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Abstract

Working memory (WM) is thought to have a fixed and limited capacity.
However, the origins of these capacity limitations are debated, and gen-
erally attributed to active, attentional processes. Here, we show that the
existence of interference among items in memory mathematically guarantees
fixed and limited capacity limits under very general conditions, irrespec-
tive of any processing assumptions. Assuming that interference (i) increases
with the number of interfering items and (ii) brings memory performance
to chance levels for large numbers of interfering items, capacity limits are a
simple function of the relative influence of memorization and interference. In
contrast, we show that time-based memory limitations do not lead to fixed
memory capacity limitations that are independent of the timing properties
of an experiment. We show that interference can mimic both slot-like and
continuous resource-like memory limitations, suggesting that these types of
memory performance might not be as different as commonly believed. We
speculate that slot-like WM limitations might arise from crowding-like phe-
nomena in memory when participants have to retrieve items. Further, based
on earlier research on parallel attention and enumeration, we suggest that
crowding-like phenomena might be a common reason for the three major
cognitive capacity limitations. As suggested by Miller (1956) and Cowan
(2001), these capacity limitations might thus arise due to a common reason,
even though they likely rely on distinct processes.
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Introduction

A central tenet of the cognitive neurosciences holds that working memory (WM) ca-

pacity is severely limited, typically to about four items (Miller, 1956; Cowan, 2001; for re-

views, see e.g., Conway et al., 2005; Cowan, 1995, 2005). These memory capacity limitations

have profound effects on many aspects cognitive processing, and WM capacity correlates

with various measures of language comprehension, reasoning, educational achievement and

even general intelligence (e.g., Barrouillet, 1996; Conway, Kane, & Engle, 2003; Daneman

& Carpenter, 1980; Daneman & Green, 1986; Engle, Tuholski, Laughlin, & Conway, 1999;

Engle, Carullo, & Collins, 1991; Engle, Cantor, & Carullo, 1992; Fukuda, Vogel, Mayr, &

Awh, 2010; King & Just, 1991; Kyllonen & Christal, 1990).

While there is a general agreement that WM is limited, there is substantial debate

on why it is limited. For example, is WM better characterized as a set of discrete memory

“slots” in which items can be placed (see, among many others, Cowan, 2001; Hartshorne,

2008; Luck & Vogel, 1997; Piazza, Fumarola, Chinello, & Melcher, 2011; Rouder et al., 2008;

W. Zhang & Luck, 2008) or rather as a continuous resource (e.g., Alvarez & Cavanagh, 2004;

Bays & Husain, 2008; van den Berg, Shin, Chou, George, & Ma, 2012; Just & Carpenter,

1992; Ma, Husain, & Bays, 2014)?

Specifically, many authors hold that memory capacity limitations stem from active

processes that allow a limited number of items to be encoded in an all-or-none fashion,

and that these processes rely on some form of attention (e.g., Cowan, 1995, 2005; Conway

& Engle, 1994; Kane & Engle, 2002; Oberauer, 2002; Rouder et al., 2008). For example,

according to Cowan’s (1995) model of WM, we can remember exactly 3 or 4 items (depending
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on the person) because we remember them by attending to them, and we have an attentional

capacity of only 3 or 4 items. When we have to remember more items, we pick 3 or 4 of

them, attend to those, while the rest does not enter WM. This is because, following Miller’s

(1956) suggestion that different cognitive capacity limitations might have a common source,

WM, subitizing and parallel individuation might all rely on a system of parallel attention

such as the one proposed by Trick and Pylyshyn (1994) (Cowan, 2001; see Cowan, 2015 for

a historic overview, and Piazza et al., 2011, for a recent discussion of this model). According

to such views, WM is better characterized as a set of discrete memory slots, and these slots

are made available by a parallel attention system.

However, the evidence for the role of such active, attentional processes in WM is

mixed, and seems to depend on the type of experiment used to measure WM capacities.

While there is little doubt that WM tasks such as complex span tasks are effortful and

require active manipulation of items (see e.g. Engle, 2002, for a review, but see Oberauer,

Lewandowsky, Farrell, Jarrold, & Greaves, 2012, for an interference-based model of such

tasks), other WM tasks such as the change detection paradigm (see below) show little to no

interference with tasks testing parallel attention (e.g., Fougnie & Marois, 2006; Hollingworth

& Maxcey-Richard, 2013; H. Zhang, Xuan, Fu, & Pylyshyn, 2010).

Accordingly, other scholars propose that WM is a continuous resource that can be

utilized either for processing or for temporarily storing a limited number of items with

varying precision, and that this resource can hold fewer items when more detailed memory

representations are required (e.g., Alvarez & Cavanagh, 2004; Bays & Husain, 2008; van den

Berg et al., 2012; Just & Carpenter, 1992; Ma et al., 2014). Still other scholars propose

that there is no real WM system, and that observations attributed to WM have other
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interpretations (Öztekin & McElree, 2007; Öztekin, Davachi, & McElree, 2010). Specifically,

these authors propose that we can keep a single item in the focus of attention (and hence

in WM), but that all other items need to be retrieved from LTM.

Based on these discrepant data, we believe that is important to identify the psycholog-

ical mechanisms that are responsible for memory capacity limitations. Here, we contribute

to this goal by showing what is not diagnostic of the underlying psychological mechanisms:

the existence of capacity limitations and their mathematical form. Specifically, we provide

mathematical proofs that, in the presence of interference among memory items, fixed and

finite memory capacity limitations are largely a mathematical consequence of the presence

of interference even in the absence of active maintenance mechanisms (that are generally as-

sumed to explain capacity limitations), and that interference-based capacity limitations can

mimic the signatures of both slot-based and resource-based capacity limitations. We will

then speculate under which psychological conditions either type of memory limitation might

be observed, and suggest that the three major cognitive capacity limitations —WM, parallel

attention and subitizing — might have a common source even if the underlying mechanisms

are different: All three capacity limitations might be due to interference among items, but

the interference might take place among distinct representations that might not be shared

across capacities.

Slot- vs. resource-based models of WM

In the last years, the strongest evidence for fixed WM limitations in terms of the

number of items arguably came from research on visual WM, especially since Luck and

Vogel’s (1997) seminal report of their change detection paradigm. In this task, participants
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view an array of items (e.g., color patches) for 100 ms, and then view another array. They

have to decide whether or not the two arrays are identical. Results show that performance

is at ceiling for array-sizes up to 3, and then decreases for greater set-sizes. Participants’

memory thus seems to be capacity-limited as predicted by a slot-model. In this and the

following literature, fixed and limited capacities have thus been used as diagnostic of slot-

like memory representations vs. continuous resource-like representations, often based on

sophisticated mathematical analyses (e.g., van den Berg et al., 2012; Rouder et al., 2008;

W. Zhang & Luck, 2008).

However, the psychological interpretation of either type of model is not always clear.

First, despite the sophisticated mathematical analyses, such analyses can sometimes be

ambiguous. For example, W. Zhang and Luck’s (2008) influential slot-based model turns

out to be mathematically equivalent to a continuous resource-based model with slightly

different assumptions (see Appendix A). Second, and as mentioned above, the slot-based

model has a clear, parsimonious and elegant interpretation, where WM, subitizing and

parallel individuation might all rely on the system of parallel attention proposed by Trick

and Pylyshyn (1994). However, given that taxing visual parallel attention does not seem to

impair visual WM (e.g., Fougnie & Marois, 2006; Hollingworth & Maxcey-Richard, 2013;

H. Zhang et al., 2010), a parallel attention system cannot be the basis for memory limitations

either.

With respective to resource-based models, it is not always clear what these resources

represent psychologically. In fact, memory capacity limitations can have a variety of sources,

and sometimes appear in surprising contexts. For example, Nairne and Neath (2001) asked

participants to rate words in lists of various lengths. After they had rated all lists and had
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completed a filled 5-min retention interval, participants were given a surprise memory test

for the lists. They had a span of about 5 items for each list — although the lists were

encoded into long-term memory (LTM).

We thus believe that it is important to identify the cognitive mechanisms responsible

for WM limitations. To start this endeavor, we show below what is not diagnostic of the un-

derlying cognitive mechanisms: the mathematical shape of the capacity limitations. Based

on assumptions that amount to little more than the definition of interference, we provide

mathematical proofs that fixed and finite capacity limitations are a natural consequence

of the existence of interference among items, even in the absence of active maintenance

mechanisms. We then show that interference-based capacity limitations can mimic both

continuous-resource models and slot-based models, suggesting that these models might not

be as distinct as commonly believed, and that the same psychological mechanism can re-

sult in either response profile. We then speculate about the psychological conditions under

which interference might lead to slot-like limitations, and suggest that capacity limitations

in WM and parallel attention might be due to a common principle — representations that

are nearby in (representational) space might interfere with each other. We also prove that

memory limitations based on decay do not lead to fixed capacity limitations across retention

intervals, though they do lead to fixed an finite capacity limitations as long as the timing

properties of an experiment are kept constant.

The claim that interference is sufficient to produce memory capacity limitations even

in the absence of active maintenance should not be interpreted as more general claims

that attention plays no role in WM. In fact, there is substantial evidence that attention is

beneficial for and used in memorization (see, among many others, e.g., Chen & Cowan, 2009;
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Craik & Lockhart, 1972; Lepsien & Nobre, 2007; Majerus et al., 2014; Morey & Bieler, 2013;

Vergauwe, Camos, & Barrouillet, 2014). Rather, we show that attention is not necessary

to account for fixed and finite memory limitations, and that the involvement of attention,

as well as the cognitive mechanisms that can lead to slot-like representations, need to be

established from psychological manipulations. Further, while our work is primarily inspired

by research on visual WM, the proofs apply to memory in other modalities as well.

