for

example the cytoplasm. If this step is skipped, then it is not known if the colocalization

is simply a result of the random overlap (or proximity) between fluorophores.

Finally, before discussing specific quantitative measures for colocalization, we note that

in many studies colocalization is determined qualitatively by visual inspection of the data.

There are two primary methods for doing this. Firstly, images can be placed side by side or
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overlayed to produce a composite RGB colour image where colocalization is interpreted

by the presence of yellow pixels (in the case of red and green look up tables)(figure

2.11c). This is not informative and clearly very dependent on (usually unconscious) user

bias. Moreover, relatively small changes in the way the data is visualized (contrast,

brightness, look up tables etc) can dramatically change the interpretation. A second,

more informative way to visualise colocalization for two channels, is to plot the data as

a joint histogram (figure 2.11e) where the presence of a linear trend is conventionally

seen as good evidence for colocalization. However, joint histogram visualisation should

complement and not replace quantitative analysis. Moreover (as discussed in detail in

chapter 5) a linear correlation does not well model the spatial temporal dynamics for

colocalization between receptor and endosomes.

2.6.1 Pixel-based Colocalization Measures

In pixel-based measures there are two fundamental strategies for measuring colocalization

[177]. Firstly, there is the measurement of co-occurrence or (weighted) overlap. Secondly,

there is the more abstract measurement of statistical correlation where the relationships

between the relative intensities for each pixel are considered.

The Pearson Coefficient (PC)

The Pearson coefficient (PC), R, is a popular correlation measure which was first used

for colocalization analysis in fluorescence microscopy by Manders et al. (1992) [178]. It

is defined as,

R(C1, C2) =

∑
i(C1,i − C1)(C2,i − C2)√∑

i(C1,i − C1)2

√∑
i(C2,i − C2)2

=
cov(C1, C2)

σ1σ2

(2.6.1)

where C1, C2 are vectors containing the data from the two spectral channels such

that Cj,1, ..., Cj,n are the individual pixels values for channel j. Cj and σj are the mean
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(a) (b) (c)

(d) (e)

Figure 2.11: Visualising colocalization. (a) Distribution of EGFR-EGFP (b) Distri-
bution of rab5-mRFP. (c) Visualising the colocalization between EGFR-GFP and rab5-
RFP using an overlay isn’t informative and is very dependent on image display parameters.
(d) A joint histogram (log scale) is a superior way to visualise colocalization. If the major-
ity of the data points are well represented by a linear fit, this is considered good evidence
for colocalization (visual inspection). Ideally the joint histogram should be calculated us-
ing only voxels within a biologically relevant ROI. (e) Interpretation of a joint histogram.
Well correlated pixels are centered around a linear fit (pink). Note the gradient of the
fit will only by equal to one if the intensity distribution of both fluorophores is the same.
Background noise (green) will be centered around the origin. If crosstalk is present it will
appear as a linear distribution of points near the axis (blue). Figure adapted from [170].
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and standard deviation for each channel, and cov() is the covariance operation. The PC

can take values in the range [-1,1] where 1 represents perfect correlation, -1 perfect anti-

correlation and 0 no correlation. A common criticism of the PC is that researchers can

find intermediate values difficult to interpret.

Note the PC is a measure of how well the data in a joint-histogram plot can be modelled

with a linear relationship and hence provides an elegant un-biased measure to complement

visual interpretation of joint-histogram plots (figure 2.11e) [170]. When using the Pearson

coefficient it is assumed that the datasets are linearly related, normally distributed and

without outliers.

For unbiased results the PC should be calculated over a subset of pixels which cor-

respond to either a biologically relevant ROI (for example the cytoplasm), or restricted

only to pixels containing signal from both channels. The former will typically involve

either a manual or automated segmentation procedure. The later involves isolating the

true biological signal in each channel from the background signal and noise. Adler et al.

(2010) justify this approach as the removal of all background pixels (pixels without signal)

from the calculation to prevent inaccurate inflation of the PC [8]. Dunn et al. (2011)

argue that the former approach is better when there is substantial signal overlap but a

poor linear relationship [9]. However we note that for data with a poor linear relationship

but high signal overlap, a co-occurrence measure would be more appropriate.

The Manders’ Overlap Coefficient (MOC)

The Manders’ Overlap Coefficient (MOC), RM , is a modification to the PC where the

subtraction of mean values is removed from the calculation,

RM(C1, C2) =

∑
iC1,iC2,i√∑
iC

2
1,i

∑
iC

2
2,i

(2.6.2)
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The MOC was first introduced by Manders et al. (1993), motivated by the desirable

property RM(aC1, bC2) = RM(C1, C2), where a and b are positive constants [179]. Note

this property does not hold for the PC which suggests it may be sensitive to the relative

signal magnitude differences between channels which are often present in fluorescence

microscopy data. However a recent thorough study has shown that signal magnitude

differences (including changes in the level of detector gain) have little effect on the PC

[8]. Moreover as the mean values are no longer subtracted, the MOC is very sensitive to

background intensities and detector offset. Finally, the MOC measures a combination of

co-occurrence and correlation making it difficult to interpret. For these reasons we do not

recommend the MOC for colocalization analysis.

The Manders’ Coefficients (M1, M2)

In addition to the MOC, Manders et al. (1993) also introduced a pair of co-occurrence

colocalization measures, commonly referred to as the Manders’ Coefficients (MCs); M1

and M2 [179]. M1 is defined as the percentage of the total (intensity sum) signal in

channel 1 overlapping with signal in channel 2 and similarly for M2;

M1(C1, C2) =

∑
iC1,ih(C2,i)∑

iC1,i

M2(C1, C2) =

∑
iC2,ih(C1,i)∑

iC2,i

(2.6.3)

where h(x) is a step function such that,

h(x) =


0 if x 6 0,

1 if x > 0,

(2.6.4)

The MCs have minimum and maximum values of 0 and 1 corresponding to 0% and

100% signal overlap (for either channel 1 or 2). Therefore the MCs provide easy to inter-

pret results which are applicable even if the colocalization is not well modelled by a linear
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relationship. Moreover M(aC1, bC2) = M(C1, C2) so the MCs are inherently insensitive

to signal magnitude differences. To calculate the MCs it is necessary to accurately iso-

late biologically relevant signal in both channels. Note if done correctly this will remove

dependency on offset and background.

In conclusion we consider the calculation of both the PCC (with signal isolation) and

the MCs to be best practice for most applications. The PCC is an excellent indicator of

(linear) correlation, while the MCs provide co-occurrence information. Together they can

provide information about, not only the presence of colocalization, but also the nature of

the statistical relationship.

Novel Colocalization Measures

Here we briefly discuss two recent and novel approaches. Singan et al. (2011) propose a

paired metric (W1 and W2) which measures a combination of correlation and co-occurrence

[180]. The authors falsely claim that theirs is the first colocalization measure to combine

both correlation and co-occurrence (see the MOC for an explicit example). The authors

also state this as the primary advantage for the method. We do not agree and consider

separate calculations of both the PC and MCs to be more informative as it is important

to distinguish between correlation and co-occurrence. However the measure is shown to

be both robust and accurate for a variety of synthetic and real image data. W1 and W2

can be expressed as modified MCs where the spectral difference in the intensity ranking

of pixels, wi, is used as a weighting factor;

W1(C1, C2) =

∑
iwiC1,ih(C2,i)∑

iC1,i

W2(C1, C2) =

∑
iwiC2,ih(C1,i)∑

iC2,i

(2.6.5)

Humpert et al. (2015) adapt a correlation-matrix method for spectral-temporal corre-

lation analysis to the standard spectral-spatial setting [181]. The measure for this method
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Figure 2.12: Costes’ threshold-
ing. In a Costes’ thresholding ap-
proach the linear line of best fit for
the joint histogram of the entire data
set is used to define the relationship
between the threshold values, T1 and
T2. The threshold values are itera-
tively decreased until the Pearson Coef-
ficient, R 6 0, when calculated over the
subset of voxels less than both thresh-
old values. At this point pixels below
both threshold values have no or neg-
ative correlation and are interpreted as
noise and background. All voxels above
the threshold values are defined as sig-
nal [182].

is proposed to be robust to low SNR and non-symmetric distributions of label intensity.

It also extends to an arbitrary number of spectral channels and can be used to visualise

maps of significant colocalization. However, we expect this formulation is too abstract

and difficult to interpret for widespread application.

Strategies for Signal Isolation

As discussed above, signal isolation is essential for calculation of MCs, and under most

circumstances best practice when calculating the PC. Typically, this is achieved by ap-

plying either a global, or local, thresholding operation to the image. Manually selected

global thresholding is not a good strategy as user bias can influence results. Costes et al.

(2004) introduced an elegant automated global thresholding strategy specifically designed

for colocalization analysis (figure 2.12) [182]. Briefly, a linear line of best fit is calculated

for the joint histogram of the data. The point on this linear fit below which there is no,

or negative, correlation in the data is used to define the global threshold values.

The Costes’ thresholding approach has been extensively and successfully used in many

studies, for example [183, 184, 185], and is implemented in popular image processing
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software applications such as Fiji and Imaris [186]. It is worth noting that in the case

of uneven background signal, or low SNR, global thresholding of the raw data will not

accurately segment the signal. Therefore, to apply a global threshold, uneven background

and noise should be removed by pre-processing the data with de-noising (section 2.5)

and/or background subtraction algorithms. For example, Dunn et al. (2006) subtract a

median filtered image from the original to remove background, and subsequently quantify

rab10 colocalization within endosomes [187]. Finally, it has been suggested that when

there is a large disparity between probe label density, or if label density is too high, the

requirement for R 6 0 may be too strict leading to Costes’ threshold values which are too

low to isolate the biologically relevant signal [9, 188].

Villalta et al. (2011) propose an algorithm for the isolation of colocalizing signal which

instead of intensity thresholding, selects pixels based on the product of the PC and the

MOC (R × Rm) [189]. This novel approach is shown to work for non-symmetric and

high label densities where Costes’ thresholding fails. However, the algorithm has free

parameters which have to be set empirically and makes extensive use of the MOC, the

disadvantages of which are discussed above.

Statistical Significance

Here we discuss common strategies for testing of colocalization measurements against

the null hypothesis that the probes are randomly distributed within the ROI. This is

a difficult task for several reasons; firstly, fluorescence microscopy images have inherent

auto-correlation. When the spread of the PSF extends over multiple pixels, neighbouring

pixels will have similar values and auto-correlation is inevitable [9]. Secondly, defining

the ROI can be difficult. For example, if studying receptor trafficking then it is necessary

to isolate the intracellular region (the cellular boundary) but exclude the nuclear region.

Moreover there will be other organelles, such as mitochondria or the ER, which can skew

statistical tests if included in the ROI. However, it is normally impractical to isolate all
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relevant structures [9].

A common strategy is to randomise the position of pixels for one channel within the

ROI and re-calculate the colocalization measure with respect to the unscrambled channel.

This process is repeated many times and the test value, p is set as the fraction of values

greater or equal than the original. This approach does not account for autocorrelation

leading to false detection of significant colocalization. Costes et al. (2004) introduced

the concept of block scrambling where instead of randomizing the positions of individual

pixels, the position of squares (or cubes in 3D) the same size as the PSF are randomized

[182]. Note, it has been suggested that a superior block size is the width of a typical

object of interest [9]. Block randomization greatly reduces the effects of autocorrelation

but it has been demonstrated that the effects are not removed completely [190, 168].

In the case where the objects of interest are smaller than the resolution limit of the

microscope, synthetic images can be generated where the signal is randomly distributed

within the ROI. This approach preserves autocorrelation effects from the PSF but will

not preserve autocorrelation effects from objects larger than the PSF [9]. Moreover,

generation of accurate synthetic data is a complex task which requires knowledge of various

system parameters such as the form of the PSF and noise models.

A different approach involves translating the signal from one channel with respect to

the other and repeating the calculations many times to obtain the p value [190]. This

approach better preserves autocorrelation than block randomization but difficulties can

arise for small ROIs as the number of possible translations is limited by ROI size. More-

over, edges must either be excluded or distorted (in wrap around approaches [191]) which

can also lead to false detection.

All of the approaches discussed to this point consider each ROI, within each image,

independently. A recent study by Mcdonald and Dunn (2013) proposes to use the dis-

tribution of measurements taken over multiple ROIs to perform a one sample Student’s
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t-tests [10]. For the PC the mean across all ROIs is tested against a zero expected value;

E(P ) = 0. For the MCCs we note that the expected value for a random distribution,

E(Mj) are ROI dependent and equal to the fractional area of a ROI occupied by signal j.

The authors validated this approach on synthetic data and suggest it provides an accurate

and simple way to test for statistical significance.

2.6.2 Object-based Colocalization Measures

In object based methods, features of interest are segmented and represented by their

(intensity weighted) center of mass (COM) position. Statistical clustering measures can

then be used to highlight colocalization over varying length scales, r (figure 2.10b). These

approaches are clearly only applicable when objects are well represented by their COM,

i.e. spot like. Moreover, intensity information, which is related (not necessarily linear) to

fluorophore density, is discarded. However, unlike pixel based methods they can identify

colocalization for r greater than the resolution limit and are therefore ideal for the analysis

of data from super-resolution microscopy. In a recent review, Lagache et al. (2015) found

that object based measures outperformed pixel based measures for simulated and TIRF

(total internal reflection fluorescence) microscopy data [168].

Spot (feature) detection is an essential preprocessing step for all object based measures.

There are many approaches, typically with de-noising (section 2.5) and/or detection steps.

For example Olivo-Marin (2002) uses a B3-spline implementation of the undecimated

wavelet transform (section 2.5.3) and adaptive thresholding in the wavelet domain to

identify spots [192]. This approach is implemented in the open source image processing

application Icy [193]. For an extensive review comparing different spot detection methods

see Smal et al. (2010) [152].
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Measures

We will briefly describe two clustering statistics which can be used for colocalization

analysis. Firstly, the nearest neighbour measure, SN , is given by [194],

SN(r) =
1

n1

n1∑
i=1

min
j

(dijh(r − dij)) (2.6.6)

where nj is the number of detected objects in channel j and h is the step function as

described in equation 2.6.4. dij is the euclidean distance between object i in channel 1

and object j in channel 2. Secondly, the Ripley-K function SK is given by [195],

SK(r) =
|Ω|
n1n2

n1∑
i=1

n2∑
j=1

dijh(r − dij)b(i, j, r) (2.6.7)

where |Ω| is the area (or volume) contained within the ROI. b(i, j, r) is a boundary

correction term typically given by Ripley’s Correction [196, 195].

The nearest neighbour approach is simplest but doesn’t account for edge effects. More-

over the cumulative effect of including all objects within a radius, r instead of just the

closest implies that Ripley’s K function is more robust and informative than a nearest

neighbour approach [197].

Statistical Significance

In statistical significance testing for object based measures, we test against the hypothesis

that the point processes for both channels are randomly distributed with respect to the

measure, S. This is problematic, largely due to edge effects for arbitrarily shaped ROIs. A

common approach computes the critical quantiles for S, q1−α(r), under the assumption of

random distributions (for a chosen significance level α). Quantiles are typically computed

by Monte-Carlo simulations [198] but a less computationally expensive method has been

proposed by Lagache et al. (2013) for Ripley’s K function [199].
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Naively, the statistical condition for colocalization can then be defined as; S(r) >

q1−α(r). However a joint statistic, encompassing all distance scales, is superior to account

for correlation between S(r) at varying r. A joint measure has been proposed for the

nearest neighbour but Ripley’s K function remains problematic [200, 168]. Finally we

note, modelling approaches can be used to extract quantitative information such as the

interaction distance or the number of interacting objects from either the nearest neighbour

or Ripley’s K-function [200, 168].

2.7 Organisation of the thesis

Having concluded our discussion of the material necessary to understand and contextualize

this work, we briefly outline the plan for the remainder of the thesis. The aim of this

thesis is to develop a set of computational workflows to quantify receptor trafficking, using

confocal microscopy. Importantly, all of the presented methods should be unbiased and

reproducible.

Chapter 2: 4D Level Set Segmentation for Fluorescence Microscopy

Level set segmentation, as discussed in section 3.3, is a powerful tool for image segmenta-

tion. Image segmentation is the identification of target objects within image data, and a

vital step in all of the workflows presented in this thesis. Accurate cellular segmentation

in 4D (3D time-lapse data), using only the signal from a fluorescently labelled recep-

tor is a difficult task. Motivated by this problem, novel extensions of popular edge and

region based level set protocols to a 4D framework were developed. These approaches

find a globally optimal segmentation solution across the entire data set simultaneously,

to improve performance. In this chapter we formally present the details of the 4D level

set protocols and validate these methods using both synthetic and real test data. Our

methods demonstrate a statistically significant increase in performance over equivalent

2D and 3D implementations of the same algorithms. Finally, temporal constraints in the

61



form of (near) constant volume and shape assumptions are introduced and validated.

Chapter 3: Screening for Regulators of Receptor Trafficking

In this chapter, data from a SILAC proteomics study is used to select a subset of GEFs and

GAPs (section 2.3) which may regulate trafficking of EGFR. Using a siRNA library for

the selected genes, a confocal microscopy screening platform is presented, which uses only

widely available experimental equipment, to identify hits for further analysis. Acquisition

is in 2D and hits are identified using only EGFR-GFP signal before and after treatment

with ligand (EGF). Details of a novel, robust and automated image analysis workflow to

select hits is presented.

Chapter 4: Workflows to Quantify Receptor Trafficking in 4D

Protocols in fluorescence microscopy used to quantify receptor trafficking and colocal-

ization with sub-endosome populations are often poorly designed and implemented. In

this chapter we highlight common pitfalls in analysis and design several fully automated

and novel workflows to quantify trafficking and colocalization in 4D. To validate these

methods, the trafficking response and colocalization of EGFR with early endosomes is

quantified over time in response to various drug treatments (AG1478, dynasore and dasa-

tinib). All workflows presented require accurate segmentation of the plasma membrane

and nucleus. Both are segmented using only the EGFR and early endosome signal with

the methods presented in chapter 3. Problems in current best practice guidelines for

colocalization analysis are highlighted and solutions are suggested. Finally methods for

visualisation of colocalization in 4D are presented. The workflows presented in this chap-

ter provide computational tools for secondary screens to further study hits from siRNA

screens, as presented in chapter 4.

Chapter 5: Final Discussion and Future Directions

A concise summary of the work and discussion of future directions is presented.
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Chapter 6: Materials and Experimental Methods

A complete list of all experimental protocols and reagents used in this work, described in

sufficient detail as to be reproducible.
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Chapter 3

4D Level Set Segmentation for

Fluorescence Microscopy

3.1 Introduction

In this chapter, a novel class of level set based techniques for the segmentation of 4D

(3D+time) data is introduced. The discussion is kept abstract and analysis of explicit

applications is limited. This is done to preserve generality and emphasise the wide range

of potential applications. In chapter 5, explicit examples of practical applications are dis-

cussed. Specifically, workflows are presented which incorporate the techniques introduced

in this chapter, to quantify receptor trafficking and endocytosis.

The structure for this chapter is as follows. In section 3.2 a brief overview of segmenta-

tion methods for fluorescence microscopy is provided. In section 3.3 level set segmentation

is introduced with an emphasis on the methods adapted for this thesis. In section 3.4 we

motivate the development of 4D level set segmentation and discuss related approaches.

Section 3.5 concisely formulates the aims of the chapter. In section 3.6 the extension to

4D is presented and these approaches are validated on real and synthetic test data. In

section 3.7 adaptations to the segmentation protocols which take advantage of temporal
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assumptions in the data are introduced. Finally, in sections 3.8 and 3.9 a discussion and

conclusion is provided.

3.2 A Brief Review of Segmentation Strategies

In the context of biological studies, segmentation is the process of partitioning image

data into regions with biological meaning. For example segmentation of whole cells,

nuclei or endosomes from the background. There are a vast number of segmentation

protocols available in the literature and many methods are designed for a specific dataset,

or application, with limited generalisation. Sbalzarini (2016) classifies image analysis

workflows into three distinct categories; filter based, model based and machine learning

based [201]. Here we also use this general classification to briefly discuss segmentation

strategies.

Filter based segmentation

In a filter based approach a series of filters, morphological operations and thresholds are

applied sequentially to facilitate segmentation of target objects. Common filters include

Gaussian, mean, median and Laplacian of Gaussian (section 2.5). More sophisticated

filters can be wavelet based (section 2.5.3) [192]. Filters are used to either suppress

undesirable components, for example noise, or enhance features of interest, for example

endosomes. The use of a watershed transform to segment nuclei, or cells, is a classic

example of a filter based approach [202]. Filter based approaches are typically designed,

and optimised, for a specific application and therefore do not generalise well. Workflows

designed using this approach can easily become convoluted with many steps and have a

corresponding large number of free parameters. Moreover the rational for setting these

parameters is often not clear. However filter based approaches are typically fast which is

particular advantageous for large datasets where computational time can be the limiting

factor.
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Model based segmentation

In a model based approach, prior information about the acquisition process and/or the

target objects is used to form a model which drives the segmentation [201]. The aim is to

find the segmentation solution which best explains the data under the constraints of the

model. An excellent framework for model based segmentation was introduced by Paul et

al. (2013) [203]. The approach allows for the incorporation of an image formation model,

a noise model and an object model. By incorporating the point spread function (PSF)

and a noise model, for example a Poisson distribution, simultaneous image restoration and

segmentation is performed. In the original algorithm, all target objects were modelled

as having homogeneous intensity, but this was later extended to piecewise homogeneity,

where intensity can vary between objects [204]. Other model based approaches include

Chan-Vese level set segmentation [14], region competition [205] or modifications to the

watershed transformation which merge regions based on models for the target objects

[206, 207].

Model based approaches are based on prior knowledge and physical models, and hence

have the key advantage of being well reasoned. However, the approach is only as good

as the model used. Crucially some model based approaches generalise well for a variety

of applications. For example in the Paul et al. (2013) approach, the noise model and

PSF can easily be changed, but the underlying algorithm stays the same [203]. Therefore

this approach can be used for many different datasets. However model based approaches

are typically slower than filter based approaches. Moreover as the algorithms are math-

ematically technical the interpretation and setting of parameters can be difficult for a

non-expert.
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Machine learning based segmentation

Machine learning can be used to perform image segmentation using pixel classification

approaches [208]. In these approaches, various features are calculated for each pixel based

on its local neighbourhood. Typically features are intensity, colour or texture based. In

a supervised approach manual annotation must be performed using training data. These

manual annotations are then used to train a classifier across the specified range of features.

Common classifiers include support vector machines [209, 210], adaptive boosting [211]

and random forests [212]. Open source projects such as ilastik have made supervised

pixel classification approaches easily accessible for non-experts [213]. Some classifiers will

produce excellent results across a wide range of complex problems. However the training

stage requires the time of a biological expert and computational times are typically larger

than for filter based approaches.

In this chapter we consider the extension of two model based segmentation approaches

to 4D. Specifically we extend the edge based approach introduced by Caselles et al. (1997)

[13] and the region based approach introduced by Chan and Vese (2001) [14]. These

approaches were chosen due to their wide-spread application. We aim to show that seg-

mentation in 4D can improve the performance of these seminal approaches. A level set

based framework for energy minimisation was chosen as the extension to 4D is math-

ematically trivial. Hence level set segmentation provides a simple framework for this

point-of-principle testing [214]. This is discussed in more detail in the next section.

3.3 Level Set Segmentation

Deformable model approaches to bio-medical image segmentation are well established

and have been extensively applied to a variety of imaging modalities and applications

[215, 216]. In this section we review the the basic concepts and theory of level set segmen-

67



tation, a sub-class of deformable model approaches, which are both applied and developed,

throughout this work.

In a deformable model approach, a surface, or curve, matching the dimensionality of

the data is evolved such that it converges towards the boundary of the target object(s).

The evolution of the surface is controlled by external and internal forces. External forces

are derived from the data set and move the surface towards object boundaries, whereas

internal forces derive from the surface itself and control the smoothness and regularity of

the segmentation.

The surface can be represented either explicitly or implicitly. Explicit techniques such

as classical active contours, popularly known as snakes, model the curve using parametric

representations for 2D segmentation of closed objects [217]. Some excellent, more recent,

approaches use discrete explicit representations, such as triangular meshes, to segment

objects in 3D [218, 219]. In both cases, the representation of the surface, or curve, must

be regularly re-constructed although only locally in the case of triangular meshes. Explicit

representations require subroutines to deal with topological changes such as the merging

and splitting of cells and extensions to higher dimensions are non-trivial, often requiring

additional subroutines.

Level set methods, originally proposed in the seminal work by Osher and Sethian,

[214] use an implicit representation. The segmentation contour is embedded as the zero

level set of a Lischitz surface of one dimension higher than the dataset. The zero level

set is the set of points on which the level set function (the Lischitz surface) has value

zero. Level set techniques have several desirable properties; firstly, as the representation

is implicit there is no requirement for re-parametrization or reconstruction. Extensions

to higher dimensions, as well as changes in the topology of the surface, are handled

naturally as the level set function remains differentiable over its entire domain. However,

computational costs are significantly higher than for most deformable model approaches
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due to manipulation of the high dimensional level set function.

The seminal work by Osher and Sethian was based on Hamilton-Jacobi formulations

for evolving surfaces with a curvature dependent speed [214] . We take this as the starting

point for our discussion and consider the evolution of a Lipschitz surface, φ, known as the

level set function (LSF), where the segmentation contour is embedded as the zero level

set of φ. The LSF is defined on a domain, Ω, such that φ(x) : Ω→ <. Moreover φ is set

to be equal to the signed distance from the zero level set with φ < 0 inside the zero level

set and φ > 0 outside. In this framework, simple geometric properties of the LSF such as

the normal vector, ~N , and Euclidean curvature , κ, can be easily calculated [220];

~N =
∇φ
|∇φ|

κ = div

(
∇φ
|∇φ|

)
(3.3.1)

Osher and Sethian considered the evolution of the LSF such that the zero level set

propagates at speed, V , in a direction normal to the surface, ~N . The speed V was chosen

such that it is proportional to the curvature of φ;

∂φ
∂τ

= V ~N · ∇φ

= V |∇φ|

= bκ|∇φ| (3.3.2)

where b is a constant. τ is the time parameter for the evolution of φ. Equation 3.3.2 is

known as a level set equation (LSE) because it controls the dynamics of φ and determines

the segmentation result. Here the LSE simply decreases the total curvature and hence

has a smoothing effect on φ. Note that there is no inherent attraction to features within

the image (I). To faciliate data dependence a function, g(I), can be introduced, which is
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minimised on features of interest, such that [221];

∂φ

∂τ
= g(I)(κ+ c)|∇φ| (3.3.3)

where c is a constant which determines the magnitude of a constant velocity normal to

φ (weighted by g(I)). This constant velocity can be thought of as force pushing the zero

level set inwards or outwards and is necessary to segment non-convex objects. In an edge

based approach g(I) is chosen such that it is minimised on a perfect edge. A common

choice for g(I) is;

g(I) =
1

1 + |∇Ismooth|p
(3.3.4)

where p = 1 or 2 . Ismooth is a smoothed version of I typically formed by convolution

with a Gaussian kernel (section 2.5.1) [221, 222]. Note, pixels located on a sharp edge

will have large gradient values, |∇Ismooth|, and hence have small values for g. Therefore,

on edges, the velocity proportional to the curvature will be small (equation 3.3.3).

