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exposure, signiicant diferences were observed in the NPA 

of the inger PPGs. The mean NPA of the red and infra-

red PPGs from the inger have dropped by >80%. Contrary 

to the inger, the mean NPA of red and infrared ear canal 

PPGs had dropped only by 0.2 and 13% respectively. The 

SpO
2
s estimated from the inger sensor have dropped below 

90% in ive volunteers (failure) by the end of the cold expo-

sure. The ear canal sensor, on the other hand, had only 

failed in one volunteer. These results strongly suggest that 

the ear canal may be used as a suitable alternative site for 

monitoring PPGs and arterial blood oxygen saturation at 

times were peripheral perfusion is compromised.

Keywords Ear canal · Hypothermia · 

Photoplethysmography · Pulse oximetry

1 Introduction

A pulse oximeter is a non-invasive optical device used to 

provide a continuous and robust measure of arterial oxygen 

saturation (SpO
2
). The device measures SpO

2
 by shining 

light at two diferent wavelengths into the vascular tissue 

(such as the inger or the ear lobe) and sensing the changes 

in light absorption of the oxygenated and deoxygenated 

haemoglobin produced during arterial pulsations [1]. The 

device has since its invention in the 1970s revolutionised 

anaesthesia and critical care. The popularity of the device 

and its increased clinical use in recent years has driven the 

manufacturers and researchers to consistently develop its 

hardware, software and signal processing algorithms. How-

ever, there still remain a few unresolved problems that limit 

its performance. Possibly, the most important limitation 

of the device in its current state is the inability to estimate 

accurate SpO
2
 in conditions of poor peripheral perfusion. 

Abstract Pulse oximeters rely on the technique of pho-

toplethysmography (PPG) to estimate arterial oxygen satu-

ration (SpO
2
). In conditions of poor peripheral perfusion 

such as hypotension, hypothermia, and vasoconstriction, 

the PPG signals detected are often weak and noisy, or in 

some cases unobtainable. Hence, pulse oximeters produce 

erroneous SpO
2
 readings in these circumstances. The prob-

lem arises as most commercial pulse oximeter probes are 

designed to be attached to peripheral sites such as the in-

ger or toe, which are easily afected by vasoconstriction. In 

order to overcome this problem, the ear canal was investi-

gated as an alternative site for measuring reliable SpO
2
 on 

the hypothesis that blood low to this central site is prefer-

entially preserved. A novel miniature ear canal PPG sensor 

was developed along with a state of the art PPG process-

ing unit to investigate PPG measurements from the bottom 

surface of the ear canal. An in vivo study was carried out 

in 15 healthy volunteers to validate the developed technol-

ogy. In this comparative study, red and infrared PPGs were 

acquired from the ear canal and the inger of the volunteers, 

whilst they were undergoing artiicially induced hypother-

mia by means of cold exposure (10 ◦C). Normalised Pulse 

Amplitude (NPA) and SpO
2
 was calculated from the PPG 

signals acquired from the ear canal and the inger. Good 

quality baseline PPG signals with high signal-to-noise ratio 

were obtained from both the PPG sensors. During cold 
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Poor perfusion can result from various clinical conditions 

such as hypotension [2, 3], hypothermia, vasoconstriction 

[4], low cardiac output [5], and peripheral vascular disease. 

These clinical situations, can occur in patients undergoing 

major surgical procedures such as cardiopulmonary bypass 

surgery or in patients with chronic cardiovascular compli-

cations and renal failure [6]. The SpO
2
 readings in these 

conditions may become very inaccurate or cease altogether. 

The failure of the device in these circumstances is directly 

associated with the inability of the pulse oximeter probe, 

placed at the periphery (inger or toe) to detect adequate 

photoplethysmographic signals which are necessary for the 

estimation of SpO
2
 by pulse oximetry.

