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Abstract

Most empirical models of dynamic games assume the discount factor to be known and focus

on the estimation of the payoff parameters. However, the discount factor can be identified when

the payoffs satisfy parametric or other nonparametric restrictions. We show when the payoffs

take the popular linear-in-parameter specification, the joint identification of the discount factor

and payoff parameters can be simplified to a one-dimensional model that is easy to analyze.

We also show that switching costs (e.g. entry costs) that often feature in empirical work can

be identified in closed-form, independently of the discount factor and other specification of the

payoff function. Our identification strategies are constructive. They lead to easy to compute

estimands that are global solutions. Estimating the discount factor permits direct inference on

borrowing rate. Our estimates of the switching costs can be used for specification testing. We

illustrate with a Monte Carlo study and the dataset from Ryan (2012).
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1 Introduction

A structural study involves modeling the economic problem of interest based on some primitives

that govern an economic model. The primitives have a clear interpretation. The empirical goal

is to estimate them, which can then be used for counterfactual analysis. Our paper studies some

identification and estimation aspects for a stationary dynamic discrete game that generalizes the

single agent Markov decision problem surveyed in Rust (1994). The primitives of the games we

consider consist of players’ (per-period) payoff functions, discount factor, and Markov transition law

of the variables in the model.

There is anecdotal evidence from the literature on single agent models that implies that dynamic

games are generally not identified nonparametrically. For example, Manski (1993) shows that the

discount factor cannot be identified jointly with the payoff function that is nonparametric; Magnac

and Thesmar (2002) show the payoff function cannot be identified even if all other primitives of the

model are known; Norets and Tang (2014) show the payoff function can only be partially identified

when the distributions of unobservable state variables are unknown with discrete observable states.

But identification is possible with more structure on the model. For examples, see Pesendorfer and

Schmidt-Dengler (2008), Bajari, Chernozhukov, Hong and Nekipelov (2009), Blevins (2014), Chen

(2014), as well as Fang and Wang (2014). Hence, in spite of the under-identified nature of a general

structural dynamic model, many fruitful empirical research can be, and has been, conducted based

on these dynamic models using the theoretical results as guide.

Empirical applications of dynamic games often focus on the estimation of the parametric pay-

off functions and seemingly always assume the value of the discount factor to be known. An in-

discriminating list of examples include: Beresteanu, Ellickson and Misra (2010), Collard-Wexler

(2013), Dunne, Klimek, Roberts and Xu (2013), Gowrisankaran, Lucarelli, Schmidt-Dengler and

Town (2010), Igami (2015), Lin (2012), Sanches, Silva Junior and Srisuma (2014), Snider (2009) and

Suzuki (2013). There appears to be no formal justification as to why the discount factor has to be

presumed known rather than estimated. Commonly cited reasons, if any is given at all, include prece-

dence from the single agent literature, lack of identification, numerical difficulties (e.g. intractability

or convergence failure) and post-estimation issues (e.g. implausible or imprecise estimates). The

underlying sources for the first reasoning can also be traced to the other closely related, but distinct,

issues.1,2

1Some noted estimation attempts in the single agent context include: Rust (1987, pp. 1023), who says “I was not

able to precisely estimate the discount factor”, while Slade (1998, pp. 102) also fixes the discount factor after “it was

found that the objective function is fairly flat” over some range.
2Estimation of the discount factor in some related finite-time horizon models is more standard, and with more

encouraging findings. E.g. see Keane and Wolpin (1997). But negative or other implausible estimates have also been
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Identification is a property of the model. It is customary to translate the behavioral condition

that defines (parametric, point-) identification into a loss function with a unique minimum for the

purpose of estimation. There are often many candidates of loss functions. A positive identification

for one is sufficient to identify the model. However, in general, verifying that a nonlinear function of

several variables has a unique minimum point is a difficult mathematical task. The degree of difficulty

can depend crucially on the choice of the loss function. This also relates directly to the practical

aspects of computing the estimand.3 Particularly it may not even be a trivial assumption to assume

that one can always find the global minimum of a nonlinear loss function with many parameters in

a dynamic game due to intractable components of the model. Therefore, in practice, implausible

estimates may also arise due to a purely a numerical reason even if the model is correctly specified.4

Our paper aims to show that it is not necessary to assume the discount factor a priori in order to

analyze empirical games. We consider two important special cases. First, we show that when payoffs

take a linear parameterization, joint identification of the discount factor and payoff parameters can

be analyzed as a one-parameter model irrespective of the number of payoff parameters. Second,

for games with switching costs (such as entry costs and scrap values), we show the switching cost

parameters can be identified in closed-form independently of the discount factor and specification of

other parts of the payoff function. Our identification strategies are constructive. The corresponding

estimands are easy to compute. An important feature is they aim to obtain global solutions to

potentially complex optimization problems in a transparent manner. Then the estimates of the

discount factor permit testing of borrowing costs and other dynamic considerations directly. Also

the closed-form estimators for the switching costs can be used for specification testing. E.g. testing

the mode of competition amongst firms, by comparing them with estimates from existing methods

that explicitly specify the entire payoff function.

The non-identification argument in Manski (1993) does not preclude us from studying the identi-

fication of the discount factor since the payoff functions employed in practice satisfy a priori specified

parametric and/or other nonparametric restrictions. However, even in a single agent model with a

known discount factor, establishing that the parametric payoff parameters are identified is difficult

due to the nonlinear nature of the model that contains an intractable value function. Furthermore in

dynamic games there may be multiple equilibria, subsequently the model may be incomplete (Tamer

(2003)). We proceed in the same way as Pesendorfer and Schmidt-Dengler (2008) and Bajari et

reported (e.g. see Hotz and Miller (1993)).
3For example, as Hotz, Miller, Sanders and Smith (1994) noted in their footnote 13 on pp. 280 that: “There is

nothing inherent in our method which precludes estimation of β [the discount factor] ... our primary reason for not

estimating β was the intractability it presented for implementing the ML [a competing] estimator.”
4Since a structural model is interpreted as an approximation of the data generating process, misspecification here

means that the data is not fitted well by the model with economically plausible parameter values.
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al. (2009) and study identification using the implied expected discounted payoffs that generates

the data based on the observed transition probabilities. More specifically we take the model to be

the collection of implied expected discounted payoffs as a mapping from the parameter space. Such

model reduces the degree of intractability of the model and circumvents the issue of incomplete-

ness, and is the basis for all what is known as “two-step” estimation methods in the literature (e.g.

Aguirregabiria and Mira (2007), Bajari, Benkard, Levin (2007), Pakes, Ostrovsky and Berry (2007),

Pesendorfer and Schmidt-Dengler (2008)).

We first consider the linear-in-parameter payoff specification due to its overwhelmingly com-

mon usage in empirical work; examples include those in the list of applications above.5 When the

discount factor is known, the corresponding implied expected discounted payoff also takes the linear-

in-parameter structure. Various computational exploits of this linear structure have been noted,

e.g. see Miller, Sanders and Smith (1994), Bajari, Benkard, Levin (2007), Bajari et al. (2009), and

Sanches, Silva Junior and Srisuma (2016). In particular Sanches et al. (2016) translate the identifi-

cation condition for the linear payoff parameter in terms of the uniqueness of the minimum Euclidean

norm between the observed and model implied expected discounted values. Their estimator has the

familiar closed-form OLS expression and condition for identification can be given in terms of the full

rank condition of a matrix. See Assumption B1 in Sanches et al. (2016). It is worth emphasizing

that their Assumption B1 is also necessary for consistent estimation of any two-step estimator in

that setting.

When the discount factor is unknown and taken as part of the parameter space the model becomes

intrinsically nonlinear. Existing conditions that ensure identification in a nonlinear parametric model

in econometrics can be hard to verify and the scope of applications is limited by stringent conditions;

see Komunjer (2012) for recent results. Here we show that the identification for games with linear-

in-parameter payoffs can be analyzed exhaustively even when the parameter space is large. We

follow the approach in Sanches et al. (2016) and expand the parameter space to include the discount

factor. The least squares framework enables us to simplify the problem by just considering a one-

dimensional path of the parameter space. In particular, for any value of the discount factor, there

exists a vector of payoff parameters that minimize the least squares that has a closed-form OLS

expression. The profiled distance becomes a mapping from [0, 1] to R. Therefore an exhaustive

analysis of identification for the discount factor reduces to simply evaluating a function with one

argument over a small domain. Once the identification of the discount factor is established it can be

taken as known. The payoff parameters is then identified if an analogous condition to Assumption

5Other specifications that have been employed are often motivated by the need to impose additional constraints.

E.g. Fan and Xiao (2014) use a linear index in an exponential function to ensure non-negativity of their variable

profits.
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B1 in Sanches et al. (2016) holds.

When the parameterization of the payoff function is not linear we focus on reducing the parameter

space instead of studying the joint identification of the discount factor and payoff parameters. Our

approach reflects a common practice that not all components of the payoff function need to be treated

in the same way. Parts of the payoff function, such as variable profits, can be estimated directly

using economic theory if relevant data are available. These serve as exclusion restrictions (e.g. see

Berry and Haile (2010, 2012)). The remaining components are dynamic parameters of the game that

have to be estimated using the structure of the dynamic models. One of the most prevalent type of

dynamic parameters arises from players choosing different actions from the previous period. Specific

examples include entry cost and scrap value in games with entry, menu costs in pricing problems,

as well as adjustment costs in investment decisions. We refer to these as switching costs. Switching

costs, by definition, have built-in nonparametric structures that impose how they can appear in the

payoff function.

We show that switching costs can be identified, in a closed-form, independently of the discount

factor and specification of the remaining components of the payoff function. It may not come as a

surprise that such result requires some restrictions on the payoffs as well as the dependence structure

of the controlled Markov process. However, the conditions we impose can be motivated empirically

and have been frequently assumed in the empirical literature. Specifically, we assume that, whether

a player may incur a switching cost in each period is only determined by her own action. The

state variables, such as past actions of all players, can otherwise affect today’s switching costs in

an arbitrary way. We also require that the remaining components of the payoff function do not

depend on past actions (this can be relaxed to allow dependence of a finite time lag). The latter

condition is satisfied by typical payoff components. E.g. variable profits that are determined by the

competition between players depend only on those present in the game (for instance a Cournot or

an auction game), as well as fixed operating costs. We also limit the feedback of past actions in the

Markov process. We assume that the past actions do not affect the transition law of future states

conditional on today’s actions and states. Our conditional independence requirement is a testable

assumption, and is weaker than the frequently assumed condition that state variables other than

actions are strictly exogenous. Examples of empirical models that satisfy these assumptions can be

found in the applications cited above amongst many others.

The classic combination of exclusion and independence restrictions is a powerful tool for estab-

lishing nonparametric identification in structural models; see Matzkin (2007, 2012). Examples of

related models can be found in Blevins (2014) and Chen (2014), who use different exclusion and

independence assumptions to identify the distribution of the unobserved state variables in a single

agent setting. In our case, the proposed framework enables us to set up a linear system containing
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switching costs and some nuisance parameters that depend on all primitives of the game. In a single

agent dynamic decision model, the switching costs can then be identified by simply differencing out

the nuisance parameters. For a dynamic game, the nuisance terms can be eliminated by a projection

that can be interpreted as a generalized difference. Therefore the switching costs can be identified up

to some location normalizations that accounts for the nonparametric specification of the remaining

components of the payoff function. Our approach to eliminate the nuisance term therefore shares

some similarities with the pair-wise differencing approach that is useful for the estimation of com-

plicated nonlinear models (e.g. see Honoré and Powell (2005)). Notably, the pair-wise difference

estimator that Hong and Shum (2010) propose for a single agent dynamic investment model can also

be computed without the knowledge of the discount factor.6

The estimation of dyamic games is generally considered to be a numerically challenging task.