3.3.1 The Energy Minimising Formulation

The evolution of the LSF should be controlled such that it approaches a steady state

solution when the zero level set is located on target boundaries. In a variational approach

this is achieved by the minimization of an energy functional, E(φ,D), which is constructed

to have minimal values on targets boundaries [223, 221]. The energy functional consists

of internal and external terms, denoted Eint(φ) and Eext(φ,D);

E(φ, I) = Eint(φ) + Eext(φ, I) (3.3.5)

External terms are dependent on the dataset and are minimised at the desired locations

in the image, typically object boundaries. Internal terms are derived from the LSF only
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and are used to control the form of the LSF by manipulating its properties such as the

smoothness of the zero level set, or the gradient of φ.

Caselles et al. (1997), in their seminal work on geodesic active contours, used an

energy minimization formulation [13]. The authors first formed an active contour model

based on geometric measures within the image. The model was then reinterpreted in

a level set framework, therefore bridging the gap between active contour and level set

methods. Consider a closed contour, C(a), on a = [0, 1]. Instead of minimising the

standard Euclidean length of the contour, LE(C) , the following energy is minimised;

E =

∫ 1

0

g|C ′(a)| da

=

∫ LE(C)

0

g(I(C)) ds (3.3.6)

where s is the Euclidean arc length. E differs from LE in that it takes into account

information from the image contained in the edge detector g. Minimising E and setting

in a level set framework results in the following LSE;

∂φ

∂τ
= g(I)(κ+ c)|∇φ|+∇g(I) · ∇φ (3.3.7)

where a constant force term dependent on free parameter c has been added. We will

refer to equation 3.3.7 as the geodesic LSE. Comparing equation 3.3.3 and the geodesic

LSE, it is clear that we have picked up an extra term, namely ∇g(I) · ∇φ. This term

reinforces the evolution of the zero level set to boundaries within the image and crucially

makes the result less sensitive to tunable parameters.
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3.3.2 Implementation with Distance Regularized Level Set Evo-

lution

To ensure convergence of the LSF to an accurate segmentation, it is necessary to require

that the LSF, φ, be a signed distance function. In practice we require |∇φ| = 1 around the

zero level set only. Traditionally this is solved using reiteration schemes but in distance

regularized level set evolution (DRLSE), an internal energy term is introduced which

triggers a diffusion type effect on the LSF towards a signed distance function [224, 225].

Explicitly Li et al. (2010) [225] suggest the following potential energy,

P (|∇φ|) =


(1− cos (2π|∇φ|))/(2π)2 if |∇φ| < 1

(|∇φ| − 1)2/2 if |∇φ| > 1

(3.3.8)

such that

Eint(φ) = µ

∫
Ω

P (|∇φ|) dx (3.3.9)

where µ is a constant. The potential energy has two minimal points at |∇φ| = 1 and 0.

When Eint is minimised, this has the effect of inherently maintaining the signed distance

property of the LSF around the zero level set and smoothing elsewhere. This distance

regularizing term removes the need for reiteration subroutines (figure 3.1). Moreover

it allows for narrowband implementations and large time-steps between iterations, thus

reducing computational costs. Initialisation of the level set function is trivial and the

diffusion effect can reform a binary step function. In this work we refer to the inclusion

of the internal energy term shown in equation 3.3.9 as a distance regularized level set

evolution (DRLSE) approach.

Recall the evolution of φ is captured by the level set equation (LSE) and note the LSE

can be related to the energy function, E, by the Euler Lagrange equation which minimises
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(a) (b)

(c) (d)

Figure 3.1: 2D Level Set Segmentation. (a) Synthetic fluorescence microscopy image
of stained nuclei [226]. The initial position of the zero level set of level set function (LSF)
is shown in red. (b) The LSF can be initialised with a binary step function when using a
distance regularized diffusion term (section 3.3.2) (c) After energy minimization and the
corresponding evolution of the LSF, the nuclei are segmented by the zero level set (red).
In this example, a geodesic edge based approach was used (equation 3.3.6) (d) The LSF
after evolution. Note the topological change in the zero level set is handled naturally by
the LSF. Scales bars represent 5µm.

E. In a DRLSE approach this can be expressed using the Gateaux derivative of E within

a simple gradient descent scheme;

∂φ

∂τ
= −∂E

∂φ
(3.3.10)

where τ represents the time-parameter for evolution of the LSF. Iterations are repeated

until the LSF reaches a (near) steady state. Moreover with a DRLSE approach, the

derivatives for all of the energy terms used in this work can be calculated using simple

finite difference approximations.
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3.3.3 Level Set Segmentation without Edges

To this point, all of the discussed external energy terms have been based on edge detection

(equation 3.3.4). For many applications an edge based approach can lead to bleed-through

of the LSF into or out of the object due to boundary discontinuities. Here we describe the

region based level set segmentation framework proposed by Chan and Vese (2001) which

clusters the data based on relative pixel intensity [14]. The energy functional is given by

Eext(φ, I) = β

∫
Ω

H(−φ)|I − C(−φ, I)|2 +H(φ)|I − C(φ, I)|2 dx (3.3.11)

where C(−φ, I) and C(φ, I) are the average intensities of the data, I, within and

outside the zero level set respectively. β is a constant and H(x) is the Heaviside step

function;

H(x) =


0 if x < 0,

1 if x > 0,

(3.3.12)

Note that the minimization of the Chan-Vese energy term is analogous to K-means

clustering but in a level set framework [227]. Chan and Vese also used a smoothing

internal term comparable to that in equation 3.3.6 but without weighting with an edge

indicator;

Eint(φ) = λ

∫
Ω

δ(φ)|∇φ|dx + c

∫
Ω

H(−φ) dx (3.3.13)

where δ(x) is the Dirac delta function defined such that;

δ(x) =
dH(x)

dx
=


+∞ if x = 0,

0 if x 6= 0,

(3.3.14)
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Note the first term in equation 3.3.13 is a smoothing term and the second provides

a constant force. Throughout this work we refer to the inclusion of Chan-Vese external

term (equation 3.3.11) in the energy functional as a region based approach.

3.4 Motivation and Related Approaches

Following the discussion in section 3.3, recall that extension of a level set segmentation

protocol to an arbitrary number of dimensions is both possible and mathematically natu-

ral. However, it is important to note that computational costs are significantly greater in

higher dimensions. This is due to the demands of working simultaneously with the large

number of voxels within a 4D dataset, and the corresponding level set function. This is

an obvious limiting factor when working with 4D level set protocols.

To justify and contextualise our approach, we will briefly review other relevant strate-

gies for the segmentation of 4D datasets. Note a 4D dataset consists of a time-lapse series

recorded in all three spatial dimensions. To segment target objects within this 4D dataset,

several different approaches are possible;

1. Each 3D time-point (or even each 2D image) can be segmented independently. This

approach is wasteful as potentially useful temporal information and corresponding

performance gain is lost.

2. The object is segmented for the first time-point, and this segmentation is used as

a source of information to influence segmentation in subsequent time-points. After

the targets in each time-point are segmented the temporal feedback loop can be

updated. In this approach, errors are propagated from previous time-points and no

temporal information is used for the first time-point. For example the segmentation

from the previous time-point can be used to initialise the segmentation for the

current time-point [228].
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3. All time-points are processed simultaneously in what we will refer to as true 4D seg-

mentation. Temporal information is incorporated both equally and globally for all

time-points. As all time-points have equal weighting and are processed simultane-

ously the solution is not biased towards specific, or earlier, time-points. Intuitively

this approach is superior and it is hypothesised that if properly implemented it

should lead to more accurate segmentation.

There are many examples in the literature of the second approach [229, 228, 230].

However, there are surprisingly few examples of true 4D segmentation. Level set methods

are a natural choice for the implementation of true 4D segmentation due to a lack of

complicating subroutines and natural extension to arbitrary dimensions. In independent

studies, Kohlberger et al. (2006) and Abufadel et al. (2008) proposed to “treat time

as an ordinary fourth dimension” and segment the entire dataset simultaneously with a

4D LSF [11, 12]. These approaches were designed for and tested on cardiac SPECT and

MRI data sets respectively. In both cases, the Chan-Vese region based scheme (section

3.3.3) is used and a shape model is incorporated into an additional energy function to

assist segmentation [231, 232]. The shape model is calculated from a training data set

using principal component analysis (PCA) prior to the implementation of the 4D level

set algorithm.

Similarly Lynch et al. (2008) use a temporal model to segment cardiac MRI data but

the model is updated with each iteration of the energy minimisation [233]. However, in

this approach each time-point was segmented in parallel with a 3D level set approach.

Lombaert et al. (2011) use a graph cut method to perform true 4D segmentation of

MRI and CT data. Briefly, graph cut approaches are closely related to level set methods,

but use a graph based algorithm for energy minimisation over more traditional gradient

descent approaches [234]. This can decrease convergence times and computational cost

but imposes constraints on the form of the energy functional [235]. We restrict our efforts
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to level set methods to give greater flexibility and control over the energy functional. The

allows for the easy introduction of customised temporal constraints as discussed in section

3.7.

Pastor et al. (2009) to the best of our knowledge, developed the first true 4D segmen-

tation method to be successfully applied to time-lapse microscopy [236]. They use 4D

structural elements to find globally optimal solutions for cell tracking which they apply

to in-vivo studies [237]. However this framework is primarily designed for object tracking

and not well suited to accurate segmentation of object boundaries. To counter this, a

follow up study successfully introduced an extension of the watershed algorithm to 4D

[238].

Finally, Padfield et al. (2006) have successfully used 3D level sets to segment cells

from 2D time-lapse data and incorporate several models and constraints for cell cycle

analysis in subsequent studies [239, 240, 241]. However, to the best of our knowledge no

true 4D level set based segmentation methods have been used to analyse 4D microscopy

data.

3.5 Chapter Aims

The aims for this chapter can be summarised as follows:

1. Adapt and improve existing 4D level set frameworks as a new approach to the

segmentation of (confocal) microscopy data [11, 12].

2. Validate this novel approach on synthetic and real fluorescence microscopy datasets.

We hypothesise an improvement in segmentation performance for a 4D approach

over equivalent 2D and 3D implementations.

3. Suggest modifications to the level set equation which take advantage of temporal

information and assumptions for the data to improve segmentation performance.

77



Figure 3.2: 4D data as a hyper-
volume. 4D data can be con-
structed and handled as a single 4D
array. Here we show representative
2D xy, xz and xt ortho-slices from
the 4D hyper-volume [226]. The
red lines represent the position of
the frames within the 4D volume.
Note, in the xt slice the movement
and position of the nuclei can be ob-
served. The aim of our method is
to use this temporal information to
improve segmentation performance.
As a pre-processing step the data has
been blurred with a Gaussian filter
in the three spatial dimensions. The
standard deviation of the kernel was
set to the theoretical width of the
point spread function.

Validate these approaches on the test data sets.

3.6 Framework for 4D Segmentation

In accordance with previous protocols for 4D level set segmentation, we choose to process

the dataset by merging the data from each time-point to form a single 4D array; I(x)

where x = (x, y, z, t) (figure 3.2) [11, 12]. The volumetric data from each time-point is

combined such that each voxel has a total of 8 neighbours (6 spatial and 2 temporal). In

this framework the LSF maps each 4D voxel to a real number; φ(x) : Ω → <, where Ω

is the domain of I(x). Therefore the zero level of φ(x) is a 4D hyper-surface and after

energy minimisation will represent a globally optimal segmentation for the entire dataset.

In this section a justification of this approach is provided, alongside the details nec-
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essary for reproducible implementation. In section 3.6.1 the adaptation of the DRLSE

scheme (section 3.3.2) to 4D is presented. In section 3.6.2 the calculation and scaling of

temporal derivatives is discussed. In section 3.6.3 the explicit form of the LSE for either

edge, or region, based level set segmentation is provided. Initialisation of the LSF is dis-

cussed in section 3.6.4. Finally, the performance of the proposed framework is analysed

on synthetic and real test data (sections 3.6.5 and 3.6.6).

3.6.1 Energy Minimisation with DRLSE

To implement level set segmentation in 4D a variational approach was taken. Recall, that

in a variational approach the evolution of the LSF, φ, is determined by the minimisation

of an energy functional and the associated level set equation (section 3.3.1). For all

formulations presented in this thesis we always choose to include a DRLSE diffusion term

in the energy functional (equation 3.3.9) [225]. This is an original approach for 4D level

set segmentation and there are several important reasons for this choice, to summarise;

1. The DRLSE term maintains the signed distance property (|∇φ| = 1) of the LSF

around the zero level set (with |∇φ| = 0 elsewhere). This removes the need for

reinitialisation of the LSF.

2. Simple central difference schemes can be used to calculate partial derivatives within

the energy functional (section 3.6.2).

3. The LSF can be initialised as a binary step function. This is discussed in more

detail in section 3.6.4.

4. It allows for a simple finite difference update scheme for the implementation of the

level set equation (LSE). The details of this update scheme for 4D level set evolution

are described in the remainder of this section.

When using a DRLSE approach, the LSE can be discretised such that;
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φm+1
x,y,z,t = φmx,y,z,t + ∆τ

∂φ

∂τ

∣∣∣
x,y,z,t

(3.6.1)

where ∆τ is a constant, referred to as the update step. Recall that ∂φ
∂τ

can be cal-

culated from the energy functional using a gradient descent approach (equation 3.3.10).

m represents the iteration count which is typically increased until convergence within a

tolerance level. We choose to set this tolerance level as a percentage of the segmentation

volume, V m. Note that V m can be easily calculated using the LSF;

V m =

∫
Ω

H(−φm) dx (3.6.2)

The algorithm implementing the described update scheme and stopping condition can

be summarised as follows;

Algorithm 1 Evolution of LSF

while |V m+1 − V m| > s× V m do
φm+1 = φm + ∆τ ∂φ

∂τ

end while

The stopping constant, s, is typically set to 0.0001. In practice a maximum number

of iterations is also set. Note that the structure of this algorithm is very simple and lacks

any complicating sub-routines. Explicit calculations of ∂φ
∂τ

for both edge and region based

approaches are presented in section 3.6.3.

To ensure the correct evolution of the LSF with a DRLSE term, the size of the constant,

µ, from equation 3.3.9, should be constrained by the update step, ∆τ , and the derivative

scaling factors (section 3.6.2). In 2D, with ∆x = ∆y = 1, this constraint is given by the

Courant-Friedrichs-Lewy (CFL) condition [225, 242];

µ 6
1

4∆τ
(3.6.3)
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With a 4D framework the equivalent CFL condition can be expressed as;

µ 6
1

2∆τ

(
1

∆x2
+

1

∆y2
+

1

∆z2
+

1

∆t2

)−1

= µl (3.6.4)

This provides an upper bound on the value of µ for 4D DRLSE. Typically, we set the

update step such that ∆τ = 1 and µl is calculated using this bound. To set µ we always

subtract a small value from the theoretical bound. This is done to avoid the development

of irregularities in the level set function as is demonstrated in figure 3.5.

3.6.2 Temporal Scaling

To compute the terms of the level set equation, it is necessary to calculate temporal

derivatives for both the data, ∂I
∂t

, and the LSF, ∂φ
∂t

. For example to compute the edge

indicator, g(I) (equation 3.3.4), in 4D it is necessary to calculate the gradient of the data,

∇I(x) =

(
∂I

∂x
,
∂I

∂y
,
∂I

∂z
,
∂I

∂t

)
(3.6.5)

As discussed in section 3.6.1, a DRLSE term is introduced into the energy functional.

Using such a scheme, approximations for the partial derivatives can be calculated using

a central difference scheme. For example;

∂I

∂x

∣∣∣
x,y,z,t

=
Ix+1,y,z,t − Ix−1,y,z,t

2∆x
(3.6.6)

where x, y, z, t represent the coordinates of an individual voxel and ∆x is the scaling

factor for the first spatial dimension. Typically, the weighting for the lateral spatial

dimensions are set to ∆x = ∆y = 1. The axial scaling factor is given by,

∆z =
Vz
Vxy

(3.6.7)

where Vxy, Vz are the physical dimensions of the voxels in the lateral and axial dimen-
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sions respectively. In a 4D approach it is important to set the temporal scaling factor,

∆t, relative to the spatial dimensions. For clarity, we note that in this case ∆t is not an

explicit measure of time, but a scaling factor between the temporal and spatial deriva-

tives. Clearly the larger the chosen ∆t the smaller the influence of the temporal gradient

on the evolution of the LSF. We propose to set ∆t such that;

∆t =
〈D〉
Vxy

(3.6.8)

where 〈D〉 approximates mean boundary displacement between time-points. This is

done because the faster the boundary of the target(s) is moving, the less useful the time

derivative is for segmentation. This is discussed in more detail in figure 3.3.

The parameter 〈D〉 can either be inferred from prior knowledge of the targets, or

estimated directly from the data. For example, in the case of prior knowledge, if the

targets are nuclei and it is known from previous studies the average velocity is expected

to be 0.1µm per minute, and the acquisition rate is 0.2 time-points per minute, then

〈D〉 = 0.1/0.2 = 0.5µm. Note, in this calculation there is an assumption that the target

shape does not change significantly between time-points.

Alternatively, if there is no prior knowledge available, then schemes to estimate 〈D〉

directly from the data should be employed. A simple method to approximate 〈D〉 is

described below, and its use is demonstrated on simulated data in figure 3.4;

1. Compute an approximate segmentation of the data using an algorithm with low

computational cost. Approaches based on K-means clustering are used throughout

this work. Note this initial guess can also be used to initialise the LSF (section

3.6.1).

2. Calculate the centre of mass (COM) of each object in every frame. For this simple

test dataset, and for the purpose of estimating the scaling factor, touching objects
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Figure 3.3: Temporal derivatives. The first row shows a single xy plane from 4D
simulated fluorescence microscopy data, I, across 5 consecutive time-points. The second
and third rows show the unscaled absolute value of the spatial derivative, Ix = | ∂I

∂x
|∆x,

and the temporal derivative It = |∂I
∂t
|∆t. These partial derivatives were calculated using

the central difference of adjacent pixels. The object boundary (from ground truth) is
shown in red. The data has been pre-processed with 3D Gaussian blurring across the
spatial dimensions. Interestingly the spatial derivative, Ix, exhibits greater background
variation and clearly the temporal derivative contains useful information about the object
boundary. Note that the value of temporal derivative, It, is high in locations where the
object boundary is moving in time. Also note that large boundary movement causes
blurring of It around the object boundary. Therefore the smaller the movement of the
object boundary between time-points, the more useful the temporal derivative is for object
segmentation. This is why we propose to set ∆t as the (approximate) mean boundary
displacement between consecutive time-points.
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can be adequately separated by image erosion and/or a watershed transform. In

general, separating touching objects is a complex problem with no generalised solu-

tion.

3. Calculate the trajectories of objects using a simple tracking protocol. For simplicity

and speed, a publicly available algorithm implemented in Matlab is used1. Briefly,

the total Euclidean distance of all trajectories between adjacent frames is minimised.

4. The mean displacement between frames across all objects and time-points is used

to estimate 〈D〉.

Note, the above algorithm can be performed on a subset of the data to reduce compu-

tational time. Recall the protocol assumes that the COM derived movement of the objects

is the dominant source of boundary displacement. This is a reasonable assumption for

nuclei but if there is large boundary localised movement, as is typical with whole cell

segmentation, then a different approach will be needed. An example of such an approach

is discussed in section 3.6.6.

3.6.3 Edge and Regions based Level Set Equations

In the previous two sub-sections, strategies for implementation of DRLSE in 4D and

the calculation of temporal derivatives were presented. With these strategies standard

formulations for edge and region based level set segmentation (as discussed in sections

3.3.1 and 3.3.3) can be implemented in 4D. In an edge based approach the LSE, as derived

by gradient descent of the geodesic energy functional (equation 3.3.6), with a DRLSE term

(equation 3.3.9) is given by [13, 225];

∂φ

∂τ
= λδα(φ)

(
g(I)(κ+ c)|∇φ|+∇g(I) · ∇φ

)
+ µ div

(
P ′(|∇φ|) ~N

)
(3.6.9)

1http://uk.mathworks.com/matlabcentral/fileexchange/34040-simple-tracker. Accessed 01/16.
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where λ and µ are constants and P ′(|∇φ|) is the derivative of the potential given in

equation 3.3.8. Similarly, a DRLSE term can be introduced into the Chan-Vese formula-

tion (equation 3.3.11) to derive the following LSE [14];

∂φ
∂τ

= βδα(φ)
(
|I − C(φ, I)|2 − |I − C(−φ, I)|2

)
λδα(φ)

(
(κ+ c)|∇φ|

)
+ µ div

(
P ′(|∇φ|) ~N

)
(3.6.10)

where β is a constant. In what follows the use of equations 3.6.9 or 3.6.10 is referred

to as edge or region based DRLSE respectively.

Note the implementation of both edge and region based DRLSE requires computation

of both the Dirac delta function and the Heaviside step function on a discretised array. As

is common in level set methods, the Heaviside step function and the Dirac delta function

can be approximated as follows [223];

Figure 3.4 (following page): Setting the temporal scaling factor. Suggested
protocol for estimating the mean boundary displacement of targets between frames; 〈D〉.
This is used to calculate the temporal scaling factor; ∆t. (a) Representative maximum
intensity projection of simulated data from a single 3D time-point of a 4D dataset. Scale
bar set to 5µm. (b) After Gaussian blurring, K-means clustering (2 clusters) is performed
on the 3D data from each time-point to acquire a quick and approximate segmentation
result. This is then eroded using a spherical structural element (1µm radius) to separate
touching objects (maximum projection shown). The lateral positions for the centre of
mass (COM) of each object are shown; calculated (red ×) and ground truth (green +).
(c) The COM locations are calculated for 5 consecutive time-points. A simple and fast
tracking algorithm is used to construct particle trajectories. 〈D〉 can then be calculated as
the mean particle displacement between consecutive frames. (d) The above analysis was
repeated for six simulated data sets. The measured and ground truth values of 〈D〉 are
shown. Central mark is the mean and error is the standard deviation. The mean values
for the measured and ground truth calculations for 〈D〉 are 0.6± 0.1µm and 0.5± 0.1µm
respectively. Moreover, the measurement error between individual datasets is very small;
0.02 ± 0.03µm. Therefore, it is concluded that this protocol provides an accurate and
reliable estimation of < D > for the simulated test data.
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(b)
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(d)
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Hα(x) =



1
2

(
1 + x

α
+ 1

π
sin πx

α

)
if |x| 6 α,

1 if x > α,

0 if x < −α,

(3.6.11)

δα(x) =
dHα(x)

dx
=


1

2α

(
1 + cos πx

α

)
if |x| 6 α,

0 if |x| > α,

(3.6.12)

where α is the width of δα, which we typically set to 1.5.

3.6.4 Initialisation

The final component of the framework is the initialisation of the LSF. Within a DRLSE

formulation, it is possible to simply initialise the LSF as a binary step function. This

is advantageous as the initialisation does not need to be a signed distance function, and

it is computationally simple to initialise the zero level set as an arbitrary hyper-surface.

The LSF is conventionally given negative values within the zero level set and positive

values outside. Moreover, the computational time for the segmentation protocol can be

greatly decreased by initialising the LSF close to the solution. This is done using the

result of a faster, but less accurate and robust algorithm. For example, the data can be

blurred with a Gaussian (standard deviation set to width of PSF) and clustered with a

K-means approach (two clusters) to provide the initial segmentation estimate. In this

algorithm, each 3D time-point is processed individually. To initialise the LSF, voxels in

the background cluster are set to a positive constant, h, and voxels in the signal cluster

are set to −h. h controls the width of the signed distance band constructed by the DRLSE

term. Li et al. (2010) suggest setting h > 1 and typically use h = 2 [225].

As an additional (optional) step, the initial segmentation estimate can be eroded or

dilated with a structural element of fixed size to ensure the zero level set is initialised either
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Parameter
Voxel Size (µm) 0.125× 0.125× 0.2
Time-step (min) 28.85
Frame size (pixels)(xyzt) 92− 247× 112− 371× 70× 10
Objective Lens 40× Plan-apochromat 1.3 NA oil

Table 3.1: Dummy acquisition parameters for the synthetic test data.

inside, or outside the target. The choice should be matched to the sign of constant, c

(equations 3.6.9 and 3.6.10), as positive c will push the zero level set inwards and negative

c will push outwards.

In this approach the fast initialisation algorithm computes an approximate segmenta-

tion of the target object(s) and the level set evolution simply refines this approximation

and corrects for errors. This concept is very important for 4D level set segmentation as

computational costs are normally the limiting factor. Figure 3.5 shows an example of

using K-means clustering to initialise 4D DRLSE.

3.6.5 Validation on Synthetic Data

In section 3.6 a practical framework for the implementation of 4D level set segmentation

was introduced. In this section these approaches are validated on synthetic microscopy

data from the public repository introduced by Maska et al. (2014) [226]. The validation

dataset consists of 10 4D time-lapse movies showing fluorescently labelled nuclei. The

data are cropped versions of the N3DH-SIM series from the public repository. The first

10 time-points, all 70 axial slices and a frame size in the range 92−247×112−371 pixels

is selected. For reference, the acquisition parameters for this dataset are listed in table

3.1. A representative xy slice from the synthetic data is show in figure 3.4a.

In what follows, two key hypotheses are tested; that there is a performance difference

between 2D/4D and 3D/4D implementations of equivalent level set segmentation algo-

rithms. Note, the 3D implementation refers to segmentation over the 3 spatial dimensions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Distance Regularized Level Set Evolution in 4D. (a) 3D surface
rendering showing the initial location of the zero level set (ZLS) of the level set function
(LSF) for a single time-point. Note the ZLS is 4D hyper-surface and what is shown is
only a single temporal plane. The LSF has been initialised as a binary step function using
the result of a K-means clustering algorithm. (b) Surface rendering of the ZLS for the
same time-point after 10 iterations of distance regularized level set evolution (DRLSE).
The regularization term, µ, was set to be just less than the Courant-Friedrichs-Lewy
constraint, µl, such that; µ = µl−0.05. This was done to ensure the LSF evolves correctly;
maintaining the signed distance property around the ZLS. (c) Here the same parameters
were used except µ = µl + 0.05. Note the LSF has developed irregularities which can lead
to poor segmentation results. (d)-(f) A cross section of the LSF corresponding to a single
axial image (xy plane) under the same conditions as for (a)-(c). The ZLS is shown as a
red band. Again note the irregularities when µ > µl. (g)-(i) Plots showing a single axial
cross section of the LSF.
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The target objects (nuclei) have clearly defined edges and relatively homogeneous inten-

sity. Therefore, both edge and region based DRLSE level set approaches are suitable

and tested (section 3.6.3). For 2D, 3D and 4D approaches, initialisation of the level set

function was carried out using the K-means based protocol from section 3.6.4. For 4D

implementations the temporal scaling factor was estimated using the approach suggested

in section 3.6.2.

To quantify segmentation performance, the Jaccard similarity index was used. The

Jaccard index was chosen due to extensive use within the community, for example it is

used as the segmentation metric in the IEEE International Symposium on Biomedical

Imaging cell tracking challenges [226]. The Jaccard index is defined as the volume of the

intersection divided by the volume of the union between the segmentation, S, and the

ground truth reference, G;

J(S,G) =
|S ∩G|
|S ∪G|

(3.6.13)

Clearly it is not appropriate to assume that segmentation performance across movies

within the dataset will be normally distributed. Therefore, non-parametric statistical

testing should be used to compare between different segmentation algorithms.