Memory and interference

Interference has long been known to play a crucial role for memory limitations. For

example, in an experiment testing memory for numbers, participants might hear the list 4

7 2 3 9. . . and then the list 5 3 8 6 1. . . , and have to decide whether the number ‘2’ was in

the second list. Participants thus face the problem to decide that ‘2’ was not in the current

list, although it was in previous lists. In other words, there is interference with other items

in memory. This type of “proactive interference” (PI) is such a pervasive feature of WM

experiments that some authors proposed that the function of WM processes is to counteract

it (Engle, 2002), and the role of interference is central to several computational models of

WM (e.g., Oberauer et al., 2012; Oberauer & Lin, 2017; Sengupta, Surampudi, & Melcher,

2014). Further, even a single previous item can lead to massive interference (Keppel &

Underwood, 1962), while, when interference is minimized, virtually no capacity limitations

are observed (Endress & Potter, 2014a). Accordingly, memory capacity estimates are much

larger when observers can recall objects embedded in a naturalistic scene (e.g., the objects

found in a kitchen presented in a picture of a kitchen), presumably because the objects’

context helps memorization as opposed to leading to interference (e.g., Hollingworth, 2004;
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Melcher, 2001). Further, it has been shown that the ability to deal with interference in WM

task predicts measures of intelligence (e.g., Braver, Gray, & Burgess, 2008; Burgess, Gray,

Conway, & Braver, 2011). Hence, it seems clear that interference has a major influence on

how many items can be retained in memory.1

Goals and limitations of the current proofs

Before presenting our model in more detail, it is important to be clear about its goals.

We will show that fixed and finite memory capacities are a largely automatic consequence

of inter-item interference, even without positing capacity-limited active maintenance mech-

anisms (e.g., Cowan, 1995, 2005; Conway & Engle, 1994; Kane & Engle, 2002; Oberauer,

2002; Rouder et al., 2008), or a finite resource (e.g., Alvarez & Cavanagh, 2004; Bays &

Husain, 2008; van den Berg et al., 2012), and that interference functions can mimic both

slot-like and continuous memory limitations. We do not claim, however, that attention is

not involved in memorizations, and there is a wealth of evidence showing that attention (or

at least active processing) is used in memorization, starting with the levels of processing

theory (see, among many others, e.g., Chen & Cowan, 2009; Craik & Lockhart, 1972; Lep-

sien & Nobre, 2007; Majerus et al., 2014; Morey & Bieler, 2013; Vergauwe et al., 2014).

What our proofs show is that such mechanisms are not necessary to explain fixed and fi-

nite capacity limitations, and that fixed capacities are not necessarily diagnostic of active

mechanisms such as a parallel attention system.

Further, given the generality of our proofs, the model makes few processing predic-

1Some authors propose that PI has only a limited effect on WM capacity estimates (Hartshorne, 2008; see
also Lin & Luck, 2012; Makovski & Jiang, 2008). However, except in some of Hartshorne’s (2008) analyses,
these conclusions were based on comparisons of high interference with slightly lower interference, and, in all
of these studies, capacity estimates were mathematically limited to 4 or 5, limiting the potential size of the
interference effect (see Endress & Potter, 2014a, for discussion).
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tions on its own. Rather, we see it as a theoretical baseline with minimal assumptions

against which more elaborate models should be compared: our analyses reveal the logical

consequences of assumptions that are little more than the very definition of interference.

Such abstract descriptions are quite common in other fields. For example, in many

physical systems, we just need to know the relative energies and the temperature of two

states of a system to calculate their relative probabilities (i.e., we can use the Boltzmann

distribution); the system’s internal details are often (but not always) irrelevant. Similarly,

our model reveals the conditions under which interference leads to capacity limitations,

irrespective of how interference“works”in terms of the underlying psychological mechanisms.

In fact, there is a wealth of models of memory that describe different aspects of

memory, many of which account for interference effects. We will discuss some of these

models after having presented our analysis. We will argue that models that account for

interference effects are special cases of our analyses with respect to the specific relation

between memory capacity and interference. However, these models account for many other

memory phenomena about which our analysis is completely silent.

The model

We consider a simple model, where participants are presented with P items such that

they can usefully retrieve MP of them. (We consider here some form of short-term memory.

If this type of memory reflects the activated part of LTM (e.g., Endress & Potter, 2014b;

Ranganath & Blumenfeld, 2005), MP reflects the expected number of items activated from

LTM, and not all items in LTM.) When an additional item is presented, it has a probability

R to be retrieved if there is no interference. Hence, if we already remember MP out of P
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items, and are presented with an additional item, we will remember MP +1 = MP +R items.

For example, if R = 1 (i.e., perfect encoding), and if we already remember 3 out 3 presented

items, presenting an additional items will lead to remembering 4 items.

However, this formula ignores interference. The number of retrievable items MP +1

will thus be reduced by some interference function I(MP ), and is given by

MP +1 = MP + R − I(MP ) (1)

with M1 = R. For example, if encoding is perfect (R = 1), if I(M) = .25 × M , and

if we remember already (on average) 2.3 out of 3 presented items, we will remember (on

average) 2.3+1−.25×2.3 ≈ 2.7 items after viewing an additional item. (We use a recurrence

relation to calculate the number of items in memory out of mathematical convenience, but

we do not propose that actual humans represent such a recurrence relation.) 2

We note that this model is agnostic as to whether interference reduces the number of

items that can be maintained in memory, or acts only at retrieval (see Nairne, 2002a, for

arguments that remembering involves both the status of the memory trace and retrieval),

as to whether there is a separate short-term memory store or not, and about many other

important distinctions. For the proofs below, we just need to assume that interference is

a growing function of the number of items in memory.3 Further, while we assume that

2It should be noted that the function I depends on MP and not on P , and it describes the cumulative
effect of all the previously presented items, taking into account their various memory strengths.

3While we assume that items are presented sequentially rather than simultaneously, most WM paradigms
use sequential procedures, and where visual items are presented simultaneously, it has been argued that
observers encode them one after the other (Liu & Becker, 2013; Vogel, Woodman, & Luck, 2006; but see
Mance, Becker, & Liu, 2012).
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interference is additive, the model covers multiplicative interference as well.4

It should be noted that our model might not be applicable to phenomena of verbal

working memory such as time-based capacity limitations (e.g., Schweickert & Boruff, 1986).

This might be because verbal memory has at least partially different properties from mem-

ory in other domains (e.g., Baddeley, 1996; though see Nairne, 2002b, for an alternative

interpretation), and it is important to ask whether memory limitations in verbal memory

can also be derived from minimal assumptions such as those presented here. However, we

will prove below that pure time-based memory constraints do not lead to fixed capacity

limitations in terms of the number of retrievable items, and that, with time-based decay,

memory capacity is a function of the timing properties of an experiment, at least in the

absence of active refreshing mechanisms.

Three cases of memory capacity limitations — theory

In the proofs below, we make only very basic assumptions about the interference

function I. First, and most importantly, we assume that I is strictly increasing (i.e.,

∀M ≥ 0 : I ′(M) > 0). In other words, we assume that interference is more pronounced

when more items are active in memory, which, we believe, is an uncontroversial assumption

and might be considered to be part of the definition of interference. Second, we assume that

there is no interference when there are no active memory items, i.e. I(0) = 0. However, this

assumption is not necessary5, and just a matter of convenience. Third, we assume that I

4For multiplicative interference, the equation corresponding to equation (1) would be MP +1 = MP +
RI(MP ), where our assumptions translate to I(0) = 1 and a negative derivative of I. By considering the
function Î(M) = 1 − I(M), this equation becomes MP +1 = MP + R − RÎ(MP ). Given that RÎ(0) = 0 and
that RÎ′(MP ) > 0, RÎ(MP ) is an interference function as defined below.

5The proofs below remain valid also for I(0) = β > 0; if so, we simply rewrite equation 1 by replacing I

with Î(M) = I(M) − β and R with R̂ = R + β.
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is continuously differentiable. This is just a technical assumption that does not restrict the

psychological generality of our model.

With these assumptions, we consider three situations that result in different memory

capacities. First, I might cross R once a certain number of items is active in memory.

Psychologically, this means that, if the number of interfering items is large enough, inter-

ference becomes so strong that memory retrieval performance drops to the chance level in a

recognition memory task (although our model is agnostic as to whether a recognition task

or a recall task is chosen).6 This assumption is implicitly present in many models of WM. In

all-or-none models (Cowan, 2001; Rouder et al., 2008), this is because only a limited num-

ber of items (e.g., 4) is placed in WM. When more items are presented, those additional

items cannot be memorized, which, in turn, will bring retrieval performance eventually to

chance. In continuous resource models (e.g., Alvarez & Cavanagh, 2004; Bays & Husain,

2008; van den Berg et al., 2012; Just & Carpenter, 1992), this is because the memory

resource will be depleted at some point.

Under these conditions, memory capacity is fixed and finite. It is given by K =

I−1(R), where I−1 is the inverse function of I. In other words, no matter how many items

are presented, observers will remember only I−1(R) of them (though, for some implausible

interference functions, there might be oscillations around K, with sometimes slightly more

and sometimes slightly fewer items in memory, but always less than K + R).

Second, I might converge to R without crossing it. Practically, this means that

6Specifically, we can convert the number of retrievable items into the percentage of correct responses
in a two-alternative forced choice task by inverting the two-high-threshold formula that is generally used
to calculate memory capacities (e.g., Cowan, 2001; Rouder et al., 2008), as calculated for a recognition
experiment, where participants are shown a single test item on each trial, and have to decide whether it was
part of the memory set, and where there is an equal number of “old” and “new” test items. The formulae
will be presented later.
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performance almost goes to chance when the number of presented items is increased, but

there is always a (very) small residual ability to store additional information in memory.

Under this condition, the memory capacity is what we call “practically limited.” In principle,

the number of retained items converges to infinity, but so slowly that it has no relevance in

practice. For instance, if for remembering a single additional item, we need to present 10

million additional items, the number of retained items is constant for all practical purposes.

Third, and unsurprisingly, if interference remains low, and never comes in the vicinity

of the memory strength of a new item, it will never prevent new items from being added

to memory. Hence, the number of remembered items will clearly grow indefinitely as more

items are presented. We will now prove these assertions in turn. Hence, the remainder of

this section does not add any new information. All theorems cited below are well known

in analysis, and can found in handbooks such as Bronstein and Semendjajew (1996). In

Appendix B, we provide some preliminary proofs that we will use below.

Before proving these assertions, it is critical to ask whether our psychological inter-

pretation of these properties in terms of interference is the only one, or whether there are

plausible alternative psychological interpretations of a function that impairs memory per-

formance and grows with the number of items in memory. For example, in principle, one

might interpret Equation (1) in terms of a finite resource or a finite set of slots that get

filled up. If so, the “interference function” would reflect that it becomes increasingly hard

to add items to memory as more items already reside in memory. However, while such in-

terpretations are consistent with our formalism from a mathematical perspective, they are

more problematic from a psychological perspective. After all, why should items that already

reside in memory make it harder to memorize other items — even when the resources or
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slots are still largely empty? It is thus not clear why a limited resource or a limited number

of slots would predict a per-item cost for storing information, nor how a limited resource

or a limited number of slots should be interpreted when the per-item cost is small (i.e.,

when there is little interference), because the storage capacity is fundamentally unlimited.