Analogous to the identification argument above, the choice of the estimation methodology can be

crucial for practical analysis of dynamic games. Traditional approach in econometrics takes consistent

estimation for granted and focuses on efficiency. However, even consistency of a sensible looking

estimation procedure may be problematic in practice due to the complicated nature of dynamic

games. E.g. see Appendix A in Srisuma (2013), and also a series of papers related to sequential

estimation methods (Pesendorfer and Schmidt-Dengler (2010), Kasahara and Shimotsu (2012) and

Egesdal, Lai and Su (2015)). In this paper we focus on the simplicity of implementation. We adopt

the approach of Sanches et al. (2016). The contribution of that paper highlights the computational

advantages that least squares criterions in expected payoffs have over its dual representation in terms

of the choice probabilities; particularly as proposed by Pesendorfer and Schmidt-Dengler (2008).7

Importantly they show the estimators are in fact asymptotically equivalent but the numerical efforts

in computing the latter can be substantially higher.8 It can be shown that these advantages are

conserved when the parameter space expands to include the discount factor.

Our estimators can then be constructed according to our identification arguments. Our profiling

estimator uses the closed-form OLS expression for the linear payoff parameters in terms of the

6The motivation behind Hong and Shum (2010)’s estimator is actually to avoid the computation of the value

function rather than constructing a robust estimator. In particular they difference out the future discounted payoffs

between two economic agents if their investment accumulations are (nearly) equal under a deterministic state transition

rule.
7There are also other authors have also proposed estimators that minimize expected payoffs. In particular, under

the linear-in-parameter assumption, the estimators of Miller, Sanders and Smith (1994) and Bajari et al. (2009) take

and an IV form.
8The class of estimators proposed by Pesendorfer and Schmidt-Dengler (2008) has been well received. It includes

the non-iterative estimator of Aguirregabiria and Mira (2007) and the moment estimator of Pakes, Ostrovsky and

Berry (2008) as special cases.
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discount factor. Therefore our joint estimation of the discount factor and the payoff parameters can

be conducted by a simple and exhaustive one-dimensional search over the support of the discount

factor. In games with switching costs, closed-form estimation of switching costs serves to reduce

the number of parameters to be estimated. The dimensionality reduction can be substantial in a

game with large dimensions; as the number of unrestricted switching costs for each player grow at a

quadratic rate with respect to the number of possible actions, which then grows exponentially fast

with the number of players for every state.

We provide a Monte Carlo study to analyze some basic statistical properties of our proposed

estimators. We then use the dataset from Ryan (2012) to estimate a dynamic game played between

firms in the US Portland cement industry. In our version of the game, firms choose whether to enter

the market as well as decide on the capacity level of operation (five different levels). We assume firms

compete in a capacity constrained Cournot game, so the period profit can be estimated directly from

the data as done in Ryan. The remaining part of the payoff consists of fixed operating costs and 25

switching cost parameters. Other dynamic parameters we estimate include the discount factor and

fixed operating cost. We estimate the model twice. Once using the data from before 1990, and once

after 1990, which coincides with the date of the 1990 Clean Air Act Amendments (1990 CAAA). Our

switching costs estimates generally appear sensible, having correct signs and relative magnitudes.

They show that firms entering the market with a higher capacity level incur larger costs, and suggest

that increasing capacity level is generally costly while a reduction can return some revenue. We also

find that operating and entry costs are generally higher after the 1990 CAAA, which supports Ryan’s

key finding. We are also able to estimate the discount factor with reasonable precision.

The remainder of the paper is organized as follows. Section 2 defines the theoretical model and

states the modeling assumptions. Section 3 considers the joint identification of discount factor and

payoff parameters under the linear specification. Section 4 shows the closed-form identification of

switching costs. Section 5 illustrates the use of our estimator with simulated and real data. Section

6 concludes.

2 Model and Assumptions

We consider a game with I players, indexed by i ∈ I = {1, . . . , I}, who compete over an infinite time

horizon. The variables of the game in each period are action and state variables. The action set of each

player is A = {0, 1, . . . , K}. Let at = (a1t, . . . , aIt) ∈ A
I . We will also occasionally abuse the notation

and write at = (ait, a−it) where a−it = (a1t, . . . , ai−1t, ai+1t . . . , aIt) ∈ A
I . Player i’s information set is

represented by the state variables sit ∈ S, where sit = (xt, εit) such that xt ∈ X, for some compact

set X ⊆ RdX . State xt is public information, which is common knowledge to all players and observed
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by the econometrician, while εit = (εit (0) , . . . , εit (K)) ∈ R
K+1 is private information only observed

by player i. We define st ≡ (xt, εt) and εt ≡ (ε1t, . . . , εIt). Future states are uncertain. Players’

actions and states today affect future states. The evolution of the states is summarized by a Markov

transition law P (st+1|st, at). Each player has a payoff function, ui : A
I × S → R, which is time

separable. Future period’s payoffs are discounted at the rate β ∈ [0, 1).

The setup described above, and the following assumptions, which we shall assume throughout the

paper, are standard in the modeling of dynamic discrete games. For examples, see Aguirregabiria

and Mira (2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer

and Schmidt-Dengler (2008).

Assumption M1 (Additive Separability): For all i, ai, a−i, x, εi:

ui (ai, a−i, x, εi) = πi (ai, a−i, x) +
∑

a′i∈A

εi (a
′
i) · 1 [ai = a′i] .

Assumption M2 (Conditional Independence I): The transition distribution of the states

has the following factorization for all x′, wε′, x, ε, a:

P (x′, ε′|x, ε, a) = Q (ε′)G (x′|x, a) ,

where Q is the cumulative distribution function of εt and G denotes the transition law of xt+1

conditioning on xt, at.

Assumption M3 (Independent Private Values): The private information is independently

distributed across players, and each is absolutely continuous with respect to the Lebesgue measure

whose density is bounded on RK+1 with unbounded support.

Assumption M4 (Discrete Public Values): The support of xt is finite so that X =
{
x1, . . . , xJ

}
for some J <∞.

The game proceeds as follows. At time t, each player observes sit and then chooses ait simulta-

neously. Action and state variables at time t affects sit+1. Upon observing their new states, players

choose their actions again and so on. We consider a Markovian framework where players’ behavior

is stationary across time and players are assumed to play pure strategies. More specifically, for some

αi : S → A, ait = αi (sit) for all i, t, so that whenever sit = siτ then αi (sit) = αi (siτ ) for any τ .

Beliefs are also time invariant. Player i′s beliefs, σi, is a distribution of at = (α1 (s1t) , . . . , αI (sIt))
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conditional on xt for some pure Markov strategy profile (α1, . . . , αI). The decision problem for each

player is to solve, for any si,

max
ai∈{0,1}

{E[ui (ait, a−it, si) |sit = si, ait = ai] + βE [Vi (sit+1) |sit = si, ait = ai]}, (1)

where Vi (si) =

∞∑

τ=0

βτE [ui (ait+τ , a−it+τ , sit+τ ) |sit = si] .

The expectation operators in the display above integrate out variables with respect to the probability

distribution induced by the equilibrium beliefs and Markov transition law. Vi denotes the value

function. Note that the beliefs and primitives completely determine the transition law for future

states. Any strategy profile that solves the decision problems for all i and is consistent with the beliefs

satisfies is an equilibrium strategy. Pure strategies Markov perfect equilibria have been shown to

exist for such games (see Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler (2008)).

We consider identification based on the joint distribution of the observables, namely (at, xt, xt+1),

which is consistent with a single equilibrium play. The ideal data set is therefore a long time series

from a single market. Although more commonly, datasets used in empirical work have short panel

from multiple markets, the joint distribution of the observables can still be identified if they are

generated from the same equilibrium.9 The primitives of the game under this setting consists of

({πi}
I

i=1 , β,Q,G). Throughout the paper we shall also assume G and Q to be known (the former

can be identified from the data).

3 Identification with Linear-in-Parameter Payoffs

In this section we consider games where payoffs have a linear-in-parameter specification. Section 3.1

defines identification for the parameter of interest and provide some representation lemmas based on

the linear payoff structure. Section 3.2 studies identification by profiling.

3.1 Definition of Identification and Some Representation Lemmas

We assume the following assumption holds throughout this section.

Assumption M5 (Linear-in-Parameter): For all i, ai, a−i, x:

πi (ai, a−i, x; θ) = πi0 (ai, a−i, x) + θ>πi1 (ai, a−i, x) ,

where πi0 is a known real value function, πi1 is a known p−dimensional vector value function and θ

belongs to Rp.

9Otsu, Pesendorfer and Takahashi (2015) have recently proposed a test for the poolability of data across markets.

9



The role of πi0 is to represent the payoff components that are identifiable without the knowledge

of the discount factor. In practice πi0 and possibly parts of πi1 may have to be estimated (e.g. see

Section 5.2). For the purpose of identification they can be treated as known.

The primitives of interest belong to B × Θ, where B = [0, 1) and Θ = Rp for some non-negative

integer p. We are interested in the data generating discount factor and payoff parameters, which we

denote by β0 and θ0 respectively. We first define the choice specific expected payoffs for choosing

action ai prior to adding the period unobserved state variable, which is computed for different β and

θ, for any i, ai and x:

vi (ai, x; β, θ) = E [πi (ai, a−it, xt; θ) |xt = x] + βgi (ai, x; β, θ) , (2)

where gi (ai, x; β, θ) ≡ E [Vi (sit+1; β, θ) |ait = ai, xt = x] with Vi (si; β, θ) ≡
∑∞

τ=0 β
τE [ui (at+τ , sit+τ ; θ) |sit = s

and ui (at, sit; θ) ≡ πi (at, xt; θ)+
∑

a′i∈A
εit (a

′
i) ·1 [ait = a′i]. Note that the expectations here are taken

with respect to the observed choice and transition probabilities that are consistent with β0 and θ0.

We consider the relative payoffs in (2) with action 0 as the base, so that for all i, ai > 0 and x:

∆vi (ai, x; β, θ) = E [∆πi (ai, a−it, x; θ) |xt = x] + β∆gi (ai, x; β, θ) , (3)

where∆vi (ai, x; β, θ) ≡ vi (ai, x; β, θ)−vi (0, x; β, θ) ,∆πi (ai, a−i, x; θ) ≡ πi (ai, a−i, x; θ)−πi (0, a−i, x; θ)

for all ai, and ∆gi (ai, x; β, θ) ≡ gi (ai, x; β, θ) − gi (0, x; β, θ). Using Hotz-Miller’s inversion, it

follows that ∆vi (ai, x; β0, θ0) is identified from the data for all i, ai, x. We take each pair (β, θ)

to be a structure of the (empirical) model and its implied expected payoffs, denoted by Vβ,θ ≡

{∆vi (ai, x; β, θ)}i,ai,x∈I×A×X , to be its corresponding reduced form.
10,11 We can then define identifi-

cation using the notion of observational equivalence in terms of the expected payoffs.

Definition I1 (Observational Equivalence): Any distinct (β, θ) and (β′, θ′) in B ×Θ are

observationally equivalent if and only if Vβ,θ = Vβ′,θ′ .

Definition I2 (Identification): An element in B × Θ, say (β, θ), is identified if and only if

(β′, θ′) and (β, θ) are not observationally equivalent for all (β′, θ′) 6= (β, θ) in B ×Θ.

The following lemma relates the parameters we want to identify to what can be observed.