Many attempts were made previously to minimise or 

eliminate this limitation by the application of sensors on 

better-perfused areas such as the forehead [7], nose [8] and 

oesophagus [9]. These sensors, however, experience func-

tional diiculties such as attachment problems, venous pul-

sations, and motion artefacts [7]. In some cases, the sensors 

are semi-invasive and require considerable expertise for use 

in clinical practice. Thus, SpO
2
 readings are still unobtain-

able or inaccurate at just the time when they will be most 

necessary. Hence, the ear canal was proposed as a possible 

site for reliable monitoring of PPG signals and SpO
2
. The 

hypothesis underlying this choice was that the ear canal, 

being closer to the trunk, and being supplied by the arter-

ies that supply blood to the brain, would remain adequately 

perfused during low perfusion states. Also, the anatomy of 

the external ear canal would provide a natural anchoring 

for the sensor. Although the same hypothesis was applied 

in developing in-ear heart rate monitors by companies such 

as Bargi and Cosinusso, the ear canal has not been explored 

for SpO
2
 measurements. The only attempt to measure SpO

2
 

from the tissue surrounding the ear canal was by venema 

et  al, who have developed an in-ear sensor to measure 

SpO
2
 from the targus of the ear [10]. However, so far they 

have not presented any investigations into the morphology 

or the quality of PPG signals that can be acquired during 

hypothermia.

Hence, a relection based, dual wavelength ear canal 

PPG probe was developed along with a PPG processing 

system. The feasibility of measuring PPGs and SpO
2
 from 

the ear canal and its performance in conditions of locally 

induced peripheral vasoconstriction (right-hand immer-

sion in ice water) was previously tested in 15 volunteers 

[11]. However, the cold pressor test described in [11] 

has only validated the ear canal sensor’s performance 

in states of local hypothermia. To truly show the poten-

tial of this site for SpO
2
 and PPG signal monitoring, it 

is necessary to test the sensor in more natural conditions 

leading up to hypothermia. Hence, it is proposed that 

the developed technology be tested in healthy volunteers 

undergoing whole body cold exposure as it results in heat 

loss from all portions of the body and stimulates more 

natural responses a patient would experience in condi-

tions leading up to hypothermia. This paper describes the 

proposed technology in brief and illustrates the efects of 

body cooling on the acquired PPGs and SpO
2
 measured 

from the inger as opposed to the new ear canal sensor.

2  Methods and materials

2.1  Measurement setup

The measurement setup was designed to simultaneously 

detect, sample, record and display PPG, ECG and tem-

perature signals. The block diagram of the entire meas-

urement system is shown in Fig. 1. The system consists 

of the following.

2.1.1  PPG sensors

The ear canal PPG probe is an earphone shaped relec-

tance PPG probe consisting of two surface mount LEDs 

and a photodiode. The LEDs used to emit light at 870 nm 

in the infrared region and 658 nm in the red region (CR 

50 IRH and CR 50 1M, Excelitas technologies, Massa-

chusetts, USA). The photodetector used is a lattop pho-

todiode with an active area of 0.65 mm2 and peak sensi-

tivity at 900  nm (SR 10 BP-BH, Excelitas technologies, 

Massachusetts, USA). The LEDs and the photodiode were 

placed 5 mm apart from each other as experimental stud-

ies have previously shown that a separation of 4 to 5 mm 

yields a better signal-to-noise ratio [12]. The sensor was 
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Fig. 1  Block diagram showing the measurement setup used dur-

ing the cold exposure test. PPG, ECG, and temperature signals were 

acquired using the setup
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designed such that, PPG signals can be acquired from 

the bottom surface of the outer ear canal (Fig 2). The 

ear canal probe was manufactured using the FORMIGA 

P-110 SLS 3D printer (EOS – Electro-Optical Systems, 

Munich, Germany). The biocompatible material used to 

manufacture the probe case was Feinpolyamid PA-2200 

(Nylon) (EOS - Electro-Optical Systems, Munich, Ger-

many). The sensor also consisted of an ear hook that 

anchored on top of the helix and a silicone ear in that 

it inside the concha of the ear to hold the probe in place 

and reduce motion artefacts. The part of the sensor that 

it inside the ear canal has an overall diameter of 7 mm.

A relectance inger PPG probe, optically identical to 

the ear canal probe was also developed to facilitate com-

parisons of SpO
2
 measured from the ear canal and the 

inger. The inger probe was encapsulated within a con-

ventional pulse oximeter clip. In order to avoid direct con-

tact between the optical components and the skin, all sen-

sors were sealed using medical graded clear epoxy resin 

(DYMAX 141-M, Dymax Corporation, Torrington, CT).

2.1.2  Instrumentation

The raw PPG signals (AC + DC) from both the ear canal 

and the inger were acquired using a modular, dual channel, 

dual wavelength PPG processing system named ZenPPG 

[13]. The system consisted of the circuitry required for 

intermittent switching of light sources, the independent 

sampling of red/infrared PPG signals, preconditioning and 

outputting the acquired signals to a data acquisition system. 

The system also incorporated a three lead ECG ampliier 

for monitoring the R-waves of the QRS complex of the 

ECG signal.

