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Abstract

The theory and practice of risk measurement provides a point of intersection between risk man-

agement, economic theories of choice under risk, financial economics and actuarial pricing theory.

This paper provides a review of these interrelationships, from the perspective of an insurance

company seeking to price the risks that it underwrites. We examine three distinct approaches to

insurance risk pricing, all being contingent on the concept of risk measures. Risk measures can

be interpreted as representations of risk orderings, as well as absolute (monetary) quantifiers of

risk. The first approach can be called an ‘axiomatic’ one, whereby the price for risks is calculated

according to a functional determined by a set of desirable properties. The price of a risk is directly

interpreted as a risk measure and may be induced by an economic theory of price under risk. The

second approach consists in contextualising the considerations of the risk bearer by embedding

them in the market where risks are traded. Prices are calculated by equilibrium arguments, where

each economic agent’s optimisation problem follows from the minimisation of a risk measure. Fi-

nally, in the third approach, weaknesses of the equilibrium approach are addressed by invoking

alternative valuation techniques, the leading paradigm among which is arbitrage pricing. Such

models move the focus from individual decision takers to abstract market price systems and are

thus more parsimonious in the amount of information that they require. In this context, risk

∗We wish to thank two anonymous referees for their insightful observations, which significantly improved the

paper.
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measures, instead of characterising individual agents, are used for determining the set of price

systems that would be viable in a market.

Keywords: Risk measures, Insurance Pricing, Choice under Risk, Risk Exchange, Good Deals.

1 INTRODUCTION

The theory of risk measures provides a point of intersection between economic theories of choice

under risk, actuarial pricing theory and financial economics. In this paper a review of these

interrelationships is provided, through the lens of insurance pricing theory. The present exposition

starts with the concept of actuarial premium calculation principles, continues with risk exchange

equilibrium models, and concludes with some elements of financial economics. In each of these

different approaches risk measures play an important role, which we seek to highlight.

The present investigation aspires to give an account of an intellectual journey undertaken by

economists and actuaries over the last fifty years and discuss the evolution and interrelationships

of insurance pricing models. Historically, insurance pricing models were proposed as responses

and correctives to the ones that preceded them. Premium calculation principles were initially

defined via an axiomatic view that sought to mimic market prices. This ignored though the

interactions between market participants, namely primary insurers, reinsurers and policyholders.

To overcome this shortcoming, equilibrium asset pricing models were developed, where premium

calculation principles enter insurers’ decision making process through their objective function or

budget constraint. Such models have their own drawbacks, as they make excessive assumptions on

the availability of information on the preferences and risk endowments of market participants, while

also assuming perfect competitive markets and linearity of market prices. Financial economics

provide the tools to overcome such weaknesses. Arbitrage pricing theory disposes of the need for

agent-specific information, market imperfections are accounted for via the theory of incomplete

markets, and the resulting price functionals are no longer necessarily linear and thus reflect more

consistently actual prices in insurance and financial markets. In the context of this dialogue,

risk measures form a recurring theme, emerging within each class of models in a different guise.

A discussion from the perspective of risk measures useful, as it provides a common framework

through which the different models can be examined and compared. Hence, the current study

focuses on models that explicitly utilise the concept of a risk measure, while avoiding a great level

of mathematical detail in an attempt to present the concept in an accessible way.

The structure of the rest of the paper is as follows. In the next section, an overview of the
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economic arguments underlying the evolution of insurance pricing theories is given. Premium

calculation principles and risk measures are presented in section 3, along with their fundamental

properties, representations and links to economic theories of choice. In section 4 the role of

premium principles in equilibrium pricing models is discussed. Section 5 examines the link between

arbitrage pricing, good deals and risk measures. Finally, a brief summary can be found in Section

6.

2 PERSPECTIVES OF INSURANCE PRICING

Calculating the price of insurance has been one of the central concerns of actuarial science. Tradi-

tionally the fair premium in insurance pricing is equated with the expected loss resulting from the

underwritten risk. However, as the expected loss (or net premium) does not account for the vari-

ability of risks nor for the risk aversion of economic agents, it is apparent that more sophisticated

mechanisms for the calculation of insurance premiums are called for. Systematic approach to pre-

mium calculation were first proposed by Markowitz [47],[48] and Bühlmann [8], who introduced

the concept of premium calculation principles. A premium calculation principle is a function that

takes as an argument (the probability distribution of) a risk and returns the premium that should

be charged for it.

The specification of appropriate functional forms for premium calculation principles has been

the subject of much discussion in the actuarial community [37]. There are two distinct, but

interrelated, perspectives from which premium calculation could be viewed. One is to require that

the properties of a premium principle should reflect the properties of the actual prices charged in

insurance markets, as proposed in [56]. This does of course produce a circular argument: premium

should be calculated according to a premium principle, which reflects the way that premium is

actually calculated. The apparent discrepancy is partially resolved if we accept that the premium

calculation principle is not used to calculate actual insurance prices, but to produce an actuarial

benchmark. That this benchmark should, at least to some extent, be consistent with market prices

is a natural requirement.

An alternative view is to determine insurance premiums via indifference arguments. This means

that premium rates should be set in a way such that the insurer is ‘not worse off’ after selling a

contract; the premium, safely invested, should thus offset the potential losses from the contract.

What ‘not worse off’ exactly means will depend on the way in which the insurer’s preferences are

modelled. Economics provides a variety of such models, termed theories of choice under risk, of

3



which von Neumann and Morgenstern’s [55] expected utility theory is the most commonly used.

Different theories of choice induce different premium principles with alternative sets of properties;

this topic is extensively discussed in [54]. 1

The interpretation of premium as capital used to offset potential insurance losses invites an

interpretation of premium calculation principles as risk measures. Risk measures are defined as

functions giving the amount of capital that the holder of a risky position should prudently invest

so that he is allowed (e.g. by a regulator) to proceed with his investment plans [5]. Insofar, the

parallel between premium principles and risk measures reflects the relationship between pricing

and capital allocation by an insurance company.

A notable absentee in the preceding discussion is the market in which insurance risks are

traded. Premium principles in general depend on the probability distribution of the risk that is to

be priced. Moreover, it is sometimes required that the premium depends only on the probability

distribution of the underlying risk [56]. However, the concept of determining insurance prices in

isolation of the market in which the insurance is traded is unrealistic; insurance prices, like much

else, are determined by supply and demand. The economics of insurance and financial markets

provide us with the tools for calculating insurance premiums, as well as a framework in which

to associate premium principles, risk measures and market conditions. Equilibrium asset pricing

models are based on the premise that each market participant decides on an investment (which

in the case of an insurer will correspond to both underwriting policy and asset allocation) that is

optimal with respect to its preferences. Market prices are then determined by the condition that

the market clears, that is, every risk is finally either ceded or retained. An individual insurer’s

investment decision, which is treated as a preference maximization problem, can equivalently be

treated as a risk minimization problem. Here risk is defined via the risk measure derived from the

theory of choice used to model the insurer’s preferences.