10The empirical model is a pseudo-model. Because we do not use the equilibrium probabilities of the dynamic game

corresponding to β, θ. We only consider the implied expected payoffs computed using the equilibrium beliefs that

generate the data.
11It is equivalent to define the reduced forms in terms of expected payoffs is equivalent to defining them in terms of

conditional choice probabilities (Hotz and Miller (1993), Matzkin (1991), Norets and Takahashi (2013)).
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Lemma 1: Under M1 - M5, we have for all i, ai > 0, ∆vi (ai, x; β, θ) can collected in the following

vector form for all (β, θ) ∈ B ×Θ:

∆vaii (β, θ) = ∆Rai
i0 + β∆H

ai
i (IJ − βL)−1Ri0 (4)

+
(
∆Rai

i1 + β∆H
ai
i (IJ − βL)−1Ri1

)
θ

+β∆Hai
i (IJ − βL)−1 εi,

where the elements in the equation above are collected and explained in Tables 1 and 2.

Matrix Dimension Representing

∆Rai
i1 J by p E [πi1 (a−it) |xt = ·, ait = ai]− E [πi1 (a−it) |xt = ·, ait = 0]

Ri1 J by p E [πi1 (a−it) |xt = ·]

L J by J E[ψ (xt+1) |xt = ·]

∆Hi J by J E[ψ (xt+1) |xt = ·, ait = ai]− E[ψ (xt+1) |xt = ·, ait = 0]

Table A. The matrices consist of (differences in) expected payoffs and probabilities. The latter

represent conditional expectations for any function ψ of xt+1.

Vector Representing

εi E
[∑

a′i∈A
εit (a

′
i) · 1 [ait = a′i]

∣∣∣ xt = ·
]

∆Rai
i0 E [πi0 (ait, a−it, xt) |xt = ·, ait = ai]− E [πi0 (ait, a−it, xt) |xt = ·, ait = 0]

Ri0 E [πi0 (at, xt) |xt = ·]

(IJ − βL)−1RΠij

∑∞
τ=0 β

τE[πij (at+τ , xt+τ ) |xt = ·]

β∆Hai
i (IJ − βL)−1RΠij

∑∞
τ=1 β

τE[πij (at+τ , xt+τ ) |xt = ·, ait = ai]

−
∑∞

τ=1 β
τE[πij (at+τ , xt+τ ) |xt = ·, ait = 0]

β∆Hai
i (IJ − βL)−1 εi

∑∞
τ=1 β

τE
[∑

a′i∈A
εit+τ (a

′
i) · 1 [ait+τ = a′i]

∣∣∣ xt = ·, ait = ai

]

−
∑∞

τ=1 β
τE
[∑

a′i∈A
εit+τ (a

′
i) · 1 [ait+τ = a′i]

∣∣∣ xt = ·, ait = 0
]

Table B. The J by 1 vectors represent (differences in) expected payoffs.

Proof: This is a slight variation of Lemma R in Sanches et al. (2016).�

Lemma 1 is simply a vectorization (across states) of the differences in discounted expected payoffs

for player i from choosing action ai relative to action 0. From the data we can identify ∆vaii (β0, θ0)

for all i, ai > 0. Hence, to identify (β0, θ0), it is enough to show that for all (β, θ) 6= (β0, θ0),

∆vaii (β, θ) 6= ∆v
ai
i (β0, θ0) for some i and ai. Our next lemma provides a characterization as to how

changing β and θ can affect the expected payoffs.
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Lemma 2: Under M1 - M5, for any i, ai > 0 and (β, θ) , (β
′, θ′) ∈ B ×Θ:

∆vai (β, θ)−∆v
a
i (β, θ

′) =
(
∆Rai

i1 + β∆H
ai
i (IJ − βL)−1Ri1

)
(θ − θ′) , (5)

∆vai (β
′, θ′)−∆vai (β, θ

′) = (β − β′)∆Hai
i (IJ − β′L)

−1
(IJ − βL)−1 (Ri0 +Ri1θ

′ + εi) . (6)

And (β, θ) is identifiable if and only if there is no other (β′, θ′) such that for all i, ai > 0:

∆vai (β
′, θ′)−∆vai (β, θ

′) = ∆vai (β, θ)−∆v
a
i (β, θ

′) .

Proof: Follows from some algebra based on equation (4).�

Lemma 2 illustrates the nature of the identification problem we have at hand. We highlight the

following particulars:

(i) If the discount rate is assumed to be known, from (5), a sufficient condition for ∆vai (β0, θ) 6=

∆vai (β0, θ
′) when θ 6= θ′ is that ∆Rai

i1 + β∆Hai
i (IJ − βL)−1Ri1 has full column rank for some

i, ai > 0.

(ii) If the payoff function is assumed to be known, from (6), a sufficient condition for∆vai (β
′, θ0) 6=

∆vai (β, θ0) when β 6= β′ is that (Ri0 +Ri1θ
′ + εi) 6= 0 and ∆H

ai
i is invertible some i, ai > 0.

(iii) Suppose p is large relative to J . Then for any i, ai > 0 such that∆R
ai
i1+β∆H

ai
i (IJ − βL)−1Ri1

has rank J , and for any θ′, β 6= β′ that ∆vai (β
′, θ′) 6= ∆vai (β, θ

′), by equating (5) and (6), we can

always find θ such that ∆vai (β
′, θ′) = ∆vai (β, θ).

Point (i) shows that sufficient conditions for identification of the payoff parameters when the

discount rate is assumed known can be easily stated and verified. More generally the sufficient

condition for the identification of the payoff parameter can be stated in terms of the full column rank

of the matrix that stacks together ∆Rai
i1 + β∆Hai

i (IJ − βL)−1Ri1 over all i and ai. In the case we

can identify the payoff function directly from the data, (ii) shows that the discount factor can also

be identified and provide one type of sufficient conditions that can be readily checked. Point (iii)

shares the intuition along the line of Manski (1993) that when the parameterization on the payoff

function is too rich, (β, θ) may not identifiable in B ×Θ.

From Lemma 2, it is also apparent that we should be able to identify (β0, θ0) jointly when the

change in the vector of expected payoffs from altering the discount factor moves in a different direction

to the change caused by altering the payoff parameters.

3.2 Profiling

Profiling makes use of the fact that for each β the expected payoffs are linear in θ. We define

mai
i (β, θ) ≡ ∆v

ai
i (β0, θ0)−∆v

ai
i (β, θ), so that we can write:

mai
i (β, θ) = a

ai
i (β)−B

ai
i (β) θ,

12



where from (4),

aaii (β) = ∆vaii (β0, θ0)−∆R
ai
i0 − β∆Hai

i (IJ − βL)−1 (Ri0 + εi) ,

Baii (β) = ∆Rai
i1 + β∆H

ai
i (IJ − βL)−1Ri1.

It is clear that for any given β, mai
i (β, θ) is linear in θ. The system of equations above can be

expanded by stacking them across all i and ai. In doing so we obtain the following vector value

function, m : B ×Θ→ R
IJK :

m (β, θ) = a (β)−B (β) θ,

where a (β) is a IJK by 1 vector and B (β) is a IJK by p matrix. LetM (β, θ) ≡ ‖m (β, θ)‖, i.e.

the Euclidean norm of m (β, θ). Then by construction,

M (β, θ) = 0 if (β, θ) = (β0, θ0) ,

and any other (β, θ) such thatM (β, θ) = 0 is observationally equivalent to (β0, θ0) by the property

of the norm. Next we profile out θ. Let † denotes the Moore-Penrose generalized inverse of a matrix.

For each β, we define:

θ∗ (β) =
(
B (β)>B (β)

)†
B (β)> a (β) ,

so that θ∗ (β) is a least squares solution to minθ∈ΘM (β, θ). Then we define:

M∗ (β) =M (β, θ∗ (β)) .

By construction it also holds that

M∗ (β) = 0 if β = β0.

In this way we can temporarily reduce the parameter space in the identification problem to a one-

dimensional one. The reasoning is analogous to profiling in an estimation routine. Particularly we

can ignore any θ that does not lie in argminθ∈ΘM (β, θ) since necessarily,

M (β, θ) >M (β, θ∗ (β)) ≥ 0.

Therefore (β0, θ0) is identified when M
∗ (β) has a unique minimum and minθ∈ΘM (β0, θ) has a

unique solution.

Theorem 1: (β0, θ0) is identifiable if

M∗ (β) = 0 if and only if β = β0,

and B (β0) has full column rank.
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Proof: Suppose (β0, θ0) is identifiable. If there is β′ 6= β0 such that M
∗ (β′) = 0, then

∆vaii (β0, θ0) = ∆vaii (β
′, θ∗ (β′)) for all i, ai by the property of the norm. Since Θ is closed, by

the projection theorem, θ∗ (β′) exists and is the unique element in Θ. This leads to a contradiction

since (β0, θ0) and (β
′, θ∗ (β′)) are observationally equivalent. Next, suppose that B (β0) does not

have full column rank. Let θ′ be another element in argminθ∈ΘM (β0, θ) that differs from θ0. Since

M (β0, θ) ≥ 0 for all θ ∈ Θ and M (β0, θ0) = 0, M (β0, θ
′) = 0. Thus (β0, θ0) and (β0, θ

′) are

observationally equivalent, also a contradiction.�

Comments on Theorem 1:

(i) High Level Assumptions. Conditions in Theorem 1 are high level as we do not relate them to

the underlying primitives of the model. However, they are statements made on objects that observed

or can be consistently estimated nonparametrically (as other conditions used in all of our theorems

in this paper).

(ii) Feasible Check and Estimation. Since we have reduced the identification problem to a single-

parameter that can reside only in a narrow range, there is no need to refer to complicated results for

the identification of a general nonlinear model. Since it is possible to estimateM∗ (β) consistently

for all β, one can simply plot the sample counterpart ofM∗ over B for an exhaustive analysis of the

problem. Once the minimum ofM∗ is found, the corresponding rank matrix can then be checked.

This is indeed one way to estimate the discount factor, namely by grid search. We can detect an

identification problem if the sample counterpart of M∗ contains a flat region at the minimum, or

when the sample counterpart of B (β0) does not have full column rank.

4 Identification of the Switching Costs

In this section we consider games with switching costs. Section 4.1 introduces the specific structures

of the payoff function and an additional conditional independence assumption. Section 4.2 derives

the closed-form expressions for the switching costs. Throughout this section we do not need M5, but

will continue to assume that M1 - M4 hold.

4.1 Games with Switching Costs

In what follows we distinguish past actions from other state variables. We denote actions from the

previous period by w. So that, with a slight abuse of notation, at time t, there are two types of

observed state variables, (xt, wt), where wt ≡ at−1 and xt is a vector of any other state variables.

Actions from the past of more than one period can also be handled. We provide a discussion on this

at the end of the section.
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Assumptions M1 - M4 are now be updated accordingly by replacing x with (x,w) everywhere. In

addition we need the following assumptions.

Assumption N1 (Decomposition of Profits): For all i, ai, a−i, x, w:

πi (ai, a−i, x, w) = µi (ai, a−i, x) + φi (ai, x, w; ηi) · ηi (ai, x, w) ,

for some known function ηi : A ×X × AI → {0, 1} such that for any ai, φi (ai, x, w; ηi) = 0 for all

x when w ∈ W 0
ηi
(ai, x), where W

d
ηi
(ai, x) ≡

{
w ∈ AI : ηi (ai, x, w) = d

}
for d = 0, 1.

Assumption N2 (Conditional Independence II): The distribution of xt+1 conditional on

at and xt is independent of wt.