In contrast, these properties fit well with a psychological interpretation of interference func-

tions in terms of interference, based on known and probably uncontroversial properties of

interference.

Definition. Interference function. A function I is called an interference function if it is

continuously differentiable, strictly monotonic and increasing, with I(0) = 0. This definition

just gives a name to the assumptions discussed above (i.e., more interference with more

items, and no interference with no items).

Memory capacity for interference functions that cross R

Theorem 1. Let I be an interference function as defined above. Further, let I cross R

(i.e., the memory efficacy) for some M , i.e., limM→∞ I(M) > R. As mentioned above,

this means that, for a large enough number of items, memory performance is at chance.7

Under these conditions, MP will tend to a fixed and finite capacity. This memory capacity is

given by K = I−1(R), where I−1 is the inverse function of I. (We will illustrate this result

with example functions below.) In the case of some psychologically implausible functions

(where adding one item to memory removes several items from memory; see proof below),

the number of remembered items oscillates around K, but is still bounded by K + R.

7This condition is also necessary. If a K exists such that limn→∞ Mn = K, equation (1) implies that
K = K + R − I(K), and thus that I(K) = R. Hence, if the limit exists, I necessarily crosses R.
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Proof. For the proof, we define a function g of M :

g(M) = M + R − I(M) (2)

With this notation, equation (1) can be written as MP +1 = g(MP ). For the proof,

we will use a well-know theorem about fixed-points of functions. (Fixed-points are numbers

for which the value of a function is equal to its argument.) If the function g has such a

fixed-point K where g(K) = K, it is at K = I−1(R). This can be seen by plugging K into

equation (2) above. The fixed-point K exists, as I(M) crosses R. Further, it is unique, as

I is strictly increasing. From Banach’s fixed-point theorem, the condition |g′(K)| < 1 is

sufficient for the sequence M1, M2, M3, . . . to converge to K. In other words, if we start with

some value for M1 and repeatedly apply g, the sequences M1, M2 = g(M1), M3 = g(g(M1)),

M4 = g(g(g(M1))), . . . will tend to K if this condition is fulfilled. Given that applying the

function g just means calculating the number of remembered items after presenting an

additional item, this sequence corresponds to the number of remembered items after each

number of presented items. We show below that the condition |g′(K)| < 1 is fulfilled for

psychologically plausible interference functions:

|g′(K)| = |1 − I ′(K)| (3)

=



















1 − I ′(K) if 0 < I ′(K) ≤ 1;

I ′(K) − 1 if 1 < I ′(K).

In the first case, |g′(K)| is clearly smaller than 1, since I ′(M) is strictly positive by

assumption. In the second case, I ′(K)−1 can only be greater or equal to 1 if I ′(K) is at least
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2, which means that, for any additional item that is presented for memorization, two items

stop being retrievable, and we would consider such interference functions psychologically

implausible.

However, even if such interference functions seem psychologically implausible, we will

now show that the number of remembered items is still bounded for I ′(K) ≥ 2 as well. The

lower bound of the sequence {MP } is clearly zero, as we cannot remember fewer than zero

items (but see below). Lemma 1 (see Appendix) shows that for any M
P̂

> K, subsequent

MP ’s will be smaller (if and until they cross K again). As a result, if such a P̂ exists, the

local maxima of the sequence are elements MP such that MP −1 < K. From Weierstrass’

theorem, we further know that the continuous function g has a finite maximum U in the

closed interval [0, K]. Further, for any MP −1 < K, we know that g(MP −1) ≤ U ≤ K + R.

As a result, if P̂ exists, M
P̂

≤ K + R. Hence, MP will remain below K + R in this case as

well.

For I ′(K) > 2, we now show that the sequence {MP } oscillates around K. We will

first show that a P̂ exists such that M
P̂

> K, and then that the sequence {MP } will drop

below K at some point after crossing it. The proof proceeds by contradiction. Assume

that {MP } never crosses K. Then {MP } is bounded and increases monotonically, and

should converge according to the monotone convergence theorem. However, in Lemma 3,

we proved that {MP } does not converge for I ′(K) > 2. Hence, the assumption that {MP }

never crosses K leads to a contradiction. As a result, for some P̂ , M
P̂

> K.

We will now show that {MP } will drop below K again after crossing it. Assume that

P̂ exists, and that {MP } does not cross K for some P > P̂ . Then the subsequence of {MP }

starting at P̂ is bounded and monotonic. (We showed in Lemma 1 that it is monotonically
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decreasing.) By the monotone convergence theorem, this subsequence converges. This,

however, contradicts the result of Lemma 3 that {MP } does not converge. Hence, {MP }

crosses K again for some P > P̂ . A similar argument shows that {MP } will cross K

again after it dropped below K. Hence, the sequence oscillates around this fixed point for

I ′(K) > 2.

For I ′(K) ≥ 2, it is possible that, for some pathological interference functions (that

are massively accelerated after crossing K), there exists an MP below zero. This is only a

mathematical problem of course, as actual humans cannot remember fewer than zero items.

In such case, we thus replace the function g with

ĝ(M) =



















g(M) for M ≤ K

max(g(M), 0) otherwise

.

For such interference functions, we thus end up with an oscillation that starts with M0 = 0,

crosses K at some point (but remains below K + R), and then returns to 0 at some point,

to start over again.

For the case I ′(K) = 2, the divergence proof from Lemma 3 is not applicable. In this

case, {MP } might stay below K, converge to K, or oscillate around K, potentially with

convergence to K. Importantly, however, {MP } remains bounded by K + R.

Technical remark 1. From Banach’s fixed-point theorem, we can also estimate the speed
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of convergence towards K, with q = I ′(K):

|K − MP | ≤
qP

1 − q
|M1 − M0| (4)

=
qP

1 − q
R

Technical remark 2. As we assume that I crosses R, it might seem as if we retained

fewer items upon presentation of more items once I crossed R. This is because I crossing

R just means that the interference becomes stronger than the memory strength of a new

item. This situation seems implausible from a psychological perspective. However, it does

not arise in practice. Indeed, as long as M is not larger than K (i.e., in the interval

[0, K]), I does not exceed R either. If the convergence is monotonic, M will not exceed

K, and thus I will not cross R either. This is guaranteed as long as I ′(K) ≤ 1, and

thus for most “reasonable” interference functions. In fact, if I ′ exceeds 1 for some value

below K, g can momentarily have a negative slope, which is just to say that there is an

overshoot and a correction towards K. Convergence can thus become oscillatory. However,

interference functions with this property are implausible to begin with, because they predict

that sometimes the number of items we have in memory is reduced upon encountering an

additional item.

Be that as it might, it easy to handle such cases as well. For I ′(K) > 1, one can

consider the function

Î(M) =



















I(M) for M < K

R otherwise

.
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This function simply caps I. Hence, if the Qth presented item is the first item for which MQ

overshoots (i.e., for which MQ > K), then all MP will be equal to MQ for P ≥ Q (because

I has been capped). In other words, replacing I with Î leads to convergence to the first

MQ > K. Further, MQ will differ from K by at most R, as MQ = MQ−1 + R − I(MQ−1) ≤

K + R − I(0) = K + R.

Memory capacity for interference function that converge to, but do not cross R

In the previous section, we considered the case where the interference function crosses

R for some finite number of presented items, which is just to say that recognition perfor-

mance will reach chance for some finite number of presented items. Our analysis shows

that, in this case, participants can retain a fixed and finite number of items.

We will now consider a slightly more complex situation, where I converges to R but

does not cross it. As mentioned above, this means that, as many items are presented,

average memory performance will almost be at chance, but performance will remain (very)

slightly and decreasingly above chance (though this above-chance component is unlikely

to be detected except in experiments with extremely high statistical power). Under these

assumptions, the memory capacity is practically limited: While the number of retained

items converges to infinity, the convergence is so slow that it is practically irrelevant. To

take the example above, if for remembering a single additional item, we need to present 10

million additional items, the number of retained items is constant for all practical purposes.

Technically speaking, we show that one can always find a number of presented items P such

that the number of retained items changes by less than some threshold (1 in the example

above) when some number of additional items beyond P is presented (10 million in the
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example), no matter how small the threshold and how large the number of additional items.

Theorem 2. Let I be an interference function as defined above. Further, let I converge to,

but never cross R (i.e., the memory efficacy), i.e., limM→∞ I(M) = R, with I(M) < R for

all R. Under these assumptions, the memory capacity is practically limited: for any number

of additionally presented items A and any threshold ǫ, there is a number of presented items

P such that the number of retained items MP changes by less than ǫ if A more items are

presented:

∀A > 0, ∀ǫ > 0∃P : MP +A − MP < ǫ (5)

Proof. To make this proposition plausible, we first note that the difference between subse-

quent MP goes to zero. Indeed, the difference between MP +1 and MP is just R − I(MP ).

As I converges to R, this difference converges to zero. Next, we rewrite equation (1) for

P > 1:

MP = R +
P −1
∑

k=1

R − I(Mk) (6)

Using equation (6), we can rewrite the difference MP +A − MP :

MP +A − MP =

[

R +
P +A−1
∑

k=1

R − I(Mk)

]

−

[

R +
P −1
∑

k=1

R − I(Mk)

]

(7)

=
P +A−1
∑

P

R − I(Mk) (8)

≤ A (R − I(MP )) (9)
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Since I converges to R, there is an x such that R − I(x) < ǫ/A. This follows from

the definition of convergence. Further, since I does not cross R, we know from the previous

section that MP is unbounded. Hence, to satisfy equation (5), we just have to pick a P

such that MP is greater than x.

Technical remark 3. From equation (9), it is clear that MP will be practically constant

for smaller numbers of presented items when I reaches the vicinity of R earlier.