Thus equilibrium asset pricing models provide a powerful framework in which we can examine

the relationship between premium rates and risk measures in a market setting. It is then fair to

ask whether the properties of equilibrium prices actually conform with those of observed prices

in insurance markets. The answer given to that question has in general to be a negative one.

An important discrepancy is that in equilibrium models asset and liability prices are defined as

being linear functions, while it is widely accepted that insurance prices are non-linear [56]. The

1It is worth noting that premium calculation principles are not only monetary quantifiers of risk, but through

their association with theories of choice also provide an ordering of risks. A key reference on ordering of risk is

Kaas et al. [45], while Dhaene and Goovaerts [28] associate stochastic orderings of risk to dependence structures.
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inconsistency between actual and theoretical insurance prices is generally attributed to market

imperfections. One such imperfection can be due to the fact that not every potentially desirable

underwriting/investment portfolio is attainable by trading in the market. Another is the presence

of transaction costs, which de facto render prices non-linear [16].

An alternative approach to premium calculation relies on trying to harness the potential of

financial economics, specifically arbitrage pricing theory. Such an approach moves the focus from

the action of individual decision makers (and the effect of those actions on market prices) to

sets of price systems that could possibly exist in a market. Such market prices are characterized

by the no-arbitrage condition, which postulates that prices should not create opportunities for

making sure trading gains at zero price. In perfect (complete) markets there is only one price

system that satisfies the no-arbitrage property; in imperfect markets there will be many (e.g.

[29]). Although each of these price systems will be linear, the presence of several of them induces

bounds for insurance prices and prices evaluated at these bounds will not be linear. Making these

bounds sharper and thus more realistic goes through the concept of ‘good deals’, which are trading

positions generally accepted as worth taking without necessarily being arbitrage opportunities [18].

In defining a ‘good deal’ one imposes more structure on market prices than the one implied by no

arbitrage. This additional structure can be provided by considering risk preferences, potentially

modelled by an actuarial premium principle.

3 PREMIUM CALCULATION PRINCIPLES

3.1 Premium principles and risk measures

Let X be a set of random variables, with elements of X standing for insurance risks. Whenever

X ∈ X is positive it will be considered to represent a loss. We assume that insurers calculate premia

based solely on the distribution of future claims and that premia are subsequently invested with

zero interest. The mechanism for calculating insurance prices is given by a premium calculation

principle:

Definition 1. A premium calculation principle is defined as a function π : X 7→ R, π(X) repre-

senting the price (premium) that an insurer would charge for insuring risk X.

Given that premiums are invested in order to pay for future claims, the choice of π by an

insurer represents its risk preferences and is also likely to reflect some stability criterion such as

the probability of ruin [8].
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Risk measures are mathematical constructs in many ways similar to premium principles, even

though they have a different interpretation (e.g. [5]).

Definition 2. A risk measure is defined as a function ρ : X 7→ R, ρ(X) representing the amount

of capital that the holder of risk X should add to its position and safely invest in order to satisfy

a regulator.

A risk measure, as defined above, reflects the preferences of a regulator rather than those of an

individual agent. The requirement that an insurer holds capital equal to its risk measure reflects

the constraints imposed on economic agents by regulation. The acceptability of risky portfolios

can then be formulated, similarly to [5], by a requirement that measure of risk plus regulatory

capital is non-positive, e.g. ρ(X−ρ(X)) ≤ 0. We note here that the definition of the acceptability

of risks is not contingent on the presence of a regulator; the constraint ρ(X − ρ(X)) ≤ 0 can be

effectively imposed by entities such as rating agencies or the risk management team of the holder

(e.g. insurance company) itself.

If X is an insurance liability, then in the simplified insurance pricing framework discussed here

the amount of capital ρ(X) is raised from the insurer’s premium income, that is, π(X) = ρ(X).

This produces a conceptual link between risk measures and premium calculation principles; in this

section we will actually consider them as being essentially identical constructs and will use the

terms risk measure and premium principle interchangeably. Note, though, that in Sections 4 and

5, a risk measure and a price functional take very different meanings.

Note that the premium, as calculated by a premium calculation principle, is not being directly

associated with market conditions and actual prices of traded liabilities. One way of dealing

with this apparent discrepancy is to differentiate between the actuarial premium, which is given

by a premium calculation principle, and the underwriting premium, which is the actual price of

insurance. The actuarial premium can then be considered as a benchmark that the underwriter

should consult. It is reasonable to require that the actuarial and underwriting price should agree

on aggregate, i.e. across portfolios and accounting years, with the insurer’s investment income

also being taken into account.

Even though a premium calculation principle essentially gives a benchmark price for an insured

risk, it is a matter of consistency to require that it satisfies a set of properties similar to those of

actual prices prevailing in insurance markets. Such constructions of premium calculation principles

(and associated risk measures) are discussed in the following section (3.2) and functional repre-

sentations of premium principles are discussed in section 3.3. Additionally, the premium principle
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should be consistent with the insurer’s risk preferences, i.e. with the way that it quantifies and

compares risks. Premium principles derived on such a premise are presented in section 3.4.

3.2 Properties of premium principles

In this section we present two alternative axiomatizations of premium calculation principles and,

consequently, risk measures. The properties that one requires premium principles to satisfy should

thus make sense both from a pricing and a capital allocation perspective.

An important issue is how to deal with portfolios of dependent risks. Thus, before we proceed

with discussing properties of premium principles and risk measures, we briefly present some no-

tions of dependence between risks. [44] is a textbook on dependencies between random variables,

while [60] and [31] provide interesting discussions on the relationship between risk measures and

dependence structures.

A useful characterization of positive dependence is positive quadrant dependence (PQD). Two

risks X, Y are PQD whenever:

P(X ≤ x and Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R.

Essentially two risks being PQD means that their probability of assuming low (or high) values

simultaneously is higher than it would be, were they independent. The negative analogue of PQD

is negative quadrant dependence (NQD):

P(X ≤ x and Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R.

Finally, comonotonicity is defined as the strongest possible form of positive dependence. Two

random variables X, Y are called comonotonic if there is a random variable U and non-decreasing

functions g, h such that:

X = g(U), Y = h(U).

A popular characterization of premium principles and risk measures stems from the requirement

that they satisfy the following set of five properties [23], [56]:

Monotonicity: If X ≤ Y , then π(X) ≤ π(Y ).

Translation Invariance: If a ∈ R then π(X + a) = π(X) + a.

Positive Homogeneity: If a ∈ R+ then π(aX) = aπ(X).

Subadditivity: π(X + Y ) ≤ π(X) + π(Y ).
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Comonotonic Additivity: If X,Y are comonotonic then π(X + Y ) = π(X) + π(Y ).