The components of the decomposition of πi can be interpreted as follows. φi denotes the switching

cost. ηi is an indicator function, modeled by the researcher, which takes value 1 if and only if

a switching cost is present. We define φi to be zero whenever ηi takes value zero. In a model

that contains switching costs, it must be the case that for some ai, W
0
ηi
(ai, ·) will be non-empty

since it contains w ∈ AI such that the action of player’s i coincides with ai. Hence it is possible

to consider distinguishing µi from φi. Then µi is to be interpreted as the residual of the payoffs

that excludes the switching costs. Assumption N1 also imposes some distinct exclusion restrictions.

Firstly, switching costs of each player are not affected by other players’ actions in the same period.

However, players’ past actions and other state variables can have direct effects on switching costs.

Secondly, past actions are excluded from µi. Typical components in µi that are often modeled to

satisfy the required exclusion restrictions include payoff derived from interactions between players

at the stage game, as well as other fixed costs such as fixed operating costs. Furthermore, this does

not mean that variables from the past cannot affect µi since xt can contain lagged actions and other

state variables. N1 is assumed in many applications in the literature.

N2 imposes that knowing actions from the past does not help predict future state variables when

the present action and other observable state variables are known. Note that N2 is not implied by

M2. Therefore when xt contains lagged actions N2 can be weakened to allow for dependence of other

state variables with past actions. In many applications {xt} is assumed to be a strictly exogenous

first order Markov process. Specifically this implies xt+1 is independent of at conditional on xt in

addition to N2. In any case, unlike M2, N2 is a restriction made on the observables so it can be

tested directly from the data.

Both N1 and N2 are quite general and are implicitly assumed in many empirical studies in the

literature. Here we provide some examples of φi · ηi and W
d
ηi
.
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Example 1 (Entry Cost): Suppose K = 1, then the switching cost at time t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) = ECi (xt, a−it−1) · ait (1− ait−1) .

So for all x, W 1
ηi
(1, x) =

{
w = (0, a−i) : a−i ∈ A

I−1
}
and W 0

ηi
(1, x) =

{
w = (1, a−i) : a−i ∈ A

I−1
}
,

and W d
ηi
(0, x) = ∅.

Example 2 (Scrap Value): Suppose K = 1, then the switching cost at time t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) = SVi (xt, a−it−1) · (1− ait) ait−1.

So for all x,W d
ηi
(1, x) = ∅ and,W 1

ηi
(0, x) =

{
w = (1, a−i) : a−i ∈ A

I−1
}
andW 0

ηi
(0, x) =

{
w = (0, a−i) : a−i ∈

Example 3 (General Switching Costs): Suppose K ≥ 1, then the switching cost at time

t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) =
∑

a′i,a
′′

i ∈A

SCi (a
′
i, a

′′
i , xt, a−it−1) · 1 [ait = a′i, ait−1 = a′′i , a

′
i 6= a′′i ] .

Here SCi (a
′
i, a

′′
i , xt, a−it−1) denotes a cost player i incurs from switching from action ait−1 = a′′i to

ait = a′i, at the state (xt, a−it−1). So for all x and a−i, using just the definition of a switching cost

we can set SCi (a
′
i, a

′
i, x, a−i) = 0 for all a

′
i. Therefore without any further restrictions: W

1
ηi
(ai, x) ={

w = (a′i, a−i) : a
′
i ∈ A\ {ai} , a−i ∈ A

I−1
}
and W 0

ηi
(ai, x) =

{
w = (ai, a−i) : a−i ∈ A

I−1
}
for all x.

Note that Examples 1 and 2 are just special cases of Example 3 when K = 1, with an additional

normalization of zero scrap value and entry cost respectively.

Before giving the formal results we briefly provide an intuition as to why N1 and N2 are helpful

for identifying the switching costs.

Exclusion and Independence

The essence of our identification strategy is most transparent in a single agent decision problem

under a two-period framework. For the moment suppose I = 1. Omitting the i subscript, the

expected payoff for choosing action a > 0 under M1 to M4 is, cf. (8),

v (a, x, w) = π (a, x, w) + βE [π (at+1, xt+1, wt+1) |at = a, xt = x,wt = w] .

N1 imposes separability and exclusion restrictions of the following type:

π (a, x, w) = µ (a, x) + φ (a, x, w; η) · η(a, x, w),

where φ is a known indicator such that φ (a, x, w; η) = 0 whenever a 6= w. Therefore the con-

tribution from past action can be separated from the present one within a single time period.
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The direct effect of past action is also excluded from the future expected payoff under N2, as

E [π (at+1, xt+1, wt+1) |at, xt, wt] simplifies to E [π (at+1, xt+1, wt+1) |at, xt]. Therefore we can write

v (a, x, w) = λ (a, x) + φ (a, x, w; η) · η (a, x, w) ,

where λ (a, x) is a nuisance function that equals to µ (a, x) + βE [π (at+1, xt+1, wt+1) |at = a, xt = x].

Any variation in v (a, x, w) induced by changes in w while holding (a, x) fixed can be traced only to

changes in η (a, x, w). Since λ is a free parameter, the switching costs can then be identified up to a

location normalization by differencing over the support of w; e.g. through (v (a, x, w)− v (0, x, w))−

(v (a, x, w0)− v (0, x, w0)) for some reference point w0.

This simple argument can be generalized to identify switching costs in dynamic games. However,

the way to difference out the nuisance function necessarily becomes more complicated. Particularly

the nuisance function will then also vary for different past action profile since we have to integrate

out other players’ actions using the equilibrium beliefs that depends on past actions. Relatedly

there are also larger degree of freedoms to be dealt with as the nuisance function contains more

arguments. The precise form of differencing required can be formalized by a projection that enables

the identification of the switching costs up to some normalizations.12

4.2 Closed-Form Identification

We begin by introducing some additional notations and representation lemmas. For any x,w, we

denote the ex-ante expected payoffs by mi (x,w) = E [Vi (xt, wt, εit) |xt = x,wt = w], where Vi is the

value function defined in (1) that can also be defined recursively through

mi (x,w) = E [πi (at, xt, wt) |xt = x,wt = w] + E[
∑

a′i∈A

εit (a
′
i) · 1 [ait = a′i] |xt = x,wt = w] (7)

+βE [mi (xt+1, wt+1) |xt = x,wt = w] ,

12Mathematically, for fixed a, x, our identification problem under N1 and N2 in a single agent case is equivalent to

identifying g2 that satisfies the relation:

g1 (w) = c+ g2 (w) ,

for a known function g1 and an unknown constant c. In the case of a game, the relation generalizes to

g1 (w) =

∫
c (x)h (dx|w) + g2 (w) ,

where the unknown constant is replaced by a linear transform (an expectation) of an unknown function.

17



and the choice specific expected payoffs for choosing action ai prior to adding the period unobserved

state variable is

vi (ai, x, w) = E [πi (ait, a−it, xt, wt) |ait = ai, xt = x,wt = w] (8)

+βE [mi (xt+1, wt+1) |ait = ai, xt = x,wt = w] .

Bothmi and vi are familiar quantities in this literature. Under Assumption N2, E[mi (xt+1, wt+1) |ait, xt, wt]

can be simplified further to E[m̃i (ait, a−it, xt) |ait, xt, wt], where for all i, ai, a−i, x, using the law of

iterated expectation, m̃i (ai, a−i, x) ≡ E [mi (xt+1, ait, a−it) |ait = ai, a−it = a−i, xt = x]. Then, for

ai > 0, let ∆vi (ai, x, w) ≡ vi (ai, x, w) − vi (0, x, w) , ∆µi (ai, a−i, x) ≡ µi (ai, a−i, x) − µi (0, a−i, x),

and ∆m̃i (ai, a−i, x) ≡ m̃i (ai, a−i, x) − m̃i (0, a−i, x) for all i, a−i, x. Furthermore, since the action

space is finite, the conditions imposed on φi · ηi by N1 ensures for each ai > 0 we can always write

the differences of switching costs as

φi (ai, x, w; ηi) · ηi (ai, x, w)− φi (0, x, w; ηi) · ηi (0, x, w) =
∑

w′∈W∆
ηi
(ai,x)

φi,ηi (ai, x, w
′) · 1 [w = w′] , (9)

where φi,ηi (ai, x, w) ≡ φi (ai, x, w; ηi)−φi (0, x, w; ηi) is only defined on the setW
∆
ηi
(ai, x) ≡ W 1

ηi
(ai, x)∪

W 1
ηi
(0, x). To illustrate, we briefly return to Examples 1 - 3.

Example 1 (Entry Cost, Cont.): Here the only ai > 0 is ai = 1. Since W
1
ηi
(0, x) is empty

W∆
ηi
(1, x) = W 1

ηi
(1, x), and for any w = (0, a−i), φi,ηi (1, x, w) = ECi (x, a−i) for all i, a−i, x.

Example 2 (Scrap Value, Cont.): Similarly to the above, W∆
ηi
(1, x) = W 1

ηi
(0, x), and for

any w = (1, a−i), φi,ηi (1, x, w) = −SVi (x, a−i) for all i, a−i, x.

Example 3 (General Switching Costs, Cont.): For any ai > 0, based on the definition

of a switching cost alone, both W 1
ηi
(ai, x) and W

1
ηi
(0, x) can be non-empty. So for all i, a−i, x such

that a′i 6= ai:

φi,ηi (ai, x, w) = SCi (ai, 0, x, a−i) when w = (0, a−i) , (10)

φi,ηi (ai, x, w) = −SCi (0, ai, x, a−i) when w = (ai, a−i) ,

φi,ηi (ai, x, w) = SCi (ai, a
′
i, x, a−i)− SCi (0, a

′
i, x, a−i) when w = (a

′
i, a−i) for a

′
i 6= ai or 0.

Note that SCi (a
′
i, a

′′
i , x, a−i) can be recovered for any ai 6= a′i by taking some linear combination from{

φi,ηi (ai, x, a
′
i, a−i)

}
ai,a

′

i∈A×A
.

The following lemmas formalize the intuition at the end of Section 4.1 regarding how assumptions

N1 and N2 allow us to isolate the (present period’s) switching costs from other components of the

payoffs.
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Lemma 3: Under M1 - M4 and N1 - N2, we have for all i, ai > 0 and a−i, x, w:

∆vi (ai, x, w) = E [λi (ai, a−it, xt) |xt = x,wt = w] +
∑

w′∈W∆
ηi
(ai,x)

φi,ηi (ai, x, w
′) · 1 [w = w′] , (11)

where

λi (ai, a−i, x) ≡ ∆µi (ai, a−i, x) + β∆m̃i (ai, a−i, x) . (12)

Proof: Using the law of iterated expectation, under M3E [Vi (sit+1) |ait = ai, xt, wt] = E [mi (xt+1, wt+1) |a

which simplifies further, after another application of the law of iterated expectation and N2, to

E [m̃i (ai, a−it, xt) |xt, wt]. The remainder of the proof then follows from the definitions of the terms

defined in the text.�

Lemma 3 says that the (differenced) choice specific expected payoffs can be decomposed into a

sum of the fixed profits at time t and a conditional expectation of a nuisance function of λi consisting

of composite terms of the primitives. In particular the conditional law for the expectation in (11),

which is that of a−it given (xt, wt), is identifiable from the data. Since a conditional expectation

operator is a linear operator, and the support of wt is a finite set with (K + 1)I elements, we can

then represent (11) by a matrix equation.