A simple interpretation of the memory capacities

Our analyses so far suggest that people can retain a fixed and finite number of items if

their recognition performance converges to chance for a finite number of presented items, and

that their memory capacity is practically limited if their recognition performance converges

to chance while retaining a (very) small residual above chance component. We will now

show that these memory capacities have a very simple interpretation. They are a function

of the relative efficiency of committing items to memory and the interference between items

in memory. For example, with linear interference I(M) = αM , K is R/α. We will now

prove this assertion.

Proof. In the situation where I crosses R, the derivative of I−1 is given by
(

I−1
)′

(x) =

1/I ′(I−1(x)). As I ′(M) > 0 ∀M ∈ [0, K],
(

I−1
)′

is strictly positive as well. Hence, K is a

growing function of R.

To see the influence of the strength of interference on the memory capacity, we will
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use the Taylor expansion of I−1 around zero. The first order approximation is given by:

I−1(x) ≈ I−1(0) +
(

I−1
)′

(0) × x

= 0 +
1

I ′(I−1(0))
x

=
1

I ′(0)
x (10)

Hence, the larger the slope of the interference function, the smaller the resulting memory

capacity. Since the interference with zero items is zero, this is equivalent to say that, the

larger the interference at R, the smaller the memory capacity.

In the situation where I does not cross R, it is clear from equation (6) that, for all P ,

MP is a growing function of R. Further, it is clear that MP will be larger if I grows more

slowly.

In sum, the memory capacity is a function of the relative efficiency of committing

items to memory and the interference between items in memory.

Can decay result in fixed memory capacities?

So far we analyzed the role of interference in memory capacity limitations. However,

it is also interesting to consider the consequences if the main limitation of memory is time-

based decay. We consider a model similar to equation (1), except that we replace the

interference function by some decay function D that denotes the loss in retrievability of an

individual item from memory. That is, if an item has some probability of being retrieved

at some time point, this probability is reduced after a delay ∆t by D(∆t). We make no

other assumption about the decay function, except for the definition of decay, i.e., that
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the magnitude of decay depends on the time during which items are kept in memory. For

simplicity, we assume that memory items are presented at some regular interval ∆t. The

model then becomes:

MP +1 = MP + R − MP × D(∆t) (11)

(12)

In the equation above, D(∆t) must be multiplied with MP , since D is the decay function

for an individual item, and decay applies to all items in memory. A fixed-point such that

MP +1 = MP exists only if R − MP × D(∆t) is zero. If it exists, it is at M∗ = R/D(∆t).

Hence, memory capacity is constant for a given presentation rate, but not for different

presentation rates. Under the (implausible) assumption that R does not depend on the

presentation rate, more items than M∗ can be remembered for faster presentation rates,

and fewer items for slower presentation rates. However, given that both R and D(∆t)

likely depend on the presentation rate, there is no capacity limits in terms of the number

of items that applies across presentation rates.8 Maybe more surprisingly, for a given

presentation rate, there is convergence towards the memory capacity. Formally, we can

8Empirically, memory performance is often better with slower presentation rates, in both vision and audi-
tion (e.g., Endress & Siddique, 2016; Intraub, 1980; Mackworth, 1962a, 1962b; McReynolds & Acker, 1959;
Matthews & Henderson, 1970; Melcher, 2001; Roberts, 1972). However, in some experiments, serial recall
performance is better for fast presentation rates, at least when recall is unpaced (Conrad & Hille, 1958;
Mackworth, 1964). This is likely due to recall strategies. For example, Posner (1964) showed that perfor-
mance is better for fast presentation rates in a serial recall task for auditory digits only when participants
are forced to recall the digits in the order in which they have been presented; when they are instructed to
recall the last digits first, and only then the first digits, this advantage disappears. In support of this view,
Jahnke (1968) showed that, when participants fill out the recall sheets, they generally don’t start with the
items that have presented first (except for very slow presentation rates), and have better memory for the
last few items in the list with faster presentation rates.
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treat decay as if it were an interference term in equation (1); if so, I(MP ) = D(∆t)MP ,

and thus I ′(MP ) = D(∆t), which meets the condition for convergence to M∗ as long as

0 < D(∆t) < R ≤ 1.

Hence, in the absence of refreshing mechanisms, pure time-based decay leads to con-

stant capacity at a given presentation rate, but cannot account for constant memory ca-

pacities across presentation rates, a conclusion that fits well with the observation that in-

terference is much more important for memory processes than decay in the first place (e.g.,

Berman, Jonides, & Lewis, 2009; da Costa Pinto & Baddeley, 1991; Wixted, 2004, though

decay sometimes seems to take place as well, see e.g., McKeown & Mercer, 2012). However,

in a situation where only decay but not interference is operational, and the presentation

rate is kept constant, constant memory capacities in terms of the number of retained items

would be expected.

Three cases of memory capacity limitations — prior empirical evidence

We derived three situations in which memory capacity behaves differently as a func-

tion of the number of items we try to store in memory. First, if interference becomes so

strong that it reduces recognition performance to chance after a certain number of items is

presented, we can remember only a fixed number of items that is a simple function of the

relative strength of interference and memorization.9

Second, if interference impairs recognition performance as more items are presented,

bringing it almost to chance while remaining very slightly above chance (though it is doubt-

ful that this could be measured experimentally), memory capacity is practically limited . In

9As mentioned above, we can convert the number of remembered items to the percentage of correct
responses in a recognition memory task by using the two-high-threshold formula (e.g., Cowan, 2001; Rouder
et al., 2008).
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principle, the number of remembered items grows indefinitely as more items are presented,

but the growth is so slow that memory capacity will appear constant for all practical pur-

poses.

Third, if interference never grows enough to come in the vicinity of the memory

strength of a newly encoded item, memory capacity is unbounded.

Hence, the interplay between memorization and interference can produce limited

memory capacities in the absence of the specialized mechanisms or resources that are usu-

ally postulated for its explanation. That said, attentional mechanisms might well be used

to counteract interference (e.g., Kane & Engle, 2000; Engle, 2002), and there is substantial

evidence that active, attentional processes are used in and helpful for memorization (see,

among many others, e.g., Chen & Cowan, 2009; Craik & Lockhart, 1972; Lepsien & Nobre,

2007; Majerus et al., 2014; Morey & Bieler, 2013; Vergauwe et al., 2014). However, what

our model shows is that one does not need to appeal to limited-capacity attentional mecha-

nisms to explain limited memory capacities. Rather, such limited memory capacities might

be an inevitable consequence of the presence of interference. Interestingly, we also showed

that pure time-based memory constraints lead to convergence to a memory capacity for

a given presentation rate, but they cannot account for fixed memory capacity limitations

across presentation rates.

Importantly, all three situations are experimentally attested. First, when interference

among items is massive, capacity estimates are constant irrespective of how many items

are presented, at least in the change detection experiments described above (though see

e.g. Bays & Husain, 2008; Bays, Catalao, & Husain, 2009; van den Berg et al., 2012, for

evidence that memory capacity might not be constant in this situation). Specifically, and
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as mentioned above, in Luck and Vogel’s (1997) classic change-detection Experiment 1,

stimuli were drawn from just seven different colors, and were then reused throughout the

experiment, and even within trials. As a result, participants had to remember that a given

test item was presented in the current trial rather than a prior trial, which likely led to

substantial PI across trials. Accordingly, memory capacity estimates were severely limited

(see Endress & Potter, 2014a, for discussion).

The other extreme case — that of apparently open-ended memory capacities — is

illustrated by Endress and Potter’s (2014a) experiments. In these experiments, participants

viewed rapid sequences of everyday objects at 250 ms per image, and completed a yes/no

recognition test after each sequence. Importantly, interference was minimized by presenting

new images on every trial, such that no image was repeated across trials. This manipulation

contrasts markedly with traditional WM tasks such as the change detection paradigm, where

items are repeated in numerous trials and thus lead to substantial proactive interference.

When interference was minimized in this way, Endress and Potter (2014a) observed no clear

capacity limitations. For example, when 100 items were presented, participants remembered

about 30 of them. These results should not be taken as evidence for a memory capacity of

30. If participants had a memory capacity of 30, they should show ceiling performance when

presented with less than 30 items. However, this was not the case. Rather, Endress and

Potter (2014a) showed that, when interference is minimized, the probability of remembering

any single item shows only a weak dependence on the total number of items to be memorized

(see also Banta Lavenex, Boujon, Ndarugendamwo, & Lavenex, 2015 for similar results in

spatial WM, and Sands & Wright, 1980, for similar observations in rhesus monkeys).

Endress and Potter (2014a) also provided evidence for our second situation above,
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where interference brings recognition performance almost to chance, but does not com-

pletely prevent the addition of new information to memory (see also Sands & Wright,

1980). Endress and Potter (2014a) included a condition where, in each trial, they picked

the memory items from a set of only 22 items. As a result, the items were repeated across

trials, but less so than in Luck and Vogel’s (1997) experiments. Under these conditions,

the number of retained items remained in the range of traditional capacity limitations, but

increased slowly as more items were added. It thus seems that the situations we derived us-

ing rather general assumptions describe different experimental situations that are observed

empirically.

Illustrations

So far, we presented our results in terms of abstract classes of functions. We will

now choose some example interference functions to illustrate the emergence of capacity

limitations in the first of our situations. Specifically, and as shown in Table 1, we will

use logarithmic, linear and exponential interference, respectively. Following these general

illustrations, we turn to the debate among proponents of slot-based vs. resource-based

memory limitations, and show that there are interference functions that can mimic either

type of memory model, and that suggest different psychological interpretations.

Table 1
Details of the functions used in Figures.

Fig. 1 Fig. 2

logarithmic I(M) = log(1+M)
log(5) (A, B) Ik(M) = 2( M

4 )
k

− 1

linear I(M) = M
4 (C) Iα(M) = 2α M

4 − 1

exponential I(M) = 2
M
4 − 1

Importantly, we use these functions just to illustrate the present results, but do not
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claim that they reflect actual interference functions. For illustrative purposes, we will set R

to 1 (i.e., perfect remembering), and K to 4. Hence, the memory capacities converge to 4 not

due to some intrinsic property of the model, but because we chose the functions accordingly.

As mentioned above, we converted the number of retrievable item to the percentage of

correct responses in a recognition experiment, by inverting the two-high-threshold formula

that is generally used to calculate memory capacities (e.g., Cowan, 2001; Rouder et al.,

2008), as calculated for a recognition experiment, where participants are shown a single test

item on each trial, and have to decide whether it was part of the memory set, and where

there is an equal number of “old” and “new” test items.10

As shown in Figures 1(A) through (C), for all three functions, the number of retriev-

able items asymptotically approaches a capacity of 4; conversely, the percentage of correct

responses fell as more items were presented, and fell to 50% for large numbers of presented

items.