Note that for each movie, the segmentation performance across the different algorithms

is paired. Therefore, as an initial step the Friedman test, a non-parametric alternative

to a multiple measures ANOVA, was used. If the Friedman test is significant at a level

of p < 0.05 then a non-parametric test was performed for each alternative hypothesis

(post-hoc testing). The sign test is chosen for these pair-wise comparisons, over the more

powerful Wilcoxon sign test, as the symmetric distribution assumption of the latter does

not hold. To see this, note the spread of the box-plots in figures 3.6 and 3.7. Note the sign

test is a paired test for two distributions; X and Y with the hypothesis that the median

of X − Y is non-zero. Finally, the p-values returned for each hypothesis are corrected for
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multiple comparisons using the Bonferroni correction such that;

pcor =
p

n
(3.6.14)

where pcor is the corrected p-value, to be compared to a given significance level, and

n is the number of alternative hypothesis.

To demonstrate the performance difference between 4D level set segmentation and

equivalent 3D and 2D implementations, it is appropriate to minimise the number of

free parameters in the LSE. Therefore we set c = 0 for both the edge and region based

DRLSE approaches. The constant µ was set to be just less than the theoretical 4D bound;

µ = µl − 0.05 (equation 3.6.4). For simplicity we set ∆x = ∆y = ∆τ = 1. ∆z was set

using equation 3.6.7 and ∆t was set using the procedure described in section 3.6.2. To

implement a region based DRLSE we set the smoothing parameter , λ = 0.1 (equation

3.6.10). The complete list of fixed segmentation parameters is listed in table 3.2. Note, λ

is the only remaining free parameter for edge based DRLSE (equation 3.6.9), and β the

only free parameter for region based DRLSE (equation 3.6.10).

Using the described algorithms, figure 3.6 demonstrates that 4D edge based DRLSE

provides superior segmentation performance when compared to the equivalent 3D and

2D edge based DRLSE algorithms on the synthetic test data. This key result is the first

demonstration of improved performance when incorporating temporal information into a

DRLSE approach. It is important to note that the aim is not to provide an optimal edge

based protocol, where for example c 6= 0. Instead, a simplified and unbiased protocol is

used to demonstrate that temporal information can be incorporated into popular level set

formulations, to improve segmentation performance.

Specifically, figure 3.6b demonstrates that the mean performance of the 4D edge based

algorithm is superior for all tested values of λ. Importantly, in figure 3.6c, it is shown that

the increase in maximal performance (single λ selected for each algorithm) is statistically
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(a)

(b) (c) (d)

Figure 3.6: 4D edge based level set segmentation performance evaluation for
synthetic data. (a) Segmentation performance with edge based, distance regularized
level set evolution across all 10 synthetic movies, for 2D, 3D and 4D implementations.
For each movie the level set function (LSF) was initialised by Gaussian blurring (σ =
width of PSF), K-means clustering (2 clusters) and subsequent dilation (with spherical
structural element, radius = 1.5µm) (performance shown by red line). The erosion step
was included to ensure the zero level set was initialised outside the target nuclei. Note
the 4D approach produces superior segmentation results than both the 3D and 2D im-
plementations for the full range of edge parameter, λ, and across all movies. (b) Mean
performance across all movies. Error bars represent the standard deviation. (c) Sta-
tistical analysis of maximal performance across all movies and λ (single λ selected for
each algorithm). Central mark on boxplot represents the median, and the edges of the
box are the 25th and 75th percentiles. Friedman’s test indicated statistically significant
differences between the 3 segmentation algorithms (p < 0.001). Post-hoc testing by the
sign test with Bonferroni correction (n=2) was used to calculate p-values for individual
comparisons. (d) The same statistical analysis was repeated for mean performance across
all movies and λ. Friedman’s test returned p < 0.001.
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Parameter Edge Region Reference
Constant force term; c 0 0 equation 3.6.9 & 3.6.10
Lateral scaling factors; ∆x, ∆y 1 1 section 3.6.2
Axial scaling factor; ∆z 1.6 1.6 equation 3.6.7
Temporal scaling factor; ∆t 4.8 4.8 figure 3.4
Update step; ∆τ 1 1 equation 3.6.1
DRLSE factor; µ 0.155 0.155 equation 3.6.4
Binary step size; h 2 2 equation 3.6.4
Dirac-delta function width; α 1.5 1.5 equation 3.6.12
Gradient power; p 2 — equation 3.3.4
Stopping constant; s 0.01% 0.01% algorithm 1
Maximum number of iterations 50 50 section 3.6.1
Edge/smoothing term; λ 0.5− 11 0.1 equations 3.6.9 & 3.6.10
Region term; β — 0.01− 0.08 equation 3.6.10

Table 3.2: Parameters for validation of 4D level set segmentation on synthetic
data. For comparison of both 4D edge and region distance regularized level set evolution
(DRLSE) protocols with equivalent 3D and 2D approaches.

significant when compared to both 3D and 2D implementations. This is also true for the

mean performance across all tested λ (figure 3.6d). Therefore, it is concluded that 4D

edge based DRLSE has superior peak performance and this effect is robust, insensitive to

a substantial range of λ values.

Similarly, figure 3.7b demonstrates that region based 4D DRLSE is superior (over a

range of β) when compared to the equivalent 3D and 2D approaches. As with the edge

based formulation, maximal (figure 3.7c) and mean (figure 3.7d) performance across the

parameter space (β) is superior and statistically different. Note also that the spread of the

maximal performance measurements (figure 3.7c) is smaller for the 4D approach. Com-

bined with the increase in performance, this indicates an improvement in both accuracy

and precision.

Finally, note that maximal and mean segmentation performance is higher for the region

based approaches (as compared to the edge based approaches) (figures 3.6 and 3.7). This

indicates that for this dataset (fluorescently labelled nuclei), a region based approach is

better suited than the edge based formulation.
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(a)

(b) (c) (d)

Figure 3.7: 4D region based level set segmentation performance evaluation for
synthetic data. (a) Segmentation performance with region based, distance regularized
level set evolution across all 10 synthetic movies for, 2D, 3D and 4D implementations. For
each movie the level set function (LSF) was initialised by Gaussian blurring (σ = width of
PSF), K-means clustering (2 clusters) and subsequent dilation (with spherical structural
element, radius = 1.5µm) (performance shown by red line). (b) Mean performance across
all movies. Error bars represent the standard deviation. (c) Statistical analysis of maximal
performance across all movies and β (single β selected for each algorithm). Central
mark on boxplot represents the median, and the edges of the box are the 25th and 75th
percentiles. Friedman’s test indicated statistically significant differences between the 3
segmentation algorithms (p < 0.001). Post-hoc testing by the sign test with Bonferroni
correction (n=2) was used to calculate p-values for individual comparisons. (d) The same
statistical analysis was repeated for mean performance across all movies and β. Friedman’s
test returned p < 0.001.
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Parameter
Voxel Size (µm) 0.1745− 0.2486× 0.1745− 0.2486× 0.3
Time-step (min) 7.5
Frame size (pixels)(xyzt) 174− 439× 245− 509× 51× 5
Objective Lens 100× Plan-apochromat 1.49 NA oil

Table 3.3: Acquisition parameters for the real test data.

3.6.6 Validation on Real Data

In this sub-section, the use and performance of edge based 4D DRLSE segmentation

on real test data is demonstrated. Specifically, the cellular segmentation of HeLa cells

expressing EGFR-EGFP is considered. The validation dataset consists of 10 confocal

time-lapse (3D+time) movies of individual cells. At time zero, the cells were treated

with 100ng/ml EGF, and subsequent internalisation of the EGFR is triggered. Using a

4D DRLSE approach we aim to reliably and accurately segment the cells using only the

EGFR-EGFP signal. This is a relatively simple task pre EGF treatment, where most of

the signal is membrane localised. However it is much more complex post EGF treatment,

where the signal intensity and signal to noise ratio (SNR) at the membrane boundary is

much lower.

Note, a region based DRLSE algorithm would not be well matched to this dataset as

the targets (cells expressing EGFR-EGFP) do not have an approximately homogeneous

internal intensity distribution. Therefore, we do not evaluate the performance of the

region based 4D DRLSE algorithm on the real test data.

The acquisition parameters for this dataset are summarised in table 3.3. Raw mi-

croscopy data was cropped, to produce individual regions of interest (ROIs) containing a

single healthy cell expressing EGFR-EGF, using custom semi-automated selection soft-

ware (Matlab). This was done blindly to select alive and non-mitotic cells.

Ground truth data was generated by the blind manual segmentation of 14 evenly

spaced axial slices (excluding the very top and bottom of ROI) for each time-point in
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each movie. The top and bottom of the cells were not used as it was difficult to pro-

duce accurate and reliable manual segmentations of these regions due to out of focus

contributions. It is important to note that manual segmentation isn’t perfect, and will be

influenced by both user error and bias. It is feasible that some of the automated methods

presented in this chapter may outperform manual segmentation. Despite these limitations

manual segmentation still provides a useful reference for the benchmarking of automated

protocols.

In section 3.6.5 Gaussian blurring was used as a pre-processing step to remove noise

from the synthetic test data. Here the more sophisticated PURE-LET denoising scheme

was employed (ImageJ) (section 2.5.4) (figure 3.8b) [140, 166]. The PURE-LET plugin

was set to estimate noise parameters automatically (global), the number of spin cycles

was set to 4, and the multi-frame parameter was set to 3. This was followed by K-means

clustering (4 clusters). The three clusters with the highest means were combined, dilated,

filled and eroded with a spherical structural element (radius = 1.5µm) to produce the

initial segmentation estimate used for initialisation of the LSF (figure 3.8c). More than

two clusters were required due to the large variation in EGFR signal intensity, dependent

on both sub-cellular localisation and time post EGF treatment. However, note that the

K-means based initialisation is only used as a segmentation estimate and the result is not

critical.

When using 4D level set segmentation, it is clearly important to correct for any stage

drift, as it will distort temporal derivatives. To correct for drift within the real test dataset

a simple registration algorithm was employed. First, consider the measured intensity for a

given spatial position, (x, y, z), for time-point t; Ix,y,z,t, and for time-point t+ 1; Ix,y,z,t+1.

The data for time-point t + 1 is translated laterally in all three spatial dimensions (one

pixel at a time) for all possible combinations in the range; T1, T2, T3 = [−1 : 1]µm,

such that the translated data, T (Ix,y,z,t+1) = Ix+T1,y+T2,z+T3,t+1. For each translation, the
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product of the translated data and the data for time-point t is computed. The maximal

product represents the translation with maximal signal overlap and is used to register the

data;

max
T1,T2,T3

∑
x,y,z

T (Ix,y,z,t+1)× Ix,y,z,t (3.6.15)

It is important to note that the above registration protocol will not only correct for

stage drift, but also small bulk cell movement. In this application, the aim is accurate

segmentation, and not tracking, so this is an advantageous side effect. Note, after registra-

tion the main contributor to target movement, 〈D〉, will be shape change due to localised

movement of the plasma membrane (section 3.6.2). Therefore to estimate the temporal

scaling factor, ∆t, the mean localised boundary displacement should be estimated. The

protocol described in section 3.6.2 is only applicable to bulk object displacement so a

different approach, detailed in figure 3.8, is employed. Using this procedure, the mean

values for the measured and ground truth calculations for 〈D〉 were 1.3 ± 0.4µm and

1.8± 0.6µm respectively, where errors are given by the standard deviation.

The parameters for the edge based DRLSE segmentation were set using the same

procedures as for the synthetic dataset (section 3.6.5), and are recorded in table 3.4.

Note the scaling factors and the DRLSE factor, µ, vary due to variation in physical voxel

size between movies.

In figure 3.9 an increase in performance for the 4D edge based DRLSE algorithm, over

the equivalent 3D and 2D implementations, is demonstrated. Importantly, a statistically

significant increase in maximal performance is seen when compared to both 2D and 3D

implementations (figure 3.9c). A statistically significant increase in mean performance

across the parameter space is seen when compared to 2D, but not 3D (figure 3.9d).

Therefore we can conclude that the 4D approach has superior performance, for optimal

setting of the edge parameter λ, over both 3D and 2D approaches. Moreover the 4D
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(a) (b) (c)

(d) (e)

Figure 3.8: Pre-processing of real test data and estimating mean boundary
displacement. (a) Representative example of a raw confocal microscopy image showing
a HeLa cell expressing EGFR-EGFP. The test dataset consists of 4D time-lapse movies
of the EGFR-EGFP signal in response to EGF treatment The time-point shown is 7.5
minutes post EGF treatment. Scale bar represents 5µm. (b) Data is de-noised using a
PURE-LET scheme for Poisson corrupted images. (c) De-noised data is processed with
a K-means clustering algorithm (4 clusters). Each cluster is represented by a different
color. The 3 clusters with the highest means are combined, dilated, filled and eroded with
a spherical structural element (radius = 1.5µm). This produces the initial segmentation
estimate (black contour). (d) To estimate the mean boundary movement at time-point, t,
the distance transform calculating the minimal euclidean distance from the segmentation
estimate (red contour) for time t + 1 is computed. (e) The sum of all pixels from the
distance transform for time t+1 which coincide with initial segmentation contour at time
t is computed. The mean of the sum across all axial slices and time-points is used as an
estimate for mean boundary displacement.
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(a)

(b) (c) (d)

Figure 3.9: 4D edge based level set segmentation performance evaluation for
real data. (a) Segmentation performance with edge based distance regularized level set
evolution across all 10 real time-lapse movies for 2D, 3D and 4D implementations. For each
movie the level set function (LSF) was initialised using a K-means based algorithm (red).
(b) Mean performance across all movies. Error bars represent the standard deviation.
(c) Statistical analysis of maximal performance across all movies and values of the edge
constant λ (single λ selected for each algorithm). Central mark of the boxplot represents
the median, and the edges of the box are the 25th and 75th percentiles. Friedman’s
test indicated statistically significant differences between the 3 segmentation algorithms
(p < 0.001). Post-hoc testing by the sign test with Bonferroni correction (n=2) was used
to calculate the p-values for individual comparisons. (d) The same statistical analysis
was repeated for mean performance across all movies and λ. Friedman’s test returned
p < 0.001.
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Parameter Value Reference
Constant force term; c 0 equation 3.6.9 & 3.6.10
Lateral scaling factors; ∆x, ∆y 1 section 3.6.2
Axial scaling factor; ∆z 1.21− 1.72 equation 3.6.7
Temporal scaling factor; ∆t 7.24− 10.3 figure 3.4
Update step; ∆τ 1 equation 3.6.1
DRLSE factor; µ 0.135− 0.163 equation 3.6.4
Binary step size; h 2 equation 3.6.4
Dirac-delta function width; α 1.5 equation 3.6.12
Gradient power; p 2 equation 3.3.4
Stopping constant; s 0.01% algorithm 1
Maximum number of iterations 50 section 3.6.1
Edge/smoothing term; λ 0.5− 11 equations 3.6.9 & 3.6.10

Table 3.4: Parameters for validation of 4D level set segmentation on real
data. For comparison of 4D edge based distance regularized level set evolution (DRLSE)
protocols with equivalent 3D and 2D approaches.

approach demonstrates superior performance to the 2D approach across a large range of

λ (mean performance), but we cannot conclude this for the comparison between the 4D

and 3D algorithms. However, assuming the segmentation parameters are well set, we note

that maximal, not mean performance is the more important measurement.

To conclude, in this section we have successfully implemented novel 4D DRLSE segmen-

tation protocols for both edge and region approaches. These approaches were used to

segment targets for applications in fluorescent microscopy and were validated on both

synthetic (edge and region based) and real (edge based) test datasets. A statistically sig-

nificant increase in maximal performance across the parameter space is seen in all cases,

when compared to the equivalent 3D and 2D algorithms.

3.7 Customised Temporal Constraints

It is appropriate to think of true 4D segmentation as simultaneous segmentation and

tracking. In conventional tracking approaches, assumptions about the changes to the tar-
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gets’ properties over time are routinely used. We propose to incorporate such assumptions

within a true 4D segmentation protocol to improve segmentation performance. Specifi-

cally, within a 4D level set framework, terms within the level set equation were modified

to take advantage of temporal assumptions and models for the target(s). We refer to

these terms as temporal constraints. The concept is analogous to the approach taken by

traditional cost based tracking algorithms. In this section two simple classes of tempo-

ral constraints are introduced and tested. However, note that temporal constraints are

inherently application specific and thus there is large scope for customised development

and extension of application targeted terms.

3.7.1 Volume Conserving Constraints

The first class of temporal constraints incorporates assumptions concerning target volume

change over time [228]. Note that no prior knowledge about expected volume is required.

Instead constraints on the range of (expected) volume change are used. For example,

consider a cellular segmentation problem. If there is an assumption that the volume of

the cells will not change by more than, for example, 10% between time-points, then this

can be used to influence segmentation results without any knowledge of the absolute cell

volume.

In the simplest case, the assumption is that the volume of the targets remains constant

over time. To introduce this constraint into a level set formulation, we can modify the

constant, c, from equations 3.6.9 and 3.6.10 such that,

c1(φ, t) = c0
V (φ, t)− 〈V (φ, t)〉

〈V (φ, t)〉
(3.7.1)

where c0 is a positive constant and V (φ, t) is the volume contained within the ZLS

of φ for time-point, l. 〈V (φ, t)〉 is the mean of V (φ, t) across all time-points. Note from

equations 3.6.2 and 3.6.11, V (φ, t) can be easily computed as;
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V (φ, t) =
∑
x,y,z

Hα(−φx,y,z,t) (3.7.2)

The key concept is the modification of the constant force term, such that it is no longer

constant, but proportional to the deviation from the mean volume over time. The sign of

c1(φ, t) determines if the force pushes inwards or outwards, and will be positive when the

volume is higher than the mean, and negative when below.

In a different case, the assumption could be a maximum percentage change in volume

between time-points. In such a case the constant, c, can again be adapted such that;

c2(φ, t) =


c0 × Vdif (φ, t) if |Vdif (φ, t)| > p

0 if |Vdif (φ, t)| 6 p

(3.7.3)

where p is the tolerance level (as a ratio) and Vdif (φ, t) is the mean percentage difference

between adjacent time-points such that,

Vdif (φ, t) =
1

2

(V (φ, t)− V (φ, t− 1)

V (φ, t)
+
V (φ, t+ 1)− V (φ, t)

V (φ, t)

)
=
V (φ, t+ 1)− V (φ, t− 1)

2V (φ, t)
(3.7.4)

To analyse performance change with the introduction of a volume based temporal

constraint, a 4D edge based DRLSE framework was used. The real test dataset (section

3.6.6) was used and the assumption of constant cellular volume over time was exploited,

using the constraint from equation 3.7.1. This is a reasonable assumption for non-mitotic

HeLa cells over a 30 minute time period.

Segmentation parameters were set as shown in table 3.4. Note the edge constant was

fixed at λ = 8. This value was selected, as performance gain above this point is minimal
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for the given dataset (figure 3.9b).

Figure 3.10a clearly demonstrates that the introduction of a volume conserving tem-

poral constraint increases segmentation performance. Note an increase in performance

is seen for all movies across all values of c0. This mean performance across movies is

shown in figure 3.10b. Importantly, the increase in maximal (figure 3.10c) and mean

(figure 3.10d) performance when compared to the unmodified 4D edge based DRLSE al-

gorithm (without the volume conserving term) is statistically significant. Note n = 6 for

the Bonferroni correction of p-values (equation 3.6.14) as it is necessary to consider the

comparison of the 4D algorithm with the other modifications presented in this section

(figure 3.13).

3.7.2 Shape Conserving Constraints

In this sub-section the introduction of a shape based temporal constraint is considered.

The concept is to use assumptions relating to target shape change over time to aid seg-

mentation. Importantly, no shape prior is required. To illustrate this, consider the case

where bulk target movement is minimal and shape changes over time are small. In this

case we can introduce the following modification to the constant, c (equations 3.6.9 and

3.6.10), such that,

c3(φx,y,z,t) = c0(〈φx,y,z〉 − φx,y,z,t) (3.7.5)

where 〈φ〉 is 3D matrix representing the mean of φ over all time-points. Here the ZLS

of 〈φ〉 is analogous to a shape prior often used in level set methods. The key point is that

the expected shape is not derived from prior knowledge but from the LSF itself. For each

iteration of φ, the expected shape is refined and is therefore adaptable to errors in the

initial segmentation estimate.

Note when using a DRLSE approach, the magnitude of c3 will be bounded. To see
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(a)

(b) (c) (d)

Figure 3.10: Constant volume constraint performance analysis for real test
data. (a) Segmentation performance with 4D edge based distance regularized level set
evolution and a constant volume temporal constraint across the real test dataset. The
performance of comparable 2D, 3D and 4D implementations, without the temporal con-
straint, are shown for reference. For each movie the level set function (LSF) was initialised
using a K-means based algorithm (red). (b) Mean performance across the dataset. Error
bars represent the standard deviation. (c) Statistical analysis of maximal performance
for all values of the constant, c0. Central mark of boxplot represents the median, and
the edges of the box are the 25th and 75th percentiles. After Friedman’s test, post-hoc
testing by the sign tests with Bonferroni correction (n=6) was used to calculate the cor-
rected p-values for comparison with the unmodified 4D algorithm (p = 0.012). (d) The
same statistical analysis was repeated for mean performance across all movies and c0

(p = 0.012).
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this, note that the diffusion effect of the DRLSE term is such that |∇φ| = 1 around the

ZLS, and |∇φ| = 0 elsewhere (section 3.3.2). Therefore, if the diffusion term is having the

correct effect, |c3| 6 2c0h, where h is the size of the binary step function used to initialise

φ. Typically, we do not consider this bound to be a problem, but if necessary it can be

removed by reinitialising φ as a signed distance function across the whole domain before

calculating c3.

This simple shape based temporal constraint was tested on the real test dataset (sec-

tion 3.6.6), where an assumption of minimal shape change and object movement is harsh

but reasonable. As with the constant volume constraint (section 3.7.1), a 4D edge based

DRLSE approach was used, and parameters were set as shown in table 3.4 (λ = 8). The

results of this analysis are shown in figure 3.11. Importantly, a statistically significant

increase in maximal performance is seen, when compared to the unmodified 4D DRLSE

protocol (figure 3.11c). However after correcting for multiple hypothesis testing (n = 6),

the mean performance increase across the parameter space is not statistically significant

(figure 3.11d). It is striking that we see an improvement (in maximal performance) with

such a harsh assumption as constant shape.

3.7.3 Comparison with Constant Force Term

In sub-sections 3.7.1 and 3.7.2, volume and shape based temporal constraints were intro-

duced, and performance gain was demonstrated for the real test dataset over the equivalent

4D algorithm with no constant force term (equation 3.6.9) (c = 0). It could be argued

that this is not a fair comparison, as it is conceivable that the introduction of a constant

force term (c 6= 0) could also confer a similar increase in segmentation performance. To

address this, the performance of 4D edge based DRLSE algorithm was analysed on the

real test data with the same parameters as for previous experiments (table 3.4, λ = 8),

but with non-zero (and constant) values for c (figure 3.12).
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(a)

(b) (c) (d)

Figure 3.11: Constant shape constraint performance analysis for real test data.
(a) Segmentation performance with 4D edge based distance regularized level set evolution
and a constant shape temporal constraint across the real test dataset. The performance of
comparable 2D, 3D and 4D implementations, without the temporal constraint, are shown
for reference. For each movie the level set function (LSF) was initialised using a K-means
based algorithm (red). (b) Mean performance across the dataset. Error bars represent
the standard deviation. (c) Statistical analysis of maximal performance for all values of
the constant, c0. Central mark of boxplot represents the median, and the edges of the
box are the 25th and 75th percentiles. After Friedman’s test, post-hoc testing by the
sign test with Bonferroni correction (n=6) was used to calculate the corrected p-values
for comparison with the unmodified 4D algorithm (p = 0.012). (d) The same statistical
analysis was repeated for mean performance across all movies and c0 (p = 0.13).
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(a)

(b) (c) (d)

Figure 3.12: Constant force term performance analysis for real test data. (a)
Segmentation performance with 4D edge based distance regularized level set evolution and
a constant force term across the real test dataset. The performance of comparable 2D, 3D
and 4D implementations, without the constant force term, are shown for reference. For
each movie the level set function (LSF) was initialised using a K-means based algorithm
(red). (b) Mean performance across the dataset. Error bars represent the standard
deviation. (c) Statistical analysis of maximal performance for all values of the constant
c. Central mark of boxplot represents the median, and the edges of the box are the
25th and 75th percentiles. Post-hoc testing by the sign test with Bonferroni correction
(n=6) was used to calculate the corrected p-values for comparison with the standard 4D
algorithm (c = 0) (p = 2.1). (d) The same statistical analysis was repeated for mean
performance across the dataset and c0. This revealed a statistically significant decrease
in mean performance (p = 0.012).
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It is clear from figures 3.12a and 3.12b that there is little to no performance gain for

this dataset when a constant force term is introduced. For some movies, a performance

increase is seen for a specific value of c. However, on other movies the same value of c

will cause a significant decrease in performance. Figure 3.12c demonstrates that there is

no statistically significant increase in the maximal performance. Moreover, a statistically

significant decrease in mean performance across all tested values of c is seen (figure 3.12d).

Therefore there is no significant performance gain from using a constant force term and

if care is not taken to set the constant, c, the performance may decrease. This high-

lights a key advantage of the temporal constraint approach; the influence of the temporal

constraint is automatically tuned to the movie being analysed, based on the underlying

assumptions (for example, constant volume). If the assumptions are valid, then you would

expect to see a performance increase across a range of c0. Therefore, for the temporal

constraint terms introduced, fine tuning of the value of c0 is not critical. Conversely, the

use of constant force term is likely to decrease segmentation performance if care and time

is not taken to compute the optimal value for c.

To conclude, figure 3.13 summarises the mean and maximal performance of all the algo-

rithms tested in this section. Importantly, the maximal performance of both the volume

and shape based temporal constraints are superior (statistically significant) to the unmod-

ified edge based 4D algorithm (c = 0). Moreover use of the constant volume constraint

produces a statistically significant increase in maximal performance when compared to

all tested algorithms; unmodified, constant shape constraint and constant force (c 6= 0).

Note the performance difference between the constant volume and shape constraints

is a natural result for this dataset, as a constant volume assumption is more appropriate

for the target objects (single cells over time).
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(a)

(b)

Figure 3.13: Summary of performance for 4D edge based level set segmenta-
tion protocols with and without temporal constraints. (a) Maximal performance
for unmodified 4D edge based DRLSE approach (c = 0) (4D) and the same algorithm
with the addition of constant force (c 6= 0) (4DConst), constant volume (4DVol) and
constant shape (4DShape) terms. Friedman’s test confirmed there was statistically sig-
nificant differences in maximal performance between the algorithms (p = 1.7 × 10−5).
Post hoc testing by the sign test with Bonferroni correction (n=6) was used to compute
corrected p-values for pairwise comparison of algorithms. (b) The same analysis was re-
peated for the mean performance across the parameter space. Friedman’s test returned
p = 4.2× 10−6 confirming statistically significant differences in mean performance.
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3.8 Discussion

Recall from section 3.4 that there are very few examples in the literature of true 4D

segmentation. Moreover, to the best of our knowledge, there are only two examples of 4D

level set segmentation. Specifically, the studies by Kohlberger et al. (2006) and Abufadel

et al. (2008) [11, 12]. The approaches to 4D level set segmentation presented in this

chapter have many advantages over those presented in these two studies, and will now

briefly be reviewed.