Lemma 4: Under M1 - M4 and N1 - N2, we have for all i, ai > 0 and x:

∆vi (ai, x) = Zi (x)λi (ai, x) +Qi (ai, x)φi,ηi (ai, x) , (13)

where ∆vi (ai, x) denotes a (K + 1)I −dimensional vector of normalized expected discounted pay-

offs, {∆vi (ai, x, w)}w∈AI , Zi (xt) is a (K + 1)I by (K + 1)I−1 matrix of conditional probabilities,

{Pr [a−it = a−i|xt = x,wt = w]}(a−i,w)∈AI−1×AI , λi (ai, x) denotes a (K + 1)I−1 by 1 vector of {λi (ai, a−i, x)}a−

Qi (ai, x) is a (K + 1)I by
∣∣∣W∆

ηi
(ai, x)

∣∣∣ matrix of ones and zeros, and φi,ηi (ai, x) is a
∣∣∣W 1

ηi
(ai, x)

∣∣∣
by 1 vector of

{
φi,ηi (ai, x, w)

}
w∈W∆

ηi
(ai,x)

.

Proof: Immediate.�

Let ρ (Z) denote the rank of matrix Z, andMZ denotes a projection matrix whose null space is

the column space of Z. We now state our first result.

Theorem 2: Under M1 - M4 and N1 - N2, for each i, ai > 0 and x, if (i) Qi (ai, x) has full

column rank; (ii) ρ (Zi (x)) + ρ (Qi (ai, x)) = ρ([Zi (x) : Qi (ai, x)]), then Qi (ai, x)
>
MZi(x)Qi (ai, x)

is non-singular, and

φi,ηi (ai, x) = (Qi (ai, x)
>
MZi(x)Qi (ai, x))

−1Qi (ai, x)
>
MZi(x)∆vi (ai, x) . (14)
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Proof: The full column rank condition of Qi (ai, x) is a trivial assumption. The no perfect

collinearity condition makes sure there is no redundancy in the modeling of the switching costs.

The rank condition (ii) then ensures MZi(x)Qi (ai, x) preserves the rank of Qi (ai, x). Therefore

Qi (ai, x)
>
MZi(x)Qi (ai, x)must be non-singular. Otherwise the columns ofMZi

(x)Qi (ai) is linearly

dependent, and some linear combination of the columns in Qi (ai) must lie in the column space of

Zi (x), thus violating the assumed rank condition. The proof is then completed by projecting the

vectors on both sides of equation (13) byMZi(x)and solve for φi,ηi (ai, x).�

In order for condition (ii) in Theorem 2 to hold, it is necessary for researchers to impose

some a priori structures on the switching costs. Before commenting further, it will be informa-

tive to revisit Examples 1 - 3. For notational simplicity we shall assume I = 2, so that wt ∈

{(0, 0) , (0, 1) , (1, 0) , (1, 1)}. And since A = {0, 1} in Examples 1 and 2, we shall also drop ai from

∆vi (ai, x) = {∆vi (ai, x, w)}w∈AI and λi (ai, x) = {λi (ai, a−i, x)}a−i∈AI−1.

Example 1 (Entry Cost, Cont.): Equation (13) can be written as




∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))




=




P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))




[
λi (0, x)

λi (1, x)

]

+




1

0

0

0

0

1

0

0




[
ECi (x, 0)

ECi (x, 1)

]
,

where P−i (a−i|x,w) ≡ Pr [a−it = a−i|xt = x,wt = w]. A simple sufficient condition that ensures

condition (ii) in Theorem 3 to hold is when the lower half of Zi (x) has full rank, i.e. when

P−i (0|x, (1, 0)) 6= P−i (0|x, (1, 1)).
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Example 2 (Scrap Value, Cont.): Equation (13) can be written as



∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))



=




P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))




[
λi (0, x)

λi (1, x)

]

+




0

0

1

0

0

0

0

1




[
−SVi (x, 0)

−SVi (x, 1)

]
.

An analogous sufficient condition that ensures condition (ii) in Theorem 3 to hold in this case is

P−i (0|x, (0, 0)) 6= P−i (0|x, (0, 1)).

Example 3 (General Switching Costs, Cont.): Suppose K = 2, we consider ∆vi (2, x) =

{∆vi (2, x, w)}w∈AI ,




∆vi (2, x, (0, 0))

∆vi (2, x, (0, 1))

∆vi (2, x, (0, 2))

∆vi (2, x, (1, 0))

∆vi (2, x, (1, 1))

∆vi (2, x, (1, 2))

∆vi (2, x, (2, 0))

∆vi (2, x, (2, 1))

∆vi (2, x, (2, 2))




=




P−i (0|x, (0, 0)) P−i (1|x, (0, 0)) P−i (2|x, (0, 0))

P−i (0|x, (0, 1)) P−i (1|x, (0, 1)) P−i (2|x, (0, 1))

P−i (0|x, (0, 2)) P−i (1|x, (0, 2)) P−i (2|x, (0, 2))

P−i (0|x, (1, 0)) P−i (1|x, (1, 0)) P−i (2|x, (1, 0))

P−i (0|x, (1, 1)) P−i (1|x, (1, 1)) P−i (2|x, (1, 1))

P−i (0|x, (1, 2)) P−i (1|x, (1, 2)) P−i (2|x, (1, 2))

P−i (0|x, (2, 0)) P−i (1|x, (2, 0)) P−i (2|x, (2, 0))

P−i (0|x, (2, 1)) P−i (1|x, (2, 1)) P−i (2|x, (2, 1))

P−i (0|x, (2, 2)) P−i (1|x, (2, 2)) P−i (2|x, (2, 2))







λi (2, 0, x)

λi (2, 1, x)

λi (2, 2, x)


(15)

+




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1







SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)

−SCi (0, 2, x, 0)

−SCi (0, 2, x, 1)

−SCi (0, 2, x, 2)




.

Clearly the required rank condition of Theorem 2 cannot hold in this case. If ρ (Zi (x)) = 3, then

the maximum number of elements in φi,ηi (2, x) that can be identified using Lemma 4 is 6 given that
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we have 9 equations. Therefore we need at least three restrictions. For example by normalizing one

type of switching costs to be zero. More specifically suppose SCi (0, ai, x, a−i) = 0 for all ai > 0,

then Qi (2, x)φi,ηi (2, x) becomes




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0







SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)




,

and similar to the two previous examples, a sufficient condition for condition (ii) in Theorem 2

to hold can be given in the form that ensures the lower third of Zi (x) to have full rank, which

is equivalent to the determinant of




P−i (0|x, (2, 0)) P−i (1|x, (2, 0)) P−i (2|x, (2, 0))

P−i (0|x, (2, 1)) P−i (1|x, (2, 1)) P−i (2|x, (2, 1))

P−i (0|x, (2, 2)) P−i (1|x, (2, 2)) P−i (2|x, (2, 2))


 is non-

zero. Such normalization is an example of an exclusion restriction. A preferred scenario would

be to use economic or other prior knowledge to assign values so known switching costs can be

removed from the right hand side (RHS) of equation (15). Other restrictions, such as equality

of switch costs so that the costs from switching to and from actions that may be reasonable in

capacity or pricing games can be used instead of a direct normalization. For instance suppose that

SCi (ai, a
′
i, x, a−i) = SCi (a

′
i, ai, x, a−i) whenever ai 6= a′i, then Qi (2, x)φi,ηi (2, x) becomes




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0







SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)




,

and we expect the rank condition to generally be satisfied. Analogous conditions and comments

apply for ∆vi (1, x).
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Comments on Theorem 2:

(i) Pointwise Closed-form Identification. Our result is obtained pointwise for each i, ai > 0 and

x. Therefore the finite support assumption in M4 is not necessary. The closed-form expression in

(14) also suggests that a closed-form estimator for the switching costs can be obtained by simply

replacing the unknown probabilities and expected payoffs by their sample counterparts. However, the

theoretical and practical aspects of estimating models where the observable state has a continuous

component becomes a semiparametric one and is more difficult. See Bajari et al. (2009) and Srisuma

and Linton (2012).

(ii) Underidentification. In order to apply Theorem 2 a necessary order condition must be met.

Firstly, ρ (Zi (x)) always takes value between 1 and (K + 1)I−1; the latter is the number of columns

in Zi (x) that equals the cardinality of the action space of all other players other than i. A necessary

order condition based on the number of rows of the matrix equation in equation (13) can be obtained

from: ρ (Zi (x)) + ρ (Qi (ai, x)) ≤ (K + 1)I , so that (the number of switching cost parameters one

wish to identify is the cardinality of W∆
ηi
(ai, x) equals) ρ (Qi (ai, x)) ≤ (K + 1)I − 1. In the least

favorable case, in terms of applying Theorem 2, the previous inequality can be strengthened by

using the maximal rank of Zi (x), which is (K + 1)I−1. Then ρ (Qi (ai, x)) is bounded above by

K (K + 1)I−1. The order condition indicates the degree of underidentification if one aims to identify

all switching costs without any other structure beyond the definition of a switching cost.

(iii) Normalization and Other Restrictions. The maximum number of parameters one can write

down in equation (13) using the full generality of the definition of a switching cost is (K + 1)I ;

see (10). Therefore the previous comment suggests that (K + 1)I−1 restrictions will be required

for a positive identification result if no further structure on the switching costs is known. One

solution to this is normalization. Since (K + 1)I−1 equals also the cardinality of AI−1, one convenient

normalization restriction that will suffice here is to set values of switching cost associated with a single

action. For instance the assumption that costs of switching to action 0 from any other action is zero

will suffice. Note that such assumption is a weaker restriction than a more common normalization of

the outside option for the entire payoff function (e.g. Proposition 2 of Magnac and Thesmar (2002)

as well as Assumption 2 of Bajari et al. (2009)). Nevertheless an ad hoc normalization is not an ideal

solution.13 A preferable solution is to appeal industry specific knowledge to approximate certain costs,

or use other prior economic impose additional structure on the switching costs. A natural example

of the latter is the menu cost, or other adjustment costs in pricing games (Slade (1998)). Also

see Mýsliwski (2015) who uses the identification strategy proposed in this paper, where he imposes

equality restrictions (cf. Example 3) on costs associated with supermarket discount decisions.

13There are recent studies focusing on the effects on counterfactuals from an incorrect normalization, for example

see Aguirregabiria and Suzuki (2014).
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In practice researchers can impose prior knowledge restrictions directly on φi,ηi. This can be

seen as part of the modeling decision. Next we show restrictions across all choice set can be used

simultaneously.

Assumption N3 (Equality Restrictions): For all i, x, there exists a K (K + 1)I by κ ma-

trix Q̃i (x) with full column rank and a κ by 1 vector of functions φ̃i,ηi (x) so that Q̃i (x) φ̃i,ηi (x) rep-

resents a vector of functions that satisfy some equality constraints imposed on {Qi (ai, x)φi,ηi (ai, x)}ai∈A.

The matrix Q̃i (x) can be constructed from diag{Qi (1, x) , . . . ,Qi (K, x)}, and merging the

columns of the latter matrix, by simply adding columns that satisfy the equality restriction together.

Redundant components of {φi,ηi (ai, x)}ai∈A are then removed to define φ̃i,ηi (x). The following

lemma gives the matrix representation of the expected payoffs in this case (cf. Lemma 4).

Lemma 5: Under M1 - M4, N1 - N3, we have for all i, x:

∆vi (x) = (IK ⊗ Zi (x))λi (x) + Q̃i (x) φ̃i,ηi (x) , (16)

where ∆vi (x) denotes a K (K + 1)I −dimensional vector of normalized expected discounted pay-

offs, {∆vi (ai, x)}ai∈A\{0}, Zi (x) is a (K + 1)I by (K + 1)I−1 matrix of conditional probabilities,

{Pr [a−it = a−i|x,wt = w]}(a−i,w)∈AI−1×AI , IK is an identity matrix of size K, ⊗ denotes the Kro-

necker product, λi (x) denotes a K (K + 1)I−1 by 1 vector of {λi (ai, x)}ai∈A\{0}, Q̃i (x) and φ̃i,ηi (x)

are described in Assumption N3.