A laser Doppler lowmeter (moorVMS-LDF2, Moor 

Instruments, Devon, U.K.) was used to measure peripheral 

skin temperature and lux (indirect blood low measure). 

However, the lux measurements are not used in this paper. 

Along with the LDF, a commercial non-invasive blood 

pressure (NIBP) monitor was used to measure the systolic 

and diastolic blood pressure (HEM-907, Omron Health-

care, Hoofddorp, The Netherlands). A tympanic thermom-

eter (ThermoScan-5 IRT4520, Braun GmbH, Frankfurt, 

Germany) was used to measure the core temperature from 

the ear canal of the volunteer.

2.1.3  Data acquisition

The red and infrared PPG signals acquired from the ear 

canal and the inger were digitised and recorded along with 

the ECG signal using a PCIe-6321 NI DAQ cards (National 

Instrument Corporation, Austin, Texas). An NI USB-

6212–bus powered USB DAQ card was used to record the 

skin temperature signals from the LDF. The simultaneous 

acquisition of all signals and control of the systems was 

through a virtual instrument (VI) implemented in Lab-

VIEW. All the signals were recorded at a sampling fre-

quency of 1 kHz. The blood pressure reading and core tem-

peratures were recorded manually in an Excel sheet during 

the study.

2.2  Subjects

Following the approval from the Senate Research Ethics 

Committee of the City University London, ifteen healthy 

volunteers (6—female  and 9—male) aged between 19 and 

45 (mean age ± SD—28 ± 5 years) were recruited for this 

study. Based on their medical history, volunteers with cardi-

ovascular, pulmonary, or metabolic diseases were excluded 

from the study. Before the study, heart rate, blood pressure 

and core body temperature were recorded for each volun-

teer. All the subjects were found to be normotensive (mean 

BP ± standard deviation (SD)—116/70 ± 14/11), normo-

thermic (mean core temp ± SD—36.52 ± 0.33) and none 

was taking any medication. The subjects were informed of 

the details of the study and a signed informed consent was 

sought from all the volunteers before the experiment. All 

the subjects were asked to refrain from ingesting beverages 

containing cafeine and alcohol and were asked not to exer-

cise or smoke for at least two hours preceding the test. To 

maximise the efect of cold temperatures on the cardiovas-

cular system, all the subjects were asked to wear just one 

layer of clothing during the experiment.

Fig. 2  A 3D sketch of ear canal PPG sensor, photograph of an 

assembled ear canal PPG sensor placed inside the right ear of a vol-

unteer and a photograph of the inger sensor
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2.3  Measurement protocol

The trials were carried out in the Biomedical Engineer-

ing Research Laboratory, at City University London. Upon 

arrival, all the volunteers were seated in a room maintained 

at 24 ± 1
◦C for a minimum of 10 min to ensure haemody-

namic stabilisation. During the study, the subjects were 

sited in a comfortable chair, with both hands resting on the 

armrests arranged to a height approximately equivalent to 

their heart’s position. Once the volunteer was comfortable, 

heart rate (HR), blood pressure and core temperature were 

measured. If the volunteer was found to be normotensive 

and normothermic then, the study was continued. The fol-

lowing sensors were then attached to the volunteer–

–– The inger PPG probe was placed on the second digit of 

the left hand, and the ear canal PPG sensor was placed 

9 mm inside the left ear canal of the volunteer–– The LDF sensor was placed just below the thumb on the 

dorsal surface of the left hand and it was attached to the 

skin by means of a ring-shaped double-sided adhesive–– The red, yellow and green leads of the ECG cable were 

connected to the Ag-AgCl easitab ECG electrodes 

(SKINTACT, F-WA00) placed directly on the chest (the 

right and the left side) and on the left hip.

Once all the sensors were in place, the investigation proto-

col started with the acquisition of baseline measurements 

from the volunteer for at least 2 min. The volunteers were 

then moved to the adjacent temperature-controlled room 

maintained at 10 ± 1
◦C for 10 min. After the cold expo-

sure, the volunteers were moved back to normal room tem-

peratures (24
◦C), where monitoring continued for another 

10 min. PPG, ECG and temperature data was continuously 

recorded during all three phases of the experiment. The 

core temperature was measured from the right ear of the 

volunteer once every minute for the entire duration of the 

study (22 min). Blood pressure was intermittently measured 

from the right arm once at the start of the study, and then at 

the end of the cold exposure and the recovery period.