Firstly, the approaches presented, are the first example of the use of a DRLSE term

in a 4D framework. There are many advantages to this regularization scheme which are

discussed, in detail, in sections 3.3.2 and 3.6.1.

Kohlberger et al. and Abufadel et al. both implement only region based approaches

(section 3.3.3) [14]. Therefore, the edge based techniques presented are the first validated

adaptations of the geodesic active contour approach to 4D [13]. This adds adaptability to

the 4D level set framework as either edge, or region based segmentation can be performed.

This choice should be dependent on which is better suited to the data. Note, a combined

region and edge based 4D approach can be easily implemented by weighting the smoothing

internal energy term, from equation 3.6.10, with an edge finding function, g (equation

3.3.4).

Neither of the existing approaches consider the setting of the temporal scaling factor,

∆t, with respect to the spatial dimensions (section 3.6.2). We consider this to be an

important contribution, as it is vital to consider the weighting of the temporal derivatives

for most level set formulations. It is particularly important when the target movement

between frames is significantly greater that the physical dimensions of the voxels.

Kohlberger et al. validate their approach on manually segmented real test data, with

respect to an equivalent 3D approach, across a range for a key parameter in the level
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set equation. However, the authors simply state the performance of the algorithms with

respect to a performance measure and make no attempt at statistical analysis. Abufadel

et al. also validate their approach on manually segmented, or rated, real test data, and

compare to an equivalent 3D approach. It is not clear if the maximal performance across

the key parameter space is considered for each algorithm. Despite this, the analysis

is convincing, with discussion of accuracy, consistency and recovery from failure. The

results compliment this work, and provide further evidence that the inclusion of temporal

information can enhance segmentation performance.

The validation work performed in this chapter is important and unique for several rea-

sons. Firstly, the validation of two seminal approaches; the Chan-Vese region approach

and the geodesic edge based method, were performed without any additional internal, or

prior information based, energy terms (sections 3.6.5 and 3.6.6). Non-parametric hypothe-

sis testing was used to demonstrate a statistically significant improvement in performance

for these fundamental level set techniques in 4D. These vital proof of concept experiments

were performed not only on real test data, but also synthetic test data where there is no

uncertainty with respect to the ground truth.

The approaches in Kohlberger et al. and Abufadel et al. were used to segment car-

diac morphological features from SPECT, and MRI data respectively. Therefore the

approaches presented in this work are the first 4D level set segmentation protocols suit-

able for use on fluorescence microscopy data. Moreover, as temporal scaling has been

considered with a DRLSE term, and for several level set formulations, the approaches

presented are vary adaptable, and could be implemented for a wide variety of imaging

modalities.

Finally, the concept of incorporating temporal constraints into the energy functional

for 4D level set segmentation is novel (section 3.7). Both previous studies incorporated

spatial-temporal shape priors, which required a training dataset. The temporal constraints
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presented do not require any training data, and were validated by non-parametric hypoth-

esis testing. A statistically significant improvement in performance over equivalent 4D

implementations (without temporal constraints) was demonstrated.

Two avenues of future development for the presented approaches will now be discussed.

Firstly, there is extensive potential for the development of sophisticated, and application

targeted, temporal constraints. Specifically, methods for the training of shape priors could

be incorporated into a 4D framework, where the prior is learnt from the LSF after each

iteration [231, 232, 243]. In such a scenario, the set of shapes formed by the ZLS for each

time-point act as the training set. This could provide a less rigid method for incorporating

shape based assumptions than equation 3.7.5.

Alternatively, the unity between segmentation and tracking in 4D level set segmen-

tation could be investigated by the introduction of tracking based temporal constraints.

For example a constraint could be introduced which, using the results of a tracking al-

gorithm, could influence the evolution of the LSF such that targets maintain constant

velocity. The tracking of objects would be repeated after each iteration of the LSF. In

such a scheme, the tracking and segmentation processes are performed in parallel and are

able to influence each other.

Recall that the limiting factor for the widespread use of 4D level set segmentation is

computational time. For the methods and datasets presented in this chapter, a compu-

tational time for a single movie, on a desktop PC, is typically 10-20 minutes. Therefore

the second avenue for future development is the improvement of segmentation time. Note

that many of the operations performed in the computation of the level set equation are

parallelizable. Therefore optimisation of the algorithms in an efficient language, with

implementation on the GPU would be advantageous.

A further route for investigation is the move from a 4D level set framework, to an

explicit discrete 4D representation. This could dramatically reduce computational time
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but would require regular reparametrization of the segmentation contour and sub-routines

to deal with topological changes. Defour et al. (2011) rewrite the energy minimisation

framework in an explicit setting and perform segmentation in 3D using a triangular mesh

framework [219]. An extension of this active mesh approach to 4D is conceivable but

would require substantial work.

3.9 Conclusion

The protocols presented in the chapter provide a framework for the segmentation of flu-

orescence microscopy data, using 4D level set segmentation. In all approaches a DRLSE

term was used, and the 4D bound for setting the weighting factor, µ, with respect to the

update step was calculated (equation 3.6.4). Strategies for setting the temporal scaling

factor, ∆t, with respect to the spatial dimensions were considered. Moreover the initial-

isation of the LSF with an approximate segmentation estimate to reduce computational

time was demonstrated.

All of the approaches introduced were thoroughly validated. Importantly, through

non-parametric hypothesis testing, a statistically significant improvement in maximal

performance of 4D approaches over equivalent 3D and 2D approaches was demonstrated.

On the simulated test data, a significant improvement in mean performance was also

seen. This demonstrates an increase in the stability, and robustness, of the solution with

regards to the setting of key parameters. The introduction of novel temporal constraints

was used to further target the segmentation protocol to the application. Specifically,

assumptions about change in target volume and shape over time were incorporated into

terms within the energy functional. For the real test data, a further increase in maximal

and mean performance was demonstrated using volume based temporal constraints. This

demonstrates that segmentation performance can be increased using temporal constraints

with considerable stability. The techniques presented are highly adaptable and could be
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used for many applications.
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Chapter 4

Screening for Regulators of

Receptor Trafficking

4.1 Introduction

In this chapter a confocal microscopy based screening platform is introduced. 16 GEFs

and GAPs (table 7.1) were screened for the pertubation of EGFR trafficking. This is

done both with, and without, EGF stimulation. Before discussing our approach, we will

briefly review several large scale screens, all of which use a microscopy based platform to

identify regulators of receptor signalling and trafficking.

Pelkmans at al. (2005) performed a genome wide siRNA screen of human kinases to

identify regulators of simian virus 40 and transferrin endocytosis [5]. Confocal images

were manually processed by grouping into one of five pre-determined phenotypes.

Galvez at al. (2007) screened the human signalling proteome to show that transferrin

uptake is positively regulated by the PI3K-mTOR signalling pathway [4]. Unlike the

approach by Pelkmans at al. the analysis was fully automated. This is clearly superior

when processing the large volume of data generated by a screen. However the image

analysis workflows are not described in sufficient detail as to be reproducible. Moreover
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no validation of performance for the workflow is provided. This should be done either on

synthetic or a manually processed subset of the data.

Collinet et al. (2010) used a (genome wide) siRNA screen to identify regulators of

endocytosis for EGFR (and transferrin) [3]. Using fluorescent markers for the cytoplasm,

nucleus and ligand, the authors were able to identify 58 measurement parameters includ-

ing; number of endosomes, endosome area, endosome clustering and nuclear size. This

powerful approach interestingly suggests that the distance of (ligand positive) endosomes

from the nucleus is a key measurement parameter for the regulation of endocytosis.

Liberali at al. (2014) used 13 parallel siRNA screens to elucidate the roles of genes

in the cross-talk and regulation of membrane trafficking [2]. 1132 genes were chosen for

involvement in either endocytosis, signalling or regulation of the cytoskeleton. The fully

automated image analysis workflows in this study are described in detail (reproducible)

and well validated.

In this work we present a screening approach where experimental simplicity, alongside

the reproducibility and accuracy of the image analysis workflows are the key advantages.

We aim to define a single measurement which characterises the trafficking of receptor and

highlights abnormalities. There are many possible measurement parameters, for example

recall that Collinet et al. (2010) define fifty eight [3]. We choose to use only one measure-

ment scheme so that conventional statistical tests and multi-hypothesis corrections can be

used to process results without excessive suppression of p-values. The scale of our screen

is small (16 genes) when compared to the discussed studies. These target genes were

selected from an in-house stable isotope labeling by amino acids in cell culture (SILAC)

proteomics screen (details provided in section 4.3).

With this approach the SILAC study provides the large scale screening capacity, as

an alternative to the large scale microscopy screens discussed. A subset of hits from the

SILAC screen is then analysed with a secondary microscopy screen to provide further
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evidence of receptor trafficking regulation. Secondary hits from the microscopy screen

should then be further validated, using for example the protocols described in chapter 5.

Therefore our screen provides a tool to bridge proteomics and microscopy based studies

of receptor dynamics and signalling.

4.2 Chapter Aims

The aims for this chapter can be summarised as follows:

1. Identify a subset of target genes for microscopy based screening from SILAC pro-

teomics data.

2. Perform a confocal microscopy screen using siRNA for the target genes. This should

be done with a small budget and using only widely available experimental equip-

ment.

3. Develop and implement a robust and reproducible image analysis workflow to iden-

tify hits from the confocal screen. This workflow should define a single measurement

scheme which characterises sub-cellular receptor distribution. A statistical frame-

work for hit detection should also be introduced.

4.3 Selection of GEFs and GAPs for Screening

Proteomics can be used to identify and quantify phosphorylated protein levels within cells,

but a highly sensitive approach is required. A SILAC methodology is well suited as small

changes in phosphorylation levels can be detected [244, 245]. Briefly, cells are cultured

with either light (natural) or heavy (isotope labelled) amino acids. After the heavy

amino acids have been fully incorporated, the samples can be combined, but remain

distinguishable through a mass spectrum. Importantly, as the samples are processed
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together, much of the noise introduced will be present equally in both samples, hence

relatively subtle changes in protein levels can be detected.

An in-house SILAC study was performed by Debbie Cunningham (School of Bio-

sciences, University of Birmingham) [245]. Either fibroblast growth factor receptor 2

(FGFR2), or Src family kinases (key regulators of signal transduction [246]), were in-

hibited to identify downstream phosphorylation events post ligand treatment. Note that

in our screen we analyse the variation in EGFR signal distribution in response to EGF

stimulation (as opposed to FGFR2 variation with FGF stimulation). With this choice

we aim to identify key regulators of receptor tyrosine kinase (RTK) trafficking which are

implicated in multiple receptor systems. It would have been advantageous to first charac-

terise FGFR2 events, but there were technical difficulties establishing a stably expressing

FGFR2-GFP cell line within the time-frame of the project.

The results of the SILAC screen contained a subset of GEFs and GAPs. As discussed in

section 2.3, GEFs and GAPs are key regulators of receptor GTPase-mediated trafficking,

and potential therapeutic targets, often facilitating a switch type mechanism in parallel

with small G-proteins. Due to budget and time restraints, a further subset of interesting

GEFs and GAPs were selected for the screen based on a review of the literature (table

7.1). Since a key result of this work is the methodology, it was important to include

some known regulators of EGFR trafficking for validation purposes. In the interest of

space we omit a full discussion of all genes selected for the microscopy screen. However,

a discussion of the relevant literature for all hits from the microscopy screen is presented

in section 4.7.

4.4 Experimental Considerations

The screen presented in this chapter uses confocal microscopy to image an EGFR-EGFP,

stably expressing, HeLa cell line (section 7.3.1). The HeLa cell line was chosen for practical
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ease and because it allows for direct comparison with the many relevant studies in the

literature which use this cell line [3]. The main output of the chapter is image analysis

workflows and protocols, so use of the HeLa cell line provides a good system for validation.

However, the use of a non-transformed cell line would have provided greater physiological

relevance.

The imaging in this chapter was performed in 2D, and on fixed cells (see chapter 5 for

examples of live cell imaging in 3D). This limitation is imposed by the scale of the screen

and the equipment available. Therefore, although the screen provides compelling evidence

for novel regulators of EGFR trafficking, it is not conclusive, and should be backed up

by additional studies performed in 3D on live cells. Note, the details of the fixing and

imaging protocols are presented in section 7.4.1.

Field of view selection was performed manually. Note the first (alive and non-mitotic)

located cells, expressing moderate levels of EGFR-EGFP, were always used. This removes

user bias from the selection process. For larger scale screens, field of view selection could

easily be automated using computer aided microscopy tools such as µManager [247].

Seven to ten fields of view were selected per well. The z-plane was fixed at 3µm above

the coverslip. As noted in section 5.1, this is not ideal but less biased than manual plane

selection.

Expression level of EGFR-EGFP was not constant across the population of cells.

Hence for each field of view, 4 different acquisitions each with increasing laser power were

taken (5%, 8%, 40% and 90% maximal power respectively) (figure 4.1). This ensured that

at least one acquisition would have high SNR without pixel saturation. This approach

was found to be more time-efficient than manual modification of acquisition settings for

each field of view.

As the knockdown efficiency for any given siRNA was not known, three different

siRNAs were used for each gene (as listed in table 7.1). This is common practice in the
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field and is done to increase the probability of effective knockdown for at least one siRNA.

Multiple siRNAs were processed simultaneously using 24 glass bottomed dishes. For each

siRNA replicate, one well was treated with 100ng/ml EGF for 30 minutes and one was

left untreated. Three technical repeats were performed for each siRNA, and for every

experimental repeat 7-10 fields of view were acquired. The order of treatments within a

plate was changed between replicates to avoid any location bias. For practical reasons

the screen was split into 5 groups. Each group had 3-4 genes (9-12 siRNA) and for each

group, a non-silencing control (NSC) and positive control where performed in parallel.

Known-down of the α-adaptin subunit of AP2 was chosen as the positive control and

should block clathrin mediated endocytosis of EGFR [248].

A high concentration of EGF (100ng/ml) was used to saturate the signalling response

and reduce variability across individual cells after 30 minutes EGF stimulation [63, 249].

Although 100ng/ml EGF treatment is regularly used in the literature to study EGFR

trafficking, it should be noted that it is higher than measured physiological levels [250].

4.5 Analysis Workflow

4.5.1 Pre-processing

The aims of the pre-processing steps introduced in this section are as follows. Firstly,

single cells are manually isolated. Secondly, the acquisitions with the highest signal to

noise ratio and low pixel saturation levels are selected. Finally, an image restoration

strategy which aims to reduce the effects of Poisson noise is applied.

The first step in the analysis workflow is the semi-automated selection of ROIs which

contain single healthy cells using a custom graphical interface (Matlab). This is done

completely blind and the data is presented to the user in a randomised order to prevent

bias. The user is asked to draw polygons containing a single cell. After this initial step

the remainder of the analysis is fully automated with no input from the user.
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The second step is the selection of the acquisition with the most appropriate laser

power for either cellular segmentation, or intensity based quantification of the EGFR

signal (figure 4.1). In both cases, the acquisition with the highest laser power (SNR)

and percentage of saturated pixels below a given tolerance level is used. For intensity

based quantification, this tolerance level is set at a stringent 0.01%. This is done to

prevent any distortion of the quantification due to detector saturation. For segmentation

the tolerance level is relaxed to 0.1%. This relaxation is necessary post EGF treatment,

where the cellular boundary can be indistinct at lower laser powers.

The final preprocessing step is image de-noising using a PURE-LET scheme (section

2.5.4) (Fiji) (parameters estimated automatically from images) [166, 140, 186]. Note that

Fiji and the PURE-LET plugin were run within Matlab using the MIJ module [251]. This

allowed the entire analysis workflow for the screen to be run within Matlab.

4.5.2 Cellular Segmentation

After pre-processing (including de-noising), the cellular membrane boundary was seg-

mented. In this sub-section, the automated segmentation protocol employed to do this is

described. Unlike many siRNA screens, no secondary markers were used so the segmen-

tation must be performed using only the EGFR-EGFP signal. The advantages of using

only a receptor marker are discussed in more detail in section 4.7.

Figure 4.1 (following page): Image acquisition for the siRNA screen.
(a),(c),(e),(g) Representative 2D confocal microscopy acquisitions of HeLa cell expressing
EGFR-EGFP, fixed 30 minutes post 100ng/ml EGF treatment. Each field of view was
imaged at 4 different laser power levels (5%, 8%, 40% and 90% maximal power respec-
tively). Display range set between the minimum and half the maximum value for each
image. Red lines represent the cellular boundary. Scale bar represents 5µm. The percent-
age of saturated pixels are 0, 0, 0.013, 0.084% respectively. Therefore image (e) was used
for cellular segmentation (0.1% tolerance) and image (c) for quantification of EGFR lo-
calisation (0.01% tolerance). (a),(c),(e),(g) The corresponding intensity histograms. Note
the 12-bit dynamic range and the saturated voxels in (f) and (h).
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(c) (d)
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Parameter Value Reference
Constant force term; c 1, 0 equation 3.6.9 & 3.6.10
Lateral scaling factors; ∆x, ∆y 1 section 3.6.2
Update step; ∆τ 1 equation 3.6.1
DRLSE factor; µ 0.2 equation 3.6.4
Binary step size; h 2 equation 3.6.4
Dirac-delta function width; α 1.5 equation 3.6.12
Gradient power; p 0.5 equation 3.3.4
Stopping constant; s 1% algorithm 1
Maximum number of iterations 50 section 3.6.1
Edge/smoothing term; λ 9 equations 3.6.9 & 3.6.10

Table 4.1: Parameters for cellular segmentation using 2D edge based distance
regularised level set evolution.

Cells expressing fluorescent receptor have a clear edge at the plasma membrane, but

inhomogeneous internal intensity and structure. Therefore an approach based on edge

detection was chosen. Specifically 2D edge based distance regularised level set evolution

(DRLSE) as described in section 3.3.2 [225]. This approach was chosen for its ability to

detect weak boundaries using an edge based level set formulation, and without the need

for complicating reinitialisation strategies. A implicit level set framework was used, over

potentially faster explicit representations, for the simplicity of the implementation. The

full list of parameters that were used to control the evolution of the level set function are

listed in table 4.1. Note constant, c, controlling the constant force term (equation 3.6.9)

is positive for the first 10 iterations and zero after. This is done to provide an initial push

to escape any local minima in the energy functional.

Using an initial segmentation estimate to initialise the level set function can improve

both the speed and accuracy of a level set approach. For the screen, a K-means clustering

approach similar to that used for the validation of 4D level set segmentation on real

data (section 3.6.6) was chosen. All but the cluster with the lowest mean value were

combined to produce a binary mask. The mask was then processed by morphological

closing; dilation and erosion using a circular structural element (1.5µm radius). Any
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holes in the mask were subsequently filled to acquire a segmentation element.

Unlike the approach from section 3.6.6, the number of clusters is not fixed but initially

set to two and increased iteratively. This iterative increase is stopped if the percentage

area difference between sequential segmentation estimates is less than 20% twice in a row.

More formally if we let A(n) denote the area of the segmentation estimate for n clusters,

then if (A(n) − A(n − 1))/A(n − 1) and (A(n + 1) − A(n))/A(n) are both less than or

equal to 0.2, the iterative increase in cluster number is stopped and K-means clustering

with n clusters is used to generate the final segmentation estimate (figure 4.2a - 4.2d). A

fixed number of clusters is not used, as the large variation in cellular EGFR distribution

across the screen required an adaptive approach to produce consistent results.

To analyse the performance of the protocol, 27 cells from across the screen were man-

ually segmented. The Jaccard index was then used to quantify the performance of the

protocol for this subset of data (equation 3.6.13). The results of this analysis are shown

in figure 4.2f. Importantly, the edge based DRLSE segmentation protocol is shown to

be both accurate and consistent with a mean Jaccard index of 0.92 ± 0.03. Moreover

the improvement in segmentation performance over the initial K-means based estimate is

shown to be statistically significant (p < 0.001), as determined by the sign test. The sign

test was chosen because it assumes neither normality or a symmetric distribution, both

of which are unreasonable assumptions for the distribution of segmentation performance

across cells.

4.5.3 Hit Detection

In the previous sub-section a cellular segmentation workflow was described. Here a pro-

tocol which uses this segmentation result to analyse the spatial intensity distribution of

individual cells is presented. The results of this analysis, across all cells treated with

siRNA targeting a specific gene, are compared to the distribution of cells from the NSC.
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(a) (b) (c) (d)

(e)
(f)

Figure 4.2: Cellular segmentation protocol for the siRNA screen. (a)-(d) K-
means clustering with varying number of clusters. All but the cluster with the lowest mean
intensity are combined and then eroded and dilated to produce the segmentation estimate
(black contours). If the percentage area difference between consecutive segmentation
estimates is less than 20% twice, then the cluster after the first with less than 20% area
difference, is used to initiate to initiate the level set function (LSF). (a) 2 clusters. (b)
3 clusters (area difference = 573%). (c) 4 clusters (area difference = 19.6%). (d) 5
Clusters (area difference = 2.1%). Therefore, the preceding estimate (4 clusters) is used.
(e) Representative de-noised (PURE-LET) image of HeLa cell expressing EGFR-EGFP,
fixed 30 minutes post EGF treatment. Scale bar represents 5µm. Initial segmentation
estimated from K-means based protocol shown in green. The final segmentation result
produced by 2D edge based distance regularised level set evolution (DRLSE) is shown in
red. (f) Quantification of segmentation performance using a manually annotated dataset
(27 cells). The central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers.
Outliers are shown individually and included in all calculations. The mean Jaccard index
for the initial K-means based estimate and the DRLSE based final segmentation are given
by 0.85±0.05 and 0.92±0.03 (errors given by standard deviation). The difference between
the means is statistically significant (p < 0.001) as determined by the non-parametric sign
test.
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This comparison is used to infer if the gene is a hit. The decision making process used for

this hit classification is also presented.

Recall for intensity based quantification, the acquisition with the highest laser power

and saturation level of less than 0.01% is used (section 4.5.1). After de-noising (figure

4.3a), a rolling ball background subtraction is applied to remove non-specific and/or auto-

fluorescent signal which is not associated with the structures of interest (membrane and

endosomal signal) (figure 4.3b). Briefly, in a rolling ball approach the image obtained

by morphological opening (erosion then dilation), with a spherical structure element (the

rolling ball), is subtracted [252]. The radius of the structural element is set to 1µm, as

features larger than this are considered background.

To classify hits it is necessary to define a measure (or measures) which emphasise and

quantify any abnormalities in EGFR trafficking on a cellular level. To do this the cellular

region, as defined by the segmentation, is split into banded sub-regions based on distance

from the plasma membrane. The width of each band is constant and set such that the cel-

lular region is split into 10 bands (figure 4.3c). Having identified which pixels correspond

to each band, the percentage of the cell’s total EGFR-EGFP signal contained in each

band is calculated (figure 4.3d). This characterises a cell’s receptor distribution based on

relative distance from the membrane. We hypothesise that abnormalities in endocytosis

and endosomal trafficking of receptor will be well characterised by this measure. Note

by convention, band 1 is always the outermost band (adjacent to the plasma membrane),

and band 10 the innermost.

Having defined a measure of cellular EGFR distribution, the next step is to design

a statistical analysis for hit detection. First, recall the structure of the screen where for

each gene there are 3 siRNAs, each with 3 technical replicates. For every gene there are

3 associated NSC replicates. The hit detection protocol should compare the results of

each siRNA treatment to the corresponding NSC replicates. To do this, the mean for

126



(a) (b)

(c)
(d)

Figure 4.3: Quantifying the sub-cellular distribution of receptor. (a) Represen-
tative acquisition (de-noised) of HeLa cell expressing EGFR-EGFP. A strict 0.01% pixel
saturation level was used to select this image. Display range set between the minimum
and half the maximum value. (b) Image after background subtraction using a rolling ball
approach (radius set to 1µm) (c) Using the automated cellular segmentation protocol,
the intracellular region is split into 10 bands, all with equal width. (d) The percentage
of the cells total EGFR signal in each band is quantified. This approach enables the
quantification of the EGFR distribution on a single cell level.
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each band across all individual cells in each replicate is calculated. A protocol is then

employed to identify the band for which the EGFR distribution is most abnormal when

compared to the NSC across all three siRNAs for a single gene. The aim here is to identify

the band for which there is the greatest net effect for a particular gene knockdown. To

do this, for every band, the sum of the t-statistic between each siRNA and the NSC and

over all three siRNA treatments is calculated. The maximal sum is then used to identify

the band used for further statistical analysis and hit detection;

max
bands

3∑
i=1

ti = max
bands

3∑
i=1

Xc −X i√
sc
nc

+ si
ni

(4.5.1)

where ti is the t statistic for the ith siRNA. Xc and X i are the mean values across all

replicates for the NSC and ith siRNA respectively. sc and si are the standard deviations

across replicates and nc, ni are the number of replicates, which for this screen is always

equal to three.

Using the selected band, a two sample t-test can be used to obtain a p-value, pi,

for each of the three siRNAs. Note with a two sample t-test there is an assumption of

normality in the replicate means. This assumption is hard to test due to having only 3

experimental repeats. Therefore results from this screen should be treated with caution

and any hits should be followed up with further studies. This is discussed in more detail

in section 4.7.

The p-values for the three siRNAs targeting a single gene are combined using Fisher’s

method to determine an overall p-value for each gene [253];

X2
6 = −2

3∑
i=1

ln(pi) (4.5.2)

where the test statistic, X2
6 , has a chi-squared distribution with 6 degrees of freedom.

Therefore a chi-squared cumulative distribution function can subsequently be used to
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determine a single p-value for each gene. Note it is not known if all, or indeed any, of the

siRNA treatments will significantly knockdown the target gene. This can lead to false

negatives in the hit detection process and for this reason negative results should not be

considered informative.

Having calculated the p-value for each gene in the screen, multiple hypothesis testing

should be corrected for. Here we chose to use the Benjamini-Hochberg procedure over the

Bonferroni correction used in chapter 3 (equation 3.6.14). This is chosen as it is less strin-

gent than the Bonferroni correction. For a siRNA screen this is appropriate, as the aim

is to test many hypotheses and identify hits for further study. In a Benjamini-Hochberg

approach, the p-values for all genes are arranged in ascending order; p1, p2, ..., pm, where

m is the total number of genes in the screen. For a given critical value, α, the largest pj

is found such that;

pj 6
j

m
α (4.5.3)

then all genes corresponding to p1, p2, ..., pj are considered hits [254]. Prior to analysing

the data, we chose to set the false discovery rate, α, to 0.1 and consider this to be

appropriately stringent for a screen.

4.6 Results

4.6.1 Quality Check across Control Groups

Recall that the structure of the screen is such that it is split into 5 groups each with 3

NSC replicates (section 4.4). As a quality control measure it is appropriate to analyse

the variation of the NSC negative controls across groups. To do this the same approach

to that used for hit detection is employed (section 4.5.3). Each group is compared to the

replicates from all other groups. The band of maximal variation across all groups is found
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No EGF Plus EGF
Group p-value BH Significance p-value BH Significance

1 0.248 FALSE 0.248 FALSE
2 0.368 FALSE 0.228 FALSE
3 0.135 FALSE 0.912 FALSE
4 0.697 FALSE 0.098 FALSE
5 0.322 FALSE 0.065 FALSE

Table 4.2: Statistical testing for variation within control groups. p-values for
variation within the non silencing control (NSC) groups. The replicates for each con-
trol group was compared to the replicates for all other control groups combined. This
analysis was performed as a quality control measure. The results demonstrate there is
no statistically significant variation within the NSC groups across the screen. The same
workflow for gene hit-detection was used to determine the p-values and significance after
Benjamini-Hochberg (BH) correction (α = 0.1, m = 5).

using the t-statistic (equation 4.5.1). This approach is performed on both the data-sets

(with and without EGF treatment) (figure 4.4).