However, even when just two items are presented, this model predicts that not all pre-

sented items are fully retrievable, which might underestimate human performance for small

numbers of presented items. This issue can be addressed in two ways. First, and as dis-

cussed below, this behavior depends on the interference function, and can be changed with

suitably chosen interference functions; as discussed in more detail below, the interference

function just needs to be sufficiently upwardly curved, which, we suggest, has a straight-

forward psychological interpretation in terms of crowding of items in memory. Second, we

10This model assumes that participants have a certain probability to successfully recognize an “old” item
and to successfully recognize a “new” item; in-between, participants guess. With these assumptions, the
estimated memory capacity K is given by P × (H − FA), where P is the total number of presented items,
and H and FA are the hit rate and the false alarm rate, respectively (see e.g. (Rouder et al., 2008)). With
an equal number of “old” and “new” test items, the formula can be written as K = P (2pcor − 1), where pcor
is the proportion of correct responses. Inverting this formula yields pcor = 1

2

(

1 + MP

P

)

.
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A B C

Figure 1 . Number of retained items and percentage of correct responses in a recognition
experiment when no focus of attention is included in the model. The figures show three
different interference functions (logarithmic, linear and exponential).

note that it has long been recognized that people can keep at least one item in the focus of

attention while retaining memory items (e.g., Lewis-Peacock, Drysdale, Oberauer, & Pos-

tle, 2012; Oberauer, 2002; Öztekin & McElree, 2007; Öztekin et al., 2010), which might or

might not be related to rehearsal in the case of memory for verbal items (Baddeley, 1996).

Our model can thus be amended by using the most conservative estimate of the focus of

attention, namely a single item. In other words, the model is identical to the one above,

except that the first memory item is assumed to be placed in the focus of attention and,

therefore, does not interact with the other items that are retained.

The results with the same interference functions as before, but including the focus of

attention, are shown in Figures 2(A) through (C). As in the previous model, the number

of retrievable items converges to 4 items. In this model, however, performance is still at

about 95% correct for 3 items (except for logarithmic interference, where it reached only

92%). Hence, this model accounts for the hypothesis that people can retain between 3 and

4 items (Cowan, 2005).

Our analyses are consistent with different memory phenomena and past models. Most
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A B C

Figure 2 . Number of retained items and percentage of correct responses in a recognition
experiment when one item is placed in the focus of attention. The figures show three
different interference functions (logarithmic, linear and exponential).

importantly, they show that interference can mimic a slot-like all-or-none model and a

continuous resource model. We also show that it can mimic chunking.

Modeling an all-or-none encoding in WM

Our model can approximate a slot-like all-or-none WM model (Cowan, 1995, 2005;

Luck & Vogel, 1997; Rouder et al., 2008; W. Zhang & Luck, 2008). According to this model,

we can remember 3 or 4 items. If we have to remember more items, we pick 3 or 4 of them,

and do not place the rest in WM. This is illustrated in Figures 3(A) and (B). The prediction

of Cowan’s (2001) all-or-none model is that the number of retrievable items should be equal

to the number of presented items up to the capacity, and constant afterwards (thick solid

line). In other words, for P < K, MP ≈ P , and for P ≥ K, MP ≈ K.

Setting R to 1 (i.e., perfect encoding of the memory items), and writing out equation

(1) for the different iterations reveals that this condition is equivalent to assuming negligible

interference below the memory capacity, and full interference when more items are presented

than fit in memory, i.e. I(M) ≈ 0 for P < K, and I(M) ≥ 1 otherwise. In other words,
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the interference function should have an upwardly curved slope.

This is illustrated in Figure 3(A) and (B). We plotted interference functions with

increasingly upward-curved slopes (parameter k, see Table 1 for details). By choosing an

interference function with a suitably upward-curved slope, it is possible to approximate

the all-or-none view of memory (black thick line) arbitrarily closely. In other words, to

approximate the all-or-none encoding in WM, interference needs to be benign when few

items are presented, and should have a noticeable effect only once the number of presented

items approaches the memory capacity.

Such behavior is well known from other areas of perception where neighboring items

interfere with each other. For example, visual crowding refers to impaired recognition

of visual objects when these objects are surrounded by other, similar, objects. However,

crowding effects are observed only when the objects are separated by less than a critical

distance (that tends to be half the objects’ eccentricity; see e.g., Pelli, Palomares, & Majaj,

2004; van den Berg, Roerdink, & Cornelissen, 2007), while crowding does not occur beyond

that distance. We thus suggest that, in experimental conditions that yield the slot-like

all-or-none pattern of WM encoding, interference might similarly be noticeable only once a

critical number of items has been presented so that they can interfere in memory. In other

experimental situation, the interference function might be different.

Importantly, this conjecture suggests a simple psychological interpretation of the all-

or-none pattern of WM encoding: in such situations, there might be crowding of memory

representations, especially if these representations overlap in features that are relevant for

retrieval, and thus possibly comprise a combination of object features and of a representation

of when an object has been encountered (as in distinctiveness models of memory; see e.g.
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Brown, Neath, & Chater, 2007; Glenberg & Swanson, 1986; Neath & Crowder, 1990; Neath,

1993; Unsworth, Heitz, & Parks, 2008). In analogy to the well-documented difficulties for

identifying (but not detecting) items in crowded visual displays (e.g., Whitney & Levi, 2011),

the all-or-none pattern of performance might be due to retrieval processes that find it hard

to correctly identify a target item among crowded memory representations. In contrast to

current slot-based WM models, however, this pattern might arise at retrieval, and not due

to slot-like memory representations. In line with this view, other authors have suggested

that WM performance might be best conceived of as a decision problem that evaluates the

evidence provided by memory representations (e.g., Pearson, Raskevicius, Bays, Pertzov, &

Husain, 2014).

A B

Figure 3 . Approximations of an all-or-none memory encoding. With increasingly upward-
curved interference functions (parameter k), it is possible to approximate an all-or-none
memory encoding (thick black line). The curves are based on models including the focus of
attention.

However, these considerations raise an important question. According to slot-based

models of WM, a critical feature of the slots is that items in these slots do not interfere with
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other items, while we suggest that slot-like performance profiles might result from crowding-

like interference among items. As a result, while the performance profile as a function

of the number of memory items is similar here and in traditional slot-based models, the

psychological interpretations are radically different, and need to be teased apart empirically.

Modeling a continuous resource model

As mentioned above, some prominent models of WM hold that the size of WM ca-

pacity depends on the amount of detail that needs to be stored (Alvarez & Cavanagh, 2004;

Bays & Husain, 2008). As shown in Figure 4, this can be modeled by manipulating the

strength of interference (parameter α). After all, we need to encode more detail about items

when the items are more similar to each other, which, in turn, might increase interference

among those items because they are more confusable (e.g., Baddeley, 1966, 1968; Conrad,

1963; Conrad & Hull, 1964; Walker, Hitch, & Duroe, 1993). With stronger interference

(or weaker memory encoding), capacities are smaller than with weaker interference. This

follows from the fact that the memory capacity in our model is a function of the relative

efficacy of memorization and interference. If interference is relatively stronger, the resulting

capacities will be reduced.

This idea also readily accounts for the observation that the precision of memory

encoding is variable (see Ma et al., 2014, for a review). The more confusable memory items

are, the higher the precision required to keep them apart. Hence, when a memory task

requires a high precision, we would expect relatively few items to be retained.

Importantly, while slot-based models and resource-based models are often treated as

theoretical alternatives depending on how well they fit a given pattern of data, these illus-
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trations show that an interference account can mimic either pattern of data. Crowding-like

phenomena during retrieval might lead to WM performance that fits slot-like models while

varying levels of interference might lead to the more flexible response profile of resource-

based models. In the General Discussion, we will suggest that this view also leads to a new

interpretation of Miller’s (1956) suggestion that different cognitive capacity limits might

share a common underlying reason, even when the different capacities do not form a single

system.

Chunking

Chunking strategies have long been recognized as central to memory (e.g., Chase

& Simon, 1973; Cowan, Chen, & Rouder, 2004; Feigenson & Halberda, 2008; Rosenberg

& Feigenson, 2013; Simon, 1974). For example, chunking the letters C, I and A into the

chunk CIA substantially facilities memorization. According to an interference-based account

of memory limitations, chunking might increase apparent memory capacity by reducing

interference, both by reducing the number of items that need to be memorized, and by

making the items that are effectively memorized (i.e., the chunks) more distinct.

The chunking view also presents an alternative interpretation to previous results that

lead to the suggestion that humans might have distinct memory stores, such as for language

vs. visual information (e.g., Baddeley, 1996; Endress & Potter, 2012; Fougnie, Zughni,

Godwin, & Marois, 2015), for agents vs. their actions (Wood, 2008), for view-dependent

vs. view-invariant representations (Wood, 2009; see also Endress & Wood, 2011, for sim-

ilar conclusions in sequence memory), and faces vs. other objects (e.g., Wong, Peterson,

& Thompson, 2008). In many of these experiments, participants could remember more
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Figure 4 . Approximations of a flexible resource-based memory encoding. By varying the
strength of interference (parameter α), one can continuously modulate the observable mem-
ory capacity. The curves are based on models including the focus of attention.
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memory items when they came from different categories as opposed to the same category.

However, at least for the within-vision stores, an alternative interpretation is that items from

different categories show less interference than items from the same category, especially if,

as recent brain imaging studies suggest, memory items are stored in those brain regions

where they are processed to begin with (e.g., Lee, Kravitz, & Baker, 2013; Riggall & Postle,

2012; Sreenivasan, Vytlacil, & D’Esposito, 2014; Sreenivasan, Curtis, & D’Esposito, 2014):

if items are stored in areas that are separated anatomically in the brain, it is plausible that

they also have a reduced tendency to interfere with each other psychologically. In line with

this view, other research shows that, when memorizing visual information on top of verbal

information (or vice versa), memorizing additional items from another modality only leads

to a small decrease in memory performance compared to when only the items from the first

modality have to be remembered (e.g., Cowan & Morey, 2007; Cowan, Saults, & Blume,

2014), though these studies also show that memory uses some central, amodal components

as well. However, it should be noted that these experiments used stimuli from a limited set

of items, and it is unclear how interference in different modalities interacts with each other.