2.4  Data analysis

The raw PPG, ECG and temperature data recorded dur-

ing the study were extracted separately for oline analysis. 

Prior to any signal processing, the acquired signals were 

resampled to 100 Hz. This was to restrict the bandwidth of 

the signals and remove unwanted noise. The resampled sig-

nals were then iltered and processed to calculate various 

parameters, described as follows:

Normalised Pulse Amplitude (NPA) — The red and 

infrared PPG signals acquired from both locations 

were irst separated into AC and DC components using 

bandpass and lowpass ilters implemented in Lab-

Chart–8.0 (AD Instruments, Sydney, Australia). The 

lower and upper cut-of frequencies of the bandpass il-

ter (AC signal) were 0.5 and 15  Hz respectively. The 

cut-of frequency of the lowpass ilter (DC signal) was 

0.5 Hz. The ilters used were linear-phase Finite Impulse 

Response (FIR) ilters with a transition width of 20% and 

pass band ripple <0.5% (the input amplitude). The efec-

tive length of the lowpass and bandpass FIR ilters was 

139 and 3980 respectively. The AC component of the 

PPG signals was then divided by the DC component to 

normalise the PPG signals.

A peak detection algorithm was used to detect the 

peaks and valleys of all the normalised PPG signals. 

From the detected peaks, the normalised pulse amplitude 

(NPA) was calculated. The mean NPA estimated from the 

red and infrared PPG signals acquired from both the ear 

canal and the inger was then averaged for every two min-

utes of the study. NPA was estimated by the above pro-

cedure for all the subjects and was then averaged for the 

entire group. The mean NPA of the study group during 

cold exposure (every 2 min) and recovery (every 2 min) 

periods was analysed for statistical signiicance compared 

to the baseline period. A non-parametric statistical test 

(ANOVA on ranks) was performed on the data. A P-value 

<0.05 was considered to be statistically signiicant. Sta-

tistical analysis was performed using SigmaPlot-12.0 

(SPSS Inc, Chicago, USA).

SpO
2
 analysis—In order to demonstrate the efect of 

compromised peripheral perfusion on the estimation of 

arterial oxygen saturation, SpO
2
 values were calculated 

from the PPG signals acquired from both the ear canal 

and the inger probes during all three phases of the exper-

iment. SpO
2
 was calculated in a three-seconds rolling 

window using Eq. (1).

where R
OS

 is the Ratio of Ratios, AC
IR

 and AC
R
 are the 

peak-to-peak amplitudes of the infrared and red AC PPGs, 

and DC
IR

 and DC
R
 are the DC PPG components at respec-

tive wavelengths. The SpO
2
 estimated from each volunteer 

was averaged for every two minutes of the study. The mean 

SpO
2
 estimated during the irst 2 min (i.e., baseline) was 

then compared with every 2 min (2–10) of the cold expo-

sure and the recovery periods. Further, the change in SpO
2
 

as a response to the cold exposure was calculated, and the 

number of instances where the SpO
2
 value has dropped 

below 90% was computed and considered as a failure. The 

failure rates of both sensors were then compared.

(1)SpO2 = 110 − 25 × ROS; ROS =

(

ACR

DCR

)

(

ACIR

DCIR

)
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3  Results

Good quality, easily recognisable raw PPG signals with 

large amplitudes and high signal to noise ratio were 

recorded from the ear canal and the inger of all the vol-

unteers. Figure 3 depicts baseline raw (AC + DC) infrared 

PPG signals acquired from the ear canal and the inger of 

a volunteer. Two key observations can be made from the 

igure—(1) the pronounced respiratory modulation in the 

ear canal PPG signals when compared to the inger PPGs, 

and (2) the large DC amplitude and small AC amplitude 

of the ear canal PPG signals when compared to the PPG 

signals acquired from the periphery. The disparity in the 

amplitude of the PPG signals is expected as the tissue lin-

ing the ear canal (2–3  mm) is much smaller than the in-

ger (10–15 mm). Hence, the light absorption by tissue and 

other non-pulsatile absorbers is much higher in the inger 

than that of the ear canal.