Subsequently, p-values are calculated for each group (two sample t-test). These p-

values were tested for significance (at level α = 0.1) after Benjamini-Hochberg correction

for multiple comparisons (equation 4.5.3, m = 5). The results of this quality control

analysis are shown in table 4.2. Note that there is no statistically significant variation

within the control groups both with and without EGF treatment. Therefore we can

include all the data from the screen for further analysis and hit detection. Moreover as

the same protocol was used for hit detection, it increases our confidence in this protocol

to detect true positives.

Recall the positive control for the screen is knockdown of the α-adaptin subunit of

AP2 using siRNA treatment. Western blotting was used to verify the effectiveness of the

siRNA treatment for α-adaptin knockdown. A substantial reduction in expression level

was observed (figure 4.5). The effects of the AP2 knockdown were analysed across the

entire screen. The hit detection protocol as described in section 4.5.3 was used to obtain

p-values of 0.080 and 0.017, with and without EGF treatment respectively. Therefore as
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(a) (b)

(c) (d)

Figure 4.4: Quality control analysis of variation between non silencing control
(NSC) replicates. (a) Mean percentage EGFR signal across all banded regions for
all NSC groups (no EGF treatment). Error bars are the standard deviation across the
replicates. The dotted line highlights the band chosen for statistical testing (band 3). (b)
Plot of individual replicate means across all NSC groups for band 3 (no EGF treatment).
Central band represents the mean and the error bars are the standard deviation. (c) Mean
percentage EGFR signal across all banded regions for all NSC groups (EGF treated). (d)
Plot of individual replicate means across all NSC groups for band 2 (EGF treated).
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Figure 4.5: Western
Blot for AP2 Knock-
down. Note substantial
reduction of AP2 expression
when treated with siRNA.
This was performed to verify
the use of AP2 siRNA as a
positive control.

expected, AP2 knockdown is detected as a positive hit.

4.6.2 Screen Hits

The full set of screen data (with and without EGF treatment) was analysed using the

automated workflow detailed in section 4.5. The output of this workflow is a p-value for

each siRNA treatment and a combined p-value for each gene. A Benjamini-Hochberg

multiple hypothesis correction is then applied to determine if a gene is a hit. This output

is recorded for all genes in the screen in tables 4.3 and 4.4 for no and 100ng/ml EGF

treatment respectively.

Note there are no hits for data-set without EGF treatment and 5 hits for EGF treated

data-set; IQSEC1, VAV2, TBC1D10B, TBC1D5 and USP6NL. Detailed graphical repre-

sentations of the band based data analysis for each of the hits is presented in figures 4.7 -

4.11. This includes a plot of the mean percentage EGFR signal across all banded regions

for each siRNA treatment, and a plot of the individual replicates for the band selected

for statistical testing. In section 4.7.1, a detailed discussion of each hit is presented in the

context of relevant literature.

4.7 Discussion

The screening approach presented in this chapter has several key advantages. Firstly,

unlike any of the approaches discussed in section 4.1, the screen does not require any

secondary labels for the cytoplasm or nucleus. The cellular segmentation and the mea-
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(a) (b)

(c) (d)

Figure 4.6: AP2 knockdown as a positive control for the screen. siRNA targeting
the α-adaptin subunit of AP2 was used to inhibit clathrin mediated endocytosis. (a)
Mean percentage EGFR signal across all banded regions across the entire screen (no EGF
treatment). Dotted line represents band chosen for further statistical analysis (band 2).
Error bars are the standard deviation across the replicates. (b) Plot of individual replicate
means across entire screen. Central band represents the mean and the error bars are the
standard deviation. A two sample t-test returned a p-value of p = 0.080. (c) Mean
percentage EGFR signal across all banded regions across the entire screen (EGF treated).
(d) Plot of individual replicate means across entire screen for band 5. A two sample t-test
returned a statistically significant p-value of p = 0.017.
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p-value
Gene siRNA 1 siRNA 2 siRNA 3 Combined BH Significance

ARFGEF2 0.181 0.624 0.051 0.112 FALSE
FGD1 0.158 0.888 0.003 0.016 FALSE
IQSEC1 0.486 0.102 0.589 0.314 FALSE
HERC1 0.508 0.615 0.280 0.560 FALSE
PSD3 0.298 0.256 0.377 0.312 FALSE
SOS1 0.562 0.256 0.147 0.260 FALSE
ASAP2 0.106 0.117 0.085 0.033 FALSE
TBC1D2 0.310 0.229 0.151 0.170 FALSE
VAV2 0.910 0.691 0.324 0.785 FALSE
TBC1D10B 0.543 0.712 0.420 0.725 FALSE
TBC1D4 0.994 0.265 0.647 0.738 FALSE
TBC1D5 0.496 0.635 0.231 0.513 FALSE
TBC1D14 0.649 0.037 0.409 0.159 FALSE
TBC1D15 0.303 0.217 0.130 0.146 FALSE
TSC2 0.850 0.293 0.263 0.487 FALSE
USP6NL 0.206 0.856 0.820 0.695 FALSE

Table 4.3: Summary of screen results (no EGF treatment). The p-value for each
siRNA is shown, as is the corresponding combined p-value for each gene as determined
by Fisher’s combination method. The Benjamini-Hochberg (BH) method is used to make
the hit decision with a critical value of α = 0.1. There are no hits for the un-treated
data-set.
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p-value
Gene siRNA 1 siRNA 2 siRNA 3 Combined BH Significance

ARFGEF2 0.834 0.876 0.027 0.252 FALSE
FGD1 0.550 0.604 0.749 0.836 FALSE
IQSEC1 0.088 0.074 0.017 0.006 TRUE
HERC1 0.220 0.957 0.223 0.411 FALSE
PSD3 0.835 0.193 0.375 0.468 FALSE
SOS1 0.320 0.436 0.303 0.388 FALSE
ASAP2 0.343 0.399 0.092 0.188 FALSE
TBC1D2 0.295 0.458 0.382 0.431 FALSE
VAV2 0.050 0.940 0.020 0.030 TRUE
TBC1D10B 0.016 0.021 0.011 0.0003 TRUE
TBC1D4 0.523 0.020 0.321 0.076 FALSE
TBC1D5 0.130 0.028 0.002 0.001 TRUE
TBC1D14 0.032 0.324 0.584 0.116 FALSE
TBC1D15 0.970 0.281 0.141 0.367 FALSE
TSC2 0.995 0.737 0.021 0.211 FALSE
USP6NL 0.048 0.889 0.013 0.020 TRUE

Table 4.4: Summary of screen results (EGF treated). The p-value for each siRNA
is shown, as is the corresponding combined p-value for each gene as determined by Fisher’s
combination method. The Benjamini-Hochberg (BH) method is used to make the hit
decision with a critical value of α = 0.1. There are a total of 5 hits for the EGF treated
data-set; IQSEC1, VAV2, TBC1D10B, TBC1D5 and USP6NL.
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(a) (b)

(c) (d)

Figure 4.7: IQSEC1 is a screen hit. (a) Mean percentage EGFR signal across
all banded regions for siRNA targeting IQSEC1 (no EGF treatment). Band 1 is the
outermost and band 10 is the innermost. Dotted line indicates the band chosen for further
statistical analysis (band 3). Error bars are the standard deviation across the replicates.
(b) Plot of individual replicate means for band 3. Central band represents the mean
and the error bars are the standard deviation. Two sample t-tests returned p-values of
0.486, 0.102 and 0.589 for the three siRNA treatments respectively. The combined p-value
for the gene was 0.314 (no EGF treatment) which was not significant after Benjamini-
Hochberg correction. (c) Mean percentage EGFR signal across all banded regions for
siRNA targeting IQSEC1 (EGF treated). (d) Plot of individual replicate means for band
6. Two sample t-tests returned p-values of 0.088, 0.074 and 0.017 for the three siRNA
treatments respectively. The combined p-value for the gene was 0.006 (EGF treated)
which was significant after Benjamini-Hochberg correction.
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(a) (b)

(c) (d)

Figure 4.8: VAV2 is a screen hit. (a) Mean percentage EGFR signal across all banded
regions for siRNA targeting VAV2 (no EGF treatment). Band 1 is the outermost and
band 10 is the innermost. Dotted line indicates the band chosen for further statistical
analysis (band 2). Error bars are the standard deviation across the replicates. (b) Plot
of individual replicate means for band 2. Central band represents the mean and the error
bars are the standard deviation. Two sample t-tests returned p-values of 0.910, 0.691 and
0.324 for the three siRNA treatments respectively. The combined p-value for the gene was
0.785 (no EGF treatment) which was not significant after Benjamini-Hochberg correction.
(c) Mean percentage EGFR signal across all banded regions for siRNA targeting VAV2
(EGF treated). (d) Plot of individual replicate means for band 9. Two sample t-tests
returned p-values of 0.050, 0.940 and 0.020 for the three siRNA treatments respectively.
The combined p-value for the gene was 0.030 (EGF treated) which was significant after
Benjamini-Hochberg correction.
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(a) (b)

(c) (d)

Figure 4.9: TBC1D10B is a screen hit. (a) Mean percentage EGFR signal across
all banded regions for siRNA targeting TBC1D10B (no EGF treatment). Band 1 is the
outermost and band 10 is the innermost. Dotted line indicates the band chosen for further
statistical analysis (band 2). Error bars are the standard deviation across the replicates.
(b) Plot of individual replicate means for band 2. Central band represents the mean
and the error bars are the standard deviation. Two sample t-tests returned p-values of
0.543, 0.712 and 0.420 for the three siRNA treatments respectively. The combined p-value
for the gene was 0.725 (no EGF treatment) which was not significant after Benjamini-
Hochberg correction. (c) Mean percentage EGFR signal across all banded regions for
siRNA targeting TBC1D10B (EGF treated). (d) Plot of individual replicate means for
band 6. Two sample t-tests returned p-values of 0.016, 0.021 and 0.011 for the three
siRNA treatments respectively. The combined p-value for the gene was 0.0003 (EGF
treated) which was significant after Benjamini-Hochberg correction.
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(a) (b)

(c) (d)

Figure 4.10: TBC1D5 is a screen hit. (a) Mean percentage EGFR signal across
all banded regions for siRNA targeting TBC1D5 (no EGF treatment). Band 1 is the
outermost and band 10 is the innermost. Dotted line indicates the band chosen for further
statistical analysis (band 5). Error bars are the standard deviation across the replicates.
(b) Plot of individual replicate means for band 5. Central band represents the mean
and the error bars are the standard deviation. Two sample t-tests returned p-values of
0.496, 0.635 and 0.231 for the three siRNA treatments respectively. The combined p-value
for the gene was 0.513 (no EGF treatment) which was not significant after Benjamini-
Hochberg correction. (c) Mean percentage EGFR signal across all banded regions for
siRNA targeting TBC1D5 (EGF treated). (d) Plot of individual replicate means for band
2. Two sample t-tests returned p-values of 0.130, 0.028 and 0.002 for the three siRNA
treatments respectively. The combined p-value for the gene was 0.001 (EGF treated)
which was significant after Benjamini-Hochberg correction.
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(a) (b)

(c) (d)

Figure 4.11: USP6NL is a screen hit. (a) Mean percentage EGFR signal across
all banded regions for siRNA targeting USP6NL (no EGF treatment). Band 1 is the
outermost and band 10 is the innermost. Dotted line indicates the band chosen for further
statistical analysis (band 6). Error bars are the standard deviation across the replicates.
(b) Plot of individual replicate means for band 6. Central band represents the mean
and the error bars are the standard deviation. Two sample t-tests returned p-values of
0.206, 0.856 and 0.820 for the three siRNA treatments respectively. The combined p-value
for the gene was 0.695 (no EGF treatment) which was not significant after Benjamini-
Hochberg correction. (c) Mean percentage EGFR signal across all banded regions for
siRNA targeting USP6NL (EGF treated). (d) Plot of individual replicate means for band
5. Two sample t-tests returned p-values of 0.048, 0.889 and 0.013 for the three siRNA
treatments respectively. The combined p-value for the gene was 0.020 (EGF treated)
which was significant after Benjamini-Hochberg correction.
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surement of sub-cellular receptor distribution is derived solely from the EGFR-EGFP

signal. This is advantageous, as using additional fluorescent markers, for example nuclear

and cytoplasm stains, increase the experimental complexity and cost of the screen.

Secondly, the band based measure of sub-cellular receptor distribution introduced

(section 4.5.3) is able to quantify, not only changes to plasma membrane receptor levels,

but also variation in the intracellular distribution. It is advantageous to choose as few

measures as possible prior to analysing the screen data. This is because every measure

used will double the number of hypotheses tested. If multiple hypothesis corrections are

employed this will lead to loss of statistical power, and a corresponding increase in false

negatives.

After blind and semi-automated selection of non-mitotic cells, the entire workflow,

from pre-processing to statistical analysis and hit detection, is fully automated. The key

advantage of an automated process is the removal of user bias and error often present

in manually analysed data. It also facilitates the analysis of larger data-sets than are

feasible with manual approaches. The experimental simplicity of the presented approach

can enable the use of an siRNA screening approach, where lack of resources (equipment,

budget and time) are often the limiting factor. However the described image analysis

workflows could be applied to screens of arbitrary size without modification.

A potential avenue for future work could be the development of visual approaches

for the presentation of screen results. Tools such as ScreenSifter allow for dynamic visu-

alisation of siRNA screen results through protein-protein interaction analyses and gene

ontology [255]. An alternative approach could be the visualisation of representative im-

ages from hit genes. These images could be annotated with the cellular segmentation

and band positions and displayed alongside plots of the sub-cellular receptor distibution

(figure 4.6). This would allow the researcher to visually inspect the raw data and correlate

this to the outputs of the statistical analysis.
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Before discussing the hits it is worth noting that, although the described statistical

analysis for hit detection is thorough, it is not recommended to draw definite conclusions

using only the results of this workflow. There are several reasons for this; firstly the

significance level for hit detection was set to p < 0.1 (in non screening approaches p < 0.05

is conventional). Moreover, parametric hypothesis tests are used when the assumption of

normality is not well validated. Finally, it is appropriate to perform follow up studies in

live cells and in 3D. This is discussed in more detail in chapter 5. Note also that negative

results (genes which are not hits) should not be assigned any meaning. This is the case

in general when using hypothesis tests such at the Student’s t test, but even more true

here, where the knock-down efficiency of each siRNA is not verified.

4.7.1 Screen Hits in Context of the Literature

In this section the relevant literature for each of the screen hits is discussed. First note, all

of the hits, with the exception of TBC1D5, are also identified as regulators of endocytosis

and/or trafficking in at least one of three imaging based RNAi depletion screens (table

4.5) [3, 256, 2]. This overlap with similar screening approaches adds confidence to our

protocol and the corresponding hits.

IQSEC1

IQSEC1 (also known as GEP100 and BRAG2) has well established GEF activity for

ARF6. Recall, from section 2.3.2, that ARF6 is a member of the Ras super-family of

small G-proteins and is heavily implicated in the regulation of endosomal trafficking [115].

Also recall from section 2.3.3 that IQSEC1, together with EGFR signalling, is implicated

in the invasion of breast cancer [257]. Specifically, EGF induced, direct binding of EGFR

to IQSEC1 triggers activation of ARF6 and its effector AMAP1 [123, 122]. Interestingly,

Morishige et al. (2008) demonstrate that invasive activity of a breast cancer cell line is

dependent on IQSEC1, but not any of the other 9 ARF6 GEFs expressed in cell line [122].
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Screen
Gene Collinet et al. Kozik et al. Liberali et al.

IQSEC1 Hit No hit Not tested
VAV2 Hit No hit Hit (|z| > 1)
TBC1D10B Hit No hit Not tested
TBC1D5 No hit No hit Not tested
USP6NL Hit No hit Hit (|z| > 1)

Table 4.5: Comparison of hits with the results of other imaging based RNAi
screens. The 5 hits from the screen presented in this chapter were compared to the
results of three large scale screens. Collinet et al. (2010) performed a genome wide
screen for regulators of EGFR and transferrin endocytosis and trafficking [3]. Kozik et al.
(2013) performed a genome wide screen for regulators of clathrin mediated endocytosis
[256]. Liberali et al. (2014) performed 13 parallel screens for regulators of endocytois
and trafficking [2]. VAV2 depletion returned absolute z-scores (|z|) of greater than 1 for
the EGF uptake (HeLa) and GM1 staining (A431) screens. Similarly, USP6NL depletion
returned |z| > 1 for the EGF uptake (A431), EGF stimulated macropinocytosis (A431)
and dextran uptake (A431) screens.

IQSEC1 is also implicated in the endocytosis and trafficking of β1 integrins. Dunphy

et al. (2006) demonstrate that knockdown of IQSEC1 leads to accumulation of integrins

on the plasma membrane [258]. In a follow up study, Morvavec et al. (2012) show

that IQSEC1 is also a GEF for ARF5 and ARF4 [259]. Moreover it is suggested that

the IQSEC1 mediated activation of ARF5, not ARF6, is responsible for the selective

inhibition of integrin endocytosis (transferrin uptake is unaffected). Also note IQSEC1 is

shown to bind AP2 and clathrin, both key components of clathrin mediated endocytosis.

Clearly IQSEC1 is implicated heavily in both EGFR signalling and endocytic function

[257, 260]. However, to the best of our knowledge, there is no study that demonstrates

a perturbation to EGFR endocytosis or trafficking in response to IQSEC1 knockdown,

hence this screen provides the first evidence for this. Due to the specificity of IQSEC1 for

inhibition of integrin, but not transferrin endocytosis, and the strong links to cancer, it

will be of particular interest to validate and further investigate this hit in future work.
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VAV2

VAV2 is a GEF for the Rho sub-family of Ras small G-proteins (section 2.3.2). Recall

from section 2.3.3 that VAV2 is implicated in several cancers [124, 104] and also EGFR

signalling [125]. Also recall that Thalappilly et al. (2010) demonstrated VAV2 knockdown

in HeLa cells increased the rate of, EGF induced, EGFR degradation and net internali-

sation [126]. Therefore this hit is in direct agreement with the literature and provides a

degree of validation for our approach.

Interestingly Cowen et al. (2003) demonstrate a role for VAV2 in the regulation of

endocytosis for Eph family receptor tyrosine kinases in neurons. This implies that VAV2

regulation of receptor trafficking is not restricted to EGFR [261]. Note also that VAV2 is

known to form a complex with EGFR and its binding partner Grb2 [244].

Although Thalappilly et al. (2010) demonstrate colocalization of EGFR, VAV2 and

rab5 in early endosomes, the analysis is not quantitative. Future work could further

investigate the effect of VAV2 knockdown, or over-expression, on the trafficking of EGFR.

This could be done quantifying the colocalization with various sub-endosome populations

over time, post EGF treatment (chapter 5).

TBC1D10B

TBC1D10B (also known as EP164B) is a member of the EP164 family, which has GAP

activity for both the Rab and Ras sub-families of Ras small G-proteins (section 2.3.2)

[262]. Interestingly Negai et al. (2013) propose that the EP164 family predominantly

deactivates Rab and Ras targets at the cellular periphery, implying roles in endocytosis

and trafficking [262]. Fuchs et al. (2007) used a epi-fluorescence based microscopy screen

to identify TBC1D10B as a regulator of Shiga toxic uptake in HeLa cells, but did not

detect any change in EGF uptake [263]. The authors imply that EGF uptake is not

modulated by TBC1D10B because they cannot detect any change with their measure, but

144



such an assertion is unsubstantiated. Moreover the measure used is simply the percentage

of cells which take up EGF. Therefore any variation to the endocytosis, or trafficking, of

EGFR which does not completely block the EGF uptake is not considered.

TBC1D10B is a GAP for rab35 and also an effector for ARF6. Interestingly Chesneau

et al. (2012) demonstrate that over-expression of mutated active (GTP bound) ARF6, or

over-expression of mutated inactive (GDP bound) rab35, both inhibit recycling of trans-

ferrin receptor [264]. Moreover it is demonstrated that ARF6 negatively regulates rab35

activation through TBC1D10B. Allaire et al. (2013) suggest that the ability of ligand

stimulated EGFR to activate ARF6, and regulate receptor recycling rate, is mediated

through TBC1D10B dependent rab35 deactivation [117]. This screen provides evidence

to support this hypothesis and provides an interesting platform for further research. Fi-

nally note that ARF6 hyper-activity and rab35 depletion is often observed in malignant

tumours [123, 117].

TBC1D5

TBC1D5 is a rab GAP with known activity for rab7a. Seaman et al. (2009) demonstrated

that rab7 dependent recruitment of retromer to endosomes is facilitated by TBC1D5 [265].

Moreover this TBC1D5 mediated recruitment is heavily implicated in endosomal sorting

[266, 267, 268].

TBC1D5 is also implicated in the formulation and regulation of autophagosomes [269].

A recent study by Popovic and Dikic (2014) demonstrated that TBC1D5 interacts with

both AP2 and clathrin. Moreover it was shown that clathrin mediated endocytosis and

TBC1D5 were necessary for the trafficking of ATG9, a membrane spanning protein nec-

essary for autophagy [270].

Importantly, rab7 is heavily implicated in EGFR trafficking [271, 272, 273]. However

there is, to the best of our knowledge, no established (direct) link between TBC1D5 and

abnormal RTK trafficking. Note TBC1D5 is a GAP for Rab7a and will therefore facilitate
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the hydrolysis of bound GTP and the deactivation of rab7 [265]. Reduced expression of

TBC1D5 though siRNA treatment could lead to an increased level of active GTP bound

Rab7. This could promote EGFR trafficking to lysosomes and receptor degradation, thus

potentially decreasing the level of EGFR in the cellular interior [274]. The screen results

indicate a decreased percentage of EGFR in the interior and in increase at, or near, the

plasma membrane which correlates well with this hypothesis (figure 4.10). However this

conclusion is speculative as compensatory responses and the biosynthetic secretory system

could play an important role. Also note that TBC1D5 was not classified as either a strong,

or mild, phenotype in the genome wide screen performed by Collinet et al. (2010) [3].

Clearly more work is needed to elucidate the role of TBC1D5 in EGFR trafficking.

USP6NL

USP6NL (also known as Rn-Tre) is a GAP, with activity for the Rab sub-family of Ras

small G-proteins (section 2.3.2). Lanzetti et al. (2000) demonstrated that USP6NL is a

GAP for rab5 and a binding partner for the EGFR substrate, Eps8 [275]. Recall, from

section 2.3.2, that rab5 is heavily implicated in the endocytosis and trafficking of EGFR

[276]. Moreover, it was shown that USP6NL over-expression inhibited internalisation of

both EGFR and transferrin receptor. Interestingly, Esp8 was shown to be required for

USP6NL mediated inhibition of EGFR, but not transferrin, internalisation. Martinu et

al. (2002) demonstrated that the EGFR binding partner, Grb2, also binds USP6NL [277].

Moreover binding of USP6NL to Grb2 was required for, USP6NL dependent, inhibition

of EGFR internalisation.

A recent study by Palamidessi et al. (2013) demonstrated that USP6NL inhibits

internalisation of β1, but not β2, integrins. This was shown to have consequences for

focal adhesion formation and cell migration, and provides further evidence that USP6NL

can mediate endocytosis for specific receptors [278].

Finally, note that USP6NL has demonstrated activity for other rabs including rab41
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[279], and also functions as a rab5 effector to mediate actin remodelling through RTK

signalling [280]. In the context of this screen, the hit is further evidence that USP6NL

can regulate EGFR trafficking.

4.8 Conclusion

In this chapter 16 GEFs and GAPs were selected from the results of a SILAC proteomics

screen. The expression levels for each of the 16 genes was depleted using a siRNA library

and screened with confocal microscopy in a HeLa cell line, expressing EGFR-EGFP. This

was done both with and without EGF treatment. Using only the EGFR-EGFP signal,

cells were segmented, and a novel measure was used to quantify the sub-cellular distribu-

tion of EGFR. Using an automated protocol for hit detection, 5 of the GEFs and GAPs

were identify as hits, demonstrating abnormally distributed EGFR post EGF treatment.

There we no hits for the untreated data-set. The 5 hits from the screen were IQSEC1,

VAV2, TBC1D14, TBC1D5 and USP6NL. Either over-expression, or knockdown, of VAV2

and USP6NL are known to perturb EGFR internalisation post ligand treatment so this

screen provides further evidence to support these studies [126, 276]. The role of IQSEC1,

TBC1D14 and TBC1D5 in the regulation of EGFR trafficking isn’t as well defined. This

is discussed in detail in section 4.7.1. All of hits present interesting opportunities for

future research. Due to time constraints follow up studies for screen hits were not carried

out. However the protocols defined in the next chapter are ideally suited to do this.

In summary, we have presented a microscopy based platform to screen for regulators

of receptor trafficking. The presented approach is experimentally simple, and the analysis

is fully automated and robust. It is well suited to secondary screening of larger primary

(proteomics or microscopy based) screens.
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Chapter 5

Workflows to Quantify Receptor

Trafficking in 4D

5.1 Introduction

Many studies employ image analysis workflows to quantify the endocytosis and trafficking

of cellular receptors using live cell time-lapse microscopy data. In this chapter novel

protocols are introduced to do this for 4D data. First, some of the approaches used in

the literature are discussed. This is done to highlight both good and bad practice.

Live cell time-lapse microscopy can be performed in either 2, or 3, spatial dimensions.

For example, Fortian and Sorkin (2014) used spinning disk confocal microscopy to quantify

EGFR internalisation and colocalization with Grb2 in 4D (3D time-lapse) [6]. Conversely,

Yamazaki et al. (2002) used 2D time-lapse data to quantify EGFR internalisation and

colocalization with Grb2 [281]. 3D time-lapse data is inherently superior as the spatio-

temporal dynamics of receptor internalisation and colocalization can be measured for the

entire cellular volume. With 2D time-lapse data, only a single axial slice is recorded. As

the spatial distribution of the receptor and/or endosomes can vary dramatically through

the cellular volume, 2D acquisition can lead to high levels of variation in the data and/or
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biased conclusions. For example, receptor dynamics near the membrane-coverslip interface

can be dramatically different to those for a plane which dissects the nucleus (figure 5.13).

This variation can be minimised by an unbiased and consistent procedure for selection of

the axial position. For example Hsu et al. (2011) always choose the middle nuclear plane

[282], whereas in chapter 4 a set distance from the coverslip is selected. Note computer

aided microscopy (CAM) scripts can be used to automate plane selection [283]. However,

in many cases, no plane selection criteria are used and a 3D time-lapse approach will

always be superior.

Time-lapse microscopy can be used to measure changes in receptor levels at the mem-

brane and/or cellular interior over time. To do this, Perera et al. (2007) manually drew

regions of interest (ROIs) corresponding to the membrane (rectangular or circular) and

calculated the mean pixel intensity within those regions [284]. This typical approach has

several important limitations; firstly, the manual selection of ROIs introduces (conscious

or un-conscious) user bias. Secondly, only a very small percentage of the plasma mem-

brane is contained within the ROIs, this can lead to sampling errors. Finally, the mean

intensity is an inappropriate measure to use in this procedure. To see this, note that the

ROIs will contain pixels originating from both signal and background. Without isolating

the signal containing pixels, the presence of background pixels in the ROI will distort the

mean.