While other memory phenomena might be explained with an interference account

(e.g., Brown et al., 2007), our analysis is too general to make specific processing predic-

tions. Importantly, this is not its goal either: rather, we see it as a meta-model with no

processing assumptions at all (except that interference increases as a function of the number

of interfering items, which is basically the definition of interference), showing that memory

capacity limitations are largely inevitable as soon as interference is noticeable, even in the

absence of active control mechanisms that are often assumed to be necessary to explain

memory capacity limitations.
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Relationship to earlier formal models

There is a wealth of formal models of memory, many of which account for interfer-

ence phenomena (see, among many others, Anderson, 1983; Brown et al., 2007; Dennis &

Humphreys, 2001; Lewandowsky & Murdock Jr, 1989; Oberauer et al., 2012; Oberauer &

Lin, 2017; Raaijmakers & Shiffrin, 1981; Sengupta et al., 2014). While these models ac-

count for many aspects of memory functions about which our analysis is completely silent,

they are special cases of our analysis when it comes to the relationship between interference

and memory capacity. As we present necessary and sufficient conditions for interference

to lead to fixed and finite memory capacities, we can make the following generalizations.

Those models that yield fixed memory capacities use interference functions covered by our

first case. Those that yield practically limited memory capacities use interference functions

covered by our second case. Those models that do not show limited memory capacities as a

function of interference use interference functions that do not rise to the memory strength

of a new item.

We illustrate these generalizations with two well-known models of memory for which

sufficient detail was given to calculate interference functions: Anderson’s (1983) and Dennis

and Humphreys’s (2001) models. Finally, we will discuss Sengupta et al.’s (2014) and Knops,

Piazza, Sengupta, Eger, and Melcher’s (2014) model because it provides a computation

illustration of how interference among items can limit WM.

Anderson (1983)

Anderson’s (1983) model is concerned, among other phenomena, with (proactive and

retroactive) interference in the paired-associates task. In this task, participants have to
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associate an item A with an item B, either after having associated A with D, or after

having associated C with D. In the first case, A is associated with both B and D, which

leads to proactive interference upon recall of B. In the second case, no such interference

arises; hence, recall of B should be better compared to the first situation.

In Anderson’s (1983) model, an item is retrieved if it receives sufficient activation

from other items. For example, when A is presented, B can be retrieved by activation sent

from A. Crucially, the activation A sends to B (called fAB in Anderson’s (1983) model)

is proportional to the relative strength of association between A and B among all items to

which A sends activation:

fAB = ℓ
sAB
∑

k sAk

(13)

where ℓ is some constant, the s are strengths of associations, and the sum in the denominator

is over all associations of A. By rewriting equation (13), we can turn it into a similar form

as equation (1):

fAB = ℓ
sAB +

∑

k 6=B sAk −
∑

k 6=B sAk
∑

k sAk

= ℓ

(

1 −

∑

k 6=B sAk
∑

k sAk

)

≈ ℓ

(

1 −
Nŝ

(N + 1)ŝ

)

= ℓ − ℓ
N

N + 1

fAB ≡ R − I(N) (14)

In the third step, we made the simplifying assumption that all strengths of associations are
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approximately equal to ŝ, and that there are N interfering associations (excluding that with

B). One can verify that I(0) = 0, that the slope of I is strictly positive, and that I tends

to R for large N without ever reaching it. Hence, to the extent that a pair-associate task is

suitable for measuring memory capacity, capacity in Anderson’s (1983) model would likely

fall into the practically limited case.

Dennis and Humphreys (2001)

Dennis and Humphreys’s (2001) model works by associating items (e.g., words) to

their context. Specifically, a word is represented by a single (binary) node in the input

array of nodes. Its context is represented by a set of binary nodes in the output array of

nodes. If nodes in the input array and in the output array are active simultaneously, their

connection is set to one with probability r. This is how learning occurs.

When presented with a test item, the model by Dennis and Humphreys (2001) decides

whether it has seen the item in the following way. The model has two independent memories

of the context, one in the pattern of associations between the input array and the output

array (called the “retrieved” context by Dennis and Humphreys’s (2001)), and one memory

that is stored independently of the associations (called the “reinstated” context by Dennis

and Humphreys (2001)). Upon presentation of a test item, the model activates the retrieved

context. This is compared to the reinstated context. If the two memories of the context

are sufficiently similar, the model concludes that the test item has been seen before. In

Appendix C, we show that this model likely falls into our first category, where memory

capacity reaches a fixed limit.11

11Dennis and Humphreys (2001) specifically argue that their model shows limited “cumulative proactive
interference” as in Keppel and Underwood (1962). In such experiments, performance decreases over trials
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Sengupta et al.’s (2014) and Knops et al.’s (2014)

Sengupta et al. (2014) and Knops et al. (2014) proposed that mutual inhibition among

neurons can account for limited WM capacities. (They also investigated the relationship

between WM and number processing; we will discuss this aspect of their work in the General

Discussion.) Specifically, they described a network of neurons coding for spatial positions of

memory items. Each neurons excites itself, and inhibits all other neurons. Similar “saliency

maps” are thought to exist in the human posterior parietal cortex (e.g., Bays, Singh-Curry,

Gorgoraptis, Driver, & Husain, 2010; Gottlieb, 2007; Roggeman, Fias, & Verguts, 2010).

If the ith neuron has the activation xi, the activation change is governed by the

following differential equation:

dxi

dt
= −λxi + αF (xi) − β

N
∑

j=1,j 6=i

F (xj) + Ii + noise (15)

The first term represents (exponential) decay, the second term self-excitation of the ith

neuron, the third term inhibition from all other neurons, and the fourth term the external

input to the ith neuron. F (x) is the activation function x/(1 + x) for non-negative x, and

zero otherwise.

Equation (15) shows that the inhibition a neuron receives is proportional to the ac-

tivation of the other neurons (after application of the activation function). As a result,

based on our analyses, we would expect the network’s memory capacity to be limited for

sufficiently high β (i.e., inhibition) values. In line with these expectations, Sengupta et al.

even if unrelated material is used across trials. In our analysis of the model, we consider their parameter
corresponding to the probability that context items are activated in a trial due to prior experience. Increasing
this parameter decreases performance.
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(2014) and Knops et al. (2014) suggested that, with relatively high levels of inhibition (e.g.,

β = .15), the mean activation in the network rises up to a set-size of 4, and then remains rel-

atively constant; in contrast, with lower levels of inhibition, the network’s memory capacity

was much larger.

A B 

Figure 5 . (A) Mean activation level in Sengupta et al.’s (2014) and Knops et al.’s (2014)
network in the absence of noise for simultaneous vs. sequential presentation of memory
items. The interference parameter is set to .15. As shown by Endress and Szabó (under
review), when items are presented simultaneously, and the set-size exceeds the memory
capacity, the network shows catastrophic interference, and becomes inactive. In contrast,
when items are presented sequentially, the network maintains non-zero activation beyond
the memory capacity. (B). Percent of neurons matching their input activation. When items
are presented simultaneously, the proportion of neurons “remembering” their input goes to
zero. In contrast, when items are presented sequentially, the network retains a memory of
the most recent items.

However, there is an interesting complication. Endress and Szabó (under review)

showed that, in the absence of noise, the network shows catastrophic interference when

memory items are presented simultaneously (see Figure 5). That is, the network remembers

items up the memory capacity perfectly; however, when more items are presented than fit

into the memory capacity, the network forgets all of them, because all neurons become

inactive. (In the presence of noise, the situation is similar, except that network activation

does not completely die out.) In contrast, when items are presented sequentially one after
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the other, the network retains a buffer of the most recent items. These computational

results fit well with the observation that participants in WM experiments tend to process

items sequentially even when they are presented simultaneously (e.g., Liu & Becker, 2013;

Vogel et al., 2006; but see Mance et al., 2012), as this might protect them from catastrophic

interference (though infants might show catastrophic interference; Feigenson, 2005; Zosh &

Feigenson, 2015). Be that as it might, Sengupta et al.’s (2014) and Knops et al.’s (2014)

results show that mutual inhibition among neurons can lead to finite memory capacity

limitations.

General Discussion

Our results suggest that fixed capacity limitations might be a natural consequence of

interference among items, and that neither active, attentional processes, nor a finite resource

that can be depleted are needed to explain capacity limitations. Further we show that an

interference account can mimic patterns that have been attributed to either slot-based

models or resource-based models, suggesting that these models might be less incompatible

than currently believed, and might reflect different interference regimes. It is thus urgent

to elucidate the psychological mechanisms that can produce either pattern of behavior.

These conclusions should not be interpreted to suggest that active maintenance plays

no role in WM. Rather, they suggest that attentional processes are not needed to explain

fixed and finite capacity limitations, and that such capacity limitations are thus not diag-

nostic of either the involvement of such processes in memorization, or of a slot-like memory

architecture. Further, we speculate that a slot-like all-or-none pattern of WM performance

might arise from crowding-like phenomena in memory. For example, a speculative account
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of such memory crowding effects is as follows. As in many other WM models, a number of

LTM items is temporarily activated. During WM/STM retrieval, crowding-like phenomena

might arise when a critical number of these activated items is too close in representational

space, which would then impair retrieval. In the presence of interference, the relevant

representations must include some sort of memory for context, similar to temporal distinc-

tiveness models (e.g., Brown et al., 2007; Glenberg & Swanson, 1986; Neath & Crowder,

1990; Neath, 1993; Unsworth et al., 2008). For example, when we recall or recognize words,

we do not need to retrieve all words we know or that are activated, but rather only those

that appeared in the relevant trial. If this representation combining item information and

context information becomes too crowded, retrieval is probably impaired. If so, a slot-like

pattern of memory performance might not be a property of maintenance but rather reflect

the effects of interference on retrieval, in contrast to slot-based models of memory where the

slots are used for memory maintenance. Interestingly, this speculation that meshes well with

earlier suggestions that the effectiveness of retrieval cues (and not only the quality of the

memory representation or its match to a retrieval cue) is crucial for memory performance

(e.g., Nairne, 2002a), and that memory performance might fundamentally reflect a deci-

sion problem, where participants have to evaluate the evidence provided by their memory

representations (e.g., Pearson et al., 2014).