The disparity in the respiratory modulation of the ear 

canal and inger PPG signals was further investigated by 

taking the power spectrum of the raw PPG signals. The 

power spectrum of the baseline raw infrared PPGs acquired 

from both the locations in four healthy volunteers is shown 

in Fig. 4. In this igure, the power spectrum of the ear canal 

and the inger PPG signals were normalised with the power 

of the cardiac component to highlight just the changes in 

the respiration related component. It is evident that the 

power of the respiration related frequency component is 

much higher in the ear canal PPG signals than that of the 

periphery. Similar results were demonstrated in the work 

carried out by Shelley et al in [14]. Two factors are likely 

to contribute to these indings. First, the shorter distance of 

the ear canal from the heart compared to the inger, which 

meant less attenuation of the respiratory modulation. Sec-

ond, the blood vessels in the head region are relatively less 

sensitive to sympathetically mediated vasoconstriction that 

may mask respiratory oscillations.

3.1  AC PPG signals

A 5-s sample of the baseline infrared AC PPG signals 

acquired from the ear canal and the inger of one of the 

volunteers (Volunteer 6) is shown in Fig.  5, along with 

the simultaneously acquired ECG signal. As can be 

observed from the igure, the morphology of the PPG 

signal acquired from the ear canal was distinct from the 

inger PPG signal. These changes in the morphology 

of the PPG signals are thought to be due to the vascu-

lar resistance of large arteries that supply blood to the 

head and the brain (common carotid arteries). Similar 
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morphological diferences were observed in the PPG sig-

nals acquired from most volunteers. Irrespective of these 

diferences, the PPG signals acquired from both loca-

tions were synchronous with the R-wave peak of the ECG 

signal.

Figure 6 shows the infrared PPG signals acquired from 

the inger and the ear canal along with the peripheral (skin) 

and the core temperature measured from the same volun-

teer for the entire duration of the study (22 min). From the 

igure, it is evident that the amplitude of the PPG signals 

acquired from the inger has reduced signiicantly with 

time during cold exposure. This was, however, expected 

due to the profound vasoconstriction resulting from expo-

sure to low temperatures. The skin temperature of the vol-

unteer has dropped from 27.4 ± 0.02◦C during baseline to 

20.2◦C by the end of the cold exposure. On the other hand, 

the amplitude of the PPG signals from the ear canal has 

remained relatively constant throughout the cold exposure. 

The maximum drop in the core temperature of the vol-

unteer during the cold stimulus was only 0.9◦C, which is 

below the ±1◦C error of the digital tympanic thermometer. 

This explains the high amplitude PPGs acquired from the 

ear canal during the cold exposure. The blood pressure of 

the volunteer was increased from 110/60 to 119/71 by the 

end of the cold exposure due to vasoconstriction.

During the recovery period, the amplitude of the PPG 

signals acquired from both locations have increased with 

an increase in skin temperature. However, the amplitude 

of the inger PPG signals did not return to the initial base-

line value within the 10 min recovery period. The ear canal 

PPG signals, on the contrary, have increased in amplitude 

as soon as the volunteer was removed from the air-condi-

tioned room, and have remained relatively constant for 

the rest of the monitoring period. The skin and the core 

temperature of the volunteer by the end of the recovery 

period were 24.1◦C and 36.8◦C respectively. The blood 

pressure has also recovered back to 111/60 by the end of 

the study. Most volunteers in the study group had a simi-

lar response to this volunteer during the cold exposure. To 

analyse these changes further, and to take into account the 

changes in the DC portions of the PPG signals, NPA (AC/

DC) of the PPG signals was measured.

3.2  Normalised pulse amplitude (NPA)

The NPA of the red and infrared PPG signals acquired from 

both the inger and the ear canal was measured and aver-

aged for every two minutes of the study in all the volun-

teers. The distribution of this data is graphically displayed 

using the Box and Whiskers plots in Fig. 7.

The sudden exposure to cold temperatures during the 

experiment caused an instantaneous and signiicant drop 

in the mean NPA of red and infrared inger PPG signals in 

all volunteers. This is evident through the signiicant reduc-

tion in the interquartile range, the mean and the median at 

the 4th min in Fig. 7a, when compared to the irst 2 min. 

The NPA of the inger PPG signals had further reduced 

with time across the volunteer group at a steady rate until 

the end of the cold exposure. During the recovery period, 

the NPA of the inger PPG signals slowly increased with 

time. However, the NPA did not rise to a value close to the 

baseline, although a steady state was achieved between the 

20th and 22nd min. In contrast with the inger, the NPA 

measured from the ear canal did not change during the cold 

exposure. As seen in Fig.  7b, the interquartile range, the 

mean and the median have all remained relatively constant 

throughout the experiment.