Holleran et al. (2013) use ROIs for the peri-nuclear region (and the whole cell) to

quantify internalisation [285]. The ratio of peri-nuclear signal to total cellular signal is

recorded over time. It isn’t explicitly stated how these ROIs where generated, but manual

selection is implied. Moreover no pre-processing to remove background signal or noise is

used.

Fortian and Sorkin (2014) used background subtraction, and a 3D edge based method,

to segment cells using Grb2-YFP signal [6]. This was followed by image erosion (5 pixels)
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to identify the interior (and membrane). Finally, the percentage of the total cellular Grb2

signal localised to membrane, was calculated over time. This excellent approach has

strong similarities to the methods presented in this chapter, but we note it was developed

independently. The main limitation of their approach is that insufficient technical details

are provided to reproduce and test the protocols.

Fluorescent probes sensitive to pH can also be used to quantify receptor internali-

sation. Adie et al. (2002) introduce a novel probe which only fluoresces under acidic

conditions. This probe is tagged to G protein coupled receptors and is used to quan-

tify internalisation into acidic endosomes [286]. This is a powerful approach, however it

requires the modification of receptors to incorporate epitote tags, preventing the use of

existing fluorescent constructs.

In section 5.5 protocols for quantifying the spatio-temporal colocalization between

receptors and sub-endosome populations are introduced. Section 2.6 provides an intro-

duction to common methods used to measure colocalization.

It is worth noting that colocalization is often not quantified when studying receptor

trafficking in endosomes [77, 87]. Miaczynska et al. (2004) simply use the abundance of

yellow pixels as proof of colocalization [88]. The number (and definition) of yellow pixels

required for colocalization is chosen arbitrarily to suit the authors’ conclusions, and is an

example of particularly bad practice.

The Pearson’s coefficient, the Manders’ coefficient and the Manders’ overlap coeffi-

cients are typically used for quantification (section 2.6.1) [95, 78, 287]. However, it is

unusual for more than one measure to be used or the choice of measure to be justified.

ROIs are typically drawn manually and do not account for the all of the biologically rele-

vant signal. Moreover pre-processing, signal isolation and statistical significance are often

not considered.
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5.2 Chapter Aims

The aims for this chapter can be summarised as follows:

1. Implement the 4D level set methods from chapter 3 to identify regions of interest

(the plasma membrane and nucleus) for internalisation and colocalization analysis.

2. Develop automated protocols to quantify sub-cellular receptor distribution in re-

sponse to ligand (for 4D data).

3. Develop automated protocols to quantify receptor colocalization with sub-endosome

populations (for 4D data).

4. Discuss and develop appropriate techniques for the visualisation of sub-cellular colo-

calization.

5. Validate all approaches on a real biological system. Explicitly, pertubation of EGFR

trafficking, and colocalization with rab5 positive endosomes, in the presence of dy-

nasore (dynamin inhibitor), AG1478 (EGFR kinase inhibitor) and dasatinib, should

be quantified.

The aim is to develop automated, justified and robust protocols. Image pre-processing

(noise removal and background subtraction) and statistical testing should be considered.

Importantly, the steps in all protocols should be explained in sufficient detail as to be

reproducible. As already mentioned this is often not the case in the literature. This will

provide an important toolbox for the community, facilitating the use of state of the art

image analysis workflows to quantity receptor trafficking.

5.3 Cellular and Nuclear Segmentation

The workflows presented in this chapter for quantifying the sub-cellular distribution of re-

ceptor (section 5.5), and colocalization with sub-endosome populations (section 5.4), both
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require accurate and reliable cellular segmentation protocols. It is also advantageous to

segment the nucelus such that a ROI can be defined which includes the plasma membrane

and cytoplasm, but excludes the nucleus. This is done because the vast majority of recep-

tor is either localized at the plasma membrane, or internalised in endosomal structures

(including lysosomes) within the cytoplasm (figure 2.3).

Note that for all the experiments presented in this chapter, HeLa cells were transfected

with both EGFR-EGFP and rab5-mRFP. Recall, from sections 2.2.2 and 2.3.2, that rab5

is an established marker for a sub-population of early endosomes, and heavily implicated

in the regulation of EGFR signalling and trafficking. Ideally, segmentation of both the

plasma membrane and the nucleus should be performed with only these two labels (section

5.7).

To segment the plasma membrane a 4D edge based DRLSE approach, with a con-

stant volume term, was used (Matlab) (equations 3.6.9 and 3.7.1). This was done using

only the EGFR-EGFP signal. This approach was extensively validated (figure 3.10), and

demonstrated superior performance over the other methods presented, in section 3.7 (fig-

ure 3.13). Moreover it was shown to be superior to equivalent 2D and 3D segmentation

protocols. Table 3.4 lists the parameters used to implement to the DRLSE segmentation.

Note the edge constant was fixed at λ = 8, and the temporal constraint constant was

fixed at c0 = 1.

To segment the nucleus, information from both the EGFR-EGFP, and rab5-mRFP

channels were combined, but importantly no nuclear stain was used. The strategy is

to identify the nuclear region by the absence of background signal in the EGFR and

rab5 channels (figure 5.1c). Such an approach is clearly more difficult to implement than

segmentation with a nuclear stain, and will require a powerful and reliable segmentation

protocol. To do this, 4D region based DRLSE approaches were tested (equation 3.6.10).

Region based approaches were chosen over edge based approaches as the nuclear boundary
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is often not well defined, hence edge based level set evolution will tend to bleed-through

into the cytoplasm.

To accurately segment the nucleus for each cell it is necessary to initialise the level

set function (LSF) as a contour entirely contained within the nucleus. The LSF will then

evolve, expanding the segmentation contour, to refine and locate the nuclear boundary.

The protocol used to find an initial segmentation estimate of the nucleus was K-means

based, and is similar to those used for the cellular segmentation as described in sections

3.6.6 and 4.5.2. The details are as follows and are illustrated in figure 5.1;

1. The 3D data for each time-point was de-noised with a PURE-LET scheme (section

2.5.4) [166]. Parameters were estimated automatically from the image. MIJ was

used to run ImageJ within Matlab and keep the workflow fully automated [251].

2. The data was further processed with 3D Gaussian blurring (section 2.5.1) (radius

= 200nm). This was done to smooth features such as endosomes, and the membrane

localised receptors, as these features are of no interest for nuclear segmentation.

3. Multi-variate K-means clustering was performed using both the EGFR and rab5

channels. Note only pixels within the cellular segmentation (after 3D erosion with

spherical structural element of 1µm radius, and exclusion of extremal planes) were

considered. The cluster with the lowest mean (averaged across both channels) was

selected. This is done under the assumption that, within the nucleus, the back-

ground fluorescence will be low in both channels. A large number of clusters (15)

was used to ensure that the estimate is inside the nucleus. Note however, that the

estimate is not particularly sensitive to the number of clusters.

4. Finally, the selected cluster was processed, by erosion, filling and dilation (1µm

radius). The largest single object (by volume, 4-connectivity in 3D) in every time-

point was then selected and used to initialise the 4D LSF as a binary step function
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(section 3.6.4).

To test the accuracy of both the initial and level set based segmentation protocols,

the nucleus was manually segmented for 10 4D movies. This was done using an over-

lay of the fluorescent (EGFR-EGFP and rab5-mRFP) and bright-field channels, within a

semi-automated custom Matlab script. The manual segmentation was performed for ev-

ery time-point (4 total) and every 3rd axial slice. The performance of each segmentation

algorithm was quantified, with respect to the manual segmentation, using the Jaccard

index (equation 3.6.13). The region based 4D DRLSE approach was first tested without

a volume constraint, and with varying region constant, β. Note, the data term, I, from

equation 3.6.10 was constructed as the sum of the two fluorescent channels. The results

of this analysis are shown in figure 5.2a. Note that for all β, the 4D DRLSE approach

demonstrated higher mean performance than the K-Means estimate. A constant volume

temporal constraint was then introduced and tested (figure 5.2b) (equation 3.7.1). There

was no significant improvement in (or loss of) maximal performance with the introduc-

tion of the constant volume constraint. Despite this, we choose to use the restraint as it

provides greater capacity for recovery if the segmentation protocol under-performs for a

single time-point. Note, from figure 5.2c, that there is an outlier for which the initial seg-

mentation estimate is poor (Jaccard index < 0.4). Importantly, the 4D DRLSE protocol

recovers the segmentation performance for this movie (both with, and without a temporal

constraint).

The maximal segmentation performance was obtained, with a constant volume con-

straint, when β = 40 and c0 = 0.8. Therefore these values were used for the nuclear

segmentation in the remainder of this chapter. A full list of segmentation parameters

for the 4D DRLSE nuclear segmentation is listed in table 5.1. With these parameters a

mean Jaccard index of 0.82 ± 0.07 was calculated across the manually annotated data.

We consider this to be impressive, considering there is no nuclear stain, and sufficiently
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(a) (b)

(c) (d)

Figure 5.1: Initial estimate for the label free nuclear segmentation with a
K-means clustering approach. (a)-(b) For each time-point, de-noised (PURE-LET
scheme) data for both the EGFR-EGFP and rab5-mRFP channels were blurred with a
3D Gaussian profile (radius = 200nm). Scale bar set at 10µm. (c) Data from both
channels summed together. Note the location of the nucleus is visible from the lack of
auto/background fluorescence. (d) K-means clustering (15 clusters, each cluster repre-
sented by a different colour) was performed in 3D across both channels simultaneously
and for each time point separately. Note, only pixels within the cellular segmentation were
clustered. The cluster with the lowest mean was used to construct the initial estimate.
Post-processing by erosion, filling and dilation (1µm radius) was performed to produce
the final estimate (black contour).
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(a) (b) (c)

Figure 5.2: Validation of the 4D region based DRLSE nuclear segmentation
protocol. (a) Mean performance of the K-means based initialisation protocol (red) and
4D region based DRLSE algorithm (green) across all 10 manually annotated movies, with
varying values for the region constant, β. Error bars are given by the standard deviation.
The mean Jaccard index for the K-means initialisation was 0.74 ± 0.15. The maximal
(mean) Jaccard index for 4D region based level set segmentation was 0.82±0.07 (β = 40).
(c) The introduction of a constant volume term to the level set energy function was tested
for β = 40, and varying values for the constant, c0. The maximal (mean) Jaccard index for
4D region based level set segmentation with a constant volume constraint was 0.82± 0.07
(c0 = 0.8). (d) Summary box-plot, showing the performance of the initialisation and
the maximal performance of the 4D region based DRLSE, with and without a constant
volume constraint term. Note that Friedman’s test returned p = 0.07, hence we cannot
conclude that there is a statistically significant difference in performance between the
algorithms. Central mark on box-plot represents the median, and the edges of the box
are the 25th and 75th percentiles. Outliers are shown separately.
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Parameter Value Reference
Constant force term; c 0 equation 3.6.9 & 3.6.10
Constant volume factor; c0 0.8 equation 3.7.1
Lateral scaling factors; ∆x, ∆y 1 section 3.6.2
Axial scaling factor; ∆z variable equation 3.6.7
Temporal scaling factor; ∆t variable figure 3.4
Update step; ∆τ 1 equation 3.6.1
DRLSE factor; µ variable equation 3.6.4
Binary step size; h 2 equation 3.6.4
Dirac-delta function width; α 1.5 equation 3.6.12
Stopping constant; s 0.01% algorithm 1
Maximum number of iterations 50 section 3.6.1
Smoothing term; λ 1 equations 3.6.9 & 3.6.10
Region term; β 40 equation 3.6.10

Table 5.1: Segmentation parameters for region based 4D DRLSE nuclear seg-
mentation. Note a constant volume constraint was used.

accurate for the analysis workflows presented.

It can be informative to visualise the segmentation results of both the plasma mem-

brane, and nucleus using 3D surface rendering (Matlab). In figure 5.3 this is done for

a representative cell, which has been treated with 2ng/ml EGF and imaged for 30 min-

utes. Note, over this time-period, neither the shape or volume of both the cell and nucleus

change significantly. This demonstrates why 4D level set approaches and constant volume

temporal constraints are well suited to this application.

5.4 Workflow to Quantify the Sub-cellular Receptor

Distribution

In this section, a band based analysis workflow to quantify the sub-cellular distribution

of EGFR is defined. This can thought of as an extension, to 3D time-lapse data, of the

analysis protocols described in section 4.5.3.

In this chapter the data-set consists of live cell confocal microscopy movies (3D time-

lapse) of HeLa cells, expressing both EGFR-EGFP and rab5-mRFP. Note low EGF con-
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(a) pre EGF treatment

(b) 10 minutes post EGF treatment

(c) 20 minutes post EGF treatment

(d) 30 minutes post EGF treatment

Figure 5.3: Segmentation results can be visualised in 3D by surface rendering.
Representative HeLa cell which has been treated with 2ng/ml EGF and imaged for 30
minutes (confocal microscopy). The cellular segmentation is shown in green the nuclear
in blue. Note the surface rendering of the cellular segmentation is partially transparent.
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centration (2ng/ml) was used to stimulate the cells, as opposed to the 100ng/ml used in

chapter 4. This is done to better represent physiological EGF levels, and to demonstrate

that the proposed workflows are capable of detecting perturbations, to endocytosis and

receptor trafficking, under such conditions. The cells were treated with EGF immediately

prior to imaging. This was done in the presence of one of three drug treatments; AG1478,

dynasore and dasatinib (and a DMSO treated control). Briefly, AG1478 is a well estab-

lished EGFR kinase inhibitor [288]. Treatment with AG148 has been shown to inhibit

EGF internalisation [289], but recent studies suggest that EGFR kinase activity is not

necessary for endocytosis [290]. These contradictory reports are discussed, alongside the

results presented in this chapter, in section 5.7. Dynasore is a small molecule inhibitor of

dynamin, a key component of endocytosis (section 2.2.1). Note, dynasore treatment has

been shown to inhibit dynamin dependent endocytosis of EGFR [291, 292]. Finally, dasa-

tinib is an inhibitor of both Src family and Abl kinases [293], and is heavily implicated in

EGFR signalling [294, 295].

The raw-data was pre-processed by semi-automated blind selection of cells (Matlab),

followed by de-noising (PURE-LET, parameters estimated from image). The de-noised

data was then further processed with rolling ball background subtraction. This was

implemented in 3D using a spherical structural element, with radius 1µm (features larger

than this considered background). These processing steps were applied to both channels.

Finally, the plasma membrane and nucleus of each cell were segmented with the 4D level

set protocols described in section 5.3.

The cellular interior (the area contained by the membrane segmentation, excluding the

nuclear region) of each cell was split into 10 banded regions (figure 5.4). This was done

based on either distance from the membrane, or distance from the nucleus. Note, distance

transforms were calculated in 3D, and weighted with the axial and lateral dimensions of

each voxel. Having split the ROI into banded sub-regions, the percentage of each cell’s
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(a) (b)

Figure 5.4: Band based analysis for sub-cellular receptor distribution in 4D.
After preprocessing (de-noising and background subtraction) the cellular region, exclud-
ing the nucleus), is binned into 10 bands based on either distance from (a) the cellular
membrane or (b) the nucleus. The process is performed fully in 3D. The percentage of the
cell’s total EGFR-EGFP signal in each band can be calculated, and used to characterise
the sub-cellular receptor distribution over time.

total EGFR signal in each band, at each time-point, was calculated. This intensity was

normalised, for each cell, using the distribution of the receptor signal at the first time-

point. Specifically, for every time-point (and every band) the percentage EGFR signal at

the first time-point (for the same cell and band) was subtracted.

Figures 5.5a and 5.6a show the results of the described band based analysis, using

distance from the plasma membrane and the nucleus respectively. Note that the data-set

consists of at least 10 cells per treatment. Individual cells are considered technical repli-

cates for the purpose of statistical testing. This is valid because only a single cell (per

treatment) was acquired for each experiment (and cell passage). It is desirable to design a

statistical testing protocol to determine if the variation in sub-cellular distribution of re-

ceptor, as measured by the band analysis, is statistically significant relative to the control.

To do this, parametric analysis of variance tests, such as a two way repeated measures

ANOVA, were considered. However, when the distributions consist of single cell measure-

ments, the assumptions of normality and absence of outliers do not hold. Non-parametric

tests equivalent to two-way ANOVA are not well established. Therefore, for each cell,

the normalised percentage EGFR signal of each treatment was averaged over time and

all bands (figures 5.5b and 5.6b). This gives a measure of each cell’s total change to the

160



sub-cellular receptor distribution in response to ligand. A non-parametric Kruskal-Wallis

one-way analysis of variance was used to determine if there were significant differences be-

tween treatments [296]. This was followed by post-hoc testing of each treatment, relative

to the control, with the Mann-Whitney U test [297]. Finally, p-values from the pairwise

corrections were corrected for multiple comparisons with the Bonferroni method (n = 3)

(equation 3.6.14).

With the described statistical analysis workflow, and when bands are defined by the

distance from the plasma membrane, the overall effect of EGF stimulated EGFR traffick-

ing is statistically significant when treated with either AG1478 or dynasore (figure 5.5b).

When the bands are defined by the distance from the nucleus only the dynasore treatment

is significant (figure 5.6b).

Note the measured perturbation to EGFR trafficking for each treatment, in each band,

can be seen in figures 5.5a and 5.6a. However, these plots contain a lot of information

which can be difficult to interpret. Therefore, it can be instructive to reformulate the

information contained within these plots using heat-maps (figures 5.7 and 5.8). To do

this, each band, b, and each time-point, t, was assigned a value, H(b, t), and a position

on the heat-map. This value was defined as the (mean) difference of the normalised

percentage EGFR signals between the treatment, ST , and control, SC , divided by the

error in this measurement;

H(b, t) =
ST (b, t)− SC(b, t)√
σT (b, t)2 + σC(b, t)2

(5.4.1)

where σT (b, t) and σC(b, t) are the standard deviations for the mean normalised per-

centage EGFR signals of the treatment and control respectively. Note the absolute value

of the heat-map, |H(b, t)|, gives an indication of the effect size relative to the error in

the effect. Therefore, the larger |H(b, t)|, the greater the confidence that the effect is real

and not an artefact of the data. The sign of H(b, t) determines if the effect is positive or
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(a)

(b)

Figure 5.5: Band based analysis results (membrane distance). (a) Distance from
the cellular membrane was used to separate each cell into 10 banded regions. The mean
percentage EGFR signal (normalised for each cell by subtracting the percentage pre-EGF
treatment) in each band, over time, and post 2ng/ml EGF treatment is shown. This anal-
ysis was performed for a DMSO control and 3 drug treatments; AG1478, dynasore and
dasatinib. There are at least 10 cells per treatment, and errors bars are given by the stan-
dard error. (b) Plot of the mean change in normalised percentage EGFR signal, across all
bands and time-points, for each treatment. A Kruskal-Wallis one-way analysis of variance
returned, p = 3×10−5. This indicates that there are significant differences between treat-
ments. Post-hoc testing of all treatments relative to the control, by the Mann-Whitney
U test (corrected by the Bonferroni method), returned p = 0.002, p = 0.005 and p = 0.5
for the AG1478, dynasore and dasatinib treatments respectively. Central band represents
the mean, and the error bars are the standard deviation.
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(a)

(b)

Figure 5.6: Band based analysis results (nuclear distance). (a) Distance from the
nucleus was used to separate each cell into 10 banded regions. The mean percentage EGFR
signal (normalised for each cell by subtracting the percentage pre-EGF treatment) in each
band, over time, and post 2ng/ml EGF treatment is shown. This analysis was performed
for a DMSO control and 3 drug treatments; AG1478, dynasore and dasatinib. There are
at least 10 cells per treatment, and errors bars are given by the standard error. (b) Plot of
the mean change in normalised percentage EGFR signal, across all bands and time-points,
for each treatment. A Kruskal-Wallis one-way analysis of variance returned, p = 0.002.
This indicates that there are significant differences between treatments. Post-hoc testing
of all treatments relative to the control, by the Mann-Whitney U test (corrected by the
Bonferroni method), returned p = 0.2, p = 0.01 and p = 2.4 for the AG1478, dynasore
and dasatinib treatments respectively. Central band represents the mean, and the error
bars are the standard deviation.
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(a) AG1478 (b) Dynasore (c) Dasatinib

Figure 5.7: Heat map representation of band analysis (membrane distance).
Cells were treated with either (a) AG1478, (b) dynasore or (c) dasatinib and compared
to a DMSO control. The value of the heat map at a given band, and time-point, was
calculated by the (mean) difference in normalised percentage EGFR signal between the
control and drug treatments, divided by the associated error (sum of standard deviations).

negative relative to the control.

To conclude, a 4D band based analysis protocol has been presented to quantify changes

in receptor distribution, over time and post ligand treatment. The use of heat-maps to vi-

sualise perturbations in receptor trafficking with different treatments has been introduced.

The implications of both the methods and analysis results presented are discussed, in the

context of relevant literature, in section 5.7.

5.5 Workflow to Quantify Colocalization

In this section a workflow is presented to quantify colocalization, between receptor and

sub-endosome populations, for 4D data. Three drug treatments are used to perturb the

system, and strategies to identify statistically significant changes to the ligand induced

colocalization response are discussed. Note that the data was pre-processed, as in the
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(a) AG1478 (b) Dynasore (c) Dasatinib

Figure 5.8: Heat map representation of band analysis (nuclear distance). Cells
were treated with either (a) AG1478, (b) dynasore or (c) dasatinib and compared to a
DMSO control. The value of the heat map at a given band, and time-point, was calculated
by the (mean) difference in normalised percentage EGFR signal between the control and
drug treatments, divided by the associated error (sum of standard deviations).
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(a) 0 mins (b) 10 mins (c) 20 mins (d) 30 mins (e) All

Figure 5.9: Joint histograms to visualise colocalization. (a)-(d) Joint histograms,
for a single representative cell, showing the correlation between EGFR and rab5, at various
time-points, post 2ng/ml EGF stimulation. Only the region inside the cellular segmen-
tation, and outside the nucleus, was included in the plots. (e) Joint histogram for the
combined data across all time-points. A linear fit (white) is shown for all plots. Note this
fit only well represents the data for the later time-points, where the colocalized voxels
dominate the distribution. The data was pre-processed by PURE-LET de-noising and
rolling ball background subtraction.

previous section, by de-noising and background subtraction. Similarly, cellular and nu-

clear segmentation was performed using the workflows introduced in section 5.3. These

segmentation protocols are a vital component of the workflows presented in this section.

Recall, from section 2.6, that the use of colour merges to visualise colocalization is

uninformative and commonly miss-leading. Therefore, no representative colour merges

of single images are presented in this work. Instead the colocalization is visualised using

joint histograms of the data (figure 5.9). This approach is particularly useful for 4D data,

as plots for each time-point can be used to visualise the change in correlation over time

(figure 5.9a - 5.9d). Note, for the representative movie shown, there is an increase in the

correlation between the two channels post EGF treatment. This is indicative of in increase

in colocalization. In a joint histogram approach all the data, from each point, is used, as

opposed to just the single 2D plane shown in colour merges. Note only pixels from inside

the ROI (inside the cellular segmentation, excluding the nucleus) were included in the

plots.

In this work, pixel based (section 2.6.1), rather than object based, colocalization mea-

sures are used (section 2.6.2). This is done because the resolution (and sampling rate)
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of the data is such that overlap based measures are sufficient to quantify the endosomal

colocalization. Moreover, pixel based measures are simpler to apply and interpret.

Recall, from section 2.6.1, that we consider it best practice to calculate both the

Manders’ coefficients, and the Pearson coefficient. To calculate the Manders’ coefficients

it is necessary to isolate the biologically relevant signal. This is also considered best

practice for the Pearson coefficient, where only pixels containing isolated signal from both

channels should be considered [8]. Also recall, the standard approach for signal isolation

in colocalization analysis is Costes’ thresholding (figure 2.12) [182]. Figures 5.10a and

5.10b show representative, pre-processed, images (from a 4D movie) for the EGFR-EGFP

and rab5-mRFP channels respectively. Figures 5.10c and 5.10d show the corresponding

binary images after Costes’ thresholding (only pixels within the ROI were included in

the calculations), with a tolerance threshold of 0.01 for the Pearson coefficient. Note

the Costes’ approach has over-segmented the data, and failed to isolate the biologically

relevant signal. The reasons for this are discussed in detail in section 5.7, but note a

different approach is clearly required.

The pre-processing of the data (de-noising and background subtraction) enabled the

use of a reasonably simple, and automated, global thresholding approach. A minimum

cross entropy (MCE) approach, as described by Li and Lee (1993), was found to accurately

isolate the endosomes and membrane (figures 5.10e and 5.10f) [298, 299]. In a MCE

approach, the cross entropy, D, between two distributions, q and p, is defined such that;

D(q, p) =
N∑
i=1

q(i) log
q(i)

p(i)
(5.5.1)

where N is the number of elements in each distribution. When applied to image thresh-

olding the cross-entropy between the histogram of the input data, and the thresholded

data, is minimised [300].

Having isolated the cellular ROI, and also the biologically relevant signal for both
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Thresholding approaches for colocalization analysis. (a)-(b) Repre-
sentative slices, from a 4D movie, showing the EGFR and rab5 signal after pre-processing.
A threshold should be applied to this data to isolate the biologically relevant signal, nec-
essary for calculation of colocalization statistics. The contrast has been enhanced in both
channels by scaling between 0 and half the maximum value. Scale bar set at 10µm. (c)-
(d) A Costes’ threshing approach returns a threshold value which is far too low. This is
the case even with a small tolerance for the Pearson threshold (0.01). (e)-(f) A minimum
cross entropy (MCE) thresholding approach produces a result which better segments the
biologically relevant signal. Both the Costes’ and MCE threshold values were calculated
globally across all time-points simultaneously. Only voxels within the ROI, inside the
cellular segmentation and outside the nucleus, were considered in the calculations.
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channels, the Manders’ coefficients, M1 and M2, were calculated for each cell in every

treatment and time-point (equation 2.6.3). This was done in 3D. Note M1 can be in-

terpreted as the percentage of total (isolated) EGFR signal overlapping with (isolated)

rab5 signal. Similarly, M2 is the percentage of total rab5 signal overlapping with EGFR

signal. To normalise the Manders’ coefficients, the value at the first time-point (for each

cell) was subtracted. With this normalisation the change in colocalization over time, not

simply the existence of colocalization, in response to ligand is analysed. Figures 5.11a

and 5.11c show the results of this analysis.

It is advantageous to implement a statistical testing protocol to determine if the per-

turbation to colocalization, induced by a specific drug treatment, is statistically signif-

icant relative to the control. The same approach is taken as for the quantification of

sub-cellular receptor distribution in section 5.4. Specifically, for each treatment, the nor-

malised coefficients were averaged across all time-points and analysed for variation with

a Kruskal-Wallis one-way analysis of variance. If significant (p < 0.05), this was followed

by pairwise comparison (Mann-Whitney U test) relative to the control, and a correc-

tion for multiple hypothesis testing was applied (Bonferroni). With this approach, the

distributions of colocalization measures across a number of cells have been compared,

with well established hypothesis tests, to determine differences in treatments [10]. This

is unconventional approach which is justified, and discussed, in more detail in section

5.7. Figure 5.11b demonstrates a statistically significant variation in the colocalization

response (EGF induced) for the AG1478 and dynasore treatments, as measured by M1.

Note, from figure 5.11d, that no statistically significant variation is found for any of the

drug treatments when M2 is used as the measure.