The role of active mechanisms

While our results show that active mechanisms are not required to explain memory

capacity limitations, they should not be taken as evidence that such processes are never used

in WM. In fact, in tasks such as complex span tasks (e.g., Daneman & Carpenter, 1980),
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it is difficult to imagine how participants could succeed without using active, attentional

processes. In fact, the well documented correlation between performance on such tasks and

IQ is mediated by the use of suitable strategies (Gonthier & Thomassin, 2015; though see

Oberauer et al., 2012 for, an interference-based model of such tasks). Participants might

thus well use active processes to reduce the effects of interference (Engle, 2002; see also

Braver et al., 2008; Burgess et al., 2011), thereby increasing the apparent memory capacity.

However, in other tasks that revealed limited memory capacities, and that are, there-

fore, widely believed to tap into WM, such active, attentional maintenance mechanisms

might not be recruited. Examples include Endress and Potter’s (2014a) interference-rich

conditions, or the change detection paradigm (Luck & Vogel, 1997) that has probably be-

come the most prominent test case of visual WM in recent years (e.g., Alvarez & Cavanagh,

2004; van den Berg et al., 2012; Piazza et al., 2011; Rouder et al., 2008; Vogel et al., 2006;

W. Zhang & Luck, 2008). In such tasks, we believe that the minimal assumptions of the

present model provide a useful theoretical baseline against which more elaborate models of

memory capacity limitations should be compared.

Given the striking variety of WM tasks, we propose that different WM tasks might

recruit different mechanisms, some being active and some being passive and automatic,

and that the label “WM” might thus reflect different psychological constructs in different

experimental paradigms (even though they might share variance; see Engle et al., 1999).

If this view is correct, it raises the question of what should be called “WM.” In fact,

if WM is a form of memory that stores information over limited periods of time and keeps

it accessible for cognitive processes, everyday cognition suggests that it does not necessarily

have a limited capacity. As discussed by Endress and Potter (2014a), we can drive a car



INTERFERENCE AND MEMORY CAPACITY LIMITATIONS 45

and monitor the traffic while remembering our destination, remembering to go to the gas

station and to pick up some food on the way, while keeping in mind speed limits, having a

conversation with a passenger, interrupting the conversation to listen to the news, resuming

the conversation and so forth. If a limited capacity is a defining feature of WM, one would

need to conclude that WM is not used in such everyday situations, but only in interference-

rich situations such as remembering phone numbers or doing arithmetic. However, even this

conclusion is problematic. If it turns out that we do not use active maintenance mechanisms

to counter-act interference at least in some situations (which is unlikely to be the case in

change detection experiments and those reported by Endress & Potter, 2014a), interference-

rich situations and those with limited interference would recruit exactly the same memory

mechanisms. If so, there are only two possible conclusions: either we use WM in both

interference-rich and limited-interference situations, or in neither of these situations.

A similar conclusion follows from the view that WM (or at least its central feature)

is some kind of active memory control mechanisms, but not a memory storage mechanism

per se (e.g., Baddeley, 1996, 2003; Cowan, 2001, 2005). If so, WM would be deployed

only in specific kinds of situations and tasks, but not in other situations that one would

intuitively think to involve WM (e.g., the driving situation sketched above). We thus believe

that, to understand what WM really is, tasks that are thought to tap into WM need to be

decomposed into their underlying psychological mechanisms.

The role of interference in other cognitive capacity limitations

Our analyses show that interference can mimic different patterns of capacity limita-

tions in memory, notably slot-based and resource-based memory performance. Interestingly,
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interference has also been proposed to account for the other two prominent case of cognitive

capacity limitations: tracking multiple moving objects in a display, a task that has been

called multiple object tracking, and quickly and accurately enumerating objects in a display

without counting (i.e., subitizing; Kaufman & Lord, 1949; Trick & Pylyshyn, 1994). Tradi-

tionally, all three forms of capacities were thought to be limited to three or four items, and

to rely on a system of parallel attention (e.g., Cowan, 2001; Piazza et al., 2011). However,

recent evidence suggests that these capacities are not fixed and depend on the experimen-

tal situations. Accordingly, different authors have attributed these capacity limitations to

different forms of interference among items. We will now discuss these data in turn.

Interference-based accounts of subitizing and multiple object tracking.

Interference-based accounts of subitizing. According to recent proposals,

subitizing might be due spatial interference among items. As mentioned above, Sengupta

et al. (2014) and Knops et al. (2014) implemented a saliency map where neurons excite

themselves and inhibit each other.

Using this architecture, Sengupta et al. (2014) reported that, at high levels of inhi-

bition, the network activation increased as a function of the set-size up to about four, and

then reached an asymptote. Hence, if we have read-out mechanisms for the total activity in

a brain network (e.g., as in the models by Dehaene & Changeux, 1993 and Verguts & Fias,

2004), the same architecture that explains WM limitations might also explain subitizing

limitations, because the total activation in the network would give an estimate of the num-

ber of items. If so, the subitizing limitations would depend on the strength of inter-item

inhibition.
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Interference-based accounts of multiple object tracking. With respect to

multiple object tracking, a traditional view held that observers can attentionally follow 3

or 4 moving objects on a display (e.g., Pylyshyn & Storm, 1988; Scholl & Pylyshyn, 1999),

a capacity limitation that seems to coincide with traditional working memory and subitiz-

ing limitations. However, it is now clear that the number of objects that can be tracked

depends on factors such as their speed and their spacing (Alvarez & Franconeri, 2007), and

the main factor that limits how many item we can follow appears to be inter-item inter-

ference (Franconeri, Alvarez, & Cavanagh, 2013): objects interfere with each other when

their receptive fields come too close. However, while such tracking abilities and WM might

both be limited by interference, the current proofs do not apply to multiple object tracking,

because memory interference depends on the number of objects in memory, while tracking

interference depends on the number of objects present in a display, and not just those that

are tracked (Bettencourt & Somers, 2009; see also Franconeri, Jonathan, & Scimeca, 2010),

and, more generally, because tracking limitations are due to occasional interactions between

objects (i.e., when they come to close), requiring a somewhat different model.

Do Working Memory, Subitizing, and Multiple Object tracking rely on

a common mechanism? If capacity limitations in WM, subitizing and multiple object

tracking are emergent properties of interference among items, does this suggest that all the

capacities rely on the same underlying system? We will now suggest that the evidence is

mixed in the case of the relationship between WM and subitizing, while there is converg-

ing evidence suggesting that WM and multiple object tracking rely on at least partially

independent mechanisms.
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The relationship between Working Memory and Subitizing. Piazza et al.

(2011) demonstrated a correlation between the subitizing range and WM capacity (mea-

sured in a change detection experiment), suggesting that these cognitive abilities rely on a

common system. Further, they showed that, in dual-task settings, WM load affects subitiz-

ing performance and vice versa, though Shimomura and Kumada (2011) did not find any

dual-task costs between WM and subitizing. There is also evidence from brain imaging for

a link between WM and subitizing (Knops et al., 2014), though the interpretation of these

data is not entirely clear.12

In line with this adult data, the literature on object individuation in infancy also

suggests that WM and small number processing might be partially linked, and partially

dissociable. Around their first birthday, infants can individuate only up to three (identical)

objects (e.g., Feigenson, Carey, & Hauser, 2002; Feigenson & Carey, 2005), a limitation

that coincides with the subitizing range. For example, when infants witness identical ob-

jects being hidden in a box, and are allowed to retrieve only a subset of them, they will

continue searching for the remaining objects only if the total number does not exceed 3

(e.g., Feigenson & Carey, 2005). However, when the objects can be combined into chunks,

12Knops et al. (2014) reported that voxels in the posterior parietal cortex could flexibly switch between
a subitizing response profile in an enumeration task, and a WM profile in an WM task. Specifically, they
defined the response profiles in terms of the brain activity as a function of the set-size. According to Knops
et al. (2014), a subitizing profile should show relatively constant activation within the subitizing range, and
increase thereafter, while a WM profile should increase up to the WM capacity, and plateau thereafter.

While Knops et al. (2014) concluded that the same brain area could flexibly switch between response
profiles and sub-serve both WM and subitizing, there are two considerations that call for further experiments
before accepting this conclusion. First, if the activity in this brain area is constant within the subitizing
range, it is unclear how the set-size can be read from the network activity. Second, Knops et al. (2014)
found that a classifier decoding the set-size performed better for numbers outside the subitizing range (i.e.,
5 and 6) than for numbers within the subitizing range (i.e., 3 and 4) — although larger numbers might
processed by different mechanisms from those involved in small-number processing (e.g., Feigenson & Carey,
2005; Hauser, Carey, & Hauser, 2000; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). As a result, it is
unclear to what extent Knops et al.’s (2014) subitizing response profile reflects voxels that are involved in
small number processing as opposed to voxels that are not involved in small number processing, and that
only support large number processing instead.
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or when they are made more distinctive, infants also succeed with a total of 4 objects (e.g.,

Feigenson & Halberda, 2008; Rosenberg & Feigenson, 2013; Zosh & Feigenson, 2015).

Crucially, looking time experiments suggest that the increased capacity does not nec-

essarily imply increased WM for the objects’ features. In fact, after objects are hidden,

infants are sometimes surprised if their number changes — even while they do not notice

massive changes in the objects’ features (e.g., Kibbe & Leslie, 2011; Kibbe & Feigenson,

2016). A possible interpretation of such results is that the ability to keep track of cardi-

nalities can be increased by some factors (e.g., chunking) that also increase WM capacity,

suggesting again that there might be a link between the ability to keep items in memory and

the ability to track their cardinality, though these results also suggest that small number

processing is not isomorphic with WM.

In sum, while different strands of evidence suggest that WM and small number pro-

cessing might be closely related, it is still unclear to what extent these cognitive abilities

rely on a common mechanism.

The relationship between Working Memory and Multiple Object Tracking.