Fig. 6  Infrared AC PPG signals 

acquired from (a) the ear canal, 

and (b) the inger of a volunteer 

and the simultaneously acquired 

(c) skin and (d) core tempera-

ture signal for the entire dura-

tion of the study. The Y-axis 

on the left shows the amplitude 

of the PPG signals while the 

Y-axis on the right shows the 

temperature. The spike in inger 

PPG signal at 11th min is a 

movement artefact
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To check if there were any statistically signiicant dif-

ferences between the NPA of red and infrared PPG signals 

measured during baseline, cold exposure and the recovery 

periods, statistical analysis was performed on the measured 

data. Prior to the statistical tests, the normality of the data 

was tested using the Kolmogorov-Smirnov test with Lil-

liefors’ correction. As not all the data was found to be nor-

mally distributed, it was decided that a non-parametric test 

will be used. The test used was Kruskal-Wallis One Way 

Analysis of Variance on Ranks. The mean NPA of all the 

subjects during baseline (every 2 min) was compared with 

every 2  min mean of the cold exposure and the recovery 

periods for statistical signiicance (i.e., baseline vs. 4 → 

22 min, total of ten comparisons per PPG signal). The sum-

mary of the results of the Kruskal-Wallis test is presented 

in Table  1. Statistically signiicant (p < 0.05) diferences 

were found between all the groups when NPA of red and 

infrared inger PPG signals was compared during the study. 

No signiicant diference was found between any of the 

groups when NPA of the ear canal was compared during 

the study.

During the cold exposure, the mean skin temperature of 

the volunteers has dropped to 19.5 ± 0.49◦C (± standard 

error of mean (SEM)) from 29.9 ± 0.42◦C during baseline. 

The mean core temperature of the volunteers has remained 

unchanged (baseline: 36.6 ± 0.07◦C, cold: 36.0 ± 0.11◦C). 

This conceivably explains the uncompromised blood low 

to the ear canal and, therefore, the unwavering PPG signals 

obtained from the ear canal. The BP of the volunteers has 

increased from 115/79 ± 3.6/2.7 during baseline to 125/75 

± 4.2/2.9 during cold exposure.

3.3  Arterial oxygen saturation (SpO
2
)

To show the efect of the cold exposure on the acquired 

PPG signals and subsequently the efect on the SpO
2
 esti-

mated by the pulse oximeter, arterial oxygen saturation 

values were calculated from the PPG signals acquired from 

both sensors. The mean SpO
2
 values calculated for every 

two minutes of the study in all the volunteers is displayed 

in Fig. 8 with the help of boxplots.

The SpO
2
 values estimated from both the uncalibrated 

probes during baseline were in the healthy adult oxygen 

saturation range (94–100%). The mean SpO
2
 (±SEM) 

calculated for the entire group during baseline was 95 ± 

0.45% in the inger, and 98 ± 0.7% in the ear canal. Dur-

ing the cold exposure, the mean SpO
2
 (represented by  in 

Fig. 8(a)) estimated from the inger probe had dropped with 

time, particularly in the last 4 minutes of the cold exposure. 

The mean inger SpO
2
 (±SEM) of the volunteer group by 

the end of the cold exposure was 90 ± 1.6%. These low 
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Fig. 7  NPA of a the inger and b the ear canal PPG signals acquired 

from 15 volunteers during all three stages of the experiment. Each 

box shows the mean NPA measured across a 2 min period in all the 

volunteers. The red line in each box shows the median value of the 

data, the  shows the mean, and + shows the outliers

Table 1  Summary of the statistical test results obtained from the 

Kruskal-Wallis test performed on the NPA of red and infrared PPG 

signals acquired from the inger, and the ear canal of the volunteers

A P-value <0.05 indicates a statistically signiicant diference. The 

highest H-value corresponds to the largest discrepancy between rank 

sums

Location P-values H-value Statistical 

signii-

cance

Red Infrared Red Infrared

Finger =0.002 <0.001 28.05 35.67 Yes

Ear canal =0.993 =0.847 2.38 5.61 No
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SpO
2
 values would normally indicate hypoxia in clinical 

circumstances, and hence are inaccurate. During the recov-

ery period, the mean SpO
2
 estimated from the inger has 

slowly recovered with time (93 ± 2%). The mean SpO
2
 

(±SEM) calculated from the ear canal probe has remained 

relatively constant throughout the cold exposure (97 ± 

1.5%) and recovery periods (98 ± 0.6%).