The described analysis was repeated, but with the Pearson coefficient as the measure of

colocalization. This was done both without (figure 5.12a), and with (figure 5.12c), signal

isolation. In the later case only the voxels which contained isolated signal from both
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(a) (b)

(c) (d)

Figure 5.11: Quantifying the, ligand induced, colocalization response with
the Manders’ coefficients. For each cell the Manders’ coefficients (M1 and M2) were
calculated using the pre-processed and isolated signal. This analysis was performed for
a DMSO control and 3 drug treatments; AG1478, dynasore and dasatinib. (a) Mean
M1 coefficient, across all cells, over time. The coefficients have been normalised on a
per cell basis by subtracting the value of the coefficient for the first time-point (M1
change). There are at least 10 cells per treatment and errors bars are given by the
standard error. (b) Box-plot of the mean normalised M1 coefficient across all time-points.
A Kruskal-Wallis one-way analysis of variance returned p = 1 × 10−5, indicating that
there are significant differences between treatments. Post-hoc testing of all treatments
relative to the control, by the Mann-Whitney U test (corrected by Bonferroni method),
returned p = 0.03, p = 0.002 and p = 0.73 for the AG1478, dynasore and dasatinib
treatments respectively. Central band represents the mean, and the error bars are the
standard deviation. (c) Mean normalised M2 coefficient, across all cells, over time (M2
change). (d) Box-plot of the mean normalised M2 coefficient across all time-points. A
Kruskal-Wallis one-way analysis of variance returned p = 0.01, indicating that there are
significant differences between treatments. Post-hoc testing of all treatments relative to
the control returned p = 0.1, p = 0.053 and p = 1.1 for the AG1478, dynasore and
dasatinib treatments respectively.
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channels were included in the calculation. In the former case, all pixels within the cellular

ROI were included. With signal isolation, the Pearson coefficient can be interpreted as a

measure of the linear correlation in endosomes positive for both EGFR and rab5. Without

signal isolation, the Pearson coefficient is difficult to interpret. Figure 5.12b demonstrates

that, without signal isolation, only the net effect of the dynasore treatment is statistically

significant to the control. With signal isolation none of the drug treatments are observed

to be significant (figure 5.12d).

To conclude, a protocol has been presented to quantify perturbations to the spatio-

temporal dynamics of ligand stimulated colocalization, between receptor and sub-endosome

populations, in response to various treatments. This protocol was implemented on 4D

(3D time-lapse) data. Moreover, non-parametric statical tests were incorporated into the

workflow to determine statistically significant changes in the, ligand induced, colocaliza-

tion response.

5.6 Visualising colocalization in 4D

In the previous section, joint histograms were used to visualise colocalization in 4D (figure

5.9). We consider this to be the best way to visualise a change in colocalization over time.

However, there is no spatial information in a joint-histogram. It can be useful to visualise

the spatial distribution of the colocalization response at a particular time-point (or time-

points). This is conventionally done with 2D colour merges but, as discussed in section

2.6, this has many draw-backs. In this section, an unbiased visualisation strategy for

colocalization studies is presented.

In the presented approach, the contribution of each voxel to either the first, or second,

Manders’ coefficient is visualised (equation 2.6.3). First, the voxels containing signal from

both channels are isolated. This is done using the protocols described in the previous

section. After pre-processing the data (section 5.4), the intensities of the isolated voxels
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(a) (b)

(c) (d)

Figure 5.12: Quantifying the, ligand induced, colocalization response with the
Pearson coefficient. For each cell the Pearson coefficients were calculated using the
pre-processed and isolated signal. This analysis was performed for a DMSO control and 3
drug treatments; AG1478, dynasore and dasatinib. (a) Mean Pearson coefficient (without
signal isolation), across all cells, over time. The coefficients have been normalised on a
per cell basis by subtracting the value of the coefficient for the first time-point (Pear-
son change). There are at least 10 cells per treatment and errors bars are given by the
standard error. (b) Box-plot of the mean normalised Pearson coefficient (without signal
isolation) across all time-points. A Kruskal-Wallis one-way analysis of variance returned
p = 0.002, indicating that there are significant differences between treatments. Post-hoc
testing of all treatments relative to the control, by the Mann-Whitney U test (corrected
by Bonferroni method), returned p = 0.1, p = 0.004 and p = 1.3 for the AG1478, dynasore
and dasatinib treatments respectively. Central band represents the mean, and the error
bars are the standard deviation. (c) Mean normalised Pearson coefficient (with signal iso-
lation), across all cells, over time (Pearson change). (d) Box-plot of the mean normalised
Pearson coefficient (with signal isolation) across all time-points. A Kruskal-Wallis one-way
analysis of variance returned p = 0.2, indicating that there are no significant differences
between treatments.
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are normalised across either, the entire movie, or a 3D time-point. If visual comparisons

are to be made over time, then it is important to normalise across the entire movie. Note

either the intensities of the first (EGFR), or second (rab5), channel are used. The choice of

channel is context dependent. In the case of EGFR and rab5, M1 is a more biologically

relevant parameter, hence the EGFR channel should be used. The normalised voxels,

positive for both EGFR and rab5, can then be visualised with volume rendering techniques

in 3D (Matlab1). Moreover, the colocalization can be visualised in parallel with (semi-

transparent) surface renderings of the cellular and nuclear segmentations (section 5.3).

This provides a powerful tool for researchers, allowing real-time rotation and inspection

of the spatial colocalization response, in 3D, and without bias. An example of such a

visualisation is shown in figure 5.13.

Note, when using 3D rendering approaches, only snapshots can be used for (2D)

figures (figure 5.13). Therefore, under some circumstances, it is appropriate to visualise

the colocalization in individual 2D slices (figure 5.14). The same approach, where the

contribution of each voxel to a Manders’ coefficient is visualised, can be used. To gain

sufficient contrast, for display and printing, it can be necessary to normalise the data

using only the 2D image (as opposed to the 3D time-point, or 4D movie). However, when

this is done, the image should not be directly compared to any other slices within the

movie. Note, when comparing figures 5.14 and 5.13, how little of the total colocalization

response is captured by a single slice. This emphasises the need for 3D approaches in

receptor trafficking studies.

The visualisation strategies, presented in this chapter, should not be used to confirm

the presence of colocalization. This can be done with the various statistical strategies

discussed in section 2.6.1. Similarly, visualisations cannot be used to determine if two

treatments, or two time-points, have different levels of colocalization. To do this, quanti-

1http://www.mathworks.com/matlabcentral/fileexchange/22940-vol3d-v2
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(a)

(b)

(c)

Figure 5.13: Visualising colocalization for a 3D time-point. A single time-point,
from a 4D movie, of a HeLa cell expressing EGFR-EGFP and rab5-mRFP. The time-point
was acquired 10 minutes post 2ng/ml EGF treatment. (a)-(c) Three different views of
the cell. The cellular and nuclear segmentations are shown in green and blue respectively.
The intra-cellular heat-map represents the colocalization between EGFR and rab5. It is
non-zero for all voxels positive for both EGFR and rab5. The intensity of the heat-map is
proportional to the normalised (across this time-point) EGFR intensity. This is analogous
to visualising the contribution of each voxel to the Manders’ coefficient; M1.
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(a) EGFR (b) rab5

(c) Colocalization (EGFR weighted) (d) Colocalization (rab5 weighted)

Figure 5.14: Visualising colocalization for a 2D plane. A single axial slice, from a
4D movie, of a HeLa cell expressing (a) EGFR-EGFP and (b) rab5-mRFP. The images
are from a time-point acquired 10 minutes post 2ng/ml EGF treatment. Images have
been pre-processed with PURE-LET de-noising and rolling ball background subtraction
(1µm radius). The contrast has been enhanced in both channels by scaling between 0 and
half the maximum value. The green and blue contours show the outline of the automated
segmentations for the plasma membrane and nucleus respectively. Scale bar set at 10µm.
(c) Intra-cellular heat-map representing the colocalization between EGFR and rab5. It is
non-zero for all voxels positive for both EGFR and rab5. The intensity of the heat-map is
proportional to the normalised (across this slice) EGFR intensity. (d) Colocalization heat-
map for EGFR and rab5. The intensity of the heat-map is proportional to the normalised
rab5 intensity. Note (c) and (d) are analogous to the contribution of each pixel to the
Manders’ coefficients; M1 and M2 respectively.

175



tative methods, such as those introduced in the previous section, should be used. Instead,

the discussed visualisation strategies provide a useful tool for unbiased inspection of the

intra-cellular spatial distribution of a colocalization response, which has already been

quantified.

5.7 Discussion

The key outputs of this chapter are methodological, and are discussed in section 5.7.1.

The use of these novel protocols was demonstrated, by quantifying perturbation to EGFR

trafficking, for three drug treatments (AG1478, dynasore and dasatinib). There are some

interesting points for discussion based on this data, which is discussed in section 5.7.2.

5.7.1 Protocols

In section 5.3, protocols were introduced to segment the plasma membrane, and nucleus,

of individual cells in 4D. This was done using only the signal from a fluorescently labelled

receptor (EGFR-EGFP) and an endosome sub-population (rab5-mRFP). These protocols

were built around a 4D DRLSE approach, with a constant volume temporal constraint,

as introduced in chapter 3. A key advantage of these protocols is that accurate seg-

mentations are produced without the need for membrane (or cytoplasmic) and nuclear

staining (figures 3.10 and 5.2). This is advantageous for several reasons; firstly, it limits

the experimental complexity and cost of experiments. Secondly, it dramatically reduces

the light exposure to the sample and also the acquisition time. To see this note, if in-

dependent stains are used for the membrane and nucleus, then four fluorescent channels

(as opposed to two) will be needed. Hence the sample will be exposed to, approximately,

twice the amount of light, and the data for each time-point will take longer to acquire.

This is particularly important for live cell 3D time-lapse, where photo-toxic effects and

the acquisition time will limit both the spatial, and temporal, sampling rate. Finally,
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note that the labelling of proteins with fluorescent markers can be toxic, or interfere with

the function of the target. Therefore it is always good practice to minimise the number

of markers used for live imaging.

In a recent study, Lukinavivcius et al. (2015) introduced a novel far-red (less photo-

toxic) DNA stain; sir-Hoechst [301]. The stain was demonstrated to have high specificity

and low toxicity and is therefore ideal for live cell imaging. Note, that for the reasons

given above, no stain will always be superior if the required measurements can be reliably

made without it. However, if the density (confluency) of the sample is such that isolation

of individual cells is difficult, our protocols will not be reliable, and a stain such as sir-

Hoechst should be used.

In sections 5.4 and 5.5, workflows were introduced to quantify both, the sub-cellular

distribution, and colocalization with sub-endosome populations, of receptors in response

to ligand treatment. These workflows offer several important improvements over the

protocols typically used in the literature (section 5.1). Firstly, the data is acquired and

processed is 4D (3D time-lapse). Therefore, the entire cellular volume is imaged, and

no bias is introduced by the selection of a single 2D plane. Secondly, the protocols are

fully automated. After (blindly) selecting cells for analysis (only dead and mitotic cells

removed) the entire workflow, including the statistical analysis and production of figures,

is automated within Matlab. This eliminates problems associated with user error and

bias, as well as dramatically reducing the time needed to analyse the data. Moreover the

workflows, in particular the segmentation protocols, are fully validated and were tested on

a subset of manually annotated data. Finally, the protocols are described in the extensive

detail necessary to be completely reproducible.

In section 5.4 a band-based analysis, for quantifying the change in sub-cellular receptor

distribution over time, was introduced. This protocol provides a large amount of informa-

tion; specifically a temporal response curve for each band (figures 5.5a and 5.6a). This is
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advantageous because it allows the trafficking response to be analysed for the whole cell

(based on either distance from the plasma membrane or nucleus), not just the surface.

However, this information can be difficult to interpret and process. To counter this, two

strategies were devised. In the first the total response of each cell, to ligand treatment,

over the whole time-course is reduced to a single measurement; the mean change in nor-

malised (relative to the first time-point) percentage receptor signal, over all time-points,

and all bands (figures 5.5b and 5.6b). This approach is advantageous as non-parametric

statistical tests can be used to determine if a perturbation to receptor trafficking, for a

specific treatment, is statistically significant relative to a control distribution. However,

by reducing the data to a single measurement per cell, a lot of potentially informative

information is lost, and the statistical testing is therefore harsh.

In the second approach, a heat-map is used to visualise the temporal response curves

of a specific treatment, relative to a control. The heat-maps are normalised using the error

in the measurement (equation 5.4.1). Therefore, the heat-maps provide a visualisation

of the confidence in the measured perturbation, for every band, and every time-point.

This approach is advantageous as it provides an intuitive way to visualise the effects of

a treatment relative to a control, without any reduction of the measurement variables.

However, although the heat-maps can be used to assess the confidence for a measured

effect, there is no formal procedure to reject the null hypothesis that the treatment has

no effect on the sub-cellular receptor distribution. Therefore, the two approaches are

complementary, and together provide a powerful tool to study receptor trafficking.

In section 5.5 workflows to quantify the change, over time, in the colocalization between

receptor and sub-endosome populations were introduced. There are several important

points for discussion arising from the development of these protocols. Firstly, recall from

section 2.6, that Costes’ thresholding is a well established technique for signal isolation

in colocalization analysis [182]. It is implemented in popular image analysis software,
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and is cited as good practice in several review papers (figure 2.12) [170, 9, 177]. With a

Costes’ thresholding approach there is an assumption that the dominant component of

the data has positive correlation (the colocalized pixels). Adler and Parmryd (2013) note

that a Costes’ thresholding approach will fail if the two signals have no correlation [177].

Therefore, the Costes’ approach assumes that there is both colocalized and correlated

signal present in the data. We consider this an inappropriate assumption for the majority

of colocalization studies, where the purpose is to test for the existence of colocalization,

so clearly correlation should not be assumed.

Moreover, Dunn et al. (2011) note that a Costes’ thresholding approach may fail if

the SNR is too low, the labelling density is too high, or if there are too many structures

in one channel [9]. When the Costes’ approach fails it will often over-segment the signal

as seen in figures 5.10c and 5.10d. We note that if the data has multiple components,

with different levels of correlation, then a Costes’ thresholding approach is not applicable.

This is the case for our work where EGFR has three distinct components (relative to

rab5); membrane localised receptor, receptor in rab5 positive endosomes and receptor in

rab5 negative intracellular structures (eg lysosomes). It is reasonable to expect each of

these components to have different levels of correlation, and moreover these levels will

change over time in response to ligand treatment. To fit a single linear relationship to

multi-component data, as is done in a Costes’ approach, is completely inappropriate. To

see this, note from figure 5.9 that a linear fit does not well represent the data from the

earlier time-points, or all the time-points combined. This is because the membrane bound

receptor will have low correlation (relative to rab5 signal), and will distort the linear fit

and the corresponding Costes’ threshold values.

Therefore, we conclude that Costes’ thresholding is only applicable if it can be assumed

(before the analysis) that the signal is both correlated, and well represented by only one

component. We note that these assumptions are not met in the majority of colocalization
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studies. Therefore a different approach is required. The approach needed will be appli-

cation dependent, but should accurately segment the biologically relevant signal in both

channels and be automated. Dunn et al. suggest background subtraction, using a median

filter, followed by a manually selected global threshold. We use a similar approach for

background subtraction (rolling ball mean filter), but use an automated MCE approach

to select the global threshold. The selection of the global threshold value should be au-

tomated to remove any user bias, and also to allow for adaptability for different levels of

construct expression.

In section 5.5 the distributions of colocalization measures over time (Manders’ and

Pearson) were reduced to a single statistic per cell, and processed with standard statistical

tests (figures 5.11 and 5.12). This was done to test the null hypothesis that the trafficking

of EGFR to rab5 positive endosomes, in response to EGF treatment and relative to a

control, was not affected by a specific drug treatment. In the described approach, a

Kruskal-Walis one-way analysis of variance, with post-hoc testing by the Mann-Whitney

U test (Bonferroni correction) was used. McDonald et al. (2013) validated the use of

the two way Student t-tests to compare distributions of either the Pearson or Manders’

coefficients [10]. It is concluded that (quotation);

One can imagine experiments in which more complicated statistical tests

could be applied to measures of colocalization, such as analysis of variance

(anova) and regression. Although we have not simulated the broad variety of

possible experimental designs, our results here suggest that treating PCC or

MCCdiff as a variable to be analyzed like any other measurement variable is

a promising approach that may not suffer from obvious statistical artefacts.

where PCC is the Pearson coefficient, and MCCdiff are the Manders’ coefficients (dif-

ference between treatments or relative to an expected value). Note in our approach we
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choose not to assume normality. However, the use of a two-way Student t-test for indi-

vidual comparisons is also a reasonable choice, as it is typically robust to violation of the

normality assumption if the distributions are the same size [302].

The key advantage of the described approach is it allows for comparisons between

multiple conditions, relative to a colocalization measure, and is very simple to implement.

In other strategies for statistical testing, each cell is individually tested against the null

hypothesis; typically the presence of colocalization (section 2.6.1). This approach isn’t

particular useful for this work as populations, not individuals, need to be analysed. Fur-

thermore, these approaches are confounded by auto-correlation within the data which is

technically difficult to account for. In our approach, differences between conditions are

analysed, hence auto-correlation need not be considered. Future work should further jus-

tify the use of the Kruskal-Walis one-way analysis of variance, and the Mann-Whitney U

test, for distributions of colocalization measures using simulated data.

Although it was not performed in this work, treatment with a protein synthesis in-

hibitor such as cycloheximide could have been used to quantify the rate of EGFR degrada-

tion [303]. However Oksvold et al. (2012) provide evidence that cycloheximide treatment

can trigger ligand independent internalisation of EGFR so the interpretation of such ex-

periments should perhaps be treated with caution [304].

All of the approaches described in this chapter for live cell imaging, and in chapter 4 for

fixed sample screening, use labelled receptor. An alternative approach is to use labelled

ligand [3]. There are advantages to each approach. The use of labelled ligand avoids

quantification of the entire receptor population, isolating the ligand induced response. In

the live-experiments presented in this chapter a similar quantification is achieved with

labelled receptor by subtracting the measurements from the first time-point. The use

of labelled ligand would also avoid over-expression of the receptor. An advantage of

labelled receptor is that it allows for the quantification of any abnormalities in the sub-
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cellular distribution, or colocalization, of receptor prior to ligand treatment. Labelled

receptor also ensures that the localization of the receptor is correctly quantified after

ligand dissociation. In the presented workflows the labelled receptor signal is used to

segment the cellular and nuclear boundaries. This would not be feasible using labelled

ligand so additional membrane, or cytoplasmic, and nuclear labels would be required.

Finally, note that after segmenting regions of interest, all of the workflows presented in

both this chapter, and chapter 4, would be equally applicable with labelled ligand.

5.7.2 Data from Drug Treatments

The implementation of the protocols introduced in this chapter were demonstrated using

data with one of three drug treatments; dynasore, AG1478 and dasatinib, with comparison

to a DMSO control. In this sub-section, the results of this analysis are discussed. This is

done to demonstrate how to interpret the output of the novel protocols introduced, and

also because the results have some interesting biological implications.

First note the band based analysis, of sub-cellular receptor distribution, was based on

either distance from the plasma membrane, or distance from the nucleus (section 5.4). In

the case of the three drug treatments, the results based on plasma membrane distance are

easier to interpret. Note band 1 corresponds to the plasma membrane itself. Therefore

we restrict our discussion to the results based on plasma membrane distance (figures 5.5

and 5.7).

In section 5.5 both Manders’ coefficients are calculated (figure 5.11). M1 corresponds

to the percentage of (isolated) EGFR signal overlapping with rab5 signal. M2 corresponds

to the percentage of rab5 signal overlapping with EGFR signal. Clearly, in the context of

receptor trafficking, M1 is the more meaningful measurement. Therefore the discussion

of colocalization is restricted to the first Manders’ coefficient.

The Pearson coefficient was calculated for all the pixels in the cellular ROI, and also
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only the pixels containing (isolated) signal in both channels (figures 5.12a and 5.12c).

The former is difficult to interpret, but the later is a measure of the (linear) correlation

between EGFR and rab5 in endosomes positive for both constructs. Note, from figures

5.12c and 5.12d, that there is no significant change to this correlation, for the control

distribution, in response to EGF treatment. Also note that none of the drug treatments

induce a significant change in the correlation (averaged across time-points) relative to the

control. This is interesting because although there is a increase in overlap, as measured by

the Manders’ coefficients (figure 5.11) , there is no increase in correlation. This illustrates

the advantage of using separate colocalization measures for overlap and correlation.

Dynasore

Figure 5.5a shows the temporal response curves quantifying the change in sub-cellular

EGFR distribution, in response to EGF treatment, with and without dynasore treatment.

Note from figure 5.5b that the net perturbation to EGFR trafficking, in response to dyna-

sore treatment, is significant. Also consider the corresponding heat-map representation,

shown in figure 5.7b. Recall, the heat-map illustrates the confidence in the significance

of the perturbation to EGFR trafficking (relative to the control) for each band and each

time-point. Note the bands closest to the membrane (1-2) have a strong positive effect

(increase in signal) for all time-points (excluding time-zero). The bands corresponding to

the cellular interior (4-10) have a strong negative effect. Now re-consider the temporal re-

sponse curves (figure 5.5a). It is clear that the response to EGF stimulation is small across

all bands and all time-points. Also note, from figure 5.11a, that relative to the control,

there is a decrease over-time in the colocalization between EGFR and rab5 as measured

by the first Manders’ coefficient. Finally note, from figure 5.11b, that relative to the

control, this effect is significant. Together these results indicate that dynasore treatment

blocks all EGFR internalisation (as detectable with our protocols) and correspondingly

no increase in EGFR, localised to rab5 positive endosomes, is observed.
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Recall dynasore is an inhibitor of dynamin, a key component of endocytosis [305].

Therefore our results support the widely excepted hypothesis that, at low EGF concen-

trations (2ng/ml), the dominant endocytic routes for EGFR internalisation are dynamin

dependent [65].

AG1478

Recall AG1478 is a EGFR kinase inhibitor. It has been demonstrated, in-vitro, to have

higher affinity for EGFR than for ERBB2. However the effects of AG478 on ERRB2

and ERBB4 kinase activity are not well characterised [306, 307]. First note, from figure

5.5b, that the net perturbation to EGFR trafficking, relative to the control, in response

to AG1478 treatment is significant. From the corresponding heat-map (figure 5.7b), it is

clear that there is a large positive effect (increase in receptor signal) in band 2 (across all

time points), and a large negative effect for bands 4-8. Interestingly, the effect confidence

is small for band 1, which is associated with the (outermost) plasma membrane. Now

consider the temporal response curves shown in figure 5.5a. For the intracellular bands,

the receptor distribution closely matches the profile induced by dynasore treatment (in-

hibition of endocytosis).

Figure 5.11a demonstrates, that for AG1478 treated cells, there is a substantial reduc-

tion in the colocalization between EGFR and rab5 (relative to the control), as measured

by the first Manders’ coefficient. Also note, from figure 5.11b, that this effect is signifi-

cant. Together, these results demonstrate that EGFR kinase inhibition (through AG1478

treatment) significantly reduces the net internalisation of EGFR and trafficking to early

endosomes.

In the literature the relationship between EGFR kinase activity and EGFR internali-

sation is a controversial issue [308]. It was originally thought that EGFR kinase activity

was necessary for, EGF induced, EGFR internalisation [309, 289]. Huang and Sorkin

(2005) show that recruitment of the ubiquitin ligase Cbl RING domain to EGFR (Grb-2
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mediated) is necessary for clathrin mediated endocytosis [310]. This strongly supports the

hypothesis that EGFR kinase activity is necessary for EGFR internalisation. However

Wang et al. (2002, 2005, 2015) have demonstrated, in a series of studies, that receptor

dimerisation, but not kinase activity, is necessary for internalisation [311, 290, 312]. Our

results indicate that both net EGFR internalisation to the central regions of the cell and

trafficking to early endosomes (rab5 positive) is dramatically reduced by EGFR kinise

inhibition. However, we do not account for rapid recycling of EGFR back to the plasma

membrane, or for inhibited post endocytic trafficking and fusion to early endosomes.

Therefore we cannot conlude that kinase activity is essential for endocytosis. A partic-

ularly interesting experiment would be to label recycling endosomes in AG1478 treated

cells and repeat the analysis presented in this chapter.

Dasatinib

Recall dasatinib is an inhibitor of both Src family, and Abl kinases [293]. Figures 5.5a and

5.7c show a small increase in EGFR trafficking to the interior of the cell. Moreover, figure

5.11a shows an increase in, EGF induced, colocalization between EGFR and rab5, relative

to the control, for all time-points. However, the net effect of either of these analyses was

not significant (relative to the control) so no conclusions can be made from these results

(figures 5.5b and 5.11b).

Lin et al. (2012) demonstrated that EGFR was down-regulated, and Cbl activity was

increased, by dasatinib treatment [295]. It was suggested that Cbl mediated trafficking

of EGFR to lysosomes could be increased by dasatinib treatment. Therefore a very inter-

esting set of experiments would be to repeat the protocols presented but with lysosome

(as opposed to early endosome) labelling.
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5.8 Conclusion

In this chapter state of the art, and fully automated, workflows were introduced to quan-

tify perturbation to receptor trafficking, in 4D, using confocal microscopy. This was

done by quantifying the change to the sub-cellular distribution of receptor, and also the

colocalization with a sub-population of endosomes, over time, and in response to ligand

stimulation.

Novel 4D level set based segmentation protocols were used to segment the plasma

membrane and nucleus, using only the receptor and endosomal labels. This minimised

the number of labels needed. A band-band analysis was introduced to quantify the sub-

cellular distribution of receptor. Importantly, both the membrane bound and intracellular

receptor were analysed. Heat-map representations of the analysis were used to visualise

the perturbation to receptor trafficking, and statistical tests were used to determine if the

net perturbation was statistically significant.

Quantitative colocalization protocols to quantify the change in colocalization over

time, and between different treatments, were introduced. Pre-processing and signal iso-

lation strategies were discussed. A statistical testing protocol to compare the, ligand

induced, response between conditions was presented. Moreover, unbiased strategies to

visualise the colocalization response in 4D were developed.

These protocols were demonstrated on a test system; HeLa cells expressing both

EGFR-EGFP and rab5-mRFP were imaged in 4D using confocal microscopy, and stim-

ulated with EGF. This was done in the presence of one of three drug treatments, or a

DMSO treated control.

In conclusion, these protocols provide a valuable toolbox of reproducible, automated

and unbiased methods. Paired with the screening approaches introduced in the previous

chapter, they provide a valuable resource for researchers studying receptor trafficking.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

The networks regulating the endoyctosis, trafficking and signalling of cellular receptors

are highly interlinked. Aberrant crosstalk between the regulatory mechanisms of these

networks is heavily implicated in disease. There is increasing evidence for the existence

and importance of signalling endosomes (section 2.2.3) [1]. Importantly, the signalling

response can be dependent on receptor location within the endocytic network. This

highlights the role of endocytic trafficking as a regulator of signalling outcome, not only

signal attenuation. It is clear that much remains to be understood about the role of

trafficking in regulating receptor signalling.

Fluoresence microscopy is a powerful tool for the quantification of the spatial-temporal

dynamics of receptor trafficking and endocytosis. The analysis of the data is a crucial

aspect of imaging based studies. However, within the literature, there are frequent exam-

ples of poorly designed or described image analysis protocols (section 5.1). To design and

report an image analysis protocol, two important elements should always be considered.