Monotonicity implies that liabilities that always yield higher losses should always be insured at

a higher price. Translation invariance formalizes the requirement that an increase of the insured

risk by a constant amount should induce an equal increase in premium. Positive homogeneity

suggests that the premium principle is sensitive only to the composition of portfolios of liabilities

and not to their size. Subadditivity has the consequence that the pooling of liabilities always

produces diversification benefits and that there should thus be no incentive for the splitting of

portfolios. From a pricing perspective, subadditivity can also be seen as representing frictional

costs, when risks are traded in imperfect markets. It is in fact widely accepted that prices in

imperfect markets are subadditive (e.g. [16], [56]). Finally, comonotonic additivity implies that

no diversification takes place when pooled risks are totally positively dependent. Note that the

first four properties define what Artzner et al. [5] call a coherent measure of risk.

The above axiomatization of premium principles and risk measures has not been without its

detractors [37], with the positive homogeneity and subadditivity properties being generally issues

of contention. The insensitivity of the risk measure to the scale of potential losses, manifested by

positive homogeneity, implies insensitivity to liquidity risk, that is, to the risk that potential losses

are so high that the liability holder cannot raise the capital to pay for them. From an insurance

pricing perspective this concern is reflected in capacity constraints; in practice a (re)insurer will

be weary of underwriting a treaty providing infinite coverage above a deductible.

On the other hand, subadditivity disregards the risk of aggregating many dependent positions,

for example insurance contracts contingent on the same event. Also the requirement that portfolios

should never be split seems unrealistic. Buying excess-of-loss reinsurance, provides exactly such

a splitting, providing limits up to which losses from each portfolio will draw upon the aggregate

resources of an insurer.

Reflecting these concerns an alternative axiomatization of premium principles is proposed by

[38]:

Monotonicity: If X ≤ Y , then π(X) ≤ π(Y ).

Translation Invariance: If a ∈ R then π(X + a) = π(X) + a.

Subadditivity for NQD risks: If X,Y are negative quadrant dependent, π(X + Y ) ≤ π(X) +

π(Y ).

Additivity for independent risks: If X,Y are independent, π(X + Y ) = π(X) + π(Y ).
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Superadditivity for PQD risks: If X,Y are positive quadrant dependent, π(X +Y ) ≥ π(X)+

π(Y ).

The above axiomatization acknowledges diversification only in the case of negatively dependent

risks. It is also a direct consequence that a premium principle satisfying these properties will not

be positively homogenous and thus be sensitive to portfolio size.

It can be argued that this second set of properties is too strict in its penalization of liquidity and

aggregation risk. Especially if exposures are relatively small, liquidity and aggregation risk become

less of an issue. It could thus be said that a satisfactory set of properties should lie somewhere

in between the two extremes presented above. A weaker set of axioms has been proposed by

Föllmer and Schied [32], [33], in their definition of convex measures of risk. From an insurance

perspective, a class of (convex) risk measures were defined in [54], which are subadditive and

positively homogenous for small portfolios, while becoming superlinear for larger ones.

It is furthermore noted that more general objections have been formulated regarding axiomatic

approaches to premium calculation and risk measures. It has been argued by Goovaerts et al. [38]

that the properties of risk measures should not be postulated in an abstract way, but rather

depend on the specific problem studied. Characteristically, it is possible that a set of properties

is assumed with regard to the risk measure used for determining the aggregate capital held by an

insurance company, while a totally different approach is used in order to allocate this amount of

capital to different portfolios. The latter could, for example, consist of minimisation of residual

risk exposure (see [46] and [39] for such an approach), which yields portfolios’ Risk Based Capital

requirements.

An additional point where axiomatic approaches can be misleading is their treatment of the

dependence between risks. Although in the last axiomatization presented (i.e. with additivity

for independent risks) the dependence between risks is to some extent taken into account, the

interrelationship between dependence and diversification is a much more complicate issue, which

is not necessarily captured by a set of axioms. In [28] it is shown that portfolios of risks which are

characterised by a higher dependence between their constituents (as reflected by the correlation

order on sets of random vectors with fixed marginals) are also riskier in the stop-loss order sense.

Therefore one should require that the properties of risk measures also include preservation of stop-

loss order (the distortion and exponential principles defined in subsequent sections do satisfy this

property).
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3.3 Representations of premium principles

For practical purposes, it is necessary to derive specific functional forms for premium principles

that satisfy a set of axioms such as the ones defined in the previous section.

We start with the first axiomatization of premium principles that we presented. Let P be the

actuarial probability measure. Then it is shown ([23], [56]) that (subject to a technical condi-

tion) any premium principle satisfying monotonicity, translation invariance, positive homogeneity,

subadditivity and comonotonic additivity can be represented by:

π(X) =

∫ 0

−∞

(g(P(X > x)) − 1)dx +

∫ ∞

0

g(P(X > x))dx, (1)

where g is an increasing and concave function such that g(0) = 0 and g(1) = 1. The function g

is called a distortion function, as it distorts the risk’s probability distribution assigning a higher

probability to unfavorable events. Correspondingly, the above premium principle is called a distor-

tion premium principle. Thus, the distortion premium principle is essentially the expected loss of

the liability, calculated under a transformed probability distribution. Note that in expression (1)

we take into account the case of X < 0, representing the possibility of gains. If we are concerned

with pure liabilities, i.e. X ≥ 0 a.s., then the first term in (1) vanishes.

An alternative representation goes through the definition of sets of probability measures. In

[5] it is shown that any coherent measure of risk can be written as:

π(X) = sup
Q∈Q

EQ[X]. (2)

Thus, premium is calculated as the maximal expected loss over a set of alternative probability

measures Q ∈ Q. This is essentially a way of stress testing, where event scenarios are replaced

by scenarios of probability distributions, termed generalized scenarios [5]. When comonotonic

additivity is also satisfied, that is, we are dealing with a distortion principle, the set of generalized

scenarios is characterized by [24]:

Q = {Q : Q(A) ≤ g(P(A)),∀A ∈ 2Ω} (3)

Turning now our attention to the second set of axioms presented in the previous section,

we consider premium principles satisfying monotonicity, translation invariance, subadditivity for

NQD risks, additivity for independent risks and superadditivity for PQD ones. Such premium

principles can be represented by [38]:

π(X) =
1

a
lnE[eaX ], (4)
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where a is a non-negative number and it is understood that for a = 0 the premium principle

reduces to π(X) = E[X]. Equation (4) defines the exponential premium principle, which is well-

established in the actuarial literature and has an additional interpretation as a mechanism for

bounding the insurer’s probability of ruin ([34], [11]).

3.4 Premium principles derived from preferences

In this section we present an economic justification for the previously defined premium princi-

ples. Consider an insurer’s preferences being characterized by a preference operator, V , such that

V (X) ≥ V (Y ) means that risk X is preferable to Y . Thus, preference operators provide an or-

dering of risks. As premium principles essentially perform the same service, it is desirable to link

the two.