However, since blood oxygenation is a global variable 

which does not change in healthy volunteers from site to 

site, the diferences observed in mean SpO
2
 amongst the 

sensors was further investigated. To diferentiate the volun-

teers in whom one of the pulse oximeters had failed (i.e., 

inaccurate SpO
2
) from the other, the percentage drop in 

SpO
2
 for every 2 min of the study was calculated in each 

volunteer. The number of instances in which the SpO
2
 

estimated from a particular probe had dropped to a value 

<90% was calculated and considered as a failure. Table 2 

shows the number of volunteers in whom the estimated 

SpO
2
 has dropped to a value <90% during the cold expo-

sure and the recovery period. From the table, the inger 

probe produced erroneous SpO
2
 readings in four volunteers 

as soon as they were exposed to cold air, and by the end 

of the cold stimulus, ive volunteers had SpO
2
 below the 

90% mark. The ear canal pulse oximeter, on the other hand, 

had failed in one volunteer towards the end of the cold 

exposure.

The high failure rate of the inger pulse oximeter is due 

to the very weak and noisy PPG signals recorded during 

the cold exposure. The peak detection algorithm in the 

pulse oximeter cannot distinguish between the heart pulses 

and the noise peaks in these situations, therefore produc-

ing inaccurate readings. To demonstrate this, the red inger 

AC PPG signal acquired from a volunteer during the cold 

exposure is shown in Fig. 9, along with the peaks detected 

by the algorithm and the ECG signal. The quality of the 

red inger PPG signals acquired from the ive volunteers in 

whom accurate SpO
2
 estimation was not possible is shown 

in Fig. 10. In this igure, arterial pulsations are unidentii-

able in any of the PPG signals. Hence, the calculated SpO
2
 

readings were inaccurate.

4  Discussion

Blood oxygen monitoring using peripheral pulse oximetry 

is susceptible to inaccuracies in conditions of compromised 

peripheral perfusion. In order to address this issue, the 

ear canal has been proposed as a new monitoring site for 

measuring PPG signals and SpO
2
 on the hypothesis that, 

the ear canal will remain suiciently perfused in states of 

low peripheral perfusion. To test this hypothesis a novel ear 

canal PPG sensor was developed along with an optically 

identical inger PPG probe and an acquisition system. The 

performance of the developed technology was tested in 15 

healthy volunteers undergoing whole-body cooling. During 

the study, red and infrared PPG signals were acquired from 

the ear canal and the index inger of the volunteers expe-

riencing cutaneous vasoconstriction by exposure to low 

temperatures (10◦C) for 10 min. The red and infrared PPG 
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Fig. 8  Box and whiskers plots demonstrating the change in mean 

SpO
2
 measured for every two minutes of the study in a the inger and 

b the ear canal. SpO
2
 estimated from the inger have dropped signii-

cantly towards the end of the study when compared to the ear canal. 

The red line in each box shows the median value of the data, the  

shows the mean, and + shows the outliers

Table 2  Summary of the pulse 

oximeter failure during the 

cold exposure and the recovery 

period in 15 volunteers

No. of volunteers with SpO
2
 < 90%

Sensor Cold exposure (min) Recovery (min)

4 6 8 10 12 14 16 18 20 22

Finger 4 2 3 4 5 4 3 3 2 2

Ear canal 0 0 1 1 1 1 1 0 0 0
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signals acquired from both the sensors during the study 

were then analysed and compared with respect to their 

shape, normalised amplitude and the SpO
2
 estimated.

The PPG signals acquired from all the volunteers were 

generally of very good quality. The morphology of the 

PPG signals acquired from the ear canal were distinct 

from the inger PPG signals (Fig. 5). These changes in the 

morphology of the PPG signals are thought to be due to 

the vascular resistance of large arteries that supply blood to 

the head and the brain (common carotid arteries). A slight 

shift in phase between the inger and ear canal PPG signals 

is also apparent in Fig. 5. This is expected, as the ear being 

closer to the heart than the inger, the time taken for arterial 

pulsations to travel from the heart to the ear canal is less 

than the time is taken for the pulsations to reach the inger.

The NPA of the red and infrared PPG signals from the 

inger was signiicantly reduced as soon as the volunteer 

was exposed to cold temperature and has further decreased 

with time. Statistically, signiicant diferences were found 

in the mean NPA of the inger PPG signals (P-value: red—

0.002, infrared—<0.001) when the baseline measurement 

was compared with every 2  min mean of cold exposure. 

The mean percentage drop in the NPA of red and infrared 

inger PPG signals by the end of the cold exposure was 

80.1 and 86.3% respectively. Statistical signiicant difer-

ences were also found when the baseline inger NPA was 

compared with every 2 min mean of the recovery period. 