Proof: Immediate.�

Using Lemma 5, our next result generalizes Theorem 3 by allowing for the equality restrictions

across all actions.

Theorem 3: Under M1 - M4, N1 - N3, for each i, x, if (i) Q̃i (x) has full column rank and, (ii)

ρ (IK ⊗ Zi (x)) + ρ(Q̃i (x)) = ρ([IK ⊗ Zi (x) : Q̃i (x)]), then Q̃
>
i (x)MIK⊗Zi(x)Q̃i (x) is non-singular,

and

φ̃i,ηi (x) = (Q̃
>
i (x)MIK⊗Zi(x)Q̃i (x))

−1Q̃>
i (x)MIK⊗Zi(x)∆vi (x) .

Proof: Same as the proof of Theorem 2.�

Our previous comments on Theorem 2 are also relevant for Theorem 3. However, we caution that

the ability to relax the necessary order condition may not always be sufficient for identification. In

particular, consider the following special case of Example 3 when K = 1 in the context of an entry

game.
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Example 4 (Entry Game with Entry Cost and Scrap Value): The period payoff at

time t is

πi (ait, a−it, xt, wt) = µi (ait, a−it, xt) + ECi (xt) · ait (1− ait−1)

+SVi (xt) · (1− ait) ait−1.

I.e. we have imposed the equality restrictions on the entry costs and scrap values for each player

only depend on each her own actions. Then, for all i, x, the content of equation (16) (in Lemma 5) is



∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))



=




P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))




[
λi (0, x)

λi (1, x)

]
(17)

+




1

1

0

0

0

0

1

1




[
ECi (x)

−SVi (x)

]
.

Note that the order condition is now satisfied. However, condition (ii) in Theorem 3 does not hold

since a vector of ones is contained in both CS (Zi (x)) and CS(Qi (x)). Even if we go further and

assume the entry cost and scrap value have the same magnitude (i.e. ECi (x) = −SVi (x)), the rank

condition will still not be satisfied. In this case Qi (1, x)φi,ηi (1, x) becomes




1

1

1

1



· ECi (x) .

Mathematically, the failure to apply our result in the example above can be traced to the fact

that Zi (x) is a stochastic matrix whose rows each sums to one. The inability to identify both entry

cost and scrap value is not specific to our identification strategy. This issue is a familiar one in the

empirical literature. Similar finding can be found for instance in Aguirregabiria and Suzuki (2014,

equation (21)).14 We refer the reader to their work for related results in a simpler setting as well

14Interestingly, although Aguirregabiria and Suzuki (2014) explicitly assume the knowledge of the discount factor

throughout their paper, a careful inspection of their Proposition 2 will also suggest that either the entry cost or scrap

value in their model can be identified independently of the discount factor under some normalization. Our Theorem

3 is a more general version of this particular implication; Aguirregabiria and Suzuki (2014) derive their result for a

single agent model with binary choice and {xt} is assumed to be strictly exogenous. We thank a referee for pointing

this out.
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as a list of references they provide of empirical work that make normalization assumptions on either

one of these switching costs. It is worth noting that the work of Aguirregabiria and Suzuki (2014)

focuses on the effects normalizations may have on certain counterfactuals, unlike ours, which is only

concerned with identification and estimation of the primitives. Quantifying these effects from a

particular misspecification, whether by assuming an incorrect discount factor or imposing a wrong

normalization on a switching cost, is an important issue but it is beyond the scope of our work.

The above results can be adapted to allow for effects from past actions beyond one period with

little modification. Specifically, all results above hold if we re-define wt to be at−ς for any finite

ς ≥ 1, and then replace xt by x̃t = (xt, at−1, . . . , at−ς+1) everywhere. The inclusion of such state

variable does not violate any of our assumptions, particularly assumption N2, and thus still allows

us to define analogous nuisance function that can be projected away as shown in Theorems 2 and

3. In this case the interpretation of φi has to change accordingly and the switching cost parameters

will be characterized according to x̃t; in such situation we naturally have W
d
ηi
(ai, x̃) 6= W d

ηi
(ai, x̃

′)

for x̃ 6= x̃′ since the principal interpretation of switching costs generally will depend on at−1.

5 Numerical Illustration

We illustrate the use of our identification strategies and implement the suggested estimators in the

previous sections. Section 5.1 gives results from a Monte Carlo study taken from Pesendorfer and

Schmidt-Dengler (2008). Section 5.2 estimates a discrete investment game using the data from Ryan

(2012).

5.1 Monte Carlo Study

The simulation design is the two-firm dynamic entry game taken from Section 7 in Pesendorfer and

Schmidt-Dengler (2008). In period t each firm i has two possible choices, ait ∈ {0, 1}, with ait = 1

denoting entry. The only observed state variables are previous period’s actions, wt = (a1t−1, a2t−1).

Using their notation, firm 1′s period payoffs are described as follows:

π1,θ (a1t, a2t, xt) = a1t (µ1 + µ2a2t) + a1t (1− a1t−1)F + (1− a1t) a1t−1W, (18)

where µ1, µ2, F and W are respectively the monopoly profit, duopoly profit, entry cost and scrap

value. The latter two components are switching costs. Each firm also receives additive private shocks

that are i.i.d. N (0, 1). The game is symmetric and Firm’s 2 payoffs are defined analogously. The data

generating parameters are set as: (µ10, µ20, F0,W0) = (1.2,−1.2,−0.2, 0.1) and β0 = 0.9. Pesendorfer

and Schmidt-Dengler (2008) show there are three distinct equilibria for this game.
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We takeW0 to be known since it cannot be identified jointly with F0, and estimate there remaining

parameters. Since the payoff function satisfies Assumption M5 there are two ways to estimate the

model. One (Method A) is profiling out all the payoff parameters using the OLS expression and use

grid search to estimate the discount factor. The other (Method B) is to estimate F0 in closed-form

independently first before profiling out the other payoff parameters. Both estimators are expected to

be consistent since we know the correct model specification. Otherwise we can perform formal tests

to see if they differ; see Section 5.2 below. We provide summary statistics for both methods. We

consider all three equilibria as enumerated in Pesendorfer and Schmidt-Dengler (2008). We perform

10000 simulations with each sample size, N , of 100, 1000, 10000 and 100000. We report the mean

and standard deviation (in italics) for each estimator, as well as the square root of the aggregated

mean square errors (in bold) for each estimation method.
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Equ N Met β0 F0 µ10 µ20 RMSE

1 100 A 0.822 0.267 -0.255 0.283 1.176 0.303 -1.120 0.297 0.589

B 0.823 0.265 -0.299 0.629 1.158 0.391 -1.088 0.508 0.952

1000 A 0.861 0.182 -0.204 0.090 1.210 0.114 -1.191 0.095 0.254

B 0.861 0.181 -0.200 0.148 1.213 0.118 -1.195 0.121 0.292

10000 A 0.899 0.020 -0.201 0.028 1.200 0.030 -1.199 0.030 0.055

B 0.899 0.026 -0.200 0.044 1.200 0.031 -1.200 0.036 0.069

100000 A 0.900 0.000 -0.200 0.009 1.200 0.009 -1.200 0.009 0.016

B 0.900 0.000 -0.200 0.014 1.200 0.009 -1.200 0.011 0.020

2 100 A 0.833 0.248 -0.363 0.415 1.007 0.409 -0.856 0.545 0.940

B 0.834 0.247 -0.206 0.552 1.097 0.455 -0.998 0.658 1.031

1000 A 0.869 0.161 -0.223 0.153 1.187 0.173 -1.137 0.218 0.363

B 0.869 0.159 -0.199 0.150 1.203 0.167 -1.161 0.210 0.350

10000 A 0.900 0.020 -0.203 0.049 1.196 0.042 -1.193 0.065 0.094

B 0.899 0.026 -0.200 0.046 1.198 0.042 -1.196 0.062 0.092

100000 A 0.900 0.000 -0.200 0.015 1.200 0.012 -1.200 0.020 0.028

B 0.900 0.000 -0.200 0.015 1.200 0.011 -1.200 0.019 0.026

3 100 A 0.834 0.247 -0.368 0.422 1.011 0.412 -0.857 0.549 0.947

B 0.832 0.250 -0.211 0.600 1.104 0.480 -1.002 0.710 1.110

1000 A 0.865 0.171 -0.223 0.155 1.192 0.182 -1.136 0.220 0.375

B 0.865 0.171 -0.199 0.160 1.209 0.181 -1.161 0.226 0.376

10000 A 0.900 0.020 -0.204 0.050 1.196 0.042 -1.193 0.065 0.094

B 0.900 0.018 -0.201 0.050 1.197 0.042 -1.196 0.065 0.094

100000 A 0.900 0.000 -0.200 0.015 1.200 0.012 -1.200 0.020 0.028

B 0.900 0.000 -0.200 0.015 1.200 0.012 -1.200 0.020 0.028

Table 1: Summary statistics from estimating β0, F0, µ10, µ20 using data generated from equilibria 1

to 3 in Pesendorfer and Schmidt-Dengler (2008).

Our simulation study shows there is no reason why the discount factor cannot be consistently

estimated along with other payoff parameters. It is also interesting to compare the statistical proper-

ties of the estimators obtained using method A and B. We find that the square root of the aggregated

mean square error for the two estimators to be very similar across all three equilibria in large samples;
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with method A performing marginally better in equilibria 1 and 3, and method B performing mar-

ginally better in equilibrium 2. With smaller sample size method B seems to do worse than method

A. There also does not seem to be a dominating estimator for F0. Recall that method B requires fewer

assumptions on structure of the model, while method A correctly imposes the remaining parametric

structure of the payoff function but also has more parameters to estimate simultaneously. Earlier

versions of our paper show that when β0 is correctly assumed then the OLS estimator of Sanches et

al. (2016) performs better than method B in estimating F0 (using the mean square criterion). We

also find that the OLS estimator is inconsistent when incorrect guesses of the discount factor are

used.

5.2 Empirical Illustration

We estimate a simplified version of an entry-investment game based on the model studied in Ryan

(2012) using his data. In what follows we provide a brief description of the data, highlight the main

differences between the game we model and estimate with that of Ryan (2012). Then we present and

discuss our estimates of the primitives.

Data

We download Ryan’s data from the Econometrica webpage.15 There are two sets of data. One

contains aggregate prices and quantities for all the US regional markets from the US Geological

Survey’s Mineral Yearbook. The other contains the capacities of plants and plant-level information

that Ryan has collected for the Portland cement industry in the United States from 1980 to 1998.

Data on plants includes the name of the firm that owns the plant, the location of the plant, the

number of kilns in the plant and kiln characteristics. Following Ryan we assume that the plant

capacity equals the sum of the capacity of all kilns in the plant and that different plants are owned

by different firms. We observe that plants’ names and ownerships change frequently. This can be

due to either mergers and acquisitions or to simple changes in the company name. We do not treat

these changes as entry/exit movements. We check each observation in the sample using the kiln

information (fuel type, process type, year of installation and plant location) installed in the plant. If

a plant changes its name but keeps the same kiln characteristics, we assume that the name change

is not associated to any entry/exit movement. This way of preparing the data enables us to match

most of the summary statistics of plant-level data in Table 2 of Ryan. Any discrepancies most likely

can be attributed to the way we treat the change in plants’ names, which may differ to Ryan in a

15https://www.econometricsociety.org/content/supplement-costs-environmental-regulation-concentrated-industry-

0.