In the case of the relationship between WM and multiple object tracking, the situation

is somewhat clearer. First, and as mentioned above, there is very limited interference

between parallel attention tasks and WM (e.g., Fougnie & Marois, 2006; Hollingworth &

Maxcey-Richard, 2013; H. Zhang et al., 2010), suggesting that they rely on dissociable

psychological mechanisms. Further, parallel attention and WM seem to have partially

different properties. For example, Endress, Korjoukov, and Bonatti (under review) asked

to what extent the category structure of memory items affects WM and multiple object

tracking performance. Specifically, and as mentioned above, it is easier to memorize items
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from different categories (e.g., 2 cars and 2 faces) compared to items from the same category

(e.g., 4 faces; e.g., Feigenson & Halberda, 2008; Wood, 2008; Wong et al., 2008). Endress et

al. (under review) replicated this effect in a WM task, but showed that it is slightly harder

to track objects from different categories than items from the same category. While these

results were rather weak, they also suggest that WM and multiple object tracking rely on

different mechanisms.

That being said, if our speculation is correct that a slot-like response pattern might

be due to crowding-like phenomena in memory (retrieval), the underlying factors that lead

to capacity limitations might be similar in WM, subitizing and multiple object tracking. In

subitizing and multiple object tracking, performance might impaired if the receptive fields

of the objects are too close in space (Franconeri et al., 2013); in memory, interference might

arise when the “receptive fields” of the memory representations are too close together in

representational space of the relevant features (that might include some form of context

memory as in distinctiveness theories; e.g., Brown et al., 2007; Glenberg & Swanson, 1986;

Neath & Crowder, 1990; Neath, 1993; Unsworth et al., 2008).

However, this crowding account does not explain relationships between different ca-

pacities, such as Piazza et al.’s (2011) correlation between subitizing ranges and WM ca-

pacities — unless a sensitivity to crowding is a trait that is stable in an individual across

different tasks. There is some evidence that subitizing is vulnerable to crowding (Baron &

Pelli, 2006), but it is unclear to what extent a general sensitivity to crowding in vision and

in memory can explain the correlation found by Piazza et al. (2011). Some basic abilities

certainly affect individual performance on a range of tasks. For example, an individual’s

ability to suppress irrelevant items seems to be used in tasks from perceptual decisions to
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IQ tests and correlates across these tasks (Melnick, Harrison, Park, Bennetto, & Tadin,

2013). However, it is unknown whether a sensitivity to crowding has a similarly wide range

of consequences.

Be that as it might, capacity limitations in at least WM, multiple object tracking

and maybe subitizing might be due to a common cause, just as proposed by Miller (1956),

Cowan (2001) and Piazza et al. (2011): performance might suffer from interference between

nearby representations, where “nearby” refers to spatial locations in object tracking and

subitizing, while it refers to some kind of representational space in memory.

However, contrary to earlier proposals that cognitive capacity limitations might be

related through the use of a common mechanism, these limitations do not necassrily arise

because the three tasks rely on the same underlying mechanism (i.e., parallel attention), but

rather because each of the underlying mechanisms might be sensitive to similar constraints.
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Appendix A

A continuous resource interpretation of W. Zhang and Luck’s (2008) model

According to W. Zhang and Luck’s (2008) model, the probability density for the participants

to pick a color γ is given by

pΦκ(γ − γ0) +
1 − p

2π
(16)

where p is the probability of an item to be in a slot (i.e., of being one of the items that are

memorized), γ0 is the target color, and Φκ is the von Mises distribution reflecting that, even

within a slot, memory has only a finite resolution. The first term represents the probability

of a response if participants have placed an item into a slot, while the second term reflects

a uniform guessing distribution if the item has not been placed into a slot.

According to W. Zhang and Luck (2008), a flexible resource model can be modeled
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with the expression Φκ(γ −γ0): participants remember the target color γ0 with some spread

around it. This, however, implies that even their original model can be interpreted as a

flexible resource model. As pointed out by Bays et al. (2009), participants do not only have

to memorize the colors, but also their location. If one interprets W. Zhang and Luck’s (2008)

p parameter not as the probability of placing a color into a slot, but rather as the probability

of getting the color-location binding right, and if one assumes that the distribution of target

colors is uniform, the probability distribution of a subject response is given by

pΦκ(γ − γ0) + (1 − p)

∫

Φκ(γ − γ′)
1

2π
dγ′ (17)

The left summand reflects that participants will pick a color with some spread around γ0

if they got the color-location binding right, while the right summand reflects that they

will pick another color from the memory array if they don’t remember the location of the

color; given that the target colors are sampled uniformely, the colors picked on average

correspond to the marginal distribution over all possible target directions. The integral is

1/(2π). Hence, equations (16) and (17) are identical, and W. Zhang and Luck’s (2008)

slot model is equivalent to a flexible resource model with uncertainty about location-color

bindings.

It should be noted that van den Berg, Awh, and Ma (2014) showed that such binding

errors are relatively rare. However, the equivalence between a slot-model and a resource

model shows nonetheless that the psychological interpretations of such models are not always

clear, and that psychological mechanisms might be easier to elucidate with psychological

manipulations than by evaluating the fit to a model.
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Appendix B

Some preliminary proofs

Lemma 1. Below K, the sequence {MP } is monotonically increasing; above K, the sequence

{MP } is monotonically decreasing.

For MP < K, this assertion follows from the observation that MP +1 − MP = R −

I(MP ) > 0 for MP < K. The last inequality follows from the monotonicity of I, and the

fact that I(K) = R.

For MP > K (if such an MP exists), MP +1 will necessarily be smaller than MP :

MP +1 = MP + R − I(MP ) (18)

< MP + R − I(K) Since I ′(M) > 0, and since K < MP

= MP

Lemma 2. If the sequence {MP } converges, it converges to K.

The proof proceeds by assuming that the sequence converges to some other number,

and showing that this assumptions leads to a contradiction. Assume that {MP } converges

to some limit Ll < K. If so, |MP +1 −MP | must converge to zero. However, |MP +1 −MP | =

|R − I(MP )| ≥ R − I(Ll) > 0. The penultimate inequality follows from the observation that

I(MP ) ≤ I(Ll) for MP < Ll. Hence, {MP } cannot converge to Ll < K.

Assume now that {MP } converges to some limit Lu > K. If so, |MP +1 − MP | =

|R − I(MP )| = I(MP ) − R ≥ I(Lu) − R > 0. The penultimate inequality follows from the

observations that I(MP ) > I(Lu) for MP > Lu, and that, due to the monotonicity of the
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sequence, if there is convergence to Lu, it is necessarily from above Lu (i.e., after some P ,

MP would be greater than Lu. Hence, {MP } cannot converge to Lu > K.

Lemma 3. For I ′(K) > 2, the sequence {MP } does not converge.

To show that the sequence {MP } does not converge, we assume that it converges, and

then show that this assumptions leads to a contradiction. If {MP } converges, it converges

to K according to Lemma 2. Thus, if it converges, the difference between subsequent MP ’s

should converge to zero for some large P :

MP +1 − MP = g(MP ) − g(MP −1) (19)

≈
(

g(K) + g′(K)(MP − K)
)

−
(

g(K) + g′(K)(MP −1 − K)
)

(20)

= g′(K) (MP − MP −1) (21)

This is simply the first order Taylor expansion around K. Given that we assume that the

sequence converges, the higher order terms can be neglected. By taking the absolute value,

we obtain

|MP +1 − MP | = |g′(K)| × |MP − MP −1|. (22)

|MP +1 − MP | is thus approximately a geometric sequence with a ratio of |g′(K)| that con-

verges if and only if |g′(K)| < 1. However, for I ′(K) > 2, |g′(K)| > 1, which contradicts

the assumption that the sequence {MP } converges.13 As a result, the sequence MP cannot

13We further need to assume that MP 6= MP −1. For I ′(K) > 2, this condition is necessarily true. Under
this condition, g′ is smaller than 0 in a neighborhood of K. g is thus locally decreasing and, therefore,
injective. As a result, for MP and MP −1 to be equal, both need to be equal to K. By recurrence, M0 thus
must be equal to K as well. However, this contradicts the assumptions that M0 = 0 and that g(0) = R > 0.
As a result, MP cannot be equal to MP −1.
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converge to K, and by Lemma 2 to no other limit.

Appendix C

Interference in Dennis and Humphreys’s (2001) model

Dennis and Humphreys’s (2001) model has three sources of noise that impair old/new deci-

sions. First, and as mentioned above, input and output nodes that are simultaneously active

are associated with probability r. Second, the context representation in the output node

have a probability p to be active due to prior experience; we assume that this probability

represents the strength of proactive interference. Third, in the second, independent copy

of the context, there is a probability d that the model “forgets” to turn on units that were

active during study.

With these assumptions, Dennis and Humphreys’s (2001) derive a formula for the

likelihood ratio that a test item is old vs. new, given the evidence the model has seen (see

Dennis and Humphreys (2001) for the derivation):

Λ =

(

1 − s + d(1 − r)s

1 − s + ds

)n00

×

(1 − r)n10 ×

(

p(1 − s) + d(r + p − rp)s

p(1 − s) + dps

)n01

×

(

r + p − rp

p

)n11

(23)

= αn00βn10γn01δn11

In the last step, we just labeled the factors in Dennis and Humphreys’s (2001) equation.

n11 is the number of nodes that are active both in the reinstated and the retrieved context,
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n10 is the number of nodes that are active in the reinstated but not the retrieved context,

and so forth. As long as these exponents are not smaller than 1, they do not change the

signs of the derivative below and the patterns of convergence. As such, they are irrelevant

for the derivations below, and we will ignore them.

Importantly, chance performance is indicated by a likelihood ratio of 1. Hence, to

compare the model behavior to our analysis, we need to ask whether performance converges

to chance as a function of p, and whether it actually reaches chance.

In equation (23), only γ and δ depend on p, and can be rewritten as follows:

γ(p) = 1 +
drs

1 − s + ds

1 − p

p
(24)

δ(p) = 1 − r +
r

p
(25)

One can verify that γ(1) = δ(1) = 1 and that the derivatives of both γ and δ with

respect to p are strictly negative14. Further, both γ and δ are large for small p, i.e.,

limp→0 γ(p) = limp→0 δ(p) = ∞.

Given that both α and β are strictly smaller than 1, that both γ and δ converge to

1 for p → 1, and that Λ is a continuous function of p, Λ will reach 1 for some finite p and

cross it. Hence, we would expect Dennis and Humphreys’s (2001) model to fall into our

first case, where memory capacity is fixed and finite.

14∂pγ(p) = − drs

1−s(1−d)
1

p2 < 0; ∂pδ(p) = − r

p2 < 0.