Premium principles can be derived from indifference arguments, as first demonstrated by

Bühlmann [8]. Consider an insurer with initial surplus (cash) w, who insures a liability X. The

premium π(X) that the insurer will charge, should be the amount for which it is indifferent to

the insurer whether to go ahead with the contract or not. Such indifference can be formalized

by requiring that evaluations of the preference functional before and after the contract yield the

same result:

V (w) = V (w − X + π(X)) (5)

The premium π(X) can then be obtained as a solution to the above equation.

The best-known preference operator is expected utility, as defined in [55]:

V (X) = E[u(X)], (6)

where u is an increasing and (for a risk averse agent) concave function. The equation (5) can then

be re-written as

u(w) = E[u(w − X + π(X))] (7)

and its solution, π(X) is called the principle of equivalent utility. Note that when the utility

function is of exponential type,

u(x) =











1
a
(1 − e−ax), a > 0

x, a = 0
(8)

the exponential premium principle (4) is recovered.
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An alternative characterization of preferences is Yaari’s [61] dual theory of choice under risk,

which proposes the following preference operator:

V (X) =

∫ 0

−∞

(h(P(X > x)) − 1)dx +

∫ ∞

0

h(P(X > x))dx, (9)

where h is an increasing and (for a risk averse agent) convex function with h(0) = 0 and h(1) = 1.

It is easy to show that, using this preference functional, the solution of (5) is the distortion

premium principle (1) with g(s) = 1 − h(1 − s).

The relationship between premium principles and economic models of preferences has been

dealt with in detail in [54], where the authors also proposed a premium principle based on rank-

dependent utility theory, which combines both expected utility and probability distortion func-

tions.

3.5 Discussion

Premium principles and risk measures provide a sophisticated theory of premium calculation.

However, two important criticisms of the use of the axiomatic approach to premium calculation

presented here can be formulated.

One criticism is that pricing by a (re)insurer of each contract with a premium calculation

principle does not acknowledge the diversification that holding different portfolios of liabilities

implies. Indeed, regardless of whether a sub- or super-additive risk measure is used, the aggregate

risk to the insurer will be different than the sum of its parts. It is not unreasonable to require

that contracts which, by some measure, contribute to the diversification of the insurer’s portfolio

should be insured at lower (and thus more competitive) prices than contracts which do not produce

diversification benefits.

A way of countering this deficiency is to advocate a ‘top-down’ approach to premium calculation

[11]. This would mean that a premium calculation principle is used to calculate the aggregate

premium that the insurer requires in order to be able to meet its liabilities. This aggregate

premium is then broken down by a linear rule in order to calculate prices for individual policies.

The ‘top-down’ approach to pricing bears a formal as well as economic relationship to the

capital allocation exercise performed by insurance companies. First the aggregate capital that

the company should hold is calculated, by applying a risk measure on the aggregate risk, and is

thereafter allocated to the different portfolios of risks. The use of concepts from cooperative game

theory for determining a capital allocation mechanism was proposed in [22], while in [52] explicit

capital allocation formulae in the case of distortion principles are obtained and the links between
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capital allocation and the pricing of pooled liabilities are discussed. An alternative approach to

the allocation economic capital within a financial conglomerate is given by [46] and [39], who

determine capital allocations by minimising the residual risk exposure of individual portfolios. In

this capital allocation method, the aggregate amount of capital that the conglomerate has to hold

is determined by a different risk measure than the one that is used for evaluating residual risk. The

approach furthermore shows that imposing axiomatic requirements on the allocation mechanism

(such as subadditivity) can lead to serious pitfalls.

A second, and possibly more important, criticism arises from the axiomatic view of premium

calculation presented in this section, which seeks to emulate the properties of market prices, while

not taking into account the conditions prevailing in the market where (insurance) risks are traded.

This inconsistency creates an obvious paradox: premium calculation principles produce ‘market’

prices, while ignoring the presence of the market. A way of addressing this problem is to embed

the premium principles in the decision making process that forms part of an economic market

model. That approach is presented in the next section.

4 RISK MEASURES IN EQUILIBRIUM MODELS

4.1 Equilibrium asset pricing models

One of the fundamental weaknesses of the pricing models described in the previous section is that

they disregard the presence of a market where risks are traded. Market prices are determined

through the interactions of market participants, that is, primary insurers, reinsures and policy-

holders. Such interactions can be modelled using the theory of competitive equilibrium, whereon

a range of asset and insurance pricing models are based (for reviews see [19], [35] and [4]). These

models are often highly stylized versions of reality, but provide useful insight. For that reason

they have proved popular both with academics and practitioners, with the Capital Asset Pricing

Model (CAPM) being a leading example (for an excellent review of the application of the CAPM

to insurance pricing see [19]).

Equilibrium asset pricing models are derived on a number of premises. It is assumed that

each market participant, or ‘agent’, decides on its exposure to sources of risk by maximising its

preference functional under a budget constraint. Market prices are given by a linear functional

and equilibrium is achieved when all agents maximize their preferences and the market clears. In

a (re)insurance context such models have been studied extensively in [7], [9], [10], [3].

Preference maximization has often been associated with risk minimization, as in the CAPM’s
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‘risk vs return’ arguments. Recall that in section 3.4 it was shown how the modelling of risk pref-

erences can be associated with the definition of risk measures such as the well-known exponential

and distortion premium principles. In this section we revisit the equilibrium insurance pricing

models [9] and [53] and reformulate them from such a perspective.

4.2 Equilibrium models with risk measures

Let an insurance market consist of a finite number N of agents, each exposed to a liability Xi ∈ X

and holding cash (surplus) wi > 0, for i = 1, . . . , N . Market prices are given by a function π, which

is linear, i.e. π(a + bX) = a + bπ(X), ∀X ∈ X , a, b ∈ R. Furthermore, the ith agent’s preferences

are characterized by a preference functional Vi such as the ones discussed in section 3.4. Let ρi be

the risk measure defined by the indifference argument Vi(w) = Vi(w − X + ρi(X)), X ∈ X . We

note that the risk measure is in this context not anymore equivalent to a premium principle. The

definition of a risk measure via indifference arguments reflects the preferences of either a regulator

or the agent himself, depending on the market setting (if the risk measure is defined by a regulator,

it is not specific to each agent and the subscript i can be dropped from ρ).

The agents trade their risks in the insurance market. After trading, each will hold a liability

Yi, which includes cash. Yi can be any, possibly non-linear, function of X1, . . . ,XN . We define

the aggregate risk in the market as Z =
∑

i
Xi. It is required that the market clears, that is,

the aggregate liabilities after trading equal the aggregate liabilities before the exchange minus the

aggregate insurers’ surplus wi:

∑

i

Yi =
∑

i

Xi −
∑

i

wi = Z −
∑

i

wi (10)

Each agent decides on the level of its liabilities after trading, or risk allocation, Yi, by solving

the optimization problem:

max
Yi

Vi(−Yi), such that π(Xi) ≤ wi + π(Yi) (11)

The objective function Vi(−Yi) quantifies the ith agent’s preferences after trading (the minus sign

is due to the fact that Yi is considered to be a liability). π(Yi) is interpreted as the premium that

the agent receives for (re)insuring liability Yi, while the π(Xi) is the premium that it pays for

(re)insuring its initial liability Xi. Thus the constraint in (11) means that the agent cannot pay

for reinsurance more than its initial capital plus its premium income.