29



small number of cases.

Dynamic Game

Ryan models a dynamic game played between firms that own cement plants in order to measure

the welfare costs of the 1990 Clean Air Act Amendments (1990 CAAA) on the US Portland cement

industry. The decision for each firm is first whether to enter (or remain in) the market or exit, and if

it is active in the market then how much to invest or divest. Firm’s investment decisions is governed

by its capacity level. The firm’s profit is determined by variable payoffs from the competition in the

product market with other firms, as well as switching costs from the entry and investment/divestment

decisions. There are two action variables in Ryan’s model. One is a binary choice for entry and the

other is a continuous level of investment. Past actions are the only observed endogenous state

variables in the game. The aggregate data that are used to construct variable profits, through a

static Cournot game with capacity constraints between firms, are treated as exogenous.

We consider a discrete game that fits the general model description in Section 2. The main

departure from Ryan (2012) is that we combine the entry decision along with the capacity level

into a single discrete variable. We set the action space to be an ordinal set {0, 1, 2, 3, 4, 5}, where 0

represents exit/inactive, and the positive integers are ordered to denote entry/active with different

capacity levels. The payoff for each firm has two additive separable components. One depends on the

observables while the other is an unobserved shock. The observable component can be broken down

to variable and fixed profits. We assume the variable profit is determined by the players competing

in a capacity constrained Cournot game. The other consists of the switching costs that captures the

essence of firms’ entry and investment decisions. Lastly each firm receives unobserved profit shocks

for each action with a standard i.i.d. type-1 extreme value distribution.

Estimation

The period expected payoff for each firm as a function of the observables consists of variable

profits, operating costs and switching costs. The variable profit is derived from a capacity constrained

Cournot game constructed from the same demand and cost functions estimated as in Ryan’s paper.

Operating cost enters the payoff function additively and is treated as a dynamic parameter to be

estimated. These two components are non-zero if ait > 0. For the switching costs we normalize the

payoff for choosing action 0 to be zero. Therefore there are a total of 25 switching cost parameters

to be estimated.16

16Ryan (2012) models the switching costs differently. The fixed operating cost is normalized to be zero. Non-zero

investment and divestment costs are drawn from two distinct independent normal distributions, whose means and

variances are estimated using the methodology in Bajari, Benkard and Levin (2007).
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The payoff function in our empirical model satisfies AssumptionM5 so we can profile out the payoff

parameters. We estimate the model using methods A and B as described in Section 5.1. We also test if

the two estimates of the switching costs statistically differ. Instead of using nonparametric estimator,

similar to Ryan, we use a multinomial logit to estimate the choice and transition probabilities in the

first stage. More specifically, method A profiles out the 26 linear coefficients and uses grid search to

estimate the discount factor. Method B first estimates the 25 switching cost parameters in closed-form

using the closed-form expression in Section 4, treat them as known, before profiling and performing

the grid search. We estimate the standard errors, as well as computing the p-value of the Wald

statistics to test if the switching costs estimators from methods A and B differ by bootstrapping.

Our bootstrap sample is generated using the multinomial logit choice and transition probabilities

for each player in each market in the same manner as a parametric bootstrap; cf. Kasahara and

Shimotsu (2008) and Pakes, Ostrovsky and Berry (2007).

Results

We estimate the model twice. Once using the data from before and after the implementation

of the 1990 CAAA. We assume the data are generated from different equilibria over the two time

periods, but the same equilibrium is played in all markets within each time period.17 Table 2 and

3 compiles the results from estimating switching costs using the data from the years 1980 to 1990

and 1991 to 1998 respectively. Tables 4 and 5 give the estimates for the discount factor and fixed

operating cost using the data from the corresponding periods. Tables 4 and 5 report analogous

results using the data from the years 1991 to 1998.

The signs and relative magnitudes of the estimated switching costs almost uniformly make sensible

economic sense. E.g., by reading down the columns in Tables 2 and 3, we see that entering at

higher capacity level generally implies higher cost (negative payoff), and increasing the capacity level

should be costly while divestment can return revenue for firms. This is quite an impressive finding

in particular for method B, which shows that the observed probabilities can generate switching

costs estimates that capture reasonably well a key feature of a complicated structural model. The

switching cost estimates from both methods A and B are similar. The Wald statistics do not find

the two switching costs estimators to be statistically different.18 Therefore we do not reject the

capacity constrained Cournot game specification based on comparing the switching costs estimates.

17If the same equilibrium is played across markets then data can be pooled together. Otsu, Pesendorfer and

Takahashi (2015) suggest the data in Ryan (2012) between 1980 and 1990 should not be pooled across markets, while

the data from 1991 to 1998 pass their poolability test.
18Our test statistic takes a standard quardratic form of the difference between the switching costs estimates from

methods A and B. Its asymptotic distribution under the null hypothesis (of no difference) is a Chi-squared random

variable with 25 degree of freedoms.
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Comparing Tables 2 and 3 also show the entry and switching costs increase after the implementation

of 1990 CAAA. Higher entry costs is a key finding in Ryan’s paper as new entrants face more

stringent regulations than incumbents. Our finding of the increase in switching costs can also be

partly attributed to the new plants using newer (or better maintained) equipment that requires with

more certification and testing than previously. We also find the discount factor to be around the

range that are usually used (between 0.9 and 0.95) apart from the estimate using method B before

the 1990 CAAA that appears close to the boundary.19 Although our estimates suggest firms face

a lower borrowing rate than in Ryan, we do not reject the hypothesis that β = 0.9 as assumed in

his paper. We also find a small increase in the fixed operating costs after the implemetation of 1990

CAAA, which can account in parts for the installation and maintenance of monitoring equipment

for regular emission reporting needed to apply for operating permits. We refer the reader to Section

2 in Ryan for further details of the industry background.

19The infinite time expected discounted payoffs with respect to each action is unbounded with β = 1. However, the

differences between diverge very slowly when we approximate them with a Neumann sum, and the objective function

appears to be well-defined numerically even as β is very close to 1.
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Method A

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -3.300 - 2.265 5.080 7.956 10.770

0.985 - 0.680 0.707 0.766 0.929

ait = 2 -10.502 -5.243 - 5.528 10.609 15.810

0.937 0.719 - 0.887 0.998 1.117

ait = 3 -23.266 -15.439 -7.624 - 7.996 16.050

1.405 1.010 0.683 - 0.923 1.237

ait = 4 -41.023 -30.620 -20.196 -9.808 - 11.648

2.003 1.850 1.430 1.094 - 1.442

ait = 5 -52.879 -50.648 -39.027 -25.756 -11.949 -

2.281 2.585 2.041 1.395 1.537 -

Method B

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -2.776 - 2.540 5.333 8.014 11.696

0.269 - 0.333 0.567 0.967 1.113

ait = 2 -10.483 -5.197 - 5.243 10.466 15.893

0.689 0.365 - 0.368 0.718 1.110

ait = 3 -23.279 -15.427 -7.769 - 7.732 16.134

1.339 0.920 0.474 - 0.640 1.006

ait = 4 -41.422 -31.007 -20.797 -10.416 - 10.852

1.808 1.594 1.078 0.682 - 0.864

ait = 5 -54.378 -52.892 -41.874 -28.792 -16.091 -

1.911 2.232 1.844 1.659 1.835 -

Specification Test

Statistic 14.069

p-value 0.961

Table 2: Results from estimating switching costs using data from the years 1980 to 1990. Standard

errors and p-value are obtained using 500 bootstrap samples (reported in italics).
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Method A

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -6.962 - 4.449 9.881 15.125 20.264

1.530 - 1.514 1.501 1.689 1.634

ait = 2 -17.038 -8.291 - 9.872 18.531 26.722

1.723 1.364 - 1.714 1.860 1.527

ait = 3 -35.489 -23.412 -11.411 - 12.961 24.283

2.444 1.866 1.371 - 1.955 1.614

ait = 4 -51.544 -50.043 -33.220 -16.363 - 16.524

3.061 3.419 3.278 2.825 - 3.561

ait = 5 -64.018 -63.994 -61.481 -48.514 -24.374

4.514 4.524 4.502 3.683 2.056

Method B

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 -5.653 - 5.294 10.730 16.264 21.567

0.726 - 0.704 1.109 1.703 1.378

ait = 2 -17.746 -9.278 - 8.774 17.461 25.754

1.379 0.780 - 0.857 1.364 1.218

ait = 3 -36.098 -24.537 -11.950 - 11.862 23.489

2.282 1.767 1.128 - 1.221 1.401

ait = 4 -51.840 -50.425 -33.468 -16.760 - 16.753

2.202 2.649 2.397 1.904 - 2.025

ait = 5 -64.236 -64.355 -61.706 -48.272 -24.093

6.712 6.771 6.713 5.695 3.389

Specification Test

Statistic 13.196

p-value 0.975

Table 3: Results from estimating switching costs using data from the years 1991 to 1998. Standard

errors and p-value are obtained using 500 bootstrap samples (reported in italics).
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Method A

Discount Factor Operating Cost

0.956 -1.679

0.084 0.489

Method B

Discount Factor Operating Cost

0.999 -1.523

0.075 0.649

Table 4: Results from estimating the discount factor and fixed operating cost using data from the

years 1980 to 1990. Standard errors are obtained using 500 bootstrap samples (reported in italics).

Method A

Discount Factor Operating Cost

0.938 -2.079

0.162 1.10

Method B

Discount Factor Operating Cost

0.946 -1.893

0.160 0.948

Table 5: Results from estimating the discount factor and fixed operating cost using data from the

years 1991 to 1998. Standard errors are obtained using 500 bootstrap samples (reported in italics).

6 Conclusion

Studies of identification of dynamic games typically focus on the payoff parameters and take other

primitives to be known. The value of the discount factor in empirical work is often assumed rather

than estimated. Therefore the presumption on the value of the discount factor appears to be neces-

sary for identification and estimation of the payoff parameters. We show that the analysis of joint

identification and estimation of the discount factor and payoff parameters can be very simple when
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the payoffs have a linear-in-parameter specification. The complete analysis is equivalent to doing

a grid search over the [0, 1] interval. There is some novelty in our approach.20 Our identification

criterion makes full information on the underlying parameter on the empirical model and has impli-

cations for all two-step estimation methods that wish to estimate the discount factor. One can of

course argue that analogous analysis can be performed with other loss functions. However, without

profiling, an exhaustive search with other loss functions, e.g. those based on the choice probabilities

(e.g. maximum likelihood, moments or asymptotic least squares) may not be feasible. Especially

when there are many payoff parameters, it may not be trivial to locate the global minimizer even

for a single candidate value of the discount factor. We also provide conditions when switching costs

can be identified in closed-form under independently of the discount factor and specification of other

payoff components (linear or otherwise). The latter gives a closed-form estimator for the switching

costs that can be used for specification testing, which for example can use to test for the mode of

competition between firms. We illustrate the scope of its applications in a Monte Carlo study and

an empirical game using real data.

Our take away message that one should be able to identify the discount factor in dynamic games

extends beyond discrete choice games. For example, the joint identification and estimation of the

discount factor and payoff parameters in games with supermodular payoff functions should also be

possible. See Bajari, Benkard and Levin (2007) and Srisuma (2013) for descriptions of other types of

dynamic games. However, the practical implementation may be an issue since there is no obvious ways

to reduce the parameter space even when the payoff functions take a linear-in-parameter structure

as discussed in the previous paragraph.