This suggests that the NPA of red and infrared PPG sig-

nals has reduced signiicantly during the cold exposure and 

never recovered back to the baseline value in the monitor-

ing period. The percentage diference between the mean 

NPA measured by the end of the study to the baseline was 

47.2 (red) and 54.5% (infrared). These results demonstrate 

the sensitivity of the arterial vessels in the periphery to the 

vasoconstrictor stimuli.

In contrast with the inger, the NPA of the ear canal 

PPGs has remained relatively constant throughout the 

study. The mean drop in the red and infrared NPA of the 

ear canal PPGs was only 0.2 and 13% respectively. No sig-

niicant diference was found (P-value: red—0.993, infra-

red—0.847) between any of the groups when the NPA of 

the ear canal PPGs from baseline was compared with cold 

exposure and recovery periods.

These disparities between the NPA of PPG signals 

acquired from the inger and the ear canal (or, in other 

words, the variations in the efect of cold exposure on the 

blood supply) are due to the thermal adaptation of the body. 

When the human body is exposed to cold, the eferent sym-

pathetic nerves descending from the posterior hypothala-

mus (the body’s thermostat) produce intense constriction 

of the cutaneous blood vessels and closure of the arte-

riovenous anastomoses. This innervation reduces the heat 

transfer from the body’s core to the body’s surface and 

subsequently the heat loss to the environment but at the 

expense of further cooling the extremities [15, 16]. Hence, 

appendages such as the inger, which are part of the periph-

eral circulation are more afected by the cold than the cen-

tral areas such as the ear canal. These results compliment 

and align well with the previously reported results by Awad 

et al in [17].
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The SpO
2
 estimated from both probes during base-

line measurements was in the adult normoxic range 

(94–100%). However, during the cold exposure, the mean 

SpO
2
 measured from the inger has dropped signiicantly 

with time, particularly in the last 4 min of the cold expo-

sure. The mean SpO
2
 calculated from the ear canal, on 

the other hand, has remained relatively constant through-

out the study, with the exception of one outlier (see 

Fig. 8b). The increase in variability (interquartile range) 

of the inger SpO
2
 values with time and the relatively sta-

ble median in Fig.  8a, however, indicates that the SpO
2
 

might have dropped signiicantly only in a few volun-

teers. Hence, the failure rate of each probe was quanti-

ied by calculating the number of volunteers in whom the 

estimated SpO
2
 had dropped to a value <90%. The inger 

probe produced erroneous SpO
2
 readings in a maximum 

of ive volunteers during the cold exposure. The ear canal 

pulse oximeter, on the other hand, had failed only in one 

volunteer.

The high failure rate of the inger sensor during cold 

exposure was not due to the reduction in blood oxygena-

tion but is merely due to the quality of the PPG signals 

acquired. When the body is exposed to ambient tem-

peratures of 10◦C, the blood low through the hand is 

minimal (less than 1  ml/min) [15, 18]. Hence, the PPG 

signals recorded in these situations are very weak and 

noisy. In some volunteers, the amplitude of the PPG 

signals diminished so signiicantly that the peak detec-

tion algorithms could not distinguish between noise and 

PPG signal peaks. Hence in these volunteers, the ampli-

tude of the noise is being measured instead of the PPG 

signal. Figure  9 clearly demonstrates this efect. Since 

the amplitude of noise in both the red and infrared chan-

nels is approximately similar, the absorbance ratio (R
OS

) will drive towards 1, resulting in a SpO
2
 close to 85% 

(i.e., a failure). The quality of the red inger PPG signals 

acquired from the ive volunteers in whom accurate SpO
2
 

estimation was not possible is shown in Fig. 10. As can 

be seen from the igure, it is very hard to diferentiate the 

arterial pulsations from the noise in any of the ive PPG 

signals. Hence the reason for inaccurate SpO
2
 estimation 

by inger pulse oximeter.

In conclusion, it is fair to say that the SpO
2
 measure-

ments made from the inger are susceptible to poor periph-

eral perfusion and are heavily dependent on the thermal 

state of the site. This limitation really weakens the ability 

of the pulse oximeters in conditions when they are most 

needed. The newly developed ear canal probe on the other 

side ofered reliable SpO
2
 measurements even under the 

inluence of the cold temperatures or profound vasocon-

striction. However, more trials need to be conducted in 

more healthy volunteers and patients in order to assess this 

hypothesis.
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