A related equilibrium problem is the following:

min
Yi

ρi(Yi), such that π(Xi) ≤ wi + π(Yi) (12)

14



If the risk measures are defined via indifference arguments of the type Vi(w) = Vi(w−X +ρi(X)),

and in the case that the preference functional corresponds to either an exponential utility (8) or

to Yaari’s dual theory of choice under risk (9), the optimisation programs (11) and (12) are in fact

equivalent. 2 Thus each agent’s preference maximization problem can actually be rephrased as a

risk minimization problem.

In the context of regulated insurance markets, where a common risk measure ρ is imposed on

all agents, an alternative formulation of agents’ optimisation problems is:

max
Yi

π(Yi), such that ρ(Yi) ≤ wi − π(Xi) (13)

The agent makes investment decisions with the aim of maximising premium income, while the risk

measure now enters as a regulatory constraint on the risk that the insurer is allowed to retain after

trading. Specifically, in order to be acceptable, the agent’s risk after trading should not exceed

the capital that it holds, that is, the initial surplus minus reinsurance expenditure. Even though

optimisation problem (13) is not equivalent to the two previous ones, it has been shown that, for

the distortion risk measures discussed here, it yields the same equilibrium prices [53].

4.3 Equilibrium with the exponential premium principle

Let the preference functional be given by an exponential expected utility, that is, for each agent:

Vi(X) = E

[

1

ai

(1 − e−aiX)

]

, ai > 0, X ∈ X (14)

The associated risk measure then is the exponential premium principle:

ρi(X) =
1

ai

lnE[eaiX ] (15)

Under these assumptions, Bühlmann [9], solved problem (11) (in extension, also solving (12))

and, using the clearing condition (10), determined the form of the price functional π as:

π(X) =
E[XeaZ ]

E[eaZ ]
, (16)

where Z =
∑

i
Xi and a = (

∑

i

1
ai

)−1. Note that equation (16) can again be considered as a

premium calculation principle. However premium does not anymore depend only on the distri-

bution of the underwritten risk, but also on the conditions prevailing in the insurance market as

exemplified by the aggregate risk Z and the ‘market risk aversion’ coefficient a.

2In the case of exponential utility, this follows from the observation that ρi(Yi) is an increasing function of the

quantity E[expaiYi ] while Vi is an increasing function of E[− expaiYi ]. In the case of the dual theory of choice, the

equivalence follows directly from ρ(Yi) = −Vi(−Yi).
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Equation (16) defines the Esscher transform, which is a transformation of the probability

distribution frequently used in actuarial mathematics. A dynamic version of the Esscher transform

has been used in [36] for the pricing of financial derivatives.

The term ζ = e
aZ

E[eaZ ]
is called a price density. We can rewrite the ‘economic’ premium principle

(16) as:

π(X) = E[ζX] = E[X] + Cov(X, ζ) (17)

Thus, premium is calculated as expected loss (net premium) plus a risk loading, which increases

whenever X and Z are highly correlated (observe that ζ is increasing in Z). Thus the risk loading

is high whenever the underwritten risk provides a bad hedge against market losses.

4.4 Equilibrium with the distortion premium principle

We now let the risk measure be a distortion premium principle, as in (1). Furthermore we assume

that the risk measure is imposed on market agents by a regulator and thus is the same for every

one. The resulting equilibrium prices are given in [53]:

π(X) = E[Xg′(1 − FZ(Z))], (18)

where FZ(z) = P(Z ≤ z) is the cumulative distribution function of the aggregate liabilities Z.

For the distortion function:

g(s) =
1 − e−as

1 − e−a
, a > 0, (19)

the price functional becomes:

π(X) =
E[XeaFZ(Z)]

E[eaFZ(Z)]
. (20)

One can observe the formal similarity between the prices as given by (16) and (20). The difference is

that, while in the case of equilibrium with an exponential premium principle market prices depend

on the scale of potential market losses, in the case of the distortion principle they depend on the

random variable FZ(Z) representing the rank of market losses in the set of possible outcomes.

4.5 Discussion

This section was motivated by the need to address the presence of market conditions in insurance

premium calculation, a presence that is not accounted for in the theory of premium calculation

principles. It is seen however from optimisation programs (12) and (13) that premium calculation

principles are utilised in equilibrium pricing models, where they are respectively viewed as either

objective functions for insurers’ decision making problems or constraints on their exposure.
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An important difference in comparison to section 3 is that, in the equilibrium models presented,

the premium principle is not only applied to individual insurance contracts, but to the aggregate

risk carried by an insurer. This does bear some similarity with the ‘top-down’ premium calculation

and capital allocation problems discussed in section 3.5. On the one hand, equilibrium models

incorporating premium principles provide a way of determining a ‘top-down’ premium calculation

approach. On the other hand, one might ask whether the capital allocation performed by an

insurer is consistent with the way that its retained risks are priced in the market. [53] concluded

that the capital allocation and equilibrium pricing approaches can be consistent, when insurers are

well enough diversified, so that their portfolios are very similar to (i.e. increasing in) the market

portfolio.

In sections 4.3 and 4.4 equilibrium models based on utility and distortion functions respec-

tively were discussed. A question arises as to whether these two approaches are reconcilable. One

approach, followed in [53], is to study an equilibrium model where agent’ preferences are char-

acterized by both utilities and distortions and derive prices depending both on the utilities and

probability distortions of market participants. 3 An alternative approach has been developed by

a series of papers by Wang [57], [58], [59]. In [57] a probability distortion function is introduced,

such that the resulting distortion premium principles replicates under certain assumptions the

CAPM and Black-Scholes pricing formulas. The application of this method to insurance pricing

and capital allocation was presented in [58]. Furthermore, it is shown in [59] that the above

probability distortion function can be derived under a number of justifiable assumptions from the

Esscher transform (16), which is based on equilibrium with exponential utilities.

There are three major drawbacks of the equilibrium pricing models discussed in this section.

A significant weakness of equilibrium models is that they rely on a fair amount of information

with respect to the risk traded in the market and the preferences of its participants. However,

this weakness can be moderated. It can be seen that equilibrium prices, such as the ones given by

(20) and (16), are functions only of the aggregate market risk Z, and of some characterization of

aggregated preferences. This creates the possibility of analysing the market as if it consisted only

of one agent and calibration problems become more tractable. This corresponds to the well-known

representative agent paradigm of the asset pricing literature, e.g. [29]. Furthermore note that in

the case that the agent’s optimization programs are induced by the same risk measure imposed by

a regulator, market participants’ decision problems can be realistically assumed to be quite fairly

similar. As for the aggregate market risk Z, it will not be exactly known but can be reasonably

3Note that such preferences give rise to a class of convex measures of risk [54].
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approximated by using an index.