Throughout the paper we assume the most basic setup of a game with independent private values

under the usual conditional independence, and we anticipate the data to have been generated from a

single equilibrium. Our results can in principle be extended to games with unobserved heterogeneity,

which has been used to accommodate a simple form of multiple equilibria, as long as nonparametric

choice and transition probabilities can be identified (see Aguirregabiria and Mira (2007), Kasahara

and Shimotsu (2009), Hu and Shum (2012)). The research on how to perform inference with a more

general data structure is an important area of future research.

20Appendix A provides a more analytical condition for identification. However, it is only sufficient and the failure

to apply Theorem 4 (below) does not mean the model cannot be identified.
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Appendix A

This appendix we attempt to give a more analytical approach that ensures identification of (β0, θ0).

We assume the setup in Section 3 (i.e. assume Assumptions M1 to M5). We proceed by setting up

a map that defines the parameter of interest as its fixed-point. We first introduce some additional

notations and a characterization for the observationally equivalence of (β0, θ0).

For any x = (x1, . . . , xp)
> ∈ Rp and y = (y1, . . . , yp+1)

> ∈ Rp+1, let ‖x‖α1 = maxi=1,...,p |xi| and

‖y‖α2 = maxi=1,...,p |yi| + |yp+1|. Then for a class of p + 1 by p real matrices, we denote the matrix

norms induced by
(
‖·‖α1 , ‖·‖α2

)
by ‖·‖α1,α2. We comment that these are not standard induced matrix

norms, however they have simple explicit bounds. In particular it is easy to verify that, for any matrix

p+ 1 by p, C = (cij),

‖C‖α1,α2 ≤ max
i=1,...,p

p∑

j=1

|cij|+

p∑

j=1

|cp+1,j| .

We also need the parameter space to be compact. Let Θ ≡
{
θ ∈ Θ : maxi=1,...,p |θi| ≤ k

}
and B ≡

[
0, b
]
for some positive k and b ∈ (0, 1). Next we introduce the following relation to study the

identification of (β0, θ0).

Lemma 6: Under M1 - M6, (β, θ) is observationally equivalent to (β0, θ0) if and only if (β, θ)

satisfies

caii −D
ai
i (β) θ − Ei (β) = F

ai
i

(
θ

β

)
(19)

for all i, ai > 0, where

caii = ∆vaii (β0, θ0)−∆R
ai
i0 ,

Dai
i (β) = β∆Hai

i (IJ − βL)−1Ri1,

Ei (β) = β2∆Hai
i L (IJ − βL)−1 (Ri0 + εi) ,

Faii = [∆Rai
i1 : ∆H

ai
i (Ri0+εi)] .

Proof: Equation (19) is obtained by re-arranging equation (4), after applying the identity

that (IJ − βL)−1 = IJ + βL (IJ − βL)−1 and replace ∆vaii (β, θ) by ∆v
ai
i (β0, θ0). Therefore, by

construction, (β, θ) satisfies (19) if and only if it is observationally equivalent to (β0, θ0).�

The following result provides one condition that is sufficient for the identification of (β0, θ0).

Theorem 4: Assume that J ≥ p+1 and M1 - M5 hold. Suppose there exists i, ai such that: (i)

the rank of Faii is p + 1; (ii) there exists a p + 1 by J matrix A0 such that A0F
ai
i is non-singular;
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and (iii) max {g1,g2} < 1, where

g1 = max
β∈B

∥∥(A0F
ai
i )

−1
A0∆H

ai
i β (IJ − βL)−1R1i

∥∥
α1,α2

,

g2 = max
β,β′∈B,θ∈Θ

∥∥∥∥∥(A0F
ai
i )

−1
A0∆H

ai
i

(
(IJ − βL)−1 (IJ − β′L)

−1
R1iθ

+L (IJ − βL)−1 ((β + β′) IJ − ββ′L) (IJ − β′L)
−1
(R0i + εi)

)∥∥∥∥∥
α1,α2

.

Then (β0, θ0) is identifiable.

Proof: First define Qai
i : [0, 1]×Θk → R

p+1 as follows:

Qai
i (β, θ) = (A0F

ai
i )

−1
A0c

ai
i − (A0F

ai
i )

−1
A0D

ai
i (β) θ − (A0F

ai
i )

−1
A0Ei (β) .

By construction, from (19), it is easy to see that (β0, θ0) is a fixed-point ofQ. Take any (β, θ) , (β
′, θ′) ∈

B ×Θ, then

Qai
i (β, θ)−Q

ai
i (β

′, θ′) = − (A0F
ai
i )

−1
A0 (D

ai
i (β) θ −D

ai
i (β

′) θ′ + Ei (β)− Ei (β
′)) ,

where

Dai
i (β) θ −D

ai
i (β

′) θ′ = ∆Hai
i

(
β (IJ − βL)−1Ri1θ − β′ (IJ − β′L)

−1
Ri1θ

′
)

= ∆Hai
i

(
(β − β′) (IJ − βL)−1 (IJ − β′L)

−1
Ri1θ

+β′ (IJ − β′L)
−1
Ri1 (θ − θ′)

)
,

and

Ei (β)− Ei (β
′) = ∆Hai

i L
(
β2 (IJ − βL)−1 − β′2 (IJ − β′L)

−1
)
(Ri0 + εi)

= ∆Hai
i L
(
(β − β′) (IJ − βL)−1 ((β + β′) IJ − ββ′L) (IJ − β′L)

−1
)
(Ri0 + εi) ,

which can be shown by making use of the following identities:

β (IJ − βL)−1 − β′ (IJ − β′L)
−1

= (β − β′) (IJ − βL)−1 (IJ − β′L)
−1
,

β2 (IJ − βL)−1 − β′2 (IJ − β′L)
−1

= (β − β′) (IJ − βL)−1 ((β + β′) IJ − ββ′L) (IJ − β′L)
−1
.

It then follows that

|Qai
i (β, θ)−Q

ai
i (β

′, θ′)| ≤ g1 ‖θ − θ′‖α1 + g2 |β − β′|

≤ max {g1,g2}

∥∥∥∥∥

(
θ

β

)
−

(
θ′

β′

)∥∥∥∥∥
α2

.

I.e. Qai
i is a contraction, hence it has a unique fixed point. Now suppose (β0, θ0) is not identifiable.

Then there exists some (β, θ) 6= (β0, θ0) that is observationally equivalent to (β0, θ0). By an impli-

cation of Lemma 6 (β, θ) must also be a fixed point of Qai
i , which is a contradiction. Thus (β0, θ0)

is identifiable.�
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Comments on Theorem 4:

(i) Compact Domain. B cannot include 1 as the expected discounted returns would then be

unbounded. Compactness is useful for showing existence of a fixed point. There is also a tradeoff in

the choice of b and k in the definitions of B and Θ respectively. For example, smaller b and k means

smaller max {g1,g2} but this is a restriction on the parameter space.

(ii) Choice of A0. The need to select A0 can be eliminated altogether by removing some rows

in (19) so that we have exactly p + 1 equations. In fact it is not necessary to take equations that

only correspond to the states from a particular player i and ai. Since the parametric structure in

(19) is the same for all states we can select any p+ 1 equations from any i and ai and compute the

corresponding matrix norms for g1 and g2. This gives us different combinations of equations we can

use, and we only need the analog of max {g1,g2} to be less than 1 for one of them to ensure (β0, θ0)

is identifiable.

We provide some details for the vectors and matrices for Theorem 4 in the context of the game

simulated in the Monte Carlo study in Section 5.1 as an illustration. However, we note that the

conditions for contraction in Theorem 4 are not met in this particular case. In what follows we

use the shorthand notation that pi (w1, w2) ≡ Pr [ait = 1|w1t = w1, w2t = w2]. Note that, from our

definition, in a symmetric equilibrium p1 (w1, w2) 6= p2 (w1, w2) but instead p1 (w1, w2) = p2 (w2, w1)

when w1 6= w2. We need to vectorize these functions.

π1 (a1, a2, w1, w2) = π10 (a1, a2, w1, w2) + π11 (a1, a2, w1, w2) ,

π10 (a1, a2, w1, w2) = (1− a1)w1W0,

π11 (a1, a2, w1, w2) = a1µ10 + a1a2µ20 + a1 (1− w1)F0,

E [π1 (at, wt) |wt = w] = p1 (w)µ10 + p1 (w) p2 (w)µ20 + p1 (w) (1− w1)F0 + (1− p1 (w))w

E [π10 (a1t, a2t, wt) |wt = w, a1t = a1] = (1− a1)w1W0,

E [π11 (a1t, a2t, wt) |wt = w, a1t = a1] = a1µ10 + a1p2 (w)µ20 + a1 (1− w1)F0,

E [ε1t (1) a1t + ε1t (0) (1− a1t) |wt = w] = −p1 (w)φ (∆v (w)) ,

where φ (·) denotes the pdf of a standard normal variable. Ordering the four states in the following
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order {(0, 0) , (0, 1) , (1, 0) , (1, 1)}, we have

∆vaii (β0, θ0) =




Φ−1 (p1 (0, 0))

Φ−1 (p1 (0, 1))

Φ−1 (p1 (1, 0))

Φ−1 (p1 (1, 1))



, ε1 = −




p1 (0, 0)φ (∆v (0, 0))

p1 (0, 1)φ (∆v (0, 1))

p1 (1, 0)φ (∆v (1, 0))

p1 (1, 1)φ (∆v (1, 1))



,

R10 = W0 ×




0

0

1− p1 (1, 0)

1− p1 (1, 1)



,R11 =




p1 (0, 0)

p1 (0, 1)

p1 (1, 0)

p1 (1, 1)

p1 (0, 0) p2 (0, 0)

p1 (0, 1) p2 (0, 1)

p1 (1, 0) p2 (1, 0)

p1 (1, 1) p2 (1, 1)

p1 (0, 0)

p1 (0, 1)

0

0



,

∆R1
11 = R1

11 −R
0
11, where

R1
11 =




1

1

1

1

p2 (0, 0)

p2 (0, 1)

p2 (1, 0)

p2 (1, 1)

1

1

0

0



,R0

11 =




0

0

0

0

0

0

0

0

0

0

0

0



.

and the transition probability matrices are

∆H1
1 = H1

1 −H
0
1,

H1
1 =




0 0 1− p2 (0, 0) p2 (0, 0)

0 0 1− p2 (0, 1) p2 (0, 1)

0 0 1− p2 (1, 0) p2 (1, 0)

0 0 1− p2 (1, 1) p2 (1, 1)



,H0

1 =




1− p2 (0, 0) p2 (0, 0) 0 0

1− p2 (0, 1) p2 (0, 1) 0 0

1− p2 (1, 0) p2 (1, 0) 0 0

1− p2 (1, 1) p2 (1, 1) 0 0



,

L =




(1− p1 (0, 0)) (1− p2 (0, 0)) (1− p1 (0, 0)) p2 (0, 0) p1 (0, 0) (1− p2 (0, 0)) p1 (0, 0) p2 (0, 0)

(1− p1 (0, 1)) (1− p2 (0, 1)) (1− p1 (0, 1)) p2 (0, 1) p1 (0, 1) (1− p2 (0, 1)) p1 (0, 1) p2 (0, 1)

(1− p1 (1, 0)) (1− p2 (1, 0)) (1− p1 (1, 0)) p2 (1, 0) p1 (1, 0) (1− p2 (1, 0)) p1 (1, 0) p2 (1, 0)

(1− p1 (1, 1)) (1− p2 (1, 1)) (1− p1 (1, 1)) p2 (1, 1) p1 (1, 1) (1− p2 (1, 1)) p1 (1, 1) p2 (1, 1)



.

So that caii ,D
ai
i (β) ,Ei (β) ,F

ai
i ,g1 and g2 can be readily constructed.
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