Firstly, the protocol should be described in sufficient detail as to be reproducible. Sec-

ondly, it should not be open to user bias. Ideally, the process should be fully automated,
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but any manual analysis should be done blindly. It is striking that in many publications,

great care is taken to fully describe the experimental methodologies, but the details of

the image analysis are absent or insufficient. The aim of this thesis was to report and

develop workflows to quantify the spatio-temporal dynamics of receptor trafficking and

colocalization using (confocal) florescence microscopy. Importantly, the workflows should

be reproducible and unbiased, as well as automated and accurate.

The development of the 4D level set segmentation protocols presented in chapter 3 was

motivated by the problem of cellular segmentation. Specifically, for live cell 4D (3D+time)

confocal microscopy data, using only the signal from a fluorescently labelled receptor

(EGFR-EGFP). For this application, accurate segmentation is required to quantify the

membrane bound receptor. However, this is a difficult problem for live cell applications

where the signal to noise ratio is typically low (the sample should be exposed to a minimal

amount of light). Deformable model (including level set based) segmentation approaches

are well established in the literature (section 3.3). The conventional approach is to use

at least one level to segment the data from each time-point. We hypothesised that by

constructing the dataset as a single 4D array, and using a single level set function to find

a globally optimum solution, greater segmentation performance could be achieved. It is

important to note that the potential applications of such a framework are not limited to

cellular segmentation.

The presented approach to 4D level set segmentation is sufficiently novel as to require

extensive documentation and validation. We described an extension of the distance regu-

larized level set evolution (DRLSE) framework to 4D [225]. Both edge [13] and region [14]

based implementations were introduced. Strategies for the scaling of the temporal deriva-

tives with respect to spatial dimensions were described, as were efficient protocols for the

initialisation of the level set function. These 4D level set frameworks were validated on

both real and synthetic confocal microscopy test data. Importantly, for both the syn-
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thetic and real test datasets, a statistically significant increase in maximal performance

was seen, over equivalent 3D and 2D implementations, thus confirming our hypothesis

(figures 3.6, 3.7 and 3.9). Finally, we introduced adaptations to the level set equation

to take advantage of temporal assumptions and improve segmentation performance. For

example, for the real test dataset, we demonstrated that an assumption of constant vol-

ume over time could be used to introduce a constraint to the level set equation. This

constraint was shown to further increase the maximal segmentation performance of the

4D level set algorithm (figure 3.13).

In chapter 4, we presented a microscopy based screening framework. This was used

to screen for genes involved in the regulation of receptor endocytosis and trafficking.

To demonstrate the use of this framework, 16 GEFs and GAPs were selected from the

results of a SILAC proteomics screen (Debbie Cunningham, University of Birmingham).

A detailed workflow for data pre-processing, cellular segmentation and hit detection (using

only the EGFR-EGP signal) was provided. Hit detection was performed using a band

based measure which quantifies the distribution of receptor, based on distance from the

plasma membrane. Using this framework we identified 5 hits for regulators of EGFR

endocytosis and/or trafficking (figures 4.7 - 4.11). Note, 4 of these hits have been identified

by previous screens in the literature as regulators of endocytosis and trafficking. The

key advantages of our screening approach is the detailed, validated and unbiased image

analysis protocols, alongside experimental simplicity. It is well suited to the secondary

screening of large non-imaging based screens.

The confocal microscopy screen was performed in 2D, and on fixed cells. This was done

due to equipment and budget limitations, and is a typical strategy for the identification

of (potential) phenotypes. Note, it is best practice to validate such hits using live cell

3D microscopy. In chapter 5 we presented workflows to analyse and quantify receptor

trafficking for the 4D datasets generated from such validation experiments. After pre-
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processing the data, both the cellular and nuclear boundaries were segmented using the

4D level set approaches described in chapter 3. Importantly, only signal from the receptor

(EGFR-EGFP) and early endosome marker (rab5-mRFP) were used to do this. Using the

results of these segmentation algorithms, we adapted the band based measure introduced

in chapter 4 to characterise the sub-cellular distribution of receptor in 4D. Drug induced

perturbations to the, EGF stimulated, trafficking response were quantified using three

different treatments; AG1478, dynasore and dasatinib. Relative to the control, the spatial-

temporal dynamics of EGFR was shown to be distinct for the AG1478 and dynsore treated

populations (figure 5.5). A heat map visualisation of the 4D receptor distribution was

introduced to aid the interpretation of the results (figure 5.7).

Fluorescently labelled markers for sub-endosome populations can be used to quantify

the colocalization between receptor and different components of the endocytic network.

However, despite several excellent reviews, colocalization analysis is still often poorly

understood and implemented. In section 2.6 we provided a thorough review of best

practice in colocalization analysis, focusing on overlap, over object based measures. In

chapter 5 we implemented and adapted existing colocalization methods to quantify the

spatial-temporal dynamics of colocalization in 4D data. Using these workflows, we were

able to identify (relative to the control) perturbations, to the (EGF induced) colocalization

response between EGFR and rab5, for AG1478 and dynasore treated samples (figure 5.11).

The drug treatments presented in this chapter are intended to provide an illustrative

example of the application of the proposed protocols. It is worth noting that we challenged

the use of Costes’ thresholding, which is often referenced as best practice [170, 9], for any

colocalization analysis where linear correlation cannot be assumed.

Finally, we considered the visualisation of colocalization. Colour overlays are easily

manipulated or mis-interpreted. Joint histograms provide a simple and unbiased way to

visualise the correlation in an image but all spatial information is lost. We presented a
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strategy where the relative contribution of each voxel to either of the Manders’ coeffi-

cients is used to define a heat-map for spatial visualisation (figure 5.13). This approach

provides both an unbiased, and automated strategy to visualise the spatial distribution

of colocalization.

6.2 Future Directions

Avenues for the further development of the 4D level set algorithms are discussed in detail

in section 3.8. In summary, there is extensive potential to develop sophisticated and

customised temporal constraints. For example, shape classifiers, or tracking of multiple

targets, could be introduced. Alternatively, strategies to reduce the computational time

such as implementation on the GPU, or a discrete representation, could be tested.

In chapter 4, only a small subset of the hits from the SILAC study were screened

with our imaging based strategy. Therefore, an interesting study would be to perform an

imaging based secondary screen of the remaining SILAC hits using the presented methods.

The 5 hits identified should be validated in live cells using 3D time-lapse microscopy, and

the analysis methods described in chapter 5. Of particular interest is the validation

of TBC1D5 which has no established role in the regulation of EGFR endocytosis and

trafficking.

The analysis of the spatio-temporal dynamics of EGFR in response to EGF stimulation

with drug treatments (chapter 5) could be repeated, but with alternative sub-cellular

markers for colocalization analysis. In particular, a marker of recycling endosomes for

the AG1478 treatment could help to clarify the dependency of EGFR kinase activity for

endocytosis. To see this recall, from section 2.2.2, that recycling of EGFR can be seen

as the default option when receptor is not ubiquitinated [66]. Moreover EGFR kinase

activity (through ubiquitin ligase Cbl) is thought to be necessary for ubiquitination of

receptors and the subsequent diversion from a recycling pathway [308]. Therefore it is

191



essential to account for the recycling component before making conclusions about the

endocytic rate. Alternately, a lysosomal marker for the dasatinib treatment would be

interesting and could reveal if there is increased trafficking of EGFR to lysosomes.

In conclusion, we have presented a series of workflows which use confocal microscopy

to quantify perturbations to the trafficking and endocytosis of cellular receptor. These

unbiased workflows are defined in sufficient detail as to be reproducible and adaptable for

a range of applications. It is hoped that there will be substantial future work which takes

advantage of these tools to elucidate novel aspects of receptor signalling and trafficking.
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Chapter 7

Materials and Experimental

Methods

7.1 Solutions

Cell Culture Media

Pre-made Dulbeccos Modified Eagle Medium (DMEM) (supplemented with 4.5g/l L- glu-

tamine (Invitrogen)) was sterile filtered using a 500ml, 0.1µm pore vacuum filter system

(Corning). Unless otherwise stated 1% Penicillin-Streptomycin solution (100x) (Invitro-

gen) and 10% Fetal Bovine Serum (FBS) (Biosera) were added before filtering. Stored at

4 ◦C.

Cell Imaging Media (CIM)

2.38g HEPES (Fisher) and 9.7g Hanks Balanced Salt (without phenol red and sodium

bicarbonate) (Sigma) were dissolved in 1l distilled water. NaOH was added dropwise to

increase the pH to 7.5 (Delver instruments pH meter). Solution was subsequently sterile

filtered using a 500ml, 0.1µm pore vacuum filter system (Corning) and stored at 4 ◦C.
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Luria Bertani (LB) broth

10g of pre-made LB Broth (Sigma) was dissolved in 500ml distilled water. Subsequently

autoclaved at 121 ◦C for 20 minutes.

Lysis Buffer

100µl of 100% Triton X-100 (Sigma) added to 10ml DPBS (Lonza). Stored at 4 ◦C. 24

hours prior to use 1 EDTA free protease inhibitor cocktail tablet (Roche) was added and

solution vortexed.

0.5, 1 and 1.5M Tris-HCl, various pH

Either 60.57g (0.5M), 121.14g (1M) or 181.71g (1.5M) of Tris (Fisher Scientific) was

dissolved in 1l distilled H2O. 1M HCl added dropwise until the desired pH was reached

(Denver instruments pH meter).

Sample Buffer (3X)

100ml distilled H2O, 30ml glycerol, 18.8ml of 1M Tris pH 6.8, 15ml beta-mercaptoethanol

(Sigma), 18.8ml of 1M Tris pH 6.8 and 6g Sodium dodecyl sulphate (SDS) (Sigma) mixed.

Stored at room temperature.

10% Set Acrylamide Gel

10% stacking and resolving gel solutions made by mixing 20ml distilled H2O, 12.5ml Tris-

HCl, 16.5ml Bis Acrylamide (Protogel) and 0.5ml 10% SDS (Sigma). Stored at 4 ◦C. 0.5M

pH 6.8 Tris-HCl and 1.5M pH 8.8 Tris-HCl were used for the stacking and resolving gels

respectively. 500µl 10% APS (BIO-RAD) and 75µl TEMED (Sigma) added immediately

before use. Resolving gel was used to fill a Novex 1.5ml cassette (Life Technologies) and

set for 30 minutes. Stacking gel and 10 well comb then added and left to set for a further

30 minutes before use.
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Running Buffer

10× running buffer made by dissolving 144g Glycine (Fisher Scientific), 30g Tris (Fisher

Scientific), 4g SDS (Sigma) in 1l of distilled H2O. 1× running buffer made by mixing

100ml 10× running buffer and 900ml distilled H2O.

Transfer Buffer

10× transfer buffer made by dissolving 144g Glycine (Fisher Scientific) and 30g Tris

(Fisher Scientific) in 1l of distilled H2O. 1× transfer buffer made by mixing 100ml 10×

transfer buffer, 200ml methanol and 700ml distilled H2O.

TBST and high salt TBST

10× TBST made by mixing 500ml distilled H2O, 300ml 5M NaCl and 200ml 1M Tris-HCl

pH 7.5. 1× TBST made by mixing 100ml 10× TBST and 900ml distilled H2O. High salt

TBST made by mixing 145ml NaCl, 100ml 10× TBST and 755ml distilled H2O.

Milk TBST

Milk TBST made by dissolving 10g skimmed milk powder (Marvil) in 200ml 1× TBST.

7.2 Plasmid Constructs

The EGFR-EGFP construct was a gift from Alexander Sorkin (University of Pittsburgh,

USA). The rab5-mRFP construct was a gift from Ari Helenius (Institute of Biochemistry,

ETH Zurich).

7.2.1 Preparation

Bacteria Transformation by Heat Shock

1µg of plasmid DNA was added to 50 µl of DH5α E.coli competent cells (Invitrogen).

After 30 minutes of incubation on ice, the bacteria was transferred to a water bath at
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45 ◦C for 45 seconds (heat shock) before a further 2 minutes of incubation on ice. 500µl

of LB broth (section 7.1) was added to the bacteria before incubating at 37 ◦C (with

agitation) for 1 hour. 125µl of the bacteria culture was transferred to a 13cm LB agar

plate (Sigma) containing the appropriate antibiotic (under a flame). After approximately

12 hours intubation at 37 ◦C two distinct colonies where removed (with a pipette tip) and

each was placed in 2ml of LB broth containing either 50µg/ml of kanamycin or 100µg/ml

of ampicillin as appropriate (using 14ml dual-position snap cap round bottomed tube

(Falcon)). Each bacteria colony then incubated for 4 hours at 37 ◦C (with agitation).

100µl of each bacteria culture transferred to conical flask containing 100ml of LB broth

with preserved concentration of antibiotics before incubation at 37 ◦C (with agitation) for

approximately 12 hours. Cultures were split into two 50ml ultracentrifuge tubes (falcon)

and centrifuged at 5000rmp, 4 ◦C for 15 minutes. Supernatant removed and pellets stored

at −20 ◦C, ready for purification as described below.

Purification and Isolation of Plasmid DNA

A QIAGEN Plasmid Maxi Kit was used to purify plasmid DNA according to the man-

ufacturer’s instructions. After purification, DNA was washed with 70% ethanol and re-

dissolved in ultra-purified water and stored at −20 ◦C. Concentration was determined

by UV spectrophotometry using a NanoDrop spectrometer (according to manufacturer’s

instructions).

7.3 Cell Biology Methods

7.3.1 HeLa cell culture

HeLa cell line was cultured in cell culture media (section 7.1) in plastic T75 flasks (Corn-

ing) at 37 ◦C and 5% CO2. At 80 − 90% confluency, cells were passaged as follows;

media removed and cells washed twice with 5ml DPBS (Lonza) before addition of 1ml
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1% trypsin solution (Gibco). Cells incubated in trypsin solution at 37 ◦C for 2 minutes

(or until detached) before re-suspension in cell culture media and transfer to new flasks.

Cells were used for a maximum of 20 passage cycles.

The stably expressing EGFR-EGFP HeLa cell line was kindly produced by Debbie

Cunningham (School of Biosciences, University of Birmingham). The stable cell line was

cultured as above with but with addition of 400µg/ml G418 disulfate salt (Sigma) to the

cell culture media.

7.3.2 Transient Transfection with Plasmid Constructs

Cells were plated onto either 35mm glass bottomed dishes (MaTek) or 6 well glass/plastic

bottomed dishes (MaTek/Corning) in cell culture media without antibiotics (section 7.1).

Unless otherwise stated, 2× 106 cells/well were seeded into each 35mm diameter well. 24

hours after plating, cells were transfected with the relevant plasmid using Lipofectamine

2000 (Invitrogen) according to the manufacturer’s instructions. Note, for rab5-RFP trans-

fections, 6µl of Lipofectamine 2000 and 0.5µg of cDNA per well was found to be optimal.

For EGFR-EGFP, 10µl of Lipofectamine 2000 and 4µg per well was used. For transient

dual transfection, 10µl of Lipofectamine 2000 and 2µg of both constructs was used. 3

hours after addition of the constructs, the media was changed (without antibiotics). Cells

were imaged after 24 hours expression.

7.3.3 Transient siRNA Knockdown

siRNA knockdowns were performed with a reverse transfection approach using the Lipo-

fectamine RNAiMAX reagent (Invitrogen) according to the manufacturer’s instructions.

2µl of RNAiMAX reagent was used per well. Cells were plated onto siRNA in 24 well

glass/plastic bottomed dishes (MaTek/Corning) in cell culture media without antibiotics

(section 7.1). Unless otherwise stated 5 × 104 cells were seeded. siRNA targeting the

alpha-adaptin subunit of AP2 (sequence GAGCAUGUGCACGCUGGCCAdTdT) was
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Gene Product Codes
ARFGEF2 s20728 s20729 s20730
FGD1 s5121 s5122 s5123
IQSEC1 s19245 s19246 s19247
HERC1 s17065 s17066 s17067
PSD3 s23653 s23654 s23655
SOS1 s13285 s13286 s13287
VAV2 s14753 s14754 s14755
ASAP2 s16903 s16904 s16905
TBC1D2 s30819 s30820 s30821
TBC1D4 s19140 s19141 s19142
TBC1D5 s229656 s229657 s229658
TBC1D10B s24904 s24905 s24906
TBC1D14 s33244 s33245 s33246
TBC1D15 s34944 s34945 s34946
USP6NL s18719 s18720 s18721
TSC2 s14436 s14437 s14438

Table 7.1: siRNA library details. Product codes for siRNA library from the Silencer
Select product range (Ambion)

from (Dharmacon RNAi) [248]. All other siRNA was from the Silencer Select range (Am-

bion) and is listed in table 7.1. A final siRNA concentration of 5nM was used. Cells were

imaged after 48 hours expression.

7.4 Imaging Protocols

7.4.1 Fixed Cell Experiments for siRNA screen

In fixed cell imaging experiments, cells were prepared in 24 well glass bottomed dished

(MaTek). For EGF stimulation experiments, cells were washed with with 500µl DPBS

(Lonza) and serum starved in serum/antibiotic free cell culture media for 30 minutes

(37 ◦C, 5% CO2). Cells then treated with EGF (100ng/ml) (Bachem)(stock at 1mg/ml

in DPBS) as appropriate (typically 100ng/ml) and incubated for a further 30 minutes. To

fix, cells where washed twice with 500µl DPBS before adding 250µl of 4% Paraformalde-

hyde (PFA) (Electron Microscopy Sciences) (16% stock diluted with DPBS). After 10
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minutes incubation at room temperature, cells were washed a further two times with

DPBS and left in 500µl DPBS at 4 ◦C for a maximum of 6 hours before imaging.

7.4.2 Live Cell Time-lapse Experiments with Drug Treatments

Cells were prepared in 35mm glass bottomed dishes (MaTek). Prior to imaging, cells

were washed with 1ml DPBS (Lonza) and serum starved in 2ml serum/antibiotic free cell

culture media for 30 minutes (37 ◦C, 5% CO2). Media replaced with 2.5ml CIM (section

7.1) and treated with either 5µg/ml AG1478 (Sigma) (1µl/ml DMSO:MeOH 1 : 1 vehicle),

80µM dynasore hydrate (Sigma) (1µl/ml DMSO vehicle) or 50nM Dasatinib (Sellek

Chemicals) (1µl/ml DMSO vehicle). Control cells were treated with 1µl/ml dimethyl

sulfoxide (DMSO) (Sigma). Cells were incubated for a further 30 minutes before transfer

to the microscope, where the cells were treated with EGF (2ng/ml) immediately prior to

beginning the time-lapse.

7.4.3 Confocal Microscopy

Confocal images acquired using a Eclipse Ti, Nikon A1R inverted microscope. An Argon-

Ion 457-514nm laser was used to excite the EGFR-EGFP construct and a Green Diode

561 nm laser was used for the rab5-mRFP construct. Images were captured using a 100x

1.49 NA oil immersion objective and an Andor iXon 885 EMCCD camera. For live cell

imaging and multi-point fixed cell, the Nikon Perfect Focus system was used to minimise

axial focus drift. For live cell imaging, the samples were kept at 37 ◦C and 5% CO2. Singly

labelled controls were used to confirm the lack of bleed-through between the EGFR-EGFP

and rab5-mRFP channels under this setup.

199



7.5 Biochemistry Methods

7.5.1 Whole Cell Lysis

Cells were plated and treated as appropriate in plastic dishes (Corning). Cells were then

washed twice with 1ml DPBS (Lonza) before adding a further 1ml DPBS and placing the

plate on ice. In each well, cells were detached from the plate mechanically using a scraper

and transferred to 1.5ml ependorfs (on ice). Samples were then centrifuged for 3 minutes

at 4 ◦C and 5000RPM. Approximately 90% of supernatant was aspirated and the samples

were centrifuged again under the same conditions. The remainder of the supernatant

was then aspirated before adding 50µl of lysis buffer (section 7.1) and vortexing. Lysates

were then incubated on ice for 1 hour, vortexing every 15 minutes. Lysates were then

centrifuged for 10 minutes at 4 ◦C and 14000RPM. 50µl supernatant was then aspirated

and added to 25µl of sample buffer (3X) (section 7.1). Lysates were stored at −20 ◦C.

7.5.2 Western Blotting

Whole cell lysate samples (section 7.5.1) were denatured by heating to 95 ◦C for 5 minutes.

Samples were then separated by running through 10% polyacrylamide gels (section 7.1).

15µl of each sample was loaded per well. 15µl of Prestained Protein Marker, Broad

Range (7−175kDa, BioLabs) was loaded in at least one empty well. Samples were run at

125V in 1× of running buffer (section 7.5.1) until the gel front was at the bottom of the

cassette (approximately 2 hours). Protein was then transferred to Immobilon FL transfer

membrane (activated in methanol) (Merck Millipore) in 1× transfer buffer (section 7.1)

at 30V for 90 minutes. The membrane was then blocked in milk TBST (section 7.1) for 1

hour at room temperature. The membrane was then incubated with primary antibodies

(in milk TBST) for 12-16 hours at 4 ◦C. The membrane was then washed 4 times (5

minutes) with 15ml high salt TBST (section 7.1). The membrane was then incubated
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with secondary antibodies as appropriate (1µl in 15ml milk TBST) for 2 hours at room

temperature. The membrane was then washed again, 4 times (5 minutes) with 15ml high

salt TBST. The membrane was imaged using a Odyssey scanner (LI-COR biosciences)

according to the manufacturer’s instructions.

7.5.3 Antibodies

The anti-α-adaptin (Santa Cruz) and anti-α-tubulin (Sigma) primary antibodies were

used at dilutions of 1:1000 and 1:10000 respectively. Mouse IgG IRDye800CW (LI-COR)

and Rabbit IgG IRDye680CW (LI-COR) secondary antibodies were used at a dilution of

1:15000.
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Sorin Pop, Thomas Provoost, Vannary Meas-Yedid, Praveen Pankajakshan, Tim-
othée Lecomte, Yoann Le Montagner, et al. Icy: an open bioimage informatics
platform for extended reproducible research. Nature methods, 9(7):690–696, 2012.

[194] Philip J Clark and Francis C Evans. Distance to nearest neighbor as a measure of
spatial relationships in populations. Ecology, pages 445–453, 1954.

[195] Brian D Ripley. The second-order analysis of stationary point processes. Journal
of applied probability, pages 255–266, 1976.

[196] Philip M Dixon. Ripley’s k function. Encyclopedia of environmetrics, 2002.

218



[197] George LW Perry, Ben P Miller, and Neal J Enright. A comparison of methods
for the statistical analysis of spatial point patterns in plant ecology. Plant Ecology,
187(1):59–82, 2006.

[198] E Lachmanovich, DE Shvartsman, Y Malka, C Botvin, YI Henis, and AM Weiss.
Co-localization analysis of complex formation among membrane proteins by com-
puterized fluorescence microscopy: application to immunofluorescence co-patching
studies. Journal of microscopy, 212(2):122–131, 2003.

[199] Thibault Lagache, Vannary Meas-Yedid, and Jean-Christophe Olivo-Marin. A sta-
tistical analysis of spatial colocalization using ripley’s k function. In ISBI, pages
896–901, 2013.

[200] Jo A Helmuth, Grégory Paul, and Ivo F Sbalzarini. Beyond co-localization: inferring
spatial interactions between sub-cellular structures from microscopy images. BMC
bioinformatics, 11(1):372, 2010.

[201] Ivo F Sbalzarini. Seeing is believing: Quantifying is convincing: Computational
image analysis in biology. In Focus on Bio-Image Informatics, pages 1–39. Springer,
2016.

[202] Pierre Soille and Luc M Vincent. Determining watersheds in digital pictures via
flooding simulations. In Lausanne-DL tentative, pages 240–250. International Soci-
ety for Optics and Photonics, 1990.

[203] Grégory Paul, Janick Cardinale, and Ivo F Sbalzarini. Coupling image restoration
and segmentation: a generalized linear model/bregman perspective. International
Journal of Computer Vision, 104(1):69–93, 2013.

[204] Aurélien Rizk, Grégory Paul, Pietro Incardona, Milica Bugarski, Maysam Mansouri,
Axel Niemann, Urs Ziegler, Philipp Berger, and Ivo F Sbalzarini. Segmentation
and quantification of subcellular structures in fluorescence microscopy images using
squassh. Nature protocols, 9(3):586–596, 2014.

[205] Janick Cardinale, Grégory Paul, and Ivo F Sbalzarini. Discrete region competition
for unknown numbers of connected regions. IEEE Transactions on Image Process-
ing, 21(8):3531–3545, 2012.

[206] Fernando Amat, William Lemon, Daniel P Mossing, Katie McDole, Yinan Wan,
Kristin Branson, Eugene W Myers, and Philipp J Keller. Fast, accurate reconstruc-
tion of cell lineages from large-scale fluorescence microscopy data. Nature methods,
2014.

[207] Gang Lin, Umesh Adiga, Kathy Olson, John F Guzowski, Carol A Barnes, and
Badrinath Roysam. A hybrid 3d watershed algorithm incorporating gradient cues
and object models for automatic segmentation of nuclei in confocal image stacks.
Cytometry Part A, 56(1):23–36, 2003.

219



[208] Christoph Sommer and Daniel W Gerlich. Machine learning in cell biology–teaching
computers to recognize phenotypes. J Cell Sci, 126(24):5529–5539, 2013.

[209] Michael Held, Michael HA Schmitz, Bernd Fischer, Thomas Walter, Beate Neu-
mann, Michael H Olma, Matthias Peter, Jan Ellenberg, and Daniel W Gerlich.
Cellcognition: time-resolved phenotype annotation in high-throughput live cell
imaging. Nature methods, 7(9):747–754, 2010.

[210] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 144–152. ACM, 1992.

[211] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational
learning theory, pages 23–37. Springer, 1995.

[212] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[213] Christoph Sommer, Christoph Straehle, Ullrich Köthe, and Fred A Hamprecht.
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ing of fluorescent cells based on the chan-vese model. In Biomedical Imaging (ISBI),
2012 9th IEEE International Symposium on, pages 1316–1319. IEEE, 2012.

[230] Martin Maska, Ondrej Danek, Saray Garasa, Ana Rouzaut, Arrate Munoz-Barrutia,
and Carlos Ortiz-de Solorzano. Segmentation and shape tracking of whole fluores-
cent cells based on the chan–vese model. Medical Imaging, IEEE Transactions on,
32(6):995–1006, 2013.

[231] Michael E Leventon, W Eric L Grimson, and Olivier Faugeras. Statistical shape
influence in geodesic active contours. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, volume 1, pages 316–323. IEEE, 2000.

221



[232] Andy Tsai, Anthony Yezzi Jr, William Wells, Clare Tempany, Dewey Tucker, Ayres
Fan, W Eric Grimson, and Alan Willsky. A shape-based approach to the segmenta-
tion of medical imagery using level sets. Medical Imaging, IEEE Transactions on,
22(2):137–154, 2003.

[233] Michael Lynch, Ovidiu Ghita, and Paul F Whelan. Segmentation of the left ventricle
of the heart in 3-d+ t mri data using an optimized nonrigid temporal model. Medical
Imaging, IEEE Transactions on, 27(2):195–203, 2008.

[234] Yuri Y Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal boundary
& region segmentation of objects in nd images. In Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on, volume 1, pages 105–
112. IEEE, 2001.

[235] Herve Lombaert, Yiyong Sun, and Farida Cheriet. Fast 4d segmentation of large
datasets using graph cuts. In SPIE Medical Imaging, pages 79622H–79622H. Inter-
national Society for Optics and Photonics, 2011.

[236] D Pastor, MA Luengo-Oroz, B Lombardot, I Gonzalvez, L Duloquin, T Savy,
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