Another drawback is that the equilibrium problems presented here are idealized versions of

reality, via the implicit assumption of perfect competitive markets. No constraints have been

imposed on the possible contracts that an insurer can buy or sell and the presence of transaction

costs has been ignored. Even though the emergence of innovative instruments such as CAT

bonds, double-trigger options and other insurance derivatives has significantly expanded insurers’

possibilities of asset and liability management, insurance markets are still far from perfect.

Finally, one of the main assumptions behind equilibrium asset pricing models is that price

functionals are linear functions of risks on which they are defined. This contradicts the observation

that insurance prices tend to be non-linear, an observation reflected in the definition of premium

calculation principles. Non-linearity of prices is widely considered to be a product of market

imperfections, such as the ones discussed above. Thus, in our effort to include the market in

premium calculation considerations, we made a significant compromise: the equilibrium prices

obtained actually look less like actual market prices.

In a recent paper [25], it is shown that market equilibrium can be achieved if trading takes

place under a non-linear pricing rule based on a signed Choquet integral, which is closely related

to the distortion premium principle. Another possible method of producing non-linear prices is,

instead of using perfect market equilibrium models, to move to other classes of models that deal

with imperfect markets and utilise tools from game theory. Such approaches are presented in

[51] and [4]. They provide useful insight and are particularly appealing because they are derived

from first principles and do not impose ad hoc non-linearity of prices. However these models are

possibly too complicated for practical use.

In summary, the main problems that equilibrium insurance pricing models present are the need

for advanced knowledge of market risks and market participants’ preferences, the assumption of

perfect competitive markets, and the linearity of derived price systems. In the next section we

will attempt to address these three problems, using concepts from the field of financial economics.

5 RISK MEASURES AND PRICE SYSTEMS

5.1 No-arbitrage pricing

The pricing formulae that were derived in the previous section are examples of valuation methods

that rely on complete knowledge of the constituent parts of the market examined: risk exposures

and individual preferences. An alternative approach is to price risks via valuation techniques,
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which do not rely on agent-specific knowledge but on information revealed by observed prices of

risks actually traded in the market. In order to price a financial product, such as an option or a

reinsurance contract, one requires that the price of the product is, in some sense, consistent with

the observed market prices. This is the pricing framework which has proved most popular in the

financial literature and practice over the last twenty years, with the Black-Scholes option pricing

model being a leading paradigm.

A classic way of defining such consistency is via the no-arbitrage condition. Broadly speaking,

it is said that no arbitrage opportunities exist in a market when it is not possible to make, by

cleverly trading, a certain profit at zero cost. If an arbitrage opportunity existed, it is reasonable

to assume that it would be spotted instantly and exploited by market participants and thus rapidly

disappear. Market prices would then adjust such that the arbitrage opportunity disappears. Thus,

as opposed to equilibrium, no-arbitrage refers to the properties of price systems used in the market

rather than on agent’s individual decision making. No-arbitrage is a necessary, but not sufficient

condition for equilibrium; it is evident that if an arbitrage opportunity emerges any rational agent

would move to exploit it and equilibrium would be disturbed. Insofar, no-arbitrage is a weaker

condition than equilibrium.

The absence of arbitrage opportunities in a financial market has profound implications for the

existence and admissibility of prices in the market. Suppose that a number of risks X1,X2, . . . ,Xn

are traded in the market. The nature of these risks depends on the economic and mathematical

context; in a dynamic case they might stand for stochastic processes such as stock-prices, while

in a one period setting they may be random variables representing a pay-off at a fixed future

point in time. 4 Even though the bulk of financial pricing theory focuses on the dynamic setting,

it has been shown that the theory is general enough to accommodate both the one-period and

multi-period models [43]. In the subsequent discussion the potentially dynamic character of risks

is not explicitly treated, with the implicit understanding that the concepts discussed (if not the

mathematical technology) apply to both the static and dynamic cases.

A classic result from financial economics states that no-arbitrage implies the existence of a

linear pricing functional π [29]. Consider now an insurer who participates in the market where

X1,X2, . . . ,Xn are traded, being exposed to a risk Y . If it is assumed that all traded risks are

discounted at the risk free rate of interest, then the price π(Y ) of risk Y can be written as its

expected value with respect to an alternative probability measure Q. 5 We denote as EQ[·] the

4The annual renewal of reinsurance programs arguably falls somewhere between those two cases.
5This representation is subject to a technical condition on the integrability of Y . The probability measure
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expectation operator with respect to Q. The price of Y can be written as:

π(X) = E[ζY ] = EQ[Y ], (21)

where ζ is a price density such as the ones discussed in section 4.3 (in probabilistic terms ζ is called

a Radon-Nikodym derivative; if we consider a dynamic model, ζ is itself a stochastic process). Q

is usually referred to as a risk neutral probability measure, as prices under Q look like the net

premium that a risk-neutral agent would ask for. The device of changing the probability measure

is very useful in harnessing the theoretical potential of probability theory. This is especially

significant in the dynamic case, where no-arbitrage has the consequence of all traded positions

being martingales under the risk neutral measure.

So far we have not commented on whether the no-arbitrage price functional π (and by exten-

sion the risk neutral measure Q) is unique. No-arbitrage implies the existence of a unique price

functional only if the market where risks are traded is complete. Market completeness can be

defined in two, essentially equivalent, ways. On the one hand, a market is complete if and only

if the number of traded instruments is not exceeded by the number of sources of uncertainty. On

the other hand, market completeness is characterized by the ability to hedge (or replicate) any

position by trading other instruments available in the market. Hedging (replicating) a position is

understood as trading (that is, buying and selling in the market risks X1,X2, . . . ,Xn) in such a

way that the final portfolio produces the same payoff as that position in all states of the world, so

that the risk from holding it is eliminated. The link between pricing and hedging comes from the

argument that the price of a risk should equal the cost of replicating it; if that is not the case an

arbitrage opportunity emerges.

The equivalence between the two definitions of market completeness can be understood by the

example of a reinsurer exposed to financial and insurance, e.g. catastrophic, risk. Typically, the

reinsurer will be able to hedge its financial risk by trading in the equities and derivatives market.

However, the catastrophic risk will be much more difficult to hedge by trading (assuming that the

reinsurer will not be able or willing to enter a retrocession contract). The possibility of suffering

a loss from a catastrophic event induces a source of uncertainty external to the financial markets.

Consider now the idealized case where an insurance derivative (such as a CAT bond or option) is

traded in the market and is perfectly correlated with the catastrophic risk held by the reinsurer.

Then it is possible that the reinsurer, using the insurance derivative, can hedge its exposure. It is

Q is equivalent to the real-world (actuarial) probability measure P, meaning that the two measures assign zero

probability to the same events.

20



said that the additional instrument ‘completes’ the market, in the sense that it provides a means

for replicating the risk arising from the additional uncertainty induced by the insurance risk.

The application of financial pricing techniques to insurance risks has attracted a lot of interest

and generated an important volume of research, an excellent review being [30]. In the follow-

ing two sections, we present a perspective of the intersection between financial economics, risk

measurement and insurance pricing corresponding to the present paper’s scope. A number of

alternative approaches are briefly discussed in section 5.4.

5.2 Super-replication and good deals

Typically risks are traded in markets that are not complete, with insurance markets being a

characteristic example. In the case of market incompleteness the absence of arbitrage does not

guarantee the existence of a unique price functional. There might be many, possibly infinite, prices

that are consistent with the no-arbitrage requirement and thus the calculation of an appropriate

price is not unequivocal. Other considerations will now contribute to the determination of the

price of a risk. In the context of incomplete markets, preference modelling, premium calculation

principles and risk measures reclaim their significance by providing these ‘other considerations’

which are necessary for the pricing of risks.

It is interesting to note how the concept of replication adapts to the incomplete setting. In an

incomplete market it is not possible to compose, by trading in the marketed risks X1,X2, . . . ,Xn,

a portfolio that exactly replicates every additional exposure Y . It might however be possible

to produce a portfolio whose payoff is at least as much as the financial obligation of its holder.

Obtaining such a portfolio by trading is called super-replication. Super-replication, as a general-

ization of replication, is also closely related to market prices. Let Π be the set containing all price

functionals that are consistent with the no-arbitrage requirement and QNA the corresponding set

of risk-neutral probability measures. Define the super-replication price π(Y ) of a risk Y as the

highest price consistent with no-arbitrage:

π(Y ) = sup
π∈Π

π(Y ) = sup
Q∈QNA

EQ[Y ]. (22)

π(Y ) is the highest price at which a reinsurer would possibly be able to sell an insurance contract

covering liability Y . Correspondingly, the price π(Y ) = infQ∈QNA
EQ[Y ] is the lowest price con-

sistent with no-arbitrage and thus the lowest price that a reinsurer would accept for insuring a

risk Y . It can then be proved that the price π(Y ) equals the minimum cost of super-replicating

the risk Y [43].
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Super-replication, even though it provides useful insight to incomplete market problems, is

a strategy rarely employed in practice, mainly because it is very expensive. Recall that super-

replication guarantees that the final payoff of the portfolio acquired by trading is at least as much

as the claim one is trying to hedge. Thus, super-replication will typically yield a portfolio with a

higher payoff than the hedged risk and this — not necessarily desirable — excessive payoff incurs

the higher cost.

From the above argument it also follows that the bound on market prices induced by the super-

replication price is unrealistically high (one pays for far more than one really wants). Even though

it might not be realistic in the incomplete market case to determine a unique pricing functional,

it would still be desirable to produce a sharper bound on market prices than the one implied by

the no-arbitrage condition. This can be achieved by reducing the number of price systems that

are considered viable in the market. It is clear from formula (22) that if the number of probability

measures in QNA is reduced, the upper pricing bound will also be lower.

Such reduction can be achieved through the definition of good deals, proposed in [18]. A good

deal is a traded position which might not be an arbitrage opportunity but is attractive enough

so that one can safely assume that any conceivable investor would want to acquire it. Good

deal pricing bounds are obtained by excluding price systems that, besides arbitrage opportunities,

allow good deals. Consider for example a position obtainable at zero price, which pays $1000 with

probability 0.9 and −$1 with probability 0.1. This is not an arbitrage opportunity, since it is

possible to make a loss from investing in it. However, it is clear that such a position would not be

viable in the market, as every investor would try to buy it and thus its price would increase.

In defining what actually constitutes a good deal, one needs to employ the orderings of risks

employed by economic theories of choice and premium calculation principles (risk measures). In

[18] good deals are defined as investment opportunities characterized by high Sharpe ratios. As

discussed in [15], such a definition of good deals is consistent with assuming preference modelling

consistent with a quadratic utility functions. Hence, we can consider good-deal pricing based on

high Sharpe ratios as being an extension of the Capital Asset Pricing Model. Insofar, good deal

pricing using Sharpe ratios is subject to criticisms similar to the ones faced by the CAPM, namely

that it only works in a universe of elliptically distributed risks [31]. In a non-elliptical framework,

there might be arbitrage opportunities that are not recognized as good deals [15]. To remedy

this drawback, it was proposed to use Generalized Sharpe Ratios based on exponential utility

functions [42], while this approach was extended to broader classes of utility functions in [14]. It is

furthermore significant that when the valuation bounds implied by the utility function are made
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sharper, the good-deal price converges to the equilibrium price. In the papers referred to above,

it is shown that the bounds on the (generalized) Sharpe ratios induce bounds on the price density

ζm, which this makes explicit calculation of prices possible.

In this way, the economic modelling of preferences and the associated risk measures re-enter

the calculation of prices for risks. In general it can be said that a good deal is a position, which,

according to some risk measure, bears a low risk. Using an exponential utility function as a means

of characterising good deals, as in [42], is of course equivalent to using the exponential premium

principle for the same purpose.

5.3 Valuation bounds as measures of risk

In the preceding section it was discussed how a realistic bound on prices can be obtained in an

incomplete market via the definition of good deals. Good deals are derived via economic arguments

implied by preferences and associated measures of risk. Here we turn the argument on its head

and ask the following question: can valuation bounds themselves be interpreted as risk measures

and what are the implications for risk management and pricing?

Let the upper bound πRM (Y ) on the price of risk Y as be of the form:

πRM (Y ) = sup
Q∈QRM

EQ[Y ] (23)

The set of measures QRM is no longer the set of no-arbitrage measures QNA, but is derived by

other arguments, such as the ones employed in the previous section. Observe now the formal

resemblance between equations (23) and (2). It is apparent that the valuation bound π is a

coherent measure of risk.

Conversely, let QRM be a set of generalized scenarios defining a coherent measure of risk.

We can then examine the implications of this choice of risk measure for pricing risks. Recall the

definition of a risk measure as the amount of capital that the holder of a risky position is obliged

to safely invest. Thus, if Y is an insurance loss, we can interpret π(Y ) as the maximal price for

reinsuring Y , consistent with no arbitrage, and πRM (Y ) as the amount of capital that the holder

of loss Y has to hold. It is reasonable to assume that an insurer would like to recover the amount

of capital that he needs from his premium income. This implies that, in a competitive market,

the price of a risk X should be less that or equal to its risk measure. It could be less since the

subadditivity of coherent risk measures implies that the holder of a diversified insurance portfolio

can offer discounts for individual policies, under the condition that the aggregate premium equals

the aggregate risk. On the other hand, the premium cannot be higher than the risk measure,
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since in that case the buyer of the insurance contract would be better off by retaining the risk

and investing safely an amount equal to the risk measure. Thus, the coherent measure of risk

implicitly defines a valuation bound. A detailed discussion of the relationship between coherent

measures of risk, valuation bounds and no-arbitrage is by [43], while a brief technical discussion

in [21] is highly interesting.

Let QRM ⊂ QNA, that is, the set of generalized scenarios defining the coherent measure of risk

is a subset of the set of no-arbitrage measures. This is equivalent to saying that πRM (Y ) ≤ π(Y )

for all Y [21], i.e. the risk measure of a liability Y (and the associated valuation bound) is always

lower than its super-replication price. This is reasonable since with capital π(Y ) the holder of

Y could hedge its risk completely. The risk measure being less than the super-replication price

implies that agents will in general retain some risk after trading, a premise on which the operation

of risk markets is largely based. Thus the requirement QRM ⊂ QNA gives a clue for how a

(coherent) measure of risk should be chosen.

5.4 Discussion

Financial economics provide invaluable tools for addressing the weaknesses of equilibrium asset

pricing models that were identified in section 4.5. First of all, the restrictive assumption of a

perfect competitive market is dropped and market imperfections can be treated via the theory

of incomplete markets. Secondly, by moving from an equilibrium setting to arbitrage-pricing

techniques, the unrealistically strong assumption that one knows the specific preferences and

exposures of all market participants is no longer required. Thirdly, the resulting price functionals,

such as (22) and (23) are no longer linear, reflecting to some extent actual prices in insurance

and financial markets. Moreover, the non-linearity of prices is not imposed ad hoc but emerges

naturally from economic concepts, such as no-arbitrage and good deals.

In an incomplete market setting, a unique price for a risk cannot be defined. This makes the

determination of prices (or bounds on them) reliant on other considerations, relating to individuals’

perception of risk. Such considerations have of course been the domain of actuaries for several

decades and were formalized through the concept of premium calculation principles. We attempted

to highlight two distinct ways in which premium calculation principles enter the pricing exercise,

via the concept of good deals. On the one hand, the definition of a good deal relies on evaluating

the riskyness of traded positions; an evaluation which goes through preference models and risk

measures such as the ones studied in section 3. On the other hand, the good-deal bounds imposed
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on prices can themselves be interpreted as measures of risk.

The literature on the financial pricing of insurance is quite wide and there are a number of

approaches that we did not discuss here. For a review of the subject we refer the reader to [30].

We note that the papers on the subject generally deal with the dynamic setting, where financial

pricing theory attains its full force. Thus, [20] and [50] characterise no-arbitrage prices in dynamic

insurance markets, making use of the stochastic processes particular to insurance losses. In the

classic paper [20], the set of no-arbitrage pricing measures is characterised. It is then shown how

different choices of the pricing measure relate to different actuarial premium calculation principles.

Alternative discussions of dynamic insurance markets are provided in [1] and [2], where dynamic

equilibrium models are studied.

There are other approaches to pricing in incomplete markets, where premium calculation prin-

ciples and preference modelling are utilized. These include the extension of indifference arguments

to a dynamic setting via stochastic control methods and hedging in incomplete markets via risk

minimization criteria. We did not discuss these approaches here mainly because excellent reviews

already exist in the actuarial literature. We refer the interested reader to the reviews [49] and [62],

as well as to the dynamic generalization of the exponential principle [6]. A parallel strand in the

literature, related to the role of risk measures in capital allocation and pricing, utilizes the concept

of ‘frictional costs’, see e.g. [17]. Other papers related to some degree to the present exposition

are [12], [13] and [41].

6 CONCLUSION

Insurance pricing models have evolved greatly over the last fifty years, moving from simple pric-

ing rules called premium calculation principles to economic competitive equilibrium models and,

finally, to models inspired by the advances in financial economics. The evolution of these models

has been driven by the need to incorporate market information into the pricing of risks performed

by insurance companies. It was argued that risk measures, that is, functionals which characterise

the inherent dangerousness of random losses, appear and fulfil a different function in each of those

classes of models. Thus, while risk measures can be viewed as essentially equivalent to premium

calculation principles, in the context of equilibrium models they become part of the decision prob-

lem facing insurers. Finally, the in the no-arbitrage pricing of insurance liabilities, risk measures

re-appear due to the incompleteness of insurance markets and offer methods for narrowing down

the range of reasonable prices.
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[18] Cochrane, J. H., and J. Saá-Requiejo, 2000, Beyond arbitrage: Good-deal asset price bounds

in incomplete markets, Journal of Political Economy 108(1), 79-119.

[19] Cummins, J. D., 1990, Asset pricing models and insurance ratemaking, ASTIN Bulletin 20(2),

125-166.

[20] Delbaen, F., and J. Haezendonck, 1989, A martingale approach to premium calculation prin-

ciples in an arbitrage free market, Insurance: Mathematics and Economics 8 (4), 269-277.

[21] Delbaen, F., 2002, Draft: Coherent risk measures, Notes from a course taught at Scuola

Normale, Pisa. Online at http://www.math.ethz.ch/ delbaen/.

[22] Denault, M., 2001, Coherent allocation of risk capital, Journal of Risk 4(1), 1-34.

[23] Denneberg, D., 1990, Distorted probabilities and insurance premiums, Methods of Operations

Research 63, 3-5.

[24] Denneberg, D., 1994, Non-additive Measure and Integral, (Kluwer Academic, Dordrecht).

[25] De Waegenaere, A., R. Kast, and A. Lapied, 2003, Choquet pricing and equilibrium, Insur-

ance: Mathematics and Economics, 32 (3), 359-370.

[26] Dhaene, J., M. Denuit, M. J. Goovaerts, R. Kaas, and D. Vyncke, 2002, The Concept of

Comonotonicity in Actuarial Science and Finance: Theory, Insurance: Mathematics and

Economics 31 (1), 3-33.

[27] Dhaene, J., M. Denuit, M. J. Goovaerts, R. Kaas, and D. Vyncke, 2002, The Concept of

Comonotonicity in Actuarial Science and Finance: Applications, Insurance: Mathematics

and Economics 31 (2), 133-161.

[28] Dhaene, J., and M. J. Goovaerts, 1996, Dependency of risks and stop-loss order, ASTIN

Bulletin 26 (2), 201-212.

[29] Duffie, D., 1996, Dynamic Asset Pricing Theory (Princeton University Press, Princeton).

[30] Embrechts, P., 2000, Actuarial versus financial pricing of insurance, Risk Finance 1 (4), 17-2.

[31] Embrechts, P., A. McNeil, and D. Straumann, 2002, Correlation and dependence in risk

management: Properties and pitfalls, in: M.A.H. Dempster, ed., Risk Management: Value at

Risk and Beyond, (Cambridge University Press, Cambridge).
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